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Abstract

Techniques that have traditionally been useful for retrieving same-domain analogies from

small single-use knowledge bases, such as spreading activation and indexing on selected

features, are inadequate for retrieving cross-domain analogies from large multi-use knowl-

edge bases. Blind or near-blind search techniques like spreading activation will be over-

whelmed by combinatorial explosion as the search goes deeper into the KB. And indexing

a large multi-use KB on salient features is impractical, largely because a feature that may

be useful for retrieval in one task may be useless for another task. This thesis describes

Knowledge-Directed Spreading Activation (KDSA), a method for retrieving analogies in a

large semantic network. KDSA uses task-speci�c knowledge to guide a spreading activation

search to a case or concept in memory that meets a desired similarity condition. The thesis

also describes a speci�c instantiation of this method for the task of innovative design.

KDSA has been validated in two ways. First, a theoretical model of knowledge base

search demonstrates that KDSA is tractable for retrieving semantically distant analogies

under a wide range of knowledge base con�gurations. Second, an implemented system that

uses KDSA to �nd analogies for innovative design shows that the method is able to retrieve

semantically distant analogies for a real task. Experiments with that system show trends

as the knowledge base size grows that suggest the theoretical model's prediction of large

knowledge base tractability is accurate.
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Chapter 1

Introduction

Cross-domain analogy is a commonly-used reasoning device, especially among individuals

who must exhibit a high level of creativity in their reasoning. Authors, journalists, and

political speechwriters often use surprising metaphors in order to enliven their prose; clever

teachers use analogies to familiar concepts outside of the domain of discussion to explain

unfamiliar concepts; and engineers and inventors often use analogies in order to help them

produce a novel design. The concern of this thesis is the retrieval and use of cross-domain

analogies, speci�cally those in which the two analogues are semantically distant from one

another|that is, they are very di�erent from one another in all but a few key features.

The literature on invention is full of examples of inventions that were guided by semanti-

cally distant analogies. Gutenberg invented the printing press after noticing the connection

between applying force to impress script on paper and applying force to squeeze grapes in

a wine press [Koestler, 1965] . Edison's invention of the quadruplex telegraph was based

almost entirely on an analogy to a water system of pumps, pipes, valves, and water wheels

[Hughes, 1971]. And actress Hedy Lamarr conceived of a method for coordinating fre-

quencies between sender and receiver in frequency-hopping communication by analogy to a

player-piano roll [Simon et al., 1985]. These examples all show the inventor making a con-

nection between two concepts not normally thought of as connected. This type of analogy

is by no means the only reasoning method used in the invention process. Many inventions

1



2 CHAPTER 1. INTRODUCTION

involve no analogies at all. But there is evidence that it is an important technique for many

inventors and for other types of advanced human reasoning. This suggests that semantically

distant analogy can be an important technique for computer reasoning as well.

From looking at examples of analogies in invention, we can surmise a number of charac-

teristics of semantically distant analogies that present special problems for the development

of a computational model:

(1) The domains from which the analogies are drawn are unpredictable. The concepts

used to guide novel designs come from a wide range of domains, and it is impossible to

predict, given the target design domain, which base domain(s) may prove fruitful for

drawing useful analogies. At least one researcher has identi�ed having a wide range

of interdisciplinary knowledge as a prerequisite of a good inventor [Kock, 1978].

(2) In the analogies that are made, di�erences between the analogous concepts are as

important as similarities. An inventor's chances of developing a truly novel design by

analogy are greatly increased by using a base concept which is unusual or unexpected.

This suggests that the base concept used should be as di�erent as possible from the

target concept while still being useful for design. That is, the two concepts should

share only those features which are necessary to the function of the invention, and

should mismatch on as many extraneous features as possible. In particular, analogies

with a high degree of surface similarity seem unlikely to be useful in producing novel

inventions.

(3) Analogous concepts are retrieved in a variety of ways. Some inventors seem to �nd far-


ung analogies through a conscious or unconscious search of their memory. Others

more or less \stumble across a solution", noticing a connection between something

they encounter in normal activities and the design problem they are working on. Still

others encounter or discover an interesting phenomenon, and search for a problem

which could be solved by applying this phenomenon to it.

Characteristics (1) and (2) above provide reasons that existing approaches to analogy
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retrieval are inappropriate for retrieving semantically distant analogies. Most existing ap-

proaches to analogy retrieval are based either on task-speci�c indexing of concepts in a case

library or on spreading activation in a semantic network, but neither of these general ap-

proaches is well-suited for �nding semantically distant analogies. The indexing approach is

inappropriate because characteristic (1) above suggests that a successful \case library" for

semantically distant analogies would in fact be a large multi-domain multi-use knowledge

base, but most successful indices in case-based reasoning are task-speci�c. To create a new

set of indices for each possible task which may be performed in such a KB (and each possi-

ble analogical use of a given concept) would require a prohibitive number of organizational

links or constructs. The spreading activation approach is inappropriate because charac-

teristic (2) above suggests that most corresponding features involved in the analogues will

be far from each other in the semantic network, and an uncontrolled spread of activation

throughout the large semantic net will bog down in combinatorial explosion before reaching

the semantically distant base concepts it seeks. Characteristic (3) above gives an additional

constraint that works against indexing. It suggests that a retrieval mechanism for invention

should be 
exible, able to retrieve a solution given a problem or a problem given a solution,

and able to incorporate sensory information representing an inventor's encounters in normal

life; most case retrieval methods are not designed to meet these 
exibility requirements.

This thesis describes a method, called knowledge-directed spreading activation (KDSA),

for retrieving semantically distant analogous concepts from a large diverse knowledge base.

This method is based on controlled search in a general semantic network. It uses task-

speci�c knowledge to guide a series of spreading activation searches from the target concept

to a semantically distant base concept. This knowledge is applied in the evaluation of

intermediate concepts retrieved by a standard spread of activation, and by the modi�cation

of weights controlling the spread of activation based on those evaluations. The next section

describes this method in more detail.
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1.1 Knowledge-directed Spreading Activation

Viewed abstractly, KDSA is an application of general techniques from state-space search

(evaluation functions, subgoaling, etc.) to knowledge base search. KDSA �nds analogues

by a series of heuristically-guided spreading activation searches. Each time spreading acti-

vation retrieves a concept from the knowledge base, the concept is evaluated as an analogue,

and that evaluation is used to direct the next spreading activation search in more promis-

ing directions. KDSA uses promising concepts retrieved during these spreading activation

searches as \beacons", guiding the search successively closer to a semantically distant base.

This description of KDSA will assume that all world knowledge is represented in a single

semantic network. Within that semantic network, small subgraphs of nodes and links which

represent aggregate concepts are explicitly grouped together as conceptual graphs [Sowa,

1984]1. Individual conceptual graphs are treated the same as primitive nodes|i.e., they

can be associated with other nodes via links, and they can themselves be parts of larger

conceptual graphs. In the discussion below, conceptual graphs will be referred to merely as

\concepts".

The basic algorithm of KDSA is shown in Figure 1.1. The low-level search of memory

(step 2 in the �gure) is conducted by a spreading activation mechanism (see, e.g., [Anderson,

1983]). In this formalism, activation is passed from node to adjacent node via the links that

connect them until one concept accumulates enough aggregate activation to be considered

retrieved. This basic spreading activation model is a blind knowledge search mechanism.

Some method of controlling the search is necessary for the system to retrieve the types

of semantically distant base concepts described in the introduction. Anderson and others

(while not concentrating on retrieving semantically distant analogies) have used priming

methods, where the activation-passing strengths on links are increased each time they are

used, to cause the mechanism to prefer some paths over others. KDSA, by contrast, uses

feedback from the analogues retrieved so far to focus the search.

1The present implementation and discussion use this conceptual graph representation of concepts be-

cause of its representational power. However, the general model presented here is also applicable to other

representational frameworks.
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1. Assign activation to all nodes in the target.

2. Spread activation in semantic network until a new intermediate concept (IC) is retrieved.

3. (GRAPH MATCHER) Find the best mapping between target and IC based only on maximiz-
ing isomorphism and minimizing semantic distance between nodes.

4. (MATCH EVALUATION) Evaluate the mapping according to domain-speci�c similaritymet-
ric. If evaluation meets the metric, return IC as base and exit.

5. (SEARCH CONTROL) Based on evaluation, alter the state of the semantic network to guide
the next phase of spreading activation in a more promising direction.

6. Go to 2.

Figure 1.1: Knowledge-Directed Spreading Activation

The agent architecture encompassing KDSA begins the retrieval process when some

executing task requests an analogy and designates a target concept. This initial request

causes some nodes in the semantic network|those representing the target concept plus

possibly others representing desired features of the solution, etc.|to be assigned activation,

and this assignment begins the spread of activation in memory. When a concept is retrieved

by the spread of activation, the graph matcher computes a mapping between it and the

target concept. The match evaluation component then forms an evaluation of the mapping

based on a task-speci�c similarity metric. This evaluation is passed on to the search control

component, which uses its task-speci�c heuristics to focus the spreading activation search

in directions that are more likely to lead to highly-evaluated analogies for the current task.

The process repeats until an analogue which meets the matching component's similarity

metric is retrieved.

For simplicity, KDSA has been described so far as a strictly serial algorithm. In fact,

it is designed (and implemented) as a collection of independent knowledge sources which

execute within a larger intelligent agent architecture2, and which interact with the agent's

other activities. Figure 1.2 shows this interaction. At any time during the cycle of Figure 1.1,

other concepts may be activated by the agent's other activities, such as ordinary problem

solving or processing sensory input. In this way KDSA can account for an individual

2In the computer implementation of KDSA, the agent architecture used was BB1 [Hayes-Roth, 1990].
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Search Control

Spreading Activation
Mechanism

Problem Solving
(Decision Cycle)

Mapping

Retrieved Concepts --
creates New Events

Sensory Information

Activates new
concepts

Evaluation
 of Match

Activates
  new
    concepts

Controls Direction
of Search

Task-Specific
Search Control Rules

Task-Specific
Similarity Metric

Figure 1.2: Integration of KDSA into problem-solving architecture

possibly \stumbling across a solution", i.e., being reminded of an analogue by external or

internal cues.

The important components of the retrieval system are discussed in more detail below.

Match Evaluation Each time a concept is retrieved by the spreading activation search as

a potential base concept, it is passed to the matching component. The matching component

�rst forms the best possible partial mapping between the potential base and the target,

and then it evaluates that partial mapping using heuristics which are speci�c to the task

for which the analogy will be used. These heuristics will base their evaluation on three

features of the partial mapping: (1) semantic distance between corresponding nodes in the

mapping, i.e., the minimum path distance in the type hierarchy between corresponding

nodes of the mapping (2) isomorphism between the graphs, i.e., how many nodes and links

match between the target and potential base, and (3) the portion of the representation of

the target concept matched, and the relevance of that portion to the goal. The evaluation

consists of a numeric rating of the mapping, and a description of the shortcoming(s) of the

mapping assigned by the heuristics. If the numeric rating is greater than a threshold value,
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the potential base is accepted as the �nal analogy, and the KDSA process halts. Otherwise,

the evaluation is passed on to the search control component.

Search Control The search control component uses evaluations from the match eval-

uation component and other information about the state of the search to in
uence the

direction of the spread of activation. It uses heuristics to control the direction of the search

in two ways: (1) it can change activation of concepts in the semantic net, particularly the

target concept and the retrieved intermediate concept, and (2) it can modify the condi-

tion under which spreading activation will retrieve new intermediate concepts. The �rst of

these, changing activation of selected concepts in the KB, is the more important of the two

methods of search control. This method includes strengthening the activation of promising

intermediate concepts (those which nearly pass the mapping component's similarity metric

for being a good �nal analogy), weakening the activation of unpromising concepts, changing

activation of portions of the intermediate concept or the target based on evaluations, and

clearing the activation of all nodes in the semantic network (to start the search over from

a new state).

A simple use of KDSA's search control would have it clearing all activation in the

semantic network each time a promising concept is encountered, and then restarting the

search by making the promising concept a source of activation. In this way KDSA can use

these promising concepts as beacons along the way to the �nal good analogy. This is very

similar to the way that promising intermediate states are used in heuristic search techniques

such as hill-climbing or best-�rst search [Pearl and Korf, 1987].

The use of the matching component of the mechanism to provide feedback to the spread-

ing activation search provides a key distinguishing feature of our approach. Most previous

approaches to analogy serialize the retrieval and mapping processes: �rst they retrieve a

concept, then they try to map it, then if mapping fails they start at ground zero with re-

trieval again. By contrast, mapping in KDSA is an integral part of retrieval: mapping (the

matching component) provides ongoing information to the retrieval mechanism (spreading

activation and search control) throughout the duration of the retrieval process.
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1.2 KDSA Applied to Innovative Design

This section describes the particular heuristics used in the implementation of KDSA, called

IDA (for Innovative Design by Analogy), to �nd analogies which are useful for guiding an

innovative redesign of the target.

IDA operates in a knowledge base of devices, natural or man-made systems that per-

form some function. The knowledge base may contain de�nitions of other concepts as well,

but IDA requires that each device be represented by its structure, behavior, and function.

Representations of structure consist of the device's parts along with di�erent types of con-

nections among those parts. Representations of behavior and function consist of chains of

primitive processes along with the individuals (structural components, substances, etc.) on

which those processes act. IDA takes as input an existing device, and returns as output

an abstract redesign of that device which satis�es the device's top-level functional require-

ments, but does so in a di�erent way. This redesign consists of a replacement of one of the

target device's top-level behaviors with a behavior from the base device. E.g., a behavior

like SPRAYING from the representation of the sprinkler irrigation system may be replaced

with DIFFUSION from the circulatory system.

The particular heuristics used in IDA's mapping component attempt to �nd analogues

that satisfy two general requirements:

(1) The base and target devices must have similar functions, but di�erent behaviors and

structures.

(2) The base must be adaptable with respect to the target device|that is, the design

system must be able to use the base to adapt the target into a new design. The

speci�c test that IDA uses is that it must be able to substitute individual behavioral

components of the base for existing behavioral components of the target, creating a

new overall behavior for the target device while preserving its function.

The purpose of the �rst requirement is to �nd an analogue that will lead to a redesign

that is useful (\similar function") and at the same time novel (\di�erent behavior and



1.2. KDSA APPLIED TO INNOVATIVE DESIGN 9

structure"). The purpose of the second requirement is to ensure that IDA actually will be

able to produce a redesign based on the retrieved base concept, i.e., that the mismatch in

behavior with the target is not so great that the two devices have nothing to contribute to

one another. Thus the second requirement's implementation will depend on the system's

mechanism for adapting the retrieved base into a �nal design.

To implement these two requirements, IDA's mapping component considers separate

portions of a device's representation separately. Each device representation is broken down

into structure, behavior, and function. The behavior and function representations are bro-

ken down further into (1) a sequence of primitive processes that make up the behavior or

function, and (2) the individuals (structural components, materials, etc.) on which those

processes act. There are separate requirements on the degree of isomorphism and semantic

distance required for each of those portions of the representation. For example, IDA prefers

the match between nodes in the structures of the target and base devices to be high in

semantic distance (to satisfy the dissimilar structure requirement) and prefers a mismatch

on only one primitive process in the behaviors of the target and base devices (to satisfy the

adaptability requirement).

After the mapping component evaluates devices according to the two requirements, the

search control module must focus the spread of activation toward other devices in the KB

which meet those requirements. IDA does this by focusing the search based on the strengths

of the retrieved beacons encountered so far in the search. The mapping component identi�es

an intermediate concept as promising if it comes close to meeting the metric for being a �nal

analogy. For each promising concept, the search control component then strengthens the

activation of its portions that did meet the mapping component's individual requirement.

The rest of the activation in the semantic network is wiped out, and the search is restarted

from this new state.

Another way that IDA's search control rules guide the search to a semantically distant

analogy is to use abstractions in the knowledge base as \bridges" to other domains. When

IDA retrieves a concept that is in the same domain as the target and is a directly-linked

example of a generic abstraction|a concept that abstractly describes speci�c concepts from
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a number of di�erent domains|it strengthens the activation of that abstraction. This will

allow activation to be spread into other domains, increasing the likelihood that IDA will

�nd a distant analogy. In this way, IDA can take use previously-generated analogies to

retrieve new ones, even if the previously-generated analogy does not directly involve the

current target concept.

1.3 Example

This section presents an example demonstrating the execution of KDSA to retrieve an

analogy for creative design. The example shows IDA's behavior for the goal of redesigning

a blinkered railroad crossing, that is, an intersection of road and railroad tracks where a

train's presence on the tracks is indicated by blinking lights signalling drivers on the road to

stop. IDA meets this goal by suggesting redesign by analogy to an on-o� valve. Speci�cally,

it suggests replacing the FLASHING behavior in the description of the blinkered railroad

crossing with the BLOCKAGE behavior in the description of the on-o� valve. The retrieval

of the on-o� valve takes place in the following steps:

1. The nodes contained in the representation of BLINKERED-RR-CROSSING are made

sources of activation (i.e., they are tagged with some number), and IDA begins spread-

ing activation.

2. After a few cycles of spreading activation, the device INTERSTATE-HIGHWAY-SYS-

TEM is retrieved. This device is mapped to BLINKERED-RR-CROSSING, and the

mapping is evaluated. The mapping is found to be unpromising|there is a low degree

of semantic distance between the structures of the two devices, and the behaviors and

functions of the two devices do not correspond in any respect. This is exactly the

opposite of what IDA wants for a �nal analogy. However, IDA notices that INTER-

STATE-HIGHWAY-SYSTEM is an instance of a generic abstraction, the FLOW-SYS-

TEM device. IDA recognizes this abstraction as a possible mechanism for moving the

search out of its current domain, and makes FLOW-SYSTEM a source of activation.
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All other activation in the semantic network (except the target's) is cleared, and

spreading activation starts again.

3. Another of FLOW-SYSTEM's instances, PLUMBING-SYSTEM, is retrieved next,

and the mapping between it and BLINKERED-RR-CROSSING is evaluated. This

mapping shows high semantic distance between the structures of the devices, and

poor matches between the behaviors and functions of the devices. IDA wants high

semantic distance in structure, so the structural aspect of the mapping is rated high,

but the behavioral and functional aspects of the mapping are rated low. PLUMBING-

SYSTEM is evaluated as a promising near-miss. Since the structure of the PLUMB-

ING-SYSTEM is the strongest part of the mapping evaluation, the search control

component makes PLUMBING-SYSTEM's structure a source of activation. Since

the behavior and function of the PLUMBING-SYSTEM were rated low, the search

control component still bases the search on the behavior and function of the target.

So the structure of PLUMBING-SYSTEM and the behavior and function of BLINK-

ERED-RR-CROSSING are made sources of activation, and all other activation in the

network is cleared.

4. The next concept retrieved is ON-OFF-VALVE. The matching component recognizes

that the mapping between ON-OFF-VALVE and BLINKERED-RR-CROSSING is

high in semantic distance between the structures, high in isomorphism between the

functions, very low in semantic distance between the top-level process sequence of

the functions (they both toggle between PREVENTing and ALLOWing another pro-

cess), and mismatches in a single process in the behavior description (the BLINKING

of the rr crossing corresponds to the BLOCKAGE of the valve). With these condi-

tions met, ON-OFF-VALVE meets the similarity metric for being a �nal analogy for

innovative design. It is retrieved, and IDA's simple design module suggests replacing

redesigning the BLINKERED-RR-CROSSING by replacing its BLINKING process

with ON-OFF-VALVE's BLOCKAGE process.
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1.4 Results

One of the major questions important in the evaluation of KDSA is: will KDSA retrieve

analogies without examining a sizable fraction of the entire knowledge base? In order to

answer this question, KDSA was evaluated using two complementary methods.

The �rst of these methods is to analyze the behavior of a theoretical model. This model

predicts KDSA's retrieval time given various parameters such as the size of the knowledge

base, the semantic distance required for the analogy, the likelihood of encountering a beacon

concept in the knowledge base, and the quality of each beacon concept in terms of the

bene�t it provides in reaching the ultimate base concept. This model allows us to examine

the behavior of KDSA under a wide range of problem and knowledge base characteristics.

The second method of evaluating KDSA is to examine the behavior of the implementa-

tion, IDA. This implementation of KDSA demonstrates that KDSA can, in fact, automati-

cally retrieve semantically distant analogies which are useful in solving a real problem. In

addition, while it is presently impossible to test IDA with an actual very large knowledge

base, we can measure IDA's retrieval time as a function of the KB size for various subsets

of IDA's small knowledge base. These experiments allow us to examine KDSA's behavior

as the knowledge base grows, and compare that actual behavior to the prediction of the

theoretical model.

Figure 1.3 previews some of the results produced by these two validation methods. It

shows time taken to retrieve a semantically distant analogy as the size of the knowledge

base grows, both for (a) the actual implementation operating in relatively small knowledge

bases, and (b) the theoretical model as the knowledge base grows to a size of 1 million

nodes. Each graph also shows retrieval time for standard spreading activation (SA) as

well. Both methods showed retrieval time for KDSA growing much more slowly than for

standard spreading activation as KB size grows. The theoretical model predicts behavior

that is roughly logarithmic in the size of the KB.
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Figure 1.3: Retrieval time for KDSA and standard SA as the KB size grows, (a) as observed

in the computer implementation, IDA, operating on a small knowledge base and (b) as

predicted by the theoretical model in a large knowledge base

Detailed presentations of the theoretical and experimental results are presented in Chap-

ters 5 and 6, respectively. These results can be summarized with the following four quali-

tative statements, with the �rst statement being veri�ed by both the theoretical model and

experiments, and the remainder being predicted by the theoretical model:

(1) As the knowledge base size grows, retrieval time with KDSA grows much more slowly

than does retrieval time with standard SA.

(2) For analogies in which the target and the base are semantically distant, KDSA is far

more e�cient than standard SA.

(3) KDSA is robust over di�erent distributions and utilities of beacon concepts in the

knowledge base. Even when the bene�t of each beacon search is low relative to

the e�ort involved in each beacon search, KDSA still shows signi�cant savings over

standard SA.

(4) KDSA is robust in the face of bad beacons. When a KDSA search su�ers from beacons

that direct the search away from, rather than toward, the eventual base, KDSA still
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shows substantial savings over standard SA.

1.5 Organization of the Thesis

The remainder of this dissertation presents KDSA and the issues introduced above in more

detail. Chapters 2-4 present the general approach: chapter 2 describes the problem of

retrieving semantically distant analogies and motivates the need for a new approach to this

problem, chapter 3 describes KDSA in detail, and chapter 4 describes the knowledge which

allows KDSA to be useful in the task of innovative design. Chapters 5 and 6 present the

validation of the approach: chapter 5 details the theoretical model and shows the model's

predictions of KDSA's behavior in several interesting situations, and chapter 6 describes

the computer implementation of KDSA, IDA, and details IDA's behavior on some example

analogy retrieval problems. Chapter 7 relates the work presented in this dissertation to

work in other projects in AI and other �elds. And chapter 8 summarizes the contributions

of this project.



Chapter 2

The Problem

The problem addressed in this thesis is: How can a computer e�ciently retrieve semantically

distant analogies from a large multi-use knowledge base? This chapter gives a detailed

description of this problem and a motivation for the proposed approach to it. The chapter

describes the general analogy problem, de�nes precisely the notion of \semantically distant"

analogy (SDA), discusses the ways that humans use SDAs, and presents the di�culties

inherent in applying existing retrieval techniques to the SDA problem.

2.1 The General Analogy Problem

Analogy is the process of inferring something about one concept, the target concept, based

on its similarities to another concept, the base concept. An analogical reasoner generally �rst

identi�es conditions that hold for both the base and the target, and then infers that some

additional condition that holds in the base might also hold in the target. Most researchers

divide the analogy process into at least these three steps:

(1) Retrieval of a plausibly analogous base concept given the target.

(2) Mapping the target to the base by placing in correspondence components of the base

concept representation with components of the target concept representation.

15
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(3) Transfer of information known about the base concept to the target concept according

to the mapping established in step 2. This step may also involve a validation that the

inference involved in the transfer leads to a useful or sound outcome.

All or nearly all approaches to analogy have a metric which determines whether a re-

lationship between two concepts constitutes an analogy or not. For some approaches (e.g.,

Greiner's formalism [Greiner, 1988] or Carbonell's Derivational Analogy [Carbonell, 1983a]),

this metric more or less measures only whether the transfer step allowed the system to draw

a desired inference. Some other approaches contain a (possibly implicit) metric applied be-

fore the transfer step, either during retrieval or during mapping, which allows the reasoner

to forgo the transfer step if the relationship between the two concepts is not considered

\analogous" enough for the task at hand. This latter type of metric will be referred to in

this thesis as a similarity metric.

2.2 Semantically Distant Analogies (SDAs)

Before outlining a method for retrieving SDAs, we must de�ne what \semantically distant"

means. Intuitively, we think of two concepts as semantically distant if one very rarely springs

to mind when one is thinking of the other. That is, two concepts are semantically distant if

they are not normally thought of as connected1. In a knowledge base, \not normally thought

of as connected" translates roughly to \related to one another only very indirectly". That

is, the paths of relations which connect the two concepts through abstractions or other

concepts in the KB are long. The precise de�nition of semantic distance given in De�nition

2.1 below is one of several possible specializations of this intuition.

Before de�ning the notion of semantic distance, let us �rst lay out some constraints

on the type of knowledge representations under which this de�nition will apply. For the

purposes of this discussion, a knowledge base will consist of a collection of de�nitions of

concepts or types. Each concept will be de�ned as a set of relations between instances,

1Koestler [Koestler, 1965] termed the process of connecting normally unconnected concepts \bisociation";

he believed this process to play a role in all creative thought. We argue shortly that SDAs qualify as one

type of bisociation.
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COW

Relations between concepts Definition of concept

Figure 2.1: Basic assumptions about knowledge representation. Concepts are related in a

network, and are de�ned as a collection of instances and relations between those instances.

where each instance is a member of some concept. These concept de�nitions may con-

tain true de�nitional information|i.e., conditions which hold for every member of that

type|and prototypical information|i.e., conditions which would be expected to hold for

members of that type. The concepts themselves are also related to one another, through

subtype/supertype relationships and other relationships which apply between types irre-

spective of context.

Figure 2.1 graphically shows the assumptions about knowledge representation. A con-

cept like COWmay be de�ned in terms of relationships between instances of other concepts|

MILK, RANCH, and MOO, for example|and may be itself related to other concepts|

RUMINANT, for example|through subtype/supertype relationships. Figure 2.1 shows

both the inter-concept relationships and the concept de�nitions as graphs. These represen-

tational assumptions are based loosely on John Sowa's Conceptual Graph formalism [Sowa,

1984]. However, it is important to note that the de�nitions and methods described in this

thesis do not depend on representing knowledge as graphs. The concept de�nitions could

just as easily be given as logical sentences, for example, with the variables as instances

and predicates as relations. What is required here is that there be direct (constant-time)

associative access from each concept (or instance) to each related concept (or instance). To
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summarize, then, this discussion assumes two types of objects in the knowledge base, con-

cepts and instances, and three types of bidirectional relations between objects|concept-to-

concept relations, instance-to-instance relations inside a concept de�nition, and the relation

between an instance and its type.

Given this representational framework, let us now present a precise de�nition of semantic

distance. Let the minimum path between two objects oa and ob in the knowledge base be

a sequence of objects o0; o1; : : : ; on�1; on such that o0 = oa, on = ob, oi is related to oi+1

for all i < n, and any other path of related objects connecting oa and ob in the knowledge

base has length � n. Also, let the minimum distance from concept between an object o and

a concept C, MDC(o; C) be the length of the shortest minimum path between o and any

instance contained in the de�nition of C. The semantic distance between two concepts will

then be de�ned as:

De�nition 2.1 The semantic distance between two concepts is de�ned as the average path

distance between the instances contained in the de�nition of one concept and the closest

instance contained in the de�nition of the other (averaged across both concepts). That is,

the semantic distance between two concepts C1 and C2, d(C1; C2) is given by:

d(C1; C2) =

P
o2C1

MDC(o; C2) +
P

o2C2
MDC(o; C1)

jC1j+ jC2j

Here, o 2 C means \o is an instance contained in C's de�nition", and jCj is the number

of instances in C's de�nition.

Note that this de�nition skirts several issues which might be important in a more general

psychological or linguistic de�nition of semantic distance. In particular, there is no notion of

the context in which the comparison between concepts is being made, e.g., no notion of the

purpose toward which the comparison will be applied. There is also no consideration that

di�erent types of relations may themselves embody di�erent levels of semantic distance; here

all single-level relations between objects are treated as equally distant. This de�nition is

constructed to make explicit the search di�culties in �nding semantically distant concepts|

if the path distance between concepts in the KB is high, the expense in searching for the

connection between the two concepts along the KB's relations is likely to be high as well.
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A semantically distant analogy, then, is simply an analogy between two concepts whose

semantic distance is high relative to semantic distances between other pairs of concepts in

the KB. This is the opposite of analogies based on a high degree of surface similarity, where

the two concepts have a number of features that match exactly. Since people tend to retrieve

analogies based primarily on surface similarity [Holyoak and Koh, 1987], the de�nition given

for an SDA does seem to meet Koestler's criterion for bisociation|it involves two concepts

not normally thought of as connected.

2.3 Human Use of SDAs

Despite Holyoak and Koh's (and others') �nding that people generally retrieve analogies

based on surface similarities, there is evidence that people occasionally are able to generate

and use SDAs. This is particularly true among people performing tasks that are commonly

classi�ed as creative. The literature on creativity, and particularly the literature on sci-

enti�c discovery and invention, contains many examples of individuals using cross-domain

unexpected analogies to guide them to novel results. It seems likely that giving comput-

ers the ability to retrieve and use SDAs will bring them one step closer to exhibiting true

creativity themselves.

Many separate case histories in invention and discovery point out the usefulness of

cross-domain analogy in creativity:

� Gutenberg had worked for years to improve the existing technology for printing, with-

out success. Upon attending a wine festival, he encountered the workings of the wine

press. Immediately he recognized that the same mechanism which applied and then

removed steady pressure to grapes could be used to apply type to paper and remove

it to avoid smudging [Koestler, 1965].

� Many inventors working on a 
ying machine in the early part of this century were

unable to get their inventions o� the ground because they tried to restrict the pilot's

control to only one axis of motion. The Wright brothers, connecting the building of
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a 
ying machine with their work in their bicycle shop, recognized the need to give

the pilot control along three di�erent axes of motion (including banking the vehicle

during turns), and produced the �rst plane [Crouch, 1971].

� \Thomas Edison used metaphors extensively. He worked out the quadruplex tele-

graph, perhaps the most elegant and complex of his inventions, `almost entirely on

the basis of an analogy with a water system including pumps, pipes, valves, and water

wheels', according to his son Theodore. Later, thinking metaphorically, Edison con-

ceived of the interaction between existing illuminating-gas distribution systems and

the illuminating incandescent-light system he intended to invent." [Hughes, 1971].

� Archimedes, Kekul�e, and Poincar�e produced important discoveries in the �elds of

physics, chemistry, and mathematics, respectively, aided by unexpected analogies

[Langley and Jones, 1988].

� A new improved design for the high frequency component of audio speakers (\tweet-

ers"), and later for speakers in general, was produced only after the connection be-

tween beam width in radar and sound distribution from the speakers was recognized

[Kock, 1978].

� An inventor recently noticed how small pebbles and even grains of sand felt larger

through a water balloon; using this principle, he invented the sensor pad|a device

which facilitates breast cancer lump detection [Clark and Maier, 1988].

� An inventor at a recent idea fair in San Francisco showed o� a new umbrella which

dries itself by shaking itself o� like a dog.

Perhaps more important than the numerous examples in the literature is the agreement

among inventors and people who have studied invention that the ability to make connections

between problems, solutions, and principles in a wide array of diverse domains is critical to

an inventor's success. Koestler's idea of bisociation, which he views as characteristic of all

creativity, re
ects this ability [Koestler, 1965]. Middendorf asserts that \...creative persons
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usually have ability and willingness to explore tenuous connections between only remotely

connectable things" [Middendorf, 1981]. Kock believes in the importance of combining

knowledge from multiple disciplines in the invention process, and he points out that a large

number of inventions were produced by people who weren't specialists in the �eld [Kock,

1978]. And successful inventor L. W. Andrews describes his own process of invention as

follows [Rossman, 1931]:

First seek out as many analogies as possible, criticise and eliminate; then

examine the small number left by experiment. If this fails begin again with

analogies of a quite di�erent type and again follow the process as above. But

always analogy is the leading string.

The example analogies given above seem to have been retrieved in a wide variety of

ways. Some analogies, such as Gutenberg's, Archimedes', and Kekul�e's, seem to have been

retrieved when the inventors encountered cues in their interaction with the world, cues that

in turn reminded them of the analogue. Some, such as Poincar�e's, were retrieved with no

external cue at all. Some, such as the water balloon/breast lump detection analogy, were

produced by reasoning \backwards", using a solution|or rather a new principle which

could be applied as a solution|to retrieve a problem. And some, such as Edison's, seem

to involve constructing entirely new concepts to serve as analogues. We would like our

computer mechanism to exploit all of the di�erent paths to analogy that di�erent human

inventors have followed.

2.4 Di�culties in Computer Retrieval of SDAs

The studies of analogy use among creative individuals have shown that one must be able to

draw from a wide body of knowledge of diverse �elds to successfully use SDAs. This result

in humans suggests that the ability should also exist in computer models of SDA retrieval.

In order for a computer program to be able to retrieve and use SDAs to aid its problem

solving, it must be able to draw these analogies from a large diverse knowledge base. This
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sort of knowledge base is the ultimate goal of the CYC project [Lenat and Guha, 1990],

among others.

The studies of analogy use in creative people also lead us to another assumption about

knowledge representation in computer SDA retrieval models: it is impossible to predict

at concept storage time all the di�erent ways a concept may be used in analogy. All the

examples of SDAs given in the previous section show concepts being used in surprising and

unpredictable ways by inventors.

There are two major classes of analogy retrieval techniques currently in use: search

along relationships in the knowledge base and indexing the knowledge base on salient fea-

tures. Both of these techniques, while useful in retrieving same-domain analogies from small

knowledge bases, are poorly suited for retrieving SDAs from a very large, diverse, multi-use

knowledge base.

2.4.1 Knowledge Base Search

One major class of methods for analogy retrieval (and knowledge retrieval in general) in-

volves searching the knowledge base, starting at the target, along the de�ned connections

between concepts, e.g., links in a semantic network. This class includes spreading activation

approaches (e.g., [Anderson, 1983; Collins and Loftus, 1975; Rau, 1987a]), as well as Win-

ston's Classi�cation-Exploiting Hypothesizing [Winston, 1980] and Quillian's intersection

search [Quillian, 1968]. While these approaches replicate many of the characteristics of hu-

man associative memory and are useful in retrieving semantically close analogies, they are

not tractable for retrieving SDAs spontaneously|that is, without any cues from the outside

world. The problem is that �nding SDAs will require a deep search into the KB from the

target (De�nition 2.1), and in a large knowledge base the search will face combinatorial

explosion well before it is able to reach a semantically distant base.

One possible solution to this problem of combinatorial explosion would be to base the

search only on those few components of the target de�nition for which a more exact match

is required. Even in a task for which an SDA is desired, there may be a very small number

of features which should match exactly or near-exactly. The retrieval mechanism could then
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search for nearby concepts to these few features so that the depth required of the search

would not be as high. But this approach also has tractability problems; in this case, the

di�culty is in the high hit rate of retrieved concepts. If the search for an analogue is based

on only a few features, in a large KB many concepts are likely to meet the lax retrieval

criteria and will be retrieved. These retrieved concepts will in turn have to be mapped and

evaluated. Since mapping is a very expensive (NP-complete) operation, retrieving a high

number of candidate concepts is not a tractable alternative to a more detailed KB search.

2.4.2 Indexing on Salient Features

The second major class of techniques used for analogy retrieval is indexing the knowledge

base on a set of feature tests. These approaches, which are often used in case-based reasoning

systems (e.g., [Kolodner, 1984]), usually involve using a series of tests on feature values to

guide the retriever down a discrimination network to a matching case. The series of tests

ensures that the retrieved base is similar to the target along a set of salient features, where

the choice of salient features depends on the speci�c task for which the case base is being

indexed.

Indexing approaches are often very e�cient for retrieving same-domain analogies when

the task is known ahead of time. However, as we have noted earlier, a given concept can be

useful for many di�erent possible tasks in semantically distant analogy, and it is impossible

to anticipate all conceivable speci�c tasks for which a concept may be retrieved. And even

if it were possible, the storage costs for separate indexing structures for each possible task

would be prohibitively high. These problems with indexing are discussed in more detail in

Section 7.1.2.

An additional problem with most indexing approaches is that during the retrieval phase

they assume a very simple representation of concepts in the knowledge base, namely, feature

vectors (where the value of each feature can be translated into a scalar). When concepts

are represented this way, isomorphism essentially becomes a non-issue in retrieval. This

representation, while appropriate for a CBR-style task in which every possible concept is

essentially the same type, is unrealistically limiting for a large general-purpose knowledge
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base.

2.5 Desiderata for Solution

To summarize, an analogy mechanism for tractably retrieving SDAs requires three impor-

tant features that distinguish it from other knowledge retrieval mechanisms:

(1) It should operate in a very large, diverse, multi-use knowledge base.

(2) It should typically examine a relatively small portion of the knowledge base before

�nding a semantically distant base, and should limit the number of target-base map-

pings and evaluations it performs during the course of retrieval.

(3) It should assume a task-independent representation and organization of concepts in

the KB.

The next chapter presents a general analogy retrieval mechanism which meets these

criteria.



Chapter 3

The Approach:

Knowledge-Directed Spreading

Activation

The previous chapter described the value of retrieving semantically distant analogies and

motivated the need for a new approach to computer retrieval of SDAs from a large knowledge

base. This chapter introduces such an approach, called Knowledge-Directed Spreading

Activation (KDSA). KDSA is able to �nd SDAs by using task-speci�c knowledge to direct

a spreading activation search from the target concept to a base concept. In particular,

KDSA derives a great deal of its power from exploiting promising near-analogies|concepts

which nearly meet the system's similarity metric|retrieved at previous stages of the search.

This chapter presents the basic operation of KDSA. Section 3.1 describes spreading acti-

vation and its variants. Section 3.2 describes the KDSA framework and algorithm in detail,

including its integration into a general agent architecture. And Section 3.3 discusses some

additional issues about KDSA, including the conditions under which it will �nd analogies

e�ciently.

25
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3.1 Spreading Activation

Spreading activation is a mechanism for associative memory access in semantic networks.

There are many variants on the general theme of spreading activation in the literature;

the version described here will be a generalization of many of the particular implementa-

tions. Spreading activation's general execution is illustrated graphically in Figure 3.1. The

process begins when a concept becomes the focus of attention of an agent. This concept's

representation (i.e., each of the instances included in the concept's representation) is tagged

with some activation (1), where the activation can be a boolean marker or a numeric value.

In the �gure, the activation is assumed to be numeric, with a node's level of activation

indicated by shading. This initially activated concept is said to be a source of activation.

The spread of activation then takes place in a series of cycles (2). During each cycle, each

activated object in the KB spreads activation to each of its neighbors. In the �gure (2),

initially only the node inside a is activated; next cycle, activation is spread to the nodes in b,

then the next cycle to c, and so on. The amount of activation assigned to a neighbor object

is a function of �ve values: the level of activation of the activated object, the previous level

of activation of the neighbor object, the link which connects the two objects, and the value

(i.e., semantic content) of both the activated object and neighbor object. When numeric

values are used as activation, the activation level of each concept is often decayed by some

fraction during each cycle. A new concept in the KB is considered retrieved (3) when the

instances which make up its representation accumulate aggregate activation which exceeds

some threshold. In the �gure, a spreading activation search which starts with COW as the

source ends in the retrieval of HORSE and MILK because of the number of features they

have in common with COW.

Spreading activation is used most often as a psychological model of associative memory

[Holland et al., 1986; Anderson, 1983; Collins and Loftus, 1975], but it has also been used

as a method of computer information retrieval in networks without regard to psychological

plausibility [Rau, 1987a; Cohen and Kjeldsen, 1987]. It has been used to retrieve concepts

according to many di�erent similarity criteria; in particular, it has been used as analogy
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Figure 3.1: Spreading activation. Operates by (1) assigning a concept in the KB some

activation, (2) continuously spreading activation from each activated object to all its neigh-

bors, until (3) some other concept(s) in the KB accumulate aggregate activation over some

threshold, at which point they are retrieved.

retrieval mechanism [Holland et al., 1986; Anderson and Thompson, 1989; Jones, 1989].

Spreading activation has a number of bene�ts as an analogy retrieval mechanism. It

meets one of the criteria presented in Section 2.5 in that it retrieves concepts without

assuming any task-speci�c indexing or organization of the knowledge base. It exhibits

many known characteristics of human recall, so it is psychologically plausible as a retrieval

mechanism. And it is 
exible in terms of the types of concepts it is able to retrieve; e.g.,

as discussed for some of the inventors in Chapter 2, it can search from a problem to the

solution or from a potential solution to a relevant problem. The major disadvantage of

spreading activation as a general analogy retrieval mechanism, also mentioned in Chapter

2, is that it is basically a blind search mechanism. As such, it is susceptible to combinatorial

explosion, especially when the concepts for which it is searching are far from the original

source of activation.

One method used to control the search in spreading activation is implementing a practice

e�ect in which activation-passing strengths on the links are modi�ed. When this method

is used, the strength on links is increased whenever the link leads to a successful retrieval

(where \successful retrieval" generally means that the retrieved object leads to a successful
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result in problem solving) and weakened otherwise. This can lead to a network where

much of the spreading activation search occurs along a smaller number of \strong" links,

while other links in the knowledge base do not participate in the activation passing process.

This sort of practice e�ect is unlikely to make spreading activation a tractable method for

retrieving SDAs for two reasons: (1) at best, it only decreases the branching factor of the

spreading activation search and does not remove the problem of combinatorial explosion in

large-depth searches, and (2) since SDAs are likely to be retrieved infrequently, and practice

e�ect methods are based on frequency and recency of recall, the weights they learn are not

likely to be the right ones to lead future spreading activation searches to SDAs.

3.2 Knowledge-Directed Spreading Activation

Since the problem with spreading activation is the blind nature of the search, it stands to

reason that the same general kinds of techniques used to improve the e�ciency of blind

state space search methods can also be used to allow spreading activation retrieve SDAs.

A number of techniques have proven useful in speeding up state space search:

(1) Performing heuristic evaluations of generated states, preferring to expand high-rated

states over low-rated ones (used in A� [Hart et al., 1968] and hill-climbing search

[Pearl and Korf, 1987]).

(2) Pruning states from the search that are low-rated (used in beam search [Lowerre and

Reddy, 1980]).

(3) Restarting search (i.e., wiping out the record of the previously expanded portion of the

search space) from an encountered state if that state is known to represent progress

toward the goal (used in hierarchical planning [Sacerdoti, 1974]).

Knowledge-Directed Spreading Activation is an application of these abstract ideas to

knowledge base search. KDSA uses task-speci�c knowledge to 1) evaluate concepts retrieved

during spreading activation and restart search from those concepts evaluated as promising,
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2) prune unpromising areas of the knowledge base from the search, and 3) direct the spread

of activation toward more promising areas of the knowledge base by dynamically re�ning

the start and goal states of that search. The next section describes how KDSA uses these

procedures to e�ciently �nd SDAs.

3.2.1 Basic Algorithm

Figure 3.2 graphically shows the execution of the KDSA algorithm, which was given in

Figure 1.1. KDSA works as follows. When a target concept is given, KDSA makes it a

source of activation and begins the spreading activation process. When spreading activation

retrieves a concept, the mapping component maps the new intermediate concept (the IC)

to the target, and evaluates that mapping. If the evaluation determines that the IC meets

the similarity metric, it is returned as the retrieved base concept (already mapped to the

target) and the process halts. If the IC does not meet the similarity metric, a description of

the mapping evaluation is passed on to KDSA's search control component. Based on that

evaluation, and the history of the search, the search control component modi�es the state

of the spreading activation mechanism to direct future searches into more promising regions

of the knowledge base. The spreading activation process is started again, and the entire

KDSA loop repeats until a base is found.

Clearly the sources of power in KDSA are the mapping and search control components.

They are described in detail below.

Mapping Component

The mapping component has three major roles in KDSA:

(1) It generates the mapping between the IC and the target. That is, it �nds a set of

correspondences between some subset of the items in the target's representation and

some subset of the items in the IC's according to some mapping criterion.

(2) It serves as the similarity metric for the analogy mechanism. That is, it decides

whether the mapping between the target and the IC constitutes an analogy likely to
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Figure 3.2: Knowledge-Directed Spreading Activation

be useful in solving the task at hand. Those mappings that meet the similarity metric

are returned as �nal analogies by KDSA to be used in the transfer step of the analogy

process.

(3) For those ICs that do not meet the similarity metric, it evaluates the mapping. This

evaluation consists of two separate outputs: �rst, a rating of the quality of the mapping

according to its closeness to meeting the similarity metric; second, a listing of the

speci�c areas of weakness of the mapping, i.e., those conditions of the similarity metric

which were not met by the mapping.

After the mapping is generated1, the mapping component evaluates it according to task-

speci�c rules. This evaluation step performs both the evaluation and similarity metric roles

listed above. The evaluation depends on three distinct aspects of the mapping: 1) the

degree of semantic distance between target and base, 2) the degree of isomorphism between

1The speci�cs of mapping generation are not part of the KDSA formalism; any of a number of techniques

can be used. Chapter 6 describes the technique used to generate a mapping in IDA.
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target and base, i.e., the degree to which the relationships between corresponding nodes

themselves correspond, and 3) the particular portion of the target representation which is

being evaluated with respect to 1) and 2).

This third aspect|the portion of the representation being considered|needs further

explanation. The task-speci�c mapping rules divide the representations of concepts into

separate portions, where the portions are de�ned according to their importance and role in

solving the task. Each portion of the representation has separate conditions on the levels of

semantic distance and isomorphism needed for the mapping to meet the similarity metric.

For example, we will see in Chapter 4 that, for the task of innovative redesign, salient

portions of the target representation are the structure, behavior, and function of a concept;

the similarity metric for innovative redesign has separate requirements on semantic distance

and isomorphism for each of those portions. This identi�cation of salient portions of the

representations is the way that the goal of the analogy in
uences retrieval in KDSA.

The sequence of steps in the mapping evaluation is as follows. First, using the sub-

division of the target representation, the mapping is divided into portions. Second, each

submapping is rated according to its level of isomorphism and semantic distance. Third,

each rating is compared to the separate metric for that portion of the mapping. If every

subportion of the mapping meets its metric, the mapping is returned as an analogy. If not,

a description of the mapping evaluation is produced, identifying those areas of the map-

ping which fall short of the similarity metric, and the degree of the shortcoming(s). This

qualitative description is then passed on to the Search Control Component.

Search Control Component

The purpose of the search control component is to modify the direction of the search toward

more promising areas of the knowledge base, based on the target, the task, and the current

state of the search. Here \current state of the search" consists of the set of all mapping

evaluations performed during the course of the search (most importantly the most recent

one), and the general state of activation in the network. The direction of the search is mod-

i�ed by altering the spreading activation mechanism, i.e., changing the level of activation
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of objects in the knowledge base, changing the ability of concepts to receive activation in

the future, or changing the retrieval criterion of spreading activation. Earlier descriptions

of KDSA [Wolverton and Hayes-Roth, 1993] included the modi�cation of activation-passing

strengths on links as one of the allowed mechanisms for modifying search. While this is still

theoretically possible, in practice it has been di�cult to implement in a principled way, and

the other modi�cations of spreading activation listed have provided more than adequate

control over the search direction.

Based on the mapping evaluations performed during KDSA, the Search Control Com-

ponent can modify activation of objects in the KB in any of a number of ways:

(1) It can strengthen the activation of ICs evaluated as promising, i.e., those which failed

to meet the similarity metric only in a small number of portions of the overall mapping.

(2) It can weaken the activation of ICs evaluated as unpromising, and can direct future

searches away from those areas of the knowledge base by weakening the unpromising

concepts' ability to receive future activation.

(3) It can selectively change the activation of portions of the target or IC depending upon

an evaluation. For example, it can strengthen activation of portions of an IC which

meet the similarity metric.

(4) It can clear all activation in the KB (except for the objects activated by methods (1)

or (3)), e�ectively restarting search from a new state.

3.2.2 Integration into Problem Solving Architecture

Figure 3.3 shows how the algorithm of KDSA (Figure 3.2) becomes part of a general agent

architecture. Here we assume that the agent's problem solving executes by continuously

triggering, evaluating, and executing rules in the manner of BB1 [Hayes-Roth, 1990], Soar

[Laird et al., 1987], or any number of other AI architectures, and that the agent receives

information from the world through sensors. Spreading activation is the agent's mecha-

nism for associative memory and operates separately from the agent's problem solving.
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Figure 3.3: Integration of KDSA into problem-solving architecture

The spreading activation mechanism creates memory retrieval events, which in turn trigger

problem solving rules. The problem solving rules, when executed, can activate new con-

cepts. Sensory information enters the system through the spreading activation mechanism

by making sensed concepts sources of activation.

In this model, the evaluation and search control components of KDSA constitute part

of the architecture's problem-solving knowledge, and compete with other problem-solving

activities for execution. Because of this, KDSA's basic \spread activation/map and eval-

uate/modify search" loop of Figure 3.2 is e�ected in three ways: (1) the loop may be

interrupted by other problem solving activities that have higher priorities; (2) concepts

that are made sources of activation by the agent's problem solving may be retrieved and

evaluated by KDSA; and (3) similarly, concepts that are activated by the agent's world

sensors may be retrieved and evaluated by KDSA. These last two types of interactions with

the architecture allow KDSA to retrieve analogies aided by external or internal cues. That
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is, concepts sensed in the world or encountered during reasoning, even those that are un-

related to analogy retrieval, may \remind" KDSA of a good analogue to its target or of a

promising concept to be used to direct the spread of activation.

3.3 Discussion

A simple way to use KDSA to improve search would be to have only one search control

rule: each time an intermediate concept is evaluated as promising, clear all activation in

the network, and make the IC a new source of activation. This would produce behavior in

KDSA very analogous to the base level search in abstraction planning, where a completely

new search is started each time a state from the abstract level plan is encountered at the

base level. In this way, KDSA would use the promising concepts encountered as \beacons"

leading it to the �nal base (Figure 3.4)|concepts used in this way will be referred to as

beacons from here on.

In order for this beacon behavior by KDSA to serve as a source of search e�ciency,

KDSA must be able to �nd beacons that successively get the search closer and closer to

a concept that will meet the similarity metric. This, in turn, depends on the following
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informal hypothesis being true:

Hypothesis 3.1 Beacons|concepts that are close in some respect to meeting the similarity

metric|are likely to be semantically close to concepts that do meet the similarity metric or

at least to other beacons.

Whether this hypothesis holds true or not depends on the con�guration of the knowledge

base and on the particular similarity metric used. But there is reason to suspect it is true

for most KBs using similarity metrics based on semantic distance: concepts that are almost

semantic distance n away from the target, for instance, are going to be semantically close

to concepts that are semantic distance n away from the target, simply by the de�nition of

semantic distance.

The simple search control heuristic described above provides a useful simpli�ed way to

see the bene�ts of this approach. The analysis in Chapter 5 makes use of these simpli�ca-

tions and models KDSA as a search from (single) beacon to (single) beacon.

KDSA can gain additional search e�ciency by using more sophisticated search control

heuristics that: (1) base search on the desirable characteristics of all of the beacons encoun-

tered so far, (2) prune unpromising areas of the knowledge base from the search, and (3)

use other means to modify the spreading activation mechanism. The next chapter describes

an implemented instantiation of KDSA for innovative design which uses search control in

this more sophisticated way.



Chapter 4

KDSA Applied to Design

The previous chapter described an approach to analogy retrieval that is tailored toward

tractable retrieval of semantically distant analogies from a large knowledge base. That de-

scription presented only the domain-independent formalism, presenting only the modules

that make up the approach and constraints on the basic ways they can examine and operate

on the knowledge base. This chapter makes the description of KDSA more concrete by pre-

senting the particular heuristic rules used by KDSA to �nd analogies for innovative design.

The rules operate within KDSA's two heuristic modules: the mapping evaluation rules com-

prise a similarity metric, identifying mappings which are likely to be useful analogies for

guiding an innovative design process; and the search control rules direct the search toward

other concepts which are likely to meet the similarity metric. The formalism comprised of

the KDSA architecture together with these rules will be referred to as KDSAID. Although

there are speci�c di�erences between KDSAID and the implementation of it in IDA, the

heuristics and examples given below basically re
ect the implementation and execution of

the program.

This chapter �rst de�nes the term \innovative design" and suggests how analogy can

be a useful tool for that task. It then describes in detail the mapping evaluation and search

control rules in KDSAID, and presents a detailed example illustrating those rules in action.

Finally, it discusses some additional issues related to analogical innovative design.

36
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4.1 Innovative Design

Many researchers have classi�ed design along a spectrum of the amount of creativity demon-

strated by the designer. Most often, this spectrum is divided into three distinct classes: rou-

tine, innovative, and creative design. Some researchers, such as Brown and Chandrasekaran

[Brown and Chandrasekaran, 1989] and Gero [Gero, 1990] focus on the process of producing

the design, making distinctions based on the nature of the design space being searched,

the types and quantities used in designing, etc. By contrast, Goel [Goel, 1989] classi�es

design in a way that focuses more on the product, i.e., the design itself1. For Goel, a de-

sign is routine if it di�ers from an existing design only in values of parameters; a design

is innovative if it involves the same overall topology as an existing design, but changes to

individual components; and a design is creative if its overall topology di�ers from previous

designs. The type of design for which KDSAID retrieves analogies meets Goel's de�nition

of innovative redesign, inasmuch as KDSAID �nds a base device that has a top-level be-

havioral topology that is similar to behavior of the target device it is redesigning, but that

has individual behavioral processes within that top-level topology that di�er signi�cantly

from the corresponding processes in the target's behavior.

Goel's de�nitions provide a clue as to how analogy can guide the process of design. A new

design can be created from an old one by transferring portions of the representation of the

old one to the new one. Here the new design can start out as simply a functional speci�cation

if the task is to design a new device, or it can be a complete description (function, behavior,

and structure) of an old device if the task is to redesign it. In innovative redesign, the

transferred portions will be structural, behavioral, or functional components of the base

design. The transfer step will not necessarily involve direct copying of a component|it

may be modi�ed in some way during the transfer procedure. Also, after transfer there may

be some further adaptation of the new design.

Specializing Greiner's de�nition of useful analogical inference [Greiner, 1988], we will

1Goel's de�nition may more accurately be said to apply to redesign|how a new design is produced based

on an old one|and redesign is, by de�nition, a process. The de�nitions presented here are adapted from

Goel's by identifying di�erences between the new design and existing ones, rather than di�erences between

the new design and the old one it was based on.
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say that an analogy is useful for innovative redesign of an existing device if it, along with

the designer's design knowledge, can be used to produce a novel redesign of the existing

device that satis�es the existing device's functional speci�cation. For our purposes, a new

device is \novel" if satis�es its functional speci�cation in a way that is di�erent from other

devices the designer knows about, not di�erent from all other devices in the world. In this

way, Gutenberg's printing press was \novel" even though there is evidence that the Chinese

had developed a printing press some 100 years earlier.

4.2 KDSA Heuristics for Innovative Design

This section describes a complete set of heuristics for guiding KDSA toward analogues that

are useful for innovative redesign.

4.2.1 Preliminaries

KDSAID is intended to be the analogy retrieval component for a design system that solves

the following problem: given an abstract description of an existing device, produce an in-

novative redesign of that device. That is, the design system produces a partial description

of a device that is based on the existing device and that satis�es the same functional spec-

i�cation as the existing device, but that satis�es that function in a novel way. The system

is given no additional requirements for the new design|i.e., no behavioral or structural

constraints, failures of the existing device to overcome, etc.; it only knows that the redesign

must satisfy the same function as the existing device, and that it must be novel. The design

system solves this problem by analogical reasoning: it retrieves from its knowledge base a

base device that is analogous to the existing (target) device. The redesign is produced by

replacing one or more of the high-level behaviors of the target with high-level behaviors

from the base. Since the output of this system produces only a new behavioral description

of the target device, and does not suggest a new structure, it is only producing a very

abstract conceptual-level \design". Obviously much more work would be involved to re�ne

the output of the system into a complete implementable device description.
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Representation

The heuristics of KDSAID assume that each device is represented as a triple, ffunction,

behavior, structureg, where the function describes the device's top-level input-output be-

havior, the behavior describes the individual processes that produce the function, and the

structure describes the device's physical components and the connections between them.

Each device representation is assumed to have only one function; a real-world device with

more than one function can be represented with multiple device descriptions, one for each

function. The behavioral descriptions consist of a network of temporally and causally re-

lated primitive behavioral processes (e.g., heating, boiling) and the individuals (structural

components or substances, e.g., water, pot) on which they act. The functional descriptions

in the device representations are similarly represented as a network of primitive functional

processes (e.g., delivery) and the individuals they act on.

Figure 4.1 shows an example device representation using the assumptions above. Bor-

rowing from Sowa's graphical format [Sowa, 1984], we show the objects in the representation

as rectangles and the relations (which we will refer to as \links") of the representation as

circles. The �gure represents a sprinkler irrigation system, i.e., a system which distributes

water to plants by spraying it in an area that includes the plants. The structure of the

device is represented as a water source (the supertype of lake, reservoir, river, ocean, etc.)

connected to a mechanical pump, which is in turn connected to a network of pipes, which

are in turn connected to sprinklers. The sprinkers share a location with some plants. The

behavior of the device is represented as three processes: (1) the mechanical pump pumps

water from the water source, (2) water 
ows from the pump through the pipe network to the

sprinklers, and (3) the sprinklers spray water to the plants' location. The subgraph which

includes the three primitive processes themselves along with the temporal or causal con-

nections between them is referred to as the process sequence of the behavior; the remainder

of the behavior graph constitutes the individuals of the behavior. These portions are used

separately in the mapping component of KDSA. The function of the sprinkler irrigation

system is represented as simply delivering water from the water source to the plants. The
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process sequence of the function is simply the DELIVERY node, and the rest of the function

graph constitutes the individuals of the function. Not shown in the �gure is the fact that

nodes are shared across structure, behavior, and function. For example, the H2O-SOURCE

node in the structure graph is actually the same node as the H2O-SOURCE node in the

behavior graph and the H2O-SOURCE node in the function graph.

In this representational framework, the terms \process" and \individual" are borrowed

from Qualitative Process Theory [Forbus, 1984]. The primitive processes in the behavior

of sprinkler irrigation|PUMP, FLOW, and SPRAY|can be thought of as QPT processes.

That is, they could be represented as a set of preconditions under which they will become

active and e�ects they will have when made active, where the preconditions and e�ects may

involve some change to qualitative or quantitative variables, and where the e�ects of one

process may cause the preconditions of one or more other processes to be met. The behavior

representation shown in Figure 4.1 is intended to be a trace of the process activations in a

qualitative simulation of the \normal"|i.e., non-faulty|behavior of a sprinkler irrigation

system. That is, it could be derived from the portion of a QPT envisionment representing

the normal behavior of sprinkler irrigation by removing the information about the exact

conditions on qualitative variables which caused process activations, and replacing that

information with simple causal relations (TRIG) between processes which allow one another

to become active.

4.2.2 Mapping Evaluation

As mentioned in Chapter 1, the mapping evaluation heuristics of KDSAID de�ne two

requirements for meeting the overall similarity metric:

(1) The base and target devices must have similar functions, but di�erent behaviors and

structures.

(2) The base must be adaptable with regard to the target device. In general, this means

that the analogy mechanism's transfer step is able to adapt the retrieved base into

a redesign which satis�es the target's function. For KDSAID, since it assumes an
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analogy mechanism with limited transfer capabilities, this means that it must be

able to replace a single process from the target device's behavior with one from the

retrieved base.

The �rst of these requirements increases the likelihood of �nding an analogue which

will lead to a redesign that is useful and at the same time novel. The \similar function"

requirement means that the retrieved base will do abstractly the same thing as the target, so

a redesign guided by the base will also meet the target's abstract functional speci�cations.

But the \di�erent behavior and structure" requirement means that the retrieved base will

achieve its function in a di�erent way from the target, increasing the likelihood that the

redesign guided by the base will be novel or innovative.

The second of these requirements assures that the design system will be able to suggest a

redesign based on the retrieved base. The �rst requirement looks for a base with a di�erent

behavior from the target, but the second requirement assures that the di�erence is not so

great that the analogy mechanism cannot perform the �nal, transfer step in the analogy

process. In some sense, this requirement serves as a sanity check for the system. Since the

�rst requirement is looking for a base device which matches the target only abstractly in

function, there is a danger that the analogies will be too far-
ung|the designs they produce

will be innovative but not very likely to be useful. The adaptability requirement provides

a greater likelihood that the system will be able to use the retrieved analogue to produce a

reasonable redesign of the target.

To implement these two requirements, the mapping evaluation heuristics consider �ve

separate portions of the mapping, based on �ve separate portions of the target device

representation. The portions considered are the leaf nodes of Figure 4.2. Process sequence

in the �gure refers to the subgraph containing the primitive processes in the behavior or

function and the links between them. Individuals refers to the everything other than the

process sequence in the behavior or function representation. Figure 4.1 shows the process

sequences for the behavior and function of the sprinkler irrigation system.
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Figure 4.2: Portions of device representation considered by mapping evaluation heuristics

Rule # Portion of mapping aspect relation threshold

1 Function, entire iso. � TFI
2 Function, process sequence sem. dist. � TFPD
3 Behavior, process sequence iso. � TBPI
4a Behavior, one proc. in proc. seq. sem. dist. � TBPDmismatch

4b Behavior, rest proc. in proc. seq. sem. dist. � TBPDmatch

5 Behavior, individuals sem. dist. � TBID
6 Structure sem. dist. � TSD

Table 4.1: Summary of similarity metric conditions for innovative design

When spreading activation retrieves an intermediate concept, the mapping component

�rst generates a general mapping of the entire target representation to the entire IC repre-

sentation. Next, the mapping component divides the mapping into �ve portions based on

the portions of the target representation shown in Figure 4.2, and it calculates the degree of

isomorphism and semantic distance for each submapping. Semantic distance for a mapping

is simply the average path distance between nodes which are mapped. Isomorphism for

a mapping is the percentage of nodes and links from the graphs which are mapped to a

node or link in the other graph. The mapping component then compares each rating to the

applicable similarity metric condition for innovative design.

Table 4.1 lists the similarity metric conditions. These conditions can be summarized in

English as:

(1) The isomorphism between the functions must be high.
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(2) The semantic distance between the process sequences of the functions must be low.

(3) The isomorphism between the process sequences of the behaviors must be high.

(4) The semantic distance between the process sequence of the behaviors must be (a) high

for one mismatching process, and (b) low for all of the rest.

(5) The semantic distance between the individuals of the behaviors must be high.

(6) The semantic distance between the structures must be high.

Conditions 1 and 2 enforce the \similar function" requirement by ensuring that the

functions are isomorphic overall and match very closely in the processes of their functions.

Conditions 5 and 6 enforce the \di�erent structure and behavior" requirement by ensuring

that the semantic distances between structure and the individuals of the behaviors is high.

And conditions 3 and 4 enforce the adaptability requirement by making sure that only one

process in the behavior sequence mismatches badly, and that the behavior representations

are shaped similarly enough that replacement of the target's mismatching behavior with

the base's is likely to lead to a working design.

The values for the particular thresholds in Table 4.1 can be determined in any number

of ways. In IDA, the threshold values are determined empirically|i.e., by noticing what

seem to be high and low values for semantic distance and isomorphism. However, one could

also imagine simple techniques for learning these thresholds similar to the methods used to

learn weights on links for spreading activation.

Mappings which meet the similarity metric are returned from KDSA as �nal analogies.

Mappings which did not meet the similarity metric are passed along with a record of their

evaluations to the search control component. The record of an evaluation consists of a list

of the mapping's performance with regard to each similarity metric condition|whether it

meets the condition, and if not the degree of miss.
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Condition:

Newly retrieved IC has some portions P1; : : : ; Pn that are within some threshold

of meeting the applicable condition from the similarity metric.

Action:

Add P1; : : : ; Pn to the list of promising components LP ;

Clear all activation in the knowledge base;

For each promising component P in LP , make P a source of activation.

Figure 4.3: Activate Promising Concept Heuristic

4.2.3 Search Control

KDSAID's search control heuristics guide the search toward likely analogues. They have

two major purposes: (1) increasing the likelihood that future spreading activation searches

will retrieve devices that score well in the mapping component's similarity metric, and

(2) reducing the amount of search unnecessary to accomplishing purpose 1. They work by

changing the activation levels of concepts in the KB and retrieval condition of the spreading

activation mechanism based on past mapping evaluations.

There are four major search control heuristics in KDSAID|activate promising con-

cept, prune unpromising concept, cross-domain bridge, and modify retrieval condition. Each

heuristic is described below.

Activate Promising Concept

The applicability condition and action of the activate promising concept heuristic are

shown in Figure 4.3. This heuristic strengthens the activation levels of portions of concepts

which meet (or come close to meeting) conditions in the similarity metric. It also clears all

other activation in the semantic network so that the subsequent spread of activation starts

a new search.

This heuristic allows KDSA to search based on the strengths of near-analogies it has

seen before. Each time the mapping component encounters a new IC with portions that

look good, it sets up a new intersection search [Quillian, 1968] to �nd the intersection of
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Condition:

Newly retrieved IC has some portions P1; : : : ; Pn which meet a threshold for

being considered \unpromising" for the applicable condition from the similarity

metric.

Action:

Clear all activation in P1; : : : ; Pn;

Remove P1; : : : ; Pn's ability to receive activation.

Figure 4.4: Prune Unpromising Concept Heuristic

all promising portions it has seen previously. As the search progresses, and KDSA sees

more and more portions of concepts which meet or nearly meet the similarity metric, the

spreading activation searches conducted should start with sources which are more and more

semantically close to a base that will meet the similarity metric.

This heuristic is task- and domain-independent. Since it says only to start new searches

based on the strengths of what has been seen before, it is usable with any similarity metric.

Prune Unpromising Concept

The applicability condition and action of the prune unpromising concept heuristic are

shown in Figure 4.4. This heuristic not only clears the activation level of unpromising

portions of ICs; it also removes their ability to receive activation in the future. This of

course also means that those unpromising portions will be unable to pass activation in the

future, and that in turn will dampen the activation of the area of the KB surrounding

the unpromising portions. This heuristic, then, will have two e�ects: 1) increasing search

e�ciency by having the search spread less activation in unpromising areas of the KB, and 2)

increasing the quality of future retrieved concepts by keeping activation away from concepts

semantically close to the unpromising ones. Like the activate promising concept heuristic,

this heuristic is task-independent.

Cross-Domain Bridge
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Condition:

Semantic distance between the structures of the newly retrieved IC and the target

is below some (low) threshold;

Newly retrieved IC is an example of a concept A that is a generic abstraction.

Action:

Add A to the list of promising components LP .

Clear all activation in the knowledge base.

For each promising component P in LP , make P a source of activation.

Figure 4.5: Cross-Domain Bridge Heuristic

The applicability condition and action of the cross-domain bridge heuristic are shown

in Figure 4.5. This heuristic provides KDSA with a method of jumping out of the target's

domain when it is looking for a semantically distant analogy. It does this by capitalizing

on concepts that are known instances of generic abstractions|generic descriptions which

describe several concepts in di�erent domains. For example, a \
ow system" is a generic

abstraction which may have as instances an irrigation system, the human circulatory system,

a highway, a communications network, and other concepts that are often abstractly or

metaphorically described as involving \
ow".

Obviously, if the target itself is already an example of a generic abstraction, the KB

may already have many built-in cross-domain analogies for the target, and there may be no

need to do a long search for an analogy. This heuristic recognizes that the target, which is

often poorly understood relative to other concepts in the knowledge base, may not yet be

understood in terms of some global abstraction. However, some concepts near the target

may be better understood as examples of generic abstractions which span several domains,

and these concepts can be used by the search as a bridge into one of these other domains.

In this way, KDSA is able to capitalize on previous analogical reasoning and analogical

learning in the system, even if that analogical learning did not directly involve the target

concept.

The heuristic is triggered when a retrieved IC is in the same domain as the target (here
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Condition:

Semantic distance between the structures of the newly retrieved IC and the target

is below some (low) threshold.

Action:

Modify the spreading activation retrieval condition to retrieve devices based only

on high cumulative activation of the device's behavior.

Figure 4.6: Modify Retrieval Condition Heuristic

\same domain" is determined by semantic closeness to the structure of the target) and is

known to be an example of a generic abstraction. The generic abstraction in these cases

is added to the list of activation sources for KDSA's search, allowing future searches to

immediately retrieve other instances of the generic abstraction.

This heuristic is not task-independent, since it focuses speci�cally retrieving semantically

distant analogies. However, it is also not necessarily speci�c to the task of innovative design.

Provided a criterion for \same domain"-ness can be constructed for the task (for innovative

design this heuristic uses semantic distance on structure), the heuristic should be applicable

in any task in which a semantically distant analogy is required.

Modify Retrieval Condition

The applicability condition and action of the modify retrieval condition heuristic are

shown in Figure 4.6. This heuristic changes the metric spreading activation uses to retrieve

the next concept to one which is based only on the behavior of devices. That is, after this

heuristic is executed, a device will be retrieved by spreading activation if and only if the

representation of its behavior is highly activated. The justi�cation for this heuristic is as

follows: if spreading activation is retrieving concepts based primarily on semantic closeness

in structure, then structure is playing much too large a role in the retrieval process. Since the

function representation usually provides very little on which to base a retrieval|function

representations are often very small|the only portion of the device left on which to base

the retrieval is the behavior. This heuristic is speci�c to the task of innovative design.
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Sources of

activation

Next retrieved

concept

Evaluation Search control

heuristic(s)

sprinkler irrigation

(entire concept)

plumbing system no mismatching

process, behavior

and structure

indiv. too

semantically close

activate promising

concept, modify

retrieval condition

sprinkler irrigation

(entire concept),

plumbing system

behavior and

function

spraying fountain fails on almost

every condition

prune unpromising

concept

none.

(continuation of

previous search)

digestive system isomorphism in

behavior process

sequence too low

activate promising

concept

sprinkler irrigation

(entire concept),

plumbing system

behavior and

function, digestive

system structure

circulatory system meets similarity

metric

none|concept

returned as �nal

analogy

Table 4.2: Example of KDSAID used to retrieve circulatory system as an analogy for the

innovative redesign of sprinkler irrigation.

4.3 Example

This section presents a detailed example of a retrieval process guided by the heuristics

described in this chapter. In the example, the goal is to redesign the notion of sprinkler

irrigation using an analogy. The example is presented in a similar manner to the example in

Section 1.3, the di�erence being that this example refers more speci�cally to the mapping

and search control heuristics applied. This example is based on the behavior of IDA,

but di�ers from IDA in the exact organization and behavior of the heuristics. Table 4.2

summarizes the execution of KDSAID during the retrieval process in this example. That

execution is described in detail below:

1. The nodes contained in the representation of SPRINKLER-IRRIGATION-SYSTEM

are made sources of activation, and the spreading activation process begins.
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2. After a few cycles of spreading activation, PLUMBING-SYSTEM is retrieved. This

represents that portion of a municipal plumbing system which is concerned with the

delivery of water from a water source to many homes. This device is mapped to

SPRINKLER-IRRIGATION-SYSTEM, and the mapping is evaluated. The mapping

passes the similarity metric on conditions 1 (since the abstract functions of the two de-

vices, distributing water to plant roots, and distributing water to homes, have graphs

representing them that are exactly the same shape), 2 (since both devices are per-

forming DELIVERY), and 3 (since both devices have three-stage chains of behavior).

The mapping fails on condition 4, since the mismatching processes|SPRAYING and

POURING|are not semantically distant enough. The mapping also fails on condi-

tions 5 and 6, since many structural components and substances are shared between

the two devices (PUMP, PIPE, WATER, etc.).

The mapping evaluation is passed to the search control component, where PLUMB-

ING-SYSTEM's process sequence in behavior and entire function are evaluated by the

activate promising concept heuristic as promising. Also, the modify retrieval condition

heuristic is �red, changing spreading activation's retrieval condition to retrieve only

on a device's behavior.

3. A new spreading activation search is started with sources SPRINKLER-IRRIGA-

TION-SYSTEM (the entire concept), PLUMBING-SYSTEM's function, and PLUMB-

ING-SYSTEM's behavior process sequence. The next system retrieved is SPRAY-

ING-FOUNTAIN, which simply represents a fountain which sprays water into the air

and collects the water in a pool. This concept fails every similarity metric condi-

tion except condition 3|it is dissimilar in function, and too similar in behavior and

structure to SPRINKLER-IRRIGATION-SYSTEM to be even close to a useful ana-

logue for redesign. The prune unpromising concept heuristic clears the activation of

SPRAYING-FOUNTAIN and removes its ability to receive activation for the rest of

the search.

4. The spreading activation search continues from where it left o�, and the next concept
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retrieved is DIGESTIVE-SYSTEM, because of its behavioral and functional similar-

ities to the previously activated PLUMBING-SYSTEM. This concept meets every

condition in the similarity metric except 3 and 4|the DIGESTIVE-SYSTEM sat-

is�es the \similar function" and \di�erent structure and behavior" criteria, but the

behavior simply does not map well enough for the system to know how to perform

the transfer step. The evaluation is passed to the promising concept, where the acti-

vate promising concept heuristic makes the entire concept of DIGESTIVE-SYSTEM

a source of activation. Spreading activation starts a new search.

5. The next concept retrieved is CIRCULATORY-SYSTEM, because of its semantic

closeness to DIGESTIVE-SYSTEM. This concept meets the similarity metric: it has

a similar function, DISTRIBUTE, a semantically distant structure and behavior, the

sequence of processes corresponds well in all but one case, and that one case|the map-

ping of CIRCULATORY-SYSTEM's DIFFUSION to SPRINKLER-IRRIGATION-

SYSTEM's SPRAYING|provides a candidate transfer for the analogical inference.

KDSA returns this mapping as the �nal analogy.

Based on this analogy, the transfer step produces a new behavior graph with the SPRAY-

ING process from SPRINKLER-IRRIGATION-SYSTEM's behavior replaced with DIFFU-

SION. This \design" is of course extremely abstract and far from complete, but it is con-

ceivable that it could cause a human designer or a sophisticated computer design system

to generate the idea of drip irrigation, where water is delivered to plant roots by slowly

dripping out of porous \capillary" hoses.

4.4 Discussion

There is a key general issue raised by the model of analogy retrieval for design presented

here: the issue of the level of detail needed in the design process. This issue is encountered

in two ways in the model presented above. First is the level of detail in the speci�cation of

the design. KDSAID's design system is presented with a very abstract and simple design
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speci�cation: \Redesign device x in an innovative way". Even with this very high level of

speci�cation, the system does get an abstract functional speci�cation for the new device (it

must be the same as the function of device x), and open-ended constraints on the behavior

and structure of the new device (they must be di�erent from those of device x). But there of

course are many other more speci�c constraints possible in a design speci�cation. A redesign

speci�cation can (and often does) include speci�c shortcomings of the existing device to

overcome, speci�c behavioral or structural constraints, or a functional speci�cation which

is di�erent in some way from the functional speci�cation of the existing device. The general

way of handling more detailed speci�cations in this model is clear: make any requirements

for the new design be a required part of the analogy, in the same sense that the function is

a required part of the analogy in KDSAID. So if there is an extra behavioral speci�cation

for the redesign, a candidate analogue must match that behavioral speci�cation as well as

the function in order to be useful for creative design. This only gives a partial answer,

however. There are several speci�c issues which must be dealt with before we have a

general solution to the problem of more detailed and constrained design speci�cations. For

example, what conditions determine whether a base \matches" a behavioral or structural

constraint? And, how can the system infer whether the behavioral or structural constraint

is analogously satis�ed in the base if it is not explicitly represented?

The second way this model encounters the issue of detail is in the representation of

devices. The assumptions about representation described earlier in this chapter specify

an abstract level of description for devices. This type of representation, while useful for

some types of reasoning (explanation, natural language processing), is not useful for other

types of reasoning often performed with devices (simulation, diagnosis, detailed design).

However, this abstract level of representation is important in the process of innovative

design by analogy. It is essential for high-level conceptual design that the high-level features

of the device be prominent in the representation. The alternative|representing a device's

behavior by a set of quantitative or qualitative parameters and equations|could bog down

the analogy process by causing it to focus on unnecessary detail. It is possible to use more

detailed representations of devices in the innovative redesign model described in this chapter,
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but the best way of using them is to automatically derive more abstract representations

based on the detailed representations before creating the analogies, i.e., to add the following

steps to the analogical design process: (1) abstract the representation of the target, (2)

abstract the representation of each candidate base concept as it is retrieved, (3) generate

a design by analogy at the abstract level, and (4) specialize the abstract design. This

approach allows the analogy to focus on high-level process and con�guration issues, rather

than conditions on low-level variables.



Chapter 5

Theoretical Analysis

If KDSA is to be a successful mechanism for general analogy retrieval in large knowledge

bases, it must overcome the computational di�culties other retrieval methods (e.g., standard

spreading activation) have when searching through large amounts of information. That is,

it must be able to retrieve semantically distant analogies while only examining a small

portion of the total KB. Ideally, the tractability of KDSA �nding distant analogies in large

KBs would be tested empirically|i.e., by running KDSA with various target concepts in an

actual large knowledge base and measuring the amount of time taken to retrieve semantically

distant analogies. However, since the development of very large knowledge bases is still in

its infancy and actual KBs of this type are not yet ready for such testing, the empirical

tests will have to be done in a relatively small KB (see chapter 6). It is possible, though, to

analyze the expected performance of KDSA theoretically, examining performance not only

in large KBs, but also in di�erent general KB con�gurations and problem types.

This chapter presents such a theoretical model, and evaluates KDSA's behavior based

on the predictions of that model. The model quantitatively predicts the computational

e�ort involved in retrieving analogies based on a number of parameters, including semantic

distance required of the analogy, KB size, e�ort of each of KDSA's beacon searches, and

bene�t of each of KDSA's beacon searches. The model shows that KDSA's use of beacons

to guide search does allow it to avoid examining a large portion of the total KB.

54



5.1. ASSUMPTIONS OF THE MODEL 55

5.1 Assumptions of the Model

Let S = (V;E) be a semantic network knowledge base with nodes V and links E. The size

of the knowledge base will be measured as the number of nodes K = jV j. The branching

factor of the knowledge base is b = jEj=jV j, and is assumed to be constant throughout the

entire KB, i.e., each node in V is assumed to be adjacent to exactly b links. The links in the

knowledge base are assumed to be randomly and uniformly distributed across the nodes.

I.e., the semantic network can be thought of as having been constructed with the following

algorithm:

for each v 2 V begin

pick b nodes randomly from V and create a link from v to each of them;

add the new links to E;

end.

All concepts or types will be de�ned in the semantic network as subgraphs (V 0 � V;E0 � E)

of S.

5.1.1 Modeling Spreading Activation in a Graph

Standard spreading activation will be modeled as marker passing through S starting at

a target graph GT , and �nishing when some designated base graph GB, which meets the

desired similarity metric, is retrieved. The marker passing in this theoretical model will

be strictly breadth-�rst. That is, the activation level of a node is simply a boolean value

rather than a numeric value, and each marked node will pass a mark to all of its neighbors

in a cycle. There is no notion of decay in this model, and no selective spread of activation

along only certain links or link types.

The spreading activation path distance between two graphs G1 and G2, d(G1; G2) will

be de�ned as the number of spreading activation cycles needed to retrieve G2 after making

G1 (and only G1) a source.
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5.1.2 Modeling KDSA

KDSA between GT and GB will be modeled as a sequence of standard SA searches along a

sequence of promising beacon graphs, GT ; G1; G2; : : : ; Gn�1; GB. That is, KDSA will consist

of �rst an SA search from GT to G1, followed by an SA search from G1 to G2, and so on

until GB is retrieved. The bene�t of an individual promising search, �d(Gi; Gi+1; GB), will

be de�ned as how much closer to the base Gi+1 is than Gi:

�d(Gi; Gi+1; GB) = d(Gi; GB)� d(Gi+1; GB)

5.2 Time Cost of Standard Spreading Activation in Graphs

The computational cost of a spreading activation search will be assumed to be the number

of nodes marked during that search. This ignores the cost of retrieving and mapping

concepts which meet the spreading activation retrieval condition during the course of the

search. However, it is reasonable to expect that this cost will be directly proportional to

the number of nodes marked, i.e., that there will be one concept retrieved and mapped for

every 1=n marked nodes in the semantic network, for some n.

Let ni be the number of previously unmarked nodes that are activated during level i of

a spreading activation search. During level i of a search, spreading activation will attempt

to mark bni�1 nodes. However, some of these nodes will be nodes that were already marked

in the i�1 previous levels of the search, and some will also be duplicates within the current

level. These two sources of duplication will be handled separately, �rst by calculating the

number of unique nodes marked in level i, and then by calculating the number of those

nodes which have not been marked in previous levels of the search.

The number of unique nodes activated by level i will be (Kbni�1�(K�1)bni�1)=Kbni�1�1

as derived from the following lemma:

Lemma 5.1 The expected number of unique nodes marked when n total are marked is

(Kn � (K � 1)n)=Kn�1.
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Proof: Let Dn be a random variable representing the number of unique nodes marked

after n total have been marked. Since nodes in the semantic network are assumed to be

randomly distributed throughout the graph, the nth node marked will have a Dn�1=K

probability of being one of the Dn�1 unique nodes seen so far. Given this probability, the

expected value of Dn can be calculated in terms of the expected value of Dn�1:

E(Dn) = E

�
1�

Dn�1

K
+Dn�1

�

= E

�
Dn�1

�
1�

1

K

�
+ 1

�

= E (Dn�1)

�
1�

1

K

�
+ 1

Using this formula for E (Dn), we can prove the lemma by induction:

base case: When n = 1, E (Dn) =
K�(K�1)

1 = 1.

induction case: If the induction hypothesis holds for E (Dn�1), then

E (Dn) = E (Dn�1)
�
1� 1

K

�
+ 1

= Kn�1�(K�1)n�1

Kn�2

�
1� 1

K

�
+ 1

= Kn�(K�1)n

Kn�1 2

Since there are bni�1 total nodes marked during level i of a spreading activation search,

from the lemma we can expect
�
Kbni�1 � (K � 1)bni�1

�
=Kbni�1�1 of those to be unique.

Of those unique nodes, some percentage will already have been marked in the i �

1 previous cycles of spreading activation. Since nodes are randomly distributed in the

semantic network, this percentage is simply the ratio of nodes already marked to the total

number of nodes in the KB, or
Pi�1

j=0 nj=K. So we can express the number of unique

previously unmarked nodes marked in cycle i of a spreading activation search as:

ni =

 
Kbni�1 � (K � 1)bni�1

Kbni�1�1

! 
1�

Pi�1
j=0 nj

K

!

= K
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�
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Let Ni =
Pi

j=0 nj be the total number of nodes marked by a spreading activation search up

to and including cycle i. Then

Ni = Ni�1 + ni
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= Ni�1 +K

 
1�

�
K � 1
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�b(Ni�1�Ni�2)
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�

So the total number of nodes marked by a spreading activation search up to and including

cycle i is given by the recurrence relation:

Ni =

8>>>><
>>>>:

0; i = 0

jGT j; i = 1

Ni�1 +K

�
1�

�
K�1
K

�b(Ni�1�Ni�2)
��

1�
Ni�1

K

�
; i > 1

(5:1)

(Here jGT j represents the number of nodes contained in GT .)

This recurrence equation represents the total computational e�ort in a spreading acti-

vation search of depth i. The computational cost of searching from GT to GB by standard

spreading activation will then be Nd(GT ;GB). This recurrence equation does not have a

known closed form, but even in its present form it allows us to inspect and analyze the

behavior of SA and KDSA under a variety of general problem types.

5.3 Time Cost of KDSA

As noted before, KDSA is modeled as a series of standard SA searches. The total cost of

KDSA between GT and GB will depend on the cost of each beacon subsearch, Nd(Gi;Gi+1),

and the bene�t gained from each beacon subsearch, �d(Gi; Gi+1; GB). In particular, the

cost of a KDSA search from GT to GB is given by the rather complex formula:

KDSA(GT ; GB) =

Pi

j=0
�d(Gj ;Gj+1 ;GB)�d(GT ;GB)X

i=0

Nd(Gi;Gi+1) (5:2)

In other words, the cost of KDSA is determined by summing the costs of individual beacon

searches between Gi and Gi+1, until the sum bene�t of the beacon searches so far (in terms

of path distance) equals or exceeds the path distance between GT and GB.

This formula can be simpli�ed signi�cantly by making the assumption that each beacon

search is of a constant depth dp, and has a constant bene�t �dp. In this case, the number

of searches will be simply d(GT ; GB)=�dp, and the cost of each search will be Ndp:

KDSA(GT ; GB) =
d(GT ; GB)

�dp
Ndp (5:3)
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Most of the analysis of the following section (5.4) shows the behavior of KDSA assuming

only the simpli�ed formula 5.3. However, the last two subsections relax the assumptions

about constant depth and constant bene�t, respectively, and show behavior of KDSA based

on equation 5.2.

5.4 Theoretical Results

The analysis above allows us to examine the predicted performance of KDSA under a wide

variety of circumstances, and compare its performance to standard spreading activation.

Each section below describes the behavior of KDSA and SA as a speci�c parameter of the

model|semantic distance of the analogy, size of the KB, etc.|changes. For each section,

a graph will demonstrate the behavior of KDSA compared to standard SA. The time cost

of standard SA in these graphs is calculated as Nd(GT ;GB) by formula 5.1, and the time cost

of KDSA is calculated as KDSA(GT ; GB) from either formula 5.3 (used unless otherwise

stated) or formula 5.2. In each case, the values of other parameters were chosen to re
ect

a \typical" case of interest to this thesis|i.e., �nding a semantically distant analogy in a

large knowledge base|and to re
ect conservative values for the cost and bene�t of each

KDSA beacon search|i.e., the cost/bene�t ratio of each beacon search was high. In each

section, the behavior of KDSA in other, \non-typical" cases is also discussed.

5.4.1 Time cost as search depth grows

Figure 5.1 graphs the costs of SA and KDSA as they vary with d(GT ; GB), the path distance

between the target and the base graphs. For this graph, the knowledge base size was set at

1,000,000 nodes, the branching factor was set at 4, each KDSA beacon search was assumed

to be of path length 7, and each beacon search was assumed to lead to a graph which

was path distance 2 closer to the base graph. For this graph, both the cost and bene�t

of a beacon search is assumed to be constant throughout the entire KDSA process. These

choices of parameter values correspond to a large KB where the bene�t of each beacon

search seems low compared to the e�ort involved.
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Figure 5.1: Cost of search as search depth from target to base (d(GT ; GB)) grows. K =

1; 000; 000, b = 4, dp = 7, �dp = 2, jGT j = 1.

Since KDSA is linear only in the path distance between GT and GB , and not the total

cost of the SA search between those two graphs, its cost increase is linear with the path

distance. The cost of SA, on the other hand, increases roughly exponentially with path

distance until the algorithm starts encountering a signi�cant number of nodes it has marked

before, at which time the graph asymptotically approaches some number less than the total

KB size, K. The conclusion we can draw here is that, when a very high degree of semantic

distance between analogies is required, KDSA is likely to be much less computationally

expensive than standard SA.

For semantically close analogies, Figure 5.1 shows KDSA as having higher cost than SA.

However, this is largely because of the model's unrealistic assumption that KDSA always

does d(GT ; GB)=�dp beacon searches, even in cases when it would actually encounter the

base before it encountered a beacon concept. So, for example, Figure 5.1 should actually

show KDSA having equal cost to SA when d(GT ; GB) is 7 or less, since KDSA would

encounter the base concept (which is 7 or fewer spreading activation cycles away) before it
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encountered the �rst beacon concept (which is assumed to always be 7 spreading activation

cycles away in Figure 5.1).

Even with a correction for bases which are closer than the beacon search distance, it is

still possible for KDSA to be more expensive than SA. There are two reasons for this. First,

the model assumes (realistically) that KDSA's beacon searches are not along the ideal path

to the base graph. Second, in graph search, there is an overhead involved in doing multiple

graph searches|each new beacon search visits and marks nodes which were already marked

in previous beacon searches. Figure 5.1 shows that, even when the search:bene�t ratio of

the beacon searches is high (it is 3.5:1 in the graph shown), and therefore the amount of

overhead involved in KDSA is also high, KDSA is still able to avoid searching a large portion

of the knowledge base which is searched by standard SA. In particular, Figure 5.1 shows

that it is almost exactly as expensive to do four SA searches of depth 7 than it is to do one

SA search of depth 8, even considering that the search is graph search.

This is because of the overhead inherent in doing many of these separate searches|

unlike the abstraction planning model, where you are constantly moving \forward" and

expanding new states|because you are double-counting many nodes which you've seen two

or three times before.

5.4.2 Time cost as KB size grows

Figure 5.2 graphs the cost of SA and KDSA as K, the number of nodes in the knowledge

base, varies. For this graph, most parameters other than KB size were set to the same values

as in Figure 5.1: the KB branching factor is 4, each KDSA beacon search is of depth 7,

each beacon search gets path distance 2 closer to the base, and the size of the target graph

is assumed to be 1 node. The distance between the target and the base, d(GT ; GB), is set

to 13|we can see from Figure 5.1 that this distance corresponds to a semantically distant

analogy, in the sense that standard spreading activation will examine a high percentage of

the entire knowledge base before retrieving a base of this distance.

Figure 5.2 shows the cost of SA as roughly linear in the size of the knowledge base.

Since SA is examining most of the knowledge base before retrieving the analogy, it seems
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Figure 5.2: Cost of search as knowledge base size (K) grows. d(GT ; GB) = 13, b = 4,

dp = 7, �dp = 2, jGT j = 1

natural that the cost of SA would be directly proportional to the size of the KB. KDSA, on

the other hand, appears roughly logarithmic in the size of the KB. This also makes intuitive

sense: since KDSA is conducting only a series of 7-deep beacon searches, and since the

branching factor involved in those searches is assumed to remain constant as the KB size

grows, KDSA should see roughly the same number of nodes in each of those 7-deep searches,

regardless of the size of the KB. In other words, the nodes being added are generally those

which will not be reached by the small sub-searches conducted by KDSA.

One key assumption behind Figure 5.2 is that the size of the knowledge base grows

without a�ecting the KB's branching factor. The model assumes that each node added to

the KB is adjacent to exactly the same number of links as every other node in the KB. It is

conceivable that, as more and more knowledge is entered into a KB, more and more will be

known about the relationships between existing concepts in the KB, and thus the number

of links per concept in the KB will grow. On the other hand, it is equally plausible that

the branching factor will actually shrink as a KB grows: it is possible that the concepts

which are best understood and thus most highly connected to other concepts will be entered
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into the KB �rst. The actual relationship of branching factor to KB size is one that can

be investigated empirically and is beyond the scope of this thesis. It is important to point

out, though, that the shape of the graphs in Figure 5.2 is dependent on the assumption of

constant branching factor.

Another simpli�cation of the model re
ected in Figure 5.2 is the assumption that the

added knowledge in the KB will not e�ect the sequence of beacon concepts used by KDSA

to guide its search. That is, the model used to generate Figure 5.2 assumes that KDSA will

use the same sequence of beacon concepts G1; : : : ; Gn�1 to guide it to the base, regardless

of the size of the KB. This simpli�cation probably unrealistically in
ates the time cost of

KDSA. In reality, we would expect the growth of the knowledge base to add some additional

concepts which would be evaluated as promising by KDSA, and some of those would be

encountered before a beacon used in the search of a smaller KB, and thus would be used

as beacons themselves. It seems reasonable to expect that the bene�t of these new beacons

would be no worse (or better) than the bene�t of the other beacons; the only parameter that

new beacons would change is the average distance between beacons in the KDSA search.

We could expect, then, that as K grows, dp will shrink, further decreasing the search time

of KDSA.

5.4.3 Time cost as cost of promising searches changes

Figure 5.3 graphs the cost of SA and KDSA as dp, the semantic distance between beacons

in the KDSA search, varies. For this graph, most parameters other than dp were set to the

same values as in the previous graphs: the KB size is 1; 000; 000 nodes, the KB branching

factor is 4, the path distance between target and base is 13, each beacon search gets path

distance 2 closer to the base, and the size of the target graph is assumed to be 1 node. The

cost of standard spreading activation of course does not change as dp is varied, since it is

not using search control.

This graph shows that KDSA can be much more e�cient than standard SA even when

the cost of each beacon search is very high relative to the bene�t gained from it. In Figure

5.3, each beacon search gets KDSA only path distance 2 closer to the base, but even when
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Figure 5.3: Cost of search as beacon search depth (dp) grows. K = 1; 000; 000, d(GT ; GB) =

13, b = 4, �dp = 2, jGT j = 1

it has to search as many as 8 levels to get this bene�t of 2 levels for each beacon search,

KDSA is still many times more e�cient than standard SA.

5.4.4 Time cost as bene�t of promising searches changes

Figure 5.4 graphs the cost of SA and KDSA as �dp, the bene�t (in terms of semantic

distance) gained by each beacon search, varies. As before, for this graph, most parameters

other than �dp were set to the same values as in the previous graphs. The cost of standard

spreading activation does not change as �dp is varied, since it is not using search control.

This graph shows a similar qualitative result to the last one|KDSA is much more

likely to be tractable in �nding semantically distant analogies in a large KB, even when the

cost/bene�t ratio of KDSA's beacon searches is high. Figure 5.4 shows that when a search

of depth 7 only shrinks the expected distance to the base by 1 or even 0.5, KDSA is still

many times more e�cient than standard SA.
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Figure 5.4: Time cost as bene�t of beacon search (�dp) grows. K = 1; 000; 000,

d(GT ; GB) = 13, b = 4, �dp = 2, jGT j = 1

5.4.5 Time cost with di�erent distributions of promising concepts

The situations graphed so far have all relied on there being a constant cost and bene�t to

each of KDSA's beacon searches. This may be a reasonable simplifying assumption for the

purposes of a general evaluation of KDSA's tractability, but of course the constant cost

and bene�t assumption will not hold true in practice. What about di�erent distributions

of beacons in the knowledge base? For example, how much will one di�cult beacon search

during the course of KDSA a�ect its tractability? The theoretical model allows us to

answer questions such as these by using the more general equation describing KDSA's time

complexity, equation 5.2.

Figure 5.5 shows the behavior of KDSA under one of these other possible distributions

of promising concepts in the KB. It deals with the case where all beacon searches in the

KB are of constant depth (7) except one; the cost of KDSA is graphed against the depth of

this \anomalous" beacon search. The other parameters for this �gure are set to the same

values as in the previous graphs. The cost of standard SA remains constant in this graph,
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Figure 5.5: Cost of search as depth of one anomalous beacon search (d(Gi; Gi+1), for some

i) grows. K = 1; 000; 000, d(GT ; GB) = 13, b = 4, d(Gj ; Gj+1) = 7 for all j 6= i, �dp = 2,

jGT j = 1

as it did in the previous two, because it does not include search control.

The lesson to be taken from this graph is similar to the lesson of the previous two:

KDSA is more tractable than standard SA even when cost of beacon searches is relatively

high. In particular, in this graph we can see that KDSA remains more e�cient than SA

even when the depth of the anomalous beacon search approaches the total semantic distance

between the target and the base (13). It seems reasonable to conclude that isolated di�cult

beacon searches during the course of a KDSA search will not a�ect the tractability of the

algorithm, provided they are not too di�cult|i.e., as di�cult as an SA search from target

to base.

5.4.6 Time cost with di�erent distributions of beacon concept bene�t

So far the situations considered have all assumed that every concept which KDSA uses as

a beacon during the course of its search is actually closer to the base than the previous

one. This would be nice if it holds in practice, but a more likely scenario is that KDSA's
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Figure 5.6: Cost of search as percentage of bad beacons (100
m
) grows. K = 1; 000; 000,

d(GT ; GB) = 13, b = 4, d(Gj; Gj+1) = 7, �dp = 2, �dbad = 2, jGT j = 1

heuristics will not be perfect|some concepts evaluated as beacons by KDSA will actually

place the search further away from the base. The e�ect of these \bad beacons" can be

evaluated by the theoretical model.

Suppose that 1
m
th of the beacons encountered actually take KDSA �dbad levels away

from the base. The remainder of the beacons still get the search �dp levels closer to

the base. Then for every m beacons encountered, KDSA will have gotten on average

(m� 1)�dp ��dbad levels closer to the base. In this case, equation 5.2 is modi�ed to give

a new cost for KDSA:

KDSA(GT ; GB) =
md(GT ; GB)

(m� 1)�dp ��dbad
Ndp

Figure 5.6 shows time to retrieve an analogy as the percentage of bad beacons in KDSA's

search ( 1
m
) varies. In this graph, each good beacon is assumed to take KDSA 2 levels closer

to the base, and each bad beacon is assumed to take KDSA 2 levels away from the base

(dp = dbad = 2). The other parameters are chosen to be the same as in previous graphs.

The cost of standard spreading activation remains constant in this graph because SA uses
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no beacons.

Figure 5.6 demonstrates that KDSA should be robust in the face of bad beacons, pro-

vided that most of the beacons it encounters do in fact bring the search closer to the base.

If KDSA's evaluation heuristics are poor enough that the expected bene�t of a beacon is

very close to 0 (or less than 0), then KDSA can spend its time thrashing between beacons,

never �nding a �nal base.

5.5 Discussion

A number of issues raised by the analysis and its assumptions should be discussed in more

detail. First is the issue of the knowledge base's branching factor. The branching factor

will determine how quickly (i.e., in how few cycles) spreading activation will mark (nearly)

all of the nodes in the knowledge base. The higher the branching factor, the faster Ni

converges to a value close to the size of the KB, k. If the branching factor is high enough

that a spreading activation search to depth dp will mark the entire KB, then KDSA will

take roughly d(GT ;GB)
�dp

times longer to reach the base concept than standard SA. That is,

KDSA will mark the entire KB d(GT ;GB)
�dp

times to get to the base, while SA will mark the

entire KB once. This is what Figure 5.7 shows: with the base semantic distance 13 from

the target, and each beacon search getting 2 closer to the base, KDSA(GT ; GB) converges

to a value about 6:5 times larger than SA's cost in its search, N13, as the branching factor

grows large.

All this tells us is that if KDSA must search every node in the KB to �nd a beacon

concept, it is much worse than standard SA. That is trivially true. But this sort of scenario

is unlikely to occur in practice. The whole point of identifying beacon concepts is to �nd

concepts that can help direct the search well before marking the entire KB. If the branching

factor is such that a search of dp depth ends up marking the entire KB, the value used for

dp is probably unrealistically large. In practice, as the knowledge base's branching factor

grows and the knowledge represented becomes more densely connected, we would expect

the semantic distance between beacon concepts to shrink. Thus, the situation presented in
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search along the links of the semantic network. But in practice, SA's search can controlled,

both in KDSA (by KDSA's search control component) and in other approaches [Rau, 1987a;

Cohen and Kjeldsen, 1987]. However, these search control approaches easily �t within the

model presented here of SA as blind search. The search control used in Rau's and Cohen

and Kjeldsen's approaches (discussed in detail in Chapter 7) is primarily designed to reduce

the branching factor of the search. This can be dealt with in the theoretical model simply

by choosing b to be the search-control-reduced branching factor of the SA search rather than

the KB's overall branching factor. If there is any inaccuracy of the analysis in ignoring this

type of search control, it is probably to KDSA's disadvantage: KDSA will be able to take

advantage of the static types of search control developed by Rau and Cohen and Kjeldsen,

but it is also able to use dynamic search control which depends on the current state of the

search.

Finally, it is important to identify di�erences between this analysis and other sim-

ilar search analyses, particularly Knoblock's analysis of two-level hierarchical planning

[Knoblock, 1991]. Both this analysis and Knoblock's analysis are concerned with evalu-

ating the e�ort saved by identifying intermediate states in the search which can be taken

as new search starting points, i.e., points at which all other active nodes in the search can

be erased. But this analysis di�ers from Knoblock's in four important ways:

� Knoblock deals with search in a tree, while this work analyzes search in a graph. So

for this analysis, the e�ort required to search to depth i is given by the complicated

recurrence relation in Equation 5.1; for Knoblock's problem, that e�ort is bi.

� Because Knoblock's analysis considers tree search, the issue of revisiting already-

visited nodes does not come into play in abstraction-guided search. But it is a cost

which must be considered in KDSA.

� In Knoblock's analysis, all intermediate states are along the optimal path to the goal,

where the optimal path is the one that would be found by blind search at the base

level. There is no possibility considered that the a blind search at the bottom level

might be able to �nd a path to the goal which is much shorter than the path which
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passes through the intermediate states. This analysis deals with that possibility; in

fact, the situations looked at in section 5.4 all assume that the intermediate states are

far from the optimal path.

� Knoblock considers the amount of work required to generate the set of intermediate

states. This analysis assumes that the system can simply recognize them when it en-

counters them, and assumes that the overhead involved in this recognition is negligible

compared to the e�ort involved in the search.



Chapter 6

Implementation and Experiments

The previous chapter showed that KDSA is much more e�cient than standard spreading

activation at retrieving semantically distant analogies under a number of theoretical as-

sumptions. While these theoretical results give us reason to expect KDSA to be a tractable

analogy retrieval mechanism in an actual large knowledge base, they are still theoretical.

A complementary method of evaluating KDSA is to test an actual implementation of the

model under a variety of knowledge base conditions. This chapter describes IDA, an imple-

mentation of KDSA with heuristics for innovative design. The chapter �rst describes some

important details about the implementation itself. Next it presents the results from a set

of experiments run with IDA which agree with the theoretical model's prediction of large

knowledge base tractability. Finally, it discusses some of IDA's more surprising behaviors.

6.1 Implementation

IDA is written in BB1 [Hayes-Roth, 1990], an architecture for general intelligent behavior.

There are many important facets of BB1 that allow it to support a wide variety of rea-

soning and interacting with the world. For the purposes of this implementation, the most

important are: 1) representation of procedural knowledge as modular knowledge sources,

2) a decision cycle, in which knowledge sources are chosen for execution based on appli-

cability and importance to the current situation, and 3) an interface to the outside world.

72
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These features of BB1 allow IDA's implementation to look very much like the conceptual

framework shown in Figure 1.2.1

There are three major components to the software implementing IDA:

(1) The mapping evaluation and search control components, which are implemented as

BB1 knowledge sources. Knowledge sources are separate and modular reasoning op-

erations which specify the conditions under which they may legally execute and the

action to be taken when they do execute. The mapping and search control knowledge

sources compete for execution with any other knowledge sources active in BB1 at the

time.

(2) The graph matcher. This is a BB1 library function that produces the best mapping

between two graphs given speci�cations by the user. The speci�cations determine

the relative levels of importance of a) maximizing isomorphism and b) minimizing

semantic distance in the mapping. The graph matcher is used by a mapping evaluation

knowledge source to produce a mapping between IC and target whenever a new IC is

retrieved by spreading activation. The exact behavior of the graph matcher is given

in [Wolverton and Brownston, 1994].

(3) The spreading activation mechanism. This is a collection of BB1 library functions

which supports many di�erent speci�c 
avors of spreading activation. Its behavior is

also described in [Wolverton and Brownston, 1994], and its use in IDA is described in

the next section.

6.1.1 Spreading Activation

One di�erence between the framework of Figure 1.2 and the implementation is that IDA

does not have spreading activation as a separate architectural component. BB1 currently

does not include spreading activation as part of its memory model, so implementing KDSA

within BB1 as it currently stands necessitated calling a spreading activation mechanism from

within a knowledge source. This was done by implementing a knowledge source whose action

1However, we have not yet examined IDA's behavior when exposed to cues from the environment.
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is to spread activation one additional level; this knowledge source is always executable, but

is given lowest priority in execution|i.e., it will not run if any other knowledge source

is executable. The resulting behavior is more or less equivalent to having a spreading

activation process running in the background: it sits idle when there is any other reasoning

going on, and executes constantly otherwise.

The particular version of spreading activation used in IDA has these characteristics:

(1) Activation consists of numerical values between 0 and 1.

(2) The only links that spread activation (bidirectionally) are instance-type, subtype-

supertype, and part-whole links. Instance-type links spread 100% of a node's activa-

tion to a connected node, and the other two links spread 70%.

(3) A node receives activation from another node only if the amount it would receive is

greater than its current activation value. In other words, if node A is trying to pass ac-

tivation value x to node B, B's next activation level will beMAX(x; current activation(B)).

So a concept which is densely connected will not receive more activation because it

gets a small amount of activation from many di�erent sources; it will, however, tend

to receive more activation per cycle because it has a higher number of potential single

sources.

(4) A node which is a source of activation will have its activation progressively increased

from cycle to cycle until it reaches the maximum value of 1.

(5) There is no decay of activation over time.

(6) Graphs are retrieved when the average activation of every node in the graph is 0.5. A

device is considered an intermediate concept and evaluated by the mapping component

when one of its constituent graphs (structure, behavior, or function) is retrieved.

Some of the characteristics of the spreading activation used in IDA were determined by

IDA's similarity metric. Because semantic distance in a mapping is only dependent on path

distance in the type hierarchy, there is no reason to allow general spread of activation by all
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link types. Similarly, since the mapping component only permits one-to-one mappings, and

therefore a given node may only correspond to another node through a single path, there

is no reason to allow a single node to receive activation from multiple sources.

The technique of progressively increasing source activation levels came about because

of a di�culty with the temporal distribution of concept retrievals. With only a single,

static source activation level, spreading activation (after a few cycles) was retrieving many

di�erent concepts in a single cycle. The method of progressively increasing the activation

over time allows activation to reach deeper into the knowledge base in a given subsearch,

activating more nodes but with a lower level of activation, with the e�ect of spreading out

the distribution of concept retrievals over time. This allowed IDA to deal with only one (or

few) retrieved ICs at a time, making decisions based on only that small number of concepts

and adjusting the search accordingly. This had an overall bene�cial e�ect on KDSA's

performances. However, expanding each KDSA sub-search to deeper in the knowledge base

had detrimental e�ects on the amount of e�ort in spreading activation. These detrimental

e�ects are discussed below.

6.2 Experiments

6.2.1 Experimental Design

Ideally we would run experiments with IDA retrieving analogies from a true very large

knowledge base. Since the such KBs do not exist yet, those experiments will have to be

saved for future work. For now, we can observe IDA's behavior in small KBs under di�erent

con�gurations and from those observations extrapolate likely behavior in large KBs. In the

experiments reported here, we examine the time taken for IDA to retrieve a semantically

distant analogy in a small but heterogeneous KB as the knowledge base grows.

Knowledge Base Used

The knowledge base used for this experiment consists of 29 fully represented models of

devices. Each device is represented as an abstract fstructure, behavior, functiong model as
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AIRSHIP-AIR-BALLONETS-DIVE PLUMBING-SYSTEM-AS-WATER-DIST

AIRSHIP-AIR-BALLONETS-RISE RADIATOR

AQUALUNG RADIATOR-PATCH

BLINKERED-RR-CROSSING ROCK-CRUSHER

CIRC-SYS-AS-COOLING-SYS ROCKET-ENGINE

CIRCULATORY-SYSTEM SPRAYING-FOUNTAIN

DIGESTIVE-SYSTEM SPRINKLER-IRRIGATION-SYSTEM

ELECTRIC-GENERATOR SUBMARINE-BALLAST-TANKS-DIVE

FIRE-EXTINGUISHER SUBMARINE-BALLAST-TANKS-SURFACE

HYDRO-ELECTRIC-TURBINE TWO-WAY-STOP

INTERSTATE-HIGHWAY-SYSTEM VACUUM-CLEANER

ON-OFF-VALVE WATER-METER-WITH-COUNTER

ONE-WAY-VALVE WATER-METER-WITH-POINTER-DIAL

PISTON-PUMP WINDMILL

PLUMBING-SYSTEM-AS-WASTE-REMOVAL

Figure 6.1: Devices represented in knowledge base for experiments

described in Section 4.2.1. The devices chosen for representation re
ect a diverse collection

of domains and diverse sources of expertise. Four Stanford researchers provided one or more

device descriptions which were converted into models, and many of the other models were

based on a more-or-less random traversal of the book The Way Things Work [Macaulay,

1988]. The 29 devices represented in the knowledge base are shown in Figure 6.1. The

representations of these devices, along with the type hierarchy of concepts used in those

representations, comprises about 1100 total objects.

Data collection method

For these experiments, IDA was run on BB1 v3.2 running on top of Lucid Common Lisp

on a Sun SparcStation-10. Experiments were run on two separate retrieval examples: the

sprinkler irrigation ) circulatory system example of Section 4.3, and the blinkered RR

crossing ) on/o� valve example of Section 1.3.

The size of the knowledge base was varied randomly as follows. For each run, a set of n

randomly chosen knowledge-base �les|where each knowledge base �le contains de�nitions

of 1{3 devices from Figure 6.1|was loaded before run time. Those �les, along with the
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KB �les containing knowledge necessary for the example, comprised the knowledge base

known to IDA for that run. Only concepts that would be evaluated as \unpromising" by

IDA's mapping evaluation heuristics were eligible for exclusion from IDA's knowledge base;

the target, the base, and all promising concepts were automatically loaded. The number

n of knowledge base �les loaded was varied, and for each value of n, some number m of

separate runs were performed. For the sprinkler irrigation example, a total of 304 runs were

performed; for the railroad crossing example, 37 runs were performed.

For each knowledge base con�guration, the analogy retrieval example was run on both

KDSA and on standard spreading activation (SA), where SA consisted of running IDA

without loading its mapping and search control heuristics. A number of measurements of

the level of e�ort involved in retrieving the analogy were recorded:

(1) CPU time taken to retrieve the analogy, broken down into time spent spreading acti-

vation in the network, time spent mapping candidate analogies, and BB1 system time

(time spent in BB1's decision cycle).

(2) The total number of unique nodes activated during a search. For this measure, the

individual beacon searches of KDSA were each counted as separate searches, so the

KDSA measure is the sum over all of the beacon searches performed of the total

number of unique nodes activated. This means that nodes will be double-counted in

the KDSA measure, but cannot in the SA measure.

(3) The total number of attempts to spread activation from one node to another. These

attempts include all cases where activation is spread, even when the \spread" of

activation causes no change in the activation of the destination node.

(4) The total number of BB1 cycles taken to retrieve the analogue.

6.2.2 Results

The timing data for the sprinkler irrigation runs are shown in Table 6.1, and the graph

of total CPU time vs. KB size is shown in Figure 6.2. The same information and graph
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Figure 6.2: CPU time taken to retrieve analogy as KB size grows, sprinkler irrigation

example

KDSA Standard SA

# dev # nodes # runs SA tm map tm tot tm SA tm map tm tot tm

4{6 590.0 18 3.1 11.4 34.5 3.1 25.7 46.9

7{9 657.0 45 4.3 21.0 47.2 4.3 59.6 85.4

10{12 721.1 41 5.4 34.2 60.8 5.0 94.9 121.3

13{15 784.1 44 5.8 48.6 76.0 5.3 132.3 159.5

16{18 858.4 44 7.4 54.1 85.0 5.9 143.3 171.7

19{21 920.0 42 7.6 54.9 84.6 6.4 178.1 207.6

22{24 990.1 52 10.1 75.3 109.6 7.4 223.1 255.9

25{27 1030.0 18 9.7 81.6 113.9 7.1 237.5 266.7

Table 6.1: Timing measurements of run for sprinkler irrigation example (all times given in

CPU seconds)
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Figure 6.3: CPU time taken to retrieve analogy as KB size grows, railroad crossing example

KDSA Standard SA

# dev # nodes # runs SA tm map tm tot tm SA tm map tm tot tm

0{4 592.0 1 2.0 342.8 366.9 1.5 257.0 273.6

5{8 661.8 5 1.8 290.6 311.8 1.7 291.5 309.7

9{12 749.5 8 2.8 349.5 376.9 2.3 456.6 481.0

13{16 809.3 3 2.1 320.2 343.2 2.4 530.1 551.5

17{20 884.9 9 2.6 322.9 348.9 2.7 661.0 684.2

21{24 963.3 6 2.8 350.8 377.2 4.2 781.4 811.3

25{28 1038.6 5 3.7 342.1 374.6 2.6 849.0 872.1

Table 6.2: Timing measurements of run for railroad crossing example (all times given in

CPU seconds)
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for the railroad crossing example are shown in Table 6.2 and Figure 6.3, respectively. To

remove some of the noise, the data is collected and averaged according to ranges of numbers

of knowledge base �les loaded; e.g., the �rst row of Table 6.1 summarizes all runs where 4 to

6 KB �les were loaded, the next where 7 to 9 �les were loaded, etc. For the tables, column

2 contains the average number of nodes in the KB for all the runs of that range; column

3 contains the total number of runs in that range; columns 4 and 5 contain the total time

spent by KDSA in spreading activation and mapping, respectively, during the run; column

6 contains the total time KDSA took to retrieve the analogy2; and columns 7 through 9

contain the same information for standard SA that 4 through 6 contained for KDSA.

The graphs in Figures 6.2 and 6.3 con�rm the general result from the theoretical anal-

ysis: that KDSA is a�ected far less than standard SA by growth in the knowledge base.

Figure 6.2 shows both algorithms as roughly linear in the KB size, but shows the slope

for KDSA as signi�cantly less than that for SA. Figure 6.3 shows the general result even

more dramatically; KDSA's retrieval time was virtually une�ected by KB size in the exper-

iments involving the railroad crossing example. It is unreasonable to expect KDSA to be a

constant-time algorithm in the size of the knowledge base, but Figure 6.3 gives reason to

believe that the actual behavior of KDSA might approach the logarithm-shaped curve of

Figure 5.2.

One interesting result from these experiments is that the amount of time taken to map

candidate analogies to the target overwhelms the amount of time taken to spread activation

in the network. This points out an important bene�t of KDSA not explicitly considered

in the analysis in Chapter 5: the ability to avoid performing unpromising mappings. A

search focused on promising areas of the knowledge base should eliminate not only much of

the combinatorial explosion associated with standard spreading activation, but also much

of the corresponding explosion in the number of concepts retrieved by the spreading acti-

vation mechanism. Since both search methods|KDSA and standard SA|must map every

retrieved concept to the target (standard SA must check if the retrieved concept meets the

similarity metric), avoiding the spread of activation in unpromising areas of the KB will

2The time not accounted for by spreading activation and mapping is the BB1 system time for the run.
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KDSA Standard SA

# nodes act nodes act attempts act nodes act attempts

590.0 504.0 3954.0 359.0 4065.0

657.0 581.7 4806.2 417.6 4915.5

721.1 657.8 5698.1 474.6 5796.1

784.1 730.5 6538.2 530.3 6636.1

858.4 814.0 7356.5 593.2 7426.8

920.0 884.5 8183.9 645.6 8277.6

990.1 964.8 9113.5 1706.1 9194.8

1030.0 1012.0 9660.0 742.0 9734.0

Table 6.3: Spreading activation statistics for sprinkler irrigation example

result in avoiding many expensive mappings. In fact, nearly all of the bene�t from KDSA

shown in Figures 6.2 and 6.3 comes from savings in mapping time.

But this brings up the other side of the coin: Tables 6.1 and 6.2 actually show stan-

dard SA performing a little better than KDSA in time spent spreading activation dur-

ing the search. A closer examination of the spreading activation work done during the

sprinkler irrigation runs (Table 6.3) con�rms this: the total number of unique nodes acti-

vated is consistently higher for KDSA than for standard SA, and the number of activation

attempts|probably a more accurate measure of total spreading activation work|shows

the two algorithms as virtually identical. This, of course, is in con
ict with the predictions

of the theoretical model. The result is probably explained by the speci�c spreading activa-

tion algorithm used in IDA. The technique, discussed earlier, of progressively increasing the

activation of source nodes causes each individual beacon search of KDSA to reach deeper

into the knowledge base, and Figure 5.3 shows that the spreading activation cost of KDSA

can reach and exceed the spreading activation cost of standard SA if the beacon search

depth is high enough. A solution to this problem probably lies in �nding a spreading ac-

tivation technique that allows the retrieval of concepts to be evenly spread out over time

while maintaining a smaller average depth than the technique currently used in IDA.
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6.3 Other Surprising Analogies

While IDA's behavior in the two examples it runs plausibly represents the behavior of a

retrieval algorithm encountering a problem for the �rst time, we in fact expected the se-

quence of beacons that IDA used to be more or less what it ended up being in those cases.

However, IDA did surprise its builders in a couple of other instances. During experiments

with an earlier version of the system, IDA produced a suggested redesign of the sprinkler

irrigation system based on a �re extinguisher. The suggested process to replace was not

spraying, as it is with the circulatory system analogy, but pumping|IDA's proposed re-

design in this case suggested that the sprinkler irrigation system replace its pump with a

compressed gas propulsion mechanism like that of the �re extinguisher. This analogy struck

human observers as not only surprising, but also useful. A second example occurred even

earlier before the adaptability requirement and the redesign step had been added. IDA

gave a strong evaluation to an analogy between the irrigation system and a rock crusher,

an analogy that suggested to one human observer the notion of transporting water by a

conveyor-belt-like mechanism.

These two examples point out that it is sometimes valuable to minimize the number of

constraints on the types of allowable analogies. IDA has no conventional notion of a design

goal to constrain the analogy|it simply knows it should redesign the existing device some-

how. In some very important ways, this is a weakness of the system. But IDA would have

been unable to retrieve the surprising analogies above with stronger behavioral or functional

constraints placed on the redesign speci�cation. (In fact, because of the adaptability re-

quirement, it would not recognize the rock crusher analogy now.) Fewer constraints on the

analogy will tend to increase the likelihood of producing surprising analogies|and unfortu-

nately will probably increase the likelihood of 
aky, useless analogies as well. The key here

is to �nd the middle ground, where the similarity metric is restrictive enough to eliminate

most of the 
aky analogies, but 
exible enough to give the analogy mechanism the element

of surprise.



Chapter 7

Related Work

This chapter discusses a number of other research projects and their relation to this thesis.

The major research areas considered are: AI work on retrieval, including analogy retrieval,

more general knowledge retrieval, and information retrieval; other work on analogy; and

work on design and creativity. In each sub�eld, only work which is particularly relevant to

KDSA is discussed.

7.1 Work on Retrieval

Research on retrieval is divided here into research on spreading activation and research on

other retrieval techniques.

7.1.1 Work in Spreading Activation

Work on spreading activation can be roughly divided into two categories: approaches that

use spreading activation as general analogy retrieval mechanisms (speci�cally, use spreading

activation to retrieve cross-domain analogies), and approaches that use spreading activation

to retrieve concepts which match the target as closely as possible. These latter approaches,

which might be termed information retrieval approaches or \literal similarity" approaches,

are discussed in the �rst two sections below. The spreading activation approaches to general

analogy are discussed in the subsequent sections.

83
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Rau's SCISOR

Lisa Rau's SCISOR system [Rau, 1987a; Rau, 1987b; Rau, 1989] represents an approach to

retrieval based on constrained marker passing in a semantic network. The system performs

the task of answering user questions in the domain of corporate takeovers. SCISOR's

knowledge base is organized as a collection of episodes which are essentially conceptual

graphs representing corporate takeovers, along with a type hierarchy which classify the

various nodes that may appear in an episode. SCISOR answers a question by converting

the (English) question into a graph, retrieving an episode in its knowledge base which

best matches the graphical question, and converting the retrieved episode into a natural

language answer to the user's question. The retrieval of episodes takes place in two steps: 1)

a coarse search, consisting of passing of markers from nodes in the graphical representation

of the question to neighbor nodes according to a set of priming rules, and 2) a �ne search,

consisting of a graph matching between the most promising episodes retrieved and the

graph representing the user's question. The marker passing process in SCISOR continues

until all possible nodes in the system's entire type hierarchy are marked; the priming rules,

which determine which nodes may be marked, must control the search so that the passing

of markers does not extend to every node in the entire knowledge base.

Like IDA, SCISOR uses heuristic search control information to control the spread of

activation throughout a semantic network (Rau's marker passing algorithm is exactly like

spreading activation without passing numeric values), and uses heuristic information about

semantic distance to determine match quality. Furthermore, Rau speculates how a di�er-

ent collection of heuristics would produce di�erent retrieval behaviors. IDA di�ers from

SCISOR, however, in that it uses information from previous match evaluations to dynami-

cally adjust the direction of the spread of activation. IDA in e�ect runs a series of SCISOR-

like searches, starting each sub-search from the near-misses it has encountered in previous

sub-searches, and using the evaluations of those near-misses to formulate its search control

for the next sub-search.

A second di�erence between IDA and SCISOR lies in the heuristics themselves. SCISOR's
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priming rules prevent the spread of activation from reaching above two levels in the type

hierarchy from the original source node. That is, when a node in a graph is assigned a

marker, that node's type and the parent of that node's type are the only two nodes above

the original source node which receive a marker. This rule ensures that the markers from a

question will not be passed to episodes whose nodes are semantically distant from the nodes

of the question, and makes it feasible for SCISOR to run this marker passing process to ex-

haustion before starting the matching process. That procedure seems to work in a domain

like SCISOR's, where the retrieval process is attempting to maximize similarity between

question and episode. However, it is inadequate as a general model of analogy retrieval. In

a general analogy retrieval situation, there will often be cases where the minimum common

generalization of two corresponding nodes is higher than two levels above those nodes in the

type hierarchy. There needs to be a di�erent method of controlling the spread of activation

throughout the network. IDA's method of dividing the search into a series of controlled

sub-searches provides such a method.

Cohen and Kjeldsen's GRANT

A second system which uses heuristics to guide the search for a matching concept in a se-

mantic network is Cohen and Kjeldsen's GRANT [Cohen and Kjeldsen, 1987; Kjeldsen and

Cohen, 1987]. GRANT's task is to take a description of a researcher's interests or project,

and return a set of funding agencies who would be likely to fund the researcher's work. The

idea behind GRANT is to �nd funding agencies whose interests match the researcher's by

metrics other than a simple keyword match, i.e., by speci�c semantic relationships between

the researcher's interests and the agency's. To do this, GRANT uses a semantic network

which classi�es concepts in research according to their relationships with other concepts.

After the description of the researcher's proposed study is entered, GRANT activates the

node(s) in the network which describe the study, and then spreads activation in the net-

work until a set number of funding agencies are retrieved, or until the entire network is

exhaustively searched to a certain depth. GRANT constrains the spread of activation in

three ways:
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(1) Distance: Activation ceases four links from the original source node.

(2) Fan-out: Activation ceases at nodes that have very high connectivity, i.e., are con-

nected through links to a large number of other nodes.

(3) Path endorsements: these are rules of the form

request funds for topic(x)^ R(x; y)) request funds for topic(y)

where R(x; y) speci�es that x and y are related by some path of links. Each path

endorsement has a weight attached to it indicating how strongly the path should pass

activation. These weights may also be negative, indicating that GRANT should prune

those paths from the search.

Cohen and Kjeldsen have run a thorough set of experiments with GRANT, compar-

ing the retrieved agencies with ratings by an expert. They measured both its recall (the

percentage of agencies highly rated by the expert which GRANT retrieved) and its fallout

(the percentage of agencies retrieved by GRANT which were rated poorly by the expert).

Experiments showed that GRANT had higher recall than simple keyword lookup, and lower

fallout than blind search.

Like IDA (and SCISOR), GRANT is a system which applies knowledge to direct the

spread of activation in a semantic network. However, several aspects of GRANT's ap-

proach make it inappropriate for the general retrieval of analogies, especially cross-domain

analogies. First, it is spreading activation from a very incomplete description of the target

problem|the single node representing the main topic of the study|while IDA spreads ac-

tivation from as complete a description of its target problem as possible. Second, GRANT

allows the spread of activation, and the strength of activation assigned by the path en-

dorsements, to serve as the similarity metric for the system. That is, the strength of a

funding agency's activation determines whether or not it is considered a good match for the

study; there is no graph matching or evaluation process. For the general analogy problem,

however, semantic closeness will not su�ce as a similarity metric. There must be a process

to determine the degree of isomorphism between the target and the base [Thagard et al.,
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1990]. Third, GRANT's distance constraint is not appropriate for cross-domain analogies,

since there are bound to be valid analogies which are greater than four links away from

the target. And fourth, as with SCISOR, GRANT only uses its search control knowledge

to reduce the branching factor of the search (by specifying what paths are likely to lead

to good answers), rather than using the dynamic state of the search to restart search in

a more promising direction several times along the way. Again, IDA can abstractly be

described as doing a series of GRANT-like constrained searches, and Chapter 5 shows that

this sequential search behavior is more likely to be tractable in a large knowledge base than

a reduced branching factor approach like GRANT's.

Cohen and Kjeldsen's experience with GRANT does have a great lesson to teach the

analogy retrieval community, however. GRANT's performance degraded signi�cantly as

they added funding agencies and concepts to the knowledge base without changing the

path endorsements. Cohen and Kjeldsen speculated that the source of the performance

degradation was that the methodology for de�ning concepts in the semantic network had

changed without corresponding changes in the path endorsements, and they ran some ex-

periments which seemed to validate this hypothesis. This experience shows the importance

of maintaining a uni�ed knowledge representation methodology which is consistent with

the search control knowledge of the retrieval system. Without a strong agreement between

knowledge representation and search control, IDA is likely to have the same kind of perfor-

mance problems in large knowledge bases.

Holland et. al.'s PI

The PI system by Holland and his colleagues [Holland et al., 1986] is a general cognitive

architecture capable of many di�erent methods of reasoning and learning. Holyoak and

Thagard have proposed a complete model of analogy within the PI framework. This model

retrieves analogies by spreading activation in a network of frame-like objects. The activation

is spread automatically from the target problem representation along PI's type hierarchy,

and also by rules from the current goal to other nodes related to goal solution. A concept

is retrieved according to the summation of the activation of all concepts with which it is
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stored, and activation is controlled by a decay parameter.

Like IDA, PI retrieves analogies by spreading activation. However, PI has limited ability

to control the spreading activation search for analogs. PI's associative rules, which provide

one mechanism by which activation is spread, could theoretically be used to prune large

sections of the semantic network from the search; however, it seems that the rules are

used in practice as a mechanism for introducing a pragmatic constraint into the analogy

retrieval|i.e., they push PI toward retrieving an analogy which is related to the particular

goal at hand. The rules do this by adding activation to concepts which are relevant to the

goal, while other concepts simply receive activation based only on their semantic similarity

to the target. This function of directing the search toward analogies useful in goal solution

is performed in IDA by the search control knowledge. However, the other function os

IDA's search control rules, narrowing the search space to avoid combinatorial explosion

as the search moves far from the target, is mostly missing from PI. Since PI was built as

a cognitive model, and since psychological studies show that people more easily retrieve

analogs which have a great deal of surface similarity to the target, PI is designed largely

to facilitate the retrieval of analogs which are near the target in the semantic network. In

particular, the method of reducing search by using promising concepts as beacons in IDA

is not included in PI's model of analogy retrieval. The problem of control in PI is discussed

in [Thagard et al., 1990].

Jones's EUREKA

EUREKA [Jones, 1989] is another general cognitive architecture which uses spreading ac-

tivation to retrieve concepts from long-term memory. Memory is organized in a semantic

network, and retrieval of concepts is accomplished by an ACT*-like spread of activation

along the network's links. The spread of activation in EUREKA depends on trace strengths

on the links, where the trace strengths are set so that retrieval prefers 1) familiar concepts

and 2) those concepts which have led to success in problem solving in the past.

Langley and Jones have proposed a model of scienti�c discovery based on analogy [Lan-

gley and Jones, 1988] which is compatible with the EUREKA architecture. In this model,
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knowledge of physical situations is stored using Forbus's Qualitative Process Theory [For-

bus, 1984], and each situation is indexed by features of the situation's envisionment. When

a new situation is encountered, activation spreads from the envisionment of the new situa-

tion, retrieving past envisionments which are well-indexed and/or recently studied. These

past envisionments are then compared to the new one to test for a possible analogy, and

if an analogy is found the process model of the past envisionment can be transferred to

suggest a process model of the new situation. Alternately, if no past situations are retrieved

when the new one is encountered, the system may wait for a cue which reminds it (through

spreading activation) of a past situation, and activation spreads from the past envisionment

to retrieve the new poorly understood one. The new one is likely to be retrieved since the

trace strengths associated with it have been increased due to its familiarity.

Like IDA, EUREKA provides a general retrieval model which accounts for the use of

analogy in creative endeavors. And also like IDA, EUREKA accounts for the utility of

external and internal cues in retrieving useful creative analogies. But EUREKA's ability to

retrieve these analogies spontaneously, i.e., when the cue is not provided, is very limited.

EUREKA's only mechanism of search control in the spreading activation is through the

use of learned trace strengths, and the learning heuristics there|preferring familiar con-

cepts, and preferring success in problem solving|will not provide enough search control

for a search to a semantically distant concept. Since EUREKA is concerned with cognitive

modeling, it, like PI, is concerned primarily with retrieving analogies based on surface sim-

ilarities. IDA is allowed to retrieve a semantically distant analogy in any manner possible,

including spontaneous retrieval through a deep heuristically guided search.

Anderson's PUPS

Another general spreading activation approach to analogy retrieval is implemented in An-

derson's PUPS system [Anderson and Thompson, 1989] The PUPS approach to analogy

mapping consists of repeated applications of a set of three heuristic rules to elaborate the

representation of the target concept until it can be easily matched to the base. The heuristics

transform the target concept by repeatedly replacing form (structural) descriptions within
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the target with the function that the forms ful�ll. Retrieval in PUPS is accomplished when

an analogy-inducing production is �red. This production requires as a precondition the

existence of a target and a base, where the target is pre-selected but any concept in the

knowledge base is eligible to be the base. The PUPS architecture narrows down the �eld

of potentially matching bases through its normal memory retrieval procedure|spreading

activation. When the target is selected, activation spreads from it throughout the semantic

network, and the highest activated structure in memory is the one selected as the base.

As with EUREKA, the only method of controlling the spread of activation in PUPS is

through learning strengths on the links in the semantic net, and through decay of the acti-

vation over time. Like the other spreading activation approaches discussed above, PUPS's

retrieval method does not provide the more sophisticated types of control used in KDSA to

retrieve semantically distant analogies.

Winston's Classi�cation-Exploiting Hypothesizing

In Winston's project concerning learning from analogies [Winston, 1980; Winston, 1982],

he proposes a model for analogy retrieval in a semantic network based on classi�cation-

exploiting hypothesizing. This approach involves enumerating all of the nodes comprising

the target concept, moving up the type hierarchy from those nodes to the most general

type, and having each encountered type \vote" for each potential base concept in the KB

based on 1) the importance (measured by number of slots) of the node in the target, 2)

whether the base concept involved a node of that type, and 3) the number of other potential

bases involving a node of that type. This method of retrieval is essentially computationally

equivalent to ACT*-style spreading activation from the target concept along type hierarchy

links, with the initial activation of the nodes in the target set proportionately to the number

of slots in the node. As such, it will have the same problems scaling up to large knowl-

edge bases already mentioned for basic spreading activation approaches. Winston discusses

scalability problems of classi�cation-exploiting hypothesizing in [Winston, 1980].
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7.1.2 Other work in retrieval

Several other approaches to analogy and information retrieval which are not spreading ac-

tivation approaches deserve mention here. These other psychological models, case-based

reasoning indexing approaches, and approaches in the �eld of Information Retrieval con-

cerned with accessing relevant documents.

Thagard, et. al's ARCS

Thagard and his colleagues have proposed an analogy retrieval mechanism based on con-

straint satisfaction called ARCS [Thagard et al., 1990]. This method retrieves analogies by

�rst constructing a constraint network between the target concept and every other concept

in the knowledge base which contains some degree of semantic overlap with the target,

and then running a parallel relaxation algorithm on the network to determine the highest

rated analog, where the rating is determined by weights in the constraint network. This

method allows the retrieval process to be in
uenced by the degree of isomorphism between

target and potential base, a factor which standard spreading activation cannot take into

account. Thagard, et. al. show that ARCS accounts for several human retrieval phenomena

demonstrated in the psychology literature.

ARCS is an elegant approach which is very interesting as a cognitive model of analogy

retrieval. However, it has limited use as a practical analogy retrieval mechanism in large

knowledge bases. Thagard, et. al. �nd that the construction of the constraint network for

each target takes O(n4k2) time, where k is the number of concepts in the KB and n is the

size of the largest concept in the KB. And their experimental results show this worst-case

analysis holding true in actual execution, where the size of the constraint network grew

with the square of the size of the knowledge base. The constraint that ARCS only considers

potential bases which have some degree of semantic overlap with the target helps prune the

network to some degree, but in very large knowledge bases the number of potential bases

will still be large, and k2 is too ine�cient for a general retrieval mechanism. KDSA is at

worst linear in the size of the knowledge base, and there is evidence, presented in Chapters
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5 and 6, to expect its performance to be better than that in practice.

Indexing on a Subset of Salient Features

A large number of AI researchers (see, e.g., [Kolodner, 1984; Kolodner and Simpson, 1984;

Kolodner and Thau, 1988; Riesbeck and Schank, 1989]) have attacked the problem of re-

trieval by indexing the knowledge base on a subset of features which are salient for the

task at hand. In indexing approaches, commonly used in case-based reasoning, concepts

are typically represented not as general graphs, but rather as frames which contain a set of

features (slots), each of which contain some value. Many of these approaches are based on

creating a discrimination network structure, with the individual cases (i.e., candidate struc-

tures for retrieval) at the leaf nodes, and feature tests in the non-leaf nodes. The retrieval

algorithm navigates from the network's root node to a leaf by performing the feature test

speci�ed by each non-leaf node, choosing one of the node's children based on the outcome

of that test, and repeating the procedure until a leaf is reached. The leaf node reached is

then considered retrieved. The particular branch to follow at each step is determined by

the values of those features in the target case. In this way, the discrimination net approach

can retrieve the most similar case to the target along the salient features identi�ed in the

discrimination net, and it can do so in time roughly logarithmic in the size of the case base.

The discrimination net approach to retrieval is e�cient only if the task and the features

salient to that task are known before run-time. A general task-independent discrimination

network indexing the entire knowledge base on every possible feature in the KB is not

possible, because the retrieval process will take time exponential in the number of irrelevant

features. It also seems unlikely that it is possible to index a large knowledge base by building

separate discrimination networks for each task for which analogical (case-based) reasoning

might be used. In a large multi-use KB, there would be a large number of di�erent tasks

for which to construct discrimination networks, and each network will take space which is

exponential in the number of features relevant to its task. Therefore, these discrimination

network approaches are not built to solve the same problem addressed in this thesis: namely

the retrieval of analogies in a large multi-use knowledge base.
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One of the major concerns of the case-based reasoning community is selecting an ap-

propriate index (i.e., a set of salient features) for a case at case storage time. Kolodner

[Kolodner, 1991] outlines the index selection procedure this way:

First, determine what the case could be useful for. Second, determine under

what circumstances the case would be useful for each of these tasks. Third, mas-

sage the circumstances to make them as recognizable and generally applicable

as possible.

KDSA, in contrast to case-based reasoning, is concerned with retrieving relevant \cases"

when the cases have been stored without regard to future use|or at least have been stored

anticipating many di�erent possible uses, some of which cannot be predicted. For this

problem, the three steps Kolodner outlines are impossible; \cases" are organized in a more-

or-less task-independent fashion. In this situation, the burden for e�cient storage and

retrieval is shifted to the retrieval mechanism. That is, CBR approaches typically provide

e�cient retrieval with a sophisticated task-dependent storage mechanism and a relatively

simple retrieval mechanism, while KDSA provides e�cient retrieval with a relatively simple

and general storage mechanism and a sophisticated retrieval mechanism.

One other piece of research in case-based reasoning deserves mention here: Zito-Wolf

and Alterman's theoretical analysis of case-based planning [Zito-Wolf and Alterman, 1993].

Zito-Wolf and Alterman present an analysis of their technique for storing and retrieving

steps in a plan, called multicases, and show that the multicase method is as e�cient or

more e�cient in case storage and retrieval costs than other existing methods of case-based

planning. Like the work presented in this thesis (Chapter 5), Zito-Wolf and Alterman

developed a theoretical model of knowledge retrieval and evaluate their method against other

existing methods under a set of theoretical assumptions. Also like the work presented in

this thesis (Chapter 6), they experimentally validate their theoretical �ndings by measuring

the execution of an implemented system. The di�erence between Zito-Wolf and Alterman's

work and the work presented here is in the type of retrieval studied. Zito-Wolf and Alterman

restrict their analysis to the retrieval of plans and plan steps, i.e., their analysis explicitly
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relies on the retrieved object being an object which can be decomposed into an ordered

sequence of smaller subobjects. The analysis of Chapter 5 makes no such assumption

about the representation or decomposability of the retrieved objects. Also, Zito-Wolf and

Alterman assume that an object is retrieved using the discrimination network approach

outlined above, i.e., an object is retrieved by a series of feature tests. The analysis in

Chapter 5 models retrieval as a search in a semantic network.

7.2 Work on Design and Creativity

There is a small but growing body of literature in arti�cial intelligence dealing with creativ-

ity or innovation generally, and with creative or innovative design particularly. This section

discusses work in this area which is especially relevant to KDSA.

7.2.1 Work on creative design and problem solving

Kolodner and Wills's Case-Based Analysis of Creative Design

Kolodner and Wills have performed an analysis of creative design based largely on protocols

from a team project in creative design for a mechanical engineering class [Kolodner and

Wills, 1993]. The protocols show that the creative design team made substantial use of

analogies, especially cross-contextual analogies, in formulating their new design. Given

a design speci�cation, one team member would suggest an analogous design outside the

current domain of consideration, which would in turn remind another team member of

another analogy along a di�erent set of features, and so on. This general model of team

creative design is compatible with the model of analogy retrieval used by IDA, where each

retrieved potential base is evaluated according to design goals, and then may in turn remind

the system of other promising ideas, and so on until a �nal analogy is retrieved.

Kolodner and Wills suggest many di�erent possible uses for analogies in creative design

which are not used in IDA, including case-based evaluation of proposed designs, and case-

based reformulation of design speci�cations. They acknowledge that anticipatory indexing

is not su�cient to explain all analogy retrieval in the creative design process, but they do
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not as yet have a concrete proposal for an alternative retrieval mechanism.

Bhatta and Goel's IDeAL

Bhatta and Goel address the issue of analogy use in innovative design by learning generic

teleological mechanisms (GTMs) in their system, IDeAL [Bhatta and Goel, 1993]. GTMs

represent abstract design principles such as cascading, feedback, and feedforward which can

be used in design tasks across domains. The system learns the GTM by abstracting across

two same-domain design examples, one given by the user and the other retrieved solely on

functional similarities with the �rst. After the GTM is learned, it may be applied in a

domain unrelated to the original domain; for example, IDeAL is able to apply the GTM

representing cascading generated from circuit design examples to a heat exchanger design

problem.

IDeAL can be said to use analogy in two ways: it uses a same-domain analogy between

design examples to learn the GTM, and then it uses the GTM as a base for analogies in

new innovative designs in other domains. The use of analogy in IDA is di�erent from both

of IDeAL's uses. IDA is concerned with retrieving a cross-domain device which can be

useful in redesigning an existing device, rather than retrieving a same-domain design which

is merely functionally similar to the original. And, while IDA exploits the existence of

generic concepts in the knowledge base as a mechanism for guiding the search into another

domain (see Chapter 4), it is largely concerned with retrieving analogies when a prede�ned

abstraction between analogs does not exist. The use of generic concepts is an important idea

in innovative design, but so are analogies drawn without the assistance of generic concepts.

These latter analogies are the ones IDA is looking for.

Turner's MINSTREL

Turner's MINSTREL [Turner, 1992] is another program which addresses analogy's role in

the creative process. Like IDA, MINSTREL attempts to recall bases which are di�erent

from the target in important ways to facilitate creativity. However, MINSTREL's approach

to retrieval is very di�erent from IDA's. MINSTREL 1) uses a collection of heuristics to
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transform the target problem into a slightly di�erent problem, 2) retrieves a past case which

is similar to the transformed problem, and 3) adapts the retrieved case (perhaps using the

set of transformations applied in step 1 as a guide) into a solution for the target problem.

While MINSTREL looks for di�erences between target and base by transforming the target,

IDA looks for di�erences by continually searching, retrieving, evaluating, and modifying the

search based on what was retrieved, always comparing to the original target. In this way,

IDA's search for analogies is guided in part by the actual contents of the knowledge basethe

�nal analog retrieved depends on the concepts encountered by the search along the way.

Also, MINSTREL has no evaluation step in its transformation/retrieval sequence.

Lenat's AM

Lenat's AM [Lenat, 1976] is a program which exhibited creativity, in that it discovered

concepts in elementary mathematics and set theory that it previously did not know. Like

IDA, AM operates by conducting a heuristic search through a space of concepts and eval-

uating those concepts using heuristic criteria for \interestingness" (AM's Interestingness

Heuristics are analogous to IDA's Mapping Heuristics which evaluate the creativity of a

newly retrieved concept). One major di�erence between AM and IDA lies in the method

used to generate new concepts. AM creates completely new concepts by modifying slots in

existing frames by applying heuristic operators. IDA, on the other hand, retrieves concepts

which are already in its knowledge base by searching along the KB's links.

7.3 Other Work on Analogy

Aside from some of the work discussed above, most research on analogy has focussed on

the problems of analogy mapping, transfer, and validation, rather than on the problem of

analogy retrieval. Since the primary focus of this project has been on retrieval, there is

little connection between the bulk of this project and most other projects in the analogy

literature. However, there are important roles for mapping and transfer in KDSA and

IDA, so it is worth identifying where the mapping approach here �ts in with other analogy
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proposals. Two aspects of mapping will be addressed.

The �rst aspect of mapping to consider is: how does the system decide which items

in the target and base representations to place in correspondence? Gentner's systematic-

ity principle [Gentner, 1983] isolates isomorphism as the primary factor in mapping by

preferring to map connected causal substructures of the target and base and leave iso-

lated unconnected features unmapped. Falkenhainer generalizes Gentner's approach in his

Structure Mapping Engine program [Falkenhainer, 1988], which allows the user to specify

constraints identifying exactly the set of allowable correspondences (solving what Falken-

hainer terms the selection problem), and a set of rules which assign a numeric evaluation to

each correspondence and identify a method for combining the evaluations (solving the selec-

tion problem). Kedar-Cabelli's Purpose-Directed Analogy [Kedar-Cabelli, 1985] explicitly

brings the task to be solved into the equation, by mapping only those features of the base

which allow it to satisfy a desired purpose. IDA produces a mapping by searching for a set

of correspondences which maximizes a weighted combination of isomorphism and semantic

distance. Unlike Kedar-Cabelli's method, IDA does not consider the task to be solved in

the generation of the mapping; it generates the best general mapping it can independent of

task, and then uses the task to be solved to evaluate that mapping.

The second aspect of mapping to consider is: how does the system evaluate a map-

ping once it is generated? For example, how does the system decide whether an anal-

ogy is worth pursuing further (attempting analogical transfer, etc.)? This is the ques-

tion of identifying the system's similarity metric. Many approaches to analogy do not

address this question directly. For the approaches in [Greiner, 1988; Carbonell, 1983b;

Carbonell, 1983a], for example, the only method of evaluation seems to be determining

whether the analogy allowed the system to solve the problem; the system maps and tries

to reason with any analogy given to it. Other analogy models have more explicit mapping

evaluation. In Falkenhainer's Structure Mapping Engine, the user-speci�ed constraints also

serve as a method of rejecting analogies for which no mapping can be found; if a mapping

satisfying the constraints is found, the base meets the similarity metric. Gentner's Struc-

ture Mapping Theory provides an implicit mapping evaluation metric for analogy: Gentner
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suggests that a relationship between two concepts is an analogy to the extent that it has

a high number of shared relations but a low number of shared attributes [Gentner, 1987].

KDSA evaluates analogies by a collection of task-speci�c rules specifying the desired level of

semantic distance and isomorphism for separate portions of the representations. Unlike the

methods of Greiner and Carbonell, KDSA identi�es a method for evaluating the analogy

before actually attempting to solve a problem with it. This is especially important in the

more creative uses of analogies since attempting creative problem solving is likely to be

computationally expensive. And unlike Gentner's metric for \analogy-ness", KDSA uses

pragmatic (i.e., goal-solving) considerations in mapping evaluation by allowing di�erent iso-

morphism and semantic distance requirements on di�erent portions of the target and base

representations.



Chapter 8

Conclusion

This thesis has presented Knowledge-Directed Spreading Activation, a general model of

analogy retrieval which is well-suited for retrieving semantically distant analogues from a

large knowledge base. The method has been implemented in IDA, a computer program

which retrieves analogies that are useful for performing the task of innovative redesign.

IDA's execution of example analogy retrievals provides a \proof of concept" for the model,

demonstrating that KDSA is a workable mechanism which can be used to retrieve analogies

in a real knowledge base, and showing that the search for those analogies can be guided

by intermediate concepts retrieved along the way. The tractability of KDSA for retrieval

in large knowledge bases was tested in two complementary ways. First, experiments with

IDA using small knowledge bases showed that KDSA is much less sensitive to the size

of the knowledge base than standard spreading activation. Second, a theoretical model

approximating the cost of KDSA under a set of assumptions predicts that KDSA will

be much more e�cient than standard SA when retrieving semantically distant analogies

from a large knowledge base, con�rming the trend observed in the empirical study. The

theoretical model also predicts that KDSA will be robust in the face of di�erent knowledge

base con�gurations|i.e., that KDSA searches more e�ciently than standard spreading

activation even when the cost-bene�t ratio of its individual subsearches is relatively high.

The work reported here provides a number of important steps toward the development

99
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of a general analogy retrieval mechanism for computer knowledge bases. Not surprisingly,

though, this thesis is far from the last word on analogy retrieval. This chapter summarizes

some of the open issues in analogy retrieval and the ways that this research can be extended

to address them, and it identi�es the important research contributions of the thesis.

8.1 Future Work

There are a number of natural extensions to this work which would expand our under-

standing of the analogy process. Here we focus on four|performing experiments in a large

knowledge base, investigating the role of the analogical transfer step in KDSA and in ana-

logical innovative design, adding learning to the KDSA model, and reasoning with di�erent

types of representations.

8.1.1 Additional Experiments

Since the development of KDSA was motivated by the di�culties of retrieving analogies

from a large knowledge base, the most obvious extension to this work would be to analyze

the behavior of KDSA in an actual large KB. The major requirements on such a knowledge

base are that (1) it is much larger than most KBs in use today, and (2) it represents a diverse

collection of concepts from many domains. As of this writing, there are no knowledge bases

which meet these criteria, but there are projects, most notably the CYC project [Lenat and

Guha, 1990], which are endeavoring to build KBs that do meet them.

There are a number of questions which can be answered by experimenting with KDSA

in a di�erent knowledge base from IDA's, and in particular a very large one:

(1) How does the organization of the knowledge base a�ect KDSA's ability to search it?

Are there particular features of the KB which must be present in order for KDSA to

be e�ective?

(2) Are there ways KDSA can exploit the new KB's con�guration to improve its search?

I.e., can we develop new heuristics that utilize aspects of the new KB which were not
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aspects of IDA's KB?

8.1.2 Examination of the Transfer Step

The third step in the analogy process, transfer, is not the focus of this thesis. The transfer

step for innovative design presented in Chapter 4 is simple and needs to be extended in

order for IDA to produce detailed designs. This extension of a transfer step for cross-

domain analogies for design would encounter di�culties that are usually not found with

more routine same-domain analogies. When the analogy is cross-domain, often there are

aspects of the base's structure which are impossible to produce directly in the target domain.

Thus, the only thing directly transferred from base to target is an abstract idea, and the

reasoner must re�ne this abstract idea by dealing with such issues as material selection and

con�guration of structure. These problems usually do not arise in more routine analogical

design, where structural components can often be copied directly.

Another important aspect of the transfer step to investigate in this context is: how can

the process of validating the analogy (e.g., in IDA's case, producing a design) be used to

improve the retrieval process? In this thesis, we show how a detailed evaluation of the

mapping step in analogy can be fed back into the retrieval step to guide it to more useful

analogies. It seems likely that the same is true of the transfer step: a detailed evaluation

of the output of analogical transfer can be fed back into the retrieval step to guide KDSA

toward better analogues. The reason for IDA's failure to produce a detailed design based

on a particular analogy, for example, can be used by search control heuristics to guide the

search toward analogues which are unlikely to lead to that same failure.

8.1.3 Learning

There are two major ways that learning can be added to the KDSA model. One is to in-

clude the traditional analogical learning step at the end of the analogical reasoning process,

learning abstract concepts which are generalizations of the two analogues. IDA's perfor-

mance would be enhanced by the system learning these abstractions, not only by giving

direct access to analogues when the target is a direct example of such an abstraction, but



102 CHAPTER 8. CONCLUSION

also by using those abstractions as \bridges" to other domains when the target is not a

direct example of one (Chapter 4).

The other way learning can be incorporated into KDSA is in the learning of heuristics

for KDSA's mapping and search control components. A number of aspects of the heuristics

can be learned: the values of thresholds used in the similarity metric, the particular features

of the mapping tested in the similarity metric, and new search control rules which modify

the activation of concepts and strengths on links in di�erent situations. The learning of sim-

ilarity metric thresholds is discussed in Section 4.2.2. The learning of the relevant mapping

features could be accomplished with an inductive classi�cation algorithm like ID3 [Quinlan,

1983] and its descendants. And search control rules, in the form of \Given search situa-

tion x, perform activation and strength modi�cations y", might be learned with statistical

learning techniques.

8.1.4 Other Representations

In Chapter 4, we outline a method of representing devices very abstractly, argue that the

method is important for recognizing useful analogies for innovative design, and argue that

the device models presented are derivable from more speci�c representations, such as For-

bus's QPT. Unfortunately, most device models in real knowledge bases are not represented

so abstractly as in Chapter 4, and we do not specify an exact method for deriving these

abstract models. Automatically generating a model at a desired level of abstraction for a

particular task is an interesting open question, one which has been addressed in [Falken-

hainer and Forbus, 1988].

8.2 Contributions

The major research contributions of this thesis can be summarized as follows:

� It identi�es a class of analogies, called semantically distant analogies, and demon-

strates their importance in creativity. It also provides a search-theoretic de�nition of

semantic distance and semantically distant analogy. These de�nitions are motivated
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by the recognition that some analogies will be harder to �nd in a knowledge base than

others, and they attempt to isolate the features of the di�cult-to-�nd analogies which

make search for them di�cult.

� It describes an analogy retrieval mechanism, KDSA, which is demonstrated to be a

tractable mechanism for retrieving semantically distant analogues from a large knowl-

edge base. Two methods are used in the demonstration of tractability: a theoretical

model of the search cost of KDSA, and experiments showing KDSA's retrieval e�ort

in di�erent knowledge bases.

� It describes a similarity metric for identifying useful analogues for the task of inno-

vative design. This metric is demonstrated to be useful in e�ciently guiding a search

through a knowledge base toward a device which meets it.

� It provides a theoretical framework for evaluating di�erent methods of knowledge

base search. This framework is used to analyze the cost of two di�erent KB search

methods: standard spreading activation and KDSA.

� It identi�es the theoretical cost of breadth-�rst search in a graph under the assump-

tions of the theoretical model.
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