
A FRAMEWORK FOR

REASONING PRECISELY WITH VAGUE CONCEPTS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Nita Goyal

May 1994

c
 Copyright 1994 by Nita Goyal

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Yoav Shoham
(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Nils J. Nilsson

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Patrick J. Hayes

Approved for the University Committee on Graduate

Studies:

iii

Abstract

Many knowledge-based systems need to represent vague concepts such as \old" and

\tall". The practical approach of representing vague concepts as precise intervals over

numbers (e.g., \old" as the interval [70,110]) is well-accepted in Arti�cial Intelligence.

However, there have been no systematic procedures, only ad hoc methods, to delimit

the boundaries of intervals representing the vague predicates. A key observation is

that the vague concepts and their interval boundaries are constrained by the under-

lying domain knowledge. Therefore, any systematic approach to assigning interval

boundaries must take the domain knowledge into account. In this dissertation, we

introduce a framework to represent the domain knowledge and use it to reason about

the interval boundaries via a query language. This framework is comprised of a con-

straint language to represent logical constraints on the vague concepts, as well as

numerical constraints on the interval boundaries; a query language to request infor-

mation about the interval boundaries; and an algorithm to answer the queries. The

algorithm preprocesses the constraints by extracting the numerical information from

the logical constraints and then combines them with the given numerical constraints.

We have implemented the framework and applied it to two domains to illustrate its

usefulness.

iv

Acknowledgements

I would like to thank Prof. Yoav Shoham for his continued advice and support

throughout the course of my dissertation. I would also like to thank Prof. Nils Nilsson

and Dr. Pat Hayes for their valuable input both on the technical content as well as

on the writing of the dissertation.

I will forever be grateful to Surajit Chaudhuri for his constant encouragement

and support through the tough periods of the Ph.D.. In addition to being a caring

friend, he helped me learn how to do research, how to write, and devoted innumerable

hours in technical discussions. Without his support this dissertation would not have

materialized.

My o�cemates Becky Thomas and Moshe Tennenholtz provided hours of interest-

ing conversations on every topic under the sun in addition to the technical discussions.

I am grateful for their friendship.

I am also grateful to Pandu Nayak and Alon Levy for many discussions and for

their valuable feedback. I would like to thank everyone in the nobotics group for

providing an enjoyable and challenging work environment and Dr. Garry Gold for

his help in formulating the rules for the medical domain.

I would like to thank all my friends who made my life at Stanford fun and in whose

absence the dissertation would have been over sooner. I am particularly indebted to

Ramana Venkata, Surajit Chaudhuri, Anoop Goyal and Ashish Gupta for being my

family here.

Last but not the least, the encouragement and support of my parents and their

belief in me has made everything possible. I owe whatever I am to them.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Nonstandard Logics addressing Vagueness : : : : : : : : : : : : : : : 3

1.2 Practical Approach addressing Vagueness : : : : : : : : : : : : : : : : 4

1.2.1 Justifying Predicate-as-Interval : : : : : : : : : : : : : : : : : 5

1.3 Predicate-as-Interval: A Systematic Study : : : : : : : : : : : : : : : 7

1.3.1 Framework : 9

1.4 Outline of the Dissertation : 10

2 Constraint and Query Languages 11

2.1 Constraint Language : 11

2.1.1 Comparison to Other Languages : : : : : : : : : : : : : : : : : 14

2.2 Query Language : 16

3 Answering Queries: Preprocessing Constraints 20

3.1 Algorithm to Answer Queries : 20

3.1.1 Derivation Algorithm : 22

3.1.2 Combining with Numerical Constraints : : : : : : : : : : : : : 33

3.2 Formal results on conservation of numerical information : : : : : : : : 36

3.2.1 Notation : 36

3.2.2 Soundness and Completeness : : : : : : : : : : : : : : : : : : 41

vi

3.3 Complexity : 49

4 Answering Queries: Experimentation with Heuristics 55

4.1 Combining Constraints and Answering Queries using Heuristics : : : 55

4.1.1 Pruning derived constraint set : : : : : : : : : : : : : : : : : : 56

4.1.2 Removing redundant disjuncts : : : : : : : : : : : : : : : : : : 60

4.1.3 Answering for each disjunct : : : : : : : : : : : : : : : : : : : 66

4.2 Experimentation : 71

4.2.1 Medical Domain : 72

4.2.2 Weather Domain : 74

5 Extensions to the Constraint Language 77

5.1 Goal Clause : 78

5.2 Logical Constraints with Arithmetic Inequalities : : : : : : : : : : : : 81

5.3 Recursion : 87

5.3.1 Algorithm : 88

5.3.2 Formal Results : 92

5.3.3 Complexity : 96

5.4 Clauses with Multiple Positive Literals : : : : : : : : : : : : : : : : : 99

5.4.1 Eliminating Noninterval Predicates : : : : : : : : : : : : : : : 99

5.4.2 Soundness and Completeness : : : : : : : : : : : : : : : : : : 101

5.4.3 Converting to Numerical Constraints : : : : : : : : : : : : : : 104

5.5 n-ary interval predicates : 110

5.6 Interpreting a unary predicate as �nite union of intervals : : : : : : : 113

6 Conclusion 117

6.1 Open Questions : 118

A Function De�nitions 120

B Medical Domain Application 124

C Weather Domain Application 127

vii

Bibliography 134

viii

List of Figures

1.1 A Binary-valued Truth Function : 3

1.2 A Fuzzy Truth Function : 3

3.1 Overview of the Query-Answering Algorithm : : : : : : : : : : : : : : 21

3.2 Derivation Algorithm : 23

3.3 Derivation Tree for Expansion of old : : : : : : : : : : : : : : : : : : 27

3.4 Dependency Graph : 29

3.5 Converting clause with constant to numerical constraint : : : : : : : : 30

3.6 Converting clause with variable to numerical constraint : : : : : : : : 31

ix

Chapter 1

Introduction

To behave intelligently in the real world, an entity must possess knowledge about that

world and must be able to use this knowledge e�ectively. The basic knowledge about

the world that is possessed by every school child and the methods for making obvious

inferences from this knowledge is called commonsense. Capturing this commonsense

to make a computer program behave intelligently has been recognized as a funda-

mental problem of the �eld of Arti�cial Intelligence [McCarthy, 1959]. Commonsense

knowledge and commonsense reasoning are involved in most types of intelligent ac-

tivities, such as using natural language, planning, learning, high-level vision, and

expert-level reasoning [Davis, 1990, page 1].

There are many aspects to human commonsense knowledge that make its represen-

tation and reasoning with it di�cult in a rigid computer program. Human reasoning

is
exible enough to deal with partial, uncertain or imprecise information; in fact,

most of our everyday knowledge falls in this category. As quoted in [Davis, 1990,

page 18], \You know that the water in the tea-kettle will come to a boil soon after

you turn the knob on the stove, but you do not know how soon it will boil, how hot

the
ame is, or how much liquid is in the kettle. This is incompleteness. Moreover,

you cannot be entirely sure that the water will boil at all; the stove may be broken, or

someone may come and turn it o�, or the kettle may be empty. This is uncertainty."

But at least we can identify precisely whether the water is boiling or not, or we could

if we had a thermometer. However, we often have to deal with concepts that are not

precise.

1

CHAPTER 1. INTRODUCTION 2

The fact that concepts are often vague is an important and ubiquitous aspect of

commonsense knowledge that goes beyond uncertainty and incompleteness. To quote

Davis, \Many categories of common sense have no well-marked boundary lines; there

are clear examples and clear nonexamples, but in between lies an uncertain region

that we cannot categorize, even in principle." For example, there is no minimum

precise body temperature that a doctor considers high and there is no maximum

number of hairs that a person might have and still be considered bald. The concepts

high temperature and bald are vague. To represent and reason with commonsense

knowledge, it is of paramount importance to be able to deal with the vagueness of

concepts.

Since such vague concepts have no precise de�nition, representing knowledge about

them and reasoning with this knowledge poses a problem. \From a theoretical point

of view, this vagueness is extremely di�cult to deal with, and no really satisfactory

solutions have been proposed. The di�culties are made vivid by an ancient paradox

called the Sorites (meaning heap). If you have a heap of sand, and you take away

one single grain of sand, you will obviously still have a heap of sand. But therefore,

by induction, you can take away all the sand, and still have a heap, which is absurd.

Like the other terms above, heap is vague; there is no speci�c minimum number of

grains that a heap can contain." [Davis, 1990, pages 19-20]. What then do we do in

the face of this di�culty?

In Section 1.1, we discuss the nonstandard logics that attempt to capture vague-

ness and in Section 1.2 we discuss the practical approach taken by most AI systems to

deal with vague concepts. In this dissertation, we will be concerned with the practical

aspect of representation and reasoning with vague concepts1.

1The issues of uncertainty and incompleteness of information rather than its vagueness is ad-

dressed by the work on probabilistic and possibilistic logics. Henceforth, we will not be concerned

with these issues and a reader interested in them should refer to [Shafer and Pearl, 1990].

CHAPTER 1. INTRODUCTION 3

1

0

truth value

x

Figure 1.1: A Binary-valued Truth Function

1

0

truth value

x

Figure 1.2: A Fuzzy Truth Function

1.1 Nonstandard Logics addressing Vagueness

Previously proposed approaches for representing and reasoning with vague concepts

capture the imprecision of the symbols by using specialized representational appara-

tus. The most prominent approach is fuzzy logic [Zadeh, 1983; Zadeh, 1988]; another

approach is that of vague predicates [Parikh, 1983].

In fuzzy logic, the truth value of a proposition can range over the unit interval

[0; 1] as opposed to being either true or false (i.e., in the set f0; 1g) as in classical

logic. Figure 1.1 illustrates a binary-valued truth function and Figure 1.2 a fuzzy

function. Another di�erence is that classical logic allows only two quanti�ers: \all"

or \some", whereas the propositions in fuzzy logic can also be quanti�ed using fuzzy

quanti�ers such as most , mostly, usually, frequently, etc. For example, (most) birds

can
y, or (usually) a cup of co�ee costs about �fty cents. Inferencing is carried out

through methods such as the intersection/product syllogism [Zadeh, 1988].

The notion of vague predicates is de�ned in [Parikh, 1983] by �rst de�ning a vague

real number and then an arithmetic over the vague real numbers. The de�nition of a

CHAPTER 1. INTRODUCTION 4

vague predicate and the accompanying semantics and inference mechanism is meant

to get over the observational paradox such as that demonstrated by Sorites where the

transitivity of the indistinguishability relation leads to absurd conclusions.

These nonstandard logics gets around many of the conceptual problems associated

with vagueness but they modify the standard Tarskian semantics of binary-valued

logics and the resulting framework is considerably more complex. For instance, the

automated reasoning processes can no longer be used in a straightforward manner.

Even though conceptually the logic might capture the intuition of vagueness to some

extent, there still remains the problem of de�ning the right fuzzy value function for

predicates. In spite of the existence of these logics that get around the conceptual

problem of representation, many practical systems prefer to use the simpler represen-

tation of binary-valued concepts. These systems prefer to deal with the ubiquitous

vague concepts using this simpler representation even though it may not be as intu-

itively appealing as the nonstandard logics. In the next section, we will discuss the

approach taken by these systems to address the issue of vague concepts within the

simpler binary-valued framework.

1.2 Practical Approach addressing Vagueness

It is commonly accepted in Arti�cial Intelligence that, though inadequate theoreti-

cally, in practice it is often adequate to assume that a vague concept is precise and

that there is indeed a well-de�ned boundary. This practical approach is illustrated by

an example from [Davis, 1990, pages 19-20]: \Suppose that \bald" did refer to some

speci�c number of hairs on the head, only we do not know which number. We know

that a man with twenty thousand hairs on his head is not bald, and that a man with

three hairs on his head is bald, but somewhere in between we are doubtful." This

precise representation of the vague concept bald is still useful for reasoning.

In contrast to the nonstandard logical approaches that lead to complex represen-

tation and reasoning, many system builders who encounter the vagueness problem

adopt the approach of representing a vague concept as a precise one. For instance,

GUARDIAN [Hayes-Roth et al., 1989] and PROTEGE-II [Shahar et al., 1992] are AI

CHAPTER 1. INTRODUCTION 5

systems for medical diagnosis that represent vague concepts such as high temperature

or low blood-pressure as precise. Some other AI systems that take this approach are

MCM [D�Ambrosio et al., 1987] which is a system for chemical manufacturing pro-

cess control, expert systems for preventive control in power plant (GTES, ESCARTA,

SMOP) [Jiang et al., 1991], and expert system to predict thunderstorms and severe

weather (TIPS) [Passner and Lee, 1991].

In this dissertation, we propose to adopt this practical approach of interpreting

a vague concept as a precise one. Since a large number of vague concepts are ab-

stractions over numbers, we will, in particular, consider the vague concepts that are

de�ned over real-valued measure spaces. Therefore, the vague concepts will be in-

terpreted as precise intervals over the real number range. For example in a medical

system, we can assume that the concept high temperature is the real interval (99,106],

normal temperature is the interval (97,99] and low temperature is the interval (94,97].

The main attractions of this predicate-as-interval approach are its conceptual sim-

plicity and the ability to use standard reasoning mechanisms under this approach. In

other words, high, normal and low temperatures can be interpreted as assertions in

the classical sense using Tarskian semantics and standard reasoning techniques can

be applied to them.

Some may object to this interpretation of vague predicates as intervals on the

grounds that it is unintuitive since it causes an abrupt change in the truth value at

the interval boundary. We argue that, despite the apparent conceptual di�culty, the

predicate-as-interval approach can be justi�ed in a wide variety of circumstances.

1.2.1 Justifying Predicate-as-Interval

Sometimes information to determine precise intervals of a vague concept is simply

given. For example, the exact boiling point of water is known and can be used to

divide the temperature range into three classes: below boiling point, at boiling point

and above boiling point. Use of such \landmark" values for reasoning about physical

phenomena is used widely in qualitative physics in the form of quantity spaces [Weld

and de Kleer, 1990].

Intervals are commonly used as a representational primitive in temporal reasoning.

CHAPTER 1. INTRODUCTION 6

The duration of an event or the time interval in which an instantaneous event may

have occurred are often represented as temporal intervals even though the event

duration or the actual time of an event might be vague. The relationship between

the intervals as well as the time-points is then used to constrain the intervals. For

example, \John was away yesterday" refers to an event that occurred over a period

of time. \We found the letter yesterday" refers to an instantaneous event of �nding

the letter that is known to have happened sometime during a time interval. [Allen,

1985] is the seminal AI paper on the interval calculus for temporal relations. Further

studies of the logical and computational properties of the interval calculus include

[Vilain et al., 1990; Allen and Hayes, 1985; Ladkin, 1987].

There are many situations where it is necessary to de�ne vague concepts as precise

intervals. Grading of students in a course requires the grader to assign letter grades

based on numerical scores. Driving and voting ages, income ranges for taxation, legal

blood alcohol level for drivers are but a few everyday examples where crisp cuto�s

are used rather than the vague notions of mature person, a rich or poor person, or

a sober person. This is necessary for pragmatic reasons irrespective of whether the

crisp boundaries are intuitive or not.

Even if it is not necessary to de�ne predicates as intervals, in many situations it

is su�cient to do so and does not present any pragmatic di�culty. Take for instance

the classi�cation of light wavelengths as colors. Like others before him, [Parikh,

1983] points out that as wavelength is a continuous quantity, colors change gradually

with red merging into orange and then into yellow as an example. Parikh goes on

to propose a notion of vague predicates, but we point out that in most cases of

interest this theoretical di�culty does not translate to a pragmatic one. When in

the real world it is important to distinguish colors, the colors are selected so that the

wavelengths are su�ciently far apart. For instance, the colors at the tra�c lights can

be distinguished easily. The colors green, yellow and red correspond to wavelength

intervals [500 m�, 570 m�], [570 m�, 590 m�] and [610 m�, 700 m�], respectively

[Encyclopedia Britanica, 1986]; in fact, the wavelengths at stoplights fall into narrower

intervals. These colors can be distinguished easily, and it is unimportant where exactly

the boundaries are placed between them as long as they satisfy the conditions which

CHAPTER 1. INTRODUCTION 7

necessitated distinguishing the colors. People would be in trouble if the colors used

for tra�c lights were instead venetian red (590.2 m�), cadmium red (604.8 m�) and

English vermilion (608.1 m�).

In this dissertation, we do not suggest that the vagueness of predicates is always

a non-issue. For example, the crisp color-wavelength connection discussed above may

be inappropriate to reason about the artistic value of color composition. We have

only argued that there are many real world situations where it is necessary to model

predicates as intervals and others where it is su�cient. The ubiquity of this practical

approach and the fact that implementors of many AI systems have tended to adopt it

because of its pragmatic advantage establishes that this approach warrants a careful,

systematic study.

1.3 Predicate-as-Interval: A Systematic Study

We have established that the approach of interpreting a vague predicate as an interval

over numbers is practical and useful. The immediate question that arises in order to

establish this interpretation is { how to determine the interval-boundaries (henceforth,

also referred to as thresholds) that correspond to the vague predicate? The rest of

the dissertation is concerned with answering this question by providing a systematic

method for determining the thresholds.

Despite the pervasiveness of the vagueness problem, and the pervasiveness of the

practical approach of representing vague concepts as intervals, there has been no e�ort

in AI to provide a systematic way to compute thresholds in this practical approach.

Most systems that have adopted this approach have used ad hoc methods to delimit

the interval boundaries. The thresholds are established by experts based on their

experience. As these systems get large these thresholds should remain compatible with

each other and with the world that is being modeled. Enforcing this compatibility

can get particularly di�cult when there are multiple experts. This involves a long-

drawn process of iterative changes to the thresholds until a satisfactory assignment

is achieved.

We introduce, instead, a systematic framework for representing and reasoning

CHAPTER 1. INTRODUCTION 8

with vague concepts as intervals that has the advantages of (1) improving our under-

standing of the issues involved in the practical approach, and (2) replacing the ad hoc

approach used by system designers to delimit the interval-boundaries. This frame-

work can then be used by a system designer to de�ne the vague concepts precisely

and to avoid the pitfalls associated with the ad hoc method.

The framework is based on the key observation that vague concepts and their

interval-boundaries are constrained by the underlying domain knowledge that must

be used to reason about the thresholds. The de�nition of a concept depends on

the context in which it will be used and on its relationship to other concepts. For

instance, the fact that the heart rate of a patient is related to the blood pressure

must be utilized while de�ning low/high heart rate and low/high blood-pressure. We

extend Davis' baldness example to understand the role that the domain knowledge

plays.

Example 1.1: \Anyone with 3 or fewer hairs is bald and anyone with 20000 or more

hairs is not bald"

\All old people are bald" (note that \old" itself is a vague concept that we will assume

has a well-de�ned boundary)

\Anyone who is 60 years or younger is not old whereas anyone over 100 is old"

\All presidents of companies are old"

\Tom's age is 80 years, he has 500 hairs and is the president of a company"

\Jim's age is 85 years and he has 800 hairs"

\Sam's age is 45 and he has 650 hairs"

Is Tom bald? Logical reasoning tells us that since Tom is president of a company,

he is old and therefore bald. Note that here we used only the logical relations between

the concepts president, old and bald, where old and bald are vague concepts but

president is not.

Is Jim bald? We can reason that since Tom is old, the oldness threshold2 can be

at most 80. Since Jim's age is 85 which is over the oldness threshold, he must be

old and therefore bald. Note that here we needed numerical reasoning with Tom and

2By oldness threshold we mean that age such that everyone of higher age is old whereas everyone

of lower age is not old. The baldness threshold is de�ned analogously.

CHAPTER 1. INTRODUCTION 9

Jim's ages and oldness threshold, as well as logical reasoning that since Jim is old he

must be bald.

We can ask if the baldness threshold is necessarily more than 800? Since Jim is

bald and has 800 hairs, the baldness threshold must be at least 800. Therefore, the

answer to the query is yes and hence anyone with less than 800 hairs is bald. Here

we needed numerical reasoning about Jim's hairs and the baldness threshold.

Is Sam bald? Since anyone with less than 800 hairs is bald, and Sam has only 650

hairs, he must be bald. Here we needed numerical reasoning with number of hairs on

Sam's head and the baldness threshold.

As illustrated by this example, we need to represent both logical relations between

symbolic concepts and numerical relations on thresholds. Also, logical as well as

numerical reasoning is required to answer the interesting queries. Hence, the proposed

framework facilitates this representation and supports queries about the thresholds.

1.3.1 Framework

The framework is comprised of three main parts { a constraint language to express

domain knowledge, a query language to query the domain knowledge and an algorithm

to answer the queries.

� The �rst part of the framework is a constraint language that captures the do-

main knowledge. The language enables the expression of logical constraints on

the vague concepts as well as numerical constraints on the thresholds of these

concepts. Explicit representation of the thresholds is important to represent

the numerical constraints and as we shall see, to ask queries.

� The second part of the framework is a query language that extracts relevant

information about the thresholds implied by the domain knowledge. In partic-

ular, the queries enable us to delimit the thresholds based on the information

provided in the domain knowledge3. This is exactly what a system designer

3Note that it is not necessary to assign speci�c values to the thresholds to answer any queries,

although this assignment is made much easier in our framework.

CHAPTER 1. INTRODUCTION 10

needs to de�ne intervals for a vague concept that are consistent with the do-

main knowledge. For example, the answer to the query \what is the minimum

permissible value for the baldness threshold?" provides the designer with useful

information to de�ne the interval for bald.

� The third part of the framework is an algorithm to answer the queries in the

query language using the domain knowledge expressed in the constraint lan-

guage.

1.4 Outline of the Dissertation

In this chapter, we discussed the importance of vague concepts in representing com-

monsense knowledge. The nonstandard logics such as fuzzy logics try to conceptually

capture the intuition behind vagueness but at the cost of modifying the standard

Tarskian semantics and making the inference mechanisms complex. We claim that

the practical approach of interpreting a vague predicate as a precise interval is simple

and useful, as evidenced by its widespread use by system builders, and deserves a

thorough study. We introduce a framework to systematically establish the de�nition

of a vague predicate as an interval. This framework utilizes the underlying domain

knowledge to determine the thresholds of the intervals. The three main components of

this framework are a constraint language to represent the domain knowledge, a query

language to query the constraints about thresholds, and an algorithm to compute the

answers to the queries.

In Chapter 2 we discuss the constraint language in which the domain knowledge

is expressed as also the query language in which the queries can be asked on the

constraints.

In Chapter 3 we discuss the algorithm for answering the queries.

In Chapter 4 we discuss this algorithm further together with some useful heuristics

and some sample applications of the algorithm.

In Chapter 5 we extend the constraint language to be more general, along with the

algorithms for answering queries on the extended language.

Chapter 6 concludes the dissertation and mentions some open questions.

Chapter 2

Constraint and Query Languages

The �rst component of the framework to reason precisely with vague concepts is a

constraint language in which to represent the domain knowledge. The second com-

ponent is a query language in which queries can be asked about vague concepts and

their thresholds. We discuss these languages in this chapter.

2.1 Constraint Language

To express the domain knowledge, the constraint language must have an explicit

representation of thresholds. Also, as illustrated by the example of bald people in

Chapter 1, the language must be able to express numerical constraints as well as

logical constraints. We present such a language here, chosen for its familiarity as well

as to strike a tradeo� between expressivity and e�ciency of answering queries. We

denote the constraint language described here by CL.

The predicates that denote the vague concepts in the logical language are dis-

tinguished from the other predicates. We refer to these predicates, which must all

be unary, as interval-predicates and to all other predicates as noninterval-predicates.

Henceforth, interval-predicates appear in the sans serif font and the noninterval-

predicates in italics. The set of interval-predicates is denoted by IP, and the set

of noninterval-predicates by NIP. With every predicate P 2 IP we associate two

threshold terms P� and P+, called the lower and upper thresholds of P, respectively.

11

CHAPTER 2. CONSTRAINT AND QUERY LANGUAGES 12

The set of all threshold terms is denoted by T , i.e., T = fP�; P+ j P 2 IPg.

The interval-predicates are interpreted in a special way to re
ect our intuition

about the vague predicates: P is interpreted as the interval [P�, P+] over <, the set of

real numbers1. We refer to this interpretation as the predicate-as-interval assumption.

This assumption can also be stated as

P(x), P� � x � P+

1. Numerical Constraints: The language of numerical constraints is that of

linear arithmetic inequalities where the threshold terms in T are the variables

of the inequalities. A numerical constraint must be reducible to the form

(a1x1 + : : :+ anxn) relop b

where a1; : : : ; an; b 2 <, and x1; : : : ; xn 2 T ,

and relop 2 f�;�; <;>;=g.

We denote the numerical constraint language by NL and the set of numerical

constraints by NC. Due to the predicate-as-interval assumption, NC always

includes the following set of inequalities

fP� � P+
j P 2 IPg

2. Logical Constraints: In this chapter, we consider a simple language for logical

constraints that we denote by LL. This language simpli�es the discussion and

understanding of the ensuing algorithm in Chapters 3 and 4. An extended form

of this language together with the algorithms are discussed in Chapter 5. A user

of this framework can choose a language of desired expressivity depending upon

the application. In general, the more restricted the language, the more e�cient

will be the query-answering algorithm.

1To be exact, the interval associated with the predicate could be open or closed at either end.

Even though it does not a�ect the discussion here, these special cases are discussed in Appendix A

for the sake of completeness.

CHAPTER 2. CONSTRAINT AND QUERY LANGUAGES 13

The logical constraints in the language LL are de�nite Horn clauses [Lloyd,

1987], but with certain restrictions. A Horn clause is of the form

8x [Q(y) P1(x1) ^ : : : ^ Pn(xn)]

where the single positive literal Q(y) is called the head of the clause, P1(x1) ^

: : : ^ Pn(xn) is a conjunction of positive literals and is called the body of the

clause, and is the logical implication. x is the tuple of all variables occurring

in the clause and they are all universally quanti�ed. A de�nite Horn clause is

a Horn clause that has a non-empty head (though the body can be empty)2.

The �rst restriction in the language LL is that the rules do not have any function

symbols3. The second restriction is that we do not allow recursion among the

clauses. The predicates of these logical constraints come from the set of interval-

predicates IP as well as from noninterval-predicates NIP. The set of logical

constraints is denoted by LC.

The semantics of the language is that of classical �rst-order logic.

The logical constraint language LL is quite general since it is capable of expressing

if-then rules that occur quite commonly in AI applications. The linear inequalities of

the numerical constraint language NL allow the expression of the intuitive numerical

ranges in which a threshold is known to lie and relations between these thresholds.

Let us consider again the constraints in Example 1.1 and see how they will be rep-

resented in the constraint language CL. We extend the example to include another

constraint that all rich VPs become presidents of companies.

Example 2.1: The set of interval-predicates IP is

IP = fbald; old; richg

2De�nite Horn clauses are also called rules.
3Rules without function symbols are also called Datalog sentences in the deductive database

literature [Ullman, 1988].

CHAPTER 2. CONSTRAINT AND QUERY LANGUAGES 14

where bald(x) means that x number of hairs lies in the category bald, old(x) means

that x years lies in the category old, and rich(x) means that x amount of money lies

in the category rich.

The set of noninterval-predicates NIP is

NIP = fage ; hairs; pres; money ; was VPg

where age(x, y) means that the person x is y years old, hairs(x, y) means that the

person x has y number of hairs, pres(x) means that the person x is a president of a

company,money(x, y) means that the person x has y amount of money, and was VP(x)

means that the person x was a VP of a company.

The set of numerical constraints NC is

NC = fbald� = 0; 3 � bald+ � 20000; old+ =1;

60 � old� � 100; 0:1 � rich� � 1; rich+ =1 g

[fbald� � bald+; old� � old+; rich� � rich+g

The unit for bald is number of hairs, for old is age in years, and for rich is money in

millions of dollars.

The set of logical constraints LC is

LC = fpres(x) was VP(x) ^money(x ; y) ^ rich(y)

bald(z) old(y) ^ age(x ; y) ^ hairs(x ; z)

old(y) pres(x) ^ age(x ; y)

age(Tom; 80); hairs(Tom; 500); was VP (Tom); money(Tom; 6)

age(Jim; 85); hairs(Jim; 800)

age(Sam; 45); hairs(Sam; 650)g

Here, the �rst three constraints are rules whereas the rest of the constraints are ground

literals.

2.1.1 Comparison to Other Languages

The constraint language CL described in the last section has both a numerical as well

as a logical component. There are other languages that combine quantitative and

CHAPTER 2. CONSTRAINT AND QUERY LANGUAGES 15

qualitative constraints, but di�er from CL in various ways.

Williams' qualitative algebra [Williams, 1988] expresses operations on reals and

signs of reals, but is not concerned with logical constraints of the kind that we have in

LL. The operations on reals form the quantitative constraints and the operations on

the signs of reals (+; 0; �) form the qualitative constraints. There is a sign algebra

that combines the two kinds of expressions.

Similarly, [Meiri, 1991] and [Kautz and Ladkin, 1991] present frameworks for

expressing and processing both quantitative and qualitative temporal constraints.

The quantitative constraints are constraints on the distance between time points and

the qualitative constraints are interval relations between time intervals (13 possible

relations between intervals are de�ned in [Allen, 1985]). Their language limits the

constraints, whether numerical or logical, to be binary whereas our language does

not. On the other hand, their language can express disjunctive relations between

intervals which our language does not. It is possible in our language to express the

disjunctive relations by allowing disjunctions of linear arithmetic inequalities in the

numerical constraints. The algorithm discussed in Chapter 3 will still apply though

some of the optimizations to speed it up will not be applicable.

Most closely related to our language is a language for constraint logic programming

CLP (<), in the style of Lassez et al. [Ja�ar and Lassez, 1987]. CLP (<) considers

general Horn theories, as opposed to our limited Datalog theories. However, CLP (<)

does not allow numerical constraints in the head of a clause. In our language the

interval-predicates can occur in the head which, if represented in CLP (<), would

correspond to numerical constraints occurring in the head. For example, if P is an

interval-predicate, then the predicate-as-interval assumption says that

P(x), P� � x � P+

One way implication can be represented in CLP (<) as

P(x) P� � x � P+

but the implication in the other direction cannot be expressed since that would mean

CHAPTER 2. CONSTRAINT AND QUERY LANGUAGES 16

that the arithmetic constraint P� � x � P+ occurs in the head of the clause which

is not allowed in CLP (<). Hence, we cannot represent the constraints in LL in the

language of CLP (<).

2.2 Query Language

Given the domain knowledge in the constraint language, a user would like to extract

information about thresholds. Since the constraints are often not su�cient to pinpoint

an exact value for the threshold, the ability to query where the thresholds can and

cannot lie becomes important. Querying is a useful tool for a system designer to

�nd the threshold values allowed by the constraints during the design stage of a

knowledge-based system. Therefore, the query language, denoted by QL, is geared

to support queries that will aid in the threshold determination process.

The kind of queries supported in the language QL are described below. Here

Pth

1 ; : : : ;P
th

n
2 T where Pth is either P� or P+

a1; : : : ; an 2 <

op1; : : : ; opn 2 f^;_g

rel1; : : : ; reln 2 f�;�; <;>;=; 6=g and

i 2 f1; : : : ; ng

The formal language of the query is in pre�x notation and is written here in

typewriter font. For logical expressions with ops ^ and _, assume the usual pref-

erence of parentheses around ^ followed by _ (i.e., p _ q ^ r should be read as

(p _ (q ^ r))).

1. Is it necessarily the case that (Pth

1 rel1 a1) op1 : : : opn (Pth

n
reln an) ?

(necessarily (op1 (rel1 P
th

1 a1) (op2 (rel2 P
th

2 a2) (op3 : : :))))

2. Is it possibly the case that (Pth

1 rel1 a1) op1 : : : opn (Pth

n
reln an) ?

(possibly (op1 (rel1 P
th

1 a1) (op2 (rel2 P
th

2 a2) (op3 : : :))))

CHAPTER 2. CONSTRAINT AND QUERY LANGUAGES 17

3. What is the minimum value that Pth

i
can take?

(minimum Pth

i
)

4. What is the maximum value that Pth

i
can take?

(maximum Pth

i
)

Many queries can be composed from the primitive queries de�ned above. For

example, the query \P(a) ?" is expressible in QL by casting it as \Is it necessarily

the case that (P� � a) ^ (P+ � a) ?", or formally as

(necessarily (and (� P� a) (� P+ a)))

If the answer is yes then P(a) is true, otherwise it is unknown. If the answer to \Is it

possibly the case that (P� � a)^ (P+
� a) ?" is no then P(a) is false, otherwise it is

unknown.

The semantics of the query (necessarily q) is that whether q is logically implied

by (LC[NC)4; alternatively, whether q is true in every model where LC[NC is true.

This is also represented by the standard symbol for logical entailment (LC[NC) j= q.

The semantics of the query (possibly q) is whether q and LC [NC can be true

together; alternatively, whether there exists a model of LC [NC where q is true.

The semantics of the query (minimum P�) is that the answer to the query is a real

number a such that (LC [NC) j= (P� � a) and there does not exist any other real

number b such that (b < a) and (LC [NC) j= (P� � b). Analogously, the query

(maximum P�) means that the answer to the query is the real number a such that

(LC [NC) j= (P� � a) and there does not exist any other real number b such that

(b > a) and (LC [NC) j= (P� � b).

These queries are useful for a system designer to de�ne the vague predicates in

a system precisely. For instance, to set a cuto� between bald and not bald, one can

initially ask for the minimum and maximum values allowed for bald+. In this case,

4Throughout the dissertation, we use set of sentences and conjunction of sentences interchange-

ably. A set of sentences appearing in a logical expression should be taken to mean the conjunction

of sentences in that set.

CHAPTER 2. CONSTRAINT AND QUERY LANGUAGES 18

the �rst query is

(minimum bald+)

which returns the answer 800, and the second query is

(maximum bald+)

which returns the answer 20000.

These values are then useful for picking a candidate value in the allowed range

[min;max]. So, for instance, one can pick 900 as the value for the threshold bald+

since it lies in the allowed range [800; 20000]. Anything outside this range is already

known to be inconsistent with the given constraints.

Once a candidate value for the threshold is picked one can check whether this

value is consistent with the constraints. In this example, checking that

(necessarily (= bald+ 900))

returns the answer yes which will ensure that 900 is a valid assignment. We consider

an extension to Example 2.1 to illustrate why it is important to check the candidate

value for consistency even when it lies in the [min;max] range.

Example 2.2: In addition to the constraints in Example 2.1, we have the following

ground facts about Bob which must be added to the set of logical constraints LC:

fage(Bob; 70); hairs(Bob; 1000)g

The minimum and maximum values of old� give us the allowed range of [60; 80].

Therefore, it is uncertain whether Bob is old or not. Similarly, it is uncertain whether

Bob is bald or not. As before, let us choose the value of bald+ to be 900. But now

this is consistent or inconsistent depending upon what is the value chosen for old�.

For instance, if (old� = 65), then we can conclude that Bob is old and therefore bald.

But according to the cuto� (bald+ = 900), he should not be bald since he has 1000

hairs. Therefore, (old� = 65) is inconsistent with (bald+ = 900). On the other hand,

CHAPTER 2. CONSTRAINT AND QUERY LANGUAGES 19

if the value chosen for old� is more than 70, then there is no inconsistency.

This example illustrates that the values assigned to thresholds might individually

be consistent with the constraints, but when considered simultaneously, they could

be inconsistent. A query such as

(necessarily (and (= bald+ 900) (= old� 65)))

would detect such inconsistencies.

Another application of the querying mechanism is at the time a value of a threshold

is desired in a certain range. Then one can check if a value in that range is possible and

then pick a value in that range, followed by checking as before that this is consistent

with other assignments. For example, if we desire a value of bald+ in the range

[500; 5000], then we can ask the following query

(possibly (and (� bald+ 500) (� bald+ 5000)))

If the answer is yes then we can pick a value in the range and check for consistency

as before. If the answer is no, then no value in the range is valid.

Hence, this query language is quite general and is useful to a system designer in

assigning values to the thresholds that are consistent with the given constraints.

Chapter 3

Answering Queries: Preprocessing

Constraints

In Chapter 2 we described the �rst two parts of the framework for reasoning pre-

cisely with vague concepts: �rst, the constraint language in which the knowledge

about the domain is expressed and, second, the query language in which the queries

about the interval-predicates and their thresholds can be asked. The third part of the

framework is the algorithm responsible for answering the queries on constraints. The

main considerations for the algorithm are its soundness, completeness and e�ciency.

Soundness means that any answer to a given query must be correct. Completeness

means that if an answer to a query is derivable from the constraints, then that an-

swer must be derived, rather than returning \unknown". Usually, there is a tradeo�

between the soundness and completeness of an algorithm and its e�ciency. In this

chapter, we will describe an algorithm that is sound and complete in Section 3.1 and

establish these properties formally in Section 3.2. We will also discuss the complexity

issues in Section 3.3.

3.1 Algorithm to Answer Queries

The main feature of the query-answering algorithm described here is that it prepro-

cesses the constraints so that answering the query is e�cient at runtime. Since the

20

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 21

Linear
Programming

Answers to Queries

Preprocessing
of constraints

Derivation
Algorithm

Combination
Algorithm

Logical
Constraints
 (LC)

Given
Numerical
Constraints

 (NC)

Derived
Numerical
Constraints

 (quant−LC)

 Combined
 Numerical
 Constraints

 (output−C)

Figure 3.1: Overview of the Query-Answering Algorithm

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 22

queries require information about the thresholds of interval-predicates only, the pre-

processing stage extracts the information pertaining to these thresholds while elim-

inating the information about the noninterval-predicates. The preprocessing is a

two-step procedure: �rst, using the predicate-as-interval assumption, the procedure

extracts the numerical information about the interval-predicates from the logical con-

straints LC. This derived information is in the form of disjunctions of linear arith-

metic constraints. Next, the procedure combines these disjunctive constraints with

the given numerical constraints NC.

Figure 3.1 is an overview of the Query-Answering Algorithm. The dotted lines

mark the preprocessing of constraints. At the end of preprocessing, the constraints

are in the form of disjunctions of linear arithmetic inequalities and the queries are

answered using e�cient linear programming techniques. We will discuss this in Chap-

ter 4. The preprocessing stage is the subject of this chapter. The �rst step in prepro-

cessing, where numerical information is derived from logical constraints LC, is called

the derivation algorithm and is described in Section 3.1.1. The second step in prepro-

cessing where the derived numerical information from the �rst step is combined with

NC, is called combination algorithm and is described in Section 3.1.2. The formal

results and complexity issues about the derivation algorithm are in Section 3.2 and

Section 3.3, respectively.

3.1.1 Derivation Algorithm

The derivation algorithm eliminates the occurrence of noninterval-predicates from

the set of given logical constraints LC while retaining all the information about

the thresholds of interval-predicates. Figure 3.2 gives an overview of the derivation

algorithm. The algorithm �rst computes the logical implication of LC that has no

occurrence of any noninterval-predicate. This procedure is called eliminate NIP .

Then the clauses in this implication are converted to numerical constraints using

the predicate-as-interval assumption for the interval-predicates. The procedure that

achieves this is called convert to numerical. A description of the derivation algorithm

is in Algorithm 3.1.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 23

Logical
Constraints
 (LC)

Clauses with only
 interval−predicates
 (ILC)

 Derived
 Numerical
 Constraints
 (quant−LC)

Eliminate−NIP

Convert−to−numerical

Figure 3.2: Derivation Algorithm

ALGORITHM 3.1 (Derivation)

Input: Set of logical constraints LC.

Set of interval-predicates IP.

Set of noninterval-predicates NIP.

Output: Set of arithmetic constraints quant LC derived from LC by eliminating

predicates from NIP and converting to numerical constraints

using predicate-as-interval assumption on predicates from IP.

Method:

ILC Eliminate NIP (LC;IP;NIP).

% ILC is the set of clauses derived from LC

% such that it has only interval-predicates

quant LC Convert to numerical(ILC).

Return(quant LC)

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 24

Eliminating Noninterval-Predicates

The �rst step of the derivation algorithm is Algorithm 3.2 that eliminates the

noninterval-predicates from the logical constraints while retaining all the informa-

tion about the interval-predicates.

ALGORITHM 3.2 (Eliminate NIP)

Input: Set of logical constraints LC.

Set of interval-predicates IP.

Set of noninterval-predicates NIP.

Output: ILC the set of clauses derived from LC

such that it has only interval-predicates

Method:

Initialize ILC ;.

For every clause c 2 LC such that head(c) 2 IP do

ILCc Expand(c; LC;IP;NIP).

ILC ILC [ILCc.

Endfor

Return(ILC)

Starting with all those clauses in LC that have interval-predicates at the head,

we expand their bodies using other clauses in LC until all noninterval-predicates

are eliminated from the body. Intuitively, the procedure expand does the job of

extracting from the noninterval-predicates all the information that they contribute

to the thresholds and then eliminates them. A description of the expand procedure

is in Algorithm 3.3.

ALGORITHM 3.3 (Expand)

Input: Clause c from the set of logical constraints LC

such that its head has an interval-predicate.

The set of logical constraints LC.

The set of interval-predicates IP.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 25

The set of interval-predicates NIP.

Output: The set of clauses obtained by expanding c using clauses in LC

such that only noninterval-predicates are expanded.

Method:

If body(c) is empty or

for every literal l 2 body(c) it is case that l 2 IP

Then return(fcg)

Else Initialize S ;.

For every literal l 2 body(c) such that l 2 NIP do

For every clause r 2 LC such that unifiable(l; head(r)) do

% notation for uni�cation from

% [Genesereth and Nilsson, 1987, Section4.2]

� mgu(l; head(r)).

new c [head(c) (body(c)� flg) [body(r)]�.

S S [Expand(new c; LC;IP;NIP).

Endfor

Endif

Return(S)

Expand is very similar to SLD resolution [Lloyd, 1987] but with two di�erences:

(1) only noninterval-predicates are expanded (2) all possible expansions are com-

puted. Since only the noninterval-predicates are expanded, we are �nally left with

only interval-predicates. Computing all possible expansions ensures that we are not

losing any information in this process. The expansion of a clause can also be repre-

sented by a derivation tree.

The derivation tree is a tree where the head of the rule being expanded is at the

root of the tree and each literal in the body of the rule is a child of the root. Then,

each further expansion of a literal leads to the subsequent expanded literals being

added as children. The leaf nodes form the literals in the expansion of the root.

An application of the algorithm on Example 2.1 is illuminating:

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 26

Example 3.1:

Restating the set of logical constraints LC

LC = fpres(x) was VP(x) ^money(x ; y) ^ rich(y)

bald(z) old(y) ^ age(x ; y) ^ hairs(x ; z)

old(y) pres(x) ^ age(x ; y)

age(Tom; 80); hairs(Tom; 500); was VP (Tom); money(Tom; 6)

age(Jim; 85); hairs(Jim; 800)

age(Sam; 45); hairs(Sam; 650)g

The �rst step in the procedure is to locate clauses with interval-predicates at the

head. Here there are two such clauses: one with bald at the head, and the other with

old at the head.

For the clause with bald at the head, we do not need to expand the interval-predicate

old in the body but only the two noninterval-predicates age and hairs. For each of

these, we have three choices for uni�cation: one each by instantiating x with Tom,

Jim and Sam respectively. Therefore, we get three expanded clauses in ILC:

bald(500) old(80)

bald(800) old(85)

bald(650) old(45)

For the clause in LC with old at the head, we can expand the noninterval-predicate

pres with another rule from LC to obtain

old(y) was VP (x) ^ money(x ; z) ^ rich(z) ^ age(x ; y)

On expanding further, we �nd that we can only instantiate x with Tom. Therefore,

we get one more expanded clause in ILC:

old(80) rich(6)

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 27

old (y)

pres (x) age (x, y)

was−VP (x)

was−VP (Tom)

age (Tom, 80)

money (Tom, 6)

money (x, z) rich (z)

Figure 3.3: Derivation Tree for Expansion of old

The derivation tree corresponding to the expansion for old is in Figure 3.3. Note that

there will be three derivation trees for bald, each corresponding to the three possible

expansions of bald.

The eliminate NIP procedure described above is top-down in that we start with a

rule and expand its body-literals until we get to the ground facts. Instead, we could

compute ILC in a bottom-up manner, starting from the ground facts and going up

to the rules. This would require using an iterative expand algorithm rather than the

recursive one that we have now. This is analogous to backward chaining rather than

forward chaining in a rule-based system. The bottom-up method is discussed next.

Bottom-up Elimination of Noninterval Predicates The intuition behind this

method is to expand the predicates in such a fashion so that a predicate being ex-

panded depends only on the predicates that have already been expanded. There are

two advantages: �rstly, it avoids any duplication of work in expanding a predicate

and secondly, the information required for one expansion is already available (there-

fore, one computation need not be deferred for the result of another). To get the

dependency relation between the predicates, we construct the dependency graph.

The dependency graph G = (V;E) corresponding to the set of logical constraints

LC is meant to represent the dependencies between the predicates occurring in LC.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 28

The set of nodes V of the graph is the set of all predicates, interval as well as nonin-

terval predicates; i.e., V = IP [NIP. There is a directed edge (p; q) in the graph

if and only if there is a rule in LC where predicate q occurs in the head of the rule

and predicate p occurs in its body. Since there is no recursion among the rules, the

graph will always be acyclic and hence we can perform a topological sort on the

graph. Then, a predicate depends only on the predicates that are lower in the topo-

logical order. This allows us to expand the predicates in the topological order and

satisfy our intuition behind the bottom-up method. The algorithm for elimination of

noninterval-predicates is described in Algorithm 3.4 and illustrated with Example 3.2.

ALGORITHM 3.4 (Eliminate NIP bottomup)

Input: Set of logical constraints LC.

Set of interval-predicates IP.

Set of noninterval-predicates NIP.

Output: ILC the set of clauses derived from LC

such that it has only interval-predicates

Method:

Construct dependency graph G = (V;E) from LC.

Do a topological sort of G [Cormen et al., 1986, Section 23.4].

Expand nodes of G in topological order.

Expansions of nodes that are interval-predicates form the desired set ILC.

Example 3.2: The dependency graph corresponding to LC in Example 3.1 is de-

picted in Figure 3.4.

Expanding in the topological order, we have the following expansions:

expansion(was VP) = f was VP(Tom) g

expansion(money) = f money(Tom, 6) g

expansion(rich) = f g

expansion(pres) = f pres(Tom) rich(6) g

expansion(age) = f age(Tom, 80), age(Jim, 85), age(Sam, 45) g

expansion(old) = f old(80) rich(6) g

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 29

was−VP1

money2

rich3

pres
4

age
5

old

6

hairs
7

bald 8

i topological order

Figure 3.4: Dependency Graph

expansion(hairs) = f hairs(Tom, 500), hairs(Jim, 800), hairs(Sam, 650) g

expansion(bald) = f bald(500) old(80), bald(800) old(85),

bald(650) old(45) g

Since rich, old and bald are the interval-predicates, ILC is the union of their expan-

sions, i.e.,

ILC = f old(80) rich(6)

bald(500) old(80)

bald(800) old(85)

bald(650) old(45) g

Converting to Numerical Constraints

The �rst part of the derivation algorithm preprocesses the set of logical constraints

LC to eliminate the noninterval-predicates such that we are left with the set ILC that

has clauses with only interval-predicates. In the second step, we convert these clauses

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 30

into numerical constraints using the predicate-as-interval assumption. The algorithm

that achieves this is called Convert to numerical and is described as Algorithm 3.5.

−old +old80

old (80)Clause:

< <−old +old80Numerical Constraint :

 80 −old +old

80−old +old

V)< −old(80 ()+old < 80Numerical Constraint :

 old (80)Clause:

Figure 3.5: Converting clause with constant to numerical constraint

The intuition behind this algorithm is that due to the predicate-as-interval as-

sumption, we can interpret an interval-predicate as an interval over the real number

line. Therefore, an atomic clause such as old(80) means that 80 must lie within

the interval corresponding to old which will be [old�; old+]. Similarly, a clause such

as :old(80) means that 80 must not lie within the interval corresponding to old.

This idea is illustrated in Figure 3.5. If we consider a clause with a variable, such

as P(x) Q(x); R(x), we can reason about the three intervals corresponding to

the interval-predicates P, Q, R and deduce relationships between the corresponding

thresholds, as shown in Figure 3.6.

We observe that since the interval-predicates are unary, we can fragment any

clause in ILC into subclauses that have only a constant or only one variable. This is

used to decompose every clause in ILC into subclauses that fall into one of the six

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 31

P
P

−
P

+

Q
Q

− +
Q

R
−

R
+

R

numerical constraints:

,P
−

< max (Q
− −

R)

(,P + min
+

Q
+

R>)

which is equivalent to:

P
−

Q
− −

RP
−

< <V() ()

P + +
Q

+
RP +> >V() ()

P (x) <−− (x) , Q R (x) Clause :

Figure 3.6: Converting clause with variable to numerical constraint

categories discussed in Algorithm 3.5.

ALGORITHM 3.5 (Convert to numerical)

Input: Set of clauses ILC that has only interval-predicates.

Output: Set of arithmetic constraints quant LC obtained

by converting ILC using the predicate-as-interval assumption.

Method:

Initialize quant LC ;.

For every clause lc 2 ILC do

Initialize nc emptyset.

% nc is the numerical constraint obtained by converting lc

lc subclauses Make Subclauses(lc). % Make subclauses breaks lc

% into subclauses with only a constant or only one variable each

For every subclause subcl 2 lc subclauses do

Case subcl of: % a is a constant

\P(a)": subcl0 (P� � a � P+)

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 32

\ P(a)": subcl0 (a < P�) _ (a > P+)

\P(x)": subcl0 (P� = �1) ^ (P+ = +1)

\ P(x)": subcl0 P� > P+

\ P1(x); : : : ;Pn(x)":

subcl0 _n
i=1 _

n

j=1 (P
�
i
> P+

j
)

\P(x) Q1(x); : : : ;Qn(x)":

subcl0 (_n
i=1P

� � Q�

i
) ^ (_n

i=1P
+ � Q+

i
).

nc nc _ subcl0

Endfor

quant LC quant LC [nc.

Endfor

Return(quant LC)

This algorithm works by fragmenting each clause in ILC into subclauses such

that each subclause has at most one variable and no two subclauses have the same

variable. Note that this is always possible because all interval-predicates are unary.

For example, the clause P(a) Q(x)^R(x)^S(b) is a disjunction of three subclauses:

\P(a)", \ Q(x) ^ R(x)" and \ S(b)". In general, each subclause thus obtained

will be one of the six basic types described in Algorithm 3.5. Each type of subclause

is converted to a numerical constraint by using the predicate-as-interval assumption,

and by interpreting the connectives :;_;^ as complement, union and intersection of

intervals, respectively. Therefore, for any clause in ILC, we can always decompose

it into a disjunction of subclauses, each of which can be converted to disjunctions

of linear arithmetic inequalities. Any clause in ILC is thus converted to a set of

disjunctions of linear arithmetic inequalities.

We apply this algorithm to Example 3.2 to get the quant LC shown in Exam-

ple 3.3.

Example 3.3: In this example, each clause in ILC gets fragmented into subclauses

of the �rst two types: \P(a)" and \ P(a)".

bald(500) old(80) has two subclauses and is equivalent to their disjunction

\bald(500)" _ \ old(80)"

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 33

Converting each subclause using the convert to numerical algorithm, we get the

numerical constraint

(bald� � 500 � bald+) _ (80 < old�) _ (old+ < 80)

which is equivalent to the set of numerical constraints

f(bald� � 500) _ (80 < old�) _ (old+ < 80);

(500 � bald+) _ (80 < old�) _ (old+ < 80)g

Therefore, the set of numerical constraints quant LC derived from LC is

quant LC = f(bald� � 500) _ (80 < old�) _ (old+ < 80)

(500 � bald+) _ (80 < old�) _ (old+ < 80)

(old� � 80) _ (6 < rich�) _ (rich+ < 6)

(80 � old+) _ (6 < rich�) _ (rich+ < 6)

(bald� � 800) _ (85 < old�) _ (old+ < 85)

(800 � bald+) _ (85 < old�) _ (old+ < 85)

(bald� � 650) _ (45 < old�) _ (old+ < 45)

(650 � bald+) _ (45 < old�) _ (old+ < 45) g

3.1.2 Combining with Numerical Constraints

The �rst part in the preprocessing of constraints is the derivation of numerical con-

straints from the logical constraints. The second part is combining these derived

constraints quant LC with the given set of numerical constraints NC to be able to

answer the queries. In principle, we could just take the union of the two sets of

constraints to get the combined set that we call output C. Then answering a query

would require computing the answer over output C. We �rst discuss what kind of

procedures are required to answer a query over output C and hence justify the need

to do something more to combine the two sets quant LC and NC than just taking

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 34

their union. We then describe the combination algorithm and illustrate it through

an example.

There are four kinds of queries that are allowed in the query language, as discussed

in Chapter 2. Of these, the �rst two queries that ask whether a certain statement

is necessarily or possibly true can be answered by adding the statement to the con-

straint set output C and checking whether the resulting set is consistent. The existing

linear programming techniques to check consistency of linear inequalities are useful.

These are usually applied to constraints without disjunctions. The third and fourth

queries that ask for minimum and maximum values of thresholds can be answered

by applying linear optimization techniques to output C. Again, these techniques are

usually applied to constraints without disjunctions. Hence, we need to consider the

disjunctive normal form (DNF) of output C so that we can apply these techniques to

each disjunct (that will have only conjunctions of linear inequalities) separately and

then combine the result. Consider Example 3.4 where these queries are asked on the

sets quant LC from Example 3.3 and NC from Example 2.1:

Example 3.4:

Restating the numerical constraints from Example 2.1:

NC = fbald� = 0; 3 � bald+ � 20000; old+ =1;

60 � old� � 100; 0:1 � rich� � 1; rich+ =1 g

[fbald� � bald+; old� � old+; rich� � rich+g

The combined set of constraints output C is

output C = quant LC [NC

Since quant LC has disjunctive constraints, so will output C. In the DNF form,

output C has 38 possible disjunctions.

Consider the query (necessarily (bald+ � 1000)). We need to add the negation

of the statement, i.e., (bald+ > 1000), to each of the 38 possible disjuncts of output C.

If the negation is consistent with any of the disjuncts, then the original statement is

not necessarily true, and hence the answer to the query will be no. If the negation

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 35

is inconsistent with every disjunct then the original statement is necessarily true and

hence the answer to the query is yes. In this example, (bald+ > 1000) is consistent

with all disjuncts; hence, the answer to the query is no.

For the query (possibly (bald+ � 1000)), if the statement is consistent with at

least one disjunct then the answer to the query is yes, otherwise it is no. Here, it is

consistent with every disjunct in fact; hence, the answer to the query is yes.

For the query (minimum bald+), we compute the minimum value of bald+ in every

disjunct and the least among all the minimums is the answer to the query. Anal-

ogously for �nding the maximum. Here, the minimum is 800 and the maximum is

20000.

We observe from the example that we need to consider the DNF of output C for

computing the answer, which might be large in many cases. Hence, it is important

to use heuristics to prune the size of this set and reduce the number of disjuncts that

need to be checked. Because of these e�ciency concerns, the process of combining

quant LC and NC is more complex than simply taking their union. We �rst prune the

size of quant LC using the set NC before taking their union, and then further detect

redundant disjuncts in output C. The queries are answered using the existing linear

programming techniques on this set. We describe the overall combination procedure

in Algorithm 3.6. The details of the heuristics for pruning and speedup are discussed

in Chapter 4 as also the application of existing linear programming and inequality

reasoning methods to answer queries on a single disjunct.

ALGORITHM 3.6 (Combination)

Input: Set of derived disjunctive numerical constraints quant LC.

Set of given numerical constraints NC.

Output: Set of combined numerical constraints output C.

Method:

Reduce(quant LC, NC). % Uses NC to reduce the size of quant LC

Cover(quant LC). % Remove redundant disjuncts from quant LC

% using the cover method

Construct output C by generating the DNF of quant LC

and adding NC to each disjunct.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 36

3.2 Formal results on conservation of numerical

information

In the last section we discussed the algorithm to preprocess the constraints before

answering the queries. In the �rst stage of preprocessing, we derive the numerical in-

formation from the logical constraints using the derivation algorithm. In this section,

we establish formally that no numerical information is lost in the derivation process

and hence the query answers are sound and complete.

We �rst describe the notation used to develop the framework in Section 3.2.1.

Then we establish the soundness and completeness results in Section 3.2.2. The

complexity discussion is deferred to Section 3.3.

3.2.1 Notation

Let LC denote the set of logical constraints in the logical constraint language LL, let

NC denote the set of numerical constraints in the language NL and let T denote the

set of threshold terms in the language. Also, let IP be the set of interval-predicates,

NIP be the set of noninterval-predicates, < be the set of real numbers and N be

the set of natural numbers.

We will use the font P;Q; : : : for the predicates in IP . There are two threshold

terms associated with each interval-predicate P: P� and P+ denoting the lower and

upper thresholds, respectively; i.e.,

T = fP�;P+
j P 2 IP g

The set LC of logical constraints is partitioned into two sets:

1. GF is the set of atomic ground literals in LC.

2. RS is the set of rules in LC that are not atomic ground literals. Note that the

constraints of the form P (x) that are atomic but not ground are in RS since

they can be looked upon as a rule P (x) ; with P (x) as the head of the rule

with an empty body.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 37

Also note that RS [GF = LC, and RS \GF = ;.

For any rule r 2 RS, we de�ne the following functions that can apply to the rule:

preds(r) is the set of predicates occurring in r

head(r) is the literal occurring in the head of r

body(r) is the subclause that is the body of r

head pred(r) is the predicate that occurs in the head of r

body preds(r) is the set of predicates in the body of r

We also de�ne some functions on any predicate p where p 2 IP [NIP .

� GF (p) is the set of all ground literals with predicate p, i.e.,

GF (p) = fl j l 2 GF; head pred(l) = pg

� GF consts(p) is the set of all constant tuples that appear in the ground literals

with predicate p, i.e.,

GF consts(p) = fa j p (a) 2 GF (p)g

where a is a tuple of constants.

� Rules(p), also denoted by Rp, is the set of all rules that have the predicate p at

the head, i.e.,

Rp = fr j r 2 RS; head pred (r) = pg

The algorithm builds the dependency graph corresponding to LC and then com-

putes the expansions of predicates using the graph. Next, we describe the notation

corresponding to the dependency graph and these expansions.

Dependency Graph

The dependency graph G for the constraint set LC has the set of nodes V and the

set of edges E, i.e., G = (V;E) where V = IP [NIP . For every rule r 2 RS, we

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 38

de�ne a set of edges corresponding to the rule, called rule edges(r)

rule edges(r) = f(u; v) j u 2 body preds(r); v = head pred(r)g

The set E of edges in the graph is de�ned in terms of these rule-edges.

E = frule edges(r) j r 2 RSg

We also de�ne the following functions on G and on its nodes u; v:

in(v) = f u j (u; v) 2 E g

out(v) = f u j (v; u) 2 E g

sources(G)= f v j v 2 V; in(v) = ; g

sinks(G) = f v j v 2 V; out(v) = ; g

Once the graph is constructed, the algorithm performs a topological sort on the

graph. We de�ne the function topo : V ! N , where N is the set of natural numbers,

that speci�es a topological order number for each node (and hence predicate) in the

graph. topo(v) for any v 2 V is the topological order assigned to node v on performing

the topological sort on G. Note that even though the topological sort of G is not

unique, nevertheless, our arguments work for any particular sorting. The following

Lemma 3.1 establishes the relationship between the topological order number of the

predicates that occur in a single rule of LC.

Lemma 3.1: For every rule r 2 RS, if u is any predicate in the body and v is the

predicate in the head of the rule, i.e., u 2 body preds(r) and v = head pred (r), then

topo(v) > topo(u).

In other words, if (u; v) 2 rule edges(r), then topo(v) > topo(u).

Proof: By de�nition of rule edges, we have that (u; v) 2 rule edges(r). Since there

is an edge (u; v) in the graph G, therefore u should occur before v in the topological

order (by de�nition of topological order of a graph). Hence, topo(v) > topo(u).

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 39

Expansions

For any constraint r 2 LC, we want to de�ne the expansion of r as produced by

Algorithm 3.3, i.e., expn(r) must be the set of descendants of r in the derivation tree

(Section 3.1.1) of r in LC, where the predicates from IP are never expanded. We

de�ne the expansions more precisely below:

1. If r 2 GF , then expn(r) = frg

2. If r 2 RS, let r be of the form

m l1 ^ : : : ^ lk

where m; l1; : : : ; lk are literals in the body of r. We de�ne an expand step of r

as expanding any one literal in the body of r only once by using a rule in LC.

We say that

r0 = expand step (r; li; ri1)

where li is a literal in the body of r and li has predicate p such that p 62 IP ,

ri1 is a rule in LC that has predicate p in the head and r0 is obtained from r by

expanding li using ri1. In other words, rule ri1 2 Rli
and is of the form

l0
i
 d1 ^ : : : ^ dj

(Note: Since ri1 2 Rli
, therefore l0

i
has predicate p also.) On unifying l and

l0
i
we get the most general uni�er mgu(li; l

0
i
) = �, and the rule r0 obtained by

expanding r is

[m l1 ^ : : : ^ li�1 ^ d1 ^ : : : ^ dj ^ li+1 ^ : : : ^ lk]�

Then we can de�ne expn(r) in terms of expand step as

expn(r) = fr0 j r0 = expand step (r; l; rl);

for every l 2 body(r) and pred(l) 62 IP ;

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 40

and for every rl 2 Rlg

(Note: If body(r) = ;, then expn(r) = frg)

We de�ne the set of expansions of r that have only interval-predicates in the body as

IP expn(r) = fr0 j r0 2 expn(r); and for every P 2 body preds(r0); P 2 IP g

Similarly, we de�ne the set of expansions of r that have only either interval-predicates

or source nodes from the graph as

source expn(r) = fr0 j r0 2 expn(r); and for all P 2 body preds(r);

either P 2 IP or P 2 sources(G)g

Also note that IP expn(r) � source expn(r)

Similarly, we can de�ne the source expansions for a predicate p 2 V ,

source expn(p) = fr0 j r0 2 source expn(r); where r 2 LC and head pred (r) = pg

We note that for all noninterval-predicates that are source nodes of the graph, the

source expansion is the set of ground literals, i.e.,

8 p 2 sources(G) where p 2 NIP ; source expn(p) = GF (p)

Similarly, we de�ne IP expn for a predicate p 2 V ,

IP expn(p) = fr0 j r0 2 IP expn(r); where r 2 LC and head pred (r) = pg

Again note that for all noninterval-predicates that are source nodes of the graph, the

IP expn is the set of ground literals, i.e.,

8 p 2 sources(G) where p 2 NIP ; IP expn(p) = GF (p)

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 41

The set of clauses ILC obtained by eliminating noninterval-predicates can now be

de�ned in terms of the IP expn of all the nodes of the graph. The procedure

Eliminate NIP in Algorithm 3.2 as well as procedure Eliminate NIP bottomup

in Algorithm 3.4 compute exactly the set ILC de�ned below

ILC = [v2IP IP expn(v)

3.2.2 Soundness and Completeness

We establish formally that no numerical information is lost in the conversion per-

formed by algorithm Derivation. We begin by de�ning the models of LC that are

faithful to the predicate-as-interval assumption; we call these the standard models.

Speci�cally, in all standard models M = (D;�) over a domain D, the interpretation

function � will have to map interval-predicates to intervals over the reals. In the

following, < denotes the set of real numbers.

De�nition 1: [Standard Model] Given a set of logical constraints LC, the set of

interval-predicates IP, and the set of threshold constants T , a standard model of LC

w.r.t. IP is a model M = (D;�) such that D = <, M j= LC, and for every P 2 IP

there exist P�;P+
2 T and it is the case that �(P�); �(P+) 2 < and �(P) = fx j

�(P�) � x � �(P+); x 2 <g. (Here, the arithmetic operators <;>;�;�;= have the

usual interpretation over <.)

De�nition 2: [Numerical Submodel] Given LC, IP and T as above, a numerical

submodel of LC w.r.t. IP is a model M = (<; �) such that there is some standard

model M 0 = (D;�0) of LC w.r.t. IP, and � is the restriction of �0 to terms in T .

The following theorem establishes that the algorithm Derivation is sound and

complete w.r.t. the numerical information. Note that this result holds irrespective of

what query language is used as long as it is querying the thresholds.

Theorem 3.2: (Derivation:Soundness and Completeness) The class of numerical

submodels of LC w.r.t. IP is identical to the class of models over < of quant LC.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 42

Proof: We �rst prove that the class of numerical submodels of LC w.r.t. IP is

identical to the class of standard models of ILC (Theorem 3.3) and then prove that

the class of standard models of ILC is identical to the class of models of quant LC

(Theorem 3.5).

(For the following, note that the models over < of quant LC are the same as the nu-

merical submodels of quant LC because it has only thresholds of interval-predicates.

Also, the standard models of ILC are the same as the numerical submodels of ILC

(w.r.t. the same IP) because ILC has no noninterval-predicates.)

Theorem 3.3: (Eliminate NIP: Soundness and Completeness) The class of numer-

ical submodels of LC w.r.t. IP is identical to the class of standard models of ILC

w.r.t. IP.

Proof: Soundness: Every numerical submodel of LC w.r.t. IP can be extended to

a standard model of LC w.r.t IP (if LC is consistent. But, since LC has only

de�nite Horn clauses, it is always consistent). LC) ILC (from the de�nition of

ILC). Therefore, every model of LC is also a model of ILC. Hence, every standard

model of LC w.r.t. IP is also a standard model of ILC w.r.t. IP (note that it is

the same IP) , and the numerical submodels of LC w.r.t. IP are also numerical

submodels of ILC w.r.t. IP. Since ILC has only predicates from IP , its numerical

submodels are the same as its standard models. Hence, we have the soundness: Every

numerical submodel of LC w.r.t. IP is a standard model of ILC w.r.t. IP.

Completeness:

Consider an arbitrary standard model M 0 = (<; �0) of ILC. We will show that M 0

can be extended to a model M = (D;�) of LC w.r.t. IP , such that its numerical

submodel is exactly M 0.

M = (D;�) must satisfy the following conditions to be a standard model of LC w.r.t.

IP :

1. D � <

2. 8P 2 IP; �(P) = �0(P); �(P�) = �0(P�) and �(P+) = �0(P+)

3. M must interpret NIP such that LC is satis�ed.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 43

Condition (1) is satis�ed by constructing D = <[C where C is the set of all constants

that appear in LC, and tuples formed from these constants. The maximum length of

a tuple must be the maximum arity of any predicate in NIP .

Next, we construct �(P) for �(P) 2 IP by assigning �(P) = �0(P).

We construct M to satisfy condition (3) (i.e., M j= LC) by considering the depen-

dency graph G = (V;E) of LC (here we assume that the nodes v1; : : : ; vn 2 V are in

topological order):

1. For every node v 2 V , if a 2 GF consts(v) then a 2 �(v).

For every node v 2 sources(G) \ IP , it is the case that �(v) = �0(v) because

GF (v) � ILC and M 0 j= ILC.

If v(x) 2 LC for predicate v 2 NIP , then �(v) = D.

2. Consider v1; : : : ; vn in topological order in G. For each vi, consider the rules in

LC that have vi at the head, i.e., Rvi
= fr j r 2 LC; head pred(r) = vig. For

each rule r in Rvi
, build the model for vi by looking at the model for predicates

in the body. Since we proceed in topological order, topo(u) < topo(vi) for

u 2 body preds(r), (from Lemma 3.1) and therefore �(u) would be de�ned

before using it to de�ne �(vi).

Let r be the rule: v(x) u1(x1) ^ : : : ^ un(xn).

Then, a 2 �(v) whenever there are consistent substitutions �; �1; : : : ; �n such

that x� = a, x1 �1 = b1,: : : ,xn�n = bn; and b1 2 �(u1), : : : , bn 2 �(un).

We �rst prove that M is a standard model of LC. By construction of M , we can

see that M j= LC. Since all interval-predicates are interpreted as intervals, M is also

a standard model of LC. Thus condition (3) is satis�ed.

We will next show that the numerical submodel of M is exactly M 0,

i.e., 8P 2 IP , �(P) = �0(P). We prove the above by induction on topological order

of nodes in IP (proof of condition (2)):

1. (Base step) topo(P) = 1 means that P must be a source node. For P 2

sources(G), �(P) = �0(P) by step (1) of model construction.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 44

2. (Inductive step) We assume that �(P) = �0(P) is true when topo(P) < i. We

show that �(P) = �0(P) for topo(P) = i. Also assume that P 62 sources(G)

because that step has already been considered.

Note that in the model construction process, we never delete an element of �0 but

might only add to it to construct �(P). To prove the theorem by contradiction,

assume that a 2 �(P) but a 62 �0(P). (P is unary; therefore, a is a single constant

rather than a tuple.)

We apply Lemma 3.4. Since P is not a source, therefore, a 62 GF consts(P).

Hence we have that, for some ir 2 IP expn(P) where ir is the rule

P(x) Q1(x1) ^ : : : ^ Qn(xn)

there are consistent substitutions �; �1; : : : ; �n such that

x� = a, x1 �1 = b1,: : : ,xn�n = bn; and b1 2 �(Q1), : : : , bn 2 �(Qn).

Since topo(Q1); : : : ; topo(Qn) < i (Lemma 3.1), hence, by the inductive state-

ment we have that

�(Q1) = �0(Q1); : : : ; �(Qn) = �0(Qn)

Therefore, we conclude that b1 2 �
0(Q1); : : : ; bn 2 �

0(Qn).

But the rule ir 2 ILC; therefore M 0 j= ir.

Since b1 2 �
0(Q1); : : : ; bn 2 �

0(Qn) for the consistent substitutions �1; : : : ; �n in

ir, we must have that for the consistent substitution x� = a, a 2 �0(P). But

this contradicts our earlier assumption that a 62 �0(P). Therefore, the original

assumption was incorrect and the inductive step must hold.

Lemma 3.4: If constant a 2 �(v), then either a 2 GF consts(v) or for some rule

ir 2 IP expn(v) of the form

v(x) Q1(x1) ^ : : : ^ Qn(xn)

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 45

there exist consistent substitutions �; �1; : : : ; �n such that

x � = a; x1 �1 = b1; : : : ; xn�n = bn; and

b1 2 �(Q1); : : : ; bn 2 �(Qn)

Proof: (By Induction on topo(v))

1. (Base) If v 2 sources(G), then by construction of �, we know that if a 2

GF consts(v), then a 2 �(v).

If v 2 IP , and v(a) 2 LC, then we have the identity substitution for v(a) 2

IP expn(v); on the other hand, if v(x) 2 LC, then we have the substitution

fa j xg for v(x) 2 IP expn(v).

If v 2 NIP and v(x) 2 LC, then �(v) = D and therefore we have the

substitution fa j xg for v(x) 2 IP expn(v).

2. (Inductive step) Let the lemma be true if topo(v) < k. We prove it for topo(v) =

k (where v 62 sources(G)).

Let a 2 �(v). Then by the model construction process, there is a rule r 2 LC

of the form

v(x) u1(x1) ^ : : : ^ un(xn)

with consistent substitutions �; �1; : : : ; �n such that x � = a, x1 �1 = b1, : : :,

xn�n = bn; and b1 2 �(u1), : : :, bn 2 �(un).

Since topo(u1); : : : ; topo(un) < k, therefore on applying the inductive step to ui

for all i = 1 : : : n,

since bi 2 �(ui), either bi 2 GF consts(ui) or for some rule uri 2 IP expn(ui)

of the form

ui(xi) Pi1(yi1) ^ Pi2(yi2) ^ : : :

there exist consistent substitutions �i; 'i1; 'i2; : : : such that, xi�i = bi; yi1'i1 =

ci1; yi2'i2 = ci2; : : : where ci1 2 �(Pi1); ci2 2 �(Pi2); : : :.

Let bi 2 GF consts(ui) for uj+1; : : : ; un only. Then, in rule r, we expand

uj+1; : : : ; un using the ground facts and expand u1; : : : ; uj using the uri's. Let

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 46

vr be the rule obtained by applying substitution � = �j+1 : : : �n to r (this will

eliminate the ground facts) and then expanding the rest of the body literals

using ur1; : : : ; urj. The rule vr will be of the form

v(x�) : : : ^ Pi1(yi1�) ^ Pi2(yi2�) ^ : : : for all i = 1 : : : j

This rule vr has only interval-predicates in the body; therefore this rule must be

in the IP expn of v, i.e., vr 2 IP expn(v). Also, we can apply the substitutions

�; : : : ; 'i1; 'i2; : : : for all i = 1 : : : j to vr (note that these substitutions are

consistent), such that x� = a, yi1'i1 = ci1; yi2'i2 = ci2; : : : and

ci1 2 �(Pi1); ci2 2 �(Pi2); : : :.

But this is exactly what we wanted to prove.

Theorem 3.5: (Convert to Numerical: Soundness and Completeness) The set of

standard models of ILC given IP is identical to the set of models of quant LC.

Proof: The clauses in ILC must be one of the following types. We will show that

for each of them, the conversion in quant LC preserves the sets of models. In the fol-

lowing discussion, P;Q; : : : are interval-predicates, a; b; : : : are constants and x ; y; : : :

are variables. Also, M = (<; �) is a standard model of ILC (i.e., 8P 2 IP; �(P) =

fx j �(P�) � x � �(P+); x 2 <g) and M 0 = (<; �0) is the corresponding model of

quant LC which we will show is equal to M . For each C 2 ILC, its translation in

quant LC is denoted by quant C.

1. C is P(a).

quant C is P� � a � P+.

C says that (a 2 �(P)) which means that (�(P�) � a � �(P+)) whereas

quant C says (�0(P�) � a � �0(P+)).

Therefore � = �0.

2. C is :P(a) or P(a).

quant C is (a < P�) _ (a > P+).

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 47

C says that (a 62 �(P)) which means that (a < �(P�)) _ (a > �(P+)), whereas

quant C says (a < �0(P�)) _ (a > �0(P+)).

Therefore, � = �0.

3. C is P(x).

quant C is (P� = �1) ^ (P+ = +1)

C says that �(P) = < which means that (�(P�) = �1) ^ (�(P+) = +1)

whereas

quant C says that (�0(P�) = �1) ^ (�0(P+) = +1).

Therefore � = �0.

4. C is :P(x) or P(x).

quant C is P� > P+.

C says that �(P) = ; which means that �(P�) > �(P+).

quant C says that �0(P�) > �0(P+).

Therefore � = �0.

5. C is P1(x); : : : ;Pn(x).

quant C is _n
i=1 _

n

j=1 (P
�
i
> P+

j
).

C says that :9x (P1(x)^ : : :^Pn(x)) which means that �(P1)\ : : :\�(Pn) = ;,

i.e.,

max(�(P1
�); : : : ; �(Pn

�)) > min(�(P1
+); : : : ; �(Pn

+)) which is the same as

_
n

i=1 _
n

j=1 (�(P
�
i
) > �(P+

j
)).

quant C says that _n
i=1 _

n

j=1 (�
0(P�

i
) > �0(P+

j
)).

Therefore � = �0.

6. C is P(x) Q1(x); : : : ;Qn(x).

quant C is (_n
i=1P

� � Q�

i
) ^ (_n

i=1P
+ � Q+

i
).

C says that (�(Q1) \ : : : \ �(Qn)) � �(P) which means that

(�(P�) � max(�(Q1
�); : : : ; �(Qn

�))) ^ (�(P+) � min(�(Q1
+); : : : ; �(Qn

+)))

i.e., (_n
i=1�(P

�) � �(Q�
i
)) ^ (_n

i=1�(P
+) � �(Q+

i
)).

quant C says that (_n
i=1�

0(P�) � �0(Q�

i
)) ^ (_n

i=1�
0(P+) � �0(Q+

i
)). Therefore

� = �0.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 48

All other forms of statements in ILC are combinations of the above basic 6 types

(lets call them B1; : : : ; B6). The proof is as follows:

Each clause C in ILC can be partitioned into subclauses using these rules:

1. A literal with a constant forms a subclause, called a const subclause. If the

const subclause came from head(C) it is called head const subclause, else it is

called body const subclause.

2. The largest part of C which has the same variable constitutes a subclause

called a var subclause. A var subclause can be further distinguished on the

basis of whether it includes head(C) or not. If it does, then it is called the

headed var subclause, otherwise it is called the body var subclause. Since all

predicates are unary, the head will be present only in one subclause.

A head const subclause can be translated into quant C using B1 and

body const subclause can be translated using B2. A body var subclause is translated

into quant C using B4 if it has only one literal, and using B5 if it has more than

one. A headed var subclause is translated using B3 if it does not have any body. If

it has a body then B6 is used. The translations for the subclauses are combined by

disjunction.

It is easy to see that C is a disjunction of its subclauses (Convert C into a disjunc-

tion where head will be the only positive literal. Each subclause is a set of literals

with the same variables, or a literal with a constant; hence, C is a disjunction of the

subclauses). Since each subclause has one of the 6 forms discussed earlier, hence the

translation of each subclause preserves the set of models. Therefore, the disjunction

of the subclause-translations will preserve the set of models of C (this set is the union

of models for each subclause).

We have shown that for each clause C 2 ILC, the set of standard models for C is

the same as the set of models for the corresponding sentence quant C 2 quant LC.

Therefore, the set of standard models for ILC will be the intersection of standard

models for each clause in ILC and this will be same as the intersection of models for

each sentence in quant LC. Thus, the set of standard models of ILC given IP is

identical to the set of models of quant LC.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 49

3.3 Complexity

We �rst discuss the complexity of the problem of answering a query given a set of

constraints in the constraint language. Then we will discuss the complexity of the

query-answering algorithm that was described in Section 3.1. One kind of query

expressible in the query language QL is Q(a) (as discussed in Section 2.2). We will

show the lower bound for answering this query; hence, this will also be the lower

bound for answering the full spectrum of queries allowed in our language.

The complexity of the problem of answering a query is based on a result in de-

ductive databases. Therefore, we �rst de�ne the problem of expression complexity

for nonrecursive Datalog and use this problem to derive our result in Theorem 3.6.

De�nition 3: [Nonrecursive Expression Complexity] Given a set � of Horn rules

without functions or recursion, i.e., nonrecursive sentences of the form

8x [R(y) P1(x1) ^ : : : ^ Pn(xn)]

where the body might also be empty, and a query q of the form

R(c)

where c is a tuple of constants only, determine whether � j= q.

Theorem 3.6: (Interval Query) Given a set LC of sentences in the logical constraint

language LL, a set NC of sentences in the numerical constraint language NL, and

a query of the form (necessarily q) in the query language QL, the problem of

answering the query, i.e., determining whether (LC [NC) j= q is PSPACE-hard.

Proof: The nonrecursive expression complexity problem de�ned in de�nition 3 is NP-

complete if there is only one rule (but multiple ground literals) in the set � of Horn

clauses [Chandra and Merlin, 1977], and is PSPACE-complete if there are multiple

rules [Vardi, 1993].

An instance of the nonrecursive expression complexity problem can be reduced

to an instance of the interval query problem in polynomial time by adding the rule

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 50

Q(a) R(c) where Q is a new unary interval-predicate, to the set � of datalog

rules. Then, LC = �[fQ(a) R(c)g and NC = ;. The query in the interval query

problem is (necessarily Q(a)) or in terms of primitive statements in QL:

(necessarily (and (Q� � a) (a � Q+))).

A solution to the interval query problem can now be used to construct a solution

for the nonrecursive expression complexity problem because R(c) is true if and only if

Q(a) is. Thus, the interval query problem has the nonrecursive expression complexity

problem as a lower bound. Since the nonrecursive expression complexity problem is

PSPACE-complete, therefore, the interval query problem is PSPACE-hard.

Since the problem of answering a query in QL, directly from the given constraints

in CL is intractable, we can only expect an exponential time algorithm at best. In

particular, our query-answering algorithm (�gure 3.1) of �rst preprocessing the con-

straints and then answering the queries cannot be better than exponential time. We

next carry out a simple analysis for the complexity of the derivation algorithm 3.1

that preprocesses the constraints.

The Derivation Algorithm 3.1 has two procedures: the Eliminate NIP Algo-

rithm 3.2 that takes the set of constraints LC as input and produces another set

ILC as output, and the Convert to numerical Algorithm 3.5 that takes ILC as in-

put and produces quant LC as output. The second procedure is linear in the size

of ILC since it requires identifying which of the six possible cases applies and then

converting the disjunct accordingly in a constant time step. Thus, Eliminate NIP is

the procedure that dominates the complexity of Derivation and we will analyze it to

determine the complexity of the Derivation algorithm.

Theorem 3.7: (Derivation Complexity: Lower Bound) The lower bound for the

problem of deriving the set quant LC from LC is in EXPSPACE.

Proof: We prove that the problem of deriving quant LC from LC has a lower bound

in EXPSPACE by showing an instance where the size of LC is O(n) and the size of

ILC is O(2n). Then quant LC will also have a size of O(2n). Consider,

LC = f P1 (x) A1(x)

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 51

P1 (x) B1(x)
...

Pn(x) An(x)

Pn(x) Bn(x)

Q(x) P1 (x) ^ : : : ^ Pn(x) g

where Q, A, B are interval-predicates and P1 ; : : : ;Pn are noninterval-predicates. Ex-

pansion of the predicate Q involves expanding each of P1 ; : : : ;Pn . For expansion of

each Pi , we have two rules to choose from, either using the one with Ai or the one

with Ai, giving us a total of 2
n choices for expanding Q. Therefore, Q has 2n possible

distinct expansions and hence the size of ILC is O(2n).

Theorem 3.8: (Derivation Complexity: Upper Bound) Derivation algorithm 3.1

that takes the logical constraints LC as input and produces the numerical constraints

quant LC as output, is in DOUBLYEXPSPACE.

Proof: We carry out a simple analysis of the Eliminate NIP algorithm 3.2 to show

that it requires doubly exponential space in the worst case.

Let there be m rules in LC with interval-predicates at the head, and n rules with

noninterval-predicates at the head. Let the body of any rule in LC have at most

b literals from NIP and at most t literals from IP . Let a noninterval-predicate

occurs at most k times at the head (i.e., there are at most k rules with the same

noninterval-predicate at the head); and let there be at most p distinct noninterval-

predicates that occur in the head of any rule. Also, let there be l ground atoms.

Then the upper bound on the number of literals in LC = (b+ t) � (m+ n) + l.

We carry out the analysis by using the derivation tree of LC. Remember that the

set of expansions generated by the algorithm can be represented by the derivation

trees corresponding to them (section 3.2.1) where the leaves of a tree represent the

literals in an expansion. We �rst estimate the size of a single derivation tree to get an

estimate on the size of an expansion and then count the total number of derivation

trees to estimate the number of possible expansions.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 52

Let us now estimate the size of a derivation tree representing an expansion. Since,

only the noninterval-predicates are expanded in any rule, a node in the derivation

tree cannot have more than b children. Therefore the maximum branching factor

of the tree is b. Going down a path of the tree from the root to a leaf, we can-

not encounter any interval-predicates (except the root and the leaf itself) because

an interval-predicate is never expanded. Also, since the rules are nonrecursive, no

predicate can be repeated on this path. Therefore, the maximum length of a path is

the number of distinct noninterval-predicates p. Thus, the size of a derivation tree,

or of a single expansion is O(bp).

Let us now count the maximumnumber of derivation trees possible. At each node

of the derivation tree, there is a choice of k rules from which to expand the node.

Since there are at most bp nodes, the total number of derivation trees possible is

O(kb
p

).

Since in the worst case the space requirement of the algorithm is doubly exponen-

tial, the derivation algorithm is in DOUBLYEXPSPACE.

Theorems 3.7 shows that the lower bound for the complexity of the derivation

algorithm is exponential space and Theorem 3.8 shows that the upper bound is dou-

bly exponential space. Despite the worst-case complexity being severe, the query-

answering algorithm has been found to be quite acceptable for the following reasons:

1. We can identify the syntactic restrictions on the constraint language CL that

will avoid the exponential blowup. Thus, expressivity can be traded o� for

e�ciency depending upon the application. The sources of exponential blowup

in the size of ILC (and therefore, of quant LC) are

(a) Repeated occurrence of any NIP predicate in the body of a clause that

is further expanded into another constraint.

(b) Multiple possible expansions of any NIP predicate. For example, the

predicate Pi in the proof for theorem 3.7 could be expanded in two ways

using either predicate Ai or Bi.

If we allow any noninterval-predicate to occur at most once in the body of a

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 53

clause, and if we allow a noninterval-predicate to occur in the head of at most

one clause, then the size of ILC will be polynomial in the size of LC. This can

be easily proved by induction on the number of rules.

2. We observe that the algorithm is exponential only in the size of the non-ground

rules in the logical constraints, not in the size of the ground literals. The number

of non-ground constraints has been found to be small compared to the number

of ground literals for many applications.

3. The derivation algorithm is part of the preprocessing stage and needs to be

invoked only once for all the queries. Hence, the cost is amortized over all

the queries. Subsequent to the preprocessing stage, the runtime complexity of

answering each query is exponential time. Indeed, we cannot expect better since

Theorem 3.9 shows that the problem itself is intractable.

4. Since ILC has only unary interval-predicates, we might actually have a tight

upper bound of EXPSPACE on the complexity of the derivation algorithm. We

present the following conjectures without proof:

(a) The size of each clause in ILC that is generated from LC is polynomial in

the size of LC.

(b) The number of clauses in ILC is at most singly exponential in the size of

LC.

We have discussed the complexity the derivation algorithm which is the prepro-

cessing stage of the query-answering algorithm. We next discuss the complexity of

answering a given query using the derived numerical constraints quant LC and the

given numerical constraints NC. A basic operation in answering any query in the

query language QL is to check the set quant LC for consistency. Therefore, we con-

sider the complexity of the problem of checking the set quant LC for consistency in

Theorem 3.9

Theorem 3.9 : (Combination Complexity) The problem of checking whether

quant LC is consistent is NP-complete.

CHAPTER 3. ANSWERING QUERIES: PREPROCESSING 54

Proof: The set quant LC has linear arithmetic inequalities in the conjunctive normal

form (CNF). Checking for consistency of quant LC is the same as checking whether it

is satis�able. We can show that this problem is in NP. Given an assignment of values

to the variables in quant LC, substituting the values in the expression for quant LC

and checking whether they satisfy the expression or not can be done in polynomial

time. Thus, the problem is in NP.

We show that the problem is NP-hard by reducing the 3SAT problem to the

problem of checking whether arithmetic constraints in the CNF are satis�able. We

give the reduction of the 3SAT problem to the arithmetic constraint checking problem

below. Since 3SAT is NP-complete [Garey and Johnson, 1979], our problem will be

NP-hard too.

Consider an instance of 3SAT. Let C = fc1; : : : ; cng be the n clauses, each with

exactly 3 literals. Let x1; : : : ; xm be the Boolean variables that occur in these clauses.

For each variable xi, substitute an arithmetic constraint with real variable yi. If the

variable occurs as a positive literal, then substitute yi � 101; if variable xi occurs as

a negative literal, then substitute yi > 10. The resulting set of clauses is C 0 and this

is an instance of the arithmetic constraint-checking problem. For a solution of this

problem, construct a solution to 3SAT as follows. Whenever the value of yi is less

than or equal to 10, assign the value true to xi; and whenever yi is strictly greater

than 10, make xi false. Then, C is satis�able if and only if C 0 is.

Since the problem of checking whether quant LC is consistent is in NP and is also

NP-hard, it must be NP-complete.

From the complexity discussion we observe that the problem is intractable, but

in practice there could be many conditions which make it tractable or solvable in

reasonable time. Hence, the use of heuristics is justi�ed to speed up the algorithm.

In Chapter 4, we will discuss the domain-independent heuristics that improve the

performance of the algorithm signi�cantly. We also discuss the experimentation of

the algorithm on two domains to show that the algorithm is pragmatic and that the

heuristics are useful.

1Any real number can be used instead of 10.

Chapter 4

Answering Queries:

Experimentation with Heuristics

The algorithm for answering queries was discussed in Chapter 3. The algorithm

was intractable since the problem itself is intractable. Hence, it is important to use

heuristics to speed up the running time of the algorithm. This importance was also

pointed out in the last chapter while discussing the combination algorithm brie
y.

In this chapter, we �rst discuss the combination algorithm in detail in Section 4.1

together with the necessary linear programming and inequality reasoning procedures.

Here, we will also describe the domain-independent heuristics that are useful during

the combination of the constraints. In Section 4.2 we describe two domains | a

medical domain and a weather domain | to which the query-answering algorithm

was applied and discuss the results of the experiments.

4.1 Combining Constraints and Answering Queries

using Heuristics

We reproduce the combination algorithm in Chapter 3 here as algorithm 4.1. The

�rst step of the algorithm is to reduce the size of the derived numerical constraint

set quant LC using the given numerical constraint set NC. We discuss this pruning

55

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 56

heuristic in Section 4.1.1. At the next stage, we convert quant LC to the disjunctive

normal form (DNF). The DNF can be pruned further by using a cover heuristic to

remove redundant disjuncts from quant LC. We discuss this step in Section 4.1.2.

The next step is to combine the two sets quant LC and NC by adding the set NC to

each disjunct in the DNF of quant LC to obtain the combined set output C. After

the constraints are combined, the �nal step is to compute the answer to each query

over a single disjunct of output C. We discuss the existing methods available in

Section 4.1.3.

ALGORITHM 4.1 (Combination)

Input: Set of derived disjunctive numerical constraints quant LC.

Set of given numerical constraints NC.

Output: Set of combined numerical constraints output C.

Method:

Reduce(quant LC, NC). % Uses NC to reduce the size of quant LC

Cover(quant LC). % Convert quant LC to DNF and

% remove redundant disjuncts using the cover method

Construct output C by adding NC to each disjunct of quant LC.

4.1.1 Pruning derived constraint set

The basic idea behind the pruning procedure Reduce is that the constraints inNC can

be used to determine the truth or falsity of some arithmetic inequalities in quant LC

which is in the conjunctive normal form (CNF). This helps in removing those in-

equalities whose truth value is already known. The reduce procedure, described as

Algorithm 4.2, �rst computes the lower and upper bounds of all the thresholds in

NC. For this computation of bounds, any of the existing methods discussed in Sec-

tion 4.1.3 can be used. These lower and upper bounds are then used to check the

truth and falsity of some inequalities.

If an inequality in a disjunctive statement of quant LC is determined to be true,

then that complete disjunctive statement can be deleted from quant LC since it is

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 57

already satis�ed. On the other hand, if an inequality is determined to be false, then

that disjunct can be deleted.

ALGORITHM 4.2 (Reduce)

Input: Set of derived disjunctive numerical constraints quant LC in CNF.

Set of given numerical constraints NC.

Output: The reduced constraint set quant LC.

Method:

Bounds Find bounds(NC).

% For all thresholds, �nds upper and lower bounds in NC

Initialize reduced quant LC ;.

For every qlc 2 quant LC do

qlc0 ;.

For every disjunct d 2 qlc do

If True(d;Bounds) then

% d is already satis�ed by bounds from NC

goto addconstr

Else if not False(d;Bounds) then

% d is not inconsistent with bounds from NC

qlc0 qlc0 _ d

Endfor

addconstr: If qlc0 6= ; then reduced quant LC reduced quant LC [qlc0

Endfor

Return(reduced quant LC).

We illustrate this algorithm in Example 4.1 by working it out on Example 2.1.

Example 4.1: The set NC from example 2.1 is

NC = fbald� = 0; 3 � bald+ � 20000; old+ =1;

60 � old� � 100; 0:1 � rich� � 1; rich+ =1 g

[fbald� � bald+; old� � old+; rich� � rich+g

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 58

The lower and upper bounds for all thresholds are as follows:

Bounds = f bald� 2 [0; 0], bald+ 2 [3; 20000]

old� 2 [60; 100], old+ 2 [1;1]

rich� 2 [0:1; 1], rich+ 2 [1;1] g

The set quant LC from example 3.3 is:

quant LC = f(bald� � 500) _ (80 < old�) _ (old+ < 80),

(500 � bald+) _ (80 < old�) _ (old+ < 80),

(old� � 80) _ (6 < rich�) _ (rich+ < 6),

(80 � old+) _ (6 < rich�) _ (rich+ < 6),

(bald� � 800) _ (85 < old�) _ (old+ < 85),

(800 � bald+) _ (85 < old�) _ (old+ < 85),

(bald� � 650) _ (45 < old�) _ (old+ < 45),

(650 � bald+) _ (45 < old�) _ (old+ < 45) g

Applying the reduce procedure to each of the 8 constraints in quant LC: in the

�rst constraint, the disjunct (bald� � 500) is de�nitely true because bald� 2 [0; 0];

therefore the �rst constraint is already satis�ed. In the second constraint, we cannot

say anything about the �rst two disjuncts for sure, but the third disjunct (old+ < 80)

is de�nitely false since old+ 2 [1;1]; therefore, the second constraint is reduced

to (500 � bald+) _ (80 < old�). Applying similar reasoning to the remaining six

constraints, we get the following reduced set quant LC:

quant LC = f(500 � bald+) _ (80 < old�),

(old� � 80),

(800 � bald+) _ (85 < old�),

(650 � bald+) _ (45 < old�) g

Observe the signi�cant reduction in the size of quant LC; initially it would have had

38 = 6561 disjuncts in the DNF in the worst case. Now, it will have only 2�1�2�2 = 8

disjuncts in the worst case.

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 59

In fact, we can do better. The reduce procedure reduces some of the constraints in

quant LC such that they are not disjunctive any more. We can add these constraints

to NC and reapply the reduce procedure to the new quant LC. This can be applied

iteratively until all constraints in quant LC are disjunctive. For instance, the second

constraint here in quant LC is non-disjunctive. On adding it to NC, we get new

bounds for old�, i.e., old� 2 [60; 80] and this reduces the set quant LC further:

quant LC = f(500 � bald+),

(800 � bald+) g

This new set has no disjunctions so we can add all the constraints here to the set

NC. This will give us the new bounds

Bounds = f bald� 2 [0; 0], bald+ 2 [800; 20000]

old� 2 [60; 80], old+ 2 [1;1]

rich� 2 [0:1; 1], rich+ 2 [1;1] g

Though we cannot realistically expect all the disjunctions to disappear for all

cases, we see that reduce is an extremely e�ective domain-independent heuristic. The

e�ectiveness of this heuristic depends on how tight the bounds of thresholds in NC

are. Intuitively, the bounds from NC indicate the amount of uncertainty attached

to the value of each threshold. The tighter the bounds speci�ed in NC, the more

e�ective is this heuristic, since more disjuncts can be determined to be de�nitely true

or false.

Regarding the complexity of the reduce heuristic, it is only as complex as the

procedure to �nd the bounds of thresholds in NC. As we will see in Section 4.1.3,

this procedure is tractable and its complexity depends on the size of NC and the kind

of constraints that it has. The rest of the reduce procedure is linear in the size of

quant LC. Hence, this heuristic is also very e�cient. In fact, the performance of the

derivation algorithm can be improved by applying this heuristic as each constraint of

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 60

quant LC is generated; then we do not need to store all the constraints of quant LC

but can prune its size while it is being generated.

The e�ciency and e�ectiveness of this heuristic is also one reason why we do not

want to allow the constraints inNC to be more expressive unless it is important for the

application (see comparison to [Meiri, 1991; Kautz and Ladkin, 1991] in Section 2.1.1).

Theoretically, the complexity of the derivation algorithm is una�ected even if we allow

NC to have disjunctions of arithmetic inequalities, since the expressive power of NC

will still be as much as that of quant LC. But, then we cannot apply the reduce

heuristic because the space of NC becomes non-convex and the problem of �nding

lower and upper bounds becomes as hard as that for quant LC.

4.1.2 Removing redundant disjuncts

In the last section we discussed how the set quant LC was pruned using the con-

straints in NC. To answer the queries, we need to �rst convert quant LC into DNF

and then combine it with NC to be able to compute the answer over each disjunct

of the combined set output C. Many of the disjuncts in the DNF of quant LC are

in fact redundant; in this section we discuss how to detect the redundant disjuncts.

Not having to compute the answers to the queries over these redundant disjuncts

leads to large savings. The domain-independent heuristic that detects the redundant

disjuncts is called cover since it checks which disjuncts are already covered by others.

Example 4.2 illustrates why some disjuncts are redundant:

Example 4.2: Let S be a set with three clauses in CNF

(a _ b _ c) ^ (a _ d _ e) ^ (b _ d)

The DNF of the set S is

(a ^ a ^ b) _ (a ^ a ^ d) _

(a ^ d ^ b) _ (a ^ d ^ d) _

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 61

(a ^ e ^ b) _ (a ^ e ^ d) _

(b ^ a ^ b) _ (b ^ a ^ d) _

(b ^ d ^ b) _ (b ^ d ^ d) _

(b ^ e ^ b) _ (b ^ e ^ d) _

(c ^ a ^ b) _ (c ^ a ^ d) _

(c ^ d ^ b) _ (c ^ d ^ d) _

(c ^ e ^ b) _ (c ^ e ^ d)

which when simpli�ed has only �ve disjuncts since all the other disjuncts are

redundant:

(a ^ b) _ (a ^ d) _ (b ^ d) _ (b ^ e) _ (c ^ d)

The reason that some disjuncts in the DNF are redundant is that in the CNF, some

conjuncts have a common disjunct.

In quant LC too there are many constraints that have common inequalities. Hence

we expect many disjuncts in the DNF to be redundant; detecting and ignoring these

disjuncts should be useful. We can show that checking whether a particular disjunct

in the DNF of quant LC is redundant or not is equivalent to solving the well-known

set-covering problem [Cormen et al., 1986, pages 974-978].

De�nition 4: [Set Covering Problem] An instance (X;F) of the set-covering problem

consists of a �nite set X and a family F of subsets of X, such that every element of

X belongs to at least one subset in F :

X =
[

S2F

S

We say that a subset S 2 F covers its elements. The problem is to �nd a minimum-

size subset C � F whose members cover all of X:

X =
[

S2C

S

We say that any C satisfying this condition covers X.

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 62

Let us number each constraint in the CNF of quant LC in order. For example 4.2,

this numbering will be:

(a _ b _ c) � � � (1)

(a _ d _ e) � � � (2)

(b _ d) � � � (3)

For each literal in quant LC, compute the set of constraints in which it occurs. For

the above example, it is:

S(a) = f1; 2g

S(b) = f1; 3g

S(c) = f1g

S(d) = f2; 3g

S(e) = f2g

Then the �nite set X is the set of constraints of quant LC, i.e.,

X = f(a _ b _ c) ^ (a _ d _ e) ^ (b _ d)g

in this case, or referring to the constraints by their ordering number, X = f1; 2; 3g.

The family F of subsets of X is then

F = S(a) [S(b) [S(c) [S(d) [S(e)

The problem then is to �nd all minimum-size subsets C � F that cover X. The

DNF of quant LC is the disjunction of all such minimum covers. In this example, we

have �ve minimum covers: fS(a); S(b) g, fS(a); S(d) g, fS(b); S(d) g, fS(b); S(e) g

and fS(c); S(d) g.

If we are given any disjunct from the DNF of quant LC, such as (a^ e ^ b), then

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 63

we can check whether it is redundant or not by checking whether it is a minimum

cover or not. It is redundant if and only if it is not a minimum cover.

Unfortunately, the set-covering problem is known to be NP-hard. Hence, any

algorithm for checking for redundancy of disjuncts in quant LC will take at least

exponential time. Instead of using an exponential heuristic to speed up an exponential

algorithm, we use a greedy approximation algorithm to the set-covering problem

[Cormen et al., 1986]. The greedy set-cover algorithm runs in time polynomial in jXj

and jFj and has a logarithmic ratio bound of (lnjXj+1) which is the maximum ratio

of the size of an approximate answer to the optimal answer.

We describe the cover heuristic using the greedy algorithm in Algorithm 4.3 and

use Example 4.3 to illustrate how it works.

ALGORITHM 4.3 (Cover)

Input: Set quant LC in CNF with n disjunctive constraints and k distinct literals.

Output: Set quant LC in DNF after removing redundant disjuncts.

Method:

Number the constraints in quant LC from 1; : : : ; n.

Initialize X = f1; : : : ; ng.

Construct F as a family of k subsets of X where each subset corresponds

to the set of constraints in which each literal occurs in quant LC.

Let literal mapping be the mapping of each literal

to its corresponding subset in F .

Generate each disjunct dc in DNF of quant LC in order.

% Note that dc will be a set of literals. It is also a

% subset of F and covers X through the literal mapping.

For each such disjunct dc, check whether it is redundant using

the procedure Redundant? (X;F ; dc; literal mapping).

Build the DNF of quant LC using only non-redundant disjuncts.

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 64

ALGORITHM 4.4 (Redundant?)

Input: Finite set X.

Family F of subsets of X.

literal mapping of literals to a subset in F .

Set dc which is a set of literals. It is also a subset of F

and covers X through the literal mapping.

Output: yes or no. % Corresponds to whether dc is redundant or not.

% The algorithm checks whether there is a proper subset of dc that also covers X.

Method:

Initialize U X.

Initialize C ;.

while U 6= ;

do select an S 2 dc that maximizes jS \ U j

U U � S

C C [fSg

If dc � C then return(no)

else return(yes)

Example 4.3: The constraints of quant LC were numbered in example 4.2. The set

X is

X = f1; 2; 3g

The literal mapping for each literal of quant LC is

S(a) = f1; 2g

S(b) = f1; 3g

S(c) = f1g

S(d) = f2; 3g

S(e) = f2g

The family of subsets F is the set of all these sets. For each of the 18 disjunct in DNF

of quant LC, we check whether it is redundant or not. Consider dc to be (a ^ e ^ b)

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 65

for instance. The subset of F that corresponds to dc is then the set S(a)[S(e)[S(b),

i.e.,

dc = ff1; 2g; f2g; f1; 3gg

On applying procedure redundant? , we could get either C = S(a) [S(b) or C =

S(e)[S(b). Since dc is not a proper subset of either of these minimal covers, we �nd

that (a ^ e ^ b) is redundant and hence can be deleted.

Thus, performing this fast cover check on each disjunct enables us to delete a

number of redundant ones. Despite these heuristics, the size of a DNF might be

large, in which case we might not want to store the DNF but generate each disjunct

every time we want to compute the answer to a query. There is the usual time

vs. space tradeo� and depending upon the application | size of quant LC in CNF,

available storage and the desired response time for each query, the user can decide

to either precompute the DNF and store it, or to generate it every time. In the

former case, we might actually want to use an exact (though exponential) algorithm

to generate the minimal DNF; whereas, in the latter case it is better to use a fast and

approximate method to eliminate many but not all redundant disjuncts.

An interesting observation is that for many queries it is not necessary to check all

the disjuncts in the pruned DNF form. For instance, a query whether a constraint is

possibly true or not, has to �nd any one disjunct over which the constraint is satis�ed

to return a true answer; and for a query whether a constraint is necessarily true or

not, one has to �nd any one disjunct where the constraint is violated to return a

false answer. Furthermore, even for queries where all disjuncts have to be checked,

an approximate answer can be obtained by computing only on a few disjuncts. For

instance, a query to �nd the minimum value of a threshold can return the minimum

over only a few disjuncts. This approximate answer is still useful since it supplies a

lower bound on the threshold, even though not the tightest lower bound. Thus, this

procedure gives a useful approximate answer any time that an answer is required, and

the approximation gets closer to the optimal as the allowed time for computing the

answer to the query increases. It is also possible to use heuristics depending upon the

structure of quant LC, to check the disjuncts in an order such that the likelihood of

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 66

encountering a complete or optimal answer earlier goes up.

4.1.3 Answering for each disjunct

We have discussed previously how the set quant LC is pruned a priori to eliminate

redundant disjuncts and how the disjuncts of output C are generated. Each disjunct

thus generated is a set of linear arithmetic constraints. We now discuss how any query

is answered on such a single disjunct, say D, that is a conjunction of linear arithmetic

inequalities1. We �rst discuss the queries for checking a constraint for implication

and consistency (queries 1 and 2 in Section 2.2) and then the queries for maximum

and minimum values of thresholds (queries 3 and 4 in Section 2.2).

Queries for checking implication and consistency

We discuss how queries of the form (necessarily q) or (possibly q) can be

reduced to checking for consistency of a set of linear inequalities. We discuss it for

atomic queries as well as for queries that have conjunctions and disjunctions. Note

that an atomic query is of the form (thresh relop const) where thresh is a threshold

symbol, relop is one of the relational operators among f�;�; <;>;=; 6=g, and const

is a numerical constant. The negation of an atomic query will also be a simple

linear inequality of the form (thresh inverse-relop const) where inverse-relop is the

inverse of the relational operator in q. The inverse of f�;�; <;>;=; 6=g are in order

f>;<;�;�; 6=;=g and are themselves all relational operators.

A query of the form (necessarily q) means that we need to test whether

output C j= q holds. We perform this test by checking for each disjunctD of output C

whether (D ^:q) is consistent or not. If it is consistent then D 6j= q and we return a

no answer for that disjunct; on the other hand, if it is inconsistent then D j= q holds

and therefore we return a yes answer for that disjunct. If the answer to the query is

yes in every disjunct of output C then the answer is yes for output C; if the answer

is no for any one disjunct then the answer is no for output C. (This follows from the

fact that (a _ b)) q � (a) q) ^ (b) q) and therefore the query q has to be true

1We use the terms \set of inequalities" and \conjunction of inequalities" interchangeably.

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 67

over every disjunct to be true over the whole disjunctive statement.) When the query

itself has disjunctions or conjunctions then we use the procedure of algorithm 4.5 to

break down the query into the simple procedure of checking a set of inequalities for

consistency.

ALGORITHM 4.5 (Necessarily-Query)

Input: Set of inequalities output C in DNF.

Query (necessarily q).

Output: yes or no answer to the query

according to whether output C j= q or not.

Method:

1. If q is atomic of the form (thresh relop const) then

For every disjunct D of output C

do check whether consistent(D ^ :q).

If consistent then return(no) and exit the algorithm.

Endfor

return(yes).

% because (D ^ :q) is inconsistent for every disjunct, therefore output C j= q

2. If q is of the form q1 ^ q2 where q1; q2 are atomic then

For every disjunct D of output C

do check whether consistent(D ^ :q1).

If consistent then return(no) and exit the algorithm.

Else check whether consistent(D ^ :q2).

If consistent then return(no) and exit the algorithm.

Endfor

return(yes).

% the logic follows from the fact that D) (q1 ^ q2) � (D) q1) ^ (D) q2)

3. If q is of the form q1 _ q2 where q1; q2 are atomic then

For every disjunct D of output C

do check whether consistent(D ^ :q1 ^ :q2).

If consistent then return(no) and exit the algorithm.

Endfor

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 68

return(yes).

% the logic follows from the fact that :(q1 _ q2) � (:q1 ^ :q2)

4. If q has conjunctions as well as disjunctions then

Convert q to CNF, i.e., of the form (q3 _ q4) ^ (q5 _ q6)

where q3; q4; q5; q6 are atomic

Use step 2 by substituting for q1; q2 as

q1 (q3 _ q4)

q1 (q5 _ q6)

and use step 3 for checking consistency of a disjunct D with

:(q3 _ q4) and :(q5 _ q6)

A query of the form (possibly q) means that we need to test whether (output C ^

q) holds. We perform this test by checking for each disjunct D of output C whether

(D ^ q) is consistent or not. If it is consistent then we return a yes answer for that

disjunct, else we return a no answer for that disjunct. If the answer to the query is

no in every disjunct of output C then the answer is no for output C; if the answer

is yes for any one disjunct then the answer is yes for output C. (This follows from

the fact that (a _ b) ^ q � (a ^ q) _ (b ^ q) and therefore the query q has to be true

over some disjunct to be true over the whole disjunctive statement.) When the query

itself has disjunctions or conjunctions then we use the procedure of algorithm 4.6 to

break down the query into the simple procedure of checking a set of inequalities for

consistency.

ALGORITHM 4.6 (Possibly-Query)

Input: Set of inequalities output C in DNF.

Query (possibly q).

Output: yes or no answer to the query according to

whether output C ^ q is consistent or not.

Method:

1. If q is atomic, then

For every disjunct D of output C

do check whether consistent(D ^ q).

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 69

If consistent then return(yes) and exit the algorithm.

Endfor

return(no).

% Because (D ^ q) is inconsistent for every disjunct, therefore output C ^ q is too

2. If q is of the form q1 ^ q2 where q1; q2 are atomic then

For every disjunct D of output C

do check whether consistent(D ^ q1).

If consistent then

check whether consistent(D ^ q2).

If consistent then return(yes) and exit the algorithm.

Endfor

return(no).

3. If q is of the form q1 _ q2 where q1; q2 are atomic then

For every disjunct D of output C

do check whether consistent(D ^ q1).

If consistent then return(yes) and exit the algorithm.

Else check whether consistent(D ^ q2).

If consistent then return(yes) and exit the algorithm.

Endfor

return(no).

% the logic follows from the fact that D ^ (q1 _ q2) � (D ^ q1) _ (D ^ q2)

4. If q has conjunctions as well as disjunctions then

Convert it to DNF, i.e., of the form (q3 ^ q4) _ (q5 ^ q6)

where q3; q4; q5; q6 are atomic

Use step 3 by substituting for q1; q2 as

q1 (q3 ^ q4)

q1 (q5 ^ q6)

and use step 2 for checking consistency of a disjunct D with

(q3 _ q4) and (q5 _ q6)

The above algorithms illustrate how a compound query can be reduced to oper-

ations on atomic queries, where an atomic query is one on a single linear inequality

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 70

without any disjunctions. The basic operation that is required for these procedures

is checking a set of inequalities for consistency. A consistency check is part of any

algorithm that optimizes a linear function over a set of linear inequalities. We will dis-

cuss these procedures next as part of the discussion for computing extreme threshold

values.

Queries for extreme threshold values

The queries of the form (minimum P�) or (maximum P�) where P� is any threshold

require the computation of lower and upper bounds of thresholds over the set output C

of arithmetic constraints in DNF. We can achieve this by computing the lower or the

upper bound for each disjunctD of output C and then computing the global minimum

or maximum. The basic operation here is to compute the minimum and maximum

values of a threshold over a set of linear inequalities (without disjunction).

Computation of the extreme values of thresholds as well as checking the consis-

tency of a set of inequalities can be done using one of the many existing methods2.

The appropriate method depends upon the kind of constraints present in NC be-

cause the constraints in quant LC either have inequalities with only one variable or

inequalities with simple order relations (i.e., of the form x � y, x � y, x = y, x < y

or x > y).

If NC has only simple order relations or bounded di�erences (these are inequal-

ities of the form x � y � a) then we can use an e�cient O(n3) procedure (where

n is the number of variables) from [Davis, 1987], [Meiri, 1991] or Sacks' bounder

[Sacks, 1987]. For more general linear constraints, we have to use a linear program-

ming method that is still tractable O(n3:5L) (L is size of input) [Karmarkar, 1984;

Khachiyan, 1979; Megiddo, 1983]. In practice, the simplex algorithm would be prefer-

able because despite its theoretical worst case running time being exponential, it is

e�cient for most practical problems. [Schrijver, 1986] has a good overview of the dif-

ferent linear programming methods. Lassez's work on canonical form of generalized

linear constraints [Lassez and McAloon, 1992] has potential applications, though the

2The thresholds will be treated as the variables that have to be solved for, in the following

discussion.

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 71

advantage of a canonical form would be apparent only if all the sets of inequalities

are stored and a number of queries are asked on the canonical form of this set.

We use an algorithm for inequalities with one variable or simple order relations

based on the constraint propagation technique in [Davis, 1987]. This algorithm builds

a graph where there is a node in the graph corresponding to each threshold and there

is an edge (x ; y) corresponding to the inequality x � y. The algorithm keeps track

of whether the inequality was strict or not and also of the lower and upper bounds

of each threshold. The bounds are propagated through the graph, to get the tightest

lower and upper bounds.

4.2 Experimentation

In this section, we discuss the application of the query-answering algorithm to two

domains | a medical domain and a weather domain. For each of these, we describe

the constraints that were the input to the algorithm and discuss the computation

of answers to various queries. The experiments demonstrate that despite the severe

worst case complexity, the algorithm is quite e�cient in practice. They also illustrate

the usefulness of heuristics in speeding up the runtime of the algorithm.

The implementation of the program is done in Common Lisp using Lucid Lisp

on a DEC 3100 workstation. The program does not generate the clauses in a batch

and then convert them, but rather, each clause that is generated by expansion is

immediately converted to a numerical constraint and the reduce heuristic is applied

to check whether that constraint should be pruned or not. This saves space since the

pruned constraints need not be stored at any time. The reduce heuristic is applied it-

eratively until all the constraints left in quant LC are disjunctive. Also, the disjuncts

in the DNF of quant LC are generated at runtime for each query; therefore, the cover

heuristic is applied at runtime for each query. The greedy set-covering method is used

for cover . In both our applications, the numerical constraints NC have inequalities

with one variable or order relations. Therefore, we use an e�cient O(n3) procedure

for getting lower and upper bounds of thresholds.

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 72

4.2.1 Medical Domain

This application captures some of the rules governing the cardiovascular system. The

constraints and data were obtained in consultation with the members of the Guardian

project at Stanford. The rules relate �ve parameters in the human cardiovascular sys-

tem: cardiac output (CO) in liters/minute, stroke volume (SV), heart rate (HR) in

beats/minute, pulmonary capillary wedge pressure (PCWP) in mmHg and systemic

vascular resistance (SVR) in dynes sec/cm5. Of these, all except the stroke vol-

ume (SV) can be directly measured. The ground data is therefore available for the

other four parameters. There are ranges de�ned over these four parameters that

are used by doctors (and hence by any intelligent medical reasoning system), such

as \normal-CO", \low-HR" etc. The ranges of these parameters are also related to

other conditions that are not de�ned over any parameters.

The inputs to the algorithm are described in Appendix B. The inputs include the

set of interval-predicates IP which are the ranges over the four measurable parame-

ters, the set of noninterval-predicates NIP which are the conditions not de�ned over

any parameters, the set of logical constraints LC and the set of numerical constraints

NC. Some features of this domain are:

Number of interval-predicates, j IP j = 17

Number of noninterval-predicates, j NIP j = 12

Number of logical rules, jRSj = 24

Number of ground literals, jGF j = 32

Number of numerical constraints, jNCj = 48

Number of rules with interval-pred at head, m = 12

Number of rules with noninterval-pred at head, n = 12

Maximum no. of NIP literals in any rule-body, b = 3

Maximum no. of IP literals in any rule-body, t = 2

Maximum no. of literals in any rule-body = 4

Maximum repetitions of NIP pred in rule-head, k = 3

Number of distinct NIP preds at head, p = 8

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 73

Maximum arity of a predicate = 2

The worst case upper bound on the size of quant LC according to the analysis in

Theorem 3.8 is O(kb
p

) which is 33
8

= 36561 in this case. Below we display the times

taken for various operations in spite of this severe upper bound and the sizes of the

generated sets.

Time for derivation of quant LC from LC = 1.00 second

No. of constraints in CNF of quant LC = 416

No. of constraints pruned by reduce = 407

No. of constraints added by reduce to NC = 4

No. of disjunctive constraints in quant LC = 9

No. of disjuncts in DNF of output C = 2592

No. of disjuncts found to be redundant by cover = 2408

Note the large number of constraints that are pruned by the reduce and cover

heuristics. Since each constraint in quant LC has 2 or 3 disjuncts, if reduce heuristic

were not applied then the size of quant LC would have been 3416 in the worst case

instead of 2592. If the cover heuristic were not applied, then computing the answer

to each query would require computing it over 2592 disjuncts. By applying cover ,

2408 of these disjuncts are found to be redundant and hence the answer to any query

needs to be computed only over 184 disjuncts. We next display the times taken

in seconds by some queries in Table 4.1. The �rst column displays the time taken

in seconds to answer a query if the cover heuristic is not applied. The third column

displays the time if the heuristic is applied. Note the signi�cant time saving here. The

�fth column displays the answer returned for the query. The second and the fourth

columns display the number of disjuncts that had to be checked before the disjunct

with the right answer was encountered. (The total number of disjuncts checked, of

course, depends on the query and the answer.) For query 1 with the cover heuristic

for instance, 10 disjuncts returned an answer which was not the global minimum

but the 11th disjunct returned the global minimum; all the 184 disjuncts had to be

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 74

Query No. Query

1 (minimum low CO�)

2 (maximum low CO�)

3 (possibly (� low CO� 2:1)

4 (necessarily (� low CO� 2:9)

W/o Cover Cover Answer

Time (in secs) disj (max 2592) Time (in secs) disj (max 184)

1 39.12 161 1.47 11 2.0

2 29.14 1945 4.21 121 2.8

3 1.86 161 0.11 11 yes

4 31.16 2592 2.08 184 yes

Table 4.1: Queries in Medical Domain

checked before the global minimum was determined though. This �gure indicates

that if we were seeking an approximate answer to the query by checking only a few

disjuncts, then how likely we are to get the correct answer.

4.2.2 Weather Domain

This application captures some of the rules governing the weather. The constraints

were obtained from books on weather and data was obtained from the weather logs

of the Palo Alto weather station. The rules relate four parameters that are directly

measured: mean-temperature (in Fahrenheit), precipitation (in 1/100 inch), relative-

humidity and smog-index . There are ranges de�ned over these four parameters such

as \hot", \low-smog etc. The ranges of these parameters are also related to other

parameters that are not measured numerically; such as \cloudy-sky", \low-perceived-

humidity" and so on.

The inputs to the algorithm are described in Appendix C. The inputs include

the set of interval-predicates IP , the set of noninterval-predicates NIP , the set

of logical constraints LC and the set of numerical constraints NC. Some features of

this domain are:

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 75

Number of interval-predicates, j IP j = 16

Number of noninterval-predicates, j NIP j = 13

Number of logical rules, jRSj = 37

Number of ground literals, jGF j = 77

Number of numerical constraints, jNCj = 46

Number of rules with interval-pred at head, m = 15

Number of rules with noninterval-pred at head, n = 19

Maximum no. of NIP literals in any rule-body, b = 3

Maximum no. of IP literals in any rule-body, t = 2

Maximum no. of literals in any rule-body = 5

Maximum repetitions of NIP pred in rule-head, k = 6

Number of distinct NIP preds at head, p = 5

Maximum arity of a predicate = 2

The worst case upper bound on the size of quant LC according to the analysis in

Theorem 3.8 is O(kb
p

) which is 63
5

= 6243 � 10189 in this case. Below we display the

times taken for various operations in spite of this severe upper bound and the sizes

of the generated sets.

Time for derivation of quant LC from LC = 1.15 seconds

No. of constraints in CNF of quant LC = 360

No. of constraints pruned by reduce = 360

No. of constraints added by reduce to NC = 9

No. of disjunctive constraints in quant LC = 0

No. of disjuncts in DNF of output C = 1

Note the large number of constraints that are pruned by the reduce and cover

heuristics in this application too. The interesting point to note here is that reduce

was e�ective in doing away with all disjunctive constraints. This was so because

the bounds provided by NC were tight enough to enable the determination of the

CHAPTER 4. ANSWERING QUERIES: HEURISTICS 76

truth values of all disjuncts in CNF of quant LC. There were 9 constraints generated

from quant LC that had no disjunctions and hence were added to NC. Therefore,

output C has only conjunctions of linear inequalities and computing the answers to

queries is really e�cient. (Hence, we do not display the times.)

Chapter 5

Extensions to the Constraint

Language

In this chapter, we extend the constraint language CL in several ways and discuss

the rami�cations of these changes on the query-answering algorithm. We describe

the algorithms for the extended languages and formally establish the scope of these

procedures.

We consider the extension of the language for logical constraints LL to the case

where goal clauses (i.e., Horn clauses with empty head) are allowed in Section 5.1.

In Section 5.2 we consider the case where the logical constraint language is extended

to allow certain types of arithmetic inequalities. Next, in Section 5.3 we allow the

rules in the logical constraint language to be recursive. In Section 5.4, we relax the

restriction of Horn clauses and allow LL to have clauses with more than one positive

literal. We impose a condition called the single-noninterval-in-head on these clauses.

In Section 5.5, we do not change the logical constraint language but instead relax the

restriction that interval-predicates be unary as long as the interpretation of the n-ary

predicate is a rectangular box in <n. In Section 5.6, the constraint language remains

the same and the interval-predicates are unary, but we consider the case where the

interval-predicates are interpreted as a �nite union of disjoint intervals instead of the

single interval interpretation we had earlier.

A point to remember in this chapter is that the algorithms are meant to indicate

77

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 78

how the extensions might be handled to still obtain sound and complete derivations;

we do not try to give the most e�cient algorithms and we do not discuss how these

algorithms can be optimized to make them more e�cient. It is also possible to trade

either soundness or completeness for e�ciency and we indicate that in some places.

5.1 Goal Clause

We extend the logical constraint language LL to allow goal clauses in the language,

while still keeping the other restrictions of no functions or recursion in the language.

A goal clause is a clause that has no positive literals; alternatively, it is a rule with

an empty head:

8x [P1(x1) ^ : : : ^ Pn(xn)]

We will denote this augmented logical constraint language by LLgoal and the con-

straint language that allows constraints from LL
goal and from NL by CLgoal . All

the sets of constraints and algorithms that are changed by this language extension

will be indicated by a goal superscript.

The algorithm for query-answering requires some change to account for goal

clauses. Algorithm 5.1 is the updated Eliminate NIP algorithm and Algorithm 5.2 is

the updated Expand algorithm. All the other procedures remain unchanged.

ALGORITHM 5.1 (Eliminate NIPgoal)

Input: Set of logical constraints LCgoal.

Set of interval-predicates IP.

Set of noninterval-predicates NIP.

Output: ILC the set of clauses derived from LC

such that it has only interval-predicates

Method:

Initialize ILC ;.

For every clause c 2 LCgoal such that head(c) 2 IP

or head(c) is empty do

ILCc Expand(c; LCgoal;IP;NIP).

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 79

ILC ILC [ILCc.

Endfor

Return(ILC)

The only di�erence between the Eliminate NIP goal algorithm and the original Elim-

inate NIP algorithm is that now we need to expand the goal clauses too. The expan-

sion algorithm is also slightly di�erent to account for the goal clauses.

ALGORITHM 5.2 (Expandgoal)

Input: Clause c from the set of logical constraints LCgoal such that

its head is either empty or has an interval-predicate.

The set of logical constraints LCgoal.

The set of interval-predicates IP.

The set of interval-predicates NIP).

Output: The set of clauses obtained by expanding c using clauses in LCgoal

such that only noninterval-predicates are expanded.

Method:

If c is empty then LCgoal is inconsistent. % c is empty if

If body(c) is empty or % both head(c) and body(c) are empty

for every literal l 2 body(c) it is case that l 2 IP

Then return(fcg)

Else

Initialize S ;.

For every literal l 2 body(c) such that l 2 NIP do

For every clause r 2 LC such that unifiable(l; head(r)) do

% notation for uni�cation from

� mgu(l; head(r)). % [Genesereth and Nilsson, 1987, Section4.2]

new c [head(c) (body(c)� flg) [body(r)]�.

S S [Expand(new c; LC;IP;NIP).

Endfor

Endif

Return(S)

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 80

The only di�erence between the Expandgoal algorithm and the original Expand algo-

rithm is the check for the consistency of LCgoal. The set LC could never be incon-

sistent since it had only de�nite Horn rules, but due to the presence of goal clauses,

LCgoal can be inconsistent. Consider the goal clause

8x [P1(x1) ^ : : : ^ Pn(xn)]

where P1; : : : ;Pn 2 NIP . It is inconsistent if the literals P1(x1); : : : ;Pn(xn) can

all be simultaneously satis�ed. The Expandgoal checks for such an inconsistency by

expanding all the noninterval-predicates of a goal clause; if this leads to an empty

body, it means that the body of the clause is satis�able and hence the set of clauses

LCgoal is inconsistent1.

In Theorem 5.1 we show that the Derivationgoal algorithm is sound and complete.

Wherever necessary, we add the superscript goal to terms to indicate that their de�-

nition should change to account for goal clauses. We do not give the new de�nitions

since it is obvious in most cases. Note that the dependency graph should have an

empty node and that a rule-edge corresponding to a goal clause will point to the

empty node. Also, since there are no edges going out of the empty node, it will be a

sink in the graph and can have the highest topological order assigned to it.

Theorem 5.1: The class of numerical submodels of LCgoal w.r.t. IP is identical to

the class of models over < of quant LCgoal.

Proof: Theorem 3.5 is true for goal clauses since its proof did not require a clause

to be a de�nite clause. So we extend the proof of Theorem 3.3 to account for goal

clauses.

The construction of modelM fromM 0 is carried out in exactly the same way. The

interpretations of all predicates are una�ected by the goal clause when the model is

being constructed since a goal clause can always have the highest topo value in some

1If a goal clause with interval-predicates causes an inconsistency, it will not be detected at this

stage but rather at a later stage when the numerical constraints are combined and inequality rea-

soners or linear programming techniques are used.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 81

topological order and hence is encountered last. Also, since the head of this clause is

the empty node, there is no interpretation constructed for this node.

To prove that M is still a model of LCgoal we show that M must satisfy C using

the fact that M 0 is a model of ILC:

If the goal clause C has only interval-predicates then it occurs unchanged in ILC. So

it will be satis�ed by M 0 and hence by M .

If C has only noninterval-predicates then C will not be satis�ed by M only if there

is an instantiation which makes all the literals in C true. But this is not possible

because it means that LCgoal is inconsistent and would have been detected by the

algorithm.

If C had interval-predicates as well as noninterval-predicates then C will not be

satis�ed by M only if there is an instantiation which makes all the literals in C true.

But such an instantiation is not possible because it would make all the noninterval

literals true and the remaining goal clause with only interval-predicates would occur

in ILC. Then there will be an instantiation of this clause which makes it invalid and

therefore ILC cannot have any model, in particular the model M 0.

If C is of the form P(x) ^ A(x) where P 2 IP and A 2 NIP then there is

an instantiation a for x that makes P(x) and A(x) true. The expansion P(a) that

occurs in ILC will be invalid since P(a) is true. Therefore ILC will have no model.

Therefore if M 0 is a model of ILC then M is a model of LCgoal. To show that

its numerical submodel is exactly M 0, i.e., 8P 2 IP; �(P) = �0(P), we note that no

�(P) obtained through the procedure for constructing M from M 0 is a�ected by any

goal clause (because it is at the highest topological order and is encountered last).

Therefore, the original proof holds even for LCgoal.

5.2 Logical Constraints with Arithmetic Inequal-

ities

We can extend the logical constraint language LL to include linear arithmetic

inequalities in the clauses. We denote this extended language by LLlineq and the

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 82

extended constraint language by CLlineq . The numerical constraint language NL

remains unchanged.

The syntactic restrictions on the arithmetic inequalities in LLlineq are as follows:

1. Any linear inequality or equality with one variable is allowed in the body of any

rule. The inequalities that fall in this category are (x relop a) where x is a real

variable, a is a real number constant and relop is a relational operator from the

set f�;�; <;>;=; 6=g.

2. Linear inequalities with one variable that are allowed in the head of any rule are

of the form (x relop a) where x is a real variable, a is a real number constant

and relop is a relational operator from the set f�;�; <;>;=g.

3. Linear equalities and inequalities that are order relations between two variables

are allowed in the body of any rule. These inequalities can be of the form

(x relop y) where x and y are real variables and relop 2 f�;�; <;>;=; 6=g.

The algorithm for query-answering is modi�ed by treating the arithmetic inequal-

ities as interval-predicates and not expanding them during the Eliminate NIP stage

of the derivation algorithm. The convert to numerical algorithm is modi�ed to con-

vert clauses with arithmetic inequalities into numerical constraints. When we do not

have any inequalities, each clause to be converted can be easily decomposed into sub-

clauses with at most one variable because all the predicates are unary. When we have

inequalities with two variables, that is not the case. We now decompose the clauses

into subclauses such that each subclause has the least number of variables possible.

We describe the conversions for the additional cases in algorithm 5.3. As before, a

superscript lineq indicates that the corresponding set or language are allowed to have

linear inequalities with the restrictions described above.

ALGORITHM 5.3 (Convert to numericallineq)

Input: Set of clauses ILC lineq that has only interval-predicates

and linear inequalities.

Output: Set of arithmetic constraints quant LC lineq obtained

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 83

by converting ILC lineq using the predicate-as-interval assumption.

Method:

Initialize quant LC lineq ;.

For every clause lc 2 ILC lineq do

Initialize nc emptyset.

% nc is the numerical constraint obtained by converting lc

lc Remove singlevar ineq(lc)

% removes inequalities with one variable by replacing them

% with new interval-predicates

lc subclauses Make Subclauseslineq(lc).

% Make subclauseslineq breaks lc into subclauses with fewest variables

For every subclause subcl 2 lc subclauses that has an inequality do

% cases where subclause has no inequality remain unchanged

subcl0 Convert subclause(subcl)

nc nc _ subcl0

Endfor

quant LC lineq
 quant LC lineq

[nc.

Endfor

Return(quant LC lineq)

Initially, all the inequalities with one variable of the form (x relop a) are removed

by replacing them with a new interval-predicate P(x). The thresholds of this predicate

are set according to what the relop was. If relop is 6=, then x 6= a is equivalent

to (x < a) _ (x > a) and the clause is equivalent to two clauses, each with one

disjunct. The procedure for removing the single-variable inequalities is described in

Algorithm 5.4.

ALGORITHM 5.4 (Remove singlevar ineq)

Input: Clause lc with single-variable inequalities.

Output: Clause(s) rlc equivalent to lc but with no single-variable inequalities.

Method:

1. If lc has x 6= a then replace lc by two clauses lc1 and lc2

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 84

which di�er from lc only in this inequality.

lc1 has (x < a) instead of x 6= a and

lc2 has (x > a) instead of x 6= a.

Apply Remove singlevar ineq to lc1 and lc2.

The union of clauses obtained is rlc.

2. Replace inequality (x = a) by P(x), where P is a new interval-predicate,

to obtain rlc.

Add constraints (P� � P+), (P� = a) and (P+ = a) to quant LC lineq.

3. Replace inequality (x � a) or (x < a) by P(x)

where P is a new interval-predicate to obtain rlc.

Add constraints (P� � P+), (P� = �1) and (P+ = a) to quant LC lineq.

% refer to Appendix A for the di�erence in boundary value

% for the strict inequalities

4. Replace inequality (x � a) or (x > a) by P(x)

where P is a new interval-predicate to obtain rlc.

Add constraints (P� � P+), (P� = a) and (P+ = +1) to quant LC lineq.

Even after removing the single-variable inequalities from ILC, it can still have

two-variable inequalities. We can remove two-variable equalities that are of the form

x = y by substituting y for x everywhere in the clause. The only literals in any

clause of ILC that have more than one variable are the two-variable inequalities.

Therefore, to make subclauses out of each clause, the procedureMake Subclauseslineq

�rst separates out all the inequalities that have connected variables. This can be done

by representing the inequalities in the clause through a graph where the nodes are the

variables and there is an edge (x, y) whenever there is an inequality x � y or x < y.

Each connected component of this graph gives the variables in each subclause. This

procedure is described in Algorithm 5.5.

ALGORITHM 5.5 (Make Subclauseslineq)

Input: Clause lc with interval-predicates and two-variable inequalities.

Output: Set lc subclauses of subclauses of lc.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 85

Method:

1. If x1 ; : : : ; xn are the variables in inequalities,

construct a graph G with n nodes x1 ; : : : ; xn and

an edge (x, y) corresponding to each inequality x � y or x < y.

% x � y is same as y � x

2. Find connected components of graph G.

3. For each connected component CC do

Get all the literals in lc with the same variables as in CC.

Compute the transitive closure of the inequalities in CC.

% If there are n variables in CC

% there are at most n2 inequalities in the transitive closure

Add the subclause formed by the literals and

the inequalities (transitive closure) to lc subclauses.

Each subclause is next converted to numerical constraints by the procedure Con-

vert subclause. We describe this conversion on a case by case basis in Algorithm 5.6.

ALGORITHM 5.6 (Convert subclause)

Input: Subclause subcl that has the transitive closure

of connected two-variable inequalities.

Output: Numerical constraint(s) subcl0 using

predicate-as-interval assumption on subcl.

Method:

1. subcl is of the form P1(x1) ^ : : : ^ Pn(xn) ^ Ineq(x1 ; : : : ; xn)

For each inequality xi � xj where i; j 2 f1; : : : ; ng,

the conversion conv(xi � xj) is the expression Pj
+ < Pi

�

and for strict inequality conv(xi < xj) it is Pj

+
� Pi

�.

subcl0 is the disjunction of conv(ineq) for each ineq 2 Ineq(x1 ; : : : ; xn).

If there are multiple literals in subcl with the same variable, for instance

Q1(x1) ^ : : : ^ Qm(x1) instead of just P1(x1) then

in the expression for conv(ineq)

replace P1
� by maxfQ1

�; : : : ;Qm
�
g, and

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 86

replace P1
+ by minfQ1

+; : : : ;Qm
+
g

2. subcl is of the form

Q(x) P(x) ^ P1(x1) ^ : : : ^ Pn(xn)^

Ineq(x1 ; : : : ; xn ; y1 ; : : : ; yk ; z1 ; : : : ; zm)^

R1(y1) ^ : : : ^ Rk(yk) ^ (x � y1) ^ : : : ^ (x � yk)^

S1(z1) ^ : : : ^ Sm(zm) ^ (x � z1) ^ : : : ^ (x � yk)

where instead of � or �, we could have < or > respectively.

For each inequality ineq in the �rst set of inequalities Ineq(: : :),

expression conv(ineq) is similar to that in step 1 of the algorithm.

conv1 is the disjunction of all such expressions conv(ineq).

conv2 is conjunction of inequalities:

Q� � P�

Q+
� minfP+;R1

+; : : : ;Rk

+
g

conv3 is conjunction of inequalities:

Q� � maxfP�;S1
�; : : : ;Sm

�
g

Q+ � P+

subcl0 is (conv1 _ conv2 _ conv3)

If there are multiple literals with variable x in the body then

consider their intersection rather than just the interval for P.

If there is no literal in the body with variable x then

consider the interval (�1;+1) instead of [P�;P+].

We have discussed the changes in the algorithm due to the extended language.

We claim that the algorithm is still sound and complete. We do not give the proof

but it can be constructed along the lines of the proof for the basic language CL. The

intuition behind the proof is that the equivalence of models for LC lineq and ILC lineq

is not a�ected because the arithmetic inequalities are not expanded at this stage. The

equivalence of the models for ILC lineq and quant LC lineq can be shown by proving

for each case that the models for a subclause are the same as the models for the

converted inequalities.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 87

We would like to point out that the syntactic restrictions on the arithmetic in-

equalities become important only in the second stage of the query-answering algo-

rithmwhen ILC is converted to numerical constraints. In the �rst stage of eliminating

noninterval-predicates, the form of the arithmetic inequalities is unimportant since

they are not expanded. The arithmetic inequalities in this stage are only instantiated

as values of some variables get �xed due to uni�cation of other noninterval-predicates.

Hence, we could in fact have a more general language LLarith of logical constraints

that can have arithmetic inequalities that are not restricted to be linear or by the

number of variables they have. The only restriction on this language will be that af-

ter the NIP predicates are eliminated using the Eliminate NIP lineq algorithm, the

arithmetic inequalities in the output set ILC must satisfy the syntactic restrictions

speci�ed for language LLlineq . Thus, we have a procedural de�nition for this more

general language LLarith rather than a syntactic one as for LLlineq .

We also de�ne a more restricted language than LLlineq that allows only inequal-

ities with one variable but not those with two variables. We denote this language by

LL
v1 .

Since the e�ect of linear inequalities is apparent only in the second stage of the

algorithm, whereas the e�ect of goal clauses is apparent only in the �rst stage of

the algorithm, both the extensions to the language can be made independent of each

other. Thus, we could have a logical constraint language LL
goal

arith
that has both goal

clauses and arithmetic constraints.

5.3 Recursion

We extend the logical constraint language to allow recursive rules. We denote this

extended language by LLrec . In Section 5.3.1, we discuss how the query-answering

algorithm needs to be extended to account for the recursive rules. In Section 5.3.2,

we show that the extended algorithm is sound and complete and in Section 5.3.3 we

discuss the complexity of the problem.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 88

5.3.1 Algorithm

Consider Algorithm 3.4 for eliminating noninterval-predicates in a bottom-up manner

using the dependency graph. We could do a topological sort on the graph because the

rules were nonrecursive and hence the graph was acyclic. When the rules are recursive,

we need to modify this step as discussed below. Again, we use the superscript r to

denote the modi�ed procedures and sets due to the recursive rules. The new algorithm

to eliminate noninterval-predicates is described in Algorithm 5.7.

We build the dependency graph from the set LCrec of logical constraints as before.

If there is a cycle in the graph, then the rules in LCrec are recursive. In this case, we

�nd the strongly-connected components (SCC) of the graph Grec using the algorithm

in [Cormen et al., 1986, Section 23.5]. It takes O(V + E)-time to compute the

strongly connected components, and the same time to compute the component graph

GSCC obtained by shrinking each strongly connected component to a single vertex

(this graph is guaranteed to be a DAG). We also refer to such a vertex, obtained by

collapsing a strongly connected component into a single node, as a supernode. Then

we do a topological sort on the component graph and assign an ordering number to

each node (all the predicates in a supernode get the same ordering number). We can

then expand the predicates in this order, starting from source nodes as usual using

Algorithm 3.3. The only di�erent case is when a supernode is encountered and we

discuss that below.

Each supernode represents a strongly connected component (SCC) and hence the

set of rules associated with it. Note that every predicate occurring in the SCC has

expansions only in terms of the ground facts or in terms of the interval-predicates

occurring before it in the topological order. Also note that we can ignore an SCC

that has only noninterval-predicates if any one of the following holds

1. The SCC is disconnected from the rest of the graph.

2. The SCC has only incoming edges.

3. The SCC has only outgoing edges and the predicates have no ground facts.

Let SCC be the set of nodes in the strongly connected component and let RSCC

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 89

be the set of constraints in LC with nodes from SCC at the head, i.e.,

RSCC = fr j r 2 LCrec; head pred(r) 2 SCCg

Let topo(SCC) = k, that is, the topological order for all nodes in SCC be k. We de�ne

RSCC

IP
as the set obtained from RSCC by expanding out all noninterval-predicates

not in SCC. That is, for any rule r 2 RSCC , if v 2 body preds(r) \ NIP and

topo(v) < k, then replace v by one of its expansions from IP expn(v). We get as

many di�erent rules by replacing v as there are expansions in IP expn(v). When all

such noninterval-predicates have been expanded out, we obtain set RSCC

IP
. Note that

this has only noninterval-predicates from SCC. The rest are all interval-predicates.

ALGORITHM 5.7 (Eliminate NIPrec)

Input: Set of logical constraints LCrec.

Set of interval-predicates IP.

Set of noninterval-predicates NIP.

Output: ILCrec the set of clauses derived from LCrec

such that it has only interval-predicates

Method:

Construct dependency graph Grec = (V;E) from LCrec.

Find the strongly connected components (SCC)

of Grec [Cormen et al., 1986, Section 23.5]

Construct the component graph GSCC of Grec.

Do a topological sort of GSCC [Cormen et al., 1986, Section 23.4].

Expand every node v of GSCC in topological order

If v is not a supernode then use Expand (Algorithm 3.3).

If v is a supernode then

Compute set RSCC

IP
for v.

Expand the predicates in v using

Constraint Strata(v;RSCC

IP
; IP ; NIP).

Expansions of nodes in IP form the desired set ILCrec.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 90

The procedure Constraint Strata (Algorithm 5.8) computes the expansions of the

rules in a controlled manner to ensure that the expansion procedure terminates. For

this we de�ne a series of sets-of-constraints S0; : : : ; Sn+1 where

S0 = fr j r 2 RSCC

IP
; head pred(r) 2 NIPg

Sn+1 = ;

The set Si is computed from the sets S0; : : : ; Si�1. We will later prove in Section 5.3.2

that n must be �nite, i.e., the series of sets will terminate.

ALGORITHM 5.8 (Constraint Strata)

Input: Supernode v (which is a set of predicates).

Set RSCC

IP
of rules for v such that

the only noninterval-predicates are from the supernode.

Set of interval-predicates IP .

Set of noninterval-predicates NIP .

Output: Set of expansions for every predicate in v such that there are no

noninterval-predicates in the expansion (i.e., IP expn of every predicate).

Method:

S0 fr j r 2 R
SCC

IP
; head pred(r) 2 NIPg

Compute series of sets S1; : : : ; Sn+1 until Sn+1 = ;

using the procedure outlined below.

IRSCC I(S0) [: : : [I(Sn) where

I(Si) = fr j r 2 Si; body preds(r) � IPg

Return(IP expn(v)) where

IP expn(v) = fr j r 2 IRSCC ; head pred(r) = vg

PROCEDURE: Computing set Si from S0; : : : ; Si�1

Initialize Si ;.

A rule r is added to Si if:

1. r = expand step(r1; l; r2) where r1; r2 2 S0; : : : ; Si�1, at least one of r1 or r2

is in Si�1, l 2 body(r1) and pred(l) 2 NIP . Intuitively, this means that

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 91

r is generated by using two rules from previous sets, at least one rule from

the immediately preceding set, and no interval-predicates must be expanded to

obtain r.

2. redundant rule?(r; S) = false where S = S0 [: : : [Si�1 [Si

r is checked not just for the same rule existing elsewhere, but also those with

variable renaming and having the same \pattern" as de�ned by the function

redundant rule?. The test is actually whether r is \contained" in any other rule,

where the result for containment comes from deductive databases (Theorem 14.1

from [Ullman, 1989]).

3. The number of NIP -predicates in r has not increased from r1 or r2.

If N(r) = number of occurrences of NIP -predicates in r, then N(r) �

max(N(r1); N(r2)).

Keep adding rules to Si as long as new rules can be generated. If Si = ; after

this, then terminate the procedure (n+ 1 = i), else compute the next set Si+1.

The function redundant rule?(r; S) where r is a rule and S is a set of rules, is used

while computing the series of sets to test whether r is redundant in S. We describe

this function below:

FUNCTION redundant rule?(r; S) : true=false

Check if there is a containment mapping from any rule in S to r.

If there is, then r is redundant.

There is a containment mapping from rule r0 to rule r if every constant and predicate

is mapped to itself and every variable is mapped to a constant or a variable, and this

mapping is consistent. If there is such a mapping that maps every literal of r0 to a

literal in r, then there is a containment mapping.

The de�nition of containment mapping from [Ullman, 1989] is as follows.

De�nition 5: [Containment Mapping] Let r1 and r2 be rules

r1 : I J1 ^ : : : ^ Jl

r2 : H G1 ^ : : : ^Gk

A symbol mapping h is said to be a containment mapping if h turns r2 into r1; that

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 92

is, h(H) = I, and for each i = 1; 2; : : : ; k there is some j such that h(Gi) = Jj . Note

that there is no requirement that each Jj be the target of some Gi, so h(r2) could

look like r1 with some body literals missing.

Containment mapping between two rules is related to their logical entailment through

Theorem 14.1 from [Ullman, 1989].

Theorem 5.2: Let r1 and r2 be as de�ned in De�nition 5. Then r1) r2 if and only

if there is a containment mapping from r2 to r1.

5.3.2 Formal Results

In this section, we �rst prove that the algorithm discussed in the previous section ter-

minates. The termination proof is in Section 5.3.2. Then we show that the algorithm

is sound and complete in Section 5.3.2.

Termination proof

We �rst prove that the set ILCrec as de�ned earlier is �nite in Lemma 5.3 and

then prove that the expansion of any noninterval-predicate in a strongly connected

component must also be �nite in Lemma 5.4. Then we will prove that the procedure

to generate ILCrec terminates in Theorem 5.5.

Lemma 5.3: Size of ILCrec obtained from a strongly connected component SCC is

�nite.

Proof: The number of predicates and constants is bounded (because there are no

functions). Therefore, any unbounded expansion must have repeated predicates with

variables. For the rest of the argument, note that all predicates are unary, since

ILCrec has only IP -predicates.

Let x be the variable occurring in the head. Then the unbounded expansion must

have predicates with other variables. Separate the variables to form subclauses that

have at most one variable. A literal with a constant forms a subclause on its own.

Each subclause with a variable can be of size 1; : : : ; p where p is the size of IP . All

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 93

subclauses with variables other than x must be one of a �nite numbers possible. For

example, two subclauses of size one, P(y) and P(z) are identical if y is mapped to z .

Similarly for subclauses of larger size. Therefore, size of ILCrec is �nite.

In fact, we can compute the upper bound for size of ILCrec.

Let p = jIPj, and c = jCj where C is the set of all constants and tuples formed from

them,.

jILCrecj � 2pc +
Pp+1

i=1 [C(p; i) + pC(p; i� 1)]

where C(m;n) = number of ways of choosing n things out of m, and C(n; n+1) = 0.

(2pc = number of subclauses with constants, literals can be positive or negative.

C(p; i) = number of subclauses of length i, with a variable, where all literals are

negative.

pC(p; i � 1) = number of subclauses of length i, with a variable, where exactly one

literal is positive.)

Lemma 5.4: The number of IP expansions of a predicate N 2 NIP \ SCC are

�nite.

Proof: The proof is similar to that in Lemma 5.3. Separate the subclauses in the body

only, except that the head can have more than one variable, so all these variables are

\special" (but �nite). For all the non-special variables, the argument from previous

lemma applies.

Let arity(N) = k. We can compute the number of possible \patterns" of the head,

where a \pattern" is when a di�erent constant, or a variable is used at a particular

position in the k�tuple for N . Thus, N(x ; y) has patterns {

N(x ; y); N(a; y); N(x ; a); N(a; a) if a is the only constant.

The maximum number of possible patterns for head N(x1 ; : : : ; xk) =

ck + kck�1 + C(k; 2) � 2 � ck�2 + C(k; 3) � 3! � ck�3 + : : :+ k!

=
kX

i=0

[C(k; i) � i! � ck�i]

where i is the number of variables present in the pattern.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 94

We can now compute the number of possible distinct IP expansions for a partic-

ular pattern N(x).

The number of possible subclauses that do not have any variables or constants

from the head x are

p(c� c) +
pX

i=1

C(p; i)

where c = number of constants in x .

Number of subclauses with constants from head = px .

Number of subclauses with variables from head, i.e., (k � c) variables =

(k � c) �
pX

i=1

C(p; i)

Theorem 5.5: [Termination] The procedure to compute the series of sets S0; : : : ; Sn+1

terminates.

Proof: From the computation procedure described in the last section, the number

of noninterval-predicates in a generated rule has an upper bound (because of the

third condition). Therefore, for the procedure to be non-terminating, some interval-

predicate must be repeated in�nite number of times. Since the number of variables in

noninterval-predicates must be �nite, applying the argument of the previous lemma

we can see that there are only �nitely many repetitions of interval-predicates possible.

(In Lemma 5.4, assume that c is the number of constants in NIP -predicates and

k � c is the number of variables. Rest of the argument is the same. Since, we check

for the redundant literals through containment mapping, we generate only distinct

combinations of interval-predicates.)

Soundness and Completeness

We show in Theorem 5.6 that Theorem 3.3 holds even when the rules are recursive;

i.e., , the procedure that eliminates the noninterval-predicates preserves the numerical

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 95

information. In Theorem 5.7 we show that the conversion of logical constraints to

numerical constraints also preserves the numerical information.

Theorem 5.6: [Eliminate NIPrec: Soundness and Completeness] The class of nu-

merical submodels of LCrec w.r.t. IP is identical to the class of standard models of

ILCrec w.r.t. IP.

Proof: Soundness proof is unchanged.

Completeness:

Assume that we are given the model M 0 = (<; �0) for ILCrec. We build M the same

way as before starting with sources. When we reach a SCC, we build the model for

NIP -predicates �rst. Using the rules in IP expn(v) for v 2 NIP \SCC, we build

�(v) (i.e., whenever the body of an IP expansion is satis�ed by a substitution, then

the head must be too). Thus all IP expansions are satis�ed. Then, we do the same

for IP -predicates in SCC. Since, the IP expansions for IP -predicates in SCC

are present in ILCrec, � = �0 for these predicates. Therefore, all we need to prove is

that M j= RSCC .

Consider r 2 RSCC such that head pred(r) = N and N 2 NIP . If body(r)

has only IP -predicates, then r 2 IP expn(N) and hence M j= r. If body(r) has

only IP -predicates and NIP -predicates not from SCC, then we can expand the

NIP -predicate via an IP expansion and M j= the resulting IP expn. Then by

reasoning of Theorem 3.2 we can show that M j= r (since no recursion is involved

here).

Therefore, consider the case where body(r) has at least one A 2 SCC\ NIP .

Then r is of the form

r : N (y) A(x) ^ �

LetM j= body(r). We will show thatM j= head(r). i.e., if there is a substitution � for

r such that (body(r))� 2 �(body(r)) then we will show that (head(r))� 2 �(head(r)).

Since (body(r))� 2 �(body(r)), therefore A(x�) 2 �(A). This is possible if either

A(x �) is a ground fact or there is an IP expansion of A (in say set Si) that satis�es

x� (because those are the only two ways that � was constructed).

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 96

Let r1 : A(x) body(r1)

exists in Si such that the substitution � satis�es (body(r1))� 2 �(body(r1)) where

body(r1) has only IP -predicates.

There must exist another rule r2 in another set Sj where j > i and this rule is

obtained by expanding r using r1. Note that r2 has one less NIP -predicate than r,

so it will not be eliminated using that restriction. Using the substitution � for this

rule, we see that body(r2)� 2 �(body(r2)) (because it has literals from bodies of r

and r1 and � satis�es both). If body(r2) has no other NIP -predicates, then r2 is an

IP expansion; therefore, M j= r2. Since � satis�es the body, it must satisfy the head

too, i.e., head(r2)� 2 �(head(r2)). But this is what we wanted to prove.

If body(r2) has other NIP -predicates, then the same argument can be applied by

expanding those NIP -predicates using IP expansions until we eliminate all NIP -

predicates from the body.

Theorem 5.7: [Convert to Numericalrec: Soundness and Completeness] The set of

standard models of ILCrec given IP is identical to the set of models of quant LCrec.

Proof: Let a clause lc be converted where lc has many subclauses referred to by

lc1; lc2; : : :, i.e., lc � lc1 _ lc2 _ : : :, and where the same interval-predicate P may

occur in more than one subclause (because of recursion). Each subclause is converted

while preserving the models that satisfy it. The models for a clause are the union of

models for its subclauses. The only di�erence that recursion makes is that some of

these models for subclauses interpret the same predicate. Since we take the union of

these models, the interpretation for this predicate P only gets expanded (i.e., more

possibilities are added). Therefore, the same conversion formulae as in Algorithm 3.5

will preserve the models.

5.3.3 Complexity

We discuss the complexity of answering a query given recursive logical constraints

using a result in data dependency theory in deductive databases. An embedded full

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 97

dependency is de�ned in De�nition 6, and the embedded full dependency implication

problem is de�ned in De�nition 7. The complexity result is given in Theorem 5.8.

De�nition 6: [Embedded Full Dependency] An embedded full dependency is de�ned

as a sentence of the form

8x1 : : : xm [P (y1) ^ : : : ^ P (yn)) P (z)]

where z can have only the universally quanti�ed variables x1 : : : xm that should also

occur in y1 : : : ym.

De�nition 7: [Embedded Implicational Problem] Given a set � of embedded full

dependencies and another embedded full dependency ', the problem of verifying

whether � j= ' is de�ned as an embedded implicational problem.

Theorem 5.8: [Recursive Interval Query] Given a set � of Horn rules without func-

tions, i.e., sentences of the form

8x [Q(y) P1(x1) ^ : : : ^ Pn(xn)]

where the body might also be empty, and a query q of the form allowed by the query

language, the problem of determining whether � j= q is EXPTIME-hard.

Proof: The embedded full dependency implicational problem is known to be

EXPTIME-complete [Chandra et al., 1981]. We reduce the embedded full depen-

dency implicational problem to the recursive interval query problem in polynomial

time to show that the recursive interval query problem must be EXPTIME-hard.

Consider an instance of the embedded implicational problem where ' is of the form

8x1 : : : xm [P (y1) ^ : : : ^ P (yn)) P (z)]

For each variable in ', introduce new constants, say, a1; : : : ; an for the universally

quanti�ed variables and bi's for the existentially quanti�ed ones. Let the new form

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 98

of ' by substituting the constants be

P (c1) ^ : : : ^ P (cn)) P (d)

We reduce it to an instance of the recursive interval query problem by adding a new

rule Q(a) P (d) where Q is a new unary interval-predicate and a is a new constant.

Also add the ground literals P (c1), : : :, P (cn) to � and now ask the query Q(a). Thus,

the augmented � forms the set � of Horn clauses without functions for the recursive

interval query problem, and P (d) forms the query q, and we need to verify whether

� j= q. It is easy to see that � j= q if and only if � j= '.

From the above theorem, we see that the problem of answering a query is in-

tractable. The embedded implicational problem has a severe restriction that it can

have only one predicate. Since we have more than one predicate in our problem, our

problem could be even harder. Therefore, any algorithm is bound to take at least

exponential time in the worst case.

The logical constraint language LLrec that has recursive rules can be combined

with the language that has goal clauses. The combined algorithm will still satisfy the

requirements of soundness and completeness. Therefore, we could have a language

LL
goal

rec
together with the appropriate algorithms.

We cannot combine LLrec with LLlineq though, because the termination proof

depends upon the interval-predicates being unary. The order relations between two

variables will not satisfy this condition and hence the algorithm for recursive case

may not terminate if we have such arithmetic constraints. We can allow arithmetic

constraints with one variable though since it satis�es the unary-predicate condition.

Thus, we can have a language, say LLv1
rec

that has recursive rules as well as linear

inequalities with single variable, and obtain the appropriate sound and complete

algorithms by combining the two algorithms.

Also, since the languages for goal clauses and arithmetic constraints are compati-

ble, we can combine them with the language with recursive rules to get the language

LL
grv1 that has goal clauses, linear inequalities with single variable, and recursive

rules.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 99

5.4 Clauses with Multiple Positive Literals

We extend the language LL to the case where the clauses are not required to be

Horn but are allowed to have more than one positive literal. We also allow the ground

literals to be negative. There is an additional restriction on the clauses referred to

as the single-noninterval-in-head condition that is de�ned procedurally in the next

section. We denote this extended language for logical constraints by LLneg . As

usual, the superscript neg is used to denote the changed procedures and sets.

The clauses with multiple positive literals are represented by placing all negative

literals to the right of the arrow, and all positive ones to the left. Thus p; q r; s

means that p _ q _ :r _ :s.

We assume the classical interpretation of negation. Thus, only those facts are

positive that are stated to be so and only those facts are negative that are stated

to be so (or which are logically derivable as positive or negative). We interpret

the interval-predicates to mean that the interval is positive and the rest is negative.

Thus, for the interval-predicate P(x), the interpretation �(P) = [P�;P+] and the

interpretation �(:P) = (�1;P�) [(P+;�1).

In Section 5.4.1, we discuss the new algorithm to eliminate the noninterval-

predicates from the set of logical constraints LCneg and derive the set ILCneg. In

Section 5.4.2 we show that the new algorithm is sound and complete. In Section 5.4.3

we discuss the extended algorithm to convert the constraints in ILCneg to numerical

constraints in the set quant LCneg.

5.4.1 Eliminating Noninterval Predicates

The procedure for eliminating noninterval predicates Eliminate NIP (Algorithm 3.2)

is a�ected by the presence of multiple positive literals only if there is a clause that has

multiple-positive literals with noninterval-predicates. If all the multiple positive liter-

als occurring in every clause are interval-predicates, then the noninterval-predicates

in the body can be expanded as before without a�ecting the expansion procedure in

any way.

We consider the case where there are clauses with multiple positive literals with

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 100

noninterval-predicates. Here, the \expansion" of a noninterval-predicate involves

resolving two clauses on a noninterval-predicate. For example, if the clauses are

p; q r; s and t; u p; v where p 2 NIP , then the resolvent is q; t; u r; s; v.

The elimination algorithm therefore carries out all possible resolutions on noninterval-

predicates such that the noninterval-predicates are eliminated.

Let there be k noninterval-predicates A1 ; : : : ;Ak . We construct a series of sets of

constraints Sk; : : : ; S0 starting with Sk = LCneg where Si has only interval-predicates

and the predicates A1 ; : : : ;Ai . Then, S0 has only interval-predicates and hence

ILCneg = S0.

We place the restriction on LCneg, that if a noninterval-predicate occurs in the

head in a rule, then it does not occur anywhere else in the rule. Also, this condition

must be satis�ed for every set Si. We refer to this condition as the single-noninterval-

in-head condition. We describe the procedure Eliminate NIP neg in Algorithm 5.9

and the procedure Eliminate Ai that constructs Si�1 from Si by eliminating Ai in

Algorithm 5.10.

ALGORITHM 5.9 (Eliminate NIPneg)

Input: Set of logical constraints LCneg

that satisfy the single-noninterval-in-head condition.

Set of interval-predicates IP.

Set of noninterval-predicates NIP = fA1 ; : : : ;Akg.

Output: ILCneg the set of clauses derived from LCneg

such that it has only interval-predicates

Method:

Initialize Sk = LCneg.

For i from k down to 1 do

Si�1 Eliminate Ai(Si;Ai)

where Si�1 also satis�es the single-noninterval-in-head condition.

Endfor

Return(S0)

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 101

ALGORITHM 5.10 (Eliminate Ai)

Input: Set Si of logical constraints from LL
neg such that

the only noninterval-predicates it has are A1 ; : : : ;Ai .

Predicate Ai 2 NIP .

Output: Set Si�1 of logical constraints from LL
neg such that

the only noninterval-predicates it has are A1 ; : : : ;Ai�1 .

Method:

Initialize SA Si.

Initialize SB all constraints in SA that do not have Ai .

Repeat

For every clause c1 2 SA such that Ai 2 head preds(c1) do

For every clause c2 2 SA such that Ai 2 body preds(c2) do

Resolve c1; c2 on Ai , if possible, to obtain c.

If c does not satisfy the single-noninterval-in-head condition then

signal violation and exit.

If c is not subsumed by any other clause in SB then add c to SB;

Endfor

Endfor

SA SB.

SB all constraints in SA that do not have Ai .

until SA = SB.

Return(SA)

We observe that the algorithm requires that in any Si computed by the procedure

Eliminate Ai, if the predicate Ai occurs in the head then Ai does not occur in the

body of that same clause. This restriction on all the sets Sk; : : : ; S1 is the single-

noninterval-in-head condition.

5.4.2 Soundness and Completeness

In this section we show that the algorithm Eliminate NIPneg that eliminates

noninterval-predicates from LCneg to obtain ILCneg is sound and complete in the

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 102

sense that the numerical information is preserved. Theorem 5.9 establishes this result.

Theorem 5.9: The set of standard models of ILCneg is identical to the set of nu-

merical submodels of LCneg.

Proof: Soundness: Follows from LCneg) ILCneg since the only operation for

derivation is resolution.

Completeness: Given a model M 0 = (<; �0) for ILCneg, we construct a model

M = (D;�) for LCneg. Once we construct the model, we show that it is indeed a

model by proving that M j= LCneg and then show that its numerical submodel is

identical to M 0.

Constructing the model:

As before, D = < [C and for all P 2 IP , �(P) = �0(P). Build the interpretation

of NIP -predicates in the order A1 ; : : : ;Ak . Since S0 = ILCneg, we already know

that M j= S0. We initialize �(Ai) for i = 1; : : : ; k to the constant tuples appearing

in positive ground-facts of Ai , also called pos GF (Ai). We also de�ne a set not Ai of

constant tuples appearing in the negative ground-facts neg GF (Ai) of Ai .

We build �(Ai) for i = 1; : : : ; k, by having the model satisfy Si, given that it

already satis�es S0; : : : ; Si�1. Since Sk = LCneg, this process will ensure that M j=

LCneg. Those constraints in Si that do not have Ai are already satis�ed because they

also appear in Si�1.

Now, consider the constraints in Si that have Ai in the head. These constraints

have only interval-predicates and the noninterval-predicatesA1 ; : : : ;Ai�1 , all of which

already have the interpretation �. Now we construct the interpretation �(Ai) for Ai .

Consider a constraint r 2 Si that has Ai(x) in the head; because of the single-

noninterval-in-head condition, Ai does not appear anywhere else in r. If there is a

substitution � such that � (body(r)) 2 �(body(r)) (i.e., the substitution satis�es the

body), then consider � (head(r)). If for any predicate u(y) 2 head preds(r) it is the

case that y� 2 �(u), then do nothing (because this means that the head is already

satis�ed); else, add x� to �(Ai) and thus have Ai satisfy the head.

We can show that x � 62 not Ai and hence this will not lead to any contradictions .

If x � 2 not Ai then :Ai (x�) would have been resolved with r to give a rule r1 in Si�1

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 103

such that r1 is of the form � (head(r) nAi(x)) � (body(r)). Since all clauses in Si�1

are satis�ed, r1 is too and hence if � (body(r)) is satis�ed then � (head(r)) without

Ai(x) will also be satis�ed. But this contradicts the fact that no other predicate in

head(r) is satis�ed by the substitution � . Hence, x � 62 not Ai .

Once this process has been repeated for all such � 's and all such r's that have

Ai in the head, we have �(Ai). We can show that �(Ai) satis�es those constraints

in Si that have Ai in the body (Lemma 5.10). Thus, all constraints in Si have been

satis�ed.

Also, note that during this process, we did not make any changes to the interpre-

tations of IP -predicates. Hence, for all P 2 IP , �(P) = �0(P), which means that

the numerical submodel of M is identical to M 0.

Lemma 5.10: The interpretation � of the predicate Ai 2 NIP satis�es those

constraints in Si that have Ai in the body.

Proof: (By contradiction) Let constraint c2 2 Si, where Ai (x) occurs in body(c2),

violates this. This means that body(c2) is satis�ed but head(c2) is not for any sub-

stitution � of c2. Let c1 be another constraint in Si such that it has Ai in the head,

and this was the constraint that added x � to �(Ai). Let c1 and c2 were resolved to

obtain c that was in Si�1 and hence � satis�es c. c1 can either be a positive ground

fact or a clause.

If c1 is a positive ground fact, then it must be Ai (x�) since c1 was the one that

added that constant to �(Ai). This means that c is of the form � (head(c2))

� (body(c2)nAi (x)). That is, if body(c2) is satis�ed by � then � (head(c2)) must be too.

But this contradicts our assumption that head(c2) is not satis�ed by any substitution.

If c1 is not a ground fact but a rule with a body, then it must have Ai (x) in the

head. Also, since c1 was the one that added the constant x� to �(Ai), it must be the

case that � did not satisfy any other predicates in head(c1) though it satis�es body(c1).

Then, on resolving c1 and c2, we obtain c that must be of the form (head(c1) n

Ai(x)); head(c2) body(c1); (body(c2) n Ai(x)), and it is the case that: � satis�es

body(c) but � does not satisfy head(c). But, this is a contradiction since c 2 Si�1.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 104

If c2 has more than one occurrence of Ai in the body, then this argument can

be extended by resolving c2 repeatedly with c1 and the successive resolvents, until a

constraint c without any occurrence of Ai is obtained (and which must hence be in

Si�1).

5.4.3 Converting to Numerical Constraints

Once the expanded clauses have only interval-predicates they can be converted to

numerical constraints. The expressions for exact conversions are complex. We �rst

de�ne some terms to express the converted expressions. We have also worked out

weaker and stronger converted constraints which have simpler expressions.

For intervals �(P1); : : : ; �(Pn) of interval-predicates, we de�ne the following terms:

De�nition 8: (Intersection) The intersection of intervals �(P1); : : : ; �(Pn) is denoted

by inter(P1; : : : ;Pn) and is the same as the interval

inter(P1; : : : ;Pn)
def
= [max(P1

�; : : : ;Pn
�);min(P1

+; : : : ;Pn
+)]

De�nition 9: (Empty) If an interval A = [A�;A+] is empty, then

empty(A)
def
= (A+ < A�)

If an interval A = [A�;A+] is not empty, then

not empty(A)
def
= (A� � A+)

De�nition 10: (Cover) An interval A = [A�;A+] is said to cover interval B =

[B�;B+] if and only if every point in interval B is also in interval A. That is,

covers(A;B)
def
= (A� � B�) ^ (B+

� A+)

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 105

De�nition 11: (Union) The union of intervals �(P1); : : : ; �(Pn) for the n interval-

predicates is denoted by union(P1; : : : ;Pn). An interval A = [A�;A+] is said to cover

a union of intervals union(P1; : : : ;Pn), if and only if every point in the union is in A.

That is,

(A� � min(P1
�; : : : ;Pn

�)) ^ (max(P1
+; : : : ;Pn

+) � A+)

A is a minimal cover if

(A� = min(P1
�; : : : ;Pn

�)) ^ (max(P1
+; : : : ;Pn

+) = A+)

A is referred to as min cover(P1; : : : ;Pn).

De�nition 12: (Minmax Conversions) We give the conversions of some expressions

with min and max functions into disjunctions and conjunctions of linear inequalities:

The conversion of max(x1; : : : ; xn) � min(y1; : : : ; ym) is

n^

i=1

m^

j=1

(xi � ym)

The conversion of min(x1; : : : ; xn) � min(y1; : : : ; ym) is

m^

j=1

[
n_

i=1

(xi � yj)]

The conversion of max(x1; : : : ; xn) � max(y1; : : : ; ym) is

n^

i=1

[
m_

j=1

(xi � yj)]

The conversion of min(x1; : : : ; xn) � max(y1; : : : ; ym) is

n_

i=1

m_

j=1

(xi � yj)

For expressions with < instead of �, we replace the � in the converted expressions

by <.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 106

De�nition 13 : (Overlap) We say that the intervals P1; : : : ;Pn overlap, or that

overlap(P1; : : : ;Pn) is true, when union(P1; : : : ;Pn) = min cover(P1; : : : ;Pn). In-

tuitively, the intervals overlap when they are connected and their union itself forms

an interval.

Two intervals P1;P2 overlap if they intersect. That is,

overlap(P1;P2)
def
= (inter(P1;P2) 6= ;)

The overlap of n intervals, P1; : : : ;Pn, is de�ned inductively.

overlap(P1; : : : ;Pn)
def
=
W
i1;:::;in

[overlap(Pi
1
; : : : ;Pi

n�1
)

^finter(Pin
;min cover(Pi

1
; : : : ;Pi

n�1
)) 6= ;g]

where i1; : : : ; in 2 f1; : : : ; ng and i1 6= : : : 6= in�1 6= in, and all combinations of

i1; : : : ; in are considered.

Remark 5.11: The expression for overlapping intervals can be converted to lin-

ear inequalities using the linear inequalities for intersection of intervals. That is,

inter(A;B) = [max(A�;B�);min(A+;B+)] and inter(A;B) 6= ; means that

max(A�;B�) � min(A+;B+)

The linear inequalities for min cover can also be substituted, as well as conversions

for any minmax expressions.

De�nition 14: (Union Cover) We say that the union of intervals union(P1; : : : ;Pn)

covers the interval Q = [Q�;Q+] if and only if every point in Q is also in the union.

Then the union is called a union cover of Q.

Remark 5.12: If a union of intervals union(P1; : : : ;Pn) covers an interval Q, then

Q must be covered by some overlapping subset of intervals from P1; : : : ;Pn. That

is, there must be a subset of intervals, say P1; : : : ;Pk where 1 � k � n, such that

overlap(P1; : : : ;Pk) is true and min cover(P1; : : : ;Pk) is a cover for Q. The linear

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 107

inequality expression will consider all such subsets and check if they overlap and form

a cover, i.e.,

union cover(P1; : : : ;Pn; Q)
def
=
W

i1;:::;ik
[overlap(Pi

1
; : : : ;Pi

k
)

^fA = min cover(Pi
1
; : : : ;Pi

k
)g

^covers(A;Q)]

where i1; : : : ; ik 2 f1; : : : ; ng and i1 6= : : : 6= ik.

We now discuss the conversions of clauses that have only IP -predicates. In

addition to giving the exact conversions, we also specify conversions that are either

sound or complete but not both. The expressions for these conversions are simpler

than that for exact conversions.

The sound conversions that are not complete mean that these converted con-

straints must be satis�ed; if a point violates these constraints, then it de�nitely

violates the given constraints, but if it satis�es these constraints, then it does not

necessarily satisfy the original constraints. In terms of the answers to queries that

check whether a condition is satis�ed or not, it means that a \yes" answer may be in-

correct but a \no" answer is correct. For queries that ask for minimum and maximum

values of thresholds, the answers returned may not be the tightest possible.

The complete conversions that are not sound mean that if these converted con-

straints are satis�ed, then the given constraints will de�nitely be satis�ed; if a point

satis�es the converted constraints then it satis�es the given constraints, but if it vi-

olates the converted constraints it does not necessarily violate the given constraints.

In terms of the answers to queries that check whether a condition is satis�ed or not, it

means that a \no" answer may be incorrect but a \yes" answer is correct. For queries

that ask for minimum and maximum values of thresholds, the answers returned may

be tighter than the correct answer.

The following is the extended algorithm Convert to numericalneg for converting

the constraints in ILCneg to numerical constraints in quant LCneg using the predicate-

as-interval assumption.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 108

ALGORITHM Convert to numericalneg

1. P(a) or P(a)

Exact Conversion:

a 2 �(P), i.e.,

P� � a � P+

2. :P(a) or P(a)

Exact Conversion:

a 62 �(P), i.e.,

(a < P�) _ (a > P+)

3. P(x) or P(x)

Exact Conversion:

�(P) = <, i.e.,

(P� = �1) ^ (P+ = +1)

4. :P(x) or P(x)

Exact Conversion:

�(P) = ;, i.e.,

P� > P+

5. P1(x); : : : ;Pn(x)

Exact Conversion:

�(P1) \ : : : \ �(Pn) = ;, which is the same as

inter(P1; : : : ;Pn) = ;,

and using the expressions for intersection and empty set, we have

max(P1
�; : : : ;Pn

�) > min(P1
+; : : : ;Pn

+) , i.e.,
W

n

i=1

W
n

j=1(P
�
i
> P+

j
)

6. P(x) Q1(x); : : : ;Qn(x)

Exact Conversion:

(�(Q1) \ : : : \ �(Qn)) � �(P), i.e.,

�(P) covers inter(Q1; : : : ;Qn), and using expressions for intersection, cover and

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 109

minmax conversions, we have

(P� � max(Q1
�; : : : ;Qn

�)) ^ (P+
� min(Q1

+; : : : ;Qn
+)), i.e.,

(
W
n

i=1 P
� � Q�

i
) ^ (

W
n

i=1 P
+ � Q+

i
)

7. P1(x); : : : ;Pn(x)

Exact Conversion:

�(P1) [: : : [�(Pn) = <

This means that overlap(P1; : : : ;Pn) is true and that min cover(P1; : : : ;Pn) =

<. We can also say that union(P1; : : : ;Pn) covers <.

Therefore, the conversion into linear inequalities is

overlap(P1; : : : ;Pn) ^ fmin cover(P1; : : : ;Pn) = <g

We can also specify a sound conversion :

[min(P1
�; : : : ;Pn

�);max(P1
+; : : : ;Pn

+)] = <

that is

[
n_

i=1

(Pi

� = �1)] ^ [
n_

i=1

(Pi

+ = +1)]

We can specify a complete conversion :

n_

i=1

(�(P) = <)

which is the same as

n_

i=1

[(Pi

� = �1) ^ (Pi

+ = +1)]

8. Q1(x); : : : ;Qm(x) P1(x); : : : ;Pn(x)

Exact Conversion:

[�(P1) \ : : : \ �(Pn)] � [�(Q1) [: : : [�(Qm)]

which means that the union of Q's covers the intersection of P 's,

i.e., union(Q1; : : : ;Qm) is a union cover for inter(P1; : : : ;Pn).

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 110

The linear inequality expression will be

union cover(Q1; : : : ;Qm; inter(P1; : : : ;Pn))

We can specify sound or complete conversions by specifying which subsets of

Q1; : : : ;Qm must cover the intersection of P1; : : : ;Pn.

The extended language LLneg can be combined with the language with goal

clauses LLgoal as long as the extended language also satis�es the single-noninterval-

in-head condition. We denote such a combined language by LL
neg

goal
. The respective

algorithms can also be combined to provide a combined sound and complete algo-

rithm.

This language can also be allowed to have arithmetic inequalities with single-

variable. Such a language will be denoted by LL
neg

v1 and a language where all three

are combined as LLgnv1 . Arithmetic inequalities with two variables will require the

conversion algorithm to include cases where there are multiple positive literals as well

as arithmetic inequalities with two variables.

The single-noninterval-in-head condition precludes recursion, therefore, we cannot

combine this language with LLrec .

5.5 n-ary interval predicates

We consider the case where the interval-predicates are not restricted to be unary,

but are allowed to be n-ary. We make the assumption that the n dimensions of the

predicate are all independent of each other. Under this assumption, the constraints

with n-ary predicates boils down to the unary case. We discuss how this reduction

can be made in this section.

Let us �rst consider a binary interval-predicate P(x ; y) which is interpreted as a

rectangular box over <2. We say that P(x ; y) is true for all points inside the box and

false for points outside. The four vertices of the rectangle are expressed in terms of

four thresholds Px
�;Px

+;Py
�;Py

+. The interpretation of P is given by the following

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 111

expression

�(P) = fhx ; yi j Px
�
� x � Px

+;Py
�
� y � Py

+where x ; y 2 <g

Note that for a binary predicate we need four thresholds to denote the interpreta-

tion, just as for a unary predicate we needed two. In general, we need 2n thresholds

for an n-ary predicate.

The binary predicate can be expressed as a conjunction of two unary interval-

predicates. Let these unary predicates are Px and Py. Then, P(x ; y), Px(x)^Py(y),

where

�(Px) = fx j Px
�
� x � Px

+;where x 2 <g

�(Py) = fy j Py
�
� y � Py

+;where y 2 <g

where the thresholds for Px and Py are the same as the thresholds for P(x ; y).

Therefore, we can substitute Px(x) ^ Py(y) wherever we have P(x ; y). If P(x ; y)

occurs in the body of the clause, then a substitution will give one new clause. If

P(x ; y) occurs in the head of the clause, then substitution will give rise to 2 clauses,

one each with Px and Py at the head.

Let us extend this to the case of an n-ary interval-predicate P(x1 ; : : : ; xn) which is

interpreted as a rectangular box over <n. The vertices of the rectangle are expressed

in terms of the thresholds P1
�;P1

+; : : : ;Pn
�;Pn

+. The interpretation of the predicate

P is

�(P) = fhx1 ; : : : ; xni j P1
�
� x1 � P1

+; : : : ;Pn
�
� xn � Pn

+;

where x1 ; : : : ; xn 2 <g

The n-ary predicate can be expressed as a conjunction of n unary interval-predicates.

Let these unary predicates are P1; : : : ;Pn. Then,

P(x1 ; : : : ; xn), P1(x1) ^ : : : ^ Pn(xn)

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 112

where the interpretations of the unary predicates are as follows:

�(P1) = fx1 j P1
�
� x1 � P1

+;where x1 2 <g
...

�(Pn) = fxn j Pn
�
� xn � Pn

+;where xn 2 <g

where the thresholds for P1; : : : ;Pn are the same as the thresholds for P(x1 ; : : : ; xn).

Therefore, we can substitute P1(x1)^ : : :^Pn(xn) wherever we have P(x1 ; : : : ; xn).

If P(x1 ; : : : ; xn) occurs in the body of the clause, then a substitution will give one new

clause. For instance, a clause of the form

� � ^ P(x1 ; : : : ; xn)

where � and � are subclauses, can be converted to the clause

� �; P1(x1) ^ : : : ^ Pn(xn)

If P(x1 ; : : : ; xn) occurs in the head of the clause, then substitution will give rise to

n clauses, one each with P1; : : : ;Pn at the head. For instance, a clause of the form

� _ P(x1 ; : : : ; xn) �

can be converted to n clauses

� _ P1(x1) �
...

� _ Pn(xn) �

Once all the clauses have only unary interval-predicates, the original algorithm for

unary predicates can be applied.

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 113

5.6 Interpreting a unary predicate as �nite union

of intervals

We can extend the interpretation of a unary predicate from a single interval to a �nite

union of disjoint intervals. This means that an interval-predicate P can be interpreted

as the union of intervals I1[: : :[In for some �nite n. We note that this interpretation

is closed with respect to :;^;_ operators on intervals-predicates.

If �(P(x)) and �(Q(x)) are �nite union of intervals, then

�(:P(x)) = < n �(P(x))

�(P(x) ^ Q(x)) = �(P(x)) \ �(Q(x))

�(P(x) _ Q(x)) = �(P(x)) [�(Q(x))

All these interpretations are themselves �nite union of intervals.

Let us denote �(P) by the 2n thresholds of the n intervals, i.e., by

fP1
�;P1

+; : : : ;Pn
�;Pn

+
g such that

�(P) = [P1
�;P1

+] [: : : [[Pn
�;Pn

+]

If a �nite upper bound n on the number of disjoint intervals in �(P) is known,

then we can substitute P(x) by a disjunction of n unary predicates, each of which

is interpreted as a single interval. Thus, P(x) , P1(x) _ : : : _ Pn(x), where for all

i = 1; : : : ; n, �(Pi) = [Pi
�;Pi

+]. We have the additional constraint on these thresholds

that

�1 � P1
�
� P1

+
� : : : � Pn

�
� Pn

+
� +1

If P(x) occurs in the body of a clause, then substitution will give rise to n new

clauses. A clause of the form

� P(x); �

is converted to the following form on substitution

� P1(x); �
...

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 114

� Pn(x); �

If P(x) occurs in the head of a clause, then substitution will give rise to a new

clause. A clause of the form

�; P(x) �

is converted to the following form on substitution

�; P1(x); : : : ;Pn(x) �

Thus the conversion will be the conversions for predicates with single intervals,

together with the additional constraint relating the thresholds of P. Some of the

converted expressions get simpli�ed due to this additional constraint. For example,

to check if any subset of P1; : : : ;Pn overlap, we know that P1 cannot overlap with P3

unless it also overlaps with P2. Therefore, we need to consider only those subsets that

are contiguous. In fact, we can specify some constraints on the negation, conjunction

and disjunction of such predicates.

1. P(x)

�(P) = [P1
�;P1

+] [: : : [[Pn
�;Pn

+]

2. :P(x), S(x)

�(S) = [S1
�;S1

+] [: : : [[Sn
�;Sn

+]

= < n �(P)

= (�1;+1) n f(P1
�;P1

+) [: : : [(Pm
�;Pm

+)g

where the following constraints hold on thresholds:

(S1
� = �1) _ (P1

� = �1)

(S1
�
6= �1) _ (P1

�
6= �1)

(Sn
+ = +1) _ (Pm

+ = +1)

(Sn
+
6= +1) _ (Pm

+
6= +1)

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 115

(m� 1) � n � (m+ 1)

(S1
� = �1) _ f(S1

� = P1
+) ^ (S2

� = P2
+) ^ : : : ^ (Smin(n;m)

� = Pmin(n;m)
+)g

(S1
�
6= �1) _ f(S1

+ = P1
�) ^ (S2

+ = P2
�) ^ : : : ^ (Smin(n;m)

+ = Pmin(n;m)
�)g

(Sn
� = +1) _ f(Sn

+ = Pm
�) ^ (Sn�1

+ = Pm�1
�) ^ : : :g

(Sn
�
6= +1) _ f(Sn

� = Pm
+) ^ (Sn�1

� = Pm�1
+) ^ : : :g

3. P(x) ^ Q(x), S(x)

�(S) = [S1
�;S1

+] [: : : [[Sn
�;Sn

+]

= �(P) \ �(Q)

= f(P1
�;P1

+) [: : : [(Pm
�;Pm

+)g \ f(Q1
�;Q1

+) [: : : [(Qk

�;Qk

+)g

where the following constraints hold on thresholds, for all i = 1; : : : ; n :

0 � n � max(m;k)

Si
�
� min(Pi

�;Qi
�)

Si
�
2 fPj

�;Ql

�
j 1 � j � m; 1 � l � kg

Si
+
2 fPj

+;Ql

+
j 1 � j � m; 1 � l � kg

S1
�
� max(P1

�;Q1
�)

Sn
+
� min(Pm

+;Qk

+)

4. P(x) _ Q(x), S(x)

�(S) = [S1
�;S1

+] [: : : [[Sn
�;Sn

+]

= �(P) [�(Q)

= f(P1
�;P1

+) [: : : [(Pm
�;Pm

+)g [f(Q1
�;Q1

+) [: : : [(Qk

�;Qk

+)g

where the following constraints hold on thresholds, for all i = 1; : : : ; n :

1 � n � m+ k; if m = k = 0 then n = 0

CHAPTER 5. EXTENSIONS TO THE CONSTRAINT LANGUAGE 116

Si
�
� max(Pi

�;Qi
�)

Si
�
2 fPj

�;Ql

�
j 1 � j � m; 1 � l � kg

Si
+
2 fPj

+;Ql

+
j 1 � j � m; 1 � l � kg

S1
� = min(P1

�;Q1
�)

Sn
+ = max(Pm

+;Qk

+)

Except for the constraints for :P(x), all other constraints are incomplete (but

sound), i.e., they do not completely characterize S(x).

Chapter 6

Conclusion

We started with the problem of representing and reasoning with vague concepts in

knowledge-based systems, particularly while using the currently prevalent represen-

tational mechanisms such as those which have Tarskian semantics. We argued that

in practice, it is su�cient to represent a vague concept as if it were precise, if we

could carefully de�ne what the corresponding precise concept would be. Our contri-

bution in the dissertation is to provide a systematic framework for the hitherto ad

hoc process of de�ning the vague concepts as if they were precise.

In this framework, the vague concepts are interpreted as intervals over numbers,

and the concept is de�ned precisely if the interval-boundaries (or thresholds) are

known. Since the underlying domain knowledge has a bearing upon the meaning of

vague concepts, the framework is based upon capturing this knowledge in a constraint

language. Then querying this knowledge is useful in determining the threshold values;

hence, a query language is provided as part of the framework. Thus, the framework

has three main parts: a constraint language in which to express the domain knowledge,

a query language in which to ask queries about the thresholds to extract information

from the domain knowledge, and an algorithm to compute the answers to the queries.

In the dissertation, we discussed a constraint language that is used widely in rule-

based systems and provided an algorithm to compute answers to the queries. Some

important features of this algorithm are:

� The algorithm preprocesses the constraints so that the runtime cost of answering

117

CHAPTER 6. CONCLUSION 118

the queries is reduced.

� The preprocessing algorithm is independent of the choice of the query language.

� The algorithm combines the logical and numerical constraints in a novel way

using the predicate-as-interval assumption without losing any numerical infor-

mation in this process.

This algorithm was experimented with on two domains to illustrate that the heuris-

tics are necessary to speed up the algorithm and that despite the severe worst-case

complexity, the algorithm is e�cient in practice.

6.1 Open Questions

The dissertation introduces a basic framework in which to systematically look at the

problem of representing vague concepts as precise. It then demonstrates how this

framework can be applied in a useful manner. There are many open questions that

need to be addressed to make this framework even more useful:

� Choosing a constraint language and query language depending upon the ap-

plication. Extensive experimentation will help in determining what choice of

languages is useful, keeping in view that, in general, the more expressive the

language gets, the more ine�cient the query-answering algorithm may become.

We explored the di�erent choices in extending the logical constraint language

in Chapter 5. Similarly, exploring other extensions to the logical constraint

language as well as extensions to the numerical constraint language such as

nonlinear constraints, or extensions to the query languages will be illuminating.

In some application, a di�erent interpretation for the interval-predicate might

be more appropriate, for instance, interpreting it as a union of disjoint intervals

rather than a single interval.

� Developing incremental algorithms for answering queries. In the algorithm de-

scribed in the dissertation, the preprocessing algorithm is independent of the

numerical constraints. Hence, any additions to numerical constraints does not

CHAPTER 6. CONCLUSION 119

a�ect the performance of the algorithm. Addition of ground facts requires the

repetition of only the last stage of expanding rules without having to rebuild the

dependency graph. But the addition of a new rule requires redoing most of the

work. It will be useful to have an incremental algorithm that does not require

too much recomputation when new rules are added to the knowledge-base.

� The current framework provides the valid ranges for choosing threshold values;

any point in this valid region will be a consistent choice. It will be interesting to

combine this method of delineating valid regions for thresholds from declarative

information, with the clustering techniques that cluster large amounts of ground

data to provide numerical ranges for concepts [Kerber, 1992].

Appendix A

Function De�nitions

For each interval-predicate, we also specify whether the interval associated with it

must be open or closed at each end; i.e., the interpretation of P could be [P�, P+],

(P�, P+], [P�, P+), or (P�, P+). We de�ne terms P�:bd and P+:bd for the thresholds

also called the boundary indicators, which can have values open or closed accordingly.

We also introduce new relations �th;�th; <th; >th for relations between thresholds

which could be the end of a closed or an open interval. The de�nitions of these

new relations are in Algorithms A.2, A.1, A.4, A.3. E�ectively, these new relations

allow us to specify constraints on the thresholds without having to bother about the

boundary indicators.

ALGORITHM A.1 (�th)

Input: Expressions e1 and e2. % e1; e2 can be thresholds

Output: Value of relation e1�the2.

Method:

return(e2�the1)

ALGORITHM A.2 (�th)

Input: Expressions e1 and e2. % e1; e2 can be thresholds

Output: Value of relation e1�the2.

% P�;P+;Q�;Q+ are thresholds , a, b are constants

120

APPENDIX A. FUNCTION DEFINITIONS 121

Method:

case e1�the2 of

1: a�thb % neither is a threshold

return(e1 � e2)

2: P��tha

if P�:bd = closed then return(e1 � e2)

else return(e1 < e2)

3: a�thP
�

return(e1 � e2)

4: P+�tha

return(e1 � e2)

5: a�thP
+

if P+:bd = closed then return(e1 � e2)

else return(e1 < e2)

6: P��thQ
�

if P�:bd = closed then return(e1 � e2)

else if Q�:bd = open then return(e1 � e2)

else return(e1 < e2)

7: P+�thQ
+

if Q+:bd = closed then return(e1 � e2)

else if P+:bd = open then return(e1 � e2)

else return(e1 < e2)

8: P��thQ
+

if P�:bd = open then return(e1 < e2)

else if Q+:bd = closed then return(e1 � e2)

else return(e1 < e2)

9: P+�thQ
�

return(e1 � e2)

end

APPENDIX A. FUNCTION DEFINITIONS 122

ALGORITHM A.3 (>th)

Input: Expressions e1 and e2. % e1; e2 can be thresholds

Output: Value of relation e1>the2.

Method:

return(e2<the1)

ALGORITHM A.4 (<th)

Input: Expressions e1 and e2. % e1; e2 can be thresholds

Output: Value of relation e1<the2.

Method:

case e1<the2 of

1: a�thb % neither is a threshold

return(e1 < e2)

2: P�<tha

return(e1 < e2)

3: a<thP
�

if P�:bd = closed then return(e1 < e2)

else return(e1 � e2)

4: P+<tha

if P+:bd = closed then return(e1 < e2)

else return(e1 � e2)

5: a<thP
+

return(e1 < e2)

6: P�<thQ
�

if P�:bd = open then return(e1 < e2)

else if Q�:bd = closed then return(e1 < e2)

else return(e1 � e2)

7: P+<thQ
+

if Q+:bd = open then return(e1 < e2)

else if P+:bd = closed then return(e1 < e2)

else return(e1 � e2)

APPENDIX A. FUNCTION DEFINITIONS 123

8: P�<thQ
+

return(e1 < e2)

9: P+<thQ
�

if P+:bd = open then return(e1 < e2)

else if Q�:bd = closed then return(e1 < e2)

else return(e1 � e2)

end

Conversion of clauses with inequalities If an inequality has only one variable,

say x, and is of the form x = a then simply substitute a for x everywhere in the clause.

If it is an inequality i.e., �;�; <;> then we introduce a new interval-predicate P with

boundary-indicators P�:bd and P+:bd. We add the inequality P��thP
+ to NC and

replace the inequality in the clause by the P(x). Then, according to the form of the

inequality, we also add the following numerical constraints to quant LC:

� x � a: P� = �1 and P+ = a where P�:bd = open and P+:bd = closed.

� x � a: P� = a and P+ = +1 where P�:bd = closed and P+:bd = open.

� x < a: P� = �1 and P+ = a where P�:bd = open and P+:bd = open.

� x > a: P� = a and P+ = +1 where P�:bd = open and P+:bd = open.

Appendix B

Medical Domain Application

The set of interval-predicates IP is:

(verylow-CO low-CO normal-CO high-CO veryhigh-CO

verylow-HR low-HR normal-HR high-HR veryhigh-HR criticallyhigh-HR

low-PCWP normal-PCWP high-PCWP

low-SVR normal-SVR high-SVR)

The set of noninterval-predicates NIP is:

(low-SV normal-SV high-SV CO HR PCWP SVR bradycardia

sinus-tachycardia extreme-tach vasoconstriction vasodilation)

The set of numerical constraints NC is:

((= verylow-CO+ low-CO-) (= verylow-CO- 0) (<= 2.0 low-CO-)

(<= low-CO- 2.8)

(= low-CO+ normal-CO-) (<= 3.0 normal-CO-) (<= normal-CO- 4.2)

(= normal-CO+ high-CO-) (<= 5 high-CO-) (<= high-CO- 6.5)

(= high-CO+ veryhigh-CO-) (<= 7.5 veryhigh-CO-) (<= veryhigh-CO- 8.5)

(= veryhigh-CO+ 50)

(= verylow-HR- 0) (= verylow-HR+ low-HR-) (<= 50 low-HR-)

(<= low-HR- 60)

(= low-HR+ normal-HR-) ((<= 60 normal-HR-) (<= normal-HR- 70)

(= normal-HR+ high-HR-) (<= 90 high-HR-) (<= high-HR- 110)

124

APPENDIX B. MEDICAL DOMAIN APPLICATION 125

(= high-HR+ veryhigh-HR-) (<= 105 veryhigh-HR-) (<= veryhigh-HR- 120)

(= veryhigh-HR+ criticallyhigh-HR-) (<= 150 criticallyhigh-HR-)

(<= criticallyhigh-HR- 175) (= criticallyhigh-HR+ 500)

(= low-PCWP- 0)(= low-PCWP+ normal-PCWP-) (<= 8 normal-PCWP-)

(<= normal-PCWP- 10)

(= normal-PCWP+ high-PCWP-) (<= 12 high-PCWP-) (<= high-PCWP- 15)

(= high-PCWP+ 100) (= low-SVR- 0)

(= low-SVR+ normal-SVR-) (<= 900 normal-SVR-) (<= normal-SVR- 1200)

(= normal-SVR+ high-SVR-) (<= 1400 high-SVR-) (<= high-SVR- 1700)

(= high-SVR+ 5000))

Note that all the numerical constraints here are either inequalities with only one

variable or are order constraints. The set of logical constraints LC is given below.

The patient-data at the end are the ground literals and the other constraints form

the set of rules. A rule written as

((normal-CO y) (normal-SV x) (normal-HR u) (CO x y) (HR x u))

represents a rule of the form

normal CO(y) normal SV (x) ^ normal HR(u) ^ CO(x ; y) ^ HR(x ; u)

The set of logical constraints LC is

(((normal-CO y) (normal-SV x) (normal-HR u) (CO x y) (HR x u))

((low-CO y) (low-SV x)(normal-HR u) (CO x y) (HR x u))

((low-CO y) (normal-SV x) (low-HR u) (CO x y) (HR x u))

((verylow-CO y) (normal-SV x)(bradycardia x)(CO x y))

((verylow-CO y) (low-SV x) (low-HR u) (CO x y) (HR x u))

((verylow-CO y) (low-SV x) (bradycardia x) (CO x y))

((high-CO y) (normal-SV x) (high-HR u) (CO x y) (HR x u))

((high-CO y) (high-SV x) (normal-HR u) (CO x y) (HR x u))

((high-CO y) (high-SV x) (high-HR u) (CO x y) (HR x u))

((veryhigh-CO y) (normal-SV x) (sinus-tachycardia x) (CO x y))

((veryhigh-CO y) (high-SV x) (sinus-tachycardia x) (CO x y))

APPENDIX B. MEDICAL DOMAIN APPLICATION 126

((low-CO y) (low-SV x) (extreme-tach x) (CO x y))

((normal-SV x) (normal-PCWP z) (normal-SVR u) (PCWP x z) (SVR x u))

((low-SV x) (low-PCWP z) (normal-SVR u) (PCWP x z) (SVR x u))

((low-SV x) (normal-PCWP z) (vasoconstriction x) (PCWP x z))

((low-SV x) (low-PCWP z) (vasoconstriction x) (PCWP x z))

((high-SV x) (high-PCWP z) (normal-SVR u) (PCWP x z) (SVR x u))

((high-SV x) (normal-PCWP z) (vasodilation x) (PCWP x z))

((high-SV x) (high-PCWP z) (vasodilation x) (PCWP x z))

((bradycardia x) (verylow-HR y) (HR x y))

((sinus-tachycardia x) (veryhigh-HR y) (HR x y))

((extreme-tach x) (criticallyhigh-HR y) (HR x y))

((vasoconstriction x) (high-SVR y) (SVR x y))

((vasodilation x) (low-SVR y) (SVR x y))

((CO patient-1 6.0)) ((HR patient-1 75))

((PCWP patient-1 17)) ((SVR patient-1 1300))

((CO patient-2 3.4)) ((HR patient-2 103))

((PCWP patient-2 7.7)) ((SVR patient-2 1800))

((CO patient-3 2.6)) ((HR patient-3 180))

((PCWP patient-3 7)) ((SVR patient-3 1600))

((CO patient-4 3.9)) ((HR patient-4 80))

((PCWP patient-4 11)) ((SVR patient-4 1300))

((CO patient-5 2.2)) ((HR patient-5 48))

((PCWP patient-5 8.5)) ((SVR patient-5 1600))

((CO patient-6 6)) ((HR patient-6 118))

((PCWP patient-6 16)) ((SVR patient-6 1250))

((CO patient-7 8)) ((HR patient-7 138))

((PCWP patient-7 17)) ((SVR patient-7 1000))

((CO patient-8 9)) ((HR patient-8 155))

((PCWP patient-8 14)) ((SVR patient-8 800)))

Appendix C

Weather Domain Application

The set of interval-predicates IP is:

(freezing cold medium-temp hot searing

no-precip low-precip medium-precip heavy-precip

low-humidity medium-humidity high-humidity

low-smog moderate-smog unhealthy-smog very-unhealthy-smog)

The set of noninterval-predicates NIP is:

(low-perceived-humidity medium-perceived-humidity

high-perceived-humidity

relative-humidity mean-temperature precipitation smog-index

partly-cloudy-sky cloudy-sky clear-sky picnic-day)

The set of numerical constraints NC is:

(((= freezing- -100)) ((= freezing+ cold-))

((>= cold- 29)) ((<= cold- 43)) ((= cold+ medium-temp-))

((>= medium-temp- 43)) ((<= medium-temp- 60))

((= medium-temp+ hot-)) ((>= hot- 61)) ((<= hot- 76))

((= hot+ searing-)) ((>= searing- 76))

((<= searing- 90)) ((= searing+ 200))

((= no-precip- 0)) ((= no-precip+ 0)) ((= low-precip- 3))

((= low-precip+ medium-precip-)) ((>= medium-precip- 3))

127

APPENDIX C. WEATHER DOMAIN APPLICATION 128

((<= medium-precip- 15)) ((= medium-precip+ heavy-precip-))

((>= heavy-precip- 15)) ((<= heavy-precip- 100))

((= heavy-precip+ 200)) ((= low-humidity- 0))

((= low-humidity+ medium-humidity-)) ((>= medium-humidity- 20))

((<= medium-humidity- 78)) ((= medium-humidity+ high-humidity-))

((>= high-humidity- 78)) ((<= high-humidity- 99))

((= high-humidity+ 100)) ((= low-smog- 0))

((= low-smog+ moderate-smog-)) ((>= moderate-smog- 40))

((<= moderate-smog- 65)) ((= moderate-smog+ unhealthy-smog-))

((>= unhealthy-smog- 85)) ((<= unhealthy-smog- 120))

((= unhealthy-smog+ very-unhealthy-smog-))

((>= very-unhealthy-smog- 175))

((<= very-unhealthy-smog- 225)) ((= very-unhealthy-smog+ 300)))

Note that all the numerical constraints here are either inequalities with only one

variable or are order constraints. The set of logical constraints LC is given below.

The weather-data at the end are the ground literals and the other constraints form

the set of rules. The syntax of the rules is the same as for the medical domain in

Appendix B.

The set of logical constraints LC is

(((low-perceived-humidity x) (relative-humidity x xh) (low-humidity xh)

(mean-temperature x xt) (freezing xt))

((low-perceived-humidity x) (relative-humidity x xh) (low-humidity xh)

(mean-temperature x xt) (cold xt))

((low-perceived-humidity x) (relative-humidity x xh) (low-humidity xh)

(mean-temperature x xt) (medium-temp xt))

((low-perceived-humidity x) (relative-humidity x xh) (low-humidity xh)

(mean-temperature x xt) (hot xt))

((low-perceived-humidity x) (relative-humidity x xh) (medium-humidity xh)

(mean-temperature x xt) (freezing xt))

((low-perceived-humidity x)(relative-humidity x xh) (medium-humidity xh)

(mean-temperature x xt) (cold xt))

APPENDIX C. WEATHER DOMAIN APPLICATION 129

((medium-perceived-humidity x)(relative-humidity x xh) (low-humidity xh)

(mean-temperature x xt) (searing xt))

((medium-perceived-humidity x) (relative-humidity x xh)

(medium-humidity xh) (mean-temperature x xt)

(medium-temp xt))

((medium-perceived-humidity x)(relative-humidity x xh)

(medium-humidity xh) (mean-temperature x xt)

(hot-temp xt))

((medium-perceived-humidity x)(relative-humidity x xh)

(high-humidity xh) (mean-temperature x xt)

(freezing xt))

((medium-perceived-humidity x)(relative-humidity x xh)

(high-humidity xh) (mean-temperature x xt)

(cold xt))

((high-perceived-humidity x)(relative-humidity x xh) (medium-humidity xh)

(mean-temperature x xt) (searing xt))

((high-perceived-humidity x)(relative-humidity x xh) (high-humidity xh)

(mean-temperature x xt) (medium-temp xt))

((high-perceived-humidity x)(relative-humidity x xh) (high-humidity xh)

(mean-temperature x xt) (hot xt))

((high-perceived-humidity x)(relative-humidity x xh) (high-humidity xh)

(mean-temperature x xt) (searing xt))

((high-humidity xh)(relative-humidity x xh)

(precipitation x xr) (low-precip xr))

((high-humidity xh)(relative-humidity x xh)

(precipitation x xr) (medium-precip xr))

((high-humidity xh)(relative-humidity x xh)

(precipitation x xr) (heavy-precip xr))

((partly-cloudy-sky x) (precipitation x xr) (low-precip xr))

((cloudy-sky x) (precipitation x xr) (medium-precip xr))

((cloudy-sky x) (precipitation x xr) (heavy-precip xr))

APPENDIX C. WEATHER DOMAIN APPLICATION 130

((no-precip xr) (precipitation x xr) (clear-sky x))

((no-precip xr) (precipitation x xr) (mean-temperature x xt) (hot xt))

((no-precip xr) (precipitation x xr) (mean-temperature x xt) (searing xt))

((low-smog xs) (smog-index x xs) (precipitation x xr) (medium-precip xr)

(mean-temperature x xt) (freezing xt))

((low-smog xs)(smog-index x xs) (precipitation x xr) (medium-precip xr)

(mean-temperature x xt) (cold xt))

((low-smog xs) (smog-index x xs) (precipitation x xr)

(heavy-precip xr) (mean-temperature x xt) (freezing xt))

((low-smog xs) (smog-index x xs) (precipitation x xr) (heavy-precip xr)

(mean-temperature x xt) (cold xt))

((low-smog xs) (smog-index x xs) (precipitation x xr) (heavy-precip xr)

(mean-temperature x xt) (medium-temp xt))

((moderate-smog xs) (smog-index x xs) (precipitation x xr) (no-precip xr)

(mean-temperature x xt) (searing xt))

((medium-temp xt) (mean-temperature x xt) (picnic-day x))

((no-precip xr) (precipitation x xr) (picnic-day x))

((low-perceived-humidity x) (picnic-day x))

((low-smog xs) (smog-index x xs) (picnic-day x))

((mean-temperature 5jan92 52))

((mean-temperature 30jan92 50))

((mean-temperature 10feb92 54.5))

((mean-temperature 10mar92 54))

((mean-temperature 20apr92 66))

((mean-temperature 21may92 62))

((mean-temperature 25jun92 67))

((mean-temperature 11jul92 75))

((mean-temperature 10aug92 71))

((mean-temperature 30oct92 61))

((mean-temperature 25dec92 40.5))

((mean-temperature 15nov92 53))

APPENDIX C. WEATHER DOMAIN APPLICATION 131

((mean-temperature 5sep92 65))

((mean-temperature 20feb93 48.5))

((precipitation 5jan92 61))

((precipitation 30jan92 0))

((precipitation 10feb92 31))

((precipitation 10mar92 0))

((precipitation 20apr92 0))

((precipitation 21may92 0))

((precipitation 25jun92 0))

((precipitation 11jul92 0))

((precipitation 10aug92 0))

((precipitation 30oct92 90))

((precipitation 25dec92 0))

((precipitation 15nov92 0))

((precipitation 5sep92 0))

((precipitation 20feb93 66))

((relative-humidity 5jan92 100))

((relative-humidity 30jan92 93))

((relative-humidity 10feb92 100))

((relative-humidity 10mar92 94))

((relative-humidity 20apr92 88))

((relative-humidity 21may92 77))

((relative-humidity 25jun92 90))

((relative-humidity 11jul92 68))

((relative-humidity 10aug92 80))

((relative-humidity 30oct92 100))

((relative-humidity 25dec92 91))

((relative-humidity 15nov92 93))

((relative-humidity 5sep92 85))

((relative-humidity 20feb93 100))

((smog-index 5jan92 33))

APPENDIX C. WEATHER DOMAIN APPLICATION 132

((smog-index 30jan92 53))

((smog-index 10feb92 19))

((smog-index 10mar92 23))

((smog-index 20apr92 37))

((smog-index 21may92 34))

((smog-index 25jun92 17))

((smog-index 11jul92 25))

((smog-index 10aug92 42))

((smog-index 30oct92 23))

((smog-index 25dec92 30))

((smog-index 15nov92 35))

((smog-index 5sep92 43))

((smog-index 20feb93 25))

((cloudy-sky 5jan92))

((partly-cloudy-sky 30jan92))

((cloudy-sky 10feb92))

((clear-sky 10mar92))

((clear-sky 20apr92))

((clear-sky 21may92))

((clear-sky 25jun92))

((partly-cloudy-sky 11jul92))

((clear-sky 10aug92))

((cloudy-sky 30oct92))

((clear-sky 25dec92))

((clear-sky 15nov92))

((clear-sky 5sep92))

((cloudy-sky 20feb93))

((picnic-day 20apr92))

((picnic-day 21may92))

((picnic-day 25jun92))

((picnic-day 11jul92))

APPENDIX C. WEATHER DOMAIN APPLICATION 133

((picnic-day 10aug92))

((picnic-day 5sep92)))

Bibliography

[Allen and Hayes, 1985] Allen, James F. and Hayes, Pat 1985. A common-sense the-

ory of time. In Proceedings of the International Joint Conference on Arti�cial

Intelligence. The International Joint Conferences on Arti�cial Intelligence, Inc.,

Morgan Kaufmann Publishers, Inc. 528{531.

[Allen, 1985] Allen, James F. 1985. Maintaining knowledge about temporal intervals.

In Brachman, Ronald J. and Levesque, Hector J., editors 1985, Readings in Knowl-

edge Representation. Morgan Kaufmann Publishers, Inc. chapter 30, 509{522.

[Chandra and Merlin, 1977] Chandra, A.K. and Merlin, P.M. 1977. Optimal imple-

mentation of conjunctive queries in relational databases. In Proceedings of Sympo-

sium on Theory of Computing, New York. 77{90.

[Chandra et al., 1981] Chandra, A.K.; Lewsis, H.; and Makowsky, 1981. Embedded

implicational dependencies and their inference problem. In Proceedings of Sympo-

sium on Theory of Computing, Milwaukee. 342{354.

[Cormen et al., 1986] Cormen, Thomas H.; Leiserson, Charles E.; and Rivest,

Ronald L. 1986. Introduction to Algorithms. The MIT Press, McGraw-Hill Book

Company.

[D�Ambrosio et al., 1987] D�Ambrosio, Bruce; Fehling, Michael R.; Forrest, Stephanie;

Raulefs, Peter; and Wilber, B. Michael 1987. Real-time process management for

materials composition in chemical manufacturing. IEEE Expert (Summer):80{93.

[Davis, 1987] Davis, Ernest 1987. Constraint propagation with interval labels. Arti-

�cial Intelligence 32(3):281{331.

134

BIBLIOGRAPHY 135

[Davis, 1990] Davis, Ernest 1990. Representations of Commonsense Knowledge. Mor-

gan Kaufmann Publishers, Inc.

[Encyclopedia Britanica, 1986] Colour. Encyclopedia Britanica 16:659.

[Garey and Johnson, 1979] Garey, Michael R. and Johnson, David S. 1979. Comput-

ers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman

and Co.

[Genesereth and Nilsson, 1987] Genesereth, Michael R. and Nilsson, Nils J. 1987.

Logical Foundations of Arti�cial Intelligence. Morgan Kaufmann Publishers, Inc.

[Hayes-Roth et al., 1989] Hayes-Roth, Barbara; Washington, Rich; Hewett, R.;

Hewett, M.; and Seiver, A. 1989. Intelligent monitoring and control. In Proceed-

ings of the Eleventh International Joint Conference on Arti�cial Intelligence. The

International Joint Conferences on Arti�cial Intelligence, Inc., Morgan Kaufmann

Publishers, Inc. 43{249.

[Ja�ar and Lassez, 1987] Ja�ar, Joxan and Lassez, Jean-Louis 1987. Constraint logic

programming. POPL 111 { 119.

[Jiang et al., 1991] Jiang, Dareng; Han, Chia Yung; and Wee, William G. 1991. Pro-

totype expert system for preventive control in power plant. SPIE, Applications of

Arti�cial Intelligence 1468:16{25.

[Karmarkar, 1984] Karmarkar, N. 1984. A new polynomial-time algorithm for linear

programming. Combinatorica 4:373{395.

[Kautz and Ladkin, 1991] Kautz, Henry A. and Ladkin, Peter B. 1991. Integrating

metric and qualitative temporal reasoning. In Proceedings of the Ninth National

Conference on Arti�cial Intelligence. American Association for Arti�cial Intelli-

gence, AAAI Press, The MIT Press. 241{246.

[Kerber, 1992] Kerber, Randy 1992. Chimerge: Discretization of numeic attributes.

In Proceedings of the Tenth National Conference on Arti�cial Intelligence. Ameri-

can Association for Arti�cial Intelligence, AAAI Press, The MIT Press.

BIBLIOGRAPHY 136

[Khachiyan, 1979] Khachiyan, L.G. 1979. A polynomial algorithm in linear program-

ming. Soviet Mathematics Doklady 20(1):191{194.

[Ladkin, 1987] Ladkin, Peter B. 1987. Models of axioms for time intervals. In Proceed-

ings of the National Conference on Arti�cial Intelligence. American Association for

Arti�cial Intelligence, AAAI Press, The MIT Press. 234{239.

[Lassez and McAloon, 1992] Lassez, Jean-Louis and McAloon, Ken 1992. A canonical

form for generalized linear constraints. Journal of Symbolic Computation.

[Lloyd, 1987] Lloyd, John Wylie 1987. Foundations of Logic Programming. Springer-

Verlag, second edition.

[McCarthy, 1959] McCarthy, John 1959. Programs with common sense. In Proc.

Symposium on Mechanisation of Thought Processes 1, London.

[Megiddo, 1983] Megiddo, N. 1983. Towards a genuinely polynomial algorithm for

linear programming. SIAM Journal on Computing 12(?):347{353.

[Meiri, 1991] Meiri, Itay 1991. Combining qualitative and quantitative constraints in

temporal reasoning. In Proceedings of the Ninth National Conference on Arti�cial

Intelligence. AmericanAssociation for Arti�cial Intelligence, AAAI Press, The MIT

Press. 260{267.

[Parikh, 1983] Parikh, Rohit 1983. The problem of vague predicates. In Cohen, and

Wartofsky, , editors 1983, Language, Logic, and Method. Reidel Publishers. 241{

261.

[Passner and Lee, 1991] Passner, je�rey E. and Lee, Robert R. 1991. Use of an ex-

pert system to predict thunderstorms and severe weather. SPIE, Applications of

Arti�cial Intelligence 1468:2{10.

[Sacks, 1987] Sacks, Elisha 1987. Hierarchical reasoning about inequalities. In Pro-

ceedings of the Sixth National Conference on Arti�cial Intelligence. American As-

sociation for Arti�cial Intelligence, Morgan Kaufmann Publishers, Inc. 649{654.

BIBLIOGRAPHY 137

[Schrijver, 1986] Schrijver, Alexander 1986. Theory of Linear and Integer Program-

ming. John Wiley and Sons.

[Shafer and Pearl, 1990] Shafer, Glenn and Pearl, Judea, editors 1990. Readings in

Uncertain Reasoning. Morgan Kaufmann Publishers, Inc.

[Shahar et al., 1992] Shahar, Yuval; Tu, Samson W.; and Musen, Mark A. 1992.

Knowledge acquisition for temporal-abstraction mechanisms. Knowledge Acquisi-

tion 4:217{236.

[Ullman, 1988] Ullman, Je�rey D. 1988. Principles of Database and Knowledge-base

Systems, volume I. Computer Science Press.

[Ullman, 1989] Ullman, Je�rey D. 1989. Principles of Database and Knowledge-base

Systems, volume II: The New Technologies. Computer Science Press.

[Vardi, 1993] Vardi, Moshe Y. 1993. personal communication.

[Vilain et al., 1990] Vilain, M.; Kautz, Henry A.; and van Beek, Peter 1990. Con-

straint propagation algorithms for temporal reasoning: A revised report. In Weld,

Daniel S. and Kleer, Johande, editors 1990, Readings in Qualitative Reasoning

about Physical Systems. Morgan Kaufmann Publishers, Inc. chapter 4.3, 373{381.

[Weld and de Kleer, 1990] Weld, Daniel S. and Kleer, Johande 1990. Readings in

Qualitative Reasoning about Physical Systems. Morgan Kaufmann Publishers, Inc.

[Williams, 1988] Williams, Brian C. 1988. Minima: A symbolic approach to qual-

itative algebraic reasoning. In Proceedings of the Seventh National Conference

on Arti�cial Intelligence. American Association for Arti�cial Intelligence, Morgan

Kaufmann Publishers, Inc.

[Zadeh, 1983] Zadeh, Lot� A. 1983. Commonsense and fuzzy logic. In Cercone, N. and

McCalla, G., editors 1983, The Knowledge Frontier: Essays in the Representation

of Knowledge. New York: Springer-Verlag. chapter 5, 103{136.

[Zadeh, 1988] Zadeh, Lot� A. 1988. Fuzzy logic. Computer 21(4):83{93.

