
Probabilistic Roadmaps for Path Planning

in High-Dimensional Con�guration Spaces

Lydia Kavraki
1
Petr �Svestka

2

Jean-Claude Latombe
1
Mark Overmars

2

Abstract

A new motion planning method for robots in static workspaces is presented.
This method proceeds according to two phases: a learning phase and a query
phase. In the learning phase, a probabilistic roadmap is constructed and stored
as a graph whose nodes correspond to collision-free con�gurations and edges
to feasible paths between these con�gurations. These paths are computed us-
ing a simple and fast local planner. In the query phase, any given start and
goal con�gurations of the robot are connected to two nodes of the roadmap;
the roadmap is then searched for a path joining these two nodes. The method
is general and easy to implement. It can be applied to virtually any type of
holonomic robot. It requires selecting certain parameters (e.g., the duration of
the learning phase) whose values depend on the considered scenes, that is the
robots and their workspaces. But these values turn out to be relatively easy to
choose. Increased e�ciency can also be achieved by tailoring some components
of the method (e.g., the local planner) to the considered robots. In this paper
the method is applied to planar articulated robots with many degrees of free-
dom. Experimental results show that path planning can be done in a fraction
of a second on a contemporary workstation (� 150 MIPS), after learning for
relatively short periods of time (a few dozen seconds).

Acknowledgments: L. Kavraki and J.C. Latombe were partially sup-
ported by ARPA grant N00014-92-J-1809 and ONR grant N00014-94-1-0721. L.
Kavraki also acknowledges the support of the Rockwell Foundation. P. �Svestka
and M. Overmars were partially supported by ESPRIT III BRA Project 6546
(PROMotion) and by the Dutch Organization for Scienti�c Research (NWO).

1Robotics Laboratory, Department of Computer Science, Stanford University, Stanford, CA

94305, USA.
2Department of Computer Science, Utrecht University, P.O.Box 80.089, 3508 TB Utrecht, The

Netherlands.

1

2

1 Introduction

We present a new planning method which computes collision-free paths for robots of
virtually any type moving among stationary obstacles (static workspaces). However,
our method is particularly interesting for robots with many degrees of freedom (dof),
say �ve or more. Indeed, an increasing number of practical problems involve such
robots, while very few e�ective motion planning methods, if any, are available to solve
them. The method proceeds according to two phases: a learning phase and a query

phase.

In the learning phase a probabilistic roadmap is constructed by repeatedly generat-
ing random free con�gurations of the robot and trying to connect these con�gurations
using some simple, but very fast motion planner. We call this planner the local plan-
ner. The roadmap thus formed in the free con�guration space (C-space [LP83]) of
the robot is stored as an undirected graph R. The con�gurations are the nodes of R
and the paths computed by the local planner are the edges of R. The learning phase
is concluded by some postprocessing of R to improve its connectivity.

Following the learning phase, multiple queries can be answered. A query asks
for a path between two given free con�gurations of the robot. To process a query
the method �rst attempts to connect the given start and goal con�gurations to two
nodes of the roadmap, with paths that are feasible for the robot. Next, a graph
search is done to �nd a sequence of edges connecting these nodes in the roadmap.
Concatenation of the successive path segments transforms this sequence into a feasible
path for the robot.

Notice that the learning and the query phases do not have to be executed sequen-
tially. Instead, they can be interwoven to adapt the size of the roadmap to di�culties
encountered during the query phase, thus increasing the learning avor of our method.
For instance, a small roadmap could be �rst constructed; this roadmap could then
be augmented (or reduced) using intermediate data generated while queries are being
processed. This interesting possibility will not be explored in the paper, though it
is particularly useful to conduct trial-and-error experiments in order to decide how
much computation time should be spent in the learning phase.

To run our planning method the values of several parameters must �rst be selected,
e.g., the time to be spent in the learning phase. While these values depend on the
considered scene, i.e., the robot and the workspace, it has been our experience that
good results are obtained with values spanning rather large intervals. Thus, it is
not di�cult to choose one set of satisfactory values for a given scene or family of
scenes, through some preliminary experiments. Moreover, increased e�ciency can be
achieved by tailoring several components of our planning method, in particular the

3

local planner, to the considered robots. Overall, we found the method quite easy to
implement and run. Many details can be engineered in one way or another to �t
better the characteristics of an application domain.

We have demonstrated the power of our method by applying it to a number of
di�cult motion planning problems involving a variety of robots. In this paper we
report in detail on experiments with planar articulated robots (or linkages) with
many dofs moving in constrained workspaces. However, the method is directly ap-
plicable to other kinds of holonomic robots, such as spatial articulated robots in 3D
workspaces [KL94b]. Additionally, a version of the method described here has been
successfully applied to nonholonomic car-like robots [�SO94]. In all cases, experimen-
tal results show that the learning times required for the construction of adequate
roadmaps, i.e., roadmaps that capture well the connectivity of the free C-space, are
low. They range from a few seconds1 for relatively easy problems to a few minutes
for the most di�cult problems we have dealt with. Once a good roadmap has been
constructed, path planning queries are processed in a fraction of a second.

The very small query times make our planning method particularly suitable for
many-dof robots performing several point-to-point motions in known static workspaces.
Examples of tasks meeting these conditions include maintenance of cooling pipes in
a nuclear plant, point-to-point welding in car assembly, and cleaning of airplane fuse-
lages. In such tasks, many dofs are needed to achieve successive desired con�gurations
of the end-e�ector while avoiding collisions of the rest of the arm with the complicated
workspace. Explicit programming of such robots is tedious and time consuming. An
e�cient and reliable planner would considerably reduce the programming burden.

This paper is organized as follows: Section 2 gives an overview of some previous
research and relates our work to this research. Section 3 describes our motion planning
method in general terms, i.e., without focusing on any speci�c type of holonomic
robot. Both the learning phase and the query phase are discussed here in detail.
Next, in Sections 4, 5, and 6 we apply our method to planar articulated robots. In
Section 4 we describe speci�c techniques that can be substituted for more general
ones in the planner to handle these robots more e�ciently (especially when these
have many dofs). In Sections 5 and 6 we describe a number of experiments and
their results; we also analyze how variations of some parameter values a�ect planning
results. Section 5 presents results obtained with a customized implementation of
the method embedding the speci�c techniques of Section 4. Section 6 discusses other
experimental results obtained with a general implementation of the method. Section 7
concludes the paper.

1All running times reported in this paper have been obtained on a DEC Alpha workstation,

except those given in Section 6 which were obtained with a Silicon Graphics Indigo workstation.

4

2 Relation to previous work

Path planning for robots in known and static workspaces has been studied exten-
sively over the last two decades [Lat91]. Recently there has been renewed interest
in developing heuristic, but practical path planners. For few-dof robots, many such
planners have been designed and some are extremely fast (e.g., [BLL92, LRDG90]).
Considerable attention is now directed toward the creation of e�cient heuristic plan-
ners for many-dof robots. Indeed, while such robots are becoming increasingly useful
in industrial applications, complete methods in that case have overwhelming com-
plexity. New emerging applications also motivate that trend, e.g., computer graphic
animation, where motion planning can drastically reduce the amount of data input
by human animators, and molecular biology, where motion planning can be used to
compute motions of molecules (modeled as spatial linkages with many dofs) docking
against other molecules.

The complexity of complete path planning methods in high-dimensional con�gu-
ration spaces has led researchers to seek heuristic methods that embed weaker notions
of completeness (e.g., probabilistic completeness) and/or can be partially adapted to
speci�c problem domains in order to boost performance in those domains.

In recent years, some of the most impressive results were obtained using potential
�eld planning methods. Such methods are indeed attractive, since the main heuristic
function they use to guide the search for a path, the potential �eld, can easily be
adapted to the speci�c problem to be solved, in particular the scene and the goal
con�guration. Two main lines of research are particularly noteworthy:

- A method using a \dynamic" potential �eld is proposed in [FT87] for planning
the paths of robots with many dofs. The potential function depends not only on the
distance between the robot and the obstacles, but also on the rate of variation of this
distance along the current direction of motion of the robot. The method can be very
fast on rather simple examples, but it may get stuck at local minima of the potential
function on more di�cult ones. It was used to compute paths of an 8-dof manipulator
among vertical pipes in a nuclear plant, with interactive human assistance to escape
local minima. In [FT90] the same authors present a learning scheme to avoid falling
into local minima. During the learning phase, probabilities of moving between neigh-
boring con�gurations without falling into a local minimum are accumulated in an rn

array, where n is the number of dofs and r is the number of intervals discretizing the
range of each dof. During the planning phase, these probabilities are used as another
heuristic function (in addition to the potential function) to guide the robot away from
the local minima. This learning scheme was applied with some success to robots with
up to 6 dofs. However, the size of the rn array becomes impractical when n grows

5

larger.

- Techniques for both computing potential functions and escaping local minima in
high-dimensional C-spaces are presented in [BL91, BLL92]. The Randomized Path
Planner (RPP) described in [BL91] escapes local minima by executing random walks.
It has been successfully experimented on di�cult problems involving robots with 3
to 31 dofs. It has also been used in practice with good results to plan motions for
performing riveting operations on plane fuselages [GMKL92]. Recently, RPP has
been embedded in a larger \manipulation planner" to automatically animate graphic
scenes involving human �gures modeled with 62 dofs [KKKL94]. However, several
examples have also been identi�ed where RPP behaves poorly [CG93, ZG93]. In these
examples, RPP falls into local minima whose basins of attraction are mostly bounded
by obstacles, with only narrow passages to escape. The probability that any random
walk �nds its way through such a passage is almost zero. In fact, once one knows
how RPP computes the potential �eld, it is not too di�cult to create such examples.
One way to prevent this from happening is to let RPP randomly use several potential
functions, but this solution is rather time consuming. In [BF94] a very promising
method based variational dynamic programming is presented and that method can
tackle problems of similar complexity to the problems solved by RPP.

Other interesting lines of work include the following: In [GG92, GZ94] a sequen-
tial framework with backtracking is proposed for serial manipulators and in [CH92] a
motion planner with performance proportional to task di�culty is developed for arbi-
trary many-dof robots operating in cluttered environments. The planner in [Kon91]
�nds paths for six-dof manipulators using heuristic search techniques that limit the
part of the C-space that is explored and the planner in [ATBM92] utilizes genetic al-
gorithms to help search for a path in high dimensional C-spaces. Parallel processing
techniques are investigated in [CG93, LPO91].

The planning method presented in this paper di�ers signi�cantly from the methods
referenced above, which are for the most part based on potential �eld or cell decom-
position approaches. Instead, our method applies a roadmap approach [Lat91], that
is, it constructs a network of paths in free C-space. Previous roadmap methods in-
clude the visibility graph [LPW79], Voronoi diagram [OY82], and silhouette [Can88]
methods. All these three methods compute in a single shot a roadmap that com-
pletely represents the connectivity of the free C-space. But the visibility graph and
Voronoi diagram methods are limited to low-dimensional C-spaces. In theory the
silhouette method applies to C-spaces of any dimension, but its complexity makes
it little practical. In contrast, our method builds a roadmap incrementally using
probabilistic techniques. These techniques apply to C-spaces of any dimension and
produce a roadmap in any amount of time allocated to them. Of course, if this time is

6

too short, the computed roadmap may not represent the connectivity of free C-space
well. Actually, in our planner, the roadmap is never guaranteed to fully represent free
C-space connectivity, though if we let our techniques run long enough it eventually
will (but we don't know how long is enough). However, while building the roadmap,
our method heuristically identi�es \di�cult" regions in free C-space and generates
additional con�gurations in those regions to increase network connectivity. There-
fore, the �nal distribution of con�gurations in the roadmap is not uniform across free
C-space; it is denser in regions considered di�cult by the heuristic function. This
feature helps to construct roadmaps of reasonable size that represent free C-space
connectivity well. In particular, it allows our implemented planner to e�ciently solve
tricky problems requiring choices among several narrow passages, i.e., the kind of
problems that RPP tackles poorly.

Note also that, like most practical methods for many-dof robots (one exception is
the method in [FT89]), RPP is a one-shot method, i.e., it does not precompute any
knowledge of the free C-space that is transferred from one run to another. Conse-
quently, on problems that both RPP and our method solve well, the latter is usually
much faster, once it has constructed a good roadmap. But, if the learning time is
included in the duration of the path planning process (which should be the case when-
ever planning is done only once in a given workspace), there are many problems for
which RPP is faster.

The authors of this paper are from two di�erent teams and the work presented
here builds upon previous work they did separately. A single-shot random planner
was described in [Ove92] and was subsequently expanded into a learning approach
in [O�S94]. In these papers the emphasis was on robots with a rather low number
of dofs. Similar techniques have been applied both to car-like robots that can move
forward and backward (symmetrical nonholonomic robots) and car-like robots that
can only move forward [�Sve93, �SO94]. Independently, a preprocessing scheme similar
to the learning phase was introduced in [KL93] for planning the paths of many-dof
robots. This scheme also builds a probabilistic roadmap in free C-space, but focuses
on the case of many-dof robots. The need to expand the roadmap in \di�cult" regions
of C-space was noted there and addressed with simple techniques. Better expansion
techniques were introduced in [KL94a, KL94b]. The present paper combines the ideas
of these previous papers and extends them into a more powerful and faster planner.
Since it only presents a limited subset of the experimental results we have obtained
with our method, the interested reader is encouraged to look into our previous papers
for additional results, in particular results involving other types of robots. Though
computation times reported in these papers were obtained with previous versions of
our method, their orders of magnitude remain meaningful.

7

Finally, it should be noted that another planner which bares similarities with our
approach, but was developed independently of our two teams, is proposed in [HST94].

3 The general method

We now describe our path planning method in general terms for a holonomic robot
without focusing on any speci�c type of robot. During the learning phase a data
structure called the roadmap is constructed in a probabilistic way for a given scene,
i.e., a given robot and a given workspace. In the query phase, the roadmap is used
to solve individual path planning problems in this scene. Each problem is speci�ed
by a start con�guration and a goal con�guration of the robot.

The roadmap is constructed as an undirected graph R = (N;E). The nodes
in N are randomly generated free con�gurations of the robot and the edges in E

correspond to (simple) paths; an edge (a; b) corresponds to a feasible path connecting
the con�gurations a and b. These paths, which we refer to as local paths, are computed
by an extremely fast, though not very powerful planner, called the local planner. The
local paths are not explicitly stored in the roadmap, since recomputing them is very
cheap. This saves considerable space, but requires the local planner to succeed and
fail deterministically. We assume here that the learning phase is entirely performed
before any path planning query is processed. However, as we already noted, the
learning and query phases could also be interwoven.

In the query phase, given a start con�guration s and a goal con�guration g, the
method �rst tries to connect s and g to some two nodes ~s and ~g in N . If successful, it
then searches R for a sequence of edges in E connecting ~s to ~g. Finally, it transforms
this sequence into a feasible path for the robot by recomputing the corresponding
local paths and concatenating them.

In the following, we let C denote the robot's C-space and Cf its free subset (also
called the free C-space).

3.1 The learning phase

The learning phase consists of two successive steps, which we refer to as the construc-
tion and the expansion step. The objective of the former is to obtain a reasonably
connected graph, with enough vertices to provide a rather uniform covering of free
C-space and make sure that most \di�cult" regions in this space contain at least a

3.1 The learning phase 8

few nodes. The second step is aimed at further improving the connectivity of this
graph. It selects nodes of R which, according to some heuristic evaluator, lie in dif-
�cult regions of C-space and expand the graph around these nodes by generating
additional nodes in their neighborhoods. Hence, the covering of free C-space by the
�nal roadmap is not uniform, but depends on the local intricacy of that space.

3.1.1 The construction step

Initially the graph R = (N;E) is empty, i.e., N = E = ;. Then, repeatedly, a
random free con�guration is generated and added to N . For every such new node c,
we select a number of nodes from the current N and we try to connect c to each of
them using the local planner. Whenever this planner succeeds to compute a feasible
path between c and a selected node n, the edge (c; n) is added to E. The actual local
path is not memorized.

The selection of the nodes to which we try to connect c is done as follows: First,
a set Nc of candidate neighbors is chosen from N . This set is made of nodes within
a certain distance of c, for some metric D. Then we pick nodes from Nc in order of
increasing distance from c. We try to connect c to each of the selected nodes if it is
not already graph-connected to c. Hence, no cycles can be created and the resulting
graph is a forest, i.e., a collection of trees. Since a query would never succeed thanks

to an edge that is part of a cycle, it is indeed sensible not to consume time and space
computing and storing such an edge. However, in some cases, the absence of cycles
may lead the query phase to construct unnecessary long paths. This drawback can
easily be eliminated by applying smoothing techniques to either the roadmap during
the learning phase, or the particular paths constructed by the query phase, or both.
Even if the roadmap contained cycles, such smoothing operations would eventually
produce better paths.

Whenever the local planner succeeds to �nd a path between two nodes, the con-
nected components of R are dynamically updated. Therefore, no graph search is
required for deciding whether a node picked from Nc is already connected to c, or
not.

To make our presentation more precise, let:

� � be a symmetrical function Cf �Cf ! f0; 1g, which returns whether the local
planner can compute a feasible path between the two free con�gurations given
as arguments;

� D be a function C � C ! R+ [f0g, called the distance function, de�ning

3.1 The learning phase 9

a pseudo-metric in C. (We only require that D be symmetrical and non-
degenerate.)

The construction step algorithm can now be outlined as follows:

(1) N ;
(2) E ;
(3) loop

(4) c a randomly chosen free con�guration
(5) Nc a set of candidate neighbors of c chosen from N

(6) N N [fcg
(7) forall n 2 Nc, in order of increasing D(c; n) do
(8) if :same connected component(c; n) ^�(c; n) then
(9) E E [f(c; n)g
(10) update R's connected components

This outline leaves a number of components unspeci�ed. Indeed, we still must
de�ne how random con�gurations are created in (4), propose a local planner for (8),
clarify the notion of a candidate neighbor in (5), and choose the distance function D

used in (7).

Creation of random con�gurations. The nodes of R should constitute a rather
uniform random sampling of Cf . Every such con�guration is obtained by drawing
each of its coordinates from the interval of values of the corresponding dof using
the uniform probability distribution over this interval. The obtained con�guration is
checked for collision. If it is collision-free, it is added to N ; otherwise, it is discarded.

Collision checking requires testing if any part of the robot intersects an obstacle
and if two distinct bodies of the robot intersect each other. It can be done using a
variety of existing general techniques. In the general implementation considered in
Section 6 the test is performed analytically using optimized routines from the PLA-
GEO library [Gie93]. Alternatively, we could use an iterative collision checker, like
the one described in [Qui93], which automatically generates successive approxima-
tions of the objects involved in the collision test. In 2D workspaces, we may use a
faster, but more speci�c collision checker (see Section 4).

The local planner. The local planner should be both deterministic and very fast.
These requirements are not strict, however.

3.1 The learning phase 10

If a non-deterministic planner was used instead, local paths would simply have to
be stored in the roadmap. The roadmap would require more space, but this would
not be a major problem.

Concerning how fast the local planner should be, there is clearly a tradeo� between
the time spent in each individual call of this planner and the number of calls. If a
powerful local planner was used, it would often succeed in �nding a path when one
exists. Hence, relatively few nodes would be required to build a roadmap capturing
the connectivity of the free C-space su�ciently well to reliably answer path planning
queries. Such a local planner would probably be rather slow, but this could be
somewhat compensated by the small number of calls needed. On the other hand, a
very fast planner is likely to be less successful. It will require more con�gurations
to be included in the roadmap; so, it will be called more often, but each call will be
cheaper.

The choice of the local planner also a�ects the query phase. The purpose of
having a learning phase is to make it possible to answer path planning queries quasi-
instantaneously. It is thus important to be able to connect any given start and goal
con�gurations to the roadmap, or to detect that no such connection is possible, very
quickly. This requires that the roadmap be dense enough, so that it always contains
a few nodes (at least one) to which it is easy to connect each of the start and goal
con�gurations. It thus seems preferable to use a very fast local planner, even if it
is not too powerful, and build large roadmaps with con�gurations widely distributed
over free C-space. We actually tried several local planners, some very fast, some
slower but more powerful, and our experimental observations clearly con�rmed this
conclusion (e.g., see [Mas92, �Sve93]).

Choosing a very fast local planner for the learning phase has two other advantages.
First, the same local planner can then be used during the query phase to connect the
start and goal con�gurations to the roadmap. Second, local paths do not have to be
memorized in the roadmap.

A quite general such local planner, which is applicable to all holonomic robots,
connects any two given con�gurations by a straight line segment in con�guration
space and checks this line segment for collision and joint limits (if any). Verifying
that a straight line segment remains within joint limits is straightforward. On the
other hand, collision checking can be done as follows [BL91]: First, discretize the line
segment (more generally, any path generated by the local planner) into a number of
con�gurations c1; : : : ; cm, such that for each pair of consecutive con�gurations (ci; ci+1)
no point on the robot, when positioned at con�guration ci, lies further than some eps
away from its position when the robot is at con�guration ci+1 (eps is an input positive

3.1 The learning phase 11

constant).2 Then, for each con�guration ci, test whether the robot, when positioned
at ci and \grown" by eps, is collision-free, using the collision checker discussed above.
If none of the m con�gurations yield collision, conclude that the path is collision-free.
Since eps is constant, the computation of the robot bodies grown by eps is done only
once. In the following we will refer to this local planner as the general local planner.

The node neighbors. Another important choice to be made is that of the can-
didate neighbors of a node c. The de�nition of the set Nc considerably a�ects the
performance of the construction step because, together, the executions of the local
planner form the single most time-consuming operation at this step.

We must thus prevent executions of the local planner that do not lead to e�ectively
extending the knowledge stored in the roadmap. First, as mentioned before, we do not
try to connect con�gurations that are already in the same connected component of the
roadmap. Second, we try to avoid calls of the local planner that are likely to return
failure, by submitting only pairs of con�gurations whose relative distance (according
to the distance function D) is smaller than some constant threshold maxdist. Thus:

Nc � f~c 2 N jD(c; ~c) � maxdistg:

This still leaves several possibilities for the actual de�nition of Nc. We have done
experiments with di�erent de�nitions and the following one gives good results over a
wide range of problems. We consider as candidate neighbors of c all nodes in N within
distance maxdist of c. That is, according to the algorithm outline given above, we
try to connect c to all nodes in the neighborhood of c de�ned by maxdist, in order of
increasing distance from c; but we skip those nodes which are in the same connected
component c at the time the connection is to be tried. By considering elements of
Nc in this order we expect to maximize the chances of quickly connecting c to other
con�gurations and, consequently, reduce the number of calls to the local planner
(since every successful connection results in merging two connected components into
one).

In our experiments we found useful to bound the size of the set Nc by some
constant maxneighbors (typically on the order of 30). This additional criterion guar-
antees that, in the worst case, the running time of each iteration of the main loop of
the construction step algorithm is independent of the current size of R. Thus, the
construction step takes linear time in the size of the graph it constructs.

2Throughout this paper symbols in teletyped characters are used to denote parameters of the

planning method.

3.1 The learning phase 12

The distance function. The function D is used to both construct and sort the
set Nc of candidate neighbors of each new node c. It should be de�ned so that, for
any pair (c; n) of con�gurations, D(c; n) reects the chance that the local planner will
fail to compute a feasible path between these con�gurations. One possibility is thus
to de�ne D(c; n) as a measure (area/volume) of the workspace region swept by the
robot when it moves along the path computed by the local planner between c and
n in the absence of obstacles. Thus, each local planner would automatically induce
its own speci�c distance function. In general, though, exact computation of swept
areas/volumes tends to be rather time-consuming. Instead, rough but inexpensive-to-
evaluate approximations of the swept-region measure or functions that vary approxi-
mately like this measure give better practical results. For example, when the general
local planner described above is used to connect c and n, D(c; n) may be de�ned as
the longest Euclidean distance that any point on the robot travels in workspace, when
the robot moves along the line segment joining c and n in con�guration space, i.e.:

D(c; n) = max
x2robot

kx(n)� x(c)k; (1)

where x denotes a point on the robot, x(c) is the position of x in the workspace when
the robot is at con�guration c, and kx(n)� x(c)k is the Euclidean distance between
x(c) and x(n).

3.1.2 The expansion step

If the number of nodes generated during the construction step is large enough, the
set N gives a fairly uniform covering of the free C-space. In easy scenes R is then well
connected. But in more constrained ones where free C-space is actually connected,
R often consists of a few large components and several small ones. It therefore does
not e�ectively capture the connectivity of Cf . More generally, the number of large
components in R usually exceeds the number of connected components in Cf ; and R

also contains an even larger number of very small components. We have frequently
observed this situation in our experiments.

The expansion step is intended to improve the connectivity of the graph R gen-
erated by the construction step. Typically, if the graph is disconnected in a place
where Cf is not, this place corresponds to some narrow, hence di�cult region of the
free C-space. The idea underlying the expansion step is to select a number of nodes
from N which are likely to lie in such regions and to \expand" them. By expanding a
con�guration c, we mean selecting a new free con�guration in the neighborhood of c,
adding this con�guration to N , and trying to connect it to other nodes of N , in the
same way as in the construction step. So, the expansion step increases the density

3.1 The learning phase 13

of roadmap con�gurations in regions of Cf that are believed to be di�cult. Since the
\gaps" between components of the graph R are typically located in these regions, the
connectivity of R is likely to increase.

We propose the following probabilistic scheme for the expansion step. With each
node c in N we associate a positive weight w(c) that is a heuristic measure of the
\di�culty" of the region around c. Thus, w(c) is large whenever c is considered to
be in a di�cult region. We normalize w so that all weights together (for all nodes in
N) add up to one. Then, repeatedly, we select a node c from N with probability:

Pr(c is selected) = w(c);

and we expand this node.

It now remains to de�ne the heuristic weight w(c). One possibility is to count the
number of nodes of N lying within some prede�ned distance of c. If this number is
low, the obstacle region probably occupies a large subset of c's neighborhood. This
suggests that w(c) could be de�ned inversely proportional to the number of nodes
within some distance of c. Another possibility is to look at the distance dc from
c to the nearest connected component not containing c. If this distance is small,
then c lies in a region where two components failed to connect, which indicates that
this region might be a di�cult one (it may also be actually obstructed). This idea
leads to de�ning w(c) inversely proportional to dc. Alternatively, rather than using
the structure of R to identify di�cult regions, we could de�ne w(c) according to
the behavior of the local planner. For example, if the local planner often failed to
connect c to other nodes, this is also an indication that c lies in a di�cult region.
Which particular heuristic function should be used depends to some extent on the
input scene. Nevertheless, the following function, which is based on the latter idea,
has produced good results whenever we tried it:

� During the construction step, for each new node c, compute the failure ratio
rf (c) de�ned by:

rf (c) =
f(c)

n(c) + 1
;

where n(c) is total number of times the local planner tried to connect c to
another node and f(c) is the number of times it failed. (Note: Whenever the
local planner fails to connect two nodes c and n, this failure is counted in both

the failure ratios of c and n. In this way, the con�gurations that are included in
N at the very beginning of the construction step get meaningful failure ratios.)

� At the beginning of the expansion step, for every node c in N compute w(c)
proportional to the failure ratio, but scaled appropriately so that all weights

3.1 The learning phase 14

add up to one, i.e.:

w(c) =
rf(c)P

a2N rf (a)
:

Once we have decided which nodes to expand, we have to choose how to perform
this expansion. We have done experiments with di�erent techniques and we have
�nally selected a technique which makes use of what we call random-bounce walks
(or rbw). For holonomic robots, an rbw consists of repeatedly picking at random a
direction of motion in C-space and moving in this direction until an obstacle is hit.
When a collision occurs, a new random direction is chosen. And so on. To expand a
node c, we compute one rbw starting from c. We limit the computation time, i.e., the
duration of the rbw, to a short amount (say, 0.01 seconds). The �nal con�guration
n reached by the rbw and the edge (c; n) are included into R. Moreover, the path
computed between c and n is explicitly stored, since it was generated by a non-
deterministic technique. We also record the fact that n belongs to the same connected
component as c. Then we try to connect n to the other connected components of the
network in the same way as in the construction step. The expansion step thus never
creates new components in R. At worst, it fails reducing the number of components.

The weights w(c) are computed only once at the beginning of the expansion step
and are not modi�ed when new nodes are added to R. Hence, the nodes to expand
are all selected from the set of nodes generated during the construction step. Alterna-
tively, we could update the weights whenever the expansion step inserts a new node
into N . We believe that the potential gain of recomputing weights is largely o�set by
the time it requires.

Once the expansion step is over, the remaining small components of R, if any,
are discarded. Here, a component is considered small if its number of nodes is less
than some mincomponent percent (typically 0.01%) of the total number of nodes in
N . The graph R after discarding the small components represents the roadmap that
will be used during the query phase. It may contain one or several components.

Let TL be the time allocated to the learning phase, i.e. the computation of the
roadmap. Clearly, the range of adequate values for TL depends on the considered
scene, so that an adequate value should be determined experimentally for each new
scene. Another important parameter is how TL is divided between the construction
step (time TC) and the expansion step (time TE). Our experience is that a 2:1 ratio,
i.e, TC = 2TL=3 and TE = TL=3, gives good results over a large range of problems.

3.2 The query phase 15

3.2 The query phase

During the query phase, paths are to be found between arbitrary input start and
goal con�gurations, using the roadmap constructed in the learning phase. Assume
for the moment that the free C-space is connected and that the roadmap consists of a
single connected component R. A query now consists of the following: Given a start
con�guration s and goal con�guration g, we try to connect s and g to some two nodes
of R, respectively ~s and ~g, with feasible paths Ps and Pg. If this fails, the query fails.
Otherwise, we compute a path P in R connecting ~s to ~g. A feasible path from s to
g is eventually constructed by concatenating Ps, the local paths recomputed by the
local planner when applied to pairs of consecutive nodes in P , and Pg reversed. If
one wishes, this path may be improved by running a smoothing algorithm on it.

The main question is how to compute the paths Ps and Pg. The queries should
preferably terminate quasi-instantaneously, so no expensive algorithm is desired here.
Our strategy for connecting s to R is to consider the nodes in R in order of increasing
distance from s (according to D) and try to connect s to each of them with the local
planner, until one connection succeeds. We ignore nodes located further than maxdist

away from s, because we consider that the chance of success of the local planner is too
low. If all connection attempts fail, we perform one or more random-bounce walks,
as described in Subsection 3.1.2. But, instead of adding the node at the end of each
such rbw to the roadmap, we now try to connect it to R with the local planner. As
soon as s is successfully connected to R, we apply the same procedure to connect g
to R.

In general, however, the roadmap may consist of several connected componentsRi,
i = 1; 2; : : : ; p. This is usually the case when the free C-space is itself not connected.
It may also happen when free C-space is connected, for instance if the roadmap is not
dense enough. If the roadmap contains several components, we �rst try to connect
both the start and goal con�gurations s and g to two nodes in the same component.
To do this, we consider the components of the roadmap in order of increasing distance
from fs; gg; for each component we proceed as we did above with the single component
R. We de�ne the distance between fs; gg and a component Ri as follows: Let the
distance D(c;Ri) between a con�guration c and Ri be the minimum of D(c; n) for all
n 2 Ri. The distance between fs; gg and Ri is the maximumofD(s;Ri) andD(g;Ri).
If the connection of s and g to some component Ri succeeds, a path is constructed as
in the single-component case. The method returns failure whenever it fails to connect
both s and g to the same roadmap component. Since in most examples the roadmap
consists of rather few components, failure is rapidly detected.

Finally, we should note that certain kinds of local planners render unnecessary the
recomputation of collisions along the network edges when the corresponding paths

16

are reconstructed. This makes the planning stage even faster. For example, the
general local planner of Subsection 3.1.1 aborts when a collision is detected. During
planning time, intermediate con�gurations on a path induced by this planner have to
be recomputed, since they have not been stored, but we do not need to check each of
them for collision. The situation is di�erent if the local planner does not abort when
a collision is detected but performs a certain action. Then, in the planning stage
collision must be checked along the recomputed path so that the same action can be
repeated just after the collision is detected.

If path planning queries fail frequently, this is an indication that the roadmap
may not adequately capture the connectivity of the free C-space. Hence, more time
should be spent on the learning phase, i.e., TL should be increased. However, it is
not necessary to construct a new roadmap from scratch. Since the learning phase is
incremental, we can simply extend the current roadmap by resuming the construc-
tion step algorithm and/or the expansion step algorithm, starting with the current
roadmap graph, thus interweaving the learning and the query phases.

4 Application to planar articulated robots

This section and the next two describe the application of our planning method to pla-
nar articulated robots with �xed or free bases. In this section we present techniques
speci�c to these robots that can be substituted for more general techniques in the
planning method in order to increase its e�ciency. The purpose of this presentation
is to illustrate the easiness with which the general method for holonomic robots can
be engineered to better suit the needs of a particular application. Many other speci�c
tunings, not discussed here, are possible. In Section 5 we will discuss experiments
with an implementation of the method that embeds the speci�c techniques described
below, while in Section 6 we will present experimental results with a general imple-
mentation of the method to demonstrate that the method remains quite powerful,
even without speci�c components. In the rest of the paper we will refer to these two
implementations as the customized implementation and the general implementation,
respectively.

To make the following presentation shorter, we consider planar articulated robots
with revolute joints only, in arbitrary number. Figure 1 illustrates such a robot in
which the links are line segments. The links, which may actually be any polygons,
are denoted by L1 through Lq (in the �gure, q = 5). Points J2 through Jq designate
revolute joints. Point J1 denotes the base of the robot; it may, or may not, be �xed
relative to the workspace. If it is �xed, then J1 is also a revolute joint. If it is not,

17

J 1

J 2

J 3

J 4

J 5

J6

Figure 1: A planar articulated robot.

then J1 can translate freely in the plane and the robot is said to have a free base.
The point Jq+1 (J6 in the �gure) is called the endpoint of the robot; actually, it is any
point on the last link, preferably the one located the furthest away from Jq. Similarly,
if the robot's base is free, J1 can be any point on L1, preferably the one located the
furthest away from J2. Each revolute joint Ji (i = 1 or 2 to q) has de�ned certain
internal joint limits, denoted by lowi and upi, with lowi < upi, which constrain the
range of the possible orientations that Li can take relative to Li�1. If the robot's
base is free, the translation of J1 is bounded along the x and y axes of the Cartesian
coordinate system embedded in the workspace by lowx and upx, and lowy and upy,
respectively.

We represent the C-space of such a q-link planar articulated robot by:

[low1; up1]� [low2; up2]� : : :� [lowk; upk];

if its base is �xed, and by:

[lowx; upx]� [lowy; upy]� [0; 2�]� [low2; up2]� [low3; up3]� : : :� [lowk; upk];

if its base is free. We call a self-collision con�guration any con�guration where two
non-adjacent links of the robot intersect each other. We may, or may not allow such
con�gurations. If we do not allow them, as is the case in all the examples considered
in this paper, the free C-space is not only constrained by the obstacles, but also
by the set of self-collision con�gurations. We assume that the joint limits prevent
self-collisions between any two adjacent links.

We now discuss speci�c techniques for local path planning, distance computation,
and collision checking that apply well to the family of robots de�ned above. The same
techniques can also be applied, possibly with minor adaptations, to other types of
articulated robots, e.g., robots with prismatic joints and/or with multiple kinematic
chains (see [KL94a]) and articulated robots in 3D workspace (see [KL94b]).

18

Local path planning. Let a and b be any two given con�gurations that we wish to
connect with the local planner. The local planner we use constructs a path as follows:
It translates at constant relative velocity all the joints with an even index, i.e., all
J2�i's, along the straight lines in the workspace that connect their positions at con�g-
uration a to their positions at con�guration b. During this motion the planner adjusts
the position of every other joint J2�i+1 using the straightforward inverse kinematic
equations of this point relative to J2�i and J2�(i+1). Thus, the J2�i+1's \follow" the
motion led by the J2�i's. If q is odd, the position of Jq is not determined by the above
rule; it is then computed by rotating joint Jq at constant revolute velocity relative
to the linear velocity of point Jq. Recall from Subsection 3.1.1 that a local path is
discretized into a sequence of con�gurations for collision checking. When our speci�c
technique is used, we must also verify that the coordinates of each such con�guration
are within joint limits. Thus, the motion is aborted if either a collision occurs, or a
joint moves beyond one of its limits, or a point J2�i+1 cannot follow the motion led by
the J1�i's. We have observed that in cases when the above motion does not manage
to connect con�gurations a and b, it nevertheless brings the robot to a con�guration
b0 very close to b. It then pays o� to try to connect b0 and b with a straight line in
C-space and only after this fails to declare failure of the local planner to connect a
and b. In the following we will refer to the above planner as the speci�c local planner.

The workspace region swept out by the robot along a local path computed by the
speci�c local planner between two con�gurations a and b is typically smaller than for
the path joining a and b by a straight line segment in con�guration space, which is
computed by the general local planner described in Subsection 3.1.1. Hence, the local
paths generated by the speci�c planner are more likely to be collision-free than those
generated by the general planner. Also, collision checking is less expensive since, for
a given eps, the discretization of the local path yields less con�gurations. On the
other hand, the speci�c planner, though still very fast, is not as fast as the general
planner. Indeed, checking that the dofs remain within joint limits along the local
path requires inverse kinematic computation to determine con�guration coordinates
along the path. Furthermore, this check is not as rigorous, since it is performed only
at a �nite number of con�gurations. Nevertheless, our experience has been that the
overall planning method performs signi�cantly better on examples involving many-
dof planar articulated robots, when the speci�c local planner is used instead of the
general one.

Distance computation. In association with the above local planning technique
we propose the following distance function D in con�guration space: Let Ji(a), i =
1; : : : ; q + 1 denote the position of the point Ji in the workspace, when the robot is

19

at con�guration a. We de�ne D by:

(a; b) 2 C � C 7! D(a; b) =

0
@
q+1X
i=1

kJi(a)� Ji(b)k
2

1
A
1=2

;

where kJi(x) � Ji(y)k is the Euclidean distance between Ji(a) and Ji(b). When the
robot has a �xed base, the �rst term of the above sum is zero. This function is a
better approximation of the area swept by the robot along the local paths computed
by the speci�c local planner than the general distance function de�ned by Equ. (1).

Collision checking. The 2D workspace allows for a very fast collision checking
technique. In this technique each link of the robot is regarded as a distinct robot
with two dofs of translation and one dof of rotation. A bitmap representing the 3D
con�guration space of this robot is precomputed, with the \0"'s describing the free
subset of this space and the \1"'s describing the subset where the link collides with
an obstacle. When a con�guration is checked for collision, the 3D con�guration of
each link is computed and tested against its C-space bitmap, which is a constant-
time operation. The con�guration of a link is particularly fast to compute when the
speci�c local planner is used, since this planner directly provides the coordinates of
two points in the link. Note that we need not always create one bitmap for each link
of the robot. For example, when all the links are line segments (as in Figure 1), a
single bitmap can be computed, for the shortest link, by modeling the longer links as
two (or more) short line segments. However, collision checking for a long link then
requires multiple access to the bitmap.

The 3D bitmap for one link can be computed as a collection of 2D bitmaps, each
corresponding to a �xed orientation of the link. If the link and the obstacles are
modeled as collections of possibly overlapping convex polygons, the construction of
a 2D bitmap can be done as follows [LRDG90]: First use the algorithm in [LP83] to
produce the vertices of the obstacles in the link's C-space. (This algorithm takes linear
time in the number of vertices of the objects.) Then draw and �ll the obstacles into the
2D bitmap. (On many workstations, this second operation can be done very quickly
using raster-scan hardware originally designed to e�ciently display �lled polygons on
graphic terminals.) Each 2D bitmap may also be computed using the FFT-based
method described in [Kav93]), whose complexity depends only on the size of the
bitmap. This FFT method is also advantageous when the obstacles are originally
input as bitmaps. In any case, experiments show that computing a 3D bitmap with a
size on the order of 128� 128� 128 takes a few seconds. The computation of the 3D
bitmap(s) needed for collision checking is performed only once, prior to the learning
phase.

20

Clearly, this technique is not yet practical for 3D workspaces, since it requires the
generation of 6D bitmaps.

As mentioned above, there are many other ways of adjusting our general path plan-
ning method to a speci�c robot. For example, when placed in cluttered workspaces,
robots of the type considered in this section yield C-spaces in which collision-free con-
�gurations form a tiny portion (typically a fraction of 1%) of the total space. Hence,
a small ratio of the con�gurations which are randomly generated in the learning phase
are collision-free. Most generated con�gurations are rejected by the collision-checking
test. Several optimizations can be applied in this step. For example, we can draw the
con�guration coordinates in sequence from the base to the endpoint of the robot, and
check a link for collision as soon as its location gets determined in order to discard
con�gurations outside free C-space as early as possible.

However, too much speci�c tuning may not always be desirable, since it ultimately
requires frequent changes in the implemented planner. At some point the gains in
e�ciency become too small and are no longer worth the burden of making the speci�c
changes and keeping track of them.

5 Results with customized implementation

In this section we consider an implementation of the general method presented in
Section 3, in which the local planner, the collision checker, and the distance func-
tion have been replaced by the speci�c ones described in Section 4. Actually to be
precise, while collision checking with obstacles is done using the bitmap technique,
self-collisions are detected analytically.

The planner is implemented in C and for the experiments reported here we used
a DEC Alpha workstation (Model Flamingo). This machine is rated on the SPEC-
MARKS benchmark with 126.0 SPECfp92, 74.3 SPECint92 and is running under
DEC OSF/1.

We have tested our planner on a number of test scenes. Each such scene consists
of a 2D workspace containing polygonal obstacles and a planar articulated robot
whose links are line segments (see Figures 2 and 6). By no means does this reect a
limitation of the method. In particular, the speci�c local planner and collision checker
of Section 4 apply as well to robots made of polygonal links (though several bitmaps
may then be required). However, modeling links by line segments facilitates quick
changes in the description of the robot and makes the graphic display of paths very
easy.

The parameters given to our planner, which we consider in this section, are:

21

� TC, the time to be spent in the construction step;

� TE, the time to be spent in the expansion step;

� maxdist, the maximal distance between nodes that the local planner may try
to connect;

� eps, the constant used to discretize local paths before collision checking;

� maxneighbors, the maximum number of calls of the local planner per node;

� TRB expand, the duration of the computation of a random-bounce walk per-

formed during the expansion step (learning phase);

� NRB query, the maximum number of rbws allowed for connecting the start or

goal con�guration to the roadmap (query phase);

� TRB query, the duration of the computation of each of the rbws during the
query phase.

(Notice that the last two parameters determines an upper bound on the time it takes
to answer a query.)

For each test scene, we �rst input a set of con�gurations by hand, which we re-
fer to as the test set. For a �xed TC and TE, we then independently create many
di�erent roadmaps starting with di�erent values of the random value generator. In
the examples discussed here we only keep the largest connected component of the
roadmap; other components, if any, are simply discarded. We then try to connect
the same con�guration to each of these roadmaps and we record the percentage of
times our planner succeeds to make a connection in a prespeci�ed amount of time (2.5
seconds). In this way, we believe that we present a quite realistic characterization
of the performance of our planner. In particular, we ensure that the results do not
reect just a lucky run, or a bad one. We independently repeat the same experiment
for a number of di�erent times TC and TE. For the other parameters described above,
we choose �xed values throughout the experiments based on some preliminary experi-
mental results. Notice that it is important to choose the con�gurations in the test set
manually. For obvious reasons, a random generation similar to the one used during
the learning phase tends to produce con�gurations that are very easily connected to
the roadmap. Instead, proceeding manually allows us to select \interesting" con�gu-
rations, for example con�gurations where the robot lies in narrow passages between
workspace obstacles. It is unlikely that the random generator of the learning phase
produced many such con�gurations.

22

We present results obtained with two representative scenes shown in Figures 2
(�xed-base robot) and 6 (free-base robot):

Fixed-base articulated robot. Figure 2 shows eight con�gurations forming the
test set of a �xed-base articulated robot in a scene with several narrow gates.

Column 1 of the table in Figure 3 shows the total time, TL, spent in the learning
phase. This time is broken into TC and TE in columns 2 and 3, with TE = TC=2.
The values of the other parameters of the planner are: maxdist = 0:4, eps = 0:01
(for the interpretation of these two values note that the workspace is described as
a unit square), maxneighbors = 30, TRB expand = 0:01 sec, TRB query = 0:05 sec,
NRB query = 45.

For every row of the table in Figure 3 we separately generated 30 roadmaps, each
with the indicated learning time. The roadmaps generated for di�erent rows were also
computed independently, that is, no roadmap in some row was reused to construct a
larger one in following row.

Column 4 in Figure 3 gives the average number of nodes, over the 30 runs, in
the largest roadmap component at the end of the learning phase. Columns 5 though
12 are labeled with the eight con�gurations C1; : : : ; C8 of Figure 2. They report the
success rate when trying to connect, in less that 2.5 seconds, the corresponding con�g-
uration to each of the 30 produced roadmaps. One trial (as de�ned by the parameters
maxdist, maxneighbors, TRB query, and NRB query) was made per roadmap.

The table in Figure 3 shows that after a learning time of 60 seconds or more (rows
5, 6, and 7), all eight con�gurations of Figure 2 are successfully connected to the
generated roadmaps with very few exceptions. These are all located in row 6, where
con�gurations C3, C4 and C7 were not connected to the produced roadmap, once out
of the 30 trials of that row. Such exceptions are to be expected with a randomized
technique.

Let us also note that actual timings for the connections of C1; : : : ; C8 to the
roadmaps are very small: only a fraction of a second. This is shown in Figure 5
where we report the time it takes to connect the con�gurations to one of the 30
roadmaps produced, after learning times of 20, 30, 40, 50, 60, 70 and 80 seconds.
Failure to connect to the largest component produced in less than 2.5 seconds is
denoted by `F'. In that table we report in column 4 the size of all the components
produced with more than 10 nodes. It is easy to see that after a preprocessing time
of 40 seconds, there is a clear di�erence in the size of the major component and the
smaller ones. The latter contain only a small percentage of the total nodes and their
presence does not a�ect path planning times.

Path planning will succeed between any two con�gurations that can be connected

23

C8C7C6C5

C4C3C2C1

Figure 2: Scene 1, with 7-revolute-joint �xed-base robot.

TL TC TE Avg. Success Rate (%)
(sec) (sec) (sec) nodes C1 C2 C3 C4 C5 C6 C7 C8

20.4 13.3 7.0 975 100.0 26.7 36.7 13.3 40.0 96.7 26.7 43.3
30.0 19.5 10.5 1548 100.0 70.0 53.3 70.0 50.0 100.0 70.0 56.7
40.2 26.1 14.0 2102 100.0 80.0 76.7 80.0 80.0 100.0 80.0 83.3
50.1 32.5 17.5 2635 100.0 90.0 90.0 90.0 93.3 96.7 90.0 93.3
60.1 39.0 21.0 3147 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
70.4 45.8 24.6 3669 100.0 96.7 100.0 96.7 100.0 100.0 96.7 100.0
80.6 52.4 28.1 4061 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Figure 3: Results with customized planner for scene of Fig. 2 (with expansion).

TL TC TE Avg. Success Rate (%)
(sec) (sec) (sec) nodes C1 C2 C3 C4 C5 C6 C7 C8

20.2 20.2 0.0 947 100.0 10.0 23.3 10.0 26.7 73.3 10.0 23.3
30.3 30.3 0.0 1506 100.0 46.7 46.7 46.7 46.7 93.3 46.7 46.7
40.3 40.3 0.0 2150 100.0 73.3 76.7 73.3 76.7 100.0 73.3 76.7
50.3 50.3 0.0 2740 100.0 90.0 100.0 90.0 100.0 100.0 90.0 100.0
60.1 60.1 0.0 3211 100.0 90.0 100.0 90.0 100.0 93.3 90.0 100.0
70.3 70.3 0.0 3668 100.0 96.7 100.0 96.7 100.0 100.0 96.7 100.0
80.2 80.2 0.0 4103 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Figure 4: Results with customized planner for scene of Fig. 2 (no expansion).

24

TL TC TE Size of Connection to roadmap time (sec)
(sec) (sec) (sec) Components C1 C2 C3 C4 C5 C6 C7 C8

20.3 13.3 7.0 902,135,22 0.02 F 1.12 F 0.23 0.45 F 0.25
30.2 19.7 10.5 1607,144,12 0.00 0.02 F 0.40 F 0.55 0.00 F
40.4 26.3 14.1 2389,12 0.00 0.08 0.00 0.17 0.00 0.02 0.00 0.07
50.3 32.8 17.5 2879,43,15,10 0.02 0.02 0.00 0.17 0.07 0.00 0.02 0.05
60.4 39.3 21.1 3251,39,34 0.03 0.02 0.00 0.02 0.02 0.02 0.02 0.12
70.2 45.6 24.6 3717,50,43 0.02 0.02 0.00 0.00 0.02 0.00 0.02 0.02
80.2 52.1 28.1 4128,50,47 0.02 0.02 0.02 0.15 0.02 0.02 0.02 0.07

Figure 5: Timings for connecting con�gurations to the roadmap.

to the roadmaps produced. A simple breadth-�rst search algorithm typically takes less
than 0:1 second to �nd a path between two nodes of the roadmaps in our examples.
Thus, path planning between any two of C1; : : : ; C8 takes only a fraction of a second.
This was the case for any two con�gurations we tried in the scene of Figure 2 and
not only the eight con�gurations considered here.

Figure 4 shows the percentage of successful connections to roadmaps created with
no expansion. The corresponding rows of the tables in Figures 3 and 4 report results
obtained in the same learning time. We generated 30 independent roadmaps in each
row in Figure 4. We again show the average number of nodes in their largest com-
ponent (column 4) and the success rate when trying to connect C1; : : : ; C8 to these
roadmaps. In general, the percentages of successful connections are lower in this ta-
ble. The di�erence shows more clearly when the learning time is small. If we are
interested in obtaining a solution to a path planning problem as fast as possible, it is
thus better to spend part of the time allocated to the learning phase on the expansion
step rather than spend it completely on the construction step. As mentioned above,
the ratio TC=TE = 2 gives good results over a wide range of problems.

Free-base articulated robot. We have performed the same experiments for a
free-base articulated robot (see Figure 6). The robot has a total of 7 dof: 2 for its
free base and 5 for its revolute joints. The parameter values are the same as in the
previous experiments.

Figures 7 and 8 show the results obtained with and without expansion, respec-
tively. Again, in almost all cases, the percentage of successful connections to the
roadmaps is greater with expansion than without (for the same total learning time).
After a learning phase of 70 seconds, almost all con�gurations can be connected to

25

C8C7C6C5

C4C3C2C1

Figure 6: Scene 2, with 7-revolute-joint free-base robot.

TL TC TE Avg. Success Rate (%)
(sec) (sec) (sec) nodes C1 C2 C3 C4 C5 C6 C7 C8

20.40 13.32 7.08 565 100.0 13.3 13.3 13.3 13.3 93.3 13.3 13.3
30.45 19.83 10.62 936 93.3 30.0 33.3 30.0 30.0 90.0 30.0 33.3
40.18 26.15 14.03 1571 100.0 60.0 60.0 60.0 60.0 100.0 60.0 60.0
50.20 32.63 17.57 2333 100.0 93.3 93.3 93.3 93.3 100.0 93.3 93.3
60.43 39.35 21.08 2850 100.0 93.3 93.3 93.3 93.3 100.0 93.3 93.3
70.33 45.80 24.53 3366 100.0 96.7 96.7 96.7 96.7 100.0 96.7 96.7
80.18 52.15 28.03 3837 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Figure 7: Results with customized planner for scene of Fig. 6 (with expansion).

TL TC TE Avg. Success Rate (%)
(sec) (sec) (sec) nodes C1 C2 C3 C4 C5 C6 C7 C8

20.25 20.25 0.00 517 96.7 3.3 3.3 3.3 10.0 80.0 3.3 3.3
30.22 30.22 0.00 971 100.0 26.7 33.3 26.7 30.0 93.3 33.3 30.0
40.30 40.30 0.00 1348 100.0 33.3 33.3 33.3 33.3 100.0 33.3 33.3
50.06 50.05 0.02 2171 100.0 76.7 76.7 76.7 76.7 100.0 76.7 76.7
60.01 60.01 0.00 2632 100.0 80.0 80.0 80.0 80.0 100.0 80.0 80.0
70.28 70.28 0.00 3190 100.0 90.0 90.0 90.0 90.0 100.0 90.0 90.0
80.31 80.30 0.02 3836 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Figure 8: Results with customized planner for scene of Fig. 6 (no expansion).

26

the roadmaps produced. Actual timings for connecting C1; : : : ; C8 to the roadmaps
are also in the order of a fraction of a second and path planning between any two of
the eight shown con�gurations takes a fraction of a second.

6 Results with general implementation

The customized implementation used in the previous section solves e�ciently path
planning problems involving planar articulated robots. In this section we wish to
demonstrate that the general implementation of the planner still gives very good
results for a variety of examples.

The planner considered here is essentially an implementation of the method de-
scribed in Section 3. Unlike the customized implementation, this implementation
does not use any speci�c techniques for local path planning, collision checking, or
distance computation. Hence, as described in Section 3, the local path constructed
between any two con�gurations is the straight line segment joining them in C-space;
the distance function D is the one de�ned by Equ. (1); and collision checking is done
analytically, using routines from the PLAGEO library [Gie93]. We report here on
experimentation conducted with articulated robots with 4 or 5 joints connected by
polygonal links. However, as noted before, the same implementation is directly ap-
plicable to other holonomic robots, e.g., robots with polyhedral links moving in 3D
workspaces.

The experiments were conducted on a Silicon Graphics Indigo2 workstation with
an R4400 processor running at 150 MHZ. This machine is rated on the SPECMARKS
benchmark with 96.5 SPECfp92 and 90.4 SPECint92. It is comparable to the machine
we used for the results in the previous section.

We present results obtained with two representative examples. In scene 1, shown
in Figure 9, we have a 4-dof robot with three revolute joints and one prismatic joint
(indicated by the double arrow). Scene 2, shown in Figure 10, is a slightly more
di�cult one, with a �ve-revolute-joint robot and narrow areas in the workspace. For
most existing planners, motion planning problems in both these scenes would be
challenging ones. Still, they are considerably easier than in the scenes of Section 5,
due to the relatively low number of dofs of the two robots, and the presence of only
few tight areas in the workspaces of the robots.

The experiments conducted with these two test scenes are similar, though some-
what simpler, than those in Section 5. For each scene, we consider only two \di�cult"

27

Figure 9: Scene 1, with four-dof robot.

Figure 10: Scene 2, with �ve-dof robot.

28

TL TC TE Success rate in Scene 1 Success rate in Scene 2
(sec) (sec) (sec) (%) (%)
5 3.33 1.67 50 37
10 6.66 3.34 80 87
15 10 5 97 93
20 13.33 6.67 100 100

Figure 11: Results with general planner for scenes of Fig. 9 and 10.

con�gurations s and g. Then, for a �xed construction time TC and expansion time TE
(hence, a �xed learning time TL), we independently create 30 roadmaps. For each of
these roadmaps we only consider its main connected component and we test whether
the query with con�gurations (s; g) succeeds within 2.3 seconds. In other words, we
test whether both s and g can be quickly connected to the main connected component
of the roadmap with the method described in Section 3.2. We repeat this experi-
ment for a number of di�erent construction times TC and expansion times TE, with
TE = TC=2). For each such pair of times we report the success rate in percent of the
query phase.

The other parameters have the following �xed values, which are almost the same as
in the experimentation reported in the previous section: maxdist = 0:5, eps = 0:01,
maxneighbors= 30, TRB expand = 0:01, TRB query = 0:05 sec, and NRB query = 45.
Again, for the interpretation of the values for maxdist and eps, note that we scaled
the two scenes in a way that the workspace obstacles just �t into the unit square.

In both Figures 9 and 10 the start con�guration s is shown in dark grey, and
the goal con�guration R in white. In each �gure, several robot con�gurations along
a path solving the query are displayed using various grey levels. The results of the
experiments described above are given in Figure 11. We see that the query in scene 1
is solved in all 30 cases after having learned for 20 seconds. Learning for 10 seconds
though su�ces to successfully answer the query in 80% of the cases. In scene 2 we
observe a similar behavior.

These results show that the general implementation is able to e�ciently solve
rather complicated planning problems. However, when applied to problems involving
more dofs, like those in the previous section, the learning times required to build
good roadmaps are much longer. For example, experiments indicated that about 30
minutes of learning are required in order to obtain roadmaps that capture well the
free C-space connectivity of the scene shown in Figure 2. Figure 12 reports some
experimental results. As in Section 5, we show the percentage of times that our

29

TL TC TE Success Rate (%)
(min) (min) (min) C1 C4 C7 C8

5 3.3 1.7 76.7 10.0 23.3 26.7
10 6.7 3.3 96.7 66.7 70.0 53.3
15 10 5.0 96.7 73.3 66.7 80.0
20 13.3 6.7 100.0 93.3 83.3 93.3
25 16.7 8.3 100.0 96.7 96.7 100.0
30 20 10 100.0 100.0 100.0 100.0

Figure 12: Results with general planner for scene of Fig. 2 (with expansion).

planner succeeds to connect the speci�ed con�gurations to the roadmap, over many
independently constructed roadmaps, for di�erent learning times. In such di�cult
cases, clearly, customization is desirable, if not necessary.

7 Conclusion

We have described a two-phase method to solve robot motion planning problems
in static workspaces. In the learning phase, the method constructs a probabilistic
roadmap as a collection of con�gurations randomly selected across free C-space. In
the query phase, it uses this roadmap to quickly process path planning queries, each
speci�ed by a pair of con�gurations. The learning phase includes a heuristic evaluator
to identify di�cult regions in the free C-space and increase the density of the roadmap
in those regions. This feature is key to solving di�cult queries.

The method is general and can be applied to virtually any type of holonomic robot.
Furthermore, it can be easily customized to run more e�ciently on some family of
problems. Customization consists of replacing general components of the method,
such as the local planner, by more speci�c ones �tting better the characteristics of
the considered scenes. In this paper we have reported on the application of the method
to planar articulated robots. We have described techniques to customize the method
to such robots and we have presented experimental results with both a general and
a customized implementation of the method. The customized implementation can
solve very di�cult path planning queries involving many-dof robots in a fraction of
a second, after a learning time of a few dozen seconds. The general implementation
e�ciently solves less di�cult, but still challenging problems, demonstrating the power
of our method.

30

In [KL94a, KL94b, O�S94] prior versions of the method have been applied to a
great variety of holonomic robots including planar and spatial articulated robots with
revolute, prismatic, and/or spherical joints, �xed or free base, and single or multiple
kinematic chains. In [�Sve93, �SO94] a variation of the method (essentially one with
a di�erent general local planner) was also run successfully on examples involving
nonholonomic car-like robots.

Experimental results show that our method can e�ciently solve problems which
are beyond the capabilities of other existing methods. For example, for planar artic-
ulated robots with many dofs, the customized implementation of Section 5 is much
more consistent than the Randomized Path Planner (RPP) of [BL91]. Indeed, the
latter can be very fast on some di�cult problems, but it may also take prohibitive
time on some others. We have not observed such disparity with our roadmap method.
Moreover, after su�cient learning (usually on the order of a few dozen seconds), the
probabilistic roadmap method answers queries considerably faster than RPP. How-
ever, when the learning time is included in the planning time, RPP is faster on many
problems, since it does not perform any substantial precomputation.

An important question is how our method scales up when we consider scenes with
more complicated geometry, since the cost of collision checking can be expected to
increase. First, let us note that in 2D workspaces the e�ect is likely to be limited if
the bitmap collision-checking technique of Section 4 is used. Indeed, once bitmaps
have been precomputed, collision checking is a constant-time operation; and the cost
of computing bitmaps using the FFT-based technique described in [Kav93] only de-
pends on the resolution (i.e., the size) of these bitmaps. However, more complicated
geometry may require increasing bitmap resolution in order to represent geometric de-
tails with desired accuracy. With 3D workspaces the situation is completely di�erent,
since we can no longer use the bitmap technique. Our experiments in 3D workspaces
reported in [KL94b] show that the higher cost of collision checking mainly increases
the duration of the learning phase. Indeed, in the query phase, collision checking is
needed only to connect the start and goal con�gurations to the roadmap. The results
in [KL94b] also show that the duration of the learning phase remains quite reason-
able (on the order of minutes), but they were obtained with simple 3D geometry (for
example, the robot links were line segments). For more complicated geometries, the
use of an iterative collision checker, like the one in [Qui93], will be advantageous. The
collision checker in [Qui93] considers sucessive approximations of the objects and its
running time, on the average, does not depend much on the geometric complexity
of the scenes. RPP is another planner that heavily relies on collision checking. For
long we ran RPP on geometrically simple problems; but, recently, we used it to auto-
matically animate graphic 3D scenes of complex geometry [KKKL94] using the above

REFERENCES 31

iterative collision checker. We observed no dramatic slowdown of the planner.

A challenging research goal would now be to extend the method to dynamic scenes.
One �rst question is: How should a roadmap computed for a given workspace be up-
dated if a few obstacles are removed or added? Answering this question would be
useful to apply our method to scenes subject to small incremental changes. Such
changes occur in many manufacturing (e.g., assembly) cells; while most of the ge-
ometry of such a cell is permanent and stationary, a few objects (e.g., �xtures) are
added or removed between any two consecutive manufacturing operations. Similar
incremental changes also occur in automatic graphic animation. A second question is:
How should the learning and query phase be modi�ed if some obstacles are moving
along known trajectories? An answer to this question might consist of applying our
roadmap method in the con�guration�time space of the robot [Lat91]. The roadmap
would then have to be built as a directed graph, since local paths between any two
nodes must monotonically progress along the time axis, with possibly additional con-
straints on their slope and curvature to reect bounds on the robot's velocity and
acceleration.

References

[ATBM92] J. M. Ahuactzin, E.-G. Talbi, P. Bessi�ere, and E. Mazer. Using genetic
algorithms for robot motion planning. In 10th Europ. Conf. Arti�c. Intell.
pages 671{675. John Wiley and Sons, Ltd., London, England, 1992.

[BF94] J. Barraquand and P. Ferbach. Path planning through variational dy-
namic programming. In Proc. 1994 IEEE Int. Conf. Robotics and Au-

tomation, pages 1839{1846, San Diego, CA, May 1994.

[BLL92] J. Barraquand, B. Langlois, and J.-C. Latombe. Numerical potential �eld
techniques for robot path planning. IEEE Tr. Syst., Man, and Cybern.,
22(2):224{241, 1992.

[BL91] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed
representation approach. Int. J. Robotics Research, 10:628{649, 1991.

[Can88] J.F. Canny. The Complexity of Robot Motion Planning. MIT Press,
Cambridge, MA, 1988.

[CH92] P.C. Chen and Y.K. Hwang. SANDROS: A motion planner with perfor-
mance proportional to task di�culty. In Proc. of IEEE Int. Conf. Robotics

and Automation, pages 2346-2353, Nice, France, 1992.

REFERENCES 32

[CG93] D. Chalou and M. Gini. Parallel robot motion planning. In Proc. of IEEE
Int. Conf. Robotics and Automation, pages 24{51, Atlanta, GA, 1993.

[FT87] B. Faverjon and P. Tournassoud. A local approach for path planning of
manipulators with a high number of degrees of freedom. In Proc. IEEE

Int. Conf. Robotics and Automation, pages 1152{1159, Raleigh, NC, 1987.

[FT90] B. Faverjon and P. Tournassoud. A practical approach to motion planning
for manipulators with many degrees of freedom. In Robotics Research 5,
H. Miura and S. Arimoto (Eds.), pages 65{73, MIT Press, Cambridge,
MA, 1990.

[GG92] K. Gupta and Z. Gou. Sequential search with backtracking. In Proc.

of IEEE Int. Conf. Robotics and Automation, pages 2328{2333, Nice,
France, 1992.

[Gie93] G.-J. Giezeman. PlaGeo|A Library for Planar Geometry. Tech. Rep.,
Dept. Comput. Sci., Utrecht Univ., Utrecht, The Netherlands, August
1993.

[GMKL92] L. Graux, P. Millies, P.L. Kociemba, and B. Langlois. Integration of
a path generation algorithm into o�-line programming of airbus panels.
Aerospace Automated Fastening Conf. and Exp., SAE Tech. Paper 922404,
October 1992.

[GZ94] K. Gupta and X. Zhu. Practical motion planning for many degrees of
freedom: A novel approach within sequential framework. In Proc. of

IEEE Int. Conf. Robotics and Automation, pages 2038{2043, San Diego,
CA, 1994.

[HST94] Th. Horsch, F. Schwarz, and H. Tolle. Motion planning for many de-
grees of freedom - random reections at c-space obstacles. In Proc. IEEE

Int. Conf. Robotics and Automation, pages 2138{2145, San Diego, CA,
1994.

[Kav93] L. Kavraki. Computation of con�guration-space obstacles using the fast
fourier transform. In Proc. IEEE Int. Conf. Robotics and Automation,
pages 255{261, Atlanta, GA, 1993. To appear in IEEE Tr. Robotics and

Automation.

[KL93] L. Kavraki and J.-C. Latombe. Randomized Preprocessing of Con�gura-

tion Space for Fast Path Planning. Tech. Rep. STAN-CS-93-1490, Dept.
Comput. Sci., Stanford Univ., Stanford, CA, September 1993.

REFERENCES 33

[KL94a] L. Kavraki and J.-C. Latombe. Randomized preprocessing of con�gura-
tion space for fast path planning. In Proc. IEEE Int. Conf. Robotics and

Automation, pages 2138{2145, San Diego, CA, 1994.

[KL94b] L. Kavraki and J.-C. Latombe. Randomized preprocessing of con�gura-
tion space for path planning: Articulated robots. In Proc. IEEE/RSJ/GI

Int. Conf. Intelligent Robots and Systems, M�unchen, Germany, 1994.

[KKKL94] Y. Koga, K. Kondo, J. Ku�ner, and J.-C. Latombe. Planning Motions
with Intentions. In Proc. of SIGGRAPH'94, pages 395-408, FL, 1994.

[Kon91] K. Kondo. Motion planning with six degrees of freedom by multistrategic
bidirectional heuristic free-space enumeration. IEEE Tr. on Robotics and

Automation, 7(3):267{277, 1991.

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers,
Boston, MA, 1991.

[LRDG90] J. Lengyel, M. Reichert, B.R. Donald, and P. Greenberg. Real-time robot
motion planning using rasterizing computer graphics hardware. In Proc.

SIGGRAPH'90, pages 327{335, Dallas, TX, 1990.

[LP83] T. Lozano-P�erez. Spatial planning: a con�guration space approach. IEEE
Tr. on Computers, 32:108{120, 1983.

[LPO91] T. Lozano-P�erez and P. O'Donnel. Parallel robot motion planning. In
Proc. IEEE Int. Conf. Robotics and Automation, pages 1000{1007, Sacra-
mento, CA, 1991.

[LPW79] T. Lozano-P�erez and M.A. Wesley. An algorithm for planning collision-
free paths among polyhedral obstacles. Comm. of the ACM, 22(10):560-
570, 1979.

[Mas92] J. Mastwijk. Motion Planning Using Potential Field Methods. Master
Thesis, Dept. Comput. Sci., Utrecht Univ., Utrecht, The Netherlands,
August 1992.

[OY82] C. �O'D�unlaing and C.K. Yap. A retraction method for planning the
motion of a disc. J. of Algorithms, 6:104-111, 1982.

[O�S94] M. Overmars and P. �Svestka. A probabilistic learning approach to motion
planning. In Proc. Workshop Algorithmic Foundations of Robotics, San
Francisco, CA, 1994 (to appear).

REFERENCES 34

[Ove92] M. Overmars. A Random Approach to Motion Planning. Tech. Rep. RUU-
CS-92-32, Dept. Comput. Sci., Utrecht Univ., Utrecht, The Netherlands,
October 1992.

[Qui93] S. Quinlan. E�cient distance computation between non-convex objects.
In Proc. IEEE Int. Conf. Robotics and Automation, pages 3324-3330, San
Diego, CA, 1994.

[�SO94] P. �Svestka and M. Overmars. Motion Planning for Car-Like Robots, Us-

ing a Probabilistic Learning Approach. Tech. Rep. RUU-CS-94-33, Dept.
Comput. Sci., Utrecht Univ., Utrecht, The Netherlands, May 1994.

[�Sve93] P. �Svestka. A Probabilistic Approach to Motion Planning for Car-Like

Robots. Tech. Rep. RUU-CS-93-18, Dept. Comput. Sci., Utrecht Univ.,
Utrecht, The Netherlands, April 1993.

[ZG93] X. Zhu and K. Gupta. On Local Minima and Random Search in Robot

Motion Planning. Tech. Rep., Simon Fraser Univ., Burbany, BC, Canada,
1993.

