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Abstract

We describe the Stanford Temporal Prover (STeP), a system being developed to

support the computer-aided formal veri�cation of concurrent and reactive systems

based on temporal speci�cations. Unlike systems based on model-checking, STeP

is not restricted to �nite-state systems. It combines model checking and deductive

methods to allow the veri�cation of a broad class of systems, including programs

with in�nite data domains, N -process programs, and N -component circuit designs,

for arbitrary N . In short, STeP has been designed with the objective of combining

the expressiveness of deductive methods with the simplicity of model checking.

The veri�cation process is for the most part automatic. User interaction oc-

curs mostly at the highest, most intuitive level, primarily through a graphical proof

language of veri�cation diagrams. E�cient simpli�cation methods, decision proce-

dures, and invariant generation techniques are then invoked automatically to prove

resulting �rst-order veri�cation conditions with minimal assistance.

We describe the performance of the system when applied to several examples, in-

cluding the N -process dining philosopher's program, Szymanski's N -process mutual

exclusion algorithm, and a distributed N -way arbiter circuit.

�This research was supported in part by the National Science Foundation under grant CCR-92-

23226, by the Defense Advanced Research Projects Agency under contract NAG2-892, and, by the

United States Air Force O�ce of Scienti�c Research under contract F49620-93-1-0139.
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1 Introduction

The Stanford Temporal Prover, STeP, is being developed to support the computer-

aided formal veri�cation of concurrent and reactive systems based on temporal spec-

i�cations. Unlike most systems for temporal veri�cation, STeP is not restricted to

�nite-state systems, but combines model checking with deductive methods to allow

the veri�cation of a broad class of systems, including parameterized (N -component)

circuit designs, parameterized (N -process) programs, and programs with in�nite

data domains. STeP was brie
y introduced in [Man94].

A veri�cation system which combines model checking and deductive methods

o�ers a number of advantages over purely model checking or purely deductive ap-

proaches. Such a system should:

� Reduce the complexity of the veri�cation task by

{ Decomposition

Each component may be veri�ed by the most suitable veri�cation method. For

instance, this would allow a model checker to verify an individual component

even if it could not verify, because of the state explosion problem, the entire

system.

� Allow veri�cation of a broader class of systems:

{ Parameterized programs

{ Parameterized circuits

{ Systems with in�nite data domains

� Automate the veri�cation task:

{ Automatic generation of invariants

{ E�ective simpli�cations

{ Model checking

{ Decision procedures

{ Veri�cation rules

� Allow visual interaction:

{ Veri�cation diagrams

� Provide debugging tools:

{ Counter-examples

{ Debugging guidance
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In short, STeP has been designed with the objective:

To combine the expressiveness of deductive methods with the simplicity

of model checking.

Our development e�orts have been focused, in particular, on the following areas.

First, in addition to the textual language of temporal logic, the system supports

a structured visual language of veri�cation diagrams [MP94a] for guiding, organiz-

ing, and displaying proofs. Veri�cation diagrams allow the user to construct proofs

hierarchically, starting from a high-level, intuitive proof sketch and proceeding in-

crementally, as necessary, through layers of greater detail.

Second, the system implements powerful techniques for automatic invariant gen-

eration. Deductive veri�cation in the temporal framework almost always relies on

�nding, for a given program and speci�cation, suitably strong (inductive) invari-

ants and intermediate assertions. The user can typically provide an intuitive, high-

level invariant, from which the system derives stronger, more detailed, top-down

invariants . Simultaneously, bottom-up invariants are generated automatically by

analyzing the program text. By combining these two methods, the system can of-

ten deduce su�ciently detailed invariants to carry through the entire veri�cation

process.

Finally, the system provides an integrated suite of simpli�cations and decision

procedures for automatically checking the validity of a large class of �rst-order and

temporal formulas. This degree of automated deduction is su�cient to handle most

of the veri�cation conditions that arise during the course of deductive veri�cation|

and the few conditions that are not solved automatically typically correspond to the

critical steps of manually constructed proofs, where the user is most able to provide

guidance.

The remainder of this section provides a brief overview of the system and its

components. Section 2 provides a concrete description of how the system can be

used, by showing how several properties of Peterson's mutual exclusion algorithm

are veri�ed. Various aspects of the system are described in greater detail in the

subsequent sections, including the model checker, veri�cation rules and veri�cation

diagrams, automatic invariant generation, and theorem-proving support for estab-

lishing veri�cation conditions. Finally, Section 6 presents some more substantial

examples: the N -process dining philosopher's program, Szymanski's N -process mu-

tual exclusion algorithm, and a distributed N -way arbiter circuit.

1.1 Preliminaries

A reactive system (program) is a system that maintains an ongoing interaction with

its environment. Examples of reactive systems are concurrent and distributed pro-

grams, embedded systems, and communication networks. A reactive system must

be speci�ed by its behavior over time, represented as sequences of states, i.e., com-

putations. The speci�cation of a reactive system may be given as a formula of

2



linear-time �rst-order temporal logic, a language which combines �rst-order formu-

las with temporal operators for describing state sequences. For instance, given a

program P ,

P q x = 0 ) 1 (y = 0)

states that, in every computation of P , every state satisfying x = 0 is eventually

followed by a state satisfying y = 0. A temporal formula ' is P-valid if P q ', i.e.,
' holds over all computations of P. A state (�rst-order) formula1 ' is P-state valid

if P q 0 ', i.e., ' holds in all states of all computations of P. Our goal is to show

the P-validity of a given temporal speci�cation ' for a reactive system P.

Our computational model for reactive systems, based on [MP91b], is that of

(fair) transition systems. A fair transition system consists of an initial condition, a

set of transitions, i.e., next-state relations, and a fairness requirement. Fair transi-

tion systems can be used to de�ne the semantics of a simple programming language

SPL which includes constructs for concurrency, nondeterministic selection, and pa-

rameterized statements. For instance,

N

jj
i=1

S[i]

where the same process S is executed N times in parallel, is a typical parameterized

statement, with parameter N . A program containing a parameterized statement is

a parameterized program.

The remainder of this paper assumes that the reader is familiar with the fair

transition model, SPL, and the language of temporal logic. For an in-depth treat-

ment of these topics, see [MP91b].

1.2 System Overview

Figure 1 presents a high-level overview of the STeP system. A brief description of

each component follows.

Input The basic input to STeP is an SPL programP and a temporal logic formula

' which expresses the property of P to be veri�ed. The SPL program is modeled as

a fair transition system S. Even though SPL can be used to describe both software

and hardware systems, STeP is not restricted to SPL, and can be used to verify

any system that can be modeled as a fair transition system.

Veri�cation Diagrams The preferred approach to constructing a proof is through

veri�cation diagrams . Through a graphical user interface, the user can draw a di-

agram that represents the proof of a given formula ' (see Section 2.1). The corre-

sponding veri�cation conditions are generated automatically from the veri�cation

diagram and are checked by the automatic prover.

1We refer to �rst-order formulas as state formulas or assertions.
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Model Checking The model checker takes as input the fair transition system S

and the (simpli�ed) formula '. It tries to show that ' is valid for S by searching

for a counterexample in the form of a computation satisfying :' (see Section 3).

For �nite-state systems, the algorithm guarantees termination (up to space/time

limitations) with a positive answer or counterexample. The model-checker may

also be applied to in�nite-state systems; termination with a positive answer or

counterexample is not guaranteed in this case.

Automatic Prover This is the main module of the deductive component of

STeP, and comprises four distinct subcomponents that interact with each other

in the course of a proof:

� Veri�cation rules are used to reduce the proof of P-validity of a temporal

formula ' to the proof of validity of a set of �rst-order formulas, called veri-

�cation conditions.

� Bottom-up invariants , generated by static analysis of the transition system

and the program text, are used to simplify veri�cation conditions.

� The �rst-order prover (subsections 5.1- 5.3) is responsible for simplifying ver-

i�cation conditions and proving their validity if possible. This is done with

a combination of (contextual) rewriting techniques, decision procedures, and

general theorem proving. This prover can also use previously proven invari-

ants.

� A number of automatic techniques, including invariance strengthening and

propagation, are available if the �rst-order prover is unable to prove all ver-

i�cation conditions. These techniques are primarily intended to strengthen

invariants that are not inductive and to generate intermediate assertions.

Interactive Prover If the automatic prover is not able to prove a veri�cation

condition, the user can choose to give the simpli�ed but unproven veri�cation con-

dition to the interactive prover, where, if it is indeed valid, it can be proved with

some user guidance (see subsection 5.4).

If the formula is not valid, the user may be able to receive some suggestions on

why it is not valid. This information can then be used to modify the program or

strengthen an intermediate assertion or invariant. Note that the availability of the

model checker allows the user to search for a counterexample while simultaneously

attempting an interactive proof.

The interactive prover also features deduction rules for temporal logic that can

be used to simplify and prove temporal formulas.
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1.3 Implementation

STeP is written in Standard ML of New Jersey with the exception of the model

checker, which is implemented in C.

A prototype X-windows version of the graphical user interface is being developed

using the eXene library for Concurrent ML.

Currently, after six months of implementation, the size of the source code is

approximately 40,000 lines.

2 Overview: A Simple Example

This section describes how STeP can be applied to the deductive veri�cation of

Peterson's mutual exclusion algorithm, as implemented by program pet of Figure 2.

In fact, since program pet is �nite-state, each of the properties proved below can

also be veri�ed automatically using the STeP model checker.

local y1; y2 : boolean where y1 = f; y2 = f

s : integer where s = 1

P1 ::

2
66666666664

`0: loop forever do2
66666664

`1: noncritical

`2: y1 := t

`3: s := 1

`4: await :y2 _ s = 2

`5: critical

`6: y1 := f

3
77777775

3
77777777775

jj

P2 ::

2
66666666664

m0: loop forever do2
66666664

m1: noncritical

m2: y2 := t

m3: s := 2

m4: await :y1 _ s = 1

m5: critical

m6: y2 := f

3
77777775

3
77777777775

Figure 2: Program pet (Peterson's algorithm for mutual exclusion).

In program pet, the basic mechanism protecting access to the critical sections

(represented by statements `5 and m5), is provided by the boolean variables y1 and

y2. Each process Pi, for i = 1; 2, that is interested in entering its critical section sets

its yi variable to T. On exiting the critical section, the corresponding yi is reset to
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F.

The problem with this approach is that the two processes may arrive at their

waiting positions, `4 and m4 respectively, at about the same time, with both y1 =

y2 = t. If the only criterion for entry to the critical section was that the yi of the

competitor be F, this situation would result in a deadlock (tie).

The variable s is intended for breaking such ties. It may be viewed as a signature,

in the sense that each process that sets its yi variable to T also writes its identity

number in s at the next step taken by the process. Then, if both processes are at

the waiting position, the �rst to enter will be Pi such that s 6= i. For i = 1; 2, let

�� denote the index of the other process. The fact that s 6= i implies that s = ��,

which means that the competitor P�� was the last to assign a value to s. Therefore

Pi should have priority.

We �rst introduce our graphical proof language of veri�cation diagrams , and we

then illustrate the deductive veri�cation of a few properties of program pet. Details

about our speci�cation language can be found in [MP91b]. The deductive methods

used are discussed in more detail in [MP91a] and [MP94b]. A more extensive

explanation of veri�cation diagrams is given in [MP94a].

2.1 Veri�cation Diagrams

In proofs of properties of reactive systems, it is typically necessary to consider several

assertions (state formulas) at the same time and to determine which transitions lead

from one assertion to another. A veri�cation condition f'g�f g is an assertion

stating that, whenever � is taken from a state satisfying ', the resulting state

must satisfy  . It is convenient to visualize these conditions with a diagram that

summarizes the assertions under consideration and the possible transitions between

them.

A veri�cation diagram [MP94a] is a directed labeled graph where:

� Nodes in the graph are labeled by assertions. We will often refer to the node

by the assertion labeling it.

� Edges in the graph represent transitions between assertions. Each edge con-

nects one assertion to another and is labeled by the name of a transition in

the program. We refer to an edge labeled by � as a � -edge.

� One of the nodes may be designated as a terminal node (\goal" node). In

the graphical representation, this node is distinguished by having a boldface

boundary. No edges depart from a terminal node.

Veri�cation diagrams provide a concise representation of sets of veri�cation con-

ditions as follows. For a nonterminal node (labeled by) ' and transition � , let

'1; : : : ; 'k be the nodes reached by � -edges departing from '. We say that'1; : : : ; 'k
are the � -successors of '. The veri�cation condition associated with ' and � is given

by:

7



f'g � f' _ '1 _ � � � _ 'kg:

In other words, there is an implicit � -edge connecting ' to itself. Note that for the

case k = 0, i.e., no � -edges depart from ', the veri�cation condition associated with

' and � is given by:

f'g � f'g:

No veri�cation conditions are associated with terminal nodes.

Since a diagram provides a succinct representation of a large set of veri�cation

conditions, it can often present a useful and illuminating overview of a complex

proof.

A diagram is valid over program P (P-valid) if all the veri�cation conditions

associated with nodes of the diagram are P-state valid.

2.2 Proving Invariance

The mutual exclusion property for program pet is expressed by the following safety

formula:

'ME : 0 :(at `5 ^ at m5):

where at `5 and at m5 are predicates stating that control is at statements `5 and

m5, respectively.

Rule INV

Using deductive methods, the following veri�cation rule, rule INV, can be used to

prove that the state formula p is invariant in every computation of a program P,

where � is the initial condition and T is the set of transitions of the transition

system corresponding to P:

INV For strengthening assertion ' :

S1. �!'

S2. f'g T f'g

S3. '! p

0 p
The rule states that in order to establish the P-validity of the temporal formula

0 p, it su�ces to �nd an assertion ', strengthening p, such that premises S1{S3 are

P-state valid. Premise S1 states that the initial condition � implies '. Premise S2

states that the veri�cation condition f'g � f'g holds for each transition � 2 T , i.e.,

if � is taken from any state satisfying ', the result is a state also satisfying '. If

premises S1 and S2 hold for ', then ' is called an inductive assertion; by induction,

' holds in every state of a computation. By premise S3, it follows that p also holds

in every state of a computation.

8



Note that all the premises of rule INV are state formulas, whereas the conclusion

is a temporal formula. This is typical of the deductive methodology, which applies

veri�cation rules to reduce the proof of temporal formulas to the proof of �rst-order

conditions.

PET: Mutual Exclusion

To prove mutual exclusion for program pet, p is taken to be:

p: :(at `5 ^ at m5):

In this example, as is often the case, veri�cation requires identifying a suitable

strengthening assertion '. To assist in this task, STeP provides built-in mechanisms

for automatically generating low-level invariants and automatically strengthening

proposed invariants suggested by the user.

Low-level invariants (also called \bottom-up invariants") are guaranteed to be

invariants by the way they are generated, so they can be used in establishing the

premises of the above veri�cation rule. The following automatically generated in-

variants are necessary for establishing mutual exclusion for program pet:

�1: at `3::6 ! y1
�2: at m3::6 ! y2

Strengthened invariants (also called \top-down invariants") are obtained by

weakest precondition propagation. Consider, for instance, statement `4. If the

corresponding transition �`4 is never to violate mutual exclusion, it must be the

case that :y2 _ s = 2 is false whenever control is at `4 and m5. After simplifying

with respect to �2, this yields the following strengthened invariant:

'1: at `4 ^ at m5 ! :(s = 2):

Similarly:

'2: at `5 ^ at m4 ! :(s = 1):

Thus, for this example, the proof of mutual exclusion is entirely automatic. First,

STeP identi�es the speci�cation as a safety property and invokes rule INV. Since

p is not inductive, the proof does not succeed. Therefore, bottom-up invariants,

including �1 and �2, are generated. The system again attempts to establish the

invariance of p, and in doing so, generates the strengthened invariant ':

': p ^ '1 ^ '2:

Finally, STeP is able to prove each of the premises of rule INV.

More typically, however, the user must provide direction to the system by sug-

gesting a strengthening assertion '. Even if ' is not immediately inductive, the

system can apply invariant strengthening heuristics to complete the proof.

Invariant generation and strengthening methods are discussed more fully in Sec-

tion 4.
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2.3 Proving Precedence

The property of 1-bounded overtaking for process P1 of program pet may be ex-

pressed by the following \nested waiting-for formula," where the wait-for (\weak

until") operator W is right associative:

'B: at `4 ) (:at m5)W at m5W (:at m5)W at `5

In other words, once process P1 has reached statement `4, process P2 may enter its

critical section m5 at most once before P1 enters its critical section.

Rule WAIT

The following veri�cation rule, rule WAIT, may be used to establish nested waiting-

for formulas for a program P:

WAIT For intermediate assertions 'n; : : : ; '0 :

W1. p !
n_
j=0

'j

W2. f'ig T f
i_

j=0

'jg for i = 1; : : : ; n

W3. 'i! qi for i = 0; : : : ; n

p ) qnW qn�1 � � �q1W q0

This rule states that to establish the P-validity of the nested-for formula, it

su�ces to �nd intermediate assertions 'n; : : : ; '0 such that premises W1{W3 are

P-state valid. Premise W1 states that every state satisfying p also satis�es some 'i,

for some intermediate assertion 'i. By premise W2, every 'i-state, for i = 1; : : : ; n,

is followed by a 'j-state, for j = 0; : : : ; i. It follows that

p ) 'nW 'n�1 � � �'1W '0

holds for every computation of P, and by monotonicity, premise W3 establishes the

desired result.

Wait-for Diagram

We can visualize the proof with a veri�cation diagram, in particular a wait-for

diagram. A wait-for diagram is a weakly acyclic veri�cation diagram with nodes

'n; : : : ; '0, where '0 is a terminal node, satisfying the following requirement: when-

ever node 'i is connected by an edge to node 'j , then i � j. P-valid wait-for dia-

grams can be used to establish the P-validity of nested wait-for formulas, as stated

by the following claim:

Claim 1 (WAIT-FOR) A P-valid wait-for diagram establishes that the formula

10



m_
j=0

'j ) 'm W 'm�1 � � � '1 W '0

is P-valid.

If, in addition, we can establish the P-state validity of the following implications:

p !
m_
j=0

'j and 'i ! qi for i = 0; : : : ; m

then we we can conclude the P-validity of:

p ) qm W qm�1 � � � q1 W q0

PET: 1-Bounded Overtaking

The following intermediate assertions can be used to establish 1-bounded overtaking

for program pet:

'3 : at `4 ^ at m4 ^ s = 1

'2 : at `4 ^ at m5

'1 : at `4 ^ (at m0::3;6 _ (at m4 ^ s = 2))

'0 : at `5

The wait-for diagram of 'B for program PET is given in Figure 3. It presents

useful information that is not found in the straightforward listing of '3, '2, '1, and

'0 above. For instance, consider premise W2 with respect to '3 and transition �m4
,

f'3g �m4
f'3 _ '2 _ '1 _ '0g

stating that:

if �m4
is taken from a state satisfying '3, then the resulting state must

satisfy '3 _ '2 _ '1 _ '0.

However, in the veri�cation diagram of Figure 3, there is a single arrow labeled m4

departing from '3, indicating that

if �m4
is taken from a state satisfying '3, then the resulting state must

satisfy '3 _ '2,

yielding the more precise veri�cation condition:

f'3g �m4
f'3 _ '2g

As another example, premise W2 with respect to '3 and transition �`4 yields

the veri�cation condition:

11



�
�

�
�'3: at `4 ^ at m4 ^ s = 1

m4

?�
�

�
�'2: at `4 ^ at m5

m5

?�
�

�
�'1: at `4 ^

�
at m0::3;6 _ (at m4 ^ s = 2)

�
`4

?�
 	�'0: at `5

Figure 3: Veri�cation diagram for 1-bounded overtaking.

f'3g �`4 f'3 _ '2 _ '1 _ '0g

whereas the veri�cation diagram yields:

f'3g �`4 f'3g

Both conditions can be established automatically, since '3 and the bottom-up in-

variant �2: at m3::6! y2 imply that �`4 cannot be taken from a '3-state, but the

stronger condition can be veri�ed more e�ciently. For more complicated proofs,

this e�ciency is an important advantage. Furthermore, this gain is obtained at

almost no cost, since it is in any case intuitive for the user to connect '3 to '2 by

only the single arrow m4.

In this case, for n = 3 and the number of transitions jT j = 16, premise W2

yields 48 veri�cation conditions. Once the user supplies the intermediate assertions

'0; : : : ; '3, either textually or graphically, all 48 veri�cation conditions are proved

automatically, as well as premises W1 and W3. Again, as pointed out above, the

automatically generated bottom-up invariants are used for these proofs.

2.4 Proving Response

The 1-bounded overtaking property for program pet does not state that P1 is guar-

anteed eventual access to its critical section. The accessibility property is expressed

as the following response formula:

'R: at `2 ) 1 at `5

12



Rule CHAIN

The following veri�cation rule, rule CHAIN, can be used to prove simple response

formulas like 'R, i.e., formulas of the form

p ) 1 q

where p and q are state formulas.

CHAIN For intermediate assertions 'n; : : : ; '1 and

helpful transitions �n; : : : ; �1 :

R1. p ! q _
n_
j=1

'j

R2. f'ig T fq _
_
j�i

'jg for i = 1; : : : ; n

R3. f'ig �i fq _
_
j<i

'jg for i = 1; : : : ; n

R4. 'i!En (�i) for i = 1; : : : ; n

p ) 1 q

The rule states that to establish the P-validity of response formulas of the above

form, it su�ces to identify a sequence of intermediate assertions 'n; : : : ; '1, and a

set of just transitions �n; : : : ; �1 such that the premises R1{R4 are P-state valid.

Premise R1 states that p implies q (in which case the proof is �nished) or one of

the intermediate assertions 'i. Premise R2 requires that taking any transition from

a 'i-position results in a next position satisfying 'j , for some j � i. Premise R3

requires that taking the just (\helpful") transition �i from a 'i-position results in a

next position which satis�es 'j for j < i. Premise R4 claims that the just transition

�i is enabled at every 'i-position.

Response Diagram

Like a proof of precedence properties, we can visualize the proof of such response

properties with a veri�cation diagram, in this case a response diagram. A response

diagram is a veri�cation diagram with nodes 'n; : : : ; '0, and two kinds of edges

(distinguished by single and double lines) that satis�es the following requirements:

� If a single edge connects node 'i to node 'j , then i � j.

� If a double edge connects node 'i to node 'j , then i > j.

� Every node 'i, i > 0, has a double edge departing from it. This identi�es

the transition labeling such an edge as helpful for assertion 'i. All helpful

transitions must be just.
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� No transition can label both a single and a double edge departing from the

same node.

� '0 is a terminal node.

The �rst two requirements ensure that the diagram is weakly acyclic, i.e., whenever

node 'i is connected by an edge (single or double) to node 'j , j � i. The stronger

second requirement ensures that the subgraph based on the double edges is acyclic,

forbidding self-connections by double edges. The third requirement demands that

every nonterminal assertion (i.e., 'i for i > 0) has at least one helpful transition

associated with it.

The veri�cation condition associated with ' and � for the case that � labels only

single edges from ' is as de�ned in Section 2.1. If � labels any double edges from ',

where '1; : : : ; 'k, k > 0, are the � -successors of ', then the veri�cation condition

associated with ' and � is as follows:

f'g � f'1 _ � � � _ 'kg

Transition � , identi�ed as helpful, is required to lead away from '. This, with the

requirement of acyclicity, implies that when this transition is taken from a '-state,

the computation gets closer to the goal '0.

Furthermore if � labels a double edge departing from ', we require:

' ! En (�)

That is, a transition helpful for ' is enabled on all '-states. We refer to this

requirement as the enabling requirement.

A response diagram is said to be valid over program P (P-valid) if all the veri�-

cation conditions and enabling requirements are P-state valid for every nonterminal

node 'i, i > 0, and every transition � .

The consequences of having a P-valid response diagram are stated in the follow-

ing claim.

Claim 2 (RESPONSE) A P-valid response diagram establishes that the response

formula

m_
j=0

'j ) 1 '0

is P-valid.

If, in addition, we can establish the P-state validity of the following implications:

p !
m_
j=0

'j and '0 ! q

then we can conclude the P-validity of:

p ) 1 q

14
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�
�'1: s = 2

`4

�

�

��

�at `4

�
 	�'0: at `5

Figure 4: Veri�cation diagram for accessibility.
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PET: Accessibility

Figure 4 presents the response diagram establishing 'R. The diagram is hierarchical.

In particular, the nodes labeled '6, '5, and '4 are contained in the compound node

labeled s = 1, which itself is contained with nodes '3, '2, and '1 in the compound

node labeled at `4. These encapsulations were inspired by Statecharts [Har87]. A

hierarchical diagram may be interpreted as follows:

� The label of a compound node is implicitly a conjunct in the label of each of

its subnodes.

� Each arrow from a compound node represents an arrow from each of its sub-

nodes, with the same label and destination node.

� Each arrow to a compound node represents an arrow to each of its subnodes,

with the same label and source node.

Thus, the diagram in Figure 4 may be presented explicitly by adding an arrow

labeled `3 from '7 to each node '6; : : : ; '1 (deleting the original arrow from '7),

adding s = 1 as a conjunct in the label of each node '6; : : : ; '4 (deleting the

compound node labeled s = 1), and adding at `4 as a conjunct in the label of each

node '6; : : : ; '1 (deleting the compound node labeled at `4).

The resulting diagram satis�es the requirements of the response diagram, i.e., it

is acyclic, it has a goal node '0 (with no departing arrows), and there is a double

arrow from each node, excluding the goal node, along a path to the goal node.

Each double arrow represents a claim of single-step progress. For instance, the

double arrow from '3 to '0 labeled `4 indicates that, if '3 holds \long enough,"

then eventually statement `4 will be executed and will lead to a '0-state. Note

that, according to the diagram, it is also possible for m2 to be taken from a state

satisfying '3, leading to a '2-state.

Single-step progress is assured by requiring that, for each helpful transition �

labeling a double arrow from a node labeled ', it must be the case that � is just,

i.e., has an associated weak fairness requirement, and that � is enabled on every

state satisfying '. An \unhelpful" transition such as m2 from '3 is indicated by a

single arrow.

Given the diagram in Figure 4, the system is able to check all the associated

veri�cation conditions and establish the desired accessibility property for program

pet.

3 Model Checking

Generally speaking, the model checking problem is to determine whether a given

logical formula can be satis�ed by some model by exploring the state space of the

system. In STeP the logical formula is taken to be the program speci�cation,
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expressed in (linear-time) temporal logic, and a model is some computation of the

program.

STeP provides an e�cient implementation of the model checking algorithm de-

scribed in [MP94b] and originally proposed in [VW86]. We only sketch the algorithm

here.

Given a program P and a linear-time temporal formula ', the algorithm de-

termines whether there exists a computation of P that satis�es :'. The approach

is based on automata: the program is represented as a transition graph, which is

viewed as a generator AP of in�nite words over the program's state space, and ' is

viewed as an acceptor A' of in�nite words.

There are several types of automata for in�nite words. In our algorithm we

use Streett automata [Str82]. A Streett automaton A consists of the following

components:

� a �nite set of nodes N ,

� an initial node n0,

� a �nite set of edges E, and

� an acceptance list L = (R1; P1); : : : ; (Rm; Pm). Ri � N are called recurrent

nodes and Pi � N are called persistent nodes .

An in�nite sequence of automaton nodes, n0; n1; : : :, is accepted by A if

� n0 is the initial node of A, and

� for every i = 0; 1; : : :, there exists an edge e 2 E connecting ni to ni+1, and

� for the set of nodes, Ninf, that appear in�nitely often, for each i = 1; : : : ; m,

either Ninf \ Ri 6= ;, or Ninf � Pi.

To represent the fairness requirements of P , recurrent edges are added to the

Streett acceptance list [HSB93]. The acceptance list of this modi�ed Streett au-

tomaton (also called Edge/Node Streett automaton) is thus a list of triplets, L =

(R1; P1; E1); : : : ; (Rm; Pm; Em), where Ri and Pi are as before, and Ei � E is a set

of recurrent edges. The acceptance condition of an Edge/Node Streett automaton

is the same as above except for the third condition, which becomes

� at least one of the following holds for each i = 1; : : : ; m:

Ninf \Ri 6= ; or Ninf � Pi; or Einf � Ei;

where Ninf is, as before, the set of nodes that appear in�nitely often and

Einf is the set of edges that appear in�nitely often.
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When translating a fair transition system into an Edge/Node Streett automaton,

each fair transition � contributes one triplet (R� ; P� ; E�) to the Streett acceptance

list. E� contains all edges labeled by � for both compassionate and just transitions;

for a just (weakly fair) transition, P� = ; and R� contains all nodes labeled by

an assertion on which � is disabled, whereas for a compassionate (strongly fair)

transition these are reversed: R� = ; and P� contains all nodes labeled by an

assertion on which � is disabled.

In this representation, showing that P satis�es ' reduces to showing that

L(AP) � L(A')

where L(AP) is the language generated by AP (i.e., the set of all computations of

P), and L(A') is the language accepted by A' (i.e., the set of all sequences that

satisfy '). The set inclusion given above can be rewritten as

L(AP) \ L(A') = ;

or alternatively:

L(AP) \ L(A:') = ;

This can also be written as

L(BP;:') = ;

where BP;:' represents the product automaton, also called the behavior automaton,

of AP and A:'. The nodes of BP;:' are labeled by pairs (s; n), where s is an

element of the state space of P and n is a node of A:', and the edges are labeled

by transitions of P. The acceptance list of BP;:' is the union of the acceptance list

of A:' and that of AP .

In the context of fair transition systems, the automaton BP;:' is not empty i�

it contains a ful�lling subgraph, i.e., a subgraph that satis�es the Streett acceptance

criteria which result from the ful�llment requirements associated with formulas

such as 1 p and the fairness requirements of P. A subgraph S satis�es the Streett

acceptance criteria if (1) it is a strongly connected component, and (2) either S \

Ri 6= ;, S � Pi, or there exists e 2 Ei such that e connects two nodes in S, for

every i = 1; : : : ; m.

Following this approach, the algorithm is given as follows. Given a (linear-time)

temporal formula ', the Streett automaton A:' is constructed using the algorithm

presented in [KMMP93]. Starting from A:' and the transition graph of P , BP;:'
is incrementally constructed. The algorithm adds a maximal strongly connected

component is found, and it then checks whether this component has a ful�lling

subgraph. The algorithm terminates when it �nds a ful�lling subgraph, or when

it cannot add any new nodes. In the �rst case the corresponding computation is

returned as a counter example. In the latter case the P-validity of ' has been

established.

To illustrate the algorithm we apply it to program inf and the P-valid property:
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Figure 5: Automaton for (x > 0)W (y = 2).

' : :((x > 0)W (y = 2))

inf has the following transition relations:

�1 : 0 � x < 3 ^ x0 = x+ 1 ^ y0 = y

�2 : 0 < y < 3 ^ y0 = y + 1 ^ x0 = x

�3 : x0 = 0 ^ y0 = 1

�I : x0 = x ^ y0 = y (idling transition)

inf's justice set is J = f�1; �2; �3g.

The automaton for :' is shown in Figure 5. Part of inf's (in�nite) transition

graph is shown in Figure 6; in this �gure, ha; bi stands for the state where x = a; y =

b. The algorithm constructs the behavior automaton shown in Figure 7, which has

three strongly connected components: (s0; n1), (s1; n1), and (s2; n1). None of these

are ful�lling: all of them fail to satisfy the acceptance triplet originating from

transition �3 (R3 = ;, P3 = ;, E3 = fedge labeled by �3g). Intuitively, none of

these subgraphs is fair with respect to �3: �3 is enabled in�nitely often but never

taken. Therefore no computation of inf satis�es (x > 0) W (y = 2), establishing

the P-validity of ' : :((x > 0)W (y = 2)).

This example illustrates how the model checker is able to verify a property of

an in�nite-state program.

4 Invariant Generation

A large class of invariants can be generated automatically by STeP to simplify

the veri�cation process. Each of the invariant generation techniques can be loosely

classi�ed as bottom-up or top-down. In the bottom-up approach only the program

is considered: inductive assertions are deduced from the program structure. The
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Figure 6: Part of the state transition graph.
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Figure 7: Behavior automaton.
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top-down approach is goal-directed: it considers the property that has to be proven

and strengthens some of its parts to produce an inductive assertion.

4.1 Bottom Up: Local Invariants

Local invariants are bottom-up invariants which relate program control predicates to

assertions involving data variables. The system uses several heuristics for generating

local invariants. An important concept in this context is ownership of variables: a

variable y is owned by a statement ` if no transition parallel to ` modi�es y.

Rea�rmed Invariants

The simplest type of bottom-up inductive assertions are those which are guaranteed

to hold after execution of each transition that interferes with them, without any

assumption about the state before the execution.

For example, a rea�rmed invariant can be deduced in the case where a transition

sets a variable y to a constant expression c:

`1: y := c `2:

If y is owned by `2 we may conclude the inductiveness of

at `2 ! y = c

i.e., when control is at `2 the value of y is c. Similarly, in the following example, if

y is owned by `2, and c1 and c2 are constant expressions, then from

`1: if c then y := c1 else y := c2 `2:

we can conclude that

at `2 ! y = c1 _ y = c2

is an inductive invariant.

Another example of a rea�rmed invariant is if a location ` in the program is

reachable only as a result of a test �. In such a case we know that when the location

is �rst entered the test is valid. If all variables appearing in the test are owned by

` we can conclude

at ` ! �:

For example, if all variables in c are owned by `1, then from

`0: await c `1:

we may directly infer the invariant:

at `1 ! c
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Similarly from

`0: [while c do S] `1:

we can infer

at `1 ! :c

if all variables in c are owned by `1. Similar invariants can be generated for when

statements and conditional statements.

If the possible values of a data variable are known for every program location.

one can reverse the implications. For example, if it is known that

at `0 ! y = c1
at `1;2 ! y = c2 _ y = c3
at `3 ! y = c3

where `0, `1, `2, and `3 cover the range of possible program locations, then, if c1, c2
and c3 are distinct, one may infer:

y = c1 ! at `0
y = c2 ! at `1;2
y = c3 ! at `1::3

Range Invariants

Even if it is not possible to determine the exact value of a data variable at a

given location, it is sometimes possible to determine the range from which the

data variable takes its values, if that variable is modi�ed only in a restricted and

predictable way. Range invariants are of the form:

at ` ! l � y � u

For instance, for the program res-sem, shown in Figure 8, STeP generates the

range invariant

y � 0:

Invariants of Parameterized Programs

Parameterized programs often contain array variables x such that no single state-

ment or process owns x. However if x[i] is modi�ed only by P [i], invariants like

those described above can still be generated. Consider, for example, program or-

der, shown in Figure 9. It grants each process access to its critical section in

the order of its process sequence number. For this program STeP generates the

following local invariants:

�1: 8i : [1::N ]:
�
at `5[i]  ! y[i]

�
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local M; y : integer where y = 1

`0:
M

jj
i=1

P [i] ::

2
66666664

`1: loop forever do2
6664
`2: noncritical

`3: request y

`4: critical

`5: release y

3
7775

`6:

3
77777775

`7:

Figure 8: Program res-sem (resource allocation by semaphores).

�2: 8i : [1::N ]:
�
at `3[i] �! a[i] � i

�

�3: 8i : [1::N ]:
�
at `2[i] �! y

�
a[i]
��

in N : integer where N > 0

local a : array [1::N ] of integer where 8i : [1::N ]: a[i] = 1

y : array [1::N ] of boolean where 8i : [1::N ]: :y[i]

N

jj
i=1

P [i] ::

2
666666664

`0: while a[i] < i do"
`1: await y[a[i]]

`2: a[i] := a[i] + 1

#

`3: critical

`4: y[i] := t

`5:

3
777777775

Figure 9: Program order

The local invariants �2 and �3 are examples of rea�rmed invariants, and �1
is the conjunction of a rea�rmed invariant and a reverse implication. Using these

invariants, the proof of mutual exclusion for program order, expressed by

8i; j : i < j : [1::N ]: 0 : �at `3[i] ^ at `3[j]
�

is automatic.

23



4.2 Bottom Up: Linear Invariants

A linear invariant is a linear arithmetic relation involving program variables and

program control states. A typical linear invariant, for instance, is given by:

at `0::2 + y1 = 1

where at `0::2 stands for at `0 _ at `1 _ at `2. Note that boolean expressions are

converted to integers by taking T to be 1 and F to be 0.

Linear invariants can also be generated for parameterized programs, where each

control predicate can be generalized to represent the number of processes at that

control point, e.g., N(at `0::2) rather than at `0::2.

Let P be a program, represented as a transition system with set of transitions

T and initial condition �. A set of variables y1; : : : ; ym is linear if the e�ect of each

transition � 2 T can be expressed as

y0i = c�i +
mX
k=1

c�ik � yk

where c�i and c�ik are constant expressions, i.e., expressions whose variables are not

modi�ed by any transition of P . Thus, each variable yi is modi�ed only by a linear

combination of other linear variables and constants.

Given a set of linear variables y1; : : : ; ym and control locations `1; : : : ; `n, a linear

invariant is an equation of the form:

�:
mX
i=1

ai � yi +
nX
j=1

bj �N(at `j) = K

where ai and bj are constant expressions and K is a constant. The values of ai and

bj are determined by solving the system of linear equations that results from the

requirements for an inductive invariant, i.e.,

� � is implied by the initial condition �, which translates into

mX
i=1

ai � y
0

i +
nX
j=1

bj �N(at `j
0) = K

where y0i denotes the initial values of yi and N(at `j
0) denotes the initial

number of processes at `j , and

� � is preserved by each transition � 2 T , which, for each � 2 T translates into

mX
i=1

ai ��(�; yi) +
nX
j=1

bj ��(�;N(at `j)) = 0

where �(�; yi) is the increment in yi due to � and �(�;N(at `j)) denotes the

increase or decrease in the number of processes at `j due to � .
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STeP constructs invariants based on a maximal set of linearly independent solu-

tions (if the resulting system of linear equations is not independent, there is no

unique solution). As an example, consider program res-sem, which was presented

in Figure 8. The only linear variable is y, so linear invariants for res-sem are of

the form:2

�R: a � y +
7X

j=0

bj �N(at `j) = K

Imposing the invariance requirements results in the following system of equations:

� : a+ b0 = K

�0 : �b0 +M � b1 = 0

�T1 : �b1 + b2 = 0

�F1 : �b1 + b6 = 0

�2 : �b2 + b3 = 0

�3 : �a � b3 + b4 = 0

�4 : �b4 + b5 = 0

�5 : a� b5 + b1 = 0

�6 : �M � b6 + b7 = 0

from which STeP constructs, among others, the following invariant:

y +N(at `4) +N(at `5) = 1:

In conjunction with the local invariant y � 0, this is su�cient for establishing

mutual exclusion for program res-sem.

4.3 Top-down: Strengthening

Top-down invariants, i.e., strengthened invariants, are generated in STeP by in-

variant propagation. Suppose STeP is given a proposed invariant  to be proven.

The system �rst generates bottom-up invariants and checks whether  is induc-

tive relative to the conjunction of all bottom-up invariants. If this is not the case,

i.e.,  cannot be proven, the next step is to strengthen  based on the veri�cation

conditions that could not be proven.

Suppose that  is a proposed invariant. Given a transition � for which the

veri�cation condition

f g � f g

cannot be proven, the system automatically computes the weakest precondition

wpc ( ; �) of  with respect to � , i.e., the weakest assertion 
 that guarantees ' is

true when � is taken from a state that satis�es 
. The strengthened invariant is

then taken to be:
2Strictly speaking, M is also a linear variable, but since it is recognized to be a constant

expression and, as such, does not contribute anything useful to a linear invariant, it is excluded.
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 ^ wpc ( ; �)

Consider, for example, the proof of mutual exclusion, expressed by the invariant

 : :(at `5 ^ at m5)

for program pet, presented in Section 2.  is not inductive, since

f g � f g

is not valid for � = `4. STeP automatically computes the weakest precondition of

`4, yielding

wpc (`4;  ): at `4 ^ (:y2 _ s = 2) ! :(at `5
0| {z }

T

^ at m5
0| {z }

at m5

)

which simpli�es to

 1: at `4 ^ at m5 ! y2 ^ s 6= 2

Similarly for m4:

 2: at `5 ^ at m4 ! y1 ^ s 6= 1

The conjunction of the proposed invariant and the weakest preconditions,

':  ^  1 ^  2

is inductive and all veri�cation conditions are established automatically.

To summarize invariant generation, consider program pet once more. In order

to prove mutual exclusion

'ME: :(at `5 ^ at m5)

STeP automatically generates the following invariants:

range 1 � s � 2

local

(
y1 $ at `3::6
y2 $ at m3::6

strengthening

(
at `4 ^ at m5 ! y2 ^ s 6= 2

at `5 ^ at m4 ! y1 ^ s 6= 1

and, using these invariants, automatically establishes all veri�cation conditions.
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5 Theorem-proving support

E�ective veri�cation requires e�ective theorem-proving, in order to free the user

from the many tedious low-level details of a formal proof. In STeP, most of the

veri�cation conditions that need to be proved for typical systems are trivial. How-

ever, automating the process of proving them requires the integration of a large

variety of tools, which we now brie
y describe.

5.1 Simpli�cation

Most of the automated theorem-proving in STeP is done by a very general, but

e�cient, rewriting mechanism, which we call the simpli�er . It can be best described

as a form of contextual rewriting (a generalization of conditional rewriting, see

[Zha93]) that incorporates a number of specialized features that we have found

useful for dealing with the formulas that commonly occur in veri�cation conditions.

Thus, the contextual rewriting includes:

� A form of non-clausal propositional simpli�cation that can, for instance, sim-

plify a sentence of the form

a ^ b ^ (d _ c) ! (a ^ d)_ (c^ f)

to

a ^ b ^ c ! d_ f

� Opportunistic reasoning about the interaction of equalities and quanti�cation.

For example,

(8x)[x = 1 ^ p(x) ! x = 2 _ q(x)]

simpli�es to:

p(1) ! q(1)

via special strategies for quanti�ers.

� Rewrite rules (conditional and unconditional) for interpreted function sym-

bols. These are useful for simplifying terms involving lists and arrays; for

instance, rewriting

contents(assign(Array1; y; z); y)

to z.

Furthermore, the simpli�er relies heavily on congruence closure [NO80] for rea-

soning about equality and uninterpreted function symbols. Congruence closure is

also tightly integrated with a decision procedure for inequalities over totally ordered
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domains. The combined decision procedure works in polynomial time in most prac-

tical cases and is an attractive alternative to the more general, but more expensive

Sup-Inf procedure described below. As a result, for example,

f(x) = y ^ y < z ^ z � x ! f(x) < x

simpli�es to true.

Integrating all of the above features into a single rewriting procedure results in

an extremely e�ective tool. For instance, it will promptly rewrite

(f(x) � x) ^ (g(y)> y) ^

0
B@ f(x) > g(y)

_

g(x) < f(y)

1
CA ! (x 6= y)

to true.

5.2 Decision Procedures

By decision procedure we mean an algorithm that can decide the validity or satis�a-

bility of a class of formulas in a given theory, and always terminates with a positive

or negative answer. Decision procedures for a given theory may vary depending

on their degree of completeness (i.e., which formulas they can decide) and their

complexity, which are traded o� against each other.

Two decision procedures for Presburger arithmetic are available3 . The �rst is

based on the Sup-Inf method [Ble75] which e�ciently decides a subset of the theory;

the other is an implementation of Cooper's algorithm [Coo72], which is a decision

procedure for the entire theory.

The Sup-Inf method is complete for rational quanti�er-free Presburger arith-

metic, and can be extended to handle uninterpreted function symbols [Sho79]. Al-

though it is incomplete if variables are required to be integer-valued and its com-

plexity is exponential, the Sup-Inf method often works well in practice. With it one

can decide, for example, that the formula

x � (y + z) ^ (x � z) ^ (y = 0) ! f(x) = f(z)

should simplify to true. Cooper's algorithm can decide the full Presburger theory

over the integers (without function symbols), but is of super-exponential complexity.

It can establish the validity of sentences such as

8x 8y 9z ((x+ z) > y):

Despite the fact that Sup-Inf is incomplete for the integer fragment of Presburger

arithmetic, we have found that STeP has been able to prove most of the veri�cation

conditions that arise in practice using only Sup-Inf and the simpli�er.

3Presburger formulas are �rst-order formulas over integers, integer variables, addition and <.
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For deciding the validity of propositional formulas with small clausal forms,

an e�cient implementation of the classic Davis-Putnam procedure ([ZS94]) can be

used. A decision procedure to check the validity of propositional temporal logic

formulas is also provided [KMMP93].

We should note that while the problem of e�ectively and e�ciently integrating

di�erent decision procedures has commanded much attention over the years (e.g.,

[NO79, BM88b]), we have not yet implemented the more general methods. We

consider this to be a promising direction for future research and implementation.

5.3 First-order Prover

As pointed out in Section 5.1, the contextual rewriting mechanism can perform

simple reasoning about quanti�ers and equality. However, more complex reasoning

involving uni�cation is often needed to prove the validity of certain �rst-order for-

mulas that arise in veri�cation. Such theorems are seldom \deep," and can often

be proved by applying a few mechanical inference rules with very little heuristic

guidance.

A theorem prover based on non-clausal resolution and paramodulation [MW93]

is available as a semi-decision procedure for the full �rst-order predicate calculus

with equality, automated in a style similar to the SNARK [SWL+94] and Otter

[McC94] provers: the search is agenda-based, term-indexing is used for e�cient

demodulation and subsumption, and paramodulation is restricted by a recursive

path ordering on terms. This prover also uses the basic simpli�cation procedures

described above. Previously proven invariants can be used as lemmas by this prover.

5.4 Interactive Prover

Because of their worst-case complexity, the more powerful decision procedures need

to be applied in a controlled fashion. Consequently, they are not included in the

main simpli�er, which is automatically invoked quite often, and must therefore be

fast. Instead they are left for the user to invoke interactively.

In addition to controlling the application of decision procedures, the interaction

also provides tools for proving the validity of formulas in the undecidable settings

of classical and temporal �rst-order logic.

This interaction is managed through a Gentzen-style �rst-order prover (see e.g.,

[Gal87]), which is guided by the user. Subgoals in a proof can be established via

simpli�cation, decision procedures, automatic propositional temporal proof-search,

or resolution. The overall proof search is directed by the user, who decides which

inference rules and decision procedures are applied to any given goal.

We also support a Gentzen-style �rst-order temporal prover, which can verify

propositional temporal logic formulas automatically; traditional Gentzen-style proof

29



rules are supported, as well as temporal rules such as:

(` 0 ) � ` �; ' ';� ` �; 2 0 '
� ` �; 0 ' (0 `) �; '; 2 0 ' ` �

�; 0 ' ` �
Proof search proceeds in a bottom-up manner: from the goal below the line, the

search proceeds to the new subgoals above the line.

6 Examples

6.1 N-Process Dining Philosophers Program

Dijkstra's dining philosophers problem describes N philosophers whose only activ-

ities in life are eating and thinking. The philosophers eat only rice, and for this

purpose need two chopsticks each. Unfortunately, their round dining table is only

equipped with N chopsticks. This excludes adjacent philosophers from eating si-

multaneously.

A solution to the dining philosophers problem is given in Figure 10. In program

dine, chopsticks are acquired via the binary semaphore variables c[1]; : : : ; c[N ], and

deadlock (the possibility that every philosopher picks up his left chopstick at the

same time) is prevented by the semaphore variable r, having initial value N � 1.

One may interpret r as a door between the library and the dining hall, only allowing

at most N � 1 philosophers into the dining hall.

in N : integer where N � 2

local c : array [1::N ] of integer where 8i : [1::N ]: c[i] = 1

r : integer where r = N � 1

N

jj
i=1

P [i] ::

2
666666666666664

`0: loop forever do2
6666666666664

`1: noncritical

`2: request r

`3: request c[i]

`4: request c[(imodN) + 1]

`5: critical

`6: release c[i]

`7: release c[(imodN) + 1]

`8: release r

3
7777777777775

3
777777777777775

Figure 10: Program dine (Dining Philosophers)

Mutual exclusion, stated as

0 :(at `5[i] ^ at `5[(imodN) + 1]);
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follows from the invariants:

�1: c[i] � 0

�2: at `5::7[i] + at `4::6[(imodN) + 1] + c[(imodN) + 1] = 1

The invariant �1 is generated as a bottom-up invariant, while �2 is generated by

the strengthening heuristics. Twelve veri�cation conditions need to be proven to

establish the inductiveness of �2, all of which are proven automatically.

6.2 Szymanski's N-Process Mutual Exclusion Algorithm

The system has also been applied to prove mutual exclusion for Szymanski's mu-

tual exclusion algorithm [Szy88], which is a symmetric parameterized program that

provides mutual exclusion for an arbitrary number of processes. In [MP90] and

[MP91c], several temporal proof techniques were applied to prove some properties

of this program. The safety property, mutual exclusion, was also formally veri�ed

in [NT91] using the Boyer-Moore prover [BM88a]. We discuss here a more recent

version [SV94] of Szymanski's algorithm. We actually veri�ed a slightly modi�ed

program from the one in the prepublished version of [SV94]. Our version is written

in spl and corrected to avoid deadlock.

Szymanski's mutual exclusion algorithm is available in two versions. The short-

est, and most abstract, is the atomic version, which allows quanti�cation over pa-

rameterized variables in test statements; these tests are treated as atomic constructs.

The more re�ned molecular version replaces tests that involve quanti�ed formulas

with more primitive program constructs. The two versions are presented in Fig-

ures 11 and 12, respectively.

The atomic version

The atomic version of Szymanski's mutual exclusion algorithm is shown in Figure 11,

which identi�es three parts: the doorway , the waiting room and the inner sanctum.

The variables a, s and w may be given the following interpretation: a[i], s[i] and w[i]

indicate whether process i has requested access to the critical section, has entered

through the doorway and is not in the waiting room, or is in the waiting room,

respectively. The quanti�ed tests in `3, `5, `7, `10 and `11, which are considered

atomic, can be seen as gates between the di�erent stages. Processes can only pass

`3 if there are no processes in the doorway or in the inner sanctum. However, as

long as processes are waiting at `3, all processes that enter are redirected to the

waiting room, opening `3 again. The last process that passes through `3 locks `3
behind it and then bypasses the waiting room, thereby opening the gate `7 such that

the waiting processes can come out of the waiting room. At this point `3 remains

locked until all processes inside the doorway have passed the critical section. Gate

`10 is opened when all processes have left the waiting room. Gate `11 allows the
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processes that are inside the doorway access to the critical section, one by one, and

in order of process number.

in N : integer where N � 1

local a : array [1::N ] of boolean where 8i : [1::N ]::a[i]

s : array [1::N ] of boolean where 8i : [1::N ]::s[i]

w : array [1::N ] of boolean where 8i : [1::N ]::w[i]

N

jj
i=1

P [i] ::

2
666666666666666666666666666666664

`0: loop forever do2
6666666666666666666666666666664

`1: noncritical

`2: a[i] := T

`3: await 8j : [1::N ]: :s[j]

||||| doorway ||||

`4: (w[i]; s[i]) := (t;t)

|||| waiting room |||

`5: if 9j : [1::N ]: (a[j]^ :w[j]) then2
64`6: s[i] := f

`7: await 9j : [1::N ]: (s[j]^ :w[j])

`8: s[i] := t

3
75

|||| inner sanctum |||

`9: w[i] := f

`10: await 8j : [1::N ]: :w[j]

`11: await 8j : [1::(i� 1)]: :s[j]

`12: critical

`13: (s[i]; a[i]) := (f; f)

3
7777777777777777777777777777775

3
777777777777777777777777777777775

Figure 11: Program Szy-a (Szymanski's algorithm: atomic version).

This procedure is re
ected in the following four invariants,

A0 : at `8::13[i] ! :at `4[k]

A1 : at `8[i] ! 9k : [1::N ]: at `10[k]

A2 : at `11::13[i] ! :at `4::9[k]

A3 : at `12;13[i] ^ k < i ! :at `4::13[k]

which establish mutual exclusion. These invariants may be interpreted as follows:

� A0: once a process i has entered the inner sanctum, the doorway is locked,

i.e., no process k may be at `4.
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� A1: if a process is about to leave the waiting room, there is already a process

k in the beginning of the inner sanctum.

� A2: once a process is in the latter part of the inner sanctum, there is no

process k in the waiting room or in the doorway.

� A3: if a process is in the critical section, there is no other process with a

smaller index in the doorway, waiting room or inner sanctum.

The inductive invariant A3 is established using the conjunction of A0, A1, and A2,

where A3 implies mutual exclusion:

0 (at `12[i]^ at `12[j] ! i = j)

Bottom-up invariants play a crucial role in establishing the auxiliary invariants.

For example, the system generates the local invariants

at `5;6;9::13[i] $ s[i]

at `3::13[i] $ a[i]

at `5::9[i] $ w[i]

which are used to establish A0; A1; A2 and A3. Of the 69 required veri�cation

conditions, 54 were established automatically. The remainder required short sessions

using our interactive prover.

The molecular version

Statements such as

await 9j : [1::N ]: (s[j]^ :w[j])

involve quanti�ers over every process and are not usually available as atomic prim-

itives. Therefore, we must re�ne the quanti�ers to available programming language

constructs. Typically, statements like the one above can be re�ned into loops, e.g.:

j := 1

while :s[j]_ w[j] do

j := (jmodN) + 1

and similarly for universal quanti�ers. The re�ned program is shown in Figure 12.

Along with the re�nement of the program, we must also re�ne the invariants

we expect to hold. The invariants A0; A1; A2 and A3 from the atomic case are thus

re�ned into:
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in N : integer where N � 1

local a : array [1::N ] of boolean where 8i : [1::N ]: :a[i]

s : array [1::N ] of boolean where 8i : [1::N ]: :s[i]

w : array [1::N ] of boolean where 8i : [1::N ]: :w[i]

N

jj
i=1

P [i] ::

2
6666666666666666666666666666666666666666666666666666666664

`0: loop forever do2
66666666666666666666666666666666666666666666666666666664

local j : integer

`1: noncritical

`2: (a[i]; j) := (t; 1)

`3: while j � N do

`4: when :s[j] do

`5: j := j + 1

||| doorway ||||

`6: (w[i]; s[i]; j) := (t;t; 1)

||| waiting room |||

`7: while j � N do2
66666664

`8: if a[j]^ :w[j] then2
6664
`9: s[i] := F

`10: while :s[j] _ w[j] do

`11: j := (jmodN) + 1

`12: (j; s[i]) := (N + 1;t)

3
7775

else `13: j := j + 1

3
77777775

||| inner sanctum |||

`14: (w[i]; j) := (F; 1)

`15: while j � N do

`16: when :w[j] do

`17: j := j + 1

`18: j := 1

`19: while j < i do

`20: when :s[j] do

`21: j := j + 1

`22: critical

`23: (s[i]; a[i]) := (f; f)

3
77777777777777777777777777777777777777777777777777777775

3
7777777777777777777777777777777777777777777777777777777775

Figure 12: Program Szy-m (Szymanski's algorithm: molecular version).
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M0 :

0
B@ at `14::23[i]

_ at `7;8[i]^ j[i] > k

_ at `13[i]^ j[i] � k

1
CA !

9r : [1::N ]:

0
BBB@

(r = i _ at `14::23[r])

^ (at `3;4[k]! j[k] � r)

^ (at `5[k]! j[k] < r)

^ :at `6[k]

1
CCCA

M1 : at `12[i] ! 9k : [1::N ]:

 
at `15;16[k]^ j[k] � i

_ at `17[k]^ j[k] < i

!

M2 :

0
B@ at `18::23[i]

_ at `15;16[i]^ j[i] > k

_ at `16[i]^ j[i]� k

1
CA ! :at `7::14[k]

M3 : k < i ^

0
B@ at `22;23[i]

_ at `19;20[i]^ j[i] > k

_ at `21[i]^ j[i] � k

1
CA ! :at `7::23[k]

The local variable j is represented as an array indexed over the parameterized

processes. The invariantM3, like A3, implies mutual exclusion at the critical section.

Veri�cation of mutual exclusion for the molecular version required proving 129

veri�cation conditions, 99 of which were established automatically by the simpli�er.

The rest were established using the interactive prover.

The re�nement of the invariants of the atomic algorithm into the invariants of

the molecular algorithm was nontrivial. The most di�cult part was re�ning A0

into M0. The interactive prover proved to be useful as a design tool in this case.

When an incorrect invariant was presented to the interactive prover, the invalid

veri�cation conditions often gave valuable insight into how to correct the erroneous

program assertion.

6.3 Distributed N-way Arbiter Circuit

As a �nal example, we consider the high-level speci�cation of a distributed N -way

arbiter circuit arb, originally proposed by Martin [Mar85] and studied in [Dil88].

The proposed parametrized circuit manages mutual exclusion between N users

having access to a shared resource. The circuit is composed of N arbiter cells
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Figure 13: Distributed N -way arbiter circuit arb.

connected in a circular pattern. Each user is connected to a cell of the arbiter, and

there is a single token that circulates among the cells: whenever a cell has the token,

the corresponding user can be granted access to the shared resource.

A cell can receive requests both from the user and from the cell to the right. If

it has the token and receives a request from the user, the cell destroys the token

and grants access to the user; the token reappears when the user releases the shared

resource. If a cell has the token and receives a request from the cell to the right, it

passes the token to the requesting cell. If both requests occur at the same time, the

cell nondeterministically chooses which one to satisfy. If a cell receives a request

but neither the cell nor its user has the token, the cell forwards the request to the

cell to the left, and waits for the token.

The cells and the users communicate using a four-phase asynchronous handshake

protocol based on request and acknowledge signals. The connections between the

users and the cells are depicted in Figure 13. The signals rc and ac represent requests

and acknowledges between cells, the signals ru and au represent user requests and

acknowledges, and t represents the token.
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r
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time
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critical releasenoncritical request

Figure 14: Four-phase handshake protocol between user i and cell i, 0 � i < N .

[  ]irc

[  ]iac

time

receivedquiescent request grant

Figure 15: Four-phase handshake protocol between cell i and cell (i � 1)mod N ,

0 � i < N .
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The protocol between user i and the corresponding cell i, 0 � i < N , is shown in

Figure 14. Initially, both ru[i] and au[i] are F. When the user wishes to access the

shared resource, it sets ru[i] to T. If the arbiter cell has the token, it responds to the

request by setting au[i] to T and destroying the token. When the user releases the

shared resource, it sets ru[i] to F, and the arbiter cell acknowledges this by setting

au[i] to F and recreating the token.

The protocol between cell i and cell (i � 1)mod N , 0 � i < N , is shown in

Figure 15. Initially, both rc[i] and ac[i] are F. Cell i can request the token by

setting rc[i] to T. If cell (i� 1)mod N has the token, it can respond to the request

by destroying the token and setting ac[i] to T. Cell i then acquires the token and

acknowledges this by setting rc[i] to F. Finally, cell (i� 1)mod N sets ac[i] to F.
4

The high-level behavior of the circuit has been encoded in SPL as shown in

Figure 165.

Mutual Exclusion

The mutual exclusion property for arb can be stated as:

0 8j; k : [0::N�1]:
�
au[j]^ au[k]! j = k

�
:

This property is established with the help of the auxiliary invariant,

9!j : [0::N�1]:
�
t[j]_ au[j]

�
^

8j : [0::N�1]::
�
t[j]^ au[j]

�
stating that at any given time there is exactly one cell that either has the token or

is granting the user access to the resource. To prove this invariant, STeP automat-

ically generates 12 veri�cation conditions, which can be established with the usual

combination of automatic and interactive theorem proving.

Absence of Unsolicited Requests

Another desirable property of the arbiter circuit is that a cell should not request

the token, unless

1. it is receiving a request from the user or from the cell to the right, and

2. the cell does not have the token, nor it is granting access to the shared resource.

4In this model, the token simultaneously disappears from cell (i� 1)mod N and reappears in

cell i. This is consistent with the model presented in [Dil88].
5This program is slightly di�erent from the model presented in [Dil88]: when an arbiter cell

receives a request from its cell to the right it checks that its user is not accessing the resource before

forwarding the request, while it does not in Dill's model.
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in N : integer where N > 1

local rc : array [0::N�1] of boolean where 8i : [0::N�1]::rc[i]

ac : array [0::N�1] of boolean where 8i : [0::N�1]::ac[i]

ru : array [0::N�1] of boolean where 8i : [0::N�1]::ru[i]

au : array [0::N�1] of boolean where 8i : [0::N�1]::au[i]

t : array [0::N�1] of boolean where 8i : [0::N�1]:t[i]$ i = 0

N�1

jj
i=0

2
666666666666666666666666666666666666666666666666666664

loop forever do2
6666666666666666666666666666666666666666666666666664

h
l1 : guard :ru[i]^ :au[i] do ru[i] := T

i
orh
l2 : guard ru[i]^ au[i] do ru[i] := F

i
orh
l3 : guard ru[i]^ :au[i]^ t[i] do (t[i]; au[i]) := (F;T)

i
orh
l4 : guard :ru[i]^ au[i] do (t[i]; au[i]) := (T;F)

i
or2
6666664

l5 : guard :rc[i]^ :ac[i]^ :t[i] ^ :ac[i]

^

0
B@ ru[i]^ :au[i]

_

rc[(i+ 1)mod N ] ^ :ac[(i+ 1)mod N ]

1
CA

do rc[i] := T

3
7777775

or"
l6 : guard :rc[(i+ 1)mod N ] ^ ac[(i+ 1)mod N ]

do ac[(i+ 1)mod N ] := F

#

or2
6664
l7 : guard rc[(i+ 1)mod N ] ^ :ac[(i+ 1)mod N ] ^ t[i]

do

0
B@ t[i]

t[(i+ 1)mod N ]

ac[(i+ 1)mod N ]

1
CA :=

0
B@ F

T

T

1
CA

3
7775

orh
l8 : guard rc[i]^ ac[i] do rc[i] := F

i

3
7777777777777777777777777777777777777777777777777775

3
777777777777777777777777777777777777777777777777777775

Figure 16: High-level SPL encoding of arb.
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This property is not essential for mutual exclusion, but it contributes to the e�-

ciency of the design. It is expressed by the temporal logic formula:

0 8j : [0::N�1] :2
64
0
B@ rc[j]

^

:ac[j]

1
CA!

0
B@ :t[j]

^

:au[j]

1
CA ^

2
64ru[j]_

0
B@ rc[(j + 1)mod N ]

^

:ac[(j + 1)mod N ]

1
CA
3
75
3
75

This invariant can also be proved by STeP.

7 Conclusions

Despite the fact that STeP is still at an early stage of development, it has already

proved useful in understanding and debugging complex programs. For instance,

the system helped identify an error in the mutual exclusion algorithm from a draft

version of [SV94] that allowed the possibility of deadlock.

Although STeP is founded on the deductive methodology of Manna and Pnueli

[MP94b], its development has been inspired by a large body of related work in

formal veri�cation, such as the PVS [SOR93] and SMV [BCMD90] systems, rep-

resenting the deductive and model-checking approaches, respectively. Other recent

approaches to combining model checking and deduction include [Hun93] and [KL93],

where model checking is used to verify local properties of a system, which are then

combined to prove global properties using deductive techniques.

The system presented in this paper re
ects six months of implementation e�ort.

Obviously there are many areas that need to be improved and completed. Major

extensions that are being worked on include:

� Increased 
exibility of veri�cation diagrams;

� Inclusion of re�nement veri�cation rules [KMP94];

� Tighter integration of decision procedures, including more sophisticated constraint-

solving techniques;

� Incorporation of decomposition, following the techniques described in [Cha93];

� Providing better debugging facilities;

� Connection of other systems to STeP (e.g., symbolic computation systems

like Mathematica to support hybrid systems).

� Addition of the ability to handle real-time and hybrid systems.
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