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Preface

When acting in the real world, an intelligent agent must make decisions under uncertainty.

For example, a doctor may need to decide upon the treatment for a particular patient. The

standard solution to this problem is based on decision theory. It requires the agent to assign

degrees of belief or subjective probabilities to the relevant assertions. The degrees of belief

assigned should be based on the information available to the agent. A doctor, for example,

may have information about particular patients, statistical correlations between symptoms and

diseases, physical laws, default rules, and more. This thesis describes one approach, called the

random-worlds method, for inducing degrees of belief from very rich knowledge bases.

The random-worlds method is based on the principle of indi�erence: it treats as equally

likely all the worlds that the agent considers possible. It deals with knowledge bases expressed

in a language that augments �rst-order logic with statistical statements. By interpreting default

rules as qualitative statistics, the approach integrates qualitative default reasoning with quanti-

tative probabilistic reasoning. The thesis shows that a large number of desiderata that arise in

direct inference (reasoning from statistical information to conclusions about individuals) and in

default reasoning follow provably from the semantics of random worlds. Thus, random worlds

naturally derives important patterns of reasoning such as speci�city, inheritance, indi�erence to

irrelevant information, and a default assumption of independence. Furthermore, the expressive

power of random worlds and its intuitive semantics allow it to deal well with examples that are

too complex for most other inductive reasoning systems.

The thesis also analyzes the problem of computing degrees of belief according to random

worlds. This analysis uses techniques from �nite model theory and zero-one laws. We show

that, in general, the problem of computing degrees of belief is undecidable, even for knowledge

bases with no statistical information. On the other hand, for knowledge bases that involve

only unary predicates, there is a tight connection between the random-worlds method and the

principle of maximum entropy. In fact, maximum entropy can be used as a computational tool

for computing degrees of belief in many practical cases.
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Chapter 1

Introduction

1.1 Making Decisions

An agent acting in the real world must make autonomous decisions about its course of action.

For example, a doctor (or a medical expert system) may need to decide on a treatment for a

particular patient, say Eric (see Figure 1.2). These decisions are always made under uncertainty

regarding the true state of world. The standard technique for making decisions under uncer-

tainty is derived from decision theory [Sav54]. Essentially, it involves de�ning the outcome of

each action in each state of the world. If we then assign probabilities to the di�erent states of the

world, and utilities to the various outcomes, we can choose the action that has the maximum

expected utility among all possible actions (see Figure 1.1).

In this thesis, we investigate the problem of assigning probabilities to various events of

interest. For example, the doctor's decision regarding a treatment for Eric should certainly

depend on the probabilities for the di�erent diseases that Eric might have. Thus, she may

be interested in assigning a probability to the event \Eric has hepatitis". This probability

should certainly be based, in some principled way, on the doctor's knowledge. In general, the

doctor will have a very rich knowledge base, that might contain information of di�erent types,

including:

� statistical information, such as \80% of patients with jaundice have hepatitis",

� �rst-order laws, such as \all patients with hepatitis exhibit jaundice",

probabilities =) maximize

expected =) decision

utilities =) utility

Figure 1.1: The decision-theoretic paradigm

1



2 CHAPTER 1. INTRODUCTION

Figure 1.2: A particularly simple decision-making situation

� default rules, such as \patients with hepatitis typically have a fever",

� information about the particular patient at hand, such as \Eric has jaundice".

However, even a very rich knowledge base will not often su�ce to determine with certainty

which event holds.

How do we use the knowledge base to determine the probabilities for the event of interest?

The answer to this question is complicated by the fact that an event such as \Eric has hepatitis"

is not a probabilistic one. In the true world, this assertion is either true or false (Eric either

does or does not have hepatitis), so that the associated \probability" is either 0 or 1. This

answer to the question is clearly not a useful one. It suggests that the only probability we

can derive for this event is necessarily a subjective probability or a degree of belief. But if the

probability is purely subjective, can we validate it? On the one hand, we cannot say that

one subjective probability is correct while another one is not. On the other hand, it seems

that certain techniques for deriving subjective probabilities are more appropriate than others.

In particular, we would like to maintain a strong connection between the information in the

knowledge base and the resulting degrees of belief. This thesis describes one particular method

that allows the agent to use its knowledge base to assign degrees of belief in a principled manner;

we call this method the random-worlds method.
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1.2 Other approaches

There has been a great deal of work addressing aspects of this general problem. Two large

bodies of work that are particularly relevant are the work on direct inference, going back to

Reichenbach [Rei49], and the various approaches to nonmonotonic reasoning.

Direct inference deals with the problem of deriving degrees of belief from statistical infor-

mation. The basic approach is to try to �nd a suitable reference class whose statistics we can

use to determine the degree of belief. For example, reference class systems will ascribe a degree

of belief to the assertion \Eric has hepatitis", based on the frequency of hepatitis among the

class of individuals who are \just like Eric". Those cases, for which we do not have statistics

for the appropriate class, are handled using the heuristic of speci�city | choosing the most

speci�c applicable reference class. As we show, this type of reasoning leads to intuitive answers

in many cases. However, it runs into problems when attempting to deal with more complex

examples. In particular, reference-class reasoning has di�culties combining di�erent pieces of

evidence in cases where the statistics from more than one reference class are applicable. We

view this as resulting from a more general problem with this type of reasoning: it attempts to

substitute a single local piece of information (the statistics for one reference class) for the entire

knowledge base.

Direct inference addresses knowledge bases containing statistical information. Nonmono-

tonic reasoning, on the other hand, deals to a large extent with knowledge bases containing

default rules. Nevertheless, some of the same reasoning patterns arise in both types of for-

malism. In particular, the issues of speci�city and inheritance are relevant in both contexts.

As we show, even in the narrow context of default reasoning, the goal of obtaining speci�city

and inheritance in a single formalism has proved to be elusive. Moreover, those few systems

that have, to some extent, achieved this goal are typically very restricted in terms of expressive

power.

As we shall show, none of the systems proposed for either reference-class reasoning or

nonmonotonic reasoning can deal adequately with the large and complex knowledge bases we

are interested in. Furthermore, none can handle rich knowledge bases that may contain �rst-

order, default, and statistical information. Nevertheless, these approaches do provide useful

yardsticks by which to measure the adequacy of the random-worlds approach. As we shall show,

the random-worlds approach deals with the paradigmatic problems in both nonmonotonic and

reference-class reasoning remarkably well.

1.3 The Random-Worlds Approach

We now provide a brief overview of the random-worlds approach. As we suggested above, we

want to deal with rich knowledge bases that allow not only �rst-order information, but statistical

information and default information. To do this, we use a variant of the language introduced

by Bacchus [Bac90]. Bacchus's language augments �rst-order logic by allowing statements of

kHep(x)jJaun(x)kx = 0:8, which says that 80% of patients with jaundice have hepatitis. Notice
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that, in �nite models, this statement has the (probably unintended) consequence that the

number of patients with jaundice is a multiple of 5. To avoid this problem, we use approximate

equality rather than equality, writing kHep(x)jJaun(x)kx � 0:8, read \approximately 80% of

patients with jaundice have hepatitis". Intuitively, this says that the proportion of jaundiced

patients with hepatitis is arbitrarily close to 80%: i.e., within some tolerance � of 0.8.

Not only does the use of approximate equality solve the problem of unintended consequences,

it has another signi�cant advantage: it lets us express default information. We interpret a state-

ment such as \Birds typically 
y" as expressing the statistical fact that \Almost all birds 
y".

Using approximate equality, we can represent this as kFly(x)jBird(x)kx � 1. (This interpreta-

tion is closely related to various approaches applying probabilistic semantics to nonmonotonic

logic; see Pearl [Pea89] for an overview and Section 7.2.3 for a discussion of the connection

between the approaches.)

Having described the language in which our knowledge base is expressed, we now need to

decide how to assign degrees of belief given a knowledge base. Perhaps the most widely used

framework for assigning subjective probabilities is the Bayesian paradigm. There, one assumes

a space of possibilities and a prior probability distribution over this space, and calculates

posterior probabilities by conditioning on what is known (in our case, the knowledge base). To

use this approach, we must specify the space of possibilities and the distribution over it. In

Bayesian reasoning, relatively little is said about how this should be done. Indeed, the usual

philosophy is that these decisions are subjective. The di�culty of making these decisions seems

to have been the main reason for the historic unpopularity of the Bayesian approach in symbolic

AI [MH69].

Our approach is di�erent. We assume that the KB contains all the knowledge the agent

has, and we allow a very expressive language so as to make this assumption reasonable. This

assumption implies that any knowledge the agent has that could in
uence the prior distribution

is already included in the KB . As a consequence, we give a single uniform construction of a

space of possibilities and a distribution over it. Once we have this probability space, we can use

the Bayesian approach: To compute the probability of an assertion ' given KB , we condition

on KB , and then compute the probability of ' using the resulting posterior distribution.

So how do we choose the probability space? One very general strategy, dicussed by Halpern

[Hal90], is to give semantics to degrees of belief in terms of a probability distribution over a

set of possible worlds, or �rst-order models. This semantics clari�es the distinction between

statistical assertions and degrees of belief. As we suggested above, a statistical assertion such

as kHep(x)jJaun(x)kx � 0:8 is true or false in a particular world, depending on how many

jaundiced patients have hepatitis in that world. It is this fact that allows us to condition on

a knowledge base containing statistical statements. On the other hand, a degree of belief is

neither true nor false in a particular world | it has semantics only with respect to the entire set

of possible worlds and a probability distribution over them. There is no necessary connection

between the information in the agent's KB and the distribution over worlds that determines

her degrees of belief. However, we clearly want to use the information in the knowledge base,

particularly the statistical information, in assigning degrees of belief. As this thesis shows, the

random-worlds method is a powerful technique for going from a statistical knowledge base to
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degrees of belief.

To de�ne our probability space, we have to choose an appropriate set of possible worlds.

Given some domain of individuals, we stipulate that the set of worlds is simply the set of all

�rst-order models over this domain. That is, a possible world corresponds to a particular way

of interpreting the symbols in the agent's vocabulary over the domain. In our context, we

can assume that the \true world" has a �nite domain, say of size N . In fact, without loss

of generality, we assume that the domain is f1; : : : ; Ng. This domain induces a (�nite) set of

possible worlds, as described.

Having de�ned the probability space (the set of possible worlds), we must construct a

probability distribution over this set. For this, we give perhaps the simplest possible de�nition:

we assume that all the possible worlds are equally likely (that is, each world has the same

probability). This can be viewed as an application of the principle of indi�erence; since we

assumed that all the agent knows is incorporated in its knowledge base, the agent has no a

priori reason to prefer one world over the other. It is therefore reasonable to view all worlds

as equally likely. Interestingly, the principle of indi�erence (sometimes also called the principle

of insu�cient reason) was originally promoted as part of the very de�nition of probability,

when the �eld was originally formalized by Jacob Bernoulli and others; the principle was later

popularized further and applied with considerable success by Laplace. (See [Hac75] for an

historical discussion.) It later fell into disrepute as a general de�nition of probability, largely

because of the existence of paradoxes that arise when the principle is applied to in�nite and/or

continuous probability spaces. This thesis makes no attempt to de�ne the notion of probability.

We claim, however, that the principle of indi�erence is a natural and e�ective way of assigning

degrees of belief, particularly if we restrict attention to a �nite collection of worlds with �nite

domains.

Combining our choice of possible worlds with the principle of indi�erence, we obtain our

prior distribution. We can now induce a degree of belief in ' given KB by conditioning on KB to

obtain a posterior distribution, and then computing the probability of ' according to this new

distribution. It is easy to see that the degree of belief in ' given KB is the fraction of possible

worlds satisfying KB that also satisfy '. This process is demonstrated in Figures 1.3, 1.4,

and 1.5. Figure 1.3 shows us a set of possible worlds over a vocabulary dealing with hepatitis,

jaundice, and the individual Eric. Initially, all the possible worlds are equally likely. Figure 1.4

shows us the process of conditioning on the knowledge base KB | in this case, the assertions

\80% of patients with jaundice have hepatitis" and \Eric has jaundice". The magni�ed world

on the top right is outlawed by KB because the statistical assertion is violated. The one

on the bottom right is outlawed because it does not support the fact that Eric has jaundice.

Finally, Figure 1.5 shows us the procedure of computing the probability of ' in the posterior

distribution, by counting the fraction of remaining worlds that satisfy ' | in this case, \Eric

has hepatitis".

One problem with the approach as stated so far is that, in general, we do not know the

domain size N . Typically, however, N is known to be large. We therefore approximate the

degree of belief for the true but unknown N by computing the value of this degree of belief as

N grows large. The result is our random-worlds method.
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The key ideas in the approach are not new. Many of them can be found in the work of

Johnson [Joh32] and Carnap [Car50, Car52], although these authors focus on knowledge bases

that contain only �rst-order information, and restrict to unary predicates. Similar approaches

have been used in the more recent works of Shastri [Sha89] and of Paris and Vencovska [PV89],

in the context of a unary statistical language. Chuaqui's recent work [Chu91] is also relevant.

His work, although technically quite di�erent from ours, shares the idea of basing a general

theory of probabilistic reasoning upon the notions of indi�erence and symmetry. The work of

Chuaqui and the work of Carnap investigate very di�erent issues from those we examine in this

thesis. For example, Carnap, and others who later continued to develop his ideas, were very

much interested in learning statistics, and even harder, learning universal laws. While we believe

the question of learning is very important (see Section 8.1.3), we have largely concentrated on

understanding (and generalizing) the process of going from statistical information and default

rules to inferences about particular individuals. Many of the new results we describe re
ect

this very di�erent emphasis.

1.4 Validation

Having de�ned the method, how do we judge its reasonableness? Fortunately, as we mentioned,

there are two large bodies of work on related problems on which we can draw for guidance:

reference-class reasoning and default reasoning. While, as we pointed out, none of the solutions

suggested for these problems seems adequate, the years of research have resulted in some strong

intuitions regarding what answers are intuitively reasonable for certain types of queries. As we

have observed, these intuitions often lead to identical desiderata. In particular, most systems

(of both types) espouse some form of preference for more speci�c information and the ability

to ignore irrelevant information (irrelevance is often closely related to inheritance).

We show that the random-worlds approach also satis�es these desiderata. In fact, in the case

of random worlds, these properties follow from a much more general theorem. We prove that, in

those cases where there is some piece of statistical information that should \obviously" be used

to determine a degree of belief, random worlds does use this information. The di�erent desider-

ata, such as preference for more speci�c information and indi�erence to irrelevant information,

including inheritance and even exceptional-subclass inheritance, follow as easy corollaries (see

Section 2.2). We also show that random worlds provides reasonable answers in other contexts,

not covered by the standard speci�city and irrelevance heuristics. In particular, random worlds

combines statistical information from di�erent reference classes when appropriate.

Thus, the random-worlds method is indeed a powerful one, that can deal with rich knowledge

bases and still produce the answers that people have identi�ed as being the most appropriate

ones.
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1.5 Reader's Guide

The rest of the thesis is organized as follows. In Chapter 2, we outline some of the major

themes and problems in the work on reference classes and on default reasoning. Since one of

our major claims is that the random-worlds approach solves many of these problems, this will

help set our work in context. In Chapter 3, we describe the random-worlds method in detail.

We also show how the approach naturally embeds a very expressive nonmonotonic reasoning

system. In Chapter 4, we state and prove a number of general theorems about the properties

of the approach, and show how various desiderata follow from these theorems.

In the second part of the thesis, we investigate in depth the problem of computing degrees

of belief. In Chapter 5, we show that the expressivity of random worlds leads to some negative

computational consequences. In particular, computing degrees of belief, or even approximating

them, is a highly undecidable problem. This is the case even for a language with no statistical

statements. While this is unfortunate, it is not surprising, since the language used in random

worlds contains the full expressive power of �rst-order logic. Therefore, as in �rst-order logic,

we must search for classes of cases where these problems do not arise.

Chapters 6 and 7 address one such class: that of knowledge bases that contain only unary

predicates and constants. As we explain later on, this is a very important and practical class

of problems. Under this restriction, we show in Chapter 6 how to compute degrees of belief in

a language with no statistical statements. In Chapter 7, we show a strong connection between

random worlds and the principle of maximum entropy in the unary case. Thus, for a large class

of interesting problems, a maximum-entropy computation can be used to calculate the degrees

of belief.

Finally, in Chapter 8, we discuss some possible criticisms of the random-worlds method and

its possible impact.
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Eric

Hepatitis

Jaundice

a world
in close−up

Figure 1.3: The set of possible worlds
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Eric

Hepatitis

Jaundice

a world
in close−up

a world outlawed by KB

Figure 1.4: Conditioning on KB = (kHep(x)jJaun(x)kx � 0:8)^ Jaun(Eric)
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Eric

Hepatitis

Jaundice

a world
in close−up

a world outlawed by KB

a world where Hep(Eric)

Figure 1.5: Computing the probability of ' = Hep(Eric)



Chapter 2

Background work

2.1 Reference classes

Strictly speaking, the only necessary relationship between objective knowledge about frequen-

cies and proportions on the one hand and degrees of belief on the other hand is the simple

mathematical fact that they both obey the axioms of probability. But in practice we usually

hope for a deeper connection: the latter should be based on the former in some \reasonable"

way. Of course, the random-worlds approach that we are advocating is precisely a theory of

how this connection can be made. But our approach is far from the �rst to attempt to connect

statistical information and degrees of belief. Most of the earlier work is based on the idea of

�nding a suitable reference class. In this section, we review some of this work and show why

we believe that this approach, while it has some intuitively reasonable properties, is inadequate

as a general methodology. (See also [BGHK93b] for further discussion of this issue.) We go

into some detail here, since the issues that arise provide some motivation for the results that

we prove later regarding our approach.

2.1.1 The basic approach

The earliest sophisticated attempt at clarifying the connection between objective statistical

knowledge and degrees of belief, and the basis for most subsequent proposals, is due to Re-

ichenbach [Rei49]. Reichenbach describes the idea as follows:

\If we are asked to �nd the probability holding for an individual future event,

we must �rst incorporate the case in a suitable reference class . An individual

thing or event may be incorporated in many reference classes: : : . We then proceed

by considering the narrowest reference class for which suitable statistics can be

compiled."

Although not stated explicitly in this quote, Reichenbach's approach was to equate the degree of

belief in the individual event with the statistics from the chosen reference class. As an example,

11
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suppose that we want to determine a probability (i.e., a degree of belief) that Eric, a particular

patient with jaundice, has the disease hepatitis. The particular individual Eric is a member of

the class of all patients with jaundice. Hence, following Reichenbach, we can use the class of all

such patients as a reference class, and assign a degree of belief equal to our statistics concerning

the frequency of hepatitis among this class. If we know that this frequency is 80%, then we

would assign a degree of belief of 0:8 to the assertion that Eric has hepatitis.

Reichenbach's approach consists of (1) the postulate that we use the statistics from a par-

ticular reference class to infer a degree of belief with the same numerical value, and (2) some

guidance as to how to choose this reference class from a number of competing reference classes.

We consider each point in turn.

In general, a reference class is simply a set of domain individuals1 for which we have \suitable

statistics" that contains the particular individual about whom we wish to reason. In our

framework, we take a reference class to be the set of individuals satisfying a formula  (x). The

requirement that the particular individual c we wish to reason about belongs to the class is

represented by the logical assertion  (c). But what does the phrase \suitable statistics" mean?

For purposes of illustration, we might suppose a suitable statistic is some (nontrivial) closed

interval in which the proportion or frequency lies. (However, see the discussion in Section 2.1.3

regarding the problems with this interpretation.) More precisely, consider some query '(c),

where ' is some logical assertion and c is a constant, denoting some individual in the domain.

Then  (x) is a reference class for this query if we know both  (c) and k'(x)j (x)kx 2 [�; �],

for some nontrivial interval [�; �]. That is, we know that c has property  , and that among

the class of individuals that possess property  , the proportion that also have property ' is

between � and �. If we decide that this is the appropriate reference class, then Reichenbach's

approach would allow us to conclude Pr('(c)) 2 [�; �], i.e., the (degree of belief) probability

that c has property ' is between � and �. Note that the appropriate reference class for the

query '(c) depends both on the formula '(x) and on the individual c.

Given a query '(c), there will often be many reference classes that are arguably appropriate

for it. For example, say we know both  1(c) and  2(c), and we have two pieces of statistical

information: k'(x)j 1(x)kx 2 [�1; �1] and k'(x)j 2(x)kx 2 [�2; �2]. In this case both  1(x)

and  2(x) are reference classes for '(c); depending on the values of the �'s and �'s, they

could assign con
icting degrees of belief to '(c). The second part of Reichenbach's approach

is intended to deal with the problem of how to choose a single reference class from a set of

possible classes. Reichenbach recommended preferring the narrowest class, i.e., a preference for

more speci�c information. In this example, if we know 8x ( 1(x) )  2(x)), i.e., if we know

that the class  1(x) is a subset of the class  2(x), then Reichenbach's approach would allow us

to conclude that Pr('(c)) 2 [�1; �1]; that is, it instructs us to use the narrower reference class

 1(x) in preference to the wider reference class  2(x).

1These \individuals" may be individual people, individual objects, or individual events (such as coin tosses).

We use the term \individual" from here on, for de�niteness. Furthermore, in our examples, we restrict our
attention to reasoning about single individuals. In general, both reference-class reasoning and random worlds

can be applied to queries such as \Did Eric infect Tom", which involve reasoning about a number of individuals

simultaneously.
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These two parts of Reichenbach's approach | using statistics taken from a class as a de-

gree of belief about an individual and preferring statistics from more speci�c classes | are

generally reasonable and intuitively compelling when applied to simple examples. Of course,

even on the simplest examples Reichenbach's strategy cannot be said to be \correct" in any

absolute sense. Nevertheless, it is impressive that people agree so widely on the reasonable-

ness of the answers. As we show later, the random-worlds approach agrees with both aspects

of Reichenbach's approach when applied to simple (and noncontroversial) examples. Unlike

Reichenbach's approach, however, the random-worlds approach derives these intuitive answers

from more basic principles. As a result it is able to deal well with more complex examples that

defeat Reichenbach's approach.

Despite its successes, there are several serious problems with Reichenbach's approach. For

one thing, de�ning what counts as a \suitable statistic" is not easy. For another, it is clear

that the principle of preferring more speci�c information rarely su�ces to deal with the cases

that arise with a rich knowledge base. Nevertheless, much of the work on connecting statistical

information and degrees of belief, including that of Kyburg [Kyb83, Kyb74] and of Pollock

[Pol90], has built on Reichenbach's ideas of reference classes and the manner in which choices

are made between reference classes. As a result, these later approaches all su�er from a similar

set of di�culties. These problems are discussed in the remainder of this section.

2.1.2 Identifying reference classes

Recall that we took a reference class to be simply a set for which we have \suitable statistics".

But the fact that any set of individuals can serve as a reference class leads to problems. Assume

we know Jaun(Eric) and kHep(x)jJaun(x)kx � 0:8. In this case Jaun(x) is a legitimate refer-

ence class for the query Hep(Eric). Therefore, we would like to conclude that Pr(Hep(Eric)) =

0:8. But Eric is also a member of the narrower class fjaundiced patients without hepatitisg [
fEricg (i.e., the class de�ned by the formula (Jaun(x) ^ :Hep(x)) _ x = Eric), and the pro-

portion of hepatitis patients in this class is approximately 0%. Thus, the conclusion that

Pr(Hep(Eric)) = 0:8 is disallowed by the rule instructing us to use the most speci�c reference

class. In fact, it seems that we can always �nd a narrower class that will give a di�erent and

intuitively incorrect answer. This example suggests that we cannot take an arbitrary set of

individuals to be a reference class; it must satisfy additional criteria.

Kyburg and Pollock deal with this problem by by placing restrictions on the set of allowable

reference classes that, although di�erent, have the e�ect of disallowing disjunctive reference

classes, including the problematic class described above. This approach su�ers from from two

problems. First, as Kyburg himself has observed [Kyb74], these restrictions do not eliminate

the problem. The second problem is that restricting the set of allowable reference classes may

prevent us from making full use of the information we have. For example, the genetically

inherited disease Tay-sachs (represented by the predicate TS) appears only in babies of two

distinct populations: Jews of east-European extraction (EEJ ), and French-Canadians from a

certain geographic area (FC). Within those populations, Tay-sachs occurs in 2% of the babies.

The agent might represent this fact using the statement kTS(x)jEEJ (x)_ FC(x)kx = 0:02.
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However, the agent would not be able to use this information in reasoning, since disjunctive

reference classes are disallowed.

It is clear that if one takes the reference-class approach to generating degrees of belief, some

restrictions on what constitutes a legitimate reference class are inevitable. Unfortunately, it

seems that the current approaches to this problem are inadequate. The random-worlds approach

does not depend on the notion of a reference class, and so is not forced to confront this issue.

2.1.3 Competing reference classes

Even if the problem of de�ning the set of \legitimate" reference classes can be resolved, the

reference-class approach must still address the problem of choosing the \right" reference class

out of the set of legitimate ones. The solution to this problem has typically been to posit a

collection of rules indicating when one reference class should be preferred over another. The

basic criterion is the one we already mentioned: choose the most speci�c reference class. But

even in the cases to which this speci�city rule applies, it is not always appropriate. Assume, for

example, that we know that between 70% and 80% of birds chirp. We also know that between

0% and 99% of magpies chirp. If Tweety is a magpie, the speci�city rule would tell us to use

the more speci�c reference class, and conclude that Pr(Chirps(Tweety)) 2 [0; 0:99]. Although

the interval [0; 0:99] is certainly not trivial, it is not very meaningful: had the 0:99 been a 1, it

would have been trivial. We could then have ignored this reference class and used the far more

detailed statistics of [0:7; 0:8] derived from the class of birds.

The knowledge-base above might be appropriate for someone who knows little about mag-

pies, and so feels less con�dence in the statistics for magpies than he does for the class of birds

as a whole. But since [0:7; 0:8] � [0; 0:99], we know nothing that indicates that magpies are

actually di�erent from birds in general with respect to chirping. There is an alternative intu-

ition that says that if the statistics for the less speci�c reference class (the class of birds) are

more precise, and they do not contradict the statistics for the narrower class (magpies), then

we should use them. That is, we should conclude that Pr(Chirps(Tweety)) 2 [0:7; 0:8]. This

intuition is captured and generalized in Kyburg's strength rule.

Unfortunately, neither the speci�city rule nor its extension by Kyburg's strength rule are

adequate in most cases. In typical examples, the agent has several incomparable classes rel-

evant to the problem, so that neither rule applies. Reference-class systems such as Kyburg's

and Pollock's simply give no useful answer in these cases. For example, suppose we know that

Fred has high cholesterol and is a heavy smoker, and that 15% of people with high cholesterol

get heart disease. If this is the only suitable reference class, then (according to all the systems)

Pr(Heart-disease(Fred)) = 0:15. On the other hand, suppose we then acquire the additional

information that 9% of heavy smokers develop heart disease (but still have no nontrivial sta-

tistical information about the intersection class of people with both attributes). In this case,

neither class is the single right reference class, so approaches that rely on �nding a single ref-

erence class generate a trivial degree of belief that Fred will contract heart disease in this case.

For example, Kyburg's system will generate the interval [0; 1] as the degree of belief.
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Giving up completely in the face of con
icting evidence seems to us to be inappropriate.

The entire enterprise of generating degrees of belief is geared to providing the agent with some

guidance for its actions (in the form of degrees of belief) when deduction is insu�cient to

provide a de�nite answer. That is, the aim is to generate plausible inferences. The presence of

con
icting information does not mean that the agent no longer needs guidance. When we have

several competing reference classes, none of which dominates the others according to speci�city

or any other rule that has been proposed, then the degree of belief should most reasonably be

some combination of the corresponding statistical values. As we show later, the random-worlds

approach does indeed combine the values from con
icting reference classes in a reasonable way,

giving well-motivated answers even when the reference-class approach would fail.

2.1.4 Other types of information

We have already pointed out the problems that arise with the reference-class approach if more

than one reference class bears on a particular problem. A more subtle problem is encountered

in cases where there is relevant information that is not in the form of a reference class. We have

said that for  (x) to be a reference class for a query about '(c) we must know  (c) and have

some statistical information about k'(x)j (x)kx. However, it is not su�cient to consider only

the query '(c). Suppose we also know '(c), �(c) for some other formula �. Then we would

want Pr('(c)) = Pr(�(c)). But this implies that all of the reference classes for �(c) are relevant

as well, because anything we can infer about Pr(�(c)) tells us something about Pr('(c)). Both

Pollock [Pol90] and Kyburg [Kyb83] deal with this considering all of the reference classes for

any formula � such that �(c), '(c) is known. However, they do not consider the case where

it is known that �(c) ) '(c), which implies that Pr(�(c)) � Pr('(c)), nor the case where it

is known that '(c) ) �(c), which implies that Pr(�(c)) � Pr('(c)). Thus, if we have a rich

theory about '(c) and its implications, it can become very hard to locate all of the possible

reference classes or even to de�ne what quali�es as a possible reference class.

2.1.5 Discussion

A comparison between random worlds and reference-class approaches can be made in terms of

the use of local versus global information. The reference-class approach is predicated on the

assumption that there is always a local piece of information, i.e., the statistics over a single

reference class, that captures all of the global information contained in the knowledge base. As

is well known, local information cannot in general substitute for global information. So the

di�culties encountered by the reference-class approach are not surprising. When generating

degrees of belief from a rich knowledge base it will not always be possible to �nd a single

reference class that captures all of the relevant information.

It is important to remember that although the notion of a reference class seems intuitive, it

arises as part of one proposed solution strategy for the problem of computing degrees of belief.

The notion of a reference classes is not part of the description of the problem, and there is no



16 CHAPTER 2. BACKGROUND WORK

reason for it to necessarily be part of the solution. Indeed, as we have tried to argue, making

it part of the solution leads to more problems than it solves.

Our approach, on the other hand, makes no attempt to locate a single local piece of infor-

mation (a reference class). Thus, all of the problems described above that arise from trying

locate the \right" reference class vanish. Rather, it uses a semantic construction that takes into

account all of the information in the knowledge base in a uniform manner. As we shall see,

the random-worlds approach generates answers that agree with the reference-class approach

in those special cases where there is a single appropriate reference class. However, it contin-

ues to give reasonable answers in situations where no single local piece of information su�ces.

Furthermore, these answers are obtained directly from the simple semantics of random worlds,

with no ad hoc rules and assumptions.

2.2 Default reasoning

One main claim of this thesis is that the random-worlds method of inference, coupled with our

statistical interpretation of defaults, provides a well-motivated and successful system of default

reasoning. Evaluating such a claim is hard because there are many, often rather vague, criteria

for success that one can consider. In particular, not all criteria are appropriate for all default

reasoning systems: Di�erent applications (such as some of the ones outlined in [McC86]) require

di�erent interpretations for a default rule, and therefore need to satisfy varying desiderata.

Nevertheless, there are certain properties that have gained acceptance as measures for the

success of a new nonmonotonic reasoning system. While some of these properties are general

ones (see Section 2.2.2), most research in the area has traditionally been driven by a small set

of standard examples (more often than not involving a bird called \Tweety"). As we claim at

the end of this section, this has made an \objective" validation of proposed systems di�cult, to

say the least. In this section, we survey some of the desired properties for default reasoning and

the associated problems and issues. Of course, our survey cannot be comprehensive. The areas

we consider are: the semantics of defaults, basic properties of default inference, inheritance and

irrelevance, and expressive power.

2.2.1 Semantics of defaults

While it is possible to discuss the properties of an abstract default reasoning systems (see

Section 2.2.2), the discussion of certain aspects of such systems requires us to identify a notion

of default rule. In general, a default rule is an expression that has the form A(x) ! B(x),

whose intuitive interpretation is that if A holds for some individual x then typically (normally,

usually, probably, : : : ) B holds for that individual.2 While the syntax actually used di�ers

signi�cantly from case to case, most default reasoning systems have some construct of this

2We use ! for a default implication, reserving ) for standard material implication.
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type. For instance, in Reiter's default logic [Rei80] we would write

A(x) : B(x)

B(x)

while in a circumscriptive framework [McC80], we might use

8x (A(x)^ :Ab(x)) B(x))

while circumscribing Ab(x). Theories based on �rst-order conditional logic [Del88] often do use

the syntax A(x)! B(x). As we said in the introduction, in the random worlds framework, this

default is captured using the statistical assertion kB(x)jA(x)kx � 1.

While most systems of default inference have a notion of a default rule, not all of them

address the issue of what the rule means. In particular, while all systems describe how a default

rule should be used, some do not ascribe semantics (or ascribe only unintuitive semantics) to

such rules. Without a good, intuitive semantics for defaults it becomes very di�cult to judge

the reasonableness of a collection of default statements. For example, as we mentioned above,

one standard reading of ' !  is \''s are typically  's". Under this reading, the pair of

defaults A ! B and A ! :B should be inconsistent. In approaches such as Reiter's default

logic, A ! B and A ! :B can be simultaneously adopted; they are not \contradictory"

because there is no relevant notion of contradiction.

There are several ways to address this issue. The one we use is to �nd a single logic, with

semantics, that covers both �rst-order information and default information. Such an approach

enables us, among other things, to verify the consistency of a collection of defaults and to see

whether a default follows logically from a collection of defaults. Of existing theories, those

based on conditional and/or modal logic come closest to doing this.

2.2.2 Properties of default inference

As we said, default reasoning systems have typically been measured by testing them on a number

of important examples. Recently, a few tools have been developed that improve upon this

approach. Gabbay [Gab84] (and later Makinson [Mak89] and Kraus, Lehmann, and Magidor

[KLM90]) introduced the idea of investigating the input/output relation of a default reasoning

system, with respect to certain general properties that such an inference relation might possess.

Makinson [Mak] gives a detailed survey of this work.

The idea is simple. Fix a theory of default reasoning and let KB be some knowledge base

appropriate to this theory. Suppose ' is a default conclusion reached from KB according to

the particular default approach being considered. In this case, we write KB j� '. The relation

j� clearly depends on the default theory being considered. It is necessary to assume in this

context that KB and ' are both expressed in the same logical language, that has a notion of

valid implication. Thus, for example, if we are considering default logic or �-semantics, we must

assume that the defaults are �xed (and incorporated in the notion of j� ) and that both KB

and ' are �rst-order or propositional formulas. Similarly, in the case of circumscription, the
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circumscriptive policy must also be �xed and incorporated into j� . (See also the discussion at

the beginning of Section 2.2.3.)

With this machinery we can state a few desirable properties of default theories in a way

that is independent of the (very diverse) details of such theories. There are �ve properties of

j� that have been viewed as being particularly desirable [KLM90]:

� Right Weakening. If ')  is logically valid and KB j� ', then KB j�  .

� Re
exivity. KB j� KB .

� Left Logical Equivalence. If KB , KB 0 is logically valid, then KB j� ' if and only if

KB 0 j� '.

� Cut. If KB j� � and KB ^ � j� ' then KB j� '.

� Cautious Monotonicity. If KB j� � and KB j� ' then KB ^ � j� '.

While it is beyond the scope of this thesis to defend these criteria (see [KLM90]), we do want to

stress Cut and Cautious Monotonicity, since they will be useful in our later results. They tell

us that we can safely add to KB any conclusion � that we can derive from KB , where \safely"

is interpreted to mean that the set of conclusions derivable (via j� ) from KB ^ � is precisely

the same as that derivable from KB alone.

As shown in [KLM90], numerous other conditions can be derived from these properties. For

example, we can prove:

� And. If KB j� ' and KB j�  then KB j� ' ^  .

Other plausible properties do not follow from these basic �ve. For example, the following

property captures reasoning by cases:

� Or. If KB j� ' and KB 0 j� ', then KB _ KB 0 j� '.

Perhaps the most interesting property that does not follow from the basic �ve properties

is what has been called Rational Monotonicity [KLM90]. Note that the property of (full)

monotonicity, which we do not want, says that KB j� ' implies KB ^ � j� ', no matter what �

is. It seems reasonable that default reasoning should satisfy the same property in those cases

where where � is \irrelevant" to the connection between KB and '. While it is di�cult to

characterize \irrelevance", one situation where we may believe that � should not a�ect the

conclusions we can derive from KB is if � is not implausible, given KB , i.e., if it is not the

case that KB j� :�. The following property asserts that monotonicity holds when adding such

a formula � to our knowledge base:

� Rational Monotonicity. If KB j� ' and it is not the case that KB j� :�, then KB^� j� '.
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Several people, notably Lehmann and Magidor [LM92], have argued strongly for the desir-

ability of this principle. One advantage of Rational Monotonicity is that it covers some fairly

noncontroversial patterns of reasoning involving property inheritance. We explore this further

in the next section.

The set of properties we have discussed provides a simple, but useful, system for classi-

fying default theories. There are certainly applications in which some of the properties are

inappropriate; Reiter's default logic is still popular even though it does not satisfy Cautious

Monotonicity, Or, or Rational Monotonicity. (We brie
y discuss one of the consequent dis-

advantages of default logic in the next section.) Nevertheless, many people would argue that

these properties constitute a reasonable, if incomplete, set of desiderata for mainstream default

theories.

2.2.3 Speci�city and inheritance

As we have pointed out, systems of default reasoning have particular mechanisms for expressing

default rules. A collection of such rules (perhaps in conjunction with other information) forms

a default theory (or default knowledge base). For example, a particular default theory KBdef

might contain the default \A's are typically B's"; we denote this by writing [A(x)! B(x)] 2
KBdef. A default theory KBdef is used by a default reasoning system in order to reason from

various premises to default conclusions. For example, a theory KBdef containing the above

default might infer B(c) from A(c). We write j�def to indicate the input/output relationship

generated by a default reasoning system that uses KBdef. Thus, A(c) j�def B(c) indicates that

some particular default reasoning system is able to conclude B(c) from the premise A(c) using

the default theory KBdef.

Clearly, the presence of a default rule in its theory does not necessarily mean that a default

reasoning system has the ability to apply that rule to a particular individual. Nevertheless,

unless something special is known about that individual, the following seems to be an obvious

requirement for any default reasoning system:

� Direct Inference for Defaults. If [A(x)! B(x)] 2 KBdef and KBdef contains no assertions

mentioning c, then A(c) j�def B(c).

This requirement has been previously discussed by Poole [Poo91], who called it the property

of Conditioning. We have chosen a di�erent name that relates the property more directly to

earlier notions arising in direct inference.

We view Direct Inference for Defaults as stating a (very weak) condition for how a default

theory should behave on simple problems involving the inheritance of properties from one class

to another class or individual. Consider the following standard example, in which our default

knowledge base KB
y is

Bird(x)! Fly(x)^
Penguin(x)! :Fly(x)^,

8x (Penguin(x)) Bird(x)).
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Should Tweety inherit the property of 
ying from the class of birds, or the property of not 
ying

from the class of penguins? For any system satisfying Direct Inference for Defaults we must

have Penguin(Tweety) j�
y :Fly(Tweety). The reason is that, since we have a default whose

precondition exactly matches the information we have about Tweety, this default automatically

takes precedence over any other default. In particular, it takes precedence over defaults for more

general classes, such as birds. This speci�city property | the automatic preference for the most

speci�c default | is of course the direct analogue of the preference for more speci�c subsets

that we saw in the context of reference-class reasoning. It is perhaps the least controversial

desideratum in default reasoning. As we have just seen, it is a direct consequence of Direct

Inference for Defaults.

In approaches such as default reasoning or circumscription, the most obvious encoding

of these defaults does not satisfy speci�city, and hence does not satisfy Direct Inference for

Defaults. Default logic and circumscription are su�ciently powerful for us to be able to arrange

speci�city. For example, in default logic, this can be done by means of non-normal defaults

[RC81]. There is a cost to doing this, however: adding a default rule can require that all

older default rules are reexamined, and possibly changed, to enforce the desired precedences.

(Although see one possible solution in [Eth88].)

Direct Inference for Defaults is a weak principle, since in most interesting cases of inheritance

there is no default that �ts the case at hand perfectly. Suppose we learn that Tweety is a yellow

penguin. Should we still conclude that Tweety does not 
y? That is, should we conclude

Penguin(Tweety) ^ Yellow(Tweety) j�
y :Fly(Tweety)? Most people would say we should,

because we have been given no reason to suspect that yellowness is relevant to 
ight. In other

words, in the absence of more speci�c information about yellow penguins we should use the

most speci�c superclass that we do have knowledge for, namely penguins. That is, a default

reasoning system should allow the inheritance of the default for 
ight from the class of penguins

to the class of yellow penguins, thus retaining the conclusion :Fly(Tweety) in the face of the

extra information Yellow(Tweety). The inheritance property, i.e., the ability to solve such

examples correctly, is a second, stronger criterion for successful default reasoning.

In some sense, we can view Rational Monotonicity as providing a partial solution to this

problem [LM92]. If a nonmonotonic reasoning system is \reasonable" and satis�es Rational

Monotonicity in addition to Direct Inference for Defaults then it does get inheritance in a

large number of examples. In particular, as we have already observed, given KB
y, we get

Penguin(Tweety) j�
y :Fly(Tweety) by Direct Inference for Defaults. Since KB
y gives us no

reason to believe that yellow penguins are unusual, any \reasonable" default reasoning sys-

tem would have Penguin(Tweety) j6�
y :Yellow(Tweety). From these two statements, Rational

Monotonicity allows us to conclude Penguin(Tweety) ^ Yellow(Tweety) j�
y :Fly(Tweety), as

desired.

However, Rational Monotonicity is still insu�cient for inheritance reasoning in general. Sup-

pose we add the default Bird(x)!Warm-blooded(x) to KB
y. We would surely expect Tweety

to be warm-blooded. However, Rational Monotonicity does not apply. To see why, observe that

Bird(Tweety) j�
y Warm-blooded (Tweety), while we want to conclude that Bird(Tweety) ^
Penguin(Tweety) j�
y Warm-blooded (Tweety). (Using Left Logical Equivalence we could then
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conclude from this latter statement that Penguin(Tweety) j�
y Warm-blooded(Tweety), as de-

sired.) Clearly, we can use Rational Monotonicity to go from the �rst statement to the second,

provided we could show that Bird(Tweety) j6�
y :Penguin(Tweety). However, many default rea-

soning systems do not support this statement. In fact, since penguins are exceptional birds that

do not 
y, it is not unreasonable to conclude by default thatBird(Tweety) j�
y :Penguin(Tweety).

Thus, Rational Monotonicity fails to allow us to conclude that Tweety the penguin is warm-

blooded.

It seems undesirable that if a subclass is exceptional in any one respect, then inheritance of

all other properties is blocked. However, it is possible to argue that this blocking of inheritance

to exceptional subclasses is reasonable. Since penguins are known to be exceptional birds

perhaps we should be cautious and not allow them to inherit any of the normal properties

of birds. However, there are many examples which demonstrate that the complete blocking of

inheritance to exceptional subclasses yields an inappropriately weak theory of default reasoning.

For example, suppose we add to KB
y the default Yellow(x) ! Easy-to-see(x). This di�ers

from standard exceptional-subclass inheritance in that yellow penguins are not known to be

exceptional members of the class of yellow things. That is, while penguins are known to be

di�erent from birds (and so perhaps the normal properties of birds should not be inherited),

there is no reason to suppose that yellow penguins are di�erent from other yellow objects.

Nevertheless, Rational Monotonicity does not su�ce even in this less controversial case. Indeed,

there are well-known systems that satisfy Rational Monotonicity but cannot conclude that

Tweety, the yellow penguin, is easy to see [LM92, Pea90]. This problem has been called the

drowning problem [Ash93, BCD+93].

Theories of default reasoning have had considerable di�culty in capturing an ability to

inherit from superclasses that can deal properly with all of these di�erent cases. In particular,

the problem of inheritance to exceptional subclasses has been the most di�cult. While some

recent propositional theories have been more successful at dealing with exceptional subclass

inheritance [GMP90, Gef92, GP92], they encounter other di�culties, discussed in the next

section.

2.2.4 Expressivity

In the e�ort to discover basic techniques and principles for default reasoning, people have often

looked at weak languages based on propositional logic. For instance, �-semantics and variants

[GP90, GMP90], modal approaches such as autoepistemic logic [Moo85], and conditional logics

[Bou91], are usually considered in a propositional framework. Others, such as Reiter's default

logic and Delgrande's conditional logic [Del88], use a �rst-order language, but with a syntax

that tends to decouple the issues of �rst-order reasoning and default reasoning; we discuss this

below. Of the better-known systems, circumscription seems to have the ability, at least in

principle, of making the richest use of �rst-order logic.

It seems uncontroversial that, ultimately, a system of default reasoning should be built

around a powerful language. Sophisticated knowledge representation systems almost invariably

use languages with at least the expressive power of �rst-order logic. It is hard or impractical
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to encode the knowledge we have about almost any interesting domain without the expressive

power provided by non-unary predicates and �rst-order quanti�ers. It seems uncontroversial

that, ultimately, a system of default reasoning should be built around a powerful language. We

would also like to reason logically as well as by default within the same system, and to allow

perhaps even richer languages. One of the advantages of our language is its ability to express

�rst-order, statistical, and default information in one framework.

It is not easy to integrate �rst-order logic and defaults completely. One problem concerns

\open" defaults, that are intended to apply to all individuals. For instance, suppose we wish

to make a general statement that birds typically 
y, and be able to use this when reasoning

about di�erent birds. Let us see how some existing systems do this.

In propositional approaches, the usual strategy is to claim that there are di�erent types

of knowledge (see, for example, [GP92] and the references therein). General defaults, such

as Bird ! Fly, are in one class. When we reason about an individual, such as Tweety, its

properties are described by knowledge in a di�erent class, the context . For Tweety, the context

might be Bird ^Yellow . In a sense, the symbol Bird stands for a general property when used in

a default and talks about Tweety (say) when it appears in the context. First-order approaches

have more expressive power in this regard. For example, Reiter's default logic uses defaults

with free variables, e.g., Bird(x)! Fly(x). That Tweety 
ies can then be written Fly(Tweety),

which seems much more natural. The default itself is treated essentially as a schema, implying

all substitution instances (such as Bird(Tweety)) Fly(Tweety)).

One example shows the problems with both these ideas. Suppose we know that:

Elephants typically like zookeepers.

Fred is a zookeeper, but elephants typically do not like Fred.

Using this information we can apply speci�city to determine reasonable answers to such ques-

tions as \Does Clyde the Elephant like Fred?" (No) or \Does Clyde like Eric the Zookeeper?"

(Yes). But the propositional strategy of classifying knowledge seems to fail here. Is \Elephants

typically do not like Fred" a general default, or an item of contextual knowledge? Since it

talks about elephants in general and also about one particular zookeeper, it does not �t either

category well. In a rich �rst-order language, there is no clear-cut distinction between speci�c

facts and general knowledge. So, while creating such a distinction can be used to avoid explicit

�rst-order syntax, one loses generality.

Next, consider the �rst-order, substitutional, approach. It is easy to see that this does not

work at all. One substitution instance of

Elephant(x) ^ Zookeeper(y)! Likes(x; y)

is

Elephant(x) ^ Zookeeper(Fred)! Likes(x;Fred);

which will contradict the second default. Of course, we could explicitly exclude Fred:

Elephant(x)^ Zookeeper(y)^ y 6= Fred! Likes(x; y):
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However, explicit exclusion is similar to the process of explicitly disabling less speci�c defaults,

mentioned in the previous section. Both are examples of hand-coding the answers, and are

therefore highly impractical for large knowledge bases.

The zookeeper example is similar to an example given by Lehmann and Magidor [LM90].

The solution they suggest to this problem fails to provide an explicit interpretation for open

defaults. Rather, the meaning of an open default is implicitly determined by a set of rules

provided for manipulating such defaults. These rules can cope with the zookeeper example, but

the key step in the application of these rules is the use of Rational Monotonicity. More precisely,

the above knowledge base, with the assumption that Likes(Clyde; y), entails by default that

y 6= Fred. However, it does not entail that y 6= Eric for some zookeeper Eric. Therefore, Ratio-

nal Monotonicity allows us to assume that y = Eric and conclude that Likes(Clyde;Eric). We

cannot use the same reasoning to conclude Likes(Clyde;Fred). But, we have seen the problem

with Rational Monotonicity in Section 2.2.3 | it is easily blocked by \irrelevant" exceptional-

ity. If Eric is known to be exceptional in some way (even one unrelated to zookeeping), then

Lehmann and Magidor's approach will not be able conclude that he is liked by Clyde. This is

surely undesirable.

Thus, it seems to be very hard to interpret generic (open) defaults properly. This is perhaps

the best-known issue regarding the expressive power of various approaches to default logic.

There are, of course, others; we close by mentioning one.

Morreau [Mor93] has discussed the usefulness of being able to refer to \the class of individ-

uals satisfying a certain default". For example, the assertion:

Typically, people who normally go to bed late normally rise late.

refers to \the class of people who normally go to bed late". The structure of this assertion is

essentially:

(Day(y)! To-bed-late(x; y))! (Day(y0)! Rises-late(x; y0)):

This is a default whose precondition and conclusion are descriptions of people whose behaviors

are themselves de�ned using defaults. Default logic, for example, cannot even express such de-

faults. Many theories of conditional logics (which can express generalizations like the example)

do not give the correct answers [Del88, Bou91]. While this problem does not appear to have

been investigated in a circumscriptive framework, it seems unlikely that any straightforward

encoding of this default in this framework would behave appropriately. (Although, again, cir-

cumscription can be forced to give perhaps any answer with su�cient hand-coding.) We also

note that the example has many variants. For instance, there is clearly a di�erence between

the above default and the one \Typically, people who go to bed late rise late (i.e., the next

morning)"; formally, the latter statement could be written:

(Day(y)^ To-bed-late(x; y))! (Next-day(y0; y)) Rises-late(x; y0));

There are also other variations. We would like to express and reason correctly with them all.

The real issue here is that we need to de�ne various properties of individuals, and while many of
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these properties can be expressed in �rst-order logic, others need to refer to defaults explicitly.

This argues, yet again, that it is a mistake to have a di�erent language for defaults than the

one used for other knowledge.

2.2.5 The lottery paradox

The lottery paradox [Kyb61] addresses the issue of how di�erent default conclusions interact.

It provides a challenging test of the intuitions and semantics of any default reasoning system.

There are a number of variants of this paradox; we consider three here.

First, imagine that a large number N of people buy tickets to a lottery in which there is

only one winner. For a particular person c, it seems sensible to conclude by default that c does

not win the lottery. But we can argue this way for any individual, which seems to contradict

the fact that someone de�nitely will win. Of course some theories, such as those based on

propositional languages, do not have enough expressive power to even state this version of this

problem. Among theories that can state it, there would seem to be several options. Clearly, one

solution is to deny that default conclusions are closed under arbitrary conjunction, i.e., to give

up on the And Rule. But aside from explicitly probabilistic theories, we are not aware of work

taking this approach (although the existence of multiple extensions in theories such as Reiter's

is certainly related). Without logical closure, there is a danger of being too dependent on merely

syntactic features of a problem. Another solution is to prevent a theory from reasoning about

all N individuals at once. Finally, one can simply deny that :Winner(c) follows by default.

Circumscription, for instance, does this: The standard representation of the problem would

result in multiple extensions, such that for each individual c, there is one extension where c is

the winner. While this seems reasonable, circumscription only allows us to conclude things that

hold in all extensions; thus, we would not be able to conclude :Winner(c). The problem with

these \solutions" is that the lottery problem seems like an extremely reasonable application of

default reasoning: if you buy a lottery ticket you should continue your life under the assumption

that you will not win.

The lottery paradox is also a suitable setting to discuss an issue raised by Lifschitz's list of

benchmark problems [Lif89]. Suppose we have a default, for instance Ticket(x)! :Winner(x),

and no other knowledge. Should 8x (Ticket(x) ) :Winner(x)) be a default conclusion?

Likewise, if we know Winner(c) but consider it possible that the lottery has more than one

winner, should we nevertheless conclude that 8x ((Ticket(x) ^ x 6= c) ) :Winner(x))? In

circumscription, although not in many other theories, we get both universal conclusions (as

Lifschitz argues for). The desire for these universal conclusions is certainly controversial; in

fact it seems that we often expect default rules to have some exceptions. However, as Lifschitz

observes, there is now a technical di�culty: How can we conclude from the default Ticket(x)!
:Winner(x) that, by default, each individual c is not a winner, and yet not make the universal

conclusion that, by default, no one wins? Because of its treatment of open defaults, Reiter's

default logic is able to obtain precisely this conclusion. As we shall see, the random-worlds

approach obtains this conclusion as well.

Poole [Poo91] has considered a variant of the lottery paradox that avoids entirely the issue
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of named individuals. In his version, there is a formula describing the types of birds we are

likely to encounter, such as:

8x(Bird(x), (Emu(x) _ Penguin(x)_ : : :_ Canary(x))):

We then add to the knowledge base defaults such as birds typically 
y, but penguins typically do

not 
y, and we similarly assert that every other species of bird is exceptional in some way. Now

suppose all we know is that Bird(Tweety). Can we conclude that Tweety 
ies? If we conclude

that he, then a similar argument would also allow us to conclude that he is a typical bird in all

other respects. But this would contradict the fact he must be exceptional in some respect. If

we do not conclude that Tweety 
ies, then the default \Birds typically 
y" has been e�ectively

ignored. Poole uses such examples to give an exhaustive analysis of how various systems might

react to the Lottery Paradox. He shows that in any theory, some desideratum, such as closure

under conjunction or \conditioning" (which is essentially Direct inference for defaults), must

be sacri�ced. Perhaps the most interesting \way out" he discusses is the possibility of declaring

that certain combinations of defaults are inadmissible or inconsistent. Is it really reasonable

to say that the class of birds is the union of subclasses all of which are exceptional? In many

theories, such as Reiter's default logic, there is nothing to prevent one from asserting this. But

in a theory which gives reasonable semantics to defaults, we may be able to determine and

justify the incompatibility of certain sets of defaults. This, indeed, is how our approach avoids

Poole's version of the lottery paradox.

2.2.6 Discussion

In this section, we have presented a limited list of desiderata that seem appropriate for a default

reasoning system. While this list may be limited, it is interesting to point out that there does

not seem to be a single default reasoning system that ful�lls all these desiderata in a satisfactory

way.

Unfortunately, to the best of our knowledge, there is (as yet) no general framework for

evaluating default reasoning systems. In particular, the evaluation still tends to be on the

level of \Does this theory solve these particular examples correctly?" (see, for example, the

list of benchmark problems in [Lif89]). While such examples are often important in identifying

interesting aspects of the problem and de�ning our intuitions in these cases, they are clearly

not a substitute for a comprehensive framework. Had there been such a framework, perhaps

the drowning problem from Section 2.2.3 would not have remained undiscovered for so long.

While we do not attempt to provide such a general framework in this thesis, in Chapter 4 we

prove a number of general theorems concerning the random-worlds approach. These theorems

provide a precise formulation of properties such as Direct Inference for Defaults, and show

that they hold for random worlds. The fact that we also get properties such as speci�city and

exceptional subclass inheritance follows immediately from these theorems. Thus, our proof that

the random-worlds approach deals well with the paradigm examples in default reasoning is part

of a comprehensive theorem, rather than via a case-by-case analysis.
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The formalism

3.1 The language

We are interested in a formal logical language that allows us to express both statistical infor-

mation and �rst-order information. We therefore de�ne a statistical language L�, which is a

variant of a language designed by Bacchus [Bac90]. For the remainder of the thesis, let � be a

�nite �rst-order vocabulary, consisting of predicate and constant symbols, and let X be a set

of variables.1

Our statistical language augments standard �rst-order logic with a form of statistical quan-

ti�er. For a formula  (x), the term jj (x)jjx is a proportion expression. It will be interpreted as

a rational number between 0 and 1, that represents the proportion of domain elements satisfy-

ing  (x). We actually allow an arbitrary set of variables in the subscript and in the formula  .

Thus, for example, jjChild(x; y)jjx describes, for a �xed y, the proportion of domain elements

that are children of y; jjChild(x; y)jjy describes, for a �xed x, the proportion of domain elements

whose child is x; and jjChild(x; y)jjx;y describes the proportion of pairs of domain elements that

are in the child relation.2

We also allow proportion expressions of the form k (x)j�(x)kx, which we call conditional

proportion expressions. Such an expression is intended to denote the proportion of domain

elements satisfying  from among those elements satisfying �. Finally, any rational number is

also considered to be a proportion expression, and the set of proportion expressions is closed

under addition and multiplication.

One important di�erence between our syntax and that of [Bac90] is the use of approximate

equality to compare proportion expressions. As we argued in the introduction, exact com-

parisons are sometimes inappropriate. Consider a statement such as \80% of patients with

1For simplicity, we assume that � does not contain function symbols, since these can be de�ned in terms of

predicates.
2Strictly speaking, these proportion expression should be written with sets of variables in the subscript, as

in jjChild(x; y)jjfx;yg. However, when the interpretation is clear, we often abuse notation and drop the set

delimiters.

26
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jaundice have hepatitis". If this statement appears in a knowledge base, it is almost certainly

there as a summary of a large pool of data. It is clear that we do not mean that exactly 80%

of all patients with jaundice have hepatitis. Among other things, this would imply that the

number of jaundiced patients is a multiple of �ve, which is surely not an intended implica-

tion. We therefore use the approach described in [GHK92, KH92], and compare proportion

expressions using (instead of = and �) one of an in�nite family of connectives �i and �i, for

i = 1; 2; 3 : : : (\i-approximately equal" or \i-approximately less than or equal").3 For example,

we can express the statement \80% of jaundiced patients have hepatitis" by the proportion

formula kHep(x)jJaun(x)kx �1 0:8. The intuition behind the semantics of approximate equal-

ity is that each comparison should be interpreted using some small tolerance factor to account

for measurement error, sample variations, and so on. The appropriate tolerance will di�er for

various pieces of information, so our logic allows di�erent subscripts on the \approximately

equals" connectives. A formula such as kFly(x)jBird(x)kx �1 1 ^ kFly(x)jBat(x)kx �2 1 says

that both kFly(x)jBird(x)kx and kFly(x)jBat(x)kx are approximately 1, but the notion of \ap-

proximately" may be di�erent in each case.

We can now give a recursive de�nition of the language L�.

De�nition 3.1.1: The set of terms in L� is X [ C where C is the set of constant symbols in

�. The set of proportion expressions is the least set that

(a) contains the rational numbers,

(b) contains proportion terms of the form jj jjX and k j�kX , for formulas  ; � 2 L� and a

�nite set of variables X � X , and

(c) is closed under addition and multiplication.

The set of formulas in L� is the least set that

(a) contains atomic formulas of the form R(t1; : : : ; tr), where R is a predicate symbol in

� [ f=g of arity r and t1; : : : ; tr are terms,

(b) contains proportion formulas of the form � �i �0 and � �i �0, where � and �0 are proportion

expressions and i is a natural number, and

(c) is closed under conjunction, negation, and �rst-order quanti�cation.

Notice that this de�nition allows arbitrary nesting of quanti�ers and proportion expressions.

In Section 3.3 we demonstrate the expressive power of the language. As observed in [Bac90],

the subscript x in a proportion expressions binds the variable x in the expression; indeed, we

can view jj�jjx as a new type of quanti�cation.

We now need to de�ne the semantics of the logic. As we shall see below, most of the

de�nitions are fairly straightforward. The two features that cause problems are approximate

3In [BGHK92] the use of approximate equality was suppressed in order to highlight other issues.
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comparisons and conditional proportion expressions. We interpret the approximate connective

� �i �0 to mean that � is very close to �0. More precisely, it is within some very small, but

unknown, tolerance factor. We formalize this using a tolerance vector ~� = h�1; �2; : : :i, �i > 0.

Intuitively � �i �0 if the values of � and �0 are within �i of each other.

A di�culty arises when interpreting conditional proportion expressions because we need to

deal with the problem of conditioning on an event of measure 0. That is, we need to de�ne

semantics for k j�kX even when there are no assignments to the variables in X that would satisfy

�. When standard equality is used rather than approximate equality, this problem is easily

overcome. Following [Hal90], we can eliminate conditional proportion expressions altogether

by viewing a statement such as k j�kX = � as an abbreviation for jj ^ �jjX = �jj�jjX . This

approach agrees with the standard interpretation of conditionals if jj�jjX 6= 0. If jj�jjX = 0, it

enforces the convention that formulas such as k j�kX = � or k j�kX � � are true for any �. We

used the same approach in [GHK92], where we allowed approximate equality. Unfortunately, as

the following example shows, this interpretation of conditional proportions can interact in an

undesirable way with the semantics for approximate comparisons. In particular, this approach

does not preserve the standard semantics of conditional equality if jj�jjX is approximately 0.

Example 3.1.2: Consider the knowledge base:4

KB = (jjPenguin(x)jjx �1 0) ^ (kFly(x)jPenguin(x)kx �2 0):

We expect this to mean that the proportion of penguins is very small (arbitrarily close to 0

in large domains), but also that the proportion of 
iers among penguins is also very small.

However, if we interpret conditional proportions as discussed above, we obtain the knowledge

base

KB 0 = (jjPenguin(x)jjx �1 0)^ (jjFly(x)^ Penguin(x)jjx �2 0 � jjPenguin(x)jjx):

The knowledge base KB 0 is equivalent to

(jjPenguin(x)jjx �1 0)^ (jjFly(x) ^ Penguin(x)jjx �2 0):

This simply says that that the proportion of penguins and the proportion of 
ying penguins are

both small, but says nothing about the proportion of 
iers among penguins. In fact, the world

where all penguins 
y is consistent with KB 0. Clearly, the process of multiplying out across an

approximate connective does not preserve the intended interpretation of the formulas.

Because of this problem, we cannot treat conditional proportions as abbreviations and

instead have added them as primitive expressions in the language. Of course, we now have to

give them a semantics that avoids the problem illustrated by Example 3.1.2. We would like to

maintain the conventions used when we had equality in the language. Namely, in worlds where

4We remark that, here and in our examples below, the actual choice of subscript for � is unimportant.

However, we use di�erent subscripts for di�erent approximate comparisons unless the tolerances for the di�erent

measurements are known to be the same.
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jj�(x)jjx 6= 0, we want k'(x)j�(x)kx to denote the fraction of elements satisfying �(x) that also

satisfy '(x). In worlds where jj�(x)jjx = 0, we want formulas of the form k'(x)j�(x)kx �i � or

k'(x)j�(x)kx �i � to be true. There are a number of ways of accomplishing this. The way we

take is perhaps not the simplest, but it introduces machinery that will be helpful later.

We give semantics to the language L� by providing a translation from formulas in L�
to formulas in a language L= whose semantics is more easily described. The language L= is

essentially the language of [Hal90], that uses true equality rather than approximate equality.

More precisely, the de�nition of L= is identical to the de�nition of L� given in De�nition 3.1.1,

except that:

� we use = and � instead of �i and �i,

� we allow the set of proportion expressions to include arbitrary real numbers (not just

rational numbers),

� we do not allow conditional proportion expressions,

� we assume that L= has a special family of variables "i, interpreted over the reals.

As we shall see, the variable "i is used to interpret the approximate equality connectives �i and

�i. We view an expression in L= that uses conditional proportion expressions as an abbreviation

for the expression obtained by multiplying out.

The semantics for L= is quite straightforward, and follows the lines of [Hal90]. Recall that

we give semantics to L= in terms of worlds , or �nite �rst-order models. For any natural number

N , let WN consist of all worlds with domain f1; : : : ; Ng, and let W� denote [NWN .

Now, consider some world W 2 W� over the domain D, some valuation V : X ! f1; : : : ; Ng
for the variables in X , and some tolerance vector ~� . We simultaneously assign to each proportion

expression � a real number [�](W;V;~�) and to each formula � a truth value with respect to

(W;V;~�). Most of the clauses of the de�nition are completely standard, so we omit them here. In

particular, variables are interpreted using V , the tolerance variables "i are interpreted using the

tolerances �i, the predicates and constants are interpreted using W , the Boolean connectives and

the �rst-order quanti�ers are de�ned in the standard fashion, and when interpreting proportion

expressions, the real numbers, addition, multiplication, and � are given their standard meaning.

It remains to interpret proportion terms. Recall that we eliminate conditional proportion terms

by multiplying out, so that we need to deal only with unconditional proportion terms. If � is

the proportion expression jj jjxi1;:::;xik (for i1 < i2 < : : : < ik), then

[�](W;V;~�) =
1

jDjk
���n(d1; : : : ; dk) 2 Dk : (W;V [xi1=d1; : : : ; xik=dk]; ~�) j=  

o���:
Thus, if W 2 WN , the proportion expression jj jjxi1;:::;xik denotes the fraction of the Nk k-

tuples of elements in D that satisfy  . For example, [jjChild(x; y)jjx](W;V;~�) is the fraction of

domain elements d that are children of V (y).

We now show how a formula � 2 L� can be associated with a formula �� 2 L=. We proceed

as follows:
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� every proportion formula � �i �0 in � is (recursively) replaced by � � �0 � "i,

� every proportion formula � �i �0 in � is (recursively) replaced by the conjunction (���0 �
"i) ^ (�0 � � � "i),

� �nally, conditional proportion expressions are eliminated as in Halpern's semantics, by

multiplying out.

This translation allows us to embed L� into L=. Thus, for the remainder of the thesis, we

regard L� is a sublanguage of L=. We can now easily de�ne the semantics of formulas in L�:

For � 2 L�, we say that (W;V;~�) j= � i� (W;V;~�) j= ��. It is sometimes useful in our future

results to incorporate particular values for the tolerances into the formula ��. Thus, let �[~� ]

represent the formula that results from �� if each variable "i is replaced with its value according

to ~� | �i.
5

Typically we are interested in closed sentences, that is, formulas with no free variables. In

that case, it is not hard to show that the valuation plays no role. Thus, if � is closed, we write

(W;~�) j= � rather than (W;V;~�) j= �.

3.2 Degrees of belief

As we explained in the introduction, we give semantics to degrees of belief by considering all

worlds of size N to be equally likely, conditioning on KB , and then checking the probability of

' over the resulting probability distribution. In the previous section, we de�ned what it means

for a sentence � to be satis�ed in a world of size N using a tolerance vector ~� . Given N and ~� ,

we de�ne #worlds~�N(�) to be the number of worlds in WN such that (W;~�) j= �. Since we are

taking all worlds to be equally likely, the degree of belief in ' given KB with respect to WN

and ~� is

Pr~�N('jKB) =
#worlds~�N(' ^KB)

#worlds~�N(KB)
:

If #worlds~�N (KB) = 0, this degree of belief is not well-de�ned.

Strictly speaking, we should write W�
N rather than WN , since the set of worlds under

consideration clearly depends on the vocabulary. Similarly, the number of worlds inWN depends

on the vocabulary. Thus, both #worlds~�N (') and #worlds~�N ('^ KB) depend on the choice of

�. Fortunately, this dependence \cancels out" when de�ning the probability Pr~�N ('jKB):

Proposition 3.2.1: Let �;�0 be �nite vocabularies, and let '; � be sentences in both L(�) and

L(�0). Then

#worlds�N(' ^KB)

#worlds�N(KB)
=

#worlds�
0

N (' ^KB)

#worlds�
0

N (KB)
;

where #worlds�;~� (�) denotes the number of worlds W in W�
N such that (W;~�) j= �.

5Note that some of the tolerances �i may be irrational; it is for this reason that we allowed irrational numbers

in proportion expressions in L=.
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Proof: We �rst prove the claim for the case �0 = �[fRg for some symbol R 62 �. Let � 2 L(�)

be an arbitrary sentence. A world over �0 determines the denotations of the symbols in �, and

the denotation of R. Let r be the number of possible denotations of R over a domain of size N .

Since � does not mention R, it is easy to see that each model of � over � corresponds to r models

of � over �0, one for each possible denotation of R. Therefore, #worlds�
0

N (�) = r �#worlds�N (�).

From this, the claim follows immediately.

Now, given arbitrary � and �0, a straightforward induction on the cardinality of �0 � �

#worlds�N ('^ KB)

#worlds�N (KB)
=

#worlds�[�
0

N ('^ KB)

#worlds�[�
0

N (KB)
:

A similar argument for
#worlds�

0

N ('^KB)

#worlds�
0

N (KB)
proves the result.

Since for most of our discussion we are interested the case of a �xed �nite vocabulary, we

will eliminate the dependence on � in #worlds~�N(�).

Typically, we know neither N nor ~� exactly. All we know is that N is \large" and

that ~� is \small". Thus, we would like to take our degree of belief in ' given KB to be

lim
~�!~0 limN!1 Pr~�N ('jKB). Notice that the order of the two limits over ~� and N is im-

portant. If the limit lim~�!~0 appeared last, then we would gain nothing by using approximate

equality, since the result would be equivalent to treating approximate equality as exact equality.

This de�nition, however, is not su�cient; the limit may not exist. We observed above that

Pr~�N('jKB) is not always well-de�ned. In particular, it may be the case that for certain values

of ~� , Pr~�N ('jKB) is not well-de�ned for arbitrarily large N . In order to deal with this problem

of well-de�nedness, we de�ne KB to be eventually consistent if for all su�ciently small ~� and

su�ciently large N , #worlds~�N (KB) > 0. Among other things, eventual consistency implies

that the KB is satis�able in �nite domains of arbitrarily large size. For example, a KB stating

that \there are exactly 7 domain elements" is not eventually consistent. For most of this thesis,

we assume that all knowledge bases are eventually consistent.

Even if KB is eventually consistent, the limit may not exist. For example, it may be the

case that Pr~�N ('jKB) oscillates between � + �i and � � �i for some i as N gets large. In this

case, for any particular ~� , the limit as N grows will not exist. However, it seems as if the limit

as ~� grows small \should", in this case, be �, since the oscillations about � go to 0. We avoid

such problems by considering the lim sup and lim inf, rather than the limit. For any set S � IR,

the in�mum of S, inf S, is the greatest lower bound of S. The lim inf of a sequence is the limit

of the in�mums; that is,

lim inf
N!1

aN = lim
N!1

inffai : i > Ng:

The lim inf exists for any sequence bounded from below, even if the limit does not. The lim

sup is de�ned analogously, where supS denotes the least upper bound of S. If limN!1 aN does

exist, then limN!1 aN = lim infN!1 aN = lim supN!1 aN . Since, for any ~� , the sequence

Pr~�N('jKB) is always bounded from above and below, the lim sup and lim inf always exist.

Thus, we do not have to worry about the problem of nonexistence for particular values of ~� .

We can now present the �nal form of our de�nition.
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De�nition 3.2.2: If

lim
~�!~0

lim inf
N!1

Pr~�N ('jKB) and lim
~�!~0

lim sup
N!1

Pr~�N ('jKB)

both exist and are equal, then the degree of belief in ' given KB , written Pr1('jKB), is de�ned

as the common limit; otherwise Pr1('jKB) does not exist.

We point out that, even using this de�nition, there are many cases where the degree of belief

does not exist. However, as some of our examples show, in many situations the nonexistence

of a degree of belief can be understood intuitively, and is sometimes related to the existence of

multiple extensions of a default theory (see Sections 3.3 and 4.3).

We remark that Shastri [Sha89] used a somewhat similar approach to de�ning degrees of

belief. His language does not allow us to talk about statistical information directly, but does

allow us to talk about the number of domain individuals that satisfy a given predicate. He

then gives a de�nition of degree of belief similar to ours. Since he has no notion of approximate

equality in his language, and presumes a �xed domain size, he does not have to deal with limits

as we do.

3.3 Statistical interpretation for defaults

As we mentioned in the introduction, there are many similarities between direct inference from

statistical information and default reasoning. In order to capitalize on this observation, and

use random worlds as a default reasoning system, we need to interpret defaults as statistical

statements. However, �nding the appropriate statistical interpretation is not straightforward.

For example, as is well known, if we interpret \Birds typically 
y" as \Most (i.e., more than

50% of) birds 
y", then we get a default system that fails to satisfy some of the most basic

desiderata, such as the And rule, discussed in Section 2.2.2. Using a higher �xed threshold in

a straightforward way does not help. More successfully, Adams [Ada75], and later Ge�ner and

Pearl [GP90], suggested an interpretation of defaults based on \almost all". In their framework,

this is done using extreme probabilities | conditional probabilities that are arbitrarily close to

1: i.e., within 1� � for some �, and considering the limit as � ! 0. The basic system derived

from this idea is called �-semantics. Later, stronger systems (ones able to make more inferences)

based on the same probabilistic idea were introduced (see Pearl [Pea89] for a survey).

The intuition behind �-semantics and its extensions is statistical. However, since the lan-

guage used in these approaches is propositional, this intuition cannot be expressed directly.

Indeed, these approaches typically make no distinction between the statistical nature of the

default and the degree of belief nature of the default conclusion. Nevertheless, there is a sense

in which we can view our approach as the generalization of one of the extensions of �-semantics,

namely the maximum-entropy approach of Goldszmidt, Morris, and Pearl [GMP90], to the

�rst-order setting. This issue is discussed in more detail in Section 7.2.3, where it is shown that

this maximum-entropy approach can be embedded in our framework.
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Of course, the fact that our syntax is so rich allows us to express a great deal of information

that simply cannot be expressed in any propositional approach. We observed earlier that a

propositional approach that distinguishes between default knowledge and contextual knowledge

has di�culty in dealing with the elephant-zookeeper example (see Section 2.2.4). This example

is easily dealt with in our framework.

Example 3.3.1: The following knowledge base, KB likes, is a formalization of the elephant-

zookeeper example. Recall, this problem concerns the defaults that \Elephants typically like

zookeepers", but \Elephants typically do not like Fred". As discussed earlier, simply expressing

this knowledge sensibly can be a considerable challenge. We have no problems, however:

kLikes(x; y)jElephant(x)^ Zookeeper(y)kx;y �1 1 ^
kLikes(x;Fred)jElephant(x)kx �2 0 ^
Zookeeper(Fred):

Furthermore, our interpretation of defaults allows us to deal well with interactions between

�rst-order quanti�ers and defaults.

Example 3.3.2: We may know that people who have at least one tall parent tend to be tall.

This default can easily be expressed in our language:

kTall(x)j9y (Child(x; y)^ Tall(y))kx �i 1:

We can even de�ne defaults over classes themselves de�ned using default rules (as described by

Morreau [Mor93]).

Example 3.3.3: In Section 2.2.4, we describe the problems associated with de�ning the nested

default \Typically, people who normally go to bed late normally rise late." To express this

default in our formalism, we simply use nested proportion statements: The individuals who

normally rise late are the ones who rise late most days. Thus, they are the x's satisfying

kRises-late(x; y)jDay(y)ky �1 1; similarly, the individuals who go to bed late are the x's sat-

isfying kTo-bed-late(x; y0)jDay(y0)ky0 �2 1. Interpreting \typically" as \almost all", we can

capture the default by saying most x's that go to bed late also rise late. That is, using the

knowledge base KB late:

k (kRises-late(x; y)jDay(y)ky �1 1) j (kTo-bed-late(x; y0)jDay(y0)ky0 �2 1) kx �3 1:

On the other hand, the related default that \Typically, people who go to bed late rise late

(i.e., the next morning)" can be expressed as:

k 8y0 (Next-day(y0; y)) Rises-late(x; y0)) jDay(y) ^ To-bed-late(x; y)kx;y �1 1;

which is clearly di�erent from the �rst default.
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Properties of random worlds

We now show that the random-worlds method validates several desirable reasoning patterns,

including essentially all of those discussed in Sections 2.1 and 2.2. As we have seen, this suc-

cess contrasts with many other theories of reference-class and default reasoning. Furthermore,

all properties we validate are derived theorems, rather than being deliberately built into the

reasoning process. We also note that all the results in this section hold for our language in

its full generality: the formulas can contain arbitrary non-unary predicates, and have nested

quanti�ers and proportion statements. Finally, we note that the theorems we state are not the

most general ones possible. It is quite easy to construct examples for which the conditions of

the theorems do not hold, but random worlds still gives the intuitively plausible answer. Thus,

we can clearly �nd other theorems that deal with additional cases. The main di�culty in doing

this is in �nding conditions that are easy to state and check, and yet cover an interestingly large

class of examples. The problems in doing do are a direct consequence of the richness of our

language. There are many interesting properties that hold in most cases, and which we would

like to formally state and prove. Unfortunately, these properties are not universally true: we

can use the expressive power of our language to construct counter-examples to them. These

examples are ones that would never come up in a real knowledge base, but it is very di�cult to

�nd syntactic conditions that disallow them. This is why we have concentrated on the simple,

but nevertheless quite powerful, theorems we state below.

4.1 Random worlds and default reasoning

In this subsection, we focus on formulas which are assigned degree of belief 1. Given any

knowledge base KB (which can, in particular, include defaults using the statistical interpreta-

tion of Section 3.3), we say that ' is a default conclusion from KB , and write KB j�rw ', if

Pr1('jKB) = 1. As we now show, the relation j�rw satis�es all the basic properties of default

inference discussed in Section 2.2.2. We start by proving two somewhat more general results.

Proposition 4.1.1: If j= KB , KB 0, then Pr1('jKB) = Pr1('jKB0) for all formulas '.

34
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Proof: By assumption, precisely the same set of worlds satisfy KB and KB 0. Therefore, for

all N and ~� , Pr~�N('jKB) and Pr~�N ('jKB0) are equal. Therefore, the limits are also equal.

Proposition 4.1.2: If KB j�rw �, then Pr1('jKB) = Pr1('jKB ^ �) for any '.

Proof: Fix N and ~� . Then, by standard properties of conditional probability, we get

Pr~�N ('jKB) = Pr~�N('jKB ^ �) �Pr~�N (�jKB) + Pr~�N('jKB ^ :�) � Pr~�N(:�jKB):

By assumption, Pr~�N (�jKB) tends to 1 when we take limits, so the �rst term tends to Pr~�N('jKB^
�). On the other hand, Pr~�N (:�jKB) has limit 0. Because Pr~�N ('jKB ^ :�) is bounded, we

conclude that the second summand also tends to 0. The result follows.

Theorem 4.1.3: The relation j�rw satis�es the properties of And, Cautious Monotonicity,

Cut, Left Logical Equivalence, Or, Re
exivity, and Right Weakening.

Proof:

And: As we mentioned earlier, this follows from the other properties proved below.

Cautious Monotonicity and Cut: These follow immediately from Proposition 4.1.2.

Left Logical Equivalence: Follows immediately from Proposition 4.1.1.

Or: Assume Pr1('jKB) = Pr1('jKB0) = 1, so that Pr1(:'jKB) = Pr1(:'jKB 0) = 0. Fix

N and ~� . Then

Pr~�N (:'jKB _KB 0) = Pr~�N (:' ^ (KB _KB 0)jKB _ KB 0)
� Pr~�N (:' ^KB jKB _ KB 0) + Pr~�N (:' ^KB 0jKB _KB 0)
� Pr~�N (:'jKB) + Pr~�N (:'jKB0):

Taking limits, we conclude that (KB _KB 0) j�rw '.

Re
exivity: Because we restrict attention to KB 's that are eventually consistent, Pr1(KB jKB)

is well-de�ned. But then Pr1(KB jKB) is clearly equal to 1.

Right Weakening: Suppose Pr1('jKB) = 1. If j= ' ) '0, then the set of worlds satisfying '0

is a superset of the set of worlds satisfying '. Therefore, for any N and ~� , Pr~�N ('0jKB) �
Pr~�N ('jKB). Taking limits, we obtain that

1 � Pr1('0jKB) � Pr1('jKB) = 1;

and so necessarily Pr1('0jKB) = 1.
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Besides demonstrating that j�rw satis�es the minimal standards of reasonableness for a

default inference relation, these properties, particularly the stronger form of Cut and Cautious

Monotonicity proved in Proposition 4.1.2, will prove quite useful in computing degrees of belief,

especially when combined with some other properties we prove below (see also Section 8.1.4).

In particular, many of our later results show how random-worlds behaves for knowledge bases

and queries that have certain restricted forms. Sometimes a KB that does not satisfy these

requirements can be changed into one that does, simply by extending KB with some of its

default conclusions. We then appeal to Proposition 4.1.2 to justify using the new knowledge

base instead of the old one. The other rules can also be useful in certain cases, as shown in the

following analysis of Poole's \broken-arm" example [Poo89].

Example 4.1.4: Suppose we have predicates LeftUsable, LeftBroken, RightUsable, RightBroken,

indicating, respectively, that the left hand is usable, the left hand is broken, the right hand is

usable, and the right hand is broken. Let KB 0arm consist of the statements

� jjLeftUsable(x)jjx � 1, kLeftUsable(x)jLeftBroken(x)kx � 0 (left hands are typically us-

able, but not if they are broken),

� jjRightUsable(x)jjx � 1, kRightUsable(x)jRightBroken(x)kx � 0 (right hands are typically

usable, but not if they are broken).

Now, consider KBarm = (KB 0arm ^ (LeftBroken(Eric) _ RightBroken(Eric))); that is, we know

that Eric has a broken arm. Poole observes that if we use Reiter's default logic, there is precisely

one extension of KBarm, and in that extension, both arms are usable. However, it is easy to

see that

KB 0arm ^ LeftBroken(Eric) j�rw :LeftUsable(Eric) _ :RightUsable(Eric)

(this is a simple conclusion of Theorem 4.2.1); the same conclusion is obtained from KB 0arm ^
RightBroken(Eric). By the Or rule, it follows that

KBarm j�rw :LeftUsable(Eric) _ :RightUsable(Eric):

Using similar reasoning, we can also show that

KBarm j�rw LeftUsable(Eric) _ RightUsable(Eric):

By applying the And rule, we conclude by default from KBarm that exactly one of Eric's hands

is usable (although we do not know which one).

The �nal property mentioned in Section 2.2.2 is Rational Monotonicity. Recall that Rational

Monotonicity asserts that if KB j�rw ' and KB j6�rw :� then (KB ^�) j�rw '. We cannot prove

that random worlds satis�es Rational Monotonicity in full generality. The problem lies with the

clause KB j6�rw :�, which is an abbreviation for Pr1(:�jKB) 6= 1. Now there are two reasons

that we might have Pr1(:�jKB) 6= 1. The �rst is that Pr1(:�jKB) = � < 1; the second is
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that the limit does not exist. In the former case, which is what typically arises in the examples

of interest to us, Rational Monotonicity does hold, as we show below. In the latter case it may

not, since if Pr1(:�jKB) does not have a limiting value, then Pr1('jKB ^ �) may not have

a limit either (although if it does have a limit, its value must be 1). We point out that the

same problem is encountered by other formalisms, for example by �-semantics. Thus, we get

the following restricted form of Rational Monotonicity:

Theorem 4.1.5: Assume that KB j�rw ' and KB j6�rw :�. Then KB ^ � j�rw ' provided that

Pr1('jKB ^ �) exists. Moreover, a su�cient condition for Pr1('jKB ^ �) to exist is that

Pr1(�jKB) exists.

4.2 Speci�city and inheritance in random worlds

One way of using random worlds is to form conclusions about particular individuals, using

general statistical knowledge. This is, of course, the type of reasoning reference-class theories

were designed to deal with. Recall, these theories aim to discover a single local piece of data

| the statistics for a single reference class | that captures all the relevant information. This

idea is also useful in default reasoning, where we sometimes want to �nd a single appropriate

default. Random worlds rejects this idea as a general approach, but supports it as a valuable

heuristic in special cases.

In this section, we give two theorems covering some of these cases where random worlds

agrees with the basic philosophy of reference classes. Both results concern speci�city | the

idea of using the \smallest" relevant reference class for which we have statistics. However,

both results also allow some indi�erence to irrelevance information. In particular, the second

theorem also covers certain forms of inheritance (as described in Section 2.2.3). The results

cover almost all of the noncontroversial applications of speci�city and inheritance that we are

aware of, and do not su�er from any of the commonly found problems such as the disjunctive

reference class problem (see Section 2.1.2). Because our theorems are derived properties rather

than postulates, consistency is assured and there are no ad hoc syntactic restrictions on the

choice of possible reference classes.

Our �rst, and simpler, result is basic direct inference, where we have a single reference class

that is precisely the \right one". That is, assume that the assertion  (c) represents everything

the knowledge base tells us about the constant c. In this case, we can view the class de�ned by

 (x) as the class of all individuals who are \just like c". If we have adequate statistics for the

class  (x), then we should clearly use this information. For example, assume that all we know

about Eric is that he exhibits jaundice, and let  represent the class of patients with jaundice.

If we know that 80% of patients with jaundice exhibit hepatitis, then basic direct inference

would dictate a degree of belief of 0:8 in Eric having hepatitis. We would, in fact, like this to

hold regardless of any other information we might have in the knowledge base. For example, we

may know the proportion of hepatitis among patients in general, or that patients with jaundice

and fever typically have hepatitis. But if all we know about Eric is that he has jaundice, we

would still like to use the statistics for this class, regardless of this additional information.
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Our result essentially asserts the following: \If we are interested in obtaining a degree of

belief in '(c), and the KB is of the form  (c)^ k'(x)j'(x)kx � � ^ KB 0, then conclude that

Pr1('(c)jKB) = �." Clearly, in order for the result to hold we must make certain assumptions.

The �rst is that  (c) represents all the information we have about c. This intuition is formalized

by assuming that KB 0 does not mention c. However, we need to make two other assumptions:

that c also does not appear in either '(x) or  (x). To understand why c cannot appear in

'(x), suppose that '(x) is Q(x) _ x = c,  (x) is true, and the KB is k'(x)jtruek�10:5. If the

result held in this case, we would be able to conclude that Pr1('(c)jKB) = 0:5. But since

'(c) holds vacuously, we actually obtain that Pr1('(c)jKB) = 1. To see why the constant c

cannot appear in  (x), suppose that  (x) is P (x) _ (x 6= c ^ :P (x)), '(x) is :P (x), and the

KB is  (c) ^ k:P (x)j (x)kx �2 0:5. Again, if the result held, we would be able to conclude

that Pr1(:P (c)jKB) = 0:5. But  (c) is equivalent to P (c), so in fact Pr1(:P (c)jKB) = 0.

As we now, these assumption su�ce to guarantee the desired result. In fact, the theorem

generalizes the basic principle to properties and classes dealing with more than one individual

at a time (as is shown in some of the examples following the theorem). In the following, let

~x = fx1; : : : ; xkg and ~c = fc1; : : : ; ckg be sets of distinct variables and distinct constants,

respectively.

Theorem 4.2.1: Let KB be a knowledge base of the form  (~c )^KB 0, and assume that for all

su�ciently small tolerance vectors ~� ,

KB [~� ] j= k'(~x)j (~x)k~x 2 [�; �]:

If no constant in ~c appears in KB 0, in '(~x), or in  (~x), then Pr1('(~c )jKB) 2 [�; �].

Proof: First, �x any su�ciently small tolerance vector ~� , and consider a domain size N for

which KB [~� ] is satis�able. The proof strategy is to partition the size N worlds that satisfy

KB [~� ] into disjoint clusters and then prove that, within each cluster, the probability of '(~c )

given KB [~� ] is in the range [�; �]. From this, we can show that the (unpartitioned) probability

is in this range also.

The size N worlds satisfying KB [~� ] are partitioned so that two worlds are in the same

cluster if and only if they agree on the denotation of all symbols in the vocabulary � except for

the constants in ~c . Now consider one such cluster, and let A � f1; : : : ; Ngk be the denotation

of  (~x) inside the cluster. That is, if W is a world in the cluster, then

A = f(d1; : : : ; dk) 2 f1; : : : ; Ngk : (W;~�) j=  (d1; : : : ; dk)g:

Note that, since  (~x) does not mention any of the constants in ~c , and the denotation of

everything else is �xed throughout the cluster, the set A is independent of the world W chosen

in its de�nition. Similarly, let B � A be the denotation of '(~x) ^  (~x) in the cluster. Since

the worlds in the cluster all satisfy KB [~� ], and KB [~� ] j= k'(~x)j (~x)k~x 2 [�; �], we know that

jBj=jAj 2 [�; �]. Since none of the constants in ~c are mentioned in KB except for the statement

 (~c ), each k-tuple in A is a legal denotation for ~c . There is precisely one world in the cluster
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for each such denotation, and all worlds in the cluster are of this form. Among those worlds,

only those corresponding to tuples in B satisfy '(~c ). Therefore, the fraction of worlds in the

cluster satisfying '(~c ) is jBj=jAj 2 [�; �].

The probability Pr~�N('(~c )jKB) is a weighted average of the probabilities within the indi-

vidual clusters, so it also has to be in the range [�; �].

It follows that lim infN!1 Pr~�N ('(~c )jKB) and lim supN!1 Pr~�N ('(~c )jKB) are also in the

range [�; �]. Since this holds for every su�ciently small ~� , we conclude that if both limits

lim
~�!~0

lim inf
N!1

Pr~�N ('(~c )jKB) and lim
~�!~0

lim sup
N!1

Pr~�N('jKB)

exist and are equal, then Pr1('(~c )jKB) has to be in the range [�; �], as desired.

This theorem refers to any statistical information about k'(~x)j (~x)k~x that can be inferred

from the knowledge base. An important special case is when the knowledge base explicitly

contains the relevant information.

Corollary 4.2.2: Let KB 0 be the conjunction

 (~c ) ^ (� �i k'(~x)j (~x)k~x �j �) :

Let KB be a knowledge base of the form KB 0^KB 00 such that no constant in ~c appears in KB 00,

in '(~x), or in  (~x). Then

Pr1('(~c )jKB) 2 [�; �]:

Proof: Let � > 0, and let ~� be su�ciently small that �i; �j < �. For this ~� , the formula

(� �i k'(~x)j (~x)k~x �j �) implies k'(~x)j (~x)k~x 2 [�� �; � + �]. Therefore, by Theorem 4.2.1,

Pr1('(~c )jKB) 2 [�� �; �+ �]. But since this holds for any � > 0, it is necessarily the case that

Pr1('(~c )jKB) 2 [�; �].

It is interesteing to note one way in which our result diverges from the reference-class

paradigm. Suppose we consider a query '(c), and that our knowledge base KB is as in the

hypothesis of Corollary 4.2.2. While we can indeed conclude that Pr1('(~c )jKB) 2 [�; �], the

exact value of this degree of belief depends on the other information in the knowledge base.

Thus, while random worlds uses the local information � �i k'(x)j (x)kx �j �, it does not

ignore the rest of the knowledge base. On the other hand, if the interval [�; �] is su�ciently

small (and, in particular, when � = �), then we may not care exactly where in the interval

the degree of belief lies. In this case, we can ignore all the information in KB 0, and use the

single piece of local information for computing the degree of belief. This potential ability to

ignore large parts of the knowledge base may lead to important computational bene�ts (see

also Section 8.1.4).

We now present a number of examples that demonstrate the behavior of the direct inference

result.
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Example 4.2.3: Consider a knowledge base describing the hepatitis example discussed earlier.

In the notation of Corollary 4.2.2:

KB 0hep = Jaun(Eric) ^ kHep(x)jJaun(x)kx �1 0:8;

and

KBhep = KB 0hep ^ jjHep(x)jj�20:05 ^
kHep(x)jJaun(x)^ Fever(x)kx �2 1:

Then Pr1(Hep(Eric)jKBhep) = 0:8 as desired; information about other reference classes (whe-

ther more general or more speci�c) ignored. Other kinds of information are also ignored, for

example, information about other individuals. Thus,

Pr1(Hep(Eric)jKBhep ^Hep(Tom)) = 0:8:

Although it is nothing but an immediate application of Theorem 4.2.1, it is worth remarking

that the principle of Direct Inference for Defaults (Section 2.2.3) is satis�ed by random-worlds:

Corollary 4.2.4: Suppose KB implies k'(~x)j (~x)k~x �i 1, and no constant in ~c appears in

KB, ', or  . Then Pr1('(~c )jKB ^  (~c )) = 1.

As discussed in Section 2.2.3, this shows that simple forms of inheritance reasoning are possible.

Example 4.2.5: The knowledge base KB
y from Section 2.2.3 is, under our interpretation of

defaults:
kFly(x)jBird(x)kx �1 1 ^
kFly(x)jPenguin(x)kx �2 0 ^
8x (Penguin(x)) Bird(x)):

Then Pr1(Fly(Tweety)jKB
y ^ Penguin(Tweety)) = 0. That is, we conclude that Tweety the

penguin does not 
y, even though he is also a bird and birds generally do 
y.

Given this preference for the most speci�c reference class, one might wonder why random

worlds does not encounter the problem of disjunctive reference classes (see Section 2.1.2). The

following example, based on the example from Section 2.1.2, provides one answer.

Example 4.2.6: Recall the knowledge base KB 0hep from the hepatitis example above, and

consider the reference class  (x) =def Jaun(x)^ (:Hep(x)_ x = Eric). Clearly, as the domain

size grows large, kHep(x)j (x)kx grows arbitrarily close to 0.1 Therefore, for any �xed � > 0,

Pr1
�
kHep(x)j (x)kx 2 [0; �]

���KB 0hep� = 1:

1This actually relies on the fact that, with high probability, the proportion (as the domain size grows)

of jaundiced patients with hepatitis is nonzero. We do not prove this fact here; see [PV89] and the related

discussion in Chapter 7.
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From Theorem 4.1.3, by Cautious Monotonicity and Cut we can assume (for the purposes of

making further inferences) that KB 0hep actually contains this assertion. Moreover,  (Eric) is

Jaun(Eric)^ (:Hep(Eric)_Eric = Eric), which is equivalent to Jaun(Eric): i.e., precisely the

information about Eric in KB 0hep. Therefore  (x) would appear to be a more speci�c reference

class for Hep(Eric) than Jaun(x), and with very di�erent statistics. But in Example 4.2.3

we showed that Pr1(Hep(Eric)jKB 0hep) = 0:8. So random worlds avoids using the spurious

disjunctive reference class  (x). This is explained by noting that the reference class  (x) class

violates the conditions of Theorem 4.2.1 because it explicitly mentions the constant Eric. It

is worth pointing out that, in this example, the real problem is not disjunction at all. Indeed,

disjunctive classes that are not improperly de�ned (by referring to the constants) are not

ignored; see Example 4.2.17.

As we have said, we are not limited to unary predicates, nor to examining only one individual

at a time.

Example 4.2.7: In Example 3.3.1, we showed how to formalize the elephant-zookeeper example

discussed in Section 2.2.4. As we now show, the natural representation of KB likes indeed yields

the answers we expect. Suppose we know that Elephant(Clyde) and Zookeeper(Eric). We

consider two queries. First, assume we are interested in �nding out whether Clyde likes Eric. In

this case, our reference class  (x; y) is Elephant(x)^Zookeeper(y). Based on the �rst statement

in KB likes, Corollary 4.2.4 allows us to conclude that Pr1(Likes(Clyde;Eric)jKB likes) = 1.

But does Clyde like Fred? In this case, our reference class is  (x) = Elephant(x), and by

Corollary 4.2.4, we use the second default to conclude Pr1(Likes(Clyde;Fred)jKB likes) = 0.

Note that we cannot use the same reasoning for Fred as we did for Eric in order to conclude

that Clyde likes Fred. If we try to apply the reference class Elephant(x)^ Zookeeper(y) to the

pair (Clyde;Fred), the conditions of the corollary are violated, because the constant Fred is

used elsewhere in the knowledge base.

The same principles continue to hold for more complex sentences; for example, we can mix

�rst-order logic and statistical knowledge arbitrarily and we can nest defaults.

Example 4.2.8 : In Example 3.3.2, we showed how to express the default: \People who

have at least one tall parent are typically tall." If we have this default, and also know that

9y (Child(Alice; y) ^ Tall(y)) (Alice has a tall parent), Corollary 4.2.4 tells us that we could

conclude by default that Tall(Alice).

Example 4.2.9: In Example 3.3.3, we showed how the default \Typically, people who normally

go to bed late normally rise late" can be expressed in our language using the knowledge base

KB late. Let KB 0late be

KB late ^
kTo-bed-late(Alice; y0)jDay(y0)ky0 �2 1 ^
Day(Tomorrow):
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By Corollary 4.2.4, Alice typically rises late. That is,

Pr1(kRises-late(x; y)jDay(y)ky �1 1 jKB 0late) = 1:

By Cautious Monotonicity and Cut, we can add this conclusion (which is itself a default) to

KB 0late. By Corollary 4.2.4 again, we then conclude that Alice can be expected to rise late on

any particular day. So, for instance:

Pr1(Rises-late(Alice;Tomorrow)jKB 0late) = 1:

In all the examples presented so far in this section, we have statistics for precisely the right

reference class to match our knowledge about the individual(s) in question; Theorem 4.2.1

and its corollaries require this. Unfortunately, in many cases our statistical information is not

detailed enough for Theorem 4.2.1 to apply. Consider the knowledge base KBhep from the

hepatitis example. Here we have statistics for the occurrence of hepatitis among the class of

patients who are just like Eric, so we can use those to induce a degree of belief in Hep(Eric).

But now consider the knowledge base KBhep ^ Tall(Eric). Since we do not have statistics for

the frequency of tall patients with hepatitis, the results we have seen so far do not apply. We

would like to be able to ignore Tall(Eric). But what entitles us to ignore Tall(Eric) and not

Jaun(Eric)? To solve this problem in complete generality requires a better theory of irrelevance

than we currently have. Nevertheless, our next theorem covers many cases, including many of

the more uncontroversial examples found in the default reasoning literature.

The theorem we present deals with a knowledge base KB that de�nes a \minimal" reference

class  0 with respect to the query '(c). More precisely, assume that KB gives statistical

information regarding k'(x)j i(x)kx for a number of di�erent reference classes  i(x). However,

among these classes, there is one class  0(x) that is minimal | all other reference classes are

strictly larger or entirely disjoint from it (see Figure 4.1 for an illustration). If we also know

 0(c), we can use the statistics for k'(x)j 0(x)kx to induce a degree of belief in '(c). This type

of reasoning is best explained using an example:

Example 4.2.10: Assume we have a knowledge base KB taxonomy containing information about

birds and animals; in particular, KB taxonomy contains a taxonomic hierarchy of this domain.

Moreover, KB taxonomy contains the following information about the swimming ability of various

types of animals:
kSwims(x)jPenguin(x)kx �1 0:9 ^
kSwims(x)jSparrow(x)kx �2 0:01 ^
kSwims(x)jBird(x)kx �3 0:05 ^
kSwims(x)jAnimal(x)kx �4 0:3 ^
kSwims(x)jFish(x)kx �5 1:

If we also know that Opus is a penguin, then in order to determine whether Opus swims, the

best reference class is surely the class of penguins. The remaining reference classes are either

larger (in the case of birds or animals), or disjoint (in the case of sparrows and �sh). This is

the case even if we know that Opus is a black penguin with a large nose. That is, Opus inherits
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Minimal reference class Other reference class

Figure 4.1: Possible relations between a minimal reference class and another reference class

the statistics for the minimal class  0 | penguins | even though the class of individuals just

like Opus is smaller than  0.

That random-worlds validates this intuition is formalized in the following theorem.

Theorem 4.2.11: Let c be a constant and let KB be a knowledge base satisfying the following

conditions:

(a) KB j=  0(c),

(b) for any expression of the form k'(x)j (x)kx in KB, it is the case that either KB j=  0 )
 or that KB j=  0 ) : ,

(c) the (predicate and constant) symbols in '(x) appear in KB only on the left-hand side of

the conditional in the proportion expressions described in condition (b),

(d) the constant c does not appear in the formula '(x).

Assume that for all su�ciently small tolerance vectors ~� :

KB [~� ] j= k'(x)j 0(x)kx 2 [�; �]:

Then Pr1('(c)jKB) 2 [�; �].

The proof of this theorem is based on the same clustering argument used in the proof of

Theorem 4.2.1, but with a di�erent de�nition of the cluster. See Appendix A for the complete

proof.

Again, the following analogue to Corollary 4.2.2 is immediate:
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Corollary 4.2.12: Let KB 0 be the conjunction

 0(c)^ (� �i k'(x)j 0(x)kx �j �):

Let KB be a knowledge base of the form KB 0 ^ KB 00 that satis�es conditions (b), (c), and (d)

of Theorem 4.2.11. Then

Pr1('(c)jKB) 2 [�; �]:

This theorem and corollary have many useful applications.

Example 4.2.13: Consider the knowledge bases KB 0hep and KBhep concerning jaundice and

hepatitis from Example 4.2.3. In that example, we supposed that the only information about

Eric contained in the knowledge base was that Eric has jaundice. It is clearly more realistic to

assume that Eric's hospital records contain more information than just this fact. This theorem

allows us to ignore this information in a large number of cases.

For example,

Pr1(Hep(Eric)jKB 0hep ^ Fever(Eric) ^ Tall(Eric)) = 0:8;

as desired. On the other hand,

Pr1(Hep(Eric)jKBhep ^ Fever(Eric)^ Tall(Eric)) = 1:

(Recall that KBhep includes kHep(x)jJaun(x)^ Fever(x)kx �2 1, while KB 0hep does not.) This

shows why it is important that we identify the most speci�c reference class for the query '. The

most speci�c reference class for Hep(Eric) with respect to KB 0hep ^ Fever(Eric) ^ Tall(Eric)

is kHep(x)jJaun(x)kx �1 0:8, while with respect to KBhep ^ Fever(Eric) ^ Tall(Eric) it is

kHep(x)jJaun(x)^ Fever(x)kx �2 1. In the latter case, the less-speci�c reference classes Jaun

and true are ignored.

As discussed in Section 2.2.3, various inheritance properties are considered desirable in

default reasoning as well. To begin with, we note that Theorem 4.2.11 covers the simpler cases

(which can also be seen as applications of rational monotonicity):

Example 4.2.14: In simple cases, Theorem 4.2.11 shows that random worlds is able to apply

defaults in the presence of \obviously irrelevant" additional information. For example, using

the knowledge base KB
y (see Example 4.2.5):

Pr1(Fly(Tweety)jKB 0
y ^ Penguin(Tweety)^ Yellow(Tweety)) = 0:

That is, Tweety the yellow penguin continues not to 
y.

Theorem 4.2.11 also validates the more di�cult reasoning patterns that have caused problems

for many default reasoning theories. In particular, we validate exceptional-subclass inheritance,

in which a class that is exceptional in one respect can nevertheless inherit other unrelated

properties:
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Example 4.2.15: If we consider the property of warm-bloodedness as well as 
ight, we get:

Pr1

 
Warm-blooded (Tweety)

����� KB
y ^ Penguin(Tweety) ^
kWarm-blooded(x)jBird(x)kx �3 1

!
= 1:

Knowing that Tweety does not 
y because he is a penguin does not prevent us from assuming

that he is like typical birds in other respects.

The drowning-problem variant of the exceptional-subclass inheritance problem is also covered

by the theorem.

Example 4.2.16: Suppose we know, as in Section 2.2.3, that yellow things tend to be highly

visible. Then:

Pr1

 
Easy-to-see(Tweety)

����� KB
y ^ Penguin(Tweety)^ Yellow(Tweety) ^
kEasy-to-see(x)jYellow(x)kx �3 1

!
= 1:

Here, all that matters is that Tweety is a yellow object. The fact that he is a bird, and an

exceptional bird at that, is rightly ignored.

Notice that, unlike Theorem 4.2.1, the conditions of Theorem 4.2.11 do not extend to

inferring degrees of belief in '(~c ), where ~c is a tuple of constants. Roughly speaking, the

reason is the ability of the language to create connections between the di�erent constants in the

tuple. For example, let  0(x1; x2) be true, and let KB 0 be jjHep(x) ^ :Hep(y)jjx;y �1 0:3. By

Theorem 4.2.1, Pr1(Hep(Tom) ^ :Hep(Eric)jKB 0) = 0:3. But, of course, Pr1(Hep(Tom) ^
:Hep(Eric)jKB 0 ^ Tom = Eric) = 0. The additional information regarding Tom and Eric

cannot be ignored. This example might suggest that this is a minor problem related only

to the use of equality, but more complex examples that do not mention equality can also be

constructed.

As a �nal example in this section, we revisit the issue of disjunctive reference classes. As

we saw in Example 4.2.6, random worlds does not su�er from the \disjunctive reference class"

problem. As we observed in Section 2.1.2, some systems often avoid this problem by simply

outlawing disjunctive reference classes. However, as the following example demonstrates, such

classes can often be useful. The example demonstrates that random worlds does, in fact, treat

disjunctive reference classes appropriately.

Example 4.2.17: Recall that in Section 2.1.2 we motivated the importance of disjunctive

reference classes using, as an example, the disease Tay-sachs. The corresponding statistical

information was represented, in our framework, as the knowledge base KB :

kTS(x)jEEJ (x)_ FC(x)kx �1 0:02:

Given a baby Eric of eastern-European extraction, Theorem 4.2.11 shows us that

Pr1(TS(Eric)jKB ^ EEJ (Eric)) = 0:02:
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That is, random worlds is able to use the information derived from the disjunctive reference

class, and apply it to an individual known to be in the class; indeed, it also deals with the case

where we have additional information determining to which of the two populations this speci�c

individual belongs. Thus, disjunctive reference classes are treated as is any other \legitimate"

reference class (one that does not mention the constants in the query).

The type of speci�city and inheritance reasoning convered by our theorems are special cases

of general inheritance reasoning [THT87]. While these theorems show that random worlds

does validate a substantial part of the noncontroversial aspects of such reasoning, proving a

general theorem asserting this claim is surprisingly subtle (partly because of the existence

of numerous divergent semantics and intuitions for inheritance reasoning [THT87]). We are

currently working on proving such a general claim. We do point out, however, that random

worlds does not validate the generalization of inheritance reasoning to the statistical context.

As shown in Example 4.3.3, we do not get, nor do we want, simple inheritance in all contexts

involving statistical information.

4.3 Competing reference classes

In previous sections we have always been careful to consider examples in which there was an

obviously best reference class. In practice, we will not always be this fortunate. Reference-class

theories usually cannot give useful answers when there are competing candidates for the \best"

class. However, random worlds does not have this problem, because the degrees of belief it

de�nes can be combinations of the values for competing classes. In this section we examine, in

very general terms, three types of competing information. The �rst concerns con
icts between

speci�city and accuracy, the second between information that is too speci�c and information

that is too general, and the last concerns competing classes where the speci�city principle is

entirely irrelevant.

We discussed the con
ict between speci�city and accuracy in Section 2.1.3. This problem

was noticed by Kyburg who, to some extent, successfully addresses this issue with his strength

rule. In Section 2.1.3, we argued that, in order to assign a degree of belief to Chirps(Tweety), we

should be able to use the tighter interval [0:7; 0:8] even though it is associated with a less speci�c

reference class. As we observed, Kyburg's strength rule attempts to capture this intuition. As

the following result shows, the random worlds method also captures this intuition, at least when

the reference classes form a chain.2

Theorem 4.3.1: Suppose KB has the form

m̂

i=1

(�i �`i k'(x)j i(x)kx �ri �i) ^  1(c) ^ KB 0;

2Kyburg's rule also applies to cases where the reference classes do not form a chain. In these cases, the

intuitions of the strength rule and those of random worlds diverge. We do not explore this issue further here.
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Moody Magpies: 20%

Birds: 90%

Magpies:  ??%

Figure 4.2: Competing reference classes: moody magpies vs. birds

and, for all i, KB j= 8x ( i(x) )  i+1(x)) ^ :(jj 1(x)jjx �1 0). Assume also that no symbol

appearing '(x) appears in KB 0 or in any  i(c). Further suppose that, for some j, [�j ; �j] is

the tightest interval. That is, for all i 6= j, �i < �j < �j < �i. Then

Pr1('(c)jKB) 2 [�j ; �j]:

Example 4.3.2: The example described in Section 2.1.3 is essentially captured by the following

knowledge base KB chirps:

0:7 �1 kChirps(x)jBird(x)kx �2 0:8 ^
0 �3 kChirps(x)jMagpie(x)kx �4 0:99 ^
8x (Magpie(x)) Bird(x)) ^
Magpie(Tweety):

It follows from Theorem 4.3.1 that Pr1(Chirps(Tweety)jKBchirps) 2 [0:7; 0:8].

We now consider a di�erent situation where competing reference classes come up: when one

reference class is too speci�c, and the other too general.

Example 4.3.3: We illustrate the problem with a example based on one of Goodwin [Goo92].

Consider KBmagpie (also represented in Figure 4.2):

kChirps(x)jBird(x)kx �1 0:9 ^
kChirps(x)jMagpie(x)^Moody(x)kx �2 0:2 ^
8x (Magpie(x)) Bird(x)) ^
Magpie(Tweety):
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Reference class theories would typically ignore the information about moody magpies: since

Tweety is not known to be moody, the class of moody magpies is not even a legitimate reference

class. Using such approaches, the degree of belief would be 0.9. Goodwin argues that this is not

completely reasonable: why should we ignore the information about moody magpies? Tweety

could be moody (the knowledge base leaves the question open). In fact, it it is consistent with

KBmagpie that magpies are generally moody. But ignoring the second statistic in e�ect amounts

to assuming that magpies generally are not moody. It is hard to see that this is a reasonable

assumption. The random-worlds approach supports Goodwin's intuition, and the degree of

belief that Tweety 
ies, given KBmagpie , can be shown to have a value which is less than 0.9.

As a general rule, if we do not have exactly the right reference class (as for Theorem 4.2.1), then

random worlds combines information from more speci�c classes as well as from more general

classes.

The third and most important type of con
ict is when we have di�erent candidate reference

classes which are not related by speci�city. As we argued in Section 2.1.3, this case is likely

to come up very often in practice. While the complete characterization of the behavior of

random worlds in such cases is somewhat complex, the following theorem illustrates what

happens when the competing references classes are essentially disjoint. We capture \essentially

disjoint" here by assuming that the overlap between these classes consists of precisely one

member: the individual c addressed in our query We can generalize the following theorem to

the case where we simply assume that the overlap between competing reference classes  and

 0 is small relative to the sizes of the two classes; that is, where k (x)^  0(x)j (x)kx � 0 and

k (x)^  0(x)j 0(x)kx � 0. For simplicity, we omit details here.

It turns out that, under this assumption, random worlds provides an independent derivation

for a well-known technique for combining evidence: Dempster's rule of combination [Sha76].

Dempster's rule addresses the issue of combining independent pieces of evidence. Consider a

query P (c), and assume we have competing reference classes that are all appropriate for this

query. In this case, the di�erent pieces of evidence are the proportions of the property P of

in the di�erent competing reference classes. More precisely, we can view the fact that the

proportion kP (x)j (x)kx is � as giving evidence of weight � in favor of P (c). The fact that the

intersection between the di�erent classes is \small" means that almost disjoint samples were

used to compute these pieces of evidence; thus, they can be viewed as independent. Under

this interpretation, Dempster's rule tells us how to combine the di�erent pieces of evidence

to obtain an appropriate degree of belief in P (c). The function used in Dempter's rule is

� : (0; 1)m! (0; 1), de�ned as follows:

�(�1; : : : ; �m) =

Qm
i=1 �iQm

i=1 �i +
Qm
i=1(1� �i)

:

As the following theorem shows, this is also the answer obtained by random worlds.

Theorem 4.3.4: Let P be a unary predicate, and consider a knowledge base KB of the following



4.3. COMPETING REFERENCE CLASSES 49

form:
m̂

i=1

(kP (x)j i(x)kx �i �i ^  i(c)) ^
m̂

i;j=1

i6=j

9!x ( i(x)^  j(x)) ;

where 0 < �j < 1, for j = 1; : : : ; m. Then, if neither P nor c appear anywhere in the formulas

 i(x), then

Pr1(P (c)jKB) = �(�1; : : : ; �m):

We illustrate this theorem on what is, perhaps, the most famous example of con
icting

information | the Nixon Diamond [RC81]. Suppose we are interested in assigning a degree

of belief to the assertion \Nixon is a paci�st". Assume that we know that Nixon is both a

Quaker and a Republican, and we have statistical information for the proportion of paci�sts

within both classes. This is an example where we have two incomparable reference classes for

the same query. More formally, assume that KBNixon is

kPaci�st(x)jQuaker(x)kx �1 � ^
kPaci�st(x)jRepublican(x)kx �2 � ^
Quaker(Nixon) ^ Republican(Nixon) ^
9!x (Quaker(x) ^ Republican(x)) ;

and that ' is Paci�st(Nixon). The degree of belief Pr1('jKBNixon) takes di�erent values,

depending on the values � and � for the two reference classes. If f�; �g 6= f0; 1g, then this

limit always exists and its value is Pr1('jKBNixon) = ��
��+(1��)(1��). If, for example, � = 0:5,

so that the information for Republicans is neutral, we get that Pr1('jKBNixon) = �: the data

for Quakers is used to determine the degree of belief. If the evidence given by the two reference

classes is con
icting | � > 0:5 > � | then Pr1('jKBNixon) 2 [�; �]: some intermediate value

is chosen. If, on the other hand, the two reference classes provide evidence in the same direction,

then the limiting probability is greater than both � and �. For example, if � = � = 0:8, then

the value of the limit would be around 0:94. This has a reasonable explanation: if we have two

independent bodies of evidence, both supporting ' quite strongly, when we combine them we

should get even more support for '.

Now, assume that our information is not entirely quantitative. For example, we may know

that \Quakers are typically paci�sts". In our framework, this corresponds to assigning � = 1.

If our information for Republicans is not a default | � > 0 | then the limiting probability

Pr1('jKBNixon) is 1. As expected, a default (i.e., an \extreme" value) dominates. But what

happens in the case where we have con
icting defaults for the two reference classes? It turns

out that, in this case, the limiting probability does not exist. This is because the limit is non-

robust: its value depends on the way in which the tolerances ~� tend to 0. More precisely, if

�1 � �2, so that the \almost all" in the statistical interpretation of the �rst conjunct is much

closer to \all" than the \almost none" in the second conjunct is closer to \none", then the limit

is 1. We can view the magnitude of the tolerance as representing the strength of the default.

Thus, in this case, the �rst conjunct represents a default with higher priority than the second
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conjunct. Symmetrically, if �1 � �2, then the limit is 0. On the other hand, if �1 = �2, then

the limit is 1=2.

The nonexistence of this limit is not simply a technical artifact of our approach. The fact

that we obtain di�erent limiting degrees of belief depending on how ~� goes to 0 is closely related

to the existence of multiple extensions in many other theories of default reasoning (for instance,

in default logic [Rei80].) Both non-robustness and the existence of more than one extension

suggest a certain incompleteness of our knowledge. It is well-known that, in the presence of

con
icting defaults, we often need more information about the strength of the di�erent defaults

in order to resolve the con
ict. Our approach has the advantage of pinpointing the type of

information that would su�ce to reach a decision. Note that our formalism does give us an

explicit way to state in this example that the two extensions are equally likely, by asserting

that the defaults that generate them have equal strength; namely, we can use �1 to capture

both default statements, rather than using �1 and �2. In this case, we get the answer 1=2, as

expected. However, it is not always appropriate to conclude that defaults have equal strength.

We can easily extend our language to allow the user to prioritize defaults, by de�ning the

relative sizes of the components �i of the tolerance vector.

As we mentioned, Theorem 4.3.4 only tells us how to combine statistics from competing

reference classes in this very special case where the intersection of the di�erent refernce classes

is small. We are pessimistic about the chances of getting one general result that covers \most"

cases of interest. Rather, further research will probably result in a collection of special case

theorems. That further results are possible is illustrated by Shastri [Sha89]. He states a result

which is, in many ways, quite similar to ours. However, his result addresses a di�erent special

case. He essentially assumes that, in addition to the statistics for P within each reference class,

the statistics for P in the general population are also known. While this is also a restrictive

assumption, it is entirely orthogonal to the assumption needed for our theorem. We may

certainly hope to �nd other results of this general form.

4.4 Independence

As we have seen so far, random worlds captures a large number of the natural reasoning heuris-

tics that have been proposed in the literature. Another heuristic is a default assumption that

all properties are probabilistically independent unless we know otherwise. Random-worlds cap-

tures this principle as well, in many cases. It is, in general, very hard to give simple syntactic

tests for when a knowledge base forces two properties to be dependent. The following theorem

concerns one very simple scenario where we can be sure that no relationship is forced.

Consider two disjoint vocabularies � and �0, and two respective knowledge-base and query

pairs: KB ; ' 2 L(�), and KB 0; '0 2 L(�0). We can prove that

Pr1('^ '0jKB ^KB 0) = Pr1('jKB) � Pr1('0jKB 0):

That is, if we have no way of forcing a connection between the symbols in the two vocabularies,

the two queries will be independent: the probability of their conjunction is the product of their
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probabilities. We now prove a slightly more general case, where the two queries are both allowed

to refer to some constant c.

Theorem 4.4.1: Let �1 and �2 be two vocabularies disjoint except for the constant c. Consider

KB1; '1 2 L(�1) and KB2; '2 2 L(�2). Then

Pr1('1 ^ '2jKB1 ^KB2) = Pr1('1jKB1) � Pr1('2jKB2):

Although very simple, this theorem allows us to deal with such examples as the following:

Example 4.4.2: Consider the knowledge base KBhep, and a knowledge base stating that 40%

of hospital patients are over 60 years old:

KB>60 =def kOver60 (x)jPatient(x)kx �5 0:4

Then

Pr1(Hep(Eric) ^ Over60 (Eric)jKBhep ^ KB>60) =

Pr1(Hep(Eric)jKBhep) � Pr1(Over60 (Eric)jKB>60) = 0:8 � 0:4 = 0:32:

In the case of a unary vocabulary (i.e., one containing only unary predicates and constants),

Theorem 4.4.1 follows from results we state in Chapter 7, where we describe a deep connection

between the random-worlds method and maximum entropy for unary vocabularies. It is a well-

known fact that using maximum entropy often leads to probabilistic independence. The result

above proves that, with random-worlds, this phenomenon appears in the non-unary case as

well.

We remark that the connection between maximum entropy and independence is often over-

stated. For example, neither maximum entropy nor random worlds lead to probabilistic inde-

pendence in examples like the following:

Example 4.4.3: Consider the knowledge base KB , describing a domain of animals:

kBlack(x)jBird(x)kx �1 0:2 ^ jjBird(x)jjx �2 0:1:

It is perfectly consistent for Bird and Black to be probabilistically independent. If this were the

case, we would expect the proportion of black animals to be the same as that of black birds. In

this case, our degree of belief in Black(Clyde), for some arbitrary animal Clyde, would also be

0:2. However, this is not the case. Since all the predicates here are unary, using the maximum

entropy techniques discussed in Chapter 7, we can show that Pr1(Black(Clyde)jKB) = 0:47.

4.5 The lottery paradox and unique names

In Section 2.2.5 we discussed the lottery paradox and the challenge it poses to theories of default

reasoning. How does random-worlds perform?
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To describe the original problem in our framework, let Ticket(x) hold if x purchased a

lottery ticket. Consider the knowledge base consisting of

KB = 9!xWinner(x)^ 8x (Winner(x)) Ticket(x)):

That is, there is a unique winner, and in order to win one must purchase a lottery ticket. If

we also know the size of the lottery, say N , we can add to our knowledge base the assertion

9NxTicket(x) stating that there are precisely N ticket holders. (This assertion can easily be

expressed in �rst-order logic using equality.) We also assume for simplicity that each individual

buys at most one lottery ticket. Then our degree of belief that the individual denoted by a

particular constant c wins the lottery is

Pr1(Winner(c)jKB ^ 9NxTicket(x) ^ Ticket(c)) =
1

N
:

Our degree of belief that someone wins will obviously be 1. We would argue that these are

reasonable answers. It is true that we do not get the default conclusion that c does not win

(i.e., degree of belief 0). But since our probabilistic framework can and does express the

conclusion that c is very unlikely to win, this is not a serious problem (unlike in systems which

either reach a default conclusion or not, with no possibilities in between).

If we do not know the exact number of ticket holders, but have only the qualitative infor-

mation that this number is \large", then our degree of belief that c wins the lottery is simply

Pr1(Winner(c)jKB ^ Ticket(c)) = 0, although, as before, Pr1(9xWinner(x)jKB) = 1. In

this case we do conclude by default that any particular individual will not win, although we

still have degree of belief 1 that someone does win. This shows that the tension Lifschitz sees

between concluding a fact for any particular individual and yet not concluding the universal

does in fact have a solution in a probabilistic setting such as ours.

Finally, we consider where random worlds �ts into Poole's analysis of the lottery paradox.

Recall, his argument concentrated on examples in which a class (such as Bird(x)) is known to

be equal to the union of a number of subclasses (Penguin(x);Emu(x); : : :), each of which is

exceptional in at least one respect. However, using our statistical interpretation of defaults,

\exceptional" implies \makes up a negligible fraction of the population". So under our inter-

pretation, Poole's example is inconsistent: we cannot partition the set of birds into a �nite

number of subclasses, each of which makes up a negligible fraction of the whole set. We view

the inconsistency in this case as a feature: it alerts the user that this collection of facts cannot

all be true of the world (given our interpretation of defaults), just as would the inconsistency

of the default \Birds typically 
y" with \Birds typically do not 
y" or \No bird 
ies".

Our treatment of Poole's example clearly depends on our interpretation of defaults. For in-

stance, we could interpret a default statement such as \Birds typically 
y" as kFly(x)jBird(x)kx
� � for some appropriately chosen � which is less than 1. In this case, \exceptional" subclases

(such as penguins which are non
ying birds) can include a nonvanishing fraction of the do-

main. While allowing an interpretation of default not based on \almost all" does make Poole's

KB consistent, it entails giving up many of the attractive properties of the � 1 representation
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(such as having default conclusions assigned a degree of belief 1, and the associated properties

described in Section 4.1). An alternative solution would be to use a reasoning system such as

the one presented in [KH92]. Such a system could interpret defaults as \almost all" whenever

such an interpretation is consistent (and get the bene�ts associated with this interpretation),

yet allow for such inconsistencies when they occur. In case of inconsistency, the system auto-

matically generates the set of \possible" �'s (those that prevent inconsistency) for the di�erent

rules used.

We conclude this section be remarking on another property of the random-worlds method.

Applications of default reasoning are often simpli�ed by using the unique names assumption,

which says that any two constants should (but perhaps only by default) denote di�erent objects.

In random worlds, there is a strong automatic bias towards unique names. If c1 and c2 are not

mentioned anywhere in KB , then Pr1(c1 = c2jKB) = 0 (see Lemma D.4.1 for a formal proof of

this fact). Of course, when we know something about c1 and c2 it is possible to �nd examples for

which this result fails; for instance Pr1(c1 = c2j(c1 = c2)_ (c2 = c3)_ (c1 = c3)) = 1
3 . It is hard

to give a general theorem saying precisely when the bias towards unique names overrides other

considerations. However, we note that both of the \benchmark" examples that Lifschitz has

given concerning unique names [Lif89] are correctly handled by random-worlds. For instance,

Lifschitz's problem C1 is:

1. Di�erent names normally denote di�erent people.

2. The names \Ray" and \Reiter" denote the same person.

3. The names \Drew" and \McDermott" denote the same person.

The desired conclusion here is:

� The names \Ray" and \Drew" denote di�erent people.

Random worlds gives us this conclusion. That is,

Pr1(Ray 6= Drew jRay = Reiter ^Drew = McDermott) = 1:

Furthermore, we do not have to state the unique names default explicitly.



Chapter 5

Non-Unary Knowledge Bases

5.1 Introduction

In previous chapters, we de�ned the random-worlds method and investigated its properties.

Among other things, our results allow us to compute the degree of belief in certain cases. More

precisely, for KB 's and ''s having certain properties, the theorems in the previous chapter can

sometimes be used to compute Pr1('jKB). However, these theorems do not provide a general

technique for computing degrees of belief. For most of the remainder of this thesis, we will

investigate the general problem of computing degrees of belief.

In this chapter, we investigate this problem for the case where ' and KB are both �rst-

order sentences. While this is a severe restriction on the language, we will see that the results

for this case provide a lot of insight on the general problem. In particular, in this chapter we

demonstrate a number of serious problems that arise when attempting to compute asymptotic

conditional probabilities for �rst-order sentences. The same problems will certainly arise in the

more general case of the statistical language.

In the �rst-order case, our work is closely related to the work on 0-1 laws for �rst-order

logic. In fact, precisely the same de�nition of asymptotic probability is used in both frameworks,

except that in the context of 0-1 laws, there is no conditioning on a knowledge base of prior

information. The original 0-1 law, proved independently by Glebski�� et al. [GKLT69] and Fagin

[Fag76], states that the asymptotic probability of any �rst-order sentence ' with no constant

or function symbols is either 0 or 1. Intuitively, such a sentence is true in almost all �nite

structures, or in almost none.

The random-worlds method for the �rst-order case di�ers from the original work on 0-1 laws

in two respects. The �rst is relatively minor: we need to allow the use of constant symbols in ',

as they are necessary when discussing individuals (such as patients). Although this is a minor

change, it is worth observing that it has a signi�cant impact: It is easy to see that once we

allow constant symbols, the asymptotic probability of a sentence ' is no longer either 0 or 1;

for example, the asymptotic probability of P (c) is 1
2 . The more signi�cant di�erence, however,

is that we are interested in the asymptotic conditional probability of ', given the knowledge

54
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base KB . That is, we want the probability of ' over the class of �nite structures de�ned by

KB .

Some work has already been done on aspects of this question. Fagin [Fag76] and Lio-

gon'ki�� [Lio69] independently showed that asymptotic conditional probabilities do not necessar-

ily converge to any limit. Subsequently, 0-1 laws were proved for special classes of �rst-order

structures (such as graphs, tournaments, partial orders, etc.; see the overview paper [Com88] for

details and further references). In many cases, the classes considered could be de�ned in terms

of �rst-order constraints. Thus, these results can be viewed as special cases of the problem

that we are interested in: computing asymptotic conditional probabilities relative to structures

satisfying the constraints of a knowledge base. Lynch [Lyn80] showed that asymptotic proba-

bilities exist for �rst-order sentences involving unary functions, although there is no 0-1 law.

(Recall that the original 0-1 result is speci�cally for �rst-order logic without function symbols.)

This can also be viewed as a special case of an asymptotic conditional probability for �rst-order

logic without functions, since we can replace the unary functions by binary predicates, and

condition on the fact that they are functions.

The most comprehensive work on this problem is the work of Liogon'ki�� [Lio69]. In addition

to pointing out that asymptotic conditional probabilities do not exist in general, he shows that

it is undecidable whether such a probability exists. He then investigates the special case of

conditioning on formulas involving unary predicates only (but no equality). In this case, he

proves that the asymptotic conditional probability does exist and can be e�ectively computed,

even if the left side of the conditional has predicates of arbitrary arity and equality. In this

chapter, we examine the case of conditioning on a non-unary knowledge base. The other case,

where the knowledge base is assumed to be unary, is investigated in depth in the next chapter.

As we explain in Chapter 7, the unary case is very important for our application.

We extend the results of [Lio69] for the non-unary case in a number of ways. We �rst

show, in Section 5.3, that under any standard weakening of the concept of limit, asymptotic

conditional probabilities still do not exist. We de�ne three independent questions related to the

asymptotic conditional probability: deciding whether it is well-de�ned (i.e., is there an in�nite

sequence of probabilities PrN ('jKB) to take the limit over); deciding whether it exists, given

that it is well-de�ned; and computing or approximating it, given that it exists. We show in

Section 5.4 that all three problems are undecidable, and precisely characterize the degree of their

undecidability. These results are based on the enormous expressivity of even a single binary

predicate. They therefore continue to hold for many quite restrictive sublanguages of �rst-order

logic. We then present one \positive" result: In perhaps the most restrictive sublanguage that

is still of any interest, if there is a �xed, �nite vocabulary, and the quanti�er depths of ' and

KB are bounded, there is a linear time algorithm that computes the asymptotic conditional

probability of ' given KB . Moreover, for each �xed vocabulary and �xed bound on quanti�er

depth, we can construct a �nite set of algorithms, one of which is guaranteed to be one that

solves the problem. However, it follows from our undecidability results that we cannot tell

which algorithm is the correct one. So even this result holds no real promise.
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5.2 Technical Preliminaries

Recall that in Chapter 3, we de�ned Pr~�N('jKB) relative to a particular tolerance vector ~� , and

Pr1('jKB) using a limit as ~� goes to 0. In this chapter and in the next, we restrict attention to

a �rst-order language with no statistical statements. Let L(�) denote the �rst-order fragment

of our language: the set of �rst-order sentences over � [ f=g. Let L�(�) denote the set of

�rst-order sentences over �, i.e., without equality. For sentences in L(�), the tolerance vector

clearly plays no role. Therefore, for the purposes of this chapter and Chapter 6, we eliminate

the tolerance vector from consideration. Thus, PrN ('jKB) is de�ned to be

#worlds�N(' ^KB)

#worlds�N(KB)
:

As we observed, this probability is not well-de�ned if #worlds�N (KB) = 0. In the previous

chapters, we chose to circumvent this problem by assuming eventual consistency of the knowl-

edge base. Liogon'ki��, on the other hand, simply takes PrN ('jKB) = 1=2 for those N where

PrN('jKB) is not well-de�ned. In this chapter, we are interested in investigating the prob-

lems that arise in the random-worlds framework. We therefore take a somewhat more re�ned

approach.

It might seem reasonable to say that the asymptotic probability is not well-de�ned if

#worlds�N(KB) = 0 for in�nitely many N . However, suppose that KB is a sentence that

is satis�able only when N is even and, for even N , ' ^ KB holds in one third of the models

of KB . In this case, we might want to say that there is an asymptotic conditional probability

of 1=3, even though #worlds�N(KB) = 0 for in�nitely many N . Thus, we actually consider

two notions: the persistent limit, denoted 32Pr1('jKB), and the intermittent limit, denoted

23Pr1('jKB) (the pre�xes stand for the temporal logic representation of the persistence and

intermittence properties [MP92]). In either case, we say that the limiting probability is either

not well-de�ned, does not exist, or is some number between 0 or 1. The only di�erence between

the two notions lies in when the limiting probability is taken to be well-de�ned. This di�erence

is made precise in the following de�nition.

De�nition 5.2.1: Let N (KB) denote the set fN : #worlds�N (KB) 6= 0g. The asymptotic

conditional probability 32Pr1('jKB) is well-de�ned if N (KB) contains all but �nitely many

N 's; 23Pr1('jKB) is well-de�ned if N (KB) is in�nite.

If the asymptotic probability 32Pr1('jKB) (resp., 23Pr1('jKB)) is well-de�ned, then

we take 32Pr1('jKB) (resp., 23Pr1('jKB)) to denote

lim
N!1;N2N (KB)

PrN('jKB):

Recall that for a �rst-order language, we have no approximate equality statements. In this

case, we can ignore tolerance vectors and the outer limit.
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Note that for any formula ', the issue of whether 23Pr1('jKB) or 32Pr1('jKB) is well-

de�ned is completely determined by KB . Therefore, when investigating the question of how

to decide whether such a probability is well-de�ned it is often useful to ignore '. We there-

fore say that 23Pr1(�jKB) (resp., 32Pr1(�jKB)) is well-de�ned if 23Pr1('jKB) (resp.,

32Pr1('jKB)) is well-de�ned for every formula ' (which is true i� 32Pr1(truejKB) (resp.,

23Pr1(truejKB)) is well-de�ned).

Remark 5.2.2:

(a) If32Pr1(�jKB) is well-de�ned, then so is 23Pr1(�jKB). The converse is not necessarily

true.

(b) For any formula ', if both 32Pr1('jKB) and 23Pr1('jKB) are well-de�ned, then they

are equal.1

It follows from our later results that the two notions of limiting probability coincide if we restrict

to unary predicates or to languages without equality.

5.3 Nonexistence results

In this section, we show that the limiting probability 23Pr1('jKB) (and hence32Pr1('jKB))

does not always exist. In fact, for most reasonable concepts of limit (including, for example,

the Ces�aro limit), there are sentences for which the sequence PrN ('jKB) does not converge.

5.3.1 Nonexistence for conventional limits

As we mentioned above, the fact that asymptotic conditional probabilities do not always exist

is well known.

Theorem 5.3.1: [Lio69, Fag76] Let � be a vocabulary containing at least one non-unary

predicate symbol. There exist sentences ';KB 2 L(�) such that neither 23Pr1('jKB) nor

32Pr1('jKB) exists, although both are well-de�ned.

Proof: Fagin's proof of this theorem is quite straightforward (see also Figure 5.1). Let R be

a binary predicate in � (although, clearly, any non-unary predicate will do). Using R and

equality, it is not hard to construct sentences 'even and 'odd such that:

� 'even and 'odd both force R to be a symmetric antire
exive binary relation that divides

the domain elements into pairs, where i; j is a pair precisely when R(i; j). Both 'even
and 'odd force each element to be paired up with at most one other element.

1When we say that two limits are equal, we mean that one is well-de�ned i� the other is, one exists i� the

other does, and if they (both) exist then they are equal.
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Figure 5.1: Construction demonstrating non-existence of limits

� 'even forces the pairing to be complete; that is, each element is paired up with precisely

one domain element. It is clear that 'even is satis�able if and only if the domain size is

even.

� 'odd forces the pairing to be almost-complete; that is, all elements but one are perfectly

paired. It is clear that 'odd is satis�able if and only if the domain size is odd.

We then take ' to be 'odd and KB to be 'even_'odd. Clearly, PrN ('jKB) alternates between

0 and 1 as N increases, and does not approach an asymptotic limit.

Although this shows that the asymptotic limit does not exist in general, a good argument

can be made that in this case there is a reasonable degree of belief that one can hold. In the

absence of any information about domain size, 1
2 seems the natural answer. Perhaps if we

modi�ed our de�nition of asymptotic probability slightly, we could increase the applicability of

our techniques.

There is indeed a reasonable modi�cation that will let us assign a degree of belief of 1
2 in

this case: we can use the Ces�aro limit instead of the conventional limit.2 The Ces�aro limit of a

sequence s1; s2; : : : is the conventional limit of the sequence s1; (s1 + s2)=2; (s1 + s2 + s3)=3; : : :,

whose kth element is the average of the �rst k elements of the original sequence. It is well

known that if the conventional limit exists, then so does the Ces�aro limit, and they are equal.

However, there are times when the Ces�aro limit exists and the conventional limit does not. For

2We remark that Ces�aro limits have been used before in the context of 0-1 laws; see Compton's overview

[Com88] for details and further references.
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example, for a sequence of the form 1; 0; 1; 0; : : : (which, of course, is precisely the sequence

that arises in the proof of Theorem 5.3.1), the conventional limit does not exist, but the Ces�aro

limit does, and is 1
2
. So does the Ces�aro limit always exist? In the next section, we show that,

unfortunately, this is not the case. In fact, no other reasonable notion of limit can solve the

nonexistence problem.

5.3.2 Weaker limits

Fagin's non-existence example in Theorem 5.3.1 was based on a sequence PrN ('jKB) that con-

sistently alternated between 0 and 1. We have shown that using the Ces�aro limit in place of the

conventional limit when computing the limit of this sequence gives us the plausible answer of 1
2 .

This may lead us to hope that by replacing the conventional limit in our de�nition of asymp-

totic conditional probability, we can circumvent the nonexistence problem. Unfortunately, this

is not the case. It is relatively easy to construct examples that show that even Ces�aro limits of

the conditional probabilities PrN ('jKB) do not necessarily converge. In this section, we will

prove a far more general theorem. Essentially, the theorem shows that no reasonable notion of

limit will ensure convergence in all cases. We begin by describing the general framework that

allows us to formalize the notion of \reasonable notion of limit".

The Ces�aro limit is only one of many well-studied summability techniques that weaken the

conventional de�nition of convergence for in�nite sequences.3 These are techniques which try to

assign \limits" to sequences that do not converge in the conventional sense. There is a general

framework for summability techniques, which we now explain. (See, for example, [PS72] for

further details.)

Let A = (aij) be an in�nite square matrix; that is, aij is a (possibly complex) number for

each pair of natural numbers i; j. Let (si) = s1; s2; s3; : : : be an in�nite sequence. Suppose

that, for all i, the series
P1
j=1 aijsj converges, say to sum Si. Then the new sequence (Si) is

called the A-transform of (si). The idea is that (Si) may converge to a limit, even if (si) does

not. The standard notion of limit can be obtained by taking aii = 1 and aij = 0 if i 6= j. The

Ces�aro limit can be obtained by taking aij = 1=i if j � i, and aij = 0 otherwise.4

Not every transform makes intuitive sense as a weakened notion of convergence. It would

seem reasonable to require, at the very least, the following conditions of a matrix transform A.

� Computability. There should be a recursive function f such that f(i; j) is the entry aij of

the matrix A. It is di�cult to see how we could actually use a transform whose elements

could not be e�ectively computed.

3Summability theory is so named because one application is to �nd a way of assigning a \sum" to series

that are divergent according to the conventional notion of limit. However, the theory addresses the problem of

convergence for any sequence, whether or not it arises naturally as a sequence of partial sums.
4One subtle problem concerning our application of summability transforms is that some terms in the sequence

PrN ('jKB) may not exist. Throughout the following, we adopt perhaps the simplest solution to this di�culty,

which is to apply the transform to the subsequence generated by just those domain sizes for which the probability

exists (i.e., for which KB is satis�able).
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� Regularity. If a sequence converges (in the conventional sense), say to limit `, then the

A-transform should exist and converge to `. This ensures that we really do obtain a more

general notion of convergence.

The regularity condition has been well studied. The following three conditions are known to

be necessary and su�cient for A to be regular. (This result is known as the Silverman-Toeplitz

theorem; see [PS72].)

R1. limi!1 aij = 0, for all j,

R2. limi!1

P1
j=1 aij = 1, and

R3. there exists M such that
P1
j=1 jaij j < M , for all i.

In our setting|where the motivation is assigning degrees of belief|we can give an fairly

intuitive interpretation to many regular summability methods. Fix a value for i and suppose

that (1) for all j, aij is real and nonnegative, and (2)
P1
j=1 aij = 1. Then, for any i, the sequence

ai1; ai2; : : : can also be viewed as a probability distribution over possible domain sizes. Given

that one accepts the basic random-worlds framework for assigning degrees of belief relative to a

particular domain size, it seems plausible that
P1
N=1 aiNPrN ('jKB) should be one's degree of

belief in ' given KB , if the uncertainty about the correct domain size is captured by ai1; ai2; : : :

(and PrN ('jKB) de�ned for all �nite N). For example, row i of the Ces�aro matrix would be

appropriate for someone who knows for certain that there are i or less individuals, but subject

to this assigns equal degree of belief to each of the i possibilities. However, no single distribution

over the natural numbers seems to accurately model the situation where all we know is that \the

domain size is large." For one thing, any distribution gives nonzero probability to particular

domain sizes, which seems to involve some commitment to scale. Instead, we can consider a

sequence of distributions, such that the degree of belief in any particular domain size tends

to zero. Constructions such as this always satisfy conditions R1{R3, and thus fall into the

framework of regular transforms. In fact, almost all summability transforms considered in

the literature are regular transforms. The main result of this section is that no summability

technique covered by this framework can guarantee convergence for asymptotic conditional

probabilities. This is so even if the vocabulary consists of a single binary predicate symbol.

Theorem 5.3.2: Let A be any computable regular matrix transform, and let � be a vocabulary

containing at least one non-unary predicate symbol. There exist ';KB 2 L(�) such that the

A-transform of the sequence PrN('jKB) exists, but does not converge.

The proof of this theorem is based on the fact that even a single binary predicate is extremely

expressive. In fact, it is well-known that, using a binary predicate symbol, we can use �rst-

order sentences, interpreted over �nite domains, to encode (arbitrarily long) pre�xes of the

computation of a deterministic Turing machine (see [Tra50]). That is, given a Turing machine

M, we can de�ne a sentence KBM such that any �nite model satisfying KBM encodes a �nite

pre�x of the computation of M on empty input. The exact construction is fairly standard,
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but requires many details; we present an outline in Appendix B.1. This construction forms the

basis for the proof of this theorem, which can be found in Appendix B.2.

This result is a very powerful one, that covers all notions of limit of which we are aware.

This is the case in spite of the fact that there are a few well-known notions of limit which

are not, strictly speaking, matrix transforms. Nevertheless, our theorem is applicable to these

cases as well. The best example of this is Abel convergence. A sequence (sj) is said to be Abel

convergent if limx!1� (1� x)
P1
j=1 sj x

(j�1) exists. This is not a matrix transform, because we

must consider all sequences of x that tend to 1. However, consider any particular sequence of

rationals that converges to 1, say

1

2
;
2

3
;
3

4
; : : : ;

i

i+ 1
; : : :

We can use these to de�ne a matrix variant of the Abel method, by setting

aij =

�
1� i

i+ 1

� �
i

i+ 1

�j�1
:

This is regular and computable, and is strictly weaker than the standard Abel method. More

precisely, if the Abel limit converges, then so does this matrix transform. Since our theorem

shows that this new summability method does not ensure convergence for conditional proba-

bilities, this is automatically also the case for the Abel limit.

5.4 Undecidability results

We have seen that asymptotic conditional probabilities do not always exist. We might hope that

at least we can easily decide when they do exist, so that we would know when the random-worlds

method is applicable. As we show in this section, this hope is not realized. In this section, we

show the undecidability of several important problems associated with asymptotic conditional

probabilities: deciding whether the limit is well-de�ned, deciding whether the limit exists, and

giving some nontrivial approximation to its value (deciding whether it lies in some non-trivial

interval). Liogon'ki�� [Lio69] showed that the problem of computing the asymptotic conditional

probability for the random-worlds method is undecidable. He did not consider other problems,

nor did he characterize the degree of undecidability of the problem. Our undecidability results

all rely on the Turing machine construction in Appendix B.1, and use a �xed �nite vocabulary,

consisting of equality and a single binary predicate. The proofs of the results can be found in

Appendix B.3. Most of them can, in fact, be translated to a language without equality, at the

cost of adding two more binary predicates (see Section 5.5).

We analyze the complexity of these problems in terms of the arithmetic hierarchy. This

is a hierarchy that extends the notions of r.e. (recursively enumerable) and co-r.e. sets. We

brie
y review the relevant de�nitions here, referring the reader to [Rog67] for further details.

Consider a formula � in the language of arithmetic (i.e., using 0; 1;+;�) having j free variables.

The formula �, interpreted over the natural numbers, is said to de�ne a recursive set if the
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set of j-tuples satisfying the formula is a recursive set. We can de�ne more complex sets using

quanti�cation. We de�ne a �0
k pre�x as a block of quanti�ers of the form 9x1 : : :xh8y1 : : :ym : : :,

where there are k alternations of quanti�ers (but there is no restriction on the number of

quanti�ers of the same type that appear consecutively). A �0
k pre�x is de�ned similarly, except

that the quanti�er block starts with a universal quanti�er. A set A of natural numbers is in �0
k

if there is a �rst-order formula �(x) = Q�0 in the language of arithmetic with one free variable x,

where Q is a �0
k quanti�er block and �0 de�nes a recursive set, such that n 2 A i� �(n) is true.

We can similarly de�ne what it means for a set to be in �0
k. The notion of completeness for

these classes is de�ned in a standard fashion, using recursive reductions between problems. A

set is in �0
1 i� it is r.e., and it is in �0

1 i� it is co-r.e. The hierarchy is known to be strict; higher

levels of the hierarchy correspond problems which are strictly harder (\more undecidable").

We start with the problem of deciding if the asymptotic probability is well-de�ned; this is

certainly a prerequisite for deciding whether the limit exists. Of course, this depends in part

on which de�nition of well-de�nedness we use.

Theorem 5.4.1: Let � be a vocabulary containing at least one non-unary predicate symbol.

(a) The problem of deciding whether a sentence in L(�) is satis�able for in�nitely many

domain sizes is �0
2-complete.

(b) The problem of deciding whether a sentence in L(�) is satis�able for all but �nitely many

domain sizes is �0
2-complete.

Corollary 5.4.2: Let � be a vocabulary containing at least one non-unary predicate symbol.

For KB 2 L(�), the problem of deciding whether 23Pr1(�jKB) is well-de�ned is �0
2-complete,

and the problem of deciding whether 32Pr1(�jKB) is well-de�ned is �0
2-complete.

If deciding well-de�nedness were the only di�culty in computing, then there might still be

hope. In many cases, it might be obvious that the sentence we are conditioning on is satis�able

in all (or, at least, in in�nitely many) domain sizes. As we are about to show, the situation

is actually much worse. Deciding if the limit exists is even more di�cult than deciding well-

de�nedness; in fact, it is �0
3-complete.

Theorem 5.4.3 : Let � be a vocabulary containing at least one non-unary predicate sym-

bol. For sentences ';KB 2 L(�), the problem of deciding whether 32Pr1('jKB) (resp.,

23Pr1('jKB)) exists is �0
3-complete. The lower bound holds even if we have an oracle that

tells us whether the limit is well-de�ned and its value if it exists.

Even if we have an oracle that will tell us whether the conditional probability is well-de�ned

and whether it exists, it is di�cult to compute the asymptotic probability. Indeed, given any

nontrivial interval (one which is not the interval [0; 1]), it is even di�cult to tell whether the

asymptotic probability is in the interval.



5.5. ELIMINATING EQUALITY 63

Theorem 5.4.4: Let � be a vocabulary containing at least one non-unary predicate symbol,

and let r; r1; r2 2 [0; 1] be rational numbers such that r1 � r2. For sentences ';KB 2 L(�),

given an oracle for deciding whether 32Pr1('jKB) (resp., 23Pr1('jKB)) exists,

(a) the problem of deciding whether 32Pr1('jKB) = r (resp., 23Pr1('jKB) = r) is �0
2-

complete,

(b) if [r1; r2] 6= [0; 1], then the problem of deciding whether 32Pr1('jKB) 2 [r1; r2] (resp.,

23Pr1('jKB) 2 [r1; r2]) is �0
2-complete,

(c) if r1 6= r2, then the problem of deciding if 32Pr1('jKB) 2 (r1; r2) (resp., 23Pr1('jKB)

2 (r1; r2)) is �0
2-complete.

5.5 Eliminating Equality

The proofs of all the negative results above depend on the Turing machine construction pre-

sented in Appendix B.1. It seems that this construction makes heavy use of equality, so that

one might suspect that the problems disappear if we disallow equality. This is not the case. As

we now show, we can eliminate the use of equality from most of these results, at the price of

adding two more binary predicate symbols to the vocabulary. Intuitively, we add one predicate

E to replace the equality predicate =, and one predicate G that is used to force E to behave

like equality.

Theorem 5.5.1: Suppose G and E are binary predicate symbols not appearing in �, and

';KB 2 L(�) are such that #worlds�N (KB) is a non-decreasing function of N . Then we can

�nd sentences '0;KB 0 2 L�(�[ fG;Eg) such that

lim
N!1

(PrN ('jKB)� PrN ('0jKB 0)) = 0 :

Using Theorem 5.5.1, we can show analogues to most of our results for the language with

equality. First, we can immediately deduce the following corollary to Theorem 5.3.2.

Corollary 5.5.2: Let A be any computable regular matrix transform, and let � be a vocabulary

containing at least three non-unary predicate symbols. There exist ';KB 2 L(�) such that the

A-transform of the sequence PrN('jKB) exists, but does not converge.

It is easy to show that similar analogues to most of the complexity results of this chapter

also hold. The exceptions are Theorem 5.4.1 and Corollary 5.4.2.

For KB that does not use equality, 23Pr1(�jKB) is well-de�ned i� 32Pr1(�jKB) is well-

de�ned i� KB is satis�able for some model. This is true because if KB is satis�ed in some

model of size N , then it is also satis�ed in some model of size N 0 for every N 0 > N . As a

consequence, we can show:
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Theorem 5.5.3: Let � be a vocabulary containing at least two non-unary predicate symbols.

For KB 2 L�(�), the problem of deciding if 23Pr1(�jKB) (resp., 32Pr1(�jKB)) is well-

de�ned is r.e.-complete.

In Appendix B.4 we formally state and prove the theorems asserting that the remaining

complexity results do carry over.

5.6 Is there any hope?

These results show that most interesting problems regarding asymptotic probabilities are badly

undecidable in general. Are there restricted sublanguages for which these questions become

tractable, or at least decidable?

All of our negative results so far depend on having at least one non-unary predicate symbol

in the vocabulary. In fact, it clearly su�ces to have the non-unary predicate symbols appear

only in KB . However, as we indicated in the introduction, this additional expressive power of

KB is essential. If we restrict KB to refer only to unary predicates and constants, many of the

problems we encounter in the general case disappear. This holds even if ' can refer to arbitrary

predicates. In the next chapter, we focus on this important special case. Here, we consider one

other case.

A close look at our proofs in the previous sections shows that we typically started by

constructing sentences of low quanti�cation depth, that use (among other things) an unbounded

number of unary predicates. For example, the original construction of the sentences encoding

computations of Turing machines used a unary predicate for every state of the machine. We then

explained how to encode everything using only one binary predicate. In the process of doing

this encoding, we had to introduce additional quanti�ers (for example, an existential quanti�er

for every unary predicate eliminated). Thus, our undecidability results seem to require one of

two things: an unbounded vocabulary (in terms of either the number of predicates or of their

arity), or unbounded quanti�cation depth. Do we really need both? It is actually easy to show

that the answer is yes.

De�nition 5.6.1: De�ne d(�) to be the depth of quanti�er nesting in the formula �:

� d(�) = 0 for any atomic formula �,

� d(:�) = d(�),

� d(�1 ^ �2) = max(d(�1); d(�2)),

� d(8y �) = d(�) + 1.

Let Ld(�) consist of all sentences ' 2 L(�) such that ' has quanti�cation depth at most d.
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Theorem 5.6.2: For every �nite vocabulary � and every d, there exists a Turing machine M�
d

such that for all ';KB 2 Ld(�), M�
d decides in time linear in the length of ' and KB whether

32Pr1('jKB) (resp., 23Pr1('jKB)) is well-de�ned, if so whether it exists, and if it exists

computes an arbitrarily good rational approximation to its value.

The proof of this theorem, which can be found in Appendix B.5, is based on the fact that

there are only �nitely many non-equivalent formulas of depth � d over a �xed vocabulary.

That is, there exists a �nite set �d of formulas such that every formula in Ldi (�) is equivalent

to some member of �d. There exists a lookup table containing the answer for any pair of

formulas '0;KB 0 in �d. For any pair of formulas ';KB , we can �nd their equivalents '0;KB0

in �d in linear time, and then simply use the lookup table. Since the size of the table is taken

to be a constant, this last step can also be done in linear time (in the sizes of ' and KB).

This proof asserts that, for each d, there exist lookup tables that e�ectively determine

the behavior of the asymptotic probability for sentences in Ld(�). Moreover, it shows that

we can e�ectively construct a �nite set of lookup tables, one of which is bound to be the

right one. Unfortunately, we cannot e�ectively determine which one is the right one, for if

we could, we could e�ectively construct M�
d given � and d, and this would contradict our

earlier undecidability results. Thus, even for this extremely restrictive sublanguage we cannot

e�ectively construct algorithms for computing asymptotic conditional probabilities.

5.7 Discussion

The results in this chapter show that the applicability of the random-worlds method is not as

wide as we might have hoped. There are problems for which random worlds will not be able to

assign a degree of belief (because of nonexistence of the limit). Furthermore, deciding whether

this is the case, and computing the degree of belief if it does exist, are highly undecidable.

However, as we mentioned, there is one interesting special case where these results do not

hold. Liogon'ki�� [Lio69] has shown that if the (�rst-order) knowledge base contains only unary

predicate symbols, the asymptotic conditional probability does exist and can be e�ectively

computed. In the next chapter, we extend these results signi�cantly (although still within the

�rst-order framework), and prove a number of related complexity results for the problem. In

Chapter 7, we extend these results to deal with knowledge bases containing statistical state-

ments. As we explain in these two chapters, the unary case is an important special case, covering

many practical problems, especially those involving statistical information.

It is interesting to note that in [Car52], where Carnap considers a continuum of methods for

inductive reasoning (which includes the random-worlds method), he considers only the unary

case for all of them, without any comment or justi�cation. He does provide some justi�cation

in [Car50], as well as expressing concern that the case of non-unary predicates may cause

di�culties (although he presents no technical justi�cation for this claim):

: : : the bulk of our inductive logic will deal only with properties of individuals [i.e.,

unary predicates], not with relations between individuals, except for those relations
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which are de�ned on the basis of properties. At the present time, this restriction

seems natural and well justi�ed, in view of the fact that deductive logic took more

than two thousand years from its start with Aristotle to the �rst logic of relations

(De Morgan, 1860). Inductive logic : : : is only a few hundred years old. Therefore,

it is not surprising to see that so far nobody has made an attempt to apply it to

relations. : : : The inclusion of relations in deductive logic causes obviously a certain

increase in complexity. The corresponding increase in complexity for inductive logic

is very much greater.

Carnap's allusion to the di�culty of adding relations to deductive logic is perhaps the obser-

vation | known at the time | that while �rst-order logic over a vocabulary with only unary

predicate symbols is decidable, it becomes undecidable when we add non-unary predicates

[DG79, Lew79]. The fact that there is an increase in complexity in inductive logic when we

add non-unary predicates is not substantiated by Carnap, other than by the observation that

very di�cult combinatorial questions arise. As our results show, Carnap's concern about the

di�culty of doing inductive reasoning with relations (non-unary predicates) is well founded.



Chapter 6

Unary First-Order Knowledge

Bases

6.1 Introduction

In the previous chapter, we investigated the problem of computing asymptotic conditional

probabilities for the case where ' and KB are arbitrary �rst-order formulas. The negative

results we presented all depend on the fact that the vocabulary contains at least one non-

unary predicate symbol. It is this non-unary predicate that gives the knowledge base the

expressive power that causes non-existence and undecidability. In this chapter, we show that

unary predicates do not have this expressive power. For a knowledge base containing only unary

predicate symbols, constant symbols, and equality, the problems described in the previous

chapter disappear. This is the case even if ' contains predicate symbols of arbitrary arity.

In this chapter, we continue to concentrate on the case of �rst-order formulas. The issues

concerning statistical statements are quite di�erent, and are investigated in the next chapter.

However, it turns out that the techniques we describe here will also help us in the case of the

full language (with statistical statements).

As we remarked in the previous chapter, the issue of asymptotic conditional probabilities

for �rst-order formulas has already been investigated by Liogon'ki��. His results for the unary

case involve conditioning on formulas involving unary predicates only (but no constants or

equality). For this case, he proves that the asymptotic conditional probability does exist and

can be e�ectively computed, even if the left side of the conditional has predicates of arbitrary

arity and equality. This gap between unary predicates and binary predicates is somewhat

reminiscent of the fact that �rst-order logic over a vocabulary with only unary predicates (and

constant symbols) is decidable, while if we allow even a single binary predicate symbol, then it

becomes undecidable [DG79, Lew79]. This similarity is not coincidental; some of the techniques

used to show that �rst-order logic over a vocabulary with unary predicate symbols is decidable

are used by us to show that asymptotic probabilities exist.

In this chapter, we extend the results of Liogon'ki�� [Lio69] for the unary case. We �rst show

67
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phi almost always true phi almost always false

worlds  (KB)
N

Figure 6.1: Division of the worlds into uniform classes

(in Section 6.3) that, if we condition on a formula involving only unary predicates, constants,

and equality that is satis�able in arbitrarily large worlds, the asymptotic conditional probability

exists. We also present an algorithm for computing this limit. The main idea we use is the

following: To compute Pr1('jKB), we examine the behavior of ' in �nite worlds of KB . It

turns out that we can partition the worlds of KB into a �nite collection of classes, such that '

behaves uniformly in any individual class. By this we mean that almost all worlds in the class

satisfy ' or almost none do; i.e., there is a 0-1 law for the asymptotic probability of ' when we

restrict attention to worlds in a single class (see Figure 6.1). Computing Pr1('jKB) reduces

to �rst identifying the classes, computing the relative weight of each class (which is required

because the classes are not necessarily of equal relative size), and then deciding, for each class,

whether the asymptotic probability of ' is zero or one.

In Section 6.2 we show how the lack of expressivity of a unary vocabulary allows us to

de�ne an appropriate �nite collection of classes. In Section 6.3 we prove the existence of a 0-1

law within each class, and compute the relative weight of the classes. This allows us to give a

formula for the asymptotic conditional probability of ' given KB , based on the 0-1 probabilities

for the individual classes.

In Section 6.4 we turn our attention to the complexity of computing the asymptotic prob-

ability in this case. Our results depend on several factors: whether the vocabulary is �nite or

in�nite, whether there is a bound on the depth of quanti�er nesting, whether equality is used in

KB , whether non-unary predicates are used, and whether there is a bound on predicate arities.

For a �xed and �nite vocabulary, there are just two cases: if there is no bound on the depth of

quanti�er nesting then computing asymptotic conditional probabilities is PSPACE-complete,

otherwise the computation can be done in linear time. The case in which the vocabulary is not
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depth � 1 restricted general case

existence NP-complete NEXPTIME-complete NEXPTIME-complete

compute #P/PSPACE #EXP-complete #TA(EXP,LIN)-complete

approximate (co-)NP-hard (co-)NEXPTIME-hard TA(EXP,LIN)-hard

Table 6.1: Complexity of asymptotic conditional probabilities

�xed (which is the case more typically considered in complexity theory) is more complex. The

results for this case are summarized in Table 6.1. Perhaps the most interesting aspect of this

table is the factors that cause the di�erence in complexity between #EXP and #TA(EXP,LIN).

Here, #TA(EXP,LIN) is the counting class corresponding to alternating Turing machines that

take exponential time and make only a linear number of alternations; a formal de�nition is

provided in Section 6.4.6. If we allow the use of equality in KB , then we need to restrict both

' and KB to using only unary predicates to get the #EXP upper bound. On the other hand,

if KB does not mention equality, then the #EXP upper bound is attained as long as there is

some �xed bound on the arity of the predicates appearing in '. If we have no bound on the

arity of the predicates that appear in ', or if we allow equality in KB and predicates of arity

2 in ', then the #EXP upper bound no longer holds, and we move to #TA(EXP,LIN).

Our results showing that computing the asymptotic probability is hard can be extended to

show that �nding a nontrivial estimate of the probability (i.e., deciding if it lies in a nontrivial

interval) is almost as di�cult. The lower bounds for arity-bounded case and the general case

require formulas of quanti�cation depth 2 or more. For unquanti�ed sentences or depth one

quanti�cation, things seem to become an exponential factor easier. We do not have tight bounds

for the complexity of computing the degree of belief in this case; we have a #P lower bound

and a PSPACE upper bound.

We observe that apart from our precise classi�cation of the complexity of these problems, our

analysis provides an e�ective algorithm for computing the asymptotic conditional probability.

The complexity of this algorithm is, in general, double-exponential in the number of unary

predicates used and in the maximum arity of any predicate symbol used; it is exponential in

the overall size of the vocabulary and in the lengths of ' and KB .

6.2 Unary expressivity

The success of the approach outlined above depends on the lack of expressivity of unary lan-

guages. For a vocabulary �, we take P to be the set of all unary predicates in �, C to be the

set of all constant symbols in �, and de�ne 	 = P [ C to be the unary fragment of �. Finally,

if ' is a formula, we use �' to denote those symbols in � that appear in '; we can similarly

de�ne C', P', and 	'.

In this section we show that sentences in L(	) can only assert a fairly limited class of

constraints. For instance, one corollary of our general result will be the well-known theorem

[DG79] that, if KB 2 L(	) is satis�able at all, it is satis�able in a \small" model (one of size
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at most exponential in the size of the KB). Furthermore, if it is satis�able in a \large" model,

then it is satis�able in every large model. This last fact allows us to considerably simplify the

de�nition of well-de�nedness used in the previous chapter. There, we di�erentiated between

the case where PrN('jKB) is well-de�ned for all but �nitely many N 's, and the case where

it is well-de�ned for in�nitely many N 's. As we have just claimed (and will prove later in

this chapter), this distinction need not be made when KB is a unary formula. Thus, for the

purposes of this chapter, we use the following de�nition of well-de�nedness, which is simpler

than that of the previous chapter.

De�nition 6.2.1: The asymptotic conditional probability according to the random worlds

method, denoted Pr1('jKB), is well-de�ned if #worlds�N(KB) 6= 0 for all but �nitely many N .

6.2.1 Atomic descriptions

In order to analyze the expressivity of a unary formula, a number of de�nitions are necessary.

De�nition 6.2.2: Given a vocabulary � and a �nite set of variables X , a complete description

D over � and X is an unquanti�ed conjunction of formulas such that:

� For every predicate R 2 �[f=g of arity m, and for every z1; : : : ; zm 2 C [X , D contains

exactly one of R(z1; : : : ; zm) or :R(z1; : : : ; zm) as a conjunct.

� D is consistent.1

We can think of a complete description as being a formula that describes as fully as possible

the behavior of the predicate symbols in � over the constant symbols in � and the variables

in X .

We can also consider complete descriptions over subsets of �. The case when we look just

at the unary predicates and a single variable x will be extremely important:

De�nition 6.2.3: Let P be fP1; : : : ; Pkg. An atom over P is a complete description over P
and some variable fxg. More precisely, it is a conjunction of the form P 01(x)^ : : :^P 0k(x), where

each P 0i is either Pi or :Pi. Since the variable x is irrelevant to our concerns, we typically

suppress it and describe an atom as a conjunction of the form P 01 ^ : : :^ P 0k .

Note that there are 2k = 2jPj atoms over P , and that they are mutually exclusive and exhaustive.

We use A1; : : : ; A2jPj to denote the atoms over P , listed in some �xed order. For example, there

are four atoms over P = fP1; P2g: A1 = P1^P2, A2 = P1^:P2, A3 = :P1^P2, A4 = :P1^:P2.

We now want to de�ne the notion of atomic description which is, roughly speaking, a

maximally expressive formula in the unary vocabulary 	. Fix a natural number M . An atomic

1Inconsistency is possible because of the use of equality. For example, if D includes z1 = z2 as well as both

R(z1; z3) and :R(z2; z3), it is inconsistent.
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description of size M consists of two parts. The �rst part, the size description with bound M ,

speci�es exactly how many elements in the domain should satisfy each atom Ai, except that if

there are M or more elements satisfying the atom it only expresses that fact, rather than giving

the exact count. More formally, given a formula �(x) with a free variable x, we take 9mx �(x)

to be the sentence that says there are precisely m domain elements satisfying �:

9mx �(x) =def 9x1 : : : xm

0
@^

i

(�(xi)^
^
j 6=i

(xj 6= xi))^ 8y(�(y)) _i(y = xi))

1
A :

Similarly, we de�ne 9�mx �(x) to be the formula that says that there are at least m domain

elements satisfying �:

9�mx �(x) =def 9x1 : : : xm

0
@^

i

(�(xi) ^
^
j 6=i

(xj 6= xi))

1
A :

De�nition 6.2.4: A size description with bound M (over P) is a conjunction of 2jPj formulas:

for each atom Ai over P , it includes either 9�MxAi(x) or a formula of the form 9mxAi(x) for

some m < M .

The second part of an atomic description is a complete description that speci�es the properties

of constants and free variables.

De�nition 6.2.5: A size M atomic description (over � and X ) is a conjunction of:

� a size description with bound M over P , and

� a complete description over 	 and X .

Note that an atomic description is a �nite formula, and there are only �nitely many size

M atomic descriptions over 	 and X (for �xed M). For the purposes of counting atomic

descriptions (as we do in Section 6.3.2), we assume some arbitrary but �xed ordering of the

conjuncts in an atomic description. Under this assumption, we cannot have two distinct atomic

descriptions that di�er only in the ordering of conjuncts. Given this, it is easy to see that

atomic descriptions are mutually exclusive. Moreover, atomic descriptions are exhaustive|the

disjunction of all consistent atomic descriptions of size M is valid.

Example 6.2.6: Consider the following size description � with bound 4 over P = fP1; P2g:

91xA1(x)^ 93xA2(x) ^ 9�4xA3(x)^ 9�4xA4(x):

Let 	 = fP1; P2; c1; c2; c3g. It is possible to augment � into an atomic description in many ways.

For example, one consistent atomic description  � of size 4 over 	 and ; (no free variables) is:2

� ^A2(c1) ^A3(c2) ^A3(c3) ^ c1 6= c2 ^ c1 6= c3 ^ c2 = c3:

2In our examples, we use the commutativity of equality in order to avoid writing down certain super
uous

disjuncts. In this example, for instance, we do not write down both c1 6= c2 and c2 6= c1.
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On the other hand, the atomic description

� ^A1(c1) ^A1(c2) ^ A3(c3) ^ c1 6= c2 ^ c1 6= c3 ^ c2 6= c3

is an inconsistent atomic description, since � dictates that there is precisely one element in the

atom A1 whereas the second part of the atomic description implies that there are two distinct

domain elements in that atom.

As we explained, an atomic description is, intuitively, a maximally descriptive sentence over

a unary vocabulary. The following theorem formalizes this idea by showing that each unary

formula is equivalent to a disjunction of atomic descriptions. For a given M and set X of

variables, let A	
M;X be the set of consistent atomic descriptions of size M over 	 and X .

Theorem 6.2.7: If � is a formula in L(	) whose free variables are contained in X , and
M � d(�) + jCj+ jX j,3 then there exists a set of atomic descriptions A	

� � A	
M;X such that � is

equivalent to
W
 2A	

�
 .

The proof of this theorem can be found in Appendix C.1.

For the remainder of this chapter we will be interested in sentences. Thus, we restrict

attention to atomic descriptions over 	 and the empty set of variables. Moreover, we assume

that all formulas mentioned are in fact sentences, and have no free variables.

De�nition 6.2.8: For 	 = P [ C, and a sentence � 2 L(	), we de�ne A	
� to be the set of

consistent atomic descriptions of size d(�)+jCj over 	 such that � is equivalent to the disjunction

of the atomic descriptions in A	
� .

It will be useful for our later results to prove a simpler analogue of Theorem 6.2.7 for the

case where the sentence � does not use equality or constant symbols. A simpli�ed atomic

description over P is simply a size description with bound 1. Thus, it consists of a conjunction

of 2jPj formulas of the form 9�1xAi(x) or 90xAi(x), one for each atom over P . Using the same

techniques as those of Theorem 6.2.7, we can prove:

Theorem 6.2.9: If � 2 L�(P), then � is equivalent to a disjunction of simpli�ed atomic

descriptions over P.

6.2.2 Named elements and model descriptions

Recall that we are attempting to divide the worlds satisfying KB into classes such that:

� ' is uniform in each class, and

3Recall that d(�) denotes the depth of quanti�er nesting of �. See De�nition 5.6.1.
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� the relative weight of the classes is easily computed.

In the previous section, we de�ned the concept of atomic description, and showed that a sentence

KB 2 L(	) is equivalent to some disjunction of atomic descriptions. This suggests that atomic

descriptions might be used to classify models of KB . Liogon'ki�� [Lio69] has shown that this is

indeed a successful approach, as long as we consider languages without constants and condition

only on sentences that do not use equality. In Theorem 6.2.9 we showed that, for such languages,

each sentence is equivalent to the disjunction of simpli�ed atomic descriptions. The following

theorem, due to Liogon'ki��, says that classifying models according to which simpli�ed atomic

description they satisfy leads to the desired uniformity property. This result will be a corollary

of a more general theorem that we prove later.

Proposition 6.2.10: [Lio69] Suppose that C = ;. If ' 2 L(�) and  is a consistent simpli�ed

atomic description over P, then Pr1('j ) is either 0 or 1.

If C 6= ;, then we do not get an analogue to Proposition 6.2.10 if we simply partition

the worlds according to the atomic description they satisfy. For example, consider the atomic

description  � from Example 6.2.6, and the sentence ' = R(c1; c1) for some binary predicate

R. Clearly, by symmetry, Pr1('j �) = 1=2, and therefore ' is not uniform over the worlds

satisfying  �. We do not even need to use constant symbols, such as c1, to construct such

counterexamples. Recall that the size description in  � included the conjunct 91xA1(x). So if

'0 = 9x (A1(x) ^R(x; x)) then we also get Pr1('0j �) = 1=2.

The general problem is that, given  �, ' can refer \by name" to certain domain elements

and thus its truth can depend on their properties. In particular, ' can refer to domain elements

that are denotations of constants in C as well as to domain elements that are the denotations

of the \�xed-size" atoms|those atoms whose size is �xed by the atomic description. In the

example above, we can view \the x such that A1(x)" as a name for the unique domain element

satisfying atom A1. In any model of  �, we call the denotations of the constants and elements

of the �xed-size atoms the named elements of that model. The discussion above indicates that

there is no uniformity theorem if we condition only on atomic descriptions, because an atomic

expression does not �x the denotations of the non-unary predicates with respect to the named

elements. This analysis suggests that we should augment an atomic description with complete

information about the named elements. This leads to a �ner classi�cation of models which

does have the uniformity property. To de�ne this classi�cation formally, we need the following

de�nitions.

De�nition 6.2.11: The characteristic of an atomic description  of size M is a tuple C of

the form h(f1; g1); : : : ; (f2jPj ; g2jPj)i, where

� fi = m if exactly m < M domain elements satisfy Ai according to  ,

� fi = � if at least M domain elements satisfy Ai according to  ,



74 CHAPTER 6. UNARY FIRST-ORDER KNOWLEDGE BASES

� gi is the number of distinct domain elements which are interpretations of elements in C
that satisfy Ai according to  .

Note that we can compute the characteristic of  immediately from the syntactic form of  .

De�nition 6.2.12: Suppose C = h(f1; g1); :::; (f2jPj ; g2jPj)i is the characteristic of  . We

say that an atom Ai is active in  if if fi = �; otherwise Ai is passive. Let A( ) be the set

fi : Ai is active in  g.

We can now de�ne named elements:

De�nition 6.2.13: Given an atomic description  and a model W of  , the named elements

in W are the elements satisfying the passive atoms and the elements that are denotations of

constants.

The number of named elements in any model of  is

�( ) =
X

i2A( )

gi +
X

i=2A( )

fi;

where C = h(f1; g1); :::; (f2jPj ; g2jPj)i, as before.

As we have discussed, we wish to augment  with information about the named elements.

We accomplish this using the following notion of model fragment which is, roughly speaking,

the projection of a model onto the named elements.

De�nition 6.2.14: Let  = � ^D for a size description � and a complete description D over

	. A model fragment V for  is a model over the vocabulary � with domain f1; : : : ; �( )g such

that:

� V satis�es D, and

� V satis�es the conjuncts in � de�ning the sizes of the passive atoms.

We can now de�ne what it means for a model W to satisfy a model fragment V .

De�nition 6.2.15: Let W be a model of  , and let i1; : : : ; i�( ) 2 f1; : : : ; Ng be the named

elements in W , where i1 < i2 < : : : < i�( ). The model W is said to satisfy the model fragment

V if the function F (j) = ij from the domain of V to the domain of W is an isomorphism between

V and the submodel of W formed by restricting to the named elements.

Example 6.2.16: Consider the atomic description  � from Example 6.2.6. Its characteristic

C � is h(1; 0); (3; 1); (�; 1); (�; 0)i. The active atoms are thus A3 and A4. Note that g3 = 1

because c2 and c3 are constrained to denote the same element. Thus, the number of named

elements �( �) in a model of  � is 1+3+1 = 5. Therefore each model fragment for  � will have
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domain f1; 2; 3; 4; 5g. The elements in the domain will be the named elements; these correspond

to the single element in A1, the three elements in A2, and the unique element denoting both c2
and c3 in A3.

Let � be fP1; P2; c1; c2; c3; Rg where R is a binary predicate symbol. One possible model

fragment V� for  � over � gives the symbols in � the following interpretation:

cV�1 = 4 cV�2 = 3 cV�3 = 3

PV�1 = f1; 2; 4; 5g PV�2 = f1; 3g RV� = f(1; 3); (3; 4)g:
It is easy to verify that V� satis�es the properties of the constants as prescribed by the de-

scription D in  � as well as the two conjuncts 91xA1(x) and 93xA2(x) in the size description

in  �.

Now, let W be a world satisfying  �, and assume that the named elements in W are

3; 8; 9; 14; 17. Then W satis�es V� if this 5-tuple of elements has precisely the same properties

in W as the 5-tuple 1; 2; 3; 4; 5 does in V�.

Although a model fragment is a semantic structure, the de�nition of satisfaction just given

also allows us to regard it as a logical assertion that is true or false in any model over � whose

domain is a subset of the natural numbers. In the following, we use this view of a model

description as an assertion frequently. In particular, we freely use assertions which are the

conjunction of an ordinary �rst-order  and a model fragment V , even though the result is not

a �rst-order formula. Under this viewpoint it makes perfect sense to use an expression such as

Pr1('j ^ V).

De�nition 6.2.17: A model description augmenting  over the vocabulary � is a conjunction

of  and a model fragment V for  over �. Let M�( ) be the set of model descriptions

augmenting  . (If � is clear from context, we omit the subscript and write M( ) rather than

M�( ).)

It should be clear that model descriptions are mutually exclusive and exhaustive. Moreover,

as for atomic descriptions, each unary sentence KB is equivalent to some disjunction of model

descriptions. From this, and elementary probability theory, we conclude the following fact,

which forms the basis of our techniques for computing asymptotic conditional probabilities.

Proposition 6.2.18: For any ' 2 L(�) and KB 2 L(	)

Pr1('jKB) =
X

 2A	
KB

X
( ^V)2M( )

Pr1('j ^ V) � Pr1( ^ VjKB);

if all limits exist.

As we show in the next section, model descriptions have the uniformity property so the �rst

term in the product will always be either 0 or 1.

It might seem that the use of model fragments is a needless complication and that any

model fragment, in its role as a logical assertion, will be equivalent to some �rst-order sentence.

Consider the following de�nition:
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De�nition 6.2.19: Let n = �( ). The complete description capturing V , denoted DV , is a

formula that satis�es the following:4

� DV is a complete description over � and the variables fx1; : : : ; xng (see De�nition 6.2.2),

� for each i 6= j, DV contains a conjunct xi 6= xj , and

� V satis�es DV when i is assigned to xi for each i = 1; : : : ; n.

Example 6.2.20: The complete description DV� capturing the model fragment V� from the

previous example has conjuncts such as P1(x1), :P1(x3), R(x1; x3), :R(x1; x2), and x4 = c1.

The distinction between a model fragment and the complete description capturing it is

subtle. Clearly if a model satis�es V , then it also satis�es 9x1; : : : ; xnDV . The converse is not

necessarily true. A model fragment places additional constraints on which domain elements

are denotations of the constants and passive atoms. For example, a model fragment might

entail that, in any model over the domain f1; : : : ; Ng, the denotation of constant c1 is less

than that of c2. Clearly, no �rst-order sentence can assert this. The main implication of

this di�erence is combinatorial; it turns out that counting model fragments (rather than the

complete descriptions that capture them) simpli�es many computations considerably. Although

we typically use model fragments, there are occasions where it is important to remain within

�rst-order logic and use the corresponding complete descriptions instead. For instance, this is

the case in the next subsection. Whenever we do this we will appeal to the following result,

which is easy to prove:

Proposition 6.2.21: For any ' 2 L(�) and model description  ^ V over �, we have

Pr1('j ^ V) = Pr1('j ^ 9x1; : : : ; x�( )DV):

6.3 Asymptotic conditional probabilities

6.3.1 A conditional 0-1 law

In the previous section, we showed how to partition KB into model descriptions. We now show

that ' is uniform over each model description. That is, for any sentence ' 2 L(�) and any

model description  ^V , the probability Pr1('j ^V) is either 0 or 1. The technique we use to

prove this is a generalization of Fagin's proof of the 0-1 law for �rst-order logic without constant

or function symbols [Fag76]. This result (independently proved by Glebsk�ii et al. [GKLT69])

states that if ' is a �rst-order sentence in a vocabulary without constant or function symbols,

then Pr1(') is either 0 or 1. It is well known that we can get asymptotic probabilities that are

neither 0 nor 1 if we use constant symbols, or if we look at general conditional probabilities.

4Note that there will, in general, be more than one complete description capturing V. We choose one of them

arbitrarily for DV.
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However, in the special case where we condition on a model descriptions there is still a 0-1 law.

Throughout this section let  ^ V be a �xed model description with at least one active atom,

and let n = �( ) be the number of named elements according to  .

As we said earlier, the proof of our 0-1 law is based on Fagin's proof. Like Fagin, our strategy

involves constructing a theory T which, roughly speaking, states that any �nite fragment of a

model can be extended to a larger fragment in all possible ways. We then prove two propositions:

1. T is complete; that is, for each ' 2 L(�), either T j= ' or T j= :'. This result, in the

case of the original 0-1 law, is due to Gaifman [Gai64].

2. For any ' 2 L(�), if T j= ' then Pr1('j ^ V) = 1.

Using the �rst proposition, for any sentence ', either T j= ' or T j= :'. Therefore, using

the second proposition, either Pr1('j ^ V) = 1 or Pr1(:'j ^ V) = 1. The latter case

immediately implies that Pr1('j ^ V) = 0. Thus, these two propositions su�ce to prove the

conditional 0-1 law.

We begin by de�ning several concepts which will be useful in de�ning the theory T .

De�nition 6.3.1: Let X 0 � X , let D be a complete description over � and X , and let D0 be

a complete description over � and X 0. We say that D0 extends D if every conjunct of D is a

conjunct of D0.

The core of the de�nition of T is the concept of an extension axiom, which asserts that any

�nite substructure can be extended to a larger structure containing one more element.

De�nition 6.3.2: Let X = fx1; : : : ; xjg for some k, let D be a complete description over �

and X , and let D0 be any complete description over � and X [ fxj+1g that extends D. The

sentence:

8x1; x2; : : : ; xj (D) 9xj+1D0)

is an extension axiom.

In the original 0-1 law, Fagin considered the theory consisting of all the extension axioms.

In our case, we must consider only those extension axioms whose components are consistent

with  , and which extend DV .

De�nition 6.3.3: Given  ^ V , we de�ne T to consist of  ^ 9x1; : : : ; xnDV together with all

extension axioms

8x1; x2; : : : ; xj (D) 9xj+1D0)

in which D (and hence D0) extends DV and in which D0 (and hence D) is consistent with  .
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We have used DV rather than V in this de�nition so that T is a �rst-order theory. Note that the

consistency condition above is not redundant, even given that the components of an extension

axiom extend DV . However, inconsistency can arise only if D0 asserts the existence of a new

element in some passive atom (because this would contradict the size description in  ).

The statements and proofs of the two propositions that imply the 0-1 law can be found in

Appendix C.2. As outlined above, these allow us to prove the main theorem of this section:

Theorem 6.3.4: For any sentence ' 2 L(�) and model description  ^ V, Pr1('j ^ V) is

either 0 or 1.

Note that if  is a simpli�ed atomic description, then there are no named elements in any

model of  . Therefore, the only model description augmenting  is simply  itself. Thus

Proposition 6.2.10, which is Liogon'ki��'s result, is a corollary of the above theorem.

6.3.2 Computing the relative weights of model descriptions

We now want to compute the relative weights of model descriptions. It will turn out that

certain model descriptions are dominated by others, so that their relative weight is 0, while

all the dominating model descriptions have equal weight. Thus, the problem of computing the

relative weights of model descriptions reduces to identifying the dominating model descriptions.

There are two factors that determine which model descriptions dominate. The �rst, and more

signi�cant, is the number of active atoms; the second is the number of named elements. Let

�( ) denote the number of active atoms according to  .

To compute these relative weights of the model descriptions, we must evaluate #worlds�N ( ^
V). The following lemma (whose proof is in Appendix C.3) gives a precise expression for the

asymptotic behavior of this function as N grows large.

Lemma 6.3.5: Let  be a consistent atomic description of size M � jCj over 	, and let

( ^ V) 2 M�( ).

(a) If �( ) = 0 and N > �( ), then #worlds	N( ) = 0. In particular, this holds for all

N > 2jPjM .

(b) If �( ) > 0, then

#worlds�N( ^ V) �
 
N

n

!
aN�n2

P
i�2

bi(N
i�ni)

;

where a = �( ), n = �( ), and bi is the number of predicates of arity i in �.

The asymptotic behavior described in this lemma motivates the following de�nition:
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De�nition 6.3.6: Given an atomic description  over 	, let the degree of  , written �( ), be

the pair (�( ); �( )), and let degrees be ordered lexicographically. We extend this de�nition

to sentences as follows. For KB 2 L(	), we de�ne the degree of KB over 	, written �	(KB),

to be max 2A	
KB

�( ), and the activity count of KB , to be �	(KB) (i.e., the �rst component

of �	(KB)).

One important conclusion of this lemma justi�es our treatment of well-de�nedness (De�-

nition 6.2.1) when conditioning on unary formulas. It shows that if KB is satis�ed in some

\su�ciently large" model, then it is satis�able over all \su�ciently large" domains. It thus

allows us to avoid dealing with persistent vs. intermittent limits when conditioning on monadic

formulas.

Lemma 6.3.7: Suppose that KB 2 L(	), and M = d(KB) + jCKB j. Then the following

conditions are equivalent:

(a) KB is satis�ed in some model of cardinality greater than 2jPjM ,

(b) �	(KB) > 0,

(c) for all N > 2jPjM , KB is satis�able in some model of cardinality N ,

(d) Pr1(�jKB) is well-de�ned.

For the case of sentences in the languages without equality or constants, the condition for

well-de�nedness simpli�es considerably.

Corollary 6.3.8: If KB 2 L�(P), then Pr1(�jKB) is well-de�ned i� KB is satis�able.

Proof: The only if direction is obvious. For the other, if KB is consistent, then it is equivalent to

a non-empty disjunction of consistent simpli�ed atomic descriptions. Any consistent simpli�ed

atomic description has arbitrarily large models.

We remark that we can extend our proof techniques to show that Corollary 6.3.8 holds even

if C 6= ;, although we must still require that KB does not mention equality. We omit details

here.

For the remainder of this chapter, we will consider only sentences KB such that �	(KB) > 0.

For the case of unary �rst-order sentences, this assumption is equivalent to our assumption of

Chapter 3 that the knowledge base is always eventually consistent.

Lemma 6.3.5 shows that, asymptotically, the number of worlds satisfying  ^V is completely

determined by the degree of  . Model descriptions of higher degree have many more worlds,

and therefore dominate. On the other hand, model descriptions with the same degree have the

same number of worlds at the limit, and are therefore equally likely. This observation allows

us to compute the relative weights of di�erent model descriptions.
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De�nition 6.3.9: For any degree � = (a; n), let A	;�
KB be the set of atomic descriptions  2

A	
KB such that �( ) = �. For any set of atomic descriptions A0, we use M(A0) to denote

[ 2A0M( ).

Theorem 6.3.10: Let KB 2 L(	) and �	(KB) = �. Let  be an atomic description in A	
KB ,

and let  ^ V 2 M�( ).

(a) If �( ) < � then Pr1( ^ VjKB) = 0.

(b) If �( ) = � then Pr1( ^ VjKB) = 1=jM�(A	;�
KB)j.

Combining this result with Proposition 6.2.18, we deduce

Theorem 6.3.11: For any ' 2 L(�) and KB 2 L(	),

Pr1('jKB) =
X

( ^V)2M(A	;�

KB
)

Pr1('j ^ V)=jM(A	;�
KB)j:

This result, together with the techniques of the next section, will allow us compute asymptotic

conditional probabilities.

The results of Liogon'ki�� are a simple corollary of the above theorem. For an activity count

a, let A	;a
KB denote the set of atomic descriptions  2 A	

KB such that �( ) = a.

Theorem 6.3.12: [Lio69] Assume that C = ;, ' 2 L(�), KB 2 L�(P), and �P(KB) = a.

Then Pr1('jKB) =
P
 2A

P;a

KB
Pr1('j )=jAP;aKB j.

Proof: By Lemma 6.2.9, a sentence KB 2 L�(P) is the disjunction of the simpli�ed atomic

descriptions in APKB . A simpli�ed atomic description  has no named elements, and therefore

�( ) = (�( ); 0). Moreover, M( ) = f g for any  2 APKB . The result now follows trivially

from the previous theorem.

This calculation simpli�es somewhat if ' and KB are both monadic. In this case, we assume

without loss of generality that d(') = d(KB). (If not, we can replace ' with ' ^KB and KB

with KB ^ (' _ :').) This allows us to assume that A	
'^KB � A	

KB , thus simplifying the

presentation.

Corollary 6.3.13: Assume that ';KB 2 L�(P), and �P(KB) = a. Then

Pr1('jKB) =
jAP;a'^KB j
jAP;aKB j

:

Proof: Since ' is monadic, ' ^ KB is equivalent to a disjunction of the atomic descriptions

AP'^KB � APKB . Atomic descriptions are mutually exclusive; thus, for  2 A	
KB , Pr1('j ) =

1 if  2 A	
'^KB and Pr1('j ) = 0 otherwise. The result then follows immediately from

Theorem 6.3.12.
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6.4 Complexity analysis

In this section we investigate the computational complexity of problems associated with asymp-

totic conditional probabilities. In fact, we consider three problems: deciding whether the

asymptotic probability is well-de�ned, computing it, and approximating it.

Our computational approach is based on Theorem 6.3.11, which tells us that

Pr1('jKB) =
1

jM(A	;�
KB)j

�
X

( ^V)2M(A
	;�

KB
)

Pr1('j ^ V):

The basic structure of the algorithms we give for computing Pr1('jKB) is simply to enumerate

model descriptions  ^ V and, for those of the maximum degree, compute the conditional

probability Pr1('j ^ V). In Section 6.4.1 we show how to compute this latter probability.

6.4.1 Computing the 0-1 probabilities

The method we give for computing Pr1('j ^ V) is an extension of Grandjean's algorithm

[Gra83] for computing asymptotic probabilities in the unconditional case. For the purposes

of this section, �x a model description  ^ V over �. In our proof of the conditional 0-1 law

(Section 6.3.1), we de�ned a theory T corresponding to  ^V . We showed that T is a complete

and consistent theory, and that ' 2 L(�) has asymptotic probability 1 i� T j= '. We therefore

need an algorithm that decides whether T j= '.

Grandjean's original algorithm decides whether Pr1(') is 0 or 1 for a sentence ' with

no constant symbols. For this case, the theory T consists of all possible extension axioms,

rather than just the ones involving model descriptions extending DV and consistent with  (see

De�nition 6.3.3). The algorithm has a recursive structure, which at each stage attempts to

decide something more general than whether T j= '. It decides whether T j= D ) �, where

� D is a complete description over � and the set Xj = fx1; : : : ; xjg of variables,

� � 2 L(�) is any formula whose only free variables (if any) are in Xj .

The algorithm begins with j = 0. In this case, D is a complete description over X0 and �. Since

� contains no constants and X0 is the empty set, D must in fact be the empty conjunction,

which is equivalent to the formula true. Thus, for j = 0, T j= D ) ' i� T j= '. While j = 0

is the case of real interest, the recursive construction Grandjean uses forces us to deal with the

case j > 0 as well. In this case, the formula D ) ' contains free variables; these variables are

treated as being universally quanti�ed for purposes of determining if T j= D) '.

Our algorithm is the natural extension to Grandjean's algorithm for the case of conditional

probabilities and for a language with constants. The chief di�erence is that we begin by consid-

ering T j= DV ) ' (where V is the model fragment on which we are conditioning). Suppose DV
uses the variables x1; : : : ; xn, where n = �( ). We have said that T j= DV ) ' is interpreted

as T j= 8x1; : : : ; xn (DV ) '), and this is equivalent to T j= (9x1; : : : ; xn DV) ) ' because
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Procedure Compute01(D) �)

1. If � is of the form �0 or :�0 for an atomic formula �0 then:

� Return(true) if � is a conjunct of D,

� Return(false) otherwise.

2. If � is of the form �1 ^ �2 then:

� Return(true) if Compute01(D) �1) and Compute01(D) �2),

� Return(false) otherwise.

3. If � is of the form �1 _ �2 then:

� Return(true) if Compute01(D) �1) or Compute01(D) �2),

� Return(false) otherwise.

4. If � is of the form 9y �0 and D is a complete description over � and fx1; : : : ; xjg then:

� Return(true) if Compute01(D0 ) �0[y=xj+1]) for some complete description D0 over

� and fx1; : : : ; xj+1g that extends D and is consistent with  .

� Return(false) otherwise.

5. If � is of the form 8y �0 and D is a complete description over � and fx1; : : : ; xjg then:

� Return(true) if Compute01(D0 ) �0[y=xj+1]) for all complete descriptions D0 over �

and fx1; : : : ; xj+1g that extend D and are consistent with  .

� Return(false) otherwise.

Figure 6.2: Compute01 for computing 0-1 probabilities

' is closed. Because 9x1; : : : ; xn DV is in T by de�nition, this latter assertion is equivalent to

T j= ', which is what we are really interested in.

Starting from the initial step just outlined, the algorithm then recursively examines smaller

and smaller subformulas of ', while maintaining a description D which keeps track of any new

free variables that appear in the current subformula. Of course, D will also extend DV and will

be consistent with  .

The recursive procedure Compute01 in Figure 6.2 implements this idea. For a complete

description D over � and Xj (where D extends DV and is consistent with  ), and a formula

� 2 L(�) whose free variables (if any) are in Xj , it decides whether T j= D ) �. The algorithm

proceeds by induction on the structure of the formula, until the base case|an atomic formula or

its negation|is reached. Compute01 is called initially with the arguments DV and '. Without

loss of generality, we assume that all negations in ' are pushed in as far as possible, so that only
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atomic formulas are negated. We also assume that ' does not use the variables x1; x2; x3; : : :.

The proof that Compute01 is correct can be found in Appendix C.4. The appendix also

describes how the algorithm can be implemented on an alternating Turing machine (ATM)

[CKS81]. In an ATM, the nonterminal states are classi�ed into two kinds: universal and

existential. Just as with a nondeterministic TM, a nonterminal state may have one or more

successors. The terminal states are classi�ed into two kinds: accepting and rejecting. The

computation of an ATM forms a tree, where the nodes are instantaneous descriptions (ID's) of

the machine's state at various points in the computation, and the children of a node are the

possible successor ID's. We recursively de�ne what it means for a node in a computation tree

to be an accepting node. Leaves are terminal states, and a leaf is accepting just if the machine

is in an accepting state in the corresponding ID. A node whose ID is in an existential state is

accepting i� at least one of its children is accepting. A node whose ID is in a universal state is

accepting i� all of its children are accepting. The entire computation is accepting if the root is

an accepting node.

We use several di�erent measures for the complexity of an ATM computation. The time of

the computation is the number of steps taken by its longest computation branch. The number

of alternations of a computation of an ATM is the maximum number of times, over all branches,

that the type of state switched (from universal to existential or vice versa). The number of

branches is simply the number of distinct computation paths. The number of branches is always

bounded by an exponential in the computation time, but sometimes we can �nd tighter bounds.

Compute01 is easily implemented on an ATM (as is Grandjean's original algorithm). The

complexity analysis of the resulting algorithm is summarized in the following theorem, which

forms the basis for almost all of our upper bounds in this section.

Theorem 6.4.1: There exists an alternating Turing machine that takes as input a �nite vo-

cabulary �, a model description  ^ V over �, and a formula ' 2 L(�), and decides whether

Pr1('j ^ V) is 0 or 1. The machine uses time O(j�j2jPj(�( ) + j'j)�) and O(j'j) alterna-
tions, where � is the maximum arity of predicates in �. If � > 1, the number of branches is

2O(j�j(�( )+j'j)
�). If � = 1, the number of branches is O((2j�j + �( ))j'j).

An alternating Turing machine can also be simulated by a deterministic Turing machine.

This allows us to prove the following important corollary.

Corollary 6.4.2: There exists a deterministic Turing machine that takes as input a �nite

vocabulary �, a model description  ^V over �, and a formula ' 2 L(�), and decides whether

Pr1('j ^V) is 0 or 1. If � > 1 the machine uses time 2O(j�j(�( )+j'j)
�) and space O(j�j(�( )+

j'j)�). If � = 1 the machine uses time 2O(j'jj�j log(�( )+1)) and space O(j'jj�j log(�( ) + 1)).

6.4.2 Computing asymptotic conditional probabilities

Our overall goal is to compute Pr1('jKB) for some ' 2 L(�) and KB 2 L(	). To do this, we

enumerate model descriptions over � of size d(KB) + jCj, and check which are consistent with
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Procedure Compute-Pr1('jKB)

�  (0; 0)

For each model description  ^ V do:

Compute Pr1(KB j ^ V) using Compute01(DV ) KB)

If �( ) = � and Pr1(KB j ^ V) = 1 then

count(KB) count(KB) + 1

Compute Pr1('j ^ V) using Compute01(DV ) ')

count(') count(') + Pr1('j ^ V)

If �( ) > � and Pr1(KB j ^ V) = 1 then

�  �( )

count(KB) 1

Compute Pr1('j ^ V) using Compute01(DV ) ')

count(') Pr1('j ^ V)

If � = (0; 0) then output \Pr1('jKB) not well-de�ned"

otherwise output \Pr1('jKB) = count(')=count(KB)".

Figure 6.3: Compute-Pr1 for computing asymptotic conditional probabilities.

KB . Among those model descriptions that are of maximal degree, we compute the fraction of

model descriptions for which Pr1('j ^ V) is 1.

More precisely, let �KB = �	(KB). Theorem 6.3.11 tells us that

Pr1('jKB) =
1

jM(A	;�KB
KB )j

X
( ^V)2M(A

	;�KB
KB

)

Pr1('j ^ V):

The procedure Compute-Pr1, described in Figure 6.3, generates one by one all model descrip-

tions  ^ V of size d(KB) + jCj over �. The algorithm keeps track of three things, among

the model descriptions considered thus far: (1) the highest degree � of a model description

consistent with KB , (2) the number count(KB) of model descriptions of degree � consistent

with KB , and (3) among the model descriptions of degree � consistent with KB , the number

count(') of descriptions such that Pr1('j ^ V) = 1. Thus, for each model description  ^ V
generated, the algorithm computes �( ). If �( ) < � or Pr1(KB j ^ V) is 0, then the model

description is ignored. Otherwise, if �( ) > �, then the count for lower degrees is irrelevant. In

this case, the algorithm erases the previous counts by setting �  �( ), count(KB) 1, and

count(') Pr1('j ^ V). If �( ) = �, then the algorithm updates count(KB) and count(')

appropriately.

Di�erent variants of this algorithm are the basis for most of the upper bounds in the re-

mainder of this chapter.
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6.4.3 Finite vocabulary

We now consider the complexity of various problems related to Pr1('jKB) for a �xed �nite

vocabulary �. The input for such problems is ' and KB , and so the input length is the sum of

the lengths of ' and KB . Since, for the purposes of this section, we view the vocabulary � as

�xed (independent of the input), its size and maximum arity can be treated as constants.

We �rst consider the issue of well-de�nedness.

Theorem 6.4.3: Fix a �nite vocabulary � with at least one unary predicate symbol. For

KB 2 L(	), the problem of deciding whether Pr1(�jKB) is well-de�ned is PSPACE-complete.

The lower bound holds even if KB 2 L�(fPg).

In order to compute asymptotic conditional probabilities in this case, we simply use the func-

tion Compute-Pr1. In fact, since Compute-Pr1 can also be used to determine well-de�nedness,

we could also have used it to prove the previous theorem.

Theorem 6.4.4: Fix a �nite vocabulary �. For ' 2 L(�) and KB 2 L(	), the problem of

computing Pr1('jKB) is PSPACE-complete. Indeed, deciding if Pr1('jtrue) = 1 is PSPACE-

hard even if ' 2 L�(fPg) for some unary predicate symbol P .

Since for ' 2 L�(fPg), the probability Pr1('jtrue) is either 0 or 1, it follows immediately

from Theorem 6.4.4 that we cannot approximate the limit. Indeed, if we �x � with 0 < � < 1, the

problem of deciding whether Pr1('jKB) 2 [0; 1��] is PSPACE-hard even for';KB 2 L�(fPg).
We might hope to prove that for any nontrivial interval [r1; r2], it is PSPACE-hard to decide

if Pr1('jKB) 2 [r1; r2]. This stronger lower bound does not hold for the language L�(fPg).
Indeed, it follows from Theorem 6.3.12 that if � is any �xed vocabulary then, for ' 2 L(�) and

KB 2 L�(	), Pr1('jKB) must take one of a �nite number of values (the possible values being

determined entirely by �). So the approximation problem is frequently trivial; in particular,

this is the case for any [r1; r2] that does not contain one of the possible values. To see that there

are only a �nite number of values, �rst note that there is a �xed collection of atoms over �. If

KB does not use equality, an atomic description can only say, for each atom A over �, whether

9xA(x) or :9xA(x) holds. There is also a �xed set of constant symbols to describe. Therefore,

there is a �xed set of possible atomic descriptions. Finally, note that the only named elements

are the constants, and so there is also a �xed (and �nite) set of model fragments. This shows

that the set of model descriptions is �nite, from which it follows that Pr1('jKB) takes one of

�nitely many values �xed by �. Thus, in order to have have Pr1('jKB) assume in�nitely many

values, we must allow equality in the language. Moreover, even with equality in the language,

one unary predicate does not su�ce. Using Theorem 6.3.11, it can be shown that two unary

predicates are necessary to allow the asymptotic conditional probability to assume in�nitely

many possible values. As the following result shows, this condition also su�ces.

Theorem 6.4.5: Fix a �nite vocabulary � that contains at least two unary predicates and

rational numbers 0 � r1 � r2 � 1 such that [r1; r2] 6= [0; 1]. For ';KB 2 L(P), the problem



86 CHAPTER 6. UNARY FIRST-ORDER KNOWLEDGE BASES

of deciding whether Pr1('jKB) 2 [r1; r2] is PSPACE-hard, even given an oracle that tells us

whether the limit is well-de�ned.

These results show that simply assuming that the vocabulary is �xed and �nite is not by

itself enough to lead to computationally easy problems. Nevertheless, there is some good news.

We observed in the previous chapter that if � is �xed and �nite, and we bound the depth of

quanti�er nesting, then there exists a linear time algorithm for computing asymptotic proba-

bilities. In general, as we observed, we cannot e�ectively construct this algorithm, although we

know that it exists. As we now show, for the case of conditioning on a unary formula, we can

e�ectively construct this algorithm.

Theorem 6.4.6: Fix d � 0. For ' 2 L(�), KB 2 L(	) such that d('); d(KB) � d, we

can e�ectively construct a linear time algorithm that decides if Pr1('jKB) is well-de�ned and

computes it if it is.

6.4.4 In�nite vocabulary|restricted cases

Up to now we have assumed that the vocabulary � is �nite. In many standard complexity

arguments it is important that the vocabulary be in�nite. For example, satis�ability for propo-

sitional logic formulas is decidable in linear time if we consider a �xed �nite vocabulary; we

need to consider the class of formulas de�nable over some in�nite vocabulary of propositional

symbols to get NP-completeness. In the next three sections we consider formulas over an in�-

nite vocabulary 
. As we observed in Section 3.2, the probability PrN ('jKB) is independent

of our choice of vocabulary. Therefore, when ' and KB are drawn from an in�nite vocabulary,

it is simplest to de�ne PrN('jKB) relative to the set of vocabulary symbols actually appearing

in ' and in KB . Thus, the assumption of an in�nite vocabulary only a�ects the complexity

analysis.

As before, we are interested in computing the complexity of the same three problems:

deciding whether the asymptotic probability is well-de�ned, computing it, and approximating

it. As we mentioned earlier, the complexity is quite sensitive to a number of factors. One

factor, already observed in the unconditional case [BGK85, Gra83], is whether there is a bound

on the arity of the predicates in 
. Without such a bound, the problem is complete for the

class #TA(EXP,LIN). Unlike the unconditional case, however, simply putting a bound on the

arity of the predicates in 
 is not enough to improve the complexity (unless the bound is 1);

we also need to restrict the use of equality, so that it cannot appear in the right-hand side of

the conditional. Roughly speaking, with equality, we can use the named elements to play the

same role as the predicates of unbounded arity. In this section, we consider what happens if

we in fact restrict the language so that either (1) 
 has no predicate of arity � 2, or (2) there

is a bound (which may be greater than 1) on the arity of the predicates in 
, but we never

condition on formulas that use equality. As we now show, these two cases turn out to be quite

similar. In particular, the same complexity results hold.
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Throughout this section, we take 
 to be a �xed in�nite vocabulary such that all predicate

symbols in 
 have arity less than some �xed bound �. Let Q be the set of all unary predicate

symbols in 
, let D be the set of all constant symbols in 
, and let � = Q[D.

We start with the problem of deciding whether the asymptotic probability is well de�ned.

Since well-de�nedness depends only on the right-hand side of the conditional, which we already

assume is restricted to mentioning only unary predicates, its complexity is independent of the

bound �. Thus, the well-de�nedness problem is NEXPTIME-complete even if we do not use

the assumptions that we are making throughout the rest of this section.

Theorem 6.4.7: For KB 2 L(�), the problem of deciding if Pr1(�jKB) is well-de�ned is

NEXPTIME-complete. The NEXPTIME lower bound holds even for KB 2 L�(Q) where

d(KB) � 2.

We next consider the problem of computing the asymptotic probability Pr1('jKB), given

that it is well-de�ned. We show that this problem is #EXP-complete. Recall that #P (see

[Val79a]) is the class of integer functions computable as the number of accepting computations of

a nondeterministic polynomial-time Turing machine. More precisely, a function f : f0; 1g�! IN

is said to be in #P if there is a nondeterministic Turing machine M such that for any w, the

number of accepting paths of M on input w is f(w). The class #EXP is the exponential time

analogue.

The function we are interested in is Pr1('jKB), which is not integer valued. Nevertheless,

we want to show that it is in #EXP. In the spirit of similar de�nitions for #P (see, for example,

[Val79b, PB83]) and NP (e.g., [GJ79]) we extend the de�nition of #EXP to apply also to non-

integer-valued functions.

De�nition 6.4.8: An arbitrary function f is said to be #EXP-easy if there exists an integer-

valued function g in #EXP and a polynomial-time-computable function h such that for all

x, f(x) = h(g(x)). (In particular, we allow h to involve divisions, so that f(x) may be a

rational function.) A function f is #EXP-hard if, for every #EXP-easy function g, there exist

polynomial-time functions h1 and h2 such that, for all x, g(x) = h2(f(h1(x))).5 A function f

is #EXP-complete if it is #EXP-easy and #EXP-hard.

We can similarly de�ne analogues of these de�nitions for the class #P.

We now show that for an in�nite arity-bounded vocabulary in which equality is not used,

or for any unary vocabulary, the problem of computing the asymptotic conditional probability

is #EXP-complete. We start with the upper bound.

Theorem 6.4.9: If either (a) ';KB 2 L(�) or (b) ' 2 L(
) and KB 2 L�(�), then

computing Pr1('jKB) is #EXP-easy.

5Notice that we need the function h2 as well as h1. For example, if g is an integer-valued function and f

always returns a rational value between 0 and 1, as is the case for us, then there is no function h1 such that

g(x) = f(h1(x)).
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We now want to prove a matching lower bound. Just as for Theorem 6.4.7, we show that

the lower bound actually holds for ';KB 2 L�(Q) of quanti�er depth 2.

Theorem 6.4.10 : Given ';KB 2 L�(Q) of depth at least 2, the problem of computing

Pr1('jKB) is #EXP-hard, even given an oracle for deciding whether the limit exists.

As in Theorem 6.4.5, we can also show that any nontrivial approximation of the asymptotic

probability is hard, even if we restrict to sentences of depth 2.

Theorem 6.4.11: Fix rational numbers 0 � r1 � r2 � 1 such that [r1; r2] 6= [0; 1]. For

';KB 2 L�(Q) of depth at least 2, the problem of deciding whether Pr1('jKB) 2 [r1; r2] is

both NEXPTIME-hard and co-NEXPTIME-hard, even given an oracle for deciding whether the

limit exists.

6.4.5 Sentences of depth 1

The lower bounds of the previous section all hold provided we consider formulas whose quan-

ti�cation depth is at least 2. Can we do better if we restrict to formulas of quanti�cation

depth at most 1? As we show in this section, we can. The complexities typically drop by an

exponential factor. For example, checking well-de�nedness is now NP-complete rather than

NEXPTIME-complete. We can also prove #P-hardness for the problem of computing prob-

abilities for depth 1 sentences, and can give a matching upper bound for a subclass of such

sentences. For the full generality of depth 1 sentences, we have not proved a #P upper bound

for computing the asymptotic probability. The best algorithm we have found for general depth

one sentences is in PSPACE. We observe that the depth 1 case is strongly related to the case of

computing probabilities over a propositional language. In fact, our lower bounds are proved for

an essentially propositional language. A related paper by Roth [Rot93] extends our hardness

results to restricted propositional languages.

We begin with the lower bounds. In fact, all of our lower bounds rely only on quanti�er-free

sentences, over a vocabulary consisting of unary predicates and a single constant c.

Theorem 6.4.12: For a quanti�er-free sentence KB 2 L�(Q [ fcg), the problem of deciding

whether Pr1(�jKB) is well-de�ned is NP-hard.

Theorem 6.4.13: For quanti�er-free sentences ';KB 2 L�(Q[fcg), the problem of computing

Pr1('jKB) is #P-hard.

The next result shows that it is di�cult even to approximate conditional probabilities in

L�(Q[ fcg).

Theorem 6.4.14: Fix rational numbers 0 � r1 � r2 � 1 such that [r1; r2] 6= [0; 1]. For

quanti�er-free sentences ';KB 2 L�(Q [ fcg), deciding whether Pr1('jKB) 2 [r1; r2] is both

NP-hard and co-NP-hard.
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It follows from the proof of this theorem that, for any � > 0, it is both NP-hard and co-

NP-hard to �nd a value v that approximates the asymptotic probability to within less than

1=2��. It is straightforward to show that this subsumes a similar result of Paris and Vencovska

[PV89], where it is proven that approximating asymptotic probabilities for a richer language

(which includes statistical information) is NP-hard.

We now state the upper bound corresponding to Theorem 6.4.12.

Theorem 6.4.15: For KB 2 L(�) of quanti�er depth 1, the problem of deciding whether

Pr1(�jKB) is well-de�ned is in NP.

We have not been able to prove a matching upper bound for Theorem 6.4.13; all we can

prove is a PSPACE upper bound. We can, however, prove a #P upper bound under certain

restrictions (see Theorem C.5.9 in Appendix C.5.3). To prove these results, we would like to

use the same techniques used in Theorem 6.4.4. That is, we would like to generate model

descriptions and for each of these compute the probability of KB and '^KB given the model

description. However, we cannot accomplish this in polynomial space, since model descriptions

can have exponential size. This is not due to the number of named elements because, as we show

later, the only named elements in an atomic description of maximal degree (that is consistent

with a depth 1 formula) are the constants. However, an atomic description must still list the

(potentially exponentially many) �nite atoms, and a model fragment must list the properties

of the constants which can also require exponential space. For the latter, observe that if 
'

contains a predicate R of arity r, describing the denotation of R over the constants could take

as much as jCjr space, where C = D'^KB . Since r can be as large as O(j'j), this is exponential

in the size of the input. It follows that we need some shorter alternative to the use of complete

model descriptions. Fortunately it turns out that, in the case of formulas of depth 1, we can

�nd a polynomial-length substitute. The appropriate de�nitions, and the proof of the following

theorem, can be found in Appendix C.5.3.

Theorem 6.4.16: For sentences KB 2 L(�) and ' 2 L(
) of quanti�er depth 1, the problem

of computing Pr1('jKB) is in PSPACE.

6.4.6 In�nite vocabulary|the general case

In Section 6.4.4 we investigated the complexity of asymptotic conditional probabilities when

the (in�nite) vocabulary satis�es certain restrictions. As we now show, the results there were

tight in the sense that the restrictions cannot be weakened. We examine the complexity of the

general case, in which the vocabulary is in�nite with no bound on predicates' arities and/or in

which equality can be used.

The problem of checking if Pr1('jKB) is well de�ned is still NEXPTIME-complete. The-

orem 6.4.7 (which had no restrictions) still applies. However, the complexity of the other

problems we consider does increase. It can be best described in terms of the complexity class

TA(EXP,LIN)|the class of problems that can be solved by an exponential time ATM with a
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linear number of alternations. The class TA(EXP,LIN) also arises in the study of unconditional

probabilities where there is no bound on the arity of the predicates. Grandjean [Gra83] proved

a TA(EXP,LIN) upper bound for computing whether the unconditional probability is 0 or 1

in this case, and Immerman [BGK85] proved a matching lower bound. Of course, Grandjean's

result can be viewed as a corollary of Theorem 6.4.1. Immerman's result, which has not, to the

best of our knowledge, appeared in print, is a corollary of Theorem C.5.10 which we state and

prove in Appendix C.5.4.

To capture the complexity of computing the asymptotic probability in the general case, we

use a counting class #TA(EXP,LIN) that corresponds to TA(EXP,LIN). To de�ne this class, we

restrict attention to the class of ATM's whose initial states are existential. Given such an ATM

M, we de�ne an initial existential path in the computation tree of M on input w to be a path

in this tree, starting at the initial state, such that every node on the path corresponds to an

existential state except for the last node, which corresponds to a universal or an accepting state.

That is, an initial existential path is a maximal path that starts at the root of the tree and

contains only existential nodes except for the last node in the path. We say that an integer-

valued function f : f0; 1g� ! IN is in #TA(EXP,LIN) if there is a machine M in the class

TA(EXP,LIN) such that, for all w, f(w) is the number of existential paths in the computation

tree of M on input w whose last node is accepting (recall that we de�ned a notion of \accepting"

for any node in the tree in Section 6.4.1). We extend the de�nition of #TA(EXP,LIN) to apply

to non-integer valued functions and de�ne #TA(EXP,LIN)-easy just as we did before with #P

and #EXP in Section 6.4.4.

We start with the upper bound.

Theorem 6.4.17 : For ' 2 L(
) and KB 2 L(�), the function Pr1('jKB) is in

#TA(EXP,LIN).

We now want to state the matching lower bound. Moreover, we would like to show that

the restrictions from Section 6.4.4 cannot be weakened. Recall from Theorem 6.4.9 that the

#EXP upper bound held under one of two conditions: either (a) ' and KB are both unary, or

(b) the vocabulary is arity-bounded and KB does not use equality. To show that (a) is tight,

we show that the #TA(EXP,LIN) lower bound holds even if we allow ' and KB to use only

binary predicates and equality. (The use of equality is necessary, since without it we know from

(b) that the problem is #EXP-easy.) To show that (b) is tight, we show that the lower bound

holds for a non-arity-bounded vocabulary, but without allowing equality in KB . Neither lower

bound requires the use of constants.

Theorem 6.4.18: For ' 2 L(
) and KB 2 L(�), computing Pr1('jKB) is #TA(EXP,LIN)-

hard. The lower bound holds even if ';KB do not mention constant symbols and either (a) '

uses no predicate of arity > 2, or (b) KB uses no equality.
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6.5 Discussion

In this chapter, we have focused on the case of a �rst-order language, where the formula we are

conditioning on is unary. We have presented an algorithm for computing asymptotic conditional

probabilities in this case, and investigated the complexity of the problem under a number of

assumptions.

Clearly, we are ultimately interested in the full language, allowing the use of statistical

statements. In this context, the �rst-order language is a very narrow special case, so that one

might ask why these results are of interest. One answer is obvious. The di�erent lower bounds

that hold for a �rst-order language, clearly carry over to the general case. However, the results

of this chapter turn out to be useful in the process of computing degrees of belief even for

the full language (under the assumption, of course, that the knowledge base is unary). As we

show in the next chapter, some of our algorithms can be combined with a maximum entropy

computation in order to compute degrees of belief in the general case.



Chapter 7

The Maximum Entropy Connection

In the two previous chapters, we studied the problem of computing asymptotic conditional

probabilities in the �rst-order case. In this chapter, we focus on the much more useful case

where the knowledge base has statistical as well as �rst-order information. In light of the

results of Chapters 5 and 6, for most of the chapter we restrict attention to the case when

the knowledge base is expressed in a unary language. Our major result involves showing that

asymptotic conditional probabilities can often by computed using the principle of maximum

entropy [Jay78].

The idea of maximizing entropy has played an important role in many �elds, including the

study of probabilistic models for inferring degrees of belief [Jay57]. In the simplest setting, we

can view entropy as a real-valued function on �nite probability spaces. If 
 is a �nite set and

� is a probability measure on 
, the entropy H(�) is de�ned to be �P!2
 �(!) ln �(!) (we

take 0 ln 0 = 0).

One standard application of entropy is the following. Suppose we know the space 
, but

have only partial information about �, expressed in the form of constraints. For example, we

might have a constraint such as �(!1) + �(!2) � 1=3. Although there may be many measures

� that are consistent with what we know, the principle of maximum entropy suggests that we

adopt that �� which has the largest entropy among all the possibilities. Using the appropriate

de�nitions, it can be shown that there is a sense in which this �� incorporates the \least"

additional information [Jay57]. For example, if we have no constraints on �, then �� will be

the measure that assigns equal probability to all elements of 
. Roughly speaking, �� assigns

probabilities as equally as possible given the constraints.

Like maximum entropy, the random-worlds method also is used to determine degrees of

belief (i.e., probabilities) relative to a knowledge base. Aside from this, there seems to be no

obvious connection between the two approaches. Even the form of the \knowledge base" di�ers:

the principle of maximum entropy applies to algebraic constraints on a probability distribution,

whereas random-worlds uses assertions in a formal logic. Indeed, as long as the knowledge base

makes use of a binary predicate symbol (or unary function symbol), we suspect that there is

no useful connection between the two at all; see Section 7.3 for some discussion.
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To understand the use of maximum entropy, suppose the vocabulary consists of the unary

predicate symbols P1; : : : ; Pk. We can consider the 2k atoms that can be formed from these

predicate symbols, namely, the formulas of the form Q1 ^ : : :^Qk , where each Qi is either Pi
or :Pi. We can view the knowledge base as placing constraints on the proportion of domain

elements satisfying each atom. For example, the constraint kP1(x)jP2(x)kx = 1=2 says that

the proportion of the domain satisfying some atom that contains P2 as a conjunct is twice the

proportion satisfying atoms that contain both P1 and P2 as conjuncts. Given a model of KB ,

we can de�ne the entropy of this model as the entropy of the vector denoting the proportions

of the di�erent atoms. We show that, as N grows large, there are many more models with high

entropy than with lower entropy. Therefore, models with high entropy dominate. We use this

concentration phenomenon to show that our degree of belief in ' given KB according to the

random-worlds method is closely related to the assignment of proportions to atoms that has

maximum entropy among all assignments consistent with the constraints imposed by KB .

The concentration phenomenon relating entropy to the random-worlds method is well-known

[Jay82]. In physics, the \worlds" are the possible con�gurations of a system typically consist-

ing of many particles or molecules, and the mutually exclusive properties (our atoms) can be,

for example, quantum states. The corresponding entropy measure is at the heart of statisti-

cal mechanics and thermodynamics. There are subtle but important di�erences between our

viewpoint and that of the physicists. The main one lies in our choice of language. We want to

express some intelligent agent's knowledge (which is why we take �rst-order logic as our start-

ing point). The most speci�c di�erence concerns constant symbols. We need these because

the most interesting questions for us arise when we have some knowledge about | and wish

to assign degrees of belief to statements concerning | a particular individual. The parallel in

physics would address properties of a single particle, which is generally considered to be well

outside the scope of statistical mechanics.

Another work that examines the connection between random worlds and entropy from our

point of view | computing degrees of belief for formulas in a particular logic | is that of

Paris and Vencovska [PV89]. They restrict the knowledge base to consist of a conjunction of

constraints that (in our notation) have the form k�(x)j�(x)kx � r and jj�(x)jjx � r, where �

and � are quanti�er-free formulas involving unary predicates only, with no constant symbols.

Not only is most of the expressive power of �rst-order logic not available in their approach, but

the statistical information that can be expressed is quite limited. For example, it is not possible

to make general assertions about statistical independence. Paris and Vencovska show that, for

this language, the degree of belief can be computed using maximum entropy. As we have

already suggested, we believe that a much richer language than this is called for. Our language

allows arbitrary �rst-order assertions, full Boolean logic, arbitrary polynomial combinations of

statistical expressions, and more.

In Section 7.1, we show that the connection between maximum entropy and random worlds

can still be made in this much richer setting, although the results are much more di�cult to

prove. We then show, in Section 7.2, how maximum entropy can be used to compute degrees of

belief in a large number of interesting cases. Using the techniques of Chapter 6, we show how

maximum entropy can even be used to assign probabilities to non-unary formulas, so long as
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the knowledge base is unary and satis�es certain assumptions. We cannot make the connection

for the full language, though. For one thing, as we hinted earlier, there are problems if we

try to condition on a knowledge base that includes non-unary predicates. In addition, there

are subtleties that arise involving the interaction between statistical information and �rst-order

quanti�cation. We feel that an important contribution of this chapter lies in pointing out the

limitations of maximum entropy methods, particularly in the presence of non-unary predicates.

Although the random-worlds method makes sense regardless of the vocabulary, it seems that

once we allow non-unary predicate symbols in the language, we completely lose all connection

between the random-worlds method and maximum entropy. We return to this last point in

Section 7.3.

7.1 Degrees of belief and entropy

Let L�1 be the sublanguage of L� where only unary predicate symbols and constant symbols

appear in formulas; in particular, we assume that equality (=) does not occur in formulas

in L�1 .1 Let L=1 be the corresponding sublanguage of L=. In this section, we show that the

expressive power of a knowledge base KB in the language L�1 is quite limited. In fact, such a

KB can essentially only place constraints on the proportions of the atoms. If we then think

of these as constraints on the \probabilities of the atoms" we have the necessary ingredients

to apply maximum entropy. We then show that there is a strong connection between the

maximum entropy distribution found this way and the degree of belief generated by random-

worlds method.

7.1.1 Unary Expressivity

To see what constraints a formula places on the probabilities of atoms, it is useful to convert the

formula to a certain canonical form. As a �rst step to doing this, we recall the formal de�nition

of atom from De�nition 6.2.3. Let P = fP1; : : : ; Pkg consist of the unary predicate symbols in

the vocabulary �.

De�nition 7.1.1: An atom (over P) is conjunction of the form P 01(x)^ : : :^P 0k(x), where each

P 0i is either Pi or :Pi. Since the variable x is irrelevant to our concerns, we suppress it and

describe an atom as a conjunction of the form P 01 ^ : : :^ P 0k.

Note that there are 2jPj = 2k atoms over P , and that they are mutually exclusive and exhaustive.

Throughout this chapter, we use K to denote 2k. We use A1; : : : ; AK to denote the atoms over

P , listed in some �xed order.

Example 7.1.2: There are K = 4 atoms over P = fP1; P2g: A1 = P1 ^ P2, A2 = P1 ^ :P2,
A3 = :P1 ^ P2, A4 = :P1 ^ :P2.

1We remark that many of our results can be extended to the case where the KB mentions equality, but the

extra complexity added obscures many of the essential ideas.
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The atomic proportion terms jjA1(x)jjx; : : : ; jjAK(x)jjx will play a signi�cant role in our

technical development. It turns out that L�1 is a rather weak language; a formula KB 2 L�1
does little more than constrain the proportion of the atoms. In other words, for any such

KB we can �nd an equivalent formula in which the only proportion expressions are these

unconditional proportions of atoms. In particular, all of the more complex syntactic machinery

in L�1 | proportions over tuples, �rst-order quanti�cation, nested proportions, and conditional

proportions | does not add expressive power. (It does add convenience, however; knowledge

can often be expressed far more succinctly if the full power of the language is used.)

Given any KB , the �rst step towards applying maximum entropy is to use L�1 's lack of

expressivity and replace all proportions by atomic proportions. It is also useful to make various

other simpli�cations to KB that will help us in Section 7.2. We combine these steps and require

that KB be transformed into a special canonical form which we now describe.

De�nition 7.1.3: An atomic term t over P is a polynomial over terms of the form jjA(x)jjx,
where A is an atom over P . Such an atomic term t is positive if every coe�cient of the

polynomial t is positive.

De�nition 7.1.4: A (closed) sentence � 2 L=1 is in canonical form if it is a disjunction of

conjunctions, where each conjunct is one of the following:

� t0 = 0, t0 > 0 ^ t � t0"i, or t0 > 0 ^ :(t � t0"i), where t and t0 are atomic terms and t0 is

positive,

� 9xAi(x) or :9xAi(x) some some atom Ai, or

� Ai(c) for some atom Ai and some constant c.

Furthermore, a disjunct cannot contain both Ai(c) and Aj(c) for i 6= j as conjuncts, nor can it

contain both Ai(c) and :9xAi(x). (This last condition is a minimal consistency requirement.)

We now prove the following theorem, that extends Theorem 6.2.7 from Chapter 6 to the

language L=1 .

Theorem 7.1.5: Every formula in L=1 is equivalent to a formula in canonical form. Moreover,

there is an e�ective procedure that, given a formula � 2 L=1 constructs an equivalent formula b�
in canonical form.

We remark that the length of the formula b� is typically exponential in the length of �. Such

a blowup seems inherent in any scheme de�ned in terms of atoms.

Theorem 7.1.5 is a generalization of Claim 5.7.1 in [Hal90]. It, in turn, is a generalization

of a well-known result which says that any �rst-order formula with only unary predicates is

equivalent to one with only depth-one quanti�er nesting. Roughly speaking, this is because for
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a a quanti�ed formula such as 9x �0, subformulas talking about a variable y other than x can

be moved outside the scope of the quanti�er. This is possible because no literal subformula

can talk about x and y together. Our proof uses the same idea and extends it to proportion

statements. In particular, it shows that for any � 2 L�1 there is an equivalent �̂ which has no

nested quanti�ers or nested proportions.

Notice, however, that such a result does not hold once we allow even a single binary predi-

cate in the language. For example, the formula 8y 9xR(x; y) clearly needs nested quanti�cation

because R(x; y) talks about both x and y and so must remain within the scope of both quanti-

�ers. With binary predicates, each additional depth of nesting really does add expressive power.

This shows that there can be no \canonical form" theorem quite like Theorem 7.1.5 for richer

languages. This issue is one of the main reasons why we restrict the KB to a unary language

in this chapter. (See Section 7.3 for further discussion.)

Given any formula in in canonical form we can immediately derive from it, in a syntactic

manner, a set of constraints on the possible proportions of atoms.

De�nition 7.1.6: Let KB be in canonical form. We construct a formula �(KB) in the language

of real closed �elds (i.e., over the vocabulary f0; 1;+;�g) as follows, where u1; : : : ; uK are

variables (distinct from the tolerance variables "j):

� we replace each occurrence of the formula Ai(c) by ui > 0,

� we replace each occurrence of 9xAi(x) by ui > 0 and replace each occurrence of :9xAi(x)

by ui = 0.

� we replace each occurrence of jjAi(x)jjx by ui.

Notice that �(KB) has two types of variables: the new variables that we introduced, and the

tolerance variables "i. In order to eliminate the dependence on the latter, we often consider the

formula KB [~� ] for some tolerance vector ~� .

De�nition 7.1.7: Given a formula 
 over the variables u1; : : : ; uK, let Sol [
] be the set of

vectors in �K = f~u 2 [0; 1]K :
PK
i ui = 1g satisfying 
. Formally, if (a1; : : : ; aK) 2 �K , then

(a1; : : : ; aK) 2 Sol [
] i� (IR; V ) j= 
, where V is a valuation such that V (ui) = ai.

De�nition 7.1.8: The solution space of KB given ~� , denoted S~� [KB ], is de�ned to be the

closure of Sol [�(KB [~� ])]. (We typically use A to denote the closure of a set in IRK .)

If KB is not in canonical form, we de�ne �(KB) and S~� [KB ] to be �(dKB) and S~� [dKB ], respec-

tively, where dKB is the formula in canonical form equivalent to KB obtained by the procedure

in Theorem 7.1.5.

Example 7.1.9: Let P be fP1; P2g, with the atoms ordered as in Example 7.1.2. Consider

KB = 8xP1(x)^ 3kP1(x) ^ P2(x)kx �i 1:
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The canonical formula dKB equivalent to KB is:2

:9xA3(x) ^ :9xA4(x)^ 3jjA1(x)jjx � 1 � "i:
As expected, dKB constrains both jjA3(x)jjx and jjA4(x)jjx (i.e., u3 and u4) to be 0. We also

see that jjA1(x)jjx (i.e., u1) is (approximately) at most 1=3. Therefore:

S~� [KB ] =
n

(u1; : : : ; u4) 2 �4 : u1 � 1=3 + �i=3; u3 = u4 = 0
o
:

7.1.2 The concentration phenomenon

With every world W 2 W�, we can associate a particular tuple (u1; : : : ; uK) where ui is the

fraction of the domain satisfying atom Ai in W .

De�nition 7.1.10: Given a world W 2 W�, we de�ne �(W ) 2 �K to be

(jjA1(x)jjx; jjA2(x)jjx; : : : ; jjAK(x)jjx)
where the values of the proportions are interpreted over W . The vector �(W ) is also de�ned

to be the point associated with W .

We de�ne the entropy of any model W to be the entropy of �(W ); that is, if �(W ) =

(u1; : : : ; uK), then the entropy of W is H(u1; : : : ; uK). As we are about to show, the entropy

of ~u turns out to be a very good (asymptotic) indicator of how many worlds W there are such

that �(W ) = ~u. In fact, there are so many more worlds near points of high entropy that we can

ignore all the other points when computing degrees of belief. This concentration phenomenon,

as Jaynes [Jay82] has called it, which is essentially the content of the next lemma, justi�es our

interest in the the maximum entropy point(s) of S~� [KB ].

For any S � �K let #worlds~�N [S](KB) denote the number of worlds W of size N such

that (W;~�) j= KB and such that �(W ) 2 S; for any ~u, let #worlds~�N [~u](KB) abbreviate

#worlds~�N [f~ug](KB). Of course #worlds~�N [~u](KB) is zero unless all components of ~u are mul-

tiples of 1=N . However, if there are any models associated with ~u at all, we can estimate their

number quite accurately using the entropy function:

Lemma 7.1.11: There exist some function h : IN ! IN and two strictly positive polynomial

functions f; g : IN ! IR such that, for KB 2 L�1 and ~u 2 �K, if #worlds~�N [~u](KB) 6= 0, then

in fact

(h(N)=f(N))eNH(~u) � #worlds~�N [~u](KB) � h(N)g(N)eNH(~u):

Of course, it follows from the lemma that tuples whose entropy is near maximum have

overwhelmingly more worlds associated with them than tuples whose entropy is further from

maximum. This is essentially the concentration phenomenon.

Lemma 7.1.11 is actually fairly straightforward to prove. The following simple example

illustrates the basic idea.
2Note that here we are viewing KB as a formula in L=, under the tranlsation de�ned earlier; we do this

throughout the chapter without further comment.
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Figure 7.1: Partition of W4 according to �(W ).

Example 7.1.12: Suppose � = fPg and KB = true: We have

�K = �2 = f(u1; 1� u1) : 0 � u1 � 1g ;

where the atoms are A1 = P;A2 = :P . For any N , partition the worlds in WN according

to the point to which they correspond. For example, the graph in Figure 7.1 shows us the

partition of W4. In general, consider some point ~u = (r=N; (N � r)=N). The number of worlds

corresponding to ~u is simply the number of ways of choosing the denotation of P . That is, we

need to choose which r elements satisfy P ; hence, the number of such worlds is
�N
r

�
= N !

r!(N�r)!
.

Figure 7.2 shows the qualitative behavior of this function for large values of N .

We can estimate the factorials appearing in this expression using Stirling's approximation,

which asserts that the factorial m! is approximately mm = em lnm. So, after substituting for

the three factorials, we can estimate
�N
r

�
as eN logN�(r log r+(N�r) log(N�r)), which reduces to

eNH(~u). The entropy term in the general case arises from the use of Stirling's approximation

in an analogous way. (A more careful estimate is done in the proof of Lemma 7.1.11 in the

appendix.)

Because of the exponential dependence on N times the entropy, the number of worlds asso-

ciated with points of high entropy swamp all other worlds as N grows large. This concentration

phenomenon, well-known in the �eld of statistical physics, forms the basis for our main result

in this section. It asserts that it is possible to compute degrees of belief according to random

worlds while ignoring all but those worlds whose entropy is near maximum. The next theorem

is a formal statement of precisely this phenomenon.
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Figure 7.2: Concentration phenomenon for worlds of size N .

Theorem 7.1.13: For all su�ciently small ~� , the following is true. Let Q be the points with

greatest entropy in S~� [KB ] and let O � IRK be any open set containing Q. Then for all � 2 L�
and for lim� 2 flim sup; lim infg:

lim
N!1

� Pr~�N (�jKB) = lim
N!1

� #worlds~�N [O](� ^ KB)

#worlds~�N [O](KB)
:

In general Theorem 7.1.13 may seem to be of limited usefulness: knowing that we only have

to look at worlds near the maximum entropy point does not substantially reduce the number

of worlds we need to consider. (Indeed, the whole point of the concentration phenomenon is

that almost all worlds have high entropy.) Nevertheless, as the rest of this chapter shows, this

result can be very useful when combined with the following two results. The �rst of these says

that if all the worlds near the maximum entropy points have a certain property, then we should

have degree of belief 1 that this property is true.

Corollary 7.1.14: For all su�ciently small ~� , the following is true. Let Q be the points with

greatest entropy in S~� [KB ], let O � IRK be an open set containing Q, and let �[O] 2 L= be an

assertion that holds for any world W such that �(W ) 2 O. Then

Pr~�1(�[O]jKB) = 1:

Example 7.1.15: For the knowledge base true in Example 7.1.12, it is easy to see that the

maximum entropy point is (0:5; 0:5). Fix some arbitrary � > 0. Clearly, there is some open set
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O around this point such that the assertion � = jjP (x)jjx 2 [0:5� �; 0:5 + �] holds for any world

in O. Therefore, we can conclude that

Pr~�1 (jjP (x)jjx 2 [0:5� �; 0:5 + �] jtrue) = 1:

This corollary turns out to be surprisingly useful, for the following reason. As we showed in

Section 4.1, formulas � with degree of belief 1 can essentially be treated just like other knowledge

in KB . That is, for any other formula ', the degrees of belief relative to KB and KB ^ � will

be identical (even if KB and KB ^ � are not logically equivalent). However, as we show in the

next section, it may be possible to apply certain techniques to KB ^ � which cannot be used

for KB . For convenience, we restate and prove a slightly more general version of this fact:

Theorem 7.1.16: If Pr~�1(�jKB) = 1 and lim� 2 flim sup; lim infg, then:

lim
N!1

� Pr~�N ('jKB) = lim
N!1

� Pr~�N ('jKB ^ �):

Proof: Basic probabilistic reasoning shows that, for any N and ~� :

Pr~�N ('jKB) = Pr~�N ('jKB ^ �) Pr~�N(�jKB) + Pr~�N ('jKB ^ :�) Pr~�N (:�jKB):

By assumption, Pr~�N (�jKB) tends to 1 when we take limits, so the �rst term tends to Pr~�N('jKB^
�). On the other hand, Pr~�N (:�jKB) has limit 0. Because Pr~�N ('jKB ^ :�) is bounded, we

conclude that the second product also tends to 0. The result follows.

7.2 Computing degrees of belief

Although the concentration phenomenon is interesting, its application to actually computing

degrees of belief may not be obvious. Since we know that almost all worlds will have high

entropy, a direct application of Theorem 7.1.13 does not substantially reduce the number of

worlds we must consider. Yet, as we show in this section, the concentration theorem can form

the basis of a practical technique for computing degrees of belief in many cases. We begin in

Section 7.2.1 by presenting the intuitions underlying this technique. In Section 7.2.2 we build

on these intuitions by presenting results for a restricted class of formulas: those queries which

are quanti�er-free formulas over a unary language with a single constant symbol. In spite of

this restriction, many of the issues arising in the general case can be seen here. Moreover,

as we show in Section 7.2.3, this restricted sublanguage is rich enough to allow us to embed

two well-known propositional approaches that make use of maximum entropy: probabilistic

logic, due to Nilsson [Nil86]; and the maximum-entropy extension of �-semantics [GP90] due to

Goldszmidt, Morris, Pearl [GMP90]. In Section 7.2.4, we consider to what extend the results

for the restricted language can be extended. We show that they can, but numerous subtleties

arise.



7.2. COMPUTING DEGREES OF BELIEF 101

7.2.1 The general strategy

Although the random-worlds method is de�ned by counting worlds, we can sometimes �nd more

direct ways to calculate the degrees of belief it yields. In Chapter 4 we present a number of

such techniques, most of which only apply in very special cases. One of the simplest and most

intuitive is the basic direct inference theorem, which we restate for convenience.

Theorem 4.2.1: Let KB be a knowledge base of the form  (~c ) ^ KB 0, and assume that for

all su�ciently small tolerance vectors ~� ,

KB [~� ] j= k'(~x)j (~x)k~x 2 [�; �]:

If no constant in ~c appears in KB 0, in '(~x), or in  (~x), then Pr1('(~c )jKB) 2 [�; �].

This result, in combination with the results of the previous section, provides us with a

very powerful tool. Roughly speaking, we propose to use the following strategy: The basic

concentration phenomenon says that most worlds are very similar in a certain sense. As shown

in Corollary 7.1.14, we can use this to �nd some assertions that are \almost certainly" true

(i.e., with degree of belief 1) even if they are not logically implied by KB . Theorem 7.1.16 then

tells us that we can treat these new assertions as if they are in fact known with certainly. When

these new assertions state statistical \knowledge", they can vastly increase our opportunities

to apply direct inference. The following example illustrates this idea.

Example 7.2.1: Consider a very simple knowledge base over a vocabulary containing the

single unary predicate fPg:
KB = (jjP (x)jjx �1 0:3):

There are two atoms A1 and A2 over P , with A1 = P and A2 = :P . The solution space of this

KB given ~� is clearly

S~� [KB ] = f(u1; u2) 2 �2 : u1 � 0:3 + �1g:

A straightforward computation shows that, for �1 < 0:2, this has a unique maximum entropy

point ~v = (0:3 + �1; 0:7� �1).
Now, consider the query P (c). For any � > 0, let �[�] be the formula jjP (x)jjx 2 [(0:3+�1)�

�; (0:3+�1)+�]. This satis�es the condition of Corollary 7.1.14, so it follows that Pr~�1(�[�]jKB) =

1: Using Theorem 7.1.16, we know that for lim� 2 flim inf ; lim supg,

lim
N!1

� Pr~�N(P (c)jKB) = lim
N!1

� Pr~�N (P (c)jKB ^ �[�]):

But now we can use direct inference. (Note that here, our \knowledge" about c is vacuous,

i.e., \true(c)".) We conclude that, if there is any limit at all, then necessarily

Pr~�1(P (c)jKB ^ �[�]) 2 [(0:3 + �1)� �; (0:3 + �1) + �]:

So, for any � > 0,

Pr~�1(P (c)jKB) 2 [(0:3 + �1)� �; (0:3 + �1) + �]:
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Since this is true for all �, the only possible value for Pr~�1(P (c)jKB) is 0:3 + �1, which is the

value of u1 (which represents jjP (x)jjx) at the maximum entropy point. Note that it is also

clear what happens as ~� tends to ~0. Thus, Pr1(P (c)jKB) is 0:3.

This example demonstrates the main steps of one strategy for computing degrees of belief.

First the maximum entropy points of the space S~� [KB ] are computed as a function of ~� . Then,

these are used to compute Pr~�1('jKB), assuming the limit exists (if not, the lim sup and lim inf

of PrN ('jKB) are computed instead). Finally, we compute the limit of this probability as ~�

goes to zero.

This strategy has a serious potential problem: we clearly cannot compute Pr~�1('jKB) sepa-

rately for each of the in�nitely many tolerance vectors ~� and then take the limit as ~� goes to 0.

We might hope to parametrically compute this probability as a function of ~� , and then compute

the limit. But there is no reason to believe that Pr~�1('jKB) is, in general, an easily charac-

terizable function of ~� , which will make computing the limit as ~� goes to 0 di�cult. We can,

however, often avoid this limiting process, if the maximum entropy points of S~� [KB ] converge

to the maximum entropy points of S
~0[KB ]. (For future reference, notice that S

~0[KB ] is the

space de�ned by the closure of the constraints obtained from KB by replacing all occurrences

of �i by = and all occurrences of �i by �.) In many such cases, we can compute Pr1('jKB)

directly in terms of the maximum entropy points of S
~0[KB ], without taking limits at all.

As the following example shows, this type of continuity does not hold in general: the

maximum entropy points of S~� [KB ] do not necessarily converge to those of S
~0[KB ].

Example 7.2.2: Consider the knowledge base

KB = (jjP (x)jjx �1 0:3_ jjP (x)jjx �2 0:4)^ jjP (x)jjx 6�3 0:4 :

It is easy to see that S
~0[KB ] is just f(0:3:0:7)g: The point (0:4; 0:6) is disallowed by the second

conjunct. Now, consider S~� [KB ] for ~� > ~0. If �2 � �3, then S~� [KB ] indeed does not contain

points where u1 is near 0:4; the maximum entropy point of this space is easily seen to be 0:3+�1.

However, if �2 > �3 then there will be points in S~� [KB ] where u1 is around 0:4: those where

0:4+�3 < u1 � 0:4+�2. Since these points have a higher entropy than the points in the vicinity

of 0:3, the former will dominate. Thus, the set of maximum entropy points of S~� [KB ] does

not converge to a single well-de�ned set. What it converges to (if anything) depends on how ~�

goes to ~0. This nonconvergence has consequences as far as degrees of belief go. It is not hard

to show Pr~�1(P (c)jKB) can be 0:3 + �1, 0:4 + �2, or 0:5, depending on the precise relationship

between �1, �2, and �3. It follows that Pr1(P (c)jKB) does not exist.

We say that a degree of belief Pr1('jKB) is not robust if the behavior of Pr~�1('jKB) (or

of lim inf Pr~�N ('jKB) and lim sup Pr~�N('jKB)) as ~� goes to ~0 depends on how ~� goes to ~0.

In other worlds, nonrobustness describes situations when Pr1('jKB) does not exist because

of sensitivity to the exact choice of tolerances. We shall see a number of other examples of

nonrobustness in later sections.
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It might seem that the notion of robustness is an artifact of our approach. In particular,

it seems to depend on the fact that our language has the expressive power to say that the two

tolerances represent a di�erent degree of approximation, simply by using di�erent subscripts

(�2 vs. �3 in the example). In an approach to representing approximate equality that does not

make these distinctions (as, for example, the approach taken in [PV89]), we are bound to get

the answer 0:3 in the example above, since then jjP (x)jjx 6�3 0:4 really would be the negation

of jjP (x)jjx �2 0:4. We would argue that the answer 0:3 is not as reasonable as it might at

�rst seem. Suppose one of the two di�erent instances of 0:4 in the previous example had been

slightly di�erent; for example, suppose we had used 0:399 rather than 0:4 in the �rst of them.

In this case, the second conjunct is essentially vacuous, and can be ignored. The maximum

entropy point in S
~0[KB ] is now 0:399, and we will, indeed, derive a degree of belief of 0:399

in P (c). Thus, arbitrarily small changes to the numbers in the original knowledge base can

cause large changes in our degrees of belief. But these numbers are almost always the result of

approximate observations; this is re
ected by our decision to use approximate equality rather

then equality when referring to them. It therefore does not seem reasonable to base actions on

a degree of belief that can change so drastically in the face of small changes in the measurement

of data. Note that, if we know that the two instances of 0:4 do, in fact, denote exactly the

same number, we can represent this by using the same approximate equality connective in both

disjuncts. In this case, it is easy to see that we do get the answer 0:3.

A close look at the example shows that the nonrobustness arises because of the negated

proportion expression jjP (x)jjx 6�3 0:4. Indeed, we can show that if we start with a KB in

canonical form that does not contain negated proportion expressions, then in a precise sense the

set of maximum entropy points of S~� [KB ] does converge to the set of maximum entropy points

of S
~0[KB ]. An argument can be made that we should eliminate negated proportion expressions

from the language altogether. It is one thing to argue that sometimes we have statistical values

whose accuracy we are unsure about, so that we want to make logical assertions less stringent

than exact numerical equality. It is harder to think of cases in which the opposite is true, and

all we know is that some statistic is \not even approximately" equal to some value. We do not

eliminate negated proportion expressions from the language, however, since without them we

would not be able to prove an analogue to Theorem 7.1.5. (They arise when we try to 
atten

nested proportion expressions, for example.) Instead, we have identi�ed a weaker condition

that is su�cient to prevent problems such as that seen in Example 7.2.2. Essential positivity

simply tests that negations are not interacting with the maximum entropy computation in a

harmful way.

De�nition 7.2.3: Let ��(KB [~0]) be the result of replacing each strict inequality in �(KB [~0])

with its weakened version. More formally, we replace each subformula of the form t < 0 with

t � 0, and each subformula of the form t > 0 with t � 0. (Recall that these are the only

constraints possible in �(KB [~0]), since all tolerance variables "i are assigned 0.) Let S�
~0[KB ]

be Sol [��(KB [~0])]. We say that KB is essentially positive if the sets S�
~0[KB ] and S

~0[KB ] have

the same maximum entropy points.

Example 7.2.4: Consider again the knowledge base KB from Example 7.2.2. The constraint
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formula �(KB [~0]) is (after simpli�cation):

(u1 = 0:3_ u1 = 0:4)^ (u1 < 0:4 _ u1 > 0:4):

Its \positive" version is ��(KB [~0]):

(u1 = 0:3_ u1 = 0:4)^ (u1 � 0:4 _ u1 � 0:4);

which is clearly equivalent to u1 = 0:3_ u1 = 0:4. Thus, S
~0[KB ] = f(u1; u2) 2 �2 : u1 � 0:3g

whereas S�
~0[KB ] = S

~0[KB ][f(0:4; 0:6)g. Since the two spaces have di�erent maximum entropy

points, the knowledge base KB is not essentially positive.

As the following result shows, essential positivity su�ces to guarantee that the maximum

entropy points of S~� [KB ] converge to those of S
~0[KB ].

Proposition 7.2.5: Assume that KB is essentially positive and let Q be the set of maximum

entropy points of S
~0[KB ] (and thus also of S�

~0[KB ]). Then for all � > 0 and all su�ciently

small tolerance vectors ~� (where \su�ciently small" may depend on �), every maximum entropy

point of S~� [KB ] is within � of some maximum entropy point in Q.

7.2.2 Queries for a single individual

We now show how to compute Pr1('jKB) for a certain restricted class of �rst-order formulas

' and knowledge bases KB . Most signi�cantly, the query ' is a quanti�er-free (�rst-order)

sentence over the vocabulary P [ fcg; thus, it is a query about a single individual | c. While

this class is rather restrictive, it su�ces to express a large body of real-life examples. Moreover,

it is signi�cantly richer than the language considered by Paris and Vencovska [PV89].

The following de�nition helps de�ne the class of interest.

De�nition 7.2.6: A formula is essentially propositional if it is a quanti�er-free and proportion-

free formula in the language L�(fP1; : : : ; Pkg) (so that it has no constant symbols) and has

only one free variable, namely x.

In this section, we focus on computing the degree of belief Pr1('(c)jKB) for formulas We

say that '(c) is a simple query for KB if:

� '(x) is essentially propositional,

� KB is of the form  (c)^ KB 0, where  (x) is essentially propositional and KB 0 does not

mention c.

Thus, just as in Theorem 4.2.1, we assume that  (c) summarizes all this is known about c. In

this section, we focus on computing the degree of belief Pr1('(c)jKB) for a formula '(c) which

is a simple query for KB .
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Note that any essentially propositional formula �(x) is equivalent to a disjunction of atoms.

For example, over the vocabulary fP1; P2g, the formula P1(x) _ P2(x) is equivalent to A1(x) _
A2(x) _ A3(x) (where the atoms are ordered as in Example 7.1.2). For any essentially propo-

sitional formula �, we take A(�) be the (unique) set of atoms such that � is equivalent toW
Aj2A(�)

Aj(x).

If we view a tuple ~u 2 �K as a probability assignment to the atoms, we can extend ~u to a

probability assignment on all essentially propositional formulas using this identi�cation of an

essentially propositional formula with a set of atoms:

De�nition 7.2.7: Let � be an essentially propositional formula. We de�ne a function F[�] :

�K ! IR as follows:

F[�](~u) =
X

Aj2A(�)

uj :

For essentially propositional formulas '(x) and  (x) we de�ne the (partial) function F['j ] :

�K ! IR to be:

F['j ](~u) =
F['^ ](~u)

F[ ](~u)
:

Note that this function is unde�ned when F[ ](~u) = 0.

As the following result shows, if ' is a simple query for KB , then all that matters in

computing Pr1('jKB) is F['j ](~u) for tuples ~u of maximum entropy. Thus, in a sense, we are

only using KB 0 to determine the space over which we maximize entropy. Having de�ned this

space, we can focus on  and ' in determining the degree of belief.

Theorem 7.2.8: Suppose '(c) is a simple query for KB. For all ~� su�ciently small, if Q
is the set of maximum entropy points in S~� [KB ] and F[ ](~v) > 0 for all ~v 2 Q, then for

lim� 2 flim sup; lim infg

lim
N!1

� Pr~�N('(c)jKB) 2
"

inf
~v2Q

F['j ](~v); sup
~v2Q

F['j ](~v)

#
:

The following is an immediate but important corollary of this theorem. It asserts that, if

the space S~� [KB ] has a unique maximum entropy point, then its value uniquely determines the

probability Pr~�1('(c)jKB).

Corollary 7.2.9: Suppose '(c) is a simple query for KB. For all ~� su�ciently small, if ~v is

the unique maximum entropy point in S~� [KB ] and F[ ](~v) > 0, then

Pr~�1('(c)jKB) = F['j ](~v):

We are interested in Pr1('(c)jKB), which means that we are interested in the limit of

Pr~�1('(c)jKB) as ~� ! ~0. As we observed in the previous section, if KB is essentially positive,

then by continuity we can compute this by looking directly at the maximum entropy points of

S
~0[KB ]. By combining Theorem 7.2.8 with Proposition 7.2.5, we can show:
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Theorem 7.2.10: Suppose '(c) is a simple query for KB. If the space S
~0[KB ] has a unique

maximum entropy point ~v, KB is essentially positive, and F[ ](~v) > 0, then

Pr1('(c)jKB) = F['j ](~v):

How applicable is this theorem? As our examples and the discussion in the next section

shows, we often do get simple queries and knowledge bases that are essentially positive. What

about the assumption of a unique maximum entropy point? Since the entropy function is

convex, this assumption is automatically satis�ed if S
~0[KB ] is a convex space. Recall that a

space S is convex if for all ~u;~u0 2 S, and all � 2 [0; 1], it is also the case that �~u+(1��)~u0 2 S.

Furthermore, the space S
~0[KB ] is clearly convex if it is de�ned using a conjunction of linear

constraints. While it is clearly possible to create knowledge bases where S
~0[KB ] has multiple

maximum entropy points (for example, using disjunctions), we expect that such knowledge

bases arise rarely in practical applications. Perhaps the most restrictive assumption made by

this theorem is the seemingly innocuous requirement that F[ ](~v) > 0. This assumption is

obviously necessary to the theorem as stated: without it, the function F['j ] is simply not

de�ned. Unfortunately, we show in Section 7.2.4 that this requirement is, in fact, a severe one;

in particular, it prevents the theorem from being applied to most examples derived from default

reasoning, using our statistical interpretation of defaults (described in Section 3.3).

We close this subsection with an example of the theorem in action.

Example 7.2.11: Let the language consist of P = fHepatitis; Jaundice;BlueEyedg, and the

constant Eric. There are eight atoms in this language. We use AQ1Q2Q3
to denote the atom

Q1(x)^Q2(x)^Q3(x), where Q1 is either H (denoting Hepatitis) or H (denoting :Hepatitis),

Q2 is J or J (for Jaundice and :Jaundice, respectively), and Q3 is B or B (for BlueEyed and

:BlueEyed , respectively).

Consider the knowledge base KBhep:

8x (Hepatitis(x)) Jaundice(x)) ^
kHepatitis(x)jJaundice(x)kx �1 0:8 ^
jjBlueEyed(x)jjx �2 0:25 ^
Jaundice(Eric):

If we list the atoms in the order

AHJB; AHJB ; AHJ B; AHJ B ; AH JB
; A

HJB
; A

H J B
; A

H J B
;

then it is not hard to show that �(KBhep) is:

u3 = 0 ^
u4 = 0 ^
(u1 + u2) � (0:8 + "1)(u1 + u2 + u5 + u6) ^
(u1 + u2) � (0:8� "1)(u1 + u2 + u5 + u6) ^
(u1 + u3 + u5 + u7) � (0:25 + "2) ^
(u1 + u3 + u5 + u7) � (0:25� "2) ^
(u1 + u2 + u5 + u6) > 0:
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To �nd the space S
~0[KBhep] we simply set "1 = "2 = 0. Then it is quite straightforward to �nd

the maximum entropy point in this space, which, taking 
 = 21:6, is:

(v1; v2; v3; v4; v5; v6; v7; v8) =

�
1

5 + 

;

3

5 + 

; 0; 0;

1

4(5 + 
)
;

3

4(5 + 
)
;




4(5 + 
)
;

3


4(5 + 
)

�
:

Using ~v, we can compute various asymptotic probabilities very easily. For example,

Pr1(Hepatitis(Eric)jKBhep) = F[Hepatitis jJaundice](~v)

=
v1 + v2

v1 + v2 + v5 + v6

=

1
5+


+ 3
5+


1
5+
 + 3

5+
 + 1
4(5+
) ;

3
4(5+
)

= 0:8;

as expected. Similarly,

Pr1(BlueEyed(Eric)jKBhep) = 0:25

and

Pr1(BlueEyed(Eric) ^Hepatitis(Eric)jKBhep = 0:2 :

Note that the �rst two answers also follow from the direct inference principle (Theorem 4.2.1),

which happens to be applicable in this case.

7.2.3 Probabilistic propositional logic

In this section we consider two well-known approaches to probabilistic propositional logic.

As the following discussion shows, probabilistic propositional logic in general, and these two

approaches in particular, can easily be embedded in our framework as simple queries. Let

p1; : : : ; pk be a set of primitive propositions. Nilsson [Nil86] considered the problem of reason-

ing about the probabilities of certain formulas over these propositions, given constraints over

the probabilities of other formulas. For example, we might know that Pr(
y jbird) � 0:7, that

Pr(yellow) � 0:2, and be interested in the probability Pr(
yjbird ^ yellow). Although it is not

always easy to see what Pr(
y jbird) means in the \real world", at least the formal semantics

for such statements is straightforward. Consider the set 
 of K = 2k truth assignments for

the propositions p1; : : : ; pk. We give semantics to probabilistic statements over this language in

terms of a probability distribution � over the set 
 (see [FHM90] for details). Since each truth

assignment ! 2 
 determines the truth value of any propositional formula �, we can determine

the probability of any such formula:

Pr�(�) =
X
!j=�

�(!):

Clearly, we can determine if a probability distribution � satis�es a set � of probabilistic con-

straints. The standard notion of probabilistic inference would say that � j= Pr(�) 2 [�1; �2] if

Pr�(�) is within the range [�1; �2] for any distribution � that satis�es the constraints in �.
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Unfortunately, while this is a very natural de�nition, the constraints that one can derive

from it are typically quite weak. For that reason, Nilsson suggested strengthening this notion

of inference by applying the principle of maximum entropy [Jay78]: Rather than considering

all distributions � satisfying �, we consider only the distribution(s) �� that have the greatest

entropy among those satisfying the constraints. As we now show, one implication of our results

is that the random worlds method provides a principled motivation for this introduction of

maximum entropy to probabilistic propositional reasoning. In fact, the connection between

probabilistic propositional reasoning and random worlds should be now fairly clear:

� The primitive propositions p1; : : : ; pk correspond to unary predicates P1; : : : ; Pk.

� A propositional formula � over p1; : : : ; pk corresponds uniquely to an essentially propo-

sitional formula �� as follows: we replace each occurrence of the propositional symbol pi
with Pi(x).

� The set � of probabilistic constraints corresponds to a knowledge base KB 0� | a constant-

free knowledge base containing only proportion expressions. The correspondence is as

follows:

{ A probability expression of the form Pr(�) appearing in � is replaced by the propor-

tion expression jj��(x)jjx. Similarly, a conditional probability expression Pr(�j�0) is

replaced by k��(x)j��0(x)kx.
{ Each comparison connective = is replaced by �i for some i, and each � with �i.

(The particular choices for the approximate equality connectives do not matter in

this context.)

The other elements that can appear in a proportion formula (such as rational numbers

and arithmetical connectives) remain unchanged.

� There is a one-to-one correspondence between truth assignments and atoms: the truth

assignment ! corresponds to the atom A = P 01 ^ : : :P 0k where P 0i is Pi if !(pi) = true

and :Pi otherwise. Let !1; : : : ; !K be the truth assignments corresponding to the atoms

A1; : : : ; AK , respectively.

� There is a one-to-one correspondence between probability distributions over the set 


of truth assignments and points in �K . For each point ~u 2 �K , let �~u denote the

corresponding probability distribution over 
, where �~u(!i) = ui.

Remark 7.2.12: Clearly, !j j= � i� Aj 2 A(��). Therefore, for any ~u, we have

F[��](~u) = Pr�~u(�):

The following result demonstrates the tight connection between probabilistic propositional

reasoning using maximum entropy and random worlds.
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Theorem 7.2.13: Let � be a conjunction of constraints of the form Pr(�j�0) = � or Pr(�j�0) 2
[�1; �2]. There is a unique probability distribution �� of maximum entropy satisfying �. More-

over, for all � and �0, if Pr��(�
0) > 0, then

Pr1(��(c)j��0(c)^ KB 0�) = Pr��(�j�0):

Theorem 7.2.13 is an easy corollary of Theorem 7.2.10. Because the constraints in � are

linear, the space S
~0[KB 0�] has a unique point ~v of maximum entropy. In fact, it is easy to

show that �~v is the (unique) maximum entropy probability distribution (over 
) satisfying the

constraints �. And because there are no negated proportion expressions in �, the formula

KB = ��0(c)^KB 0� is easily seen to be essentially positive.

Most applications of probabilistic propositional reasoning consider simple constraints of the

form used in the theorem, and so such applications can be viewed as very special cases of the

random-words approach. In fact, this theorem is essentially a very old one. The connection

between counting \worlds" and the entropy maximum in a space de�ned as a conjunction

of linear constraints is very well-known. It has been extensively formalized in the �eld of

thermodynamics as early as the 19th century work of Maxwell and Gibbs. Recently, this type

of reasoning has been applied to problems in an AI context by Paris and Vencovska [PV89]

and Shastri [Sha89]. The work of Paris and Venconvska is particularly relevant because they

also realize the necessity of adopting a formal notion of \approximation", although the precise

details of their approach di�er from ours.

To the best of our knowledge, most of the work on probabilistic propositional reasoning and

all formal presentations of the entropy/worlds connection (in particular, those of [PV89, Sha89])

have limited themselves to conjunctions of linear constraints. Our more general language gives

us a great deal of additional expressive power. For example, it is quite reasonable to want

the ability to express that properties are (approximately) statistically independent. For exam-

ple, we may wish to assert that Bird(x) and Yellow(x) are independent properties by saying

jjBird(x) ^ Yellow(x)jjx � jjBird(x)jjx � jjYellow(x)jjx. Clearly, such constraints are not linear.

Nevertheless, our Theorem 7.2.10 covers such cases and much more.

A type of probabilistic propositional reasoning has also been applied in the context of giving

probabilistic semantics to default reasoning [Pea89]. Here also, the connection to random-worlds

is of interest. In particular, it follows from Corollary 7.2.9 that the recent work of Goldszmidt,

Morris, and Pearl [GMP90] can be embedded in the random-worlds framework. In the rest of

this subsection, we explain their approach and the embedding.

Consider a language consisting of propositional formulas over the propositional variables

p1; : : : ; pk, and default rules of the form B ! C (read \B's are typically C's"), where B and C

are propositional formulas. A distribution � is said to �-satisfy a default rule B ! C if �(CjB) �
1� �. In addition to default rules, the framework also permits the use of material implication

in a rule, as in B ) C. A distribution � is said to satisfy such a rule if �(CjB) = 1. A

parameterized probability distribution (PPD) is a collection f��g�>0 of probability distributions

over 
, parameterized by �. A PPD f��g�>0 �-satis�es a setR of rules if for every �, �� �-satis�es

every default rule r 2 R and satis�es every non-default rule r 2 R. A set R of default rules

�-entails B ! C if for every PPD that �-satis�es R, lim�!0 ��(CjB) = 1.



110 CHAPTER 7. THE MAXIMUM ENTROPY CONNECTION

As shown in [GP90], �-entailment possesses a number of reasonable properties typically

associated with default reasoning, including a preference for more speci�c information. However,

there are a number of desirable properties that it does not have. Among other things, irrelevant

information is not ignored (see Section 2.2.3 for an extensive discussion of this issue).

To obtain additional desirable properties, �-semantics is extended in [GMP90] by an ap-

plication of the principle of maximum entropy. Instead of considering all possible PPD's, as

above, we consider only the PPD
n
���;R

o
�>0

such that, for each �, ���;R has the maximum en-

tropy among distributions that �-satisfy all the rules in R (see [GMP90] for precise de�nitions

and technical details). Note that since the constraints used to de�ne ���;R are all linear, as we

mentioned before, there is indeed a unique such point of maximum entropy. A rule B ! C

is an ME-plausible consequence of R if lim�!0 �
�
�;R(CjB) = 1. The notion of ME-plausible

consequence is analyzed in detail in [GMP90], where it is shown to inherit all the nice prop-

erties of �-entailment (such as the preference for more speci�c information), while successfully

ignoring irrelevant information. Equally importantly, algorithms are provided for computing

the ME-plausible consequences of a set of rules in certain cases.

Our maximum entropy results can be used to show that the approach of [GMP90] can be

embedded in our framework in a straightforward manner. We simply translate a default rule r

of the form B ! C into a �rst-order default rule

�r =def k�C(x)j�B(x)kx �1 1;

as in our earlier translation of Nilsson's approach. Note that the formulas that arise under

this translation all use the same approximate equality connective �1. The reason is that the

approach of [GMP90] uses the same � for all default rules. We can similarly translate a (non-

default) rule r of the form B ) C into a �rst-order constraint using universal quanti�cation:

�r =def 8x (�B(x)) �C(x)):

Under this translation, we can prove the following theorem.

Theorem 7.2.14: Let c be a constant symbol. Using the translation described above, for any

set R of defeasible rules, B ! C is an ME-plausible consequence of R i�

Pr1

 
�C(c)

������B(c)^
^
r2R

�r

!
= 1:

In particular, this theorem implies that all the computational techniques and results de-

scribed in [GMP90] carry over to this special case of the random-worlds method. It also shows

that random-world provides a principled justi�cation for the approach [GMP90] present (one

which is quite di�erent from the justi�cation given in [GMP90] itself).

7.2.4 Beyond simple queries

In Section 7.2.2 we restricted attention to simple queries. Our main result, Theorem 7.2.10

made yet more assumptions: essential positivity, the existence of a unique maximum entropy
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point ~v, and the requirement that F[ ](~v) > 0. We believe that this theorem is widely ap-

plicable, as demonstrated by our discussion in Section 7.2.3. However, it allows us to take

advantage of only a small fragment of our rich language. In contrast, the concentration result

(Theorem 7.1.13) holds with essentially no restrictions. So, it is reasonable to hope that we can

extend Theorem 7.2.10 to a more general setting as well. As we show in this section, while this

result can be extended substantially, there are serious limitations and subtleties. We illustrate

these subtleties by means of examples, and then show how the result can indeed be extended.

We �rst consider the restrictions we placed on the KB , and show the di�culties that arise

if we drop them. We start with the restriction to a single maximum entropy point. As the

concentration theorem (Theorem 7.1.13) shows, the entropy of almost every world is near

maximum. But it does not follow that all the maximum entropy points are surrounded by

similar numbers of worlds. Thus, in the presence of more than one maximum entropy point,

we face the problem of �nding the relative importance, or weighting, of each maximum entropy

point. As the following example illustrates, this weighting is often sensitive to the tolerance

values. For this reason, non-unique entropy maxima often lead to nonrobustness.

Example 7.2.15: Suppose � = fP; cg, and consider the knowledge base

KB = (kP (x)kx �1 0:3)_ (kP (x)kx �2 0:7):

Assume we want to compute Pr1(P (c)jKB). In this case, S~� [KB ] is

f(u1; u2) 2 �2 : u1 � 0:3 + �1 or u1 � 0:7� �2g;

and S
~0[KB ] is

f(u1; u2) 2 �2 : u1 � 0:3 or u1 � 0:7g:

Note that S
~0[KB ] has two maximum entropy points: (0:3; 0:7) and (0:7; 0:3).

Now consider the maximum entropy points of S~� [KB ] for ~� > ~0. It is not hard to show

that if �1 > �2, then this space has a unique maximum entropy point, (0:3 + �1; 0:7� �1). In

this case, Pr~�1(P (c)jKB) = 0:3 + �1. On the other hand, if �1 < �2, then the unique maximum

entropy point of this space is (0:7 + �2; 0:3� �2), in which case Pr~�1(P (c)jKB) = 0:7 + �2. If

�1 = �2, then the space S~� [KB ] also has two maximum entropy points, and by symmetry we

obtain that Pr~�1(P (c)jKB) = 0:5. Again, by appropriately choosing a sequence of tolerance

vectors converging to ~0, we can make the asymptotic value of this fraction either 0:3, 0:5, or

0:7. So Pr1(P (c)jKB) does not exist.

It is not disjunctions per se that cause the problem here: if we consider instead the

database KB 0 = (kP (x)kx �1 0:3) _ (kP (x)kx �2 0:6), then there is no di�culty. There is

a unique maximum entropy point of S
~0[KB 0] | (0:6; 0:4) | and the asymptotic probability

Pr1(P (c)jKB 0) = 0:6, as we would want.3

3We remark that it is also possible to construct examples of multiple maximum entropy points by using

quadratic constraints rather than disjunction.
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In light of this example (and many similar ones we can construct), we maintain our restriction

below to the case where there is a single maximum entropy point. As we argued earlier, we

expect this to be the typical case in practice.

We now turn our attention to the requirement that F[ ](~v) > 0. As we have already

observed, this seems to be an obvious restriction to make, in light of the fact that the function

F['j ](~v) is not de�ned otherwise. However, this di�culty is actually a manifestation of a much

deeper problem. As the following example shows, the entire approach of using the maximum

entropy point of S
~0[KB ] to compute degrees of belief fails in those cases where F[ ](~v) = 0.

Example 7.2.16: Consider the knowledge base KB described in Example 3.1.2, and con-

sider the problem of computing Pr1(Fly(Tweety)jPenguin(Tweety) ^ KB). We can easily

conclude from Theorem 4.2.1 that this degree of belief is 0, as expected. But now, consider the

maximum entropy point of S
~0[KB ^ Penguin(Tweety)]. The coordinates v1, corresponding to

Fly ^ Penguin, and v2, corresponding to :Fly ^ Penguin, are both 0. Hence, F[Penguin ](~v) = 0,

so that Theorem 7.2.10 does not apply. But, as we said, the problem is more fundamental. The

information that the proportion of 
ying penguins is zero is simply not present in the maximum

entropy point ~v. In particular, we would have obtained precisely the same maximum entropy

point from the very di�erent knowledge base KB 0 that asserts simply that jjPenguin(x)jjx �1 0.

This new knowledge base tells us nothing whatsoever about the fraction of 
ying penguins. In

fact, it is easy to show that Pr1(Fly(Tweety)jKB 0) = 0:5. Thus, we cannot derive the degree

of belief in Fly(Tweety) from this maximum entropy point; the relevant information is simply

not present.

Thus, we clearly cannot apply the philosophy of Theorem 7.2.10 to cases where F[ ](~v) = 0. It

is natural to ask, however, whether this requirement can be relaxed in the context of a di�erent

result. That is, is it possible to construct a technique for computing degrees of belief in those

cases where F[ ] = 0? In the context of using maximum entropy as a computational tool, this

seems di�cult. In particular, it seems to require the type of parametric maximum entropy

computation that we discussed in Section 7.2.1. The computational technique of [GMP90]

does, in fact, use this type of parametric analysis for a restricted class of problems. Some of

our theorems in Chapter 4 on the one hand, can be viewed as providing an alternative method

for computing degrees of belief, which also applies to such cases.

An additional assumption made in Section 7.2.2, is that the knowledge base has a special

form, namely  (c) ^ KB 0, where  is essentially propositional and KB 0 does not contain any

occurrences of c. Our theorem makes use of a generalization of this restriction.

De�nition 7.2.17: A knowledge base KB is said to be separable with respect to query ' if it

has the form  ^KB 0, where  contains neither quanti�ers nor proportions, and KB 0 contains

none of the constant symbols appearing in ' or in  .4

It should be clear that if a query '(c) is simple for KB (as assumed in previous subsection),

then the separability condition is satis�ed.

4Clearly, since our approach is semantic, it also su�ces if the knowledge base is equivalent to one of this form.
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As the following example shows, if we do not assume separablility, we can again easily run

into nonrobust behavior:

Example 7.2.18: Consider the following knowledge base KB over the vocabulary � = fP; cg:

(jjP (x)jjx �1 0:3^ P (c))_ (jjP (x)jjx �2 0:3^ :P (c)):

KB is not separable with respect to the query P (c). The space S
~0[KB ] consists of a unique point

(0:3; 0:7), which is also the maximum entropy point. Both disjuncts of KB are consistent with

the maximum entropy point, so we might expect that the presence of the conjuncts P (c) and

:P (c) in the disjuncts would not a�ect the degree of belief. That is, if it were possible to ignore

or discount the role of the tolerances, we would expect Pr1(P (c)jKB) = 0:3. However, this is

not the case. Consider the behavior of Pr~�1(P (c)jKB) for ~� > ~0. If �1 > �2, then the maximum

entropy point of S~� [KB ] is (0:3+�1; 0:7��1). Now, consider some � > 0 su�ciently small so that

�2+� < �1. By Corollary 7.1.14, we deduce that Pr~�1((jjP (x)jjx > 0:3+�2) jKB) = 1. Therefore,

by Theorem 7.1.16, Pr~�1(P (c)jKB) = Pr~�1(P (c) jKB ^ (jjP (x)jjx > 0:3 + �2)) (assuming the

limit exists). But since the newly added expression is inconsistent with the second disjunct,

we obtain that Pr~�1(P (c)jKB) = Pr~�1(P (c) jP (c)^ (jjP (x)jjx �1 0:3)) = 1, and not 0:3. On

the other hand, if �1 < �2, we get the symmetric behavior, where Pr~�1(P (c)jKB) = 0. Only

if �1 = �2 do we get the expected value of 0:3 for Pr~�1(P (c)jKB). Clearly, by appropriately

choosing a sequence of tolerance vectors converging to ~0, we can make the asymptotic value of

this fraction any of 0, 0:3, or 1, or not exist at all. Again, Pr1(P (c)jKB) is not robust.

We now turn our attention to restrictions on the query. In Section 7.2.2, we restricted to

queries of the form '(c), where '(x) is essentially propositional. Although we intend to ease

this restriction, we do not intend to allow queries that involve statistical information. The

following example illustrates the di�culties.

Example 7.2.19: Consider the knowledge base KB = jjP (x)jjx �1 0:3 and the query ' =

jjP (x)jjx �2 0:3. It is easy to see that the unique maximum entropy point of S~� [KB ] is

(0:3+�1; 0:7��1). First suppose �2 < �1. From Corollary 7.1.14, it follows that Pr~�1((jjP (x)jjx >
0:3 + �2) jKB) = 1. Therefore, by Theorem 7.1.16, Pr~�1('jKB) = Pr~�1('jKB ^ (jjP (x)jjx >
0:3 + �2)) (assuming the limit exists). On the other hand, the latter expression is clearly 0.

If �1 < �2, then KB [~� ] j= '[~� ], so that Pr~�1('jKB) = 1. Thus, the limiting behavior of

Pr~�1('jKB) depends on how ~� goes to ~0. Thus, Pr1('jKB) is nonrobust.

The real problem here is the semantics of proportion expressions in queries. While the

utility of the � connective in expressing statistical information in the knowledge base is surely

uncontroversial, its role in conclusions we might draw, such as ' in Example 7.2.19, is much less

clear. The formal semantics we have de�ned requires that we consider all possible tolerances

for a proportion expression in ', so it is not surprising that nonrobustness is the usual result.

One might argue that the tolerances in queries should be allowed to depend more closely on

tolerances of expressions in the knowledge base. It is possible to formalize this intuition, as is

done in [KH92], to give an alternative semantics for proportion expressions (in ') that is often
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more plausible. Considerations of this alternative semantics would lead us too far a�eld here;

rather, we focus for the rest of the section on �rst-order queries.

In fact, our goal is to allow arbitrary �rst-order queries, even those that involve predicates of

arbitrary arity and equality (although we still need to restrict the knowledge base to the unary

language L�1 ). However, as the following example shows, quanti�ers too can cause problems.

Example 7.2.20: Let � = fP; cg and consider KB1 = 8x:P (x), KB2 = jjP (x)jjx �1 0, and

' = 9xP (x). It is easy to see that S
~0[KB1] = S

~0[KB2] = f(0; 1)g, and therefore the unique

maximum entropy point in both is ~v = (0; 1). However, Pr1('jKB1) is clearly 0, whereas

Pr1('jKB2) is actually 1. To see the latter fact, observe that the vast majority of models of

KB2 around ~v actually satisfy 9xP (x). There is actually only a single world associated with

(0; 1) at which 9xP (x) is false. As in Example 7.2.16, we see that the maximum entropy point

of S
~0[KB ] does not always su�ce to determine degrees of belief.

In the case of the knowledge base KB1, the maximum entropy point (0; 1) is quite misleading

about the nature of nearby worlds; this is the sort of \discontinuity" we must avoid when �nding

the degree of belief of a formula involving �rst-order quanti�ers. The notion of stability de�ned

below is intended to deal with this problem. To de�ne it, we need the following simpli�ed

variant of a size description (de�ned in Chapter 6.

De�nition 7.2.21: A size description (over P) is a conjunction of K formulas: for each atom

Aj over P , it includes exactly one of 9xAj(x) and :9xAj(x). For any ~u 2 �K , the size

description associated with ~u, written �(~u), is that size description which includes :9xAi(x) if

ui = 0 and 9xAi(x) if ui > 0.

The problems that we want to avoid occur when there is a maximum entropy point ~v with

size description �(~v) such that in any neighborhood of ~v, most of the worlds satisfying KB are

associated with other size descriptions. Intuitively, the problem with this is that the coordinates

of ~v alone give us misleading information about the nature of worlds near ~v, and so about degrees

of belief.5 We give a su�cient condition which can be used to avoid this problem in the context

of our theorems. This condition is e�ective and uses machinery (in particular, the ability to

�nd solution spaces) that is needed to use the maximum entropy approach anyway.

De�nition 7.2.22: Let ~v be a maximum entropy point of S~� [KB ]. We say that ~v is safe (with

respect to KB and ~�) if ~v is not contained in S~� [KB ^ :�(~v)]. We say that KB and ~� are stable

for �� if for every maximum entropy point ~v 2 S~� [KB ] we have that �(~v) = �� and that ~v is

safe with respect to KB and ~� .

5We actually conjecture that problems of this sort cannot arise in the context of a maximum entropy point

of S~� [KB ] for ~� > ~0. More precisely, for su�ciently small ~� and a maximum entropy point ~v of S~� [KB ] with

KB 2 L�1 , we conjecture that Pr~�1[O](�(~v)jKB) = 1 where O is any open set that contains ~v but no other
maximum entropy point of S~� [KB ]. If this is indeed the case, then the machinery of stability that we are about

to introduce is unnecessary, since it holds in all cases that we need it. However, we have been unable to prove

this.
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The next result is the key property of stability that we need.

Theorem 7.2.23: If KB and ~� > ~0 are stable for �� then Pr~�1(��jKB) = 1.

Our theorems will use the assumption that there exists some �� such that, for all su�ciently

small ~� , KB and ~� are stable for ��. We note that this does not imply that �� is necessarily

the size description associated with the maximum entropy point(s) of S
~0[KB ].

Example 7.2.24: Consider the knowledge base KB2 in Example 7.2.20, and recall that ~v =

(0; 1) is the maximum entropy point of S
~0[KB2]. The size description �(~v) is :9xA1(x) ^

9xA2(x). However the maximum entropy point of S~� [KB2] for any ~� > 0 is actually (�1; 1��1),
so that the appropriate �� for any such ~� is 9xA1(x)^ 9xA2(x).

As we now show, the restrictions outlined above and in Section 7.2.1 su�ce for our next

result on computing degrees of belief. In order to state this result, we need one additional

concept. Recall that in Section 7.2.2 we expressed an essentially propositional formula '(x) as

a disjunction of atoms. Since we wish to also consider ' using more than one constant and

non-unary predicates, we need a richer concept than atoms. As it turns out, the right notion

is a slight generalization of the notion of complete description (see De�nition 6.2.2).

De�nition 7.2.25: Let Z be some set of variables and constants. A complete description D

over � and Z is an unquanti�ed conjunction of formulas such that:

� For every predicate R 2 � [ f=g of arity r, and for every zi1 ; : : : ; zir 2 Z , D contains

exactly one of R(zi1 ; : : : ; zir) or :R(zi1 ; : : : ; zir) as a conjunct.

� D is consistent.6

In this context, complete descriptions serve to extend the role of atoms in the setting of es-

sentially propositional formulas to the more general setting. As in the case of atoms, if we �x

some arbitrary ordering of the conjuncts in a complete description, then complete descriptions

are mutually exclusive and exhaustive. Clearly any formula � whose free variables and con-

stants are contained in Z , and which is is quanti�er- and proportion-free, is equivalent to some

disjunction of complete descriptions over Z . For a formula �, let A(�) be a set of complete

descriptions over Z such that � is equivalent to the disjunction
W
D2A(�)D, where Z is the set

of constants and free variables in �.

For the purposes of the remaining discussion (except within proofs), we are interested only

in complete descriptions over an empty set of variables. For a set of constants Z , we can view

a description D over Z as describing the di�erent properties of the constants in Z . In our

construction, we will de�ne the set Z to contain precisely those constants in ' and in  . In

particular, if KB is separable with respect to ', then KB 0 will contain no constant in Z .

6Inconsistency is possible because of the use of equality. For example, if D includes z1 = z2 as well as both

R(z1; z3) and :R(z2; z3), it is inconsistent.
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A complete description D over a set of constants Z can be decomposed into three parts: the

unary part D1 which consists of those conjuncts of D that involve unary predicates (and thus

determines an atom for each of the constant symbols), the equality part D= which consists of

those conjuncts of D involving equality (and thus determines which of the constants are equal

to each other), and the non-unary part D>1 which consists of those conjuncts of D involving

non-unary predicates (and thus determines the non-unary properties other than equality of the

constants). As we suggested, the unary part of such a complete description D extends the

concept of an atom to the case of multiple constants. For this purpose, we also extend F[A]
(for an atom A) and de�ne F[D] for a description D. Intuitively, we are treating each of the

individuals as independent, so that the probability that constant c1 satis�es atom Aj1 and that

constant c2 satis�es Aj2 is just the product of the probability that c1 satis�es Aj1 and the

probability that c2 satis�es Aj2 .

De�nition 7.2.26: For a complete description D, without variables, whose unary part is

equivalent to Aj1(c1) ^ : : : ^Ajm(cm), and for a point ~u 2 �K , we de�ne

F[D](~u) =
mY
`=1

uj` :

Note that F[D] is depends only on D1, the unary part of D.

As we mentioned, we can extend our approach to deal with formulas ' that also use non-

unary predicate symbols. Our computational procedure for such formulas uses the maximum-

entropy approach described above combined with the techniques of Chapter 6. Recall that these

latter were used in Chapter 6 to compute asymptotic conditional probabilities when conditioning

on a �rst-order knowledge base KB fo . The basic idea in that case is as follows: To compute

Pr1('jKB fo), we examine the behavior of ' in �nite models of KB fo . We partition the models

of KB fo into a �nite collection of classes, such that ' behaves uniformly in any individual class.

By this we mean that almost all worlds in the class satisfy ' or almost none do; i.e., there is

a 0-1 law for the asymptotic probability of ' when we restrict attention to models in a single

class. In order to compute Pr1('jKB fo) we therefore identify the classes, compute the relative

weight of each class (which is required because the classes are not necessarily of equal relative

size), and then decide for each class, whether the asymptotic probability of ' is zero or one.

It turns out that much the same ideas continue to work in this framework. In this case, the

classes are de�ned using complete descriptions and the appropriate size description ��. The

main di�erence is that, rather than examining all worlds consistent with the knowledge base,

we now concentrate on those worlds in the vicinity of the maximum entropy points, as outlined

in the previous section. It turns out that the restriction to these worlds a�ects very few aspects

of this computational procedure. In fact, the only di�erence is in computing the relative weight

of the di�erent classes. This last step can be done using maximum entropy, using the tools

described in Section 7.2.2.

Theorem 7.2.27: Let ' be a formula in L�, and let KB = KB 0 ^  be an essentially positive

knowledge base in L�1 which is separable with respect to '. Let Z be the set of constants
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appearing in ' or in  (so that KB 0 contains none of the constants in Z), and let �6= be the

formula
V
c;c02Z c 6= c0. Assume that there exists a size description �� such that, for all ~� > 0,

KB and ~� are stable for ��, and that the space S
~0[KB ] has a unique maximum entropy point

~v, then:

Pr1('jKB) =

P
D2A( ^�6=) Pr1('j�� ^D)F[D](~v)P

D2A( ^�6=) F[D](~v)
;

if the denominator is positive.

Both ' and �� ^ D are �rst-order formulas, and �� ^ D is precisely of the required form by

Procedure Compute01of Figure 6.2. Thus, we can use this algorithm to compute this limit, in

the time bounds outlined in Theorem 6.4.1 and Corollary 6.4.2.

The above theorem shows that the formula �6= de�ned in its statements holds with proba-

bility 1 given any knowledge base KB of the form we are interested in. This corresponds to a

default assumption of unique names , a property often considered to be desirable in inductive

reasoning systems (see Section 4.5).

While this theorem does represent a signi�cant generalization of Theorem 7.2.10, it still has

numerous restrictions. There is no question that some of these can be loosened to some extent,

although we have not been able to �nd a clean set of conditions signi�cantly more general than

the ones that we have stated. We leave it as an open problem whether such a set of conditions

exists. Perhaps the most signi�cant restriction we have made is that of allowing only unary

predicates in the KB . This issue is the subject of the next section.

7.3 Beyond unary predicates

The random-worlds method makes complete sense for the full language L� (and, indeed, for

even richer languages). On the other hand, our application of maximum entropy is limited to

unary knowledge bases. Is this restriction essential? While we do not have a theorem to this

e�ect (indeed, it is not even clear what the wording of such a theorem would be), we conjecture

that it is.

Certainly none of the techniques we have used in this chapter can be generalized signi�cantly.

One di�culty is that, once we have a binary or higher arity predicate, we see no analogue

to the notion of atoms and no canonical form theorem. In Section 7.1.1 and in the proof

of Theorem 7.1.5, we discuss why it becomes impossible to get rid of nested quanti�ers and

proportions when we have non-unary predicates. Even considering matters on a more intuitive

level, the problems seem formidable. In a unary language, atoms are useful because they are

simple descriptions that summarize everything that might be known about a domain element

in a model. But consider a language with a single binary predicate R(x; y). Worlds over this

language include all �nite graphs (where we think of R(x; y) as holding if there is an edge from

x to y). In this language, there are in�nitely many properties that may be true or false about

a domain element. For example, the assertions \the node x has m neighbors" are expressible
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in the language for each m. Thus, in order to partition the domain elements according to the

properties they satisfy, we would need to de�ne in�nitely many partitions. Furthermore, it can

be shown that \typically" (i.e., in almost all graphs of su�ciently great size) each node satis�es

a di�erent set of �rst-order properties. Thus, in most graphs, the nodes are all \di�erent" from

each other, so that a partition of domain elements into a �nite number of \atoms" makes little

sense. It is very hard to see how the basic proof strategy we have used, of summarizing a model

by listing the number of elements with various properties, can possibly be useful here.

The di�culty of �nding an analogue to entropy in the presence of higher-arity predicates

doing is supported by our results from Chapter 5. In this chapter we have shown that maximum

entropy can be a useful tool for computing degrees of belief in certain cases, if the KB involves

only unary predicates. In Chapter 5 we show that there can be no general computational

technique to compute degrees of belief once we have non-unary predicate symbols in the KB .

The problem of �nding degrees of belief in this case is highly undecidable. This result was proven

without statistical assertions in the language, and in fact holds for quite weak sublanguages

of �rst-order logic. (For instance, in a language without equality and with only depth-two

quanti�er nesting.) So even if there is some generalized version of maximum entropy, it will

either be extremely restricted in application or will be useless as a computational tool.

We believe the question of how widely maximum entropy applies is quite important. Max-

imum entropy has been gaining prominence as a means of dealing with uncertainty both in AI

and other areas. However, the di�culties of using the method once we move to non-unary pred-

icates seem not to have been fully appreciated. In retrospect, this is not that hard to explain;

in almost all applications where maximum entropy has been used (and where its application

can be best justi�ed in terms of the random-worlds method) the knowledge base is described in

terms of unary predicates (or, equivalently, unary functions with a �nite range). For example,

in physics applications we are interested in such predicates as quantum state (see [DD85]). Sim-

ilarly, AI applications and expert systems typically use only unary predicates such as symptoms

and diseases [Che83]. We suspect that this is not an accident, and that deep problems will arise

in more general cases. This poses a challenge to proponents of maximum entropy since, even if

one accepts the maximum entropy principle, the discussion above suggests that it may simply

be inapplicable in a large class of interesting examples.



Chapter 8

Conclusion

8.1 Problems: Real, Imaginary, and Complex

The principle of indi�erence and maximum entropy have both been subject to criticism. Any

such criticism is, at least potentially, relevant to random worlds. Hence, it is important that we

examine the di�culties that people have found. In this section, we consider problems relating

to causal reasoning, language dependence, acceptance, learning, and computation.

8.1.1 Causal and temporal information

The random-worlds method can use knowledge bases which include statistical, �rst-order, and

default information. When is this language su�cient? We suspect that it is, in fact, adequate

for most traditional knowledge representation tasks. Nevertheless, the question of adequacy can

be subtle. This is certainly the case for the important domain of reasoning about actions, using

causal and temporal information. In principle, there would seem to be no di�culty choosing

a suitable �rst-order vocabulary, that includes the ability to talk about time explicitly. In

the semantics appropriate to many such languages, a world might model an entire temporal

sequence of events. However, �nding a representation with su�cient expressivity is only part

of the problem: we need to know whether the degrees of belief we derive will correctly re
ect

our intuitions about causal reasoning. It turns out that random worlds gives unintuitive results

when used with the most straightforward representations of temporal knowledge.

This observation is not really a new one. As we have observed, the random-worlds method

is closely related to maximum entropy (in the context of a unary knowledge base). One of

the major criticisms against maximum entropy techniques has been that they seem to have

di�culty dealing with causal information [Hun89, Pea88]. Hence, it is not surprising that, if

we represent causal and temporal information naively, then the random-worlds method also

gives peculiar answers. On the other hand, Hunter [Hun89] has shown that maximum entropy

methods can deal with causal information, provided it is represented appropriately. We have

recently shown that by using an appropriate representation (related to Hunter's but quite
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di�erent), the random-worlds method can also deal well with causal information [BGHK93a].

Indeed, our reprsentation allows us to (a) deal with prediction and explanation problems, (b)

represent causal information of the type implicit in Bayesian causal nets [Pea88], and (c) provide

a clean and concise solution to the frame problem in situation calculus [MH69]. In particular,

our proposal deals well with the paradigm problems in the area, for example the Yale Shooting

Problem [HM87].

The details of the proposal are beyond the scope of this thesis. However, we want to

emphasize here the fact that there may be more than one reasonable way to represent our

knowledge of a given domain. When one formulation does not work as we expect, we can look

for other ways of representing the problem. It will often turn out that the new representation

captures some subtle aspects of the domain, that were ignored by the naive representation. (We

believe that this is the case with our alternative formulation of reasoning about actions.) We

return to this issue a number of times below.

8.1.2 Representation dependence

As we saw above, random worlds su�ers from a problem of representation dependence: causal

information is treated correctly only if it is represented appropriately. This shows that choosing

the \right" representation of our knowledge is important in the context of the random-worlds

approach.

In some ways, this representation dependence is a serious problem because, in practice, how

can we know whether we have chosen a good representation or not? Before addressing this, we

note that the situation with random worlds is actually not as bad as it might be. As we pointed

out in Section 4.1, the random-worlds approach is not sensitive to merely syntactic changes in

the knowledge base: logically equivalent knowledge bases always result in the same degrees of

belief. So if a changed representation gives di�erent answers, it can only be because we have

changed the semantics: we might be using a di�erent ontology, or the new representation might

model the world with a di�erent level of detail and accuracy. The representation dependence

exhibited by random worlds concerns more than mere syntax. This gives us some hope that the

phenomenon can be understood and, at least in some cases, be seen to be entirely appropriate.

Unfortunately, it does seem as if random worlds really is too sensitive; minor and seemingly

irrelevant changes can a�ect things. Perhaps the most disturbing examples concern language

dependence, or sensitivity to de�nitional changes. For instance, suppose the only predicate in

our language is White , and we take KB to be true, then Pr1(White(c)jKB) = 1=2. On the

other hand, if we re�ne :White by adding Red and Blue to our language and having KB 0

assert that :White is their disjoint union, then Pr1(White(c)jKB0) = 1=3. The fact that

simply expanding the language and giving a de�nition of an old notion (:White) in terms of

the new notions (Red and Blue) can a�ect the degree of belief seems to be a serious problem.

There are several approaches to dealing with this issue.

The �rst is to declare that representation dependence is justi�ed, i.e., that the choice of an

appropriate vocabulary is indeed a signi�cant one, which does encode some of the information

at our disposal. In our example above, we can view the choice of vocabulary as re
ecting
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the bias of the reasoner with respect to the partition of the world into colors. Researchers in

machine learning and the philosophy of induction have long realized that bias is an inevitable

component of e�ective inductive reasoning. So we should not be completely surprised if it turns

that the related area, of �nding degrees of belief, should also depend on the bias. Of course,

if this is the case we would hope to have a good intuitive understanding of how the degrees of

belief depend on the bias. In particular, we would like to give the knowledge base designer some

guidelines to selecting the \appropriate" representation. This is an important and seemingly

di�cult problem in the context of random worlds.

A very di�erent response to the problem of representation dependence is to search for a

method of computing degrees of belief that does not su�er from it. To do this, it is important

to have a formal de�nition of representation independence. Once we have such a de�nition, we

can investigate whether there are nontrivial approaches to generating degrees of belief that are

representation independent. It can be shown (under a few very weak assumptions) that any

approach that gives point-valued degrees of belief that act like probabilities cannot be repre-

sentation independent. This result suggests that we might generalize our concept of \degrees of

belief". In fact, there are other reasons to consider doing this as well. In particular, there has

been considerable debate about whether the extreme precision forced by point-valued probabil-

ities is reasonable. One frequent suggestion to avoid this involves looking at intervals in [0; 1]

rather than points. We suspect that interval-valued degrees of belief, if de�ned appropriately,

might in fact be representation independent in many more circumstances than, say, random

worlds. We are currently investigating this possibility.

A third response to the problem is to prove representation independence with respect to

a large class of queries. To understand this approach, consider another example. Suppose

that we know that only about half of birds can 
y, Tweety is a bird, and Opus is some other

individual (who may or may not be a bird). One obvious way to represent this information is

to have a language with predicates Bird and Fly , and take the KB to consist of the statements

kFly(x)jBird(x)kx � 0:5 and Bird(Tweety). It is easy to see that Pr1(Fly(Tweety)jBird) = 0:5

and Pr1(Bird(Opus)jKB) = 0:5. But suppose that we had chosen to use a di�erent language,

that uses the basic predicates Bird and FlyingBird . We would then take KB 0 to consist of the

statements kFlyingBird(x)jBird(x)kx � 0:5, Bird(Tweety), and 8x(FlyingBird(x)) Bird(x)).

We now get Pr1(FlyingBird(Tweety)jKB0) = 0:5 and Pr1(Bird(Opus)jKB 0) = 2=3. Note that

our degree of belief that Tweety 
ies is 0:5 in both cases. In fact, we can prove that this degree

of belief will not be a�ected by reasonable representational changes. On the other hand, our

degree of belief that Opus is a bird di�ers in the two representations. Arguably, our degree of

belief that Opus is a bird should be language dependent, since our knowledge base does not

contain su�cient information to assign it a \justi�ed" value. This suggests that it would be

useful to characterize those queries that are language independent, while recognizing that not

all queries will be.
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8.1.3 Acceptance and learning

The most fundamental assumption in this thesis is that we are given a knowledge base KB ,

and wish to calculate degrees of belief relative this knowledge. We have not considered how one

comes to know KB in the �rst place. That is, when do we accept information as knowledge?

We do not have a good answer to this question. This is unfortunate, since it seems plausible

that the processes of gaining knowledge and computing degrees of belief should be interrelated.

In particular, Kyburg [Kyb88] has argued that perhaps we might accept assertions that are

believed su�ciently strongly. For example, suppose we observe a block b that appears to be

white. But it could be that we are is not entirely sure that the block is indeed white; it might

be some other light color. Nevertheless, if our con�dence in White(b) exceeds some threshold,

we might accept it (and so include it in KB).

The problem of acceptance in such examples, concerned with what we learn directly from

the senses, is well-known in philosophy [Jef68]. But the problem of acceptance we face is even

more di�cult than usual, because of our statistical language. Under what circumstances is a

statement such as kFly(x)jBird(x)kx � 0:9 accepted as knowledge? Although we regard this as

an objective statement about the world, it is unrealistic to suppose that anyone could examine

all the birds in the world and count how many of them 
y. In practice, it seems that this

statistical statement would appear in KB if someone inspects a (presumably large) sample of

birds and about 90% of the birds in this sample 
y. Then a leap is made: the sample is assumed

to be typical, and we then conclude that 90% of all birds 
y. This would be in the spirit of

Kyburg's suggestion so long as we believe that, with high con�dence, the full population has

statistics similar to those of the sample.

Unfortunately, the random-worlds method by itself does not support this leap, at least not

if we represent the sampling in the most obvious way. That is, suppose we represent our sample

using a predicate S. We could then represent the fact that 90% of a sample of birds 
y as

kFly(x)jBird(x)^ S(x)kx � 0:9. If the KB consists of this fact and Bird(Tweety), we might

hope that Pr1(Fly(Tweety)jKB) = :9, but it is not. In fact, random worlds treats the birds

in S and those outside S as two unrelated populaions; it maintains the default degree of belief

(1/2) that a bird not in S will 
y. A related observation, that random worlds cannot do learning

(although in a somewhat di�erent sense), was made by Carnap [Car52], who apparently lost a

lot of interest in (his version of) random worlds for precisely this reason.

Of course, the failure of the obvious approach does not imply that random worlds is incapable

of learning statistics. As was the case for causal reasoning, the solution may be to �nd an

appropriate representation. Perhaps we need a representation re
ecting the fact that di�erent

individuals do not acquire their properties completely independently of each other. If we see

that an animal is tall, it may tell us something about its genetic structure and so, by this

mechanism, hint at properties of other animals. But clearly this issue is subtle. If we see a

gira�e, this tells us much less about the height of animals in general than it does about other

gira�es, and a good representation should re
ect this.

Another related approach for dealing with the learning problem is to use a variant of random

worlds presented in [BGHK92] called the random-propensities approach. This approach is
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based on the observation that random worlds has an extremely strong bias towards believing

that exactly half the domain has any given property, and this is not always reasonable. Why

should it be more likely that half of all birds 
y than that a third of them do? Roughly

speaking, the random-propensities approach postulates the existence of a parameter denoting

the \propensity" of a bird to 
y. This parameter is shared by the entire population of birds.

Initially, all propensities are equally likely. Intuitively, this joint parameter forms the basis for

learning: observing a 
ying bird gives us information about the propensity of birds to 
y, and

hence about the 
ying ability of other birds. As shown in [BGHK92], the random propensities

method does, indeed, learn from samples. Unfortunately, random propensities has its own

problems. In particular, it learns \too often", i.e., even from arbitrary subsets that are not

representative samples. Given the assertion \All gira�es are tall", random propensities would

conclude that almost everything is tall.

While we still hope to �nd ways of doing sampling within random worlds, we can also look

for other ways of coping with the problem of learning. One idea is to include statements about

degrees of belief in the knowledge base. Thus, if 20% of animals in a sample are tall, and we

believe that the sample is random, then we might add a statement such as Pr(jjTall(x)jjx �1

0:2) � 0:9 to the KB . Although this does not \automate" the sampling procedure, it allows

us to assert that we a sample is likely to be representative, without committing absolutely to

this fact. In particular, this representation allows further evidence to convince the agent that

a sample is, in fact, biased. Adding degrees of belief would also let us deal with the problem

of acceptance, mentioned at the beginning of this subsection. If we believe that block b is

white, but are not certain, we could write Pr(White(b)) � 0:9. We then do not have to �x an

(arbitrary?) threshold for acceptance.

However, adding degree of belief statements to a knowledge base is a nontrivial step. Up

to now, all the assertions we allowed in a knowledge base were either true or false in a given

world. This is not the case for a degree of belief statement. Indeed, our semantics for degrees

of belief involve looking at sets of possible worlds. Thus, in order to handle such a statement

appropriately, we would need to ensure that our probability distribution over the possible worlds

satis�es the associated constraint. While we have some ideas on how this could be done, it is

still an open question whether we can handle such statements in a reasonable way.

8.1.4 Computational issues

Our goal in this research has been to understand some of the fundamental issues involved in

�rst-order probabilistic and default reasoning. Until such issues are understood, it is perhaps

reasonable to ignore or downplay concerns about computation. If an ideal normative theory

turns out to be impractical for computational reasons, we can still use it as guidance in a search

for approximations and heuristics.

As we have shown in Chapter 5, computing degrees of belief according to random worlds is,

indeed, intractable in general. This is not surprising: our language extends �rst-order logic, for

which validity is undecidable.1 Although unfortunate, we do not view this as an insurmountable

1Although, in fact, �nding degrees of belief using random worlds is even more intractable than the problem
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problem. Note that, in spite of its undecidability, �rst-order logic is nevertheless viewed as a

powerful and useful tool. We believe that the situation with random worlds is analogous.

Random worlds is not just a computational tool; it is inherently interesting because of what it

can tell us about probabilistic reasoning,

But even in terms of computation, the situation with random worlds is not as bleak as it

might seem. We have presented one class of tractable knowledge bases: those using only unary

predicates and constants. We showed in Chapter 7 that, in this case, we can often use maximum

entropy as a computational tool in deriving degrees of belief. While computing maximum

entropy is also hard in general, there are many heuristic techniques that work e�ciently in

practical cases (see [Gol87] and the references therein). As we have already claimed, this class

of problems is an important one. In general, many properties of interest can be expressed

using unary predicates, since they express properties of individuals. For example, in physics

applications we are interested in such predicates as quantum state (see [DD85]). Similarly, AI

applications and expert systems typically use only unary predicates ([Che83]) such as symptoms

and diseases. In fact, a good case can be made that statisticians tend to reformulate all problems

in terms of unary predicates, since an event in a sample space can be identi�ed with a unary

predicate [Sha]. Indeed, most cases where statistics are used, we have a basic unit in mind (an

individual, a family, a household, etc.), and the properties (predicates) we consider are typically

relative to a single unit (i.e., unary predicates). Thus, results concerning computing degrees of

belief for unary knowledge bases are quite signi�cant in practice.

Even for non-unary knowledge bases, there is hope. The intractability proofs given in

Chapter 5 use knowledge bases that force the possible worlds to mimic a Turing machine

computation. In real life, typical knowledge bases do not usually encode Turing machines!

There may therefore be many cases in which computation is practical. In particular, speci�c

domains typically impose additional structure, which may simplify computation. This seems

to be the case, for instance, in certain problems that involve reasoning about action.

Furthermore, as we have seen, we can compute degrees of belief in many interesting cases.

In particular, we have presented a number of theorems that tell us what the degrees of belief

are for certain important classes of knowledge bases and queries. Most of these theorems hold

for our language in its full generality, including non-unary predicates. We believe that many

more such results could be found. Particularly interesting would be more \irrelevance" results

that tell us when large parts of the knowledge base can be ignored. Such results could then be

used to reduce apparently complex problems to simpler forms, to which other techniques apply.

We have already seen that combining di�erent results can often let us compute degrees of belief

in cases where no single result su�ces.

8.2 Summary

The random-worlds approach for probabilistic reasoning is derived from two very intuitive ideas:

possible worlds and the principle of indi�erence. In spite of its simple semantics, it has many

of deciding validity in �rst-order logic.



8.2. SUMMARY 125

attractive features:

� It can deal with very rich knowledge bases, that involve quantitative information in the

form of statistics, qualitative information in the form of defaults, and �rst-order informa-

tion. We have had trouble �nding realistic problems for which this language is too weak;

even fairly esoteric demands such as nested defaults are dealt with naturally.

� Random worlds uses a simple and well-motivated statistical interpretation for defaults.

The corresponding semantics allow us to examine the reasonableness of a default with

respect to our entire knowledge base, including other default rules.

� It possesses many desirable properties, like preference for more speci�c information, the

ability to ignore irrelevant information, a default assumption of unique names, the ability

to combine di�erent pieces of evidence, and more. These are not the result of ad hoc

assumptions but instead arise naturally from the semantics, as derived theorems.

� It avoids many of the problems that have plagued systems of reference-class reasoning

(such as the disjunctive reference class problem) and many of the problems that have

plagued systems of non-monotonic reasoning (such as exceptional-subclass inheritance or

the lottery paradox). Many systems have been forced to work hard to avoid problems

which, in fact, never arose for us at all.

� The random-worlds approach subsumes several important reasoning systems, and gen-

eralizes them to the case of �rst-order logic. In particular, it encompasses deductive

reasoning, probabilistic reasoning, certain theories of nonmonotonic inference, the prin-

ciple of maximum entropy, some rules of evidence combination, and more. But it is far

more powerful than any single one of these.

As we saw in Section 8.1, there are certainly some problems with the random-worlds method.

We believe that these problems are far from insuperable. But, even conceding these problems

for the moment, the substantial success of random-worlds supports a few general conclusions.

One conclusion concerns the role of statistics and degrees of belief. The di�erence between

these, and the problem of relating the two, is at the heart of our work. People have long re-

alized that degrees of belief provide a powerful model for understanding rational behavior (for

instance, through decision theory). The random-worlds approach shows that it is possible to

assign degrees of belief, using a principled technique, in almost any circumstance. The ideal

situation, in which we have complete statistical knowledge concerning a domain, is, of course,

dealt with appropriately by random worlds. But more realistically, even a few statistics (which

need not even be precise) are still utilized by random worlds to give useful answers. Likewise,

completely non-numeric data, which may include defaults and/or a rich �rst-order theory of

some application domain, can be used. Probabilistic reasoning need not make unrealistic de-

mands of the user's knowledge base. Indeed, in a sense it makes less demands that any other

reasoning paradigm we know of.
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This leads to our next, more general conclusion, which is that many seemingly disparate

forms of representation and reasoning can (and, we believe, should) be uni�ed. The �rst

two points listed above suggest that we can take a large step towards this goal by simply

�nding a powerful language (with clear semantics) that subsumes specialized representations.

The advantages we have found (such as a clear and general way of using nested defaults, or

combining defaults and statistics) apply even if one rejects the random-worlds reasoning method

itself. But the language is only part of the answer. Can diverse types of reasoning really be seen

as aspects of a single more general system? Clearly this is not always possible; for instance, there

are surely some interpretations of \defaults" which have no interesting connection to statistics

whatsoever. However, we think that our work demonstrates that the alleged gap between

probabilistic reasoning and default reasoning is much narrower than previously thought. In

fact, the success of random worlds encourages us to hope that a synthesis between di�erent

knowledge representation paradigms is possible in most of the interesting domains.
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Proofs for Chapter 4

Theorem 4.1.5: Assume that KB j�rw ' and KB j6�rw :�. Then KB ^ � j�rw ' provided

that Pr1('jKB ^ �) exists. Moreover, a su�cient condition for Pr1('jKB ^ �) to exist is that
Pr1(�jKB) exists.

Proof: Since KB j6�rw :�, it is not the case that Pr1(:�jKB) = 1, so Pr1(�jKB) 6= 0.

Therefore, there exists some � > 0 for which we can construct a sequence of pairs N i; ~� i as

follows: N i is an increasing sequence of domain sizes, ~� i is a decreasing sequence of tolerance

vectors, and Pr~�
i

N i(�jKB) > �. For these pairs N i; ~� i we can conclude that

Pr~�
i

N i(:'jKB ^ �) =
Pr~�

i

N i(:' ^ �jKB)

Pr~�
i

N i(�jKB)
� Pr~�

i

N i(:'jKB)

Pr~�
i

N i(�jKB)
:

Since Pr1(:'jKB) = 0, it is also the case that limi!1 Pr~�
i

N i(:'jKB) = 0. Moreover, we know

that for all i, Pr~�
i

N i(�jKB) > � > 0. We can therefore take the limit as i ! 1, and conclude

that limi!1 Pr~�
i

N i(:'jKB ^ �) = 0. Thus, if Pr1('jKB ^ �) exists, it must be 1.

For the second half of the theorem, suppose Pr1(�jKB) exists. Since KB j6�rw �, we must

have that Pr1(�jKB) = p > 0. Therefore, for all ~� su�ciently small and all N su�ciently large

(where \su�ciently large" may depend on ~�), we can assume that Pr~�N (�jKB) > � > 0. But

now, for any such pair N;~� we can again prove that

Pr~�N (:'jKB ^ �) � Pr~�N(:'jKB)

Pr~�N (�jKB)
:

Taking the limit, we obtain that Pr1(:'jKB ^ �) = 0, as desired.

Theorem 4.2.11: Let c be a constant and let KB be a knowledge base satisfying the following

conditions:

(a) KB j=  0(c),
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(b) for any expression of the form k'(x)j (x)kx in KB, it is the case that either KB j=  0 )
 or that KB j=  0 ) : ,

(c) the (predicate and constant) symbols in '(x) appear in KB only on the left-hand side of

the conditional in the proportion expressions described in condition (b),

(d) the constant c does not appear in the formula '(x).

Assume that for all su�ciently small tolerance vectors ~� :

KB [~� ] j= k'(x)j 0(x)kx 2 [�; �]:

Then Pr1('(c)jKB) 2 [�; �].

Proof: This theorem is proved with the same general strategy we used for Theorem 4.2.1.

That is, for each domain size N and tolerance vector ~� , we partition the worlds of size N

satisfying KB [~� ] into clusters and prove that, within each cluster, the probability of '(c) is in

the interval [�; �]. As before, this su�ces to prove the result. However the clusters are de�ned

quite di�erently in this theorem.

We de�ne the clusters as maximal sets satisfying the following three conditions:

1. All worlds in a cluster must agree on the denotation of every vocabulary symbol except,

possibly, for those appearing in '(x). Note that, in particular, they agree on the denota-

tion of the constant c. They must also agree as to which elements satisfy  0(x); let this

set be A0.

2. The denotation of symbols in ' must also be constant, except, possibly, when a member

of A0 is involved. More precisely, let A0 be the set of domain elements f1; : : : ; Ng � A0.

Then for any predicate symbol R of arity r appearing in '(x), and for all worlds W 0 in

the cluster, if d1; : : : ; dr 2 A0 then R(d1; : : : ; dr) holds in W 0 i� it holds in W , Similarly,

for any constant symbol c0 appearing in '(x), if it denotes d0 2 A0 in W , then it must

denote d0 in W 0.

3. All worlds in the cluster are isomorphic with respect to the vocabulary symbols in '. More

precisely, if W and W 0 are two worlds in the cluster, then there exists some permutation

� of the domain such that for any predicate symbol R as above, and any domain elements

d1; : : : ; dr 2 f1; : : : ; Ng, R(d1; : : : ; dr) holds in W i� R(�(d1); : : : ; �(dr)) holds in W 0.

Similarly, for any constant symbol c0 appearing in '(x), if it denotes d0 in W , then it

denotes �(d0) in W 0.

It should be clear that clusters so de�ned are mutually exclusive and exhaustive.

We now want to prove that each cluster is, in a precise sense, symmetric with respect to

the elements in A0. That is, let � be any permutation of the domain which is the identity on

any element outside of A0 (i.e., for any d 62 A0, �(d) = d). Let W be any world in our cluster,

and let W 0 be the world where all the symbols not appearing in ' get the same interpretation
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as they do in W , while the interpretation of the symbols appearing in ' is obtained from their

interpretation in W by applying � as described above. We want to prove that W 0 is also in the

cluster. Condition (1) is an immediate consequence of the de�nition of W 0; the restriction on

the choice of � implies condition (2); condition (3) holds by de�nition. It remains only to prove

that W 0 j= KB [~� ]. Because of condition (c) in the statement of the theorem, and the fact that

vocabulary symbols not in ' have the same denotation in W and in W 0, this can only happen

if some expression k'(x)j (x)kx has di�erent values in W and in W 0. We show that this is

impossible. Let A be the set of domain elements satisfying  (x) for worlds in this cluster. By

condition (b) there are only two cases. Either  0(x) ) : (x), in which case A0 and A are

disjoint, or KB j=  0(x) ) : (x), so that A0 � A. In the �rst case, since � is the identity

on A, exactly the same elements of A satisfy '(x) in W 0 and in W . In the second case, the

set of elements satisfying '(x) can change. But because A0 � A, � is a permutation of A into

itself, so the actual number of elements satisfying '(x) cannot change. We conclude that W 0

does satisfy KB [~� ], and is therefore also in the cluster. Since we restricted the cluster to consist

only of worlds that are isomorphic to W in the above sense, and we now proved that all worlds

formed in this way are in the cluster, the cluster contains precisely all such worlds.

Having de�ned the clusters, we want to show that the degree of belief of '(c) is in the range

[�; �] when we look at any single cluster. By assumption, KB [~� ] j= k'(x)j 0(x)kx 2 [�; �].

Therefore, for each world in the cluster, the subset of the elements of A0 that satisfy '(x) is in

the interval [�; �]. Moreover, by condition (a), KB also entails the assertion  0(c). Therefore,

the denotation of c is some domain element d in A0. Condition (d) says that c does not appear

in ', and so the denotation of c is the same for all worlds in the cluster. Now consider a world

W in the cluster, and let B be the subset of A0 whose members satisfy '(x) in W . We have

shown that every permutation of the elements in A0 (leaving the remaining elements constant)

has a corresponding world in the cluster. In particular, all possible subsets B0 of size jBj are

possible denotations for '(x) in worlds in the cluster. Furthermore, because of symmetry, they

are all equally likely. It follows that the �xed element d satis�es '(x) in precisely jBj=jA0j of

the worlds in the cluster. Since jBj=jA0j 2 [�; �], the probability of '(c) in any one cluster is

in this range also.

As in Theorem 4.2.1, the truth of this fact for each cluster implies its truth in general and

at the limit. In particular, since KB [~� ] j= k'(x)j 0(x)kx 2 [�; �] for every su�ciently small ~� ,

we conclude that Pr1('(c)jKB) 2 [�; �], if the limit exists.

Theorem 4.3.1: Suppose KB has the form

m̂

i=1

(�i �`i k'(x)j i(x)kx �ri �i) ^  1(c) ^ KB 0;

and, for all i, KB j= 8x ( i(x) )  i+1(x)) ^ :(jj 1(x)jjx �1 0). Assume also that no symbol

appearing '(x) appears in KB 0 or in any  i(c). Further suppose that, for some j, [�j ; �j] is

the tightest interval. That is, for all i 6= j, �i < �j < �j < �i. Then

Pr1('(c)jKB) 2 [�j ; �j]:
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Proof: The proof of the theorem is based on the following result. Consider any KB of the

form

:(jj 0(x)jjx �1 0) ^ 8x ( 0(x))  (x)) ^ � �` k'(x)j (x)kx �r � ^ KB 0

where none of KB 0,  (x);  0(x) mention any symbol appearing in '(x). Then, for any � > 0,

Pr1(�� � � k'(x)j 0(x)kx � � + � j KB) = 1:

Note that this is quite similar in spirit to Theorem 4.2.11. There, we proved that (under

certain conditions) an individual c satisfying  (c) \inherits" the statistics over  (x); that is,

the degree of belief is derived from these statistics. This result allows us perform the same type

of reasoning for a larger subset of the class de�ned by  (x). Not surprisingly, the proof of the

new result is similar to that of Theorem 4.2.11, and we refer the reader to that proof for many

of the details.

We begin by clustering worlds exactly as in the earlier proof, with  (x) playing the role

of the earlier  0(x). Now consider any particular cluster and let A be the corresponding

denotation of  (x). In the cluster, the proportion of A that satis�es '(x) is some 
 such that

�� �` � 
 � � + �r. (Recall that �` and �r are the tolerances associated with the approximate

comparisons �` and �r in KB). In this cluster, the denotation of '(x) in A ranges over subsets

of A of size 
jAj. From the proof of Theorem 4.2.11, we know that there is, in fact, an equal

number of worlds in the cluster corresponding to every such subset.

Now let A0 be the denotation of  0(x) in the cluster (recall that it follows from the con-

struction of the clusters that all worlds in a cluster have the same dentoation for  0(x)). For a

proportion 
0 2 [0; 1], we are interested in computing the fraction of worlds in the cluster such

that the proportion of '(x) withing A0 is 
0. From our discussion above, it follows that this is

a purely combinatorial question: given a set A of size n and a subset A0 of size n0, how many

ways are there of choosing 
n elements (representing the elements for which '(x) holds) so that


0n0 elements come from A0? We estimate this using the observation that the distribution of


0n0 is derived from a process ofsampling without replacement.1 Hence, it behaves according to

the well-known hypergeometric distribution (see, for example, [JL81]). We can thus conclude

that 
0 is distributed with mean 
 and variance


(1� 
)(n� n0)
(n� 1)n0

� 
(1� 
)

n0
� 1

4n0
:

Now, based on our assumption that KB j= :(jj 0(x)jjx �1 0), we know that n0 = jA0j � �1N .

Thus, this variance tends to 0 as N grows large. Now, consider the event: \a world in the cluster

has a proportion of '(x) within A0 which is not in the interval [
 � �; 
 + �]". By Chebychev's

inequality, this is bounded from above by some small probability pN which depends only on

�1N . That is, the fraction of worlds in each cluster that have the \wrong" proportion is at

1There are, in fact, a number of ways to solve this problem. One alternative is to use an entropy-based
technique (see Chapter 7). We can do this because, at this point in the proof, it no longer matters whether KB

uses non-unary predicates or not; we can therefore safely apply techniques that usually only work in the unary

case.
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most pN . Since this is the case for every cluster, it is also true in general. More precisely, the

fraction of overall worlds for which k'(x)j 0(x)kx 62 [�� �` � �; � + �r + �] is at most pN . But

this probability goes to 0 as N tends to in�nity. Therefore,

Pr~�1(�� �` � � � k'(x)j 0(x)kx � � + �r + � j KB) = 1:

As ~� ! ~0 we can simply omit �` and �r, proving the required result.

It is now a simple matter to prove the theorem itself. Consider the following modi�cation

KB 00 of the KB given in the statement of the theorem:

m̂

i=j

(�i �`i k'(x)j i(x)kx �ri �i) ^  1(c) ^ KB 0;

where we eliminate the statistics for the reference classes that are contained in  j (the more

speci�c reference classes). From Theorem 4.2.11 we can conclude that Pr1('(c)jKB00) 2 [�j ; �j]

(the conditions of that theorem are clearly satis�ed). But we also know, from the result above,

that for each  i, for i < j:

Pr1(�j � � � k'(x)j 0(x)kx � �j + � j KB 00) = 1:

For su�ciently small � > 0, the assertion that

�j � � � k'(x)j 0(x)kx � �j + �

logically implies that

�i �`i k'(x)j 0(x)kx �ri �i;
so that this latter assertion also has probability 1 given KB 00. We therefore also have probability

1 (given KB 00) in the �nite conjunction

ĵ

i=1

(�i �`i k'(x)j 0(x)kx �ri �i):

We can now apply Theorem 4.1.2 to conclude that we can add this �nite conjunction to KB 00

without a�ecting any of the degrees of belief. But the knowledge base resulting from adding

this conjunction to KB 00 is precisely the original KB . We conclude that

Pr1('(c)jKB) = Pr1('(c)jKB00) 2 [�j ; �j];

as required.

Theorem 4.3.4: Let P be a unary predicate, and consider a knowledge base KB of the

following form:

m̂

i=1

(kP (x)j i(x)kx �i �i ^  i(c)) ^
m̂

i;j=1

i6=j

9!x ( i(x)^  j(x)) ;
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where 0 < �j < 1, for j = 1; : : : ; m. Then, if neither P nor c appear anywhere in the formulas

 i(x), then

Pr1(P (c)jKB) = �(�1; : : : ; �m):

Proof: As in previous theorems, we prove the result by dividing the worlds into clusters. More

precisely, consider any ~� such that �i� �i > 0 and �i + �i < 1. For any such ~� and any domain

size N , we divide the worlds of size N satisfying KB [~� ] into clusters, and prove that, within each

cluster, the probability of '(c) is in the interval [�(�1��1; : : : ; �m��m); �(�1+�1; : : : ; �m+�m)].

Since � is a continuous function at these points, this su�ces to prove the theorem.

We partition the worlds satisfying KB [~� ] into maximal clusters that satisfy the following

three conditions:

1. All worlds in a cluster must agree on the denotation of every vocabulary symbol except

for P . In particular, the denotations of  1(x); : : : ;  m(x) is �xed. For i = 1; : : : ; m, let Ai
denote the denotation of  i(x) in the cluster, and let ni denote jAij.

2. All worlds in a cluster must have the same denotation of P for elements in A = f1; : : : ; Ng�
[mi=1Ai.

3. For all i = 1; : : : ; m, all worlds in the cluster must have the same number of elements ri
satisfying P within each set Ai. Note that, since all worlds in the cluster satisfy KB [~� ],

it follows that ri=ni 2 [�i � �i; �i + �i] for i = 1; : : : ; m.

Now, consider a cluster as de�ned above. The assumptions of the theorem imply that,

besides the proportion constraints de�ned by the numbers ri, there are no other constraints

on the denotation of P within the sets A1; : : : ; Am. Therefore, all possible denotations of P

satisfying these constraints are possible. There are two types of worlds in the cluster, those

that satisfy P (c) and those that do not. Let d be the denotation of c in this cluster. Our

assumptions guarantee that d is the only member of Ai \ Aj . Hence, the number of elements

of Ai for which P has not yet been chosen is ni� 1. In worlds that satisfy P (c), precisely ri� 1

of these elements must satisfy P . Since the Ai are disjoint except for d, the choice of P within

each Ai can be made independently of the other choices. Therefore, the number of such worlds

in the cluster is:
mY
i=1

 
ni � 1

ri � 1

!
:

Similarly, the number of worlds in the cluster for which P (c) does not hold is

mY
i=1

 
ni � 1

ri

!
:

Therefore, the fraction of worlds in the cluster satisfying P (c) is:

Qm
i=1

�ni�1
ri�1

�
Qm
i=1

�ni�1
ri�1

�
+
Qm
i=1

�ni�1
ri

� =

Qm
i=1 riQm

i=1 ri +
Qm
i=1(ni � ri)
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=

Qm
i=1 ri=niQm

i=1 ri=ni +
Qm
i=1(ni � ri)=ni

= �(r1=n1; : : : ; rm=nm) :

Since � is easily seen to be monotonically increasing in each of its arguments and ri=ni 2
[�i � �i; �i + �i], we must have that �(r1=n1; : : : ; rm=nm) is in the interval [�(�1� �1; : : : ; �m �
�m); �(�1 + �1; : : : ; �m + �m)]. Using the same argument as in the previous theorems and the

continuity of �, we deduce the desired result.

Theorem 4.4.1: Let �1 and �2 be two vocabularies disjoint except for the constant c. Con-

sider KB1; '1 2 L(�1) and KB2; '2 2 L(�2). Then

Pr1('1 ^ '2jKB1 ^KB2) = Pr1('1jKB1) � Pr1('2jKB2):

Proof: As in previous proofs, we �rst �x N and ~� . Consider the set of worlds over the

vocabulary �1[�2[fcg, and divide these worlds into N clusters, corresponding to the di�erent

denotations of the constant c. The worlds in cluster d, for d = 1; : : : ; N , are precisely those

where the denotation of c is d. It should be clear that all the clusters are isomorphic: for

any formula � in the language, the number of worlds satisfying � is the same in all clusters.

Therefore, we can restrict attention to a single cluster. Each cluster de�nes a denotation for

each symbol in �1 and each symbol in �2. Thus, there is a simple mapping between worlds

W in the cluster and pairs of worlds (W1;W2) where W1 is a world over �1 [ fcg and W2 a

world over �2[fcg. Moreover, it is clear that W j= KB1 (resp., W j= '1) i� W1 j= KB1 (resp.,

W1 j= KB1), and similarly for W2. Therefore, the number of worlds W satisfying KB1 ^ KB2

is precisely the product of the number of worlds W1 satisfying KB1 and the number of worlds

W2 satisfying KB2. A similar analysis holds for worlds satisfying ('1 ^ KB1) ^ ('2 ^ KB2).

Therefore, the probability in this cluster of '1 ^ '2 given KB1 ^ KB2 is the product of the

respective probabilities of 'i given KB i over worlds where the denotation of c is d. Since we

have claimed that restricting to a single cluster does not a�ect the probabilities, we conclude

that

Pr~�N('1 ^ '2jKB1 ^ KB2) = Pr~�N ('1jKB1) �Pr~�N ('2jKB2):

By taking limits, we obtain the desired result.
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Proofs for Chapter 5

B.1 Simulating Turing machines

The following de�nition will turn out to be useful.

De�nition B.1.1: Let � be a formula, and let !(x) be a formula with a single free variable

x. We de�ne � restricted to ! to be the formula �0 ^ �!, where �0 is a conjunction of formulas

!(z) for any constant or free variable z appearing in �, and �! is de�ned by induction on the

structure of formulas as follows:

� �! = � for any atomic formula �,

� (:�)! = :�!,

� (� ^ �0)! = �! ^ �0!,

� (8y �(y))! = 8y(!(y)) �!(y)).

Intuitively, � restricted to ! holds if � holds on the submodel consisting of the set of elements

which satisfy !.

Given a deterministic Turing machine M, we construct KBM as follows. Think of the

computation of M as consisting of a sequence of instantaneous descriptions (IDs), which specify

the head position, state, and the contents of (at least) that part of the tape which has been read

or written so far. Without loss of generality, we can assume that the jth ID contains exactly

the �rst j symbols on the tape (padding it with blanks if necessary). The construction uses two

binary predicate symbols, H and V , to impose a matching \layered" structure on the elements

of a �nite domain (see Figure B.1).

More speci�cally, we force the domain to look like a sequence of n layers for some n,

where there are exactly j elements in the jth layer for 1 � j < n, but the last layer may be

\incomplete", and have less than n elements. (This ensures that such a partition of domain

elements into layers is possible for any domain size.) We construct each layer separately, by

134
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Tape locations

Steps of
the TM

domain element H(x,y) V(x,y)

Figure B.1: The structure forced by KBM

assigning each element a horizontal successor. The horizontal successor of the ith element in

the jth layer is the (i+ 1)st element in the jth layer. This successor must exist except when i

is the last element in the layer (i = j), or j is the last (and possibly incomplete) layer (j = n).

We connect one layer to the next by assigning each element a vertical successor. The vertical

successor of the ith element in the jth layer is the ith element in the (j + 1)st layer. This

successor must exist except if j is the last layer (j = n), and possibly if j is the next-to-last

layer (j = n�1). These two types of successor relationship are captured using H and V : H(x; y)

holds i� y is the horizontal successor of x, and V (x; y) holds i� y is the vertical successor of

x. Straightforward assertions in �rst-order logic can be used to constrain H and V to have the

right properties.

We use the jth layer to encode the jth ID, using unary predicates to encode the contents

of each cell in the ID and the state of the machine M. It is straightforward to write a sentence

KBM that ensures that this simulation of the Turing machine starts correctly, and continues

according to the rules of M. It follows that there is an exact one-to-one correspondence between

�nite models of KBM and �nite pre�xes of computations of M, as required.

We have assumed that two binary and several unary predicate symbols are available. In

fact, it is possible to do all the necessary encoding using only a single binary (or any non-unary)

predicate symbol. Because this observation will be important later, we sketch how the extra

predicate and constant symbols can be eliminated. First, note that the predicates H and V

can be encoded using a single predicate R. Since H holds only between elements on the same

layer, and V only between elements on two consecutive layers, we can de�ne R(x; y) to mean

H(x; y) in the �rst case, and V (x; y) in the second (we can construct the sentences so that it is

easy to tell whether two elements are on the same layer). Any unary predicate P used in the
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construction can be eliminated by replacing P (x) with R(c; x) for some special constant symbol

c. We then replace KBM with KBM restricted to x 6= c, as in De�nition B.1.1, thus making

the denotation of c a distinguished element which does not participate in the construction of

the Turing machine. Finally, it is possible to eliminate the use of constant symbols by using

additional variables quanti�ed with \exists unique"; we omit details. However, note for future

reference that for every constant we eliminate, we increase the quanti�er depth of the formula

by one.

This construction has another very useful property. First, note that the layered structure

imposed by H and V ensures that every domain element plays a unique role (i.e., for each

element we can �nd a �rst-order formula with one free variable which holds of that element

and no other). So if we (nontrivially) permute the domain elements in one model, we obtain a

di�erent (although isomorphic) model. This property has been called rigidity. Rigidity implies

that, if the domain size is N , every isomorphism class of worlds satisfying KBM contains

exactly N ! worlds. This implies that any two size N models of KBM are isomorphic (because

the machine M is assumed to be deterministic and thus has a unique computation path when

started on the empty input). From this observation and rigidity, we conclude that the number

of size N models of KBM is exactly N !; this fact will also be useful later.

B.2 Nonexistence proof

Theorem 5.3.2: Let A be any computable regular matrix transform, and let � be a vocabulary

containing at least one non-unary predicate symbol. There exist ';KB 2 L(�) such that the

A-transform of the sequence PrN('jKB) exists, but does not converge.

Proof: In the following, let U be a rational number within 0.01 of lim supi!1
P1
j=1 jaij j,

i.e., jU � lim supi!1
P1
j=1 jaijj < 0:01. We will use U as a parameter to the algorithm we are

about to construct. Notice that although the existence of an appropriate U is guaranteed by R3,

we may not be able to compute its value. Thus, the proof we are about to give is not necessarily

constructive. On the other hand, this is the only nonconstructive aspect of our algorithm. A

value for U is computable in many cases of interest (for example, if aij is nonnegative for all i

and j, then we can take U = 1); in these cases, our proof becomes constructive. Let imin be such

that whenever i � imin, we have
P1
j=1 jaij j < U + 0:01. Such an imin must exist (because of the

way U is de�ned); it is not necessarily computable either, but the following does not actually

depend on its value (i.e., we only refer to imin when proving that the constructed machine works

as required).

We use the value of U in the construction of a three-tape four-head Turing machine M.

Tape 2 of M will always (after the �rst step) contain an alternating sequence of 0's and 1's.

The sentence KBM is constructed so that �nite models of KB encode partial computations of

M, exactly as outlined in Section B.1. The sentence ' is chosen to be true only in models of

KB where the last element written on tape 2 is 1. Note that, as usual, we can assume that

';KBM 2 L(fRg) for a binary predicate symbol R.

The idea of the proof is as follows. Suppose bj is the truth value of ' (either 0 or 1) in
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a domain of size j, and let ci =
P1
j=1 aij bj . Obviously, the sequence (bj) is determined by

the times at which M writes a new symbol to tape 2. We construct M to guarantee that the

sequence (bj) has appropriately spaced runs of zeros and ones, so that there are in�nitely many

i where ci is greater than 0:9 and in�nitely many i where ci is less than 0:1. This ensures that

the sequence (ci) does not converge.

As we have said, M is a three-tape four-head Turing machine. Heads 1a and 1b read tape 1,

head 2 reads tape 2, and head 3 reads tape 3. We assume that any subset of heads can move

in the same step. Tape 1 is used for keeping track, in unary, of the number of steps that M

has taken so far. Tape 2 contains an alternating sequence of 0's and 1's. As we have indicated,

the goal of the rest of the construction will be to ensure that tape 2 is updated at appropriate

intervals. Finally, tape 3 is a work tape, used for all necessary calculations.

Every fourth step, head 1a writes a 1 at the right end of tape 1, and then moves one step

to the right. This is done independently of the operation of the rest of the machine. Thus, if

we represent the number written on tape 1 at a certain point as m, the actual number of steps

taken by M up to that point is between 4m and 4m + 3. Moreover, if we assume (as we do

without loss of generality) that the size of the ith ID of the computation of M is i, then to

encode the �rst i steps of the computation we need a domain of size i(i+ 1)=2 +C, where C is

a constant independent of i. In particular, the size of the domain required to encode the pre�x

of the computation at the point where m is the number on tape 1 is roughly 2m(4m+ 1), and

is certainly bounded above by 9m2 and below by 7m2 for all su�ciently large m. We will use

these estimates in describing M.

The machine M proceeds in phases; each phase ends by writing a symbol on tape 2. At

the completion of phase k, for all k large enough, there will exist some number ik such that

cik < 0:1 if k is even, and cik > 0:9 if k is odd. Since we will also show that ik+1 > ik, this will

prove the theorem.

The �rst phase consists of one step; at this step, M writes 0 on tape 2, and head 2 moves

to the right. Suppose the kth phase ends with writing a 1 on tape 2. We now describe the

(k+ 1)st phase. (The description if the kth phase ends with writing a 0 is almost identical, and

left to the reader.)

Let nl be the size of the domain required to encode the pre�x of the computation up to the

end of phase l. Since the value at the end of tape 2 changes only at the end of every phase,

and bj is 1 if and only if the last element on tape 2 is 1, bj is 0 for n1 � j < n2, bj is 1 for

n2 � j < n3, and so on. M begins the (k + 1)st phase by copying the number m on tape 1

to tape 3 (the work tape). The copying is done using head 1b (head 1a continues to update

the number every fourth step). Suppose the number eventually copied is mk. Clearly, mk will

be greater than the number that was on tape 1 in the computation pre�x that was encoded by

domain size nk. Therefore, nk < 9m2
k for k su�ciently large.

We now get to the heart of the construction, which is the computation of when to next write

a value on tape 2. (Note that this value will be a 0, since we want the values to alternate.)

Notice that by R1, R2, and R3 there must be a pair (i�; j�) such that:

(a) i� > mk,
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(b)
P9m2

k

j=1 jai�j j < 0:01,

(c)
Pj�
j=1 ai�j > 0:99, and

(d)
Pj�
j=1 jai�j j > U � 0:01.

Moreover, since aij is computable for all i and j,M can e�ectively �nd such a pair by appropriate

dovetailing. Suppose that in fact i� > imin. (Since i� > mk by part (a), this will be true once k is

large enough.) Then we claim that, no matter what the values of b0; : : : ; bnk and bj�+1; bj�+2; : : :,

if bnk+1 = � � � = bj� = 1, then ci� > 0:9. To see this, note that if i� > imin, then (by de�nition

of imin)
P1
j=1 jai�j j < U + 0:01. Thus, by part (d) above it follows that

P1
j=j�+1

jai�j j < 0:02.

Using part (b) and the fact that nk < 9m2
k, it follows that

Pnk
j=1 jai�j j < 0:01. Now from part

(c) we get that
Pj�
j=nk+1

ai�j > 0:98. If bnk+1 = � � �= bj� = 1, then

ci� =
P1
j=1 ai�jbj

=
Pnk
j=1 ai�jbj +

Pj�
j=nk+1

ai�jbj +
P1
j=j�+1 ai�jbj

�Pj�
j=nk+1

ai�j �
Pnk
j=1 jai�j j �

P1
j=j�+1 jai�j j

� 0:98� 0:01� 0:02

> 0:9:

Thus, it su�ces for M to add the next 0 to tape 2 so as to guarantee that nk+1 > j�, since our

choice of ' will then guarantee that bnk+1 = � � �= bj� = 1. This can be done by waiting to add

the 0, until after the number m on tape 1 is such that 7m2 > j�. As we observed above, the

size of the domain required to encode the pre�x of the computation up to this point is at least

7m2. Since this domain size is nk+1 by de�nition, it follows that nk+1 � j�, as desired.

This completes the description of the (k + 1)st phase. We can then take ik+1 = i�, and

guarantee that cik+1 > 0:9, as desired. Note that, for every k, ik+1 > mk, and (mk) is a strictly

increasing sequence. Thus, we obtain in�nitely many indices i at which ci > 0:9 and in�nitely

many at which ci < 0:1, as desired.

Since #worlds
fRg
N (KB) 6= 0 for all su�ciently large N , this shows that both 23Pr1('jKB)

and 32Pr1('jKB) are well-de�ned, but their A-transform does not converge.

B.3 Undecidability proofs

Theorem 5.4.1: Let � be a vocabulary containing at least one non-unary predicate symbol.

(a) The problem of deciding whether a sentence in L(�) is satis�able for in�nitely many

domain sizes is �0
2-complete.

(b) The problem of deciding whether a sentence in L(�) is satis�able for all but �nitely many

domain sizes is �0
2-complete.
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Proof: We start with the upper bounds. First observe that the problem of deciding whether

a �rst-order sentence � is satis�able in some model with domain size N , for some �xed N , is

recursive (and with the help of some suitable encoding of formulas as natural numbers, we can

encode this problem in the language of arithmetic). Given this, deciding if � is satis�able in

in�nitely many domain sizes can be encoded using a �0
2 block: for all N , there exists N 0 > N

such that � holds in some model of domain size N 0. Similarly, deciding if � is satis�able for all

but �nitely many domain sizes can clearly be encoded using a �0
2 block: there exists N such

that for all N 0 > N , � holds in some model with domain size N 0. This proves the upper bounds.

It is well known that the following problem is �2
0-complete [Rog67]: \Given a Turing ma-

chine M, does M halt on in�nitely many inputs?" It is also well known that the following

(dual) problem is �2
0-complete: \Given a Turing machine M, does M halt on only �nitely

many inputs?" We prove the two lower bounds by reducing these problems to intermittent

and persistent well-de�nedness, respectively. First, given an arbitrary Turing machine M, we

e�ectively construct another Turing machine M0 that, when started on empty input, starts

simulating the computations of M on all inputs by dovetailing, and enters a special state qs
once for each input on which M halts. (We leave details of this construction to the reader.)

Let KBM0 be the sentence that forces its models to encode pre�xes of the computation of M0

on empty input, as described in Section B.1, and let ' be the sentence that says, with respect

to this encoding, that the last layer is complete, and that M0 is in state qs in the ID encoded in

this last layer. Clearly ' ^ KBM0 is satis�able for in�nitely many domain sizes N i� M halts

on in�nitely many inputs, while :'^KBM0 is satis�able for all but �nitely many domain sizes

N i� M halts on only �nitely many inputs. This proves the lower bounds.

We prove Theorem 5.4.3 by �rst showing that the problem of deciding whether an r.e. se-

quence of rationals converges to 0 is �0
3-complete.

Theorem B.3.1: The problem of deciding whether a recursively enumerable in�nite sequence

of rational numbers converges to zero is �0
3-complete.

Proof: The following problem is known to be �0
3-complete: \Does each of the Turing machines

in a given r.e. set of Turing machines diverge on all but �nitely many inputs?", where the input

to this problem is itself a Turing machine (that generates the encodings for the collection of

Turing machines we are asking about). See [Rog67] for details. For our purposes it is slightly

better to consider a variant of this problem, namely \Does each of the Turing machines in a

given r.e. set of Turing machines enter some distinguished state, say qs, only �nitely many times

when started on the empty input?" The two problems are easily seen to be equivalent, in that

either one can be e�ectively reduced to the other.

The lower-bound is proved by reducing this problem to the question of whether a sequence

converges to zero. We assume, without loss of generality, that our Turing machine generator

G computes a total function, whose values are encodings of other Turing machines. That is,

on input i, it is guaranteed to terminate and produce the ith machine (note that the machines

produced by G on di�erent inputs are not necessarily distinct). We now de�ne Hij to have
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value 1 if the ith machine generated by G is in state qs on its jth step after being started on

empty input, and value 0 otherwise. Note that Hij is a computable function of i, j, and the

encoding of G, because we can simulate G to obtain the encoding of the ith machine, then

simulate this machine for j steps.

We use the numbers Hij to de�ne an r.e. sequence s1; s2; : : : of rational numbers in [0,1],

where sk is de�ned as 0: H1kH2k : : :Hkk. The computability of Hij guarantees that this se-

quence is recursively enumerable. Clearly the sequence s1; s2; : : : converges to 0 i�, for all i,

the sequence Hi1; Hi2; : : : is eventually 0, i.e., there exists ni such that Hij = 0 for all j > ni.

But the sequence Hi1; Hi2; : : : is eventually 0 i� the ith Turing machine reaches qs only �nitely

often. This proves the lower bound.

For the upper bound, note that the question of whether the limit of s1; s2; : : : exists and

equals 0 can be written: \For all M , does there exist N0 such that for all N > N0, jsN j < 1=M?"

The unquanti�ed part of this question is clearly recursive and can be formulated in the language

of arithmetic, while the quanti�er block is a �0
3 pre�x. The result follows.

Theorem 5.4.3: Let � be a vocabulary containing at least one non-unary predicate sym-

bol. For sentences ';KB 2 L(�), the problem of deciding whether 32Pr1('jKB) (resp.,

23Pr1('jKB)) exists is �0
3-complete. The lower bound holds even if we have an oracle that

tells us whether the limit is well-de�ned and its value if it exists.

Proof: To prove the lower bound, we reduce the problem of deciding if an r.e. sequence of ratio-

nals converges to 0 to that of deciding if a particular asymptotic conditional probability exists.

Suppose S is a machine that generates an in�nite sequence of rational numbers, s1; s2; : : : .

Without loss of generality, we can assume that the numbers are in [0; 1]; if necessary, a new ma-

chine S0 such that s0i = max(1; jsij) is easily constructed which clearly has the same properties

with respect to convergence to zero. We also assume that the output is encoded in a special

form: a rational value a=b is output on the tape as a sequence of a 1's, followed by (b� a) 0's,

suitably delimited.

Let R be a binary predicate symbol. (Of course, any non-unary predicate will su�ce.) We

begin by constructing KBS 2 L(fRg) such that �nite models of KBS correspond naturally to

pre�xes of computations of S, as described in Section B.1. Let c be a constant. Let KB 0
S
2

L(fc; Rg) be the conjunction of KBS and sentences asserting that, in the computation-pre�x

of S encoded by the domain, the denotation of c corresponds to a cell in that section of the

last complete ID that represents the output. Note that for any �xed domain size, KB 0
S

has

a+ (b�a) = b times as many models over fc; Rg as KBS does over fRg, where a=b is the most

recent sequence value generated by S in the computation simulated so far. According to our

discussion at the end of Section B.1, #worlds
fRg
N (KBS) = N !, so #worlds

fc;Rg
N (KB 0

S
) = b �N !.

To complete the reduction, consider a sentence ' that says that the simulated computation

has just �nished writing another sequence element, and the denotation of c corresponds to a

cell in that output containing the symbol 1. Assume that the last sequence element written in

the pre�x corresponding to domain size N is a=b. Note that if there are models of ' ^ KB 0
S

of domain size N , then there are in fact a �N ! such models over fc; Rg (corresponding to the

a choices for the denotation of c). In this case PrN ('jKB0
S

) has value a=b. It follows that the
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sequence PrN ('jKB 0
S

), for increasing N , is precisely the sequence generated by S interspersed

with zeros at domain sizes corresponding to computations that have not just output a new

value. Note that both persistent and intermittent limits are well-de�ned for this sequence. If

this limit exists at all, it must have value zero, and this will be the case just if the sequence

generated by S has this property. This proves the lower bound. We remark that the use of an

extra constant c is not necessary in our proof; it can be eliminated as discussed in Section B.1.

To prove the upper bound, note that the question of existence for 23Pr1('jKB) can be

stated as: \Is it true that for all integers M , there exist rational numbers r1 � r2 and integers

N0 and N1 > M such that for all N � N0, (1) #worlds�N1
(KB) 6= 0, (2) if #worlds�N (KB) 6= 0,

then PrN ('jKB) 2 [r1; r2], and (3) r2� r1 � 1=M?" The unquanti�ed part is clearly recursive,

showing that the problem of deciding whether 23Pr1('jKB) exists is in �3
0. We can state the

problem of deciding whether 32Pr1('jKB) exists as follows: \Is it true that for all integers

M , there exist rational numbers r1 � r2 and an integer N0 such that for all N � N0, (1)

#worlds�N(KB) 6= 0, (2) PrN ('jKB) 2 [r1; r2], and (3) r2 � r1 � 1=M?" Thus, the problem of

deciding whether 32Pr1('jKB) exists is also in �0
3.

Theorem 5.4.4: Let � be a vocabulary containing at least one non-unary predicate symbol,

and let r; r1; r2 2 [0; 1] be rational numbers such that r1 � r2. For sentences ';KB 2 L(�),

given an oracle for deciding whether 32Pr1('jKB) (resp., 23Pr1('jKB)) exists,

(a) the problem of deciding whether 32Pr1('jKB) = r (resp., 23Pr1('jKB) = r) is �0
2-

complete,

(b) if [r1; r2] 6= [0; 1], then the problem of deciding whether 32Pr1('jKB) 2 [r1; r2] (resp.,

23Pr1('jKB) 2 [r1; r2]) is �0
2-complete,

(c) if r1 6= r2, then the problem of deciding if 32Pr1('jKB) 2 (r1; r2) (resp., 23Pr1('jKB)

2 (r1; r2)) is �0
2-complete.

Proof: We start with part (a). Just as with our earlier results, the upper bound is the easier

part. This problem can be stated as \For all M , does there exist an N > M such that

#worlds�N(KB) > 0, and jPrN ('jKB)�rj < 1=M ?" It is easy to see that this sentence has the

appropriate form for �0
2. Furthermore, it is true just if there is some subsequence of domain

sizes such that the asymptotic probability, when restricted to these sizes, has value r. If the

sequence as a whole has any limit at all (and we can check this with the oracle) then this limit

must also be r.

To prove the lower bound, we proceed just as in the proof of Theorem 5.4.1 by reducing the

problem \Does a Turing machine reach a speci�ed state qs in�nitely often?" to the problem

of deciding whether the asymptotic probability is r. Let M be an arbitrary Turing machine.

As discussed in Section B.1, we can �nd a sentence KBM 2 L(fRg) such that �nite models of

KBM correspond naturally to pre�xes of computations of M.

Our next step is to construct sentences 'r and KB r such that PrN('rjKBr) = r, for all

N . Suppose r = a=b, and choose k such that 2k > b. We can easily construct propositional
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formulas �r and �r using k primitive propositions p1; : : : ; pk such that �r has exactly b satisfying

assignments and �r^�r has exactly a satisfying assignments. Let 'r and KBr be the sentences

that result by replacing occurrences of the primitive proposition pi in �r or �r by Pi(c), where Pi
is a unary predicate symbol, and c is a constant symbol. It is easy to see that PrN('rjKBr) = r

for all N .

Let Q be a unary predicate not among fP1; : : : ; Pkg, and let KB 0 be a sentence asserting

that there is exactly one domain element satisfying Q, and that this element corresponds to one

of the tape cells representing the head position when the machine is in state qs. De�ne KB to

be KBM ^KBr ^ (KB 0 _ 8xQ(x)). For any domain size N , let tN denote the number of times

the machine has reached qs in the computation so far. The sentence KB has tN + 1 times as

many models over fR; P1; : : : ; Pk; Q; cg as the sentence KBM^KBr has over fR; P1; : : : ; Pk; cg.
We now consider two cases: r < 1 and r = 1. If r < 1, let ' be simply 'r _ (:'r ^ 8xQ(x)).

It is easy to see that PrN ('jKB) is r + (1� r)=(tN + 1). If M reaches qs �nitely often, say t0

times, the limit as N ! 1 is r + (1 � r)=(t0 + 1), otherwise the limit is r. The limit always

exists, so our oracle is not helpful. This proves the required lower bound if r < 1. If r = 1, then

we can take KB to be KBM^ (KB 0_8xQ(x)) and ' to be :8xQ(x). In this case, PrN ('jKB)

is tN=(tN + 1); therefore, the limit is 1 if M reaches qs in�nitely often, and strictly less than 1

otherwise. Again, the lower bound follows. Note that, as discussed in Section B.1, we can avoid

actually using new unary predicates and constants by encoding them with the binary predicate

R.

For part (b), the upper bound follows using much the same arguments as the upper bound

for part (a). For the lower bound, we also proceed much as in part (a). Suppose we are given

an interval [r1; r2] with r2 < 1, and a Turing machine M. Using the techniques of part (a),

we can construct sentences ' and KB such that 23Pr1('jKB) and 32Pr1('jKB) are both

well-de�ned, and such the asymptotic probability is r2 if M reaches state qs in�nitely often,

and strictly greater than r2 otherwise. This proves the lower bound in this case. If r2 = 1, we

use similar arguments to construct sentences ' and KB such that the asymptotic conditional

probability is r1 if M reaches state qs in�nitely often, and is strictly less than r1 otherwise.

Again, the lower bound follows.

Finally, for part (c), observe that the asymptotic probability is in (r1; r2) i� it is not in

[0; r1] [ [r2; 1]. The arguments of part (b) showing that checking whether the asymptotic

probability is in a closed interval is �0
2-complete can be extended without di�culty to dealing

with the union of two closed intervals. Thus, the problem of deciding whether the asymptotic

probability is in an open interval is �0
2-complete.

B.4 Eliminating equality

Theorem 5.5.1: Suppose G and E are binary predicate symbols not appearing in �, and

';KB 2 L(�) are such that #worlds�N (KB) is a non-decreasing function of N . Then we can
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�nd sentences '0;KB 0 2 L�(�[ fG;Eg) such that

lim
N!1

(PrN ('jKB)� PrN ('0jKB 0)) = 0 :

Proof: The idea of the proof is somewhat similar to that used in [KV90] to eliminate equality.

Let ' and KB be as in the hypotheses of the theorem. De�ne KBE to be the result of replacing

all subformulas of KB of the form t1 = t2 by E(t1; t2); we de�ne 'E similarly. Thus, we

are using E to represent equality. Let � be a conjunction of formulas that force E to be an

equivalence relation, as well as a congruence on G and on all symbols in �. Thus, a typical

conjunct of � (which in fact forces E to be a congruence on G) has the form:

8x y z(E(x; y)) ((G(x; z), G(y; z))^ (G(z; x), G(z; y)))):

Let KB 0 be KBE ^ �, and '0 be 'E .

As we now show, there are many more models of KB 0 of size N where E is true equality than

there are where E is some equivalence relation other than equality. To simplify the notation, we

write wN instead of #worlds�N (KB). It is easy to see that there are precisely wN � 2N
2

models

of size N of KB 0 over �[ fG;Eg where E is equality: for every model of size N of KB over �,

there are 2N
2

models of KB 0, because the choice of G is unrestricted.

Now we must get an estimate on the number of models of KB 0 where E is an equivalence

relation, but not equality. It turns out that the crucial factor is the number of equivalence

classes into which E partitions the domain. Let
�N
k

	
be the number of ways of partitioning N

elements into exactly k equivalence classes. (
�N
k

	
is known as a Stirling number of the second

kind; see [GKP89]). It is easy to see that there are wk �
�N
k

	
� 2k2 models of KB 0 where E

partitions the domain into k equivalence classes, since for each such way, there are 2k
2

choices

for G, and wk choices for the denotations of the predicates in � that make KBE true. Thus,

our goal is to show that (
PN�1
k=1 wk �

�N
k

	
� 2k2)=wN � 2N

2
asymptotically converges to 0.

To do this, we need a good estimate on
�N
k

	
. We begin by showing that

�N
k

�
N ! is an

overestimate for
�N
k

	
. To see this, consider any partition, order the equivalence classes by

the minimal elements appearing in them, and order the elements in an equivalence class in

increasing order. This gives us an ordering of the N elements in the domain. Suppose the

equivalence classes (listed in this order) have size n1; : : : ; nk. This corresponds to choosing

elements n1; n1 + n2; : : : ; n1 + � � � + nk from the domain. Thus, with each partition into k

equivalence classes, we can associate a unique pair consisting of a permutation and a choice of

k elements out of N .

This estimate su�ces for values of k which are relatively small compared to N . We use a

�ner estimate for
�N
k

	
if k � N� logN . In this case, at least k� logN equivalence classes must

have size 1. The remaining logN equivalence classes partition at most N�(k�logN) � 2 logN

elements. Thus, a bound on
�N
k

	
in this case is given by 

N

k � logN

!(
N � (k � logN)

logN

)
�

 
N

N � 2 logN

!(
2 logN

logN

)
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�
 

N

N � 2 logN

! 
2 logN

logN

!
(2 logN)!

�
 

N

N � 2 logN

!
22 logN (2 logN)!

=
N !

(N � 2 logN)!
22 logN

� N2 logN 22 logN

= 22 log
2N+2 logN :

Thus, we have that

N�1X
k=1

(
N

k

)
� 2k2 =

N�logNX
k=1

(
N

k

)
� 2k2 +

N�1X
k=N�logN+1

(
N

k

)
� 2k2

� N ! 2(N�logN)2

0
@N�logNX

k=1

 
N

k

!1A + 22 log
2N+2 logN

N�1X
k=N�logN+1

2k
2

� 2N logN 2(N�logN)22N + 22 log
2N+2 logN2(N�1)

2+1

� 2N
2�N logN+N+log2 N + 2N

2�2N+2 log2 N+2 logN+2

� 2N
2�
(N) :

Let � be the formula E(x; y), x = y, which says that E is true equality. (Note that � is

not in L�(�[fG;Eg), since it mentions =, but that is not relevant to the discussion below.) It

now easily follows that for any � > 0, we can choose N0 large enough, so that for any N > N0,

PrN(:�jKB 0) �
PN�1
k=1 wk �

�N
k

	 � 2k2
wN � 2N2

� wN
PN�1
k=1

�N
k

	 � 2k2
wN � 2N2

� 2N
2�
(N)

2N
2 = 2�
(N) < �=2 :

Therefore, since PrN('0jKB 0 ^ �) = PrN ('jKB), it follows that

jPrN('0jKB 0)� PrN ('jKB)j
= j[PrN('0jKB 0 ^ �) � PrN(�jKB 0) + PrN ('0jKB 0 ^ :�) � PrN (:�jKB 0)]� PrN ('jKB)j
� jPrN ('jKB)(1� PrN(�jKB 0))j+ jPrN (:�jKB 0)j
� �=2 + �=2 = �

Theorem 5.5.3: Let � be a vocabulary containing at least two non-unary predicate symbols.

For KB 2 L�(�), the problem of deciding if 23Pr1(�jKB) (resp., 32Pr1(�jKB)) is well-

de�ned is r.e.-complete.
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Proof: We can state the problem of deciding whether 23Pr1(�jKB) is well-de�ned as follows:

Does there exist an N > 0 for which #worlds�N (KB) > 0. The unquanti�ed part is clearly

recursive, thus proving the upper bound. For the lower bound, we proceed as before. For a

given Turing machine M, we let KBM encode a pre�x of the computation of M on empty input

which is a complete pre�x currently in an accepting state. Let KBE
M

be the same formula, but

with equality replaced by the binary predicate E, as in the proof of Theorem 5.5.1. Let � be the

formula forcing E to be an equivalence relation and a congruence on R. The sentence KBE
M
^�

is satis�able in in�nitely many domain sizes i� it is satis�able for some domain size i� M halts.

Note that we did not need the additional predicate G in this proof.

We now formally state and prove the theorems asserting that the remaining complexity

results do carry over for a language without equality. It is clear that all our upper bounds hold

trivially for the language without equality. We consider the lower bounds, one by one.

Theorem B.4.1: Let � be a vocabulary containing at least three non-unary predicate symbols.

For sentences ';KB 2 L�(�), the problem of deciding if 32Pr1('jKB) (resp.,23Pr1('jKB))

exists is �0
3-complete. The lower bound holds even if we have an oracle that tells us whether

the limit is well-de�ned.

Proof: The sentence KB 0
S

in Theorem 5.4.3 does not satisfy the requirement of Theorem 5.5.1,

since #worlds�N(KB 0
S

) = N ! � b, where a=b is the is the most recent sequence value generated

by S in the computation so far. The values of b do not necessarily form a non-decreasing

sequence. However, it is easy to transform S to an equivalent Turing machine S0, that outputs

the rationals in a non-reduced form satisfying the constraint. Using this transformation, the

result follows from Theorem 5.5.1.

Theorem B.4.2: Let � be a vocabulary containing at least three binary predicates, and let

r; r1; r2 2 [0; 1] be rational numbers such that r1 � r2. For sentences ';KB 2 L�(�), given an

oracle for deciding if 32Pr1('jKB) (resp., 23Pr1('jKB)) exists,

(a) the problem of deciding whether 32Pr1('jKB) = r (resp., 23Pr1('jKB) = r) is �0
2-

complete,

(b) if [r1; r2] 6= [0; 1], then the problem of deciding whether 32Pr1('jKB) 2 [r1; r2] (resp.,

23Pr1('jKB) 2 [r1; r2]) is �0
2-complete,

(c) if r1 6= r2, then the problem of deciding if 32Pr1('jKB) 2 (r1; r2) (resp., 23Pr1('jKB)

2 (r1; r2)) is �0
2-complete.

Proof: It can be veri�ed that the sentences constructed in the proof of Theorem 5.4.4 satisfy

the constraints of Theorem 5.5.1.
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B.5 Decidability for a �nite language

Theorem 5.6.2: For all d, there exists a Turing machine Md such that for all ';KB 2
Ld(�), Md decides in time linear in the length of ' and KB whether 32Pr1('jKB) (resp.,

23Pr1('jKB)) is well-de�ned, if so whether it exists, and if it exists computes an arbitrarily

good rational approximation to its value.

Proof: Let Ldi (�) consist of all formulas (not necessarily sentences) of quanti�cation depth

at most i that mention only the variables x1; : : : ; xd. Notice that there is an algorithm that

runs in linear time that e�ectively converts a sentence in Ld(�) to a sentence in Ldd(�). We

now show that (a) we can e�ectively �nd a �nite set �d
i of formulas such that every formula in

Ldi (�) is equivalent to a formula in �d
i , and (b) there is a linear time algorithm that e�ectively

converts a formula in Ldi (�) to an equivalent formula in �d
i . This is su�cient to show that any

problem|including all those relating to conditional probabilities|whose inputs are formulas

in Ldi (�) and whose outputs only depend on the semantics of formulas, is solvable in linear

time. This is because there exists a constant time algorithm|essentially a lookup table|that,

given a formula in �d
i , outputs the correct response. So, given any formula, we can �nd the

equivalent formula in �d
i , and use this algorithm to obtain the appropriate output. Note that

we cannot necessarily give an e�ective construction that produces the lookup table.

We �rst prove the existence of �d
i for each �xed d by induction on i. For the base case

i = 0, observe that our assumptions imply that there are only �nitely many distinct \literals"

consisting of a predicate symbol, followed by the appropriate number of arguments drawn from

the constants in � and x1; : : :xd. (For the purpose of this proof, we treat equality just like any

other binary predicate.) Every formula in Ld0(�) is a Boolean combination of these literals, and

there are only �nitely many non-equivalent Boolean combinations of formulas in a �nite set.

We can e�ectively construct a set �d
0 consisting of one representative of each equivalence class

of equivalent formulas. For later ease of exposition, we assume that if the equivalence class

includes a literal, then that is the representative chosen to be in �d
0.

For the inductive step, suppose that we have constructed �d
i . Every formula in Ldi+1(�) is

equivalent to a Boolean combination of formulas of the form Qxj  , where j � d,  has depth

at most i, and Q is either 9; 8, or is absent altogether. By the inductive hypothesis, we can

replace  by an equivalent formula � 2 �d
i . Therefore, every formula in Ldi+1(�) is equivalent

to a Boolean combination of formulas of the form Qxj � , where j � d and � 2 �d
i . Since �d

i

is �nite and j � d, this is a Boolean combination of formulas in a �nite set. Using the fact that

there are only �nitely many inequivalent Boolean combinations of formulas in a �nite set, we

can again construct a �nite set �d
i+1 extending �d

i for which the result follows.

To complete the proof, we need to show how to determine the appropriate � 2 �d
i given a

sentence � 2 Ldi (�). We assume that � is fully parenthesized. First, it is clear that there exists

a constant time algorithm (a lookup table) such that: given a formula of the form �1^�2, :�1,
or 9xj �1, for �1; �2 2 �d

i , it �nds an equivalent formula in �d
i . This is easy to see because, as

�d
i is �nite, there are only a �nite number of possible inputs. The �nal algorithm is presented

in Figure B.2.

It is straightforward to prove by induction that if �1 and �2 are popped o� the stack, then
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Read � from left to right, doing the following:

If symbol read is a literal, a Boolean connective, or a quanti�er then

Push symbol onto the stack

If symbol read is a right parenthesis, then

Pop immediately preceding symbols o� the stack, so that:

We obtain a subformula � of the form �1 ^ �2, :�1, or 9xj �1
Find the formula � 2 �d

i which is equivalent to �

Push � onto the stack

Print the contents of the stack.

Figure B.2: An algorithm for constructing � 2 �d
i .

they are both in �d
i . The base case follows by our assumption about �d

i containing all literals.

The inductive step follows by the construction of the lookup table algorithm. Moreover, the

subformula � pushed onto the stack in the last step in the loop is logically equivalent to the

formula it replaces. It follows that after � is read, there is exactly one formula on the stack,

which is equivalent to �.

Given � and d, it is easy to construct �d
i and a Turing machine that, for each pair of

formulas ';KB 2 Ldi (�), �nds the equivalent formulas �'; �KB 2 �d
i . Given that, it remains

only to construct a lookup table that tells us, for any formulas �'; �KB 2 �d
i , the behavior

of 32Pr1('jKB) (23Pr1('jKB)). We can easily construct a �nite set of linear-time Turing

machines, corresponding to the di�erent possible lookup tables. One of these will allow us to

correctly determine the behavior of the asymptotic probability (well-de�nedness, existence, and

value of limit).



Appendix C

Proofs for Chapter 6

C.1 Unary expressivity

Theorem 6.2.7: If � is a formula in L(	) whose free variables are contained in X , and
M � d(�) + jCj+ jX j,1 then there exists a set of atomic descriptions A	

� � A	
M;X such that � is

equivalent to
W
 2A	

�
 .

Proof: We proceed by a straightforward induction on the structure of �. We assume without

loss of generality that � is constructed from atomic formulas using only the operators ^, :,

and 9.
First suppose that � is an atomic formula. That is, � is either of the form P (z) or of the

form z = z0, for z; z0 2 C [ X . In this case, either the formula � or its negation appears as a

conjunct in each atomic description  2 A	
M;�. Let A	

� be those atomic descriptions in which �

appears as a conjunct. Clearly, � is inconsistent with the remaining atomic descriptions. Since

the disjunction of the atomic descriptions in A	
M;X is valid, we obtain that � is equivalent toW

 2A	
�
 .

If � is of the form �1^�2, then by the induction hypothesis, �i is equivalent to the disjunction

of a set A	
�i
� A	

M;X , for i = 1; 2. Clearly � is equivalent to the disjunction of the atomic

descriptions in A	
�1
\A	

�2
. (Recall that the empty disjunction is equivalent to the formula false.)

If � is of the form :�0 then, by the induction hypothesis, �0 is equivalent to the disjunction

of the atomic descriptions in A	
�0 . It is easy to see that � is the disjunction of the atomic

descriptions in A	
:�0 = A	

M;X �A	
�0 .

Finally, we consider the case that � is of the form 9y �0. Recall that M � d(�) + jCj+ jX j.
Since d(�0) = d(�)� 1, it is also the case that M � d(�0) + jCj+ jX [ fygj. By the induction

hypothesis, �0 is therefore equivalent to the disjunction of the atomic descriptions in A	
�0 . Clearly

� is equivalent to 9y _ 2A	
�0
 , and standard �rst-order reasoning shows that 9y _ 2A	

�0
 is

1Recall that d(�) denotes the depth of quanti�er nesting of �. See De�nition 5.6.1.

148
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equivalent to _ 2A	
�0
9y  . Since A	

�0 � A	
M;X[fyg

, it su�ces to show that for each atomic

description  2 A	
M;X[fyg, 9y  is equivalent to an atomic description in A	

M;X .

Consider some  2 A	
M;X[fyg; we can clearly pull out of the scope of 9y all the conjuncts

in  that do not involve y. It follows that 9y  is equivalent to  0 ^ 9y  00, where  00 is a

conjunction of A(y), where A is an atom over P , and formulas of the form y = z and y 6= z. It

is easy to see that  0 is a consistent atomic description over 	 and X of size M . To complete

the proof, we now show that  0 ^ 9y  00 is equivalent to  0. There are two cases to consider.

First suppose that  00 contains a conjunct of the form y = z. Let  00[y=z] be the result of

replacing all free occurrences of y in  00 by z. Standard �rst-order reasoning (using the fact

that  00[y=z] has no free occurrences of y) shows that  00[y=z] is equivalent to 9y  00[y=z], which

is equivalent to 9y  00. Since  is a complete atomic description which is consistent with  00,

it follows that each conjunct of  00[y=z] (except z = z) must be a conjunct of  0, so  0 implies

 00[y=z]. It immediately follows that  0 is equivalent to  0 ^ 9y  00 in this case. Now suppose

that there is no conjunct of the form y = z in  00. In this case, 9y  00 is certainly true if there

exists a domain element satisfying atom A di�erent from the denotations of all the symbols in

X [ C. Notice that  implies that there exists such an element, namely, the denotation of y.

However,  0 must already imply the existence of such an element since  0 must force there to

be enough elements satisfying A to guarantee the existence of such an element. (We remark

that it is crucial for this last part of the argument that M � jX j + 1 + jCj.) Thus, we again

have that  0 is equivalent to  0^9y  00. It follows that 9y  is equivalent to a consistent atomic

description in A	
M;X , namely  0, as required.

C.2 A conditional 0-1 law

Proposition C.2.1: The theory T is complete.

Proof: The proof is based on a result of  Lo�s and Vaught [Vau54] which says that any �rst-

order theory with no �nite models, such that all of its countable models are isomorphic, is

complete. The theory T obviously has no �nite models. The fact that all of its countable

models are isomorphic follows by a standard \back and forth" argument. That is, let U and

U 0 be countable models of T . Without loss of generality, assume that both models have the

same domain D = f1; 2; 3; : : :g. We must �nd a mapping F : D ! D which is an isomorphism

between U and U 0 with respect to �.

We �rst map the named elements in both models to each other, in the appropriate way.

Recall that T contains the assertion 9x1; : : : ; xnDV . Since U j= T , there must exist domain

elements d1; : : : ; dn 2 D that satisfy DV under the model U . Similarly, there must exist corre-

sponding elements d01; : : : ; d
0
n 2 D that satisfy DV under the model U 0. We de�ne the mapping

F so F (di) = d0i for i = 1; : : : ; n. Since DV is a complete description over these elements, and

the two substructures both satisfy DV , they are necessarily isomorphic.

In the general case, assume we have already de�ned F over some j elements fd1; d2; : : : ; djg 2
D so that the substructure of U over fd1; : : : ; djg is isomorphic to the substructure of U 0 over
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n
d01; : : : ; d

0
j

o
, where d0i = F (di) for i = 1; : : : ; j. Because both substructures are isomorphic

there must be a description D that is satis�ed by both. Since we began by creating a mapping

between the named elements, we can assume that D extends DV . We would like to extend

the mapping F so that it eventually exhausts both domains. We accomplish this by using the

even rounds of the construction (the rounds where j is even) to ensure that U is covered, and

the odd rounds to ensure that U 0 is covered. More precisely, if j is even, let d be the �rst

element in D which is not in fd1; : : : ; djg. There is a model description D0 extending D that is

satis�ed by d1; : : : ; dj; d in U . Consider the extension axiom in T asserting that any j elements

satisfying D can be extended to j + 1 elements satisfying D0. Since U 0 satis�es this axiom,

there exists an element d0 in U 0 such that d01; : : : ; d
0
j; d

0 satisfy D0. We de�ne F (d) = d0. It is

clear that the substructure of U over fd1; : : : ; dj; dg is isomorphic to the substructure of U 0 overn
d01; : : : ; d

0
j; d

0
o

. If j is odd, we follow the same procedure, except that we �nd a counterpart

to the �rst domain element (in U 0) which does not yet have a pre-image in U . It is is easy to

see that the �nal mapping F is an isomorphism between U and U 0.

Proposition C.2.2: For any ' 2 L(�), if T j= ' then Pr1('j ^ V) = 1.

Proof: We begin by proving the claim for a sentence � 2 T . By the construction of T , � is

either  ^ 9x1; : : : ; xnDV or an extension axiom. In the �rst case, Proposition 6.2.21 trivially

implies that Pr1(�j ^ V) = 1. The proof for the case that � is an extension axiom is based

on a straightforward combinatorial argument, which we brie
y sketch. Recall that one of the

conjuncts of  is a size description �. The sentence � includes two types of conjuncts: those

of the form 9mxA(x) and those of the form 9�MxA(x). Let �0 be � with the conjuncts of the

second type removed. Let  0 be the same as  except that �0 replaces �. It is easy to show that

Pr1(9�MxA(x)j 0 ^ V) = 1 for any active atom A, and so Pr1( j 0 ^ V) = 1. Since  )  0,

by straightforward probabilistic arguments, it su�ces to show that Pr1(�j 0 ^ V) = 1.

Suppose � is an extension axiom involving D and D0, where D is a complete description

over X = fx1; : : : ; xjg and D0 is a description over X [ fxj+1g that extends D. Fix a domain

size N , and some particular j domain elements, d1; : : : ; dj that satisfy D. Observe that, since

D extends DV , all the named elements are among d1; : : : ; dj. For a given d 62 fd1; : : : ; djg, let

B(d) denote the event that d1; : : : ; dj; d satis�es D0, conditioned on  0 ^ V . The probability

of B(d), given that d1; : : : ; dj satis�es D, is typically very small but is bounded away from 0

by some � independent of N . To see this, note that D0 is consistent with  ^ V (because D0

is part of an extension axiom) and so there is a consistent way choosing how d is related to

d1; : : : ; dj so as to satisfy D0. Then observe that the total number of possible ways to choose d's

properties (as they relate to d1; : : : ; dj) is independent of N . Since D extends DV , the model

fragment de�ned over the elements d1; : : : ; dj satis�es  0^V . (Note that it does not necessarily

satisfy  , which is why we replaced  with  0.) Since the properties of an element d and its

relation to d1; : : : ; dj can be chosen independently of the properties of a di�erent element d0,

the di�erent events B(d); B(d0); : : : are all independent. Therefore, the probability that there

is no domain element at all that, together with d1; ::; dj, satis�es D0 is at most (1��)N�j. This
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bounds the probability of the extension axiom being false, relative to �xed d1; : : : ; dj. There are

exactly
�N
j

�
ways of choosing j elements, so the probability of the axiom being false anywhere

in a model is at most
�N
j

�
(1��)N�j . However, this tends to 0 as N goes to in�nity. Therefore,

the axiom 8x1; : : : ; xj (D) 9xj+1D0) has asymptotic probability 1 given  0^ V , and therefore

also given  ^ V .

It remains to deal only with the case of a general formula ' 2 L(�) such that T j= '. By

the Compactness Theorem for �rst-order logic, if T j= ' then there is some �nite conjunction

of assertions �1; : : : ; �m 2 T such that ^mi=1�i j= '. By the previous case, each such �i has

asymptotic probability 1, and therefore so does this �nite conjunction. Hence, the asymptotic

probability Pr1('j ^ V) is also 1.

C.3 Assigning weights to model descriptions

Lemma 6.3.5: Let  be a consistent atomic description of size M � jCj over 	, and let

( ^ V) 2 M�( ).

(a) If �( ) = 0 and N > �( ), then #worlds	N( ) = 0. In particular, this holds for all

N > 2jPjM .

(b) If �( ) > 0, then

#worlds�N( ^ V) �
 
N

n

!
aN�n2

P
i�2

bi(N
i�ni)

;

where a = �( ), n = �( ), and bi is the number of predicates of arity i in �.

Proof: Suppose that C = h(f1; g1); :::; (f2jPj; g2jPj)i is the characteristic of  . Let W be a

model of cardinality N , and let Ni be the number of domain elements in W satisfying atom Ai.

In this case, we say that the pro�le of W is hN1; : : : ; N2jPji. Clearly we must have N1 + � � �+
N2jPj = N . We say that the pro�le hN1; : : : ; N2jPji is consistent with C if fi 6= � implies that

Ni = fi, while fi = � implies that Ni � M . Notice that if W is a model of  , then the pro�le

of W must be consistent with C .

For part (a), observe that if �( ) = 0 and N >
P
i fi, then there can be no models of

cardinality N whose pro�le is consistent with C . However, if �( ) = 0, then
P
i fi is precisely

�( ). Hence there can be no models of  of cardinality N if N > �( ). Moreover, since

�( ) � 2jPjM , the result holds for any N > 2jPj. This proves part (a).

For part (b), let us �rst consider how many ways there are of choosing a world satisfying

 ^ V with cardinality N and pro�le hN1; : : : ; N2jPji. To do the count, we �rst choose which

elements are to be the named elements in the domain. Clearly, there are
�N
n

�
ways in which this

can be done. Once we choose the named elements, their properties are completely determined

by V .
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It remains to specify the rest of the properties of the world. Let R be a non-unary predicate

of arity i � 2. To completely describe the behavior of R in a world, we need to specify which

of the N i i-tuples over the domain are in the denotation of R. We have already speci�ed this

for those i-tuples all of whose components are named elements. There are ni such i-tuples.

Therefore, we have N i � ni i-tuples left to specify. Since each subset is a possible denotation,

we have 2N
i�ni possibilities for the denotation of R. The overall number of choices for the

denotations of all non-unary predicates in the vocabulary is therefore 2
P

i�2
bi(N

i�ni)
.

It remains only to choose the denotations of the unary predicates for the N 0 = N�n domain

elements that are not named. Let i1; : : : ; ia be the active atoms in  , and let hj = Nij � gij for

j = 1; : : : ; a. Thus, we need to compute all the ways of partitioning the remaining N 0 elements

so that there are hj elements satisfying atom Aij ; there are
� N 0

h1 h2 ::: ha

�
ways of doing this.

We now need to sum over all possible pro�les, i.e., those consistent with  ^V . If ij 2 A( ),

then there must be at least M domain elements satisfying Aij . Therefore Nij � M , and

hj = Nij � gij �M � gij . This is the only constraint on hj . Thus, it follows that

#worlds�N( ^ V) �
X

fh1;:::;ha: h1+���+ha=N 0; 8j hj�M�gijg

 
N

n

!
2
P

i�2
bi(N

i�ni)

 
N 0

h1 : : : ha

!
:

This is equal to  
N

n

!
2
P

i�2
bi(N

i�ni)
S

for

S =
X

fh1;:::;ha: h1+���+ha=N 0; 8j hj�M�gijg

 
N 0

h1 : : : ha

!
:

It remains to get a good asymptotic estimate for S. Notice that

X
fh1;:::;ha: h1+���+ha=N 0g

 
N 0

h1 : : : ha

!
= aN

0

;

since the sum can be viewed as describing all possible ways to assign one of a possible atoms

to each of N 0 elements. Our goal is to show that aN
0

is actually a good approximation for S

as well. Clearly S < aN
0

. Let Sj =
P
fh1;:::;ha: hj<M;h1+���+ha=N 0g

� N 0

h1 ::: ha

�
. Straightforward

computation shows that

S1 =
X

fh1;:::;ha: h1<M; h1+���+ha=N 0g

 
N 0

h1 : : : ha

!

=
M�1X
h1=0

X
fh2;:::;ha: h2+���+ha=N 0�h1g

 
N 0

h1

! 
N 0 � h1
h2 : : : ha

!

�
M�1X
h1=0

(N 0)h1

h1!
(a� 1)N

0�h1

< MNM(a� 1)N
0

:
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Similar arguments show that Sj < MNM(a� 1)N
0

for all j. It follows that

S >
X

fh1;:::;ha:h1+���+ha=N 0g

 
N 0

h1 : : : ha

!
� (S1 + � � �+ Sa)

> aN
0 � aMNM(a� 1)N

0

:

Therefore,

S � aN 0

= aN�n;

thus concluding the proof.

Lemma 6.3.7: Suppose that KB 2 L(	), and M = d(KB) + jCKB j. Then the following

conditions are equivalent:

(a) KB is satis�ed in some model of cardinality greater than 2jPjM ,

(b) �	(KB) > 0,

(c) for all N > 2jPjM , KB is satis�able in some model of cardinality N ,

(d) Pr1(�jKB) is well-de�ned.

Proof: By de�nition, KB is satis�able in some model of cardinality N i� #worlds	N (KB) > 0.

We �rst show that (a) implies (b). If KB is satis�ed in some model of cardinality N greater

than 2jPjM , then there is some atomic description  2 A	
KB such that  is satis�ed in some

model of cardinality N . Using part (a) of Lemma 6.3.5, we deduce that �( ) > 0 and therefore

that �	(KB) > 0. That (b) entails (c) can be veri�ed by examining the proof of Lemma 6.3.5.

That (c) implies (d) and (d) implies (a) is immediate from the de�nition of well-de�nedness.

Theorem 6.3.10: Let KB 2 L(	) and �	(KB) = �. Let  be an atomic description in

A	
KB , and let  ^ V 2 M�( ).

(a) If �( ) < � then Pr1( ^ VjKB) = 0.

(b) If �( ) = � then Pr1( ^ VjKB) = 1=jM�(A	;�
KB)j.

Proof: We begin with part (a). Since �	(KB) = � = (a; n), there must exist some atomic

description  0 2 A	
KB with �( 0) = �. Let  0 ^ V 0 be some model description in M( 0).

PrN ( ^ VjKB) =
#worlds�N ( ^ V)

#worlds�N (KB)

� #worlds�N( ^ V)

#worlds�N ( 0 ^ V 0)

�
� N
�( )

�
(�( ))N��( )2

P
i�2

bi(N i��( )i)

�N
n

�
aN�n2

P
i�2

bi(N i�ni)

= O(N�( )�n(�( )=a)N):
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The last step uses the fact that n and �( ) can be considered to be constant, and that for any

constant k,
�N
k

�
� Nk=k!. Since �( ) < � = (a; n), either �( ) < a or �( ) = a and �( ) < n.

In either case, it is easy to see that N�( )�n(�( )=a)N tends to 0 as N ! 1, giving us our

result.

To prove part (b), we �rst observe that, due to part (a), we can essentially ignore all model

descriptions of low degree. That is:

#worlds�N (KB) �
X

( 0^V 0)2M(A
	;�

KB
)

#worlds�N ( 0 ^ V 0):

Therefore,

PrN ( ^ VjKB) =
#worlds�N ( ^ V)P

( 0^V 0)2M(A	;�

KB
)
#worlds�N ( 0 ^ V 0)

�
�N
n

�
aN�n2

P
i�2

bi(N
i�ni)

P
( 0^V 0)2M(A

	;�

KB
)

�N
n

�
aN�n2

P
i�2

bi(N i�ni)

=
1

jM(A	;�
KB)j

;

as desired.

C.4 Computing the 0-1 probabilities

The proof that Compute01 is correct is based on the following proposition, which can easily be

proved using the same techniques as Proposition C.2.1.

Proposition C.4.1: If D is a complete description over � and X and � 2 L(�) is a formula

all of whose free variables are in X , then either T j= D) � or T j= D) :�.

Proof: We know that T has no �nite models. By the L�owenheim-Skolem Theorem [End72,

page 141], we can, without loss of generality, restrict attention to countably in�nite models

of T .

Suppose X = fx1; x2; : : : ; xjg and that T 6j= D) �. Then there is some countable model U
of T , and j domain elements fd1; : : : ; djg in the domain of U , which satisfy D ^ :�. Consider

another model U 0 of T , and any
n
d01; : : : ; d

0
j

o
in the domain of U 0 that satisfy D. Because D is a

complete description, the substructures over fd1; : : : ; djg and
n
d01; : : : ; d

0
j

o
are isomorphic. We

can use the back and forth construction of Proposition C.2.1 to extend this to an isomorphism

between U and U 0. But then it follows that
n
d01; : : : ; d

0
j

o
must also satisfy :�. Since U was

arbitrary, T j= D) :�. The result follows.
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The following result shows that the algorithm above gives a sound and complete procedure

for determining whether T j= DV ) '.

Theorem C.4.2: Each of the equivalences used in steps (1){(5) of Compute01 is true.

Proof: The equivalences for steps (1){(3) are easy to show, using Proposition C.4.1. To prove

(4), consider some formula D ) 9y �0, where D is a complete description over x1; : : : ; xj and

the free variables of � are contained in fx1; : : : ; xjg. Let U be some countable model of T , and

let d1; : : : ; dj be elements in U that satisfy D. If U satis�es D ) 9y �0 then there must exist

some other element dj+1 that, together with d1; : : : ; dj, satis�es �. Consider the description D0

over x1; : : : ; xj+1 that extends D and is satis�ed by d1; : : : ; dj+1. Clearly T 6j= D0 ) :�0[y=xj+1]
because this is false in U . So, by Proposition C.4.1, T j= D0 ) �0[y=xj+1] as required.

For the other direction, suppose that T j= D0 ) �0[y=xj+1] for some D0 extending D. It

follows that T j= 9xj+1D0 ) 9xj+1�0[y=xj+1]. The result follows from the observation that T

contains the extension axiom 8x1; : : : ; xj(D) 9xj+1D0).

The proof for case (5) is similar to case (4), and is omitted.

Theorem 6.4.1: There exists an alternating Turing machine that takes as input a �nite

vocabulary �, a model description  ^V over �, and a formula ' 2 L(�), and decides whether

Pr1('j ^ V) is 0 or 1. The machine uses time O(j�j2jPj(�( ) + j'j)�) and O(j'j) alterna-
tions, where � is the maximum arity of predicates in �. If � > 1, the number of branches is

2O(j�j(�( )+j'j)
�). If � = 1, the number of branches is O((2j�j + �( ))j'j).

Proof: Compute01, described in Figure 6.2, can easily be implemented on an ATM. Each

inductive step corresponding to a disjunction or an existential quanti�er can be implemented

using a sequence of existential guesses. Similarly, each step corresponding to a conjunction or

a universal quanti�er can be implemented using a sequence of universal guesses. Note that the

number of alternations is at most j'j. We must analyze the time and branching complexity of

this ATM. Given  ^ V , each computation branch of this ATM can be regarded as doing the

following. It:

(a) constructs a complete description D over the variables x1; : : : ; xn+k that extends DV and

is consistent with  , where n = �( ) and k � j'j=2 is the number of variables appearing

in ',

(b) chooses a formula � or :�, where � is an atomic subformula of ' (with free variables

renamed appropriately so that they are included in fx1; : : : ; xn+kg), and

(c) checks whether T j= D) �.

Generating a complete description D requires time jDj, and if we construct D by adding con-

juncts toDV then it is necessarily the case thatD extends DV . To check whether D is consistent

with  , we must verify that D does not assert the existence of any new element in any �nite

atom. Under an appropriate representation of  (outlined after Corollary 6.4.2 below), this

check can be done in time O(jDj2jPj). Choosing an atomic subformula � of ' can takes time
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O(j'j). Finally, checking whether T j= D ) � can be accomplished by simply scanning jDj. It

is easy to see that we can do this without backtracking over jDj. Since jDj > j�j, it can be done

in time O(jDj). Combining all these estimates, we conclude that the length of each branch is

O(jDj2jPj + j'j).
Let D be any complete description over � and X . Without loss of generality, we assume

that each constant in � is equal to (at least) one of the variables in X . To fully describe D

we must specify, for each predicate R of arity i, which of the i-tuples of variables used in D

satisfy R. Thus, the number of choices needed to specify the denotation of R is bounded by

jX j� where � is the maximum arity of a predicate in �. Therefore, jDj is O(j�jjX j�). In the

case of the description D generated by the algorithm, X is fx1; : : : ; xn; xn+1; : : : ; xn+kg, and

n+ k is less than n+ j'j. Thus, the length of such a description D is O(j�j(n+ j'j)�).
Using this expression, and our analysis above, we see that the computation time is certainly

O(j�j2jPj(n + j'j)�). In general, the number of branches of the ATM is at most the number

of complete descriptions multiplied by the number of atomic formulas in '. The �rst of these

terms can be exponential in the length of each description. Therefore the number of branches

is O(j'j2j�j(n+j'j)�) = 2O(j�j(n+j'j)
�). We can, however, get a better bound on the number of

branches if all predicates in � are unary (i.e., if � = 1). In this case,  already speci�es all the

properties of the named elements. Therefore, a complete description D is determined when we

decide, for each of the at most k variables in D not corresponding to named elements, whether

it is equal to a named element and, if not, which atom it satis�es. It follows that there are

at most (2j�j + n)k complete descriptions in this case, and so at most j'j(2j�j + n)k branches.

Since k � j'j=2, the number of branches is certainly O((2j�j + n)j'j) if � = 1.

Corollary 6.4.2: There exists a deterministic Turing machine that takes as input a �nite

vocabulary �, a model description  ^V over �, and a formula ' 2 L(�), and decides whether

Pr1('j ^V) is 0 or 1. If � > 1 the machine uses time 2O(j�j(�( )+j'j)
�) and space O(j�j(�( )+

j'j)�). If � = 1 the machine uses time 2O(j'jj�j log(�( )+1)) and space O(j'jj�j log(�( ) + 1)).

Proof: An ATM can be simulated by a deterministic Turing machine which traverses all

possible branches of the ATM, while keeping track of the intermediate results necessary to

determine whether the ATM accepts or rejects. The time taken by the deterministic simulation

is linear in the product of the number of branches of the ATM and the time taken by each

branch. The space required is the logarithm of the number of branches plus the space required

for each branch. In this case, both these terms are O(jDj + j'j), where D is the description

generated by the machine.

C.5 Complexity analysis

Examining Compute-Pr1, we see that its complexity is dominated by two major quantities:

the time required to generate all model descriptions, and the time required to compute the 0-1

probability given each one. The complexity analysis of the latter is given above in Theorem 6.4.1

and Corollary 6.4.2. The following proposition analyzes the length of a model description; the
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time required to generate all model descriptions is exponential in this length.

Proposition C.5.1: If M > jCj then the length of a model description of size M over � is

O(j�j(2jPjM)�):

Proof: Consider a model description over � of size M = d(KB)+ jCj. Such a model description

consists of two parts: an atomic description  over 	 and a model fragment V over � which

is in M( ). To specify an atomic description  , we need to specify the unary properties of

the named elements; furthermore, for each atom, we need to say whether it has any elements

beyond the named elements (i.e., whether it is active). Using this representation, the size of an

atomic description  is O(j	j�( )+2jPj). As we have already observed, the length of a complete

description D over � and X is O(j�jjX j�). In the case of a description DV for V 2 M( ), this

is O(j�j�( )�). Using �( ) � 2jPjM , we obtain the desired result.

C.5.1 Finite vocabulary

Theorem 6.4.3: Fix a �nite vocabulary � with at least one unary predicate symbol. For

KB 2 L(	), the problem of deciding whether Pr1(�jKB) is well-de�ned is PSPACE-complete.

The lower bound holds even if KB 2 L�(fPg).
Proof: It follows from Lemma 6.3.7 that Pr1(�jKB) is well-de�ned i� �	(KB) > 0. This is

true i� there is some atomic description  2 A	
KB such that �( ) > 0. This holds i� there exists

an atomic description  of size M = d(KB)+ jCj over 	 and some model fragment V 2 M	( )

such that �( ) > 0 and Pr1(KB j ^V) = 1. Since we are working within 	, we can take � = 1

and jPj to be a constant, independent of KB . Thus, the length of a model description  ^ V
as given in Proposition C.5.1 is polynomial in jKB j. It is therefore possible to generate model

descriptions in PSPACE. Using Corollary 6.4.2, we can check, in polynomial space, for a model

description  ^V whether Pr1(KB j ^ V) is 1. Therefore, the entire procedure can be done in

polynomial space.

For the lower bound, we use a reduction from the problem of checking the truth of quanti�ed

Boolean formulas (QBF), a problem well known to be PSPACE complete [Sto77]. The reduction

is similar to that used to show that checking whether a �rst-order sentence is true in a given

�nite structure is PSPACE-hard [CM77]. Given a quanti�ed Boolean formula �, we de�ne a

�rst-order sentence �� 2 L�(fPg) as follows. The structure of �� is identical to that of �, except

that any reference to a propositional variable x, except in the quanti�er, is replaced by P (x). For

example, if � is 8x 9y (x^y), �� will be 8x 9y (P (x)^P (y)). Let KB be ��^9xP (x)^9x:P (x).

Clearly, Pr1(�jKB) is well-de�ned exactly if � is true.

Theorem 6.4.4: Fix a �nite vocabulary �. For ' 2 L(�) and KB 2 L(	), the problem of

computing Pr1('jKB) is PSPACE-complete. Indeed, deciding if Pr1('jtrue) = 1 is PSPACE-

hard even if ' 2 L�(fPg) for some unary predicate symbol P .
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Proof: The upper bound is obtained directly from Compute-Pr1 in Figure 6.3. The algorithm

generates model descriptions one by one. Using the assumption that � is �xed and �nite, each

model description has polynomial length, so that this can be done in PSPACE. Corollary 6.4.2

implies that, for a �xed �nite vocabulary, the 0-1 probabilities for each model description can

also be computed in polynomial space. While count(KB) and count(') can be exponential (as

large as the number of model descriptions), only polynomial space is required for their binary

representation. Thus, Compute-Pr1 works in PSPACE under the assumption of a �xed �nite

vocabulary.

For the lower bound, we provide a reduction from QBF much like that used in Theorem 6.4.3.

Given a quanti�ed Boolean formula � and a unary predicate symbol P , we construct a sentence

�� 2 L�(fPg) just as in the proof of Theorem 6.4.3. It is easy to see that Pr1(��jtrue) = 1 i�

� is true. (By the unconditional 0-1 law, Pr1(��jtrue) is necessarily either 0 or 1.)

Theorem 6.4.5: Fix a �nite vocabulary � that contains at least two unary predicates and

rational numbers 0 � r1 � r2 � 1 such that [r1; r2] 6= [0; 1]. For ';KB 2 L(P), the problem

of deciding whether Pr1('jKB) 2 [r1; r2] is PSPACE-hard, even given an oracle that tells us

whether the limit is well-de�ned.

Proof: We �rst show that, for any rational number r with 0 < r < 1, we can construct 'r;KBr

such that Pr1('rjKBr) = r. Suppose r = q=p. We assume, without loss of generality, that

� = fP;Qg. Let KBr be the sentence

9p�1xP (x)^
�
9q�1x (P (x)^Q(x))_ 9qx (P (x)^ Q(x))

�
^ 90x (:P (x)^ :Q(x)):

That is, no elements satisfy the atom :P ^ :Q, either q or q � 1 elements satisfy the atom

P ^Q, and p� 1 elements satisfy P . Thus, there are exactly two atomic descriptions consistent

with KBr. In one of them,  1, there are q � 1 elements satisfying P ^ Q and p � q elements

satisfying P ^ :Q (all the remaining elements satisfy :P ^ Q). In the other,  2, there are q

elements satisfying P ^Q and p� q� 1 elements satisfying P ^:Q. Clearly, the degree of  1 is

the same as that of  2, so that neither one dominates. In particular, both de�ne p� 1 named

elements. The number of model fragments for  1 is
�p�1
q�1

�
= (p�1)!

(q�1)!(p�q)! . The number of model

fragments for  2 is
�p�1
q

�
= (p�1)!

q!(p�q�1)! . Let 'r be  1. Clearly

Pr1('rjKB r) =
jM( 1)j

jM( 1)j+ jM( 2)j

=
(p� 1)!=((q� 1)!(p� q)!)

(p� 1)!=((q� 1)!(p� q)!) + (p� 1)!=(q!(p� q � 1)!)

=
q

q + (p� q) =
q

p
= r :

Now, assume we are given r1 � r2. We prove the result by reduction from QBF, as in the

proof of Theorem 6.4.3. If r1 = 0 then the result follows immediately from Theorem 6.4.4.

If 0 < r1 = q=p, let � be a QBF, and consider Pr1(�� ^ 'r1 jKBr1 ^ 9x:P (x)). Note that,
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since p � 2, KBr1 implies 9xP (x). It is therefore easy to see that this probability is 0 if � is

false and Pr1('r1 jKBr1) = r1 otherwise. Thus, we can check if � is true by deciding whether

Pr1(�� ^ 'r1 jKBr1 ^ 9x:P (x)) 2 [r1; r2]. This proves PSPACE-hardness.2

Theorem 6.4.6: Fix d � 0. For ' 2 L(�), KB 2 L(	) such that d('); d(KB) � d, we

can e�ectively construct a linear time algorithm that decides if Pr1('jKB) is well-de�ned and

computes it if it is.

Proof: The proof of the Theorem 5.6.2 shows that if there is a bound d on the quanti�cation

depth of formulas and a �nite vocabulary, then there is a �nite set �d
i of formulas such that

every formula � of depth at most d is equivalent to a formula in �d
i . Moreover we can construct

an algorithm that, given such a formula �, will in linear time �nd some formula equivalent

to � in �d
i . (We say \some" rather than \the", because it is necessary for the algorithm's

constructability that there will generally be several formulas equivalent to � in �d
i .) Give this,

the problem reduces to constructing a lookup table for the asymptotic conditional probabilities

for all formulas in �d. In general, there is no e�ective technique for constructing this table.

However, if we allow conditioning only on unary formulas, it follows from Theorem 6.4.4 that

there is. The result now follows.

C.5.2 In�nite vocabulary|restricted cases

The following theorem, due to Lewis, is the key to proving most of the lower bounds in this

section.

Theorem C.5.2: [Lew80] The problem of deciding whether a sentence � 2 L�(Q) is satis�able

is NEXPTIME-complete. Moreover, the lower bound holds even for formulas � of depth 2.

Lewis proves this as follows: For any nondeterministic Turing machine M that runs in expo-

nential time, and any input w, he constructs a sentence � 2 L�(Q) of quanti�er depth 2 and

whose length is polynomial in the size of M and w, such that � is satis�able i� there is an

accepting computation of M on w.

Theorem 6.4.7: For KB 2 L(�), the problem of deciding if Pr1(�jKB) is well-de�ned

is NEXPTIME-complete. The NEXPTIME lower bound holds even for KB 2 L�(Q) where

d(KB) � 2.

Proof: For the upper bound, we proceed much as in Theorem 6.4.3. Let 	 = �KB and let

C = DKB . We know that Pr1(�jKB) is well-de�ned i� there exists an atomic description  of

size M = d(KB) + jCj over 	 and some model fragment V 2 M	( ) such that �( ) > 0 and

Pr1(KB j ^V) = 1. Since all the predicates in 	 have arity 1, it follows from Proposition C.5.1

that the size of a model description  ^V over 	 is O(j	j2jPjM). Since j	j < jKB j, this implies

that model descriptions have exponential length, and can be generated by a nondeterministic

2In this construction, it is important to note that although 'r1 and KBr1 can be long sentences, their length

depends only on r1, which is treated as being �xed. Therefore, the constructed asymptotic probability expression

does have length polynomial in j�j. This is also the case in similar constructions later on.
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exponential time Turing machine. Because we can assume that � = 1 here when applying

Corollary 6.4.2, we can also deduce that we can check whether Pr1(KB j ^ V) is 0 or 1

using a deterministic Turing machine in time 2O(jKBjj	j log(�( )+1)). Since j	j � jKB j, and

�( ) is at most exponential in jKB j, it follows that we can decide if Pr1(KB j ^ V) = 1

in deterministic time exponential in jKB j. Thus, to check if Pr1(�jKB) is well-de�ned we

nondeterministically guess a model description  ^V of the right type, and check that �( ) > 0

and that Pr1(KB j ^ V) = 1. The entire procedure can be executed in nondeterministic

exponential time.

For the lower bound, observe that if a formula � in L�(�) is satis�ed in some model with

domain f1; : : : ; Ng then it is satis�able in some model of every domain size larger than N .

Therefore, � 2 L�(Q) is satis�able if and only if the limit Pr1(�j�) is well-de�ned. The result

now follows from Theorem C.5.2.

Theorem 6.4.9: If either (a) ';KB 2 L(�) or (b) ' 2 L(
) and KB 2 L�(�), then

computing Pr1('jKB) is #EXP-easy.

Proof: Let � = 
'^KB , let 	 = �'^KB , and let P and C be the appropriate subsets of 	.

Let �KB = �	(KB). Recall from the proof of Theorem 6.4.4 that we would like to generate

the model descriptions  ^ V of degree �KB , consider the ones for which Pr1(KB j ^ V) = 1,

and compute the fraction of those for which Pr1('j ^ V). More precisely, consider the set of

model descriptions of size M = d(' ^ KB) + jCj. For a degree �, let count�(KB) denote the

number of those model descriptions for which Pr1(KB j ^ V) = 1. Similarly, let count�(')

denote the number for which Pr1(' ^ KB j ^ V) = 1. We are interested in the value of the

fraction count�KB (')=count�KB (KB).

We want to show that we can nondeterministically generate model descriptions  ^ V , and

check in deterministic exponential time whether Pr1(KB j ^V) (or, similarly, Pr1('^KB j ^
V)) is 0 or 1. We begin by showing the second part: that the 0-1 probabilities can be computed

in deterministic exponential time. There are two cases to consider. In case (a), ' and KB are

both unary, allowing us to assume that � = 1 for the purposes of Corollary 6.4.2. In this case,

the 0-1 computations can be done in time 2O(j'^KBjj	j log(�( )+1)), where 	 = �'^KB . As in

Theorem 6.4.7, j	j � j'^KB j and �( ) is at most exponential in jKB j, allowing us to carry out

the computation in deterministic exponential time. In case (b), KB 2 L�(�), and therefore the

only named elements are the constants. In this case, the 0-1 probabilities can be computed in

deterministic time 2O(j�j(�( )+j'^KBj)
�), where � = 
'^KB . However, as we have just discussed,

�( ) < j' ^KB j, implying that the computation can be completed in exponential time.

Having shown how the 0-1 probabilities can be computed, it remains only to generate model

descriptions in the appropriate way. However, we do not want to consider all model descriptions,

because we must count only those model descriptions of degree �KB . The problem is that we

do not know �KB in advance. We will therefore construct a nondeterministic exponential time

Turing machine M such that the number of accepting paths of M encodes, for each degree �,

both count�(') and count�(KB). We need to do the encoding in such a way as to be able to

isolate the counts for �KB when we �nally know its value. This is done as follows.
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Let  be an atomic description  over 	 of size M . Recall that the degree �( ) is a pair

(�( ); �( )) such that �( ) � 2jPj and �( ) � 2jPjM . Thus, there are at most E = 22jPjM

possible degrees. Number the degrees in increasing order: �1; : : : ; �E. We want it to be the case

that the number of accepting paths of M written in binary has the form

p10 : : : p1mq10 : : : q1m : : :pE0 : : : pEmqE0 : : : qEm;

where pi0 : : :pim is the binary representation of count�i(') and qi0 : : : qim is the binary represen-

tation of count �i(KB). We choose m to be su�ciently large so that there is no overlap between

the di�erent sections of the output. The largest possible value of an expression of the form

count�i(KB) is the maximum number of model descriptions of degree �i over �. This is clearly

less than the overall number of model descriptions, which we computed in the beginning of this

section.

The machine M proceeds as follows. Let m be the smallest integer such that 2m is more than

the number of possible model descriptions, which, by Proposition C.5.1 is 2O(j�j(2
jPjM)�). Note

that m is exponential and that M can easily compute m from �. M then nondeterministically

chooses a degree �i, for i = 1; : : : ; E. It then executes E � i phases, in each of which it

nondeterministically branches 2m times. This has the e�ect of giving this branch a weight

of 22m(E�i). It then nondeterministically chooses whether to compute pi0 : : :pim or qi0 : : : qim.

If the former, it again branches m times, separating the results for count �i(') from those for

count�i(KB). In either case, it now nondeterministically generates all model descriptions  ^V
over �. It ignores those for which �( ) 6= �i. For the remaining model descriptions  ^ V ,

it computes Pr1(' ^ KB j ^ V) in the �rst case, and Pr1(KB j ^ V) in the latter. This is

done in exponential time, using the same technique as in Theorem 6.4.7. The machine accepts

precisely when this probability is 1.

This procedure is executable in nondeterministic exponential time, and results in the ap-

propriate number of accepting paths. It is now easy to compute Pr1('jKB) by �nding the

largest degree � for which count�(KB) > 0, and dividing count�(') by count�(KB).

We now want to prove the matching lower bound. As in Theorem 6.4.7, we make use of

Lewis' NEXPTIME-completeness result. A straightforward modi�cation of Lewis' proof shows

that, given w and a nondeterministic exponential time Turing machine M, we can construct

a depth 2 formula � 2 L�(Q) such that the number of simpli�ed atomic descriptions over P�
consistent with � is exactly the number of accepting computations of M on w. This allows us

to prove the following theorem:

Theorem C.5.3: Given � 2 L�(Q), counting the number of simpli�ed atomic descriptions

over P� consistent with � is #EXP-complete. The lower bound holds even for formulas � of

depth 2.

This theorem forms the basis for our own hardness result. Just as for Theorem 6.4.7, we

show that the lower bound actually holds for ';KB 2 L�(Q) of quanti�er depth 2.

Theorem 6.4.10: Given ';KB 2 L�(Q) of depth at least 2, the problem of computing

Pr1('jKB) is #EXP-hard, even given an oracle for deciding whether the limit exists.



162 APPENDIX C. PROOFS FOR CHAPTER 6

A1 A2 A3 A4

� 0 � 0

� � 0 �

Figure C.1: Two atomic descriptions with di�erent degrees

Proof: Given ' 2 L�(Q), we reduce the problem of counting the number of simpli�ed atomic

descriptions over P' consistent with ' to that of computing an appropriate asymptotic prob-

ability. Recall that, for the language L�(Q), model descriptions are equivalent to simpli�ed

atomic descriptions. Therefore, computing an asymptotic conditional probability for this lan-

guage reduces to counting simpli�ed atomic descriptions of maximal degree. Thus, the major

di�culty we need to overcome here is the converse of the di�culty that arose in the upper

bound. We now want to count all simpli�ed atomic descriptions consistent with ', while using

the asymptotic conditional probability in the most obvious way would only let us count those

of maximum degree. For example, the two atomic descriptions whose characteristics are repre-

sented in Figure C.1 have di�erent degrees; the �rst one will thus be ignored by a computation

of asymptotic conditional probabilities.

Let P be P' = fP1; : : : ; Pkg, and let Q be a new unary predicate not in P . We let A1; : : : ; AK
for K = 2k be all the atoms over P , and let A01; : : : ; A

0
2K be all the atoms over P 0 = P [ fQg,

such that A0i = Ai ^Q and A0K+i = Ai ^ :Q for i = 1; : : : ; K.

We de�ne KB 0 as follows:

KB 0 =def 8x; y
  

Q(x) ^
k̂

i=1

(Pi(x), Pi(y))

!
) Q(y)

!
:

The sentence KB 0 guarantees that the predicate Q is \constant" on the atoms de�ned by

P . That is, if Ai is an atom over P , it is not possible to have 9x (Ai(x) ^ Q(x)) as well as

9x (Ai(x)^:Q(x)). Therefore, if  is a simpli�ed atomic description over P 0 which is consistent

with KB 0, then, for each i � K, at most one of the atoms A0i and A0K+i can be active, while the

other is necessarily empty. It follows that �( ) � K. Since there are clearly atomic descriptions

of activity count K consistent with KB 0, the atomic descriptions of maximal degree are precisely

those for which �( ) = K. Moreover, if �( ) = K, then A0i is active i� A0K+i is not. Two atomic

descriptions of maximal degree are represented in Figure C.2. Thus, for each set I � f1; : : : ; Kg,
there is precisely one simpli�ed atomic description  consistent with KB 0 of activity count K

where A0i is active in  i� i 2 I . Therefore, there are exactly 2K simpli�ed atomic descriptions

 over P 0 consistent with KB 0 for which �( ) = K.

Let KB = KB 0 ^ 9xQ(x). Notice that all simpli�ed atomic descriptions  with �( ) = K

that are consistent with KB 0 are also consistent with KB , except for the one where no atom in

A01; : : : ; A
0
K is active. Thus, jAP 0;KKB j = 2K�1. For the purposes of this proof, we call a simpli�ed

atomic description  over P 0 consistent with KB for which �( ) = K a maximal atomic

description. Notice that there is an obvious one-to-one correspondence between consistent
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A1 A2 A3 A4

^Q : � 0 � 0

^:Q : 0 � 0 �
^Q : � � 0 �
^:Q : 0 0 � 0

Figure C.2: Two maximal atomic descriptions

simpli�ed atomic descriptions over P and maximal atomic descriptions over P 0. A maximal

atomic description where A0i is active i� i 2 I (and A0K+i is active for i 62 I) corresponds to

the simpli�ed atomic description over P where Ai is active i� i 2 I . (For example, the two

consistent simpli�ed atomic descriptions over fP1; P2g in Figure C.1 correspond to the two

maximal atomic descriptions over fP1; P2; Qg in Figure C.2.) In fact, the reason we consider

KB rather than KB 0 is precisely because there is no consistent simpli�ed atomic description

over P which corresponds to the maximal atomic description where no atom in A01; : : : ; A
0
K is

active (since there is no consistent atomic description over P where none of A1; : : : ; AK are

active). Thus, we have overcome the hurdle discussed above.

We now de�ne 'Q; intuitively, 'Q is ' restricted refer only to elements that satisfy Q.

Formally, we de�ne �Q for any formula � by induction on the structure of the formula:

� �Q = � for any atomic formula �,

� (:�)Q = :�Q,

� (� ^ �0)Q = �Q ^ �0Q,

� (8y �(y))Q = 8y (Q(y)) �Q(y)).

Note that the size of 'Q is linear in the size of '. The one-to-one mapping discussed above from

simpli�ed atomic descriptions to maximal atomic descriptions gives us a one-to-one mapping

from simpli�ed atomic descriptions over P consistent with ' to maximal atomic descriptions

consistent with 'Q ^ 9xQ(x). This is true because a model satis�es 'Q i� the same model

restricted to elements satisfying Q satis�es '. Thus, the number of model descriptions over P
consistent with ' is precisely jAP 0;K'Q^KB

j.
From Corollary 6.3.13, it follows that

Pr1('QjKB) =
jAP 0;K'Q^KB

j
jAP 0;KKB j

=
jAP' j

2K � 1
:

Thus, the number of simpli�ed atomic descriptions over P consistent with ' is (2K�1)Pr1('QjKB).

This proves the lower bound.
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Theorem 6.4.11: Fix rational numbers 0 � r1 � r2 � 1 such that [r1; r2] 6= [0; 1]. For

';KB 2 L�(Q) of depth at least 2, the problem of deciding whether Pr1('jKB) 2 [r1; r2] is

both NEXPTIME-hard and co-NEXPTIME-hard, even given an oracle for deciding whether the

limit exists.

Proof: Let us begin with the case where r1 = 0 and r2 < 1. Consider any ' 2 L�(Q) of depth

at least 2, and assume without loss of generality that P = P' = fP1; : : : ; Pkg. Choose Q =2 P ,

and let P 0 = P[fQg, and � be 8x(P1(x)^: : :^Pk(x)^Q(x)). We consider Pr1('j'_�). Clearly

'_ � is satis�able, so that this asymptotic probability is well-de�ned. If ' is unsatis�able, then

Pr1('j' _ �) = 0. On the other hand, if ' is satis�able, then �P(') = j > 0 for some j. It is

easy to see that �P
0

(') = �P
0

('_ �) = 2j. Moreover, ' and '_ � are consistent with precisely

the same simpli�ed atomic descriptions with 2j active atoms. This is true since �P
0

(�) = 1 < 2j.

It follows that if ' is satis�able, then Pr1('j'_ �) = 1.

Thus, we have that Pr1('j'_�) is either 0 or 1, depending on whether or not ' is satis�able.

Thus, Pr1(:'j'_�) is in [r1; r2] i� ' is satis�able; similarly, Pr1(:'j:'_�) is in [r1; r2] i� ' is

valid. By Theorem C.5.2, it follows that this approximation problem is both NEXPTIME-hard

and co-NEXPTIME-hard.

If r1 = q=p > 0, we construct sentences 'r1 and KBr1 of depth 2 in L�(Q) such that

Pr1('r1 jKBr1) = r1.
3 Choose ` = dlog pe, and let P 00 = fQ1; : : : ; Q`g be a set of predicates

such that P 00 \ P 0 = ;. Let A1; : : : ; A2` be the set of atoms over P 00. We de�ne KBr1 to be

91x (A1(x) _A2(x)_ : : :_Ap(x)):

Similarly, 'r1 is de�ned as

91x (A1(x)_A2(x) _ : : :_ Aq(x)):

Recall from Section 6.2 that the construct \91x" can be de�ned in terms of a formula of

quanti�er depth 2. There are exactly p atomic descriptions of size 2 of maximal degree consistent

with KB r1 ; each has one element in one of the atoms A1; : : : ; Ap, no elements in the rest

of the atoms among A1; : : : ; Ap, with all the remaining atoms (those among Ap+1; : : : ; A2`)

being active. Among these atomic descriptions, q are also consistent with 'r1 . Therefore,

Pr1('r1 jKBr1) = q=p. Since the predicates occurring in 'r1 ;KBr1 are disjoint from P 0, it

follows that

Pr1('^ 'r1 j(' _ �) ^KB r1) = Pr1('j'_ �) �Pr1('r1 jKBr1) = Pr1('j'_ �) � r1:

This is equal to r1 (and hence is in [r1; r2]) if and only if ' is satis�able, and is 0 otherwise.

C.5.3 Sentences of depth 1

Theorem 6.4.12: For a quanti�er-free sentence KB 2 L�(Q[ fcg), the problem of deciding

whether Pr1(�jKB) is well-de�ned is NP-hard.

3The sentences constructed in Theorem 6.4.5 for the same purpose will not serve our purpose in this theorem,

since they used unbounded quanti�er depth.
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Proof: We prove the result by reduction from the problem of satis�ability of propositional

formulas (SAT). Let � be a propositional formula that mentions the primitive propositions

p1; p2; : : : ; pk. Let 	 = fP1; : : : ; Pk; cg, and let KB� be the sentence in L�(	) that is just like

� except that each occurrence of pi in � is replaced by Pi(c). It is simple to verify that � is

satis�able i� KB� is satis�able. Moreover, Pr1(�jKB�) is well-de�ned i� KB� is satis�able.

This proves the result.

Theorem 6.4.13: For quanti�er-free sentences ';KB 2 L�(Q [ fcg), the problem of com-

puting Pr1('jKB) is #P-hard.

Proof: We prove the result by reduction from the #P-complete problem of counting satisfying

truth assignments in propositional logic. Let � be a propositional formula that mentions the

primitive propositions p1; p2; : : : ; pk. Let '� be the sentence in L�(Q [ fcg) that results by

replacing each occurrence of pi in � by Pi(c). We take KB to be simply true. Let 	 =

fP1; : : : ; Pk; cg. Since '� and KB have quanti�er depth 0 and c is the only constant, we

can restrict attention to atomic descriptions of size 1. Of these, there are certainly some

atomic descriptions consistent with '� (and KB) in which every atom is active. That is,

�	('�) = 2k. We call an atomic description  of size 1 over 	 maximal if �( ) = 2k. For any

atomic description  , the properties of all named elements with respect to 	 are completely

determined by  (because 	 is unary), so there is a unique model description augmenting  .

Thus, atomic descriptions and their augmenting descriptions coincide. Note that for maximal

atomic descriptions, the only named element is the constant c.

Next, note that a maximal atomic description over Q [ fcg is completely determined once

we specify which atom is satis�ed by c. Thus, there are exactly 2k maximal atomic descriptions.

A truth assignment for the propositional variables p1; : : : ; pk corresponds exactly to an atom

over P1; : : : ; Pk. Let s be the number of satisfying truth assignments for �. A truth assignment

satisfying � exactly corresponds to an atom containing c in a model of '�. Thus, there are

exactly s maximal model descriptions consistent with '� . By Theorem 6.3.11 and the equiva-

lence of model descriptions and atomic descriptions for this vocabulary, Pr1('�jtrue) = s=2k.

Thus, 2kPr1('�jtrue) is the number of satisfying assignments to �, and we have the required

reduction.

Theorem 6.4.14: Fix rational numbers 0 � r1 � r2 � 1 such that [r1; r2] 6= [0; 1]. For

quanti�er-free sentences ';KB 2 L�(Q [ fcg), deciding whether Pr1('jKB) 2 [r1; r2] is both

NP-hard and co-NP-hard.

Proof: We �rst prove this theorem under the assumption that r1 = 0 (so that r2 < 1). The

proof proceeds by reducing both the satis�ability problem and the unsatis�ability (or validity)

problem for propositional logic to the problem of approximating asymptotic probabilities. Let

� be an arbitrary propositional formula, containing the primitive propositions p1; : : : ; pk. Let

q1; : : : ; ql be new primitive propositions not appearing in �, where 2l > r2=(1 � r2), so that

2l=(2l + 1) > r2. Let �0 be the propositional formula

� _ (p1 ^ : : :^ pk ^ q1 ^ : : : ^ ql):
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Let 	 = fP1; : : : ; Pk; Q1; : : : ; Ql; cg and let '� ; '�0 be the sentences in L�(	) corresponding to

�; �0, constructed as in the proof of Theorem 6.4.13. Clearly �0 (and hence '�0) is satis�able.

Moreover, if � is unsatis�able, then Pr1('�j'�0) = 0.

Recall from the proof of Theorem 6.4.13 that, for this language, model descriptions reduce

to atomic descriptions of size 1 over 	. Moreover, there are maximal atomic descriptions  

for which �( ) = 2k+l. Let s be the number of truth assignments over p1; : : : ; pk that satisfy

�. The number of truth assignments over p1; : : : ; pk; q1; : : : ; ql that satisfy '� is exactly s2l.

On the other hand, the number of such truth assignments that satisfy '�0 is either s2l or

s2l + 1 (depending on whether assigning true to all of p1; : : : ; pk satis�es �). The proof of

Theorem 6.4.13 shows that the number of maximal atomic descriptions over 	 consistent with

'� (resp., '�0) is precisely the number of satisfying assignments for the respective propositional

formula. Therefore, if � is satis�able, then Pr1('�j'�0) is at least s 2l=(s 2l + 1). If � is

satis�able then s � 1, so that s 2l=(s 2l + 1) � 2l=(2l + 1) > r2. Thus, Pr1('�j'�0) 2 [0; r2] i�

� is not satis�able. This gives us co-NP-hardness. As in Theorem 6.4.11, we get NP-hardness

by performing the same transformation on :�.

If r1 = p=q > 0, using the techniques of Theorem 6.4.13, we �rst �nd quanti�er-free sentences

'r1 and KB r1 such that Pr1('r1jKB r1) = r1, which can be done by �rst �nding propositional

formulas with the appropriate number of satisfying assignments. We can now complete the

proof using the techniques of Theorem 6.4.5. We omit details here.

Theorem 6.4.15: For KB 2 L(�) of quanti�er depth 1, the problem of deciding whether

Pr1(�jKB) is well-de�ned is in NP.

Proof: In the following, let q < jKB j be the number of distinct quanti�ed subformulas in

KB . We claim that KB has arbitrarily large �nite models (and so the asymptotic probability

is well-de�ned) if and only if KB has a model of size at most jDKB j + q + 1, in which at

least one domain element is not the denotation of any constant symbol in DKB . To show one

direction, suppose that W is a model of KB of size greater than jDKB j + q + 1, and look at

all the subformulas of KB . For every existential subformula 9x � which is true in W , (resp.,

every universal subformula 8x �0 which is false in W ) choose an element satisfying � (resp.,

an element falsifying �0). Finally, choose one other arbitrary domain element from W that is

not the denotation of any constant. It is easy to verify by induction that the submodel of W

constructed by considering the chosen elements, together with all denotations of constants, also

satis�es KB . For the other direction, let W be a model of size at most jDKB j+ q + 1, and let

d be a domain element in W that is not denoted by any constant. It is easy to see that we

can construct models of KB of any larger size by adding new elements that satisfy exactly the

same predicates as d.

The nondeterministic polynomial time algorithm for well-de�nedness is as follows. First,

guess a model of size at most jDKB j + q + 1, in which some element is not denoted by any

constant. It only takes polynomial space to write down this many elements, together with the

predicates they satisfy and the constants that denote them. It therefore takes only polynomial

time to generate such a model. Next, check whether this model satis�es KB . The only di�cult

part of this procedure is checking the truth of quanti�ed subformulas. For those, we must
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examine each of the domain elements in turn. However, since the model is small and quanti�ers

cannot be nested, this can still be done in polynomial time. Therefore, the entire procedure

can be completed in nondeterministic polynomial time.

As we said in Section 6.4.5, in order to prove a PSPACE upper bound, we need a polynomial

length substitute for a model description. This substitute consists of two parts. The �rst is a

conjunctive sentence, and the second is an abbreviated description.

De�nition C.5.4: A (closed) sentence is de�ned to be conjunctive if it is of the form 8x�(x)^
9x �1(x) : : :^ 9x �h(x)^ �, where �; �1; : : : ; �h; � are all quanti�er-free.

Note that 8x�(x) ^ 8x�0(x) is equivalent to 8x (�(x) ^ �0(x)). Therefore, in the context of

sentences that have the form of such a conjunction, the assumption of a single universally quan-

ti�ed subformula can be made without loss of generality. As we shall see, the active atoms in

atomic descriptions of maximal degree that are consistent with a conjunctive unary formula are

precisely those atoms that are consistent with the universal subformula. Moreover, the only

named elements in such atomic descriptions are the constants. We de�ne an abbreviated de-

scription so that it describes only the relevant properties of the named elements (the constants).

Let � = �'^KB , and let 	 = P [ C be the unary fragment of �. An abbreviated description

over � is a subformula of a complete description over � (see De�nition 6.2.2) that speci�es only

those properties of the constants that correspond to atomic subformulas that actually appear

in ' ^KB . Since ' and KB are depth one formulas, we can assume in the following that only

one variable, say x, appears in ' or KB .

De�nition C.5.5: Let f�1; : : : ; �kg consist of all sentences of the form 
[x=c], where c is some

constant in C and 
 is an atomic subformula of ' ^ KB that involves a non-unary predicate

(i.e., one in � � 	). An abbreviated description bD for ' ^ KB is a conjunction of the form

D ^Vki=1 �0i, where D is a complete description over 	, and �0i is either �i or :�i.

Example C.5.6: Suppose C = fa; b; cg, �� C = fP;Rg, and ' ^KB is

8x (P (x) _R(x; c))^ 9x R(x; x):

Then one abbreviated description would be

a 6= b^ b 6= c^ a 6= c^ P (a)^ :P (b) ^ P (c)^ :R(a; c)^ :R(b; c)^R(c; c)^R(a; a)^ :R(b; b):

Note that this abbreviated description is not actually consistent with ' ^KB :

As we show below, abbreviated descriptions are a substitute for model fragments. Moreover,

if bD is an abbreviated description for ' ^ KB , then j bDj is polynomial in j' ^ KB j. Thus, by

replacing model fragments with abbreviated descriptions, we reduce the space requirements

(and also time requirements) of the algorithm considerably. We de�ne an abbreviated model

description to consist of a conjunction � ^ bD, where � is a conjunctive sentence and bD is



168 APPENDIX C. PROOFS FOR CHAPTER 6

an abbreviated description for ' ^ KB . We also require that every atomic subformula of �

be a subformula of ' ^ KB . It turns out that abbreviated model descriptions are suitable

replacements for model descriptions in our context. Our �rst result towards establishing this is

that an abbreviated model description compactly encodes some atomic description.

Lemma C.5.7: Let �^ bD be a consistent abbreviated model description for '^KB, and consider
atomic descriptions of size jCj+ 1 over � consistent with � ^ bD. Of these, there is a unique

atomic description  [�; bD] whose degree is maximal. Moreover, the only named elements in

 [�; bD] are constants, and we can compute �( [�; bD]) in PSPACE.

Proof: Let 8x�(x) be the universal subformula of � Let A be the set of atoms A such that

A(x) is consistent with bD ^ �(x) ^ Vc2C x 6= c. Clearly, in all worlds satisfying � ^ bD, only

atoms in A are active. The atoms outside A can contain only elements that are denotations of

constant symbols. For an atom A, let mA be the number of distinct denotations of constants

satisfying A according to bD. By Theorem 6.2.7, � ^ bD is equivalent to a disjunction of model

descriptions of size jCj + 1 over �. As we said, at most the atoms in A can be active. The

unique maximal atomic description is therefore:^
A2A

9�jCj+1xA(x)^
^
A62A

9mAxA(x)^D:

It is straightforward to check that this atomic description is, in fact, consistent with � ^ bD.

Therefore, this atomic description is  [�; bD]|the maximal atomic description consistent with

� ^ bD. are either unquanti�ed or existential. In the �rst Note that the only named ele-

ments in  [�; bD] are, in fact, the constants. It remains only to show how we can compute

�( [�; bD]) in PSPACE (and therefore, without generating  [�; bD] itself). The number of

named elements �( [�; bD]) can easily be derived in polynomial time from bD. The activity

count �( [�; bD]) can be computed by enumerating atoms A(x) and checking their consistency

with bD ^ �(x) ^Vc2 C x 6= c.

We remark that, if the universal subformula 8x �(x) does not include any constant symbols,

then the set A is independent of bD. In particular, the in
uence of bD on the degree is limited

to the determination of how many distinct elements the constants denote. We will use this

observation later.

We can view � ^ bD as representing  [�; bD] ^ bD. Although this latter formula is still not

a model description, it functions as one. As we show, the conditional probability of ' given

� ^ bD is either 0 or 1. Moreover, we provide a PSPACE algorithm for deciding which is the

case. Then we show how to assign weights to the di�erent abbreviated model descriptions. We

begin by assuming that ' is also conjunctive and has the form:

8x�(x) ^ 9x �1(x) : : :^ 9x �h(x) ^ �:

Moreover, let �0 be the universal subformula of �, and let bD be an abbreviated description for

' ^KB .
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Lemma C.5.8: Let ' be conjunctive and let � ^ bD be an abbreviated model description for

'^KB, as discussed above. If Pr1('j�^ bD) is well-de�ned, then its value is either 0 or 1. Its

value is 1 i� the following conditions hold:

(A) (1) bD ) V
c2C �(c) is valid.

(2) ( bD ^ (
V
c2C x 6= c))) (�0(x)) �(x)) is valid.

(E) For j = 1; : : : ; h, either:

(1) bD ) W
c2C �j(c) is valid, or

(2) bD ^ (
V
c2C x 6= c) ^ �0(x) ^ �j(x) is consistent.

(QF) bD) � is valid.

Proof: Suppose that Pr1('j� ^ �) is well de�ned. Assume that conditions (A), (E), and

(QF) hold. Consider any model of � ^ bD. By (A1), all the constants satisfy �. By (A2), the

remaining domain elements also satisfy �, since they all satisfy �0. Therefore, 8x�(x) holds

in all models of � ^ bD. By (QF), � also holds in all such models. Now consider a subformula

of the form 9x �j(x). If (E1) holds, then the formula is always satis�ed by some constant.

If (E2) holds, then there exists a description D(x) of an element x such that D(x) ^ bD )
�0(x) ^ �j(x) ^ Vc2C x 6= c. Since D(x) describes an element which is not a named element, it

is easy to show that Pr1(9xD(x)j8x�0(x)) = 1, and therefore Pr1('j� ^ bD) = 1.

Now, assume that one of (A), (E), or (QF) does not hold. If (A1) does not hold, thenbD ) V
c2C �(c) is not valid. Thus, by the construction of bD, bD implies :Vc2C �(c); in this

case, Pr1('j� ^ bD) = 0. Similar reasoning goes through for the case where (QF) is false. If

(E) does not hold, then for some �j , neither (E1) nor (E2) holds. Since (E1) does not hold,bD is consistent with ^c2C:�j(c). By the de�nition of bD, it follows that bD ) (^c2C:�j(c)) is

valid. From (E2), it follows that ( bD ^ (^c2Cx 6= c ^ �0(x)) ) :�j(x)) is valid. Thus, in any

model of bD ^ �, 8x:�j(x) holds. Again, Pr1('j� ^ bD) = 0. Finally, assume that condition

(A2) does not hold. In this case, there exists a description D(x) consistent with �0(x) but

inconsistent with �(x) ^ (^c2Cx 6= c). As in case (E) above, 9xD(x) holds with probability 1.

But 9xD(x)) :8x�(x) is valid, proving the desired result.

Finally, we compute the relative weights of di�erent abbreviated model descriptions. We

know, using Theorem 6.2.7 and the de�nition of model description, that an abbreviated model

description �^ bD is equivalent to a disjunction of model descriptions of size jCj+1. Moreover, by

Lemma C.5.7, the model descriptions of maximal degree in this disjunction are precisely those

that augment the atomic description  [�; bD]. We therefore de�ne the degree of an abbreviated

model description KB ^ bD to be the degree of  [�; bD]. As suggested earlier, our strategy

for computing asymptotic conditional probabilities will be to consider all abbreviated model

descriptions for ' ^ KB , and for each of these compute the probability of '. However, we

also need to compute the relative weights of these abbreviated model descriptions. As usual,

the abbreviated model descriptions that are not of maximal degree are dominated completely.

However, it turns out that even abbreviated model descriptions with the same degree can have
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di�erent relative weight. We know that (full) model descriptions of equal degree do in fact have

equal weight, and so the relative weight of an abbreviated model description is the number

of model descriptions consistent with it. Since the atomic description  [�; bD] is completely

determined by the abbreviated model description, it remains only to count model fragments.

Recall that the only named elements are the constants. To specify a model fragment consistent

with an atomic description  [�; bD], it is necessary to decide which of the elements in f1; : : : ; ng,
where n = �( [�; bD]), denotes which of the constants and, for each predicate R of arity r(R) > 1,

which r-tuples of elements in f1; : : : ; ng satisfy R. (The denotation of the unary predicates are

already speci�ed by  [�; bD].) Thus, the overall number of model fragments consistent with

 [�; bD] is

H = n! 2
P

R2��	
narity(R)

:

An abbreviated description bD already speci�es some of the decisions to be made. For example,

if bD contains R(c1; c2), there is one less decision to be made about the denotation of R. Recall

that bD has the form D ^ Vki=1 �0i. However, it is not necessarily the case that all formulas �i
give independent pieces of information. For example, assume that bD contains both R(c1; c1)

and R(c2; c2); if D speci�es that c1 = c2, then this decides only a single value of the denotation

of R; if D speci�es that c1 6= c2, then these conjuncts decide two distinct values. We de�ne the

weight !( bD) of bD to be the number of distinct properties speci�ed by bD; this is always less

than or equal to k. The number of model descriptions consistent with  [�; bD] ^ bD is

n! 2
(
P

R2��	
narity(R))�!(bD)

=
H

2!(bD) =
H

2k
2k�!(

bD): (C.1)

Note that k depends only on ' ^ KB , so is �xed. H depends on n, and so on the degree of

the abbreviated description being considered. However, we will not be using this expression to

compare the relative weight of descriptions with di�erent degrees, and so H can be regarded as

a constant for our purposes.

We are now in a position to prove the two main results of this section. The �rst is a PSPACE

upper bound for the general problem of quanti�er depth 1.

Theorem 6.4.16: For sentences KB 2 L(�) and ' 2 L(
) of quanti�er depth 1, the problem

of computing Pr1('jKB) is in PSPACE.

Proof: First, consider the case where we have an abbreviated description bD for ' ^ KB ,

and where ' and KB are both conjunctive. In this case, by Lemma C.5.8, the asymptotic

probability Pr1('jKB ^ bD) is either 0 or 1. (Note that we are taking � = KB here.) Moreover,

an examination of the conditions in the lemma shows that they can easily be veri�ed in PSPACE.

We use this observation later.

We now consider the case where ' and KB need not be conjunctive, and assume without loss

of generality that all negations are pushed inwards, so that only atomic formulas are negated.

A depth 1 formula in this form is a combination, using disjunctions and conjunctions, of sub-

formulas that are universally quanti�ed, existentially quanti�ed, or quanti�er free. If we think

of each such subformula as being a propositional symbol, we can generate \truth assignments"
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�  (0; 0)

For each abbreviated description bD for ' ^KB do:

W  2k�!(bD)

Generate next conjunctive �

For all conjunctive �0 generated up to now:

Compare  [�; bD] with  [�0; bD]

If  [�; bD] is di�erent from previously generated formulas then

If �(� ^ bD) > � and Pr1('j� ^ bD) is well-de�ned then

�  �(� ^ bD)

count(KB) W

count(') W � Pr1('j� ^ bD)

If �(� ^ bD) > � and Pr1('j� ^ bD) is well-de�ned then

count(KB) count(KB) +W

count(') count(') + W � Pr1('j� ^ bD)

Output \Pr1('jKB) = count(')=count(KB)".

Figure C.3: PSPACE algorithm for depth 1 formulas

for these subformulas that make the overall formula true. Each such truth assignment is a con-

junction of (possibly negated) subformulas of the original sentence, and can easily be rewritten

in the form of a conjunctive sentence. The length of such a sentence is linear in the length of

the original sentence. We conclude that any depth 1 formula is equivalent to a disjunction of

(possibly exponentially many) conjunctive sentences. Furthermore, these sentences can easily

be generated (one by one) in polynomial space.

The algorithm is described in Figure C.3. Generally speaking, it proceeds along the lines of

our standard algorithm Compute-Pr1, presented in Figure 6.3. That is, it keeps track of three

things: (1) the highest degree � of an abbreviated model description consistent with KB found

so far, (2) the number count(KB) of model descriptions (not abbreviated model descriptions)

of degree � consistent with KB , and (3) among the model descriptions of degree � consistent

with KB , the number count(') of descriptions for which the probability of ' is 1. This is done

as follows. First, it generates an abbreviated description bD for ' ^ KB . Then, it considers,

one by one, the conjunctive sentences whose disjunction is equivalent to KB . Let � be such

a conjunctive formula. It then veri�es that Pr1('j� ^ bD) is well-de�ned (by Theorem 6.4.15,

this can be done in PSPACE) and computes its value if it is. Note that if this probability is

well-de�ned, then � ^ bD is consistent; in this case, all (full) model descriptions extending � ^ bD
are consistent with KB and should be added to the relevant count. Observe that the value of

the probability Pr1('j� ^ bD) is necessarily either 0 or 1, even though ' is not conjunctive.

We can compute this value by generating the conjunctive sentences constructed from ' in the

fashion described above, and checking for each of them whether its probability given �^ bD is 1.

If the answer is yes for any of these conjunctive sentences, then it is yes overall. Otherwise, the
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probability is clearly zero. So we can generate the conjunctive components of ' one by one in

PSPACE and then, as we have observed, we can also compute the conditional probability for

each component in PSPACE as well. If indeed Pr1('j� ^ bD) = 1, then this is also the case for

all unabbreviated model descriptions extending � ^ bD; again, count(KB) should be adjusted

accordingly.

This procedure faces a problem that did not arise for Theorem 6.4.4. It is possible that

�^ bD and �0^ bD (for two conjunctive sentences � and �0) generate the same atomic description|

i.e.,  [�; bD] =  [�0; bD]. To avoid double-counting, as we consider each abbreviated model

description �^ bD, we must compare  [�; bD] with  [�0; bD] for all abbreviated model descriptions

�0^ bD considered earlier. Of course, it is impossible to save these abbreviated model descriptions,

since that would take too much space. Rather, we must reconstruct all previous �0, one by one.

Note that we can test whether  [�; bD] =  [�0; bD] in PSPACE: we consider the atoms one by

one, and compare the size of the atom according to both atomic descriptions. Finally, observe

that the weight of an abbreviated model description (the number of unabbreviated model

descriptions extending it) can be quite large. However, an examination of Equation (C.1)

shows that the �rst factor is the same for all abbreviated model descriptions with the same

degree, and can therefore be ignored (because only the relative weights matter).

The major di�culty in improving from PSPACE to #P is that we want to consider only

abbreviated model descriptions of maximal degree, without knowing in advance what that

maximum degree is. We therefore have to compute the counts for each degree separately.

However, there are exponentially many possible degrees; in fact, it is possible that each con-

junctive sentence � generated from KB leads to a di�erent degree, even if bD is �xed. To

obtain a #P algorithm, we have had to restrict the form of ' and KB . We can eliminate some

of the problems by requiring that both ' and KB be conjunctive sentences. However, even

this does not su�ce. The same conjunctive sentence can generate di�erent degrees, depending

on the abbreviated description bD. For example, the universally quanti�ed subformula can be

8x ((R(c; c)^ �(x)) _ (:R(c; c) ^ �0(x))), which clearly can behave very di�erently according

to whether R(c; c) is a conjunct of bD or not. To deal with such problems, we assume that

' and KB are simpli�ed conjunctive sentences , where a simpli�ed conjunctive sentence is a

conjunctive sentence in which no constant symbol appears in the scope of a quanti�er. One

consequence of this, which we noted in the proof of Theorem C.5.7, is that the activity count of

maximal descriptions is �xed by KB , and so only jCj degrees need be considered (corresponding

to the number of distinct denotations of constant symbols). This latter term can vary with bD,

but it is easily computed and the number of possible values is small (i.e., polynomial).

Theorem C.5.9: For simpli�ed conjunctive sentences KB 2 L(�) and ' 2 L(
), the problem

of computing Pr1('jKB) is #P-easy.

Proof: Consider the conditions of Lemma C.5.8. By the simple conjunctivity assumption,

8x�(x) and 8x�0(x) cannot di�erentiate between constants and the other domain elements.

Therefore, checking (A2) is the same as checking that �0(x)) �(x) is valid; moreover, the truth

of (A2) together with the consistency of KB^ bD implies the truth of (A1) in this case. Similarly,
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(E2) is equivalent to checking that �0(x) ^ �j(x) is consistent. Moreover, if (E1) is true (some

constant satis�es �j(c) and necessarily also �0(c)), then �0(x) ^ �j(x) is obviously consistent.

Therefore, it su�ces to check (E2) for each �j . Note that (A2) and (E2) are independent of

the choice of bD; moreover, they can be viewed as propositional satis�ability and validity tests,

respectively (by treating each atomic subformula as a primitive proposition). Therefore, both

types of tests can be performed using a #P computation.

The Turing machine we construct proceeds as follows. It �rst branches into 4 subcom-

putations. The �rst checks whether Pr1('jKB) is well-de�ned, using Theorem 6.4.15. The

second checks condition (A2). The third divides into h subcomputations, one for each subfor-

mula 9x �h(x) in ', and checks condition (E2) for each one. The fourth generates abbreviated

descriptions, and generates, for each relevant degree �, the appropriate counts count �(') and

count�(KB) (de�ned in Theorem 6.4.16), as outlined below. As in Theorem 6.4.9, the output

of the di�erent subcomputations is separated using appropriate branching.

We expand somewhat on the fourth subcomputation. It begins by branching according to

the guess of an abbreviated description bD. Combined with the conjunctive sentence KB , this

de�nes an abbreviated model description. The algorithm now gives the appropriate weight to

the abbreviated description generated. As we have observed, abbreviated descriptions do not

necessarily have the same degree: the number of named elements can di�er, depending on the

equality relations between the di�erent constants. However, as we observed, the activity count is

necessarily the same in all cases; moreover, it is easy to compute the number of named elements

directly from the abbreviated description in deterministic polynomial time. The Turing machine

executes this computation for the abbreviated description guessed, and branches accordingly

so as to separate the output corresponding to the di�erent degrees. The machine branches less

for higher degrees, so that the output corresponding to them is in the less signi�cant digits of

the overall output. Finally, even abbreviated descriptions with the same degree do not have the

same weight. The machine computes !( bD), and branches k � !( bD) times; this has the e�ect

of giving an abbreviated description bD a relative weight of 2k�!(bD), as required.

Finally, as in the algorithm described in Figure C.3, we then check whether Pr1(�jKB ^ bD)

is well-de�ned, and whether its value is 0 or 1; the �rst computation goes towards computing

count�(KB) and the second towards computing count �('). The machine branches according to

which test it intends to perform, with appropriate extra branching to separate the output of

the two computations (as in Theorem 6.4.9). Now observe that if Pr1(�jKB) is well-de�ned,

then Pr1(�jKB ^ bD) is well-de�ned if and only if bD) �0 is valid, where �0 is the quanti�er-free

part of KB . Similarly, Pr1('jKB ^ bD) = 1 if and only if bD ) � is valid, where � is the

quanti�er-free part of '^KB . Since bD contains all subformulas of � and �0, these tests can be

executed in deterministic polynomial time.

The output of this machine can be used to deduce Pr1('jKB) as follows. First, the output

of the �rst subcomputation is checked to verify that this asymptotic probability is well-de�ned.

Then, if not all the branches of the second subcomputation are accepting, the value of the

asymptotic probability is 0. Similarly, if one of the h tests in subcomputation 2 did not have

at least one accepting branch, the probability is also 0. Finally, the machine scans the output,
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checking the counts for di�erent degrees. It chooses the highest degree for which count(KB) is

non-zero, and computes count(')=count(KB).

C.5.4 In�nite vocabulary|the general case

Theorem 6.4.17: For ' 2 L(
) and KB 2 L(�), the function Pr1('jKB) is in

#TA(EXP,LIN).

Proof: Let � = 
'^KB , let 	 = �'^KB , and let � be the maximum arity of a predicate in �.

The proof proceeds precisely as in Theorem 6.4.9. We compute, for each degree �, the values

count�(KB) and count�('). This is done by nondeterministically generating model descriptions

 ^ V over �, branching according to the degree of  , and computing Pr1('^KB j ^ V) and

Pr1(KB j ^ V) using a TA(EXP,LIN) Turing machine.

To see that this is possible, recall from Proposition C.5.1 that the length of a model de-

scription over � is O(j�j(2jPjM)�). This is exponential in j�j and �, both of which are at most

j' ^ KB j. Therefore, it is possible to guess a model description in exponential time. Similarly,

as we saw in the proof of Theorem 6.4.9, only exponentially many nondeterministic guesses are

required to separate the output so that counts corresponding to di�erent degrees do not over-

lap. These guesses form the initial nondeterministic stage of our TA(EXP,LIN) Turing machine.

Note that it is necessary to construct the rest of the Turing machine so that a universal state

always follows this initial stage, so that each guess corresponds exactly to one initial existential

path; however, this is easy to arrange.

For each model description  ^ V so generated, we compute Pr1(KB j ^ V) or Pr1(' ^
KB j ^ V) as appropriate, accepting if the conditional probability is 1. It follows immediately

from Theorem 6.4.1 and the fact that there can only be exponentially many named elements

in any model description we generate that this computation is in TA(EXP,LIN). Thus, the

problem of computing Pr1('jKB) is in #TA(EXP,LIN).

The proof of the lower bounds is lengthy, but can be simpli�ed somewhat by some assump-

tions about the construction of the TA(EXP,LIN) machines we consider. The main idea is that

the existential \guesses" being made in the the initial phase should be clearly distinguished

from the rest of the computation. To achieve this, we assume that the Turing machine has an

additional guess tape, and the initial phase of every computation consists of nondeterministi-

cally generating a guess string 
 which is written on the new tape. The machine then proceeds

with a standard alternating computation, but with the possibility of reading the bits on the

guess tape.

More precisely, from now on we make the following assumptions about an ATMM. Consider

any increasing functions T (n) and A(n) (in essence, these correspond to the time complexity

and number of alternations), and let w be an input of size n. We assume:

� M has two tapes and two heads (one for each tape). Both tapes are one-way in�nite to

the right.
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� The �rst tape is a work tape, which initially contains only the string w.

� M has an initial nondeterministic phase, during which its only action is to nondetermin-

istically generate a string 
 of zeros and ones, and write this string on the second tape

(the guess tape). The string 
 is always of length T (n). Moreover, at the end of this

phase, the work tape is as in the initial con�guration, the guess tape contains only 
, the

heads are at the beginning of their respective tapes, and the machine is in a distinguished

universal state s0.

� After the initial phase, the guess tape is never changed.

� After the initial phase, M takes at most T (n) steps on each branch of its computation

tree, and makes exactly A(n) � 1 alternations before entering a terminal (accepting or

rejecting) state.

� The state before entering a terminal state is always an existential state (i.e., A(n) is odd).

Let M0 be any (unrestricted) TA(T ,A) machine that \computes" an integer function f .

It is easy to construct some M satisfying the restrictions above that also computes f . The

machine M �rst generates the guess string 
, and then simulates M0. At each nondeterministic

branching point in the initial existential phase of M0, M uses the next bit of the string 
 to

dictate which choice to take. Observe that this phase is deterministic (given 
), and can thus

be folded into the following universal phase. (Deterministic steps can be viewed as universal

steps with a single successor.) If not all the bits in 
 are used, M continues the execution of

M0, but checks in parallel that the unused bits of 
 are all 0's. If not, M rejects. It is easy

to see that on any input w, M has the same number of accepting paths as M0, and therefore

accepts the same function f . Moreover, M has the same number of alternations as M0, and

at most a constant factor blowup in the running time.4 This shows that it will be su�cient

to prove our hardness results for the class #TA(EXP,LIN) by considering only those machines

that satisfy these restrictions. For the remainder of this section we will therefore assume that

all ATM's are of this type.

Let M be such an ATM and let w be an input of size n. We would like to encode the

computation of M on w using a pair of formulas 'w;KBw. (Of course, these formulas depend

on M as well, but we suppress this dependence.) Our �rst theorem shows how to encode part

of this computation: Given some appropriate string 
 of length T (n), we construct formulas

that encode the computation of M immediately following the initial phase of guessing 
. More

precisely, we say that M accepts w given 
 if, on input w, the initial existential path during

which M writes 
 on the guess tape leads to an accepting node. We construct formulas 'w;

and KBw;
 such that Pr1('w;
 jKBw;
) is either 0 or 1, and is equal to 1 i� M accepts w given


.

We do not immediately want to specify the process of guessing 
, so our initial construction

will not commit to this. For a predicate R, let '[R] be a formula that uses the predicate R. Let

4For ease of presentation, we can and will (somewhat inaccurately, but harmlessly) ignore this constant factor

and say that the time complexity of M is, in fact, T (n).



176 APPENDIX C. PROOFS FOR CHAPTER 6

� be another formula that has the same number of free variables as the arity of R. Then '[�]

is the formula where every occurrence of R is replaced with the formula �, with an appropriate

substitution of the arguments of R for the free variables in �.

Theorem C.5.10: Let M be a TA(T ,A) machine as above, where T (n) = 2t(n) for some

polynomial t(n) and A(n) = O(n). Let w be an input string of length n, and 
 2 f0; 1gT (n) be
a guess string.

(a) For a unary predicate R, there exist formulas 'w[R]; �
 2 L(
) and KBw 2 L(�) such

that Pr1('w[�
 ]jKBw) is 1 i� M accepts w given 
 and is 0 otherwise. Moreover, 'w
uses only predicates with arity 2 or less.

(b) For a binary predicate R, there exist formulas '0w[R]; �0
 2 L(
) such that Pr1('0w[�0
]jtrue)
is 1 i� M accepts w given 
 and is 0 otherwise.

The formulas 'w[R], KBw, and '
0
w[R] are independent of 
, and their length is polynomial in

the representation of M and w. Moreover, none of the formulas constructed use any constant

symbols.

Proof: Let � be the tape alphabet of M and let S be the set of states of M. We will identify

an instantaneous description (ID) of length ` of M with a string �` for � = �W � �G, where

�W is �[ (��S) and �G is (f0; 1g[ (f0; 1g�fhg)). We think of the �W component of the ith

element in a string as describing the contents of the ith location in the work tape and also, if

the tape head is at location i, the state of of the Turing machine. The �G component describes

the contents of the ith location in the guess tape (whose alphabet is f0; 1g) and whether the

guess tape's head is positioned there. Of course, we consider only strings in which exactly one

element in ��S appears in the �rst component and exactly one element in f0; 1g�fhg appears

in the second component. Since M halts within T (n) steps (not counting the guessing process,

which we treat separately), we need only deal with ID's of length at most T (n). Without loss

of generality, assume all ID's have length exactly T (n). (If necessary we can pad shorter ID's

with blanks.)

In both parts of the theorem, ID's are encoded using the properties of domain elements.

In both cases, the vocabulary contains predicates whose truth value with respect to certain

combinations of domain elements represent ID's. The only di�erence between parts (a) and (b)

is in the precise encoding used. We begin by showing the encoding for part (a).

In part (a), we use the sentence KBw to de�ne T (n) named elements. This is possible

since KBw is allowed to use equality. Each ID of the machine will be represented using a

single domain element. The properties of the ID will be encoded using the relations between

the domain element representing it and the named elements. More precisely, assume that the

vocabulary has t(n) unary predicates P1; : : : ; Pt(n), and one additional unary predicate P �. The

domain is divided into two parts: the elements satisfying P � are the named elements used in the

process of encoding ID's, while the elements satisfying :P � are used to actually represent ID's.
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The formula KBw asserts (using equality) that each of the atoms A over fP �; P1; : : : ; Pt(n)g in

which P � (as opposed to :P �) is one of the conjuncts contains precisely one element:

8x; y
0
@
0
@P �(x)^ P �(y)^

t(n)^
i=1

(Pi(x), Pi(y))

1
A) x = y

1
A :

Note that KBw has polynomial length and is independent of 
.

We can view an atom A over fP �; P1; : : : ; Pt(n)g in which P � is one of the conjuncts as

encoding a number between 0 and T (n) � 1, written in binary: if A contains Pj rather than

:Pj , then the jth bit of the encoded number is 1, otherwise it is 0. (Recall that T (n), the

running time of M, is 2t(n).) In the following, we let Ai, for i = 0; : : : ; T (n) � 1, denote the

atom corresponding to the number i according to this scheme. Let ei be the unique element

in the atom Ai for i = 0; : : : ; T (n) � 1. When representing an ID using a domain element d

(where :P �(d)), the relation between d and ei is used to represent the ith coordinate in the

ID represented by d. Assume that the vocabulary has a binary predicate R� for each � 2 �.

Roughly speaking, we say that the domain element d represents the ID �0 : : : �T (n)�1 if R�i(d; ei)

holds for i = 0; : : : ; T (n)� 1. More precisely, we say that d represents �0 : : :�T (n)�1 if

:P �(d)^
T (n)�1^
i=0

8y
0
@Ai(y))

0
@R�i(d; y)^

^
�02��f�ig

:R�0(d; y)

1
A
1
A :

Note that not every domain element d such that :P �(d) holds encodes a valid ID. However,

the question of which ID, if any, is encoded by a domain element d depends only on the

relations between d and the �nite set of elements e0; : : : ; eT (n)�1. This implies that, with

asymptotic probability 1, every ID will be encoded by some domain element. More precisely,

let ID(x) = �0 : : : �T (n)�1 be a formula which is true if x denotes an element that represents

�0 : : : �T (n)�1. (It should be clear that such a formula is indeed expressible in our language.)

Then for each ID �0 : : : �T (n)�1 we have

Pr1(9x (ID(x) = �0 : : : �T (n)�1)jKBw) = 1:

For part (b) of the theorem, we must represent ID's in a di�erent way because we are not

allowed to condition on formulas that use equality. Therefore, we cannot create an exponential

number of named elements using a polynomial-sized formula. The encoding we use in this case

uses two domain elements per ID rather than one. We now assume that the vocabulary 


contains a t(n)-ary predicate R� for each symbol � 2 �. Note that this uses the assumption

that there is no bound on the arity of predicates in 
. For i = 0; : : : ; T (n)� 1, let bit(n) : : : b
i
1

be the binary encoding of i. We say that the pair (d0; d1) of domain element represents the ID

�0 : : : �T (n)�1 if

d0 6= d1 ^
T (n)�1^
i=0

0
@R�i(dbi1 ; : : : ; dbit(n)) ^

^
�02��f�ig

:R�0(dbi1 ; : : : ; dbit(n))
1
A :
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Again, we can de�ne a formula in our language ID(x0; x1) = �0 : : : �T (n)�1 which is true if x0,

x1 denote a pair of elements that represent �0 : : : �T (n)�1. As before, observe that for each ID

�0 : : : �T (n)�1 we have

Pr1(9x0; x1 (ID(x0; x1) = �0 : : : �T (n)�1)jtrue) = 1:

In both case (a) and case (b), we can construct formulas polynomial in the size of M and

w that assert certain properties. For example, in case (a), Rep(x) is true of a domain element

d if and only if d encodes an ID. In this case, Rep(x) is the formula

:P �(x)^ 8y
�
P �(y)) _WR�(x; y)

�
^

9!y (P �(y)^ W�2((��S)��G)R�(x; y))^ 9!y (P �(y) ^W�2(�W�(f0;1g�fhg))R�(x; y))

where _W is an abbreviation whose meaning is that precisely one of its disjuncts is true.

In case (b), Rep(x0; x1) is true of a pair (d0; d1) if and only if it encodes an ID. The

construction is similar. For instance, the conjunct of Rep(x0; x1) asserting that each tape

position has a uniquely de�ned content is

x0 6= x1 ^ 8z1; : : : ; zt(n)

0
@
0
@t(n)^
i=1

(zi = x0 _ zi = x1)

1
A) __

R�(z1; : : : ; zt(n))

1
A :

Except for this assertion, the construction for the two cases is completely parallel given the

encoding of ID's. We will therefore restrict the remainder of the discussion to case (a). Other

relevant properties of an ID that we can formulate are:

� Acc(x) (resp., Univ(x), Exis(x)) is true of a domain element d if and only if d encodes

an ID and the state in ID(d) is an accepting state (resp., a universal state, an existential

state).

� Step(x; x0) is true of elements d and d0 if and only if both d and d0 encode ID's and ID(d0)

can follow from ID(d) in one step of M.

� Comp(x; x0) is true of elements d and d0 if and only if both d and d0 encode ID's and ID(d0)

is the �nal ID in a maximal non-alternating path starting at ID(d) in the computation

tree of M, and the length of this path is at most T (n). A maximal non-alternating path

is either a path all of whose states are existential except for the last one (which must

be universal or accepting), or a path all of whose states are universal except for the last

one. We can construct Comp using a divide and conquer argument, so that its length is

polynomial in t(n).

We remark that Acc, Step, etc. are not new predicate symbols in the language. Rather, they

are complex formulas described in terms of the basic predicates R�. We omit details of their

construction here; these can be found in [Gra83].
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It remains only to describe the formula that encodes the initial con�guration of M on input

w. Since we are interested in the behavior of M given a particular guess string 
, we begin

by encoding the computation of M after the initial nondeterministic phase; that is, after the

string 
 is already written on the guess tape and the rest of the machine is back in its original

state. We now construct the formula Init[R](x) that describes the initial con�guration. This

formula takes R as a parameter, and has the form Init0(x) ^ R(x). The formulas substituted

for R(x) will correspond (in a way discussed below) to possible guesses 
.

We begin by considering case (a). We assume the existence of an additional binary predicate

B0. It is easy to write a polynomial-length formula Init0(x) which is true of a domain element

d if and only if d represents an ID where: (a) the state is the distinguished state s0 entered

after the nondeterministic guessing phase, (b) the work tape contains only w, (c) the heads are

at the beginning of their respective tapes, and (d) for all i, the ith location of the guess tape

contains 0 i� B0(d; ei). Here ei is, as before, the unique element in atom Ai. Note that the last

constraint can be represented polynomially using the formula

8y (P �(y)) (B0(x; y),
_

�2�W�f0;(0;h)g

R�(x; y))):

We also want to �nd a formula �
 that can constrain B0 to re
ect the guess 
. This formula,

which serves as a possible instantiation for R, does not have to be of polynomial size. We de�ne

it as follows, where for convenience, we use B1 as an abbreviation for :B0:

�
(x) =def

T (n)�1^
i=0

8y (Ai(y)) B
i(x; y)) : (C.2)

Note that this is of exponential length.

In case (b), the relation of the guess string 
 to the initial con�guration is essentially the

same modulo the modi�cations necessary due to the di�erent representation of ID's. We only

sketch the construction. As in case (a), we add a predicate B00, but in this case of arity t(n).

Again, the predicate B00 represents the locations of the 0's in the guess tape following the initial

nondeterministic phase. The speci�cation of the denotation of this predicate is done using an

exponential-sized formula �0
 , as follows (again taking B01 to be an abbreviation for :B00):

�0
(x0; x1) =def B
0

0

(x0; : : : ; x0; x0) ^B0
1(x0; : : : ; x0; x1) ^ : : :^ B
0

T (n)�1

(x1; : : : ; x1; x1):

Using these formulas, we can now write a formula expressing the assertion that M accepts

w given 
. In writing these formulas, we make use of the assumptions made above M (that it

is initially in the state immediately following the initial guessing phase, that all computation

paths make exactly A(n) alternations, and so on). The formula 'w[R] has the following form:

9x1 (Init[R](x1) ^ 8x2 (Comp(x1; x2)) 9x3 (Comp(x2; x3) ^ (8x4 Comp(x3; x4)) : : :

9xA(n) (Comp(xA(n)�1; xA(n))^ Acc(xA(n))) : : :))):

It is clear from the construction that 'w[R] does not depend on 
 and that its length is

polynomial in the representations of M and w.
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Now suppose W is a world satisfying KBw in which every possible ID is represented by

at least one domain element. (As we remarked above, a random world has this property with

asymptotic probability 1.) Then it is straightforward to verify that 'w[�
 ] is true in W i� M

accepts w. Therefore Pr1('w[�
]jKBw) = 1 i� M accepts w given 
 and 0 otherwise. Similarly,

in case (b), we have shown the construction of analogous formulas '0w[R], for a binary predicate

R, and �0
 such that Pr1('0w[�0
 ]jtrue) = 1 i� M accepts w given 
, and is 0 otherwise.

We can now use the above theorem in order to prove the #TA(EXP,LIN) lower bound.

Theorem 6.4.18: For ' 2 L(
) and KB 2 L(�), computing Pr1('jKB) is #TA(EXP,LIN)-

hard. The lower bound holds even if ';KB do not mention constant symbols and either (a) '

uses no predicate of arity > 2, or (b) KB uses no equality.

Proof: Let M be a TA(EXP,LIN) Turing machine of the restricted type discussed earlier,

and let w be an input of size n. We would like to construct formulas ';KB such that from

Pr1('jKB) we can derive the number of accepting computations of M on w. The number of

accepting initial existential paths of such a Turing machine is precisely the number of guess

strings 
 such that M accepts w given 
. In Theorem C.5.10, we showed how to encode the

computation of such a machine M on input w given a nondeterministic guess 
. We now show

how to force an asymptotic conditional probability to count guess strings 
 appropriately.

As in Theorem C.5.10, let T (n) = 2t(n), and let P 0 = fP 01; : : : ; P 0t(n)g be new unary pred-

icates, not used in the construction of Theorem C.5.10. As before, we can view an atom A0

over P 0 as representing a number in the range 0; : : : ; T (n)� 1: if A contains P 0j , then the jth

bit of the encoded number is 1, otherwise it is 0. Again, let A0i, for i = 0; : : : ; T (n)� 1, denote

the atom corresponding to the number i according to this scheme. We can view a simpli�ed

atomic description  over P 0 as representing the string 
 = 
0 : : :
T (n)�1 such that 
i is 1 if

 contains the conjunct 9z A0i(z), and 0 if  contains its negation. Under this representation,

for every string 
 of length T (n), there is a unique simpli�ed atomic description over P 0 that

represents it; we denote this atomic description  
. Note that  
 is not necessarily a consistent

atomic description, since the atomic description where all atoms are empty also denotes a legal

string|that string where all bits are 0.

While it is possible to reduce the problem of counting accepting guess strings 
 to that of

counting simpli�ed atomic descriptions  
 , this is not enough. After all, we have already seen

that computing asymptotic conditional probabilities ignores all atomic descriptions that are not

of maximal degree. We deal with this problem as in Theorem 6.4.10. Let Q be a new unary

predicate, and let KB 0 be, as in Theorem 6.4.10, the sentence

8x; y
0
@
0
@Q(x)^

t(n)^
j=1

(P 0j(x), P 0j(y))

1
A) Q(y)

1
A :

Observe that here we use KB 0 rather than the formula KB of Theorem 6.4.10, since we also

want to count the \inconsistent" atomic description where all atoms are empty. Recall that,

assuming KB 0, each simpli�ed atomic description  
 over P 0 corresponds precisely to a single
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maximal atomic description  0
 over P 0 [ fQg. We reduce the problem of counting accepting

guess strings 
 to that of counting simpli�ed atomic description  0
 .

We now consider cases (a) and (b) separately, beginning with the former. Fix a guess string


. In Theorem C.5.10, we constructed formulas 'w[R]; �
 2 L(
) and KBw 2 L(�) such that

Pr1('w[�
 ]jKBw) = 1 i� M accepts w given 
, and is 0 otherwise. Recall that the formula �
(x)

(see Equation (C.2)) sets the ith guess bit to be 
i by forcing the appropriate one of B0(x; ei)

and B1(x; ei) to hold, where ei is the unique element in the atom Ai. In Theorem C.5.10, this

was done directly by reference to the bits 
i. Now, we want to derive the correct bit values

from  
 , which tells us that the ith bit is 1 i� 9z A0i(z). The following formula � has precisely

the desired property:

�(x) =def 8y
0
@P �(y))

0
@B1(x; y), 9z (Q(z) ^

t(n)^
j=1

(Pj(y), P 0j(z)))

1
A
1
A :

Clearly,  0
 j= � , �
 .

Similarly, for case (b), the formula �0 is:

�0(x0; x1) =def 8y1; : : : ; yt(n)

0
@(

t(n)^
j=1

(yj = x0 _ yj = x1)) )
0
@B01(y1; : : : ; yt(n)), 9z (Q(z) ^

t(n)^
j=1

(yj = x1 , P 0j(z)))

1
A
1
A :

As in part (a),  0
 j= �0 , �0
 .

Now, for case (a), we want to compute the asymptotic conditional probability Pr1('[�]jKBw^
KB 0). In doing this computation, we will use the observation (whose straightforward proof we

leave to the reader) that if the symbols that appear in KB2 are disjoint from those that appear

in '1 and KB1, then Pr1('1jKB1 ^ KB2) = Pr1('1jKB1). Using this observation and the

fact that all maximal atomic descriptions over P 0 [ fQg are equally likely given KBw ^ KB 0,
by straightforward probabilistic reasoning we obtain:

Pr1('w[�]jKBw ^KB 0) =
X
 0


Pr1('w[�]jKBw ^KB 0 ^  0
) �Pr1( 0
 jKBw ^ KB 0)

=
1

2T (n)

X
 0


Pr1('w[�]jKBw ^ KB 0 ^  0
):

We observed before that � is equivalent to �
 in worlds satisfying  0
, and therefore

Pr1('w[�]jKBw ^ KB 0 ^  0
) = Pr1('w[�
 ]jKBw ^ KB 0 ^  0
) = Pr1('w[�
 ]jKBw);

where the second equality follows from the observation that none of the vocabulary symbols

in  0
 or KB 0 appear anywhere in 'w[�
] or in KBw. In Theorem C.5.10, we proved that
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Pr1('w[�
 ]jKBw) is equal to 1 if the ATM accepts w given 
 and 0 if not. We therefore obtain

that

Pr1('w[�]jKBw ^KB 0) =
f(w)

2T (n)
:

Since both 'w[�] and KBw ^ KB 0 are polynomial in the size of the representation of M and

in n = jwj, this concludes the proof for part (a). The completion of the proof for part (b) is

essentially identical.

It remains only to investigate the problem of approximating Pr1('jKB) for this language.

Theorem C.5.11: Fix rational numbers 0 � r1 � r2 � 1 such that [r1; r2] 6= [0; 1]. For

';KB 2 L(
), the problem of deciding whether Pr1('jKB) 2 [r1; r2] is TA(EXP,LIN)-hard,

even given an oracle for deciding whether the limit exists.

Proof: For the case of r1 = 0 and r2 < 1, the result is an easy corollary of Theorem C.5.10.

We can generalize this to the case of r1 > 0, using precisely the same technique as in Theo-

rem 6.4.11.



Appendix D

Proofs for Chapter 7

D.1 Unary Expressivity

Theorem 7.1.5: Every formula in L=1 is equivalent to a formula in canonical form. Moreover,

there is an e�ective procedure that, given a formula � 2 L=1 constructs an equivalent formula b�
in canonical form.

Proof: We show how to e�ectively transform � 2 L=1 to an equivalent formula in canonical

form. We �rst rename variables if necessary, so that all variables used in � are distinct (i.e., no

two quanti�ers, including proportion expressions, ever bind the same variable symbol).

We next transform � into an equivalent 
at formula �f 2 L�1 , where a 
at formula is one

where no quanti�ers (including proportion quanti�ers) have within their scope any constant or

variable other than the variable(s) the quanti�er itself binds. (Note that in this transformation

we do not require that � be closed. Also, observe that 
atness implies that there are no nested

quanti�ers.)

We de�ne the transformation by induction on the structure of �:

� If � is an unquanti�ed formulas, then �f = �.

� (�0 _ �00)f = �0f _ �00f
� (:�0)f = :(�f ).

All that remains is to consider quanti�ed formulas of the form 9x �0, jj�0jj~x, or k�0j�00k~x. It turns

out that the same transformation works in all three cases. We illustrate the transformation by

looking at the case where � is of the form jj�0jj~x. By the inductive hypothesis, we can assume

that �0 is 
at. For the purposes of this proof, we de�ne a basic formula to be an atomic formula

(i.e., one of the form P (z)), a proportion formula, or a quanti�ed formula (i.e., one of the form

9x�). Let �1; : : : ; �k be all basic subformulas of �0 that do not mention any variable in ~x.

Let z be a variable or constant symbol not in ~x that is mentioned in �0. Clearly z must occur

in some basic subformula of �0, say �0. By the inductive hypothesis, it is easy to see that �0

183
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cannot mention any variable in ~x and so, by construction, it is in f�1; : : : ; �`g. In other words,

not only do f�1; : : : ; �`g not mention any variable in ~x, but they also contain all occurrences

of the other variables and constants. (Notice that this argument fails if the language includes

any high arity predicates, including equality. For then �0 might include subformulas of the form

R(x; y) or x = y, which can mix variables outside ~x with those in ~x.)

Now, let B1; : : : ; B2` be all the \atoms" over �1; : : : ; �`. That is, we consider all formulas

�01 ^ : : :�0` where �0i is either �i or :�i. Now consider the disjunction:

2`_
i=1

(Bi ^ jj�0jj~x):

This is surely equivalent to jj�0jj~x, because some Bi must be true. However, if we assume that

any particular Bi is true, we can simplify jj�0jj~x by replacing all the �i subformulas by true

or false, according to Bi. (Note that this is allowed only because the �i do not mention any

variable in ~x). The result is that we can simplify each disjunct (Bi^jj�0jj~x) considerably. In fact,

because of our previous observation about f�1; : : : ; �`g, there will be no constants or variables

outside ~x left within the proportion quanti�er. This completes this step of the induction. Since

the other quanti�ers can be treated similarly, this proves the 
atness result.

It now remains to show how a 
at formula can be transformed to canonical form. Suppose

� 2 L�1 is 
at. Let �� 2 L=1 be the formula equivalent to � obtained by using the translation

of Section 3.1. Every proportion comparison in �� is of the form t � t0"i where t and t0

are polynomials over 
at unconditional proportions. In fact, t0 is simply a product of 
at

unconditional proportions (where the empty product is taken to be 1). Note also that since

we cleared away conditional proportions by multiplying by t0, if t0 = 0 then so is t, and so

the formula t � t0"i is automatically true. We can therefore replace the comparison by (t0 =

0) _ (t � t0"i ^ t0 > 0). Similarly, we can replace a negated comparison by an expression of the

form :(t � t0"i) ^ t0 > 0.

The next step is to rewrite all the 
at unconditional proportions in terms of atomic pro-

portions. In any such proportion jj�0jj~x, the formula �0 is a Boolean combination of P (xi) for

predicates P 2 P and xi 2 ~x. Thus, the formula �0 is equivalent to a disjunction
W
j(A

j
1(xi1) ^

: : : ^Ajm(xim)), where each Aji is an atom over P , and ~x = fxi1 ; : : : ; ximg. These disjuncts are

mutually exclusive, and the semantics treats distinct variables as being independent, so

jj�0jj~x =
X
j

mY
i=1

jjAji(x)jjx:

We perform this replacement for each proportion expression. Furthermore, any term t0 in an

expression of the form t � t0"i will be a product of such expressions, and so will be positive.

Next, we must put all pure �rst-order formulas in the right form. We �rst rewrite � to

push all negations inwards as far as possible, so that only atomic subformulas and existential

formulas are negated. Next, note that since � is 
at, each existential subformula must have

the form 9x �0, where �0 is a quanti�er-free formula which mentions no constants and only the
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variable x. Hence, �0 is a Boolean combination of P (x) for predicates P 2 P . The formula �0

is easily seen to be equivalent to a disjunction of atoms of the form
W
A2A(�)A(x), so 9x �0 is

equivalent to
W
A2A(�) 9xA(x). We replace 9x �0 by this expression. Finally, we must deal with

formulas of the form P (c) or :P (c) for P 2 P . This is easy: we can again replace a formula �

of the form P (c) or :P (c) by the disjunction
W
A2A(�)A(c).

The penultimate step is to convert � into disjunctive normal form. This essentially brings

things into canonical form. Note that since we dealt with formulas of the form :P (c) in the

previous step, we do not have to deal with conjuncts of the form :Ai(c).
The �nal step is to check that we do not have Ai(c) and either :9xAi(x) or Aj(c) for some

j 6= i as conjuncts of some disjunct. If we do, we remove that disjunct.

D.2 The Concentration Phenomenon

Lemma 7.1.11: There exist some function h : IN ! IN and two strictly positive polynomial

functions f; g : IN ! IR such that, for KB 2 L�1 and ~u 2 �K, if #worlds~�N [~u](KB) 6= 0, then

in fact

(h(N)=f(N))eNH(~u) � #worlds~�N [~u](KB) � h(N)g(N)eNH(~u):

Proof: To choose a world W 2 WN satisfying KB such that �(W ) = ~u, we must partition the

domain among the atoms according to the proportions in ~u, and then choose an assignment

for the constants in the language, subject to the constraints imposed by KB . Suppose ~u =

(u1; : : : ; uK), and let Ni = uiN for i = 1; : : : ; K. The number of partitions of the domain into

atoms is
� N
N1;:::;NK

�
; each such partition completely determines the denotation for the unary

predicates. We must also specify the denotations of the constant symbols. There are at most

N jCj ways of choosing these. On the other hand, we know there is at least one model (W;~�)

of KB such that �(W ) = ~u, so there there at least one choice. In fact, there is at least one

world W 0 2 WN such that (W 0; ~�) j= KB for each of the
� N
N1;:::;NK

�
ways of partitioning the

elements of the domain (and each such world W 0 is isomorphic to W ). Finally we must choose

the denotation of the non-unary predicates. However, ~u does not constrain this choice and,

by assumption, neither does KB . Therefore the number of such choices is some function h(N)

which is independent of ~u.1 We conclude that:

h(N)

 
N

N1; : : : ; NK

!
� #worlds~�N [~u](KB) � h(N)N jCj

 
N

N1; : : : ; NK

!
:

It remains to estimate  
N

N1; : : : ; NK

!
=

N !

N1!N2! : : :NK!
:

1It is easy to verify that

h(N) =
Y

R2��	

2N
arity(R)

;

where 	 is the unary fragment of � and arity(R) denotes the arity of the predicate symbol R.
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To obtain our result, we use Stirling's approximation for the factorials, which says that

m! =
p

2�mmme�m(1 + O(1=m)):

It follows that exist constants L; U > 0 such that

Lmme�m � m! � Ummme�m

for all m. Using these bounds, as well as the fact that Ni � N , we get:

L

UKNK

NN
QK
i=1 e

Ni

eN
QK
i=1N

Ni
i

� N !

N1!N2! : : :NK!
� UN

LK
NN

QK
i=1 e

Ni

eN
QK
i=1N

Ni
i

:

Now, consider the expression common to both bounds:

NN QK
i=1 e

Ni

eN
QK
i=1N

Ni
i

=
NNQK
i=1N

Ni
i

=
KY
i=1

�
N

Ni

�Ni

=
KY
i=1

eNi ln(N=Ni)

= e�N
PK

i=1
ui ln(ui) = eNH(~u):

We obtain that

h(N)L

UKNK
eNH(~u) � #worlds~�N [~u](KB) � N jCjh(N)

UN

LK
eNH(~u);

which is the desired result.

We next want to prove Theorem 7.1.13. To do this, it is useful to have an alternative

representation of the solution space S~� [KB ]. Towards this end, we have the following de�nition.

De�nition D.2.1: Let �~�
N [KB ] = f�(W ) 2 WN : (W;~�) j= KBg. Let �~�

1[KB ] be the limit of

these spaces; formally,

�~�
1[KB ] = f~u : 9N0 s.t. 8N � N0 9~uN 2 �~�

N [KB ] s.t. lim
N!1

~uN = ~ug:

The following theorem establishes a tight connection between S~� [KB ] and �~�
1[KB ].
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Theorem D.2.2:

(a) For all N and ~� , �~�
N [KB ] � S~� [KB ]. That is, for any ~� and W , if (W;~�) j= KB then

�(W ) 2 S~� [KB ].

(b) For all su�ciently small ~� , �~�
1[KB ] = S~� [KB ].

Proof: Part (a) is immediate: For any ~� and anyN , consider a worldW such that (W;~�) j= KB .

It is almost immediate from the de�nitions that �(W ) must satisfy �(KB [~� ]), so �(W ) 2
Sol [�(KB [~� ])]. The inclusion �~�

N [KB ] � S~� [KB ] now follows by de�nition.

One direction of part (b) follows immediately from part (a). Recall that �~�
N [KB ] � S~� [KB ]

and that the points in �~�
1[KB ] are limits of a sequence of points in �~�

N [KB ]. Since S~� [KB ] is

closed, it follows that �~�
1[KB ] � S~� [KB ].

For the opposite inclusion, the general strategy of the proof is to show the following:

(i) If ~� is su�ciently small, then for all ~u 2 S~� [KB ], there is some sequence of pointsn
~uN0 ;~uN0+1;~uN0+2;~uN0+3; : : :

o
� Sol [�(KB [~� ])] such that, for all N � N0, the coor-

dinates of ~uN are all integer multiples of 1=N and limN!1~u
N = ~u.

(ii) if ~w 2 Sol [�(KB [~� ])] and all its coordinates are integer multiples of 1=N , then ~w 2
�~�
N [KB ].

This clearly su�ces to prove that ~u 2 �~�
1[KB ].

The proof of (ii) is straightforward. Suppose ~w = (r1=N; r2=N; : : : ; rK=N) is in Sol [�(KB [~� ])].

We construct a world W 2 WN such that �(W ) = ~w as follows. The denotation of atom A1

is the set of elements f1; : : : ; r1g, the denotation of atom A2 is the set fr1 + 1; : : : ; r1 + r2g,
and so on. It remains to choose the denotations of the constants (since the denotation of the

predicates of arity greater than 1 is irrelevant). Without loss of generality we can assume KB

is in canonical form. (If not, we consider dKB .) Thus, KB is a disjunction of conjunctions,

say
W
j �j . Since ~w 2 Sol [�(KB [~� ])], we must have ~w 2 Sol [�(�j [~� ])] for some j. We use �j to

de�ne the properties of the constants. If �j contains Ai(c) for some atom Ai, then we make c

satisfy Ai. Note that, by De�nition 7.1.6, if �j has such a conjunct then ui > 0. If �j contains

no atomic conjunct for a constant c then we make c satisfy Ai for some arbitrary atom with

ui > 0. Note that this construction is possible precisely because we never assign a constant to

an empty atom (with ui = 0). It should now be clear that (W;~�) satis�es �j , and so satis�es

KB . (Note that this is not the case for an arbitrary point ~w in S~� [KB ], since this space is the

closure of the actual solution space, so that the points in it do not necessarily satisfy �(KB [~� ]).)

The proof of (i) is surprisingly di�cult, and involves techniques from algebraic geometry.

Our job would be relatively easy if Sol [�(KB [~� ])] were an open set. Unfortunately, it is not. On

the other hand, it would be an open set if we could replace the occurrences of � in �(KB [~� ])

by <. It turns out that we can essentially do this.

Let �<(KB [~� ]) be the same as �(KB [~� ]) except that every (unnegated) conjunct of the form

(t � �it
0) is replaced by (t < �it

0). (Notice that this is essentially the opposite transformation



188 APPENDIX D. PROOFS FOR CHAPTER 7

to the one used in the de�ning essential positivity in De�nition 7.2.3.) Finally, let S<~� [KB ] be

Sol [�(KB [~� ])].

Lemma D.2.3: For all su�ciently small ~� , S<~� [KB ] = S~� [KB ].

We defer the proof of this lemma until after the proof of the main theorem.

Consider some ~u 2 S~� [KB ]. It su�ces to show that for all � > 0 there exists N0 such

that for all N > N0, there exists a point ~uN 2 Sol [�<(KB [~� ])] all of whose coordinates are

integer multiples of 1=N . (For then, we can take smaller and smaller �'s to create a sequence

~uN converging to ~u.) Hence, let � > 0. By Lemma D.2.3, we can �nd some ~u0 2 Sol [�<(KB [~� ])]

such that j~u�~u0j < �=2. By de�nition, every conjunct in �<(KB [~� ]) is of the form q0(~w) = 0,

q0(~w) > 0, q(~w) < �iq
0(~w), or q(~w) > �iq

0(~w), where q0 is a positive polynomial. Ignore for the

moment the constraints of the form q0(~w) = 0, and consider the remaining constraints that ~u0

satis�es. These constraints all involve strict inequalities, and the functions involved (q and q0)

are continuous. Thus, there exists some �0 > 0 such that for all ~w for which j~u0 � ~wj < �0,

these constraints are also satis�ed by ~w. Now, consider a conjunct of the form q0(~w) = 0 that

is satis�ed by ~u0. Since q0 is positive, this happens if and only if the following condition holds:

for every coordinate wi that that actually appears in q0, u0i = 0. In particular, if ~w and ~u0 have

the same coordinates with value 0, then q0(~w) = 0. It follows that for all ~w, if j~u0� ~wj < �0 and

~u0 and ~w have the same coordinates with value 0, then ~w also satis�es �<(KB [~� ]).

We now construct ~uN that satis�es the requirements. Let i� be the index of that component

of ~u0 with the largest value. We de�ne ~uN by considering each component, uNi , for 1 � i � K:

uNi =

8><
>:

0 u0i = 0

dNu0ie=N i 6= i� and u0i > 0

uNi �
P
j0 6=i�(u

N
j0 � u0j0) j = i�

It is easy to verify that the components of ~uN sum to 1. All the components in ~u0, other

than the i�'th, are increased by at most 1=N . The component uNi� is decreased by at most

K=N . We will show that ~uN has the right properties for all N > N0, where N0 is such that

1=N0 < min(ui�; �=2; �
0)=2K. The fact that K=N0 < ui� guarantees that ~uN is in �K for all

N > N0. The fact that 2K=N0 < �=2 guarantees that ~uN is within �=2 of ~u0, and hence within

� of ~u. Since 2K=N0 < �0, it follows that j~u0�~uN j < �0. Since ~uN is constructed to have exactly

the same 0 coordinates as ~u0, we conclude that ~uN 2 Sol [�<(KB [~� ])], as required. The proof

of (ii), and hence the theorem, now follows.

It now remains to prove Lemma D.2.3. As we hinted earlier, this requires tools from algebraic

geometry. We base our de�nitions on the presentation in [BCR87]. A subset A of IR` is said

to be semi-algebraic if it is de�nable in the language of real-closed �elds. That is, A is semi-

algebraic if there is a �rst-order formula '(x1; : : : ; x`) whose free variables are x1; : : : ; x` and

whose only non-logical symbols are 0, 1, +, �, < and = such that IR j= '(u1; : : : ; u`) i�
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(u1; : : : ; u`) 2 A.2 A function f : X ! Y , where X � IRh, Y � IR`, is said to be semi-algebraic

if its graph (i.e., f(~u; ~w) : f(~u) = ~wg) is semi-algebraic. The main tool we use is the following

Curve Selection Lemma (see [BCR87, p. 34]):

Lemma D.2.4: Suppose that A is a semi-algebraic set in IR` and ~u 2 A. Then there exists

a continuous, semi-algebraic function f : [0; 1]! IR` such that f(0) = ~u and f(t) 2 A for all

t 2 (0; 1].

Our �rst use of the Curve Selection Lemma is in the following, which says that, in a certain

sense, semi-algebraic functions behave \nicely" near limits. The type of phenomenon we wish

to avoid is illustrated by 2x + x sin 1
x

which is continuous at 0, but has in�nitely many local

maxima and minima near 0.

Proposition D.2.5: Suppose that g : [0; 1]! IR is a continuous, semi-algebraic function such

that g(u) > 0 if u > 0 and g(0) = 0. Then there exists some � > 0 such that g is strictly

increasing in the interval [0; �].

Proof: Suppose, by way of contradiction, that g satis�es the hypotheses of the proposition but

there is no � such that g is increasing in the interval [0; �]. We de�ne a point u in [0; 1] to be

bad if for some u0 2 [0; u) we have g(u0) � g(u). Let A be the set of all the bad points. Since g

is semi-algebraic so is A, since u0 2 A i�

9u0 ((0 � u0 < u) ^ g(u) � g(u0)):

Since, by assumption, g is not increasing in any interval [0; �], we can �nd bad points

arbitrarily close to 0 and so 0 2 A. By the Curve Selection Lemma, there is a continuous

semi-algebraic curve f : [0; 1]! IR such that f(0) = 0 and f(t) 2 A for any t 2 (0; 1]. Because

of the continuity of f the range of f | f([0; 1]) | is [0; r] for some r 2 [0; 1]. By the de�nition

of f , (0; r] � A. Since 0 62 A, it follows that f(1) 6= 0; therefore r > 0 and so, by assumption,

g(r) > 0. Since g is a continuous function, it achieves a maximum v > 0 over the range [0; r].

Consider the minimum point in the interval where this maximum is achieved. More precisely,

let u be the in�mum of the set fu0 2 [0; r] : g(u0) = vg. Clearly, g(u) = v; since v > 0 we

obtain that u > 0 and therefore u 2 A. Thus, u is bad. But that means that there is a point

u0 < u for which g(u0) � g(u), which contradicts the choice of v and u.

We can now prove Lemma D.2.3, which we restate for convenience:

Lemma D.2.3: For all su�ciently small ~� , S<~� [KB ] = S~� [KB ].3

Proof: Clearly S<~� [KB ] � S~� [KB ]. To prove the reverse inclusion, it is simpler to consider each

disjunct of the canonical form of KB separately (recall thatdKB is a disjunction of conjunctions).

2In [BCR87], a set is taken to be semi-algebraic if it is de�nable by a quanti�er-free formula in the language

of real closed �elds. However, as observed in [BCR87], since the theory of real closed �elds admits elimination
of quanti�ers [Tar51], the two de�nitions are equivalent.

3We are very grateful to Professor Gregory Brum�el, of the Department of Mathematics at Stanford University,

for his invaluable help with the proof of this lemma.
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Let � be a conjunction that is one of the disjuncts in dKB . It clearly su�ces to show that

Sol [�(�[~� ])] � S<~� [�] = Sol [�<(�[~� ])]. Assume, by way of contradiction, that for arbitrarily

small ~� , there exists some ~u 2 Sol [�(�[~� ])] which is \separated" from the set Sol [�<(�[~� ])],

i.e., is not in its closure. More formally, we say that ~u is �-separated from Sol [�<(�[~� ])] if there

is no ~u0 2 Sol [�<(�[~� ])] such that with j~u�~u0j < �.

We now consider those ~� and those points in Sol [�(�[~� ])] that are separated from Sol [�<(�[~� ])]:

A = f(~�;~u; �) : ~� > ~0; � > 0; ~u 2 Sol [�(�[~� ])] is �-separated from Sol [�<(�[~� ])]g:
Clearly A is semi-algebraic. By assumption, there are points in A for arbitrarily small tolerance

vectors ~� . Since A is a bounded subset of IRm+K+1 (where m is the number of tolerance values

in ~�), we can use the Bolzano{Weierstrass Theorem to conclude that this set of points has an

accumulation point whose �rst component is ~0. Thus, there is a point (~0; ~w; �0) in A. By the

Curve Selection Lemma, there is a continuous semi-algebraic function f : [0; 1] ! IRm+K+1

such that f(0) = (~0; ~w; �0) and f(t) 2 A for t 2 (0; 1].

Since f is semi-algebraic, it is semi-algebraic in each of its coordinates. By Lemma D.2.5,

there is some v > 0 such that f is strictly increasing in each of its �rst m coordinates over the

domain [0; v]. Suppose that f(v) = (~�;~u; �). Now, consider the constraints in �(�[~� ]) that have

the form q(~w) > �jq
0(~w). These constraints are all satis�ed by ~u, and they are all based on

strong inequalities. By the continuity of the polynomials q and q0, there exists some � > 0 so

that, for all ~u0 such that j~u�~u0j < �, ~u0 also satis�es these constraints.

Now, by the continuity of f , there exists a point v0 2 (0; v) su�ciently close to v so that

if f(v0) = (~� 0;~u0; �0), then j~u � ~u0j < min(�; �). Since f(v) = (~�;~u; �) 2 A, and j~u � ~u0j < �

it follows that ~u0 62 Sol [�<(�[~� ])]. We conclude the proof by showing that this is impossible.

That is, we show that ~u0 2 Sol [�<(�[~� ])]. The constraints appearing in �<(�[~� ]) can be of the

following forms: q0(~w) = 0, q0(~w) > 0, q(~w) < �jq
0(~w), or q(~w) > �jq

0(~w), where q0 is a positive

polynomial. Since f(v0) 2 A, we know that ~u0 2 Sol [�(�[~� 0])]. The constraints of the form

q0(~w) = 0 and q0(~w) > 0 are identical in �(�[~� 0]) and in �<(�[~� ]), and are therefore satis�ed

by ~u0. Since j~u0 �~uj < �, our discussion in the previous paragraph implies that the constraints

of the form q(~w) > �jq
0(~w) are also satis�ed by ~u0. Finally, consider a constraint of the form

q(~w) < �jq
0(~w). The corresponding constraint in �(�[~� 0]) is q(~w) � � 0jq

0(~w). Since ~u0 satis�es

this latter constraint, we know that q(~u0) � � 0jq
0(~u0). But now, recall that we proved that f

is increasing over [0; v] in the �rst m coordinates. In particular, � 0j < �j . By the de�nition of

canonical form, q0(~u0) > 0, so that we conclude q(~u0) � � 0jq0(~u0) < �jq
0(~u0). Hence the constraints

of this type are also satis�ed by ~u0. This concludes the proof that ~u0 2 Sol [�<(KB [~� ])], thus

deriving a contradiction and proving the result.

We are �nally ready to prove Theorem 7.1.13.

Theorem 7.1.13: For all su�ciently small ~� , the following is true. Let Q be the points with

greatest entropy in S~� [KB ] and let O � IRK be any open set containing Q. Then for all � 2 L�
and for lim� 2 flim sup; lim infg:

lim
N!1

� Pr~�N (�jKB) = lim
N!1

� #worlds~�N [O](� ^ KB)

#worlds~�N [O](KB)
:
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Proof: Let ~� be small enough so that Theorem D.2.2 applies, and let Q and O be as in the

statement of the theorem. It clearly su�ces to show that the set O contains almost all of the

worlds that satisfy KB . More precisely, the fraction of such worlds that are in O tends to 1 as

N !1:
Let � be the entropy of the points in Q. We begin the proof by showing the existence of

�L < �U(< �) such that (for su�ciently large N) (a) every point ~u 2 �~�
N [KB ] where ~u 62 O has

entropy at most �L, and (b) there is at least one point ~u 2 �~�
N [KB ] with ~u 2 O and entropy at

least �U .

For part (a), consider the space S~� [KB ]�O. Since this space is closed, the entropy function

takes on a maximum value in this space; let this be �L. Since this space does not include any

point with entropy � (these are all in Q � O), we must have �L < �. By Theorem D.2.2,

�~�
N [KB ] � S~� [KB ]. Therefore, for any N , the entropy of any point in �~�

N [KB ]� O is at most

�L.

For part (b), let �U be some value in the interval (�L; �) (for example (�L + �)=2), and let

~v be any point in Q. By the continuity of the entropy function, there exists some � > 0 such

that for all ~u with j~u� ~vj < �, H(~u) � �U . Because O is open we can, by considering a smaller

� if necessary, assume that j~u � ~vj < � implies ~u 2 O. By the second part of Theorem D.2.2,

there is a sequence of points ~uN 2 �~�
N [KB ] such that limN!1~u

N = ~v. In particular, for N

large enough we have j~uN � ~vj < �, so that H(~uN ) > �U , proving part (b).

To complete the proof, we use Lemma 7.1.11 to conclude that for all N ,

#worlds~�N (KB) � #worlds~�N [~uN ](KB) � (h(N)=f(N))eNH(~uN ) � (h(N)=f(N))eN�U :

On the other hand,

#worlds~�N [�K � O](KB) �
X

~u2�~�
N
[KB ]�O

#worlds~�N [~u](KB)

� j�~�
N [KB ]� Oj h(N)g(N)eN�L

� (N + 1)Kh(N)g(N)eN�L:

Therefore the fraction of models of KB which are outside O is at most

(N + 1)Kh(N)f(N)g(N)eN�L

h(N)eN�U
:

Since h(N) cancels out and (N + 1)kf(N)g(N) is a polynomial in N , this fraction tends to 0

as N grows large. The result follows.

D.3 Computing for Simple Queries

Proposition 7.2.5: Assume that KB is essentially positive and let Q be the set of maximum

entropy points of S
~0[KB ] (and thus also of S�

~0[KB ]). Then for all � > 0 and all su�ciently
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small tolerance vectors ~� (where \su�ciently small" may depend on �), every maximum entropy

point of S~� [KB ] is within � of some maximum entropy point in Q.

Proof: Fix � > 0. By way of contradiction, assume that that there is some sequence of tolerance

vectors ~�m, m = 1; 2; : : :, that converges to ~0, and for each m a maximum entropy point ~um of

S~�
m

[KB ], such that for all m, ~um is at least � away from Q. Since the space �K is compact,

we can assume without loss of generality that this sequence converges to some point ~u. Since

�(KB) is a �nite combination (using \and" and \or") of constraints, where every such constraint

is of the form: the form: q0(~w) = 0, q0(~w) > 0, q(~w) � "jq
0(~w), or q(~w) > "jq

0(~w), where q0 is

a positive polynomial. Since the overall number of constraints is �nite we can assume, again

without loss of generality, that the~um's satisfy precisely the same conjuncts for all m. We claim

that the corresponding conjuncts in ��(KB [~0]) are satis�ed by ~u. For a conjunct of the form

q0(~w) = 0 note that, if q0(~um) = 0 for all m, then this also holds at the limit, so that q(~u) = 0.

A conjunct of the form q0(~w) > 0 translates into q(~w) � 0 in ��(KB [~0]); such conjuncts are

trivially satis�ed by any point in �K . If a conjunct of the form q(~w) � "jq0(~w) is satis�ed for all

~um; ~�m, then at the limit q(~u) � 0, which is precisely the corresponding conjunct in ��(KB [~0]).

Finally, for a conjunct of the form q(~w) > "jq
0(~w), if q(~um) > �mj q

0(~um) for all m, then at the

limit we have q(~u) � 0, which again is the analogous conjunct in ��(KB [~0]). (The analogous

conjunct in �(KB [~0]) is q(~w) > 0, but > is replaced by � in the move to ��(KB [~0]).) Thus, ~u0

is in S�
~0[KB ].

By assumption, all points ~um are at least � away from Q. Hence, ~u cannot be in Q. If we let

� represent the entropy of the points in Q, and since Q is the set of all maximum entropy points

in S�
~0[KB ], it follows that H(~u) < �. Choose �L, �U such that H(~u) < �L < �U < �. Since the

entropy function is continuous, we know that for su�ciently large m, H(~um) � �L. Since ~um

is a maximum entropy point of S~�
m

[KB ], it follows that the entropy achieved in this space for

su�ciently large m is at most �L. We derive a contradiction by showing that for su�ciently large

m, there is some point in Sol [�(KB [~�m])] with entropy at least �U . The argument is as follows.

Let ~v be some point in Q. Since ~v is a maximum entropy point of S
~0[KB ], there are points in

Sol [�(KB [~0])] arbitrarily close to ~v. In particular, there is some point ~u0 2 Sol [�(KB [~0])] whose

entropy is at least �U . As we now show, this point is also in Sol [�(KB [~� ])] for all su�ciently

small ~� . Again, consider all the conjuncts in �(KB [~0]) satis�ed by ~u0, and the corresponding

conjunct in �(KB [~� ]). Conjuncts of the form q0(~w) = 0 and and q0(~w) > 0 in �(KB [~0]) remain

unchanged in �(KB [~� ]). Conjuncts of the form q(~w) � �jq
0(~w) in �(KB [~� ]) are certainly

satis�ed by ~u0, since the corresponding conjunct in �(KB [~0]), namely q(~w) � 0, is satis�ed by

~u0, so that q(~u0) � 0 � �jq
0(~u0) (recall that q0 is a positive polynomial). Finally, consider a

conjunct in �(KB [~� ]) of the form q(~w) > �jq
0(~w). The corresponding conjunct in �(KB [~0]) is

q(~w) > 0. Suppose q(~u0) = � > 0. Since the value of q0 is bounded over the compact space �K ,

it follows that for all su�ciently small �j , �jq
0(~u0) < �. Thus, q(~u0) > �jq

0(~u0) for all su�ciently

small �j , as required. It follows that ~u0 is in Sol [�(KB [~� ])] for all su�ciently small ~� , and in

particular in Sol [�(KB [~�m])] for all su�ciently large m. But H(~u0) � �U , whereas we showed

that the maximum entropy achieved in S~�
m

[KB ] is at most �L < �U . This contradiction proves

that our assumption was false, so that the conclusion of the proposition necessarily holds.
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Theorem 7.2.8: Suppose '(c) is a simple query for KB. For all ~� su�ciently small, if

Q is the set of maximum entropy points in S~� [KB ] and F[ ](~v) > 0 for all ~v 2 Q, then for

lim� 2 flim sup; lim infg

lim
N!1

� Pr~�N('(c)jKB) 2
"

inf
~v2Q

F['j ](~v); sup
~v2Q

F['j ](~v)

#
:

Proof: Let W 2 W�, and let ~u = �(W ). The proportion expression jj (x)jjx is clearly equal

to X
Aj2A( )

jjAj(x)jjx =
X

Aj2A( )

uj = F[ ](~u):

If F[ ](~u) > 0, then by the same reasoning we conclude that the value of k'(x)j (x)kx at W is

equal to F['j ](~u).

Now, let �L and �R be inf~v2Q F['j ](~v) and sup~v2Q F['j ](~v) respectively; by our assumption,

F['j ](~v) is well-de�ned for all ~v 2 Q. Since the denominator is not 0, F['j ] is a continuous

function at each maximum entropy point. Thus, since F['j ](~v) 2 [�L; �R] for all maximum

entropy points, the value of F['j ](~u) for ~u \close" to some ~v, will either be in the range [�L; �U ]

or very close to it. More precisely, choose any � > 0, and de�ne �[�] to be the formula

k'(x)j (x)kx 2 [�L � �; �U + �]:

Since � > 0, it is clear that there is some su�ciently small open set O around Q such that

this proportion expression is well-de�ned and within these bounds at all worlds in O. Thus, by

Corollary 7.1.14, Pr~�1(�[�]jKB) = 1. Using Theorem 7.1.16, we obtain that for lim� as above,

lim
N!1

� Pr~�N('jKB) = lim
N!1

� Pr~�N ('jKB ^ �[�]):

But now we can use the direct inference technique outlined earlier. We are interested in the

probability of '(c), where the only information we have about c in the knowledge base is  (c),

and where we have statistics for k'(x)j (x)kx. These are precisely the conditions under which

Theorem 4.2.1 applies. We conclude that

lim
N!1

� Pr~�N ('jKB) 2 [�L � �; �U + �]:

Since this holds for all � > 0, it is necessarily the case that

lim
N!1

� Pr~�N ('jKB) 2 [�L; �U ];

as required.

Theorem 7.2.10: Suppose '(c) is a simple query for KB. If the space S
~0[KB ] has a unique

maximum entropy point ~v, KB is essentially positive, and F[ ](~v) > 0, then

Pr1('(c)jKB) = F['j ](~v):
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Proof: Note that the fact that S
~0[KB ] has a unique maximum entropy point does not guarantee

that this is also the case for S~� [KB ]. However, Proposition 7.2.5 implies that the maximum

entropy points of the latter space are necessarily close to ~v. More precisely, if we choose some

� > 0, we conclude that for all su�ciently small ~� , all the maximum entropy points of S~� [KB ]

will be within � of ~v. Now, pick some arbitrary � > 0. Since F[ ](~v) > 0, it follows that

F['j ] is continuous at ~v. Therefore, there exists some � > 0 such that if ~u is within � of ~v,

F['j ](~u) is within � of F['j ](~v). In particular, this is the case for all maximum entropy points

of S~� [KB ] for all su�ciently small ~� . This allows us to apply Theorem 7.2.8, and conclude that

for all su�ciently small ~� and for lim� 2 flim sup; lim infg, lim�
N!1 Pr~�N('(c)jKB) is within �

of F['j ](~v). Since this holds for all � > 0, it follows that

lim inf
N!1

Pr~�N('(c)jKB) = lim sup
N!1

Pr~�N('(c)jKB) = F['j ](~v):

Thus, by de�nition, Pr1('(c)jKB) = F['j ](~v).

Theorem 7.2.13: Let � be a conjunction of constraints of the form Pr(�j�0) = � or

Pr(�j�0) 2 [�1; �2]. There is a unique probability distribution �� of maximum entropy satis-

fying �. Moreover, for all � and �0, if Pr��(�
0) > 0, then

Pr1(��(c)j��0(c)^ KB 0[�]) = Pr��(�j�0):

Proof: Clearly, the formulas '(x) = ��(x) and  (x) = ��0(x) are essentially propositional.

The knowledge base KB 0� is in the form of a conjunction of very simple proportion formulas,

none of which are negated. Let KB =  (c) ^ KB 0. Notice that �(KB) is a conjunction of

linear constraints, none of which is negated, and involving only weak inequalities (�) except

for conjuncts of the form uj > 0. It is therefore obvious that S
~0[KB ] = S�

~0[KB ], so that

KB is essentially positive. As we observed earlier, the fact that these are linear constraints

also means that S�
~0[KB ] is convex, and hence has a unique maximum entropy point, say ~v.

Let �� = �~v be the distribution over 
 corresponding to ~v. It is clear that the constraints of

�(KB 0�[~0]) on the points of �K are precisely the same ones as those of �. Therefore, �� is

the unique maximum entropy distribution satisfying the constraints of �. By Remark 7.2.12,

it follows that F[��0 ](~v) = ��(�0). Since we have assumed that ��(�0) > 0, we can now apply

Theorem 7.2.10 to conclude that

Pr1('(c)j (c)^KB 0�) = F['j ](�
�) = Pr��(�j�0):

Theorem 7.2.14: Let c be a constant symbol. Using the translation described in Section 7.2.3,

for any set R of defeasible rules, B ! C is an ME-plausible consequence of R i�

Pr1

 
�C(c)

������B(c)^
^
r2R

�r

!
= 1:

Proof: Let KB 0 denote
V
r2R �r. For all su�ciently small ~� , and for � = �1 let �� denote ���;R.

It clearly su�ces to prove that

Pr~�1(�C(c)j�B(c)^KB 0) = Pr
��

(CjB);
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where by equality we also mean that one side is de�ned i� the other is also de�ned. We leave it

to the reader to check that a point~u in �K satis�es �(KB 0[~� ]) i� the corresponding distribution

� �-satis�es R. Therefore, the maximum entropy point ~v of S~� [KB 0] corresponds precisely to ��.

Now, there are two cases: either ��(B) > 0 or ��(B) = 0. In the �rst case, by Remark 7.2.12,

Pr��(�B(c)) = F[�B(c)](~v), so the latter is also positive. This also implies that ~v is consistent

with the constraints entailed by  = �B(c), so that ~v is also the unique maximum entropy point

of S~� [KB ] (where KB = �B(c)^KB 0). We can therefore use Corollary 7.2.9 and Remark 7.2.12

to conclude that Pr~�1(�C(c)jKB) = F[�C(c)j�B(c)](~v) = Pr��(CjB), and that all three terms are

well-de�ned. Assume, on the other hand, that ��(B) = 0, so that Pr��(CjB) is not well-de�ned.

In this case, we can use a known result (see [PV89]) for the maximum entropy point over a space

de�ned by linear constraints, and conclude that for all � satisfying R, necessarily �(B) = 0.

Using the connection between distributions � satisfying R and points~u in S~� [KB 0], we conclude

that this is also the case for all ~u 2 S~� [KB 0]. By part (a) of Theorem D.2.2, this means that in

any world satisfying KB 0, the proportion jj�B(x)jjx is necessarily 0. Thus, KB 0 is inconsistent

with �B(c), and Pr~�1(�C(c)j�B(c)^ KB 0) is also not well-de�ned.

D.4 Extending the Class of Queries

Theorem 7.2.23: If KB and ~� > ~0 are stable for �� then Pr~�1(��jKB) = 1.

Proof: By Theorem 7.1.14, it su�ces to show that there is some open neighborhood containing

Q, the maximum entropy points of S~� [KB ], such that every worldW of KB in this neighborhood

has �(W ) = ��. So suppose this is not the case. Then there is some sequence of models

W1;W2; : : : such that (Wi; ~�) j= KB ^ :��, and limi!1 max~v2Q j�(Wi)� ~vj = 0. Since �K

is compact the sequence �(W1); �(W2); : : : must have at least one accumulation point, say ~u.

This point must be in the closure of the set Q. But, in fact, Q is a closed set (because entropy

is a continuous function) and so ~u 2 Q. By part (a) of Theorem D.2.2, �(Wi) 2 S~� [KB ^ :��]
for every i, and so, since this space is closed, ~u0 2 S~� [KB ^ :��] as well. But this means that

~u0 is an unsafe maximum entropy point, contrary to our assumption.

In the remainder of this section we prove Theorem 7.2.27. For this purpose, �x KB =

 ^KB 0, ', and �� to be as in the statement of this theorem, and let ~v be the unique maximum

entropy point of S
~0[KB ].

Let Z = fc1; : : : ; cmg be the set of constant symbols appearing in  and in '. Due to

the separability assumption, KB 0 contains none of the constant symbols in Z . Let �6= be the

formula
V
i6=j ci 6= cj . We �rst prove that �6= has probability 1 given KB 0.

Lemma D.4.1: For �6= and KB 0 as above, Pr1(�6=jKB 0) = 1.

Proof: We begin by showing that Pr1(:�6=jKB 0) = 0. Let c and c0 be two constant symbols

and consider Pr1(c = c0jKB 0). We again use the direct inference technique. More precisely,

�x N and consider the value of the proportion expression jjx = x0jjx;x0 in any world of size N .
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This value is clearly 1=N . Since c and c0 appear nowhere in KB 0 we can use Theorem 4.2.1 to

conclude that PrN (c = c0jKB 0) = 1=N . Therefore, Pr1(c = c0jKB 0) = 0. It is straightforward

to verify that, since :�6= is equivalent to a �nite disjunction each disjunct of which implies

c = c0 for at least one pair of constants c and c0, we must have Pr1(:�6=jKB 0) = 0.

As we stated in Section 7.2.4, our general technique for computing the probability of an

arbitrary formula ' is to partition the worlds into a �nite collection of classes, such that '

behaves uniformly over each class, and compute the relative weights of the classes. As we will

show later, the classes are essentially de�ned using complete descriptions. Their relative weight

corresponds to the probabilities of the di�erent complete descriptions given KB .

Proposition D.4.2: Let KB = KB 0 ^  and ~v be as above. Assume Pr1( jKB0) > 0. Let D

be a complete description over Z that is consistent with  . Then:

(a) If D is inconsistent with �6=, then Pr1(DjKB) = 0.

(b) If D is consistent with �6=, then

Pr1(DjKB) =
F[D](~v)P

D02A( ^�6=) F[D0](~v)
:

Proof: First, observe that if all limits exist and the denominator is nonzero then

Pr1(:�6=j ^KB 0) =
Pr1(:�6= ^  jKB 0)

Pr1( jKB0) :

By assumption, the denominator is, indeed, nonzero. Furthermore, by Lemma D.4.1, Pr1(:�6=^
 jKB0) � Pr1(:�6=jKB 0) = 0. Hence Pr1(�6=jKB) is also 1. We can therefore use Theo-

rem 7.1.16 to conclude that

Pr1(DjKB) = Pr1(DjKB ^ �6=):

Part (a) of the proposition follows immediately.

To prove part (b), recall that  ^ �6= is equivalent to the disjunction
V
D02A( ^�6=)D. By

simple probabilistic reasoning, and using the assumption that Pr1( jKB0) > 0, we conclude

that:

Pr1(Dj ^KB 0) =
Pr1(D ^  jKB0)

Pr1( jKB0) =
Pr1(D ^  jKB0)P

E2A( ^�6=) Pr1(EjKB0) :

By assumption, D is consistent with �6= and is in A( ). Since D is a complete description, we

must have that D )  is valid. Thus, the numerator on the right-hand side of this equation

is simply Pr1(DjKB 0). Hence, the problem of computing Pr1(DjKB) reduces to a series of

computations of the form Pr1(EjKB 0) for some complete description E.
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Fix any such description E. Recall that E can be decomposed into three parts: the unary

part E1, the non-unary part E>1, and the equality part E=. Since E is in A(�6=), we conclude

that �6= is equivalent to E=. Using Theorem 7.1.16 twice and some probabilistic reasoning:

Pr1(E>1 ^E1 ^ E=jKB 0) = Pr1(E>1 ^E1 ^E=jKB 0 ^ �6=)

= Pr1(E>1 ^E1jKB 0 ^ �6=)

= Pr1(E>1jKB 0 ^ �6= ^E1) � Pr1(E1jKB 0 ^ �6=)

= Pr1(E>1jKB 0 ^ �6= ^E1) � Pr1(E1jKB 0):

In order to simplify the �rst expression, recall that none of the predicate symbols in E>1

occur anywhere in KB 0 ^ �6= ^ E1. Therefore, the probability of E>1 given KB 0 ^ �6= is

equal to the probability that the elements denoting the jZj (di�erent) constants satisfy some

particular con�guration of non-unary properties. It should be clear that, by symmetry, all such

con�gurations are equally likely. Therefore, the probability of any one of them is a constant,

equal to 1 over the total number of con�gurations.4 Let � denote the constant which is equal

to Pr1(E>1jKB 0 ^ �6= ^ E1) for all E.

The last step is to show that, if E1 is equivalent to
Vm
j=1Aij(cj), then

Pr1(E1jKB 0) = F[D](~v):

We can now apply standard probabilistic reasoning to show that

Pr1(
m̂

j=1

Aij(cj)jKB 0)

= Pr1(Ai1(c1)j
m̂

j=2

Aij(cj)^ KB 0) � Pr1(Ai2(c2)j
m̂

j=3

Aij(cj) ^KB 0)

� : : : � Pr1(Aim�1(cm�1)jAim(cm) ^KB 0) � Pr1(Aim(cm)jKB 0)
= vi1 � : : : � vim (using Theorem 7.2.10; see below)

= F[D](~v):

The second-last step is derived from m applications of Theorem 7.2.10. Our assumptions

guarantee that Aij(cj) is a simple query for Aij+1(cj+1)^ : : :Aim(cm)^ KB 0.
We can now put everything together to conclude that

Pr1(DjKB) =
Pr1(DjKB 0)P

E2A( ^�6=) Pr1(EjKB0) =
F[D](~v)P

E2A( ^�6=) F[E](~v)
;

proving part (b).

4Although we do not need the value of this constant in our calculations below, it is in fact easy to verify that

its value is
Q

R2(��	)
2m

arity(R)

, where m = jZj.



198 APPENDIX D. PROOFS FOR CHAPTER 7

We now address the issue of computing Pr1('jKB) for an arbitrary formula '. In order to

do that, we must �rst investigate the behavior of Pr~�1('jKB) for small ~� . Fix some su�ciently

small ~� > 0, and let Q be the set of maximum entropy points of S~� [KB ]. Assume KB and ~�

are stable for ��. By de�nition, this means that for every ~v 2 Q, �(~v) = ��. Let I be the set of

i's for which �� contains the conjunct 9xAi(x). Since for all ~v, �(~v) = ��, we must have that

for all i 2 I , vi > 0. Since Q is a closed set, this implies that there exists some � > 0 such that

for all ~v 2 Q and for all i 2 I , vi > �. Let �[�] be the formula:^
i2I

jjAi(x)jjx > �:

The following proposition is now easy to prove:

Proposition D.4.3: Suppose that KB and ~� are stable for �� and, that Q, i, �[�], and �6= are

as above. Then

Pr~�1('jKB) =
X

D2A( )

Pr~�1('jKB0 ^ �[�] ^ �� ^D) �Pr~�1(DjKB):

Proof: Clearly, �[�] satis�es the conditions of Corollary 7.1.14, allowing us to conclude that

Pr~�1(�[�]jKB) = 1. Similarly, by Theorem 7.2.23 and the assumptions of Theorem 7.2.27,

we can conclude that Pr~�1(��jKB) = 1. Since the conjunction of two assertions that have

probability 1 also has probability 1, we conclude using Theorem 7.1.16 that Pr~�1('jKB) =

Pr~�1('jKB ^ �[�] ^ ��).
Now, recall that  is equivalent to the disjunction

W
D2A( )D. By straightforward proba-

bilistic reasoning, we can therefore conclude that:

Pr~�1('jKB ^ �[�] ^ ��) =
X

D2A( )

Pr~�1('jKB ^ �[�] ^ �� ^D) � Pr~�1(DjKB ^ �[�] ^ ��):

In order to bring the second expression to the desired form, we appeal to Theorem 7.1.16 again.

That is, Pr~�1(DjKB ^ �[�] ^ ��) = Pr~�1(DjKB). The desired expression now follows.

We now simplify the expression Pr~�1('jKB ^ �[�] ^ �� ^D):

Proposition D.4.4: For ', KB, ��, D, �[�] as above, if Pr~�1(DjKB) > 0, then

Pr~�1('jKB 0 ^ �[�] ^ �� ^D) = Pr1('j�� ^D);

and its value is either 0 or 1. Note that since the latter probability only refers to �rst-order

formulas, it is independent of the tolerance values.

Proof: If Pr~�1(DjKB) > 0, then the �rst limit above is well-de�ned. That the second limit

is either 0 or 1 is proved in Theorem 6.3.4, where it is shown that the asymptotic probability

of any pure �rst-order sentence when conditioned on knowledge of the form �� ^D (which is,
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essentially, what was called a model description in Chapter 6) is either either 0 or 1. Very

similar techniques can be used to show that the �rst limit is also either 0 or 1, and that the

conjuncts KB 0 ^ �[�] do not a�ect this limit (so that the left-hand side and the right-hand side

are in fact equal). We brie
y sketch the relevant details here, referring the reader to Section 6.3

for full details.

The idea (which actually goes back to Fagin [Fag76]) is to associate with a model description

such as ��^D a theory T which essentially consists of extension axioms. Intuitively, an extension

axiom says that any �nite substructure of the model, de�ned by a complete description D0 can

be extended in all possible ways de�nable by another description D00. We say that a description

D00 extends a description D0 if all conjuncts of D0 are also conjuncts in D00. An extension

axiom has that form 8x1; : : : ; xj (D0 ) 9xj+1D00), where D0 is a complete description over

X = fx1; : : : ; xjg and D00 is a complete description over X [ fxj+1g, such that D00 extends

D0, both D0 and D00 extend D, and both are consistent with ��. It is then shown that (a)

T is complete (so that for each formula �, either T j= � or T j= :�) and (b) if � 2 T then

Pr1(�j�� ^ D) = 1. From (b) it easily follows that if T j= �, then Pr1(�j�� ^ D) is also 1.

Using (a), the desired 0-1 law follows. The only di�erence from the proof in Section 6.3 is that

we need to show that (b) holds even when we condition on KB 0 ^ �[�] ^ �� ^D, instead of just

on �� ^D (that is, we need to reprove Proposition C.2.2).

So, suppose � is the extension axiom 8x1; : : : ; xj (D0 ) 9xj+1D00). We must show that

Pr1(�jKB 0 ^ �[�] ^ �� ^D) = 1. Fix a domain size N and consider the set of worlds satisfying

KB 0^�[�]^��^D. Now consider some particular j domain elements, say d1; : : : ; dj, that satisfy

D0. Observe that, since D0 extends D, the denotations of the constants are all among d1; : : : ; dj.

For a given d 62 fd1; : : : ; djg, let B(d) denote the event that d1; : : : ; dj; d satisfy D00, given that

d1; : : : ; dj satisfy D0. What is the probability of B(d) given �� ^ D ^ KB ^ �[�]? First, note

that since d does not denote any constant, it cannot be mentioned in any way in the knowledge

base. Thus, this probability is the same for all d. The description D00 determines two types

of properties for xj+1. The unary properties of xj+1 itself|i.e., the atom Ai to which xj+1
must belong|and the relations between xj+1 and the remaining variables x1; : : : ; xj using the

non-unary predicate symbols. Since D00 is consistent with ��, the description �� must contain a

conjunct 9xAi(x) if D00 implies Ai(xj+1). By de�nition, �[�] must therefore contain the conjunct

jjAi(x)jjx > �. Hence, the probability of picking d in Ai is at least �. For any su�ciently large

N , the probability of picking d in Ai which is di�erent from d1; : : : ; dj (as required by the

de�nition of the extension axiom) is at least �=2 > 0. The probability that d1; : : : ; dj; d also

satisfy the remaining conjuncts of D00, given that d is in atom Ai and d1; : : : ; dj satisfy D0,

is very small but bounded away from 0. (For this to hold, we need the assumption that the

non-unary predicates are not mentioned in the KB .) This is the case because the total number

of possible ways to choose the properties of d (as they relate to d1; : : : ; dj) is independent of

N . We can therefore conclude that the probability of B(d) (for su�ciently large N), given that

d1; : : : ; dj satisfy D, is bounded away from 0 by some � independent of N . Since the properties

of an element d and its relation to d1; : : : ; dj can be chosen independently of the properties

of a di�erent element d0, the di�erent events B(d); B(d0); : : : are all independent. Therefore,

the probability that there is no domain element at all that, together with d1; : : : ; dj, satis�es
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D00 is at most (1 � �)N�j . This bounds the probability of the extension axiom being false,

relative to �xed d1; : : : ; dj. There are
�N
j

�
ways of these choosing j elements, so the probability

of the axiom being false anywhere in a model is at most
�N
j

�
(1� �)N�j. This tends to 0 as N

goes to in�nity. Therefore, the extension axiom 8x1; : : : ; xj (D0 ) 9xj+1D00) has asymptotic

probability 1 given KB 0 ^ �[�] ^ �� ^D, as desired.

Finally, we are in a position to prove Theorem 7.2.27.

Theorem 7.2.27: Let ' be a formula in L�, and let KB = KB 0 ^  be an essentially

positive knowledge base in L�1 which is separable with respect to '. Let Z be the set of constants

appearing in ' or in  (so that KB 0 contains none of the constants in Z), and let �6= be the

formula
V
c;c02Z c 6= c0. Assume that there exists a size description �� such that, for all ~� > 0,

KB and ~� are stable for ��, and that the space S
~0[KB ] has a unique maximum entropy point

~v, then:

Pr1('jKB) =

P
D2A( ^�6=) Pr1('j�� ^D)F[D](~v)P

D2A( ^�6=) F[D](~v)
;

if the denominator is positive.

Proof: Assume without loss of generality that  mentions all the constant symbols in ', so

that A( ^ �6=) � A( ). By Proposition D.4.3,

Pr~�1('jKB) =
X

D2A( )

Pr~�1('jKB ^ �[�] ^ �� ^D) � Pr~�1(DjKB):

Note that we cannot easily take limits of Pr~�1('jKB ^ �[�] ^ �� ^ D) as ~� goes to ~0, because

of the dependence of this expression on �[�] (the value of � used depends on the choice of ~�).

However, applying Proposition D.4.4, we get

Pr~�1('jKB) =
X

D2A( )

Pr1('j�� ^D) � Pr~�1(DjKB):

We can now take the limit as ~� goes to ~0. To do this, we use Proposition D.4.2. The hypotheses

of the theorem easily imply that Pr1( jKB0) > 0. Part (a) tells us we can ignore those complete

descriptions that are inconsistent with �6=. We can now apply part (b) to get the desired result.
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