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Abstract

This dissertation addresses automated assistance for decision analysis in medicine. In

particular, I have investigated graph grammars as a representation for encoding how

decision-theoretic models can be constructed from an unordered list of concerns. The

modeling system that I have used requires a standard vocabulary to generate decision

models; the models generated are qualitative, and require subsequent assessment

of probabilities and utility values. This research has focused on the modeling of

the qualitative structure of problems given a standard vocabulary and given that

subsequent assessment of probabilities and utilities is possible. The usefulness of the

graph-grammar representation depends on the graph-grammar formalism's ability to

describe a broad spectrum of qualitative decision models, on its ability to maintain

a high quality in the models it generates, and on its clarity in describing topological

constraints to researchers who design and maintain the actual grammar. I have found

that graph grammars can be used to generate automatically decision models that are

comparable to those produced by decision analysts.
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Chapter 1

Models for Medical Decisions

Who shall decide, when doctors disagree,

And soundest casuists doubt, like you and me?

|Alexander Pope, Ep. iii. To Lord Bathurst (1733)

Over the centuries, physicians have had to weigh the potential bene�ts of their inter-

ventions against the risks. Also, in a world where medical resources are limited, costs

to the patient and to society are important considerations. For decisions that are

simple and that generalize across most patients, the best available therapeutic plan

may be obvious. However, uncertain information is used in most of medicine, and

the relative importance of di�erent risks and potential bene�ts may depend on the

individual patient's preferences and on their unique situation. Moreover, the e�ect

of a decision on the patient involved can be momentous. Consequently, physicians,

1



2 CHAPTER 1. MODELS FOR MEDICAL DECISIONS

patients, and health-care workers may �nd it di�cult to reach a decision, even when

they are able to list the important considerations that need to be weighed.

To help physicians, patients, and other people make the best decision with the

available information, decision analysts can clarify the issues involved, weigh the con-

siderations, and derive rami�cations of those beliefs that the decision makers �nd

relatively easy to express. Such professional decision analysis is both expensive and

time consuming. One aim of research in medical informatics is to provide automated

assistance for decision analysis. The subject of my research is the automation of initial

decision modeling. It is my hope that systems like the one described in this disserta-

tion might someday help health-care workers and their patients to formulate decision

problems, and thereby to �nd the wisest path through their di�cult dilemmas.

1.1 Example Dilemma

As an example, suppose that a physician suspects that her patient has active tuber-

culosis, but has been unable to establish the diagnosis|all cultures taken from the

patient's sputum and gastric aspirate have failed to show the causative bacteria. She

is considering bronchoscopy to obtain additional samples for culturing, and she is

also considering treatment for presumptive tuberculosis. However, both she and her

patient wish to avoid any unnecessary testing and any unnecessary treatment because

of the costs, risks, and nuisance involved. Both the physician and the patient must
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somehow weigh the likelihood of the disease, the seriousness of the disease, the bene�t

of the treatment, the costs of the treatment, the costs of the bronchoscopy, the risks

of bronchoscopy, and the usefulness of the bronchoscopy in providing more informa-

tion about the probability that the patient has tuberculosis. Since di�erent patients

may weigh the costs, risks, and bene�ts of a given medical procedure di�erently, a

universal policy may not be appropriate for individual decisions. Our hypothetical

physician and patient must somehow reach a decision for this particular case. How

do they decide?

1.2 Decision Analysis

Decision theory addresses how an individual can weigh probable outcomes from al-

ternatives to select the alternative|or the sequence of alternatives|that would tend

to result in the most propitious outcome for that individual (von Neumann and Mor-

genstern, 1944; North, 1968). Decision theory is based on four axioms of rational1

decision making:

1. The decision maker can established a complete ordering of preferences among

outcomes from the best|most desirable|to the worst.

2. The decision maker can assign preferences to lotteries just as well as to out-

comes.

1Decisions that are made in accordance with these axioms are also called normative.
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3. Lotteries have no intrinsic value to the decision maker beyond their outcomes.

4. For any three outcomes, there exists a probability p such that the decision

maker is indi�erent between receiving the intermediate outcome and receiving

a lottery with a p chance of the best outcome and a 1� p chance of the worst

outcome.

From these assumptions, decision analysts have developed myriad tools to help people

clarify decisions, weigh uncertainties, assess the desirability of di�erent outcomes,

test decision models, and derive decisions that are optimal according to the axioms.

Although decision theory has been available for decades, and weighing risks and

bene�ts of tests and interventions is a common task in everyday clinical medicine,

decision analysis is not commonly used in medicine.

1.3 Impediments to Decision Modeling

Decision analysis typically requires that expectations, evidence, deductions, and con-

clusions about the state of the world be expressed as probabilities. Early research

in applying probabilistic reasoning to medical decision making has relied on simpli-

�cations to the underlying model. For example, Warner and colleagues (1964) made

the assumption that, for any given disease, the chance of �nding a particular sign or

symptom to be present is independent of the presence or absence of all other signs
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and symptoms. This simpli�cation|called conditional independence|and other

simpli�cations made the computation of probabilities easier, but either restricted the

decision analysis to simple situations or forced the decision analyst to make unwar-

ranted assumptions.

More recent research in probabilistic reasoning has led to the development of

computational tools that deal with more complex models of conditional dependence

(Pearl, 1988; Olesen et al., 1989; Beinlich et al., 1989; Heckerman and Nathwani,

1992). One way to represent the interrelationships among variables in a decision

problem is to use an in
uence diagram (Howard and Matheson, 1984). An in
uence

diagram is a directed acyclic graph in which the nodes represent either decisions to be

made or uncertain events, and the arcs represent either information available at the

time of a decision or the dependence of an event's probability on the state of another

event or decision (see Section 3.5).

In our hypothetical case of a physician considering bronchoscopy, the decision

maker must be able to draw a structural model of probabilistic dependencies, such

as the model shown in Figure 1.1. Here, two square nodes|labeled Bronchoscopy

and Tb treatment|represent the two decisions that must be made. The three circu-

lar nodes|labeled Bronchoscopy result, Tb, and Future Tb|represent chance events

whose outcomes are relevant to the decision problem. The hexagonal node|labeled

Value to patient|represents the deterministic utility function that computes the
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overall desirability of any combination of outcomes. As indicated by the arcs entering

the utility node, Value to patient is a function of Tb and Future Tb outcomes, and

of the two decisions, Bronchoscopy and Tb treatment. Similarly, the solid arcs with

the target node Future Tb indicate that the probability distribution for the Future

Tb random variable depends on the outcome of Tb and the alternative chosen for Tb

treatment. The dashed arcs indicate that the outcome or the chosen alternative of the

variable represented by the source node for the arc is known to the decision maker at

the time that the target node's decision must be made.

Several computer programs (Shachter and Bertrand, 1987; Henrion, 1992; Ap-

plied Decision Analysis, 1992; Beinlich and Herskovits, 1990; Andersen et al., 1989;

Cousins et al., 1992; Srinivas and Breese, 1990) accept an in
uence-diagram model

from the user, and then perform computations to determine which decision alter-

natives are normatively preferred.2 Other computer-based tools assist the user in

further development and evaluation of the decision model using techniques such

as probability assessment (Heckerman, 1991), sensitivity analysis (Howard, 1984b;

Laskey, 1993), preference assessment (Farr and Shachter, 1992), value-of-information

evaluation (Howard, 1984a), exact or approximate inference (Shachter and Peot, 1992;

Chavez and Cooper, 1990; Jensen et al., 1990; Dagum and Galper, 1993), and expla-

nation (Suermondt and Cooper, 1992).

2Although several of these programs are designed to answer queries about belief-networks|
in
uence diagrams that lack decision nodes, such routines can be used to solve in
uence-diagram
queries as well (Cooper, 1988).
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Tb treatment

Bronchoscopy

Bronchoscopy
result

Value to
patient

Future
TbTb

Probabilistic dependency

Information available

Chance node

Deterministic function

Decision node

Function to optimize

Figure 1.1: An in
uence-diagram model for the tuberculosis decision. The decision

maker must decide whether perform a diagnostic test, and whether to begin treatment.
Note that, after the Bronchoscopy, there is a future decision|Tb treatment|that
depends on the results of the test.
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Despite the technologies that assist with reasoning about complex probabilistic

models, the decision maker must be able to formulate such models. Unfortunately,

drawing the structure of the in
uence diagram for a problem is cognitively di�cult,

and an inde�nitely large variety of models is needed to represent all the problems

facing physicians. Moreover, clinical decision problems are often far more complex

than is our example problem in Figure 1.1. Since the decision model is patient

speci�c, there generally are no data on which statistical classi�cation and machine-

learning techniques (Herskovits and Cooper, 1990) might capitalize to derive a model.

Moreover, the decision variables must be included in the model, and clinical databases

generally lack full coverage of decision alternatives. Although some researchers have

suggested a comprehensive template to cover all decision models (Heckerman and

Horvitz, 1990), it is di�cult to imagine a single topology that could contain all possible

problem structures. Finally, decision analysts frequently work iteratively, adding and

deleting nodes and arcs to re�ne the model. Neither the machine-learning approach

nor the comprehensive-template approach is designed for such incremental modeling.

1.4 Automated Generation of an Initial Model

We must decrease the di�culty of initial model formulation if we are to encourage

normative decision making in the clinical environment, where patients and physicians

must make decisions in minutes, lacking the luxury of weeks to undertake decision
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analysis for a single problem. One hope for automated assistance lies in the observa-

tion that there exist topological patterns in in
uence diagrams that occur repeatedly

in widely disparate medical dilemmas.3 For example, there is a clinical maxim that

an invasive test should not be ordered unless future treatment decisions might be

changed based on the results of that test. Such a maxim does not rely on medical

expertise or on the details of a particular clinical case. The maxim also has a topolog-

ical equivalent in an in
uence diagram. In Figure 1.1, we see that the decision node

for Bronchoscopy precedes the decision node for Tb treatment. Also, the result of the

test provides information that becomes available to the treatment decision node.

In addition to typical topological patterns, each clinical concept tends to be as-

sociated with a typical role that it plays in a decision model. Tests and treatments

tend to be decision nodes, which represent variables under the control of the decision

maker. Results of tests tend to be observable chance nodes, where the corresponding

stochastic variable's value is dependent on an uncertainty that the decision maker

cannot evaluate directly. Treatments tend to be modeled as decreasing the prob-

ability or severity of some future disease state. Several other abstractions can be

made that group medical concepts based on how they appear in in
uence-diagram

models (Section 6.1). The key idea of my dissertation research is that these pro-

totypical patterns and abstractions might help a computer to generate reasonable

3I suspect that these topological patterns re
ect the ways that clinicians have classi�ed observa-
tions and interventions; however, as discussed in Chapter 4, the patterns also re
ect more general
constraints inherent in decision theory.
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in
uence-diagram models from a list of the concepts involved in the dilemma.

At this point, we would like to have a formalism for describing what the proto-

typical patterns are, and how they are to be connected to the rest of an evolving

in
uence-diagrammodel. Fortunately, there exists a formalism that is speci�cally de-

signed to encode such graph manipulations: the graph-grammar formalism. More

precisely, there exist not one but dozens of graph-grammar formalisms (Ehrig et al.,

1990). Although they di�er in the class of graphs on which they operate, and in their

ability to express di�erent types of graph manipulations, all these approaches basically

describe how a graph is to be altered. A graph grammar consists of graph-rewrite

production rules.4 Each production rule describes where in a host graph the ma-

nipulation can be applied, how the graph manipulation is to be performed, and what

the e�ect of the manipulation is. The collection of graph-grammar rules describes a

class of graphs that can be constructed from those rules. Consequently, one approach

to constructing decision models automatically is to assign domain concepts|such as

Bronchoscopy|to nodes and patterns that are typical for that concept.

The particular graph-grammar formalism that I have used is a modi�cation of

G�ottler's operational graph grammar, suggested by Barthelmann (1990). This for-

malism can describe context-sensitive node manipulations of directed graphs with

labeled nodes and arcs. The formalism has the advantage that the production rules

4Throughout this paper, we shall use the terms production rule, rule, and production

interchangeably.
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themselves can each be described by a single graph. Figure 1.2 provides a brief

example of such a production rule and of its application.5.

In G�ottler's notation, a production is divided into four regions (Figure 3.3a): the

left region (VL), the right region (VR), the region below (VB), and the region above

(VA). Each production rule describes the following manipulation steps:

1. Locate all subgraphs in the host diagram where the nodes and arcs match the

vertices and edges from the left and bottom regions of the production rule

(Figure 3.3b).

2. Match zero or more subgraphs in the indeterminate region to subgraphs in the

host diagram. Also match the edges between the indeterminate and left regions

to corresponding arcs in the diagram.

3. Delete the nodes that matched VL and delete their incident arcs (Figure 3.3c).

4. Add new nodes and arcs that correspond to the vertices and edges in the right

region of the production rule (Figure 3.3d).

5Details of the graph-grammar formalism are discussed in Section 3.3
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<tx complication>
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Figure 1.2: Sample application of the graph-grammar production rule. (a) This

production rule describes how nodes of the type <ablative tx> can be added to the
host graph. VL, VA, VB, and VR (left, above, below, and right) are the four regions

of a graph-grammar production rule. (b) The �rst view of the host graph shows
two nodes from the host diagram matching <utility> and <present disease> in the

production. (c) If VL contained vertices, a matching set of nodes would be removed.

(d) Additional nodes Appendectomy and Future appendicitis are added to the QCID
model. (tx = treatment; dotted arcs correspond to contingency arcs.)



1.5. GRAMARYE: ASSISTANCE FOR MODELING OF DECISIONS 13

1.5 Gramarye: Assistance for Modeling of Deci-

sions

In
uence diagrams represent a type of graph, and the prototypical patterns alluded

to in the previous section can be viewed as subgraphs. Graph grammars are a formal

system for building, inspecting, and changing a graph through subgraph manipula-

tions. The prototypical patterns of medical in
uence diagrams can be represented as

graph-grammar rules that introduce one or more nodes into an in
uence diagram. A

derivation system might then use those patterns to develop an in
uence diagram from

a list of nodes that the user desires to be in the diagram. Ideally, such a derivation

system could follow the transactions in an electronic medical record, and, whenever

the need for decision analysis arose, the system could produce a qualitative model for

some context that the user de�nes. The qualitative model could then be used by the

physician to direct further gathering of conditional probabilities and of value weights.

In this dissertation, I address only the initial modeling of medical dilemmas. The ba-

sic result that I have found is this: A graph-grammar derivation system can generate

a reasonable qualitative decision model from an unordered list of medical concerns.

I have implemented a graph-grammar derivation system, calledGramarye, which

is a graph-grammar derivation system.6 Gramarye converts a list of node labels into

6The derivation system runs under Common Lisp. I have also implemented a NeXTSTEP user
interface for Gramarye.
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a directed graph with labeled nodes and labeled arcs. As shown in Figure 1.3, it

requires four static expressions to describe the domain and to describe the graphical

modeling language on which it is operating:

1. An initial graph

2. A classi�cation of node labels according to abstract symbols used in the pro-

ductions

3. A collection of graph-grammar productions

4. A visual notation for each subclass of node

These four requirements are �lled for in
uence-diagram models in the domain of

medical decision making by

1. The utility node, Value to patient

2. A classi�cation tree for a medical lexicon

3. A graph grammar for medical in
uence diagrams

4. The shapes rectangle, circle, and hexagon for decision, chance, and utility

nodes, respectively

Once the domain and graphical knowledge representation are given, the system

operates on lists of terms to generate graphical models. In this dissertation, I con-

centrate on the appropriate node-label classi�cation and graph grammar for deriving
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Gramarye derivation system

Initial
graph

Node-label
classification

Graph grammar Notation

 Output:
 graphical
 model

Input:
unordered list of
standard terms

Figure 1.3: Static expressions used by Gramarye. At bottom are the four static
expressions that de�ne a graphical knowledge representation and a domain: the initial
graph, the node-label classi�cation, the graph grammar, and the notation.

qualitative in
uence diagrams in the domain of medicine.

Although I do not suggest that the derivation system I have built will by itself

provide useful clinical decision support, a system that coordinated Gramarye with

other information-gathering and decision-analysis tools could assist in clinical deci-

sion making and public-health management. In this idealized scenario, the modeling

system would accept terms from a list of decisional considerations, and would classify

the terms according to conceptual abstractions made in the graph grammar. The sys-

tem would use the graph grammar to derive an initial in
uence diagram from those

concepts. It then would glean probabilities from a database of patients, from an online

repository of epidemiological information, or via a bibliographic search through the

medical literature. It also would assign rough orders of importance to the various pos-

sible outcomes. For instance, the disutility of antituberculosis therapy would be, by
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default, less than the disutility of active pulmonary tuberculosis. The system would

make further adjustments as sensitivity analysis and the user's direct inspection of the

diagram showed disagreements between the decision model and the user's perception

of the problem at hand. Then, as the more sensitive probabilities and utilities were

uncovered in this analysis, the system and the user would assess these variables more

accurately for the individual patient. From these direct assessments, the physician

and her patient would compute a normative plan of action. Again, the derivation

system discussed in this dissertation does not go beyond the �rst step: generating a

qualitative model. The investigation of computer assistance for subsequent steps in

the decision-analysis cycle is left to other researchers and is an active ongoing area of

research.

1.6 Dissertation Overview

Chapter 2 describes related research and the historical background of this work. In

Chapter 3, I discuss the Gramarye system. Chapter 4 investigates special properties

that we might demand in reasonable decision models. In Chapter 5, I provide results

gleaned from comparing the models generated by Gramarye to those constructed by

decision analysts. I o�er my appraisal of the derivation system, the graph grammar,

and the system's vocabulary in Chapter 6. Appendices A and B explain in detail the

graph-grammar and in
uence-diagram formalisms used in this research. Appendix C
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presents an actual transcript from a particularly complex derivation performed by

Gramarye.
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Chapter 2

Prior Work

\As to poetry, you know," said Humpty Dumpty, stretching out one

of his great hands, \I can repeat poetry as well as other folk if it comes

to that|"

\Oh, it needn't come to that!" Alice hastily said.

|Lewis Carroll, Through the Looking Glass

This work addresses research issues in decision theory, medical informatics, and

computer-assisted modeling. My research is the only work of which I know to apply

graph-grammar derivation systems to decision analysis,1 and the only work to cor-

relate clinical terminology with prototypical patterns in decision models. However,

my research does rest on a body of work in the information sciences. In particular,

1Schocken and Jones (1993) have used a graph grammar in a syntax-driven editor for decision
trees. However, their grammar imposes only symmetry constraints, which are unnecessary and
irrelevant for in
uence diagram models.

19



20 CHAPTER 2. PRIOR WORK

it builds on research done on automated construction of decision models, on medical

lexicography, and on graph-grammar derivation of semantic-network models.

2.1 Contribution to Decision Modeling

As currently practiced, decision analysis is extremely time consuming and is not prac-

tical for daily clinical decisions. In Figure 2.1, I depict decision analysis as an iterative

procedure divided into three main tasks: modeling, assessing, and testing. The

problem that my research addresses can be viewed as the �nal part of the modeling

phase|namely, drawing the structural model. My interest in this particular step

stems from the dearth of automated assistance for what can be an arduous task. In

the assessing phase, investigators have developed automated assistance for assessing

probabilities (Holtzman, 1988; Heckerman, 1991) and for assessing utilities (Farr and

Shachter, 1992). Some researchers have used Boolean operators2 and other prototyp-

ical causal interactions to assist the practitioner in assessing conditional probabili-

ties (Rousseau, 1968; Wellman, 1990a; D�iez, 1993; Srinivas, 1993; Heckerman, 1993;

Pearl, 1988, pages 184{194). Within the testing and evaluation phase, researchers

have developed tools to measure the sensitivity of variables (Howard, 1984b) and

to compute the value of a given piece of information (Howard, 1984a). Also, sev-

eral investigators have developed algorithms to perform probability-updating and

2Ingo Beinlich. Personal communication.
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Figure 2.1: The decision-analysis cycle divided into three phases: modeling, assessing,
and testing. In the modeling phase, the decision maker must enumerate her choices

and the considerations on which those choices depend. In the assessing phase, she

assigns numerical probabilities to chance events, and numerical utilities to possible
outcomes. In the testing phase, she analyzes the sensitivities of speci�c variables

and compares the model's behavior to her understanding; if she �nds signi�cant
discrepancies, she may re�ne, reassess, and retest her model. Gramarye performs the

graphical structuring of a model, as indicated by the shaded region in the lower left.
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expected-value computations once the diagram has been constructed (Pearl, 1986;

Lauritzen and Spiegelhalter, 1988; Chavez and Cooper, 1990). Others researchers

have developed programs that generate explanations for the model's behavior and

provide advice (Suermondt, 1991; Langlotz et al., 1988). In the modeling phase,

however, researchers have not yet found many techniques to help them draw the

qualitative structure of a problem, unless that structure already exists in a know-

ledge base.

The medical decision-making community, to a large extent, has relied on static

models, where a decision model is de�ned completely before the model is made

available to potential decision makers. Although such an approach may be appro-

priate for public-health policy making, and for situations that reoccur with little

signi�cant variation, it does not meet the needs of the physician and patient whose

problem is not exactly the one anticipated. Consequently, many researchers argue

for constructive approaches (Leong, 1991), where the model is not merely 
ex-

ible, as in the work of Holtzman (1988), but rather is constructed anew for the

individual patient's decision problem. Given the unbounded variety of dilemmas

that arise in medicine, and given the inexorable advance of medical technology, such

constructive modeling systems will be required before there can be any widespread

adoption of normative decision-support tools. Researchers have derived a struc-

ture of dependencies directly from data (Herskovits and Cooper, 1990; Geiger, 1992;
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Bouckaert, 1992), but this approach does not address the needs of a physician who

faces dilemmas that have not been modeled already, dilemmas that do not remind

the physician of prede�ned templates, and dilemmas for which data|including com-

binations of decision alternatives|are not available.

2.1.1 Construction of In
uence Diagrams from Knowledge

Bases

Several investigators have found that knowledge bases can imply a directed network of

causality that can be interpreted as a graph of probabilistic dependency (Breese, 1992;

Goldman and Breese, 1992; Hollenberg, 1984; Horsch and Poole, 1990; Langlotz et al.,

1987; Laskey, 1990; Leong, 1992; Provan and Clarke, 1993; Wellman et al., 1992).

Some of these researchers have extended the predicate-calculus format of a typical

knowledge base to include tables of conditional probabilities (Horsch and Poole, 1990;

Goldman and Breese, 1992; Breese, 1992). Laskey (1990) has suggested that proba-

bilistic networks could be constructed from a knowledge base of richly structured and

attributed arguments, with prior and conditional probabilities to be added for speci�c

problems and queries. Leong (1992) has devised a semantic-network formalism to in-

clude several categorical and uncertain relations, where the uncertain relations include

the qualitative probabilistic relations used by Wellman (1990b). Although she makes
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limited use of vague, categorical indicators that function in place of conditional prob-

abilities and utilities (Leong, 1991), the model's structure must be composed from

numerous queries from the user, and, since the actual probabilities and utilities are

not stored in the knowledge base, the model must be assessed manually. Langlotz

and his colleagues (1987) have used rule-based heuristics to generate possible therapy

plans, and simulation models to derive plausible outcomes. In their approach, how-

ever, the structure of the decision problem is limited to a single decision|which plan

to recommend|and several possible sequelae whose interdependencies are unknown

and whose probabilistic distributions cannot be derived from the simulation models.

Bifrost (H�jsgaard and Thiesson, 1992) employs a simpler semantic classi�cation

to group variables into a sequence of causally ordered blocks. However, the necessary

grouping in Bifrost must be performed manually by the user.

Wellman's sudo-planner (1990b) uses a sophisticated abstraction hierarchy, a

richly structured knowledge base, and a wealth of planning machinery. A portion

of the Wellman's knowledge base is shown in Figure 2.2. The decision models that

sudo-planner constructs are all subgraphs of the exhaustive model shown in Fig-

ure 2.3. The structure of sudo-planner's decision models re
ects the structure of

the knowledge base; all domain information that sudo-planner requires to construct

speci�c decision models must be encoded in the knowledge base.

In contrast, Gramarye possesses only a simple term classi�cation and a small
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Figure 2.2: A portion of sudo-planner's knowledge base (Wellman, 1990b, pages

100{102). In this �gure, inheritance relations are represented as thickened gray
arcs. Domain relations are represented by thin, black arcs, with arc labels indicating
whether the concept at the arc's source in
uences the target concept positively (\+")
or negatively (\�"). A question-mark label (\?") indicates that the domain rela-

tion is unclear or nonmonotonic. Domain relations in sudo-planner correspond to
qualitative probabilistic arcs in the models that sudo-planner generates. (AAA =

abdominal aortic aneurysm; CABG = coronary-artery bypass graft; CAD = coronary-

artery disease; CVD = cerebrovascular disease; MI = myocardial infarction.)
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Figure 2.3: The exhaustive qualitative in
uence diagram produced by sudo-planner
(Wellman, 1990b, page 19). In this �gure, arcs represent qualitative probabilistic
dependencies. (Details of the qualitative{in
uence-diagram representation are dis-
cussed in Section 3.5.) This model, which encompasses all models generated by

sudo-planner, shows numerous structural similarities to sudo-planner's know-
ledge base, a portion of which is shown in Figure 2.2. Nodes that are colored gray

represent decisions and probabilistic variables that derive from portions of sudo-

planner's knowledge base that are not shown in Figure 2.2. (AAA = abdominal

aortic aneurysm; CABG = coronary-artery bypass graft; Cath = cardiac catheteriza-
tion; CAD= coronary-artery disease; CVD= cerebrovascular disease;MI=myocardial

infarction.)
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collection of graphical patterns, and it relies on the user to specify some of the re-

lationships between speci�c concepts. Also, Gramarye leaves the generated model

with no ordering on the decision nodes. I do not doubt that Gramarye's performance

would be enhanced by the addition of domain knowledge and sophisticated reason-

ing. Nonetheless, I have found that Gramarye's syntactic guidance complements the

user's specialized understanding of a situation, and that our grammar's contribution

to model construction required relatively little knowledge engineering, and is fairly

general across medical domains.

Goldman and Charniak (1990) use a system of rules that describes how to trans-

form generic relations into probabilistic arcs, and how to expand the conditional

probability matrices at the tail of the newly added arcs. Their system of rules dic-

tates how arcs are to be added, but the conditions for where a rule can be applied

do not describe classes of local topologies, as graph-grammar productions are able to

do.

All these approaches rely on there being a knowledge base that encodes all the

speci�c relationships that appear in the generated in
uence diagram. This stipula-

tion is di�cult to presume in medicine, where the variety of considerations is un-

bounded. In those specialties within medicine where the variety of considerations is

small, it is unclear that constructing the requisite knowledge base should be preferred

over constructing probabilistic network models. There is no medical knowledge base
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of su�cient breadth to generate decision models for arbitrary problems in internal

medicine.

2.1.2 Extraction of In
uence Diagrams from Larger Models

An approach that is related to constructing decision models from a knowledge base

is deriving speci�c in
uence diagrams from a larger, more general in
uence diagram.

Researchers (Holtzman, 1988; Jimison, 1990; Bradshaw et al., 1991) have modeled

a set of decisions associated with a speci�c medical subject, such as treatment for

infertility, and then have pruned the in
uence-diagram structure to leave only those

considerations that are pertinent to an individual case. This approach requires that

there be an exhaustive model that is roughly the graph union of all the decision

models for a particular subject. On a grander scale, Heckerman and Horvitz (1990)

propose a comprehensive decision model to include all of internal medicine, based on

the QMR diagnostic model (Shwe et al., 1991). To model a speci�c problem, they

include any disease with its treatment in a decision model if its posterior probability

is greater than some previously de�ned threshold. If such a comprehensive in
uence

diagram could be built, it would require constant changes as new tests and treatments

are introduced into medicine.
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2.1.3 Critique of Decision Models

Although the focus of this dissertation is the automated and de novo construction of

in
uence diagrams, prior work on critiquing the quality of decision models is closely

related: The constructor of a model should avoid those pitfalls identi�ed by critics.

In work closely related to mine, Wellman and his colleagues (1989) developed general

rules used to critique an existing decision tree. Their program, called BUNYAN,

examines a decision tree for signs of common modeling errors (Wellman et al., 1989).

One of the rules that BUNYAN uses to critique a model of a medical dilemma is shown

in Figure 2.4. The rule derives from the clinical heuristic that tests should not be

ordered unless future decisions depend on their results. On the left side of Figure 2.4

is the top-level description that BUNYAN uses for this rule. The pattern language

that it uses is de�ned elsewhere in the program. Moreover, the functions and variables

used have suggestive labels and descriptions, but they are de�ned only in BUNYAN's

source code. In contrast, Figure 2.4 also shows the corresponding rule in our graph

grammar. I discuss the graph-grammar representation that I use in Section 3.3.

However, the basic meaning of a graph-grammar rule is simple. The graph-grammar

rule in Figure 2.4(b) has the following interpretation: If nodes of the types hpresent

diseasei, htreatmenti, and hutilityi are present in an evolving model, then additional

nodes of types htesti and htest resulti may be added to the model, along with new
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1. (and (nodetype ?decision test-decision)
2.      (non-degenerate? ?decision)
3.      (member ?branch (branches ?decision))
4.      (function-value choice-action ?branch ?action)
5.      (typep ?action test)
6.      (not (null? ?action)
7.      (not (and (member ?x (downstream-nodes

    (branch-node ?branch)))
8.                (typep ?x test-result?)
9.                (function-value

        test-result-test ?x ?branch)
10.               (function-value some-branch

        ?x ?branch1)
11.               (function-value get-plan

        ?branch1 ?plan1)
12.               (member ?branch2 (branches ?x))
13.               (function-value get-plan

    ?branch2 ?plan2)
14.               (not (plan-equal?

    ?plan1 ?plan2)))))

(a)

(b)

(c)

Figure 2.4: Two di�erent representations for clinical maxims. (a) The way that BUN-

YAN models the clinical rule that no test should be ordered unless a future decision
depends on the test results (Wellman et al., 1989). This representation is based on

the Lisp programming language, and on numerous functions and variables, which are
de�ned elsewhere in the BUNYAN program. (b) The corresponding rule from my

graph grammar. The graph-grammar representation is discussed in Section 3.3. (c)
A graph-grammar rule that allows exceptions, where there is an inherent value to

knowing the test result. This last rule is not included in the currently used graph
grammar.
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arcs corresponding to the four shown in Figure 2.4(b). In this graph-grammar repre-

sentation, nodes with abstract (angle-bracketed) labels, such as hpresent diseasei and

htreatmenti, can be replaced by any of thousands of speci�c concepts that are listed

in the grammar under those respective categories. Thus, the graph-grammar formal-

ism provides a more terse description of structural constraints than can traditional

textual programming. Also, the derivation system that I have developed constructs

models using constraints that subsume those in BUNYAN, thereby eliminating the

need for subsequent critiquing.

2.2 Contribution to Medical Lexicography

Existing clinical vocabularies, such as SNOMED International (Rothwell et al., 1993;

Côt�e et al., 1993), group terms into classi�cation hierachies. Other vocacularies,

such as CPT (Finkel, 1990), provide a short textual description for individual terms.

Neither of these approaches provide terms with the operational semantics that a

computer would need in order to perform inferences and queries that are more so-

phisticated than matching terms. Some researchers have introduced semantic net-

works that identify relationships that exist among terms (McCray and Hole, 1990;

Campbell et al., 1994; Volot et al., 1993; Friedman et al., 1993; Bernauer, 1991;

Nolan et al., 1991). However, these semantic networks have provided few operational

de�nitions for the di�erent types of relationships. Consequently, it is still unclear to
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me how computational inference could be performed over these semantic networks.

My research may also help to clarify medical lexicons by introducing abstractions

based on decision-analytic considerations. An abstraction|such as the abstract node

label hablative treatmenti|is de�ned by a structural pattern found in decision models.

Many of these abstractions are common to clinical parlance, and are found in clinical

maxims, but are not listed in medical vocabularies. An abstraction can also be

de�ned by the list of terms that represent decisional considerations. Thus, Gramarye

provides de�nitions that are both intensional (based on attributes that are necessary

for an example, such as \all states of the U.S.A. that are surrounded by water") and

extensional (based on the examples to which the term is applicable, such as the

set fHawaiig). The intensional de�nition can be restricted to properties that can be

observed in in
uence diagrams|namely, where such terms typically �t in a decision

model.

2.3 Derivation of Semantic-Network Models

Researchers who work with graph grammars have lamented the lack of \successful

`real' applications" (G�ottler, 1990). Other researchers have used the graph-grammar

derivation system to build graph-based models other than in
uence diagrams. G�ottler

(1992; 1990) has used graph-grammar derivation systems to build computer-aided
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design systems and graph-editing software. Jones (1990; 1991) has developed a graph-

grammar{based derivation system that has generated specialized editors for vehicle

routing, production planning, simulationmodeling, and decision-tree building. For all

these applications, the editors generated are interpretive and graphical, and a set of

graph-grammar production rules provides the constraints on what editing operations

a user can perform. My research investigates modeling constraints that are strong

enough to dictate the entire model construction from a list of elements to be included

in the model.

2.4 Pattern-Directed Knowledge Acquisition

Although Gramarye does not help engineers to formulate domain-speci�c rules for a

knowledge base, it does help decision makers to organize domain-speci�c relations|

here, conditional probabilities|for a decision model. As part of his work on Teire-

sias, Davis (1984) employed rule models|metarules based on the typical format

of existing rules in a knowledge base|to critique the pattern of premises and actions

in new rules that were entered by an expert. Rule models comprise four parts: ex-

amples, a description, pointers to more general models, and pointers to more speci�c

models. The examples are actual rules in the knowledge base that �t the pattern for

a particular rule model. In a graph-grammar derivation system, these examples

correspond to the list of concepts that the system can add to a model by using the
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pattern described by a particular graph-grammar production. The graph-grammar

production resembles the description of a rule model, insofar as both describe the

conditions under which the production (or model) is applicable, and the e�ect of its

application. Furthermore, the general classes of symbols recognized by the graph-

grammar system are organized into a classi�cation tree, much as rule models in

Teiresias are organized into a tree according to speci�city of a model's pattern.

As in Teiresias, Gramarye selects patterns by traversing the classi�cation tree to

�nd the most speci�c rule that is applicable. Gramarye, however, accomplishes this

traversal by ascending from the leaf-node concept to the nearest class that can be

added by an applicable graph-grammar production.

There are several di�erences between the approach that I have taken and that

used in Teiresias. In Teiresias, model-based understanding of the knowledge base

depends on observed patterns in an existing knowledge base, and these automatically

generated rule models are \continually revised as a by-product of [interactions] with

the expert" (Davis, 1984, pages 187). Gramarye, on the other hand, relies on a static

grammar that the designer devises and updates manually. Teiresias infers which

patterns are to be regarded as typical by counting their occurrences in an existing

knowledge base, whereas Gramarye requires a grammar that speci�es typical patterns

in terms of a semantic network. As a result of this speci�cation, the patterns that
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are regarded as acceptable by Gramarye can have theoretical justi�cation and a well-

de�ned interpretation in terms of the underlying semantic network representation.

Also, Gramarye does not require an existing knowledge base from which to discern

patterns.

Van Heijst and others have used a context-sensitive rewrite grammar to describe

several di�erent inferential methods in a system called KEW (van Heijst et al., 1993).

In their grammar, nonterminal symbols represent generalized knowledge sources,

which are broad categories of problem-solving mechanisms. Terminal symbols repre-

sent knowledge-sources (speci�c problem-solvingmechanisms) and metaclasses (broad

categories of data that are to be used in the problem-solving task). KEW uses the

grammar to direct the incremental construction of both a problem-solving method

and a corresponding knowledge base for a given task. Although KEW and Gramarye

both use syntax to guide the process of modeling and knowledge acquisition, the

two systems address di�erent knowledge-acquisition problems, and they use di�erent

types of grammars. The models that KEW produces are abstract frameworks for

expert systems; Gramarye produces in
uence-diagram decision models for speci�c

clinical situations. KEW's grammar is a context-sensitive string grammar, where the

terminal symbols represent computational procedures and data structures; Gramarye

uses a graph-grammar formalism to build declarative models, with no speci�cation of

inferential procedures. The terminal symbols in Gramarye are all random variables,
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with clearly de�ned denotational semantics, as discussed in Section 3.5.

2.5 Summary

It is my hope that this investigation of graph-grammar derivation systems will provide

new tools for semantic-network modeling, for decision analysis, and for medical lexi-

cography. Graph grammars are a promising notation for describing abstract patterns

that are found in graphical knowledge representations, and they might lead to novel

insights into how large models and knowledge bases can be acquired, organized, and

managed. Although neither the graph-grammar formalism nor the in
uence-diagram

notation are original contributions, the investigation of prototypical patterns in med-

ical decision making, and the derivation of qualitative decision models from such pat-

terns, are two research areas that have hitherto been unexplored, and that promise

substantial practical bene�ts to applied medical informatics.



Chapter 3

Gramarye: A Graph-Grammar

Derivation System

He learnt : : : that there was no law of transmutation : : : , but that

every word in both Latin and Greek was to be individually committed to

memory at the cost of years of plodding.

|Thomas Hardy, Jude the Obscure

A graph grammar consists of a set of production rules that dictates how a graph

can be transformed and rewritten. These production rules are quite di�erent from the

productions used in rule-based expert systems: Graph-grammar rules can specify a

wide range of contexts for which they are applicable, and can describe di�erent graph

manipulations for those di�erent contexts. A graph grammar speci�es a language over

37
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a set of symbols, the members of which are elements of a graph. Graph grammars

can provide high-level abstractions that help users to manage complexities. I have

found that graph grammars o�er an expressive and concise way to represent proto-

typical forms for modeling dilemmas. Also, graph grammars can provide high-level

abstractions that help users to manage complexities.

A graph grammar is merely a speci�cation|a set of bounds on the space of accept-

able graphs in a language. Some system must direct the actual graph manipulations

and coordinate the sequence in which graph-grammar production rules are applied.

Furthermore, the development of the grammar itself is a process of trial and error,

and requires a convenient user interface to facilitate testing of how the grammar be-

haves for various input lists. The derivation system that I have developed accepts a

list of node labels and, if possible, produces a graph that includes a node for each

node label entered, and that ful�lls the constraints speci�ed in the graph grammar.

Derivation of in
uence diagrams is by no means the only use for graph grammars:

They can be used for translation between graphical languages; for graph simpli�-

cation; or for compilation of graphical input into a linear, textual language. These

other applications of graph grammars require strategies for selecting and applying

individual productions di�erent from the list-directed graph-building strategy that

Gramarye employs.
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3.1 Terminology

Throughout this chapter, I shall use the terms production rule, rule, and pro-

duction interchangeably. I shall distinguish elements of a graph in a production

from elements in the emerging in
uence-diagram model by referring to the former as

vertices and edges, and to the latter as nodes and arcs. Also, I shall use the term

host graph to refer to the emerging in
uence-diagram model.

3.2 Graph-Grammar Formalisms and Uses

Over the past 20 years, a plethora of formalisms has been developed to describe rewrit-

ing procedures for graphs. These formalisms include algebraic graph grammars, array

grammars, collage grammars, � grammars, edge-label{controlled grammars, expres-

sion grammars, graphic sequential rewriting systems, hyperedge-replacement gram-

mars, map grammars, neighborhood-controlled embedding grammars, node-label{

controlled grammars, picture-layout grammars, plex grammars, precedence graph

grammars, relation grammars, shape grammars, and web grammars (Ehrig et al.,

1986; Ehrig et al., 1990; Feder, 1971; Pavlidis, 1972). The various formalisms have

expressive abilities that range from the simplest node-label{controlled formalism to

the most expressive plex-grammar formalism. Graph grammars have been used in

domains as widely varying as botanical morphology, developmental biology, pattern
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recognition, programming-language semantics, database design, visual{programming-

language compilers, and kitchen design.

Researchers have adopted various de�nitions of context-freeness for graph gram-

mars (Feder, 1971; Pavlidis, 1972; Nagl, 1976; Montanari and Rossi, 1986), and sev-

eral of the formalisms have been shown to be expressible in terms of other formalisms

(Bunke, 1982; Montanari and Rossi, 1986; Habel, 1992). Corradini et al. (1990)

have shown that operational semantics of any logic program can be duplicated by

a context-free hypergraph grammar. Also, Nagl (1976) has described the following

classes of graph languages, in descending order of generality: unrestricted, mono-

tone, context sensitive, context free, normal, regular, and regular in normal

form.

The particular formalism that I have used is a modi�cation of G�ottler's opera-

tional graph grammars (Barthelmann, 1990); it is capable of representing languages

in any of Nagl's classes. My reasons for choosing this particular formalism are that its

representation of a production as a graph facilitates the direct inspection of produc-

tions by the grammar's designer, and that its expressive power is su�cient for adding

or deleting one or more nodes, with labeled, directed arcs. My current grammars

are monotone|that is, no rule yields a net decrease in the number of host-graph

nodes. The languages that they describe, however, are expressible in grammars of
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lower order.1 If I were interested in parsing graphs, such restrictions on the gram-

mar Gramarye uses would be more important than they are, given that Gramarye

generates graphs. My primary consideration is how easy is it for the designer of the

grammar to express patterns that he notices in instances of a particular graphical

language. My chosen formalism has been satisfactory for modeling patterns, and the

implementation of a derivation system for this formalism has been straightforward.

3.3 G�ottler's Operational Graph-Grammar For-

malism

Each production rule in a grammar describes a legal graph manipulation. In

G�ottler's formalism, we write these productions as graphs divided into four regions

(Figure 3.1), which partition the vertices into four sets: those in the left region, VL;

those in the right region, VR; those in the indeterminate region above, VA; and

those in the determinate region below, VB. The two sets VA and VB are referred to

as the embedding part, since, together, they describe the space of possible neigh-

boring nodes for the subgraph manipulation. The four regions of a production may

be thought of as a pattern to be deleted (VL), a pattern to be added (VR), a manda-

tory context for the manipulation (VB), and an optional context for the manipulation

1Nagl has shown (Nagl, 1976) that all monotone graph grammars have equivalent context-
sensitive graph grammars.
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X XX XZ

Y

E

F

VL

VA

VB

VR

Figure 3.1: Sample graph-grammar production rule. The production denotes that
some node of type X in the host graph is to be replaced by new instances of XX
and XZ. VL, VA, VB, and VR (left, above, below, and right) are the four regions of a

graph-grammar production rule.

(VA). All vertices (V ) in the production and the host graph have labels (LV ) and a

mapping (lV : V ! LV ) from vertices to their labels. There is a �nite set of edge

labels (LE) for the directed edges (E � V �V �LE) of productions and host graphs.

The graph manipulation described by such a production is as follows: Find nodes

matching the left region, VL, and replace them with nodes matching the right region,

VR. The procedure consists of these four steps:
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X

Y

E1

F

E2

X

Y

(a)

X

Y

X

Y

E1

F

E2

(b)

Y

E1

F

E2

XX XZ

Y

XX

XZ

(c)

Figure 3.2: Sample application of the graph-grammar rule from Figure 3.1. (a) The

�rst view of the host graph shows two nodes matching X and Y in the production.
(b) The node matching X is removed. (c) Additional nodes XX and XZ are added.
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Appendicitis

Value to
patient

Future
appendicitis

+

-
-

-

Appendectomy

<ablative tx>

<future
disease>

+

-

+

-

(d)

Value to
patient

Appendicitis

-

+

-

+

-

(c)

Value to
patient

Appendicitis

-

<present disease>

<utility>

<tx complication>

+

-

+

-

(b)(a)

VR
-

(neg)

+

<ablative tx>

-

<present disease>

<utility>

<tx complication>

+

<future
disease>

VA

VL

VB

Figure 3.3: Sample application of the graph-grammar production rule. (a) This

production rule describes how nodes of the type hablative txi can be added to the
host graph. VL, VA, VB, and VR (left, above, below, and right) are the four regions

of a graph-grammar production rule. (b) The �rst view of the host graph shows two
nodes from the host diagrammatching hutilityi and hpresent diseasei in the production.

(c) If VL contained vertices, a matching set of nodes would be removed. (d) Additional

nodes Appendectomy and Future appendicitis are added to the QCID model. (tx =
treatment; dotted arcs correspond to contingency arcs.)
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1. Find a region of the host graph where the nodes and arcs match the vertices

and edges of the determinate (VB) and left (VL) regions of the production.2

Thus, in Figure 3.2(a), we search the evolving diagram for a node of type X

and a node of type Y such that there is an arc from the former to the latter.

In Figure 3.3(b), we perform a similar match for medical concepts.

2. Find zero or more host-graph arcs that match edges between the left (VL) and

indeterminate (VA) regions of the production.
3 In Figure 3.2(a), we �nd an arc

from E1 to X and an arc from E2 to X. In the host graph, the node X has no

children of type F .

3. Remove from the host graph those nodes that matched vertices within VL. This

step corresponds to the deletion of nodeX and its incident arcs in Figure 3.2(b).

4. Add to the host graph new nodes and arcs that correspond to the vertices and

edges within the right region (VR) of the production, and add to the graph

arcs that correspond to the edges connecting the embedding part (from VB and

the matched portion of VA) of the production to the right region (VR). In

Figure 3.2(c), we add to the host graph nodes of type XX and type XY . Also,

we add arcs from XX to XZ, from XZ to Y , from both E1 and E2 to XX,

and from both E1 and E2 to XZ.

2If VL and VB match multiple subgraphs, the user must select the appropriate match.
3The user of our system must con�rm or reject any potential matches to VA. Edges between VL

and VR or between VA and VB are not permitted.
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Gramarye requires a set of such replacement rules. Gramarye's graph-grammar

formalism di�ers somewhat from that described by Barthelmann. In particular, it

requires the user to select the location of a production's application when more than

one location is appropriate, and to select which nodes in the host graph should match

vertices in VA if there exist such matches. Nodes matched to VR that already appear

in the host graph are not duplicated.

Since the variety of node labels that appear in medical decision models is huge,

whereas the number of distinct patterns is on the order of dozens, the graph grammar

that I use to derive medical decisionmodels employs labels for abstract types of nodes,

rather than labels for speci�c nodes. Throughout this dissertation, I shall refer to

the abstract types as nonterminal symbols, and to the speci�c node labels as

terminal symbols. When a production describes simple node replacement with

no constraints on the embedding environment, we can abbreviate that production

with a string-grammar production. Since I restrict these string-grammar productions

to replace nodes with general labels with nodes with more speci�c labels, the entire

portion of the grammar that I can represent as string-grammar productions is, instead,

represented as a single classi�cation hierarchy, with the nonterminal symbol hnodei

as the universal class; the symbols hchancei, hdecisioni, and hutilityi representing the

�rst partition of nodes; and successive partitions eventually ending with terminal

symbols, which are those speci�c considerations that a user might enter and that
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would have meaning as random variables in an actual in
uence diagram. Therefore,

the vertex labels in my productions can match to any descendant terminal symbol

in the node-label hierarchy. For example, in Figure 3.15, the terminal symbol Tb is

classi�ed under the nonterminal symbol hmaladyi. Consequently, a production vertex

labeled hmaladyi can match to a host graph node labeled Tb. Gramarye also requires

that the derivation proceeds in stages, where all rules that can be applied and that

would add considerations to the host graph are applied as a stage, prior to any

search for additional rules that may be applicable. This latter convention allows the

grammar to dictate the outcome of any derivation without any explicit speci�cation

of the order in which production rules should be applied. Section 4.3.1 describes this

order independence in depth. Technical details of the graph-grammar formalism that

I have implemented can be found in Appendix A.

3.4 Representation of Typical Graph Patterns

In trying to automate the assembly of models from small, reusable pieces of structural

information, we are shifting the burden of design from the composer of the individual

model to the developer of the graph grammar. The terse clarity of G�ottler's opera-

tional formalism is particularly useful to the developer, and here is where the advan-

tage of graph grammars over a typical programming language is most noticeable. The

graphical representation of each rule gives the developer a declarative picture of the
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<disease>

<utility>

-

-

cholera

Value to patient

typhoid

Value to patient

-

Figure 3.4: Abstraction of graph-grammar patterns. On the left, two rules that are

syntactically equivalent add two di�erent diseases. Since many other diseases may be
added to a model in the same manner, the graph grammar uses the single rule on the
right.

<disease>  ::  cholera | typhoid | ....
<disease>

<node>

<node>
cholera

Figure 3.5: Alternative formalisms for expressing simple node-label replacement. On

the left is a graph-grammar rule that changes a chance node's labels from hdiseasei to

cholera without altering the rest of the graph. On the right is the equivalent rule in the

format|Backus{Naur form|of a production rule in a context-free string grammar.
The latter format is used in Gramarye for describing which terminal symbols can be

substituted for a given nonterminal symbol.
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complex interdependencies of the production rules. Exactly how the computer e�ects

the instructions contained in each rule is irrelevant to the designer. It is important

that the denotational semantics of the graphical representation are clear and unam-

biguous, so that the developer of the grammar can reason about the graph grammar

and devise adjustments when the grammar derives models that appear faulty.

To construct medical decision models, Gramarye uses patterns that describe how

to introduce certain types of in
uence-diagram nodes (e.g., nodes that represent the

complications of a treatment procedure) into an evolving in
uence-diagram decision

model. These patterns are described in Section 3.6.1. However, Gramarye's deriva-

tion system accepts any grammar in the format described in Section 3.3, including

grammars outside the domain of medicine, and grammars that describe a space of

models written in graphical representation languages other than the in
uence-diagram

representation that I use in this dissertation.

3.5 Qualitative Contingent In
uence Diagrams

In the in
uence-diagram notation, there are only four types of nodes: chance

nodes, decision nodes, deterministic nodes, and the utility node (Figure 3.6).

Decision nodes stand for a set of exclusive alternatives among which the decision

maker must choose. A chance node represents a random variable that describes an

uncertain outcome or an unknown factor. Deterministic nodes are a degenerate
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Tb treatment

Bronchoscopy

Bronchoscopy
result

Value to
patient

Future
TbTb

Probabilistic dependency

Information available

Chance node

Deterministic function

Decision node

Function to optimize

Figure 3.6: An in
uence-diagram model for the tuberculosis decision. The decision
maker must decide whether testing, and whether treating, can be expected to do the

patient more good than harm.

version of chance nodes: Deterministic nodes are fully computable as a function of

the values of their parent nodes. The utility node is a special deterministic node,

the value of which the decision maker wishes to maximize.

An in
uence diagram consists of a set of these nodes in a directed acyclic

graph (DAG). The arcs in this DAG are solid when their target is a chance, deter-

ministic, or utility node. Solid arcs denote a probabilistic dependency of one variable

(indicated by the target node) on another variable (the source node for the directed
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arc). When their target is a decision node, the arcs are dashed; they represent the

availability of information (about the source node's value) at the time when the de-

cision maker must choose among the alternatives represented by the target node.

In
uence diagrams o�er an explicit representation of probabilistic independence,

denoted by the lack of an arc between two nodes. Unlike decision trees, in
uence

diagrams grow linearly with the number of factors being modeled.

As a simple example, Figure 3.6 shows an in
uence-diagram model for the deci-

sion problem �rst described in Section 1.1. Recall that our hypothetical physician (1)

suspects that her patient might have tuberculosis (Tb), and (2) wishes to avoid any

unnecessary testing or treatment. She has noted suspicious historical �ndings, such

as blood-tinged sputum, that are summarized in her prior estimate of the probabil-

ity that the patient has Tb. She is still fairly uncertain, and considers performing

bronchoscopy|which involves inserting a long mechanical instrument down the pa-

tient's throat and into his lungs|to obtain a specimen that might establish the Tb

diagnosis. The bronchoscopy is invasive, and it might not produce any additional

information about the patient's disease. If she and her patient elect not to perform

the bronchoscopy, they must still decide whether or not to begin antituberculosis

treatment. If she and her patient elect to perform the test, they can use the addi-

tional information provided by the test to decide whether to begin therapy. Her goal,

and presumably her patient's goal, is to improve the patient's health while causing
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as little harm, creating as little risk, and incurring as little expense as is possible.

The goal will be to maximize the expected outcome utility for the patient, where

outcome utility is some function of patient preferences based on risk, noxiousness,

cost, or whatever the salient factors are for the decision maker.

From the diagram in Figure 3.6, we see that the physician's|or patient's|decision

to perform or not to perform the test a�ects the test results (i.e., they will not be

available if she does not perform the test). The decision to perform the test also

directly a�ects the overall value to the patient, since the test is associated with some

cost, some risk, and some disutility for the patient. The decision to treat or not to

treat a�ects the probability that the patient will have Tb in the future (i.e., at the

end of therapy). The treatment decision also directly a�ects the overall value to the

patient, since treatment too is associated with some cost, risk, and disutility.

Performing the test costs a �xed amount of money, is somewhat noxious to the

patient, and carries some risk. Presumably, the only reason to perform the test

is that it may decrease the physician's uncertainty about whether the patient has

tuberculosis, putting the physician in a better position to choose between treating and

not treating her patient. The test result helps the patient, by making the physician

less likely to treat nonexistent disease, by making the physician more likely to treat

existing disease, or by doing both. This value of information can be calculated from

an assessed4 in
uence-diagram model (Howard and Matheson, 1984). If the utility

4Throughout this dissertation, I shall use the term assessment to refer to the assignment of
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of treating is expected to be higher than that of not treating, regardless of the result

of the test, then the test provides no value to the patient. Similarly, if the utility of

treating is expected to be lower than that of not treating, regardless of the result of the

test, then the test provides no value to the patient. These results, and more speci�c

recommendations for a given situation, follow from the in
uence-diagram model, the

assessed probabilities, and the assessed utility model. The in
uence diagram does not

describe explicitly how each random variable is modeled. The decision maker may

want to regard tuberculosis as being a binary variable|either present or absent. On

the other hand, she may wish to distinguish di�erent classes of severity, either because

the di�erent classes have a di�erent e�ect on the patient's well-being, or because

epidemiological data group cases in such a manner. The initial qualitative model

does not commit the modeler to any particular level of precision for the variables

in the model. However, the initial model does provide a framework for assessment

format and subsequent modeling decisions.

Without assessing the model (i.e., assigning speci�c probability distributions and

deterministic functions to each node), we can still provide more information about the

physician's dilemma. We know that the patient is adversely a�ected by the existence

and severity of present and future tuberculosis with which he might be a�icted. We

know that the patient would prefer to avoid any unnecessary testing or treatment.

speci�c probability distributions to each chance node, speci�c alternatives to each decision node,
and a speci�c utility function to the utility node.
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Figure 3.7: A model using the decision-tree notation, representing the tuberculo-
sis decision problem. Note that the decision tree is asymmetric: The chance node

Bronchoscopy result appears only above the �rst decision, which re
ects the fact that
Bronchoscopy result is meaningful in only those scenarios where the decision maker
has decided to perform the bronchoscopy.

Most relationships between variables representing domain concepts have a typical

qualitative value|either proportional or inversely proportional. To describe mono-

tonic constraints on probabilistic and functional dependencies, we follow Wellman's

(1990a) use of qualitative arc labels: A plus sign, \+," restricts the target node's

distribution of values to vary in the same direction as do changes in the source node's

distribution of values; a minus sign, \�," restricts the source and target nodes to vary

in opposite directions; a question mark, \?," indicates an unclear or nonmonotonic

relationship.
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Positive dependency +

–

?

Negative dependency

Unclear or nonmonotonic
dependency

Probabilistic dependencies:

Contingent nodes

Information available

Contingency

Treat Tb?

–

–

Bronchoscopy

Bronchoscopy
result

Value to
patient

Tb
Future

Tb

+ +

––

–

Figure 3.8: A model using the quantitative contingent in
uence-diagram (QCID) no-

tation, representing the tuberculosis decision problem (see Section 3.5). In the QCID
notation, asymmetries|such as the pertinence of test results only when the test
has been ordered|are represented explicitly with contingent nodes, which have dots

on their left sides. This use of contingent nodes delineates absolute dependencies|

such as the dependence of Tb test results on the Tb test decision. Also, the solid arcs
distinguish probabilistic relations that are proportional from those that are inversely

proportional. The former are labeled with a plus sign, +; the latter are labeled with a

minus sign, �. For visual clarity, I color disease nodes black and other chance nodes

light gray.
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Also, we know that there are asymmetries buried in the model (Figures 3.7 and

3.8). Here, I mean by asymmetries those relations|probabilistic or informational

arcs|that are valid for only particular values of certain nodes. For example, the

informational arc from test results to the treatment decision makes sense only if the

physician decides to perform the test. Because these asymmetries are common, I

use contingency nodes, a notation described by Fung and Shachter (1990). In

this notation, a node is divided into several contingent nodes, each with exclusive

conditions. Each contingent node is considered relevant to the rest of the diagram for

only those scenarios in which its conditions are met. If a contingent node's conditions

are not met, then the node and its incident arcs can be ignored. By introducing

contingent nodes to the in
uence-diagram representation, I gain the ability to express

common-sense principles that may be obvious to people modeling decision problems,

but that would not otherwise be apparent in the in
uence diagram. In my grammar, I

delineate these conditions with dotted contingency arcs. Computationally, I represent

QCIDs as graphs, and contingencies are represented by dotted arcs, labeled with either

a C or a CN.5 The C label connotes that the target node is contingent on the source

being a�rmed or having its highest value according to some prede�ned ordered scale,

whereas the CN connotes that the target node is contingent on the source being denied

or having its lowest value. I chose this representation of asymmetry because of the

5Throughout this dissertation, I have omitted these C and CN labels on contingency edges. In
several �gures, I have omitted contingency arcs for the sake of clarity.
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simplicity and linear growth of a single graph of dependency arcs. Also, Gramarye is

designed for the generation of a single graph, rather than of a graph that is decorated

by numerous decision-tree structures, as in the formalisms described by Smith and

colleagues (1993) and by Call and Miller (1990).

In Figure 3.8, I show, for the physician's dilemma, a model that uses a qualita-

tive contingent in
uence diagram (QCID). With QCIDs, we label each proba-

bilistic|also called conditioning|arc with the sign of the qualitative dependence

indicated by the arc. We also label each contingent node with one or more dots on

its left side, each dot representing a constraint on some other variable (or set of vari-

ables) that must be satis�ed for that node to be relevant to any of its successors. In

the QCID models that Gramarye develops, each contingent node is associated with

explicit conditions on other nodes through special contingency arcs. These attributes

could be represented easily in the diagram as a third type of arc, but such a notation

would obscure the visual simplicity of the diagrams. The qualitative arcs in Figure 3.8

express constraints on each outcome's probability distribution.

By adding qualitative labels to the arcs and contingencies to the nodes, we obtain

a model that is closer to being an assessed in
uence diagram, yet the model is still

general enough that we do not need to redesign it for each test, for each treatment,

or for each patient. On the basis of our qualitative model alone, the physician and

her patient cannot decide whether to begin treatment, or whether they should be
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willing to arrange bronchoscopy: If they are to arrive at such normative decisions,

the patient must quantify his utility as a function of noxiousness, expense, risks, and

the like, and the physician must assess the precise probability distributions for each

outcome. Still, the construction of the QCID model is a major component of the

overall modeling task.

3.6 Gramarye's Architecture

In Figure 3.9, the top-level input and output of the Gramarye system is described.

A user enters a list of relevant terms, and Gramarye constructs a model with nodes

that correspond to those terms. Technically, Gramarye is a derivation system that

has no inherent ability to accept medical terms or to generate QCIDs. As mentioned

in Section 1.5, Gramarye must be given four pieces of static information before it

generates any models:

1. A collection of graph-grammar productions

2. An initial graph

3. A classi�cation of node labels according to abstract symbols used in the pro-

ductions

4. A visual notation for each subclass of node
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"… tuberculosis
… bronchoscopy

… treat tuber-
culosis …."

Unordered list of
standard terms

Qualitative
decision model

Figure 3.9: The basic function of Gramarye. A decision maker provides Gramarye
with a list of decisions and considerations, such as tuberculosis, bronchoscopy, and

tuberculosis treatment. Provided that the vocabulary and graph grammar installed
in Gramarye are su�cient, a qualitative decision model is returned to the decision
maker, who then can assess probabilities and utilities, and thereby arrive at a decision.

The particular applicationwith which I am concerned in this work is that of generating

medical decision models. Consequently, to construct in
uence diagrams from medical

terms, I use the following static input:

1. A graph grammar for medical in
uence diagrams

2. The utility node, Value to patient

3. A classi�cation tree for a medical lexicon

4. The shapes rectangle, circle, and hexagon for decision, chance, and utility nodes,

respectively6

6I have treated deterministic nodes as degenerate chance nodes, where the probability distribution
is peaked at a single value.
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Layout
algorithm

Node-label
table

Graph-grammar
table

Gramarye derivation system

Host
graph

Initial
graph

Node-label
classification

Graph grammar

Notation

 Output:
 QCID
 diagram

Input:
unordered list of
standard terms

Figure 3.10: The basic structure of Gramarye. The four static inputs|the initial

graph, the node-label classi�cation, the graph grammar and the notation|are shown
outside of the Gramarye derivation system. All information that is particular to
medicine and to in
uence-diagram modeling is contained in these four static data
structures.

Throughout this dissertation, I shall often ignore the distinction between Gra-

marye and its static input, and shall assume that these static components are part

of Gramarye. In this section, however, I shall examine the details of Gramarye's

architecture, and the process of constructing the graph grammar and the vocabulary

of terms.

Figure 3.10 shows the static input and general structure of Gramarye. Currently,

Gramarye consists of a user interface for loading the static input, a grammar checker

for evaluating the coherence of the static input, a graphical browser for choosing clas-

si�ed concepts and for entering new concepts, a command-line interface for interacting
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with the user during the derivation process, the derivation system, a graph-layout al-

gorithm designed for QCIDs, and a diagram generator. The medical lexicon|portions

of which I have extracted from CPT (Finkel, 1990), SNOMED-III (Rothwell and Côt�e,

1990), and the QMR diagnostic system (Miller et al., 1986)|allows Gramarye to rec-

ognize speci�c entered terms, and to classify them according to the classes used in

the graph-grammar productions.

3.6.1 A Graph Grammar for Prototypical Patterns

The current graph grammar appears in Figures 3.11 through 3.14. The graphical

representation helps the developer of the grammar to identify structural motifs. Al-

though neither Gramarye nor the QCID notation assigns any signi�cance to node

coloration, I have colored diagnostic nodes black and other chance nodes light gray

to make the grammar's structural patterns more apparent. All the information in

Gramarye regarding prototypical patterns in medical decision models can be viewed

as 15 rules, each with no more than six nonterminal symbols. This fact attests to the

terseness of the graph-grammar formalism.

The clarity of G�ottler's graph-grammar formalism makes adjustments to a par-

ticular grammar easy for the grammmar's designer. One possible change would be

to expand the grammar and the vocabulary to make strictly semantic distinctions.

For example, the current grammar does not distinguish between kinds of tests and
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<malady>

<utility>

-

(a)

<utility>

-

<morbidity-
mortality>

(b)

<utility>

-
+

<malady>

<malady>
<morbidity-
mortality>

+

<malady
complication>+(d)

(c)
+

<condionally
independent

finding>
<present disease>

<present disease>

+

<utility>

-

<crisis
event>(e)

Figure 3.11: The current graph grammar used in Gramarye to derive medical QCID

decision models: Part I. (a) The �rst rule permits any malady being considered by
the decision maker to be added to the model with a negative arc to the utility node.
(b) This rule allows the morbidities and mortalities of any adverse reaction to be
included in a model. (c) This rule adds conditionally independent �ndings for any

given disease. Note that the generality of this rule requires that the user specify

which disease is correlated with which �nding. (d) This rule allows the system to
add a complication of one or more maladies. (e) The system follows the last rule
when adding crisis events to a model. Although neither Gramarye nor the QCID

notation assign any signi�cance to node coloration, I have colored diagnostic nodes

black and other chance nodes light gray to make the grammar's structural patterns
more apparent. (The graph grammar is continued in Figures 3.12, 3.13, and 3.14.)



3.6. GRAMARYE'S ARCHITECTURE 63

(c)

<utility>

- -
-

<preventive tx>
<tx complication>

+

<potential disease>

(b)
- -

+

<curative tx>

-

<future
disease>

<present disease>

<utility>

<tx complication>

+

(a)
- (neg)

+

<ablative tx>

-

<present disease>

<utility>

<tx complication>

+

<future
disease>

(d) -

<palliative tx>

<utility>

<tx complication>

+

<present malady
complication>

-

-
+

<future
malady

complication>

Figure 3.12: The current graph grammar used in Gramarye to derive medical QCID
decision models: Part II. Here we see four types of treatment decisions, each distin-
guished by the structural connections surrounding the decision node. (a) Ablative
treatments obviate the relevance of future diseases on the decision maker's utility.

(b) Curative treatments reduce the probability of future disease states. (c) Preven-

tive treatments reduce the chance of a potential disease, which the patient may have

in the future but does not have currently. (d) Palliative treatments do not a�ect
disease probabilities; they reduce the chance of future complications.
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(b)

(a)

<utility>

-

<treatment>

<perform test>

+

<test result>

<present
disease>

<utility>

<procedure>

+
-

<morbidity-
mortality>

+
+

<procedure>

<tx complication>
<utility>

-

<treatment>

+

<test result>

<present disease>

<specimen
collection>

-

<lab test>(c)

Figure 3.13: The current graph grammar used in Gramarye to derive medical QCID
decision models: Part III. (a) The �rst rule corresponds to the clinical maxim that

tests should not be ordered unless the test result will have a bearing on future
treatment decisions. (b) A treatment complication is a particular type of adverse
reaction: The same treatment complication may result from several di�erent treat-
ments.(c) Since laboratory tests generally require the collection of some specimen|

such as amniotic 
uid, in the case of amniocentesis|the addition of laboratory tests

entails the presence of hspecimen collectioni and htest resulti nodes as new or existing
nodes in the decision model.
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-

<future crisis
event>

-

<risk-reducing tx>
<tx complication>

+

<utility>

-

(b)

-

-

<future crisis
event>

-

<utility>

<crisis
event>

<risk-reducing tx><tx complication>

+

-

(a)

(c)
-

-

-

+

<empiric tx>

+

<tx complication>

+

<utility>

<present disease>
<test result>

<future
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Figure 3.14: The current graph grammar used in Gramarye to derive medical QCID
decision models: Part IV. (a) The decision on whether to perform risk-reducing treat-
ment (such as endarterectomy) negates consideration of the present risk of a crisis

(such as a stroke) in consideration of the e�ect of the treatment on reducing the like-
lihood of that crisis.(b) The second production rule adds a risk-reducing treatment

when the appropriate hfuture crisis eventi is already present in the model. (c) Empiric
treatment is characterized by a subsequent test result that provides information on

how e�ective the treatment is. Presumably, the test result is available to the decision
maker after she decides for or against empiric treatment, but this constraint is not

enforced by the current grammar.
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diseases. A more elaborate classi�cation hierarchy might group EEG and EKG tests

in separate nonterminal categories, and a more elaborate graph grammar might then

restrict EEG tests to CNS diseases, and EKG tests to cardiac diseases.

The current grammar concentrates on di�erent structural patterns and does not

make such purely semantic distinctions. However, the separation between syntax and

semantics is not obvious. Typically, grammars de�ne the syntax of a language (e.g.,

the linear sequence of parentheses, tokens, and semicolons in a Pascal statement),

but say nothing about the semantics (i.e., how tokens or groups of tokens a�ect

the run-time behavior of a program). The basic syntax and semantics of the QCID

semantic-network language are simple and well de�ned (see Appendix B). A graph

grammar over the QCID language de�nes additional restrictions, and these restric-

tions may appear syntactic (e.g., decision nodes must have a negative arc to the

utility node) or semantic (e.g., for a treatment to be an hablative treatmenti, it must

have a certain declarative relationships with hutilityi, hdiseasei, and hfuture diseasei

nodes). We use denotational semantics to refer to how the symbols and expres-

sions in a programming language dictate a �nal state, given the initial state and the

input. Denotational semantics are distinct from reference semantics, which de-

scribe the relation among symbols in a program and those symbols' referred objects

in the user's environment. The graph grammar maps clinical concepts|such as \pal-

liative treatment"|to syntactic rules about how nodes are to be included in a decision
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model. However, it is incorrect to label the graph grammar as purely syntactic; the

denotational semantics of the resulting language of graphs is designed to mimic the

referential semantics of clinical parlance. For example, the clinical distinctions among

palliative, preventive, curative, empiric, and ablative treatments arise from ordinary

clinical decision making. It is not a coincidence that the same distinctions correspond

to separate structural patterns in decision models. Consequently, the grammar maps

clinical abstractions into syntactic rules. Perhaps if the target graphical knowledge

representation were more expressive than the QCID language, then organ-system ab-

stractions (such as CNS versus cardiac diseases) would correspond to visibly di�erent

patterns, and the grammar's distinction for these two sets of diseases would amount

to more than a semantic, type-checking restriction. However, I have not yet applied

Gramarye to representations that are more expressive than the QCID language.

3.6.2 A Domain Vocabulary

All node labels in the grammar are abstract classes for standard medical terms. I

have grouped the medical terms that my grammar recognizes into a node-label

classi�cation|a classi�cation tree with the capacity for generating simple syntactic

variants (Figure 3.15). The terminal leaves of this classi�cation hierarchy are those

terminal symbols that the derivation system recognizes and assigns to nodes as labels.

The classi�cation hierarchy of medical terminology gives Gramarye the ability to
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assign each entered term to one or more structural patterns. If the user enters a term

that is not already classi�ed according to the nonterminals of the graph grammar,

then she must add the term to the classi�cation tree.

To facilitate communication between the user and the system and communication

among di�erent users, I prefer to use terminal symbols that are well de�ned and

are commonly used in medicine. The Systematized Nomenclature of Medicine,

SNOMED III (Rothwell and Côt�e, 1990), is a standardized coding system for med-

ical �ndings and diagnoses. SNOMED III uses many of the same semantic types

found in our grammar to group over 200,000 standardized terms. UMLS, the Uni-

�ed Medical Language System (Tuttle et al., 1992), contains a compilation of 17

di�erent standardized medical coding systems. The UMLS vocabulary contains over

240,000 terms; where synonyms exist, a single preferred term is associated with each

synonym. The terms in UMLS are already grouped according to a detailed classi�ca-

tion tree, and according to a network of semantic relations. Many of the abstractions

in our node-label tree also appear in the UMLS classi�cation tree. Although I haved

considered incorporating both UMLS and SNOMED vocabularies into Gramarye, I

am currently using a much smaller lexicon, which contains 5400 �ndings, 855 diseases,

and 1200 procedures.

Clearly, as it now stands, Gramarye's vocabulary is not su�ciently comprehensive

for general medical use. I see two possible|and by no means exclusive|solutions to
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<chance> <decision>

<diagnosis>
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<rxn>
<malady>
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disease>
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<disease>

<wait> <procedure>

<test>

<tx>
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<ablative
tx>
<curative
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<preventive
tx>
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<palliative

tx>
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<at-risk
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<test result>
<cond-ind-

fdg>
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<cond-dep-
fdg>

<propitious
rxn> <unclear

rxn>

<morbidity-
mortality>

<cost><crisis> <toxicity>
<noxiousness> <complication>

<lab
test>

<future
adverse rxn>
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complication>

<node>
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<crisis
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<future crisis
event>

Tb

Tb tx

Broncho-
scopy

<potential
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Figure 3.15: Abstract classes for terms in the node-label classi�cation tree. These

nonterminal symbols appear in the graph-grammar rules from Figures 3.11 through
3.14. Symbols in italics represent classes for lexical variants that are generated by

Gramarye during the derivation process. Tb, Bronchoscopy, and Tb tx are the terminal

concepts|rather than abstract classes|that were used as input for the derivation in

Figures 3.17 through 3.19. (tx = treatment; rxn = reaction; Tb = tuberculosis.)
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this problem: (1) I can increase the size of the vocabulary to cover most foreseeable

entries, and (2) I can limit the user's entries to codes provided by the computer.

The �rst solution is feasible with only large, standardized, structured clinical lex-

icons, such as SNOMED III, or UMLS. Such a standard vocabulary provides the

additional bene�t of a well-de�ned referential semantics: Each term can be asso-

ciated with a precise English explanation, so there is little confusion among users

regarding what the term means in the real world. Such semantics might enhance the

shareability of assessed probabilities and default utilities. However, lexical variants

of words within an entered phrase may appear in dozens of SNOMED III terms, and

the complete phrase may not match any standard term precisely. Also, many de-

cision problems faced by physicians and patients include nonmedical considerations

that cannot be pre-enumerated with present technology, so a prede�ned vocabulary

almost certainly will not be su�cient for all clinical decision problems. Although

several researchers are working to expand the scope of SNOMED III and to elimi-

nate vagueness and redundancy in that vocabulary (Campbell et al., 1994), I have

relied heavily on manual classi�cation of many of the terms in the user's initial list

of considerations for a speci�c decision problem.

The second solution to the restrictions of a single �nite vocabulary|limiting en-

tries to those from a computer|could use an electronic medical record that produces

a coded representation from a friendly user interface. Campbell and Musen (1994)



3.6. GRAMARYE'S ARCHITECTURE 71

have developed one possible user interface, and a plan for a formal representation of

the medical record. In the system that they envision, a restricted language based

on SNOMED III and conceptual graphs (Sowa, 1984) encodes all progress-note in-

formation. This type of graphical representation might be used by a system such as

Gramarye, not only for the unordered list of standardized terms, but also for addi-

tional context that might disambiguate how a decision model should be constructed.

The resulting scenario would allow the user of an electronic medical record to be-

gin decision analysis with an automatically generated in
uence-diagram structure.

Subsequent assessment of probabilities and utilities might take advantage of stored

clinical data and bibliographic retrieval.

Although most terms that I have considered fall under a single classi�cation in

my node-label tree, many terms have more than one role, depending on the context

of the decision problem. For example, an excisional biopsy may be considered both

as a htesti and as a potential htreatmenti for a small skin lesion. Currently, when

an entered term appears in multiple places in the classi�cation tree, the derivation

system requires the user to choose among the possible roles for that term. Concepts|

such as excisional biopsy|that present features of more than one abstraction in a

single decision problem may require new abstractions and new productions in my

grammar. Where concepts appear to play di�erent roles in di�erent contexts, an

enhanced derivation system might be able to use the other entered terms and the
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Value to
patient

Initial graph : <decision> : <chance> : <utility> :

Figure 3.16: The initial graph and the visual notational conventions for the QCID

diagramming language.

possible derivations to select the appropriate role.

3.6.3 A Graphical Knowledge Representation

The notational conventions of QCIDs are encoded in a single data structure that

matches the immediate subtypes of the hnodei class|the root class of the node-

label classi�cation hierarchy|to visual attributes available to the graphing module.

This mapping instructs the graphing module to use the appropriate shapes, colors,

and icons for the various types of node in the graphical knowledge-representation

language. In the case of QCIDS, nodes of the hdecisioni class are assigned the square

shape, nodes of the hchancei class are assigned the circular shape, and nodes of the

hutilityi class are assigned the hexagonal shape (see Figure 3.16).

Whether or not a node is contingent has no e�ect on whether vertices in a graph-

grammar production can match to it; only an explicit occurrence of a corresponding

contingency edge in the production has any bearing on whether the node is contingent

on another. The absence of any edge in VBL of a production rule does not prevent

the application of that production to a subgraph where a corresponding arc does
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exist. Barthelmann has proposed an extension to G�ottler's operational formalism

that permits the speci�cation of arcs that must be absent for that production to

be applicable. However, I have not yet found this additional expressiveness to be

particularly useful for generating medical QCIDs. Also, although G�ottler's formalism

is nodecentric and does not allow direct manipulation of edges without manipulating

the source or target node, this limitation has not yet been a signi�cant impediment

in the modeling that I have done. For example, the production in Figure 3.14(a) has

the e�ect of removing an arc between hcrisis eventi and hat risk conditioni, and both

source and target nodes could remain unchanged by the production if we replaced

the hfuture crisis eventi vertex in VR with a hcrisis eventi vertex.

3.7 Derivation of Graphs from Terms

To show how Gramarye derives a QCID model from a list of terms, I shall step

through the derivation of a simple model for our hypothetical physician and her

possibly tuberculous patient (see Sections 1.1 and 3.5). Her considerations are three:

1. How likely is it that the patient has Tb?

2. Is it worthwhile administering treatment?

3. Would further testing|in this case, bronchoscopy|be advised?

Consequently, she enters the terms Tb, bronchoscopy, and Tb treatment.
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Gramarye begins by setting the host graph to the initial graph as declared in

the static input �le (see Section 3.6.3), which happens to be a single utility node,

Value to patient. The system then �nds the most speci�c graph-grammar production

that might add nodes with the labels Tb, bronchoscopy, and Tb treatment. The most

speci�c rule for a given term is that rule with the most speci�c nonterminal symbol

for that term on the rule's VR region. Of the three terms entered, only Tb can be

added to the initial graph, since the other two terms require more of the host graph.

At this point, Gramarye adds Tb to the graph, as shown in Figure 3.17.7 Now that

both disease and utility nodes are present in the host graph, Tb treatment can be

added (Figure 3.18). The only remaining term, bronchoscopy, can now be added, as

shown in Figure 3.19. Since no more terms need to be added, the derivation system

returns the textual form of the QCID model and the corresponding diagram, as shown

in Figure 3.20.

7If there were other diseases listed, they would also be added now, since, at a particular stage

in the derivation, the system applies all rules that can be applied before examining the resulting
graph to see what new terms can then be added. This strategy depends on the grammar to ensure

that, if there is no determinism to the ordering of a set of graph manipulations, then that set of
manipulations must have the same result, regardless of the order of application. Ehrig and Kreowski

(1980) show a simple way to examine graph-grammar rules and to determine whether the latter are
sequentially independent and, by Church{Rosser's theorem, parallel independent. In Section 4.3.1,
I discuss how I use this result to avoid ambiguity in the grammar.
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- <disease>

<utility>

Value to
patient

Value to
patient

Tb

-

Derivation

Figure 3.17: Addition of a node labeled Tb to the initial graph. According to the

grammar rule shown on top, the only requirement for the incorporation of a disease

node is the existence of a utility node. Gramarye adds the appropriate chance node

and negative qualitative arc.
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-

Value to
patient

Tb
Future

Tb

-

-
-

+

Tb
treatment

-

Value to
patient

Tb

- -

+
-

<curative tx>
<future>

<disease>

<present
disease>

<utility>

Derivation

Figure 3.18: Addition of a node labeled Tb treatment to the host graph at the �rst
intermediate stage of the development. The requirements of the grammar rule shown

on top are that both utility and disease nodes are present in the host graph. In

addition to the treatment decision, a chance node labeled Future Tb is added to the

host graph in accordance with the grammar rule's right-hand region.
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Tb tx

-

-

Broncho-
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Future
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Value to
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Future
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+
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Figure 3.19: Addition of a node labeled Bronchoscopy to the host graph at the second
intermediate stage. For simplicity, the contingent arcs from the testing decision to

the test result is represented as a solid dot on the left side of the htest resulti and the

Bronchoscopy result nodes.
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3.8 Gramarye's User Interface

I have designed Gramarye's current user interface with the developer in mind. The

command-line interface is essentially a Lisp listener, a term browser, and a panel of

buttons for routine commands used by Gramarye (Figure 3.20). The system traps

any generated diagrams in a separate window, in which the user can edit the data

structure. The Graph It button invokes the appropriate translation to a textual format

used by the graph editor, and opens a graph-editor window with the diagram inside.

The current graph editor is a commercially available tool.8

3.9 Assessment and Re�nement of the Decision

Model

As noted earlier (Sections 1.3 and 3.5), the QCID model returned is insu�cient

to allow a decision maker to arrive at the optimal plan for a given decision prob-

lem. Utilities and probabilities must be assessed. In most cases, after the initial

model has been assessed, it will still require re�nements and testing before any

�rm conclusions are warranted. An obvious extension to Gramarye would be the

completion of the decision-analysis cycle with other tools for assessment and test-

ing. Currently, Gramarye can store the edited model in Hugin (Andersen et al.,

8Diagram!, from Lighthouse Design, Inc., San Mateo, CA.
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1989), Ergo (Beinlich and Herskovits, 1990), CABeN (Cousins et al., 1992), Demos,9

Infer,10 SPI (D'Ambrosio, 1989), or Ideal (Srinivas and Breese, 1990) format.11

The user can then perform the subsequent assessment, testing, re�nement, and in-

ferential queries on the decision model. As new salient considerations arise, and as

other considerations|for which the choice of the optimal plan is insensitive|are re-

moved, the user may repeat this development cycle by entering the updated list of

considerations into Gramarye, and by making the indicated changes to the assessed

model. Current limitations of the grammar and the derivation system are discussed

in Chapter 5.

3.10 Summary

Gramarye is a graph-grammar{based derivation system that constructs QCID mod-

els from a list of medical concerns. It begins with a single utility node, and adds

nodes and arcs in accordance with the graph grammar until either the entire list of

concerns has been included, or the system cannot add any more nodes. Gramarye

recognizes only those terms that are listed in its node-label classi�cation hierarchy;

any other terms must be added to the classi�cation by the user. The resulting model

9Lumina Decision Systems, Palo Alto, CA.
10Adam Galper. Personal communication.
11Although Hugin, Ergo, CABeN, and Infer are designed for belief-network inference, such

routines can be used to solve in
uence-diagram queries as well (Cooper, 1988; Shachter and Peot,
1992).



80 CHAPTER 3. GRAMARYE: A GRAPH-GRAMMAR DERIVATION SYSTEM

Figure 3.20: The current user interface to Gramarye. In the top line of the Lisp
listener|a line which is no longer visible in the scrolled view, the user has typed

\(derive '(tb t-test tb-treatment))." The derivation system traces its progress as it
adds nodes for each of these three terms. Then, the system returns both the textual

representation of a QCID model and the actual diagram, which appears in a separate

diagram-editor window.
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is qualitative; the user must assess quantitative probabilities and utilities to arrive at

a normative decision. Furthermore, decision analysis generally requires testing and

revision of an initial, putative decision model, and the model produced by Gramarye

is no exception to this rule.
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Chapter 4

Properties Desired of the

Grammar

Figures are not only the object of geometric problems, but also an

important help for all sorts of problems in which there is nothing geometric

at the outset.

|George Polya, How to Solve It

Although much of the information conveyed by a decision model may be speci�c to

the given domain|here, medicine|there are several structural features of in
uence-

diagram models of dilemmas that, if violated, would be seen as errors by a decision

analyst|even one who is not familiar with the domain. Although it may be simple

enough to check that any one of these properties holds in an individual model, such a

83
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check does not help us to correct the fault, and so the user must do the initial modeling

when the system yields an unreasonable in
uence diagram. The graph grammar

used to derive models ought to maintain these minimal requirements for credibility.

Also, as each desirable property becomes equated with a general constraint on graph

grammars, the job of designing high-quality graph grammars becomes easier, and our

understanding of decision-model topologies is furthered.

Prior to entering into Gramarye any speci�c considerations that are to be included

in a QCID model, the user must install the static input elements|the graph-

grammar productions, the node-label hierarchy, and the initial graph|which together

de�ne the domain. This collection of syntactical manipulations, hereafter referred to

as the grammar, may enforce certain properties on all resulting derived graphs.

Gramarye has a separate module that can be used by the designer of a grammar to

check whether the grammar maintains these properties.

Most of the checking algorithms that Gramarye uses are su�cient, but they are

not always necessary. That is, there may be grammars that fail my checks but that

still enforce these properties for all derived graphs. However, even though the checks

on a grammar are stronger than they need to be, this di�erence has not been a

signi�cant hindrance to the design process in my experience.

Throughout my description of these grammar checks, I shall need to refer to sets

of node labels|either classes or instances|that are generalizations or specializations
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of a particular class in the node-label hierarchy. For a given node label, I shall refer

to the labels above it in the hierarchy as ancestors, and to the labels below it|

including terminal symbols|as descendants. Since these labels de�ne classes of

nodes in an in
uence diagram, and classes of vertices in a grammar, I shall use the

same terms|ancestors and descendants|for sets of nodes and vertices. Since the

node-label hierarchy is a tree, two production vertices may be instantiated by the

same terminal node only if one vertex is the ancestor or descendant of the other. I

shall denote this subclass{superclass relationship as anc-desc-equivalence. For two

sets of vertices, the anc-desc-intersection consists of those vertices of the �rst set

for which there exists an anc-desc-equivalent vertex in the second set.1

The properties for which Gramarye checks in a grammar can be divided into three

groups: (1) basic computational requisites for computing an optimal decision from

an assessed in
uence diagram, (2) domain-independent properties that I expect in

any reasonable decision model, and (3) guidelines for perspicuous graph grammars.

In Sections 4.1 through 4.3, I discuss what the properties in these three groups are,

and how Gramarye checks a new grammar to ensure that the latter maintains such

properties.

1Although I have arbitrarily chosen the vertices of the �rst set to be represented in the intersec-
tion, this choice has little importance for the grammar checking that Gramarye performs.
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4.1 Basic Computational Requisites

So that a decision maker can evaluate the model and thereby decide what to do, I

require an in
uence diagram to be oriented to a single utility model, and regu-

lar, as de�ned by Shachter (1986). These requirements correspond to the following

properties, which should be maintained by any QCID-generating grammar used with

Gramarye:

1. There should be exactly one overall utility node.

2. There should be no successors to the utility node.

3. The directed graph should be acyclic.

4. All decision nodes should be completely ordered by the directed graph.

In Sections 4.1.1 through 4.1.4, I discuss how Gramarye checks whether any QCID

grammar maintains these computational properties for all graphs that are derived

using that grammar.

4.1.1 Uni�ed Utilities

When a decision maker evaluates an assessed decision model to �nd a single optimal

plan, she requires a function that measures the expected utility of each possible

scenario of outcomes. This restriction can be relaxed if the goal is only to view the
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expected utility of each decision alternative, and if the user does not mind viewing

utilities as multidimensional vectors. However, the basic precepts of decision theory

require that the decision maker be able to order completely her preferences for the

various outcomes. It is unclear how this preference ordering should be done when the

end utilities are left as vectors, so I would like to restrict the models that Gramarye

generates such that they contain exactly one utility node.

To see that a grammar maintains this property, Gramarye needs only to note that

there does not exist a graph-grammar production that adds or deletes a utility node

into the emerging model, and that the initial host graph consists of a single utility

node.

4.1.2 No Successors to Utility

The requirement that there be no successor to the utility node is a convenience for

assessment. As long as the sets of immediate predecessors for two adjacent nodes are

identical, then the arc between them can be reversed. A decision analyst could assess

factors that contribute to the overall utility of the decision maker by estimating the

probability distribution of a contributing factor for each value of the overall utility,

but this approach to utility assessment is generally awkward. Consequently, I prefer

grammars that restrict the models derived to those in which the utility node has no

outgoing arcs.
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Gramarye checks that this criterion is maintained in all derived models of a gram-

mar by checking that the initial graph contains no arcs that leave a utility node, and

that there does not exist a rule where an outgoing arc is added to a utility node.

4.1.3 Acyclicity

The requirement that the arcs in in
uence diagrams do not form a directed cycle

distinguishes the in
uence-diagram notation from earlier graphical notations of prob-

abilistic dependence (Rousseau, 1968). The reasons for the restriction are as follows:2

� If two or more decision nodes are involved in a cycle (Figure 4.1a), then the

informational arcs imply that each decision is made before all the others in

the cycle. This conundrum prevents us from �nding any temporal sequence

that would allow alternatives from both decision nodes to be chosen freely and

nonsimultaneously.

� If chance and decision nodes are involved in a cycle (Figure 4.1b), then we lose

the presumed relevance or in
uence that the decision node has on the chance

node's outcome, since some information about the outcome is known at the

time of that decision, according to the informational arc whose target is that

decision node.

2Ross D. Shachter. Personal communication.
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+
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YXQ R
+

XQ

(a) (b) (c)

Figure 4.1: Cycles prohibited in the in
uence-diagram representation. (a) Two de-

cision nodes in a cycle. Such an arrangement prevents a total ordering of decisions.

(b) A cycle between decision and chance nodes. Here, the decision is fated, since in-

formation regarding the decision's e�ect is available prior to the decision. (c) A cycle

involving two chance nodes. In this example, suppose X and Y are Boolean vari-
ables, and suppose that the conditional probabilities are assessed to be P(XjY ) = 0,
P(Xj �Y ) = 1, P(Y jX) = 1, and P(Y j �X) = 0. Although the conditional probabilities
meet the qualitative constraints of the in
uence diagram, they do not correspond to

a consistent joint probability, because the conditional probabilities are contradictory.

� If two or more chance nodes are involved in a cycle (Figure 4.1c), then there is

the possibility that independently assigned conditional probabilities for the two

nodes will result in an indeterminate or inconsistent joint probability distribu-

tion.

The procedure that Gramarye uses to check that a grammar will never generate

a cycle relies on the previous two properties: If there is exactly one utility node, and

if that utility node can never have an outgoing arc, then there can be no directed

cycles that include the utility node. Since, in G�ottler's nodecentric formalism, no

arc additions are ever made without the addition of the target or source node, the

derivation system can create a new cycle only by adding one or more nodes with both

incoming arcs and outgoing arcs. Consequently, Gramarye begins the procedure by

creating a set S of sinks|node-label classes that can never be involved in a directed
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cycle. Initially, the utility node is the sole member of S. Gramarye then repeats the

following routine until no more classes are added to S:

For each class that appears in some VR,

if all rules that can add anc-desc-equivalent nodes of that class

can add no outgoing arcs to any node outside of S,

and outgoing arcs of anc-desc-equivalent classes in the initial graph

go to no node classes outside of S,

then add that class to S.

If the initial graph has no cycles, and if there are no anc-desc-equivalent classes of

vertices in VR with both outgoing and incoming edges for which the grammar can add

an outgoing arc to a class outside of S, then the grammar ensures that no derived

graph will contain a cycle.

4.1.4 Complete Ordering of Decisions

The last of the �ve computational requisites|complete ordering of decisions|is one

that I do not currently ensure in models generated from unordered lists of terms.

For example, if the list contains multiple tests, then there is no a priori reason to

decide to order one test before I order the others. Zhang and colleagues (1993) have

suggested that there are situations in which decision models do not require complete
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ordering of the decision nodes. However, since the user may have domain-speci�c and

situation-speci�c reasons for a particular ordering, I have not attempted to maintain

this requisite in all graphs that Gramarye generates.

4.2 Domain-Independent Properties of Reason-

able Decision Models

In addition to the aforementioned computational requirements, there are several prop-

erties that characterize reasonable QCID models of decision problems. Although they

may be violated in a valid QCID model, I would prefer that Gramarye alert the user

whenever her input considerations lead to such violations. These properties are do-

main independent, and rely on only the rationality of the decision maker, and the

pertinence of the terms that she lists to the decisions she faces. I accept that terms

may be included in or omitted from the initial list by mistake, but I would prefer the

derivation system to notify the user of such problems, rather than to derive a model

that either is not suitable for remaining stages of decision analysis or does not require

further analysis for all the decisions listed. In particular, I would like my grammar

to maintain the following properties of reasonable decision models:

1. There are no qualitatively dominated decision nodes.

2. All nodes have at least one chain to the utility node.
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3. All chance nodes have at least one chain to the utility node with no intervening

decision nodes.

4. There exists at least one decision node.

5. There exists at least one uncertainty, either probabilistic or deterministic.

To test a grammar for several of these properties, Gramarye builds a staging

graph|a graph of stages in any derivation that Gramarye might perform using that

grammar. To create the staging graph, Gramarye begins with a node that represents

the initial graph, and a node for each production in the grammar (Figure 4.2). Gra-

marye adds directed arcs from the node representing the initial graph to all nodes

whose productions are applicable to the initial graph. A node is regarded as ap-

plicable to the initial graph if all nodes and edges in the bottom and left region

of the node's production can be matched to nodes and edges that are either in the

initial graph or in the right region of productions belonging to an earlier stage (see

Appendix A.2). Then, for each pair of productions in which there is a nonempty

anc-desc-intersection of VR of the �rst production and VBL of the second, Gramarye

adds a directed arc from the �rst node to the second. All immediate successors to

the initial graph's node are grouped as the �rst stage. All successor nodes of the �rst

stage that may be applicable after the �rst stage are grouped in the second stage,

and so on, until a stage contains no successors, or the following stage duplicates a

previous stage precisely. Nodes in this procedure can belong to more than one stage.
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If cycles occur in a staging graph, and if these cycles occur prior to the inclusion of all

production rules into at least one stage, then Gramarye rejects the grammar. Since,

for any �nite grammar, only a �nite number of distinct stages|i.e., combinations

of rules|are possible, Gramarye's construction of a staging graph is guaranteed to

terminate. In practice, the staging procedure terminates long before this theoretical

limit. For example, the grammar in Section 3.6.1 yields a staging graph with only �ve

discrete stages. In Sections 4.2.1 through 4.2.5, I discuss these domain-independent

properties.

4.2.1 Lack of Qualitative Dominance

I use the term qualitative domination to refer to a decision node that does not

have both a positive and a negative qualitative chain to the utility node. A positive

qualitative chain is a sequence of arcs, disregarding each arc's direction, where the

overall direction of in
uence, according to sign algebra (Wellman, 1990b), is positive.3

Informational arcs can be considered positive in this sign algebra. Contingency arcs

can be positive or negative. For tests, the target node of the contingency arc|

htest resulti|relies on the test being performed, so the arc is positive. For ablative

treatments, the target node of the contingency arc|hfuture diseasei|is contingent on

the treatment not being performed, so the arc is negative. Uncertain or nonmonotonic

3The sign of a chain is equal to the sign of the product of factors assigned to each arc along
the chain, where the factor 1 is assigned to each positive arc, and the factor �1 is assigned to each
negative arc.
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Necessarily precedes

Graph-grammar
production rule

Derivation stage

Initial
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-

-

Stage #2

-
+

+
+

+

+

- (neg)

+

-

+

- -

+

-

+

Figure 4.2: A staging graph for a graph grammar. Nodes represent graph-grammar
production rules in the grammar. Arcs denote the precedence ordering that is dic-

tated by the left and bottom regions of the production rules. Stages group those
production rules that Gramarye may apply simultaneously during a derivation. Gra-

marye generates such staging graphs to test a grammar for various properties. For

example, if the node representing a production rule is not connected to the initial

graph by any path, then that production can never be applied (Section 4.3.3.
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arcs can assume both positive and negative signs in any combination that might avoid

qualitative dominance.

To determine whether a grammar prevents qualitative dominance, Gramarye cre-

ates the set D of deletable classes|the anc-desc-equivalent set of classes appearing in

VR of at least one production. Gramarye also creates four empty sets, P, N , B, and

E , which are those classes that have been shown to have qualitative chains between

such nodes and the utility node that are, respectively, positive, negative, both positive

and negative, and either positive or negative, depending on the input list and result-

ing derivation. Gramarye then performs the following routine for each stage of the

staging graph:

For each class that appears in some VR at that stage,

if that class is added at no subsequent stage,

and,

for each production at that or prior stage that adds it,

the class is added with a + chain|outside of D|to either

a utility vertex, or a class in P or B,

or

the class is added with a � chain|outside of D|to

a class in N or B,

then set P (class; stage) >.
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If that class is added at no subsequent stage,

and,

for each production at that or prior stage that adds it,

the class is added with a � chain|outside of D|to either

a utility vertex, or a class in P or B,

or

the class is added with a + chain|outside of D|to

a class in N or B,

then set N(class; stage) >.

If P and not N , then add that class to P.

If not P and N , then add that class to N .

If P and N , then add that class to B.

If not P and not N , then add that class to E .

If all vertices of the decision-node class that appear in right side of some production

are in the set B, then the grammar ensures that no qualitative dominance will appear

in any derivation.
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4.2.2 Relevance to Utility

Unlike decision trees, in
uence diagrams represent explicitly which pairs of variables

are directly dependent on each other. Requiring that all nodes have some chain to

the utility node is equivalent to requiring that the diagram correspond to a connected

graph. Assumptions of conditional independence are made explicit by absent arcs.

The criterion that all nodes be connected ensures that the manner in which each

pertinent variable a�ects the dilemma is stated clearly.

Gramarye checks that all graphs derived using a grammar will be connected by

�rst �xing the set D of deletables to those classes whose anc-desc-equivalents appear

in VL of some production, and then checking that the initial graph contains a utility

node, that no utility nodes are deleted, and that the initial graph is permanently

connected|that is, all other nodes in the initial graph have some chain to the utility

node with no intervening nodes of that chain in D. Gramarye initializes the set R of

rooted classes with the utility class. Then, Gramarye repeats the following procedure

until no new classes are added to R:

For each class c that appears in some VR,

if all productions that have an anc-desc-equivalent vertex

of class c in VR include,

with each such vertex,

an edge to or from a vertex in VB that is
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of a class that is anc-desc-equivalent to a class in R

and

is not anc-desc-equivalent to a class in D,

then add class c to R.

If all classes that appear in some VR of the grammar are members of R, then the

grammar ensures that all graphs derived will be connected, with all nodes having

some chain to the utility node.

4.2.3 Probabilistic Chain from Chance Nodes to the Utility

Node

A chance event that has no bearing|direct or indirect|on the decisionmaker's utility

function should not be considered. Consequently, the grammar should not create any

chance nodes that do not have a relevance chain|a sequence of contingency and

relevance arcs with no restriction on arc direction|to the utility node.

To check that a grammar ensures that all chance nodes will have at least one

decision-free chain to the utility node, Gramarye �rst sets D to those deletable classes

whose anc-desc-equivalents appear in VL of some production. It then checks that the

initial class contains a utility node, that no utility classes are in D, and that all chance

nodes in the initial graph have a chain to the utility node, where the chain contains
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no decision nodes and no nodes of classes in D. Then, Gramarye initializes the set

of classes rooted by nondecisional chains, C, to include the utility node, and repeats

the following routine until no new classes are added to C:

For each class c of type Chance that appears in some VR,

if all productions that have a

vertex that is anc-desc-equivalent

to c in VR include,

with each such vertex,

an edge to or from a vertex in VB that is

of a class that is anc-desc-equivalent to a class in C

and

is not chain to a class in D,

then add class c to C.

If all chance vertices that appear in some VR of the grammar are also members of C,

then the grammar ensures there will always be a probabilistic chain from each chance

node to the utility node.
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4.2.4 Existence of Decision Nodes

For a decision problem to exist, there must be at least one decision to be made.

Gramarye does not check grammars for this property, and the current grammar does

not enforce this property. Because the input list of terms is unordered, the current

derivation scheme cannot rely on decision nodes being added at a later stage of a

derivation. I would prefer that the grammar ensure that such properties hold at

every intermediate step in the derivation, but it does not do so currently.4 However,

it is a trivial operation to check that entered lists of considerations contain at least

one term that corresponds to a decision node, thus ensuring that all derived models

contain decision nodes.

4.2.5 Existence of Chance Nodes

The requirement that there be at least one chance or deterministic node merely

amounts to a requirement that I not be able to solve the decision by simply or-

dering the utilities of each decision alternative (or scenario of decision node choices).

Currently, Gramarye does not check a grammar to ensure that this property is main-

tained. However, since all rules in the initial stage of the grammar given in Fig-

ures 3.11 through 3.14 add chance nodes that cannot be deleted by any production

4An odious kludge to ensure that every model has at least one decision would involve setting
the initial graph|currently just a utility node|to include a default decision, and deleting any such
default in every production that might add the initial decision to the diagram.
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in the grammar, I see that all derivations that are di�erent from the initial graph will

have at least one chance node.

4.3 Guidelines for Perspicuous Graph Grammars

Several of the properties for which Gramarye checks in a new grammar are intended

to support the clarity of the grammar itself. Derivations should not surprise the

designer of a grammar, and should be predictable in the absence of any automated

derivation system. Just as a computer program should not have unused variables

and inaccessible routines, a grammar's node-label hierarchy and the graph-grammar

productions should re
ect a single coherent design. Consequently, Gramarye checks

a grammar for the following properties:

1. Other than the derivation staging that is inherent in a grammar, the order of

production application has no e�ect on the graph generated.

2. All productions can be understood by a designer without resort to staging anal-

ysis.

3. Each production in the grammar is potentially applicable for some input.

4. Each class has the potential to be represented in some derivation.

In Sections 4.3.1 through 4.3.4, I discuss what these properties are and how Gramarye

checks to see that a grammar maintains them.
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4.3.1 Order Independence

A partial ordering of production application is inherent in the grammar and in the

stipulation that any derivation system should attempt to apply all rules that are ap-

plicable to the current host graph before looking at new rules that are now applicable

with these additions. As in Section 4.2, I refer to this ordering as staging, and I use

the term stage for the collection of rules that introduce new terms and are applica-

ble to the same host graph. The order in which rules are applied within the same

stage should not concern the designer or user of a grammar, since such knowledge

would depend on a detailed understanding of the derivation system's implementation.

Consequently, such order independence is a prerequisite for implementation indepen-

dence, where a given grammar and a given set of user input will result in the same

generated model for any implementation of a staged derivation system, whether that

implementation is Gramarye or some other program.

One advantage of the graph-grammar formalism is that it provides a simple

method for ensuring that the order in which two productions are applied has no

e�ect on the result of their application: If (1) each vertex in the anc-desc-intersection

of productions p1 and p2 is in the embedding environment, and (2) there is no common

edge between p1 and p2, where the edge has a source or target outside the embedding

environment in at least one of the productions, then the two productions maintain
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both parallel and sequential order independence (Ehrig and Kreowski, 1980). Here-

after, I shall refer to condition 1 as vertex disjunction, and to condition 2 as edge

disjunction. These two conditions are su�cient, although not necessary, to show

that order independence holds for any pair of graph-grammar productions.

To check that a grammar maintains vertex disjunction for all productions within

each stage of any derivation, Gramarye �rst checks that each of the following holds:

1. There are no deletions (VL) that disallow productions (VL,VB) in the same stage.

2. There are no deletions (VL) that appear in the indeterminate region (VA) of

rules in the same stage.

3. There are no additions (VR) that are repeated by di�erent and equally speci�c

productions in the same stage.

These three conditions are entailed by two checks on the rules of each stage: There

is no anc-desc-intersection between VL of one rule and VL, VA, or VB of another rule,

and there is no anc-desc-intersection between VR of one rule and VR of another rule.

With these checks, Gramarye shows that there is no anc-desc-intersection of any

VL with the vertices of other productions in the same stage, and that there is no

anc-desc-intersection of any two VR regions of productions in the same stage.

Gramarye then checks within the each stage of the staging graph to see that

there are no additions (VR) that alter optional arc additions (to or from VA), and
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that there are no additions (VR) that alter possible rule application areas. It does

so by checking that the anc-desc-intersection of the VR vertices and the VL, VA, and

VB vertices is empty. If there is a nonempty VR{VLAB anc-desc-intersection, then

Gramarye cannot show strict vertex disjunction. However, Gramarye then checks

whether no optional edges|between VR and VA or between VL and VA|exist in a

stage that adds nodes of the type of the vertex in VA, unless that same arc can be

added identically by the productions with the VA vertex in their VR region. It per-

forms this check by checking that any VA{VR anc-desc-intersection is accompanied

by a symmetrical VR{VA anc-desc-intersection. This latter criterion is weaker than

is the criterion for strict vertex disjunction. It relies on consistent user assistance

to prevent order dependence. Gramarye's current implementation obviates the need

to worry about VR{VABL intersection causing intrastage order dependence, since the

matching monomorphism is instantiated for all applicable rules prior to the applica-

tion of any one of the rules during a stage. So, for example, my current grammar

checker would permit the productions in Figure 3.11(b) and (d) to occur in the same

stage.5 However, for strict implementation independence, the former criterion|an

empty VR{VLAB anc-desc-intersection|should be maintained.

To check that a grammar maintains edge disjunction for all productions within

each stage of any derivation, Gramarye checks that no production has an edge that

appears as an anc-desc-equivalent edge in another production with either the source

5In fact, these two productions do not occur in the same stage.
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or target vertex in VR or in VL. If this condition does not hold, then Gramarye checks

that no production has an edge that appears as an anc-desc-equivalent edge in another

production with either the source or target vertex in VL. The latter criterion relies

on Gramarye performing a complete matching for the application of a rule prior to

the actual application process for any rule at the same stage. Since, for Gramarye,

no arcs that are added during a stage can be used in the imbedding environment

of another rule to be applied in the same stage, intersections between edges with

one vertex in VR and edges with both vertices in VLAB of another production do

not result in intrastage order dependence for Gramarye. Intersections between edges

with one vertex in VR and edges with one or more vertices in VR also do not result

in intrastage order dependence for Gramarye, since the nonvariant vertices in VR of

two rules, or in VR of two applications of the same rule, necessarily have as their

labels two di�erent considerations from the user's list. Variant vertices are wholly

determined by the VLB matching of a rule application in Gramarye. Once again,

for strict implementation independence, the former criterion should be maintained,

although the latter criterion is su�cient to show intrastage order independence when

Gramarye is used as the derivation system.



106 CHAPTER 4. PROPERTIES DESIRED OF THE GRAMMAR

4.3.2 Declarative Transparency

Several of the properties for which Gramarye checks in a grammar have more to

do with the clarity of the grammar than with the quality of the derived graphs.

Speci�cally, when a rule speci�es some set of vertices and edges in the embedding

environment, that embedding environment should represent all such nodes and arcs

that might be included at any stage of the derivation of a model. Consequently,

Gramarye checks that a grammar has the following characteristics:

1. There is no anc-desc-intersection between added edges in one production and

edges contained in the embedding environment of another production at the

same stage, unless the second production appears at a later stage.

2. There is no anc-desc-intersection between vertices in VA and vertices in VR of

subsequent stages, unless the edges between VA and VR in the �rst production

appear between VR and VA in the second production.

Also, so that inhibitory e�ects of node deletion are not hidden within the grammar,

Gramarye requires that productions with a nonempty VL allow whatever nonvariant

nodes they introduce into a graph to be added by a related production at a later

stage. To ensure this property, Gramarye checks that

1. There are no deletions that disallow other rules at subsequent stages.
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2. There are no deletions that do not pair with a compensatory production that

adds the same class of nonvariant nodes, and that has an empty VL.

Here, a production p2 is de�ned by Gramarye to be compensatory to a nonempty-VL

production p1 if

1. The nonvariants in VR1
are identical to the nonvariants in VR2

.

2. At least one vertex is in both VR1
and VB2

.

3. No anc-desc-equivalent class of that vertex appears in a VR of the same stage

as VB2
or of a previous stage.

4. The subgraph of vertices and edges in the right and bottom regions of p1 is

identical to the subgraph in the right and bottom regions of p2.

For example, if the addition of a node of type X requires the deletion of a node of

type Y; then there should be a subsequent compensatory rule. This compensatory

rule addsX nodes in the same manner, just as though the Y node was present and the

�rst rule was being used. This sort of compensation appears in the two productions

shown in Figure 3.14(a) and (b). The �rst production, Figure 3.14(a), adds only the

�rst node of the type hrisk-reducing txi that pertains to a particular crisis. All other

risk-reducing treatments that apply to the same crisis are added by the production in

Figure 3.14(b). The �rst production's unique creation of a hfuture crisis eventi variant
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node ensures that the second production must follow the �rst, and must be used only

when the crisis event is reduced by both treatments.

4.3.3 Applicability of Each Production

Clarity in a grammar is a�ected adversely when there are rules that cannot be used

in any derivation. To prevent this situation, Gramarye checks that all rules appear

in at least one stage of the staging graph (see Section 4.2).

4.3.4 Potential for Inclusion of Each Class

As a warning for grammar designers whose graph-grammar productions cannot incor-

porate concepts of known classes into a model, Gramarye checks whether all classes

have some corresponding rule that includes those classes in a derivation. The check

that Gramarye performs is to examine whether all leaf classes have an anc-desc-

equivalent class in the VR of at least one rule. Gramarye then warns the user of the

least-speci�c classes that are not included in any VR. Although my grammars often

violate this property and I ignore the warning, I still believe that this check performs

a valuable bookkeeping service for the designer of a grammar.
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4.4 Properties for Further Investigation

The preceding properties, which my current grammar maintains, are not su�cient to

guarantee that the decision models that Gramarye derives will be acceptable to the

user. I also do not mean to imply that the preceding properties are the only ones

that are desirable for decision models. As researchers �nd other traits that distinguish

acceptable models from unacceptable ones, they may develop similar graph-grammar

checks to ensure that those traits are always maintained by a derivation system.

4.5 Summary

As demonstrated by Gramarye's grammar-checking procedures, the graph grammar

that Gramarye currently uses maintains the following properties in all derived QCID

models:

1. There is exactly one overall utility node.

2. There is no successors to the utility node.

3. The directed graph is acyclic.

4. There are no qualitatively dominated decision nodes.

5. All nodes have at least one chain to the utility node.
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6. All chance nodes have at least one chain to the utility node with no intervening

decision nodes.

7. Other than the derivation staging that is inherent in a grammar, the order of

production application has no e�ect on the graph generated.

8. All productions can be understood by a designer without resort to staging anal-

ysis.

9. Each production in the grammar is potentially applicable for some input.

10. Each class has the potential to be represented in some derivation.

The grammar does not ensure that there is at least one decision node and at least

one uncertainty, or that decision nodes are completely ordered.

Also, the grammar guarantees that any set of input that derives a model will

derive a unique model, regardless of the order in which rules are applied by the

derivation system. Here, I use the term input to refer both to the unordered list of

considerations and to the choices made by the user during the application of rules

that have indeterminate environments. Thus, the current grammar is, in a sense,

unambiguous.



Chapter 5

An Evaluation of Gramarye

Est modus in rebus. Sunt certi denique �nes quos ultra citraque nequit

consistere rectum.

Things have their due measure; there are ultimately �xed limits, be-

yond which, or short of which, something must be wrong.

|Horace

The central hypothesis of this dissertation|that graph grammars can be used to

generate decision models|is based on my experience over the past 15 months with an

implemented graph-grammar derivation system. Any single derivation provides proof

that this hypothesis is true|to a degree and under quali�ed conditions. However, the

successful application of this technology to improving medical decisions depends on

degrees and quali�cations: How much bene�t can the technology provide to patients,

111
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clinicians, and other health-care workers? For what problems is this technology likely

to be useful? How easily can the technology be integrated into other systems?

For Gramarye, the process that is being automated|the composition of QCID

models|is performed only rarely, and then by only a few researchers. The subsequent

steps of the decision-analysis cycle are also the subject of academic research, and the

informational demands of formal decision analysis are beyond what current hospital

information systems can provide. Although several professional consulting companies

analyze corporate decisions, individual clinical decisions usually cannot justify the

expense of decision analysis. Moreover, clinicians and patients lack the necessary

familiarity with decision-theoretic tools and terminology.

Consequently, the primary goal of my evaluation of Gramarye has been to describe

its strengths and weaknesses along �ve dimensions:

1. The scope of problems for which Gramarye is applicable

2. The interface between Gramarye and its user

3. The interoperability of Gramarye with other information systems

4. The accuracy with which the models re
ect known probabilistic dependencies

5. The overall usefulness of the approach to decision modeling

In Sections 5.1 through 5.7, I discuss where along these dimensions Gramarye's

strengths and limitations lie. It is my hope that other researchers will �nd this
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description helpful in deciding whether to use a graph-grammar derivation system for

their decision-modeling needs.

5.1 Scope and Expressivity

In designing a grammar for medical decision modeling, I have deliberately avoided

restricting the problem to any particular specialty �eld or problem within medicine,

since, as I discussed in Section 2.1.2, in
uence-diagram templates may su�ce for

highly speci�c problems. Such a template-pruning approach is not likely to scale up

to new, unanticipated problems, since templates must encompass all future models

as subgraphs, and they do not employ any abstractions, under which the user could

classify new considerations. The graph-grammar approach, on the other hand, can

incorporate abstractions that are at any level of generality.

The abstractions used in the grammar described in Section 3.6.1 are general to

medicine. As an example, Figure 5.1 shows two simple models derived by Gramarye.

Gramarye derived the �rst model for the tuberculosis decision problem introduced

in Section 1.1. Gramarye derived the second model to help a physician to decide

whether an elderly woman should undergo testing and possible treatment for osteo-

porosis. These two models apply to disparate �elds of medicine, but their topology

is the same. The terms Tb and Osteoporosis are classi�ed under hdiseasei; both Bron-

choscopy and Skeletal radiography are classi�ed under htesti; and both Treat Tb and
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Treat Tb?

–

–

Bronchoscopy

Bronchoscopy
result

Value to
patient

Tb
Future

Tb

+ +

––

–

(a)

Treat
osteoporosis?

–

–

Skeletal
radiography

Skeletal-
radiography

result

Value to
patient

Osteoporosis
Future

osteoporosis

+ +

––

–

(b)

Figure 5.1: Two simple decision models from di�erent medical domains. (a) The
tuberculosis decision, modeled in Section 3.5. (b) An in
uence diagram that models

the decision of whether a patient should have a radiographic bone scan to determine
her degree of osteoporosis, and whether that patient should under treatment for
the osteoporosis. Although the variables used in the two models may be de�ned,
descretized, and assessed di�erently, topologically, the two models are isomorphic.

Treat osteoporosis are classi�ed under hcurative treatmenti. Due to this parallel clas-

si�cation of terms relating to tuberculosis and osteoporosis, Gramarye constructs

topologically isomorphic models for these two decision problems, and any other de-

cision problems that comprise three considerations of the types hdiseasei; htesti; and

hcurative treatmenti. The precise de�nition of variables|such as osteoporosis|and

the way those random variables are quantized are di�cult modeling issues, which I

have assigned to subsequent phases of the decision-analysis cycle (Figure 2.1), and

which I do not address in this dissertation.

At this point, a critic could argue that Treat osteoporosis should have been clas-

si�ed as a hpreventive treatmenti; or as another type of treatment, rather than as a
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hcurative treatmenti. Although a phrase more precise than Treat osteoporosis might

have made the classi�cation less debatable, there are many speci�c treatments that

might be classi�ed in di�erent ways, depending on the context of the situation. For

example, the surgical extraction of a tumor from a patient's abdomen may be a

preventive, palliative, curative, or diagnostic procedure. Similarly, diseases|such

as congestive heart failure|may be regarded as �ndings, depending on what else is

known and on what is suspected.1 The classi�cations that I have used should be

familiar to physicians, and I hope that the user would be able to classify concepts ap-

propriately for her particular decision problems. However, a more complex grammar

might use abstractions that do not correspond to common clinical modes.

The designer of the vocabulary that Gramarye uses faces problems beyond the

multiple classi�cations for the same terminal symbol. Gramarye does not model

several types of considerations that a user might enter:

1. Considerations that are direct references to the context, such as \repeat ther-

apy"

2. Considerations that are not medical

3. Medical considerations that do not �t into any of Gramarye's classi�cations

There is no a priori reason why the grammar that Gramarye uses could not incorporate

1Other researchers (Greenes et al., 1992) have suggested that the concepts \�nding" and \diag-
nosis" represent two ends of a continuum.
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patterns for nonmedical terms or contextually de�ned terms. Also, users may derive

partial models from those terms that �t one of Gramarye's classi�cations, then add

the other considerations manually. Later, the grammar's designer can associate these

new categories of considerations with their corresponding QCID patterns, and can

add these patterns and categories to the grammar. The graphical representation of

graph-grammar productions makes encoding them a simple task, and Gramarye's

grammar-checking routines can check that the properties discussed in Chapter 4 hold

for the revised grammar. The primary disadvantage of adding additional patterns

to a grammar is that users of the graph-grammar derivation system may have more

trouble classifying terms under abstractions used in the grammar.

Gramarye also fails to derive decision models from close synonyms to terms that

are classi�ed in the node-label hierarchy. This latter problem could be addressed by

an electronic thesaurus of medical terminology, or by a programmed series of ques-

tions to help the user classify terms that she has entered and that Gramarye has failed

to recognize. Instead, I have built a graphical browser (Figure 5.2), which contains

roughly 7500 terms derived from the QMR (Miller et al., 1986), SNOMED-III (Roth-

well and Côt�e, 1990), and CPT (Finkel, 1990) clinical lexicons. This experimental

vocabulary is far too small to cover the breadth of considerations that might occur

in decision problems facing an internist. However, the user can add terms that are

not present using the browser's graphical interface. Once added, these new terms are
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saved, along with their positions in the browser and in the node-label classi�cation

hierarchy. It is my hope that the examples and the additional abstractions|beyond

those in Figure 3.15|used in the browser would help a naive user to classify new

concepts; however, since I have been the sole user of Gramarye, I can only conjecture

that other users would �nd the browser's vocabulary tree to be useful.

For the designer of a system such as Gramarye, the central problem posed by

the vocabulary is that of devising abstract categories that have meaning to the user

and that have distinct prototypical patterns in QCID models. This task of devis-

ing abstractions is essentially a modeling task, similar to the manual composition of

QCIDs. However, by encoding these abstractions and patterns in a graph grammar,

the designer of the grammar has endowed future decision makers with reusable pat-

terns and the means for automated support for decision modeling. This same set of

abstractions is what limits the expressivity of the derivation system, since, for con-

siderations that are not classi�ed uniquely, users must be able to understand how

to classify considerations. Only when the vocabulary is known in advance can the

grammar's designer incorporate patterns for a class of concepts where that class has

no corresponding label|such as palliative treatment or preventive treatment|for the

system's intended users.

Another feature of an expressive vocabulary is the ability to derive related concepts

from the entered terms. The lexical variants that I found to be useful in Gramarye
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Figure 5.2: Gramarye's vocabulary browser. On the left, a graphical user interface

allows the user to investigate abstract categories and terminal symbols in a classi�-
cation tree that extends up to seven levels beyond the basic node-label classi�cation
shown in Figure 3.15. The user may add individual terms to her list of considerations

by double-clicking on the term in the upper browser. In the window on the right,

the user has begun to add an additional term|here, Orringer gastric shunt|to an
existing abstract category.
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were merely stem terms with either the pre�x \future" or the su�x \result." For

example, test results|observable chance nodes contingent on a decision to perform

a test|are introduced into derivations by Gramarye, rather than by the user. This

feature of the grammar's design enforces a particular style of modeling, and allows the

designer to use patterns that introduce more than a single node for a single entered

consideration. Such variants might be used by the designer to remind the user about

typical associated considerations|such as the cost of a prescribed medicine|without

requiring that those associated considerations be among considerations entered by

the user. Lexical variants also can be used to introduce concepts with which the

user may not be familiar. For example, suppose that the grammar's designer wishes

to include a pattern corresponding to hypeases2|diseases that occur only as the

result of the patient's perception that they are being tested for a potentially fatal

disease (Figure 5.3). Suppose, also, that since the intended users of the system have

never considered such diseases as a category, they have no term for such hypeases. The

grammar's designer may introduce these hypeases as lexical variants of the potentially

fatal diseases for which the user is considering testing. The lexical variant could

consist of the pre�x \iatrogenic fear of" followed by the name of the potentially fatal

disease. For example, one hypease would be the concept iatrogenic fear of rabies.

Thus, even though the user has no abstract category for hypeases, the grammar could

2I have invented the term \hypeases" for this hypothetical scenario. I am not proposing that the
concept has any practical utility.
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<treatment for
potentially fatal

disease>

-

+

<utility>

<potentially
fatal disease>

<disease hypease>

<test for potentially
fatal disease>

-

<test result>
+

Figure 5.3: A production that incorporates hypeases into decision models. Here, hy-
peases represent diseases that do not belong to any category known to the users of
the derivation system. However, the grammar's designer knows that these hypeases

can result from tests for potentially fatal diseases. Gramarye can use this production
to incorporate an unobservable chance node with a node label that is a lexical vari-
ant of the potentially fatal disease that matches to the chance vertex in VB of this
production.

introduce a hypease node into a derivation, and the the user could either accept or

delete this hypease node from the �nal decision model.

Because I have been generating|rather than parsing|lexical variants, the simple

addition of either a pre�x or a su�x to some root term has su�ced. More complicated

procedures for generating lexical variants are possible and may be useful, but the value

of such techniques is independent of the value of graph-grammar derivation systems
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such as Gramarye.

In general, the scope and expressivity of a graph-grammar derivation system is

limited primarily by the ability of the designer to associate prototypical patterns with

speci�c terms, with general abstractions that have meaning to the user, or with lexical

variants of either speci�c terms or general abstractions.

5.2 User Interface

One of the most critical determinants of the success of a decision-support system

in the clinical environment is the system's ease of use. The particular graphical

user interface (GUI) through which the user and Gramarye communicate relies on

existing technology and platform-speci�c standards for user-interface design.3 The

QCID visual language is, at heart, a notation that has been used by many decision

analysts for decades. Neither this GUI, nor the user-interface behavior of the graph

editor,4 nor the QCID representation is the subject of my research; my interest is in

the amount of assistance that Gramarye requires from the user.

An unordered list of considerations is a simple input for the user to provide, but

not all derivations can succeed with no other input from the user. In particular,

there are three varieties of assistance that Gramarye requires from the user in certain

derivations:

3NEXTSTEP, from NeXT, Inc., Redwood City, CA.
4Diagram!, from Lighthouse Design, Inc., San Mateo, CA.
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1. Classi�cation of new terms

2. Selection from among multiple matches to VL or VB of an applicable production

3. Selection from among one or more matches to VA of an applicable production

The �rst variety of user assistance|classi�cation of terms|currently relies on

the user's familiarity with the grammar, as I discussed in Section 5.1. It is entirely

possible that the context of the remaining terms in a list of considerations could help

Gramarye to classify terms that are not in the current vocabulary. It is also possible

that a more sophisticated vocabulary and node-label hierarchy could alleviate this

demand on the user. Nonetheless, in my experience, I have not found Gramarye's

need for term classi�cation to be particularly troublesome, and the time spent assign-

ing terms to classes has been dwarfed by the time and e�ort spent in constructing

in
uence diagrams manually|that is, without the use of the prototypical patterns

encoded in Gramarye. The task of classifying terms grows linearly with the number

of considerations, whereas the complexity of QCID design grows exponentially with

the number of considerations.5

The second type of user assistance|selection from among potential matches for

a production|arises from the Gramarye's ignorance of probabilistic relationships

5More precisely, the number of possible directed acyclic graphs with n nodes is

nX

i=1

(�1)(i+1)
n!

i!(n � i)!
2(i(n�1))Gn�1;

where Gn�1 is the number of possible directed acyclic graphs with n� 1 nodes (Robinson, 1976).
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among speci�c terminal symbols. When each term that the user enters belongs to a

di�erent abstract class according to the relevant graph-grammar productions, then no

assistance of this sort is required from the user. For example, consider the following

decision problem:

A 6-year-old boy, who has a no known history of seizures, experi-

enced an event that, from his mother's description, sounds to the physi-

cian like a generalized tonic-clonic seizure. Since the child was ill, and

had a high (reportedly 106�F) fever during the episode, the physician

strongly doubts that the child is su�ering from idiopathic epilepsy. How-

ever, to be certain, the physician considers recommending that the child

undergo sleep-deprived electroencephalography (EEG). For children with

idiopathic epilepsy, the physician recommends anticonvulsant treatment

with phenobarbital, although both the physician and the child's mother

are concerned about the possibility of central nervous system (CNS) de-

pression that could result from the phenobarbital.

There are six considerations in this case:

1. The child's lack of known history of generalized tonic-clonic seizures

2. The reported single generalized tonic-clonic seizure

3. The chance and severity of idiopathic epilepsy
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4. The decision to perform an EEG

5. The decision to administer phenobarbital

6. The possibility and severity of CNS depression from phenobarbital

From terms representing these six considerations, and with no other input or assis-

tance from the user, Gramarye derived the QCID model in Figure 5.4. Since each of

the considerations correspond to di�erent abstract labels in the graph-grammar pro-

ductions, the derivation system does not require any disambiguation from the user.

For other derivations, Gramarye relies more heavily on the user for assistance.

For example, the following case used by Wellman (1990a) includes several consider-

ations that the grammar described in Section 3.6.1 would classify under the same

abstraction.

A man with a known history of coronary-artery disease (CAD) and

cerebrovascular disease (CVD) presents with a large abdominal aortic

aneurysm (AAA). There is a surgical procedure to repair the AAA, but

surgery carries known risks of operative mortality or disability. The op-

eration is especially risky for this patient because his CAD increases the

likelihood that he will have a myocardial infarction (MI) during AAA

surgery, and his CVD enhances the probability of a stroke. The decision
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-

Value to
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Phenobarbital?

EEG?

-

Result of
EEG

Idiopathic epilepsy

Future generalized
tonic-clonic seizures
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tonic-clonic seizures

-
-
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+

-

+

-

-

+

+

+

Figure 5.4: The qualitative decision model produced by Gramarye for the decision
problem regarding childhood seizures. In this case, the physician is deciding whether

to test for idiopathic epilepsy. Both the physician and the child's mother are con-
cerned about the possibility that the favored treatment for idiopathic epilepsy might

depress the child's central nervous system and retard his intellectual growth. (EEG
= electroencephalography; CNS = central nervous system)
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also includes consideration of performing two tests: carotid arteriography,

to assess the extent of the patient's CVD, and cardiac catheterization, to

assess the extent of his CAD. In addition to the AAA repair, the physician

has suggested two concomitant procedures: CABG surgery, to relieve car-

diac ischemia caused by the CAD, and carotid endarterectomy, to reduce

the risk of stroke from the CVD.

The decision considerations that I extracted from this description and used as input

to Gramarye were

1. Coronary artery disease (CAD)

2. Cerebrovascular disease (CVD)

3. Abdominal aortic aneurysm (AAA)

4. CAD history

5. AAA width

6. Repair AAA

7. CABG

8. Endarterectomy

9. Cardiac catheterization
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10. Carotid arteriography

11. MI

12. Stroke

13. AAA rupture

14. Anaesthesia complications

15. Patient morbidity

16. Patient mortality

Because several of these terms are classi�ed similarly, the user must help Gramarye

to select from among the possible matches to VA, VB, and VL of rules used in the

derivation. The amount of user assistance required in this derivation was 12 choices.

I have recorded the actual dialogue between Gramarye and the user in Appendix C.

The graphical model generated by Gramarye is shown in Figure 5.5.6

Of the dozens of models that I have derived using Gramarye, this decision model

is the largest. It also is the model that required the greatest number of selections

from the user. I expect that the vast majority of clinical decision problems could be

modeled satisfactorily with fewer than a dozen nodes. The amount of assistance that

6Wellman's manually constructed decision model appears in Figure 2.3. Because I had seen
this latter model before I designed the current grammar, I do not consider the similarities between
Figures 2.3 and 5.5 to be evidence of the current grammar's validity.
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Figure 5.5: The qualitative decision model produced by Gramarye for the deci-

sion problem regarding coronary-artery bypass graft (Wellman, 1990a). The deci-
sion maker must devise a plan from two possible tests (cardiac catheterization and

carotid arteriography) and three surgical treatments (abdominal aortic aneurysm re-
pair, coronary-artery bypass graft, and carotid endarterectomy). The input concepts

for this derivation were CAD, CVD, AAA, CAD history, CVD history, AAA extent, AAA
repair, CABG, Endarterectomy, Cath, Arteriography, MI, Stroke, AAA rupture, Anaesthe-

sia complications, Morbidity, and Mortality. The indeterminism due to multiple con-
cepts �lling the same role in the grammar of Section 3.6.1 forced the user to make 12

selections during the derivation of this model. The user interaction for this derivation
appears in Appendix C. A similar decision model that Wellman constructed manually

appears in Figure 2.3. (AAA = abdominal aortic aneurysm; CABG = coronary-artery

bypass graft; Cath = cardiac catheterization; CAD = coronary-artery disease; CVD =

cerebrovascular disease; MI = myocardial infarction.)
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I expect such derivations would require, beyond classi�cation of the input considera-

tions, is fewer than �ve selections.

5.3 Interoperability

Since Gramarye is not designed to automate more than the initial, qualitative struc-

turing of a decision model, the degree to which Gramarye can complement other

decision-analysis tools and methods is important to the role of graph grammars in

the decision-analysis cycle. In this section, I have divided the programmatic interface

from Gramarye to other systems into three types of communication:

1. Input lists of considerations provided to Gramarye

2. Derivation hints provided to Gramarye to reduce the need for user assistance

3. Output models from Gramarye transmitted to tools used in subsequent phases

of decision analysis

5.3.1 Input to Gramarye

The input list of considerations is an exceedingly simple data structure, which any

other system might easily communicate to Gramarye. Devising that list of salient

considerations is certainly not easy|a modeler must rely on common sense, medical

training, and professional experience. Consequently, I do not envision automating the
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creation of this list. However, an electronic medical record (EMR) could have encoded

already many|if not all|of these considerations. Users might select factors involved

in a particular dilemma from an existing list of topics in the EMR. Alternatively, the

EMR itself may have a representation of the patient's situation that is rich enough to

propose speci�c clusters of concerns related to a planned test or therapeutic procedure

that has been entered into the EMR. This latter possibility could help health-care

workers to analyze the quality of medical decisions before those decisions are executed.

Another source of input considerations could be a previous iteration of the de-

cision-analysis cycle (Figure 2.1). If, during the testing phase of decision analysis,

the user �nds that additional concerns should be included in the model, Gramarye

can structure a new model from an extended list of considerations. Thus, both the

initial structuring and the subsequent revisions of a decision model can be aided by

a graph-grammar derivation system.

5.3.2 Derivation hints for Gramarye

Because, as shown in Section 5.2, syntactic distinctions are insu�cient to distinguish

between �ndings associated with one disease and �ndings associated with another,

Gramarye's graph grammar cannot determine where to place a particular �nding in

a host graph with multiple diseases. A domain-speci�c knowledge base could reduce

the number of such selections that the user is required to perform. Consequently, I
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performed an experiment in which I extended Gramarye such that it uses the medical

knowledge contained in QMR-BN (Shwe et al., 1991) to decide which �nding{disease

links to include in a QCID model. The QMR-BN knowledge base contains over 55,000

explicit relationships among �ndings and diseases; where a �nding and a disease are

both present in QMR-BN, but no relationship appears in the knowledge base, Gra-

marye interprets this omission as an implicit statement of probabilistic independence.

Despite the wealth of implicit and explicit domain knowledge encoded in this

knowledge base, I did not �nd this augmentation of the derivation machinery to

reduce the amount of assistance required from the user. The reasons for this negative

result are that disease{�nding arcs account for only a fraction of the arcs in a typical

decision model, that only a fraction of decision models that I derived included nodes

for multiple �ndings and diseases, and that only a fraction of those �ndings and

diseases were represented as terms in the QMR vocabulary. Gramarye could use

known relationships from other knowledge bases and repositories of static models,

but the variety of such speci�c relationships in medicine is so great that, for any

new decision problem, there is little chance of Gramarye avoiding user assistance by

relying on a known relationship.
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If the input list of considerations is provided by an EMR, and if that EMR en-

codes semantic relationships between terms, those semantic relationships could pro-

vide Gramarye with the information it requires to avoid relying on the user for as-

sistance. Campbell and Musen (1994) have proposed a principled vocabulary based

on SNOMED III (Rothwell and Côt�e, 1990) and on conceptual graphs (Sowa, 1984)

as the knowledge representation for an EMR. Unfortunately, since such EMRs are

not currently available, I can only speculate about their interface to a system such as

Gramarye.

Other sources of information that could be valuable to decision analysis include

clinical databases, medical literature, practice guidelines, and clinical-trial protocols.

Much of this information pertains to subsequent phases of the decision-analysis cycle.

Therefore, I have not investigated how Gramarye might interact with these sources.

5.3.3 Output from Gramarye

Gramarye stores as editable diagrams the qualitative models that it generates. I

have also implemented a compiler, which can translate these diagrams into Hugin

(Andersen et al., 1989), Ergo (Beinlich and Herskovits, 1990), CABeN (Cousins et al.,

1992), Demos,7 Infer,8 SPI (D'Ambrosio, 1989), or Ideal (Srinivas and Breese,

1990) format. Assessment, testing, and inferential reasoning over a decision model

7Lumina Decision Systems, Palo Alto, CA.
8Adam Galper. Personal communication.
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can be performed by any of these belief-network and in
uence-diagram tools.

Many decision analysts use the decision-tree representation for their models. Al-

though I have not generated decision trees using Gramarye, the decision-tree and

in
uence-diagram notations are equivalent. Moreover, my experience in implement-

ing a translator that converts decision trees into in
uence diagrams has convinced me

that the reverse translation would be relatively simple.

Overall, the clearly de�ned input to and output from Gramarye enhance the lat-

ter's interoperability with other information tools.

5.4 Validity

Despite the model properties that Gramarye ensures through the grammar-checking

procedures described in Chapter 4, there is no guarantee that the derived model

re
ects the user's best understanding of the situation. Although the user may easily

edit a generated QCID model in the graph editor, the degree to which such editing is

necessary determines, in part, the utility of using Gramarye for the initial modeling.

Since there is no metric of quality for arbitrary decision models, I have chosen

to compare the models derived by Gramarye with models that practicing decision

analysts have composed. Due to the dearth of medical in
uence-diagram models

available to me, I have used 10 decision-tree models that a decision-analysis consulting
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team at the Tufts New England Medical Center9 developed using their proprietary

program, Decision Maker.10

So that my own modeling biases would be minimized, I implemented a compiler

that translates these decision trees into equivalent QCID models. In building this

translator, I found that, despite the theoretic equivalence of the in
uence-diagram

and decision-tree notations, the actual conversion of Decision Maker models was rife

with di�culties. In addition to the traditional decision nodes, chance nodes, and

utility nodes (Section 3.5), Decision Maker relies on nadir nodes, label nodes,

Boolean nodes, and Markov nodes. All prior and conditional probabilities are

represented in Decision Maker as bindings, which are arbitrary assignment state-

ments. Probabilistic dependencies are not represented explicitly, and emerge only as

Decision Maker traverses speci�c nodes|of any of the seven types|which are as-

sociated with binding statements in a programming language. Also, multiple nodes

in the decision tree may represent the same clinical event, but each of these di�er-

ent nodes has a unique, eight-letter identi�er, and, in all but one case, the Decision

Maker models and their Tufts New EnglandMedical Center case descriptions provided

no documented mapping from these identi�ers to their common or separate clinical

events. Often, the identi�ers|when intelligible|referred to the parent node's state,

rather than to the (possibly) associated random variables. Although such imprecise

9Brian Kan. Personal communication.
10Decision Maker, version 7.0, courtesy of Frank Sonnenberg and Stephen Pauker, New England

Medical Center, Boston, MA.
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labeling may have been understandable for the original human composers of these

models, it impedes other researchers' ability to interpret these models. Nevertheless,

I was able to implement a translator, and that translator was able to convert all 10

test models into in
uence diagrams, although I had to assist it by translating the

eight-letter node identi�ers into meaningful clinical phrases.

To avoid biasing the classi�cation of terms with my understanding of the cases,

I extracted all terms from all 10 models and alphabetized the list. Then, 1 month

later, I classi�ed them|under abstractions in the node-label hierarchy|as rapidly

as possible. Then, for each case, I entered the appropriate list of terms, modifying

the list only when necessary to achieve a successful derivation. I performed both

the classi�cation of terms and the subsequent derivation of all models in a single

day. No structural features of the derived models have been altered since then. In

Sections 5.4.1 through 5.4.10, I discuss how Gramarye behaved for each of the 10

decision problems.

5.4.1 Case 1

The �rst of the decision problems that I used for testing involves a 39-year-old woman

with a carotid-body tumor (chordectoma). The tumor may metastasize, and it may

enlarge and cause damage to adjacent cranial nerves. She and her physician must

decide whether radiation therapy, surgical excision, or neither is the most propitious
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Value
to

patient

Response to
radiation therapy

CHOOSE

Surgical deathCerebral vascular
accident during

surgery

Cranial nerve
damage from surgery

Tumor
metastasis

Tumor
enlargement

Cranial nerve
damage from tumor

within half life
expectancy

Figure 5.6: The manually composed model for case 1.

plan for her situation. Surgical treatment carries additional risks for this patient due

to the fact that she has a cyanotic heart malformation.

The manually composed model for case 1 is shown in Figure 5.6. From this

model, I extracted the nine considerations, listed with their respective classi�cations

in Table 5.1. To achieve a complete derivation, I changed three of the classi�cation

choices that I made for terms while I was ignorant of their context in this particular

case: I reclassi�ed Surgical death as an instance of htreatment complicationi rather

than of hmortalityi, and I reclassi�ed Tumor metastasis and Tumor enlargement as
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Figure 5.7: The model constructed automatically by Gramarye for case 1.
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instances of hpresent malady complicationi, rather than of hmorbidityi. Also, although

the consideration is not represented explicitly in the manually composed model, I

added Brain tumor (i.e., the patient's carotid-body tumor) to the list that I entered

into Gramarye.

Consideration Classi�cation

Cranial nerve damage from tumor

within half life expectancy hpresent malady complicationi

Surgical death htreatment complicationi

Brain tumor hpresent diseasei

Tumor metastasis hpresent malady complicationi

Tumor enlargement hpresent malady complicationi

Cranial nerve damage from surgery htreatment complicationi

Cerebral vascular accident during surgery htreatment complicationi

Surgical excision hcurative treatmenti

Radiation therapy hcurative treatmenti

Table 5.1: Considerations entered into Gramarye for case 1. The column on the right

lists the node-label{hierarchy abstractions under which I classi�ed the considerations

in the left column. The node-label hierarchy is described in Section 3.6.2.

Given this list of considerations, and given �ve rule-application selections provided

by the user at the time of derivation, Gramarye constructed the model in Figure 5.7.

The structural di�erences between this model and the manually composed model in

Figure 5.6 can be divided into four general categories:

1. Stylistic di�erences in modeling disease progression

2. The di�erence between a contingency arc and the more general probabilistic arc

3. Gramarye's explicit representation of each decision alternative as a node



5.4. VALIDITY 139

4. Individual probabilistic arcs that appear only in Gramarye's model or in the

original model

In Sections 5.4.1.1 through 5.4.1.4, I discuss these di�erences between the two models.

5.4.1.1 Stylistic Di�erences for Disease Models

In the �rst category, the manually devised node Response to radiation therapy is com-

parable to Gramarye's pair of nodes Brain tumor and Future brain tumor. In both

models, the parent node represents the decision to undergo radiation treatment, and

in both models, the child nodes include Tumor enlargement, Tumor metastasis, and

Value to patient. Two qualitative decision models that di�ered in only this respect

could be assessed to behave identically.

5.4.1.2 Contingencies as Constrained Probabilities

The manual model contains four nodes|Response to radiation therapy, Cranial nerve

damage from surgery, Cerebral vascular accident during surgery, and Surgical death|that

are contingent on the decision node. The corresponding nodes in Gramarye's model

are not contingent, but are probabilistically dependent on the decision nodes. Since

the conditional probability table implied by Gramarye's probabilistic arcs may have

the value 0:0 for scenarios that correspond to the decision to forego radiation therapy

and surgery, this part of Gramarye's model may be assessed to behave identically to
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the manual model. However, Gramarye has not modeled the general constraint that

treatment complications are contingent on the treatment being performed.

A simple revision to the grammar (shown in Figure 5.8) could rectify this situation,

but additional consequences of such revisions should be considered. Can treatments

result in complications that are identical to complications of a disease? Can the same

complications occur in absence of any treatment? Should a single model contain

a node that performs roles of more than one node-label{tree abstraction? These

questions address issues of grammar design, and I have no de�nitive answer to any of

them. Nonetheless, I am convinced that the revision in Figure 5.8 would be bene�cial.

Another question that the model in Figure 5.6 evokes is how might contingencies

be combined to re
ect typical Boolean relationships? Currently, the contingencies

are binary functions of binary variables, and the positive and negative labels of con-

tingency arcs presume that the user understands positive and negative outcomes or

alternatives for the parent nodes. The contingent node becomes relevant to the rest of

the model if and only if all contingencies hold. However, we might prefer the contin-

gent node to become relevant whenever one or more contingencies hold, as in the case

of treatment complications that are contingent on one of a set of treatments being

performed. More complex Boolean functions that reference nonbinary parents might

have general applicability. Until these deterministic patterns of contingency are rep-

resented graphically, rather than being hidden in contingency dots, such constraints
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<procedure>
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mortality>
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<procedure>

<tx complication>

<utility>

<procedure>

+
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<morbidity-
mortality>
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<procedure>

<tx complication>

(a) (b)

Figure 5.8: A possible revision to Gramarye's graph grammar. (a) On the left is the

production rule from Gramarye (as introduced in Figure 3.13b) that adds treatment

complications to a model. (b) On the right is a similar production for adding treat-
ment complications. The latter production constrains treatment complications to be
contingent on some treatment being performed.

can be introduced into a graph grammar only as attributes appended to individual

productions, as in G�ottler's programmed attributed graph grammars (1989).

5.4.1.3 Explicit Decisions

A requirement of the Decision Maker decision-tree shell is that all trees begin with

a single decision node that is labeled CHOOSE. This feature of all Decision Maker

models results in a corresponding CHOOSE node in each of the 10 manual models.

In contrast, Gramarye represents explicitly as an individual node each procedure,

test, or treatment that is being considered. In this case, the individual decision nodes

must be sequenced manually (i.e., ordered completely using informational arcs) before

the user can compute the expected utilities of the di�erent alternatives (Chapter 4,

Section 4.1.4).

If additional information becomes available to the decision maker after the �rst
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decision, but before the second decision, then it may be important for the decision

maker to weigh that information so that she can arrive at a normative choice for

the second decision. Models constructed with Decision Maker typically de�ne the

alternatives of the CHOOSE node to be a subset of all combinations of the various

individual decisions. Although this latter approach has the computational advantage

that certain unorthodox sequences of choices can be omitted from the model, and

thereby ignored, the approach has the modeling disadvantages that individual deci-

sions are not represented explicitly, and optimal sequences of decisions|particularly

those which depend on latently available information|can be omitted by accident.

Consequently, I regard Gramarye's explicit representation of decisions as a feature,

rather than as a bug.

5.4.1.4 Arc Di�erences

Gramarye's model adds one arc that is not present in the manual model, and omits

two that are in the manual model. The extra arc that Gramarye adds links the node

labeled Cranial nerve damage from tumor within half life expectancy to the node labeled

Cranial nerve damage from surgery. Presumably, if a cranial nerve is severely dam-

aged by surgery, then the damage caused by tumor enlargement will have a di�erent

probabilistic distribution. A clearer model might merge these two nodes as a single

node. A user who was familiar with Gramarye's grammar might decide to enter the
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single consideration Cranial nerve damage. Due to the original decision-tree represen-

tation, I cannot be certain whether the human modeler for this problem intended

for these two nerve-damage events to be conditionally independent given ignorance

of the utility node's value. However, the inclusion of the arc is noncommittal; the

human modeler's exclusion of an arc represents the stronger statement of conditional

independence. Consequently, I do not fault Gramarye's grammar for this di�erence

between the two models.

The two arcs that Gramarye does not include link Response to radiation therapy to

Surgical death and Tumor metastasis to Tumor enlargement. The latter omission is due

to the lack of a hmalady complicationi in the VA region of the production rule that adds

hmalady complicationi nodes. This de�ciency is deliberate; the current grammar does

not model explicitly any aspect of human physiology. Consequently, chance nodes

of the same type|such as hmalady complicationi or h�ndingi|may or may not merit

corresponding statements of conditional independence. The current grammar errs on

the side of omission.

In the manual model, the probability of surgical death is doubled if the surgery

follows unsuccessful radiation therapy. Since the current grammar does not dictate

the proper sequence for therapies, Gramarye does not model any observations that can

occur after a �rst therapy and before a second therapy. Consequently, Gramarye's

model cannot have any such arc from a response outcome to the mortality of a
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second therapy. Even if Gramarye's user knew in advance not to consider surgical

treatment followed by radiation therapy, she still could not have selected the node

Future brain tumor as an intermediate observation|in this case, a hfuture diseasei for

Radiation therapy, and a hpresent diseasei for Surgical excision; in the grammar used for

this evaluation, the variant node labels for hfuture diseasei require a hpresent diseasei

stem, and the two sets of terminal symbols that are classi�ed under hfuture diseasei

and hpresent diseasei are disjoint. Gramarye's grammar does not allow for a succession

of disease states other than one state prior to any intervention, and a second state

after all interventions.

Gramarye's omission of any dependence of Surgical death on Radiation therapy

re
ects the following selection on the part of the user during this derivation:

: : :while trying to add Surgical death : : :

The following labels could map to PROCEDURE:

(Radiation therapy)

Should Radiation therapy �ll the PROCEDURE role? n

Given the decision-tree modeler's assumption that both radiation therapy and surgery

would be performed only if radiation therapy was performed �rst and failed, Gra-

marye's user might have answered in the a�rmative at this point in the derivation,

and the assessed conditional-probability table for Surgical death could re
ect a dou-

bled risk of death when both treatments are performed. Thus, it is possible for
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Figure 5.9: An adjusted model for case 1. This model assumes that radiation ther-
apy should not follow surgical excision, and that surgery would not follow successful

radiation therapy. From these assumptions, Gramarye's grammar could model the
proposition that the risk of surgical death is doubled following unsuccessful radiation
therapy.

Gramarye to derive a model for this problem where Surgical death is implicitly depen-

dent on the patient's response to radiation therapy. However, the resulting graphical

model (Figure 5.9) would not convey that it is the intermediate health status of the

patient|rather than the mere combination of treatments|that a�ects the risk of

surgical death.

In general, Gramarye would need to make a commitment to sequencing htreatmenti
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decision nodes early in a derivation before it could introduce nodes that represent ob-

servations and states that occur between successive decisions. The current grammar

has no information that it could use to sequence procedures|other than the gram-

mar's requirement that specimen collections precede tests, which precede treatments.

The grammar lacks also the abstractions for intermediate states and observations.

5.4.2 Case 2

The second of the decision problems that I used for testing involves a 31-year-old

immunode�cient man who may have subacute bacterial endocarditis. The deci-

sion maker must decide whether to recommend additional testing (transesophageal

echocardiography), and how long to continue the patient's current regimen of antibi-

otic therapy.

From the manually composed model in Figure 5.10, I entered the list of considera-

tions shown in Table 5.2 into Gramarye. This derivation required no reclassi�cation of

terms, no additional concepts, and no assistance from the user during the derivation.

The derivation resulted in the model shown in Figure 5.11.

The manual model's notion of cure, represented by the nodes Cure (given short

treatment) and Cure (given recurrence), is represented also by Gramarye's equivalent|

although stylistically di�erent|Future subacute bacterial endocarditis. The decision
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Consideration Classi�cation

Transesophageal echo htesti

Subacute bacterial endocarditis hpresent diseasei

Mortality hmortalityi

Treat SBE for next 2 weeks hcurative treatmenti

Table 5.2: Considerations entered into Gramarye for case 2. (echo = echocardiogra-

phy; SBE = subacute bacterial endocarditis.)

alternatives in Gramarye's model are explicit and, in this case, are ordered by Gra-

marye. This explicit modeling of decision alternatives allows for more detailed mod-

eling of test results, and allows these test results to be used by the decision maker

in weighing subsequent decisions. The manual model maintains that, once a decision

is made to perform the diagnostic test, any positive result from that test necessarily

entails an additional 2 weeks of treatment. This assumption may be appropriate in

this situation, but the style of modeling may also lead the decision maker to disregard

prior probabilities and test characteristics (i.e., the sensitivity and speci�city of a test

for a particular situation).

Gramarye's model lacks three probabilistic dependency arcs that are present in

the manual model. Two of these arcs provide reasonable disease and treatment con-

ditioning for the probabilistic distribution of the Mortality variable. This omission

in Gramarye's model appears to be the result of the grammar's method for adding

nodes of types hmaladyi, hprocedurei and hmorbidity-mortalityi. Since none of the rules

that add nodes of these classes include optional arcs from hmaladyi and hprocedurei
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Figure 5.10: The manually composed model for case 2. (echo = echocardiography; tx

= treatment.)
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Figure 5.11: The model constructed automatically by Gramarye for case 2. (echo =
echocardiography; SBE = subacute bacterial endocarditis.)

nodes to hmorbidity-mortalityi nodes, Gramarye does not attempt to include any such

arcs in this derivation. Had the user included one or more more immediate causes of

mortality|causes that were themselves complications of the disease or treatment|

then Gramarye would have modeled these two arcs as arcs from the hmaladyi and

hprocedurei nodes to hcomplicationi nodes, and arcs from those hcomplicationi nodes

to Mortality. Alternatively, the user might have classi�ed Mortality as an instance of

hcomplicationi, rather than as one of hmortalityi. Although this latter remedy would

duplicate the probabilistic dependencies that are in the manual model, this obtuse

classi�cation of the consideration Mortality suggests that the abstraction hmortalityi

is not well incorporated into the current grammar's design.
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Value
to

patientCHOOSE

Morbidity of stage D prostate CA,
thoracic vertebral mets,
     no cord compression

Spinal cord
compression due to

prostate CA
metastastasis
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Initial
death

despite tx
Mortality of
major bleed

Figure 5.12: The manually composed model for case 3. (CA = cancer; mets = metas-
tases; tx = treatment.)

The remaining di�erence between the two models is an arc from Transesophageal

echo result to Value to patient that appears in the manual model. It is unclear to me

whether the patient's well-being depended on a test result|rather than the disease

state or the performance of the test|or the modeler intended the Transesophageal

echo result node to represent a best estimate of the future state of the disease. In

either event, this particular lack of an arc in Gramarye's model corresponds to a

reasonable assumption of conditional independence.

5.4.3 Case 3
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Figure 5.13: The model constructed automatically by Gramarye for case 3. (CA =
cancer; tx = treatment.)

The third decision problem involves a 63-year-old Jehovah's Witness with metastatic

prostate cancer and probable sepsis who has already been acutely heparinized for

a suspected massive pulmonary embolus. The physician must decide whether to

recommend heparin or thrombolytic therapy for this individual.

The manually composed model for case 3 appears in Figure 5.12; Gramarye's

model|constructed from considerations in Table 5.3|appears in Figure 5.13. To

obtain a successful derivation, I reclassi�edMorbidity of stage D prostate CA and Major

bleed as hpresent malady complicationi and htreatment complicationi, respectively, in-

stead of their original classi�cations as hmorbidityi (a subclass of hmorbidity-mortalityi)
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and hcrisis eventi. I also introduced the additional concepts Prostate cancer and Pul-

monary embolism, which are not explicitly represented in the manual model. The

derivation required four selections from the user.

Consideration Classi�cation

Morbidity of stage D prostate CA hpresent malady complicationi

Prostate cancer hpresent diseasei

Major bleed treatment hcomplicationi

Mortality of major bleed hmortalityi

Initial death despite treatment hmortalityi

Spinal cord compression hpresent malady complicationi

Pulmonary embolism hcrisis eventi

Thrombolytic treatment hrisk-reducing treatmenti

Heparin treatment hrisk-reducing treatmenti

Table 5.3: Considerations entered into Gramarye for case 3. (CA = cancer.)

Gramarye modeled Initial death despite treatment as being conditionally indepen-

dent (given ignorance of the value of the utility function, Value to patient) of the

treatment selected. This statement of independence is in accordance with my un-

derstanding of the problem; the patient was at risk of dying from sepsis, and the

treatment under deliberation was directed at future emboli, which might occur af-

ter the patient has recovered from the current crisis. Consequently, I do not regard

Gramarye's model of dependencies here to be in error.

Gramarye's model does not include arcs from the decision nodes to the nodes

labeled Morbidity of stage D prostate CA and Spinal cord compression. Here also, I do

not regard this di�erence to be an error.
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5.4.4 Case 4

The fourth of the decision problems that I used for testing involves a 34-year-old

woman with acute myelocytic leukemia who presents evidence of having either ap-

pendicitis or neutropenic enterocolitis (typhlitis). The physician must decide whether

to recommend surgical or medical management of the patient's current abdominal in-


ammation.

The manually composed model for case 4 is shown in Figure 5.14. Although the

decision tree modeled for this problem was fairly complex, containing many more

nodes than the three shown in Figure 5.14, 12 of the decision-tree nodes modeled had

no connection to the root CHOOSE node, and, therefore, were computationally irrel-

evant to the decision. From the treatments and possible diseases under consideration

in this problem, I used the list in Table 5.4 as my input into Gramarye.

Consideration Classi�cation

Appendicitis hpresent diseasei

Typhlitis hpresent diseasei

Appendectomy hablative treatmenti

Hemicolectomy hablative treatmenti

Table 5.4: Considerations entered into Gramarye for case 4.

Given this list of considerations used in the manual model, and given two clarifying

selections from the user, Gramarye constructed the model in Figure 5.15. As discussed

in Section 5.4.1, Gramarye's explicit representation of decision alternatives and of

future disease states is a stylistic preference that does not a�ect the resulting behavior
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CHOOSE
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patient

Appendicitis

Figure 5.14: The manually composed model for case 4.
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Figure 5.15: The model constructed automatically by Gramarye for case 4.
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or recommendations of the assessed model. Consequently, I regard Gramarye's model

to be equivalent to the manual model, with two exceptions: The manual model

assumes (1) that the two diseases are mutually exclusive and exhaustive, and (2)

that the decision alternatives are mutually exclusive and exhaustive. If a decision

maker knows such a constraint before she begins to model the decision, then she

might argue that the structuring of the model should follow this constraint on the

assignment of variable outcomes. A fundamental assumption behind Gramarye is that

all assessment follows the structuring of probabilistic dependence, and this sequence

of steps may not be optimal for all aspects of a model.

5.4.5 Case 5

The �fth decision problem involves a 66-year-old man with colonic cancer and sig-

ni�cant aortic stenosis (with ejection fraction of 0:65). The physician must decide

whether to propose aortic-valve replacement or aortic valvuloplasty for the patient's

stenosis, and whether to perform this procedure before or after a curative right hemi-

colectomy for the man's colon cancer. The physician is particularly concerned that,

if colonic resection follows aortic-valve replacement, then the resection may result in

subacute bacterial endocarditis. However, valvuloplasty could lead to restenosis, and

need for subsequent replacement of the aortic valve.
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Figure 5.16: The manually composed model for case 5.
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Figure 5.17: The model constructed automatically by Gramarye for case 5.

The manually composed model for case 5 is shown in Figure 5.16. The informa-

tional arc from the node CHOOSE to the node Subsequent aortic valve replacement

is redundant, given the contingency arc between the same two nodes. This double

arc is the result of my decision-tree{to{QCID translator, and would not occur in

the traditional in
uence-diagram notation. The considerations that I distilled from

that model are listed in Table 5.5. All considerations are listed with their original

(context-ignorant) classi�cations, and I introduced no terms other than those from

nodes in the manual model.

Given the list of considerations used in the manual model, and given one clarifying

selection from the user, Gramarye constructed the model in Figure 5.17. As in all
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Consideration Classi�cation

Surgical mortality htreatment complicationi

Subacute bacterial endocarditis hpresent diseasei

Restenosis following valvuloplasty hpresent malady complicationi

Hemicolectomy hablative treatmenti

Valvuloplasty hcurative treatmenti

Valve replacement hcurative treatmenti

Table 5.5: Considerations entered into Gramarye for case 5.

of Gramarye's models, the decision alternatives are represented by separate and ex-

plicit decision nodes. Both current and future probability distributions for subacute

bacterial endocarditis are represented in Gramarye's model.

Gramarye combines all surgical mortalities, which the manual model does not do,

but could, depending on the translation from the original decision tree to the in
u-

ence diagram in Figure 5.16. Mortality from subacute bacterial endocarditis may be

represented implicitly in the negative arc from Future subacute bacterial endocarditis to

Value to patient. However, a model that combined surgical mortalities with mortality

from endocarditis might be clearer visually. Gramarye might have derived this latter

structure if Mortality|rather than Surgical mortality|were entered and was classi�ed

both as a htreatment complicationi and as a hmalady complicationi.

Neither Subacute bacterial endocarditis nor Restenosis following valvuloplasty is con-

tingent (or dependent) on operative procedures, as each is in the manual model. Had

the two nodes been classi�ed under htreatment complicationi, then Gramarye would

have arrived at the structure modeled manually. Although this shortcoming may be



5.4. VALIDITY 159

simple for the user to amend after Gramarye has �nished its derivation, the under-

lying problem is more serious: The simple list of terms entered into Gramarye does

not convey necessary contextual information.

If the grammar were modi�ed to classify terms such as Restenosis under more ex-

plicit roles|for example, Restenosis as a failure of treatment|then Gramarye might

avoid such modeling mistakes. Alternatively, if the grammar were designed to group

certain treatments with their criteria for success, then Gramarye could arrive at the

correct dependency structure. Neither of these solutions is practical for human users

of Gramarye. The former solution would require that the grammar's designer antic-

ipate the possible contexts for future treatments and physiologic events. The latter

solution would require that the grammar include within it a detailed understanding

of medical relationships.

5.4.6 Case 6

The sixth of the decision problems that I used for testing involves a 63-year-old man

who has persistent angina. The man has undergone three coronary-artery{bypass

operations; he is on a regimen of four concurrent medical therapies, and he still expe-

riences chest pain with only a small amount of exertion. The man's physician must

weigh the relative merits of continued medical management against percutaneous

transluminal coronary angioplasty (PTCA) with possible stent placement should the
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CHOOSE Value
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patient
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artery

thrombosis
(after 6 mos.)
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required

Repeat
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artery

thrombosis
(first 6 mos.)

Coronary artery
restenosis

(after 6 mos.)

Operative
success

Figure 5.18: The manually composed model for case 6. Arcs with target nodes other
than Value to patient are thickened for visual clarity.

angioplasty be unsuccessful. The physician considers restenosis, thrombus formation,

acute myocardial infarction, and procedure-related mortality to be risks associated

with the latter plan of action.

The manually composed model for case 6 is shown in Figure 5.18. The considera-

tions and their context-ignorant classi�cations are given in Table 5.6. I introduced no

additional concepts that were not in the decision-tree model, and I reclassi�ed My-

ocardial infarction, which I had classi�ed previously as a hcrisis eventi, rather than as a

hpresent malady complicationi. I replaced the manual model's consideration Operative
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Figure 5.19: The model constructed automatically by Gramarye for case 6. (PTCA
= percutaneous transluminal coronary angioplasty; mos. = months.)

success with the related concept Coronary artery insu�ciency.

Consideration Classi�cation

Coronary artery insu�ciency hpresent diseasei

Coronary artery stenosis hpresent diseasei

Coronary artery thrombosis hpresent diseasei

Coronary artery stent required htreatment complicationi

Myocardial infarction hpresent malady complicationi

Angina hpresent malady complicationi

Percutaneous transluminal coronary angioplasty hcurative treatmenti

Table 5.6: Considerations entered into Gramarye for case 6.

Given this list of considerations from the manual model, Gramarye derived the

model in Figure 5.19. Gramarye required only three user selections for assistance

during this derivation. Note that modi�ers such as \after 6 months," and general
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considerations such as Operative success have no corresponding node-label abstraction

in the current grammar. Consequently, these notions are absent from the terms

entered and from the model that Gramarye generated.

In contrast to the manual model's 23 contingency arcs, Gramarye's model has

none. The arc into Coronary artery stent required could be modeled more accurately

as a contingent arc, since the stent was proposed as a postangioplasty reparative pro-

cedure. Some of the contingent arcs in the manual model result from its separation

of the postintervention periods into before and after 6 months. The current grammar

would need a general representation for temporal intervals to make such modeling

features explicit at the structural level. Other contingent arcs, such as those linking

the treatment decision to the probability distributions of thrombosis and stenosis,

would be modeled more accurately as probabilistic arcs. In a context-ignorant set-

ting, Coronary artery thrombosis and Coronary artery stenosis were classi�ed as primary

diseases, and, consequently, Gramarye omits arcs to them entirely.

Gramarye includes arcs to Myocardial infarction from all three coronary artery

diseases: Coronary artery insu�ciency, Coronary artery thrombosis, and Coronary artery

stenosis. Since these arcs are the result of speci�c user selections, the current grammar

can be neither blamed nor credited for this di�erence between Gramarye's model and

the manual model.
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5.4.7 Case 7

The seventh decision problem that I used for testing involves a 28-year-old pregnant

woman who has a membranous ventricular septal defect. She and her physician must

decide whether they should terminate this pregnancy, and then repair her heart defect

before any subsequent pregnancies.

From the manually composed model in Figure 5.20, I entered the list of consider-

ations shown in Table 5.7 into Gramarye. This derivation required no reclassi�cation

of terms and no assistance from the user during the derivation. I added the concept

High-risk pregnancy since no disease was included in the manual model. The derivation

resulted in the model shown in Figure 5.21.

Consideration Classi�cation

Mortality of pregnancy for mother hmortalityi

Morbidity for mother hmorbidityi

Mortality for baby hmortalityi

Morbidity for baby hmorbidityi

High-risk pregnancy hpresent diseasei

Abortion hablative treatmenti

Table 5.7: Considerations entered into Gramarye for case 7.

In this derivation, Gramarye's model di�ered from the manual model in only the

former's explicit representation of High-risk pregnancy. The merit of this addition to

the manual model cannot be inferred from my own experiments, but I suspect that,

in this case, the additional disease and future-disease nodes are not helpful to the

assessment process.
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Figure 5.20: The manually composed model for case 7.
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Figure 5.21: The model constructed automatically by Gramarye for case 7.
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5.4.8 Case 8

The eighth decision problem involves a 42-year-old woman who was treated for

Hodgkin's disease 12 years previously with 4500 Rads of radiation. She presents

evidence of having a thyroid carcinoma and cardiomyopathy, both of which possibly

are results of past radiation therapy. Her physician must decide whether to recom-

mend surgical removal of her thyroid, despite the additional risks of surgery due to

her cardiomyopathy.

For case 8, the manually composed model is shown in Figure 5.22. From this

model, I entered the list of considerations shown in Table 5.8 into Gramarye. This

derivation required no reclassi�cation of terms, no additional concepts, and two se-

lections from the user during the derivation. The derivation resulted in the model

shown in Figure 5.23.

Consideration Classi�cation

Thyroid cancer hpresent diseasei

Type of thyroid cancer hpresent diseasei

Surgical mortality htreatment complicationi

Mortality over 5, 10 years hmortalityi

Thyroidectomy hablative treatmenti

Table 5.8: Considerations entered into Gramarye for case 8.

In this case, Gramarye's model shows a few subtle di�erences from the manual

model. Gramarye's node Type of thyroid cancer is not contingent on the Thyroid can-

cer. This example illustrates the need for models of a disease more detailed than
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Figure 5.22: The manually composed model for case 8.
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Figure 5.23: The model constructed automatically by Gramarye for case 8.
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the single random variable. Pradhan11 has suggested that a separate diagram might

model the distributions for severity and type of any disease that has a nonnegligible

probability of existence. In any event, both the manual model and the automati-

cally generated model exhibit awkwardness in the modeling of Type of thyroid cancer

as a separate event from Thyroid cancer. The current grammar requires a general

abstraction for disease descriptors to model considerations such as Type of thyroid

cancer appropriately. Although Gramarye's model is less explicit about the relation-

ship between Thyroid cancer and Type of thyroid cancer, the utility function can be

formulated to make the two models equivalent in this respect.

The relationship between Surgical mortality and Mortality over 5, 10 years is some-

what more evident in Gramarye's model. However, this di�erence is partly an artifact

of generating the model in Figure 5.22 from a decision tree, where the two nodes are

implicit in the surgical outcome node and in various utility nodes.

Gramarye's addition of a future disease state may help to clarify the problem

for the user during the assessment phase of decision analysis, but this di�erence is

primarily stylistic, rather than substantial, as discussed in case 1. However, Gramarye

makes what is arguably a mistake in omitting the arc from Type of thyroid cancer to

Mortality over 5, 10 years that is present in the manual model. This omission is the

result of the current grammar's poorly integrated abstraction hmortalityi, as discussed

for case 2.

11Malcolm Pradhan. Personal communication.
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5.4.9 Case 9

The ninth of the decision problems that I used for testing involves a 58-year-old

woman who has polymyalgia rheumatica and headaches suggestive of temporal ar-

teritis. An initial temporal-artery biopsy has shown no de�nitive signs of temporal

arteritis. Her physician must decide whether her symptoms|and the risk of blind-

ness from temporal arteritis|merit additional biopsies, empiric steroid treatment, or

mere observation.

From the manually composed model in Figure 5.24, I entered the list of considera-

tions shown in Table 5.9 into Gramarye. This derivation required no reclassi�cation of

terms, no additional concepts, and two selections from the user during the derivation.

With this derivation, Gramarye generated the model shown in Figure 5.25.

Consideration Classi�cation

Temporal arteritis hpresent diseasei

Mortality hmortalityi

Morbidity due to steroid treatment htreatment complicationi

Blindness due to temporal arteritis hpresent malady complicationi

Biopsy of temporal artery htesti

Steroid treatment hcurative treatmenti

Table 5.9: Considerations entered into Gramarye for case 9.

In Gramarye's model, Mortality is disconnected erroneously from disease states

and treatment decisions. This mistake stems from the current grammar's inadequate

development of the hmortalityi abstraction, as discussed in cases 2 and 8.

Gramarye's current grammar makes explicit future disease states and decision
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Figure 5.24: The manually composed model for case 9.
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Figure 5.25: The model constructed automatically by Gramarye for case 9.
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alternatives. However, as discussed in case 1, this di�erence between Gramarye and

the manual model is primarily stylistic.

Gramarye does not make the utility function, Value to patient, dependent on the

biopsy result. I do not regard this statement of independence as an error, because

Value to patient is a function of the disease state and of the treatment decision, rather

than of the informative node Biopsy of temporal artery result per se.

It might have been desirable for Gramarye to have included an arc from Future

temporal arteritis to Blindness due to temporal arteritis. The current grammar's addition

of hpresent malady complicationi nodes should be replaced by a more robust addition

of general malady complications, both present and future. This modi�cation to the

grammar would need to include a staging design that would delay the addition of any

such hcomplicationi nodes until after all htreatmenti nodes have been added.

Gramarye's model replaces many of the contingencies present in the manual model

with the more general probabilistic arcs. As discussed in Section 5.4.1, this di�erence

is relatively minor, and does not need to a�ect the behavior of the assessed decision

model.

5.4.10 Case 10

The �nal decision problem that I used in this evaluation involves a woman who has

a brain lesion, which may represent a glioma (brain cancer). She also presents signs
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of a recent pulmonary embolism. Her physician must decide whether she would

bene�t from pulmonary angiography|used to con�rm the diagnosis of pulmonary

embolism|and whether she should undergo heparin treatment to reduce the risk of

subsequent pulmonary emboli. The heparin therapy carries the risk of a potentially

disabling or fatal hemorrhage. The additional risk of cerebral hemorrhage due to her

glioma is unclear to the decision maker.

The manually composed model for case 10 is shown in Figure 5.26. The consider-

ations and their context-ignorant classi�cations are given in Table 5.10. I introduced

the single new concept Brain tumor. Gramarye's derivation of the model in Figure 5.27

required no reclassi�cations of terms, and the derivation required only one clarifying

selection from the user.

Consideration Classi�cation

Pulmonary embolism hcrisis eventi

Brain tumor hpresent diseasei

Mortality hmortalityi

Major hemorrhage due to heparin treatment htreatment complicationi

Disability due to hemorrhage hmorbidityi

Pulmonary angiography htesti

Heparin treatment hrisk-reducing treatmenti

Table 5.10: Considerations entered into Gramarye for case 10.

In this case, Gramarye's model includes a patently erroneous arc from Brain tumor

to Pulmonary angiography result. This mistake is due to the current grammar's require-

ment that htest resulti nodes provide information about hpresent diseasei nodes, rather

than about a hcrisis eventi. This issue is complicated by the fact that the entered list
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CHOOSE

Value to
patient

Pulmonary
embolism Future

pulmonary
embolism

Disability
due to

hemorrhage

Mortality

Major
hemorrhage

due to heparin

Figure 5.26: The manually composed model for case 10.

of considerations includes only a single term for pulmonary emboli, whereas the prob-

lem is concerned with two types of pulmonary emboli: There is the current episode

of suspected pulmonary embolism, about which the angiography test may provide

information, and there is the possibility of pulmonary emboli in the future, for which

heparin is being considered as a risk-reducing treatment. This distinction might have

been clearer to me had I used more descriptive labels for the manual model's nodes

Pulmonary embolism and Future pulmonary embolism. Nonetheless, this example high-

lights Gramarye's need for a knowledge representation more descriptive than QCID's

for describing current and future events. The modi�cation of the QCID formalism

to include temporal relationships, other than those indicated by informational arcs,
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Figure 5.27: The model constructed automatically by Gramarye for case 10.
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might help decision analysts to distinguish structural patterns for events that have

happened and can be detected from patterns for events that can be prevented.

Gramarye's model omits arcs from Pulmonary embolism toMortality, and fromMor-

tality to Disability due to hemorrhage. For the latter arc, I regard the manual model's

explicit representation of the trivially deterministic relationship between death in the

near future and disability in the more distant future as either a contingent relation-

ship, or one that might easily be left implicit and inside the utility function. The

absence of an arc from Pulmonary embolism to Mortality is the result of the lack of a

node for Pulmonary embolism in Gramarye's model. Again, the node missing is not

the instance of Pulmonary embolism that Gramarye removed in the process of adding

the risk-reducing treatment Heparin treatment; the missing node corresponds to the

current embolic event, and, in the list entered into Gramarye for this case, there is

no term corresponding to the current embolic event.

5.5 Di�erences Due to Graphical Representation

Of the di�erences that distinguish Gramarye's decision models from the manually

composed test models, some of these di�erences are due to the manual models' incep-

tion as decision trees. Since the decision-tree formalism emphasizes combinations of

outcomes, many more contingencies are present in the manual models. These contin-

gencies may re
ect reasonable abbreviations to the Cartesian product of all chance
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and decision-node outcomes. However, it is easy for an analyst using the decision-

tree formalism to dismiss combinations of outcomes that may be worth considering.

One example of such an omission is in case 6, where the manual model considers

myocardial infarction to be worth considering only if a surgical intervention has been

performed. The patient in this case had an occluded left anterior descending and

right coronary arteries, and his circum
ex artery was 80-percent stenosed. Given the

description in the case history, I suspect that the modeler inadvertently omitted the

possibility of myocardial infarction for nonsurgical interventions.

Another tendency that the decision-tree formalism promotes is the modeling of

outcomes associated with more than one physical entity. For example, several of the

manual models modeled the outcomes of tests as true positive, true negative, false

positive, and false negative. In some cases, such as cases 9 and 10, the false positive

and false negative were omitted completely, giving the user infallible tests that make

prior probabilities inconsequential.

Decision trees hide the actual structure of probabilistic dependency in binding

assignments, which often appear in inscrutable locations in the decision tree. I have

not investigated the level to which this feature of the Decision Maker modeling envi-

ronment may have led to questionable modeling practices. Indeed, I have deliberately

resisted emphasizing Gramarye's ability to avoid such mistakes, since the mistakes

often are not apparent in the structural model, and since they probably would not
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occur for modelers who use the in
uence-diagram notation.

On the other hand, I have noted where the QCID formalism lacks the expres-

siveness that would make relationships in the decision model more apparent at the

graphical|rather than at the numeric|level. The QCID representation can express

only three relationships: probabilistic relevance, contingency, and information avail-

ability. Additional relationships that could express temporal and anatomical rela-

tionships between concepts would enhance the clarity of the QCID model and might

lead to additional prototypical patterns that could be incorporated into the graph

grammar. For example, an explicit distinction between past and future episodes of

pulmonary embolism might have helped Gramarye to avoid several of the modeling

mistakes that it made in case 10.

5.6 Usefulness

In this evaluation of Gramarye, I used 10 manually composed models, each with an

average of seven nodes and 14 arcs (Table 5.11). The average derivation took six

considerations as input, and required two selections from the user, and, on average,

less than a single reclassi�cation or addition from the user for each case (Table 5.12).

These data provide only an indirect answer to the fundamental question: How useful

was Gramarye to the modeling of medical decisions?

Gramarye's usefulness depends on an appreciable fraction of a model's arcs|or
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Case Manual Model Gramarye's Model

Case Nodes Arcs Nodes Arcs

Case 1 9 19 11 22

Case 2 7 12 7 11

Case 3 7 11 10 17

Case 4 3 2 7 10

Case 5 10 19 8 19

Case 6 11 41 9 17

Case 7 6 5 8 9

Case 8 6 9 7 10

Case 9 7 15 9 16

Case 10 7 11 9 15

Total 73 144 85 146

Table 5.11: Sizes of models used and created in the evaluation.

lack of arcs|being the result of the grammar's design, rather than the result of user

selections at derivation time, or of classi�cations that the user performs prior to the

derivation. Table 5.12 provides an indication that the grammar delivered signi�cant

guidance to each derivation. However, it is also apparent that both user selections

and term classi�cations contributed appreciably to Gramarye's derivations of models

for the 10 cases.

If I had access to decision analysts who (1) focused on medical decision for indi-

vidual patients; (2) used the in
uence-diagram notation; (3) structured their models

in a single, initial step; and (4) were willing to enter terms into Gramarye prior to

structuring their decision problems, then I might have examined the marginal time

saved|or spent|by decision analysts who use a graph-grammar derivation system.

I might also have looked at the relative merits of models that were created with and
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Case Entered terms Selections Reclassi�cations Additions

Case 1 9 5 3 1

Case 2 4 0 0 0

Case 3 9 4 2 1

Case 4 4 2 0 0

Case 5 6 1 0 0

Case 6 7 3 1 0

Case 7 6 0 0 1

Case 8 5 2 0 0

Case 9 6 2 0 0

Case 10 7 1 0 1

Total 63 20 6 4

Table 5.12: User assistance required for case problems in the evaluation.

without Gramarye's assistance. However, Gramarye's current grammar is easy for me

to comprehend and imitate, and I suspect that decision analysts who used Gramarye

and looked at its simple grammar could learn to make the same modeling decisions

quickly, without using the actual derivation system.

With Gramarye, I was able to develop easily a reasonable initial model for each of

the 10 decision problems, and I was able to perform all this modeling is less than 1 day.

Without Gramarye, decision analysts have spent several weeks structuring a single

decision model that is no larger than the average of Gramarye's models for these 10

cases. However, human analysts do not begin modeling with the help of a �nite list of

considerations. Also, human analysts could probably increase their modeling speed by

using the same prototypical patterns that Gramarye used. Consequently, for decision

analysts who might use a graph-grammar derivation system such as Gramarye, the

time that they could save is di�cult to estimate from this research. My suspicion is
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that the current technology would not prove useful to professional decision analysts;

however, it probably would assist users who are less experienced at decision modeling.

Gramarye's current implementation lacks the ability to guide the user to make spe-

ci�c reclassi�cations and to add missing considerations. The command-line dialogue

for making selections also warrants improvement. Users should be able to see the host

graph as it evolves during the derivation, and should be able to select node{vertex

matches graphically , rather than communicating through a series of obtuse true{false

questions. The application of graph-grammar productions could be animated, so that

users could correct errant derivations steps as those steps occur. Also, although Gra-

marye can generate structural models for several actual decision-analysis tools, the

assessment of variables|particularly the association of speci�c outcomes and contin-

gencies to those variables|is often a process that is more naturally integrated with

the structuring of a model, in contrast to Gramarye's isolation of assessment as a

subsequent step in the decision-analysis cycle.

Graph-grammar derivation systems such as Gramarye could encourage the iter-

ative nature of decision modeling. Although Gramarye's grammar checker assumes

that the initial graph for each derivation is the single utility node, a user may use

a previously derived|and, perhaps, user-modi�ed|model as the initial graph for

subsequent derivations, which could incorporate just a few additional considerations.

Alternatively, the derivation system could be modi�ed to retain all user selections and
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postderivation modi�cations. With these modi�cations, if the user wanted to add or

delete a few concerns, then the repeat derivation could begin from the single initial

utility node, and the repeat derivation would not require any repetitive input from

the user.

From my own evaluation, I can report only that the graph-grammar approach to

structuring decision models has been helpful in de�ning a style and a set of modeling

rules for medical decision making. I cannot establish that, for users other than myself,

the reward of automatic model generation is worth the chore of listing considerations,

classifying those considerations, modifying the list, reclassifying terms, and providing

assistance during the derivation.

The foregoing evaluation focused on a particular grammar, yet it provided insights

into my graph-grammar approach to modeling. Gramarye has merits that are inde-

pendent of the particular graph-grammar used. For example, the grammar-checking

routines may be useful for all QCID grammars, even for those outside of the medical

domain. The compiler that translates decision trees into QCIDS provides a use-

ful means for communicating models between two communities of decision-analysis

research. The translator that converts abstract graphs (i.e., a Lisp S-expression com-

posed of a list of node labels and a list of arcs) into editable graphs has been a useful

tool for examining many types of graphs. The translators that convert these editable

graphs into the requisite belief-network and in
uence-diagram formats for several
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academic and commercial tools may help to make graphical models of probabilistic

dependence more accessible to other researchers. Finally, the actual graph-grammar

derivation system may be used as a research tool for other generative grammars,

where the graphical knowledge representation may be completely unrelated to the

QCID formalism. My research has focused on merely a single application of the

Gramarye graph-grammar derivation system.

5.7 Summary

My evaluation has established that graph grammars can be used to generate automat-

ically decision models that are comparable to those produced by decision analysts.

The scope of the current grammar's applicability has been all of medicine, and the

10 cases|which were chosen by an independent collaborator who had only a lim-

ited familiarity with Gramarye|were completely within the grammar's domain. The

user interface lacks guidance for users who are unfamiliar with the grammar itself.

Gramarye has demonstrated its ability to interoperate with other decision-model

representations (i.e., decision trees), and with several decision-model assessment and

inference tools. The models that Gramarye generated lack the validity of those that

humans created, but they provide a reputable initial model for the user to modify by

adding or subtracting a few arcs. The overall usefulness of this particular graph-

grammar derivation system for medical decision analysis is questionable. Nonetheless,
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Gramarye provides a useful research tool for studying modeling skills and prototypical

patterns found in decision analysis.



Chapter 6

Conclusions

Truth, n. An ingenious compound of desirability and appearance.

|Ambrose Bierce, The Devil's Dictionary

The construction of qualitative models from prototypical patterns appears to be

a feasible task for a graph-grammar derivation system. My limited experience with

deriving fairly complex decision models using Gramarye has met with quali�ed suc-

cess. A more important result of my research has been insight into the strengths and

weaknesses of the graph-grammar approach to medical decision modeling. Gramarye

has illustrated how graph grammars can formalize medical abstractions and patterns,

and how these graph grammars can automate portions of modeling task for a wide

range of speci�c situations.

183
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6.1 Medical Abstractions and Patterns

Medical abstractions and patterns can be represented in a graph grammar. Once

these patterns are encoded as a graph grammar, a graph-grammar derivation system,

such as Gramarye, can use these patterns to provide automatic modeling of in
uence

diagrams. The current grammar of 15 prototypical patterns provided guidance for the

entire spectrum of decision problems represented by the 10 test cases in Section 5.4.

The grammar that I devised (Section 3.6.1) has centered on patterns that distin-

guish di�erent types of decision nodes. Other patterns that could make distinctions

among chance nodes based on typical pathophysiologic roles might lead to more so-

phisticated modeling. Once such patterns are recognized and de�ned, there is still

the problem of �nding a label for the class of nodes to which that pattern applies;

as discussed in Section 5.1, clinical parlance may not have the abstract terms for the

topological motifs that are described in a grammar. Consequently, the current gram-

mar has emphasized the relationship between common clinical abstractions, such as

palliation and prevention, and has not investigated general patterns that lack descrip-

tors in common medical parlance.

Whether additional patterns|employing temporal, physiologic, and anatomic re-

lationships that are not available in the QCID representation|might help to de�ne

concepts in medical vocabularies and in medical ontologies is an interesting topic for
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future research. The distinctions made in medical decision modeling should be rep-

resented in medical vocabularies, but whether any sizeable fraction of concepts in a

medical vocabulary can be de�ned by a pattern in a graphical knowledge representa-

tion is unclear.

Other researchers are currently investigating the possibility that canonical pat-

terns in the conceptual-graph representation may lead to a principled representation

of the medical record (Campbell et al., 1994). If this approach to the formalization of

the medical record is feasible, then a graph-grammar derivation system may provide

the necessary mechanism for generating complex medical histories from canonical

building blocks.

Gramarye's prede�ned medical vocabulary covered few of the concepts used in the

10 test cases from Section 5.4. Given the frequent instances where the classi�cation

for a particular term depended on the context of the situation, further elaboration of

the vocabulary may not be helpful to Gramarye's performance. Instead, either the

user of Gramarye should be given additional help in classifying new considerations for

each derivation, or the input should be more expressive than the simple list of terms.

A formal knowledge representation for medical records might provide a system such

as Gramarye with the necessary information for context-speci�c classi�cation of terms

under decision-modeling abstractions. Since the abstractions in the current grammar

might be misinterpreted easily by a user who is unfamiliar with the grammar, I am
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convinced that the classi�cation task would have to be automated before a system

such as Gramarye could become useful to medical decision analysts.

The particular modeling mistakes that Gramarye made with the test cases from

Section 5.4 might be avoided by speci�c repairs to the current grammar. However,

the necessary elaborations to the node-label classi�cation tree would make the task

of classi�cation even more di�cult for the user, since these elaborations would create

additional abstractions under which the user could misclassify clinical considerations.

6.2 Modeling Capabilities of Graph Grammars

The modeling capabilities of graph grammars extend beyond automated structuring

of medical QCIDs. G�ottler's operational graph-grammar formalism provides a terse

depiction of prototypical patterns of relationships in a graphical knowledge represen-

tation. These prototypical patterns have the operational semantics (as described in

Section 3.3 and in Appendix A) that allow derivation systems to use these patterns

as building blocks, and thereby to generate graphical models.

Also, automated routines can evaluate a graph grammar to ensure that the latter

maintains speci�c properties for all models in the language that it describes. My

research (Chapter 4) has shown how a QCID grammar may be checked to ensure

that it maintains several properties that I have considered important in decision

models. Certain of these properties, such as acyclicity, are useful in other knowledge



6.2. MODELING CAPABILITIES OF GRAPH GRAMMARS 187

representations, such as computer-assisted software engineering (Engels et al., 1986),

and database management (Ehrig and Kreowski, 1980).

Decision analysts may �nd that the formalization of prototypical patterns as a

graph grammar may have value that is independent of the use of a graph-grammar

derivation system. Graph grammars provides decision analysts with a language for

recording features of decision models in a particular domain. Once the decision ana-

lyst learns to think in terms of these patterns, the actual task of structuring a model

can be simpli�ed, and the analyst's need for computer-assisted model structuring is

lessened. Moreover, analysts may communicate their preferred styles to one another

through such a grammar.

The current grammar for QCID models enforces a particular modeling style. My

work with Gramarye has convinced me that such a style can be 
exible enough to ac-

commodate a wide variety of situations. When a graphical knowledge representation

adheres to a particular style, then parsing of a particular graphical model may be sim-

ple and unambiguous. When a graphical knowledge representation does not adhere to

a particular style, then subtleties and ambiguities may be di�cult for computer-based

systems to interpret. By enforcing style conventions, graph grammars may provide a

useful guide for graphical knowledge representations.

Because all information that is speci�c to a particular knowledge representation

and domain is contained in the graph grammar, a graph-grammar{based modeling
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environment, such as Gramarye's, may adapt to entirely di�erent domains and graph-

ical representations. Although my research has not investigated any representations

other than the QCID representation, the scope of patterns de�ned for medical deci-

sion making may help other researchers to �nd patterns in their own representation,

and to use Gramarye to test how those patterns interact and form coherent models

for their domain.

The basic intuition behind graph-grammar{based modeling is that prototypical

patterns found within models can be reused to guide the construction of new models.

This notion of reuse has been advocated for human problem solving (Polya, 1945,

pages 37{46), machine learning (Carbonell, 1983), knowledge acquisition (Musen,

1992), software engineering (Prieto-D�iaz, 1993), and the entire spectrum of modeling

tasks. The fundamental insight that Gramarye can o�er to these creative endeavors

is that, for graphical models, G�ottler's operational graph-grammar formalism can

provide

1. Computational clarity necessary for automatedmodeling systems to create mod-

els from prototypical patterns

2. Visual clarity necessary for knowledge engineers to design and understand mod-

eling grammars that are based on these prototypical patterns
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6.3 Summary

In summary, I have found that my graph-grammar production system, with the cur-

rent grammar of 15 prototypical patterns, supports automatic modeling of medical

dilemmas. Graph grammars address relationships between medical concepts other

than lexical ordering; consequently, graph grammars are ideally suited for deriving

a decision model from an unordered list of medical concerns. The grammar that I

employ does not ensure that the models produced are appropriate for a practitioner's

problem, but it does guide the practitioner to compose reasonable initial models of

medical decision making.
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Appendix A

G�ottler's Graph-Grammar

Formalism

In terms of Barthelmann's notation (1990), I de�ne a labeled directed graph as com-

prising three sets:

1. A set of vertices (V ), with labels (LV ) and a mapping (lV : V ! LV ) from

vertices to their labels

2. A set of permissible edge labels (LE)

3. A set of labeled directed edges (E � V � V � LE)

191



192 APPENDIX A. G �OTTLER'S GRAPH-GRAMMAR FORMALISM

A.1 Connected Vertices

A spanned subgraph, span(V 0; G), of the host graph G and spanning vertices V 0

consists of vertices (V 0 � VG), their labels (LVG), the edges between vertices in V 0

(V 0� V 0�LVG \EG), their labels (LEG), and the restricted labeling function lV (V
0).

A chain is a sequence of edges, without regard to their direction. So, a chain between

v0 and vN exists if and only if

(8i 2 f1; : : : ; ng) (9m 2 LE)((vi�1; vi;m) 2 E _ (vi; vi�1;m) 2 E): (A.1)

For a given vertex v in production p, and for a given set of vertices VX , all the vertices

v0 that are reachable by some chain through vertices in VX are considered connected

to v, and this relation is denoted v �p v0. I shall use the connection relation to

determine which of the vertices in the indeterminate region are to be mapped to the

host graph, where I shall add edges as speci�ed in the production.

A.2 Applicability of a Production

If all vertices in the left and bottom regions of the graph-grammar production are

matched to nodes in the host graph, and if the edges among the vertices in the left

and bottom regions of the production are matched to corresponding edges in the

host graph, then the derivation system can apply the rule. However, it must note

which nodes and arcs in the host graph match vertices and edges in the indeterminate
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region and are connected, by the re
exive �p relation described in Section A.1, to

the nodes and edges that it has already matched to the left and bottom regions of

the production.

A monomorphism � from P to G, written � : P ! G, is a complete mapping

from vertices and edges in a production to host-graph nodes and arcs such that

the directed-graph structure and the arc labels are equivalent, and either the node

labels are equivalent, or one node label is a descendant of the other in the node-label

classi�cation hierarchy.1 A production rule p is applicable to some subgraph of G

indicated by the monomorphism � : span(VL;p [ VB;p; p)! G if and only if

(8v 2 VL;p)(8(�(v); v
0;m) 2 EG)

(�(v); v0;m) 2 �(Ep \ VL;p � VL;p � LE) [
[

C2VA;p=�p

[

�2M�(C)

Old(�); (A.2)

and

(8v 2 VL;p)(8(v
0; �(v);m) 2 EG)

(v0; �(v);m) 2 �(Ep \ VL;p � VL;p � LE) [
[

C2VA;p=�p

[

�2M�(C)

Old(�); (A.3)

where

M�(C) = f� : span(VL;p [ VB;p [ C; p)! Gj�(span(VL;p [ VB;p)) = �g; (A.4)

Old(�) = f(�(v); �(v0);m) j (v; v0;m) 2 Ep \ VL;p � (VA;p [ VB;p)� LEg

[f(�(v0); �(v);m) j (v0; v;m) 2 Ep \ (VA;p [ VB;p)� VL;p � LEg:(A.5)

1A more general de�nition for monomorphisms may be found in any text on category theory,
such as Pierce's (1991).
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The set of arcs Old(�) contains those arcs between the nodes to be removed and the

embedding environment in the host graph. The set C represents connected vertices

in VA. The set of edgesM�(C) contains those arcs in the host graph that are matched

to those in VA according to �|a particular (indeterminate) extension of the vertex

monomorphism, �. The edges in the set
S
C2VA;p=�p

S
�2M�(C)

Old(�) are those arcs that

connect nodes to be removed with arcs in matched subgraphs in their �p-connected

environment, along with arcs in that matched subgraph. So, all host-graph arcs

incident to the nodes that match vertices in VL, according to �, can be divided into

1. Arcs that match edges in VL

2. Arcs that match edges (including matched target subgraphs) from VL to the

embedding environment

3. Arcs that do not match edges in the production

I distinguish the target subgraphs of the second group of arcs, because they are

precisely those subgraphs that may need to be connected to the inserted subgraph

(VR) according to the production.

A.3 E�ects of a Production

When a production p is applied to the host graph, there are three basic e�ects,

executed by the derivation system:
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1. It removes labeled nodes matching vertices in VL.

2. It adds labeled nodes corresponding to vertices in VR.

3. It adds labeled arcs among the new nodes and between the new nodes and

subgraphs of the host graph that were connected to the removed nodes and

matched according to a particular extension of �, all according to the production.

Stated formally, the e�ect of applying production p on graph G at the subgraph

indicated by � : span(VL;p [ VB;p; p)! G is the graph H:

VH = VG n �(VL;p) [ VR;p; (A.6)

lVH = lVG(VG n �(VL;p)) [ lVp(VR;p); (A.7)

EH = (EG \ (VG n �(VL;p))� (VG n �(VL;p))� LE)

[ (Ep \ VR;p � VR;p � LE)

[ (
[

C2VA;p=�p

[

�2M�(C)

New(�)); (A.8)

where

M�(C) = f� : span(VL;p [ VB;p [ C; p)! Gj�(span(VL;p [ VB;p)) = �g; (A.9)

New(�) = f(�(v); v0 ;m)j(v; v0;m) 2 EP \ (VA;p [ VB;p)� VR;p � LEg

[f(v0; �(v);m)j(v0 ; v;m) 2 EP \ VR;p � (VA;p [ VB;p)� LEg;(A.10)

and where the labeling set does not change:

LVH = LV ;
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LEH = LE :

The edges
S
C2VA;p=�p

S
�2M�(C)

New(�) are the arcs that connect nodes to be added

with the matched subgraph in the connected environment, along with arcs in the

subgraph that is matched to VA.

A.4 Constructive Derivation of Graphs

To make G�ottler's formalism convenient for modeling medical decisions, I have adopt-

ed four modi�cations:

1. When the application of a production cannot be determined from the host

graph, the monomorphism and the set C are determined by the user of my

derivation system.

2. The labeling function also matches nonterminal symbols (denoted by angle

brackets) in a production to terminal symbols (instances) in a classi�cation

hierarchy.

3. The derivation system synthesizes variant symbols from nodes already matched

in a monomorphism, and adds the new terminal symbols to the classi�cation

hierarchy.
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4. Those vertices in VR that match nodes that already exist in the host graph are

not duplicated (Equations A.6 and A.7).

The �rst modi�cation allows the user to resolve indeterminisms that may occur in a

derivation when multiple entered considerations are classi�ed under the same node-

label abstraction. The second modi�cation enables my graph grammars to express

general relations among classes of concepts. An equivalent, but impractical, alterna-

tive would be to use single-node replacement rules, which, as discussed in Section 3.3,

are equivalent to production rules in a context-free string grammar. The third mod-

i�cation allows me to use a more compact node-label hierarchy. Also, it allows for

accessory variant nodes (VRvar;p) matching vertices in VR to be added as needed. I

partition vertices in the right region of a production into two sets: VRnew
and VRvar

.

Those vertices (VRvar
) with nonterminal labels that are marked as variant labels in the

node-label classi�cation hierarchy are matched to new nodes with labels that consist

of the indicated pre�x or su�x and a stem that is identical to the label string of

another matched node in the production.2 When a variant node, derived from a node

already matched in the monomorphism, is identical to a node in the host graph, it

is replaced by the host-graph node in that monomorphism. My last modi�cation to

G�ottler's formalism correspond to my assumption that nodes are uniquely identi�ed

by their label. None of my modi�cations invalidate any important generic property

2When there are zero or more than one vertex in VLAB of a sibling or parent class to a variant
label in VR, additional notation will be needed to resolve this ambiguity. My grammar has not yet
required such extensions to the graph-grammar formalism.
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of graph grammars or of graph derivations.

I de�ne a derivation (�) to be a sequence of partial derivation stages (@i).

Each partial derivation stage comprises a set of monomorphisms (�i) of various|not

necessarily distinct|productions that are applied to the host graph in an arbitrary

order. Each monomorphism must introduce at least one node with a label from the

input list (LVinput ) to the host graph. I also require that each application in a particular

stage must (1) introduce a new node to the host graph, and (2) be applicable to the

host graph prior to any modi�cations made by other applications of that derivation

stage. That is, @i consists of all possible applications of productions such that each

adds a di�erent label from LVinput to the host graph, and such that the following

properties hold for each application � :

VRnew;p \ VG = ;; (A.11)

lVH (VRnew;p) 2 LVinput ; (A.12)

VRnew ;p � VH; (A.13)

where G is the host graph before @i, and H is the host graph after @i. A derivation

� is successful if the host graph resulting from the last derivation stage contains a

node corresponding to each term in the input list, LVinput . A grammar is ambiguous

if multiple graphs can be derived from the same input. Here, input refers to both

the list of terms, LVinput , and the user's responses to VA-matching queries from the

system.
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Qualitative Contingent In
uence

Diagrams

A qualitative contingent in
uence diagram (QCID) is a semantic network that

describes a set of possible scenarios, S. For each scenario, s 2 S, there is a set

of decisions, Ds, and a set of random variables, X, the possible values of which

correspond to particular events or outcomes. There is exactly one utility variable, v,

whose value the decision maker wishes to make as high as possible by choosing the

optimal alternatives for the decisions in D = fDs : s 2 Sg. The expected utility

of a scenario is given by U(s). Visually, I denote members of D by square decision

nodes, the members of X by circular chance nodes, and v by a hexagonal utility

node. All these nodes are part of a directed acyclic graph. Arcs whose target

199
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is in X [ fvg, called relevance arcs, represent either probabilistic dependence, or

functional dependence of the target variable on the source variable. Arcs whose target

is a decision node in D, called informational arcs, specify exactly which outcomes

and prior decisions corresponding to that decision node are known to the decision

maker at the time of the decision. Informational arcs imply a temporal ordering: The

information is known before the decision is made. Since decision analysis generally

requires that there be a total ordering of decisions in each scenario, and that the

decision maker does not forget information known at the time of a previous decision,

I can abbreviate the diagram by omitting informational arcs from a node to all but

the earliest of those decisions that have information about that outcome.

Relevance arcs are labeled with a symbol from LE = f\+", \�", \0", \?"g. For

binary (true-or-false) nodes A and B, a plus sign, +, on the arc from A to B indicates

that P (BjA; �) � P (Bj �A; �). For nonbinary nodes whose random variables have any

one of ordinal, interval, or ratio values for their possible outcomes, a plus sign, +,

indicates that an upward shift in the mean for B's probability distribution, with all

other relevant variables held constant, results in an upward shift in the mean for

A's distribution. Similarly, a minus sign, �, on the arc from A to B indicates that

P (BjA; �) � P (Bj �A; �) for binary nodes, and that there is an oppositely directed shift

in their variable's distribution for nonbinary nodes. A zero, 0, indicates probabilistic

independence. Such arcs are generally omitted. A question mark, ?, indicates that the
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direction of such qualitative dependency is nonmonotonic or unclear. Informational

arcs should not be labeled in this manner, as the speci�cation of which alternative is

optimal should be contained elsewhere in the assessed in
uence-diagram model.

Contingent nodes1 play a role only when their explicit conditions on previous

outcomes have been met. Following Fung and Shachter's notation, I shall use 
j to

refer to the joint state space (i.e., all combinations of outcomes) of the variables in

the set of nodes J = fj1; j2; : : : ; jng:


j = (
j1 �
j2 � : : :� 
jn):

The direct successors of a node i are those nodes that are targets of arcs originating

at node i. The direct predecessors of a node i are those nodes that are sources of arcs

terminating at node i. The ancestors of a node i are all nodes that occur prior to i

along a path in the directed acyclic graph.

For each node i, there is a joint state space (
K) for all possible outcomes of its

ancestors. This state space can be partitioned into component contingency spaces

(
� = f
1;�;
2;�; : : : ;
n;�g), each of which is de�ned by a set of conditions. A

condition (
i;�) for node i is a statement about the outcome of some subset of the

ancestors of i. In a contingent in
uence diagram, more that one node with the same

label|representing the same decision or random variable|can be drawn; however,

1Robert M. Fung and Ross D. Shachter. Personal communication.
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these identically labeled nodes must be associated with mutually exclusive contin-

gency spaces. A contingent node may have one or more contingencies, �, represented

visually by one or more dots on its left side.
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User-Assistance Dialogue

(The following dialogue between Gramarye and the user occurred during the deriva-

tion described in Section 5.2, and depicted in Figure 5.5. Gramarye's output is listed

in sans serif font. The user's response is printed in bold type.)

<cl> (derive '(cad cvd aaa cad-hx cvd-hx aaa-width repair-aaa cabg

endarterectomy cardiac-catheterization carotid-arteriography mi stroke

aaa-rupture anaesth-complics pt-morbidity pt-mortality))

Remake *label-table*? y

Rebuilding the hash table..................................................done.

term-list: (CAD CVD AAA CAD-HX CVD-HX AAA-WIDTH REPAIR-AAA CABG

ENDARTERECTOMY CARDIAC-CATHETERIZATION CAROTID-ARTERIOGRAPHY

MI STROKE AAA-RUPTURE ANAESTH-COMPLICS PT-MORBIDITY

203
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PT-MORTALITY)

term-list: (PT-MORTALITY PT-MORBIDITY ANAESTH-COMPLICS AAA-RUPTURE

STROKE MI CAROTID-ARTERIOGRAPHY CARDIAC-CATHETERIZATION

ENDARTERECTOMY CABG REPAIR-AAA AAA-WIDTH CVD-HX CAD-HX AAA

CVD)

term-list: (CVD AAA CAD-HX CVD-HX AAA-WIDTH REPAIR-AAA CABG

ENDARTERECTOMY CARDIAC-CATHETERIZATION CAROTID-ARTERIOGRAPHY

MI STROKE AAA-RUPTURE ANAESTH-COMPLICS PT-MORBIDITY)

term-list: (PT-MORBIDITY ANAESTH-COMPLICS AAA-RUPTURE STROKE MI

CAROTID-ARTERIOGRAPHY CARDIAC-CATHETERIZATION ENDARTERECTOMY

CABG REPAIR-AAA AAA-WIDTH CVD-HX CAD-HX AAA)

term-list: (AAA CAD-HX CVD-HX AAA-WIDTH REPAIR-AAA CABG

ENDARTERECTOMY CARDIAC-CATHETERIZATION CAROTID-ARTERIOGRAPHY

MI STROKE AAA-RUPTURE ANAESTH-COMPLICS)

term-list: (ANAESTH-COMPLICS AAA-RUPTURE STROKE MI

CAROTID-ARTERIOGRAPHY CARDIAC-CATHETERIZATION ENDARTERECTOMY

CABG REPAIR-AAA AAA-WIDTH CVD-HX CAD-HX)

... while trying to add CAD-HX ...

The following labels could map to PRESENT-DISEASE:

�(AAA CVD CAD)
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Should AAA �ll the PRESENT-DISEASE role?n

Should CVD �ll the PRESENT-DISEASE role?n

Should CAD �ll the PRESENT-DISEASE role?y

term-list: (CAD-HX CVD-HX AAA-WIDTH REPAIR-AAA CABG

ENDARTERECTOMY CARDIAC-CATHETERIZATION CAROTID-ARTERIOGRAPHY

MI STROKE AAA-RUPTURE)

... while trying to add AAA-RUPTURE ...

The following labels could map to DISEASE:

�(AAA CVD CAD)

Should AAA �ll the DISEASE role?y

term-list: (AAA-RUPTURE STROKE MI CAROTID-ARTERIOGRAPHY

CARDIAC-CATHETERIZATION ENDARTERECTOMY CABG REPAIR-AAA

AAA-WIDTH CVD-HX)

... while trying to add CVD-HX ...

The following labels could map to PRESENT-DISEASE:

�(AAA CVD CAD)

Should AAA �ll the PRESENT-DISEASE role?n

Should CVD �ll the PRESENT-DISEASE role?y

term-list: (CVD-HX AAA-WIDTH REPAIR-AAA CABG ENDARTERECTOMY

CARDIAC-CATHETERIZATION CAROTID-ARTERIOGRAPHY MI STROKE)
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... while trying to add STROKE ...

The following labels could map to DISEASE:

�(AAA CVD CAD)

Should AAA �ll the DISEASE role?n

Should CVD �ll the DISEASE role?y

term-list: (STROKE MI CAROTID-ARTERIOGRAPHY CARDIAC-CATHETERIZATION

ENDARTERECTOMY CABG REPAIR-AAA AAA-WIDTH)

... while trying to add AAA-WIDTH ...

The following labels could map to PRESENT-DISEASE:

�(AAA CVD CAD)

Should AAA �ll the PRESENT-DISEASE role?y

term-list: (AAA-WIDTH REPAIR-AAA CABG ENDARTERECTOMY

CARDIAC-CATHETERIZATION CAROTID-ARTERIOGRAPHY MI)

... while trying to add MI ...

The following labels could map to DISEASE:

�(AAA CVD CAD)

Should AAA �ll the DISEASE role?n

Should CVD �ll the DISEASE role?n

Should CAD �ll the DISEASE role?y

term-list: (MI CAROTID-ARTERIOGRAPHY CARDIAC-CATHETERIZATION
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ENDARTERECTOMY CABG REPAIR-AAA)

... while trying to add REPAIR-AAA ...

The following labels could map to PRESENT-DISEASE:

�(AAA CVD CAD)

Should AAA �ll the PRESENT-DISEASE role?y

term-list: (REPAIR-AAA CABG ENDARTERECTOMY CARDIAC-CATHETERIZATION

CAROTID-ARTERIOGRAPHY)

... while trying to add CAROTID-ARTERIOGRAPHY ...

The following labels could map to PRESENT-DISEASE:

�(AAA CVD CAD)

Should AAA �ll the PRESENT-DISEASE role?n

Should CVD �ll the PRESENT-DISEASE role?y

term-list: (CAROTID-ARTERIOGRAPHY CARDIAC-CATHETERIZATION

ENDARTERECTOMY CABG)

... while trying to add CABG ...

The following labels could map to PRESENT-DISEASE:

�(AAA CVD CAD)

Should AAA �ll the PRESENT-DISEASE role?n

Should CVD �ll the PRESENT-DISEASE role?n

Should CAD �ll the PRESENT-DISEASE role?y
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term-list: (CABG ENDARTERECTOMY CARDIAC-CATHETERIZATION)

... while trying to add CARDIAC-CATHETERIZATION ...

The following labels could map to TX:

(CABG REPAIR-AAA)

Should CABG �ll the TX role?y

... while trying to add CARDIAC-CATHETERIZATION ...

The following labels could map to PRESENT-DISEASE:

�(AAA CVD CAD)

Should AAA �ll the PRESENT-DISEASE role?n

Should CVD �ll the PRESENT-DISEASE role?n

Should CAD �ll the PRESENT-DISEASE role?y

term-list: (CARDIAC-CATHETERIZATION ENDARTERECTOMY)

... while trying to add ENDARTERECTOMY ...

The following labels could map to PRESENT-DISEASE:

�(AAA CVD CAD)

Should AAA �ll the PRESENT-DISEASE role?n

Should CVD �ll the PRESENT-DISEASE role?y

term-list: (ENDARTERECTOMY)

!graph=((ENDARTERECTOMY FUTURE-CVD

RESULT-OF-CARDIAC-CATHETERIZATION CARDIAC-CATHETERIZATION CABG
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FUTURE-CAD RESULT-OF-CAROTID-ARTERIOGRAPHY

CAROTID-ARTERIOGRAPHY REPAIR-AAA FUTURE-AAA MI AAA-WIDTH

STROKE CVD-HX AAA-RUPTURE CAD-HX ANAESTH-COMPLICS AAA

PT-MORBIDITY CVD PT-MORTALITY CAD VALUE-TO-PATIENT) ((CVD '+

FUTURE-CVD) (ENDARTERECTOMY '- VALUE-TO-PATIENT) (FUTURE-CVD '-

VALUE-TO-PATIENT) (ENDARTERECTOMY '- FUTURE-CVD) (CAD '+

RESULT-OF-CARDIAC-CATHETERIZATION) (CARDIAC-CATHETERIZATION 'C

RESULT-OF-CARDIAC-CATHETERIZATION)

(RESULT-OF-CARDIAC-CATHETERIZATION 'I CABG)

(CARDIAC-CATHETERIZATION 'I CABG) (CARDIAC-CATHETERIZATION '-

VALUE-TO-PATIENT) (CAD '+ FUTURE-CAD) (CABG '- VALUE-TO-PATIENT)

(FUTURE-CAD '- VALUE-TO-PATIENT) (CABG '- FUTURE-CAD) (CVD '+

RESULT-OF-CAROTID-ARTERIOGRAPHY) (CAROTID-ARTERIOGRAPHY 'C

RESULT-OF-CAROTID-ARTERIOGRAPHY)

(RESULT-OF-CAROTID-ARTERIOGRAPHY 'I REPAIR-AAA)

(CAROTID-ARTERIOGRAPHY 'I REPAIR-AAA) (CAROTID-ARTERIOGRAPHY '-

VALUE-TO-PATIENT) (AAA '+ FUTURE-AAA) (REPAIR-AAA '-

VALUE-TO-PATIENT) (FUTURE-AAA '- VALUE-TO-PATIENT) (REPAIR-AAA '-

FUTURE-AAA) (MI '- VALUE-TO-PATIENT) (CAD '+ MI) (AAA '+ AAA-WIDTH)

(STROKE '- VALUE-TO-PATIENT) (CVD '+ STROKE) (CVD '+ CVD-HX)
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(AAA-RUPTURE '- VALUE-TO-PATIENT) (AAA '+ AAA-RUPTURE) (CAD '+

CAD-HX) (ANAESTH-COMPLICS '- VALUE-TO-PATIENT) (AAA '-

VALUE-TO-PATIENT) (PT-MORBIDITY '- VALUE-TO-PATIENT) (CVD '-

VALUE-TO-PATIENT) (PT-MORTALITY '- VALUE-TO-PATIENT) (CAD '-

VALUE-TO-PATIENT)))

NIL

<cl>
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