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Abstract

This thesis presents a compositional methodology for the veri�cation of reactive and

real-time systems. The correctness of a given system is established from the correct-

ness of the system's components, each of which may be treated as a system itself and

further reduced. When no further reduction is possible or desirable, global techniques

for veri�cation may be used to verify the bottom-level components.

Transition modules are introduced as a suitable compositional model of compu-

tation. Various composition operations are de�ned on transition modules, including

parallel composition, sequential composition, and iteration. A restricted assumption-

guarantee style of speci�cation is advocated, wherein the environment assumption

is stated as a restriction on the environment's next-state relation. Compositional

proof rules are provided in accordance with the safety-progress hierarchy of temporal

properties.

The compositional framework is then extended naturally to real-time transition

modules and discrete-time metric temporal logic.
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Chapter 1

Introduction

This thesis presents a compositional methodology for the veri�cation of reactive and

real-time systems. Given a temporal logic speci�cation for some system of interest,

the correctness of that system is established by proving that each system compo-

nent satis�es some appropriate speci�cation. In turn, the correctness of each system

component may be established by proving the appropriate speci�cations for its com-

ponents. The advantages of compositional veri�cation are clear. Each system compo-

nent is both smaller and simpler than the system itself. Furthermore, the application

of compositional techniques often provides greater insight into the interaction among

system components than is provided by global techniques.

Compositional methods for sequential systems have been known for some time,

but have yet to be adequately developed for concurrent systems, or, more generally,

for reactive and real-time systems. Even though temporal logic has been widely used

as a speci�cation language for reactive systems since its introduction [Pnu77], the

temporal framework has often been criticized because of its global nature.

Finally, although not considered in this thesis, a compositional proof system sug-

gests a systematic strategy for the development of reactive systems, and may even

lead to techniques for automatic or computer-assisted synthesis of reactive modules.

Given a speci�cation for a reactive system, a strategy for development is to decom-

pose the global speci�cation into modular speci�cations, i.e., speci�cations for each

component. The compositional proof system may be used to ensure that the modular

1



CHAPTER 1. INTRODUCTION 2

speci�cations imply the global speci�cation.

This thesis is organized as follows. Chapter 2 reviews the temporal framework

underlying this work, including transition systems, temporal logic, and the safety-

progress classi�cation of temporal properties. A new syntactic characterization of

each property class is introduced, allowing an appropriate choice of proof rules for

the veri�cation of a given speci�cation. Finally, suitable proof rules for each prop-

erty class are presented. Chapter 3 introduces transition modules which, in contrast

to transition systems, may be composed and may interact with the environment.

The parallel composition of transition modules is de�ned, and shared variable, asyn-

chronous and synchronous message passing communication paradigms are considered.

Explicit proof rules for proving liveness properties are introduced. Sequential com-

position and iteration is introduced in Chapter 4. Sequential composition is treated

quite di�erently in the anchored temporal semantics as compared to the oating tem-

poral semantics, and each of these is considered in turn. Finally, Chapter 5 presents

the natural extension of this methodology to real-time, and Chapter 6 considers a

few directions for future research.



Chapter 2

The Global Framework

This chapter briey reviews a methodology for the global speci�cation and veri�cation

of complete systems. Each system is considered a monolithic entity, in the sense

that no attempt is made to separately analyze the behavior of individual system

components. In addition, a simple programming language is de�ned for describing

small examples.

The material in this chapter serves as the foundation for the compositional frame-

work of later chapters. As the analysis of a given system is reduced to the analysis

of smaller and smaller system components, a point is reached at which further reduc-

tion is neither desirable nor feasible. At this point, each component is treated as a

complete system, and the veri�cation task for each component is carried out using

global techniques.

The framework presented in this chapter is more thoroughly developed in [MP92]

and [MP91].

2.1 Fair Transition Systems

Each system is modeled as a fair transition system, consisting primarily of an initial

state predicate and a next-state relation. The next-state relation is de�ned by a set

of transitions T , which are predicates on pairs of states s and s0, such that s0 may

follow s if and only if some transition � 2 T holds on s and s0.

3



CHAPTER 2. THE GLOBAL FRAMEWORK 4

Each possible computation of the system is an in�nite sequence of states such that

the �rst state satis�es the initial state predicate, each pair of adjoining states belongs

to the next-state relation, and no transition is continuously neglected.

More formally, a fair transition system S consists of the following components:

� V : A �nite set of state variables. Each variable is associated with a non-empty

domain over which it ranges.

An interpretation over V is a V -state, or simply a state when the set of variables

V is understood.

� T : A �nite set of transitions. Each transition � 2 T is an assertion of the form

� : En (� ) ^ (y0 = e)

which relates the values of the state variables in a state s to their values in a

successor state s0. A state s0 is a � -successor of s if

hs; s0i q �

where hs; s0i is the joint interpretation which interprets x as s[x], and interprets

x0 as s0[x].

A transition � is enabled on s if the assertion En (� ) holds on s. A set of

transitions T is enabled, i.e., En (T ) holds, if some transition in T is enabled.

� � : An initial condition, i.e., a satis�able assertion characterizing the initial

states of the system. A state satisfying � is an initial state.

2.1.1 The Idling Transition

The idling transition is de�ned:

�I :
^
u2V

(u0 = u)

A state s0 is a �I -successor of s i� s and s
0 agree on each variable in V . Note that �I

is not a member of T , i.e., �I 62 T .



CHAPTER 2. THE GLOBAL FRAMEWORK 5

2.1.2 Computations of a Fair Transition System

An in�nite sequence of V -states � : s0; s1; : : : is de�ned to be a computation of the

fair transition system S if it satis�es the following requirements:

� Initiation The state s0 is an initial state.

� Consecution For every j, where 0 � j:

{ either the state sj+1 is a � -successor of the state sj for some

� 2 T , i.e., transition � is taken at position j in �,

{ or the state sj+1 is a �I -successor of the state sj . In this case,

an idling step was taken at position j in �.

� Justice For each � 2 T , it is not the case that � is continually enabled

beyond some point in � but taken at only �nitely many positions

in �.

The set of computations of a fair transition system S is denoted Comp (S).

2.2 A Simple Programming Language

A program consists of an optional name, a declaration section, and a body. A declara-

tion section is a list of declarations, each of which consists of a list of variables and a

type (a domain for the speci�ed variables). A predicate characterizing suitable initial

values may optionally be provided. The body of a program is a statement, where a

statement in the language is one of the following:

� skip

This statement does nothing and is always enabled.

� y := e

This is an assignment statement, where y is a list of variables and e is a list

of expressions of the same length and corresponding types. This statement is

always enabled.
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� await c

This statement waits until the (boolean) guard c becomes true, at which point

it terminates. This statement is enabled if the guard c is true.

� if c then S1 else S2

This is a conditional statement, executing statement S1 if the (boolean) con-

dition c is true, and executing the statement S2 otherwise. This statement is

always enabled.

� while c do S1

This statement evaluates the boolean expression c. If the value of c is false, the

statement terminates. Otherwise, the statement S1 is executed. When and if

S1 terminates, this statement repeats itself. This statement is always enabled.

� S1;S2

This is a concatenation statement. First statement S1 is executed, and then S2

is executed. This statement is enabled if S1 is enabled.

The multiple concatenation statement is given by S1;S2; : : : ;Sn.

� S1 or S2

This is a selection statement. If both S1 and S2 are enabled, then one of them

is nondeterministically selected for execution. Otherwise, whichever statement

S1 or S2 is enabled is executed. This statement is enabled if either S1 or S2 is

enabled.

The multiple selection statement is given by S1 or S2 or : : : or Sn.

� S1jjS2

This is a cooperation statement. The execution of S1 and S2 is interleaved. This

statement is always enabled.

The multiple cooperation statement is given by S1jjS2jj : : : jjSn.
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2.2.1 Statement Labels

Each statement of a program is preceded and followed by a label. Figure 2.1 gives

an example of a (fully-labeled) program.

b : boolean

x : integer

`0:

26666664[`1: b := F; b̀1:] jj
26666664
`2: while b do

`3:

264`4: x := x+ 1; b̀4:
or

`5: x := x� 1; b̀5:
375 b̀

3:

b̀
2:

37777775

37777775

Figure 2.1: A fully-labeled program.

An equivalence relation �L over labels is de�ned inductively:

� :̀ skip; b̀:
� :̀ y := e; b̀:
� :̀ await c; b̀:
The skip , assignment, and await statements do not introduce any label equiv-

alences.

� :̀ [if c then `1: S1; b̀1: else `2:;S2 b̀2:] b̀:
b̀
1 �L

b̀
2 �L

b̀
� :̀ [while c do `1: S1; b̀1:] b̀:
The while statement does not introduce any label equivalences.

� :̀ [`1: S1; b̀1:; `2: S2; b̀2:; : : : ; `n: Sn; b̀n:] b̀:
` �L `1b̀
i �L `i+1 for i = 1; : : : ; n� 1b̀
n �L

b̀
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� :̀ [`1: S1; b̀1: or `2: S2; b̀2: or : : : or `n: Sn; b̀n:] b̀:
` �L `i for i = 1; : : : ; nb̀
�L

b̀
i for i = 1; : : : ; n

� :̀ [`1: S1; b̀1: jj `2: S2; b̀2: jj : : : jj `n: Sn; b̀n:] b̀:
The cooperation statement does not introduce any label equivalences.

The equivalence class of a label ` is denoted [`]. An equivalence class of labels is a

location. Statement labels that are not mentioned later in the text are occasionally

omitted.

2.2.2 Semantics of the Programming Language

The semantics of a program P are given by associating P with a fair transition system

SP , de�ned as follows.

Let ` : S; b̀: be the body of program P . Then the fair transition system SP

associated with P is given by:

� V consists of all the variables declared in P , as well as a new control variable

�, ranging over sets of locations.

� � : ([`] 2 �) ^ ', where ' is the conjunction of initial value predicates in the

declarations.

� T consists of the transitions of S, as de�ned below.

Then the set of computations of P , denoted Comp (P ), is exactly the set of compu-

tations Comp (SP ).

2.2.3 Transitions of a Statement

Let � be a control variable ranging over sets of locations, and de�ne the predicate

moves (�; `; b̀) : ([`] 2 �) ^ (�0 = � [ f[ b̀]g � f[`]g)
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where moves (�; `; b̀) holds if control is currently at ` and subsequently moves to b̀.
The set of transitions corresponding to a statement is de�ned inductively.

� :̀ skip; b̀:
The only transition for this statement is:

�` : moves (�; `; b̀) ^ ^
u2V�f�g

(u0 = u)

In particular, no variable in V other than � may be modi�ed by the transition

�`. Henceforth, conjuncts of the form (u0 = u) will not be explicitly stated in

giving the semantics of each statement.

� :̀ y := e; b̀:
The only transition for this statement is:

�` : moves (�; `; b̀) ^ (y0 = e)

� :̀ await c; b̀:
The only transition for this statement is:

�` : c ^ moves (�; `; b̀)
� :̀ [if c then `1: S1; b̀1: else `2: S2; b̀2:] b̀:
The transitions of this statement are the transitions of S1 and S2, as well as:

�` : (c ^ moves (�; `; `1)) _ (:c ^ moves (�; `; `2))

� :̀ [while c do `0: S0; b̀0:] b̀:
The transitions of this statement are the transitions of S0, as well as:

�` : (c ^ moves (�; `; `0)) _ (:c ^ moves (�; `; b̀))
�b̀0 : (c ^ moves (�; b̀0; `0)) _ (:c ^ moves (�; b̀0; b̀))
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� :̀ [`1: S1; b̀1:; `2: S2; b̀2:; : : : ; `n: Sn; b̀n:] b̀:
The transitions of this statement are the transitions of each Si.

� :̀ [`1: S1; b̀1: or `2: S2; b̀2: or : : : or `n: Sn; b̀n:] b̀:
The transitions of this statement are the transitions of each Si.

� :̀ [`1: S1; b̀1: jj `2: S2; b̀2: jj : : : jj `n: Sn; b̀n:] b̀:
The transitions of this statement are the transitions of each Si, as well as:

�E` : ([`] 2 �) ^ (�0 = � [ f[`1]; : : : ; [`n]g � f[`]g)

�X` : (f[`1]; : : : ; [`n]g � �) ^ (�0 = � [ f[ b̀]g � f[`1]; : : : ; [`n]g)
2.3 Temporal Logic

The language of temporal logic is used for speci�cation. A temporal formula is con-

structed out of state formulas (equivalently, assertions), the boolean operators : and

_, and the following temporal operators:

2 | Next U | Until

� | Previous S | Since

A model for a temporal formula p is an in�nite sequence of V-states � : s0; s1; : : :

where V includes at least the variables appearing in p. The set of variables V is

partitioned into rigid and exible variables. A exible variable may have di�erent

values in di�erent states, whereas a rigid variable must have the same value in every

state of a model.

Given a model � : s0; s1; : : : and a temporal formula p, (�; j) q p denotes that p

holds at position j in �. For a state formula p,

(�; j) q p() sj q p

That is, p is evaluated locally, using the interpretation given by sj. The state sj is a

p-state if p holds on sj .
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(�; j) q :p () (�; j) q= p
(�; j) q p _ q () (�; j) q p or (�; j) q q
(�; j) q 2 p () (�; j + 1) q p
(�; j) q p U q () for some k, j � k, (�; k) q q

and for every i, j � i < k, (�; i) q p
(�; j) q � p () j � 1 and (�; j � 1) q p
(�; j) q p S q () for some k, 0 � k � j, (�; k) q q

and for every i, k < i � j, (�; i) q p
Additional temporal operators can be de�ned as follows:

1 p = true U p | Eventually

0 p = : 1 :p | Henceforth

pW q = 0 p _ (p U q) | Waiting-for

Q p = true S p | Sometime in the past

` p = :Q :p | Always in the past

p B q = ` p _ (p S q) | Back-tof� p = :� :p | Weak Previous

Another useful operator is the entailment operator, de�ned by:

p ) q () 0 (p! q)

The operators 2 , U , and the operators derived from them are the future opera-

tors; � , S , and the operators derived from them are the past operators. A formula

that contains no future operators is called a past formula. A formula that contains

no past operators is called a future formula. The operators 2 and � are referred to

as the immediate operators.

A temporal formula p holds on a model �, denoted � q p, if p holds at the �rst

position of �, i.e., (�; 0) q p. A formula p is satis�able if it holds on some model; it is

valid, denoted q p, if it holds on all models. Formulas p and q are equivalent, denoted

p � q, if p$ q is valid.

A temporal formula p is S-valid (equivalently, valid over S), denoted S q p, if for
all computations � of S, � q p.
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2.3.1 Classi�cation of Formulas

A complete proof system for program veri�cation may be obtained by identifying a

suitable classi�cation of properties and then providing proof rules that are complete

for each class. The safety-progress hierarchy [CMP92] is one such classi�cation, and

will serve as the basis for the global as well as the compositional proof systems to be

presented later.

Canonical Formulas

The safety-progress hierarchy can be characterized by the types of formulas needed to

express properties in a given class. For each property class � 2 f safety , guarantee ,

obligation , response , persistence , reactivity g, a formula of ' speci�es a � property

if and only if ' is equivalent to a canonical � formula, de�ned as follows:

� A canonical safety formula is a formula of the form:

0 p

� A canonical guarantee formula is a formula of the form:

1 p

� A canonical obligation formula is a formula of the form:

m̂

i=1

(0 pi _ 1 qi)

� A canonical response formula is a formula of the form:

0 1 p

� A canonical persistence formula is a formula of the form:

1 0 p
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� A canonical reactivity formula is a formula of the form:

m̂

i=1

(0 1 pi _ 1 0 qi)

Every formula is equivalent to some canonical reactivity formula, i.e., the class of

reactivity properties is maximal.

'

&

$

%
Safety

0 p

'

&

$

%
Guarantee

1 p

'

&

$

%
Obligation^
i

0 pi _ 1 qi

'

&

$

%
Response

0 1 p

'

&

$

%
Persistence

1 0 p

'

&

$

%
Reactivity^

i

0 1 pi _ 1 0 qi

Figure 2.2: Inclusion relation among property classes.

The inclusion relation among the classes is presented in Figure 2.2.
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Standard Formulas

The temporal characterization based on canonical formulas relies on boolean combi-

nations of formulas of the form 0 p and 0 1 p, where p is an arbitrary past formula.

This restricted form avoids the use of other future operators such as the until operator

U . It follows that, in order to determine the minimal class to which a formula be-

longs, it should be transformed �rst to canonical form. While this is always possible,

the usual transformation through !-automata may lead to an exponential blowup.

As a typical example, consider a system in which the event p should trigger the

two responses r1 and r2, but r1 should always weakly precede, i.e., precede or coincide

with, r2. The property stating that, from every occurrence of p, the next occurrence of

r2 must be weakly preceded by an occurrence of r1 can be expressed by the temporal

formula

p ) (:r2)W r1

which uses the waiting-for operator W . Note that this formula does not state

that r2 will actually occur following p. It only states that if r2 occurs, it must be

weakly preceded by r1. Consequently, it is a safety formula. To use the temporal

characterization by canonical formulas, it must be transformed into canonical form.

Indeed, the formula above is equivalent to

0 (r2 ! (:p) B r1)

which uses the back-to operator B . This formula states that, going back from every

occurrence of r2, we must encounter an r1 before we encounter a p. This form identi�es

the considered property as a safety property, since it it is of the form 0 q for some

past formula q. While the two formulas are equivalent, speci�ers often prefer the use

of future formulas and may �nd the need to transform to past-oriented speci�cations

awkward and unnatural.

The standard formulas characterization of the safety-progress hierarchy remedies

these drawbacks of the canonical characterization. The standard formulas charac-

terization is applicable to arbitrary temporal formulas, including those that use the

until and unless properties. Consequently, without any preliminary transformation,
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the presented characterization provides an upper bound on where a formula lies in

the hierarchy.

Standard �-formulas, for each class � in the safety-progress hierarchy, are de�ned

as follows.

a. standard safety formulas

{ Every past formula is a standard safety formula.

{ The negation of a standard guarantee formula is a standard safety formula.

{ If p and q are standard safety formulas, then so are

p _ q p ^ q 2 p 0 p pW q

b. standard guarantee formulas

{ Every past formula is a standard guarantee formula.

{ The negation of a standard safety formula is a standard guarantee formula.

{ If p and q are standard guarantee formulas, then so are

p _ q p ^ q 2 p 1 p p U q

c. standard obligation formulas

{ Every standard safety and standard guarantee formula is a standard obli-

gation formula.

{ If p and q are standard obligation formulas, then so are

:p p _ q p ^ q 2 p
{ If p is a standard obligation formula and q is a standard guarantee formula,

then the following is a standard obligation formula.

p U q

{ If p is a standard safety formula and q is a standard obligation formula,

then the following is a standard obligation formula.

pW q
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d. standard response formulas

{ Every standard safety and standard guarantee formula is a standard re-

sponse formula.

{ The negation of a standard persistence formula is a standard response

formula.

{ If p and q are standard response formulas, then so are

p _ q p ^ q 2 p 0 p pW q

{ If p is a standard response formula and q is a standard guarantee formula,

then the following is a standard response formula.

p U q

e. standard persistence formulas

{ Every standard safety and standard guarantee formula is a standard per-

sistence formula.

{ The negation of a standard response formula is a standard persistence

formula.

{ If p and q are standard persistence formulas, then so are

p _ q p ^ q 2 p 1 p p U q

{ If p is a standard safety formula and q is a standard persistence formula,

then the following is a standard persistence formula.

pW q

f. If p and q are standard �-formulas, where � is one of safety, guarantee, obliga-

tion, response, or persistence, then the following are standard �-formulas.

� p Q p ` p p S q p B q
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The de�nition does not mention the reactivity class since every temporal formula is

a reactivity formula.

In the temporal hierarchy, every obligation formula is both a response formula and

a persistence formula; although this is not stated explicitly in the above de�nition, it

is clear that every standard obligation formula is both a standard response formula

and a standard persistence formula.

2.4 Veri�cation

2.4.1 Veri�cation Conditions

For a transition � 2 T and past formulas p and q, the veri�cation condition of �

relative to p and q, denoted fpg�fqg, is the entailment

(� ^ p) ) q0

where V is the set of variables of the transition module containing � . The primed

version of a past formula q0 is a past formula over V [ V 0 such that q0 holds at a

position i� q holds at the subsequent position, obtained inductively as follows:

(� p)0 = p

(p S q)0 = q0 _ (p0 ^ p S q)

The veri�cation condition fpgTfqg for a set of transitions T is given by
V
�2Tfpg�fqg.

2.4.2 Proof Rules for Safety Properties

The following proof rule is complete for safety properties [MP91].

SAFE

For a past formula ':

S1. � ) '

S2. ' ) p

S3. f'gT f'g

0 p
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2.4.3 Proof Rules for Response Properties

The following proof rule is complete for response properties [MP91].

RESP

For past formulas ' = '1 _ � � � _ 'K, transitions

�1; : : : ; �K, well-founded domain (A;�) and measure �:

R1. p ) (q _ ')

R2. f'i ^ � = �gT fq _ (' ^ � � �) _ ('i ^ � = �)g

R3. f'i ^ � = �g�ifq _ (' ^ � � �)g

R4. 'i ) En (�i)

p ) 1 q

2.4.4 Proof Rules for Reactivity Properties

The following proof rule reduces reactivity properties to simpler properties. It is

complete for reactivity properties [MP91].

REAC

For a past formula ' and a well-founded domain

(A;�) with measure �:

R1. p ) 'W q

R2. (' ^ � = �) ) (� � �)W q

R3. (' ^ r ^ � = �) ) 1 (q _ � � �)

(p ^ 0 1 r) ) 1 q



Chapter 3

Parallel Composition

The fair transition systems model presented in Chapter 2 is su�cient for the global

analysis of closed systems. In other words, the entire system must be available for

analysis, and the system may not interact with the environment. However, the fair

transition systems model is not amenable to compositional reasoning, in which the

correctness of a system is derived from the correctness of its components. The fair

transition systems model is also inadequate for modeling open systems, in which the

environment may a�ect the behavior of a system.

The transition modules model introduced below supports the veri�cation of large

systems formed by the parallel composition of smaller components. A more general

de�nition of transition modules is presented in the next chapter to model sequential

composition and iteration.

3.1 Transition Modules

The computations of a transition system do not allow any interference by the environ-

ment. For instance, the computations of a transition system modeling M , presented

in Figure 3.1, are all of the form

hat `0; 0i
�I
�! � � �

�I
�! hat `0; 0i

�`0
�! hat `1; 1i

�I
�! � � �

19
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M ::

26664
x : integer where x = 0

`0: x := x+ 1
`1:

37775

Figure 3.1: A simple program.

where �I is the idling transition. The computations of a transition module, however,

are open to interference by the environment. In particular, the computations of a

transition module modeling M allow the environment, represented by the transition

�E, to arbitrarily modify x:

hat `0; 0i
�E
�! hat `0;mi

�E
�! � � �

�E
�! hat `0; ni

�`0
�! hat `1; n+ 1i

�E
�! � � �

If the behavior of the environment is entirely unconstrained, there is little that can

usefully be said about the computations of M . Typically, however, the environment

behaves more reasonably, and it is possible to determine that:

If the environment behaves \reasonably,"

then M satis�es some speci�cation '.

For instance, if the environment never decreases the value of x, then the value of x

will eventually be greater than 0:

(taken (�E) ) (x0 � x)) ! 1 (x > 0)

The antecedent taken (�E) ) (x0 � x) characterizes the environment of M , stating

that when an environment step is taken, the value of x in the next state is greater or

equal to the value of x in the current state. In this case, eitherM or the environment

of M may set x > 0.

A transition module is typically a component of some larger system, so the state

of the transition module is only part of the larger system state. Therefore, it is

reasonable to assume that the variables V of the transition module are contained

in some larger set of variables V, which describe the state of the system, without

explicitly stating what V contains.



CHAPTER 3. PARALLEL COMPOSITION 21

A transition module M consists of the following components:

� V � V: A �nite set of variables, partitioned into private variables V p and shared

variables V s.

� T : A �nite set of transitions, i.e., assertions over V and V 0. A state s0 is a

� -successor of s if:

hs; s0i q � ^ ^
u62V

(u0 = u)

For every � -successor s0 of a state s, where � 2 T , there must be some u 2 V p

such that s0[u] 6= s[u].

� �: An initial condition, i.e., an assertion over V characterizing the initial states

of the transition module.

3.1.1 The Environment Transition

The environment transition �E is intended to capture every possible behavior of the

environment of M . Speci�cally, a state s0 is a �E-successor of s if s and s0 agree on

the private variables of M :

hs; s0i q ^
u2V p

(u0 = u)

In other words, the environment may exhibit arbitrary behavior, except that it may

not modify any private variable of M .

3.1.2 Computations of a Transition Module

An in�nite sequence of V-states � : s0; s1; : : : is de�ned to be a computation of M if

it satis�es the following requirements:

� Initiation The state s0 is an initial state.

� Consecution For every j, where 0 � j:
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{ either the state sj+1 is a � -successor of the state sj for some

� 2 T , i.e., transition � was taken at position j in �,

{ or the state sj+1 is a �E-successor of state sj, i.e., an environ-

ment step is taken at position j in �.

� Justice For each � 2 T , it is not the case that � is continually enabled

beyond some point in � but taken at only �nitely many positions

in �.

The set of computations of M is denoted Comp (M).

3.1.3 Parallel Composition

Transition modules M1 and M2 may be composed if the private variables of each

module are not variables of the other module. Furthermore, the initial conditions of

M1 and M2 must be compatible. Speci�cally:

� V
p
1 \ V2 = ;

� V
p
2 \ V1 = ;

� �1 ^ �2 is satis�able

The parallel composition of M1 and M2 yields the transition module M , de�ned

as follows:

� V = V1 [ V2

V p = V
p
1 [ V

p
2

V s = V s
1 [ V

s
2

� T = T 1 [ T 2

� � = �1 ^ �2

Theorem 3.1.1 Comp (M) = Comp (M1) \ Comp (M2)

Proof:
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Let � be a computation of M . The initiation requirement for M1 is obviously

satis�ed. At any position j, either the environment transition or some transition

of M is taken. The environment transition of M may not modify any private

variable of M1, so any environment step of M is also an environment step of

M1. Since T = T 1 [ T 2, if some transition of M is taken at j, then either a

transition ofM1 or M2 is taken at j. Since no transition of M2 may modify any

private variable of M1, a step taken by a transition of M2 may correspond to

an environment step of M1. It follows that the consecution requirement for M1

is satis�ed. The justice requirement is also satis�ed, since any transition of M1

that is forever enabled but not taken would violate the justice requirement of

M . By symmetry, � is likewise a computation of M2.

Conversely, let � be a computation of both M1 and M2. Clearly, the ini-

tiation requirement for M is satis�ed. At each position j, either a transition

of M1 or M2 was taken, in which case the same transition belonging to M was

taken, or an environment step was taken by both M1 and M2. Then no private

variable of M1 or M2 could have been changed, so an environment step was also

taken by M . The justice requirement is also satis�ed, since any transition of

M that is forever enabled but not taken would violate the justice requirement

of eitherM1 or M2. Therefore, every computation of both M1 and M2 is also a

computation of M .

3.2 The Environment Restriction

The environment transition �E of a transition module M allows the environment to

arbitrarily modify any variable not in V p, i.e., any variable that is not a private vari-

able of M . It is typically the case, however, that the environment of M behaves in

a more restrained manner, and by characterizing the behavior of the actual environ-

ment it is possible to verify properties of M in a particular environment that do not

hold for every environment.
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An environment restriction Env is a formula of the form

Env : taken (�E) )
m̂

i=1

('i! 0
i)| {z }

E

where 'i and  i are assertions, stating that, if 'i holds at a position j where an

environment step is taken, then  i must hold at the next position j + 1. In other

words, E de�nes an additional next-state relation that must be satis�ed by every

environment step.

Environment restrictions of the form (y = k)!(y0 = k), where k is a static

variable, state that the environment does not change the value of y, and may be

abbreviated (y0 = y). Note that an environment restriction must be stuttering-

insensitive, and may not refer to private variables of the module.

Typically, the speci�cation for a transition module M will be of the form:

Env ! '

Such a speci�cation states that ' holds on every computation � ofM such that every

environment step taken from a 'i state leads to a  i state.

3.3 Veri�cation

Let M be a transition module formed by the parallel composition of transition mod-

ules M1; : : : ;MN . In order to verify that M satis�es some speci�cation

Env ! '

it su�ces to �nd speci�cations

Env i ! 'i

for each module Mi, for i = 1; : : : ; N , such that:

(1) each module is correct: Mi q Env i ! 'i

(2) the environment restriction of each module is satis�ed, and
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(3) the speci�cations 'i imply ': q (VN
i=1 'i)!'.

In order to check condition (2) for module Mj with environment restriction Env j :

taken (�Ej) ) E j, observe that taken (�Ej) holds at position k of a computation of

M if and only if taken (Mi) holds at k, where taken (Mi) holds if some transition of

module Mi was taken, for i 6= j, or taken (�E) holds at k, i.e., the environment of M

has taken a step. Therefore it su�ces to prove the following conditions:

Mi q Env i ! (taken (Mi) )
V
j 6=i E j)

q E !V
i E i

Despite the apparent circularity, i.e., assuming that the environment restriction Env i

of Mi is satis�ed while showing that Mi satis�es the environment restriction for each

Mj, this line of reasoning is sound. In particular, each environment restriction is a

safety property, and it has been established that such circular reasoning for safety

properties is sound [AL89].

3.3.1 Proof Rules for Safety Properties

Let M denote the parallel composition of transition modules M1, M2, : : : , MN . The

following simple proof rule is sound for any property '. A similar rule will then be

shown to be complete for safety properties. As usual, let:

Env : taken (�E) ) E

Env i : taken (�Ei) ) E i

PAR

For formulas '1, : : : , 'N and environment restric-

tions Env 1, : : : , Env N :

P1. Mi q Env i ! 'i

P2. Mi q Env i ! (taken (Mi) )
V
j 6=i Ej)

P3. q E !V
i E i

P4. q (Vi 'i)!'

M q Env ! '
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The �rst premise establishes that each module satis�es its speci�cation. The second

and third premises establish that the environment of each module behaves as ex-

pected. Finally, the fourth premise establishes that the speci�cations of each module,

taken in conjunction, imply the speci�cation of the composed system.

y1; y2 : boolean where y1 = false ; y2 = false

s : integer where s = 1

M1 ::

2666666664

`0: loop forever do26666664
`1: noncritical

`2: (y1; s) := (true ; 1)
`3: await :y2 _ s 6= 1
`4: critical

`5: y1 := false

37777775

3777777775
jj

M2 ::

2666666664

m0: loop forever do26666664
m1: noncritical

m2: (y2; s) := (true ; 2)
m3: await :y1 _ s 6= 2
m4: critical

m5: y2 := false

37777775

3777777775

Figure 3.2: Peterson's mutual exclusion algorithm.

Example: The safety requirement for Peterson's mutual exclusion algorithm, pre-

sented in Figure 3.2, may be stated as follows:

M q Env ! 0 :(at `4 ^ at m4)

where M =M1jjM2, and the environment restriction Env

Env : taken (�E) ) E

E : (y01 = y1) ^ (y02 = y2) ^ (s0 = s)

states that the environment of M does not modify y1, y2, or s.
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A suitable speci�cation for module M1 may be given as follows:

M1 q Env 1 ! (at `4 ) (y1 ^ (:y2 _ s = 2))) (3.1)

stating that y1 must hold wheneverM1 is in its critical section, and either y2 must

be false or s = 2. An appropriate environment restriction for M1 is obtained by

choosing:

E1 : y01 = y1

^ (:y2)!(y02! s0 = 2)

^ (s = 2)!(s0 = 2)

requiring that the environment of M1 does not modify y1, does not change y2

from false to true without also assigning s = 2, and does not assign s to any

value other than 2. It is easy to see that every transition of M2 satis�es E1, and

also that the environment of M =M1jjM2 satis�es E1.

It is not hard to see that (3.1) holds. A similar speci�cation may be given for

M2. Then, the conjunction

at `4 ) (y1 ^ (:y2 _ s = 2))

^

at m4 ) (y2 ^ (:y1 _ s = 1))

clearly implies

0 :(at `4 ^ at m4)

as desired.

Rule PAR is not complete for proving safety properties. In particular, consider the

mutual exclusion property

' : i 6= j ) :(at m4[i] ^ at m4[j])
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b[1]; : : : ; b[N ] : boolean where b[1] = false ; : : : ; b[N ] = false

A ::

266666666666664

private t : integer

`0: loop forever do26666664
`1: t := (t%M) + 1
`2: if b[t] then264`3: b[t] := F

`4: await b[t]
`5: b[t] := F

375

37777775

377777777777775
jj C[i] ::

2666666666664

m0: loop forever do2666666664

m1: noncritical

m2: b[i] := T

m3: await :b[i]
m4: critical

m5: b[i] := T

m6: await :b[i]

3777777775

3777777777775

Figure 3.3: A resource allocator system.

for the resource allocator system in Figure 3.3. Each customer process C[i] commu-

nicates with the allocator process A through the shared variable b[i]. Initially, all the

variables b[i] are false. Customer C[i] may request entrance to its critical section by

setting b[i] to true. When the allocator is ready to grant that request, it resets b[i] to

false. At this point, C[i] may enter its critical section. The customer C[i] eventually

signals its departure from its critical section by again setting b[i] to true, which the

allocator acknowledges by resetting b[i] to false. The declaration of t in the allocator

process A states that t is a private variable of A, i.e., belongs to V p
A . Private variables

may be data variables as well as control variables.

It is not di�cult to see that there are no speci�cations 'A and 'C[i] and en-

vironment restrictions Env A and Env C[i], for the allocator and customer processes

respectively, satisfying the premises of rule PAR and establishing '. Each component

speci�cation may rely only on the shared variables b[i], and the critical observation

pertaining to the correctness of the system is that

(1) each customer process C[i] may enter its critical section only if b[i] had been

reset to false an odd number of times previously, and

(2) the allocator process ensures that there is at most one b[i] satisfying this prop-

erty.

However, neither statement is expressible in temporal logic [Wol81]. Although
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'i : at m4[i] ) (t = i)

would seem to be a promising speci�cation for each customer, especially since the

conjunction
V
i 'i implies the desired property ', 'i is not suitable as a speci�cation

for customer process C[i] because it refers to the private variable t of the allocator

process.

Consider for a moment the same resource allocator systemwith customer processes

C[i], but whose allocator process is unknown. Assume simply that the property '

continues to hold for the system. The allocator must be able to distinguish between

states in which every customer is in its noncritical section, i.e., at m1[i] holds for

every i, and states in which some customer is in its critical section, i.e., at m4[i]

holds for some i, even though such states cannot be distinguished solely on the basis

of the shared variables b[i]. In other words, there must be some predicate crit [i]

maintained by the allocator in order to distinguish between critical and noncritical

states of customer process C[i].

The predicate crit [i] can distinguish between critical and noncritical states only

by conforming to the protocol, i.e., by properly observing the sequence of values b[i].

A resulting veri�cation strategy proceeds as follows:

(1) Assume there is some predicate crit [i] such that, if crit [i] \behaves" according

to the protocol and C[i] is in its critical section, then crit [i] must be true.

(2) The allocator provides predicates crit [i] and crit [j], and ensures that they are

mutually exclusive, for i 6= j.

The following environment restriction Env C[i] of customer process C[i] requires the

predicate crit [i] to follow the established protocol:

Env C[i] : taken (�EC[i]
) ) EC[i]

EC[i] : (:b[i] ^ :crit [i])!(:b[i]0 ^ :crit [i]0)

^ (b[i] ^ :crit [i])!(:b[i]0 � crit [i]0)

^ (:b[i] ^ crit [i])!(:b[i]0 ^ crit [i]0)

^ (b[i] ^ crit [i])!(:b[i]0 � :crit [i]0)
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The �rst conjunct states that, when the customer C[i] is not in its critical section

and b[i] is false , i.e., the customer is not requesting entry to the critical section, the

allocator should not change b[i] or crit [i]. The second conjunct states that, when the

customer C[i] is not in its critical section and b[i] is true, i.e., the customer is request-

ing entry to the critical section, the allocator may grant entry to the critical section,

by resetting b[i] to false , only if the predicate crit [i] is also set to true , recording

the fact that the customer C[i] has been granted permission to enter. Similarly, the

third conjunct states that, when the customer C[i] is in its critical section and b[i] is

false , i.e., the customer is not departing its critical section, the allocator should not

change b[i] or crit [i], and the �nal conjunct states that, when the customer C[i] is in

its critical section and b[i] is true, i.e., the customer is signaling its departure from

its critical section, the allocator may acknowledge the signal by resetting b[i] to false

only if the predicate crit [i] is also reset to false .

Now it is possible to establish the following speci�cation for customer process C[i]:

C[i] q (8crit [i])
h
Env C[i] ! (at m4[i]) crit [i])

i
Furthermore, taking the environment restriction of the allocator to be:

Env A : taken (�EA) )
^
i

(b[i]!b[i]0)| {z }
EA

stating that no customer may grant its own request or acknowledge its own release,

it is possible to establish:

A q (9crit [i])
h
Env A! 0 EC[i]

i
by taking crit [i] to be:

crit [i] : at `4;5 ^ (t = i)

After a little more e�ort it is possible to conclude

AjjC[i] q Env !
^
i

(at m4[i] ) (at `4;5 ^ (t = i)))
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for the entire system, which clearly implies the desired conclusion:

AjjC[i] q Env ! (i 6= j ) :(at m4[i] ^ at m4[j]))

Rule GPAR, presented below, justi�es this line of reasoning. Each component Mi

must be shown to satisfy some speci�cation Env i ! 'i, where Env i and 'i may refer

to variables in Vi[fx
j
i j j 6= ig. The variables xji are auxiliary variables. The predicate

crit [i] in the resource allocator system corresponds to xAC[i], i.e., a variable representing

some part of the global state that is not visible to customer C[i]. Similarly, each xji

represents some part of the global state that is not visible to process i. Note that the

distinction between xji and x
k
i is not relevant during the veri�cation of each separate

component, i.e., the correctness of process i does not depend on whether the hidden

state represented by xji and x
k
i belongs to process j or k, but is used only to simplify

the proof rule. Of course, M denotes the parallel composition of the component

modules Mi.

GPAR

Let xji be new variables for each j 6= i. For speci�cations 'i and

environment restrictions Env i, each over Vi [ fx
j
i j j 6= ig, and

terms Aj
i over V

p
j :

P1. Mi q Env i ! 'i

P2. Mi q Env i ! (taken (Mi) )
V
j 6=i Ej [A

i
j=x

i
j])

P3. q (E ^
V
xij

0
= xij)!

V
i E i

P4. q (Vi 'i[A
j
i=x

j
i ]) ! '

M q Env ! '

Proof:

In order to establish soundness, observe that

Mi q Env �i ! '�i

Mi q Env �i ! (taken (Mi) )
V
j 6=i E

�
j )

q E !
V
i E

�
i

q (Vi '
�
i ) ! '
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follow from the premises of rule GPAR, where '�i , E
�
i , and Env �i are obtained

from 'i, E i, and Env i by replacing variables x
j
i by the corresponding terms Aj

i ,

for each j 6= i. In particular, this holds because each xji and the variables in

each Aj
i are not in Vi.

Let � be a computation of M satisfying Env . It is easy to show that

� is a computation of each Mi satisfying Env �i , and therefore also satisfy-

ing each '�i . Otherwise let k be the �rst position such that, for some i,

(�; k) q= (taken (�Ei)!E
�
i ). At position k in the computation � of M , either

E holds, in which case E�i holds, or some transition of M is taken. Since

Env i is false, it cannot be the case that some transition of Mi is taken or

taken (�Ei) would be false. Therefore a transition of Mj is taken at k, for some

j 6= i. Observe that (taken (�Ej )!E
�
j) holds at every position up to and in-

cluding k, taken (Mj) holds at k, but E�i does not hold at k. It is easy to

extend the computation to obtain a computation of Mj that does not satisfy

Env �j ! (taken (Mj) ) E
�
i , which is a contradiction.

Rule GPAR is relatively complete for safety properties. Assume that each

component Mi has exactly one private variable �i. If this is not the case,

�i can be taken to be the tuple of private variables in V p
i . Choose E i to be

the disjunction of E ^ (xji
0
= x

j
i ) and all the transitions in each T j , for j 6= i,

replacing �j by x
j
i throughout. In particular, for a transition � 2 T j, E i includes

the disjunct:

� [xji=�j] ^
^

k 6=i;k 6=j

((xki )
0 = xki ) ^

^
u2V s

i
�V s

j

(u0 = u)

Each 'i is taken to be ', replacing �j by x
j
i throughout.

It is easy to show that each of the premises is valid. For P1, observe

that, from each computation of Mi satisfying Env i, it is possible to construct

a sequence of states satisfying the initiation and consecution conditions for

computations of M , as well as the environment restriction Env . If ' speci�es a

safety property, then any computation of Mi satisfying Env i but not 'i yields
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a computation of M satisfying Env but not '. For P2, taken (Mi) implies

taken (� ) for some � 2 T i, and by construction E j[�i=xij ] is satis�ed when � is

taken. The �nal two premises are trivial.

With the addition of auxiliary variables to the environment restriction Env , as

allowed by rule G-PAR, the environment is almost being treated as a full-edged transi-

tion system executing in parallel with the transition module. Although such a duality

would be elegant in principle, in practice it is simpler not to accord the environment

equal status with the transition module. The substitution of terms Aj
i for auxiliary

variables xji implicitly determines a re�nement mapping [Lam83] [LS83]. The exis-

tence of such mappings for a given (environment) speci�cation is considered in [AL91].

In this thesis, the question of existence of re�nement mappings is sidestepped by al-

lowing each environment speci�cation to be chosen in such a way that the re�nement

mapping is known to exist.

3.3.2 Proof Rules for Response Properties

In order to verify response properties, a stronger rule than GPARmay be required. Let

M be a transition module composed of transition modulesM1; : : : ;MN , and consider

the following speci�cation:

M q Env ! (p ) 1 q)

The global veri�cation strategy is to identify some measure � over a well-founded

domain (A;�) such that, starting from any p-state in a computation of M , the

value of � must repeatedly decrease until a q-state is reached. The compositional

veri�cation strategy requires identifying states, or more generally, histories, in which

it is the responsibility of a given component to progress, i.e., to decrease the value of �.

In the following proof rule, premise PR1 states that, following a p-state, some 'i must

hold up to the occurrence of the next q state. Premise PR2 states that componentMi

is responsible for making progress towards q whenever 'i holds. Note that �i in PR2

refers to a well-founded measure over (Ai;�i) such that �i �i �i implies ��i � ��i ,

where �i; �i 2 Ai, and ��i ; �
�
i 2 A are obtained by replacing xji by A

j
i in �i and �i,
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respectively, for j 6= i. These concepts are illustrated in the examples following the

proof rule.

PAR� RESP

Let xji be new variables for each j 6= i. For past formulas 'i and

environment restrictions Env i, each over Vi[fx
j
i j j 6= ig, terms

A
j
i over V

p
j , and a well-founded domain (A;�) with measure �:

PR1. M q Env ! (p ) (
W
i '

�
i )W q)

PR2. Mi q Env i! (('i ^ �i = �i) ) 1 (q _ �i � �i))

PR3. Mi q Env i! (taken (Mi) )
V
j 6=i E j[A

i
j=x

i
j])

PR4. q (E ^ xij
0
= xij) !

V
i E i

M q Env ! (p ) 1 q)

Proof:

It is not di�cult to see that rule PAR-RESP is sound and relatively complete. To

establish completeness, environment restrictions may be chosen as described in

the proof of rule GPAR. Choose formulas  1; : : : ;  K and transitions �1; : : : ; �K

that would be appropriate for global veri�cation of M , using rule RESP as pre-

sented in section 2.4. Then 'i for each component Mi may be taken to be the

disjunction of  k such that �k is a transition of Mi, replacing private variables

in  k of components other than Mi by the appropriate xji .

x; y; z : integer where x = 0; y = 0

M1 ::

264`0: x := 1
`1: await y = 1
`2: x := 0

375 jj M2 ::

26664
m0: await x = 1
m1: y := 1
m2: await x = 0
m3: z := 1

37775

Figure 3.4: Program PING-PONG-PING.
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Example: Rule PAR-RESP may be used to establish

Env ! (� ) 1 z = 1)

for program PING-PONG-PING in Figure 3.4, where Env states that the environ-

ment does not modify x, y or z. In particular, the premises of PAR-RESP are valid

for:

E1 : (x0 = x) ^ (y = 1! y0 = 1)

'1 : (x = 0 ^ y = 0) _ (x = 1 ^ y = 1)

E2 : (y0 = y)

'2 : (x = 1 ^ y = 0) _ (x = 0 ^ y = 1)

� : x = 0 ^ y = 0 � x = 1 ^ y = 0

� x = 1 ^ y = 1

� x = 0 ^ y = 1

Example: As a slightly more interesting example, observe that

Env ! (at m2 ) 1 at m4) (3.2)

is valid for Peterson's mutual exclusion algorithm, presented earlier. The follow-

ing line of reasoning establishes the desired property:

From a state in which at m2 holds, '2;1 _ '1 _ '2;2 must hold at

least up to at m4, where

� '2;1 : at m2 ^ :y2 characterizes states in which process M2 is

responsible for proceeding to a state satisfying '1 _ '2;2, and

� '1 : at m3 ^ y1 ^ s = 2 characterizes states in which process M1

is responsible for proceeding through its critical section to a state

satisfying '2;2, and
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� '2;2 : at m3 ^ (:y1 _ s = 1) characterizes states in which process

M2 is responsible for proceeding to its critical section at m4.

The proof obligation of showing that M1 proceeds from a '1 state to a '2;2 state

requires the introduction of the auxiliary variable x21, representing the hidden

state at m3. The following environment restriction for M1

Env 1 : taken (�E1
) ) x21 ^ y1 ^ s = 2 ! x21

0| {z }
E 1

states that the environment of M1 does not change the value of x21, i.e., at m3,

to false while y1 ^ s = 2 holds, and the following valid speci�cation for M1

Env 1 ! (x21 ^ y1 ^ s = 2) ) 1 (x21 ^ (:y1 _ s 6= 2))

states that, if the environment behaves accordingly, then M1 ensures progress as

desired.

Therefore, in this example, � may be taken to be:

� : :y2 � at m3 ^ y1 ^ s = 2

� at m3 ^ (:y1 _ s 6= 2)

whereas the corresponding �1 would be:

� : :y2 � x21 ^ y1 ^ s = 2

� x21 ^ (:y1 _ s 6= 2)

3.3.3 Layered Decomposition

Rule PAR-RESP provides a certain structure to the task of verifying response proper-

ties. Speci�cally, it su�ces to �nd appropriate formulas 'i, environment restrictions

Env i, and well-founded measure � satisfying the premises of rule PAR-RESP. An alter-

native, less-structured methodology is described in [MP92], where it is referred to as
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layered decomposition. Layered decomposition is the process of �rst, identifying prop-

erties of each component process that hold unconditionally, and second, introducing

conditional properties of each process, i.e., properties that depend on unconditional

properties or earlier conditional properties of the system.

However, since shared variables may be modi�ed arbitrarily by the environment,

which was not the case in [MP92], it is rarely the case that useful properties will hold

unconditionally for a given module. Therefore, a slightly more general formulation of

layered decomposition may be described as follows:

� Identify appropriate environment restrictions for each module,

� introduce \unconditional" properties, depending only on the environment re-

striction, for each module, and

� introduce conditional properties which may depend on both the unconditional

properties or earlier conditional properties.

The proof obligations for layered decomposition are exactly those required as the

premises of rule PAR, where the speci�cation 'i is taken to be the conjunction of the

unconditional and conditional properties attributed to process i.

Example: A weaker environment restriction forM1 may be used for establishing the

property

Env ! (� ) 1 z = 1)

of program PING-PONG-PING when using layered decomposition. In particular,

choose

E1 : x0 = x

E2 : y0 = y

and observe the following \unconditional" property:

M1 q Env 1 ! 1 ((x = 1)W (y = 1))| {z }
'1;1
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The following conditional properties also hold:

M2 q Env 2 ! 1 ((x = 1)W (y = 1))! 1 0 y = 1| {z }
'2;1

M1 q Env 1 ! 1 0 y = 1! 1 0 x = 0| {z }
'1;2

M2 q Env 2 ! (1 0 x = 0 ^ 1 0 y = 1)! 1 z = 1| {z }
'2;2

Rule PAR may be applied, taking the component speci�cations '1 and '2 to be

'1 : '1;1 ^ '1;2 and '2 : '2;1 ^ '2;2, respectively.

3.3.4 Proof Rules for Reactivity Properties

The following proof rule reduces reactivity properties to simpler properties, which

may then be veri�ed compositionally. It is complete for reactivity properties [MP91].

REAC

For a past formula ' and a well-founded domain

(A;�) with measure �:

R1. p ) 'W q

R2. (' ^ � = �) ) (� � �)W q

R3. (' ^ r ^ � = �) ) 1 (q _ � � �)

(p ^ 0 1 r) ) 1 q

3.3.5 Embedded Transition Modules

Compositional veri�cation is a two-stage process. First, given a system composed

of several modules, repeatedly apply composition rules (such as rule PAR-RESP) to

reduce the veri�cation task for the entire system to the task of verifying each of the

smaller components. Second, when no further reduction is possible or desirable, each

of the components must then be veri�ed individually. The task of verifying that a

transition module M meets its speci�cation

M q Env !'
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may be reduced to verifying that the embedded transition module [M;Env ], de�ned

below to be a transition system, satis�es '.

Given a transition module M and an environment restriction Env , the embedded

transition module [M;Env ] is de�ned to be the transition system cM = h bV ; bT ; b�i:
bV = V

bT = T [ f�g

where � : �E ^ E

b� = �

If E refers to any variables not in V , they are also included in bV and, for each such

variable u, the conjunct (u0 = u) is added to each � 2 T .

It is easy to see that the following theorem holds.

Theorem 3.3.1 M q Env !'

i�

[M;Env ] q '

3.4 Asynchronous Communication

It is not di�cult to extend the current shared-variables framework to allow message-

passing via bounded or unbounded asynchronous communication channels. Each

channel is modeled by a variable representing a queue of messages; if the channel is

bounded, then the queue cannot exceed the speci�ed length.

The simple programming language of section 2.2 is extended by allowing channel

declarations of the form

� : channel [1 : : :M ]

� : channel [1 : : :]

where � and � are declared to be bounded and unbounded FIFO channels, respec-

tively. The following communication statements are provided:

`s: �( e; b̀
s:

`r: �) x; b̀
r:
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The send statement, labeled `s, places the value of expression e into the channel �.

If � is a bounded channel of length M and already contains M messages, then the

statement is not enabled; otherwise, the statement is enabled. The receive statement,

labeled `r, removes the �rst message from the queue, if one exists, and stores the

value in x. If there are no messages in the channel, then the statement is not enabled.

The following communication transitions are associated with `s and `r, for the

case that � is an unbounded channel:

�`s : moves (�; `s; b̀s) ^ �0 = � � e

�`r : moves (�; `r; b̀r) ^ j�j > 0 ^ �0 = tail (�) ^ x0 = head (�)

For the case that � is a bounded channel that can bu�er at most M messages:

�`s : moves (�; `s; b̀s) ^ j�j < M ^ �0 = � � e

�`r : moves (�; `r; b̀r) ^ j�j > 0 ^ �0 = tail (�) ^ x0 = head (�)

As usual, conjuncts of the form (u0 = u) have been omitted.

3.4.1 The Compassion Requirement

An additional fairness requirementmust be placed on the computations of a transition

moduleM modeling message-passing. Speci�cally, in order for a sequence of states �

to be a computation of M , it must satisfy the requirements of initiality, consecution,

justice and:

� Compassion For each communication transition � , it is not the case that �

is in�nitely often enabled in � but taken at only �nitely many

positions in �.

Example: The resource allocator in Figure 3.5 satis�es the response property

Env ! 0 1 (j�j = 0) (3.3)

where Env states that � and � are not changed by the environment. Each

customer process C[i] may enter its critical section only after sending a message

on channel �. When it departs its critical section, it send a message on channel
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�, and only then does the allocator clear both channels. Since each channel can

hold at most one message, two customer processes cannot simultaneously enter

their critical sections.

Rule PAR-RESP may be applied, where p : true and q : j�j = 0, taking:

EA : (j�j = 1) ! (j�0j = 1)

'A : j�j = j�j = 1

EC[i] : (j�j = 1) ^ (j�j = 0) ! (j�0j = 1) ^ (0 � j�0j � 1)

'C[i] : (j�j = 1) ^ (j�j = 0) ^ at m3;4[i]

� : (
W
i 'C[i]) � 'A

�; � : channel [1 : : :1] where � = �; � = �

A ::

266664
private t : integer

`0: loop forever do"
`1: � ) t

`2: �) t

#
377775 jj C[i] ::

26666664
m0: loop forever do26664

m1: noncritical

m2: �( 0
m3: critical

m4: � ( 0

37775

37777775

Figure 3.5: Resource allocation by bounded asynchronous message passing.

3.4.2 Compassionate Proof Rules

With the introduction of the compassion requirement, rule PAR-RESP and rule REAC

remain sound but are no longer complete. For instance, it is not possible to establish

the accessibility property

Env ! (at m2[i]) 1 at m3[i])



CHAPTER 3. PARALLEL COMPOSITION 42

for the resource allocator of Figure 3.5. The following proof rule may be applied

instead. Premise PR1 states that every p-state is either also a q-state, or satis�es

some 'i. By premise PR2, 'i must persist unless q is achieved or progress is made

towards q. Premise PR3 ensures that there will be in�nitely many  i-states unless

progress towards q is made, and PR4 states that, when 'i holds and in�nitely many

 i-states occur, then transition module M1 guarantees progress towards q.

PAR� CRESP

Let xji be new variables for each j 6= i. For past formulas 'i;  i and

environment restrictions Env i, each over Vi [ fx
j
i j j 6= ig, terms Aj

i

over V p
j , and a well-founded domain (A;�) with measure �:

PR1. M q Env ! (p ) (q _
W
i '

�
i ))

PR2. M q Env ! (('�i ^ � = �) ) '�i W (q _ � � �))

PR3. M q Env ! ('�i ^ � = � ) 1 (q _ � � � _  �
i ))

PR4. Mi q Env i ! (('i ^ �i = �i ^ 0 1  i) ) 1 (q _ �i � �i))

PR5. Mi q Env i ! (taken (Mi) )
V
j 6=i Ej [A

i
j=x

i
j])

PR6. q (E ^ xij
0
= xij) !

V
i E i

M q Env ! (p ) 1 q)

Proof:

Rule PAR-CRESP is relatively complete for response properties. According to the

global proof rule F-RESP, presented and proved to be relatively complete in

[MP91], there are past formulas �i and helpful transitions �i for i = 1; : : : ;K

such that a p-state begins a sequence of �-states until a q-state, where � =
W
i �i,

and every �i-state persists until �i is taken, which results in either q or a decrease

in the well-founded measure. Then 'i and  i, for i = 1; : : : ;M , may be chosen

to be the disjunction of �j and the disjunction of �j ^ En (�j), respectively, for

each �j attributed to component i.

Example: The response property

Env ! (at m2[i]) 1 at m3[i])
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is valid for the resource allocator of Figure 3.5, where Env states that neither �

nor � are modi�ed by the environment. Apply rule PAR-CRESP, taking:

E i : true

'i : at m2[i]

 i : j�j = 0

Ej : true

'j : false

 j : false

9>>>=>>>; for j = A, or j 6= i

In particular, premise PR3

M q Env ! (at m2[i] ) 1 (at m3[i] _ (j�j = 0)))

follows from (3.3), established earlier.

3.5 Synchronous Communication

Message passing via synchronous channels typically requires coordination between a

process and its environment. For instance, when one process sends a message, the

environment must simultaneously receive the message. Thus, each communication

event along a synchronous channel is both a system step and an environment step.

Consequently, a number of subtle changes accompany the introduction of message

passing through synchronous channels.

A synchronous channel may be declared as follows:

� : channel

Each synchronous channel may be shared by at most two processes. No new com-

munication statements are introduced, but the communication transitions associated

with the statements

`s: �( e; b̀
s:

`r: �) x; b̀
r:
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for the case that � is a synchronous channel are given as follows:

�`s : moves (�; `s; b̀s) ^ ready [���] ^
V
u2V�f�g(u

0 = u)

�`r : moves (�; `r; b̀r) ^ ready [���] ^
V
u2V�f�;xg(u

0 = u)

where ready [���] and ready [���] are new, boolean auxiliary variables intended to

signify whether the environment is ready to receive or ready to send, respectively.

In these communication transitions, the variables which remain unchanged by each

transition are explicitly stated. In particular, the conjunct (x0 = x) is not present

in �`r , so x may be assigned any value when �`r is taken. Also, each communication

transition may arbitrarily modify variables that are not contained in V , i.e., variables

belonging to the environment. Thus, a state s0 is a � -communication successor of s,

where � is a communication transition, if:

hs; s0i q �

In contrast, recall that a state s0 is a � -successor of s, where � is not a communication

transition, if:

hs; s0i q � ^ ^
u62V

(u0 = u)

3.5.1 Parallel Composition

Synchronous communication transitions are handled separately when constructing

the parallel composition of two transition modules.

For each pair of matching communication transitions, i.e., �`s in M1 and �`r inM2

representing the following statements

`s: �( e; b̀
s:

`r: �) x; b̀
r:

respectively, the joint communication transition � is de�ned to be

� : moves (�1; `s; b̀s) ^ moves (�2; `r; b̀r) ^ x0 = e ^
^

u2V�f�1;�2;xg

(u0 = u)
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where a state s0 is a � -successor of s if:

hs; s0i q � ^ ^
u62V

(u0 = u)

In other words, the joint transition � is treated as an ordinary transition in the

composed system, except for the associated compassion requirement. Furthermore,

the channel variable � is included in the private variables of the composed system.

Each unmatched communication transition inM1 is then modi�ed by adding con-

juncts to disallow unintended modi�cation of variables of M2, and vice versa. For

instance, the following unmatched communication transition of M1

moves (�1; `s; b̀s) ^ ready [���] ^
^

u2V1�f�g

(u0 = u)

would yield the communication transition

moves (�1; `s; b̀s) ^ ready [���] ^
^

u2V1�f�g

(u0 = u) ^
^
u2V2

(u0 = u)

in the combined transition module.

It is not di�cult to establish the following, weaker version of Theorem 3.1.1.

Theorem 3.5.1 Comp (M) � Comp (M1) \ Comp (M2)

3.5.2 Veri�cation

For the case of modules communicating through synchronous channels, the environ-

ment restriction may refer to the private variables of the modules. This was not

necessary previously, for the shared variables case or the asynchronous communica-

tion case, because the environment transition could not modify private variables.

Furthermore, when constructing the embedded transition module [M;Env ], each

communication transition � in M is replaced by the transition � ^ E in [M;Env ].

Finally, assume that Mi and Mj share some channel �. Just as each auxiliary

variable xji in the speci�cation of 'i must be replaced by some Aj
i over V

p
j , there

must be some Aj;s
i and Aj;r

i over Vj to replace ready [���] and ready [���] in Mi, and

vice versa.
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�; � : channel
u : integer

M1 ::

"
`0: �( 0
`1: � ) u

#
jj M2 ::

"
m0: �) u

m1: � ( 1

#

Figure 3.6: Program SYNC-PING-PONG.

Example: The following property holds for Program SYNC-PING-PONG:

Env ! (� ) 1 u = 1)

First, observe that

M1 q Env 1 ! (at `0 ^ ready [���])

)

0BBB@
at `0 ^ ready [���]

_

at `1 ^ ready [���]

1CCCA W (u = 1)

may be established by choosing:

E1 : (at `0 ^ ready [���]) !

0BBB@
at `0

0
^ ready [���]0

_

at `1
0
^ ready [���]0

1CCCA
(at `1 ^ ready [���]) ! (at `1

0
^ ready [���]0) _ (u0 = 1)

Taking ready [���] and ready [���] to be at m0 and at m1, respectively, estab-

lishes

M q Env ! (at `0 ^ at m0) )

0BBB@
at `0 ^ at m0

_

at `1 ^ at m1

1CCCA W (u = 1)

which is the �rst premise of rule PAR-RESP, where '1 and '2 are:

'1 : (at `0 ^ ready [���]) _ (at `1 ^ ready [���])

'2 : false
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It should not be surprising to discover that the proof can be completed by as-

signing all responsibility for progress, i.e., '1, to M1. There are really only two

transitions in this system, and each can be attributed to either M1 or M2.

3.6 Related Work

The results presented in this chapter derive most directly from the reactive modules

of [MP92]. The reactive modules of [MP92] are not fully compositional, however, in

the sense that the parallel composition of reactive modules yields a transition system.

Thus, the result of composing two reactive modules cannot again be composed, and

conversely, it is not possible to repeatedly reduce the veri�cation task of a large

system to the veri�cation of smaller and smaller components. Furthermore, [MP92]

considers only the very strong notion of modular validity, wherein a speci�cation is

modularly valid only if it holds for every computation of the module in an arbitrary

environment. This leads to the strategy of layered decomposition, which has been

reconsidered in the more general framework of this thesis.

There have been a number of early attempts to construct Hoare-style proof sys-

tems for parallel programs. [OG76a] proposes an interference freedom test to ensure

that the actions of one system component do not invalidate the proof of another

component. The interference freedom test, however, is noncompositional, since the

global property of interference freedom can only be veri�ed by considering the atomic

actions of each component, rather than by establishing properties of each component.

[Jon83] introduces the rely-guarantee paradigm for modular speci�cation. The

environment restrictions introduced earlier are essentially rely conditions, i.e., restric-

tions on the transition relation of the environment, tailored for each proof. A complete

proof system based solely on rely-guarantee conditions, however, is too cumbersome

to be practical.

In the Unity framework [CM88], compositional veri�cation is based on the Union

Theorem and the introduction of conditional properties. The Union Theorem applies

to safety properties and to simple liveness properties, but conditional properties must

be used to verify more general liveness properties. A conditional property consists
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of a hypothesis and a conclusion, each of which may contain properties of a module,

the module's environment, or the module and environment taken together. This

veri�cation style is very similar to the layered decomposition strategy.

Several compositional proof systems for processes communicating through syn-

chronous channels are developed extensively in [ZdR89] and [Zwi89]. These systems

are based on communication histories and may be applied to safety properties. [PJ91]

considers liveness properties in a similar framework.

[AL93] draws a distinction between composition and decomposition of program

speci�cations, roughly corresponding to the notions of modularity and compositional-

ity in [ZdR89]. [AL93] considers primarily the case in which each variable is modi�ed

by at most one process, briey describing the modi�cations required for the more

general case where several processes modify a shared variable. In [AL93] the envi-

ronment assumption of each process is veri�ed by checking that it is implied by the

higher-level speci�cation, instead of checking each of the other component processes.



Chapter 4

Sequential Composition and

Iteration

This chapter considers two possible semantics for sequential composition and, by

extension, iteration.

For the �rst case, the computations of a transition module remain \anchored"

to the �rst state of a state sequence, i.e., the �rst state s0 must be initial, so this

is referred to as anchored composition. For each computation � of the sequential

composition M1;M2, there are computations �1 and �2 of M1 and M2 such that

� = �1 ? �2. Note that ? denotes the fusion of state sequences �1 and �2, to be

M1z }| {
M2z }| {

M1;M2z }| {

Figure 4.1: Anchored sequential composition.

de�ned later. A new temporal operator follows, denoted F , is introduced to express

49
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the interaction between �1 and �2.

For the next case, the computations of a transition module are rede�ned to be

\oating," i.e., some state si is initial, and the pre�x s0; : : : ; si�1 represents the history

preceding the actual computation of the module. Thus, a computation of M1;M2 is

M1z }| {
M2z }| {M1z }| {

M1;M2z }| {

Figure 4.2: Floating sequential composition.

typically also a computation ofM2, such that a computation ofM1 appears before the

computation of M2. Unlike the anchored case, no new temporal operator is required.

However, a oating semantics for temporal logic is used.

A number of other changes accompany sequential composition. Each transition

module is parameterized by a boolean control predicate, used to de�ne composition

operations on transition modules. The initial condition � of a transition module is

restricted to V p, the private variables of the module. The initial condition for the

shared variables is to be stated explicitly as part of the speci�cation. Each transition

module also includes an associated termination condition, i.e., an assertion over V p,

characterizing states in which the module has properly terminated. Furthermore,

computations of a transition module may be either �nite or in�nite, and the last

state of a �nite computation is required to satisfy the termination condition.

4.1 Transition Modules

In the informal example of Figure 4.3, program module P1 may be modeled by a
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P1 ::

"
`0: x := x+ 1
`1:

#
jj P2 ::

"
m0: y := y + 1
m1:

#

Figure 4.3: An informal example.

transition moduleM1(�1), where �1 is the boolean control parameter. M1(�1) consists

of the single transition �1

�1 : �1 ^ at `0 ^ (at `1)
0
^ (x0 = x+ 1)

stating that when �1 holds, P1 may move from a state in which control is at `0 to a

state in which control is at `1, while the value of x is incremented. Program module

P2 may be modeled similarly, by a transition module M2(�2) with the sole transition

�2:

�2 : �2 ^ at m0 ^ (at m1)
0
^ (y0 = y + 1)

The sequential composition of M1(�1) and M2(�2) may then be taken to be the tran-

sition module M(�), whose transitions are taken to be the transitions of M1(�) and

M2(� ^ at `1):

b�1 : � ^ at `0 ^ (at `1)0 ^ (x0 = x+ 1)b�2 : � ^ at `1 ^ at m0 ^ (at m1)0 ^ (y0 = y + 1)

In this case, the initial condition of the transition moduleM(�) is the conjunction of

the initial conditions of its components, i.e., at `0 ^ at m0.

A transition module M(�) consists of the following components:

� V : A �nite set of variables, partitioned into private variables V p and shared

variables V s. The boolean control parameter � does not belong to V .

� T (�) : A �nite set of transitions, i.e., assertions over V , V 0, and �. A state s0 is

a � -successor of s if

hs; s0i q � ^ ^
u62V

(u0 = u)
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For every � -successor s0 of a state s, where � 2 T (�), there must be some u 2 V p

such that s0[u] 6= s[u].

� �p: An initial condition, i.e., an assertion over V p characterizing the initial

states of the transition module.

� 
p: A termination condition, i.e., an assertion over V p characterizing the termi-

nal states of the module. No state may be both initial and terminal, and every

transition must be disabled on a terminal state.

The transition module M(�) may be referred to simply as M when omitting the

parameter � creates no ambiguity. Given a transition module M with transitions T ,

the set of transitions T (p) is obtained from T by replacing � by p in each transition

of T , for any assertion p. No transition in T (false ) may be enabled in any state.

4.1.1 The Environment Transition

As before, the environment transition �E of M is de�ned such that a state s0 is a

�E-successor of s if

hs; s0i q ^
u2V p

(u0 = u)

i.e., the environment may not modify any private variable of M .

4.1.2 Composing Transition Modules

Previously, the parallel composition of two transition modules was obtained by taking

the union of the sets of transitions of each component, so that the set of computa-

tions of the composed system consisted of exactly the intersection of the sets of

computations of each component. Other forms of composition may be de�ned by in-

troducing frames, which are transition modules governing more complex interaction

among constituent transition modules. Speci�cally, transition modules M1; : : : ;MN

may be composed in the frame Mf if the following conditions hold:



CHAPTER 4. SEQUENTIAL COMPOSITION AND ITERATION 53

� The variables Vi and private variables V p
j of transition modules Mi and Mj are

disjoint for each i 6= j.

� The private variables V p
i of each transition moduleMi are also private variables

of the frame, i.e., V p
i � V

p
f , for each i = 1; : : : ; N .

Parallel Composition

For example, given transition modules M1 and M2 and the following frame:

� Vf = V1 [ V2

V p
f = V p

1 [ V
p
2

V s
f = V s

1 [ V
s
2

� T f(�f ) = ;

� �p
f = �p

1 ^ �p
2

� 
p
f = 
p

1 ^ 
p
2

it is trivial to de�ne the parallel composition of M1 and M2:

� V = Vf

V p = V
p
f

V s = V s
f

� T (�) = T 1(�) [ T 2(�)

� �p = �p

f

� 
p = 
p
f
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Sequential Composition

The sequential composition of M1 and M2 can be de�ned in the same frame:

� V = Vf

V p = V
p
f

V s = V s
f

� T (�) = T 1(�) [ T 2(� ^ 
p
1)

� �p = �p
f

� 
p = 
p
f

Note that the transitions of M2 may be enabled only when 
p
1 holds, i.e., after M1

has terminated.

Iteration

Given transition module M1 and condition c, the frameM c
f is de�ned:

� Vf = V1 [ f�g

V
p
f = V

p
1 [ f�g

V s
f = V s

1

� T f(�f ) = f�g

� : �f ^ (� = 0) ^ 
p
1 ^ ((c ^ 
p

1
0) _ (:c ^ �0 = 1))

� �p
f = 
p

1 ^ (� = 0)

� 
p

f = (� = 1)

Then the iteration of M1 with respect to the condition c is given by:
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� V = Vf

V p = V
p
f

V s = V s
f

� T (�) = T f (�) [ T 1(�)

� �p = �p
f

� 
p = 
p
f

4.2 Anchored Composition

4.2.1 Computations of a Transition Module

The length of a �nite sequence of states � : s0; : : : ; sn is de�ned j�j = n. The

length of an in�nite sequence of states � is de�ned j�j = 1. Let V be a vocabulary

containing V . A �nite or in�nite sequence of V-states � : s0; s1; : : : is de�ned to be a

computation of M if it satis�es the following requirements:

� Initiation The state s0 is an initial state.

� Consecution For every j, where 0 � j < j�j:

{ either the state sj+1 is a � -successor of the state sj for some

� 2 T (true ), i.e., transition � was taken at position j in �,

{ or the state sj+1 is a �E-successor of state sj, i.e., an environ-

ment step is taken at position j in �.

� Termination If � is �nite, then sj�j is a terminal state.

� Justice If � is in�nite, then for each � 2 T (true ) it is not the case that �

is continually enabled beyond some point in � but taken at only

�nitely many positions in �.

The set of computations of M is denoted Comp (M). A computation containing a

terminal state is a terminating computation. Note that terminating computations may
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be in�nite, since a terminating computation may have an in�nite su�x of terminal

states.

Let ? be the fusion1 operator.

Theorem 4.2.1 Comp (M1;M2) � Comp (M1) ? Comp (M2)

Proof:

Let � be a computation of M = M1;M2. If there is no position j such that

sj satis�es 

p
1, then � must be in�nite. Observe that no transition in T 2(


p
1)

is enabled when 
p
1 is false. It follows by induction that every transition taken

in the computation � of M is either from M1 or is the environment transition.

Every environment step of M is also an environment step of M1, so it follows

that � is an in�nite computation of M1.

Otherwise, let sj be the �rst 

p
1-state. It follows, from the argument given

above, that �[0 : : : j] is a computation of M1. Since �p
2 holds initially and

neither M1 nor the environment of M may change �p
2 to false, sj is also a

�p
2-state. Similarly, 
p

1 must continue to hold at every position beyond j, so

every transition taken from j onward in the computation � of M is either from

M2 or is the environment transition. Every environment step of M is also an

environment step of M2, hence �[j : : :] is a computation of M2.

Notice that the converse to the above theorem does not hold. In particular, com-

putations of M1 and M2 allow environment steps which modify private variables of

M2 and M1, respectively. Furthermore, terminating computations of M1 may be in�-

nite, and may therefore belong to Comp (M1) ?Comp (M2) without necessarily being

computations of M .

1
The fusion of sequences � and �

0
, denoted � ? �

0
, is de�ned to be � if � is in�nite. If � :

s0; s1; : : : ; sk is �nite and the �rst state s
0

0
of �

0
equals sk, then � ? �

0
is given by s0; s1; : : : ; sk(=

s
0

0
); s

0

1
; : : :. Otherwise � ? �

0
does not exist.

The fusion of sets of state sequences �?�
0
includes all sequences � ?�

0
, where � 2 � and �

0 2 �
0
.
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4.2.2 Temporal Logic with Follows

The subsequence �[j : : : k] of a state sequence � = s0; s1; : : : is given by sj; : : : ; sk.

The j-th su�x of �, denoted �[j : : :], is given by sj; sj+1; : : :.

Let F be the follows operator, where

(�; j) q p F q () for some i, 0 � i � j, (�; i) q q
and (�[i : : :]; j � i) q p

The language obtained by adding F to temporal logic is called TLF .

If p and q are past formulas, then (�; j) q p F q depends only on the pre�x �[0 : : : j].

Figure 4.4 illustrates that, if (�1; i) q q and (�2; j � i) q p, then (�1 ? �2; j) q p F q.

s0 s1 si sj

q

(�; j) q q

s00 s0j�i

p
(�[i : : :]| {z }

�0

; j � i) q p

Figure 4.4: Showing that (�; j) q p F q.

Example: Given:

p : z = 1 ! Q (x = 1) _ ` (y = 1)

q : y = 1 ! Q (x = 1)

r : z = 1 ! Q (x = 1)

Observe that:

q (p F q) ) r

Consider an arbitrary state sequence �, and assume that p F q holds at position

j. If z = 1 does not hold at j, then r is trivially true at j. Otherwise, choose i

such that (�; i) q q and (�[i; : : :]; j� i) q p. Then z = 1 holds at position j � i of
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�[i; : : :], so by p either x = 1 at some position k, for i � k � j, or y = 1 holds at

every k, for i � k � j. In the �rst case, Q x = 1 holds at j in �, establishing r

at j in �. In the second case, y = 1 holds at i, so by q, there is some position k,

for 0 � k � i, such that x = 1 holds at k, and consequently Q x = 1 holds at j

in �, establishing r at j in �.

The requires operator R may be de�ned as follows:

pR q () :(p F :q)

Thus, (�1 ? �2; j) q pR q and (�2; j � j�1j) q p implies (�1; j�1j) q q.

A Decision Procedure for TLF

Proposition 4.2.2 TLF has a non-elementary decision procedure.

Proof:

Let SF (�) be the set of star-free expressions over alphabet �. De�ne a mapping

' : SF (�) 7! TLF as follows:

� 'p = � (p ^ �rst ) for p 2 �

� ':p = :'p

� 'p�q = 'q F 'p

Now, by structural induction, establish that for any � 2 SF (�):

� 2 L(�) $ (� � �; j�j+ 1) q '�

Only the case � = p � q is nontrivial. Let � 2 L(�) be given as follows:

� :

�p2L(p)z }| {
s0; s1; : : : ; sj;

�q2L(q)z }| {
sj+1; sj+2; : : : ; sk

Then by the induction hypothesis:

(�q � �; k � j) q 'q
(�p � sj+1; j + 1) q 'p
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which establishes (� � �; j�j + 1) q 'q F 'p. The converse is similar. [Sto74]

established that the emptiness problem for star-free sets is non-elementary, so

it follows that satis�ability for TLF is non-elementary.

The following decision procedure closely follows the decision procedure for PTL

with the operator chop given in [RP86]. It is convenient to introduce the notion of

oating satis�ability. A formula ' is oating satis�able if there is some state sequence

� and position j such that (�; j) q '.
Given a TLF formula ', the tableau for ' is a �nite graph T ' = (W'; R') with

nodes W', called atoms, and edges R'. The tableau is constructed by induction on

the nesting depth of the follows operator F in ', where T p = (Wp; Rp) is assumed

to be the previously constructed tableau for p, for each subformula p F q of '.

Given a set of formulas C, let bC denote the conjunction of all formulas in C.

The closure of a TLF formula ' is the smallest set of formulas Cl (') containing

' and satisfying:

2 true ;� true 2 Cl (')

p 2 Cl (') ) :p 2 Cl (')

p _ q 2 Cl (') ) p; q 2 Cl (')

2 p 2 Cl (') ) p 2 Cl (')

p U q 2 Cl (') ) p; q; 2 (p U q) 2 Cl (')

� p 2 Cl (') ) p 2 Cl (')

p S q 2 Cl (') ) p; q;� (p S q) 2 Cl (')

p F q 2 Cl (') ) p; q; p F true 2 Cl (')

and 2 ( bC F q);� ( bC F q) 2 Cl (') for every C � Cl (p)

An atom for ' is a set of formulas A � Cl (') such that:

true 2 A

p 2 A () :p 62 A

p _ q 2 A () p 2 A or q 2 A

p U q 2 A () q 2 A or p; 2 (p U q) 2 A
p S q 2 A () q 2 A or p;� (p S q) 2 A



CHAPTER 4. SEQUENTIAL COMPOSITION AND ITERATION 60

p F q 2 A () for some C 2 Wp:

(a) p 2 C

(b) bC F q 2 A

(c) if C 2 Init (p) then q 2 A

(d) if C 62 Init (p) then � ( bB F q) 2 A

for some (B;C) 2 Rp

(e) 2 (cD F q) 2 A for some (C;D) 2 Rp

where Init (p) consists of the initial atoms of p, i.e., those atoms of p that contain the

formula :� true .

The set of atoms for ' is denoted Atoms (').

The initial tableau T ';0 = (W';0; R';0) is a graph whose nodes are exactly the

atoms of '. There is an edge (A1; A2) 2 R';0 if the following conditions hold:

� 2 p 2 A1 () p 2 A2

� � p 2 A2 () p 2 A1

A path � = A0; A1; A2; : : : in T ';i is self-ful�lling if the following conditions hold:

� A0 is initial,

� for every p U q 2 Aj, there is some k � j such that q 2 Ak, and

� for every p F q 2 Aj, there is some path Bk; : : : ; Bl in T p such that k � j � l,

p 2 Bj, Bk is initial, q 2 Ak, and for every i, k � i � l, cBi F q 2 Ai. In this

case, Ak; : : : ; Al is said to derive p F q for Aj, and each cBi F q 2 Ai is derived

from p F q in Aj.

The path � contains ' if ' 2 Ai for some i. The path � ful�lls ' if ' 2 A0.

Proposition 4.2.3

(a) The formula ' is satis�able if and only if there is a path in T ';0 that ful�lls '.

(b) The formula ' is oating satis�able if and only if there is a self-ful�lling path

in T ';0 that contains '.
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Proof:

The proof proceeds by induction on the nesting depth of the follows operator

F in '. Let � be a sequence that satis�es (or oating satis�es) '. Take

� = A0; A1; : : : to be the required path through T ';0, where each Ai is an atom

of ' de�ned as follows:

Ai : fp 2 Cl (') j (�; i) q pg

Conversely, for a path ful�lling ' (or a self-ful�lling path containing ')

� = A0; A1; : : :, let � be the obvious state sequence corresponding to �. It is

straightforward to establish, by structural induction on the formulas in Cl ('),

that (�; i) q cAi.

A sequence of progressively smaller tableaus T ';1;T ';2; : : : may be obtained from

T ';0 by repeatedly removing atoms which cannot participate in paths ful�lling '. In

particular, T ';i+1 is obtained from T ';i by identifying and removing an atom A in

T ';i that satis�es one of the following conditions:

� A is not initial and has no incoming edges, or

� A has no outgoing edges, or

� for some p U q 2 A, there is no atom B reachable from A such that q 2 B, or

� for some p F q 2 A, there is no path that derives p F q for A

Proposition 4.2.4 Every self-ful�lling path in T ';i is preserved in T ';i+1.

Proof:

Obviously any A 2 T ';i � T ';i+1 cannot belong to any self-ful�lling path.

When T ';k is empty or cannot be reduced any further, the �nal tableau T ' is

taken to be T ';k. It is not di�cult to see that every atom in T ' belongs to some

self-ful�lling path. Consequently, the following proposition holds.
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Proposition 4.2.5

(a) The formula ' is satis�able if and only if there is an initial atom in T ' con-

taining '.

(b) The formula ' is oating satis�able if and only if there is an atom in T '

containing '.

A Deductive System

The deductive system below is an extension of the deductive system for PTL presented

in [MP92].

F1. ` 0 p! p P1. ` � p ) f� p
F2. ` 2 (p! q) , (2 p! 2 q) P2. ` f� (p! q) , (f� p!f� q)
F3. ` 0 (p! q) ) (0 p! 0 q) P3. ` ` (p! q) ) (` p!` q)
F4. ` 0 p! 0 2 p P4. ` 0 p! 0 f� p
F5. (p ) 2 p)!(p ) 0 p) P5. (p ) f� p)!(p ) ` p)
F6. pW q , (q _ (p ^ 2 (pW q))) P6. p B q , (q _ (p ^ f� (p B q)))
F7. 0 p ) pW q P7. f� false
F8. p ) 2 � p P8. p ) f� 2 p
N1. (p F q) F r , p F (q F r)

N2. (p _ q)F r ) (p F r) _ (q F r)

N3. p F (q _ r) ) (p F q) _ (p F r)

N4. p F q ) p (for a proposition p)

N5. f� false F q , q

N6. (� p) F q , � (p F q)

N7. (2 p) F q , 2 (p F q)

N8. true F q ) Q q

TGEN. 0 p (for a valid state formula p)

The deductive system uses the proof rules modus ponens



CHAPTER 4. SEQUENTIAL COMPOSITION AND ITERATION 63

MP : p! q; p ` q

and instantiation

INST : p ` p[�]

where � is a replacement for the sentence symbols in p, as well as composition mono-

tonicity

CM : p ) p0; q ) q0 ` p F q ) p0 F q0

and impossibility2:

IMP : 0 :p ` 0 :(p F q)

The only remaining proof rule relies on a network of premises for its conclusion.

Formally, an index-table T is a pair (n; �), where n is the set of indices f1; : : : ; ng

and � � n � n is the accessibility relation. The set of initial indices Tf is given

by fj 2 n j (i; j) 62 � for every i 2 ng. The closure of j, denoted Tj, is given by

fi 2 n j (i; j) 2 ��g. Given formulas pi and qi for i 2 n, let m 2 n and j 2 Tm \ T
f .

The graph induction rule is given as follows:

GIND: (premises) a. for every (k; l) 2 �

` ql ) ((pl ^ f� pk) F true !f� qk)
b. for every k 2 n

` pk ) f� W(j;k)2� pj

c. for every k; l 2 n; k 6= l

` 0 :(pk ^ pl)

(conclusion) ` qm ) (pm ^ Q pj)R qj

Proof:

The soundness of the graph induction rule may be established as follows. Let

� be a state sequence such that (�; k) q qm, and for some i � k, (�[i; : : :]; k �

2
This rule is not listed in [RP86], but is necessary for completeness. For instance, :(:'F q),

where ' is a valid temporal formula, cannot be proven without it.
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i) q pm ^ Q pj . It is necessary to show (�; i) q qj. First observe pj ) f� false
by premise b, since j 2 T

f , so it must be the case that (�[i; : : :]; 0) q pj .
Now, establish by induction that for each l from k down to i, there is

some n 2 Tm such that (�[i; : : :]; l � i) q pn and (�; l) q qn. The base case,

for l = k, is established by taking n = m. For the induction step, let n

satisfy the desired property for l, where i < l � k. By premise b, there is

some n0 such that (�[i; : : :]; (l � 1) � i) q pn0 and (n0; n) 2 �. It follows that

(�; l) q (pn ^ � pn0) F true , and since (�; l) q qn by the induction hypothesis,

premise a yields (�; l� 1) q qn0 .
Then, for k = i, there is some n such that (�[i; : : :]; 0) q pn and (�; i) q qn.

As observed earlier, (�[i; : : :]; 0) q pj . By premise c, it must be the case that

j = n, establishing (�; i) q qj as desired.

If a theorem or derived rule of TLF is also listed as a theorem or derived rule of

PTL in [MP92], then the proof is omitted below if it is identical to the corresponding

proof in PTL. Applications of instantiation are not explicitly shown.

Rule TGI. 0 p[�] for a valid state formula p and a replacement �

Rule PAR. 0 p ` p

Rule EMP. (p1 ^ � � � ^ pn) ) q; 0 p1; : : : ; 0 pn ` 0 q
When the �rst premise of EMP is a substitution instance of an obvious proposi-

tional tautology, rule EMP may be applied without listing the �rst premise. This is

referred to as an application of EPR, i.e., entailment propositional reasoning. Simi-

larly, an application of PR (propositional reasoning) assumes that the �rst premise

of modus ponens is understood.

Rule 2 M. a: p ) q ` 2 p ) 2 q
b: p , q ` 2 p , 2 q

Theorem T1. 2 (p ^ q) , (2 p ^ 2 q)
Theorem T2. 2 (p _ q) , (2 p _ 2 q)
Rule CI. p ) 2 p ` p ) 0 p
Theorem T3. p U q , (q _ (p ^ 2 p U q))
Theorem T4. p U q ) 1 q
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Theorem T5. 0 p , p ^ 2 0 p
Rule 0 G. 0 p ` 0 0 p
Rule 0 M. a: p ) q ` 0 p ) 0 q

b: p , q ` 0 p , 0 q

1. p , q premise

2. p ) q 1 EPR

3. 0 p ) 0 q 2 0 M
4. q ) p 1 EPR

5. 0 q ) 0 p 4 0 M
6. 0 p , 0 q 3, 5 EPR

Theorem T6. 0 2 p ) 2 0 p

1. 0 2 p , 2 p ^ 2 0 2 p T5

2. 2 (p ^ 0 2 p) , (2 p ^ 2 0 2 p) T1

3. p ^ 0 2 p ) 2 (p ^ 0 2 p) 1, 2 EPR

4. p ^ 0 2 p ) 0 (p ^ 0 2 p) 3 CI

5. p ^ 0 2 p ) p TGI

6. 0 (p ^ 0 2 p) ) 0 p 0 M
7. p ^ 0 2 p ) 0 p 4, 6 EMP

8. 2 (p ^ 0 2 p) ) 2 0 p 7 2 M
9. 0 2 p ) 2 0 p 1, 2, 8 EPR

Rule 2 F: a: 2 p ) 2 q ` 2 (p ) q)

b: 2 p , 2 q ` 2 (p , q)

1. 2 p ) 2 q premise

2. 2 (p! q) , (2 p! 2 q) FX2

3. 0 2 (p! q) ) 2 0 (p! q) T6

4. 2 (p ) q) 1{3 EPR

1. (p$ q) , (p! q ^ q! p) TGI
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2. 2 (p$ q) , 2 (p! q ^ q! p) 2 M
3. 2 (p! q ^ q! p) , 2 (p! q) ^ 2 (q! p) T1

4. 2 (p! q) , (2 p! 2 q) FX2

5. 2 (q! p) , (2 q! 2 p) FX2

6. (2 p! 2 q ^ 2 q! 2 p) , (2 p$ 2 q) TGI

7. 2 p , 2 q premise

8. 0 2 (p$ q) ) 2 0 (p$ q) T6

9. 2 (p , q) 2{8 EPR

Theorem T7. p , 2 � p

1. :p ) 2 � :p FX8

2. : 2 � :p ) p 1 EPR

3. : 2 � :p , 2 f� p FX1

4. 2 f� p ) : 2 � :p 3 EPR

5. 2 f� p ) p 2, 4 EPR

6. 2 (p! q) , (2 p! 2 q) FX2

7. 0 2 (p! q) , (2 p ) 2 q) 6 0 M
8. 0 2 (p! q)$(2 p ) 2 q) 7 PAR

9. � p ) f� p PX1

10. 0 p! 0 2 p FX4

11. 0 2 (� p!f� p) 10, 9 MP

12. 2 � p ) 2 f� p 8, 11 PR

13. 2 � p ) p 5, 12 EPR

14. p ) 2 � p FX8

15. p , 2 � p 13, 14 EPR

Rule f� G: 0 p ` 0 f� p
Rule f� M: p ) q ` f� p ) f� q
Theorem T8. � (p ^ q) , (� p ^ � q)
Theorem T9. � (p _ q) , (� p _ � q)
Theorem T10. f� (p ^ q) , (f� p ^ f� q)



CHAPTER 4. SEQUENTIAL COMPOSITION AND ITERATION 67

Theorem T11. f� (p _ q) , (f� p _ f� q)
Rule � M: p ) q ` � p ) � q
Theorem T12. � p , f� p ^ � true

Theorem T13. f� p , � p _ f� false
Completeness

Assume that ' is valid. The following proof proceeds by induction on the nest-

ing depth of the follows operator F in '. Construct the initial tableau T :';0 =

(W:';0; R:';0) for :' as described above.

Lemma 4.2.6 ` 0 _
A2W:';0

bA
Proof:

Take A to be

A : fA � Cl (') j 8p 2 Cl ('): p 2 A () :p 62 Ag

and observe ` 0 W
A2A

bA by TGI. Since Atoms (') � A, it su�ces to show

` 0 : bA for any A 2 A�Atoms ('). The only interesting condition to consider

in the de�nition of atoms for ' is the last one.

First, assume that p F q 2 A. Suppose there is no C 2 Wp such that

p 2 C, i.e., by proposition 4.2.5, q 0 :p, and by induction, ` 0 :p. Rule IMP

yields ` 0 :(p F q), which, when combined with ` bA ) p F q, implies ` 0 : bA.
Otherwise, choose C 2 Wp such that p 2 C and bC F q 2 A. Note that such

a choice must be possible, since ` p )
W
p2C2Wp

bC follows from ` 0 WC2Wp

bC,
yielding ` p F q ) (

W
p2C2Wp

bC) F q by CM, and ` bA ) p F q holds by TGI. If

C 2 Init (p), i.e., f� false 2 C, then ` bC ) f� false by TGI. Also, ` bA ) bC F q,

so ` bA ) f� false F q by CM. Then, by N5, ` bA ) q. If C 62 Init (p), i.e.,

� true 2 C, apply Lemma 4.2.8 inductively to obtain ` bC ) f� W(B;C)2Rp

bB.
By T12 and CM, ` bC F q ) (� W(B;C)2Rp

bB) F q, and by N6, N2 and T9, `bA )
W
(B;C)2Rp

� ( bB F q) as desired. Similarly, apply Lemma 4.2.8 inductively
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to obtain ` bC ) 2 W(C;D)2Rp

cD. By CM, ` bC F q ) (2 W(C;D)2Rp

cD) F q, By

N7, N2 and T2, ` bA )
W
(C;D)2Rp

2 (cD F q) as desired.

Conversely, assume that there is some C 2 Wp such that p 2 C andbC F q 2 A, but p F q 62 A. By TGI bC ) p, so by CM bC F q ) p F q. Hence

` bA ) p F q, but since :(p F q) must be in A, i.e., ` bA ) :(p F q) by TGI,

` 0 : bA follows immediately.

The following lemmas hold by induction for each tableau T :';0;T :';1; : : :.

Lemma 4.2.7 ` 0 : bA for each A 62 T :';i

Proof:

The proof proceeds by induction. The base case is stated in Lemma 4.2.6. For

the induction step, assume Lemmas 4.2.7 through 4.2.10 hold for some i � 0.

Consider A 2 W:';i�W:';i+1. If A is not initial, i.e., ` bA ) � true , and A has

no incoming edges, i.e., ` bA ) f� false by Lemma 4.2.8, then clearly ` 0 : bA.
It is similarly easy to show ` 0 : bA if A has no outgoing edges. If A contains

the formula p U q but there is no atom B reachable from A that contains q,

then ` bA ) 0 :q follows from Lemma 4.2.9, and by T4, ` 0 : bA. Finally,

suppose A contains the formula p F q but there is no path that derives p F q for

A. From Lemma 4.2.10 ` bA ) pR false holds, so by CM and the de�nition of

R , ` bA ) :(p F q). Since p F q 2 A, this implies ` 0 : bA.
Lemma 4.2.8 For each A2 2 W:';i:

` cA2 )

240@f� _
(A1;A2)2R:';i

cA1

1A ^

0@f2 _
(A2;A3)2R:';i

cA3

1A35
Lemma 4.2.9 For each A2 2 W:';i:

` cA2 )

240@` _
(A1;A2)2R:';i

cA1

1A ^

0@0 _
(A2;A3)2R:';i

cA3

1A35
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Lemma 4.2.10 For each A 2 W:';i such that p F q 2 A, observe that p F true 2 A

follows from CM and the de�nition of atoms for '. For every atom B 2 Wp, let �B

be the set of all A1 2 W:';i such that bB F true 2 A1 is derived from p F true in A,

and let � be the union of all �B such that B 2 Init (p).

` bA ) pR (
_
A12�

cA1)

Proof:

De�ne:

U = fD 2 Wp j p 2 D and cD F q 2 Ag

V = fD 2 Init (p) j (D;D0) 2 R�
p for some D0

2 Ug

Note that U and V cannot be empty by the de�nition of atoms for '.

Choose some enumeration of Wp = fD1;D2; : : : ;Dng, and denote qj =W
B2�Dj

bB and pj = cDj for each j = 1; : : : ; n. De�ne the obvious index table

over n, taking (i; j) 2 � () (Di;Dj) 2 Rp. Choose m and j such that Dm

and Dj are in U and V respectively, and note that j 2 Tm \ T
f . To establish

the �rst premise of the graph induction rule, consider some (k; l) 2 �. If �Dl
is

empty, then the premise is trivial. Otherwise, it is su�cient to establish

` bB ) ((pl ^ f� pk) F true !f� qk) (4.1)

for every B 2 �Dl
. The second premise holds by Lemma 4.2.8, and the third

premise holds by TGI, considering the de�nition of atoms for p. Consequently,

by graph induction:

` qm ) (dDm ^ Q cDj)R qj (4.2)

Observe that Equation 4.2 holds by CM for the case j 62 Tm; in particular, by

Lemma 4.2.9, ` dDm ) 0 :cDj . It follows that:

` qm ) (dDm ^ Q _
Dj2V

cDj)R
_

Dj2V

qj
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Observe that
W
Dj2V qj is exactly

W
A22�

cA2, and by CM obtain:

` qm ) dDm R
_
A22�

cA2 (4.3)

Observe ` bA )
V
Dm 2 Upm, and since Equation 4.3 holds for every Dm 2 U :

` bA ) (
_

Dm2U

dDm)R
_
A22�

cA2

Finally, observe ` bA ) (p!
W
Dm2U

dDm) and apply CM to obtain the desired

result.

Let T :';k be the �nal tableau, denoted T :'. Observe that ` 0 WA2W:'

bA follows

from Lemmas 4.2.6 and 4.2.7, so by rule PAR, `
W
A2W:'

bA. Furthermore, ` : bA for

any noninitial atom A, so `
W
A2W 0

bA for the set of initial atoms W 0
�W:'. Since '

is valid, :' is not satis�able, and there cannot be any initial atoms in T :' containing

:'. Therefore ' is contained in every initial atom, yielding ` (
W
A2W 0

bA)!', which

establishes ` '.

4.2.3 Veri�cation

TLF does not have a simple axiomatization nor even an elementary decision proce-

dure, which would seem to make it an unlikely language for veri�cation. However, it

is both possible and reasonable to restrict the use of the follows operator F in such

a way that veri�cation is straightforward and natural, as seen below. In particular,

note that F need never appear in the speci�cation of a transition module, and in

fact appears only in premises of the form

q (p F q) ) r

for past formulas p, q and r.

Note that, since the initial condition �p of a transition module refers only to

private variables V p of the module, an initial condition �s on the shared variables is

included as part of the speci�cation.
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Proof Rules for Safety Properties

SEQ� SAFE

For past formulas p1, p2 and assertion �s
2:

QS1. M1 q (�s
1 ^ Env )! 0 p

QS2. q (p2 F p1) ) p

QS3. M1 q (�s
1 ^ Env )!(
p

1 ) p1 ^ �s
2)

QS4. M2 q (�s
2 ^ Env )! 0 p2

M q (�s
1 ^ Env )! 0 p

Proof:

A formula ' holds at position j of �1 ? �2 after removing pre�x �1 if j � j�1j

and (�2; j � j�1j) q '.
Let � be a computation of M satisfying �s

1 and Env . Let �1 and �2

be computations of M1 and M2 as described in the proof of Theorem 4.2.1.

Consider an arbitrary position j. If j � j�1j, then j is a p-position by QS1.

Otherwise, let k = j�1j. By QS3, p1 and �s
2 hold at k. By QS4, p2 holds at

position j of �1 ? �2 after removing pre�x �1, so p2 F p1 holds at position j of

�. By QS2, j must be a p-position.

P1 ::

"
`0: if x = 1 then
`1: y := 1

#
; P2 ::

264m0: if y 6= 1 then
m1: await x = 1

m2: z := 1

375

Figure 4.5: Program SIMPLE-SEQ.

Example: Consider program SIMPLE-SEQ in Figure 4.5. Rule SEQ-SAFE may be

applied to establish

M1;M2 q (y = z = 0| {z }
�s
1

^ Env )! 0 z = 1 !Q x = 1| {z }
p
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where the environment assumption Env ensures that y and z are not modi�ed

by the environment:

Env : taken (�E) ) E

E : (y0 = y) ^ (z0 = z)

In particular, the premises of rule SEQ-SAFE are valid for the following choice of

�2, p1, and p2:

�2 : z = 0

p1 : y = 1 ) Q x = 1

p2 : z = 1 ) (Q x = 1 _ ` y = 1)

Premise QS2 states that (p2 F p1) ) p is valid, established previously.

For the case where p is a state formula, take

p1 : true

p2 : p

to derive a simpler proof rule:

SEQ� INV

For an assertion �s
2:

SI1. M1 q (�s
1 ^ Env )! 0 p

SI2. M1 q (�s
1 ^ Env )!(
p

1 ) �s
2))

SI3. M2 q (�s
2 ^ Env )! 0 p

M q (�s
1 ^ Env )! 0 p
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The following proof rule may be used to verify safety properties of M , where M

is the iteration of M1 with respect to c.

ITR� SAFE

For a past formula ':

IS1. M c
f q � ! '

IS2. q ' ! p

IS3. q ' F ' ) '

IS4. M c
f q (Env ^ ') ! 0 '

IS5. M1 q (Env ^ ') ! 0 '
M q (Env ^ �) ! 0 p

M ::

264while x > 0 do

M1 ::

"
`0: x := x� 1
`1:

#375

Figure 4.6: Program DECREASE.

Example: Consider program DECREASE in Figure 4.6. Rule ITR-SAFEmay be applied

to establish

M q (x � 0| {z }
�

^ Env ) ! 0 x � 0| {z }
p

where the environment restriction Env ensures that the condition x > 0 is not

falsi�ed by the environment, i.e.:

Env : taken (�E) ) E

E : (x > 0)!(x0 > 0)

In particular, the premises of rule ITR-SAFE are valid for:

' : (x � 0) ^ (at `1!x > 0)
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Proof Rules for Response Properties

SEQ� RESP

For past formulas p1, p2, r1, r2 and assertions �s
2

and  :

QR1. q (:p2) F p1 ) :p

QR2. q (r2 F r1) ) r

QR3. M1 q (�s
1 ^ Env )!(
p

1 ) p1 ^ r1 ^ �s
2)

QR4. M1 q (�s
1 ^ Env )!(p ) 1 (r _ (
p

1 ^  )))

QR5. M2 q (�s
2 ^ Env )!((p2 _ (�rst ^  )) ) 1 r2)

M q (�s
1 ^ Env )!(p ) 1 r)

Proof:

Let � be a computation of M satisfying �s
1 and Env . Let �1 and �2 be com-

putations of M1 and M2 as described in the proof of Theorem 4.2.1. Assume p

holds at position j. If j � j�1j, then by SR4 there is a position k, j � k � j�1j,

such that either r holds at k or k = j�1j and  holds at k. In the second case,

by QR3, r1 and �s
2 hold at position k. Since �

s
2 and  hold at position k, which

is the �rst state of �2, by QR5 there is some k0, k0 � j�1j, such that r2 holds at

position k0 of �1 ? �2 after removing pre�x �1. By QR2 it follows that k0 is an

r-position.

Otherwise, j > j�1j. By QR3, p1, r1, and �s
2 hold at position j�1j. By QR1,

p2 must hold at position j of �1 ? �2 after removing pre�x �1, and by QR5, so

does 1 r2. Then 1 r holds at j by QR2.

For the case where p and r are state formulas, take

p1 : true

p2 : p

r1 : true

r2 : r
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to derive a simpler proof rule:

SEQ� SRESP

For assertions �s
2 and  :

QSR1. M1 q (�s
1 ^ Env )!(
p

1 ) �s
2)

QSR2. M1 q (�s
1 ^ Env )!(p ) 1 (r _ (
p

1 ^  )))

QSR3. M2 q (�s
2 ^ Env )!((p2 _ (�rst ^  )) ) 1 r)

M q (�s
1 ^ Env )!(p ) 1 r)

The following proof rule may be used to establish response properties when M is

the iteration of M1 with respect to condition c.

ITR� RESP

For a well-founded measure � over (A;�) and as-

sertions ' and  :

IR1. M q (Env ^ �) ! 0 '
IR2. M c

f q (Env ^ ') ! ((p _  ) ) 1 (q _ (�p
1 ^  )))

IR3. M1 q (Env ^ ') ! (p ) 1 (q _ (
p
1 ^  )))

IR4. M1 q (Env ^ ' ^  ^ � = �)

! 1 (q _ (
p
1 ^  ^ � � �))

M q (Env ^ �) ! (p ) 1 q)

4.3 Floating Composition

4.3.1 Computations of a Transition Module

A sequence of V-states � is de�ned to be a k-computation of M , where k � j�j, if it

satis�es the following requirements:

� Initiation The state sk is an initial state.

� Consecution For every j, where k � j < j�j:

{ either the state sj+1 is a � -successor of the state sj for some

� 2 T , i.e., transition � is taken at position j in �,
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{ or the state sj+1 is a �E-successor of state sj. In this case, an

environment step was taken at position j in �.

� Justice If � is in�nite, then for each � 2 T it is not the case that � is

continually enabled beyond some point in � but taken at only

�nitely many positions in �.

4.3.2 Floating Temporal Logic

A model for a temporal formula is a pair (�; j), where � is a sequence of states and

0 � j � j�j. A formula p is satis�able if it holds on some model; it is valid, denoted

q p, if it holds on all models. A temporal formula p is M -valid, for some transition

module M , if (�; k) q p for every k-computation of M .

Note that, although every valid formula is M -valid, not every deduction rule for

general validity is sound for M -validity. In particular, rule GEN p ` 0 p and rule

P-GEN p ` ` p are sound for general validity, but not for M -validity.

4.3.3 Veri�cation

Proof Rules for Safety Properties

SEQ� SAFE

For past formula �s
2:

QS1. M1 q (�s
1 ^ Env )! 0 p

QS2. M1 q (�s
1 ^ Env )!(
p

1 ) �s
2)

QS3. M2 q (�s
2 ^ Env )! 0 p2

M q (�s
1 ^ Env )! 0 p

Example: Consider program SIMPLE-SEQ, presented earlier in Figure 4.5. Rule

SEQ-SAFE may be applied to establish

M1;M2 q (y = z = 0| {z }
�

^ Env )! 0 z = 1 !Q x = 1| {z }
p
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where the environment assumption Env ensures that y and z are not modi�ed

by the environment:

Env : taken (�E) ) E

E : (y0 = y) ^ (z0 = z)

In particular, the premises of rule SEQ-SAFE are valid for the following choice of

�2:

�2 : y = 1 ) Q x = 1

ITR� SAFE

For a past formula ':

IS1. M c
f q � ! '

IS2. q ' ) p

IS3. M c
f q (Env ^ ') ! 0 '

IS4. M1 q (Env ^ ') ! 0 '
M q (Env ^ �) ! 0 p

Proof Rules for Response Properties

SEQ� RESP

For past formula �s
2 and assertion  :

QR1. M1 q (�s
1 ^ Env )!(
p

1 ) �s
2)

QR2. M1 q (�s
1 ^ Env )!(p ) 1 (r _ (
p

1 ^  )))

QR3. M2 q (�s
2 ^ Env )!((p _ (�rst ^  )) ) 1 r)

M q (�s
1 ^ Env )!(p ) 1 r)
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ITR� RESP

For a well-founded measure � over (A;�) and past

formulas ' and  :

IR1. M q (Env ^ �) ! 0 '
IR2. Mf q (Env ^ ') ! ((p _  ) ) 1 (q _ (�p

1 ^  )))

IR3. M1 q (Env ^ ') ! (p ) 1 (q _ (
p
1 ^  )))

IR4. M1 q (Env ^ ' ^  ^ � = �)

! 1 (q _ (
p
1 ^  ^ � � �))

M q (Env ^ �) ! (p ) 1 q)



Chapter 5

Real-time Composition

This chapter extends the compositional methods developed earlier to real-time. For

simplicity, only parallel composition is considered.

5.1 Real-time Transition Modules

The real-time transition modules de�ned in this section are based on timed transition

systems, as presented in [HMP93].

A real-time transition module M consists of the following components:

� V � V: A �nite set of variables, partitioned into private variables V p and shared

variables V s.

� T : A �nite set of transitions, i.e., assertions over V and V 0. A state s0 is a

� -successor of s if

hs; s0i q � ^ ^
u62V

(u0 = u)

For every � -successor s0 of a state s, where � 2 T , there must be some u 2 V p

such that s0[u] 6= s[u]. Furthermore, each transition must be self-disabling, i.e.,

each � must be disabled on every � -successor of any state s. These conditions

are readily satis�ed, for instance, by a private control variable that changes,

when each transition is taken, to a value which disables the transition.

79
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� �: An initial condition, i.e., an assertion over V characterizing the initial states

of the transition module.

� l: A lower bound l� 2 N for each transition � .

� u: An upper bound u� 2 N for each transition � .

5.1.1 The Environment Transition

The environment transition �E is intended to capture every possible behavior of the

environment of M . Speci�cally, a state s0 is a �E-successor of s if s and s
0 agree on

the private variables of M :

hs; s0i q ^
u2V p

(u0 = u)

5.1.2 Computations of a Transition Module

A timed state sequence � may be represented as a pair (�; T ), where � : s0; s1; : : :

is an in�nite sequence of V-states and T = T0; T1; : : : is a corresponding sequence of

time values satisfying the following conditions:

� Monotonicity For all i � 0:

either Ti+1 = Ti,

or Ti+1 = Ti + 1 and si+1 = si.

The case that time increases is referred to as a tick step.

� Progress For all i � 0 there is some j > i such that Tj > Ti.

A timed state sequence � is de�ned to be a computation of M if it satis�es the

following requirements:

� Initiation The state s0 is an initial state.

� Consecution For every j, where 0 � j:

{ either the state sj+1 is a � -successor of the state sj for some

� 2 T , i.e., transition � was taken at position j in �,
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{ or the state sj+1 is a �E-successor of state sj, i.e., an environ-

ment step is taken at position j in �.

� Lower bound No transition � 2 T is taken unless it has been continually enabled

at least l� time units.

� Upper bound No transition � 2 T may be continually enabled for greater than

u� time units without being taken.

The set of computations of M is denoted Comp (M).

5.1.3 Parallel Composition

Transition modules M1 and M2 may be composed if the private variables of each

module are not variables of the other module. In particular:

� V
p
1 \ V2 = ;

� V p
2 \ V1 = ;

� �1 ^ �2 is satis�able

The parallel composition of M1 and M2 yields the transition module M , de�ned

as follows:

� V = V1 [ V2

V p = V p
1 [ V

p
2

V s = V s
1 [ V

s
2

� T = T 1 [ T 2

� � = �1 ^ �2

� l� = l�1 if � 2 T 1, otherwise l�2.

� u� = u�1 if � 2 T 1, otherwise u
�
2.

Theorem 5.1.1 Comp (M) = Comp (M1) \ Comp (M2)
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5.2 Metric Temporal Logic

A metric temporal formula is constructed out of state formulas, the boolean operators

: and _ , and the following temporal operators:

2
�c | Next U�c | Until

�
�c | Previous S�c | Since

where � is one of f<;=; >;�dg, c � 0, and d � 2.

Given a timed state sequence � = (�; T ) and a metric temporal formula p, (�; j) q p
denotes that p holds at position j in �. For a state formula p,

(�; j) q p() sj q p

That is, p is evaluated locally, using the interpretation given by sj. The state sj is a

p-state if p holds on sj .

(�; j) q :p () (�; j) q= p
(�; j) q p _ q () (�; j) q p or (�; j) q q
(�; j) q 2

�c p () (�; j + 1) q p and (Tj+1 � Tj) � c

(�; j) q p U�c q () for some k, j � k,

(�; k) q q and (Tk � Tj) � c

and for every i, j � i < k, (�; i) q p
(�; j) q �

�c p () j � 1 and (�; j � 1) q p and (Tj � Tj�1) � c

(�; j) q p S�c q () for some k, 0 � k � j,

(�; k) q q and (Tj � Tk) � c

and for every i, k < i � j, (�; i) q p
An unbounded version of p U q may be de�ned as p U=0 q _ p U>0 q, and similarly

for an unbounded version of S . Additional temporal operators can be de�ned as

follows:
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f2
�cp = :2

�c :p | Weak next

1
�c
p = true U�c p | Eventually

0
�c p = :1

�c
:p | Henceforth

pW�c q = 0 p _ (p U�c q) | Waiting-forf�
�cp = :�

�c :p | Weak previously

Q
�c
p = true S�c p | Sometime in the past

`
�c p = :Q

�c
:p | Always in the past

p B�c q = ` p _ (p S�c q) | Back-to

Similarly, unbounded versions of the above operators can be de�ned from the un-

bounded U and S operators. Note that, since time can change by at most 1 between

two adjacent states, it is su�cient to allow � c to be = 0 or = 1 for the immediate

operators 2
�c and �

�c . Then weak and unbounded versions of 2 and � are de�ned

as follows:

2 p = 2 =0 p _ 2 =1 p

� p = � =0 p _ � =1 pf� p = :� :p
The formulas tick and ptick are de�ned as follows:

tick : 2 =1 true

ptick : � =1 true

5.2.1 A Decision Procedure

The following decision procedure follows closely the decision procedure for PTL given

in [LPZ85].

The closure of a metric temporal formula ' is the smallest set of formulas Cl (')

containing ' and satisfying:
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tick ; ptick 2 Cl (')

p 2 Cl (') ) :p 2 Cl (')

p _ q 2 Cl (') ) p; q 2 Cl (')

2
�c
p 2 Cl (') ) p; 2 p 2 Cl (')

p U�c q 2 Cl (') ) p; q; 2 (p U�c q); 2 (p U�c�1 q) 2 Cl (')

�
�c p 2 Cl (') ) p;� p 2 Cl (')

p S�c q 2 Cl (') ) p; q;� (p S�c q);� (p S�c�1 q) 2 Cl (')

where:

p U<�1 q = false p S<�1 q = false

p U=�1 q = false p S=�1 q = false

p U>�1 q = p U q p S>�1 q = p S q

p U�d�1 q = p U�dd�1 q p S�d�1 q = p S�dd�1 q

An atom is a set of formulas A � Cl (') such that:

true 2 A

p 2 A () :p 62 A

p _ q 2 A () p 2 A or q 2 A

2 =0 p 2 A () :tick ; 2 p 2 A
2 =1 p 2 A () tick ; 2 p 2 A
p U<0 q 62 A

p U<c+1 q 2 A () q 2 A or p;:tick ; 2 (p U<c+1 q) 2 A

or p; tick ; 2 (p U<c q) 2 A
p U=0 q 2 A () q 2 A or p;:tick ; 2 (p U=0 q) 2 A

p U=c+1 q 2 A () p;:tick ; 2 (p U=c+1 q) 2 A or p; tick ; 2 (p U=c q) 2 A

p U>0 q 2 A () p;:tick ; 2 (p U>0 q) 2 A or p; tick ; 2 (p U q) 2 A
p U>c+1 q 2 A () p;:tick ; 2 (p U>c+1 q) 2 A or p; tick ; 2 (p U>c q) 2 A
p U�d0 q 2 A () q 2 A or p;:tick ; 2 (p U�d0 q) 2 A

or p; tick ; 2 (p U�dd�1 q) 2 A

p U�dc+1 q 2 A () p;:tick ; 2 (p U�dc+1 q) 2 A or p; tick ; 2 (p U�dc q) 2 A

� =0 p 2 A () :ptick ;� p 2 A
� =1 p 2 A () ptick ;� p 2 A
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p S<0 q 62 A

p S<c+1 q 2 A () q 2 A or p;:ptick ;� (p S<c+1 q) 2 A

or p; ptick ;� (p S<c q) 2 A
p S=0 q 2 A () q 2 A or p;:ptick ;� (p S=0 q) 2 A

p S=c+1 q 2 A () p;:ptick ;� (p S=c+1 q) 2 A or p; ptick ;� (p S=c q) 2 A
p S>0 q 2 A () p;:ptick ;� (p S>0 q) 2 A or p; ptick ;� (p S q) 2 A
p S>c+1 q 2 A () p;:ptick ;� (p S>c+1 q) 2 A or p; ptick ;� (p S>c q) 2 A
p S�d0 q 2 A () q 2 A or p;:ptick ;� (p S�d0 q) 2 A

or p; ptick ;� (p S�dd�1 q) 2 A

p S�dc+1 q 2 A () p;:ptick ;� (p S�dc+1 q) 2 A or p; ptick ;� (p S�dc q) 2 A

The set of atoms for ' is denoted Atoms (').

A formula is said to be elementary if it is a proposition, has 2 or � as its main

connective, or is either tick or ptick . Let ECl (') � Cl (') denote the elementary

closure of ', consisting of the elementary formulas in Cl (').

Note that there is a one-to-one correspondence between the set of atoms and the

set fE � ECl (')g. In particular, for every set of elementary formulas E � ECl ('),

there is an atom containing every elementary formula in E and the negation of every

elementary formula not in E.

The initial tableau T 0 = (W0; R0) is a graph whose nodes are exactly the atoms

of '. There is an edge (A1; A2) 2 R0 if the following conditions hold:

� tick 2 A1 () ptick 2 A2

� 2 p 2 A1 () p 2 A2

� p 2 A1 () � p 2 A2

A path A0; A1; A2; : : : in T i ful�lls ' if the following conditions hold:

� A0 is initial, i.e., does not contain any formula of the form � p,

� ' 2 A0, and

� for every p U q 2 Aj, there is some k � j such that q 2 Ak.
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Proposition 5.2.1 The formula ' is satis�able if and only if there is a path in T 0

that ful�lls '.

A sequence of progressively smaller tableaus T 1;T 2; : : : may be obtained from

T 0 by repeatedly removing atoms which cannot participate in paths ful�lling '. In

particular, T i+1 is obtained from T i by identifying and removing a maximal strongly

connected subgraph C in T i that satis�es one of the following conditions:

� C contains no incoming edges and no initial atoms, or

� C has no outgoing edges and is not self-ful�lling, or

� C is a single atom with no successors

where a strongly connected graph C is said to be self-ful�lling if, for every p U q 2

A1 2 C, there is some A2 2 C such that q 2 A2.

Proposition 5.2.2 There is a path in T i+1 that ful�lls ' if and only if there is a

path in T i that ful�lls '.

When T k is empty or cannot be reduced any further, the following proposition

holds.

Proposition 5.2.3 The formula ' is satis�able if and only if there is an initial atom

in T k containing '.

5.2.2 A Deductive System

The deductive system presented below is very similar to the deductive system for

PTL presented in [MP92]. In fact, only axioms FX6 and PX6 have been changed,

and axioms FX9, PX9, and FX10 have been added.
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Future Axioms

FX0. 0 p ! p

FX1. : 2 p , 2 :p
FX2. 2 (p ! q) , (2 p! 2 q)
FX3. 0 (p ! q) ) (0 p! 0 q)
FX4. 0 p ! 0 2 p
FX5. (p ) 2 p) ! (p ) 0 p)
FX6. 0 :(p U<0 q)

p U<c+1 q , q _ (p ^ (2 =0 (p U<c+1 q)

_ 2 =1 (p U<c q)))

p U=0 q , q _ (p ^ 2 =0 (p U=0 q))

p U=c+1 q , p ^ (2 =0 (p U=c+1 q)

_ 2 =1 (p U=c q))

p U>0 q , p ^ (2 =0 (p U>0 q)

_ 2 =1 (p U q))

p U>c+1 q , p ^ (2 =0 (p U>c+1 q)

_ 2 =1 (p U>c q))

p U�d0 q , q _ (p ^ (2 =0 (p U�d0 q)

_ 2 =1 (p U�dd�1 q)))

p U�dc+1 q , p ^ (2 =0 (p U�dc+1 q)

_ 2 =1 (p U�dc q))

FX7. 0 p ) pW q

FX8. p ) 2 � p
FX9. 2 =0 p ) :2 =1 q

FX10. tick , 2 ptick

Past Axioms

PX1. � p ) f� p
PX2. f� (p ! q) , (f� p!f� q)
PX3. ` (p ! q) ) (` p!` q)
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PX4. 0 p ! 0 f� p
PX5. (p ) f� p) ! (p ) ` p)
PX6. 0 :(p S<0 q)

p S<c+1 q , q _ (p ^ (�
=0

(p S<c+1 q)

_ � =1 (p S<c q)))

p S=0 q , q _ (p ^ � =0 (p S=0 q))

p S=c+1 q , p ^ (� =0 (p S=c+1 q)

_ � =1 (p S=c q))

p S>0 q , p ^ (� =0 (p S>0 q)

_ � =1 (p S q))

p S>c+1 q , p ^ (� =0 (p S>c+1 q)

_ � =1 (p S>c q))

p S�d0 q , q _ (p ^ (� =0 (p S�d0 q)

_ � =1 (p S�dd�1 q)))

p S�dc+1 q , p ^ (� =0 (p S�dc+1 q)

_ � =1 (p S�dc q))

PX7. f� false
PX8. p ) f� 2 p
PX9. � =0 p ) :� =1 q

TGEN. 0 p for a valid state formula p

The deductive system uses the proof rules modus ponens

MP : p! q; p ` q

and instantiation

INST : p ` p[�]

where � is a replacement for the sentence symbols in p.

Completeness

For a set of formulas C � Cl ('), let bC denote the conjunction of formulas in C.
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Assume that ' is valid. Construct the tableau T 0 = (W0; R0) for :' as described

above.

Lemma 5.2.4 ` 0 _
A2W0

bA
Proof:

Establish ` bB ) bA by induction, for any atom A. Consider  2 A�B. Assume

` bB ) bC, where C includes p or :p for every p 2 Cl ( ). Let X be the top-

level operator of  , ignoring any outermost negation. Since ' 62 B, X cannot

be 2 or � . For the case where X is disjunction, ` bC )  by EMP. Otherwise,

let 0 � by the appropriate axiom from FX1, FX6, PX1, or PX6 for X. Then

` � ) ( bC! ) by TGI, and ` bC )  by EMP. It follows that ` bB ) bA.
Finally, observe ` 0 WA2W0

bB by TGI.

Lemma 5.2.5 For each A2 2 W0:

` cA2 )

240@f� _
(A1;A2)2R0

cA1

1A ^

0@2 _
(A2;A3)2R0

cA3

1A35
Proof:

First, observe ` cA2 )

h�f� WA12W0

cA1

�
^

�
2 WA32W0

cA3

�i
by FX4, PX4, and

Lemma 5.2.4. Then, by FX2, FX4, PX2, and PX4, it su�ces to show `cA2 )
f� :cA1 and ` cA2 ) 2 :cA3 for every (A1; A2); (A2; A3) 62 R0, which follow

from FX8 and PX8.

Lemma 5.2.6 For each A2 2 W0:

` cA2 )

240@` _
(A1;A2)2R0

cA1

1A ^

0@0 _
(A2;A3)2R0

cA3

1A35
Proof:

From FX5, PX5, and Lemma 5.2.5.

The following lemmas hold by induction on the sequence of tableaus T 0;T 1; : : :.
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Lemma 5.2.7 ` 0 : bA for each A 62 T i

Lemma 5.2.8 For each A2 2 Wi:

`
cA2 )

240@f� _
(A1;A2)2Ri

cA1

1A ^

0@2 _
(A2;A3)2Ri

cA3

1A35
Lemma 5.2.9 For each A2 2 Wi:

` cA2 )

240@` _
(A1;A2)2Ri

cA1

1A ^

0@0 _
(A2;A3)2Ri

cA3

1A35
Let T k be the �nal tableau. Observe that ` 0 WA2Wk

bA follows from Lemmas 5.2.4

and 5.2.7, so by rule PAR, `
W
A2Wk

bA. Furthermore, ` : bA for any noninitial atom

A, so `
W
A2W 0

k

bA for the set of initial atoms W 0
k � Wk. Since ' is valid, :' is not

satis�able, and there cannot be any initial atoms in T k containing :'. Therefore '

is contained in every initial atom, yielding ` (
W
A2W 0

k

bA)!', which leads to ` '.

5.3 Veri�cation

5.3.1 The Environment Restriction

The environment transition of a real-time transition module allows arbitrary inter-

ference by the environment. As before, an environment restriction Env is a formula

of the form:

Env : taken (�E) )
m̂

i=1

('i! 0
i)| {z }

E

where 'i and  i may now be past MTL formulas, rather than simply assertions.

5.3.2 Global Veri�cation

In order to avoid the use of tick : 2 =1 true , which is not a past formula, the following

axiom is introduced for the new propositional symbol Tick :

TICK : Tick , tick
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The bounded monotonicity condition for computations of a real-time transition mod-

ule corresponds to the following axiom:

BMON : Tick )
^
u2V

u0 = u

The upper bound condition corresponds to the following axiom:

UPPER : 0 Q
�u�

(:En (� ) _ �rst )for each � 2 T

The primed version of a past formula p is de�ned, as before, to be a past formula

p0 such that p holds in the next state of a computation i� p0 holds in the current state.

For instance:

(� =0 p)
0 = p ^ :Tick

(� =1 p)
0 = p ^ Tick

(p S�c+1 q)0 = q0 _ (p0 ^ Tick ^ p S�c q)

_ (p0 ^ :Tick ^ p S�c+1 q)

The veri�cation condition of a transition � with respect to precondition p and post-

condition q, where p and q are past formulas, is de�ned as follows:

fpg�fqg : (p ^ � ^
^
u62V

(u0 = u) ^ :Tick ^ ` <L En (� )) ) q0

For a set of transitions T , fpgT fqg is taken to be the conjunction of veri�cation

conditions fpg�fqg for each � 2 T .

Given the environment restriction Env : taken (�E) ) E, the environment veri�-

cation condition is given by:

fpgEfqg : (p ^ E ^
^

u2V p

(u0 = u) ^ :Tick ) ) q0

Finally, the clock veri�cation condition is given by:

fpgclock fqg : (p ^ Tick ) ) q0
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Then the following proof rule is sound and complete for establishing safety properties

of a real-time transition module M .

R� SAFE

For a past MTL formula ':

RS1. �!'

RS2. ' ) p

RS3. f'gT f'g

RS4. f'gEf'g

RS5. f'gclock f'g

M q Env ! 0 p

M1 ::

26666666666666664

`0: loop forever do266666666666664

`1: noncritical

`2: while x 6= 1 do26666664
`3: await x = 0
`4: x := 1
`5: skip

`6: if x = 1 then
`7: critical

37777775
`8: x := 0

377777777777775

37777777777777775
jj M2 ::

26666666666666664

m0: loop forever do266666666666664

m1: noncritical

m2: while x 6= 2 do26666664
m3: await x = 0
m4: x := 2
m5: skip

m6: if x = 2 then
m7: critical

37777775
m8: x := 0

377777777777775

37777777777777775

Figure 5.1: Fischer's mutual exclusion algorithm.

Example: Consider Fischer's mutual exclusion algorithm, presented in Figure 5.1.

Assume uniform time bounds L and U for each statement, except the noncritical

regions `1 and m1, which both have lower and upper bounds 3 �L and1. Further

assume that 2 � L > U . Ignoring process M2 for a moment, it is possible to

establish

M1 q Env ! 0 at `7;8!x = 1| {z }
p
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where the environment assumption Env is given as:

Env : taken (�E) ) E
1
1 ^ E

2
2

E
1
1 : x0 = x _ x0 = 0 _ x0 = 2

stating that the environment of M1 either does not

change x, or changes x to 0 or 2.

E
2
1 : `

�U x = 1 ! x0 = 1

stating that, if x = 1 has held through at least the last

U time units, then the environment does not change x

from 1.

The strengthening assertion ' in rule R-SAFE is taken to be:

' : (at `5 ^ x = 1) ! (x = 1) B at `4

^ (at `6 ^ x = 1) ! (x = 1) B ` <L (at `5 ^ x = 1)

^ at `7;8 ! ` <2L x = 1

It is not di�cult to see that premises RS1, RS2 and RS5 are valid for this choice

of '. Premise RS4, stating that each environment step preserves ', is valid by

the assumption 2 � L > U . In particular, ` <2�L x = 1 ) `
�U x = 1 is valid, so

the clause E21 in the environment restriction ensures that the environment of M1

does not change x from 1 when M1 is in its critical section.

For premise RS3, the di�cult cases to consider are �`4 , �`5 and �`6 . Transition

�`4 implies:

at `4 ^ (at `5)
0
^ x0 = 1

It follows that

(x = 1 B at `4)
0 : (at `4)

0
_ (x0 = 1 ^ x = 1 B at `4)
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holds, so the veri�cation condition for �`4 is valid. Now consider the veri�cation

condition for �`5 . If x 6= 1, then '0 clearly holds. Otherwise, it follows from

x = 1, ', and �`5 that x
0 = 1 and x = 1 B at `4 hold, and it su�ces to establish:

(x = 1 B ` <L (at `5 ^ x = 1))0 :

� � � _ (x0 = 1 ^ ` <L (at `5 ^ x = 1))

Then observe that

(` <L at `5| {z }
En (�`5)

^ (x = 1) B at `4) ) ` <L (at `5 ^ x = 1)

is easily established to be modularly valid forM1, thereby proving the veri�cation

condition for �`5 . The veri�cation condition for �`6 is likewise established by

observing that the lower bound on �`6 , combined with x = 1 B ` <L (at `5 ^ x =

1), entails ` <2L x = 1.

Rule R-SAFE is complete for proving safety properties. In particular, this includes

bounded response formulas of the form p ) 1
�U

q and minimal separation formu-

las of the form p ) qW>L r, because, according to the following proposition, these

formulas may be rewritten as 0 ' for a past formula '.

Proposition 5.3.1

(a) p ) 1
�U

q � 0 :((:q) bS>U (p ^ :q))

(b) p ) qW>L r � 0 ((:q)!(:p) B (r ^ `
�L :p))

Proof:

(a) Assume p ) 1
�U

q, but suppose (:q) bS>U (p ^ :q) holds for some j.

There is some position i < j such that p holds at i, :q holds for each k,

where i � k < j, and Tj � Ti > U . Clearly p! 1
�U

q does not hold at i,

which is a contradiction.



CHAPTER 5. REAL-TIME COMPOSITION 95

Conversely, suppose p holds at i but there is no q-position j such that

Tj � Ti � U . Let k be the �rst position such that Tk � Ti > U . Observe

that (:q) bS>U (p ^ :q) holds at k, so 0 :((:q) bS>U (p ^ :q)) must be

false.

Note that, when q is a state formula, i.e., not instantiatable by rule INST,

the strict since operator bS may be replaced by S .

(b) Suppose there is some (:p)-position j such that (:p) B (r ^ `
�L :p) is

false. Choose the maximal p-position i such that i � j and for all k 2 [i; j],

r ^ `
�L :p is false. If Tj � Ti � L, then p ) qW>L r is clearly false at

i. Otherwise, observe that `
�L :p holds for each k 2 [i; j] such that

Tk�Ti > L, so r must be false for each such k. In other words, there is no

r-position k 2 [i; j] such that Tk � Ti > L, so p! qW > Lr is false at i.

Conversely, suppose there is some p-position i such that qW>L r is false.

If there is some (:q)-position j such that Tj � Ti � L, then clearly

(:p) B (r ^ `
�L :p) must also be false at j. Otherwise, let j be the

minimal (:q)-position such that Tj � Ti > L, and observe that there is no

r-position k such that Tk�Ti > L and k 2 [i; j]. It follows that Tk�Ti � L

for any r-position k 2 [i; j], and consequently `
�L :p must be false for

any r-position k 2 [i; j].

Although rule R-SAFE is complete for safety properties, the following rules are

frequently more natural to apply.

MINSEP

For a past MTL formula ' and transition � :

MS1. p ) :En (� )

MS2. p ) '

MS3. ' ) q

MS4. f'gT � �f'g

MS5. ' ^ En (� ) ) r

p ) qW�l� r
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Example: Returning to the previous example, observe that rule MINSEPmay be used

to develop a more gradual proof of the property:

M1 q Env ! (at `7;8 ) x = 1)

First observe that

(at `7 ^ x = 1) ) x = 1 B at `4 (5.1)

is valid for the underlying untimed transition module corresponding to M1; since

real-time transition modules are a conservative extension of untimed transition

modules [HMP93], it follows that (5.1) is valid for M1 as well. Therefore, it

su�ces to establish:

M1 q at `7;8 ) ` <2L :at `4

or, alternatively,

M1 q at `4 ) 0 <2L :at `7;8

which follows from

M1 q at `4 ) at `4;5W�L at `5

M1 q at `5 ) at `5;6W�L at `6

The �rst of these is easily established using rule MINSEP by choosing ' : at `4;5

and � : �`5 ; the second is established by choosing ' : at `5;6 and � : �`6 .

BRESP

For past formulas ' =
WU
i=0 'i:

BR1. p ) q _ '

BR2. f'igT fq _
W
j�i 'jg

BR3. f'igEfq _
W
j�i 'jg

BR4. f'igclock fq _
W
j<i 'jg

BR5. '0 ^ Tick ) q

p ) 1
�U

q
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5.3.3 Compositional Veri�cation

The same proof rule used for compositional veri�cation in the untimed case is used for

real-time veri�cation. Recall, however, that the environment restrictions Env , Env 1,

: : : , Env N may now include past MTL formulas. In the following, M is obtained as

the parallel composition of transition modules M1; : : : ;MN .

PAR

For formulas '1, : : : , 'N and environment restric-

tions Env 1, : : : , Env N :

P1. Mi q Env i ! 'i

P2. Mi q Env i ! (taken (Mi) )
V
j 6=i Ej)

P3. q E !V
i E i

P4. q (Vi 'i)!'

M q Env ! '

Example: The critical safety property for Fischer's mutual exclusion algorithm is

expressed:

Env ! 0 :(at `7 ^ at m7)

where the environment restriction Env states that the environment does not

modify x. Rule PAR may be applied, choosing Env 1 as before, Env 2 chosen

symmetrically, and:

'1 : at `7;8 ) x = 1

'2 : at m7;8 ) x = 2

The �rst premise P1 has been established previously for M1, and can be estab-

lished symmetrically for M2. The third and fourth premises clearly hold. To

prove premise P2 for M2, i.e., that the transitions of M2 do not violate the envi-

ronment restriction of M1, it su�ces to consider only the transitions of M2 that

modify x.
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For transition �m4
, �rst observe that

at m4 ) Q �U
x = 0

is valid for M2. It follows that whenever �m4
is taken, the antecedent `

�U x = 1

of E2
1 must be false. Furthermore, �m4

sets x = 2, so E1
1 is also satis�ed. Therefore

E1 = E
1
1 ^ E

2
1 holds whenever �m4

is taken.

For transition �m8
, which sets x = 0, observe that at m8 ) x = 2 follows from

'2, so whenever �m4
is taken, the antecedent `

�U x = 1 of E2
1 must be false.

Again, E1 is satis�ed whenever �m8
is taken, establishing premise P2 for M2.

The corresponding condition for M1, stating that the transitions of M1 satisfy

the environment restriction of M2, can be established symmetrically.

5.3.4 Bounded Response for Fischer's Algorithm

The following bounded response property states that process M1 is assured access to

its critical section in 12 � U time units:

(at `2 ^ x 6= 1) ) 1
�12U

at `7

The environment restriction ofM1, where �E1
is the environment transition ofM1,

is given by:

taken (�E1
) ) E

1
1 ^ E

2
1 ^ E

3
1 ^ E

4
1 ^ E

5
1

where each conjunct E i1 is described below:

� E
1
1 : x0 = 0 _ x0 = 2 _ x0 = x

states that the environment can change x only to 0 or 2.

� E
2
1 : ` �U x = 1 ! x0 = 1

states that, if x = 1 for at least U time units, then the environment does not

change x from 1. This implies thatM1 has the right to enter its critical section.
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at `2 ^ x = 0
�
�

�
�

at `3 ^ x = 0
�
�

�
�

at `4 ^ x = 0
�
�

�
�

at `5 ^ x = 1
�
�

�
�

at `6 ^ x = 2
^

Q
�U

x 6= 2

'
&

$
%

at `6 ^ Tick

^

` <U x = 1

'
&

$
%

at `4 ^ x = 2
^

Q
�U

x 6= 2

'
&

$
%

at `5 ^ x = 1
^

x = 1 S x = 2

'
&

$
%

at `6 ^ x = 1
^

x = 1 S x = 2

'
&

$
%

at `2;3 ^ x = 2
�
�

�
�

at `2;3
^

` <U x = 2

'
&

$
%

at `3
^

` <2U x = 2

'
&

$
%

at `2 ^ x = 0
^

Q
=0
` <4L x = 2

'
&

$
%

at `3 ^ x = 0
^

Q
�U
` <4L x = 2

'
&

$
%

at `4 ^ x = 0
^

Q
�2U
` <4L x = 2

'
&

$
%

at `5 ^ x = 1
^

Q
�3U
` <4L x = 2

'
&

$
%

at `6 ^ x = 1
^

x = 1 B (Q
<6L
` <4L x = 2)

'

&

$

%
at `7

�
�

�
�

E

�

?

`2�
E

-

`3�

`4�

E

�

�
-

�

�

�



`6
�

�

`4�

`5�
`6 

`3

�

E
-

�



2U 	

�-

`2

�

`3�

`4�

`5�

`6

�

Figure 5.2: A veri�cation diagram.
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� E
3
1 : x = 2 ^ Q

<4L
x 6= 2 ! x0 = 2

states that the environment does not prematurely withdraw a request for its

critical section, i.e., cannot change x from 2 in less than 4 � L time units.

� E
4
1 : x = 1 ^ (x = 1) S (x = 2) ! x0 = 1

states that, if the environment has lost the competition to enter its critical

section, characterized by the change from x = 2 to x = 1, then the environment

cannot attempt to enter the critical section again (until x is reset by M1).

� E
5
1 : (x = 1) B (Q

<6L
` <4L x = 2) ! x0 = x

states that the environment cannot attempt to reenter its critical section if M1

attempts to enter its critical section within 6�L time units after the environment

last left, as characterized by x = 2 having held for at least 4 � L time units.

Applying rule PAR, a suitable speci�cation for M1 is given as follows:

'1 :

266666666666666664

at `2 ^ x 6= 1 )

0BBB@
1

�7U
at `7

_ 1
�6U

(at `3 ^ ` <2U x = 2)

_ 1
�2U

(at `3 ^ x = 2)

1CCCA
^

(at `3 ^ x = 0 ^ Q
�U
` <4L x = 2) ) 1

�4U
at `7

^

(at `3 ^ x = 2) ) at `3W (at `3 ^ x = 0 ^ Q
�U
` <4L x = 2)

377777777777777775
A suitable speci�cation for M2 is then:

'2 :

0BBB@
x = 2 ) 1

�4U
(x = 0 ^ Q

�U
` <4L x = 2)

^

` <2U x = 2 ) 1
�2U

(x = 0 ^ Q
�U
` <4L x = 2)

1CCCA
A more detailed presentation of this proof appears in Figure 5.2. Let ' be a node in

the diagram, connected by thin single or double edges to nodes  i. Then

M1 q Env !(' ) 1
�U

_
i

 i)
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is claimed to be valid, and may be established by rule BRESP. For instance

at `5 ^ x = 1 ) 1
�U

0BBB@
at `6 ^ Tick ^ ` <U x = 1

_

at `6 ^ x = 2 ^ Q
�U

x 6= 2

1CCCA
may be proven by taking 'i in rule BRESP to be:

'U�i : Q �i
x = 1 ^

0BBB@
at `5 S=i at `4

_

at `6 ^ ` <i at `5;6 ^ Q �i�L
at `5

1CCCA
The thick edges in the diagram correspond to the speci�cation for M2.



Chapter 6

Conclusions

There are a number of questions that have yet to be resolved. For instance, it is not

yet known whether the standard formulas classi�cation, presented in Chapter 2, is

complete for the future fragment of temporal logic. In other words, given a �-formula

', where � is one of the temporal property classes in the safety-progress classi�cation,

is there a standard future �-formula equivalent to '? There is also work to be done

in �nding a real-time analogue to the safety-progress classi�cation.

The problem of �nding suitable component speci�cations, given a speci�cation

for the entire system, also deserves careful study. An alternative, complementary

approach to computer-assisted veri�cation is to apply composition rules to manually

reduce the veri�cation of a large complex system to the veri�cation of its components,

which would then hopefully be amenable to model-checking or other automatic tech-

niques. [KL93] describes one e�ort in this direction.

Finally, it remains to be seen whether compositional veri�cation methods can be

incorporated into an e�ective, systematic strategy for development.
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