
CHU SPACES: A MODEL OF CONCURRENCY

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Vineet Gupta

August 1994

c
 Copyright 1994 by Vineet Gupta

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Vaughan R. Pratt
(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

John C. Mitchell

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

R. J. van Glabbeek

Approved for the University Committee on Graduate

Studies:

Dean of Graduate Studies

iii

Acknowledgements

A signi�cant portion of this thesis represents joint work with my advisor Vaughan

Pratt, however, his ideas and philosophy pervade each and every section of it. He has

been instrumental in shaping my ideas of concurrent systems and my view of research

in general, and his support and intellectual guidance have made this dissertation

possible.

I would also like to thank the members of my reading committee, Dr. R. J. van

Glabbeek, Prof. John Mitchell and Prof. Michael Genesereth for taking the time to

carefully read the initial drafts and providing extensive comments. Many stimulating

discussions with Carolyn Brown, Ross Casley, Rob van Glabbeek, Radha Jagadeesan,

Gordon Plotkin, Vijay Saraswat and Ramesh Viswanathan have in numerous ways

contributed to the ideas of this thesis | I am indebted to each one of them.

I gratefully acknowledge the generous �nancial support provided by Accel Partners

in the form of a Center for Telecommunications fellowship, and would like to thank

Dr. Dixon Doll and Prof. Dale Harris in this context. Substantial support was also

provided by several NSF grants and a gift from Mitsubishi Corporation.

In a very signi�cant way, this thesis is a product of the con�dence that my wife

Mudita has always expressed in me | a special \thank you" to her. Another special

thank you goes to my sister Seema, for all her encouragement. And �nally, I can-

not even begin to express my gratitude to my parents, this thesis is a�ectionately

dedicated to them.

iv

Contents

Acknowledgements iv

1 Introduction 1

2 Models of Concurrency 4

2.1 Action based models : 6

2.1.1 Petri nets : 6

2.1.2 Calculus of Communicating Systems and transition graphs : : 8

2.1.3 Traces : 10

2.1.4 Higher dimensional automata : : : : : : : : : : : : : : : : : : 11

2.2 Event based models : 13

2.2.1 Partially ordered multisets : 13

2.2.2 Event Structures : 13

2.2.3 Geometric Automata : 15

3 De�nition of a Chu space 16

3.1 Relations and Chu spaces : 16

3.2 Pictorial representation of Chu spaces : : : : : : : : : : : : : : : : : : 18

3.3 Partial Distributive Lattices : 20

3.4 The logic representation : 22

3.5 Alternative presentations: duality : 24

3.6 More examples : 24

3.7 Chu's Construction: The categorical de�nition : : : : : : : : : : : : : 27

v

4 The Category of Chu Spaces 29

4.1 Maps between Chu Spaces : 29

4.2 Duality : 32

4.3 The internal Hom functor : 33

5 Concurrency Applications 35

5.1 Behavior accepted by Chu spaces : 35

5.2 Dual view of a Chu space | Schedules : : : : : : : : : : : : : : : : : 38

5.3 Logical representation of Chu spaces | Gates as acceptors : : : : : : 39

5.4 Aspects of concurrency : 40

5.5 Morphisms as simulations : 43

5.6 Programming an automaton or a schedule : : : : : : : : : : : : : : : 45

6 Algebra of Chu Spaces 47

6.1 De�nitions and interpretation : 47

6.2 Identities and Equivalences : 60

6.3 Connection with linear logic : 69

7 Comparison with other models 71

7.1 Event Structures and Petri nets : 71

7.2 A Chu Semantics for CCS and CSP : : : : : : : : : : : : : : : : : : : 78

8 Future Research 82

Bibliography 84

vi

List of Figures

2.1 A Petri net, and a few steps of its execution. : : : : : : : : : : : : : : 7

2.2 Higher Dimensional Automata. Shaded area represents a surface. : : 12

3.1 Five Chu spaces. : 17

3.2 The four extensional Chu spaces of Figure 3.1, drawn as partial Boolean

Algebras. : 19

3.3 The 3 extensional T0 Chu spaces of Figure 3.1 drawn as pdlats : : : : 22

3.4 Incompleteness of Poset Structure : 22

3.5 The Chu spaces with jAj � 3. : 26

4.1 A Chu map in matrix form. : 30

5.1 Schedules and Automata for some concurrent behaviors. : : : : : : : 41

5.2 Automata for disjunctive enabling and postponed concurrency : : : : 43

5.3 Schedule and Automaton for the mutual exclusion process. : : : : : : 46

6.1 The sum of two gates. : 49

6.2 The product of two gates. : 50

6.3 Choice of two Chu spaces. : 51

6.4 Tensor product of Chu spaces. : 52

6.5 Pre�xing a Chu space. : 54

6.6 Partial Synchronous Product of P and Q. : : : : : : : : : : : : : : : 57

7.1 A Petri net for postponed concurrency, and one which cannot be rep-

resented as a Chu space. : 77

vii

Abstract

A Chu space is a binary relation between two sets. In this thesis we show that Chu

spaces form a non-interleaving model of concurrency which extends event structures

while endowing them with an algebraic structure whose natural logic is linear logic.

We provide several equivalent de�nitions of Chu spaces, including two pictorial

representations. Chu spaces represent processes as automata or schedules, and Chu

duality gives a simple way of converting between schedules and automata. We show

that Chu spaces can represent various concurrency concepts like con
ict, temporal

precedence and internal and external choice, and they distinguish between causing

and enabling events.

We present a process algebra for Chu spaces including the standard combinators

like parallel composition, sequential composition, choice, interaction, restriction, and

show that the various operational identities between these hold for Chu spaces. The

solution of recursive domain equations is possible for most of these operations, giv-

ing us an expressive speci�cation and programming language. We de�ne a history

preserving equivalence between Chu spaces, and show that it preserves the causal

structure of a process.

Chapter 1

Introduction

This dissertation presents a model of concurrent behavior called Chu spaces. We

propose this model as a simple yet e�ective means of understanding the mathematics

behind concurrency.

The goal of any model of concurrency is to formalize the notion of concurrent

behavior. Whenever a programmer writes a program, he or she has some intuitive

idea of how the system will behave. For example, if one writes if (a or b) then

A, then one has some notion of how the system would evaluate a or b. This may or

may not correspond to how the system actually does the evaluation. The purpose

of a mathematical model is to make precise the intuitions, so that there is no gap

between the user's perspective and the actual implementation. This gap is even more

apparent in concurrency, making mathematical models absolutely necessary.

The second goal is to make available the tools that mathematicians have developed

over the years to designers and users of concurrent systems. This is clear by analogy

with other areas of computer science, for example computer graphics, which has

clearly bene�tted from the mathematical models of geometry | vector spaces, metric

spaces, topology etc. These have not only led to a formalization of graphics, but have

also led to a variety of mathematical tools for graphics. We seek a similar model for

concurrent behavior, which would help develop tools useful for designing and verifying

concurrent systems | traditional tools for debugging and simulation are tailored to

deterministic sequential programs and are very inadequate for concurrent programs.

1

CHAPTER 1. INTRODUCTION 2

Many models of concurrent behavior already exist | Petri nets, automata, CCS,

event structures etc. So why do we need a new model? Our experience with these

models has shown us that none of them are as well matched to concurrent behavior

as say vector spaces are to graphics. We will examine a number of these models in

detail in the next chapter to show this. In this dissertation we propose a model which

seems almost trivial due to its mathematical simplicity, yet is rich enough to subsume

many of the models described above.

Central to the notion of all computer systems is the idea of a state, which is a

snapshot of a system at any time. The other basic idea is that systems can move

from one state to another by doing certain actions. We take just these two ideas,

and without imposing upon them any additional mathematical structure, use them

to get a model of concurrency. So a system is modeled as a pair of sets | the set of

states it can be in, and the set of events (occurrences of transitions) that can happen

during its execution. The state of a system carries the history of the system, namely

the set of events that have occurred so far. This is exactly the de�nition of a Chu

space|a set of events, and a set of states each of which contains the history by being

represented as a set of events.

In the next chapter we will examine some models of concurrency. We will see the

ideas which they contributed to Chu spaces, and also see how they fall short of our

intuitions for concurrent behavior. In chapters 3 and 4 we will de�ne Chu spaces and

present some of the mathematics behind them. We will also give a summary of the

applications of Chu spaces to mathematics, the details of these are given elsewhere.

In Chapter 5 we will show how Chu spaces describe the behavior of a process. We

will also show how various features of concurrent behavior can be represented in a Chu

space. Chapter 6 will describe the algebra of Chu spaces, giving the various operators

on them, and interpreting them as constructs for concurrency. We prove a number of

identities for Chu spaces, showing that these operators match our intuitions for these

operators.

Chapter 7 will compare Chu spaces with the models described in chapter 2. We

will show that event structures and Petri nets are generalized by Chu spaces, and

will give a non-interleaving Chu space semantics for CCS and CSP. Finally we will

CHAPTER 1. INTRODUCTION 3

present some directions for future work in this area.

This work originated from Professor Vaughan Pratt's study of non-interleaving

models of concurrency in the last decade. In 1991 he re�ned his model of partially

ordered multisets to get a new model, event spaces [Pra92c, Pra92a], which are partial

orders with all nonempty joins and the empty meet. This further prompted him to

de�ne a more general model, partial distributive lattices, which are partial orders for

which meet and join are partial functions, that is they may not be de�ned for all

subsets of the set of elements. These partial functions, ^;_ : 2A ! A had to obey

certain axioms which forced them to behave like meet and join for lattices, namely

they had to satisfy the idempotence, associativity, absorption and distributivity laws.

In our work on partial distributive lattices, we discovered that they did not satisfy

the involution of duality (A?? �= A), and lacked some other properties. We found

that we had to keep more information than just equations of the form ^X = a and

_Y = b. We discovered that the most succinct method of keeping this information

was by embedding the set A in an underlying distributive lattice, giving the new

de�nition of partial distributive lattices described in chapter 3. Shortly thereafter,

Pratt made the connection with Chu's construction, giving the name Chu spaces to

partial distributive lattices.

In this thesis, the work in chapters 3 { 5 was mostly done jointly with Prof. Pratt,

my advisor. In particular, the logical representation and the gate representation of

Chu spaces was his idea, and he was also responsible for the ideas behind �gure 3.5.

Parts of chapters 6 and 7 were also done jointly, especially the de�nitions of the

combinators for Chu spaces and the embedding into event structures. Prof. Pratt

wrote the macros for drawing lattices and circuits, which I have used extensively, as

well as the macros for writing the symbol ...
...........
.........
.............................. (other authors have used all sorts of weird

combinations for writing it in LaTEX!). The work in chapter 6 has also bene�ted from

discussions with Dr. R. J. van Glabbeek and Prof. Gordon D. Plotkin. Some of the

results in the thesis have been published in [Gup93, GP93].

Chapter 2

Models of Concurrency

Before we get into Chu space theory and applications we will brie
y review some

models of concurrency which contributed ideas to our model. These include Petri

nets, traces, transition graphs and CCS, event structures, geometric automata and

pomsets.

All models of concurrency have a concept of a state, which is a description of a

system at a particular moment. They also have a way of moving from one state to

another by means of certain transitions. Various models represent these transitions

by actions or events. Petri nets, transition graphs and traces are action based models

because any transition can occur repeatedly. Event structures, geometric automata

and pomsets are event based models, where each event can occur at most once during

the execution of a process.

In order to represent multiple occurrences of an action, event based models use

labeling functions, so each event can be labeled with an action. Event based models

keep around the entire history of a process, so there are no loops, i.e. after moving out

from a state, a system can never return to that state. The main disadvantage of this is

that processes which can be represented by small structures in an action based model

may need in�nite structures in event based models. On the other hand representing

each event explicitly allows easy formulation of these models as categories, which

automatically equips them with a tractable algebraic theory. Keeping track of each

occurrence of an action makes the information content of each state very clear, making

4

CHAPTER 2. MODELS OF CONCURRENCY 5

them close to domain theory and providing them with a schedule-automaton duality.

Another way to classify these models is as interleaving versus non-interleaving

models. Interleaving models have a set of actions which are atomic or indivisible, and

the parallel execution of two atomic actions is regarded as equivalent to executing

them in any order. Thus they satisfy the law : ajjb = ab t ba1. CCS transition graphs,

traces and geometric automata are examples of interleaving models. Non-interleaving

models do not project events onto a linear timescale. In such a model, ajjbmeans that

there is no information about the order relation between a and b. This is regarded

as di�erent from ab t ba, which represents mutual exclusion between a and b. Petri

nets, event structures and pomsets are non-interleaving models.

The main justi�cation for interleaving models is that for some kinds of observa-

tions, the two processes ajjb and ab t ba are observationally the same. Besides, this

assumption leads to a more tractable algebraic theory. On the other hand, the inter-

leaving assumption forces some actions to be regarded as atomic, imposing a �xed

granularity on the actions. This may be impractical, as one may wish to view actions

on di�erent scales depending on the context. For example, if a user wants to reason

about a piece of software, the lowest granularity available may be a lot bigger than

atomic actions, as the software writer may not give details below a certain level for

proprietary reasons or for modularity | future releases could implement the same

actions in a di�erent way. Thus non-interleaving models allow action re�nement, the

splitting up of an action into several smaller actions.

Another philosophical problem with the interleaving assumption is that it imposes

on the process a global clock by which all actions are timed, but in distributed systems

there is no such clock as delays caused by the network and relativity may allow

di�erent observers to see di�erent temporal orders for the actions. Thus it does not

make sense to say that they occur in some interleaved order.

1a t b is a choice between a and b

CHAPTER 2. MODELS OF CONCURRENCY 6

2.1 Action based models

2.1.1 Petri nets

Petri nets are one of the oldest models for modeling concurrent behavior [Pet62b,

Pet62a, Rei85]. A net is a directed bipartite graph | (S; T; F), where S and T are

the vertices, S \T = ; and the set of edges is F � (S�T)[(T �S). While there are

various
avors of Petri nets, all of them have some notion of marking, where tokens

are placed on various S vertices, and a transition t 2 T �res by taking some tokens

from the sources of its incoming arcs and placing some tokens on the targets of its

outgoing arcs. The state of a Petri net is given by the marking at any point in its

execution.

One of the most appealing features of Petri nets is that they have a simple pictorial

representation, as a graph with two kinds of nodes, S-nodes are drawn as circles and

T -nodes as squares. Now the tokens can be represented by a number on the S-nodes,

and T -nodes can have labels for transitions. This representation makes it easy to

understand the structure of a net, and we will continue the tradition by giving a

pictorial representation of Chu spaces.

The two common kinds of Petri nets are condition-event nets (C/E nets) and

place transition nets (P/T nets). In C/E nets, the vertices in S are conditions and

a condition is true i� there is a token on it (there can be at most one token per

condition). The nodes in S with arcs leading to a transition t are its preconditions,

and those which have an arc from t into them are the postconditions. t is enabled i�

all its preconditions are true and all its postconditions are false. Its �ring results in

all its preconditions becoming false and all the postconditions becoming true.

A special case of C/E nets is an occurrence net | an acyclic C/E net where each

S-node has at most one incoming arc and at most one outgoing arc. Notice that while

in a C/E system a transition may be �red many times, in an occurrence net it may be

�red exactly once, as is characteristic of event based formalisms. An occurrence net

may be formed by unrolling a condition event system, and the acyclic nature allows

composition of occurrence nets more easily than for C/E systems.

In an P/T net, each place s 2 S has a capacity K(s), and each arc f 2 F has

CHAPTER 2. MODELS OF CONCURRENCY 7

a weight W (f). A marking is a function M : S ! IN [f!g giving the number of

tokens at each place, and 8s:M(s) � K(s). A transition t is enabled if the source

s of each incoming arc f has M(s) � W (f), and for each outgoing arc f from t to

s 2 S, W (f) +M(s) � K(s). A transition �res by removing the W (f) tokens from

the source of each incoming arc f , and place W (g) more tokens on the target of each

outgoing arc g, this results in a new marking.

1

2

3 1

1 1

a

b c

1

2

3 1

1 1

a

b c

1

2

3 1

1 1

a

b c

1

2

3 1

1 1

a

b c

a a,c a,b

Figure 2.1: A Petri net, and a few steps of its execution.

Note that in Petri nets where two or more transitions are enabled, they may both

�re simultaneously, so this is a non-interleaving model. A Petri net with its markings

is a simple convenient way to represent which transitions can �re from which state.

In Chu spaces we give this relation explicitly, thus allowing Chu spaces to mimic any

Petri net.

The main problem with Petri nets is that they do not possess a nice algebra of

operations | there are no good methods of combining Petri nets using the standard

concurrency operators to get larger Petri nets | they lack modularity. Several ap-

proaches have been explored to get an algebra. Safe Petri nets are P/T nets where

CHAPTER 2. MODELS OF CONCURRENCY 8

the number of tokens at any place never exceeds one in any reachable marking, even

though the capacity of each place may be in�nite. Algebras of unlabeled safe Petri

nets have been proposed in [LR75] and [Bes86]. In [Bes86], a Petri net semantics has

been de�ned for the language COSY, which has choice, sequential and parallel compo-

sition and iteration. However the constructions are speci�c to nets generated in this

way. General de�nitions are given in [GV87], but the constructions are somewhat

complicated. Also none of the authors give a method for doing action re�nement,

which is one important reason for preferring a non-interleaving semantics over an

interleaving one.

Recently, in a series of papers Brown and Gurr [BG90, BGdP91] have come up

with a categorical formulation of Petri nets, which provides an algebra for Petri nets.

The category is based on Chu's construction, and its objects are Petri nets. The

morphisms of their category are simulations, and the categorical product turns out to

be synchronous parallel composition. However they do not show how to implement

the other operations like sequential composition or choice. Also, they do not make

much use of duality. Other categorical formulations of Petri nets have been developed

by Winskel [Win88] and Meseguer and Montanari [MM90].

2.1.2 Calculus of Communicating Systems and transition

graphs

.

CCS was developed as a result of Robin Milner's e�orts towards developing a

theory of communicating concurrent processes [Mil80, Mil89]. In this theory processes

are de�ned by algebraic equations, and evolve into other processes by doing some

actions. The theory is described in detail in the above references, and we will talk

about it in later chapters; here we discuss the prominent features of CCS.

Transition graphs. A model of a CCS process is a labeled directed graph. Its

nodes or states are labeled by process terms, and a transition is made from one node

to another along an edge by executing the action labeling the edge.

CHAPTER 2. MODELS OF CONCURRENCY 9

Observations and bisimulation. To an outside observer, the only way of ob-

taining information is by observing the sequence of actions executed by a process.

Since only a sequence of actions can be observed, this is an interleaving model. Two

processes are equivalent if they have the same observations, formally captured by the

notion of bisimulation [Par81]:

Let P
�! P 0 represent the evolution of process P to the process P 0 by doing the

action �. Then two processes P and Q are said to be strongly bisimilar if there is a

binary relation R on processes such that for (P;Q) 2 R, and for every action �,

1: P
�! P 0 =) 9Q0:[Q

�! Q0 and (P 0; Q0) 2 R].

2: Q
�! Q0 =) 9P 0:[P

�! P 0 and (P 0; Q0) 2 R].

This notion gives a �nite method to test whether any arbitrarily long observations

of one process can also be made of another. It can also be used on transition graphs;

then the relation is between states. We will de�ne a bisimulation between Chu spaces

in chapter 6.

Early and late branching. The bisimulation notion above makes an important

distinction between processes | the processes a(b t c) and ab t ac are distinguished,
because the �rst can make a transition on a and evolve to b t c, while the second one,

after the a can evolve to b or to c, neither of which is bisimilar to b t c.
The distinction is made because the �rst process made the choice of which branch

to take after doing the a, while the second one made the choice at the beginning. Now

in some cases it is possible for the second process to deadlock in a situation when the

�rst one does not, because it can make a more informed decision. While automata

respect this distinction (the automata for the two processes would be di�erent), lan-

guages (sets of strings) do not, and the languages for the two processes are the same,

fab; acg. The model we present for concurrent processes will make this distinction,

as it has important consequences for deadlock detection.

Communication. Two processes which are executing in parallel can communi-

cate with each other by means of certain special actions. These actions are called

silent actions because they are transparent to the environment. The notion of strong

CHAPTER 2. MODELS OF CONCURRENCY 10

bisimulation above is extended to ignore these actions, and the resulting de�nition is

called weak bisimulation.

Communicating Sequential Processes [Hoa85] is another language whose models

are similar to those of CCS. We will talk about both of these in chapter 7 in more

detail.

2.1.3 Traces

Traces or languages have been a popular way of representing behavior of processes.

The behavior of a process is characterized entirely by the set of its observations or

traces. This approach has been very successful in studying sequential behavior, where

the behavior of an automaton (e.g. a Turing machine) is identi�ed with the set of

strings it accepts. It has been extended to concurrent processes by regarding the

parallel execution of two processes as the shu�e of their languages. Traces can be

combined with one another using the various operations on strings, giving a nice

algebraic theory of processes.

Traces are a very simple idea, and have received a lot of attention, but they do

ignore a lot of the structure of a process. They do not distinguish between early and

late branching, and form an interleaving model.

Since traces identify a lot of processes, several variants of traces, called decorated

traces, have been proposed to distinguish processes. In complete trace semantics, a

process is described by a pair of sets|a set of traces and a set of completed traces.

This helps in distinguishing between ab+ a and ab, since a is a complete trace of the

�rst but not of the second. Another approach followed by Brookes, Hoare and Roscoe

[BHR84] is to include failure pairs h�;Xi, where � is a trace, and X is a set of actions,

and the pair h�;Xi means that the process executed �, and after that when given a

choice only from among the actions in X, could not do anything more. This allows

a distinction between a(b t c) and ab t ac, which have the same traces and complete

traces, but the second process has the failure pair ha; fbgi where the �rst does not.
There are various other decorated trace models, a detailed account is given in Rob

van Glabbeek's PhD thesis [vG90].

CHAPTER 2. MODELS OF CONCURRENCY 11

Our model Chu spaces will make all the distinctions that can be made by the

di�erent trace semantics, and actually makes a few more. However it is possible to

de�ne equivalence relations on Chu spaces, such that only processes distinguished by

some trace semantics are distinguished|we will show some of these in chapter 7.

2.1.4 Higher dimensional automata

This model was proposed by Pratt in [Pra91] as a generalization of automata to allow

them to express non-interleaving concurrency. Standard �nite automata are drawn as

points representing states and directed arcs representing transitions. So all elements

are 0 and 1-dimensional objects. Pratt generalized this to allow elements of any

�nite dimension, where an n-dimensional object stands for a transition representing

the concurrent occurrence of n actions. Mathematical foundations of this model are

developed in detail in [GJ92].

Computation may be viewed as a path through such an automaton. Concurrent

execution of a and b, ajjb, is represented as a square whose surface is �lled in, and

mutual exclusion ab t ba as a square whose interior is hollow, so one has to follow the

edges, doing one of a and b at a time. Note that after doing both a and b, the process

\forgets" which it did �rst, and this is good as keeping such useless information is

unnecessary.

Communication can be modeled abstractly as eroding some of the interior surface.

When two processes synchronize, they must both be at some �xed stage in their

execution simultaneously, that is the execution trajectory must pass through a point.

Monotonicity of computation now means that certain parts of the square are illegal.

Asynchronous communication is similarly modeled as eroding the area where the

message was received before transmission. More communication erodes more area,

in the extreme case leading to a single path of execution, when both processes are

in lock-step. Pratt calls this \the jaws of communication"|they squeeze out the

freedom of action of a process.

In fact it is possible to generalize the concept of a computation from a path to

a set of paths. As a �rst approximation we can take it to be a homotopy class, i.e.

CHAPTER 2. MODELS OF CONCURRENCY 12

A B

B A

(a) A || B

A B

B A

A B

B A

(c) The jaws of communication(b) A || B, with a synchronization

Figure 2.2: Higher Dimensional Automata. Shaded area represents a surface.

a set of paths where each path can be deformed into another without jumping over

holes. This is a deterministic computation, since no choices around holes needed to

be made. The ignorance of the exact path re
ects the observer's ignorance of the

exact position where each process is in a computation, since such accuracy may not

be available or necessary. As a further generalization, we could agree to gloss over

some holes, re
ecting the fact that all choices are not relevant for future computation.

This is a nondeterministic computation.

Higher dimensional automata are rather di�cult to specify, the speci�cations are

quite long. They are very biased towards the automaton side of computation, forget-

ting about schedules, and at the moment there seems to be no easy way of dualizing

an automaton to get its schedule, the way we can do with Chu spaces. However

they are able to control information in a better way, allowing forgetting of useless

information, and we would like to extend Chu spaces in this direction.

CHAPTER 2. MODELS OF CONCURRENCY 13

2.2 Event based models

2.2.1 Partially ordered multisets

Partial orders are the simplest non-interleaving model of processes|instead of order-

ing events linearly as in a trace, they are ordered partially. Partially ordered multisets

(pomsets) are posets with a labeling function which labels every event with an action.

Thus pomsets generalize strings, which are labeled traces.

Pomsets as a model for concurrent processes have been studied in [Gra81, Pra82,

Pra86, Gis88]. A process is modeled as a set of pomsets, and a run executes one of the

pomsets in this set. Pomsets can be combined with each other with the operations

described in [Pra86], while processes can be combined using the familiar operations

on sets. Alternatively, �rst order logic or temporal logic formulas may be used to

specify pomsets, and the algebraic and logical speci�cations may be freely mixed.

Pomsets have been generalized to prossets [GP87], metric process models[Cre91]

and measured sets [Cas91]. Our model does not yet subsume these extensions, though

it does subsume pomsets as originally de�ned. In addition, it gives a more uniform

treatment of nondeterminism, so choices can be made at any time in the execution,

rather than at the beginning as required by pomsets (the pomset to be executed is

chosen at the start of a run). In addition, pomsets emphasize the schedule view of

processes, whereas Chu spaces can treat processes as either schedules or automata.

2.2.2 Event Structures

Event structures were developed in [NPW81] as an attempt to bridge Petri net theory

and domain theory. In a Petri net, the state is given by a marking, but the same

marking can be reached after several di�erent sets of transitions. Thus the information

theoretic content of a marking is rather obscure. Event structures remedy this by

making the state of a system be exactly the set of actions that have occurred so far.

However in a Petri net multiple occurrences of the same action can occur, so if

a state just recorded which actions had occurred and some actions occurred many

times, this information would be forgotten. But since the purpose of a state is to

CHAPTER 2. MODELS OF CONCURRENCY 14

keep as much information as possible, the concept of event or occurrence of an action

was introduced. An event is an action which occurs at most once in an execution.

So a prime event structure is formally de�ned as a triple (E;#;�), where E is

the set of events, # � E � E is a con
ict relation, and � � E � E is a partial

order. If two events are in con
ict, both of them cannot happen in a single execution.

Also, for the event e to happen, all the events before it in the partial order must have

happened.

Note that there is no condition which forces two events to occur in some order if

they are both enabled, so this is a non-interleaving model.

Prime event structures correspond exactly with occurrence nets described above

[NPW81]. They have been generalized considerably|both the con
ict relation and

the partial order can be generalized, and we shall discuss these in chapter 7.

The state of a process modeled as an event structure is just a history, or the set

of events that have occurred so far. The states can be arranged into a partial order

based on set inclusion, and this structure is the con�guration structure or domain

corresponding to an event structure. A con�guration structure can be independently

characterized as a prime algebraic coherent partial order [NPW81], and have been

further explored in [Dro89].

Chu spaces are very closely related to event structures, and can in fact be un-

derstood as generalized con�guration structures, in which all the constraints placed

by event structures are removed. Thus event structures will be a subclass of Chu

spaces. The major di�erence is in the maps between event structures and the maps

between Chu spaces. While event structure maps preserve consistency of events (the

complement of con
ict), Chu maps will preserve con
ict.

The category of event structures and their morphisms enables the de�nition of an

algebra of event structures, with the basic operations partial synchronous product and

choice. Since con�guration structures are domains, recursive domain equations can

be solved for them, so they can be used to give a semantics for CCS and CSP[Win86].

A recent extension of event structures is event automata [PP92], which generalize

con�guration structures by relaxing some of the conditions. Thus any event structure

is representable as an event automaton. However this generalization loses the duality

CHAPTER 2. MODELS OF CONCURRENCY 15

between event structures and con�guration structures | there is no good character-

ization for the schedule corresponding to an event automaton. This is �xed by Chu

spaces, which subsume event automata, while providing a schedule view of a process.

2.2.3 Geometric Automata

Geometric automata were constructed by J. Gunawardena [Gun91, Gun92] as a gen-

eralization of event structures. They are based on a syntactic approach to causality,

rather than the model-theoretic approaches followed by the two previous models. A

geometric automaton consists of a set of events, each of which is associated with a

condition, a boolean formula on the events2. Executing an event means changing its

value from 0 to 1, and events are executed one at a time when their conditions are

satis�ed.

Geometric automata provide a very declarative style of programming|for each

event we state when it can happen. This is something we carry over, with some

generalization, to Chu spaces, where it will also be possible to write out a Chu space

as a boolean formula. However the meaning of the formulas is di�erent for Chu spaces

and geometric automata | in a geometric automaton, the condition of an event must

be true only at the time it is executed, it can become false later, while in a Chu space

the condition is always true. Thus there are some geometric automata whose behavior

cannot be modeled by Chu spaces in a nice fashion, and vice versa. We will talk about

this in chapter 7.

Geometric automata are an interleaving model of concurrency, since one event

is executed at a time. This is necessary because if the conditions of two events are

satis�ed simultaneously, doing one may invalidate the condition of the other.

These are only some of the many existing models of concurrent behavior. We will

keep referring to them in the following chapters, to show their relation to Chu spaces.

2There are some syntactic conditions on in�nitary formulas, arising from the non-existence of a
free Boolean algebra on an in�nite number of generators.

Chapter 3

De�nition of a Chu space

In this chapter, we formally de�ne Chu spaces. Whereas Chu spaces were originally

de�ned as the result of Chu's construction on the category of sets and functions, we

will give elementary de�nitions and return to the categorical de�nition at the end of

the chapter.

3.1 Relations and Chu spaces

De�nition 1 A Chu space is a binary relation between two sets A and X. We

write it as a triple (A;X;R), where R : A � X ! 2 gives the binary relation as a

characteristic function of a subset of A�X. 2 is the set f0; 1g.

We do not impose any cardinality restrictions on A and X. Thus all arguments

given below will work for all cardinalities. We can think of A as the set of events and

X as the set of states of the process represented by the Chu space. Then R(a; x) tells

us whether event a has occurred in state x.

The obvious way to write out a Chu space explicitly is as a binary matrix of

dimension jAj � jXj, with each entry giving the value of the function R on its pair of

coordinates. We will actually write A on the top, and X on the side to correspond

with some intuitions about time and information. The following are examples of some

Chu spaces, referred to again in Figures 3.2 and 3.3. We will use a; b; c; d; : : : to denote

16

CHAPTER 3. DEFINITION OF A CHU SPACE 17

abcd

x 1101
y 1011

abcd

u 0001
v 0011
w 0101
x 0111

abcd

u 0001
v 0001
w 0011
x 0101
y 0111

abc

u 001
v 100

abc

u 100
v 011
w 110

(a) (b) (c) (d) (e)

Figure 3.1: Five Chu spaces.

elements of A, and u; v; w; x; : : : for elements of X. We also use P, Q: : : to represent

Chu spaces.

While we have not yet assigned any formal meanings to the elements of X, viewing

them in di�erent ways yields some useful de�nitions. Firstly, it is possible to view

each element of X as a function from A to 2. Then each row gives the values that the

function takes on di�erent elements of A. Now in the extensional view of functions,

two functions on the same domain are considered equal if they have the same value

everywhere in the domain. So we de�ne an extensional Chu space to be one in

which if any two functions in X are equal extensionally, then they are the same

element. In other words, a Chu space is extensional i� it has no repeated rows. In

�gure 3.1, (a), (b), (d) and (e) are extensional, while (c) is not. Operationally this

means that two states in which exactly the same events have occurred are considered

indistinguishable.

Dually we can de�ne Chu spaces in which no columns are repeated. Such Chu

spaces are called T0. This comes from the analogy with topological spaces [LS91] |

we take A to be the set of points of a space, and regard elements of X as subsets of A,

and the relation R is considered to be the membership relation. Thus the functions in

the above functional view of X are the characteristic functions of the subsets, which

we call open sets of the space. Note that seen this way, a Chu space is a generalization

of a topological space, namely one in which there are no conditions on the set of open

sets. Now a T0 space is one in which given any two points, there is an open set

containing one but not the other. Thus in a T0 Chu space, for any two columns, there

is a row in which the columns di�er, so no two columns are identical. In the process

CHAPTER 3. DEFINITION OF A CHU SPACE 18

view, this means that two events which always occur simultaneously are identi�ed.

Any Chu space can be made extensional and T0 by identifying any repeated rows

or columns | this process is called standardization. In the rest of this thesis, when-

ever we need a Chu space with any of these properties, we will assume that it is

standardized.

Two Chu spaces (A;X;R) and (B;Y; S) are said to be isomorphic if A is isomor-

phic to B, X is isomorphic to Y and R and S have the same value on corresponding

pairs. Formally, an isomorphism between (A;X;R) and (B;Y; S) is a pair of func-

tions f : A ! B and g : Y ! X such that both f and g are bijective and for all

a 2 A; y 2 Y , R(a; g(y)) = S(f(a); y). The reason for g going from Y to X will

become clear in the next chapter.

3.2 Pictorial representation of Chu spaces

In the topological representation of an extensional Chu space discussed above, we saw

that a Chu space could be completely speci�ed by a set A and a subset of its power

set X � 2A. But a power set is a complete atomic boolean algebra, so for small A,

we can draw a picture of 2A as a Hasse diagram, and can represent the vertices of 2A

as blobs or holes according to whether they are present or absent in X respectively.

We call this representation the partial Boolean Algebra (pBA) representation.

Note that if A is in�nite, 2A is a complete atomic Boolean Algebra, called a

CABA. Completeness means that arbitrary meets and joins must be present, and

being atomic means that every maximal chain has a second least element. All �nite

Boolean Algebras are complete and atomic, but this is not true for the in�nite ones,

for example the BA consisting of all the �nite and co�nite subsets of the natural

numbers is not complete.

This representation is called a partial Boolean Algebra because it may be presented

as a Boolean Algebra, in which the operations of _;^ and : are partial operations,

along with some equations. The underlying CABA 2A provides a compact way of

representing this information. It is also useful for determining homomorphisms, which

we will talk about in the next chapter.

CHAPTER 3. DEFINITION OF A CHU SPACE 19

�.......... ��
.............�

��
.............
�y..........
.............
�x.......... ��
.............

�.......... ���.............
�
��
.............
�..........
.............
�
��

�..........
�.......... ���.............

� �
��

�..........�

�.......... ��
.............�x

��
.............
�..........
.............
�.......... ��
.............

�.......... ���v
�w
��
.............
�..........
.............
�
��

�..........
�.......... ���u

� �
��

�..........�

�
�� @@�
@@
�
�� @@

�
���u

@@
� �v
���

�
�� @@�w
@@
�
�� @@

�v
���u

@@
� �
���

3:1(a) 3:1(b) 3:1(d) 3:1(e)

Figure 3.2: The four extensional Chu spaces of Figure 3.1, drawn as partial Boolean
Algebras.

In the above �gure we have drawn the four extensional Chu spaces in Figure 3.1

in the partial boolean algebra format. The notion of a T0 Chu space can now be

elegantly stated in terms of a lattice theoretic property:

Proposition 3.1 An extensional Chu space is T0 i� the elements of X (the dots)

generate 2A using [;\ and :, the usual operations of set union, intersection and

complement. Empty unions and intersections are included.

Proof: ()). We have to show that the atoms can be generated, since all other

vertices are formed from these by the _ operation. Each atom corresponds to an

element of the set A, namely the singleton set containing it.

Now given an a 2 A, form the set qa =
Tfx j a 2 x 2 Xg\TfA�x j a 62 x 2 Xg.

Then a 2 qa, since it is in each set x or A� x in the RHS. Also, if b 6= a, then there

is a set in X that separates them, by the T0 property. This set ensures that b 62 qa.

Thus the atoms can be generated.

((). Given a 6= b, the singleton set containing a can be generated. So there must

be an element in X separating a and b.

Thus given a partial Boolean Algebra, it is easy to check if it is T0, by making sure

that the CABA is generated. This means that the CABA underlying a T0 Chu space

is the smallest such, and if we regard the underlying CABA as merely providing the

information about meets and joins and complements, then this is the most economical

way of doing it.

CHAPTER 3. DEFINITION OF A CHU SPACE 20

However, as we have seen above, even very small Chu spaces like �gure 3.1 above

can have very large partial Boolean Algebra representations. This leads us to a similar

but more economical representation, the partial distributive lattice.

3.3 Partial Distributive Lattices

In the above section we saw that a Chu space could be written as a set X embedded

in a CABA 2A, such that X generated 2A. But this means that for even very small

Chu spaces, in which X may have only n elements, the CABA representation can

be of size 2n+1. An obvious question is if we can present the Chu space with less

structure than the CABA 2A, but containing the same information.

The following proposition [Joh82, p.250] enables us to answer this question in

the a�rmative. It states that up to isomorphism, every distributive lattice can be

uniquely extended to a CABA, the least or canonical such CABA. So instead of

drawing the whole CABA generated by 2A, we need draw only the distributive lattice

generated by X, the set of elements of 2A generated by X using the operations union

and intersection (which are meet and join in the lattice. In some cases, this permits

up to an exponential savings in size.

For the in�nite case, an additional requirement on the distributive lattice is that

it be pro�nite. While this term may be applied to various algebras, and in fact

CABA's can be described as pro�nite Boolean Algebras, for distributive lattices there

is a similar simple characterization. A distributive lattice is called pro�nite if it is

complete, and its completely join prime elements generate the entire lattice by joins.

A completely join prime element x 2 X is one such that if x � W
Y; Y � X, then

x � y for some y 2 Y . (We allow in�nite joins here.) For a distributive lattice this

condition is equivalent to the condition
Wfy < x j y 2 Lg < x. Note that in a CABA

the completely join prime elements are exactly the atoms, so a CABA could also

be de�ned as a complete Boolean Algebra which is generated by its completely join

prime elements.

We state and prove the proposition in elementary terms for greater accessibility.

CHAPTER 3. DEFINITION OF A CHU SPACE 21

Proposition 3.2 If L is a pro�nite distributive lattice, then there is a CABA B and

a complete lattice homomorphism i : L! B such that for any other CABA B0 and a

complete lattice homomorphism f : L! B0, there is a unique CABA homomorphism

f̂ : B ! B0 such that f = f̂ � i.

Proof: The idea is to identify a subset of the elements of L and take these to

be the atoms of B. Then L will embed in B. We will show that this embedding is

unique up to isomorphism.

Let A be the set of join prime elements of L. Now we will form the CABA 2A, and

L is embedded in this CABA via i : L! 2A de�ned by i(y) = fx 2 A j x � yg. This
function preserves all meets and joins of L (the proof is similar to that of [MMT87,

thm 2.55, pg 83]), and is injective, as A generates L by de�nition.

Now given f : L! B0, a complete lattice homomorphism, we can extend it to all

of B by de�ning it on the atoms of B. If a 2 A, de�ne f̂ (a) = f(a) ^ :Wff(x) j x <
a; x 2 Ag. This is required as the atom corresponding to a is exactly a ^ :Wfx 2
A j x < ag. Now this is extended to a CABA homomorphism f̂ : B ! B0. f = f̂ � i
since this is true for the primes ((a ^ :b) _ b = a _ b). The uniqueness of f̂ follows

from the canonical de�nition.

This proposition enables us to work with a smaller pictorial representation on the

Chu Space than the partial Boolean algebra. It also makes the structure of the Chu

space a lot clearer, and from now on, we will draw only these pictures, called partial

distributive lattices, or pdlats. We will write a pdlat as a pair (P;L), where L is the

lattice generated by X, and P is the set X along with the poset structure it inherits

from L, as it is a subset of L. We need this poset structure for duality reasons, and

these will be made clear in the next chapter. The pdlats corresponding to the Chu

spaces shown above are in �gure 3.3.

Notice that these pictures look quite like automata, as the dots are states and

edges are events. We go into this in more detail in Chapter 5.

Proposition 3.2 gives us a simple algorithm to recover a Chu space from its pdlat

representation. The elements of X are the black vertices of the pdlat, while the

elements of A are the join-primes of the underlying lattice. The relation R is given

by the � relation, R(a; x) = 1 i� a � x in the lattice.

CHAPTER 3. DEFINITION OF A CHU SPACE 22

�
�x
@@���v

@@
�w
���u
�

�
�
�� @@�u
@@

�v
���

�
�� @@�w

�� @@
�v
���u

@@
�
���

3:1(b) 3:1(d) 3:1(e)

Figure 3.3: The 3 extensional T0 Chu spaces of Figure 3.1 drawn as pdlats

Of course we would like to continue the process even further. One possibility is if

we just take the poset generated by A. However this does not work, as the following

pair of Chu spaces would then be represented by the same structure, even though

they are not isomorphic. In fact, pdlats seem to be the best we can do here as there

is no extension theorem like theorem 3.2 for other structures.

�
�� @@�
@@
�
�� @@

�
���

@@
� �
���

�
�� @@�
@@
�
�� @@

�
���

@@
� �
���

Figure 3.4: Incompleteness of Poset Structure

3.4 The logic representation

While the pictorial representations of Chu spaces above are useful for understanding

what a Chu space looks like, they are still not very compact. An alternative way to

specify a Chu space is via a formula, of in�nitary propositional Boolean logic. This

representation makes it possible to see the properties of the Chu space a lot more

easily, so speci�cation of the Chu space is simpler.

We assign a boolean propositional formula to each extensional Chu space as fol-

lows. The variables of the formula will be the elements of the set A. For each x 2 X

we form a clause
Vfaja 2 A;R(a; x) = 1g ^ Vf:aja 2 A;R(a; x) = 0g. The dis-

junction of all such clauses then gives the propositional boolean formula. We call

CHAPTER 3. DEFINITION OF A CHU SPACE 23

this the complete disjunctive normal form (abbr. CDNF) of a propositional formula.

Given any formula and its set of variables, this form is unique up to commutativity,

associativity and idempotence of ^ and _. Note that if A and X are in�nite, the

CDNF would need in�nitary boolean connectives.

For the 3 extensional T0 Chu spaces presented above, the boolean propositional

formulae are given below. We use the short forms �a for the negation of a and ab for

a ^ b.
3:1(b) �a�b�cd _ �a�bcd _ �ab�cd _ �abcd

3:1(d) �a�bc _ a�b�c
3:1(e) a�b�c _ �abc _ ab�c

Of course the CDNF form is not an e�cient way to write out the propositional

formula, for example for the Chu space 3.1(a), �ad is just as good as the long expression.

In fact this shorter representation makes explicit that the b and c are not constrained

in this formula. Any formula logically equivalent to the CDNF formula is an equally

valid representation.

The columns of the matrix are exactly the satisfying assignments of the proposi-

tional formula. Each column makes the clause corresponding to its state true, so the

whole formula becomes true. Moreover, any other assignment di�ers from each col-

umn on at least one variable, it makes each clause false, and thus the whole formula

becomes false. So given a propositional formula, we can construct its Chu space as

the set of all satisfying assignments.

The logical representation gives another way of drawing Chu spaces, as combina-

tional circuits or gates. The inputs of a circuit representing (A;X;R) consist of the

elements of A, and it has one output which calculates the boolean expression repre-

senting the Chu space. We will see this in more detail in chapter 5, and applications

of the gate view to visualizing the Chu algebra will be discussed in chapter 6.

Theory of a Chu space. The set of all in�nitary Boolean formulas that are

consequences of the logical formula of a Chu space is called the theory of a Chu

space. We will use the theory in the next chapter to de�ne Chu morphisms as theory

preserving renamings, and later use formulas in the theory to represent concurrent

behavior.

CHAPTER 3. DEFINITION OF A CHU SPACE 24

3.5 Alternative presentations: duality

In the de�nition of a Chu space, A and X were symmetric. However in our presenta-

tion of a Chu space as a partial Boolean Algebra, we assumed that X � 2A. Clearly,

there is nothing special about this, and regarding A as a subset of 2X is an equally

valid way of drawing the Chu space as a partial Boolean algebra, with the consequent

restriction to a partial distributive lattice. This is the essence of duality for Chu

spaces, and we will talk about it in the next chapter. In order to distinguish it from

the representation given earlier, we will call these the dual pBA or the dual pdlat

representations. Both the pdlat representation and the dual pdlat representation will

be important in representing a concurrent process as a Chu space.

In the same way, we can write logical expressions with variables corresponding to

the elements of X. As above, we will call this the dual logical representation.

3.6 More examples

Having de�ned Chu spaces in various ways, we will now give pictures of all extensional

T0 Chu spaces in which jAj � 3, up to isomorphism. There are 78 such Chu spaces, 2

with jAj = 0, 4 with jAj = 1, 8 with jAj = 2 and 64 with jAj = 3. The corresponding

numbers for jAj = 4; 5 are 3828 and 37320288, but we won't draw those! (Note that

3828 and 37320288 are not powers of 2!)

We show the pdlat form of a Chu space, then give its matrix and a simple logical

representation. All Chu spaces with jAj � 1 are shown, but for 2 and 3, we use

some symmetries to display only a few, and the others can be obtained by simple

manipulation of the ones shown. Note that the four pdlats with jAj = 1 di�er from

each other only in whether the top or bottom elements are holes or dots. In the

dual pdlats, this means presence or absence of spikes, while in the matrices it means

presence or absence of the constant rows. In the logical form, it is equivalent to a

formula being implied by �, the logical representation of the Chu space.

CHAPTER 3. DEFINITION OF A CHU SPACE 25

Pdlat repn Dual pdlat repn Logical repn Matrix repn

Bottom is a hole No spike at top �! W
A no row of 0's

Top is a hole No spike at bottom �! :VA no row of 1's

Each of the above conditions can hold independently, giving rise to the 4 cases.

In the examples here, we will present only the Chu space in which both of them hold,

cutting down the number of spaces with jAj = 2; 3 to 2 and 16 respectively. Of the

16 Chu spaces with jAj = 3, 12 occur in pairs, where the matrix of one member of

the pair is the bitwise complement of the other (for the others, the complement is an

isomorphic matrix). Complementing the matrices turns the pdlats upside down. We

will draw only one member of each pair, further reducing the 16 to 10.

So the 18 Chu spaces are given in Figure 3.5. The dual pdlat at the top, and below

it is a propositional formula representing the space. On some formulas a subscript

indicates the number of variables in that formula, when written out in its CDNF

form. below this to the left is the matrix, and to the right is the pdlat representation

of the Chu space.

�
�� @@�
@@
�
�� @@

�
���

�� @@
�b �c
���a

@@
�
���

�
�� @@�
@@
�
�� @@

�
���

�� @@
�b �
�� @@�a

@@
�
�� @@

�c
���

@@
�
���

�
�� @@�
@@
�
�� @@

�
���

�� @@
�
@@
�
�� @@�a

@@
�
�� @@

�b
��

�c
���

@@
�
�� @@

�
���

@@
� �
���

a ^ b$ a ^ c b! a _ c 13

abc

w 001

x 010

y 011

z 100

�
��@@�
@@
�
��@@

�
���

@@
� �
���

abc

v 001

w 010

x 011

y 100

z 110

�
��@@�
@@
�
��@@

�
���

@@
� �
���

abc

u 001

v 010

w 011

x 100

y 101

z 110

�
��@@�
@@
�
��@@

�
���

@@
� �
���

Figure 3.5 continued.

CHAPTER 3. DEFINITION OF A CHU SPACE 26

�
� � �a

�
�a �a

�

�
�a
�

10 00 01 :a a 11

1 � 0 � 0 � 0 � 0
�
�

a

x 0

�
�x

a

x 1

�x
�

a

x 0
y 1

�y
�x

�b
�a

�
�� @@�a
@@

�b
���

�b
�c
�a

�b
�� @@�a
@@

�c
���

�b
�
�� @@�a
@@

�c
���

b! a 12 (b! c) a _ c$ b b! (a ^ c)
^(c! a)

ab

x 01

�
�x
�

ab

x 01
y 10

�
��@@�x
@@

�y
���

abc

x 010
y 011

�
�y
�x
�

abc

x 011
y 110

�
��@@�x
@@

�y
���
�

abc

x 010
y 011
z 110

�
��@@�y
@@

�z
���x
�

�
�� @@�a
@@

�b
�� @@�
@@

�c
���

�
�� @@�

�� @@
�b
���a

@@
�
�� @@�
@@

�c
���

�
�� @@�

�� @@
�
�� @@�a

@@
�b
�� @@

�c
���

@@
�
���

�
�� @@�
@@
�
�� @@

�
���a

@@
�b �c
���

(a _ c! b) b! c (a _ c! b) a ^ b$ b ^ c
^(b! c) ^(b! a ^ c) $ c ^ a

abc

x 100
y 011
z 110

�
��@@�y
@@

�z
��@@�
@@

�x
���

abc

w 100
x 010
y 011
z 110

�
��@@�y
@@

�z
��@@�x
@@

�w
���

abc

w 001
x 011
y 100
z 110

�
��@@�x
@@
�
��@@

�z
���w

@@
� �y
���

abc

x 001
y 010
z 100

�
��@@�
@@
�
��@@

�
���x

@@
�y �z
���

Figure 3.5: The Chu spaces with jAj � 3.

CHAPTER 3. DEFINITION OF A CHU SPACE 27

3.7 Chu's Construction: The categorical de�ni-

tion

Chu spaces �rst arose as an instance of a general construction, popularly called Chu's

construction, described by Michael Barr and Po-Hsiang Chu in [Bar79]. In fact the

name Chu spaces was suggested to Pratt by Michael Barr in an email message. Chu's

construction is used to make �-autonomous categories from an autonomous cate-

gories. An autonomous category is a closed symmetric monoidal category, while a

�-autonomous category is an autonomous category with a dualizing object. We will

give a very brief outline of the construction here, and refer the reader to [Bar79] for

details.

We start with a �nitely complete closed symmetric monoidal category V and an

object of V, denoted?. The �-autonomous category constructed from these is denoted

V?. Its objects are triplets (V; V 0; v) where V; V 0 are objects of V, and v : V
V 0 ! ?.
Its morphisms are pairs of morphisms from V, (f; f 0) : (V; V 0; v)! (W;W 0; w) where

f : V !W and f 0 :W 0 ! V 0, such that v � (1; f 0) = (f; 1) � w.
Now Barr shows that the category V? is a �-autonomous category, which embeds

V. The dual of any object (V; V 0; v) is (V 0; V; v � s), where s is the symmetry isomor-

phism s(A;B) : A
B ! B
A, and the dualizing object is (?;??; l), where l is the

evaluation map. Since the category of sets and functions satis�es all the necessary

properties for Chu's construction, we can apply Chu's construction to it with the two

element set f0; 1g as ?, and the resulting category is the category of Chu spaces.

In [LS91], Lafont and Streicher studied the same category category, using K-

valued matrices instead of 2-valued ones, so the relation R goes from A �X to K,

for some integer K. They called this category GameK
1, and use it to construct a

model of linear logic. They call these games as they view the elements of A and

X as strategies for two players, and R is then a payo� function, thus giving a Chu

space an interpretation as a von Neumann-Morgenstern game. This model is also

similar to the Dialectica Categories of de Paiva [dP89], see [LS91]. The morphisms of

the Dialectica categories are a bit di�erent, there R(a; g(y)) � S(f(a); y), where it is

1Thus Chu spaces are Game2

CHAPTER 3. DEFINITION OF A CHU SPACE 28

assumed that 0 < 1. The duality of Chu spaces does not hold for general objects, only

for decidable ones, and the tensor product is quite di�erent: (A;X;R)
 (B;Y; S) =

(A�B;Y A�XB; T) where T ((a; b); (f; g)) = R(a; g(b))^S(b; f(a)) for all a 2 A; b 2
B; f : A! Y; g : B ! X.

Chapter 4

The Category of Chu Spaces

In this chapter we build up a category of Chu spaces. The objects were de�ned in

the last chapter, and we had mentioned the morphisms also in the categorical de�-

nition. Here we will give simple characterizations of the morphisms for the di�erent

presentations, and present the duality of categories. Applications to algebra will also

be mentioned.

4.1 Maps between Chu Spaces

Given two Chu spaces (A;X;R) and (B;Y; S), a Chu transform between them consists

of a pair of functions f : A ! B and g : Y ! X, such that the following equation

holds for any a 2 A and any y 2 Y : S(f(a); y) = R(a; g(y)). We will call this

condition the adjointness condition for Chu maps, and f and g will be called the left

and right adjoint respectively. Thus in a Chu space, the set A transforms covariantly,

while X transforms contravariantly.

Just as we wrote out a Chu space as a matrix, we will write out a Chu map as

another matrix. A Chu map between (A;X;R) and (B;Y; S) will be a jY j�jAjmatrix,

each of whose jAj columns are columns from (B;Y; S), the column corresponding to

a 2 A being the column representing f(a) in the matrix for (B;Y; S). Dually, each row

is a row from (A;X;R), and the row corresponding to y 2 Y is the row representing

g(y) in the matrix for (A;X;R). An alternative way of specifying the matrix is to

29

CHAPTER 4. THE CATEGORY OF CHU SPACES 30

say that the (y; a)-th entry is S(f(a); y), which is equal to R(a; g(y)).

Looking at the jY j � jAj matrix as a Chu space (A;Y; T), Pratt points out that

this Chu space is a factoring of (f; g) as (f; g) = (f; Id) � (Id; g), where (Id; g) :

(A;X;R) ! (A;Y; T) and (f; Id) : (A;Y; T)! (B;Y; S). This and other factorings

are discussed in [Pra93].

We will just give one example of a Chu map here, more examples will come up

later. We will draw the space (A;X;R) on the top left, (B;Y; S) on the bottom right,

and the matrix for the morphism on the bottom left.

abcde

u 00001
v 00011
w 00101
x 01111

00011
00101

0011 u0

0101 v0

a0b0c0d0

Figure 4.1: A Chu map in matrix form.

This is the matrix corresponding to the pair (f; g), where f(a) = a0; f(b) =

a0; f(c) = b0; f(d) = c0; f(e) = d0, and g(u0) = v; g(v0) = w. In this case the �rst

Chu space was extensional, so in fact f is uniquely determined by the matrix (there

is a unique occurrence of any row on the top left matrix), and similarly as the second

Chu space was T0, g is also uniquely determined. Note that either of f or g uniquely

determine the map matrix, so we observe that if (f; g) : P ! Q is a Chu map, then

f uniquely determines g if P is extensional, and g uniquely determines f if Q is T0.

[Bar91].

Maps between pdlats. Just as each T0 extensional Chu space corresponds to a

pdlat, we can de�ne a pdlat map between two pdlats which corresponds to the Chu

map between the corresponding Chu spaces.

De�nition 1 Given two pdlats (P;L) and (P 0; L0), f# : L ! L0 is a pdlat homo-

morphism if f# is a complete lattice homomorphism and f#(P) � P 0.

The two de�nitions are equivalent, as is shown by the following proposition:

CHAPTER 4. THE CATEGORY OF CHU SPACES 31

Proposition 4.1 Let (A;X;R) and (B;Y; S) be two T0 extensional Chu spaces, and

let (P;L) and (P 0; L0) be their corresponding dual pdlat representations. Then the set

of Chu maps from (A;X;R) to (B;Y; S) is in 1-1 correspondence with the set of pdlat

maps from (P;L) to (P 0; L0).

Proof: Note that in the dual pdlat representation, L is a sublattice of 2X and

L0 is a sublattice of 2Y . Now if (f; g) is a Chu map, then g : Y ! X. De�ne

2g : 2X ! 2Y by if a 2 2X , then 2g(a) = fy j g(y) 2 ag (Note here that a is a

subset of X). This is a CABA homomorphism. Now the adjointness condition stated

above means that g(y) 2 a $ y 2 f(a), where we regard A � 2X and B � 2Y .

Thus 2g(a) = fy j y 2 f(a)g = f(a). Now de�ne f# = 2g n
L. Then f#(P) 2 P 0,

as f#(a) = f(a) 2 B for all a 2 A. Now since L0 is generated by B, the range of

f# is in L0, so it is a pdlat map. (It is a complete lattice homomorphism as it is the

restriction of a CABA map.)

Conversely, every pdlat map corresponds to a Chu map, by reversing all the

implications above. Thus we have the desired 1-1 correspondence.

This proposition shows that the de�nition of a Chu map is a natural one. This is

further substantiated in the next few sections.

Transformations between logical representations. Another equally simple

way of representing Chu maps is as transformations between their logical representa-

tions. Given the logical CDNF representations � and � of two Chu spaces, we de�ne

a logical transformation between them to be a map f : var(�)! var(�)1 such that

� ! f(�) is a logical tautology (here f(�) is the formula obtained by substituting

each variable a of � by its image f(a).).

This representation means that every formula in the theory of the source (the

theory consists of all consequences of �) is mapped to a formula in the theory of the

target (all consequences of �). So it is a logical homomorphism | if the formulas in

the theory are regarded as the constraints on the Chu space, then a homomorphism

should preserve all of them, which is exactly what it does.

Proposition 4.2 Chu maps are in 1-1 correspondence with logical transformations.

1var(�) is the set of variables in the formula �.

CHAPTER 4. THE CATEGORY OF CHU SPACES 32

Proof: Let (A;X;R) and (B;Y; S) be two T0 extensional Chu spaces, and let

� and � be their logical representations. If (f; g) : (A;X;R) ! (B;Y; S) is a Chu

map then we de�ne a logical transformation f via its �rst component. Now consider

any satisfying assignment y 2 Y for �. Then g(y) 2 X, so it forms a satisfying

assignment for �. Thus y is also a satisfying assignment for f(�), because of the

adjointness condition. So �! f(�).

Conversely, given a logical transformation f , it determines a unique map g : Y !
X, since every satisfying assignment of � is a satisfying assignment of f(�), so every

y 2 Y is mapped to x 2 X such that f(x) = y \ f(A).

This shows that the three forms of presenting Chu spaces each have their natural

morphisms, which are all equivalent. Chu maps also have a natural interpretation as

simulations between processes, and we will show this in a later chapter.

Chu spaces and Chu maps form a category, denoted Chu. The identity map for an

object is a pair of identity functions on its �rst two components, while (f; g)�(f 0; g0) =
(f �f 0; g0 �g). Some of the mathematical structure of this category is further explored

in [Pra93], where Pratt shows how to embed various categories fully and faithfully in

Chu.

4.2 Duality

In the previous chapter we had indicated brie
y a duality for Chu spaces. The

Chu construction was invented speci�cally for obtaining self-dual categories from

autonomous categories [Bar91]. Here for reference, we will restate this duality, and

show how to get the dual of a pdlat. In the next chapter we will apply this duality

to transform imperative programs into declarative ones and vice versa.

De�nition 2 The dual of (A;X;R), denoted (A;X;R)?, is de�ned as (X;A;R�),

where R�(x; a) = R(a; x).

Thus the dual of a Chu space written out as a matrix is the transpose of this

matrix. If (f; g) : (A;X;R) ! (B;Y; S) is a Chu map, then (g; f) : (Y;B; S�) !
(X;A;R�) is also a Chu map by the symmetry of the de�nition, thus showing that

CHAPTER 4. THE CATEGORY OF CHU SPACES 33

this is a categorical duality. The involution P?? �= P for any Chu space P follows

from the de�nition.

The dual of a pdlat can be written directly as (P;L)? �= (L?; P?)|this is the dual

pdlat representation. Here L? is the set of all �lters of L [Pri70], partially ordered by

set inclusion. (A �lter is an upwards closed subset of the lattice which is closed under

all meets.) P? is the set of all upwards closed subsets of P , and it forms a lattice

with the operations of set union and intersection. L? embeds in P? by sending each

element a 2 L? to a \ P which is an element of P?, and this is injective because P

generates L.

In Figure 3.5 for each pdlat we have given its dual pdlat above it. Notice that

each element of P in a pdlat corresponds to a dimension of the dual pdlat, thus

as we remove elements from P , we collapse the dual pdlat along the corresponding

dimensions. This connection is explored in [NPW81, p.94], where a dimension is

de�ned to be an equivalence class of prime intervals, and each dimension corresponds

to an event.

Lemma 4.1 If (P;L) is the pdlat for the Chu space P, then (L?; P?) is the pdlat

corresponding to P?.

Proof: Straightforward, using the fact that L?? �= L and P?? �= P , where L? is

de�ned as the set of complete �lters of L, ordered by inclusion, and P? is de�ned as

the set of order �lters of P , again ordered by inclusion and regarded as a lattice.

4.3 The internal Hom functor

The set of all maps between two Chu spaces P= (A;X;R) and Q= (B;Y; S) can itself

be turned into a Chu space. If (C;Z; T) is used to represent this Chu space, then C

is the set of all maps from P to Q and Z = (A� Y), the cartesian product of A and

Y . Now if (f; g) 2 C, and (a; y) 2 Z, then T ((f; g); (a; y)) = S(f(a); y) = R(a; g(y)).

We will denote (C;Z; T) by P��Q.
Note that P��Q may not be extensional even if both P and Q are extensional.

CHAPTER 4. THE CATEGORY OF CHU SPACES 34

Whenever extensionality is required, we can just identify equal rows by standard-

ization, making the whole space extensional. However if Q is T0, we can show that

P��Q is also T0. This is because for distinct elements (f; g); (f 0; g0) 2 C, there is

some a 2 A such that f(a) 6= f 0(a). Now by the T0 property of Q, there is y 2 Y

which separates f(a) and f 0(a). Then (a; y) separates (f; g); (f 0; g0).

We can now prove that our duality is a representable duality, represented by

the Chu space ? = (?A;?X;?R), with ?A = fa; bg, ?X = f�g and ?R(a; �) =

0;?R(b; �) = 1.

Lemma 4.2 If P= (A;X;R) is a Chu space, then P? �= P��?.

Proof: Let P��? = (B;Y; S). For each element x 2 X, de�ne a map fx : A! ?A

by fx(a) = R(a; x), and a map gx : ?X ! X by gx(�) = x. Now (fx; gx) is a Chu

map, so for each x 2 X we have given a Chu map. It is clear from the de�nition of a

Chu map that these are all the maps from P to ?. Thus B �= X.

By de�nition of P��?, Y = A� f�g �= A. Now R�(x; a) = R(a; x) = R(a; gx(�))
= S((fx; gx); (a; �)). Thus the two Chu spaces are isomorphic.

This isomorphism is natural in P. If we have a map h = (h; k) : Q! P, and the

isomorphism above is denoted by �P : P? ! P��?, then �Q � h? = (h��?) � �P .
Given any x 2 X, �Q � h?(x) = �Q(k(x)) = fk(x). Now for b 2 B, fk(x)(b) =

S(b; k(x)) = R(h(b); x) = fx(h(b)). This is exactly (h��?) � �P (x)(b). We can also

show this for the right adjoint of the maps, showing that the isomorphism is natural.

We have already shown that the duality is categorical, giving the identity P��Q �=
Q?��P?.

A third identity which is rather useful is P��(Q��R) �= Q��(P��R). The proof
is straightforward.

The internal hom functor, as expected, is contravariant in the �rst argument and

covariant in the second. The action of this functor on morphisms is by composition.

Chapter 5

Concurrency Applications

Now that we have established all the mathematical background for Chu spaces, we

will look at their applications to concurrency in the next three chapters. We have

already given a brief idea of this in the introduction, here we provide the details. In

this chapter we will interpret individual Chu spaces as processes, leaving the algebra

of Chu spaces to the next chapter.

5.1 Behavior accepted by Chu spaces

We have already mentioned how to interpret a Chu space as a process|a Chu space

(A;X;R) is interpreted as the process whose set of events is A, the set of possible

states is X, and the events that have occurred in a state x 2 X are given by fa 2
A j R(a; x) = 1g. So a process starts o� in some state x, then executes some events

to reach another state x0, and this is how execution progresses. Each state keeps the

entire history of the process, but does not remember the order in which the events

took place.

In the rest of this thesis, we will write a Chu space as a pair (A;X), whereX 2 2A,

with R being implicit as the membership relation. When we need to write the space

explicitly, we will write the elements of A as a set, and the elements of X as a set of

repetition-free words over A. So for example we would write (fa; b; cg; f�; a; b; abcg)

35

CHAPTER 5. CONCURRENCY APPLICATIONS 36

for the Chu space

abc

w 000

x 010

y 100

z 111

The adjointness condition for maps will then become f(a) 2 y i� a 2 g(y).

The pdlat representation gives a pictorial view of the process, viewed as an au-

tomaton. The states are given by the black dots, and the edges of the lattice give the

transitions. We call the holes the forbidden states, as they are not states in which the

system can rest. Computation proceeds in the upwards direction, so can be looked

upon as a path in the automaton. Each edge is labeled by an event; the label can

be determined by looking at the sets of events labeling the extremities of the edge (a

hole can also be labeled by a set of events, the only di�erence being that that set is

not a state in X).

According to the execution model given above, a process can go from any state

to any other state that is above it. So the computation path does not necessarily

need to follow the arcs of the lattice | that would yield an interleaving model for a

Chu space. We can assume some of the boxes in the lattice as solid boxes, just like

the higher dimensional automata discussed in chapter 2. Now a computational path

can be any path in this n-dimensional space. The n-dimensional boxes that have all

their 2n vertices colored black are always �lled up, other boxes may or may not be.

In particular, boxes in which the top vertex is missing, and which do not have any

black dot above the top vertex are never �lled up, as they represent a con
ict.

So now a path is given as a sequence of states in the automaton representing

the process. This kind of semantics has also been discussed before, and is called

step semantics [DDNM88]. This is the kind of semantics implicit in Petri nets [Rei85,

p.20] and SCCS [Mil83]. However notice that assuming a path through the automaton

means that at every instant we know exactly where each event is in its computation,

or if the process is in some state, that this state is exactly known. This is not always

possible or desirable|in a distributed environment it is not possible to know what

CHAPTER 5. CONCURRENCY APPLICATIONS 37

state each component of a system is in precisely, nor is it necessary to know this,

since it may be useless detail (for example in ajjb we don't need to know how much of

a and b have been �nished at any time). So we broaden our class of computations to

one in which such we can abstract away from these details | we take a computation

to be a homotopy class of monotone paths [Pra91, GJ92], that is a broad path free of

holes, where a hole denotes a choice of which side one can go around.

A homotopy class of monotone paths is de�ned as a set of monotone paths, each

of which can be deformed into any other smoothly i.e. without having to jump over

holes. Formally, if L is the set of points in the lattice of the automaton (states, edges

and interior points) partially ordered, then a path is a monotone continuous function

p : IR ! L. The a set of paths P is a homotopy class if for every p1; p2 2 P , there

exists a continuous F : [0; 1]! P such that F (0) = p1 and F (1) = p2. Such a class

denotes a deterministic computation | all choices have been resolved.

In practice we sometimes would like to ignore some choices, since they may not be

relevant. For example, we may not want to remember which event occurred �rst in

a mutual exclusion process. Thus we can generalize a computation to a path which

does have some small holes.

Thus given a Chu space we can informally de�ne a behavior to be any subset of

its set of states (the paths can be inferred from the states in the behavior). More

precisely, a behavior of (A;X) is another Chu space (A;Y), where Y � X. The whole

process is given by the disjunction of all its behaviors, somewhat reminiscent of the

trace models.

Labeling. Until now we have not considered the actions that a process executes,

only the events, which were earlier de�ned to be occurrences of actions. We now

introduce a labeled Chu space as a Chu space (A;X) with a labeling function � : A!
Act, where Act is a set of possible actions. We will not insist that Chu maps preserve

labels, though we will sometimes consider the class of Chu maps that do preserve

labels i.e. �0(f(a)) = �(a).

CHAPTER 5. CONCURRENCY APPLICATIONS 38

5.2 Dual view of a Chu space | Schedules

In the above section we have interpreted the pdlat corresponding to a Chu space as

an automaton. The dual pdlat of a Chu space provides an alternative way of looking

at a Chu space, as a schedule of events. The black blobs in the dual pdlat are events,

and the underlying lattice structure gives the constraints between the events.

The duality between schedules and automata is the consequence of a deeper duality

between events and states themselves. Traditionally events are regarded as atomic,

and states as sets of events, as in event structures and pomsets. Taking this dual

view allows us to consider states as atomic, and events as sets of states, with a state

belonging to an event i� the event has occurred in that state. If we are willing to

be more adventurous with foundations of set theory, we may do both| the resulting

circularity in the membership relation can be coped with by dropping the Foundation

Axiom of ZF set theory and replacing it by e.g. Aczel's Anti-Foundation Axiom. This

results in states and events being treated on the same footing, something which has

not been done in previous models.

Time and Information Duality. Pratt [Pra92b] has observed a duality between

time and information based on the intuitions behind event-state duality. Events are

regarded as instantaneous, occurring at a particular time, and they add to the total

accumulated information. Dually, no information is accumulated in a state, which

however adds to the total amount of time that has passed since the beginning of the

process. Thus we can plot the progress of a behavior on a graph with time on the x-

axis and information on the y-axis. The states are then horizontal line segments, and

the events are vertical. The graph is monotonically increasing, as we take computation

to be monotonic. The graph is also piecewise horizontal and vertical, but as the

number of events grows to in�nity it starts looking like a monotonically increasing

curve.

In �gure 3.5 we have drawn the pdlats (automata) and dual pdlats (schedules)

corresponding to some Chu spaces. It can be seen that in the schedules, time is

owing downwards, as opposed to the automata, where time
ows upwards. So we

start o� by doing events at the top of the lattice, and work our way down. The lattice

CHAPTER 5. CONCURRENCY APPLICATIONS 39

de�nes the constraints | if an event is below another event, it must be done later. If

an event is the join of two events in the lattice, then as soon as it is done either of the

two events of which it is the join must also be done. This follows from our de�nition

of a dual pdlat, since the states of its Chu space are just its �lters intersected with

its event set, so any equation like a _ b = c must be satis�ed in all states.

Dual to the notion of a behavior, we de�ne a property of a Chu space (A;X)

to be any other Chu space (A;Y), where X � Y � 2A. For example, the space

(fa; b; cg; f�; a; b; abcg) is a property of the Chu space (fa; b; cg; fa; b; abcg). A Chu

space is thus a conjunction or intersection of all its properties.

We will represent properties by in�nitary boolean expressions, so the property �

of a Chu space (A;X) will represent the Chu space (A;Y), where Y � 2A is the set

of all satisfying assignments of � (see chapter 3). The above property can then be

written as a _ b � c. Now if � is the logical formula representing a Chu space, then

the Chu space has the property � i� � j= �, that is �! � is a valid boolean formula.

The set of all properties of a Chu space is its theory, which was de�ned as the set of

logical consequences of its logical formula, and can be viewed as the set of Chu spaces

with the same A but with Y � X (it has 2(2
A�X) elements).

Since there is no way of telling whether a pdlat is intended to be interpreted as a

schedule or as an automaton, we will use an arrow to indicate the direction of time.

An arrow pointing upwards means that the pdlat is an automaton, and a downward

arrow means that it is a schedule (as time
ows down in a schedule). This arrow also

identi�es whether a pdlat is to be interpreted as a pdlat or a dual pdlat.

5.3 Logical representation of Chu spaces|Gates

as acceptors

In chapter 3 we gave the logical representation of a Chu space as an in�nitary boolean

formula, whose variables are the events and whose satisfying assignments are the

states of the Chu space. The logical representation of a Chu space can be understood

by letting each variable a stand for the proposition \a has happened". Thus execution

CHAPTER 5. CONCURRENCY APPLICATIONS 40

of the process sets more variables to 1, as more events keep happening. The entire

formula is built up of these atomic propositions, and must remain true at all times

| that is the process must remain in a state.

Now we can represent a Chu space as a Boolean gate. Its inputs are the events

of the space, and the gate computes the Boolean formula for the Chu space, and has

one output. The occurrence of an event can now be considered as a toggling of an

input. Since computation is monotonic, an input can be toggled from zero to one

only, never back, so in a single run, it can be toggled exactly once, corresponding to

the event taking place. A behavior is accepted if the output always stays 1, that is

the process is always in an allowed state. So a gate is now an acceptor of a behavior,

rather than a transducer as used traditionally [GP93].

Gates provide an alternative pictorial representation for Chu spaces, and are very

useful in understanding the algebra of Chu spaces, as we will show in the next chapter.

5.4 Aspects of concurrency

We will now show some properties that can be used to represent various features of

concurrent behavior in a process. We use � for the logical representation of a process,

and boolean formulas for the properties.

Temporal precedence. For any two events a; b, if � j= b! a, then no state contains

b and not a. This means that b can be executed only after a has been executed. This

means that a precedes b in time, and the collection of all such constraints de�nes a

temporal order on the events of G. We write a � b for any such pair of events. Note

that the temporal order is the converse of the logical order, and this is the reason for

the downwards
ow of time for the schedule. (We always have the logical order going

up.) We cannot express the property a < b in our model, since this is an asynchronous

model. According to our semantics, a process represented by a Chu space may evolve

from any state to any other state above it, so even if a < b, it can in one transition

go from a state in which neither is done to a state where both are done, so they occur

at the same time.

CHAPTER 5. CONCURRENCY APPLICATIONS 41

?

�
�
�� @@�b
@@

�c
���a
� 6

�
a�

��
c @@b�
@@b

�
��c�

Schedule Automaton

?

�
�
�� @@�b
@@

�c
���
�a 6

�
a�

��
c @@b�
@@b

�
��c�

Schedule Automaton
(a) Causality (b) Enabling

?

�
�a
�� @@�b
@@

�c
��� 6

�
��
c @@b�w
@@b

�v
��c�
a�u

Schedule Automaton

?

�
�a
�
�� @@�b
@@

�c
��� 6

�
��
c @@b�w
@@b

�v
��c�u
a�x

Schedule Automaton
(c) Blind choice (d) Guarded choice

Figure 5.1: Schedules and Automata for some concurrent behaviors.

Con
ict. If � j= :(a ^ b), then no state contains both a and b. This means that

we can never execute both a and b, which is interpreted as a con
ict between a and b.

This can be generalized to con
ict between arbitrary numbers of events. While this

notion has been explicitly introduced in event structures [NPW81, Win86], it follows

quite naturally from our de�nition. It is illustrated in �gure 5.1(c-d), where b and c

are in con
ict.

Causality and enabling. If � j= a$ (b^ c) then any state containing b and c must

also have a. We interpret this as b and c together cause a, that is, as soon as the

events b and c have been done, the environment will immediately do a. This can be

generalized to an arbitrary formula on the right side of the implication. Note that

the T0 condition does not allow an event to be caused by a single event, as the two

events are identi�ed.

The above Chu space is distinct from the Chu space in which � j= a ! (b ^ c).

Then b and c just enable a, which means that while it is necessary for them to be

done to do a, it is not su�cient, as a need not be done immediately. The enabling

condition (b^ c) can be generalized to an arbitrary condition, including the singleton

event, when it becomes temporal precedence. The di�erence between these is like the

CHAPTER 5. CONCURRENCY APPLICATIONS 42

di�erence between the necessary and su�cient conditions for a theorem|the enabling

formula represents the necessary conditions, the causing formula is both necessary and

su�cient.

This distinction has not been made in other models. An example of this di�erence

is the di�erence between two candy machines | an automatic machine would give

a candy immediately after putting in a quarter and a dime, so the event of getting

the candy is caused by the events of putting in a dime and the event of putting in a

quarter. A manual machine would enable a user to press a button after putting in a

quarter and a dime, and the machine would then give the candy. Thus in the second

case the user can wait after putting in the money! (Here the pushing the button and

getting the candy is regarded as one event).

Nondeterminism. Dual to the above notion is the notion of guarded vs. blind

choice. If � j= a $ (b _ c), then as soon as a is done, one of b or c must be done

immediately. This means that any information obtained by doing a could not be used

in selecting between b and c, making this a blind choice. This is more clearly visible

from the automaton side in Figure 5.1(c). The choice between states v and w has

to be made at the forbidden state above u. We interpret this as being made by the

environment, making this a nondeterministic choice for the automaton.

Just having � j= (b _ c) ! a would make it a guarded choice, whence any infor-

mation obtained from a can be used to make a deliberate choice. On the automaton

side, the choice between v and w is made in the state u, as �? j= u$ v^w1, and this

state contains the information gathered by doing a to decide which way to go. This

is like a conditional branch in a program, where the event a checks some condition,

and then either one of two alternatives is chosen.

This distinction is similar to the distinction between internal and external non-

determinism made in CSP[Hoa85], in both cases the di�erence being between who

makes the choice, the environment or the process.

Disjunctive Enabling. If � j= c ! a _ b, then in order for c to happen, at least

one of a or b must have happened. For example, in a candy machine, inserting either

a dollar bill or 4 quarters will enable the machine to supply a candy bar. This is

1�? is the dual logical representation, and has the names of states for the set of variables.

CHAPTER 5. CONCURRENCY APPLICATIONS 43

6

�
��
c @@

a�
b@@

�
�� @@

�
�� b�

@@a
� �
��c� 6

�
��
c @@

a�
b@@

�
�� @@

�
�� b�

@@a
� �
��c�

Disjunctive enabling Postponed concurrency

Figure 5.2: Automata for disjunctive enabling and postponed concurrency

called disjunctive enabling [Win86, Gun91, Gun92]. The dual behavior is postponed

concurrency, given by � j= a ^ b ! c, whereby a and b can be done concurrently

only after c is completed. For example, c could be the event that makes available

an additional resource, e.g. an extra processor, which allows concurrent execution.

The automata for processes with disjunctive enabling and postponed concurrency are

given in �gure 5.2. The schedules can be derived from the dual pdlat of the formula

b! c _ a in �gure 3.5.

5.5 Morphisms as simulations

If we interpret Chu spaces as processes, we can interpret the morphisms between them

as simulations2. Thus when we have a Chu map (f; g) : (A;X) ! (B;Y), (A;X)

can simulate (B;Y) via the simulation (f; g). By a simulation of (B;Y) by (A;X)

we mean here a relation S � Y �X between states and a correspondence C between

computations such that whenever ySx and y
�! y0, where � is a set of actions, then

there exists x0 2 X such that y0Sx0 and x
C(�)! x0. A computation here will be a set

of events, so C will be a function from 2B to 2A.

Proposition 5.1 Every Chu map (f; g) : (A;X) ! (B;Y) determines a simulation

of (B;Y) by (A;X).

Proof: Given y 2 Y; x 2 X, de�ne S � Y �X by ySx i� x = g(y). De�ne C as

f�1 : if � � B, then C(�) = fa j f(a) 2 �g.
2Brown, Gurr and de Paiva [BGdP91] have done the same for their category of Petri nets.

CHAPTER 5. CONCURRENCY APPLICATIONS 44

Now suppose y
�! y0 in the process (B;Y). Then y0 = �[y (note that y; y0 � B),

so C(y0) = C(� [y).
Now a 2 C(y0) i� f(a) 2 y0 i� a 2 g(y0), by the adjointness condition for maps.

Thus C(y0) = g(y0). (Thus C is just an extension of g to all subsets of B.)

Also, a 2 C(� [y) i� f(a) 2 � [y
i� f(a) 2 � or f(a) 2 y

i� a 2 C(�) or a 2 g(y).

Thus g(y0) = C(� [y) = C(�) [g(y), so g(y) C(�)! g(y0). Thus S is a simulation.

We can now see the connection between these simulations and the usual de�nition

of simulations between processes | S is a simulation between processes if pSq and

p
�! p0 then there exists q0 such that q

�! q0 and p0Sq0, where � is a set or sequence

of actions, not events. We shall use maps between labeled Chu spaces.

Corollary 5.1 If (f; g) : (A;X) ! (B;Y), and f is injective and preserves labels,

and the label of any event not in the range of f is � , the silent action, then (f; g)

determines a simulation.

Proof: If � : A ! Act and �0 : B ! Act are the labeling functions, and

�0(f(a)) = �(a), then �(C(�)) = �0(�), since any event in � whose pre-image is not

in C(�) is labeled � .

Re�nements. A special class of simulations is re�nements, in which some events

of a process are re�ned into processes themselves. These are useful in program build-

ing, where one may start with a high level view of the program, and then successively

re�ne it to get the entire program. As a programming construct, re�nements are

rather like procedure calls, where a line of code on closer inspection turns out to be

a big procedure. The fact that we may not know the internal structure of the proce-

dure (e.g. calling a library function) imposes a non-interleaving semantics on us, as

discussed in chapter 2.

We treat here the simple case of re�ning events by con
ict free processes, leaving

the more general re�nements to the next chapter. A con
ict free process (A;X) is

one in which no subset of A is in con
ict (has meet 0), or equivalently is one in which

CHAPTER 5. CONCURRENCY APPLICATIONS 45

A 2 X. We will also insist upon the additional condition that ; 2 X, so there is a

unique start state.

Given a Chu space (B;Y) and an event b 2 B, we de�ne the re�nement of b by

the con
ict free space (C;Z) as the process (A;X), where A = B � fbg [C, and X

is de�ned as follows :

X = fx j b 62 x 2 Y g
[fx� fbg [C j b 2 x 2 Y g
[fx� fbg [z j b 2 x 2 Y; z 2 Z; x� fbg 2 Y g

Now we can show a map (f; g) : (A;X) ! (B;Y). f(a) is a if a 2 A � C, and

f(a) = b if a 2 C. g is de�ned via the adjointness condition, and the fact that

C 2 Z ensures that (f; g) is a Chu map. The intuition behind the simulation is that

whenever an event other than b is executed in (B;Y), the same event is executed in

(A;X). When b is done, the whole process (C;Z) is executed.

Here we have de�ned re�nement of a single event. Composition of re�nements

now yields re�nements of many events at a time, and also compound re�nements i.e.

re�nement of re�ning events.

5.6 Programming an automaton or a schedule

The two di�erent ways of looking at processes, schedules and automata, yield two

di�erent ways of writing programs. We can either specify a schedule by writing out

all the constraints on the events, resulting in a declarative style of programming,

or can specify how the process evolves from a state, giving an imperative way of

programming. The duality of Chu spaces now enables us to convert between these

two forms of programming without any loss of information.

The declarative style of programming allows us to specify the properties of a

process, the conjunction of all of these then results in the speci�cation of the whole

process. For example, suppose we wanted to write a Chu space for a mutex process

with decision events, that is, we have two events a and b to be done in mutual

exclusion, along with a pair of events dab and dba that resolve which is to be done

CHAPTER 5. CONCURRENCY APPLICATIONS 46

?

�
t�
��u @@v�

��w @@
�
��@@x�

��
y
@@

�
��@@

�
��@@z�d

ab

@@
� a

@@��
� b
@@��

�dba
���

@@
�
@@��

�
���

@@
�
���

6

�.......... ��
.............�z

��b
.............
�..........
.............
�.......... ��
.............

�y.......... �� a�x
a
.............
�
��
.............
�..........
.............
�
��

�..........
�w.......... ��b�vd

ab

� �
��

�u.......... d
ba� t

Figure 5.3: Schedule and Automaton for the mutual exclusion process.

�rst. Clearly, dab and dba are in con
ict, so dab ^ dba = 0. Also the decision is to be

made before doing the events, so we get a _ b ! dab _ dba. Now dab means a should

be done before b so we have dab ! (b ! a). There is a symmetric condition for dba,

namely dba ! (a! b). Conjoining these four conditions gives us our program.

An alternative way is to specify how the process evolves. In the beginning nothing

is done, so the state is t = ;. Then a decision is made, so the process can be in state

v = fdabg or in state u = fdbag. From state fdabg, it does a and then b, so we get

states x = fa; dabg and z = fa; b; dabg, and from fdbag it does b and then a, so we get

states w = fb; dbag and y = fa; b; dbag.
Now we can draw the Chu spaces we get from these two speci�cations. Duality

enables us to show that they result in the same process.

In the next chapter we will present an algebra of Chu spaces, which will give us a

way of building bigger processes from smaller ones modularly. So we will be able to

specify the smaller processes using one of the methods above, and then combine them

using the algebraic operators, giving a powerful speci�cation language allowing us to

use imperative, declarative and algebraic speci�cations in one coherent framework.

As an example, we will be able to write the mutual exclusion of two processes as

P;Qt Q;P, or as (d1 t d2); (P+Q)^(d1^WB ! (P in maximal state))^(d2^WA!
(Q in maximal state)), where P = (A;X), and Q = (B;Y).

Chapter 6

Algebra of Chu Spaces

Having de�ned the category of Chu spaces in the previous chapters, we immediately

get an algebra of Chu spaces, as our category has products and coproducts, tensor

and duality. We will give elementary de�nitions of these operations here, along with

some others, and show how they can be interpreted as constructors for making large

programs out of smaller ones, giving a process algebra of Chu spaces. We will also

show some of the laws that hold for Chu spaces and their algebra, and show that Chu

spaces form a model for linear logic.

6.1 De�nitions and interpretation

We �rst de�ne the various constants used in the rest of the chapter. We have already

de�ned the constant ? in chapter 4 as the Chu space (fa; bg; ffbgg). The other

constants we need are > = (fag; ffg; fagg), 0 = (fg; f;g) and 1 = (fag; fg). Note

that ? �= >? and 1 �= 0?. > is the elementary process
p

which does one event, while

0 is the process which does nothing.

The categorical operations that we de�ne here are product, coproduct, and tensor.

We also de�ne several other operations on Chu spaces derived from process algebra,

namely choice, sequential composition and partial synchronous product, making this

algebra of Chu spaces an expressive speci�cation language. We always start with T0

and extensional Chu spaces, though sometimes the constructions given do not yield T0

47

CHAPTER 6. ALGEBRA OF CHU SPACES 48

extensional spaces. This is resolved by standardization, that is, identifying any equal

rows or columns. In the following paragraphs, we will identify processes with their

Chu space representations. These operations have been presented for two operands,

and their generalization to in�nitely many operands is straightforward.

Coproduct. Let P = (A;X) and Q = (B;Y) be Chu spaces with disjoint event

sets A and B. De�ne the Chu space (C;Z)
4
= (A [B; fx [y j x 2 X; y 2 Y g). Then

(C;Z) is the categorical coproduct of P and Q, denoted P+Q. It has injection maps

(f1; g1) : P ! P +Q; f1(a) = a; g1(z) = z \ A and (f2; g2) : Q ! P +Q de�ned by

f2(b) = b; g2(z) = z \ B. If (C 0; Z 0) is another Chu space with maps (f 01; g
0
1) : P !

(C 0; Z 0) and (f 02; g
0
2) : Q ! (C 0; Z 0), then the unique map (h; k) : P +Q ! (C 0; Z 0)

given by h(a) = f 01(a); h(b) = f 02(b) and k(z0) = g01(z
0) [g02(z

0) shows the universality

of the coproduct. The unit of coproduct is the constant 0, as P �= P + 0.

If � and � were the two logical formulas representing Pand Q, then the logical

formula representing P +Q is � ^�, as the variables of � ^� are the union of the

variable sets of � and �, and its satisfying assignments correspond to a satisfying

assignment of � and a satisfying assignment of �, which are exactly the states of

P + Q. As � ^ � ! � and � ^ � ! � are Boolean tautologies, we get the two

injection maps required for a coproduct (from the logical representation of Chu maps,

chapter 4). We can now use the gate representation of Chu spaces to get the gate for

their coproduct. If jAj = 3 and jBj = 2, then P and Q are represented by gates with

3 and 2 inputs respectively. The sum gate given in �gure 6.1 is then the coproduct

gate.

Operationally, notice that for the output of the sum gate to be 1, the outputs

of both the component gates must be one. This means that any inputs of P can

be toggled independently of the inputs of Q, and the output of the sum will remain

1 if P continues to be in an acceptable state. Thus this gate represents the non-

communicating parallel execution of the processes represented by P and Q, since
events in each may happen independently of the other.

Product. This is the dual to coproduct, de�ned as follows. If P = (A;X) and

Q = (B;Y), then their product is P�Q 4
= (A�B; fx�B j x 2 Xg[fA�y j y 2 Y g).

This is the categorical product, and the projection maps are (f; g) : P � Q ! P,

CHAPTER 6. ALGEBRA OF CHU SPACES 49

P +Q

P

Q

�
�

Figure 6.1: The sum of two gates.

f((a; b)) = a and g(x) = x � B and a similarly de�ned right projection. For any

other Chu space (C;Z) with maps (f 01; g
0
1) to P and (f 02; g

0
2) to Q, we get a unique

map (h; k) to P �Q via h(c) = (f 01(c); f
0
2(c)) and k(x�B) = g01(x); k(A� y) = g02(y),

showing that this is the categorical product.

Now (P � Q)? �= P? + Q? via the map (h; k) : (P � Q)? ! P? + Q?, where

h(x �B) = x; h(A� y) = y and k(a [b) = (a; b). This is an isomorphism as h and

k are bijective, and is a Chu map as h(x �B) 2 a [b , x 2 a, a 2 x, (a; b) 2
x�B , x�B 2 k(a [b), and similarly for h(A� y). Thus the identity for � is 1 :

P � 1 �= P.
The circuit for P � Q can now be derived from the de�nition. Each state comes

from the �rst or the second set, so we construct circuits for them and form their

disjunction. In a state from the �rst set, the input (a; b) depends only on a, so the

inputs corresponding to (a; b) must be the same for any b 2 B. This is ensured by the

equivalence gates (�), which output one i� all their inputs are the same. Finally the

gate P judges whether the a's form a state. The circuit for the other set is similar.

We do not know a good operational interpretation for the product of two Chu

spaces. However, notice that once a process is in a state from the �rst set of states,

i.e. it is in a state of the form x� B;x 2 X, then it can only go to another state of

this form according to the transition relation de�ned by subsets. So from the product

construction we can derive another operation, which allows a process to do either one

process or another, but not both.

CHAPTER 6. ALGEBRA OF CHU SPACES 50

P �Q

s ss ss s s
s s s s

� � � P

�
�

�

�

Q

��.........
........
........
.....

...
.............
.

...

Figure 6.2: The product of two gates.

Choice. Let P and Q be two Chu spaces, each containing the event 0 which is

not an element of any state1. Now consider their product P � Q, and delete any

events not of the form (a; 0) or (0; b) from the set of events, and from each state.

Thus the set of events looks like the disjoint union of the event sets of P and Q, and
each state contains only events of the form (a; 0) or only events of the form (0; b). So

the resulting process can do either the �rst process or the second, but not both.

Alternatively, we can de�ne the choice of P = (A;X) and Q = (B;Y) as P t Q =

(A [B;X [Y), where A and B are disjoint. Note that the disjointness of A and B

means that X \ Y = fg or ffgg. Thus once we do some event in P, no events of Q
can be executed, and vice versa. The circuit in �gure 6.3 implements this de�nition,

by forcing all the inputs of Q to be at 0 if any input of P is 1, and vice versa.

The choice operation is functorial, i.e. if there is a morphism from P to P', there
is a morphism from P t Q to P 0 tQ | it is the same morphism on P and identity

on Q. We will show that it is the categorical sum for a di�erent category on the

Chu objects in chapter 7. If X \ Y = fg, then choice is a self dual operation, i.e.

P tQ �= (P? t Q?)?. The identity for choice is the Chu space ; = (fg; fg).
1The 0 event can be added by forming the sum P + 1 = (A [f0g; X). This adds the 0 event i�

it is not there, otherwise the two 0 events are identi�ed by the T0 property.

CHAPTER 6. ALGEBRA OF CHU SPACES 51

P tQ
s s Q

........
........
........
......

...
.............
.

... e

ss
s

P

........
........
........
......

...
.............
.

... e

�
�

�
�

........
........
........
......

...
.............
.

...

Figure 6.3: Choice of two Chu spaces.

Tensor. In chapter 4 we presented the internal homfunctor. We now give an

explicit construction for its left adjoint, the tensor product. If P = (A;X) and

Q = (B;Y) are two Chu spaces, then their tensor product P
Q 4
= (A�B;Z) where

z 2 Z i� z � A � B and 8b 2 B:[zb = fa j (a; b) 2 zg 2 X] and 8a 2 A:[za =

fb j (a; b) 2 zg 2 Y]. Thus any state in P
 Q may be viewed as a bilinear map2

z : A � B ! 2 such that z(; b) : A ! 2 and z(a;) : B ! 2 are maps(states) in X

and Y respectively.

Now we can prove the required adjunction:

Lemma 6.1 (P
Q)��R �= P��(Q��R), and this isomorphism is natural in P, Q,
R.

Proof: We �rst prove that P
 Q �= (P��Q?)?, and will then show that this

identity implies the isomorphism above.

If P = (A;X) and Q = (B;Y), then (P��Q?)? �= (A�B;Z), where Z is the set of

maps from (A;X) to (Y;B). Each such map is a pair of maps (f; g) : (A;X)! (Y;B),

so f : A! Y and g : B ! X. Now the adjointness condition allows the identi�cation

of these maps into one bilinear map z : (A �B) ! 2, and vice versa, we can derive

2A bilinear map is a map on two arguments, such that it is linear if one of them is held �xed.
Here, linear maps are those which are members of the state set, with the states considered as maps
to 2

CHAPTER 6. ALGEBRA OF CHU SPACES 52

P
Q
s

s

Q

s

s

Q

s

s
Q

�
�

P

P

��
�
�

Figure 6.4: Tensor product of Chu spaces.

such a pair of maps from a bilinear map. So we have P
Q �= (P��Q?)?.

Now, using the identities of section 4.3, we have (P
 Q)��R �= (P��Q?)?��R
�= R?��(P��Q?) �= P��(R?��Q?) �= P��(Q��R).

Naturality follows by a simple diagram chasing and composition. For example, if

we have a map (h; h0) : P0 ! P, then we can substitute h(a) for a in the isomorphism

(P
 Q)��R �= P��(Q��R), and compose with h0 for the adjoint map to get the

isomorphism (P 0
Q)��R �= P 0��(Q��R), showing naturality in P.
P
> �= P from the above lemma, so > is the identity for
.
Since each state in the tensor product is a bilinear function, we can design a circuit

which for each a 2 A checks that the set of inputs (a;) form a state of Y , and vice

versa for the b's. The circuit in �gure 6.4 implements this idea, giving a circuit for

the tensor product of P and Q.
Both the symmetry of this picture and the de�nition show that the tensor product

is commutative. It is also associative, as can be established by simplifying the above

circuit after plugging in the circuit for P
Q in place of each P box.

Operationally, tensor represents the interaction of two processes, also known as

orthocurrence [Pra86, CCMP91]. It represents one process
owing through another.

For example, if process P is three trains running sequentially, and processQ represents

two stations on the track, then there are 3�2 = 6 events, corresponding to each train

CHAPTER 6. ALGEBRA OF CHU SPACES 53

arriving at each station. For each train, the stations must arrive in the same order,

and for each station the trains must arrive in the same order too. Thus each state

of the system is a bilinear combination of the states of the system, which is enforced

by the above circuit. Each copy of P may be understood as a guard and each Q as

a station master, who verify that the conditions are locally met.

An example of a system which is best represented by interaction is a communica-

tion channel. The channel is a process with several states (bu�ers) for each message,

while the input process is a stream of messages. Their interaction, or tensor product

then describes the behavior of the channel with messages, each event being the plac-

ing of a message in a bu�er. Further restrictions can then be placed on this channel

to get the desired speci�cation of the channel behavior.

There are some other connectives derived from process algebra that we would

like for Chu spaces. We present here sequential composition, restriction and partial

synchronous product, others may also be de�ned.

Sequential composition. P;Q is the process which performs a process Q after

�nishing a process P. So to de�ne it we need a notion of what it means to �nish a

process|we will assume that if a process is in a maximal state (i.e. there is no state

which is its superset) then the process is complete. Note that this means that if a

process goes on forever, i.e. has no maximal states, then Q will never be done.

If P = (A;X) and Q = (B;Y), and A\B = ;, then we de�ne P;Q = (A[B;Z)
where Z = fx 2 X j x is not maximalg [fx [y j x maximal in X; y 2 Y g. So the

states of P;Q are states of P in the beginning, and after P is done, Q is started.

Since the process reached a maximal state of P before starting Q, no events of P can

be executed once Q has begun.

0 is the two sided identity of sequential composition, as P;0 �= 0;P �= P. This

operation is functorial in its second argument, that is given a map f from Q to Q'
we can uniformly �nd a map from P;Q to P;Q'|this map is the identity of P, and
behaves like f on Q. It is not functorial in the �rst argument, as maximal states need

not be mapped to maximal states by maps, so the map induced by a map from P to

P 0 would map some states in P 0;Q to sets of events that are not states in P;Q.
The circuit representation of P;Q in terms of the circuits for P and Q is rather

CHAPTER 6. ALGEBRA OF CHU SPACES 54

a:P

ss P
a s �

�

........
........
........
......

...
.............
.

...e
........
........
......

...
.............
.

...

Figure 6.5: Pre�xing a Chu space.

complex, since one has to determine the structure of P in order to see whether a

state is maximal. This can be done via G. D. Plotkin's result on circuit de�nability

[Plo94c] :- A function on Chu spaces is circuit de�nable i� the number of input lines

of the result is an n-ary function of the number of input lines of the n arguments.

The circuit is constructed by �rst determining the arguments via testing, and then

for those arguments, giving the circuit for the answer. Suppose the function had

one argument. For an argument with n inputs, there are 22
n

possible values of the

argument, so for each possible value we test for equivalence with the input box for

all the possible 2n input vectors in parallel, by making 2n copies of the argument and

test value. Since only one of these 22
n

equivalence tests will give the result true, we

can construct separate circuits for each possible value of the argument, and `and' its

output with the equivalence test result for that value. The inputs to these 22
n

circuits

come from outside, and their outputs are `or'ed together to get the output.

A special case of sequential composition is pre�xing, as used in CCS. Here the

process P is a copy of the process >, so it just does a single event, and then continues

doing Q. By restricting P to this simple process, the complexity of identifying max-

imal states is avoided by CCS, at the expense of making the sequential composition

less powerful. For this restricted operation the circuit representation is simple, and is

given in �gure6.5. We will denote pre�xing the event a to the Chu space P by a:P.
Action Re�nement. Using the idea of maximal states we can de�ne action

re�nement by general Chu spaces. Recall that in chapter 5 we de�ned the re�nement

CHAPTER 6. ALGEBRA OF CHU SPACES 55

of an event by a Chu space (A;X) with ;; A 2 X. We can generalize this de�nition

to re�nement by any Chu space:

Given a Chu space (B;Y) and an event b 2 B, we de�ne the re�nement of b by

(C;Z) as the process (A;X), where A = B � fbg [C, and X is de�ned as follows :

X = fx j b 62 x 2 Y; x [fbg 62 Y g
[fx� fbg [z j b 2 x 2 Y; z maximal in Zg
[fx� fbg [z j b 2 x 2 Y; z 2 Z; x� fbg 2 Y g

In the �rst clause we did not want any state x from which some b could be done,

since x will come from the third clause, if ; 2 Z. If ; 62 Z, and b could be started in

x, after re�nement we want the start states of (C;Z) to be merged with copies of x.

This is ensured by the above de�nition.

In general, we will want to re�ne an action in a labeled Chu space. This is done

by re�ning each event which has a particular label by a copy of the process (C;Z);

these copies must be distinguished since they re�ne di�erent events. The re�nements

can be done successively.

Restriction. The restriction operation allows us to remove certain events from

a Chu space. Given a Chu space P = (A;X) and a set of events B � A, we de�ne

PnB 4
= (A�B; fx 2 X j x\B = ;g). Thus the events in B are no longer possible, and

in fact any state of P that was reachable by doing some events of B is not a state any

more. In the circuit representation, this means removing the inputs corresponding to

the events in B from the input set, and forcing them to 0 by grounding.

Partial Synchronous Product. The operation of partial synchronous product

for event structures was de�ned by Winskel [Win86] as the parallel composition of

processes P and Q with some events of P synchronizing with some events of Q. This
de�nition can be extended to Chu spaces. The set of events of P k Q, where P
and Q have disjoint event sets, is A [B [(A � B). Here A and B represent the

unsynchronized events, and the pairs in A � B represent the synchronizations. For

the states, naturally we do not want both the pairs (a; b) and (a; c) in any state, since

that would mean that a occurred in synchronization with b and then again with c.

Similarly an unsynchronized event should not occur along with a synchronization of

CHAPTER 6. ALGEBRA OF CHU SPACES 56

the same event. Thus the state is formed by taking a state in X and a state in Y

and forming all possible combinations by pairing some events of X with some events

of Y . Each pair of states can yield many new states|for example from the pair fag
and fb; cg we can get 3 states, fa; b; cg; f(a; b); cg and fb; (a; c)g.

As an example, let P = (fag; f�; fagg) and Q = (fb; cg; f�; fbg; fb; cgg). Then

the events in P k Q are fa; b; c; (a; b); (a; c)g. The possible states are formed from

pairs of states as follows :

State of P State of Q States of P k Q
� � �

� fbg fbg
� fb; cg fb; cg
fag � fag
fag fbg fa; bg; f(a; b)g
fag fb; cg fa; b; cg; f(a; b); cg; fb; (a; c)g

The identity for partial synchronous product is 0. Partial synchronous product is

not functorial, for example there is a unique map from P = (fa1; a2g; ffg; a1; a1a2g)
to Q = (fbg; ffg; bg), but there is no natural map from P k R to Q k R, where

R = (fcg; ffg; cg). However it is functorial if we restrict ourselves to injective maps.

In the rest of this chapter, whenever we talk about partial synchronous product as a

functor, we will refer to the category of Chu spaces and injective maps.

The circuit for P k Q can be drawn as in �gure 6.6. We use the symbol # to

denote a con
ict box, its output is 1 i� at most one of the inputs is 1. P and Q each

have two inputs, fa; bg and fc; dg respectively.
Partial synchronous product is used to de�ne communicating parallel composition

as in CCS or CSP. All the synchronizations that are not allowed by the language are

restricted away.

Labels. In the above discussion, we always had unlabeled Chu spaces. The

extension to labeled Chu spaces is as follows.

If �1 and �2 are labeling functions for P and Q respectively, then the labeling

function for P +Q is given by �, where � nA = �1 and � nB = �2. This is also true

CHAPTER 6. ALGEBRA OF CHU SPACES 57

P k Q

d s
c s

(bd)

s

s s(bc)

s
s sb s

(ad)
s

s

s(ac)

s

s sa s# #

#
........
........
........
......

...
.............
.

...

........
........
........
......

...
.............
.

...

........
........
........
......

...
.............
.

...

........
........
........
......

...
.............
.

...

Q

P

��
��

�
�

Figure 6.6: Partial Synchronous Product of P and Q.

for the operations P tQ and P;Q. In P
 Q, event (a; b) is labeled by a pair such

that �(a; b) = (�1(a); �2(b)). The restriction operation can restrict labels instead

of events, in which case PnA, A � Act will be implemented by restricting P by

B = fa 2 A j �(a) 2 Ag.
Labels for events in partial synchronous product depend on the desired application.

For example, in CCS, we would restrict away all events that synchronize events with

non-complementary labels, and label the other pairs by � . The singleton events are

labeled as before.

We can de�ne the operation of relabeling on Chu spaces, denoted P[f], where f :

Act! Act is a relabeling function. If P = (A;X; �), then de�ne P[f] = (A;X; f ��).
Recursion and the solution of recursive domain equations. We would like

to get Chu spaces for processes which are de�ned recursively. For example, if
p

is

a process which does a single event and halts, then the iteration operator P� can be

de�ned as P� =
pt P;P�, or using �xed point notation, as P� = �X:

pt P;X. We

would like to know when such an equation has a solution.

We will use the techniques developed in [PS82] to obtain the solutions. The

CHAPTER 6. ALGEBRA OF CHU SPACES 58

category Chu has an initial object, 0, with a unique map to every other object,

namely the empty map. It also has colimits of !-chains.

In [Bar91], Barr proved that if an autonomous category is bicomplete, then the

�-autonomous category generated from it via Chu's construction is also bicomplete.

Set is bicomplete, thus Chu is also bicomplete, and from this it immediately follows

that it has an initial object and colimits of !-chains, that is, it is an !-complete

pointed category as de�ned in [PS82]. Here we give an elementary proof of this fact,

mainly in order to establish notation.

An !-chain is a functor from the category !, whose objects are 0; 1; 2; : : : and

which has a morphism rmn from m to n for every m � n, and rmn � rlm = rln. Thus

an !-chain is a collection of objects A0; A1; : : : and morphisms fmn if m < n. (fmm

is the identity map, and we denote by fm the map from Am to Am+1). A colimit of

an !-chain is like a least upper bound for posets, namely an element A, with maps

hi : Ai ! A for each i such that hm = hn � fmn for all m;n. It is universal, so if there

is any other object C and a set of maps h0i satisfying these properties then there is a

unique map h0 : A! C, such that h0i = h0 � hi.

Proposition 6.1 Chu has colimits of all !-chains.

Proof: Consider the !-chain

P0

f0! P1

f1! P2

f2! P3 : : :

where Pi = (Ai;Xi) etc, and the maps are pairs fi = (fi; gi). Now we get the other

maps fmn = fn�1 � : : : fm.
De�ne an equivalence relation � on

S
iAi by a � b i� there are maps fmn; fkn such

that fmn(a) = fkn(b). Let A be the set of equivalence classes of this relation, with the

equivalence class of a denoted by [a]. Given any x � A, de�ne xi = fa 2 Ai j [a] 2 xg.
Let X be the set fx � A j 8i:xi 2 Xig. Then we claim that (A;X) is the colimit of

this chain. The set of maps (hi; ki) : (Ai;Xi) ! (A;X) is obvious, hi(a) = [a] and

ki(x) = xi, and these form an adjoint pair.

Now if we have any (A0;X 0) and a set of maps (h0i; k
0
i) which is also a candidate

for the colimit, then we can de�ne the unique map (h0; k0) : (A;X) ! (A0;X 0) by

CHAPTER 6. ALGEBRA OF CHU SPACES 59

h0([a]) = h0i(a), and k0 as its adjoint. h0 is well de�ned since if [a] = [b] then by

commutativity requirements, h0i(a) = h0j(a). It makes h0i = h0 � hi true for all i, and
is unique since if we had any other h00 : (A;X) ! (A0;X 0) di�erent from h0, then it

would di�er at some [a], but this is not possible since it must be equal to hi(a).

A functor F is called !-continuous if it preserves colimits of all !-chains. That is,

if P is the colimit of an !-chain P then F (P) is the colimit of the !-chain F (P). Com-

positions of !-continuous functors are continuous. Now if we have an !-continuous

functor, its least �xed point is given as the colimit of the !-chain

0
f0! F (0)

f1! F 2(0)
f2! F 3(0) : : :

Note that there is an arrow from 0 to F (0) as it is the initial object. The other

arrows are images of this arrow under F . If Q is the colimit, then so is F (Q), thus
the two are isomorphic, showing that Q is a solution of the equation X = F (X). Now

all we have to do is show that the various functors F (X) = P +X;P tX;P ;X;P

X;XnL are !-continuous to be able to get solutions for recursive domain equations

written over these operations.

P + X and P
 X preserve all colimits, since they have right adjoints [Mac71,

p.115]. So they are automatically !-continuous.

Proposition 6.2 The functor F (X) = P tX is !-continuous.

Proof: Consider the !-chain Q

Q0
f0! Q1

f1! Q2
f2! Q3 : : :

where Qi = (Bi; Yi). Let its colimit be Q = (B;Y). Let P = (A;X). Now fi : Qi !
Qi+1, so the map f 0i : P t Qi ! P tQi+1 is derived from fi by letting f 0i be f on Bi,

and identity on A. Its adjoint map is similarly the adjoint of fi on Yi and identity

on X. Thus in forming the colimit of the !-chain F (Q), we see that each element

of A forms an equivalence class under the � relation de�ned above, while the other

classes are as before. Also, for each x 2 X, f[a] j a 2 xg is a state in the colimit, and

the other states are those in Y . Thus the colimit of F (Q) is isomorphic to P t Q,
showing that F is !-continuous.

CHAPTER 6. ALGEBRA OF CHU SPACES 60

The proofs that the operations P;X and P�X are !-continuous are very similar,

and are omitted. Note that +;
; t ; k and � are symmetric, so the X can be either

argument. X;P is not a functor, as remarked before. For restriction, F (X) = XnL,
it is necessary to specify what this means as a functor, since if we just choose L to be

some set of events then isomorphic copies of X will be mapped to di�erent images.

We will understand this to mean restriction on labels, that is we restrict X on the set

of all events whose labels are in L. Then we will consider label preserving morphisms

only, making this an !-continuous operation. If we are willing to restrict ourselves

to the category of Chu spaces with injective Chu maps only, then P k X is also a

functor, and is ! � continuous.

The functor F (X) = P��X, where P = (A;X) is �nite, is also !-continuous.

On morphisms, this functor just composes them with elements of P��X. Now in

the !-chain F (Q), two elements h; h0 are �-equivalent i� they are �-equivalent on
all elements of A, i.e. 8a 2 A;h(a) � h0(a). This shows that P��Q is the desired

colimit.

Thus we can solve recursive domain equations for a variety of operators. Now

we can de�ne more operations by using recursion. Here we mention only one |

iteration, de�ned to be the least solution of F (X) =
pt P;X. The least solution

to this equation is denoted P�, and is the process that does P zero or more times,

terminating with a
p

event. For some related work on solving recursive domain

equations for Chu spaces, see [Plo94b].

6.2 Identities and Equivalences

The above operations satisfy a number of identities, which are useful in understanding

the intuitive meaning of the combinators. We will prove some of these in this section.

Proposition 6.3 (The commutative and associative laws) The operations co-

product, product, choice, tensor product and partial synchronous product are all com-

mutative and associative up to isomorphism. The isomorphisms are natural in each

CHAPTER 6. ALGEBRA OF CHU SPACES 61

component3.

Proof: The proofs of these laws follow immediately from the de�nitions of the

operations. As an example, we will prove the commutativity of the tensor product.

Let P = (A;X) and Q = (B;Y) be two Chu spaces. We will identify the elements

of X and Y with their characteristic functions. Now the isomorphism P
Q �= Q
P
is given by the Chu map (
PQ; �PQ),
PQ(ha; bi) = hb; ai and �PQ(y) = x, where

x(ha; bi) = y(hb; ai). Thus (
PQ; �PQ) is an isomorphism between P
Q and Q
P.
Now for it to be natural in P, given a map (f; g) : P ! P 0, we have to show

that (IdQ
 (f; g)) � (
PQ; �PQ) = (
P 0Q; �P 0Q) � ((f; g)
 IdQ). For the �rst

component, we have

(IdQ
 f) �
PQ(ha; bi) = (IdQ
 f)(hb; ai)
= hb; f(a)i
=
P 0Q(hf(a); bi)
= (
P 0Q � (f
 IdQ))(ha; bi)

For the adjoint map, given a bilinear map h : B � A0 ! 2, we have (�PQ �
(IdQ
 g))(h) = h0, where h0(ha; bi) = h(hb; f(a)i). This is also what we get as

((g
 IdQ) � �P 0Q)(h), so the isomorphism is natural P. The proof that it is natural
in Q is similar.

Proposition 6.4 (Associativity of seq. comp.) P; (Q;R) �= (P;Q);R, and this

isomorphism is natural in the third argument, R.

Proof: The isomorphism of the sets of events on the two sides follows from the

associativity of disjoint set union. z is a state in P; (Q;R) i� it is a non-maximal

state in P or the union of a maximal state in P with a state in Q;R. But from the

similar condition for a state to be in Q;R, we get that a state is in P; (Q;R) i� it is

a non-maximal state in P or the union of a maximal state in P with a non-maximal

state in Q or the union of a maximal state from each of P and Q, and a state in

3Naturality for commutativity and associativity of partial synchronous product holds only in the
category of Chu spaces and injective Chu maps.

CHAPTER 6. ALGEBRA OF CHU SPACES 62

R. This is also what we get from the right hand side, giving the isomorphism. Its

naturality follows from set-theoretic arguments.

We have already given the identity elements for each of these operations. These

two propositions give the laws which hold for expressions having only one operator

on each side. There are some distributivity laws between operators, and some De

Morgan laws.

Proposition 6.5 1: (P +Q)
R �= (P
R) + (Q
R)

2: (P �Q)? �= P? +Q?

3: (P tQ)? �= P? tQ?

Proof: (1) This follows from the fact that
 has a right adjoint and thus preserves

all colimits, in particular coproducts. Let P = (A;X);Q = (B;Y);R = (C;Z). The

isomorphism of the sets of events on the two sides follows from the distributivity of

the cartesian product of sets over disjoint union.

To show that the state sets are isomorphic, let u be a state in (P +Q)
R. Let
u = u1 [u2, where u1 is the set of events whose �rst component came from A, and

u2 those whose �rst component came from B. Now for any c 2 C; a 2 A, we have

(u1)c = uc \A 2 X, and (u1)a = ua 2 Z. Thus u1 is a state of (P
R), and similarly

u2 is a state of (Q
R), making u a state of the right side. The reverse inclusion can

be proved similarly.

The last two identities were proved in the previous section.

Note that
 does not distribute over t , because in (P tQ)
R a state can have

component states from either P or Q, while in (P
R) t (Q
R), they can be only

from one of P or Q.
The following laws were inspired by Milner's CCS [Mil89], and we will use these to

construct a Chu space model for CCS. They assume that the Chu spaces are labeled.

Proposition 6.6 Let P = (A;X; �), Q = (B;Y; �) and R be Chu spaces and K;L �
Act, and f; f 0 : Act! Act. Then the following isomorphisms hold.

1: PnL �= P if �(A) [L = ;

CHAPTER 6. ALGEBRA OF CHU SPACES 63

2: PnKnL �= Pn(K [L)

3: P[f]nL �= Pnf�1(L)[f]

4: P[Id] �= P

5: P[f] �= P[f 0] if f n�(A) = f 0 n�(A)

6: P[f][f 0] �= P[f 0 � f]

7: (P tQ)nL �= PnL tQnL

8: (P tQ)[f] �= P[f] tQ[f]

9: (P +Q)nL �= PnL+QnL

10: (P +Q)[f] �= P[f] +Q[f]

Proof: Each of these follow from trivial set theoretic arguments, hence the proofs

are omitted.

Several other laws for the CCS connectives will be presented in the next chapter.

One law that we would like to have is P t P �= P, since a choice between P
and P is just the same as doing P. However, since we require the event sets in

choice to be disjoint, we cannot have this. To overcome this de�ciency, we propose

using history preserving bisimulations[Dev88, OGG88, GG89] for equivalence between

Chu spaces, rather than isomorphism. We choose history preserving bisimulations

since they preserve the causality and choice structure, so are considerably �ner than

bisimulations, which identify a; b t b; a with a+ b, which is contrary to the semantics

of our model. However they are su�ciently coarse to permit several equivalences,

which we shall show now.

History preserving bisimulations. Let P = (A;X; �) be a labeled Chu space.

As de�ned for unlabeled spaces in chapter 5, the history of a state x 2 X is the labeled

Chu space h(x) = (x; fx0 2 X j x0 � xg; � nx). Now de�ne a history preserving

bisimulation (h.p.b.) between P and Q = (B;Y; �) as a relation R � (X�Y �2A�B)
such that (x; y; f) 2 R i�

CHAPTER 6. ALGEBRA OF CHU SPACES 64

1: f is a function from x to y and determines a label preserving Chu isomorphism

between h(x) and h(y).

2: x � x0 implies 9y0 2 Y; f 0 such that y � y0; (x0; y0; f 0) 2 R; f 0 nx = f and

�(x0 � x) = �(y0 � y).

3: y � y0 implies 9x0 2 X; f 0 such that x � x0; (x0; y0; f 0) 2 R; f 0 nx = f and

�(x0 � x) = �(y0 � y).

In [JNW93], Joyal, Nielsen and Winskel de�ne a strong history preserving bisimu-

lation as a history preserving bisimulation with two additional properties|if (x; y; f) 2
R;x0 � x, implies 9y0 2 Y; f 0 such that y0 � y; (x0; y0; f 0) 2 R; f nx0 = f 0, and a sim-

ilar condition for y0 � y. All the results of this section are valid for strong history

preserving bisimulations also.

Say P is equivalent to Q, P � Q, if there exists an h.p.b. between them. We will

also write x � x0 if there is a triple (x; x0; f) in the h.p.b. We �rst show that � is a

congruence over several operators.

Proposition 6.7 Let P1 � P2. Then

1: P1 +Q � P2 +Q

2: P1 t Q � P2 t Q

3: P1;Q � P2;Q

4: Q;P1 � Q;P2

5: P1 k Q � P2 k Q

6: P1nL � P2nL;L � Act

7: P1[f] � P2[f]; f : Act! Act

Proof: Let P = (A;X; �);P 0 = (A0;X 0; �0);Q = (B;Y; �). Let R be an h.p.b.

between P and P'.

CHAPTER 6. ALGEBRA OF CHU SPACES 65

1: From the relation R, construct the relation R0 = f(x [y; x0 [y; f [Idy) j
(x; x0; f) 2 R; y 2 Y g. Then R0 is an h.p.b. between P1 + Q and P2 + Q.
Given any triple (x[y; x0[y; f [Idy) 2 R0, f [Idy is an isomorphism between

h(x [y) and h(x0 [y). Also, if a transition from a state x [y to x1 [y1 takes
place, then that means there was a transition from x to x1 possible in P1. So

there is a triple (x1; x
0
1; f

0) 2 R, and thus the triple (x1[y1; x01[y1; f 0[Idy1) in
R0 would satisfy the requirements. Similarly we can verify the third condition,

so P1 +Q � P2 +Q via R0.

2: Construct the relation R0 = R [f(y; y; Idy) j y 2 Y g. This can be shown to be

a h.p.b. between P1 tQ and P2 tQ.

3: In the relation R note that maximal states can only be related to maximal

states. So from R, construct the relation R0 = f(x; x0; f) j (x; x0; f) 2 R;x not

maximalg [f(x [y; x0 [y; f [Idy) j (x; x0; f) 2 R;x maximal; y 2 Y g. Then

R0 can be shown to be an h.p.b.

4: From the relation R we construct R0 = f(y; y; Idy) j y 2 Y; y not maximalg [
f(y [x; y [x0; Idy [f) j y maximal in Y; (x; x0; f) 2 Rg. Then R0 is a h.p.b.

between Q;P1 and Q;P2.

5: In the de�nition of P1 k Q, we saw that each state was generated by a state

x 2 X and a state y 2 Y . So when building R0, for each triple (x; x0; f) 2 R

and each state z in P1 k Q built from x, we introduce a triple (z; z0; g) 2 R0,

where z0 = ff(a) j a 2 z \Ag [fb j b 2 z \ Bg [f(f(a); b) j (a; b) 2 zg. The g
is clear from this de�nition, and we can show that R0 is a h.p.b.

The last two cases are rather trivial.

Notice that the operators �;
 were missing from this theorem. The reason is

that � is not a congruence for these. For
, if P = x:0, then P t P � P, but if we
tensor it with Q = (c! a) ^ (c! b), then the two sides are not bisimilar. So when

we use the � relation for observationally equivalent processes, we will have to leave

out these two operators from the algebra.

CHAPTER 6. ALGEBRA OF CHU SPACES 66

We can extend the equivalence relation to equivalence between functors, say F �
G if for all Chu spaces P, F (P) � G(P) uniformly. By uniformly we mean that if

(f; g) : P ! Q is a Chu map, then if the state y in F (Q) is related to y0 in G(Q) with
the history isomorphism h0, then the state F (g(y)) in F (P) must be related to the

state G(g(y0)) in G(P) with the history isomorphism h, with h � F (f) = G(f) � h0.
The following proposition can be used to show that equivalence is preserved under

recursive de�nition.

Proposition 6.8 Let P and Q be two !-chains

P : P0

(f0;g0)�! P1

(f1;g1)�! P2

(f2;g2)�! P3 : : :

Q : Q0

(f 0
0
;g0

0
)�! Q1

(f 0
1
;g0

1
)�! Q2

(f 0
2
;g0

2
)�! Q3 : : :

and 8i:Pi � Qi. Furthermore let the equivalence be uniform, i.e. if xi � yi, then

gi�1(xi) � g0i�1(yi) and the f 's commute with the history isomorphisms. Then the

colimits of the chain are also equivalent, P � Q.

Proof: Let P i = (Ai;Xi), andQi = (Bi; Yi). Also let P = (A;X), and Q = (B;Y).

Let x be a state in the colimit P. Recall that xi = fa 2 Ai j [a] 2 xg, the image

of x under the maps from Pi to P. By de�nition of the colimit, xi 2 Xi. Now by the

adjointness condition, we can show that gi�1(xi) = xi�1, and the same for the y's.

Now de�ne the relation R by x � y i� 8i:xi � yi. Since the history isomorphisms

between xi and yi commute with the f 's, we can de�ne an isomorphism between h(x)

and h(y). We will show that this de�nes an h.p.b. between P and Q.
Let x � y. Suppose there is a transition x! x0 in P. This means that there must

be transitions xi ! x0i in P i for each i. Now since xi � yi, there must be at least one

zi such that we have the same transition yi ! zi in Qi. In fact we will choose the zi's

such that g0i�1(zi) = zi�1, this is always possible. Let y
0 =

S
if[b] j b 2 zig.

Now since g0i�1(zi) = zi�1 for all i, y
0 is a state in Q. By a set-theoretic argument,

we can show that we have a transition y ! y0, and since there are isomorphisms

between the histories of zi and x0i, there is an isomorphism between h(x0) and h(y0).

The proof of the third condition is symmetrical. Thus P � Q.

CHAPTER 6. ALGEBRA OF CHU SPACES 67

Corollary 6.1 Given two functors F � G, their least �xed points are also equivalent.

Proof: Since F � G, the chains 0 ! F (0) ! F 2(0) ! : : : and 0 ! G(0) !
G2(0) ! : : : satisfy all the conditions of the above proposition. Thus the colimits,

which are the least �xed points of the functors, are bisimilar.

The equivalence � yields several intuitively obvious equivalences between Chu

spaces.

Proposition 6.9 The following equivalences hold between Chu spaces.

1: P t P � P

2: (P tQ) +R � (P +R) t (Q+R)

3: (P tQ);R � (P;R) t (Q;R), where P or Q have a non-empty state each.

4: (P k Q) +R � (P +R) k (Q+R)

Proof: Let P = (A;X; �);Q = (B;Y; �);R = (C;Z; �).

1: Since the event sets of the two copies of P on the l.h.s. are not disjoint in

P t P, we will add a subscript to denote where they came from. States will

similarly carry a su�x. Now de�ne the relation R = f(x1; x; f : a1 7! a) j x 2
Xg[f(x2; x; f : a2 7! a) j x 2 Xg. It is clear that f determines an isomorphism

between h(x1) and h(x). Also, if a transition x1 ! x01 is made on the left, then

a similar transition x ! x0 can be made on the right, satisfying the second

condition of the de�nition of a h.p.b. The third condition is similarly satis�ed.

2: Any state on the left is of the form x [z; x 2 X; z 2 Z or y [z; y 2 Y; z 2 Z.

Since R is repeated on the right, events and states of the two copies have to be

distinguished by a subscript. So we relate x [z to x [z1, and y [z to y [z1.

This gives us a history preserving bisimulation between the two sides.

3: The proof is similar to the one above, and follows from the fact that any maximal

state of P tQ is a maximal state of P or a maximal state of Q. The condition
is needed for the converse, that is any maximal state of P or Q is a maximal

state of P tQ.

CHAPTER 6. ALGEBRA OF CHU SPACES 68

4: Similar to the proof of (2).

The only reason that these equivalences were not isomorphisms was that we needed

the two components of choice to be disjoint. History preserving equivalence takes care

of that. The intuitive reason for the �rst equivalence has been mentioned above. The

second and fourth equivalences hold as having a choice in parallel with a process is

equivalent to making the choice right away, and then executing the pair of processes

in parallel. The third equivalence holds as the choice between P and Q must be made

in the beginning anyway, so it does not matter if we keep one copy or many copies of

R afterwards.

As remarked above, the main reason why we chose history preserving bisimulation

was that they preserve the causal structure of processes. In particular, we have

a; b t b; a 6� a + b, where a; b denote single action processes. This is re
ected by

the fact that h.p.b. equivalence is preserved under action re�nement, and the two

processes above can be distinguished by action re�nement. Thus we need a �ner

equivalence than strong bisimulation equivalence etc.

Proposition 6.10 (Action re�nement) Let P = (A;X; �) and P0 = (A0;X 0; �0)

be two processes with P � P 0. Let b 2 Act be re�ned by the process Q = (B;Y; �) to

give ref P = (C;Z; �) and ref P0 = (C 0; Z 0; �0). Then ref P � ref P 0.

Proof: We will restate the de�nition of re�nement given earlier in a form suitable

for re�ning many events at the same time. Let Ab = fai 2 A j �(ai) = bg be the set
of events labeled b in P. Then the events of ref P are A � Ab [B � Ab, that is we

replace each event in Ab, an ai, with a copy of B. The states are de�ned by replacing

the ai's by states of Y as follows|if x 2 X, then replace each ai 2 x by hi � faig,
where hi is maximal in Y . Secondly, if x

ai! x0, then every state generated from x in

the �rst step is deleted, and we add a set of states generated from x0 in which all the

other ai's are replaced by maximal states, and this ai is replaced by any state of Y

multiplied by faig. Note that in both steps we generate a new state for each possible

way of replacing the ai's.

CHAPTER 6. ALGEBRA OF CHU SPACES 69

Let R be an h.p.b. between P and P 0. De�ne a relation R0 between ref P and

ref P 0 as follows. If (x; x0; f) 2 R then since f is a label preserving isomorphism,

both x and x0 must have the same number of events labeled b, and these events are

related by f . Now if z is derived from x and z0 from x0, such that each ai 2 z was

replaced by the same state from Y as f(ai) 2 z0 then (z; z0; f 0) 2 R, where f 0 is f on

the non-ai's, and f 0(b; ai) = (b; f(ai)).

Now we can show that R0 is a history preserving bisimulation. Since f is a bijection

on the elements of x, it is clear that f 0 is a label preserving isomorphism between

h(z) and h(z0). Now suppose there is a transition z ! z1 in ref P. Some of the

events in the transition are P events, others are from some copies of Q. Thus this

transition can be mimicked in P by doing the same P events and some ai's, the ones

that correspond to the events from the copies of Q, from the state x that generated

z to a state x1 which generated z1. Since z � z0, there must be x0 such that x � x0.

Now since R is a bisimulation, we must have an x01 obtained by taking the same

transitions from x0, such that x1 � x01. Now from x01 we must have generated a state

z01 by replacing the ai's by the same states of Y as in z1, and thus we can show that

z1 � z01. The converse condition is satis�ed similarly, showing that R0 is an h.p.b.

6.3 Connection with linear logic

As pointed out by Barr[Bar91], and also by Lafont and Streicher[LS91], the category

of Chu spaces forms a model for linear logic developed by Girard [Gir87]. We have

de�ned most of the linear logic operators above, the only ones that have not been

de�ned are P � Q 4
= (P?
Q?)?, called \par", !(A;X)

4
= (A; 2A), and ?(A;X)

4
=

(2X ;X). We have used a di�erent notation than Girard, our notation con�rms to

standard categorical terminology.

Seely[See89] de�nes a Girard category and has proved that every Girard category

is a model of linear logic. A Girard category is a symmetric monoidal closed category

with �nite products and a comonad !P such that !(P � Q) �=!P
!Q is a natural

isomorphism, and !1 �= >. These conditions can easily be veri�ed for Chu, so it is a

model of linear logic.

CHAPTER 6. ALGEBRA OF CHU SPACES 70

Thus we can use linear logic as a veri�cation system for Chu spaces. It does need

to be extended though, since it does not have several important operators, like choice

and sequential composition.

Completeness. The de�nition we use for the truth of a formula is the one

suggested by Seely | A formula is valid if for every instantiation of its variables,

the set A is non-empty. Chu is not a complete model of linear logic, as there are

formulas which are not true in linear logic but which hold in Chu. An example of

such a formula is P��(P
P).

Chapter 7

Comparison with other models

In the previous chapters we have presented our model, Chu spaces, and have equipped

it with an algebra to make it a language for speci�cation of concurrent programs. In

this chapter we will compare various other models of concurrency, and see how Chu

relates to these. Since Chu spaces do not impose many constraints on the structure

of the processes they represent, it should come as no surprise that they can embed

a lot of these models. The more interesting results are those which show that the

generality does not lose the power of these models.

7.1 Event Structures and Petri nets

Petri nets were the �rst of the models for concurrency, and event structures were

developed in [NPW81] to equip them with an algebra, and bridge the gap between

automata theory and domain theory. Chu spaces generalize event structures by re-

moving those restrictions on event structures which are designed to make them match

closely to Petri nets.

An event structure is de�ned as a triple (E;Con;`), where E is a set of events,

Con is a non-empty collection of �nite subsets of E, such that X 2 Con and Y �
X) Y 2 Con, and ` � Con� E satis�es X ` e and X � Y 2 Con) Y ` e. Con

is the consistency predicate, giving the con
ict-free �nite subsets of E, while ` is the

enabling relation.

71

CHAPTER 7. COMPARISON WITH OTHER MODELS 72

To every event structure (E;Con;`) we can now associate a Chu space, whose

set of events is E, and whose logical formula � is derived from Con and `. For every
�nite subset of E, X 62 Con, add the clause

V
X ! 0 to the formula �. For an event

e, let Xi ` e be the elements of the enabling relation with e on the right side. For

each event e, add the clause e ! W
i

V
Xi to �. (Note that

V; = 1 and
W ; = 0.

a! 0 can be written as :a.) Now � is the conjunction of all these clauses.

Thus we can form a Chu space corresponding to an event structure. However,

several di�erent event structures could correspond to the same Chu space. This is

because the axioms for event structures are not strong enough to deduce all the

properties that can be deduced by boolean logic. For example in the event structure

with E = fa; b; cg, Con = 2E�fa; b; cg and c ` a and other tuples added according to

the axiom above, it is clear that the set fa; bg is not a consistent set, since a requires
c and fa; b; cg is not consistent. This deduction is made by the boolean logic, but not

by the event structure rules. So two event structures which looked like the one above

except that one did not have fa; bg 2 Con would be mapped to the same Chu space.

A con�guration of an event structure is a set of events which could have occurred

in some execution of the process it represents. Thus for every �nite set of events in

a con�guration, it should be consistent, and secondly, for each event e, some set of

events enabling it should have occurred before it. This is expressed by saying that it is

secured, i.e. there is a �nite sequence of events in the con�guration, e0; e1; : : : ; en = e,

such that e0; : : : ei ` ei+1 for all i < n. The collection of all con�gurations of an event

structure E = (E;Con;`) is denoted F(E).

Proposition 7.1 Each con�guration of an event structure is a state of the corre-

sponding Chu space.

Proof: Since every �nite set in a con�guration must be consistent, thus all the

clauses added to � by Con are satis�ed. Also, every event has some set of events

which enable it in the con�guration, so all the clauses due to ` are also satis�ed, thus

satisfying the entire formula �. Thus the con�guration is a state

There may however be some states that are not con�gurations, due to the fact

that they are not secured (every state must be consistent). For example, if E =

CHAPTER 7. COMPARISON WITH OTHER MODELS 73

fa; bg; Con = 2E; a ` b; b ` a, then the only con�guration possible is the empty one.

However ab is also a state of the Chu space. We can eliminate the states that are

unsecured if we wish to.

An alternative embedding of (E;Con;`) is to map it to the Chu space (E;F(E)).
This is also called the Chu con�guration structure corresponding to (E;Con;`). For
related work on embedding event structures into Chu spaces, see [Plo94a].

Thus the objects of Winskel's category of event structures can be embedded in

Chu, in such a way that their concurrency properties are preserved. However the

morphisms of Winskel's category are not the same as the ones for Chu spaces. Event

morphisms preserve consistency of events, whereas Chu morphisms preserve con
ict.

We can provide an alternative category whose objects are the same as Chu, but whose

morphisms are di�erent | Given (A;X;R) and (B;Y; S), a hypergraph morphism is

a pair of maps f : A ! B and g : X ! Y , such that R(a; x) = S(f(a); g(x)) for

all a 2 A;x 2 X. This category is called Hgr, since the objects can be interpreted

as hypergraphs[Ber73], with A being the vertices of the graph, and X the set of

hyperedges. Then these morphisms correspond to hypergraph morphisms [DW80].

Notice that here the direction of g is the same as that of f , so if X is interpreted

as a subset of the power set 2A, then these morphisms are based on the covariant

powerset functor on sets, whereas Chu morphisms are based on the contravariant

powerset functor. For Hgr morphisms g(x) = f(x), where f(x) = ff(a) j a 2 xg.
If we embed an event structure as a con�guration structure, the synchronous

morphisms of Winskel [Win86] are special cases of hypergraph morphisms, namely

those morphisms which are injections when restricted to any state (8x 2 X: [f n
x is

injective]). A �nite set X � E is consistent i� there is a con�guration x 2 F(E)
with X � x. Thus if (f; g) is a hypergraph morphism, then f(X) � g(x), so f(X) is

consistent. Also X ` e i� X is consistent and there is a con�guration x 2 F(E) such
that e 2 x � X[feg. Now f(X) is consistent, and f(e) 2 g(x) and g(x) � f(X[feg).
Thus f(X) ` f(e).

The main reason why we prefer to use the category Chu rather than Hgr is that

Hgr lacks the duality principle we saw in chapter 4. This duality is important as it

enables us to generalize various Stone dualities, as well as convert between automata

CHAPTER 7. COMPARISON WITH OTHER MODELS 74

and schedules. This cannot be done in Hgr.

Two of the operations we had de�ned earlier correspond naturally to the sum

and product operations de�ned on the category of event structures [Win86]. Choice

corresponds to sum of event structures, and in fact is coproduct in the category Hgr.

Partial synchronous product is the product of event structures. If we changed the

de�nition of morphisms of Hgr to partial maps (i.e. made f partial and then g is

just f on sets), then this would be product in the new category.

Proposition 7.2 If E1 = (E1; Con1;`1) and E2 = (E2; Con2;`2) are two event

structures, and P1 = (E1;F(E1)) and P2 = (E2;F(E2)) their Chu con�guration

structures, then the choice P1 t P2 corresponds to the event structure E1 + E2.

Proof: The event set of E1 + E2 is the disjoint union of E1 and E2, which is the

same as the events of P1 t P2. A subset X � E1]E2 is consistent i� X belongs only

to one of E1 or E2, and is consistent there. Thus any con�guration of the sum can

consist of events only in E1 or events only in E2, except for the empty con�guration,

which is common. The vdash relation is similarly the union of the vdash relations of

E1 and E2, so any con�guration of E1 is a con�guration of the sum, and the same for

E2. Thus the choice P1 t P2 is isomorphic to (E1] E2;F(E1) + F(E2)).

The fact that choice is coproduct for Hgr can be easily veri�ed. There are maps

(fi; gi) : Pi ! P1 t P2 given by f1(a) = a and g1(x) = x, and similarly for P2. If any

other Q has maps (f 0i ; g
0
i) : P i ! Q, then the unique map from P1 t P2 ! Q can be

given by the juxtaposition of the f 0i 's.

In order to match up partial synchronous product exactly with the product of

event structures, it is necessary to add one more condition on the states | if a state

x was generated from states x1 and x2, then there should be a Chu space map from

h(x1)
1 to h(x), carrying each event to the event it forms in the construction, and a

similar map from h(x2). This eliminates states like f(a; d); (b; c)g in a:b:0 k c:d:0,

since b ! a is a property of the the history of the state fa; bg, but (b; c) ! (a; d) is

not a property of the history of f(a; d); (b; c)g.
1h(x) was de�ned in the previous chapter as the history of x = (x; fy 2 X j y � xg).

CHAPTER 7. COMPARISON WITH OTHER MODELS 75

Proposition 7.3 If E1 = (E1; Con1;`1) and E2 = (E2; Con2;`2) are two event

structures, and P1 = (E1;F(E1)) and P2 = (E2;F(E2)) their Chu con�guration

structures, then the partial synchronous product P1 k P2 corresponds to the event

structure E1 � E2.

Proof: The events of P1 k P2 clearly correspond to the events of E1 � E2. In

proposition 2.2.3 on [Win86, p.349] Winskel has characterized the con�gurations of

E1 � E2. These are those subsets of the event sets such that they originate from a

con�guration of E1 and a con�guration of E2, do not synchronize any event of E1

with two di�erent events of E2 or vice versa, and two more conditions ensuring that

every event is �nitely supported. All of these can be shown to be equivalent to the

conditions we have placed on states of P1 k P2.

The proof that parallel composition is the product in the category of partial

hypergraph morphisms is routine. If we restrict P1 k P2 to the events from A� B,

then we get the synchronous product of P1 and P2, and this is the product in the

category Hgr.

There is no universally accepted de�nition of sequential composition for event

structures. Baeten and Vaandrager[BV92] de�ne sequential composition, and our

de�nition does agree with theirs operationally. They de�ne a special event, a
p

which is interpreted as the last event of the process represented by the event structure.

Sequential composition E0;E1 is then de�ned by re�ning each
p

of E0 with E1. Since

any state in which
p

has been performed is a maximal state, our de�nition of P;Q
makes the states of P;Q be the con�gurations of E0;E1, except for an extra

p
event

in some states. This can be hidden by labeling it with a � .

Thus Chu spaces can mimic the behavior of event structures by being able to

represent any concurrent phenomenon that event structures can represent (mainly

con
ict and enabling), and can also be combined to duplicate the various operators

that event structures possess. The de�nition of a Chu space is simpler than the

de�nition of an event structure, and Chu spaces can represent more phenomena, like

causality and nondeterminism (chapter 5).

In an event structure, the enabling relation is quite simple | an event can be

CHAPTER 7. COMPARISON WITH OTHER MODELS 76

enabled by one of several sets of events. In [Gun91, Gun92] Gunawardena strength-

ened this to allow for more complicated enabling conditions to get a new model for

concurrency called causal automata. In a causal automaton, each event is associated

with a �nitary boolean formula over the set of events, and is enabled any time the

formula becomes true (where a literal becomes true whenever it has occurred as an

event). Now in fact the consistency predicate is no longer necessary, as it can be en-

coded into the enabling relation. In order to deal with in�nitary enabling formulae,

Gunawardena introduced geometric automata, where the formulae could be in�nite

with some restrictions.

Geometric automata cannot be encoded by Chu spaces. The reason is that in a

geometric automaton, the enabling formula must be true only at the instant an event

is taking place, it could become false later. But in a Chu space, if we have a ! �,

then � must always stay true after a has occurred. Thus geometric automata can

represent deadlock between two events, by making each the enabling formula for the

other, but deadlock cannot be represented by Chu spaces. Another di�erence is that

the enabling formula must have become true before the event takes place, while in a

Chu space it could become true at the same time. Geometric automata are however

an interleaving model of concurrency. They cannot represent the distinction between

causality and enabling, and between nondeterminism and choice.

Petri nets and Chu spaces. Event structures were originally developed to

provide an algebra for Petri nets by Nielsen, Plotkin and Winskel in [NPW81]. They

considered safe Petri nets, that is those in which no place can ever have more than

one token. They then unfolded the net to remove all loops, resulting in an occurrence

net, which is acyclic, so no transition gets �red more than once. This can then be

represented as an event structure.

Since Chu spaces embed event structures, Chu spaces can represent any behavior

that safe Petri nets can model. Winskel [Win86] gives a translation function from safe

nets to event structures, which we extend to Chu spaces. Winskel also gives a way of

constructing an occurrence net from a prime event structure, but this is not possible

for Chu spaces, since Chu spaces model behaviors which cannot be modeled by Petri

nets. For example, Petri nets cannot distinguish between causality and enabling,

CHAPTER 7. COMPARISON WITH OTHER MODELS 77

a

b

c

b

ac

Figure 7.1: A Petri net for postponed concurrency, and one which cannot be repre-
sented as a Chu space.

while Chu spaces can.

Chu spaces can mimic the behavior of some unsafe Petri nets that cannot be

modeled as event structures. An example of this is postponed concurrency (�gure

5.2), which can be represented by an unsafe Petri net. However, it is not possible to

represent the behavior of each Petri net as a Chu space faithfully, where by faithful

we mean as a Chu space that is history preserving bisimilar to the Petri net. An

example of such a Petri net is given in �gure 7.1, this is the net that can do at most

two events out of three concurrently (proposed by Rob van Glabbeek).

A more syntactic approach to representing Petri nets by matrices using the Chu

construction has been followed by Brown and Gurr [BG90]. They model a general

CHAPTER 7. COMPARISON WITH OTHER MODELS 78

Petri net as a pair of matrices representing the pre and post conditions. The mor-

phisms must satisfy adjointness conditions for both matrices, and are shown to be

simulations of Petri nets.

7.2 A Chu Semantics for CCS and CSP

The calculus of communicating systems was developed by Robin Milner as an al-

gebraic means of specifying concurrent systems. The atomic processes are actions,

which cannot be further subdivided (as this is an interleaving model). A process

executes an action to evolve into another process. Actions are labeled from a set

of labels called Act, which has a set of labels (labels are denoted by a; b; : : :), their

complementary labels denoted by �a;�b; : : : and a special label � . Processes can be built

up from other processes by six operators:

P ::= 0 j a:P j P t P j P jP j PnL j P [f] j �x: P

The basic process is 0, which does nothing. a:P is called pre�xing, the action

labeled a is executed and then the process behaves like P . P tQ is choice, this

process nondeterministically chooses between processes P and Q, and then continues

doing the chosen process. We may have a choice between an in�nite number of

processes. The other operators are parallel composition, restriction, relabeling and

recursion. The parallel composition is a communicating parallel composition, where

the two components can either do their individual actions independently, or can

simultaneously do a pair of complementary actions, which then are labeled with a � ,

a silent action.

We can associate a labeled Chu space with each process. 0 is the Chu space 0,

and the other connectives are those described in chapter 6. P jP is modeled by partial

synchronous product, subject to the condition on histories speci�ed in the previous

section. Its singleton events are labeled as they were before, and any pair of events

whose pair of labels are not complementary is removed by restriction. Each pair is

then labeled by a � . The restriction operator is on labels rather than events. Since all

the operators are continuous, recursive de�nitions are possible. Morphisms between

CHAPTER 7. COMPARISON WITH OTHER MODELS 79

these Chu spaces are Chu maps (f; g) in which f preserves labels.

Thus Chu spaces form a model for CCS. This model does not satisfy the interleav-

ing law | we do not have a:0 k b:0 �= a:b:0 t b:a:0. Later we will show some kinds

of equivalences for which this law does hold. We will now prove a close connection

between the semantics of a CCS expression and its Chu space automaton.

Proposition 7.4 Given a CCS expression P and its Chu space P, it is possible to

label each state x of the Chu space with a CCS expression P (x) such that

1: P (;) = P , that is the start state is labeled with P .

2: There is a transition in the automaton x
e! x0 i� there is a CCS transition

P (x)
�(e)! P (x0)

Proof: We will show this by induction on the structure of CCS expressions.

1: It holds for 0 trivially, as there is only one state which is labeled with 0, and

no transitions.

2: If P = a:Q, then the Chu space for a is (feg; f;; fegg; � : e 7! a). So there is

one maximal state feg. Now any state of P will be either the state ; or y[feg,
where y is a state of Q, the Chu space for Q. Label ; with P and each state

y [feg with the expression labeling y in Q. The conditions of the theorem are

satis�ed by the induction hypothesis.

3: If P = P1 t P2, label the empty state with P . Any other state in P comes

uniquely from a state in P1 or P2, the Chu spaces for P1 and P2. Label it with

the expression with which it was labeled in that Chu space. Now there is a

transition from ; to a state in P i� there was a similar transition in either P1

or P2, which are exactly the possible CCS transitions from P .

4: If P = P1 k P2, each state x of P comes from a state x1 of P1 and a state x2

of P2. Let P (x) = P (x1) k P (x2), the parallel composition of the processes

labeling of the pair of states. Now the state ; is labeled with P , since it could

arise only from the ; states in P1 and P2, which by the induction hypothesis

CHAPTER 7. COMPARISON WITH OTHER MODELS 80

were labeled by P1 and P2 respectively. Also if P (x) = P (x1) k P (x2) and there

is a transition x
e! x0, then e = e1 or e2 or (e1; e2). Then there must have been

a transition x1
e1! x01 or x2

e2! x02 or both, by looking at the construction of x

and x0. Also, if both occurred, the labels on e1 and e2 must be complementary.

These are exactly the possible CCS transitions from P (x1) k P (x2), so the

proposition holds.

5: The cases P = P 0nL and P = P 0[f] are trivial. Each new state x comes from a

state x0, and has the label is P (x) = P (x0)nL or P (x0)[f].

6: P = �A:Q[A]. We will write this in the equational form, P = Q(P). Now

by induction hypothesis, we can label the Chu spaces for 0; Q(0); Q(Q(0)); : : :.

The maps between these which form these spaces into an !-chain take each

state labeled by p(Qi(0)), where p is any process expression in the Chu space

for Q(0), to p(Qi�1(0)) for i > 0, and all the states in p(0) to a state labeled

0. Now if x is any state in the colimit, label it with p(P) if a map takes it to

p(Qi(0)), the commutativity ensures that this is well de�ned. Thus the start

state will be labeled P . The second condition follows as for each i, the Chu

space for Qi(0) satis�es it.

This theorem shows that the Chu space for a CCS expression is strongly bisim-

ilar to the derivation tree for that expression. It also shows that there is a strong

bisimulation between Chu spaces which represent strongly bisimilar CCS expressions,

thus showing that if we de�ne an equivalence relation between two Chu spaces to be

bisimulation equivalence, then all the CCS laws held under strong bisimulation will be

true for this equivalence. In particular, the Chu spaces for a:0 k b:0 and a:b:0t b:a:0

are bisimilar. The main di�erence between the semantics of a CCS expression and

its Chu space is that Chu spaces allow execution of many events at the same time,

whereas CCS allows only one at a time. However strong bisimulation considers only

one event at a time, which is why this proposition holds.

We have already drawn a connection between simulations of processes and Chu

morphisms in chapter 4.

CHAPTER 7. COMPARISON WITH OTHER MODELS 81

The various laws that Chu spaces satisfy have already been stated in chapter

6. The laws (a:Q)nL �= 0 if a 2 L; a:QnL otherwise, and (a:Q)[f] �= f(a):Q[f] are

also valid. It can be seen that the only CCS laws that Chu spaces do not satisfy

are the expansion law, the � -laws [Mil89] and the idempotence of choice. The last

can be remedied by using history preserving bisimulation as our notion of Chu space

equivalence. Successively coarser equivalences enable the satisfaction of the other

laws. It is possible to de�ne equivalences between Chu spaces based upon each of the

equivalences between processes [vG90]. We will not go into these here.

A Chu space semantics can similarly be given for the language of Communicating

Sequential Processes of Hoare [BHR84, Hoa78, Hoa85]. Some operators of CSP |

pre�xing, choice, renaming and concealment can be modeled as above. Concurrence

P k Q can be modeled by partial synchronous product, with any singleton events from

P restricted away if they also occur in Q, and vice versa (actions which occur in both

processes must synchronize). Also, any paired event the labels of whose components

are not the same is restricted away, and the label of the other paired events is the

label of either component. Interleaving is modeled by sum of Chu spaces, as there

is no communication, while communication can be handled with labels. Sequential

composition can be done using our sequential composition operator. Most of the

standard CSP laws hold for this model.

Once again the semantics of CSP is interleaving, but this model is non-interleaving.

We cannot model nondeterministic choice of CSP very well, since CSP choice does

not respect branching time, whereas Chu spaces do. If we decide to ignore this law,

then nondeterministic choice can be modeled by the choice between �1:P t �2:Q, with
the start state deleted, and the � labeled as silent actions. This process is forced to

start out in either P or Q, so the choice is nondeterministic.

Chapter 8

Future Research

We indicate several possibilities for research opened up by our work on Chu spaces.

Expressiveness of Chu spaces. We would like to get a better idea of the

kinds of concurrency features that can or cannot be represented by Chu spaces. In

particular, we would like to understand the relation of Chu spaces with Petri nets

and other models better, by showing which processes representable in these models

can be represented as Chu spaces. In addition, the notion of what it means for a

process to be represented as a Chu space could be investigated further. For example,

we say that a Petri net is adequately represented as a Chu space if one can de�ne

a history preserving bisimulation between them. The notion of which equivalence to

use is of course governed by what are the interesting distinctions, and thus various

equivalences could be investigated.

In this thesis we did not investigate the ideas of fair computations for Chu spaces.

It is possible to de�ne these, and further research on the representation of various

kinds of fairness promises to be interesting.

Extending the Algebra. We have presented some of the possible operators for

an algebra of Chu spaces, these could be augmented by others. In addition, while we

presented a number of identities, it would be nice to know all the possible identities

between Chu spaces, given by a set of axioms.

Logic for Chu spaces. While we have indicated that linear logic is a logic for

Chu spaces, it is not entirely satisfactory for various reasons. It is not complete, as

82

CHAPTER 8. FUTURE RESEARCH 83

there are theorems which are true for Chu spaces which are not valid in linear logic.

Thus we can either develop a logic which would match the logic of Chu spaces, or

strengthen the de�nition of a Chu space theorem to eliminate all non-theorems of

linear logic. Secondly, linear logic does not have many of the operators in the algebra

of Chu spaces. So if we wish to use linear logic as a veri�cation logic, it must be

augmented to be able to prove formulas containing these operators.

Applications. The algebra of Chu spaces suggests a powerful speci�cation lan-

guage, as was indicated in chapter 5. A language with its semantics based on Chu

spaces would be a very useful tool, and should make speci�cation and veri�cation

of concurrent systems a lot easier | this is the goal for which Chu spaces were

constructed.

Bibliography

[Bar79] M. Barr. �-Autonomous categories, LNM 752. Springer-Verlag, 1979.

[Bar91] M. Barr. �-Autonomous categories and linear logic. Math Structures in

Comp. Sci., 1(2), 1991.

[Ber73] Claude Berge. Graphs and Hypergraphs (transl: E. Minieka). North-

Holland, Amsterdam, 1973.

[Bes86] E. Best. Cosy: its relation to nets and csp. In Petri Nets: Applications

and Relationships to Other Models of Concurrency, Advances in Petri

Nets 1986, LNCS 255, Bad-Honnef, September 1986. Springer-Verlag.

[BG90] C. Brown and D. Gurr. A categorical linear framework for Petri nets.

In J. Mitchell, editor, Logic in Computer Science, pages 208{218. IEEE

Computer Society, June 1990.

[BGdP91] C. Brown, D. Gurr, and V. de Paiva. A linear speci�cation language for

Petri nets. Technical Report DAIMI PB-363, Computer Science Depart-

ment, Aarhus University, October 1991.

[BHR84] S.D. Brookes, C.A.R. Hoare, and A.D. Roscoe. A theory of communicat-

ing sequential processes. Journal of the ACM, 31:560{599, 1984.

[BV92] J.C.M. Baeten and F.W. Vaandrager. An algebra for process creation.

Acta Informatica, 29(4):303{334, 1992.

[Cas91] Ross Casley. On the Speci�cation of Concurrent Systems. PhD thesis,

Stanford University, January 1991.

84

BIBLIOGRAPHY 85

[CCMP91] R.T Casley, R.F. Crew, J. Meseguer, and V.R. Pratt. Temporal struc-

tures. Math. Structures in Comp. Sci., 1(2):179{213, July 1991.

[Cre91] R.F. Crew. Metric Process Models. PhD thesis, Stanford University,

December 1991.

[DDNM88] P. Degano, R. De Nicola, and U. Montanari. A distributed operational

semantics for CCS based on condition/event systems. Acta Informatica,

26(1/2):59{91, October 1988.

[Dev88] R. Devillers. On the de�nition of a bisimulation notion based on partial

words. Petri Net Newsletter, 29:16{19, 1988.

[dP89] V. de Paiva. The dialectica categories. In Categories in Computer Science

and Logic, volume 92 of Contemporary Mathematics, pages 47{62, held

June 1987, Boulder, Colorado, 1989.

[Dro89] M. Droste. Event structures and domains. Theoretical Computer Science,

68:37{47, 1989.

[DW80] W. D�or
er and D.A. Waller. A category-theoretical approach to hyper-

graphs. Archives of Mathematics, 34(2):185{192, 1980.

[GG89] R.J. van Glabbeek and U. Goltz. Equivalence notions for concurrent sys-

tems and re�nement of actions. In A. Kreczmar and G. Mirkowska, edi-

tors, Proc. Conf. on Mathematical Foundations of Computer Science, vol-

ume 379 of Lecture Notes in Computer Science, pages 237{248. Springer-

Verlag, 1989.

[Gir87] J.-Y. Girard. Linear logic. Theoretical Computer Science, 50:1{102, 1987.

[Gis88] J.L. Gischer. The equational theory of pomsets. Theoretical Computer

Science, 61:199{224, 1988.

[GJ92] E. Goubault and T.P. Jensen. Homology of higher dimensional automata.

In Proc. of CONCUR'92, LNCS 630, pages 254{268, Stonybrook, New

York, August 1992. Springer-Verlag.

BIBLIOGRAPHY 86

[GP87] H. Gaifman and V.R. Pratt. Partial order models of concurrency and the

computation of functions. In Proc. 2nd Annual IEEE Symp. on Logic in

Computer Science, pages 72{85, Ithaca, NY, June 1987.

[GP93] V. Gupta and V.R. Pratt. Gates accept concurrent behavior. In Proc.

34th Ann. IEEE Symp. on Foundations of Comp. Sci., pages 62{71,

November 1993.

[Gra81] J. Grabowski. On partial languages. Fundamenta Informaticae, IV.2:427{

498, 1981.

[Gun91] J. Gunawardena. Geometric logic, causality and event structures. In

J. C. M. Baeten and J. F. Groote, editors, CONCUR'91 - 2nd Inter-

national Conference on Concurrency Theory, pages 266{280. Springer

LNCS 527, 1991.

[Gun92] J. Gunawardena. Causal automata. Theoretical Computer Science,

101:265{288, 1992.

[Gup93] V. Gupta. Concurrent kripke structures. In Proceedings of the North

American Process Algebra Workshop, Cornell CS-TR-93-1369, August

1993.

[GV87] R.J. van Glabbeek and F.W. Vaandrager. Petri net models for algebraic

theories of concurrency. In Proc. PARLE, II, LNCS 259, pages 224{242.

Springer-Verlag, 1987.

[Hoa78] C.A.R. Hoare. Communicating sequential processes. Communications of

the ACM, 21(8):666{672, August 1978.

[Hoa85] C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall, 1985.

[JNW93] A. Joyal, M. Nielsen, and G. Winskel. Bisimulation and open maps.

In M.Y.Vardi, editor, Logic in Computer Science, pages 418{427. IEEE

Computer Society, July 1993.

BIBLIOGRAPHY 87

[Joh82] P.T. Johnstone. Stone Spaces. Cambridge University Press, 1982.

[LR75] P.E. Lauer and R.H.Campbell. Formal semantics of a class of high-

level primitives for coordinating concurrent processes. Acta Informatica,

5:297{332, 1975.

[LS91] Y. Lafont and T. Streicher. Games semantics for linear logic. In Proc.

6th Annual IEEE Symp. on Logic in Computer Science, pages 43{49,

Amsterdam, July 1991.

[Mac71] S. Mac Lane. Categories for the Working Mathematician. Springer-

Verlag, 1971.

[Mil80] R. Milner. A Calculus of Communicating Systems, LNCS 92. Springer-

Verlag, 1980.

[Mil83] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer

Science, 25:267{310, 1983.

[Mil89] R. Milner. Communication and Concurrency. Prentice-Hall, 1989.

[MM90] J. Meseguer and U. Montanari. Petri nets are monoids. Information and

Control, 88(2):105{155, October 1990.

[MMT87] R. McKenzie, G. McNulty, and W. Taylor. Algebras, Lattices, Varieties,

Volume I. Wadsworth & Brooks/Cole, Monterey, CA, 1987.

[NPW81] M. Nielsen, G. Plotkin, and G. Winskel. Petri nets, event structures, and

domains, part I. Theoretical Computer Science, 13, 1981.

[OGG88] E.-R. Olderog, U. Goltz, and R.J. van Glabbeek. Combining composi-

tionality and concurrency, summary of a GMDworkshop, K�onigswinter,

March 1988. Arbeitspapiere der GMD 320, Gesellschaft f�ur Mathematik

und Datenverarbeitung, 1988.

BIBLIOGRAPHY 88

[Par81] D. Park. Concurrency and automata on in�nite sequences. In Proc. The-

oretical Computer Science, LNCS 104, pages 167{183. Springer-Verlag,

1981.

[Pet62a] C.A. Petri. Fundamentals of a theory of asynchronous information
ow.

In Proc. IFIP Congress 62, pages 386{390, Munich, 1962. North-Holland,

Amsterdam.

[Pet62b] C.A. Petri. Kommunikation mit Automaten. PhD thesis, Schriften des

Institutes f�ur Instrumentelle Mathematik, 1962.

[Plo94a] G.D. Plotkin. Notes on event structures and chu. Manuscript available

as pub/gdp2.dvi by anonymous FTP from Boole.Stanford.EDU, February

1994.

[Plo94b] G.D. Plotkin. Notes on the chu construction and recursion. Manuscript

available as pub/gdp.dvi by anonymous FTP from Boole.Stanford.EDU,

February 1994.

[Plo94c] G.D. Plotkin. Personal communication. July 1994.

[PP92] G Michele Pinna and Axel Poigne. On the nature of events. In Proc. 17th

Symposium on Mathematical Foundations of Computer Science, LNCS

629, 1992.

[Pra82] V.R. Pratt. On the composition of processes. In Proceedings of the Ninth

Annual ACM Symposium on Principles of Programming Languages, Jan-

uary 1982.

[Pra86] V.R. Pratt. Modeling concurrency with partial orders. Int. J. of Parallel

Programming, 15(1):33{71, February 1986.

[Pra91] V.R. Pratt. Modeling concurrency with geometry. In Proc. 18th Ann.

ACM Symposium on Principles of Programming Languages, pages 311{

322, January 1991.

BIBLIOGRAPHY 89

[Pra92a] V.R. Pratt. Arithmetic + logic + geometry = concurrency. In Proc.

First Latin American Symposium on Theoretical Informatics, LNCS 583,

pages 430{447, S~ao Paulo, Brazil, April 1992. Springer-Verlag.

[Pra92b] V.R. Pratt. The duality of time and information. In Proc. of CON-

CUR'92, LNCS 630, pages 237{253, Stonybrook, New York, August 1992.

Springer-Verlag.

[Pra92c] V.R. Pratt. Event spaces and their linear logic. In AMAST'91: Algebraic

Methodology and Software Technology, Workshops in Computing, pages

1{23, Iowa City, 1992. Springer-Verlag.

[Pra93] V.R. Pratt. The second calculus of binary relations. In Proceedings of

MFCS'93, pages 142{155, Gda�nsk, Poland, 1993. Springer-Verlag.

[Pri70] H.A. Priestley. Representation of distributive lattices. Bull. London Math.

Soc., 2:186{190, 1970.

[PS82] G.D. Plotkin and M.B. Smyth. The category-theoretic solution of re-

cursive domain equations. SIAM Journal on Computing, 11(4):761{783,

1982.

[Rei85] W. Reisig. Petri Nets: An Introduction. Springer-Verlag, 1985.

[See89] R.A.G Seely. Linear logic, �-autonomous categories and cofree algebras.

In Categories in Computer Science and Logic, volume 92 of Contemporary

Mathematics, pages 371{382, held June 1987, Boulder, Colorado, 1989.

[vG90] R. van Glabbeek. Comparative Concurrency Semantics and Re�nement

of Actions. PhD thesis, Vrije Universiteit te Amsterdam, May 1990.

[Win86] G. Winskel. Event structures. In Petri Nets: Applications and Rela-

tionships to Other Models of Concurrency, Advances in Petri Nets 1986,

LNCS 255, Bad-Honnef, September 1986. Springer-Verlag.

BIBLIOGRAPHY 90

[Win88] G. Winskel. A category of labelled Petri nets and compositional proof

system. In Proc. 3rd Annual Symposium on Logic in Computer Science,

Edinburgh, 1988. Computer Society Press.

