
Di�erential BDDs
�

Anuchit Anuchitanukul Zohar Manna

Computer Science Department

Stanford University

Stanford, CA 94305

anuchit@cs.stanford.edu

September 9, 1994

Abstract

In this paper, we introduce a class of Binary

Decision Diagrams (BDDs) which we call Dif-

ferential BDDs (�BDDs), and two transforma-

tions over�BDDs, called Push-up (") and Delta

(�) transformations. In �BDDs and its derived

classes such as "�BDDs or �"�BDDs, in addi-

tion to the ordinary node-sharing in the normal

Ordered Binary Decision Diagrams (OBDDs),

some isomorphic substructures are collapsed to-

gether forming an even more compact repre-

sentation of boolean functions. The elimina-

tion of isomorphic substructures coincides with

the repetitive occurrences of the same or sim-

ilar small components in many applications of

BDDs such as in the representation of hardware

circuits. The reduction in the number of nodes,

from OBDDs to �BDDs, is potentially exponen-

tial while boolean manipulations on �BDDs re-

main e�cient.

1 Introduction

Binary Decision Diagrams (BDDs) are a dia-

grammatic representation of boolean functions

[Ak78] and have been widely accepted as an im-

�This research was supported in part by the National

Science Foundation under grant CCR-92-23226, by the

Defense Advanced Research Projects Agency under con-

tract NAG2-892, and by the United States Air Force

O�ce of Scienti�c Research under contract F49620-93-

1-0139.

portant tool in a variety of applications. It was

recognized that many problems in digital system

design, veri�cation, optimization of combinato-

rial circuits, and test pattern generation, can be

formulated as a sequence of operations on bool-

ean functions. This, in return, indicates a need

for e�cient manipulations on BDDs.

Ordered Binary Decision Diagrams (OBDDs)

[Br86,Br92] are BDDs with a constraint that

the sequence of variables on any path of an

OBDD conforms to a particular ordering and all

the nodes representing the same logic function

are merged together. Their property of having

strong canonical forms and e�cient manipula-

tions makes OBDDs the standard representation

used in most applications of BDDs.

With the demand to apply BDDs to increas-

ingly larger problems, there have been many sug-

gestions for e�cient implementation techniques

[BRB90] and various variations of OBDDs, to

improve speed and to save memory. Among

these variations, the use of typed edges [MB88],

and later attributed edges [MIY90], was pro-

posed and shown to reduce the size of the graphs

in many practical cases.

In this paper, we de�ne and analyze a

new class of BDDs, called Di�erential BDDs

(�BDDs), and explore two transformations over

�BDDs, called the Push-up (") transformation
and its variation called the Delta (�) transfor-

mation. These techniques have the potential to

signi�cantly reduce the size of the graphs and

1



1

1

1

1

1

1

x1

x3x3

x4x4

x5x5

x6x6

x7

vc

vd

vb

va
vf

vh

vc

vd

vb

va
vf

vh

1

1

11

1

1

10

1

1

22

2

11

1

11

1

v1

v4

v5

1

1

0

1

1

2

2

1

1

1

0

0 1

0

0
0

1

0

0 1

OBDD 0 1

0

01
0

0
1

0

0

0

0

0
1

0
0

0

0

10
0

0

v3

v2

0

0 1

0 1

1

�BDD

0 1

vg vg

veve

Figure 1: �BDD vs OBDD

save memory space. We also explain e�cient al-

gorithms for manipulating an interesting class of

BDDs, namely "�BDDs, which are derived from

�BDDs by a " transformation.

2 �BDDs

ADi�erential Binary Decision Diagram (�BDD)

is a labeled binary directed acyclic graph (DAG)

in which each node is labeled by an integer, rep-

resenting the variable displacement in the order-

ing of input variables.

Formally, a �BDD G is a tuple (V; s; l) where

� V is a set of nodes, which includes two spe-

cial sink nodes, 0 and 1.

� s : (V �f0; 1g)�f0; 1g 7! V is the successor

function.

� l is a labeling function, mapping a node to

an integer.

For each v 2 V�f0; 1g, there are exactly two

successors of v, denoted by s(v; 0) and s(v; 1),

and a label l(v). The label l(v) represents the

di�erence in the indexes of the input variables

associated with the node v and its predecessor.

For example, in Figure 1, the label l(v2) = 2 is

the distance in the variable ordering of x1 and

x3. For the root node, the label is the index of

the input variable, associated with the root node.

In the special cases when v 2 f0; 1g, there are
no successors and l(v) = 0. If there are n input

variables, x1 : : : xn, then the sum of all labels on

any path must be less than or equal to n and for

any v 2 V , 0 � l(v) � n.

Like OBDDs, we require that for any v1; v2 2
V�f0; 1g, if l(v1) = l(v2) and s(v; i) = s(v; i) for

all i 2 f0; 1g, then v1 = v2.

Shown in Figure 1 is the comparison between

the OBDD and �BDD representation of the

same boolean function. Here, fva; vb; vc; vdg are
merged into v5, fve; vfg into v4, and fvg; vhg
into v3.

Later on, we may drop the 0 and 1 annotations

on the edges and assume that the left and right

branches of a node v always lead to its successors,

s(v; 0) and s(v; 1), respectively.

For a �BDD G = (V;E; l), we de�ne the value

val(v; B) of a boolean function represented by a

node v 2 V , at a given input bit vector B =

b1 : : : bn, recursively as follows:

val (v; B) =

8>>><
>>>:

0 if v = 0

1 if v = 1

val
�
s(v; bl(v)); B

0

�
otherwise

where B0 = bl(v)+1 : : : bn

For example, the evaluation of the �BDD in

Figure 1 at bit vector 0010111 is:

2



0 1

0
1

0 1

0
1

0 1

0 1

0 1

0
1

0 1

0
1

0 1

0 1

1

�BDD

1

1

3 2

11

2

1

3

1

x4

x1

x2

x4

x5 x5

x1

x2

x4

x5

1 1 0 1 1 0 0 1 0

1 1 0 1 1 0 0 1 0

BDD OBDD

0 1

1
0

0
1

0 1

Figure 2: A bad case for �BDDs

val(v1,0010111) = val(s(v1,0),010111)

= val(v3,010111)

= val(v5,0111)

= 0

Proposition 2.1 �BDDs have the following

properties:

1. (Canonicity) Each boolean function has a

unique representation (canonical form) in

�BDDs.

2. The reduction in the number of nodes by

switching from OBDDs to �BDDs is poten-

tially exponential. Namely, if m is the num-

ber of nodes of an OBDD, then in the best

case, the number of nodes of a �BDD rep-

resenting the same boolean function will be

O(log(m)). On the other hand, as a func-

tion of the number input variables, n, the

reduction of nodes is at best up to a factor

of 1=n.

3. Boolean operations on �BDDs are polyno-

mial in the size of �BDDs.

Proof Outline: It is easy to show that there

is a unique translation back and forth between

�BDDs and OBDDs. From the canonicity prop-

ery of OBDDs, we can conclude that �BDDs

have the canonicity property as well.

Exponential reduction occurs in the cases

where the left and right subgraphs of every node

in an OBDD are isomorphic. and if xk is the

label of a node v in the left subgraph then the

counterpart node of v in the right subgraph is

labeled by xk+c, for some big enough c (e.g. big-

ger than the index of any of the labels in the

left subgraph. In these cases, when translated

into �BDDs, the left and right subgraphs will

be merged together repeatedly and the size of

the �BDDs will be O(log(m)). The reduction

factor of 1=n is obvious since a node in �BDDs

can replace at most n nodes of the original OB-

DDs.

E�cient boolean manipulations of �BDDs

and their analysis are very similar to those de-

scribed later in section 4.

It is important to note that for some cases,

the �BDD representation may yield more nodes

than the OBDD representation of the same bool-

ean function. Figure 2 demonstrates such a case.

This, however, should not be considered as a

drawback, because of the following proposition.

Proposition 2.2 There exists a one-to-one cor-

respondence mapping between all possible OB-

DDs and �BDDs of the same set and ordering of

input variables, such that each �BDD is mapped

to an identical OBDD up to relabeling, and vice

versa.

Proof Outline: First, assume that the variable

ordering is decreasing, i.e. the variable indices

decrease from the top of OBDDs to the leaves.

To construct an OBDD from a �BDD, start

from the leaves (sink nodes) and move upward,

adding to the label of each node the larger num-

ber between the labels of its two successors.

Then, for each node with the label n, relabel it

3



1

1

2

5 3

4

2

�BDD

1 0

x2

x5

x7 x7

x8 x8

x9

x11

1 0
OBDD

"�BDD

1 0

0,0

0,1

1,4 2,4

5,3

"2�BDD

1 0

2 2,5

4,0,0

3,1,2

1,0,0

0,0,0

Figure 3: Push-up

with xn. To check that the result is actually an

OBDD, we show that no duplicate nodes are cre-

ated, by induction on the structure of the sub-

graphs. In doing so, we use the constraint of

�BDDs that there are no duplicate nodes in the

�BDD that we start with.

The other direction, from an OBDD to a

�BDD, is the reverse of the above construction.

With the canonicity property of both OBDDs

and �BDDs, we can conclude that for any set

of input variables and a variable ordering, the

average number of nodes in a �BDD is the same

as the average number of nodes in an OBDD.

In the next section, we will introduce the "

transformation which can be applied to �BDDs,

resulting in "�BDDs. "�BDDs inherit the

potentially exponential reduction property and

easy polynomial boolean operations, and at the

same time, guarantee to give a structure with

fewer or the same number of nodes.

3 Push-up Transformation

The Push-up " transformation takes a labeled

DAG with n labels on each node, and pushes one

of the labels of each node through the incoming

edges back to the predecessors of the node.

A binary directed acyclic graph with n labels,

G = (V; s; l), consists of a set V of nodes, a suc-

cessor function s : V � f0; 1g 7! V , and a label-

ing function l which maps each node v 2 V to

an n-tuple label l(v) = hd0; : : : ; dn�1i. For each

v 2 V , we will denote the j-th label dj of v by

d(v; j). Given a binary DAG G = (V; s; l) with

n labels, the transformation "i (or simply " if

i = 0) transforms G in two steps:

1. relabel each node v with

hd0; : : : ; di�1; di+1; : : : ; dn�1; ds0; ds1i

where ds0 = d(s(v; 0); i)

ds1 = d(s(v; 1); i):

If v has no successor (i.e. it is a sink node),

then ds0 = ds1 = 0.

2. merge together all the nodes which have the

same successors and the same label.

The result is a binary DAG with n + 1 labels

which represents G.
Figure 3 shows the result of applying "

transformations, once ("�BDD) and twice

("2�BDD), on a �BDD. The nodes in each

dashed box are merged into one node on the

right. Unlike in OBDDs or �BDDs, where a

boolean function is represented by a node, in

"�BDDs, a boolean function is identi�ed by a

node and an integer, which is the by-product of

the transformation.

4



Proposition 3.1 Each application of " to OB-

DDs or �BDDs has the following properties:

1. The number of nodes in always reduced up

to a factor of 1=n where n is the number of

input variables.

2. Canonicity is preserved.

3. Boolean operations on the derived class of

BDDs remain polynomial time.

Proof Outline: For the canonicity property,

observe that the " transformation can be eas-

ily shown reversible. Therefore, two OBDDs

(�BDDs) cannot be transformed into the same

graph. OBDDs (�BDDs) are canonical and so

are the derived classes.

Even though this transformation o�ers the

best case reduction of 1=n (compared to the con-

stant factor of 1=2 reduction o�ered by other

methods such as using complement edges), there

is a trade-o�: each transformation introduces

one additional label per node. Therefore, in or-

der to save memory space with the transforma-

tion, the following condition must hold:

Nelim

N
>

1

1 +
jlj

jdxj

where

� N is the total number of nodes before the

transformation.

� Nelim is the number of nodes which are elim-

inated by the transformation.

� jlj is the total bit-length of all the labels

and pointers associated with each node be-

fore the transformation. For example, for

OBDDs and �BDDs, jlj equals log(n) + 2b

where n is the number of input boolean vari-

ables and b is the bit-length of a pointer.

� jdxj is the number of bits needed to hold the

additional label for each node, which should,

in fact, be log(n).

There are two supporting reasons for using the

" transformation.

1. jdxj is generally small because there are usu-
ally not too many variables. On the other

hand, jlj is generally long because each of

the two pointers could be 32-bit or 64-bit

long and this number is getting larger as the

new CPUs on the market have a higher and

higher memory addressing capacity. As a re-

sult, 1+ jlj=jdxj will be a large number (e.g.
5, 6, 7, 8 : : : ). Thus, we only need to be able

to eliminate a small fraction Nelim=N of the

nodes, in order to save memory space.

2. Some unused bits may be used to hold the

additional label. For example, if a word in

the system is 16-bit long, but we only need

8 bits per label (i.e. there are fewer than

65536 input variables), then we should ap-

ply the " transformation and keep the ad-

ditional label in the unused bits. If this is

the case, and since the transformation will

always reduce or maintain the number of

nodes, the transformation is guaranteed to

save memory space or at least keep it the

same.

4 "�BDDs

A particular class of BDDs, namely "�BDDs,
has an interesting property.

Proposition 4.1 The number of nodes in a

"�BDD is always less than or equal to the num-

ber of nodes in an OBDD of the same boolean

function and the same variable ordering. More-

over, the reduction of nodes is potentially expo-

nential.

Proof Outline: We can show that each node

in an OBDD is translated into at most one node

in a "�BDD by induction on the structure of

subgraphs.

This property increases the chance that

Nelim=N , the number of nodes eliminated by

switching from OBDDs to "�BDDs divided by

the total number of nodes in the OBDD repre-

sentation, will be greater than 1=(1 + jlj=jdxj).

5



0

0

s0

b0b0

a0

0

0 1

1

1

1 0 0
b1b1

11

0 0
a1a1

11

0 1

s1

0 1

0
a0

b0

1

0 0
11

0 0 11
a2 a2

b2 b2

0 1

0
a1a1

101

b1

0 1

s2

0

0

a0

b0
1

1

0

0

0

a0

b0

a1a1

1

1

1

01

b1
0 1

0 1

s3

0 0
11

0 0 11

0 1

0 101
a2 a2

b2

a3

b3

a3

b3

s0

s2

s1 1

1

1

0 1

0,00,0

1,1 1,1

1,1

2,1 1,2

1,1

2,1

s3 s2 s1 s0s4

a3

b3

a2

b2

a1

b1

a0

b0

OBDD

s3 1

1,2

1,1

2,1

"�BDD

Figure 4: four-bit adder

In some applications of BDDs, particularly in

the area of hardware circuit representation, the

ability to eliminate some isomorphic structures

in the BDD representation is a signi�cant ad-

vantage. Many circuits compose of small identi-

cal components that cause the BDD representa-

tion of the circuits to have isomorphic structures

which di�er only in variable labeling (input sig-

nals to each small component).

Figure 4 shows the "�BDDs representation

of a four-bit adder. The two operands are

a3a2a1a0 and b3b2b1b0 and the variable ordering

is a0b0a1b1 : : :a3b3, i.e. from the least signi�cant

bits (a0 and b0 are checked �rst) to the most

signi�cant bits. For the output, s0 and s3 are

the least and most signi�cant bits of the sum,

respectively.

We present the following algorithm as an ex-

ample, to demonstrate how to carry out boolean

operations on �BDDs and its derived classes of

BDDs. In addition to a node (or in fact, a pointer

to a node), a boolean function represented in

"�BDDs, is identi�ed by a pair (dxi; vi) where

dxi is an integer, and vi a node. Besides the two

successors, s(v; 0) and s(v; 1), associated with

each node v are two integer labels, d(v; 0) and

d(v; 1).

function AND((dxa,va),(dxb,vb))

begin

if va = 0 or vb = 0 then return (0,0)

else if va = 1 then return (dxb; vb)

else if vb = 1 then return (dxa; va)

endif

if dxa > dxb then

res = lookup AND res(va; vb; dxa�dxb)
else

res = lookup AND res(vb; va; dxb�dxa)

endif

if res = not found then

dxmin = min(dx1; dx2)

(d0; v0) = AND(succ(0; dxmin;(dxa; va)),

succ(0; dxmin;(dxb; vb)))

(d1; v1) = AND(succ(1; dxmin;(dxa; va)),

6



succ(1; dxmin;(dxb; vb)))

if (d0; v0)=(d1; v1) then

if d0 = 0 then res = (d0; v0)

else res = (d0 + dxmin; v0)

endif

else

v = lookup or create((d0; v0),(d1; v1))

res = (dxmin; v)

endif

if dxa > dxb then

save AND res(va; vb; dxa�dxb; res)
else

save AND res(vb; va; dxb�dxa; res)
endif

endif

return res

end

Function succ is de�ned as follows:

succ(i; dxmin; (dx; v)) =(
(dx� dxmin; v) if dx 6= dxmin

(d(v; i); s(v; i)) if dx = dxmin

In fact, the function succ is simply the re-

striction of each argument of AND with respect

to the smaller variable between the labels of the

two arguments. Figure 5 shows the results of

succ when the arguments are (5; v1) and (2; v2).

Since the smaller between the two labels is 2, for

the restrictions of (5; v1), we simply subtract 2

from 5 and obtain the relativized (3; v1). For

(2; v2) itself, we simply follow the left and right

branches accordingly.

lookup or create((d0; v0),(d1; v1)) checks

(using a hash table) whether there is a node v

such that d(v; 0) = d0, s(v; 0) = v0, d(v; 1) = d1

and s(v; 1) = v1. If there is, return the node.

If not, create such node (and put it in the

hash table). Subroutine save AND res caches

the results of AND operations while function

lookup AND res retrieves them.

It is easy to see that the algorithm presented

above is based on the Shannon expansion and it

is similar to the standard algorithm presented in

other BDD literature. The di�erence here is the

v1

5

1

v3

v4

4

v2

2

v1

5-2 = 3
x2=0

x2=1

x2=0

x2=1

v3 v4

1,4

Figure 5: Computation of the function succ

scheme to relativize the labels as the execution

moves down the graphs and to readjust, when-

ever necessary, the label of the results returned

from the recursive calls.

For the complexity of the algorithm, we use,

like [Br86], a hash table to avoid multiple evalua-

tions of each tuple hva; vb; da�dbi, that is, a pair

of nodes and the di�erence of the labels. We

also assume a good implementation of the hash

tables on which operations, on average, can be

done in constant time. Suppose ma and mb are

the number of nodes of the arguments and n is

the number of input variables. We know that

there can be only mambn unique tuples to be

evaluated and therefore, the complexity of the

algorithm is O(mambn).

Although the algorithm seems to be of a

higher complexity than that of OBDDs which

is O(mfmg) for the sizes of the arguments, mf

and mg, it is not in any way a disadvantage.

First, recall that the size of the graphs is big-

ger in OBDDs. Secondly, there is a one-to-one

(but not always onto) mapping from each evalu-

ation tuple hva; vb; da�dbi to an evaluation pair

hvf ; vgi where vf and vg are nodes in the OBDD

arguments. This means that the number of re-

cursive calls to a boolean operation procedure

for "�BDDs is less than or equal to the number

of recursive calls to the corresponding procedure

for OBDDs which represent the same boolean

functions. In essence, switching to "�BDDs will
never introduce any unnecessary computation.

7



Another important operation which can be

computed e�ciently with "�BDDs is the general

restriction operation. Formally, given a boolean

function f(x1; : : : ; xj; : : : ; xn), the restriction op-

eration xj ! c, when c 2 f0; 1g, yields a function

f(x1; : : : ; c; : : : ; xn) of n�1 arguments. This op-
eration can be carried out in the same way as in

the standard OBDDs, namely, by traversing the

graph depth �rst. The index j of the variable,

with respect to which we are computing the re-

striction, will be passed along as an argument

to the restrict operation and as the computation

moves down the graph, we keep subtracting j

with the labels on the edges that we traverse

through. Whenever we encounter a subgraph

(dv; v) such that dv > j, we return (dv; v) as the

result. On the other hand, if dv = j, then we fol-

low one of the edges and return (d(v; c); s(v; c)).

On the way up, we simply combine the result

from each branch or readjust the label, just like

in the algorithm shown above. Figure 6 depicts a

sample computation of the restriction operation.

Note that "�BDDs coincides with a class of

BDDs, called SBDDs with \variable shifter" at-

tributed edges, which is proposed in [MIY90].

However, its potential was not fully recognized

and no analysis result was given.

5 Delta Transformation

There are variations of the " transformation

which exploit some regularity in the graph in or-

der to reduce the number of nodes. One such

variation is the � transformation.

As demonstrated in Figure 7, the � transfor-

mation takes a structure with at least two integer

labels per node, computes the di�erence between

two of the labels, pushes one of the two labels up

and keeps the di�erence. Figure 8 shows a full

example of an application of � to a "�BDD. Like
the " transformation, the � transformation pre-

serves the same properties: canonicity, e�cient

manipulation, etc.

The � transformation brings up a nice prop-

erty of �"�BDDs which may be useful in some

situations: all the nodes of OBDDs that have the

same successors will always be collapsed into one

j
3-2 = 1

j
3-2 = 1

3
j

3
v3

v4

4+1 = 5 3
v3

1
v2

v4

x3 = 0
2

v1

v3

v4

v2

v4

1,3

4,7

4,7

2
v1

v3

5,3

Figure 6: restriction operation

3 6

3,1 6,4

5,7 8,9

3-1 = 6-4 = 2

... ...

2,5,8

Figure 7: � transformation

8



1 0 1 0

6,1

5,27,4

2,1 4,3

0,0 0,0 0,0 0,0

2

1

1 0

2,6

5,7,5

3,2,4

1,0,0

0,0,00,0,0

x2

x8 x3

x15 x12 x8 x5

x17 x16 x16 x15 x10 x9 x8 x7

1 0 1 0 1 0 1 0

"�BDD �"�BDD

OBDD

Figure 8: �"�BDD vs OBDD

x2=1

v3

v4...

...
x2=0

6,1

6-3=3, 4

v2

v1x2=0

x2=1
v1 ... ...

... ...

5,1 5-2=3, 1

2,6

v3 v4

3,1,4

Figure 9: function succ of �"�BDDs

node in �"�BDDs.

It is easy to modify the algorithms for bool-

ean operations on a class of BDDs, derived by �

transformation. The essential idea is to carry on

another integer as we traverse down the graph

and add (subtract) back the di�erence we keep

as a label on each node to get back the real orig-

inal label. Figure 9 demonstrates the key idea

with the computations of the succ function of

�"�BDDs.

6 Conclusion

�BDDs, and " as well as � transformations, pro-
vide techniques to reduce the number of nodes,

and thus the memory space. They exploit certain

regularity found in many applications of BDDs,

such as hardware circuit representation. �BDDs

have the property of potentially exponential re-

duction in the number of nodes with respect to

the size of the OBDD representation of the same

functions. Its derived form "�BDDs inherit such
property as well as guarantee to have fewer or an

equal number of nodes.

Even though, by using these techniques, there

is a trade-o� between the number of nodes and

the number of labels per node, we argue that the

gain is more than the loss. This also suggests

the use of the transformations repeatedly up to

a point where the memory space required to hold

the extra labels o�sets the memory space saved

by the reduction of nodes. In some environments

such as an implementation of BDDs package in

a machine with long words, the unused bits can

be fully utilized to keep the additional labels.

Acknowledgement

We thank Howard Wong-Toi, Tomas Uribe,

Henny Sipma, and Nikolaj Bjorner, for carefully

reading the drafts of this paper and for their

helpful comments.

References

[Ak78] Akers, S. B. \Binary decision dia-

9



grams", IEEE Transactions on Com-

puters, 1978. C-27, 6(June): 509{516.

[BRB90] Brace, K. S., Rudell, R. L., and

Bryant, R. E. \E�cient implemen-

tation of a BDD package", Proc.

27th ACM/IEEE Design Automation

Conference, 1990, June: 40-45.

[Br86] Bryant, R. E. \Graph-based algo-

rithms for boolean function manipu-

lation", IEEE Transactions on Com-

puters, 1986. C-35, 6(Aug.): 677{691.

[Br92] Bryant, R. E. \Symbolic Boolean

Manipulation with Ordered Binary-

Decision Diagrams", ACM Comput-

ing Surveys, Sep. 1992. 24(3):293{

318.

[MB88] Madre, J. C. and Billon, J. P. \Prov-

ing Circuit Correctness using For-

mal Comparison Between Expected

and Extracted Behaviour", Proc.

25th ACM/IEEE Design Automation

Conference, 1988, June : 205{210.

[MIY90] Minato, S., Ishiura, N. and Ya-

jima, S. \Shared Binary Decision Di-

agram with Attributed Edges", Proc.

27th ACM/IEEE Design Automation

Conference, 1990, June: 52-57.

10


