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Abstract

Two semantics are commonly used for the behavior of real-time and hybrid

systems: a discrete semantics, in which the temporal evolution is represented

as a sequence of snapshots describing the state of the system at certain times,

and a continuous semantics, in which the temporal evolution is represented by

a series of time intervals, and therefore corresponds more closely to the physical

reality. Powerful veri�cation rules are known for temporal logic formulas based

on the discrete semantics.

This paper shows how to transfer the veri�cation techniques of the discrete

semantics to the continuous one. We show that if a temporal logic formula has

the property of �nite variability, its validity in the discrete semantics implies

its validity in the continuous one. This leads to a veri�cation method based on

three components: veri�cation rules for the discrete semantics, axioms about

time, and some temporal reasoning to bring the results together. This approach

enables the veri�cation of properties of real-time and hybrid systems with respect

to the continuous semantics.
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1 Introduction

In order to use temporal logic to specify and verify properties of real-time and hybrid

systems, some semantics must be chosen for the temporal behavior of the systems. There

are two common choices [2, 18]. The �rst is a continuous semantics, in which the system

evolution is represented by a series of time intervals, together with a mapping that associates

to each point in time a state of the system. The second is a discrete semantics, in which the

temporal evolution of the system is represented as an enumerable sequence of snapshots,

each describing the state of the system at a certain time. Each of these semantics has its

advantages and weaknesses.

The continuous semantics corresponds closely to the physical behavior of the system [8,

18]. System speci�cations describe the physical behavior, and therefore refer more directly

to the continuous semantics than to the discrete one.

The discrete semantics enables the use of powerful veri�cation rules to draw conclusions

about the behavior of the system from premisses about its structure [6, 20]. The proof of the

soundness of these rules depends in an essential way on the discreteness of the semantics,

and in particular on reasoning by induction on the enumerable sequence of states. On the

other hand, the discrete semantics corresponds less directly to the physical behavior of the

system, and its relevance is in its relationship to the continuous semantics [8].

This paper shows that the advantages of the discrete semantics can be transferred to

the continuous one. We show that if a temporal logic formula has the property of �nite

variability, its validity in the discrete semantics implies its validity in the continuous one.

Most of the formulas that arise in practice have this property, and we give a series of simple

criteria to characterize them.

This allows us to adapt the veri�cation rules for temporal logic on the discrete semantics

to the continuous one: if the conclusion of the veri�cation rule is a formula with the �nite

variability property, it will also holds in the continuous semantics. In this way, we are

spared the work of devising new veri�cation rules for the continuous semantics.

We therefore propose a recipe for the veri�cation of temporal logic properties of real-

time and hybrid systems that consists of three ingredients: veri�cation rules coming from

the discrete semantics, axioms stating some basic properties of time, and a small amount

of temporal reasoning to bring the two together. Temporal reasoning in the continuous

semantics can be kept to a minimum, if desired.

In our representation, we follow closely the approach of [20], modeling real-time and

hybrid systems by timed and phase transition systems respectively, and using a temporal

logic containing both explicit time and age functions. As clocks are closely related to age

functions, the results can be easily transferred to logics that use clocks as the basic timing

construct.

We �rst present the case for real-time systems in some detail, and then we show the

changes needed to adapt the results to hybrid systems.
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2 Real-Time Systems

Real-time systems will be modeled by timed transition systems [7, 18]. A timed transition

system S = hV;�;�;T ; L; Ui consists of the following components.

1. A set V of variables called state variables, each with its type.

2. A set � of states: each state s 2 � is a type-consistent interpretation of all the

variables in V: we indicate with s(x) the value at state s of x, for x 2 V.
3. A set � � � of initial states. � has an associated assertion �f (V), such that � =

fs j s j= �fg, where s interprets x 2 V as s(x).

4. A set T of transitions, where � � � � � for all � 2 T . Each transition � 2 T has

an associated assertion �� (V;V 0) such that � = f(s; s0) j (s; s0) j= ��g, where (s; s0)
interprets x 2 V as s(x) and x0 as s0(x).

5. Two sets L, U of minimum and maximum delays of transitions. For all � 2 T it is

0 � l� � u� � 1.

We denote with c� the enabling condition of transition � , de�ned by c� = fs j 9s0:(s; s0) 2 �g.
For simplicity, we will assume that transitions are self-disabling: (s; s0) 2 � ! s

0 62 c� .
The temporal behavior of a real-time system will be represented by traces. Correspond-

ing to the discrete and the continuous views of the semantics, the formal representation of

the behavior is given in terms of discrete and continuous traces.

2.1 Discrete Semantics

In the discrete semantics, each behavior is represented by a discrete trace, which is an

enumerable sequence of observations. Each observation is a pair consisting of a snapshot

of the system state and a timestamp indicating the time at which the snapshot was taken

[8, 18, 7, 20].

De�nition 1 (discrete trace) A discrete trace �d is an enumerable sequence of observa-

tions hs0; t0i; hs1; t1i; hs2; t2i; : : :, with sn 2 �, tn 2 IR+ for n 2 IN, such that

t0 = 0; lim
n!1

tn =1; 8n 2 IN : tn � tn+1:

A position of a trace is simply an integer n 2 IN. If a trace represents a possible behavior

of a system, we say that the system admits the trace.

De�nition 2 (admission, discrete traces) A timed transition system S admits a dis-

crete trace �d: hs0; t0i, hs1; t1i, hs2; t2i, : : : , written S . �d, if the following conditions are

satis�ed.

1. All the state changes are due to transitions that have been enabled at least for their

minimum delay: for all n 2 IN,

sn = sn+1_
�
tn = tn+1^9� 2 T

�
(sn; sn+1) 2 �^8k

h
k � n^tk > tn�l� ! sk 2 c�

i��
:
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2. Transitions are never enabled for longer than their maximum delay: for all � 2 T ,
n; k 2 IN with k > n,

tk � tn � u� _ 9j
h
n � j � k ^ sk 62 c�

i
:

2.2 Continuous Semantics

In the continuous semantics, the behavior of the system is represented by a mapping from

intervals of time to states of the system, and time is modelled by the set of real numbers. A

trace is no more a sequence of snapshots, but a continuous representation of the evolution

of the state of the system. Here, the word \continuous" is used in a di�erent way than in

calculus: it means that there are no gaps in the temporal description of the systems, such

as the gaps between snapshots of the discrete semantics. It is this absence of gaps that

makes the continuous semantics closer to physical reality.

Formally, a continuous trace is a sequence of pairs consisting of a state of the system and

an interval of time spent by the system in that state. The intervals of time can overlap at

most at the endpoints [8, 10, 2]. This semantics closely resembles the superdense semantics

of [18]. If A is a linearly ordered set, we will indicate with IntA the set of intervals (i.e.

convex sets) of A.

De�nition 3 (continuous trace) A continuous trace �c is a sequence of pairs �c: hr0; I0i,
hr1; I1i, hr2; I2i, : : : , with In 2 IntIR and rn 2 � for all n 2 IN, such that:

8n
�
sup In = inf In+1

�
;

[
n2IN

In = IR+
:

A continuous trace is closed if all its intervals I0, I1, I2, : : : are; it is open otherwise.

De�nition 4 (moment) A moment of a trace �c: hr0; I0i, hr1; I1i, hr2; I2i, : : : is a pair

(n; t) such that t 2 In [18]. The ordering � of moments is the expected one:

(n; t) � (n0; t0) i� n < n
0 _ (n = n

0 ^ t � t
0):

In the following, when we write a pair (n; t) relative to a trace �c we will always assume

that it is a moment of �c. We give the de�nition of admission only for closed traces. We

de�ne I n = inf In, I
!
n = sup In. The de�nition of admission is then similar to the one

given for discrete traces.

De�nition 5 (admission, continuous traces) We say that a timed transition system S

admits a trace �c: hr0; I0i, hr1; I1i, hr2; I2i, : : : if �c is closed, and the following conditions

are satis�ed.

1. All the state changes are due to transitions that have been enabled at least for their

minimum delay: for all n 2 IN,

rn = rn+1 _ 9� 2 T
�
(rn; rn+1) 2 � ^ 8k

h
k � n ^ I!k > I

!
n � l� ! rk 2 c�

i�
:

2. Transitions are never enabled for longer than their maximum delay: for all � 2 T ,
n; k 2 IN with k � n,

I
!
k � I

 
n � u� _ 9j

h
n � j � k ^ rk 62 c�

i
:
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3 Temporal Logic

To express temporal properties of the behavior of the system, we use a multi-sorted temporal

logic similar to the one proposed in [5, 6, 20].

Syntax. Our language contains 
exible and rigid constants, rigid variables, rigid function

symbols and predicates, the propositional connectives :, !, the future temporal operators

2, U and the past ones 2{ , S , and the symbols = for equality and 8 for quanti�cation.

From this basic set of symbols, additional ones can be de�ned as usual. Note that there is

no next-time e operator in the logic.

The variables of the logic are rigid, meaning that they have the same value at all times;

thus, quanti�cation is allowed on rigid variables only [4]. The state variables of the system,

whose value can change in time, are represented instead by 
exible constants. This is

di�erent from the approach followed by [19], where quanti�cation is allowed also on 
exible

variables, and where 
exible variables (instead of 
exible constants) are used to represent

the state variables of the system. The approach followed here is such that a trace of the

system will determine the model, and the variable assignment is used to deal with variables

and quanti�cation. To avoid confusion, for the rigid variables of the logic we use greek

letters like �, �, and for the 
exible state variables of the system latin ones like x, y.

Our language also contains the special 
exible constant T of type real, whose value

represents the time, and the interpreted predicate < over the reals. Moreover, the language

includes the age function �. For a formula �, the term �(�) indicates the length of the

most recent interval in which � has been continuously true [20]. We will assume that the

argument � of �(�) does not contain occurrences T or nested age functions.

Semantics. The truth of temporal logic formulas is evaluated with respect to a modelM
and a variable assignment I. A model M = hW;�; ai is composed of a frame F = hW;�i
and an assignment function a. The frame is a set W of worlds together with a relation of

re
exive linear order �. Each world represents an instant of time, and the order relation �
represents the temporal succession of worlds. We assume that there is a least world w0 in

the ordering, called the initial world.

The function a is a type-consistent assignment of values to predicates, functions and

constants. We indicate with a(w)(�) the value of the symbol � at world w 2 W . The

assignment to rigid symbols does not depend on the world w.

We indicate with I;M j=w � the fact that the formula � is true at world w of model

M with variable assignment I. Truth is computed by induction on the structure of � in

the usual way; as an example, the cases for 2 and 8 are:

I;M j=w 2� i� 8w0 2W : w � w
0 ! I;M j=w0 �,

I;M j=w 8� � i� 8d 2 D� : I[d=�];M j=w �,

where D� is the domain corresponding to the type of �, and I[d=�] is the variable assignment

obtained from I by assigning the value d to �.
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Temporal logic and traces. We can use temporal logic to specify properties of traces

by associating a model to each trace. We assume that functions and predicates have some

prede�ned assignment.

To the discrete trace �d: hs0; t0i, hs1; t1i, hs2; t2i, : : : we associate the model M�d =

hIN;�; a�di, where a�d is the assignment de�ned by, for x 2 V and n 2 IN:

a(n)(x) = sn(x); a(n)(T ) = tn:

Instead of I;M�d j=n �, we will usually write I; �d j=n �.

In the model M�c corresponding to a continuous trace �c: hr0; I0i, hr1; I1i, hr2; I2i, : : : ,
we take as frame hW;�i the set of moments of �c together with their linear ordering; the

initial world is (0; 0). The assignment is then de�ned, for x 2 V and n 2 IN, by

a(n; t)(x) = rn(x); a(n; t)(t) = t:

Again, we usually write I; �c j=(n;t) � instead of I;M�c j=(n;t) �.

We can thus de�ne two temporal logics: TLD over discrete traces, and TLC over con-

tinuous ones. A formula � is valid in TLD, written j=D �, if I; �d j=n � for all I, �d, n.
Similarly, � is valid in TLC, written j=C �, if I; �c j=(n;t) � for all I, all �c, and all moments

(n; t) of �c. In general, if one or more of the symbols I, �, w are omitted from I; � j=w �,

the truth of � is required for all possible values of the omitted symbols.

Thus, j= � means that � is true in all the worlds of all the models. This semantics is

called 
oating semantics, and is di�erent from the anchored semantics presented in [19], in

which j= � means that � is true in the �rst world of all models. This semantics has been

chosen as it has simpler proof-theoretical properties, in the absence of a next-time operator.

We can also de�ne the validity of formulas with respect to a system S by restricting the

set of traces considered in the above de�nitions to those admitted by S. Correspondingly,

we have the notions of a formula � being S-valid in TLD or TLC, indicated respectively

with S j=D �, S j=C �.

3.1 Speci�cation and Veri�cation

The logics TLD and TLC have di�erent properties, re
ecting the di�erence in the two

underlying semantics.

Example 1 (density of time) The two logics TLD, TLC have di�erent sets of valid

formulas. For example, the formula

� : 8� 8�
�
3(T = �) ^3(T = �)! 3

�
T =

� + �

2

��

expressing the density of time is such that j=C �, j=D :�.

While the continuous semantics corresponds closely to the physical behavior of the

system, the discrete semantics gives only an approximate description in terms of a series of

snapshots. System speci�cations, being ultimately a speci�cation of the physical behavior,

can be more faithfully expressed in the continuous semantics. For hybrid systems this is
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even truer, as the state can change continuously in time and continuous changes are not

represented in the discrete semantics [18].

However, the veri�cation of the properties of a system is simpler in the discrete se-

mantics. The methods proposed in [7, 18, 20] to verify properties written in TLD rely on

two concepts: veri�cation conditions and veri�cation rules. If � and  are arbitrary past

formulas, that is, formulas not containing future temporal operators, it is possible to de�ne

the veri�cation conditions f�g � f g, f�g tick f g having the following intuitive readings.
f�g � f g: if � is true, and the transition � can be taken,  will be true in the resulting

state.

f�g tick f g: if � is true, and the time advances,  will be true in the resulting state.

The veri�cation conditions allow in turn the statement of veri�cation rules that relate the

structure of the system to its temporal properties. An example of veri�cation rule is the

ubiquitous invariance rule:

S `D
n
f�g � f�g

o
�2T

S `D f�g tick f�g
S `D �! 2�

:

The proof of the soundness of the veri�cation conditions and of the veri�cation rules makes

an essential use of the discreteness of the semantics, so that the approach cannot be easily

transferred to the continuous semantics.

3.2 Veri�cation in the Continuous Semantics

In this paper we will show how the advantages of the discrete semantics can be transferred

to the continuous one. The key idea consists in de�ning a property, �nite variability, or

FV, and showing that if � is FV, then S j=D � implies S j=C �.
To verify that a system satis�es a speci�cation written in TLC, we therefore propose a

methodology consisting of three main ingredients.

The �rst one consists in the use of veri�cation rules for TLD, whose conclusion can be

transferred to TLC. This will enable us to go from the description of the structure of the

system in terms of transitions to the properties it satis�es, expressed in temporal logic.

The second one is a series of axioms about time. These axioms state properties that are

at the same time fundamental and not derivable in TLD.

The third ingredient is a deductive system for TLC. This will enable us to bring together

the results of the veri�cation in TLD and of the axioms about time, leading to the desired

real-time properties of a system. If it is desired, temporal reasoning in TLC can often be

kept to a minimum.

A related approach to proving S j=C � has been proposed in [8] for similar semantics and

logics. It consists in rephrasing the property � into a form �
0 better suited to the discrete

semantics. If the rephrasing is perfect, then S j=D �0 $ S j=C �; otherwise, it is sometimes

possible to �nd a stronger property �0 such that S j=D �
0 ! S j=C �. In [8] it is explained

how to rephrase some formulas, and how to approximate others with stronger conditions.

Our approach extends the one based on rephrasing by considering general formulas.

Moreover, since temporal reasoning in TLC is allowed, we can prove the validity of formulas
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that have no useful rephrasing. Our strategy applies also to hybrid systems, where not only

time but also other parameters of the state of the system can vary in a continuous way.

To show the soundness of our approach, we need a careful analysis of the relationship

between the discrete and continuous semantics, to which we will now turn our attention.

4 From Discrete to Continuous Reasoning

4.1 Re�nement

Each behavior of the system can be represented in more than one way by discrete or con-

tinuous traces, corresponding to the di�erent ways of sampling the state of the system in

time.

Example 2 The two discrete traces

�d :

0z }| {
hx=0; t=0i;

1z }| {
hx=1; t=0i;

2z }| {
hx=1; t=10i; � � �

�
0
d : hx=0; t=0i| {z }

0

; hx=1; t=0i| {z }
1

; hx=1; t=5i| {z }
2

; hx=1; t=10i| {z }
3

; � � �

intuitively represent the same behavior of the system, but �0d contains one more sampling

of the state of the system, hx=1; t=5i.

Speci�cally, we say that a trace is a re�nement of another if it has been obtained by

sampling the state of the system more frequently in time [15, 16, 2]. To give a formal

de�nition of re�nement, we introduce partitioning functions, that are closely related to the

event-stretching functions of [13, 12].

De�nition 6 (partitioning function) A partitioning function � is a function IN 7! IntIN
such that the intervals �0; �1; �2 : : : are adjacent and disjoint. Formally,

S
n2IN �n = IN, and

8n 2 IN : max�i = min�i+1 � 1.

Intuitively, a trace �0d: hs00; t00i, hs01; t01i, hs02; t02i, : : : is a re�nement of �d: hs0; t0i, hs1; t1i,
hs2; t2i, : : : if many observations of �0d correspond to a single observation of �d. We use the

partitioning function to specify the correspondence: all the pairs hs0j ; t0ji with j 2 �i will

correspond to hsi; tii. Similarly, if �c: hr00; I 00i, hr01; I 01i, hr02; I 02i, : : : is a re�nement of �c:

hr0; I0i, hr1; I1i, hr2; I2i, : : : , all the intervals Ij with j 2 �i will correspond to the single

interval Ii.

De�nition 7 (re�nement) A discrete trace �0d: hs00; t00i, hs01; t01i, hs02; t02i, : : : is a re�ne-

ment of �d: hs0; t0i, hs1; t1i, hs2; t2i, : : : by the partitioning function �, indicated by �0d ��
�d,

if for all i: t0min�i = ti, and 8j 2 �i : s0j = si.

A continuous trace �c: hr00; I 00i, hr01; I 01i, hr02; I 02i, : : : is a re�nement of �c: hr0; I0i,
hr1; I1i, hr2; I2i, : : : by the partitioning function �, denoted �0c ��

�c, if for all i 2 IN:

Ii =
[
j2�i

I
0
j ; 8j

�
j 2 �i ! r

0
j = ri

�
:
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x = 3

x = 0
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t = 0 t = 1 t = 2 t =
p
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�c :

�
0
c :

Figure 1: A closed continuous trace �c and one of its open re�nements �0c : �
0
c � �c.

Example 3 For �d, �
0
d as in Example 2, we have �0d ��

�d with �0 = f0g, �1 = f1; 2g,
�2 = f3g, : : : . Figure 1 gives an example of re�nement of continuous computations.

Note that the de�nition for continuous traces is independent of the fact that the trace

is closed or not. In the following, we write � to denote a generic trace, either discrete or

continuous. We call sample equivalent two traces that have a common re�nement [12].

De�nition 8 (sample equivalence) Two discrete (resp. continuous) traces �, �0 are

sample equivalent, written � � �
0, if there is a discrete (resp. continuous) trace �00 such

that �00 � �, �00 � �
0.

Two sample equivalent traces are two di�erent representations of the same behavior of

the system. It is no surprise then that we have the following theorem, stating that systems

do not distinguish between sample equivalent traces [15, 16].

Theorem 1 If �d � �
0
d, then S .�d i� S .�0d. If �c and �

0
c are both closed, and �c � �

0
c, then

S . �c i� S . �
0
c.

In fact, it could be argued that a better representation of the behavior of the system

can be obtained by considering equivalence classes of admitted traces modulo sampling

equivalence. This equivalence classes, called sample equivalence classes, would be similar to

the closure under stuttering of [2]. This is generally not done, as reasoning about equivalence

classes of traces can be harder than reasoning about a single trace at a time.

Since sample equivalent traces correspond to the same behavior of the system, it is

desirable that temporal logic does not distinguish among them. We say that a temporal

logic is sample invariant if � � �
0 implies I; � j= � $ I; �0 j= � [15]. The logic TLC is

sample invariant, TLD is not. The result for TLC is given by the following theorem, that

establishes that if a trace is a re�nement of another, the same formulas hold at corresponding

moments.

Theorem 2 (sample invariance of TLC) If �0c ��
�c and j 2 �i, then

I; �0c j=(j;t) � $ I; �c j=(i;t) �:

If �0c � �c, then �
0
c j= � $ �c j= �.
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�d : hx = 0; t = 0i| {z }
0

; hx = 1; t = 0i| {z }
1

; hx = 1; t = 5i| {z }
2

; hx = 1; t = 10i| {z }
3

; : : :

�(�d) :
t t t

t t t

I0

x = 0
x = 1

x = 1

I1

I2

t = 0 t = 5 t = 10

Figure 2: A discrete trace �d and its continuous translation �(�c).

4.2 Translations between Discrete and Continuous Semantics

To set up a correspondence between discrete and continuous traces that represent the same

behavior of the system, we will use two translation functions: from discrete traces to con-

tinuous ones, and vice versa. These translations are uniquely determined between sample

equivalence classes of traces, but we have some freedom to choose the trace that corresponds

to a given one within a sample equivalence class.

The translation � from discrete traces to closed continuous traces associates to each

hsn; tni a closed interval stretching from tn to tn+1.

De�nition 9 (� : �d 7! �c) We de�ne the translation function � from discrete traces to

continuous ones as the function associating to �d: hs0; t0i, hs1; t1i, hs2; t2i, : : : the closed

trace �c: hr0; I0i, hr1; I1i, hr2; I2i, : : : de�ned by, for all n 2 IN: rn = sn, I
 
n = tn,

I
!
n = tn+1.

In the opposite translation, 
, the idea is that each interval of the continuous trace is

represented in the discrete trace by two observations, one for each endpoint. We de�ne the

translation so that also nonclosed traces can be translated, and some care must be taken

to handle the case of open and half-open intervals.

De�nition 10 (
 : �c 7! �d) The translation function 
 associates to �c: hr0; I0i, hr1; I1i,
hr2; I2i, : : : the discrete trace �d: hs0; t0i, hs1; t1i, hs2; t2i, : : : de�ned in the following way,

for all n 2 IN.

1. s2n = s2n+1 = rn.

2. (a) If In is closed, t2n = I
 
n , t2n+1 = I

!
n .

(b) If In is left open, t2n = t2n+1 = I
!
n .

(c) If In is right open, t2n = t2n+1 = I
 
n .

(d) If In is open, t2n = t2n+1 = (I n + I
!
n )=2.

Figures 2 and 3 show examples of traces and their translations. The following lemma

shows that the translations are one the inverse of the other, modulo sampling equivalence,
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(�c) : hx=0; t=0i| {z }
0

; hx=0; t=1i| {z }
1

; hx=1; t=4i| {z }
2

; hx=1; t=4i| {z }
3

; hx=7; t=5i| {z }
4

; hx=7; t=5i| {z }
5

; hx=2; t=6i| {z }
6

; : : :

t t

t t

�c :

t = 1 t = 4 t = 6

x = 0

t = 0

x = 3

I0

I1

I2

x = 2

I3
x = 7

Figure 3: An open trace �c and its discrete translation 
(�c). Note that �c is not the

re�nement of any closed trace.

and that they preserve for closed traces the partial order of re�nement of traces. It also

suggests that traces related by the translation functions represent the same behavior of the

system.

Lemma 1

1. For any �d, �
0
d, �c, �

0
c, with �c closed, we have:

�
0
d � �d ! �(�0d) � �(�d); 
(�(�d)) � �d;

�
0
c � �c ! 
(�0c) � 
(�c); �(
(�c)) � �c:

2. For any S, �d and closed �c, S . �d i� S .�(�d), and S . �c i� S . 
(�c).

3. If S . �c and �
0
c � �c, then S . 
(�

0
c).

4.3 Finite Variability

Consider the formula T > 3_x = 4. In every �nite interval of a continuous trace, the truth

value of its subformulas can change at most a �nite number of times. Thus, given a trace

�c, it seems possible to re�ne it into a (possibly open) trace �c: hr00; I 00i, hr01; I 01i, hr02; I 02i,
: : : such that each subformula has constant truth value throughout all intervals I 0j, j 2 IN.

This is the idea underlying the de�nition of �nite variability.

The set of subformulas of �, denoted by sb(�), is de�ned by induction on the structure

of �:

sb(P u1 : : : un) = fP u1 : : : ung [
Sn
i=1sb(ui)

sb(u1 = u2) = fu1 = u2g [ sb(u1) [ sb(u2)

sb(:�) = f:�g [ sb(�)

sb(�!  ) = f�!  g [ sb(�) [ sb( )

sb(2�) = f2�g [ sb(�)

11



sb(� U  ) = f� U  g [ sb(�) [ sb( )

sb(8x�) = f8x�g [ sb(�)

and similarly for the other propositional connectives and temporal operators. The set of

subformulas of a term is de�ned by:

sb(c) = ; sb(�) = ;
sb(f u1 : : : un) =

Sn
i=1sb(ui) sb(�(�)) = sb(�);

where c denotes a constant, 
exible or rigid. Finite variability can then be de�ned as follows.

De�nition 11 (�nite variability) A formula � has the property of �nite variability, or

FV, if for every closed �c and every I there exists a �0c � �c such that

I; �0c j=(i;t)  $ I; �0c j=(i;t0)  

for all subformulas  2 sb(�). The trace �0c with the above property can be open, and is

called a ground trace for �, �c and I.

Example 4 Many common formulas used in the speci�cation and veri�cation of systems

are FV. On the other hand, an example of a formula which is not FV is the following:

T < 4! 3

�
cos

1

T � 4
> 0

�
:

The reason why the above formula is not FV is that it is not possible to subdivide IR+ into

a �nite number of intervals in which the subformula cos(1=(T � 4)) > 0 has constant value.

Example 5 Another, more subtle, example of a formula which is not FV is given by the

formula � of Example 1. The reason why it is not possible to re�ne a given �c into a �
0
c such

that the values of the subformulas are constant in the intervals of �0c has to do with the way

quanti�cation interacts with time. Speci�cally, for each value of � and � it is possible to

�nd a �0c such that the subformulas � = T , � = T and T = (� + �)=2 have constant value in

the intervals. However, it is not possible to �nd a �0c that has this property for all possible

values of � and �.

The importance of the concept of �nite variability lies in the fact that if all subformulas

have constant truth value throughout an interval, then the ground continuous trace is

faithfully represented by its discrete translation. The necessity of considering formulas that

have constant truth value in the intervals had already been recognized in [20], where the

set of important events was introduced purposely to prevent certain formulas from changing

truth value in an interval. The de�nition of �nite variability provides a more general

solution: it gives an account of the behavior of quanti�cation, and it allows to change the

temporal logic speci�cations without also having to change the set of important events.

For FV formulas, the connection between TLC and TLD is expressed by the following

results.

12



Theorem 3 If �0c is a ground trace for �, �c, I, with �c closed, then

I;
(�0c) j=2n � $ I; �0c j=(n;t) �:

This theorem enables us to make a connection between the formulas that are valid, or

S-valid, in the two logics.

Theorem 4 (transfer of validity) If S j=D � and � is FV, then S j=C �. If j=D � and �

is FV, then j=C �.

Proof. We prove only the �rst statement, as the proof of the second is similar. We prove

the counterpositive: assume S 6j=C �. Then there are I, �c and a moment (n; t) of �c such

that S.�c, I; �c 6j=(n;t) �. As � is FV and �c is closed, there is a trace �
0
c ��

�c that is ground

for �, �c, I. There is a k 2 �n such that (k; t) is a moment of �0c , and from Theorem 2 we

have that I; �0c 6j=(k;t) �. As �0c is ground for I, �, by Theorem 3 we have I;
(�0c) 6j=2k �.

Lemma 1 ensures that S . 
(�0c), and we �nally get S 6j=D �, which concludes the proof.

Note that the converse of this theorem does not hold, i.e. if � is FV and S j=C �, it does
not follow that S j=D �. A simple example is provided by � : 3(T = 5), which is valid in

the continuous semantics, but is not necessarily valid on a discrete trace of a system (see

Example 2).

4.4 From Discrete to Continuous Validity

Finite variability is a semantic property of a formula: to be able to use the result of the

last theorem in a proof system for TLC, we need to replace it by some syntactic criterion.

To obtain a su�cient syntactical condition for FV, we �rst de�ne well-behaved functions

that are analytical along the real axis in some of their variables. Here, the word \analytical"

is used in the calculus sense.

De�nition 12 (well-behaved function) We say that a function f(z0; : : : ; zn; v1; : : : ; vk)

is well-behaved if, for all 1 � i � n, and for all real zj 6=i, vm (1 � j � n, 1 � m � k),

f when considered as a function of zi only is analytical in a region of the complex plane

containing the real axis.

Example 6 Examples of well-behaved functions are

f(z0; z1; v0) = z0 + z1 + v0;

f(z0; v0) = jv0j+ z0;

f(z0) = 1=(2 + z
2
0);

f(z0; z1; v0; v1) = sin(v0z0) cos(v1z1):

The function f(z0) = z
3
0 sin(1=z0), on the other hand, is not well-behaved, as when consid-

ered as a function of z0 it is not analytical in z0 = 0.

De�nition 13 (syntactic �nite variability (SFV)) We call SFV the formulas that are

constructed in the following inductive way.
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1. If u1, : : : , un are terms not containing T or �, then Pu1 : : : un is SFV.

2. If f(z0; : : : ; zn; v1; : : : ; vk) is a well-behaved function, then

f

�
T;�(�1); : : : ;�(�n); c1; : : : ; ck

�
= 0;

f

�
T;�(�1); : : : ;�(�n); c1; : : : ; ck

�
> 0;

where c1, : : : , ck are either constants di�erent from T or variables, and �1, : : : �n do

not contain T or �, is a SFV formula. We call this type of SFV formulas T -atoms.

3. A formula constructed from SFV formulas using propositional connectives or temporal

operators is a SFV formula.

4. If � is a SFV formula, and � does not occur in any T -atom of �, then 8� � is a SFV

formula.

Within an interval of a continuous trace �c, the c1, : : : , ck of the above de�nition have

constant value. The requirement that f(z0; : : : ; zn; v1; : : : ; vk) is well-behaved insures that

within each interval of �c the inequalities change truth value at most �nitely often. This is

a consequence of a well-known theorem of calculus stating that a function can have at most

a �nite number of zeroes in a �nite region of the complex plane where it is analytical.

We will say that a formula is SFV even if it is not in a form described by the above

de�nition, but can be easily transformed and put in such a form. As an example, T > x+y

is not in the form de�ned above, but it can be transformed into T � x � y > 0, and

will thus also be called SFV. In a similar way, T � �(x = 2) + 4 can be transformed in

[T � �(x = 2) � 4 = 0] _ [T � �(x = 2) � 4 > 0] which is of the above form. It is possible

to give a more general de�nition of SFV that encompasses directly all these cases, but it

would be far less concise.

Example 7 The formula � of Example 4 is not SFV, as the function cos(1=(x � 4)) is

not analytical in x = 4, a point of the real axis. The formula of Example 1 is not SFV as

it quanti�es over � and � that appear in the T -atoms T = �, T = � and T = (� + �)=2.

We have that SFV implies FV, as the theorem below states.

Theorem 5 (SFV implies FV) If � is SVF, it is also FV.

Corollary 1 If � is SFV, S j=D � implies S j=C �. Similarly for initial validity. Therefore

the inference rules

S `D �
S `C �

;
`D �
`C �

;
S `D0 �
S `C(0;0) �

;
`D0 �
`C(0;0) �

;

with the proviso that � is SFV, are sound.

14



Using syntactic �nite variability, we can also establish a connection with propositional

temporal logic. Let PTL be the propositional temporal logic of discrete linear time, on

the frame hIN;�i, with temporal operators U , S , 2, 2{ , 3, 3{ , and based on the 
oating

semantics. This logic is the same as the one presented in [17], apart for the absence of e,
e. The following results hold.

Theorem 6 (from PTL to TLC) If j=PTL �[p1; : : : pn], where p1, : : : , pn are propositional

letters, then j=C �[�1; : : : ; �n] provided �1, : : : , �n are FV. Similarly for initial validity.

Therefore, the following inference rules

`PTL �[p1; : : : pn]
`C �[�1; : : : ; �n]

;
`PTL0 �[p1; : : : pn]

`C(0;0) �[�1; : : : ; �n]
;

with the proviso that �1, : : : , �n are SFV, are sound.

It is well known that a similar result holds for TLD, for which FV is not required [19].

This result is of relevant practical importance, because deductive systems for PTL are

well-studied [17], and e�cient decision algorithms for the problem of initial validity exist

[11].

4.5 Reasoning in the Continuous Semantics

Sometimes it is necessary to carry out a small part of the reasoning in the continuous seman-

tics, to put together the results of the veri�cation rules and reach the desired conclusion.

In practical veri�cation examples, most of this reasoning is limited to using simple axioms

about the completeness and divergence of time along any continuous trace. It is possible

to give an axiomatization for TLC. As temporal logic with past, future and explicit time is

incomplete [4, 1, 2], this axiomatization will also be incomplete for the �rst-order case, but

nonetheless it will allow the proof of many formulas that arise in practice. The axioms can

be divided in three categories: propositional, �rst-order and about time.

Propositional axioms. The frame hW;�i of a model M�c derived from a trace �c is

neither discrete, nor dense, nor complete. In fact, in each interval the set of moments

is complete, but there is no moment between the two endpoints of two adjacent closed

intervals. We will therefore use an axiomatization for the general frame hW;�i with the

only hypothesis that it is a re
exive linear order with initial world.

Unfortunately, there is no complete set of axioms available in the literature for temporal

logic with U , S and the other temporal operators over the frame hW;�i. A complete

axiomatization for U and S over the frame hW;<i has been presented in [3], and it is

possible to adapt those axioms schemas to a re
exive frame, but no claim of completeness

is made at this point. The adapted axioms schemas are listed in Table 1. Of all these axioms,

except the one marked with (z), also the specular image should be taken as an axiom [21].

The specular image of a temporal formula is the formula obtained by substituting the future

operators with the corresponding past operators, and vice versa. For example, the specular

image of 23{ (T = 5) is 2{3(T = 5).
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All propositional logic tautologies. � U  ! 3 

2(�!  )! (2�! 2 ) 2(�!  )! (� U 
)! ( U 
)
�! 23{ � 2(�!  )! (
 U �)! (
 U  )
2�! 22� � U  $ (� U  ) U  
2� ^2{�! 22{� � U  $ � U (� U  )
2�! � � U  ^ :(
 U  )! � U (� ^ : )
2� $ :3:� � U  ! � _  
3{ (2{� _2{:�) (z) 3�! ( _ : ) U �
� U  ^ 
 U � ! (� ^ 
) U

h�
 ^ (
 U �)

�
_
�
� ^ (� U  )

�i

� ^ ( U 
)!  U
h

 ^ ( _ 
) S �

i

Table 1: Propositional axiom schemas for TLC.

� = � P�1 : : : �n ! 2P�1 : : : �n (yy)
�1 = �2 ! �h�1i ! �h�2i :P�1 : : : �n ! 2:P�1 : : : �n (yy)
�1 = �2 ! 2(�1 = �2) (yy) 8x2�! 28x�
:(�1 = �2)! 2:(�1 = �2) (yy)

Table 2: First-order axiom schemas for TLC. The axioms denoted by (yy) have the proviso
that �1, �2, : : : , �n are terms not containing any 
exible constant.

Another way of proceeding consists in de�ning the re
exive operators in terms of the

irre
exive ones, that is, recursively rewrite each p U q in p^(p U q), and similarly for S (the

other operators can be de�ned from these two), and then use the original axiomatization

proposed in [3] on the translation. Some additional axiom is still necessary to account for

the presence of an initial world.

First-order axioms. The set of �rst-order axioms we will use is entirely classical. They

account for rigid and 
exible constants and equality, and they include the Barcan Formula,

as the domains of quanti�cation are rigid. A list of axiom schemas is given in Table 2. In

the table, if �h�1i is a formula containing the term �1, �h�2i denotes a formula obtained

from �h�1i by replacing some occurrences of �1 with �2, provided no free variable of �2 is

captured in the process.

Moreover, we the additional axiom S `C(0;0) �f states that all traces of a system start in

an initial state.
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`C(0;0) T = 0 T = � ! 2(T � �)

T � 0 � � T ! 3(T = �)

:�! �(�) = 0 0 � �(�) � T

�(�) = � ^ � � � ! 3(�! �(�) = �)

T = � + � ^ � S
�
T = � ^ �(�) = �

�
! �(�) = � + �

T = � ^2{:
h
� U (T = �)

i
! �(�) = 0

Table 3: Time axiom schemas for TLC.

`C �!  ; `C �
`C  

`C(0;0) �!  ; `C(0;0) �
`C  

`C �
`C 2�

`C �
`C 2{�

`C �!  

`C �! 8�  
(y)

`C(0;0) �!  

`C(0;0) �! 8�  
(y)

`C(0;0) 2�
`C 2�

`C �
`C(0;0) �

`PTL �[p1; : : : pn]
`C �[�1; : : : ; �n]

(x) `PTL0 �[p1; : : : pn]

`C(0;0) �[�1; : : : ; �n]
(x) `D �

`C �
(x) `D0 �

`C(0;0) �
(x)

Table 4: Inference rules. The rules denoted by (y) have the proviso that � must not occur

free in �. The rules denoted by (x) have the proviso that �, �1, : : : , �n are SFV. In all of

them, if the premiss(es) is (are) S-valid, the conclusion is S-valid.

Time axioms. A �nal set of axioms, listed in Table 3, are used to reason about time. As

usual, we list an axiom � to mean `C �: in the case where we claim only the initial validity

of the axiom, as in the case of the �rst one, we write it explicitly.

Inference rules. The inference rules we propose are listed in Table 4. Note that these

rules are based on the 
oating semantics. On the other hand, the veri�cation rules that

have been proposed in [6, 20] are based on the anchored semantics. To transfer the results

from the anchored to the 
oating semantics, it su�ces to use the rules:

`Da 2�
`D �

;
S `Da 2�
S `D �

;

where `Da is the provability relation in the anchored version of TLD.
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5 An Example of Veri�cation

We will now present a simple example of how the veri�cation methods for TLD can be used

together with the time axioms and temporal reasoning to prove simple properties of systems

expressed in TLC. We will choose a property that does not hold in TLD, to demonstrate

the use of the time axioms for TLC.

We will not enter in the details of how the veri�cation rules for TLD are used to prove

properties of a system, as this topic is dealt with in detail in [18, 9, 20].

Imprecise Oscillator

Consider a system osc, consisting of an oscillator whose state is represented by the variable

x. The oscillator can be in any of two states, x = 0 and x = 1, and it can stay in each of

them for 3 to 5 seconds before switching to the other one. The oscillator start in the state

x = 0. The system can be described by:

�f : x = 0 ��0 : x = 0 ^ x0 = 1

T : f�0; �1g ��1 : x = 1 ^ x0 = 0

l�0 ; l�1 : 3 u�0 ; u�1 : 5

We want to verify that osc sati�es the following property:

\The oscillator is in the state x = 1 some time between 6 and 7 seconds after it

is started."

This speci�cation can be written as

osc j=C(0;0) 3(x = 1 ^ 6 < T < 7): (1)

It is not di�cult to see that the corresponding speci�cation in TLD, osc j=D0 3(x = 1^ 6 <
T < 7), does not hold. To prove (1), de�ne the abbreviations

 : x = 0 ^ �(x = 0) = T ^ T � 3; (2)

� : T � 8!
h
x = 1 ^ �(x = 1) � T � 3

i
: (3)

The following implications hold:

�!
�
T = 6:5! x = 1

�
;  !

�
T = 6:5! x = 1

�
: (4)

The proof of the speci�cation (1) proceeds as follows.

osc `D0  W � from wait-for veri�cation rule for TLD (5)

osc `D �! 2� from invariance veri�cation fule for TLD (6)

osc `D0  W 2� from (5), (6) by temporal reasoning in TLD (7)

osc `D 2(T = 6:5! x = 1) from (4), (5), (6) by temporal reasoning in TLD(8)
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osc `C(0;0) 2(T = 6:5! x = 1) from (8), as it is SFV (9)

osc `C(0;0) 3(T = 6:5) from the time axioms of TLC (10)

osc `C(0;0) 3(T = 6:5 ^ x = 1) from (9), (10), temporal reasoning in TLC (11)

osc `C(0;0) 3(x = 1 ^ 6 < T < 7) from (11) (12)

It is also possible to eliminate from this proof all temporal reasoning in TLC, apart from

the application of the time axioms. This is done by introducing antecedents of implications

in TLD that will be discarded by time axioms of TLC. This transformation shows how

reasoning in TLC can be kept to a minimum. The �nal steps of the previous proof can be

modi�ed as follows.

osc `D0 3(T = 6:5)! 3(T = 6:5 ^ x = 1) from (8) by temp. reas. in TLD(13)

osc `D0 3(T = 6:5)! 3(x = 1 ^ 6 < T < 7) from (13) (14)

osc `C(0;0) 3(T = 6:5)! 3(x = 1 ^ 6 < T < 7) from (14), as it is SFV (15)

`C(0;0) 3(T = 6:5) from the time axioms of TLC (16)

osc `C(0;0) 3(x = 1 ^ 6 < T < 7) from (15), (16) (17)

6 Hybrid Systems

The results obtained for real-time systems can be transferred to hybrid systems, provided

that a proper relationship can be set up between the discrete and continuous semantics. In

particular, we need to give a new de�nition of SFV for hybrid systems, to account for the

fact that the state can change continuously in time, and we need to show how to de�ne the

traces and the translations in such a way that we can prove the analogous of Theorem 4.

6.1 Phase Transition Systems

We will model hybrid systems by phase transition systems similar those of [18, 20]. A phase

transition system (PTS) S = hV;�;P;T ; L; U;�i consists of the following components.

1. A set V of variables, called state variables, each with its type. V is partitioned into

two disjoint subsets: Vd and Vc. The variables in Vd are called discrete variables,

they can be of any type and they can change only in an instantaneous way. The

variables in Vc are called continuous variables, have type real, and can change both in

an instantaneous and in a continuous way.

2. A set � of states: each state is a type consistent interpretation of the variables. Again,

we write s(x) to denote the interpretation of x 2 V at state s. We write sjVd , sjVc
to denote the restrictions of the interpretation s to discrete and continuous variables

only, respectively.

3. A set � � � of initial states.
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4. A set P of phases. P is partitioned into disjoint subsets, one for each variable in Vc.
The subset corresponding to x 2 Vc will be denoted by Px.

5. A set T of transitions, where � � � � � for each � 2 �. T is partitioned into two

disjoint subsets Ti and Td. The set Ti is the set of immediate transitions, that must be

executed no later than the time at which they become enabled. The set Td is the set
of delayed transitions, whose enabling does not depend on the continuous variables.

6. Two sets L, U of minimum and maximum delays for the transitions in Td.

Phases. For each x 2 Vc, every phase } 2 Px is composed of an enabling condition c} � �

and of a phase function f} : � 7! IR. The phase } is used to represent a di�erential equation

governing x: the intended meaning is that if c} holds, then it must be _x = f}(s) in each

state s where the state changes continuously. The enabling condition c} can depend on the

discrete variables only: formally, for all s; s0 2 �, sjVd = s
0jVd ! (s 2 c} $ s

0 2 c}).
We say that a phase } is linear if the function f} is a linear function of the continuous

variables. It is not required that f} is linear in the discrete variables as well.

Transitions. We de�ne the enabling condition c� of a transition � 2 T as the set of states

that have a successor according to the transition, or c� = fs j 9s0[(s; s0) 2 � ]g. Transitions
must be self-disabling, that is, (s; s0) 2 � ! s

0 62 c� .
If an immediate transition becomes enabled at time t, it has to be taken or disabled by

some other transition before time advances past t. There is no restriction on the enabling

condition of immediate transitions: it can depend on both the continuous and the discrete

part of the state.

Each delayed transition � 2 Td has an associated minimum delay l� 2 L and maximum

delay u� 2 U , with 0 � l� � u� � 1. After � is enabled, it can wait for a time td: l� � td �
u� before being taken. The enabling condition of delayed transitions can depend only on

the discrete component of the state: for all s; s0 2 �, it is sjVd = s
0jVd ! (s 2 c} $ s

0 2 c}).

6.2 Continuous Semantics

The continuous semantics of hybrid systems is de�ned in terms of hybrid traces. They

di�er from the continuous traces used for real-time systems, as the value of the continuous

variables can vary in the intervals composing the trace. The de�nition is as follows.

De�nition 14 (hybrid trace) A hybrid trace �h is a sequence of pairs �h: hg0; I0i,
hg1; I1i, hg2; I2i, : : : , with In 2 IntIR, gn : In 7! �, for all n 2 IN. The intervals can

overlap at most at the endpoints, and they cover all IR+: for all n,

sup In = inf In+1;[
n2IN

In = IR+
:

Each function gn assigns a state gn(t) 2 � to each time t 2 In. The discrete variables cannot
change their value in an interval: for all n 2 IR and all t1; t2 2 In, gn(t1)jVd = gn(t2)jVd .
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The value of variable x at time t of interval In is thus gn(t)(x). Again, we de�ne

admission only for closed traces, for simplicity.

De�nition 15 (admission, hybrid traces) A PTS S admits a trace �h: hg0; I0i, hg1; I1i,
hg2; I2i, : : : , written S . �h, if �h is closed and the following conditions are satis�ed:

1. The phases are respected: for each x 2 Vc and n 2 IN, if I n 6= I
!
n , there is a } 2 Px

such that, for all t 2 In:

gn(t) 2 c};

f} gn(t) =
dgn(u)(x)

du

����
u=t

;

where it is assumed that for I n < t < I
!
n the derivative dgn(u)(x)=duju=t exists, and

for t = I
 
n , t = I

!
n , the left-hand and right-hand derivatives, respectively, exist.

2. No immediate transition is skipped: for all n and � 2 Ti, I n � t < I
!
n ! gn(t) 62 c� .

3. All discrete state changes are due to a transition: for all n, either gn(I
!
n ) = gn+1(I

 
n1
)

or (gn(I
!
n ); gn+1(I

 
n1
)) 2 � for some � 2 T . If such a � is a delayed transition, we

also require that it has been enabled for at least l� : for all k 2 IN,

k � n ^ I!k > I
!
n � l� ! gk(I

!
k ) 2 c� :

4. Delayed transitions never wait for longer than their maximum delay: for all � 2 Td
and n1; n2 2 IN with n2 � n1,

I
!
n2
� I
 
n1
� u� _ 9n3

h
n1 � n3 � n2 ^ gn3(I n3) 62 c�

i
:

6.3 Discrete Semantics

The discrete semantics of hybrid systems is de�ned in terms of discrete traces, exactly as

it was done for real-time systems in De�nition 1. However, we do not de�ne admission

of discrete traces directly: we will de�ne it through hybrid traces, using the translation

functions.

6.4 Temporal Logic

Temporal logic is then de�ned for discrete and hybrid traces in the same way it was de�ned

for discrete and continuous traces, respectively, for real-time systems. The logic correspond-

ing to discrete traces is TLD, as before. The logic corresponding to hybrid traces will be

called TLH, its satisfaction relation will be denoted with j=H and its provability relation

with `H . We use a di�erent name for TLH, as we do not wish to imply that TLC and TLH
are the same. A deductive system for TLH will be discussed later.
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7 From Discrete to Continuous Reasoning

Re�nement of discrete traces was de�ned in De�nition 7. Re�nement of hybrid traces is

de�ned as follows.

De�nition 16 (re�nement, hybrid traces) A hybrid trace �h: hg0; I0i, hg1; I1i, hg2; I2i,
: : : is a re�nement of �0h: hg00; I 00i, hg01; I 01i, hg02; I 02i, : : : by the partitioning function �,

denoted �
0
h ��

�h, if Ii =
S
j2�i

I
0
j, and for every i; j 2 IN such that j 2 �i, it is 8t 2

I
0
j

h
gj(t) = gi(t)

i
.

Sampling equivalence is then de�ned as before. The de�nition of the translation func-

tions has to be modi�ed, and we denote the new versions with �
(h)
, 


(h)
. In particular, a

discrete trace no more encodes all the information required to reconstruct a hybrid trace:

it contains the information about the state at the beginning and at the end of each closed

interval, but it does not represent the evolution of the state in the interior of the inter-

val. Therefore, to a single discrete trace correspond many hybrid ones that agree with the

discrete one at the endpoints of the intervals.

De�nition 17 (�
(h)

: �d 7! �h) The translation function �
(h)

associates to �d: hs0; t0i,
hs1; t1i, hs2; t2i, : : : a set of closed hybrid traces �

(h)
(�d), such that, for every �h: hg0; I0i,

hg1; I1i, hg2; I2i, : : :2 �
(h)
(�d), and for every n, it is I n = tn, I

!
n = tn+1, gn(I

 
n ) = sn,

gn(I
!
n ) = sn+1.

De�nition 18 (

(h)

: �h 7! �d) The translation function 

(h)

associates to �h: hg0; I0i,
hg1; I1i, hg2; I2i, : : : the discrete trace �d: hs0; t0i, hs1; t1i, hs2; t2i, : : : de�ned in the follow-

ing way, for all n 2 IN.

1. (a) If In is closed, t2n = I
 
n , t2n+1 = I

!
n .

(b) If In is left open, t2n = t2n+1 = I
!
n .

(c) If In is right open, t2n = t2n+1 = I
 
n .

(d) If In is open, t2n = t2n+1 = (I n + I
!
n )=2.

2. s2n = gn(I
 
n ), s2n+1 = gn(I

!
n ).

A PTS S admits a discrete trace if the discrete trace describes a hybrid trace admitted

by S. This is the implicit meaning of the de�nition given in [20].

De�nition 19 (admission, discrete traces) A PTS S admits a discrete trace �d, writ-

ten S . �d, if there is a �h 2 �
(h)
(�d) such that S . �h.

In de�ning �nite variability for hybrid systems, it is essential to de�ne it with respect

to a given PTS, to constrain somehow the behavior of the continuous variables.

De�nition 20 (HFV) A formula � is hybrid �nite variability, or HFV, with respect to

a PTS S if for every �h admitted by S and every I, there exists a �
0
h � �h such that:

I; �0c j=(i;t)  $ I; �0c j=(i;t0)  for all  2 sb(�).

22



With these de�nitions, we can prove the corresponding of Theorem 4.

Theorem 7 (transfer of validity, hybrid case) If S j=D � and � is HFV with respect

to S, then S j=H �. If j=D � and � is HFV with respect to S, then S j=H �.
Again, we present a su�cient condition for a formula to be HSFV with respect to a PTS S.

De�nition 21 (simple age function) We say that an age function �(�) is simple with

respect to a system S if its argument � does not contain occurrences of continuous state

variables of S.

De�nition 22 (syntactic �nite variability, hybrid (HSFV)) A formula is HSFV

with respect to a PTS S if the phases of S are linear, and if the formula is constructed

in the following inductive way.

1. If u1, : : : , un are terms not containing T , �, or continuous variables, then Pu1 : : : un
is HSFV.

2. If f(z0; : : : ; zn; v1; : : : ; vk) is a well-behaved function, then f(b0; : : : ; bn; c1; : : : ; ck) = 0,

f(b0; : : : ; bn; c1; : : : ; ck) > 0 are HSFV formulas, provided b0, : : : , bk are constants of

the logic or simple age functions, and c1, : : : , ck are variables of the logic, or constants

di�erent from T and from continuous state variables. We call this type of HSFV

formulas T -atoms.

3. A formula constructed from HSFV formulas using propositional connectives or tem-

poral operators is a HSFV formula.

4. If � is a HSFV formula, and � does not occur in any T -atom of �, then 8� � is a

HSFV formula.

Theorem 8 (HSFV implies HFV) If � is HSFV with respect to a PTS S, it is also

HFV with respect to it. Therefore, the inference rules

S `D �
S `H �

S `D0 �
S `H(0;0) �

with the proviso that � is HSFV with respect to S, are sound.

The restriction requiring the linearity of the phases is important, and cannot be lifted

without being substituted by some other kind of condition insuring that the solutions of

the di�erential equations are well-behaved in the sense of De�nition 12.

A deductive system for TLH. Since the de�nition of syntactic �nite variability is now

relative to a PTS, we need to modify slightly the deductive system proposed for TLC. We

take the same set of axioms, and all the inference rules listed in Table 4 apart from the last

four, denoted by (x). Those four are replaced by the following rules:

`PTL �[p1; : : : pn]
S `H �[�1; : : : ; �n]

`PTL0 �[p1; : : : pn]

S `H(0;0) �[�1; : : : ; �n]
S `D �
S `H �

S `D0 �
S `H(0;0) �

with the proviso that �, �1, : : : , �n are HSFV with respect to S.
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