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Abstract

This dissertation describes a reasoning framework for knowledge-based systems,

that is specific to the task of abstracting higher-level concepts from time-stamped

data, but that is independent of any particular domain.  I specify the theory

underlying the framework by a logical model of time, parameters, events, and

contexts: a knowledge-based temporal-abstraction theory.  The domain-specific

knowledge requirements and the semantics of the inference structure that I

propose are well defined and can be instantiated for particular domains.  I have

applied my framework to the domain of clinical medicine.

My goal is to create, from primary time-stamped patient data, interval-based

temporal abstractions, such as "severe anemia for 3 weeks in the context of

administering the drug AZT," and more complex patterns, involving several such

intervals.  These intervals can be used for planning interventions for diagnostic

or therapeutic reasons, for monitoring plans during execution, and for creating

high-level summaries of electronic medical records.  Temporal abstractions are

also helpful for explanation purposes.  Finally, temporal abstractions can be a

useful representation for comparing a therapy planner’s recommendation with

that of the human user, when the goals in both plans can be described in terms of

creation, maintenance, or avoidance of certain temporal patterns.

I define a knowledge-based temporal-abstraction method that decomposes the

task of abstracting higher-level, interval-based abstractions from input data into

five subtasks .  These subtasks are then solved by five separate, domain-

independent, temporal-abstraction mechanisms.  The temporal-abstraction

mechanisms depend on four domain-specific knowledge types .  The semantics

of the four knowledge types and the role they play in each mechanism are

defined formally.  The knowledge needed to instantiate the temporal-abstraction

mechanisms in any particular domain can be parameterized and can be acquired

from domain experts manually or with automated tools.
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I present a computer program implementing the knowledge-based temporal-

abstraction method: RÉSUMÉ .  The architecture of the RÉSUMÉ system

demonstrates several computational and organizational claims with respect to

the desired use and representation of temporal-reasoning knowledge.  The

RÉSUMÉ system accepts input and returns output at all levels of abstraction;

generates context-sensitive and controlled output; accepts and uses data out of

temporal order, modifying a view of the past or of the present, as necessary;

maintains several possible concurrent interpretations of the data; represents

uncertainty in time and value; and facilitates its application to additional

domains by editing only the domain-specific temporal-abstraction knowledge.

The temporal-abstraction knowledge is organized in the RÉSUMÉ system as

three ontologies (domain-specific theories of relations and properties) of

parameters, events, and interpretation contexts, respectively, in each domain.

I have evaluated the RÉSUMÉ system in the domains of protocol-based care,

monitoring of children’s growth, and therapy of insulin-dependent diabetic

patients.  I have demonstrated that the knowledge required for instantiating the

temporal-abstraction mechanisms can be acquired in a reasonable amount of

time from domain experts, can be easily maintained, and can be used for creating

application systems that solve the temporal-abstraction task in these domains.

Understanding the knowledge required for abstracting clinical data over time is a

useful undertaking.  A clear specification of that knowledge, and its

representation in an ontology specific to the task of abstracting concepts over

time, as was done in the architecture of the RÉSUMÉ system, supports designing

new medical and other knowledge-based systems that perform temporal-

reasoning tasks.  The formal specification of the temporal-abstraction knowledge

also supports acquisition of that knowledge from domain experts, maintenance

of that knowledge once acquired, reusing the problem-solving knowledge for

temporal abstraction in other domains, and sharing the domain-specific

knowledge with other problem solvers that might need access to the domain’s

temporal-reasoning knowledge.
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Chapter 1:  The Temporal Abstraction Task

1

1  Introduction:

The Temporal-Abstraction Task

There are many domains of human endeavor that require the collection of

substantial amounts of data over time and the abstraction of those data into

higher-level concepts, meaningful in that domain.  In my dissertation, I have

investigated the nature of this task, the type of knowledge required for solving it

in uniform fashion in different domains, and how that knowledge should be

represented and used.  I have focused in my examples on several subdomains of

clinical medicine, in which the task of abstraction of data over time occurs

frequently.  Most of the ideas I shall discuss, however, are quite general, and are

applicable to other domains in which data need to be interpreted over time.

Most clinical tasks require measurement and capture of numerous patient data.

Methods for storing these data in specialized medical-record databases are

evolving.  However, physicians who have to make diagnostic or therapeutic

decisions based on these data may be overwhelmed by the number of data if the

physicians’ ability to reason with the data does not scale up to the data-storage

capabilities.  Furthermore, most of these data include a time stamp in which the

particular datum was valid; and an emerging pattern over a stretch of time has

much more significance than an isolated finding or even a set of findings.  The

ability to combine several significant contemporaneous findings and to abstract

them into clinically meaningful higher-level concepts in a context-sensitive

manner, ignoring less significant data, and the ability to detect significant trends

in both low-level data and abstract concepts, are  hallmarks of the experienced

physician.

Thus, it is highly desirable for an automated, knowledge-based medical decision-

support tool that assists physicians who monitor patients over significant

periods, to provide short, informative summaries of clinical data stored on
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electronic media, and to be able to answer queries about abstract concepts that

summarize the data.  Providing these abilities would benefit both a human

physician and an automated decision-support tool that recommends therapeutic

and diagnostic measures based on the patient's clinical history up to the present.

Such concise, meaningful summaries, apart from their immediate intrinsic value,

support the automated system’s further recommendations for diagnostic or

therapeutic interventions, provide a justification for the system’s or for the

human user’s actions, and monitor plans suggested by the physician or by the

decision-support system.  Such a meaningful summary cannot use only time

points, such as dates when data were collected; it must be able to characterize

significant features over periods of time, such as "5 months of decreasing liver

enzyme levels in the context of recovering from hepatitis."  I refer to such periods

as intervals  of time, and to the high-level characterizations attached to these

intervals as abstractions .

However, most medical decision-support systems, including most knowledge-

based ones, either do not represent detailed temporal information about the data

at all, or do not have sufficient general temporal-reasoning knowledge to enable

reasoning about temporal relations explicitly.  The few systems that include

temporal-reasoning capability encode both the general temporal-reasoning

knowledge and the temporal-reasoning knowledge specific to the particular

clinical domain in application-specific rules and functions using procedural

representations, such as arbitrary code.  Other approaches in clinical information

systems supply a general procedural syntax for clinical algorithms, and even

provide data types for time points or intervals, but do not allow for any

predefined semantic aspects (e.g., the concept of a SIGNIFICANT CHANGE OVER

TIME) that are specific to the task of abstracting higher-level concepts from time-

stamped data, but that are independent of the particular application domain.

Such representations often rely on the particular terms of the domain they

represent, as well as on the particular terms of the task in which they are being

used; sometimes, they even rely on the particular institution  at which they are

used (e.g., the clinical parameter SERUM POTASSIUM might have a different label

in different hospitals).
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The use of such domain-specific approaches enables little reuse of the underlying

domain-independent temporal-reasoning knowledge for other domains; neither

does it enable sharing the domain-specific temporal-reasoning knowledge

accumulated for the particular encoded task with other tasks and problem-

solving methods involving some kind of reasoning about time in the same

domain.  For instance, it is correct to infer from two consecutive episodes of

fever, each lasting 1 week, that the patient had an episode of fever lasting 2

weeks.  In addition, a conclusion of having a 3-week fever might be valid in

certain contexts when there was a nonmonitored gap of a week between the two

1-week fever episodes, but probably not if the gap was more than a month.

However, it is definitely not the case that two episodes of pregnancy, each lasting

9 months, can be abstracted into a longer pregnancy episode of 18 or more

months, even if the two episodes could happen consecutively.  Such reasoning

uses knowledge about the temporal-semantic  properties of the clinical parameters

involved, knowledge that is specific for a particular domain (e.g., a clinical area)

of application, and that is crucial for the domain-independent task of temporal

abstraction.  Most knowledge-based systems do not represent this knowledge

explicitly, although it is used implicitly.  In addition, due to the idiosyncratic

nature of the knowledge-representation scheme of temporally oriented

knowledge used in most systems, it is difficult to acquire the required knowledge

from expert physicians in a uniform, well-defined way, or to maintain that

knowledge, once acquired.  Finally, if an explicit representation of that

knowledge is lacking, it is even more difficult to construct an automated

knowledge-acquisition tool that might be used directly by an expert physician to

build the required medical knowledge base.  Constructing such tools, when

possible, has been shown to have major benefits, mainly in facilitating the

acquisition of knowledge without the intervention of a knowledge engineer.

This dissertation concerns a reasoning method and its required knowledge, that

are specific to the task of abstracting higher-level concepts from time-stamped

data in knowledge-based systems, but independent of any particular domain.  I

specify the theory underlying the method in a general, domain-independent way

by a logical model of time, events (e.g., administration of a drug ) parameters
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(e.g., platelet count), and the contexts these entities create for interpretation of

data (e.g., a period of chemotherapy effects): a knowledge-based  temporal-

abstraction theory.  Thus, the domain-specific requirements and semantics of the

method I propose are well defined and can be easily customized for particular

domains.  My goal is to create, from input time-stamped data, interval-based

temporal abstractions, such as "severe anemia for 3 weeks in the context of

administering the drug AZT," as well as abstractions defined by more complex

patterns, involving several such intervals.  These intervals can be used for

planning interventions for diagnostic or therapeutic reasons, for monitoring

therapy plans during execution, and for creating high-level summaries of

medical records that reside on a clinical database.  Temporal abstractions are also

helpful for explanation purposes.  Finally, temporal abstractions can be a useful

representation for comparing the system’s recommended plan with that of the

human user, when the overall and intermediate goals in both plans can be

described in terms of creating and maintaining certain temporal patterns.

My methodology involves defining a knowledge-based temporal-abstraction

method that decomposes the task  of abstracting higher-level, interval-based

abstractions from input data into several subtasks .  These subtasks are then

performed by several separate, domain-independent, temporal-abstraction

mechanisms .  The temporal-abstraction mechanisms depend on four domain-

specific knowledge types.  I define the independent mechanisms composing the

temporal-abstraction method in a formal, uniform, explicit way, such that the

knowledge  needed to instantiate them in any particular domain and task can be

parameterized and acquired from domain experts manually, with automated

tools, or by other methods (e.g., machine learning).  I organize the domain-

specific knowledge required for instantiating the temporal-abstraction

mechanisms as four separate types (or categories) to emphasize the nature of the

knowledge contained in each category and the role  that knowledge plays in the

reasoning performed by each mechanism.

The temporal-abstraction mechanisms that I suggest can be packaged together

(as when used by the knowledge-based temporal-abstraction method) or used
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separately; thus some, or all, of them can be configured within a more general

problem solver, such as a therapy planner.  The domain-specific knowledge they

use has clear semantics and can be shared with other applications in the same

domain that require similar types of temporal reasoning.

1.1  The Temporal-Abstraction Task in Clinical Domains

Consider the following task:  Given time-stamped patient data and several

clinical events (e.g., therapy administration), possibly accumulated over a long

time, produce an analysis of the data that interprets past and present states and

trends and that is relevant for clinical decision-making purposes in the given or

implied clinical contexts.  The clinical decision-making purposes usually include

determining an intermediate-level, temporal-interval-based diagnosis (e.g., "a

period of 5 weeks of grade III toxicity of the bone marrow due to the effects of

the therapy," or "an abnormal growth pattern between the ages of 2 and 15 years,

compatible with a constitutional growth delay").  The overall diagnosis, such as

“AIDS” or “diabetes” is often part of the input, providing a context within which

meaningful abstractions are formed.  Figure 1.1 shows an example of a possible

input for the temporal-abstraction task, and the resulting output, in the case of a

patient who is  receiving a clinical regimen for treatment of chronic graft-versus-

host disease (GVHD), a complication of bone-marrow transplantation.

The goals of the temporal-abstraction task may be to evaluate and summarize the

state of the patient over a time interval (possibly, the full span of the patient’s

known record), to identify various possible problems, to assist in a revision of an

existing therapy plan, or to support a generation of a new plan.  In addition,

generation of meaningful intervals supports the task of explaining the system’s

plans and actions to several different classes of users (e.g., a resident physician, a

nurse, an experienced clinical expert).  Finally, representation of overall goals

(policies), as well as intermediate ones, as temporal patterns to be achieved or

avoided, enables comparison between the plans generated by a knowledge-based

system and plans suggested by a user, and supports monitoring the progress of

either type of plan.  Many of these goals are typical to guideline-based therapy .
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Figure 1.1:   Inputs to and outputs of the temporal-abstraction task.

(a) Platelet and granulocyte counts during administration of a prednisone/azathioprine (PAZ)

protocol for treating patients who have chronic graft-versus-host disease (CGVHD).   =

event; • = platelet counts; ∆ = granulocyte counts.  The time line starts with the bone-marrow

transplantation (BMT) event.  This input  is typical for temporal-abstraction tasks.

(b) Abstraction of the platelet and granulocyte counts shown in Figure 1.1a.   = closed

context interval;  = open context interval;  = closed abstraction interval; M[n ] =

myelotoxicity grade n .  Both types of intervals are typically part of the output of a method solving

the temporal-abstraction task.
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There are several points to note with respect to the desired computational

behavior of a method that creates meaningful abstractions from time-stamped

data:

1. The method should be able to accept as input both numeric and qualitative data.

Some of these data might be at different levels of abstraction  (i.e., we might be given

either raw data or higher-level concepts as primary input, perhaps abstracted by

the physician from the same or additional data).  The data might also involve

different forms of temporal representation (e.g., time points  or time intervals).

2.  The output abstractions should also be available for query purposes at all levels

of abstraction, and should be created as time points  or as time intervals, as

necessary, aggregating relevant conclusions together as much as possible (e.g.,

"extremely high blood pressures for the past 8 months in the context of treatment

of hypertension").  The outputs generated by the method should be controlled,

sensitive to the goals of the abstraction process for the task at hand (e.g., only

particular types of output might be required).  The output abstractions should

also be sensitive to the context in which they were created.

3.  Input data should be used and incorporated in the interpretation even if they

arrive out of temporal order (e.g., a laboratory result from last Tuesday arrives

today).  Thus, the past can change our view of the present.  I call this

phenomenon a view update.  Furthermore, new data should enable us to reflect

on the past; thus, the present (or future) can change our interpretation of the past,

a property referred to as hindsight [Russ, 1989].

4.  Several possible interpretations of the data might be reasonable, each

depending on additional factors that are perhaps unknown at the time (such as

whether the patient has AIDS); interpretation should be specific to the context in

which it is applied.  All reasonable interpretations of the same data relevant to

the task at hand should be available automatically or upon query.
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5.  The method should leave room for some uncertainty  in the input and the

expected data values, and some uncertainty in the time  of the input or the

expected temporal pattern.

6.  The method should be generalizable to other clinical domains and tasks.  The

domain-specific assumptions underlying it should be explicit and as declarative

as possible (as opposed to procedural code), so as to enable reuse of the method

without rebuilding the system, acquisition of the necessary knowledge for

applying it to other domains, maintenance  of that knowledge, and sharing  that

knowledge with other applications in the same domain.

An example of a common clinical problem in which the temporal-abstraction task

plays a central role is the management of patients who are being treated

according to clinical  protocols.  Clinical protocols are therapy guidelines for

particular diseases and clinical conditions, that usually prescribe a detailed and

complex set of rules that the physician should follow.  Apart from the benefit of

using expert knowledge accumulated over years, using such standard protocols

allows potential therapeutic regimens to be compared and evaluated.  An

inherent requirement of protocol-based care is to accumulate and analyze large

amounts of patient data, sometimes including many dozens of clinical

parameters (laboratory test results, physical findings, assessments by physicians)

over time, in the context of one or more treatment protocols (see Figure 1.2).  The

goal is to revise continuously an assessment of the patient’s condition by

abstracting higher-level features and states (e.g., a drug-toxicity state) from raw

numerical and qualitative data at various levels of abstraction (e.g., hemoglobin

[Hb] values).  These higher-level features can be used in monitoring the effects of

the interventions indicated by the protocol, in recognizing problems, and in

suggesting possible modifications to the original treatment plan.  Examples of

knowledge-based systems designed solely for the task of assisting physicians

treating patients by clinical protocols include ONCOCIN  in the oncology domain

[Tu et al., 1989], and T-HELPER  in the AIDS domain [Musen et al., 1992a].
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Answering the typical protocol-related question “Did the patient have a period

of 3 or more weeks of bone-marrow toxicity, Grade II, within the past 6 months,

during the administration of the PAZ protocol?” requires the abilities (1) to

abstract levels of bone-marrow toxicity from several parameters and events;  (2)

to bridge the temporal gaps among several data points and intervals, in order to

create longer meaningful intervals; and (3) to reason about relationships among

various temporal intervals, including physical events (e.g., drug administration)

as well as abstracted data (e.g., “moderate granulocyte toxicity”).  Note that only

some of this knowledge is represented explicitly in any particular clinical

protocol.  A major part of this knowledge is implicit in the underlying

assumptions of the protocol designer, including the protocol-interpreting

capabilities of the patient's own physician.

In Chapter 3, I discuss previous approaches to temporal reasoning in medicine in

general and to the temporal-abstraction task in particular.  I point out features of

these approaches that allow comparison to my methodology.  Further

comparisons with previous approaches are made in the context of discussions of

my work appearing at the end of Chapters 4 through 7.  A summary of all

comparisons to other approaches appears in Section 8.3.  Each of the previous

approaches has various advantages and disadvantages.  None of them, however,

focuses on the knowledge-acquisition, knowledge-maintenance, knowledge-

reuse, or knowledge-sharing aspects of designing and building large knowledge-

based medical systems that are designed to deal with temporal aspects of clinical

data.

1.2 The Temporal-Abstraction Method and Its Mechanisms

Since a major emphasis of this work is reasoning about time, it is useful to

discuss briefly how time might be represented at all in computer applications,

and what are some of the difficulties inherent in temporal reasoning.  In

Chapter 3, I delve more deeply into the details of various temporal-reasoning

approaches and computer systems in general, and of approaches applied to

clinical domains in particular.  Here I present only a brief overview.
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1.2.1  Temporal Reasoning in Philosophy and Computer Science

Philosophers, linguists, and logicians have been debating the best representation

of the concept of time, and the best means of reasoning about time, for at least

2500 years.  For instance, Aristotle was occupied by the meaning of the truth

value of future propositions; the stoic logician Diodorus Cronus, following

Aristotle's methods, constructed the master argument  that tried to conclude that

every possibility is realized in the past or the future [Rescher and Urquhart,

1971].  A landmark work by Prior [1955] attempted to reconstruct the Diodorian

master argument in modern terms, using constructs such as "it will be true in the

future that p," thus defining what is now known as tense logic  [Prior, 1957; Prior,

1967].

Linguists and logicians have worked on various aspects of the use of tenses in

natural language [Reichenbach, 1947; Anscombe, 1964].  Some of these

approaches inspired early attempts in constructing computer programs that

could reason about natural-language tenses [Bruce, 1972].

The work in temporal logic, however, was sparked by research in computer

science in general, and by that in artificial intelligence (AI) in particular.  Any

attempt to simulate an intelligent agent must incorporate some notion of time,

and systems that implement a model of plans and actions must deal with several

nontrivial issues relevant to the concepts of time and action.

Typical issues faced by systems that try to reason about time include the basic

units of time (e.g., points, intervals, or just events that create time references,

such as BIRTH); the granularity of time (e.g., discrete or continuous

representations); the meaning of special time references, such as PAST, PRESENT

and FUTURE (e.g., a uniform representation of all time references on a single time

line, or granting the time NOW a special status); the branching of time (e.g., the

timeline might be linear, parallel, branching), and the semantics of temporal

connectors (e.g., whether BEFORE is indeed the antonym of AFTER).  Various

approaches were used that have both advantages and disadvantages, depending

on the type of task to which the particular model is applied.
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One approach that has been very influential in the AI community is Allen's

temporal logic, which uses time intervals as the primitive time units [Allen,

1984].  Allen defined a small number of basic binary relations that could hold

among two intervals, such as BEFORE, DURING, and OVERLAPS (see Figure 3.1 in

Section 3.1).  One advantage of Allen's logic is the ability to express temporal

ambiguity in a natural way.  For instance, a patient might mention that he

suffered from headache during, or perhaps following, a treatment, without any

precise time stamps being mentioned.  Unfortunately, some of the results in

computer science in the past decade indicate that including such expressiveness

in the temporal language used makes the complexity of computation of certain

relations expressed in that language intractable.  In particular, the problem of

computing all the temporal relationships (such as BEFORE or AFTER) implicit in a

set of given temporal relations among time intervals, using Allen's set of interval-

based relations, has been shown to be NP-hard [Villain and Kautz, 1986; Villain

et al., 1989].  This result is highly discouraging with respect to finding tractable

algorithms for the problem of computing all the potentially interesting temporal

relations among a given set of temporal intervals, as well as for many related

problems.  The implication of this complexity result is that finding a possible

time-ordered scenario of all the events conforming to the constraints implicit in a

set of statements such as "John had a headache after the treatment," "while

receiving the treatment, John read a paper," and "before the headache, John

experienced a visual aura," or deciding that a given set of temporal relations

contains an inconsistency, probably cannot be done in any reasonable

(polynomial) time.  (One such scenario might be "John read the paper during the

treatment; and after reading the paper experienced a visual aura that started

during the treatment, but ended after the treatment; then he had a headache."

Many other scenarios are possible; sometimes, no scenarios are possible.)

Another approach to modeling time is to use not time intervals as the basic time

primitives, but time points [Mcdermott, 1982; Shoham, 1987].  This model is

natural in many clinical domains, especially where monitoring tasks are

common, since data are typically time-stamped unambiguously.  In addition,

computations based on time points are typically more manageable.
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1.2.2  The Knowledge-Based Temporal-Abstraction Method

Choosing an appropriate representation for time is only one facet of the

temporal-abstraction task.  In Chapter 4, I describe my methodology for

representing and for using knowledge about abstraction of higher-level concepts

from time-stamped input data.  In Chapter 5, I describe a particular architecture

implementing that methodology, an architecture that demonstrates several

additional claims regarding the nature of the temporal-abstraction task and the

requirements for a general solution for that task that also addresses the need to

facilitate the acquisition, representation, maintenance, reuse, and sharing of the

knowledge required for solving that task.

I have chosen to use as a basis for my methodology a temporal model that

includes both time intervals and time-stamped points.  Time points are the

temporal primitives, but logical propositions (such as primary values and

abstractions of data) are interpreted over time intervals .  A time interval I is

represented as an ordered pair of time points representing the interval’s end

points, [I.start, I.end].  A time point T is a 0-length interval [T, T].  The temporal

model follows the temporal logic suggested by Shoham [1987].  I have restricted

Shoham’s logic to the terms of the temporal-abstraction task; I have also

expanded some aspects of that logic.  Data values or their abstractions, called

parameters , are interpreted over time intervals in which they hold.  An external

event  (an action or process) also is interpreted over a time interval.  As I show in

Chapter 4, the interpretation contexts  implied by the various parameters, events,

goals of the abstraction process, and their combinations, and the temporal spans

of the interpretation contexts, are important components in my model.

The knowledge-based temporal-abstraction method  decomposes the temporal-

abstraction task discussed in Section 1.1 into five subtasks (Figure 1.2).  These

subtasks are explained in detail in Chapter 4.1   The subtasks include:

1 This introduction uses intuitive terms, trusting that the underlying concepts are clear enough
for an informal exposition.  Terms such as task, method, and mechanism are defined in Section 2.2;
terms such as parameter , event , and interpretation context are defined formally in Section 4.1.   It is
sufficient to note at this point that tasks  include a set of goals, such as clinical management or
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1. Temporal-context restriction  (creation of relevant interpretation contexts

crucial for focusing and limiting the scope of the inference)

2. Vertical temporal inference (inference from contemporaneous

propositions into higher-level concepts)

3. Horizontal temporal inference (inference from similar-type propositions

attached to intervals that cover different time periods)

4. Temporal interpolation (join of disjoint points or intervals, associated

with propositions of similar type, sometimes called “aggregation”)

5. Temporal-pattern matching (creation of intervals by matching of patterns

over disjoint intervals, associated with propositions of various types)

In Chapter 3 I discuss several alternative approaches, described by other

researchers, to the task of interpreting clinical data over time.  Most or all of the

approaches and systems discussed turn out on close examination to be solving to

some degree the same five tasks that are created by the knowledge-based

temporal-abstraction method.  These approaches, however, usually do not

differentiate among these tasks clearly, and do not state explicitly the knowledge

involved in solving them.

The five subtasks of the knowledge-based temporal-abstraction method are solved

by five lower-level temporal-abstraction mechanisms  (computational modules

that cannot be decomposed further).  I have defined five general, reusable

temporal-abstraction  mechanisms that can solve these subtasks [Shahar et al.,

1992; Shahar and Musen, 1993].  The relationships between these mechanisms

and the five tasks posed by the knowledge-based temporal-abstraction method

are shown in Figure 1.2.

The temporal-abstraction mechanisms must be instantiated with domain-specific

knowledge in order to be useful for any particular task.

diagnosis, and they are typically performed within specific domains , such as management of
patients who have AIDS.
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Figure 1.2:  The knowledge-based temporal-abstraction method.

The temporal-abstraction task is decomposed by the knowledge-based temporal-abstraction

method into five subtasks.  Each subtask can be solved by one of five temporal-abstraction

mechanisms.  The temporal-abstraction mechanisms depend on four domain- and task-specific

knowledge types .   = task;  = method or mechanism;  =  knowledge type; —> =

DECOMPOSED-INTO relation;  = SOLVED-BY relation; --> = USED-BY relation.
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This domain-specific knowledge is the only interface between the knowledge-based

temporal-abstraction method and the knowledge engineer or the domain expert.  Thus,

the development of a temporal-abstraction system particular to a new domain

relies only on creating or editing a predefined set of four knowledge categories,

most of which are purely declarative.

I distinguish among four domain knowledge types used by the temporal-

abstraction mechanisms:

1. Structural knowledge  (e.g., IS-A and PART-OF relations in the domain)

2. Classification knowledge (e.g., classification of Hb count ranges into LOW,

HIGH, VERY HIGH)

3. Temporal semantic knowledge (e.g., the relations among propositions

attached to intervals and their subintervals)

4. Temporal dynamic  knowledge (e.g., persistence of the value of a parameter

over time)

The four domain-specific knowledge types required for instantiating these

mechanisms in any particular domain and their relationship to the mechanisms

are also shown in Figure 1.2.  These mechanisms can be instantiated for most

application domains for many tasks that involve context-sensitive reasoning

about time-oriented data.  The output of the mechanisms consists of values of

new parameters, that represent different types of abstraction of the input

parameters (e.g., Hb values).  Examples include state (a classification of the value

of the parameter), gradient  (the direction of the parameters’ change), and rate  (a

classification of the rate of change of a parameter) abstractions.  Note that an

abstraction of a parameter is a new parameter with its own set of values and

properties.  MODERATE_ANEMIA is thus one value of the state abstraction of the

Hb parameter (i.e., the Hb_State parameter).  Parameters include raw data or

abstractions of those data (including whole patterns) at any level.  A detailed and

formal description and analysis of the mechanisms, the tasks they solve within

the temporal-abstraction method, and their knowledge requirements is provided
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AZT-toxicity interpretation context

AZT administration

Figure 1.3.  Inducing an interpretation context by an event.  The event of administering AZT

induces, in this context, a (potential) AZT-toxicity interpretation context that starts 2 weeks after

the start of the AZT administration event and ends 4 weeks after the end of that event.  Within

that context would be activated only the temporal-abstraction functions relevant to that

interpretation context.  = event;  = closed context interval.

in Chapter 4.  A discussion of the knowledge structures used by the mechanisms

is presented in Chapter 5.  I shall therefore outline here only the role of the five

basic mechanisms.

1.2.2.1 The context-forming mechanism  creates dynamically domain-specific

interpretation contexts induced  by combinations of domain-specific events,

abstractions, goals of the abstraction process, and by combinations of existing

interpretation contexts.  This mechanism also shields the other temporal-

abstraction mechanisms from dependence on the domain’s particular events and

abstractions, since the temporal-abstraction mechanisms assume only the

existence of well-defined contexts.  The context-forming mechanism solves the

task of context restriction .  It uses mainly structural and classification knowledge

(e.g., PART-OF and SUBCONTEXT relations of events and contexts, respectively).

Figure 1.3 presents a typical example of inducing an interpretation context for

expected toxicity abstractions after administration of a bone-marrow suppressive

drug.
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Hb = 7.9 ∆WBC = 2200

Bone-marrow toxicity = GRADE II

|

(b)

•

Hb_STATE = LOW

(a)

Figure 1.4:  Contemporaneous abstraction.  (a) Abstraction of the value of a single parameter

(hemoglobin [Hb] value) by classification, transforming it into the LOW value of the Hb state-

abstraction parameter.  (b) Abstraction of multiple, contemporaneous, data points into a value of

an abstract concept.  | = zero-length time interval.

1.2.2.2 The contemporaneous-abstraction mechanism abstracts one or more

parameters and their values, attached to contemporaneous points or intervals,

into a value of a new, abstract parameter.  An example is when a clinical protocol

combines the values of several hematological parameters measured on the same

day into the classification “grade II bone-marrow toxicity” (see Figure 1.4).

Contemporaneous abstraction solves the task of vertical temporal inference . Note

that this mechanism uses mainly structural and classification knowledge about

parameters and their functional dependencies, but might also need temporal

dynamic knowledge (e.g., persistence of value) in order to align correctly in time

measurements of several parameters that are not stamped with precisely the

same time stamp—a common case in clinical domains.
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1.2.2.3 The temporal-inference mechanism infers very specific types of interval-

based logical conclusions, given interval-based propositions, that are valid for

the particular domain at hand.  An example is when the domain and task allow

us to join two meeting intervals with a LOW value of the Hb parameter into one

longer abstracted interval that has the LOW value of Hb (See Figure 1.5a).  Thus,

the LOW value of Hb has the concatenable property [Shoham, 1987].  In addition,

if abstractions are concatenable, temporal inference also determines the value  of

the joined abstraction (e.g., DECREASING and INCREASING might be concatenated

into NONMONOTONIC).  Note that two pregnancy episodes would not be

concatenable.  Temporal inference also is used to determine that certain

abstractions, when known for interval I1, can be inferred for every subinterval I2

that is contained in I1.  Such abstractions have a downward-hereditary

inferential property [Shoham, 1987].  Thus, if the characterization “patient has

AIDS” was true throughout 1993, it also was true throughout March 1993 (see

Figure 1.5b).  Note that this conclusion does not  necessarily hold for the

(b)(a)

Hb_State = LOWHb_State = LOW

Hb_State = LOWHb_State = LOW Hb_State = LOW

Figure 1.5:  The temporal-inference mechanism.  (a) Use of the concatenable property to join

intervals associated with concatenable propositions and to infer the LOW value of the Hb state-

abstraction parameter over the joined interval.  (b) Use of the downward hereditary  property to

infer the value of the Hb state-abstraction parameter during a subinterval.   = closed

abstraction interval.
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characterization "the patient had a NONMONOTONIC blood pressure during last

week," since on any particular day the blood pressure could be stable, or at least

have a consistent direction of change.  Temporal inference solves the subtask of

horizontal temporal inference.  It uses temporal semantic knowledge and

classification knowledge (i.e., the join tables).

1.2.2.4 The temporal-interpolation mechanism bridges nonmeeting temporal

points (primary  interpolation) or intervals (secondary  interpolation).  Examples

of its use include creating an abstraction such as "3 weeks of LOW Hb" from two

intervals, each 1 week long, of LOW Hb, separated by a gap of a week (see Figure

1.6).  The temporal-interpolation mechanism uses a domain-specific function, the

maximal-gap function, that returns the maximal allowed time gap between the

two intervals that still enables interpolation over the gap.  If the gap is within the

function's value, the two intervals and the gap between them are joined into one

abstracted interval.  For instance, bridging the gap between two intervals where

the Hb value was classified as LOW depends on the time gap separating the two

•
•

Hb = 8.9

Hb = 7.8

(b)(a)

Hb_GRADIENT = INC Hb_GRADIENT = INC

Hb_GRADIENT = INCHb_GRADIENT = INC

Figure 1.6:  The temporal-interpolation mechanism.  (a) Primary  interpolation  joins two points

into an interval, and calculates the value of the parameter (in this case, the INCREASING value of

the Hb gradient-abstraction parameter) over that interval.  (b)  Secondary  interpolation  joins two

intervals into a longer one.   = closed abstraction interval.
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intervals, on the properties of the Hb-value state abstraction for the value LOW in

that particular context, and on the lengths of time during which the LOW Hb

property was known both before and after the time gap.  The temporal

interpolation mechanism solves the temporal-interpolation subtask.  It uses mainly

(1) temporal dynamic knowledge (e.g., maximal-gap functions), but needs also

(2) temporal semantic knowledge to decide if the propositions are concatenable,

(3) classification knowledge to decide on the value  of the proposition attached to

the joined intervals, and (4) structural knowledge to decide, for instance, if the

parameter can be measured on an ordinal scale.

1.2.2.5 The temporal-pattern–matching mechanism detects complex temporal

patterns in the interval-based abstractions (including other patterns) created by

the temporal-abstraction mechanisms.  The output is a higher-level parameter,

such as “a quiescent-onset pattern of GVHD” (Figure 1.7).  Examples include

detecting a pattern such as “4-6 weeks of a decreasing Hb value, followed within

a month by at least 2 months of decreasing white-blood–cell (WBC) counts.”

Acute GVHD Chronic GVHDBMT

0
Time (days)

Quiescent-onset chronic GVHD

100

Figure 1.7 :  A temporal-pattern parameter.  QUIESCENT-ONSET CHRONIC GVHD is defined as

“CHRONIC GVHD starting at least  100 days after a bone-marrow transplantation event

(considered here as time 0), but within  1 month of the end of a preceding ACUTE GVHD.”   =

closed abstraction interval;  = open abstraction interval; GVHD = graft-versus-host

disease.  BMT = bone-marrow transplantation.
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 Temporal-pattern matching solves the temporal-pattern–matching  subtask.  It uses

mainly pattern-classification knowledge, and some temporal semantic and

dynamic knowledge.

The abstractions created by the model I described are flexible, one of the desired

properties of a temporal-abstraction method as defined in Section 1.1.  As new

data values arrive, or as an old laboratory value arrives out of time, some of the

propositions attached to time points or intervals might no longer hold, and the

changes associated with the update must be propagated to other conclusions

depending on these abstractions.  How the temporal-abstraction mechanisms

handle this essentially defeasible (i.e., potentially retractable) nature of temporal

abstractions will be discussed when presenting the mechanisms formally in

Chapter 4 and when presenting their implementation in Chapter 5.

1.3  The RÉSUMÉ System

I have developed a computer program, RÉSUMÉ , that implements the

knowledge-based temporal-abstraction method to create temporal abstractions

when given time-stamped patient data, clinical events, and a knowledge base of

domain-related events, interpretation contexts and parameters, described in a

particular, well-defined formalism [Shahar and Musen, 1993].  Such a theory of

the domain’s entities, relations, and properties is called the domain’s ontology.

The RÉSUMÉ system emphasizes a particular methodology for modeling time-

oriented domains and the knowledge required for abstracting time-stamped data

in these domains.  The separate mechanisms implemented in the RÉSUMÉ

system and the knowledge structures used to represent the relevant aspects of

the domain's ontology are described in detail in Chapter 5.

A high-level view of  the RÉSUMÉ system architecture is shown in Figure 1.8.

RÉSUMÉ is composed of a temporal-reasoning module, a static domain

knowledge base—namely the domain's ontology (containing knowledge about

parameters, events, and contexts in the domain)—and a dynamic temporal fact
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base, including temporally-oriented input and output data.  The temporal fact

base is coupled loosely to an external database, where primitive patient data and

clinical events are stored and updated.  The inferred abstractions are stored with

the input data in the temporal fact base.  The concluded abstractions also can be

Context-forming mechanism

Temporal-abstraction mechanisms

∆∆
∆

Temporal  fact base

Events

Contexts

Abstractions

Primitive data ∆

Temporal-reasoning mechanisms

Domain knowledge base

Event ontology

Parameter ontology

External  patient database

Context ontology

Figure 1.8:  A schematic view of the RÉSUMÉ system's architecture.  The temporal fact base stores

intervals representing external events, abstractions, and raw data, as well as system-created,

interval-based interpretation contexts and abstractions.  Initial data in the temporal fact base are

derived from the external database.  The context-forming mechanism is triggered by events,

abstractions, and existing contexts to create or remove contexts.  The temporal-abstraction

mechanisms are triggered by intervals and contexts in the temporal fact base to create or retract

abstracted intervals.  Both mechanism types use domain-specific knowledge represented in the

domain's ontology of events, contexts and parameters.   = event;  = closed context

interval;  = abstraction interval;  = data or knowledge flow.
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saved in the external database, permitting additional complex temporal queries

to the external database for detecting arbitrary temporal patterns.  The RÉSUMÉ

system uses, as part of the temporal-pattern–matching mechanism, an internal

language that is used for defining temporal patterns (i.e., pattern-type abstract

parameters), and an external language for querying the dynamic temporal fact

base for the existence of certain types of patterns, that is used for interacting with

the user while running the system.

In Chapter 6, I present the results of representing knowledge in several clinical

domains as an ontology of events, contexts, and parameter properties.  In

particular, I discuss the representation and the use of knowledge relevant for

several protocol-based–care domains, such as treatment of AIDS patients and of

chronic GVHD patients using experimental clinical protocols (Section 6.1).  I also

describe the results of applying the RÉSUMÉ system in two domains

substantially different from experimental clinical protocols:  monitoring of

children’s growth using data that are taken mainly from pediatric growth charts

(Section 6.2), and therapy of insulin-dependent diabetes (Section 6.3).

The experience of acquiring and structuring the temporal-abstraction knowledge

in the domain of monitoring children’s growth was highly valuable for

consolidating the methodology of acquiring temporal-abstraction knowledge

from a domain expert.  It also proved the feasibility of acquiring that knowledge

through several interviews of the domain expert by another knowledge engineer

who collaborated with me.  The results of the application of the temporal-

abstraction mechanisms, using this knowledge, to several clinical test cases in the

domain of analysis of pediatric growth charts have been quite encouraging.  The

RÉSUMÉ system generated in these particular cases most of the intermediate-

level abstractions and patterns that are useful for detecting abnormalities in that

domain.

In the domain of insulin-dependent–diabetes therapy, I have collaborated with

two domain experts.  I have conducted an experiment in which I acquired within

a few meetings most of the temporal-abstraction knowledge from one of the
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experts; the RÉSUMÉ system used that knowledge to analyze a substantial

number of data taken from an electronic patient database.  I also have asked the

experts to specify all of the intermediate- and high-level abstractions (including

temporal and statistical patterns) that they detected in the data.  The experts

agreed on 96% of the different abstractions they found in the data; of these, 80%

were generated by RÉSUMÉ.  However, the experts did not  agree on the

appropriate therapy recommendations in even a single case, demonstrating the

importance of specifying and generating explicit, intermediate-level abstractions

from the data.  These abstractions were more stable than particular treatment

preferences by each expert, and seemed to represent deeper, better-shared, types

of knowledge.

1.4  Problem-Solving Methods and Knowledge Acquisition

The knowledge-based temporal-abstraction method has been developed within

the framework of the PROTÉGÉ–II project [Musen et al., 1995].  PROTÉGÉ–II is a

tool for building knowledge-based systems using a library of modular blocks of

software, representing particular domain-independent problem-solving methods

[Puerta et al., 1992].  In Chapter 2, I present the general paradigm of configuring

knowledge-based systems from problem-solving methods.  One advantage of

that paradigm is the ability to generate automated knowledge-acquisition (KA)

tools for particular problem-solving methods that are chosen, by a designer of a

new knowledge-based system, from a library of predefined modules.  These

methods can be applied to specific tasks in the domain of interest, usually by

using the domain-specific knowledge they require, acquired through the use of

the automated KA tool.

The PROTÉGÉ–II project is an example of the approach of applying a set of

predefined domain-independent problem-solving methods to the design of

knowledge-based systems in general, and to the design of automated KA tools

for these systems in particular.  In Section 2.2, I review briefly the history of this

project.  For the purpose of understanding the relationship between the RÉSUMÉ

system and the PROTÉGÉ–II project, it is sufficient to note that the PROTÉGÉ–II
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system generates automated tools that can acquire from experts knowledge

useful for multiple tasks (e.g., both for clinical management and for diagnosis)

and for multiple domains (e.g., both for treatment of patients who have cancer

and for management of patients who have AIDS).  The KA tools rely on different

underlying problem-solving methods (such as the temporal-abstraction method).

Each tool is specific to the domain, task, and problem-solving method defined by

the PROTÉGÉ–II system user.  Thus, the method of temporal abstraction,

configured from several basic mechanisms and defined in a domain-independent

way, fits well into the PROTÉGÉ–II paradigm.

The knowledge required to specialize the temporal-abstraction method for any

particular domain has to be acquired, wholly or partially, from domain experts

(such as physicians who design clinical protocols or who are experts at applying

protocols in particular areas).  KA can be done manually, but can be greatly

facilitated by a computer-driven KA tool that interacts with an expert without an

intermediary.  A KA tool that interacts with a domain expert needs to know the

internal terminology of the underlying problem-solving method (e.g.,

parameters, events, and contexts), the method’s knowledge requirements (e.g.,

temporal-semantic knowledge), and the basic terms of the domain.  The

knowledge engineer selecting the temporal-abstraction method would first

define the domain’s basic ontology (e.g., concepts such as DRUGS and

PROTOCOLS) and the relationship between the domain’s ontology and the

method’s internal terminology (e.g., EVENTS), thus enabling the automatically

generated KA tool to interact with the expert using the domain's terms.  The rest

of the domain's ontology can be refined and modified, assisted by automated KA

tools, through the dynamic KA process.  Thus, an automated KA tool might be

used in the future for acquiring from domain experts some or all of the

knowledge required for instantiating the RÉSUMÉ mechanisms in any particular

domain, without interacting with the knowledge engineer.

In Chapter 7, I examine the implications of the knowledge-based temporal-

abstraction method on the knowledge-acquisition process, either manually, or by
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using an automated KA tool.  I examine also the possibility of using machine-

learning techniques to acquire some of the knowledge from clinical databases.

1.5  Summary

This dissertation concerns the task of creating interval-based temporal

abstractions, such as "bone-marrow toxicity, grade II, for 3 weeks"—as well as

more complex patterns, based on such intervals—from raw, time-stamped

patient data (including clinical parameters in various levels of abstraction and

relevant contexts).  These intervals can be used for the tasks of planning further

interventions for diagnostic or therapeutic reasons, for monitoring plans during

execution, and for the intermediate-level task of creating high-level summaries of

medical records residing on a clinical database.  Temporal abstractions are also

useful for explanation purposes and for comparing the system’s recommended

plan with that of the human user.

I present a theory of context-specific, knowledge-based temporal abstraction,

implying a problem-solving method that is specific to the task of abstracting

higher-level concepts from time-stamped data in knowledge-based systems, but

independent of any particular domain.  This problem-solving method solves the

temporal-abstraction task by decomposing it into five subtasks.

I define five domain-independent temporal-abstraction mechanisms that solve

the subtasks defined by the temporal-abstraction method, and that can generate

meaningful temporal abstractions.  The independent mechanisms employed by

the temporal-abstraction method are defined formally, uniformly, and explicitly,

such that the knowledge  needed to instantiate them in any particular domain and

task can be parameterized, acquired from domain experts, and maintained.

I present the architecture of a computer system implementing the temporal-

abstraction mechanisms and their respective knowledge requirements, the

RÉSUMÉ system.  The RÉSUMÉ system’s architecture has several unique

features with respect to the task of temporal abstraction that fit well most of the

desired properties mentioned in Section 1.1.  By developing, formalizing, and
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testing the RÉSUMÉ system, I have been able to explore the advantages of an

explicit, uniform representation of context-dependent temporal-abstraction

knowledge in several domains, and its implications for the process of acquiring,

maintaining, reusing, and sharing that knowledge.

I present the knowledge-based temporal-abstraction model and its

implementation as an example of a task-specific—but domain-independent—

architecture for medical knowledge-based systems.  This architecture represents

clinical knowledge in a well-defined manner, such that the latter is reusable for

additional tasks in the same domain, sharable with other problem-solving

methods, and accessible for either acquisition or maintenance.  Thus, the

RÉSUMÉ system can contribute to the goal of generalizing the design process of

knowledge-based medical decision systems and their associated knowledge-

acquisition tools, for a broad range of different tasks and clinical domains.

1.6  A Map of the Dissertation

In the rest of this dissertation, I elaborate on the nature of the knowledge-based

temporal-abstraction method and of the mechanisms it comprises, and on the

RÉSUMÉ system implementing this method.

I start by describing briefly, in Chapter 2, the fundamentals of the problem-

solving and modeling approach to knowledge acquisition, with some emphasis

on clinical domains.  In that context I also describe the evolution of the

PROTÉGÉ-II  project and its relationship to the RÉSUMÉ system.  This account

will provide the reader with some insights as to the motivation behind putting an

emphasis on the aspects of uniform representation, knowledge reuse, knowledge

sharing, and automated knowledge acquisition.

In Chapter 3, I provide a broad overview of temporal-reasoning approaches in

philosophy and computer science in general, and in clinical domains in

particular.  I compare these approaches briefly with the RÉSUMÉ system’s

approach, placing my work in context.
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In Chapter 4, I describe in detail the knowledge-based temporal-abstraction

method and its underlying framework, the specifications of the five mechanisms

that can solve the subtasks that method posts, and the domain knowledge that

these mechanisms require.  Chapter 4 presents the theoretical, formal

foundations of the knowledge-based temporal-abstraction model.

I present the architecture of the RÉSUMÉ system implementing the five

temporal-abstraction mechanisms in Chapter 5.  The description of the RÉSUMÉ

system includes a discussion of the knowledge structures representing the

domain’s temporal-abstraction ontology of events, interpretation contexts, and

parameters; acquiring this ontology is crucial for instantiating the RÉSUMÉ

system’s mechanisms in any particular domain and task.  Many of the design

decisions made in the RÉSUMÉ system’s architecture are not arbitrary and

conform to the overall desire to facilitate the representation and maintenance of

temporal-abstraction knowledge.  Chapter 5 also discusses the RÉSUMÉ system’s

approach to the issues inherent in the logically defeasible nature of the temporal

abstractions.

In Chapter 6, I demonstrate several applications of the knowledge-based

temporal abstraction methodology and of the RÉSUMÉ system to several

different clinical domains—protocol-based care, monitoring of children’s growth,

and therapy of patients who have insulin-dependent diabetes.

Chapter 7 examines three options, not necessarily mutually exclusive, for

acquiring the knowledge needed to instantiate the temporal-abstraction

mechanisms in a particular domain:  (1) acquisition of the knowledge manually

in a structured manner, (2) use of an automated KA tool based on the knowledge

structures inherent to the temporal-abstraction method, and (3) application of

machine-learning techniques.

Chapter 8 presents an overall summary of the thesis, a discussion of its

significance and of its results, and future implications of these results.
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The reader who wishes mainly to understand the details of the knowledge-based

temporal-abstraction method, its implementation and its uses might want to first

read Chapters 4, 5, and 6 to understand my particular approach, before returning

to Chapters 2 and 3 in order to obtain a broader view of the issues involved in

constructing large-scale knowledge-based systems and in performing temporal

reasoning in medicine.  The motivation underlying my approach might then be

clearer.  Reading Chapters 2 and 3 will also enhance the value of reading

Chapters 7 and 8.
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2  Problem-Solving Methods and
Knowledge Acquisition in Clinical
Decision-Support Systems

The design of a new knowledge-based system—in particular a decision-support

system—is a complex process.  One of the issues that early developers of such

systems recognized was that the domain-specific knowledge base must be both

sound (i.e., internally consistent) and complete (i.e., sufficiently correct and up-

to-date to solve the task)2 .  As builders of expert systems realized during the

1970s and 1980s, maintaining a correct and complete knowledge base for such

systems is at least as difficult as is designing the knowledge base in the first

place.

The difficulties involved in the design and maintenance of knowledge-based

systems are especially relevant in the broad, knowledge-intensive area of

medicine, with its multiple associated clinical domains.  Whether designing a

system for solving a new task (e.g., primary diagnosis) in the same domain (e.g.,

infectious diseases), for solving the same task in a new domain (e.g., diagnosis in

oncology), or for solving a completely new task (e.g., therapy planning) in a new

domain (e.g., therapy planning for AIDS patients), the designer is faced with

similar issues.  Typical issues include selecting the most appropriate approach to

solve the given task in the particular clinical domain, representing the domain's

physiological or clinical knowledge inside the system, acquiring the necessary

diagnostic or therapeutic knowledge from domain experts (e.g., expert

physicians who are used to solving such tasks) or other sources, and maintaining

the soundness and completeness of the resultant medical knowledge base.

Clinical knowledge is notoriously idiosyncratic.  Some well-circumscribed

clinical domains lend themselves reasonably well to a physiologic-modeling

2I am using terms such as task  and domain  informally, trusting that the examples accompanying
them suffice for the current discussion.  I define these terms more formally when I outline the
nature of the PROTÉGÉ–II project in section 2.2.
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approach, where most of the domain's properties, causes and effects, and the

expected behavior of most parameters can be described cleanly and concisely by

a unified set of mathematical equations.  Thus, the relationships among the

various parameters can be captured implicitly by a small set of governing rules,

not unlike the rules of physics.  Unfortunately, most clinical domains and tasks

involve reasoning about clinical parameters at various levels of

conceptualization, whose precise relationships can be described explicitly only

by a set of associative rules.  (Davis and King [1984] made a similar observation

that, due to the lack of a unifying model, clinical domains often lend themselves

more naturally to representation by rule-based systems).  The knowledge

represented by causal, as opposed to associative, representations is sometimes

referred to as deep  or model-based , versus shallow or surface , respectively

[Steels, 1990].  The distinction is not necessarily a clear-cut one.  As Steels points

out, inspection of such shallow knowledge encoded in rules often reveals deeper

principles that have been intentionally summarized  to increase efficiency; a more

accurate term might be compiled knowledge  [Steels, 1990].  Furthermore, the

classification itself is vague, and depends on the level of granularity of the

knowledge represented; depth is in the eye of the beholder.

In either case, however, representing the clinical domain's knowledge for the

purpose of solving the task, and maintaining that knowledge in the face of a

rapidly changing medical field, are prominent concerns.  Sometimes, just having

to adjust to a different patient population in the same domain is sufficiently

disturbing to disrupt the workings of an existent clinical knowledge-based

system and to necessitate profound changes in the system's knowledge base (e.g.,

when prior and conditional probabilities of a set of diagnoses are crucial, as in

deDombal’s Bayesian-based system for diagnosis of abdominal pain [Leaper et

al., 1972]).  Furthermore, part of the task definition might include incorporating

continuously new pieces of complex information, such as learning new

experimental clinical protocols for treating the same class of patients.

The major reason that great effort is required to develop a new knowledge-based

system is that developers use application- and domain-specific, nonreusable,
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knowledge representations for essentially similar domains and problem-solving

approaches.  Thus, designers cannot take advantage of systems solving a similar

problem (e.g., scheduling) in another domain, or of those solving another

problem in exactly the same domain (e.g., experimental cancer-treatment

protocols).  Even the terminology used in the domain (the domain's lexicon)

might not be standard for developers solving similar tasks in the same domain:

Different terms might refer to the same entity, whereas similar terms might have

different semantics for another knowledge-based system operating in the same

domain.  Finally, technical problems such as different programming languages

and operating systems prevent reusing existing software modules even if all

other barriers have been removed.  Thus, as has been pointed out by Musen,

there are several potential dimensions for reusing  or sharing  knowledge about a

particular domain or about a particular solution approach [Musen 1992a].  The

RÉSUMÉ system focuses on the issue of sharing problem-solving methods and

mechanisms for temporal abstraction, in a domain-independent manner.

2.1  The Knowledge Level and Problem-Solving Methods

Given the difficulties of building new knowledge-based systems from scratch, it

would be highly desirable if designers of new knowledge-based decision-support

systems in general, and of systems in the highly complex various medical fields

in particular, could rely on general, domain-independent problem-solving

principles and tools.  Such principles and tools can assist designers of

knowledge-based systems in the formidable task of developing and maintaining

a new system that needs to solve a nontrivial task and  that relies for its solution

on a sizable domain-specific knowledge base.  Such principles and tools might

capture the experience of solving the same task in another domain, or solving

another task in the same domain.  In the first case, the designers might be able to

reuse problem-solving knowledge that is specific to the task but independent of

the domain, thus leading to a task-specific architecture of knowledge-based

systems.  In the second case, the designers might be able to reuse existing
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knowledge about the structure and properties of the same domain, (its ontology,

as defined in Chapter 1) to solve a new task, and even to share this knowledge

with other designers.

Even though the problems involved in designing and maintaining knowledge-

based systems were recognized early, the general problem-solving principles

were not apparent.  In a landmark paper, presented originally as a presidential

address to the American Artificial Intelligence Association in 1980, Newell

proposed a new and influential term: the knowledge level [Newell, 1982].  In

that paper, Newell defined a hierarchy of representation levels inherent in every

computer system—from the device level, through the circuit, logic-circuit and

register levels, to the program (symbol) level, which uses symbols and

expressions.  Newell suggested that, rather than focus on the symbol level of

symbols, functions, and rules (which were formerly considered to constitute

"knowledge"), developers should instead concentrate on the elusive higher

knowledge level implied by all the symbols and functions, the level that uses  the

symbol level to express its problem-solving knowledge.  The medium of this

level is not symbols and expressions, but rather is knowledge, and the level’s

behavior is governed by the principle of rationality: If an agent has knowledge

that one of its actions will lead to attainment of one of its goals, then the agent

will select this action.  This knowledge, Newell suggested, is independent of any

particular symbolic representation, just as the symbol level is independent of any

particular hardware implementation.  Thus, “knowledge is whatever can be ascribed

to an agent, such that his behavior can be computed according to the principle of

rationality“ [Newell, 1982] (italics added).

A case in point is the development of the early rule-based expert system,

MYCIN, that was designed to diagnose infectious diseases and to recommend

therapy [Buchanan and Shortliffe, 1984].  The participants in the MYCIN project

realized from an early stage that the system's performance was highly dependent

on individual domain-specific rules and their interrelationships.  This realization

was the motivation for an interactive KA tool, TEIRESIAS [Davis,1979].

TEIRESIAS was a complex tool intended for debugging, modifying, and
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updating MYCIN's complex knowledge base, by using knowledge about the

internal, implementation-specific knowledge represented in the  rules' structure,

or rule  schemata.  The goal of the TEIRESIAS program was to interact with a

domain expert (an infectious-diseases specialist), to try to point a particular

incorrect or missing rule, and to modify MYCIN's knowledge base accordingly.

Using Newell's terminology, we can classify TEIRESIAS as a symbol-level

knowledge-acquisition  (KA) tool, relying heavily on the particular assumed rule

schema, and requiring the expert physician using the tool to be highly aware of

(and knowledgeable about) the particular way the MYCIN program

implemented diagnostic and therapeutic knowledge, and how MYCIN’s

reasoning module used the rules [Musen, 1989b].  Neither TEIRESIAS nor the

MYCIN program itself included any higher-level representation of the problem-

solving knowledge implicit in MYCIN's rules.  Indeed, some of these rules did

not express knowledge about infectious diseases at all, but rather expressed

control knowledge required by the particular implementation of the diagnostic

and therapeutic knowledge in the form of rules with a particular associated

reasoner [Clancey, 1983].

The knowledge-level description of the problem-solving approach employed by

MYCIN—as well as by many other, superficially different, knowledge-based

systems—was finally clarified in a classic paper by Clancey [1985].  Clancey

defined the heuristic-classification (H C) problem-solving model, a repeating

pattern of inferences in expert systems.  The HC method (see Figure 2.1) includes

(1) an abstraction  step that converts the input facts (e.g., a white-blood–cell

[WBC] count) into an abstract concept (e.g., LEUKOPENIA) and even into a

generalized state (e.g., COMPROMISED HOST), (2) a heuristic-match step that

matches such a concept with an abstract solution (e.g., a certain diagnostic

category, such as GRAM-NEGATIVE INFECTION), and (3) a solution-refinement

step that refines the abstract solution to the level of a detailed solution that fits

the case in hand (e.g., a particular type of bacterial infection, such as E. COLI

INFECTION).  The HC inference model enabled a meaningful description of the
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knowledge represented in systems such as MYCIN by noting the roles played by

each particular knowledge item (e.g., a rule classifying a range of the WBC count)

Heuristic match

Data abstractions Solution abstractions

Data
abstraction

Solution
refinement

Data Solutions

Figure 2.1.  The heuristic-classification inference structure.  Data are abstracted into higher-level

concepts.  These concepts are matched with an abstract solution, that is then refined in the

solution refinement step.  (Adapted from [Clancey, 1985]).

in the HC model (e.g., a qualitative-abstraction rule).  The symbol-level details of

rules and procedures implementing these knowledge roles are hidden in such a

description.  Furthermore, a knowledge-level description lends itself naturally to

further uses, such as reasoning introspectively about the strategy employed by

the system [Clancey and Letsinger, 1981], or building manual or even automated

KA tools that support the acquisition of knowledge from domain experts by

matching such knowledge to a set of knowledge roles predefined by the

problem-solving method [Bennet, J. 1985; Marcus, 1988].  I discuss automated KA

tools in section 2.2.

Further understanding of the knowledge level emerged when Chandrasekaran

defined the concept of generic tasks [Chandrasekaran, 1983; Chandrasekaran,

1986].  Diagnosis is a generic task, that implies no particular control structure,
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and it can be solved by various problem-solving methods, such as HC or

another classification method.  (Due to its lack of predefined control knowledge,

the HC model might more accurately be described as an inference structure

[Clancey, 1985; Steels, 1990].)  Other knowledge-level methods, more specific

with respect to the knowledge roles they assume, have been defined for the

diagnosis task, such as the cover and differentiate  method used by MOLE

[Eshelman, 1988].  Methods were also defined for design, or  constructive,

generic tasks, such as propose and revise  [Marcus, 1988] .  A taxonomy of all

such potential methods was suggested [McDermott, 1988; Chandrasekaran,

1990].  Common to all task-specific problem-solving methods is the limitation of

the potential role  that a domain-knowledge item (e.g., a rule) can play, thus

facilitating the use of this knowledge and its maintenance [McDermott, 1988].

On the other hand, role-limiting methods also have limited flexibility and scope

for using other types of domain knowledge or for solving different tasks [Musen,

1992b].

It also became clear why the MYCIN system had grave difficulties applying its

diagnostic approach to the phase of selecting optimal antibiotic treatment, once a

list of potential pathogenic organisms was concluded in the diagnostic phase:

The task of optimal-therapy selection is a configuration task, rather than a

diagnostic task, and more appropriate methods than HC exist for solving

configuration tasks.  As these developments occurred, it became increasingly

clear that designing a new  knowledge-based system, and acquiring the appropriate

domain-specific knowledge needed to solve the tasks defined in that domain, are primarily

modeling tasks.  The modeling maps the domain's ontology—terms and

knowledge—into knowledge roles that exist in the problem-solving methods

chosen for solving the particular tasks that the system is required to solve (the

modeling aspect is especially emphasized in Musen's work [Musen, 1989a]).

The temporal-abstraction task  that I presented briefly in Chapter 1 can be viewed as

a type of a generic interpretation task:  Given time-stamped (patient) data and

several (clinical) events, produce an analysis of the data that interprets past and

present states and trends and that is relevant for (clinical) decision-making
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purposes in the given contexts.  A full diagnosis is not necessarily required;

rather, all that is needed is a coherent intermediate-level interpretation of the

relationships between data and events and among data.  The goal is to abstract

the data into higher-level concepts useful for one or more tasks (e.g., therapy

planning or summarization of a patient’s record).  The knowledge-based temporal-

abstraction method that was shown in Chapter 1 (see Figure 1.1) is a problem-

solving method that can solve the temporal-abstraction task for any domain,

given an appropriate mapping of the domain-specific knowledge to the

knowledge roles defined by this method.

2.2  Automated Knowledge-Acquisition Tools and The PROTÉGÉ–II Project

The knowledge-based temporal-abstraction method has been developed within

the framework of the PROTÉGÉ–II project [Puerta et al., 1992; Musen, 1992b].  It

is instructive to review briefly the history of this project, so that we understand

the project’s basis and design, and its relationship to the RÉSUMÉ system.

PROTÉGÉ–II  applies the paradigm of generic problem-solving methods to the

design of clinical knowledge-based systems and to the automatic generation of

computer-supported KA tools for these systems.

During the 1980s, the Stanford medical computer-science group developed a

series of knowledge-based systems and KA tools for managing patients who are

enrolled in clinical trials [Shortliffe, 1986; Tu et al., 1989; Musen et al., 1987;

Musen, 1989a].  A clinical trial typically involve the use of a clinical protocol, a

detailed guideline for the treatment of one or more groups of patients.  The

ONCOCIN  system assisted physicians caring for patients who have cancer and

are being treated under clinical protocols (Tu et al., 1989).  OPAL  (Musen et al.,

1987) was an automated, graphic KA tool for ONCOCIN that acquired

knowledge about specific experimental protocols for the treatment of cancer

patients from oncology experts.  OPAL interacted with expert physicians by

using a terminology specific to the task of treating cancer patients using such

clinical protocols.
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The problem-solving method embodied in ONCOCIN was abstracted into a

domain-independent shell, the e-ONCOCIN system.  The method used in

e-ONCOCIN, and assumed implicitly by OPAL, was episodic skeletal-plan

refinement  (ESPR) [Tu et al., 1989; Musen, 1989a].  PROTÉGÉ [Musen, 1989a]

was a domain-independent shell for defining new domain ontologies to generate

OPAL-like KA tools, custom-tailored to a particular domain, as long as the task

was treatment using clinical protocols (e.g., treating cancer patients using

experimental protocols, or treating patients who have hypertension using

specific guidelines).  The custom-tailored KA tools created a knowledge base for

the e-ONCOCIN problem solver, thus depending heavily on the implied use of

the ESPR problem-solving approach.  Indeed, the PROTÉGÉ system recreated

OPAL, as well as a similar KA tool for acquiring hypertension protocols.

However, the PROTÉGÉ system assumed only one task (managing patients on

clinical protocols) and one problem-solving method (ESPR).  It also generated

only one type of KA tool with respect to the user interface.

PROTÉGÉ–II  is a framework designed to overcome certain of the limitations of

the original PROTÉGÉ system, such as adherence to a specific problem-solving

method [Musen, 1992b].  PROTÉGÉ–II generates KA tools for multiple tasks (e.g.,

clinical management or diagnosis) and for multiple domains (e.g., oncology or

management of AIDS patients), using different problem-solving methods.  Each

tool is specific to the domain, task, and problem-solving method defined by the

PROTÉGÉ–II user.  A corresponding custom-tailored problem solver is generated

in parallel.  In the case of the ESPR method, the oncology domain, and the

protocol-management task, this paradigm would in principle generate both

OPAL and e-ONCOCIN.

The basic PROTÉGÉ–II approach relies on the assumption that the design of a

knowledge-based system requires relatively few high-level problem-solving

methods.  For example, the ESPR method inherent in e-ONCOCIN, can be recast

in a more general knowledge-level description—a description that is

implemented in the EON problem-solver [Musen et al., 1992b].  Using such a

description, we can decompose the ESPR method into the three subtasks: propose
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a particular plan from a plan library, identify problems (over time), and revise the

current plan [Tu et al., 1992].  In that view, ESPR can be regarded as one of the

family of the propose  (a plan), critique  (the proposed solution), and  modify  (and

revise the plan accordingly) (PCM) methods [Chandrasekaran, 1990].  The

generate, test, and debug paradigm [Simmons, 1988] is another example of a

PCM method—in this case, for an interpretation task.  Figure 2.2 shows how the

ESPR method decomposes the task of managing patients on clinical protocols.

Knowledge-based
temporal
abstraction

Instantiate and
decompose

ESPR Method

Protocol

Current time

Current
actions

Revise
plan

Revision
procedures

Identify
problems

Case

Propose
plan

Subtasks

Methods

The task:
Managing patients on clinical protocols

Inputs outputs

Figure 2.2 :  Decomposition of the task of managing patients on clinical protocols by the ESPR

method, as an example of using the temporal-abstraction method.  The task is defined by the

input and output data structures and by semantic  constraints imposed on them.  The task of

managing patients on clinical protocols is decomposed by the ESPR method, if that method is

selected by the knowledge engineer, into several subtasks.  One of the subtasks is problem

identification, for which the knowledge-based temporal-abstraction method can be selected.  Like

the ESPR method, the knowledge-based temporal-abstraction method decomposes the problem-

identification task into several subtasks.  These subtasks can be performed by several temporal-

abstraction mechanisms.  See the text for further details regarding  a method’s structure.
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In the PROTÉGÉ–II project, researchers are developing a library of such reusable,

domain-independent, problem-solving methods.  These methods will be indexed

by the tasks  that use them.  A task  includes a set of inputs and outputs of certain

characteristics, and a set of semantic constraints on the relationships between the

inputs and the outputs with a specific underlying structure.  An example of a

task is “recommend episodically a set of appropriate actions, given a patient’s

time-oriented record and a set of protocols and protocol-management

knowledge” (Figure 2.2).  A task is thus similar to a planning goal  [Charniak and

McDermott, 1985] without a specification how that goal is to be achieved.  A task

usually can be accomplished by several possible methods.  Methods typically

decompose tasks into several subtasks, with no commitment regarding the

subsequent methods to be used in achieving the subtasks.  A method, like a task,

also assumes a certain model of input and output data structures and semantic

constraints on them.  The semantic constraints of the method are usually

therefore a superset of the constraints of several tasks, and can be indexed by all

the latter.  A method also specifies explicitly or implicitly a control structure that

defines at least a partial order in which the subtasks will be accomplished, a

dataflow structure that specifies data connections among subtasks, and the domain-

specific knowledge (a special input structure) required for the successful

application of this method (e.g., certain domain-specific tables and an

appropriate look-up procedure).  Methods that are not decomposable into

subtasks are called mechanisms .

The knowledge engineer building a knowledge-based system selects from the

method library the closest-fitting method for her task, or configures a new

method using existing methods and mechanisms.  In either case, she instantiates

the methods to be used for the subtasks, by (1) selecting methods or mechanisms

for their respective subtasks, and thus recursively specializing the original

method, and (2) by mapping the input and output data structures used by the

selected methods and mechanisms to the domain structures, creating domain-

specific labels for every concept.  The output of the PROTÉGÉ–II system contains

both a specific problem solver configured by the knowledge engineer and a

custom-tailored KA tool that can acquire task-specific knowledge needed to solve
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the task (Puerta et al., 1992).  The custom-tailored KA tool uses the domain

concepts (e.g., CHEMOTHERAPY) and structure as defined by the PROTÉGÉ–II

user, and relies on the methods that the user selected to solve the particular task

at hand.  If the temporal-abstraction method is selected by the knowledge

engineer to solve the task of problem identification (e.g., as posted by the ESPR

method), it decomposes that task into several subtasks. Each of these subtasks

can be solved by a particular temporal-abstraction mechanism.  The subtasks and

their respective mechanisms were presented briefly in Chapter 1, and are

discussed in depth in Chapter 4.  The knowledge-based temporal-abstraction

method is an example of a general problem-solving method that resides in the

PROTÉGÉ–II method library.  The ESPR method is an example of a method that

can use the temporal-abstraction method to solve one of its subtasks, the

problem-identification subtask.  However, the knowledge-based temporal-

abstraction method can be used by methods other than ESPR, and can solve

several tasks involving interpretation of time-stamped data.  I present examples

of such  tasks in Chapter 6.

The RÉSUMÉ system implements the knowledge-based temporal-abstraction

method by using the five temporal-abstraction mechanisms I have defined, to

solve the five subtasks posed by that method when it decomposes the temporal-

abstraction task, as explained in Chapter 1.  The temporal-abstraction

mechanisms also reside in the library of methods and mechanisms, and can be

selected individually by the PROTÉGÉ–II user.

The PROTÉGÉ–II user can specialize the temporal-abstraction mechanisms for a

particular clinical domain during the phase of defining the task model, and can

fill in some of the missing knowledge needed to instantiate the mechanisms in

that domain and task.  Additional domain- and task-specific knowledge, needed

to instantiate the temporal-abstraction mechanisms fully, can be added by the

expert physician working with the automated KA tool generated by PROTÉGÉ–

II.  In either case, the four types of knowledge necessary for instantiating the

knowledge-based temporal-abstraction method, are mapped into domain

constructs or augmented by new constructs (e.g., maximal-gap functions) as
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necessary.  As in the original PROTÉGÉ system, the end result is a custom-

tailored expert system, designed both to solve the task defined by the PROTÉGÉ–

II user and to reason about temporal abstractions in that domain and task.

Note that the PROTÉGÉ–II project emphasizes the reuse  of task-specific problem-

solving knowledge in multiple domains, and the sharing  of such knowledge

among different tasks [Musen, 1992a].  Due to the explicit modeling of the

domain's ontology, it is potentially feasible that, eventually, the ontology of the

domain itself might be sharable among different tasks and systems.  One

possible, although still exploratory, approach is to use the Ontolingua translation

tool [Gruber, 1993] (which is based on the knowledge interchange format [KIF]

language [Gennesereth and Fikes, 1992]) to create sharable, portable  ontologies.

Facilitating the reuse and sharing of problem-solving and domain knowledge

was a major goal in the development of the knowledge-based temporal-

abstraction method and of its formal semantics, and also is central to the

architecture of the RÉSUMÉ system.

Several other groups are developing methodologies that involve creating a

library of problem-solving methods or lower-level components, using the

paradigm of modeling different tasks, and mapping these domain-specific tasks

to the knowledge roles of the particular method or inference structure.  A notable

example is the European KADS  project [Weilinga et al., 1992], that provides a

full conceptual modeling theory for new domains and tasks.  In fact, Linster and

Musen [1992] created a conceptual model for the ONCOCIN task using KADS.

Other examples include Steel’s group in Brussels [Steels, 1990], the Swiss-Bank

EMA  project [Spirgi et al., 1991], and the Digital Equipment Corporation’s Spark,

Burn and FireFighter methodology [Klinker et al., 1991; Klinker et al., 1993].

Most groups emphasize the reuse of problem-solving knowledge and the

necessity for modeling the domain in an appropriate way.  The PROTÉGÉ–II

project is unique in the emphasis it places on the generation of automated KA

tools.
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2.3  Discussion and Summary

I have presented a brief overview of the emerging field of designing and

maintaining knowledge-based systems.  It is clear that the design and

maintenance tasks are closely related, and that neither of them is trivial for any

system solving a meaningful task using a significant body of continuously

changing knowledge.  I have pointed out that the problems are especially

formidable in the case of clinical knowledge, which often involves a mixture of

deep and shallow models.

I have emphasized the importance of the knowledge level.  The knowledge level is

a level whose representation medium is not program-level symbols and

expressions, but knowledge.  Knowledge was defined by Newell  functionally—

the entity that, when ascribing it to an agent, allows us to compute the agent’s

behavior by the universal principle of rationality.  I have demonstrated the

relevance of the knowledge level to the case of the MYCIN program and its

associated TEIRESIAS interactive KA tool, both of which relied heavily on

symbol-level constructs, such as rules, but were expressing implicitly knowledge

about diagnosis and therapy.  Some of this knowledge was eventually defined

explicitly by the HC inference structure.  The HC inference structure and the

problem-solving methods, such as cover-and-differentiate, are examples of task-

specific architectures, which supply clearly defined knowledge  roles, where each

piece of domain-specific knowledge has a well-defined function.  These

architectures support designing new knowledge-based systems, acquiring

knowledge for such systems, and maintaining their knowledge base.  The

potential for reusing problem-solving knowledge was pointed out by the concept

of generic tasks  that occur in multiple domains, such as diagnosis.  The generic

tasks can use similar inference structures and task-specific problem-solving

methods and share them across different domains.

I presented the  PROTÉGÉ–II project as an example of a multiple-method,

multiple-domain task-specific architecture for generating problem solvers and

their associated KA tools, custom-tailored for a domain.  PROTÉGÉ–II
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distinguishes among tasks , methods  that decompose tasks into subtasks, and

nondecomposable mechanisms .  The ESPR method is an example of a general

problem-solving method that can solve the task of managing patients who are

enrolled in clinical protocols.  The ESPR method decomposes its task into several

subtasks, including the problem-identification subtask.  The problem-

identification task is an instance of the temporal-abstraction task, and thus is an

example of a task that can be solved by the knowledge-based temporal-

abstraction method.

The knowledge-based temporal-abstraction method  is a general method that can

be used to solve the temporal-abstraction task, a task that involves the abstraction

of time-stamped data.  The temporal-abstraction method, its subtasks, and its

mechanisms are defined at the knowledge level, without any dependence on a

particular symbol-level implementation.  The temporal-abstraction mechanisms

define knowledge roles for domain-specific knowledge, such as temporal-

inference properties of clinical parameters.  The RÉSUMÉ system is a symbol-

level implementation of a particular configuration of the temporal-abstraction

method.  The temporal-abstraction method, its subtasks, and the mechanisms

that can solve them will be discussed in Chapter 4.
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3  Temporal Reasoning in Clinical
Domains

The ability to reason about time and temporal relations is fundamental to almost

any intelligent entity that needs to make decisions.  The real world includes not

only static descriptions, but also dynamic processes.  It is difficult to represent

the concept of taking an action, let alone a series of actions, and the concept of the

consequences of taking a series of actions, without explicitly or implicitly

introducing the notion of time .  This inherent requirement also applies to

computer programs that attempt to reason about the world.  In the area of

natural-language processing, it is impossible to understand stories without the

concept of time and its various nuances (e.g., "by the time you get home, I will

have been gone for 3 hours").  Planning actions for robots requires reasoning

about the temporal order  of the actions and about the length of time  it will take to

perform the actions.  Determining the cause of a certain state of affairs implies

considering temporal precedence, or, at least, temporal equivalence.  Scheduling

tasks in a production line, such as to minimize total production time, requires

reasoning about serial  and concurrent  actions and about time intervals .  Describing

typical patterns in a baby's psychomotor development requires using notions of

absolute and relative time, such as "walking typically starts when the baby is

about 12 months old , and is preceded by standing."

Clinical domains pose no exception to the fundamental necessity of reasoning

about time.  In Chapter 2, I introduced the notion of generic tasks.  Such tasks in

medical domains include diagnosis of a current disease, interpretation of a series of

laboratory results, planning of treatment, and scheduling of check-up visits at a

clinic.  All these tasks require temporal reasoning, implicitly or explicitly.  The

natural course  of a disease, the cause of a clinical finding, the duration  of a

symptom, and the pattern of toxicity episodes following several administrations of

the same type of drug are all expressions that imply a certain underlying model

of time.  In particular, the temporal-abstraction task, which typically requires
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interpretation of large numbers of time-stamped data and events, relies on a

robust model of time.  Several evaluations of medical expert systems pointed out

as a major problem the lack of sufficient temporal reasoning (e.g., for the

INTERNIST-I system [Miller et al., 1982]).

In Chapter 1, I mentioned several intriguing concepts involved in reasoning

about time (such as its primitive units) that have fascinated philosophers,

linguists, and logicians for at least 2500 years.  More recently, computer scientists

have been involved in defining various models of time necessary for modeling in

a computer naturally occurring processes, including the actions of intelligent

agents and the effects of these actions.  In Section 3.1, I review major views of

such temporal concepts, as represented in the different approaches in these

disciplines to modeling and reasoning about time.  Surveying these approaches

will be useful when I discuss, in Section 3.2., several major computer-system

architectures that have involved reasoning about time in clinical domains.  I shall

compare, when relevant, the main features of these approaches and architectures

with the RÉSUMÉ system's architecture and with its underlying knowledge-

based problem-solving methodology (i.e., the knowledge-based temporal-

abstraction method).  The reader should find the brief introduction in Chapter 1

to the knowledge-based temporal-abstraction method and its mechanisms, as

well as to the RÉSUMÉ system architecture, sufficient for understanding the

comparison made with these systems.  This comparison usually points out the

differences in the underlying rationale, the emphasis on particular temporal

issues, and the general type of solution proposed to common temporal-reasoning

problems.  Additional, more detailed points of comparison will be discussed

when relevant in Chapters 4, 5, and 6.  In Section 8.3 I summarize the comparison

between the temporal-abstraction model and the RÉSUMÉ system and other

approaches  and systems.

Note that I shall limit myself to issues of temporal reasoning (i.e., reasoning

about time and time’s basic nature and properties, and the various propositions

that can be attached to time units and reasoned about), although I shall mention

a few approaches and systems that address the issue of temporal maintenance
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(i.e., maintaining information about time-oriented data to reason or answer

queries about them efficiently).  These topics are highly related, but the research

communities involved are unfortunately quite separate.  I shall discuss certain of

the interrelationships when I present the RÉSUMÉ system in Chapter 5 and when

I discuss the implications of my model in Section 8.4.

3.1  Temporal Ontologies and Temporal Models

In this section, I present briefly major approaches to temporal reasoning in

philosophy and in computer science (in particular, in the AI area).  I have

organized these approaches roughly chronologically.  I have classified the

modern approaches by certain key features; I considered features that are useful

for modeling certain aspects of the real world—in particular for the type of tasks

modeled by computer programs.  This list therefore contains topics that are

neither mutually exclusive nor exhaustive.

Apart from the specific references that are mentioned in this section, additional

discussion of temporal logic is given in Rescher and Urquhart’s excellent early

work in temporal logic [Rescher and Urquhart, 1971].  The AI perspective has

been summarized well by Shoham [Shoham, 1986; Shoham, 1987; Shoham and

Goyal, 1988].  An overview of temporal logics in the various areas of computer

science, and of their applications, was compiled by Galton [1987].  Van

Benthem’s comprehensive book [van Benthem, 1991] presents an excellent view

of different ontologies of time and their logical implications.

3.1.1  Tense Logics

It is useful to look at the basis for some of the early work in temporal reasoning.

We know that Aristotle was interested in the meaning of the truth value of future

propositions [Rescher and Urquhart, 1971].  The stoic logician Diodorus Chronus,

who lived circa 300 B.C., extended Aristotle's inquiries by constructing what is

known as the master argument.  It can be reconstructed in modern terms as

follows [Rescher and Urquhart, 1971]:
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1.  Everything that is past and true is necessary (i.e., what is past and true is

necessarily true thereafter).

2.  The impossible does not follow the possible (i.e., what was once possible

does not become impossible).

From these two assumptions, Diodorus concluded that nothing is possible that

neither is true nor will be true, and that therefore every (present) possibility must

be realized at a present or future time.  The master argument leads to logical

determinism , the central tenet of which is that what is necessary at any time

must be necessary at all earlier times.  This conclusion fits well indeed within the

stoic paradigm.

The representation of the master argument in temporal terms inspired modern

work in temporal reasoning.  In particular, in a landmark paper [Prior, 1955] and

in subsequent work [Prior, 1957; Prior, 1967], Prior attempted to reconstruct the

master argument using a modern approach.  This attempt led to what is known

as tense logic—a logic of past and future.  In Prior’s terms,

Fp ≡ it will be the case that p.

Pp ≡ it was the case that p.

Gp ≡ it will always be the case that p  (≡ ¬ F¬p ).

Hp ≡ it was always the case that p  (≡ ¬ P¬ p).

Prior’s tense logic is thus in essence a modal-logic approach (an extension of the

first-order logic [FOL] with special operators on logical formulae [Hughes and

Cresswell, 1968]) to reasoning about time.  This modal-logic approach has been

called a tenser approach [Galton, 1987], as opposed to a detenser, or an FOL,

approach.  As an example, in the tenser view, the sentence F( ∃ x)f(x ) is not

equivalent to the sentence ( ∃ x)Ff(x); in other words, if in the future there will be

some x that will have a property f, it does not follow that there is such an x  now

that will have that property in the future.  In the detenser  view, this distinction
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does not make sense, since both expressions are equivalent when translated into

FOL formulae.  This difference occurs because, in FOL, objects exist timelessly,

time being just another dimension; in tenser approaches, NOW is a point of time

in a separate class.  However, FOL can serve as a model theory for the modal

approach [Galton, 1987].  Thus, we can assign precise meanings to sentences such

as Fp by an FOL formalism.

A classic temporal-reasoning distinction relevant to the tenser and detenser

approaches is McTaggart’s attempt to prove the unreality of time [McTaggart,

1908].  The point to note from that argument is the distinction McTaggart made

between the A series and the B series .  In McTaggart’s terms, the A series is the

series of positions running from the past to the future; the B series is the series of

positions that run from earlier to later.  In other words, each temporal position

has two representations: It is one of past, present, or future, and is earlier than

some and later than some other positions.  McTaggart tried to show that the B

series implies the A series, but that the A series is inconsistent.  This argument

has been refuted by several philosophers and logicians (a useful exposition is

given in the second chapter of Polakow’s work on the meaning of the present

[Polakow, 1981]).  However, the issue of whether temporal positions are relative

or absolute is still a relevant one in logic and philosophy, and will reappear in the

discussions of the systems that I shall present.3

An interesting point in the use of time and tenses in natural language—a point

that will be relevant to our discussion of time and action—was brought out by

Anscombe’s investigation into the meanings of before  and after [Anscombe,

1964].  An example adapted from Galton [1987] is the following: From the

sentence “Hayden was alive before Mozart was alive,” it does not  follow that

Mozart was alive after  Hayden was alive.  From “Hayden was alive after  Mozart

died,” it does not follow that Mozart died before Hayden was alive.  Thus, before

3McTaggart’s original paper also defined the C series : the B series devoid of a forced temporal
order, and thus with an order but with no direction defined on them.  He saw the C series as
containing the only real ontological entities.
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and after  are not strict converses.  (A point not emphasized by Galton is that, in

the original paper, Anscombe had shown that, in fact, after  can be a converse of

before, with proper definitions.)  Note that, however, from “Hayden was born

before Mozart was born,” we can indeed conclude that Mozart was born after

Hayden was born.  Thus, before and after  are converses when they link

instantaneous events .

Work on tenses was also done by the logician Reichenbach [1947].  Reichenbach

distinguished among three times  occurring in every tense : the utterance time U

(i.e., the time in which the sentence is spoken), the reference time R  (i.e., the time

to which the speaker refers), and the event time, E  (i.e., the time in which the

action took place).  Thus, in the sentence “I shall have gone” U is before R, and R

is after E.  Assuming that temporal adverbs attach to the reference  time, the

distinction between three times explains why “I did it yesterday” and “I did it

today” are legitimate linguistic expressions, but “I have done it yesterday,” is

not, since R = U = now.

An AI equivalent to Reichenbach’s work is Bruce’s Chronos  question-and-

answer system [Bruce, 1972].  In the Chronos system, Bruce implemented his

formal model of temporal reference in natural language, generalizing

Reichenbach’s three time tenses to n-relations tenses.  Bruce defined seven basic

binary time-segment relations: before , during, same-time, overlaps , after , contains ,

overlapped .  A tense is an n -ary relation on time intervals; that is, it is the

conjunction

∧  Ri  (Si, Si+1),      i = 1..n-1,

where S1...Sn-2 are time points.  In Reichenbach’s terms, S1 = U , Sn = E , and

S2...Sn-1 = R.  Ri  is a binary ordering relation on time segments Si , S i+1, one of the

seven defined by Bruce.  For instance, the sentence "He will have sung" would be

represented as before(S1, S2) ∧  after(S2, S3), or even as

before (S1, S2) ∧  same-time(S2, S3) ∧ after(S3, S4).



Chapter 3: Temporal Reasoning in Clinical Domains

51

The Chronos system was only a prototype.  There was no particular temporal

structure linking the various propositions that the system maintained.

Furthermore, there was no attempt to understand the propositions attached to the

various time points.  In particular, a symbol such as WAS might or might not

serve as a tense marker, dependent on context (e.g., “He was to go” might be

interpreted in Prior’s tense logic as a formula of the form PFp, namely a past-

future form interpretation, versus the obligatory form interpretation).

Furthermore, even when a tense marker is identified as such, it can indicate

different tenses; that again is dependent on context.

3.1.2 Kahn and Gorry's Time Specialist

Kahn and Gorry [1977] built a general temporal-utilities system, the time

specialist, that was intended not for temporal  reasoning, but rather for temporal

maintenance  of relations between time-stamped propositions.  However, the

various methods they used to represent relations between temporal entities are

instructive, and the approach is useful for understanding some of the work in

medical domains that I discuss in Section 3.2., such as Russ’s temporal control

structure (TCS) system [Russ, 1986].

The time specialist is a domain-independent module that is knowledgeable

specifically about maintaining temporal relations.  This module isolates the

temporal-reasoning element of a computer system in any domain, but is not a

temporal logic .  Its specialty lies in organizing time-stamped bits of knowledge.

A novel aspect of Kahn and Gorry’s approach was the use of three different

organization schemes; the decision of which one to use was controlled by the

user:

1.  Organizing by dates on a date line (e.g., “January 17 1972”)

2.  Organizing by special reference events, such as birth and now   (e.g., “2 years

after birth”)
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3.  Organizing by before and after  chains, for an event sequence (e.g., “the fever

appeared after the rash”)

By using a fetcher module, the time specialist  was able to answer questions about

the data that it maintained.  The time specialist also maintained the consistency  of

the database as data were entered, asking the user for additional input if it

detected an inconsistency.

Kahn and Gorry made no claims about understanding temporally oriented

sentences; the input was translated by the user to a Lisp expression.  Neither did

they claim any particular semantic classification of the type of propositions

maintained by the time specialist.  Rather, the time specialist presents an example

of an early attempt to extract the time element from natural-language

propositions, and to deal with that time element using a special, task-specific

module.

3.1.3  Approaches Based on States, Events, or Changes

Some of the approaches taken in AI and general computer science involve a

roundabout way of representing time: Time is represented implicitly by the fact

that there was some change in the world (i.e., a transition from one state to

another), or that there was some mediator of that change.

3.1.3.1 The Situation Calculus and Hayes’ Histories

The situation calculus was invented by McCarthy [McCarthy 1957; McCarthy

and Hayes, 1969] to describe actions and their effects on the world.  The idea is

that the world is a set of states , or situations .  Actions and events are functions

that map states to states.  Thus, that the result of performing the OPEN action in a

situation with a closed door is a situation where the door is open is represented

as

∀ s True(s, CLOSED_DOOR) =>True (Result (OPEN, s), OPEN_DOOR).
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Notice that a predicatelike expression such as ON(Block1, Block2) is really a

function  into a set of states: the set of states where Block1 is ON Block2.

Although the situation calculus has been used explicitly or implicitly for many

tasks, especially in planning, it is not adequate for many reasons.  For instance,

concurrent actions are impossible to describe, as are actions with duration (note

that OPEN brings about an immediate result) or continuous processes.  There are

also other problems that are more general, and are not specific to the situation

calculus [Shoham and Goyal, 1988].

Hayes, aware of these limitations, introduced the notion of histories in his

“Second Naive Physics Manifesto” [Hayes, 1985].  A history  is an ontological

entity that incorporates both space and time. An object in a situation, or O@S, is

that situation’s intersection with that object’s history [Hayes, 1985].  Permanent

places are unbounded temporally but restricted spatially.  Situations are

unbounded spatially and are bounded in time by the events surrounding them.

Most objects are in between these two extremes.  Events  are instantaneous;

episodes  usually have a duration.  Thus, we can describe the history of an object

over time.  Forbus [1984] has  extended the notion of histories within his

qualitative process theory.

3.1.3.2  Dynamic Logic

An equivalent of the situation calculus in the domain of computer-program

description and verification is the Dynamic logic formalism [Pratt, 1976].  The

intent of dynamic logic is to capture a transition between program states, which

reflect the state of the closed world, the mediator of the change being the

program.  Thus, we can talk of the assertions that hold before and after a

sequence of programs has been executed.  Time is not an explicit entity.  As

Shoham and Goyal [1988] point out, the restrictions on expressiveness for

dynamic logic are the same as those for the situation calculus.
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3.1.3.3  Qualitative Physics

In his influential “Naive Physics Manifesto” and its updated version [Hayes,

1978; Hayes, 1985], Hayes argued persuasively for formalizing and axiomatizing

a sizable part of the real physical world, an approach sometimes referred to as

commonsense reasoning.  This approach has been taken, in a sense, in the

qualitative-physics  (QP ) branch of AI [Bobrow, 1985].  Researchers have

attempted to model, to reason about, and to simulate various physical domains,

such as digital circuits or liquid containers, with different approaches.  De Kleer

and Brown [1984] described a circuit in terms of components and connections.

Forbus [1984] defined his qualitative process theory for reasoning about active

processes, such as a boiling liquid.  Kuipers [1986] described a general qualitative

simulation framework.  Weld [1986] described a methodology to describe and

detect cycles in repeating processes.

Common to the QP approaches is that they have no explicit representation of

time, referring instead to a set of system states, or landmarks, and to a transition

function that changes one state to another [Kuipers, 1986].  The passage of time is

evident only by the various transitions to possible states.  Even when time is

modeled, it is used only implicitly as an independent variable used in the

qualitative equations defined for the particular domain, rather than as a first-

class object with properties of its own [Forbus, 1984; Weld, 1986].

My work does not  include building any complete theory of clinical domains

using a QP theory; it focuses on explicit properties of clinical parameters over

time.  However, I adopt Forbus’ terminology for modeling proportionality

relationships between clinical parameters when I discuss the detection of

temporal trends encompassing several conceptual abstraction levels.

3.1.3.4  Kowalski and Sergot’s Event Calculus

Kowalski and Sergot developed a particular type of logic, the event calculus,

mainly for updating databases and for narrative understanding [Kowalski and

Sergot, 1986].  The event calculus is based on the notion of an event  and of an
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event’s descriptions (relationships).  Relationships are ultimately over time

points ; thus, after(e) is the period of time started by event e.  Updates to the state

of the world can only add information.  Deletions add information about the end

of the period of time over which the old relationship holds.  The event calculus

uses nonmonotonic, default reasoning, since the relations can change as new

information arrives; for instance, a new event can signal the end of an old one

(not unlike clipping  an interval in Dean’s Time Map Manager [Dean and

McDermott, 1987]).  The event calculus also allows partial description of events,

using semantic cases.  Thus, events can be defined and used as temporal

references regardless of whether their temporal extent is actually known.  They

can also be only partially ordered.  Events can be concurrent, unlike actions in

the situation calculus.

The event calculus was defined and interpreted as Horn clauses, augmented by

negation as failure, and can in principle be interpreted as a Prolog program.

3.1.4 Allen’s  Interval-Based Temporal Logic and Related Extensions

As mentioned in Section 1.2.1, Allen [1984] has proposed a framework for

temporal reasoning, the interval-based temporal logic.  The only ontological

temporal primitives in Allen’s logic are intervals.  Intervals are also the temporal

unit over which we can interpret  propositions.  There are no instantaneous

events—events are degenerate intervals.  Allen’s motivation was to express

natural-language sentences and to represent plans.  Allen has defined 13 basic

binary relations between time intervals, six of which are inverses of the other six:

BEFORE, AFTER, OVERLAPS, OVERLAPPED, STARTS, STARTED BY, FINISHES, FINISHED

BY, DURING, CONTAINS, MEETS, MET BY, EQUAL TO (see Figure 3.1).  Incomplete

temporal information common in natural-language  is captured intuitively

enough by a disjunction of several of these relations (e.g., T 1 <starts, finishes,

during> T2 denotes the fact that interval T1  is contained somewhere in interval

T2, but is not equal to it).  In this respect, Allen’s logic resembles the event

calculus.
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A is EQUAL TO B

A is BEFORE B

B is EQUAL TO A

B is AFTER A

A MEETS B

B is MET BY A

A OVERLAPS B

B is OVERLAPPED BY A

A STARTS B

B is STARTED BY A

A FINISHES B

B is FINISHED BY A

A is DURING B

B CONTAINS A

Figure 3.1 :  The 13 possible relations, defined by Allen [1984], between temporal intervals.  Note

that six of the relations have inverses, and that the EQUAL relation is its own inverse.
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Allen defined three types of propositions that might hold over an interval:

1. Properties  hold over every subinterval of an interval.  Thus, the meaning

of Holds(p, T) is that property p holds over interval T.  For instance, “John

was sleeping during last night.”

2. Events  hold only over a whole interval and not over any subinterval of it.

Thus, Occurs(e, T) denotes that event e  occurred at time T.  For instance,

“John broke his leg on Saturday at 6 P.M.”

3. Processes  hold over some  subintervals of the interval in which they occur.

Thus, Occurring(p, T) denotes the process p occurring during time T.  For

instance, “John is walking around the block.”

Allen’s logic does not allow branching time into the past or the future (unlike, for

instance, McDermott’s logic, which I discuss in Section 3.1.5).

Allen also constructed a transitivity table that defines the conjunction of any two

relations, and proposed a sound (i.e., produces only correct conclusions) but

incomplete (i.e., does not produce all correct conclusions) algorithm that

propagates efficiently (O(n3)) and correctly the results of applying the transitivity

relations [Allen, 1982].

Unfortunately, as I have hinted in Section 1.2.1, the complexity of answering

either the question of completeness  for a set of Allen’s relations (finding all  feasible

relations between all  given pairs of events), or the question of consistency

(determining whether a given set of relations is consistent) is NP-complete

[Villain and Kautz, 1986; Villain, Kautz and van Beek, 1989].  Thus, in our current

state of knowledge, for practical purposes, settling such issues is intractable.

However, more recent work [van Beek, 1991] has suggested that limited versions

of Allen’s relations— in particular, simple interval algebra  (SIA) networks—can

capture most of the required representations in medical and other areas, while

maintaining computational tractability.  SIA networks are based on a subset of

Allen’s relations that can be defined by conjunctions of equalities and inequalities
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between endpoints of the two intervals participating in the relation, but

disallowing the ≠ (NOT EQUAL TO) relation [van Beek, 1991].

Additional extensions to Allen’s interval-based logic include Ladkin’s inclusion

of nonconvex intervals  [Ladkin, 1986a; Ladkin, 1986b].  Convex intervals are

intervals as defined by Allen; they are continuous.  Nonconvex intervals are

intervals formed from a union of convex intervals, and might contain gaps (see

Figure 3.2).  Such intervals are first-class objects that seem natural for

representing processes or tasks that occur repeatedly over time.  Ladkin defined

a taxonomy of relations between nonconvex intervals [Ladkin 1986a] and a set of

operators over such intervals [Ladkin, 1986b], as well as a set of standard and

extended time units that can exploit the nonconvex representation in an elegant

manner to denote intervals such as “Mondays.” [Ladkin, 1986b].  Additional

work on models and languages for nonconvex intervals has been done by Morris

and Al Khatib [1992], who call such intervals N-intervals.

My temporal primitives are points , not intervals, differing from Allen’s temporal

ontological primitives.  However, propositions , such as the Hb level, or its state

abstraction in a particular context, are interpreted only over intervals.

Time

Convex interval

Nonconvex interval

Figure 3.2:  A nonconvex interval.  The nonconvex interval comprises several convex intervals.
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In addition, temporal pattern abstractions are potentially nonconvex intervals,

being formed of several disjoint intervals; in my model, these parameters are

first-class citizens, just like any abstraction based on a convex interval.

3.1.5 McDermott’s Point-Based Temporal Logic

As I have mentioned in Section 1.2.1, McDermott [1982] suggested a point-based

temporal logic.  The main goal of McDermott’s logic was to model causality and

continuous change, and to support planning.

McDermott’s temporal primitives are points , unlike Allen’s intervals.  Time is

continuous: The time line is the set of real numbers.  Instantaneous snapshots of

the universe are called states .  States have an order-preserving date  function to

time instants.  Propositions can be interpreted either over states or over intervals

(ordered pairs of states), depending on their type.  There are two types of

propositions.  Facts  are interpreted over points, and their semantics borrow from

the situation calculus.  The proposition (On Block1 Block2) is the set of states

where Block1 is on Block2.  Facts are of the form (T s p), in McDermott’s Lisp-like

notation, meaning that p is true in s , where s is a state and p is a proposition, and

s ∈  p.  An event  e is the set of intervals over which the event exactly happens:

(Occ s1  s 2 e) means that event e occurred between the states s1  and s2—that is,

over the interval [s1  s2]—where [s1  s2]  ∈  e.  McDermott’s external characterization

of events by actually identifying events as sets of intervals has been criticized (e.g.,

[Galton, 1987]).  Such a characterization seems to define events in a rather

superficial way (i.e., temporal span) that might even be computationally

intractable for certain types of events, instead of relying on their internal

characterization.

McDermott’s states are partially ordered and branching into the future, but are

totally ordered for the past (unlike Allen’s intervals, which are not allowed to

branch into either the past or the future).  This branching intends to capture the

notion of a known past, but an indeterminate future.  Each maximal linear path

in such a branching tree of states is a chronicle.  A chronicle is thus a complete
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possible history of the universe, extending to the indefinite past and future; it is a

totally ordered set of states that extend infinitely in time [McDermott, 1982].

As will be apparent throughout this chapter, there is a tradeoff between using

point-based and interval-based temporal logics.  For instance, Allen’s interval-

based ontology of temporal primitives allows for a natural representation of

temporal uncertainty, such as occurs in natural language and in clinical histories

(“the patient felt the pain in his abdomen sometime before he started vomiting”).

Point-based temporal primitives seem more natural in domains in which time-

stamped data occur naturally, such as when patients are monitored in the

intensive-care unit, or when most types of objective clinical data are collected

(“the Hb value was 9.8 gr./dl at 8:30 A.M. on January 5, 1983”).  Drawing

conclusions from point-based primitives is usually more tractable

computationally.  However, we need to distinguish between the temporal

primitives and the propositions  interpreted over these primitives.  As I pointed out

in Section 3.1.4, the temporal  primitives  in my model are points , rather than

intervals (similar to McDermott’s and different from Allen’s temporal ontological

primitives).  However, propositions, such as the value of Hb in a particular

context, are interpreted only over intervals.  We  also need to define clearly the

semantics of such propositions, since the meaning of these propositions

obviously affects the conclusions we can draw from them.  These issues have

been analyzed by Shoham (see Section 3.1.6), whose work influenced some

aspects of the knowledge-based temporal-abstraction model implemented in the

RÉSUMÉ system, and in particular, of the temporal-inference mechanism.

3.1.6 Shoham’s Temporal Logic

As mentioned in Section 1.2.2, there is another approach to temporal logic, which

influenced a part of my model.  Shoham [1987], in an influential paper,

attempted  to clean up the semantics of both Allen’s and McDermott’s temporal

logics by presenting a third temporal logic.  Shoham pointed out that the

predicate-calculus semantics of McDermott’s logic, like those of Allen’s, are not

clear.  Furthermore, both Allen’s “properties, events, and processes” and
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McDermott’s “facts and events” seem at times either too restrictive or too

general.  Finally, Allen’s avoidance of time points as primitives leads to

unnecessary complications [Shoham, 1987].

Shoham therefore presented a temporal logic in which the time primitives are

points , and propositions are interpreted over time intervals .  Time points are

represented as zero-length intervals, <t, t>.  Shoham used reified first-order–

logic propositions—namely, propositions that are represented as individual

concepts that can have, for instance, a temporal duration.  Thus, TRUE(t1, t2, p)

denotes that proposition p was true during the interval <t1, t2>.  Therefore, the

temporal and propositional elements are explicit.  Shoham notes that the simple

first-order–logic approach of using time as just another argument (e.g.,

ON(Block1, Block2, t1, t2)), does not grant time any special status.  He notes also

that the modal-logic approach of not mentioning time at all, but of, rather,

changing the interpretation of the world’s model at different times (rather like

the tense logics discussed in Section 3.1.1), is subsumed by reified first-order

logic [Shoham 1987; Shoham and Goyal, 1988; Halpern and Shoham, 1986].

Shoham provided clear semantics for both the propositional and the first-order–

logic cases, using his reified first-order temporal logic.  Furthermore, he pointed

out that there is no need to distinguish among particular types of propositions,

such as by distinguishing facts from events :  Instead, he defined several relations

that can exist between the truth value of a proposition over an interval and the

truth value of the proposition over other intervals.  For instance, a proposition

type is downward hereditary if, whenever it holds over an interval, it holds over

all that interval’s subintervals, possibly excluding its end points [Shoham 1987]

(e.g., “Sam stayed in the hospital for less than 1 week”).  A proposition is upward

hereditary  if, whenever it holds for all proper subintervals of some nonpoint

interval, except possibly at that interval’s end points, it holds over the nonpoint

interval itself (e.g., “John received an infusion of insulin at the rate of 2 units per

hour”).  A proposition type is gestalt  if it never holds over two intervals, one of

which properly contains the other (e.g., the interval over which the proposition

“the patient was in a coma for exactly 2 weeks” is true cannot contain any
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subinterval over which that proposition is also true).  A proposition type is

concatenable if, whenever it holds over two consecutive intervals, it holds also

over their union (e.g., when the proposition “the patient had high blood

pressure” is true over some interval as well as over another interval that that

interval meets, then that proposition is true over the interval representing the

union of the two intervals).  A proposition is solid if it never holds over two

properly overlapping intervals (e.g., “the patient received a full course of the

current chemotherapy protocol, from start to end,” cannot hold over two different,

but overlapping intervals).  Other proposition types exist, and can be refined to

the level of interval–point relations.

Shoham observed that Allen’s and McDermott’s events  correspond to gestalt

propositions, to solid ones, or to both, whereas Allen’s properties  are both upward

hereditary and downward hereditary [Shoham, 1987].  This observation immediately

explains various theories that can be proved about Allen’s properties, and

suggests a more expressive, flexible categorization of proposition types for

particular needs.

As I point out in Section 4.1, my temporal model is influenced by Shoham’s

temporal logic.  The temporal primitives are points, whereas propositions are

interpreted over (possibly zero-length) intervals.  Clinical parameters and their

respective values at various abstraction levels and within various contexts are

modeled as propositions.  As I shall explain in Section 4.2.3, these propositions

can have several inference properties, corresponding to an extension of Shoham’s

propositional types.  The temporal-inference mechanism assumes that the

domain ontology of the particular clinical area includes knowledge of such

properties (i.e., the temporal semantic knowledge) and exploits that knowledge for

inferential purposes.

3.1.7  The Perspective of the Database Community

The focus of this work, as explained in the introductory part of this chapter, is

temporal reasoning, as opposed to temporal maintenance.  However, it is useful to



Chapter 3: Temporal Reasoning in Clinical Domains

63

look briefly at the work done by the database community, for whom (at least)

calendaric time is a prerequisite for any time-oriented storage of real-world facts.

Snodgrass and Ahn [1986] introduced a taxonomy of database models with

respect to their treatment of time.  For this classification, they use three potential

times: valid time, transaction time, and user-defined time.  Valid time  denotes

the time when the recorded information was correct.  Transaction time records

the time at which the information was recorded in the database.  User-defined

time  is simply a time attribute that the user defines in her database schema.  For

instance, when a patient enters a hospital for surgery, the date on which she was

admitted is the valid time, and the time that the admission was recorded is the

transaction time.  Particular annotations of the patient’s record that signify the

time at which the operation for which she was admitted started and the time the

operation ended might be internal, application-specific, user-defined times.

Based on the transaction time and the valid time, Snodgrass and Ahn define four

types of databases: snapshot databases have neither type of time.  They represent

a snapshot view of the universe at a particular time instant—that is, a particular

state of the database.  Former values are discarded.  Rollback databases save

only the transaction  time, and thus store a history of all the database’s states—that

is, a list of snapshots.  A rollback  operation can reconstruct the database’s state at

any point in time.  Changes to the database can be made to only the most recent

snapshot.  Historical  databases save only the valid   time.  As modifications (e.g.,

error corrections) are made, they replace former data; previous states of the

database are not saved.  Modification is allowed at any point of time.  Thus, the

database models the most current knowledge about both the past and present.

Temporal databases (sometimes called bitemporal  databases) support both valid

time and transaction time.  Thus, the database can be rolled back to a former

(perhaps invalid) view of the world, and present a view of what was recorded in

the database at that time.  Snodgrass implemented a temporal-query language,

TQuel [Snodgrass, 1987], on top of the relational database INGRESS

[Stonebraker, 1986], that supported a new type of query, the retrieve  query,

which added the ability to query the database’s state of knowledge at different
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times about other times (e.g., “what was known in January 1984 about the

patient’s operation in 1978?”).

From the ontological point of view, a particularly clean view of a structure for

temporal domains was given by Clifford [1988].  Using a set-theoretic

construction, Clifford defines a simple but powerful structure of time units.

Clifford assumes a certain smallest, nondivisible time particle for every domain,

called a chronon  [e.g., seconds].  A chronon’s size is determined by the user.  By

the repeated operation of constructed intervallic partitioning—intuitively

equivalent to segmentation of the time line into mutually exclusive and

exhaustive intervals (say, constructing 12 months from 365 days)—Clifford

defines a temporal universe , which is a hierarchy of time levels and units.

Clifford also defines clearly the semantics of the operations possible on time

domains in the temporal universe.  It is interesting to note that, unlike Ladkin’s

construction of discrete time units [Ladkin, 1986b], Clifford’s construction does

not leave room for the concept of weeks  as a time unit, since weeks can overlap

months and years, violating the constructed intervallic partition properties.

As I shall show in Chapter 5, the RÉSUMÉ system creates and maintains

essentially a historical  database, where all the patient’s past and present clinical

parameters and their abstractions are valid.  This maintenance is done

automatically (unlike the user-driven updates in standard databases) through a

truth-maintenance system.  All concluded abstractions are defeasible—they are

valid only as long as no datum with a present or past valid time stamp arrives

and invalidates the conclusion, either directly or through a complex chain of

reasoning.  However, an external database interacting with the RÉSUMÉ system

(which is not a part of that system) can be temporal—saving both the transaction

time and the valid time of every update to a parameter value.  Thus, the external

database can save a full history of the RÉSUMÉ system’s conclusions.

Similar to Clifford chronons, the RÉSUMÉ system assumes a domain-dependent

smallest-granularity time unit to which other time units can be converted and

from which these units can be constructed..
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3.1.8   Representing Uncertainty in Time  and Value

The models that I have presented thus far that represent time and events mostly

ignore several inherent uncertainty  issues.  For one, the value v of a clinical

parameter π measured at point t might be actually v±ε, ε being some measure of

error.  I refer to such uncertainty as vertical, or value, uncertainty .  In addition, it

might not be clear when  π was measured: was it at 8:27:05 A.M. last Tuesday, or

just sometime on Tuesday?  And if the patient had fever, did it last from the

previous Monday until this Sunday, or did it occur sometime in the previous

week and persisted for at least 2 days?  I refer to such uncertainty as horizontal,

or temporal, uncertainty.  Even if there is absolutely no uncertainty with respect

to either the value or the time of measurement, there might still be questions of

the type “If the patient has high fever on Tuesday at 9:00 P.M., which is known to

have been present continuously since Monday at 8:00 A.M., in the context of

bacterial pneumonia, how long can the fever be expected to last?” or “If we did

not measure the temperature on Thursday, is it likely that the patient was in fact

feverish?”  I refer to such uncertainty as persistence uncertainty.  It involves

both horizontal and vertical components.  Such uncertainty is crucial for the

projection and forecasting tasks.  The projection task  in AI is the task of

computing the likely consequences of a set of conditions or actions, usually given

as a set of cause–effect relations.  Projection is particularly relevant to the

planning task (e.g., when we are deciding how the world will look after the robot

executes a few actions with known side effects).  The forecasting  task  involves

predicting particular future values for various parameters, given a vector of time-

stamped past and present measured values, such as anticipating changes in

future stock-exchange share values, given the values up to and including the

present.  The planning  task  in AI consists of producing a sequence of actions for

an agent (e.g., a robot), given an initial state of the world and a goal state, or set

of states, such that that sequence achieves one of the goal states.  Possible actions

are usually operators with predefined certain or probabilistic effects on the

environment.  The actions might require a set of enabling preconditions to be

possible or effective [Charniak and McDermott, 1985].  Achieving the goal state,

as well as achieving some of the preconditions, might depend on correct
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projection of the actions up to a point for determining whether preconditions hold

when required.

Although my methodology, as represented in the knowledge-based temporal-

abstraction method and in the RÉSUMÉ problem-solving system, does not solve

all the uncertainty issues, it does not ignore them either.  My interest lies mainly

in the interpretation of the past and present, rather than in the forecasting or projection

of  the future (although the tasks are related).  Most of the types of uncertainty

mentioned in this section are relevant for the interpretation task.  In particular,

for the interpretation task (as it manifests itself in the temporal-abstraction task),

it is important to specify explicitly assumptions made about any of the

uncertainty types, such as filling in missing data where a persistence uncertainty

is involved.  I provide mostly declarative, rather than procedural, means to

specify in a uniform manner some of these assumptions, such as representing

random measurement errors and parameter fluctuations, as well as different

types of persistence.  The temporal-abstraction mechanisms that I have

developed exploit this knowledge in the process of interpreting past and present

data.  Furthermore, the architecture of the RÉSUMÉ system is based on a truth-

maintenance system that captures the nonmonotonic nature of that system’s

conclusions.

In Sections 3.1.8.1 and 3.1.8.2, I present briefly several relevant approaches and

systems that employ reasoning explicitly about various time and value

uncertainties.

3.1.8.1  Modeling of Temporal Uncertainty

A frequent need, especially in clinical domains, is the explicit expression of

uncertainty regarding how long a proposition was true.  In particular, we might

not know precisely when the proposition became true and when it ceased to be

true, although we might know that it was true during a particular time interval.

Sometimes, the problem arises because the time units involved have different

granularities : the Hb level may sometimes be dated with an accuracy level of

hours (e.g., “Tuesday at 5 P.M.”), but may sometimes be given for only a certain
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Begin( I ) Body( I ) End(I )

Figure 3.3:  A variable interval I.  Variable intervals are composed of a certain body, and of

uncertain start and end points, represented as intervals.  (Adapted from [Console et al., 1988].)

day (“Wednesday”).  Sometimes, the problem arises due to the naturally

occurring incomplete information in clinical settings: The patient complains of a

backache starting “sometime during the past year.”  There is often a need to

represent that vagueness.

Console and Torasso [Console, Furno, and Torasso, 1988; Console and Torasso,

1991a; Console and Torasso, 1991b] present a model of time intervals that

represents such partial knowledge explicitly.  It was designed to represent causal

models used for diagnostic reasoning.  The authors define a variable interval: a

time interval I  composed of three consecutive convex intervals (i.e., each is a

convex set of points on the time line).  The first interval is begin(I), the second is

called body(I), and the third is called end(I) (Figure 3.3).

Operations on convex intervals can be extended to variable intervals.  We can

now model uncertainty about the time of the start or end of the actual interval,

when these times are defined vaguely, since the begin and end intervals of a

variable interval represent uncertainty about the start and stop times of the real

interval; the body is the only certain interval where the proposition represented

by the interval was true.  Console and Torasso discuss the relevance of their

temporal model to the task of diagnosis based on causal (pathophysiological)

models [Console, Furno, and Torasso, 1988], demonstrate the use of their model

for medical diagnosis using abductive reasoning [Console and Torasso, 1991a],

and discuss the computational complexity of propagating dependencies in the

constraint-satisfaction network created between variable intervals [Console and

Torasso, 1991b].
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An approach closely related to Console and Torasso’s variable intervals is Das’

temporal query language, defined and implemented in terms of relational

databases [Das and Musen, in press].  Das also assumes vagueness in temporal

end points.  The Das model, which he implemented as the Chronus system,

attributes the same granularity—the finest possible in the database (e.g.,

seconds)—to all time points.  This approach is unlike other database approaches

that assume predefined granularities, such as hours and days, to capture

temporal uncertainty.  Instead, Das represents instantaneous events as two points:

a lower time bound and an upper time bound, thus creating an interval of

uncertainty  (IOU).  If the time of the event is known, the upper and lower

bounds of the IOU coincide.  Interval-based propositions are represented by a

body bounded by two events: the start and the stop events of the interval, both

represented as IOUs.  The body is simply the interval between the upper bound

of the start event and the lower bound of the end event, and is called the interval

of certainty  (IOC).  The IOUs and IOCs can be stored as relations in a relational

database.  Note that this approach disposes of the need to predefine particular

time units representing levels of granularity, and allows expression of arbitrary

amounts of temporal uncertainty that are not possible given a rigid set of time

units.

Das’ approach bestows a special status to the temporal attributes of tuples in a

relational database; thus, Das defines semantics for the temporal versions of

relational operators (such as projection, selection, and join) that use the time-

stamp parts of the relational tuples and extend the SQL syntax.  Das’s approach

creates a historical database from a standard, snapshot  database (in the sense

defined in Section 3.1.7).  The valid data in this historic database can be modified

for arbitrary given times (past or present); thus, the database maintains a valid

view of the database’s relations.  Das’ temporal-maintenance system and the

RÉSUMÉ temporal-reasoning  system are being used in the development of the T-

HELPER project [Musen et al., 1992], that was mentioned in Section 1.1, in which

researchers are building systems for managing AIDS patients who are enrolled in

clinical protocols.
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A different approach from Console and Torasso’s or Das’ approach, used by

Haimovitz and Kohane [Haimovitz and Kohane, 1993a, 1993b], models temporal

uncertainty by representing an uncertain temporal pattern for which their TrenDx

system searches.  I will discuss that approach in detail in Section 3.2.12, when I

describe the TrenDx system for detecting temporal trends in clinical data.

3.1.8.2  Projection, Forecasting, and Modeling the Persistence  Uncertainty

Several temporal logics include a persistence axiom for facts (as opposed to

events) that states that a proposition stays true until known to be otherwise.

Examples include McCarthy’s law of inertia  [McCarthy, 1986] and McDermott’s

persistence principle [McDermott, 1982; Dean and McDermott, 1987].  In fact,

using a form of nonmonotonic logic, McDermott [1982] asserts that a fact does

not cease to be true unless we explicitly hear that it no longer is true.  That, of

course, is not a valid assertion for many real-world propositions.  In fact,

McDermott explicitly tried to respond to that potential problem in his temporal

logic, introducing the idea of limited persistence, or a typical lifetime of a fact.

Thus, an event causes persistence  of a fact.  The idea of lifetimes for facts was not

favored by several researchers, as McDermott himself notes [1982, pp. 124].

Further objections have been raised since McDermott’s paper.  For instance,

Forbus [1984], in discussing his qualitative process theory (see Sections 3.1.3.3

and 3.2.2), claims that, if all physical quantities and qualitative relationships are

modeled correctly, there is no need to state that a boulder typically will still be in

its place for 50 years, since we will know exactly when it is removed (say, by an

avalanche), or why it should still be there, given its relevant physical properties.

However, in most cases, there is hardly enough detailed knowledge to justify a

complete model of the world, and a default lifetime for facts is reasonable,

especially to model the fact that, if we do not measure a quantity (such as a

patient’s Hb level) with sufficient frequency, we eventually lose information

about that quantity.  Nevertheless, it is not clear that, if a persistence of a fact is

clipped (in Dean and McDermott’s terms) by an event that falsifies that

persistence, the persistence should still be asserted up to the clipping point; it

would seem that the semantics of the actual propositions involved should
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determine up to what point in time the fact holds, since certain events or facts

can clip another fact’s persistence and imply that the fact was probably false long

before we  noticed that it ceased to be true.

Dean and Kanazawa [1988] proposed a model of probabilistic temporal

reasoning about propositions that decay  over time.  The main idea in their theory

is to model explicitly the probability of a proposition P being true at time t,

P(<P, t>), given the probability of <P, t-∆>.  The assumption is that there are

events of type Ep that can cause proposition p to be true, and events of type E¬p

that can cause it to be false.  Thus, we can define a survivor function  for P(<P, t>)

given <P, t-∆>, such as an exponential decay function.

Dean and Kanazawa’s main intention was to solve the projection problem, in

particular in the context of the planning task.  They therefore provide a method

for computing a belief function—denoting a belief in the consequences—for the

projection problem, given a set of causal rules, a set of survivor functions,

enabling events, and disabling events [Dean and Kanazawa, 1988].  In a later

work, Kanazawa [1991] presented a logic of time and probability, Lcp.  The logic

allows three types of entities—domain objects, time, and probability.  Kanazawa

stored the propositions asserted in this logic over intervals in what he called a

time network , which maintained probabilistic dependencies among various

facts, such as the time of arrival of a person at a place, or the range of time over

which it is true that the person stayed in one place [Kanazawa, 1991].  The time

network was used to answer queries about probabilities of facts and events over

time.

Two other approaches to the persistence problem are similar to the one taken by

Dean and Kanazawa (as well as to the one taken by the RÉSUMÉ system),

although their rationale is different.  One is de Zegher-Geets’ time-oriented

probabilistic functions (TOPFs) in the IDEFIX system [de Zegher-Geets, 1987].

The other is Blum’s use of time-dependent database access functions  and proxy

variables to handle missing data in the context of the Rx project [Blum, 1982].  I

discuss both methods in Sections 3.2.5 and 3.2.7, in the context of other temporal-
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reasoning approaches in medical domains, to emphasize the goals for developing

both of these systems: automated discovery in clinical databases (in the case of

the Rx project) and automated summarization of those databases (in the case of

the IDEFIX system).  Both goals are also closer in nature to the goal of the

temporal-abstraction task solved by the knowledge-based temporal-abstraction

method and its implementation as the RÉSUMÉ system—that is, interpretation of

time-stamped data—than they are to the goal of the projection task underlying the

Dean and Kanazawa approach.

Dagum, Galper, and Horvitz [1992, 1993b] present a method intended

specifically for the forecasting  task.  They combine the methodology of static

belief networks [Pearl, 1986] with that of classical probabilistic time-series

analysis  [West and Harrison, 1989].  Thus, they create a dynamic network model

(DNM) that represents not only probabilistic dependencies between parameter x

and parameter y  at the same time t, but also P(xt|yt-k)—namely, the probability

distribution for the values of x given the value of y at an earlier  time.  Given a

series of time-stamped values, the conditional probabilities in the DNM are

modified continuously to fit the data.  The DNM model was tried successfully on

a test database of sleep-apnea cases to predict several patient parameters, such as

heart rate and blood pressure [Dagum and Galper, 1993a].

An approach related to the use of DNMs by Dagum and his colleagues is the one

taken by Berzuini and his colleagues in the European General Architecture for

Medical Expert Systems (GAMES) project [Berzuini et al., 1992; Quaglini et al.,

1992; Bellazzi, 1992] and in the GAMEES project, a probabilistic architecture for

expert systems [Bellazzi et al., 1991].  Two of the major goals of the work of this

group are monitoring drug administration, and optimizing the process of drug

delivery.  The tasks involve forecasting correctly the drug levels, and adjusting a

patient model to account for individual deviations from the generic population

model.  An example is delivery of a costly hormone, recombinant human

erythropoietin, to patients who suffer from severe anemia due to renal failure.

The underlying representation for Berzuini and his colleagues is a series of

Bayesian networks, such as a network denoting the probabilistic relations
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between the measured level of Hb and other parameters.  In addition, these

researchers used a compartment model to determine the effect of the hormone on

the bone marrow [Bellazi, 1992].  Thus, expected-versus-observed deviations can

be recorded, and conclusions can be drawn about the necessary adjustment in the

hormone level.

The representation of vertical uncertainty in the GAMEES project is related to the

DNM model in at least one important sense: Both approaches modify the

constructed model as more data become available over time.  Although the

inference procedure starts with generic population-based information, with a

particular distribution for the patient parameters in the compartment model, the

patient-specific responses to the drug over time are used to modify the prior

distributions of these individual parameters and to fit the model to the particular

patient [Berzuini et al., 1992].  Thus, a learning element is inherent in the method.

3.2  Temporal-Reasoning  Approaches in Clinical Domains

In this section, I shall describe briefly various systems and models that have been

implemented in clinical domains and that have used some type of temporal

reasoning.  Note that several clinical systems and models were already described

as general approaches in Section 3.1.  However, this section describes systems

whose implicit or explicit underlying tasks  and application domains  are closer to

the RÉSUMÉ system’s temporal-abstraction interpretation task and to the clinical

domains to which it has been applied.  Nevertheless, note that no two systems

(including RÉSUMÉ) have precisely the same underlying goals; usually the

systems were created for different domains and reflect these domains’ respective

constraints.

My presentation of the various systems points out, when relevant, aspects of

temporal-reasoning and temporal-maintenance that were introduced in Section

3.1.  I highlight features that enable a comparison with the RÉSUMÉ system’s

architecture and underlying methodology, and discuss such features briefly.



Chapter 3: Temporal Reasoning in Clinical Domains

73

3.2.1  Encapsulation of Temporal Patterns as Tokens

Most of the early medical expert systems used for diagnosis or treatment

planning did not have an explicit representation for time, and might be said to

have ignored time’s existence.  Nevertheless, these systems did not so much

ignore time as encapsulate a temporal notion—sometimes, a whole temporal

pattern—in what I call a symbolic  token that was an input for the reasoning

module, just like any other datum.  This encapsulation also has been called state-

based temporal ignorance [Kahn, 1991d].  A typical example is the token CHEST

PAIN SUBSTERNAL LASTING LESS THAN 20 MINUTES in the INTERNIST–I system

[Miller et al., 1982].  The value of this token can be only YES or NO, or perhaps

UNKNOWN; apart from that, the time interval mentioned in the token has no

existence and no reasoning method can use it to infer further conclusions about

what might have happened during that interval.  Therefore, the INTERNIST-I

program cannot decide automatically that the example token might be

inconsistent with CHEST PAIN SUBSTERNAL LASTING MORE THAN 20 MINUTES.

Note also that, for the latter contradiction to be detected, an internal

representation of temporal duration  of a proposition is not enough; a

representation of the valid  time of the proposition, as defined in Section 3.1.7, is

necessary too, since two mutually exclusive facts may be consistent if their valid

times are different.  In an evaluation of the INTERNIST–I system, the lack of

temporal reasoning was judged to be one of the major problems leading to

inaccurate diagnoses [Miller et al., 1982].

A corresponding example in the MYCIN infectious-diseases diagnosis and

therapy system was a prompt question for creating correct nodes in the MYCIN

context tree (the data structure that MYCIN created while running, that stored

patient-specific data), such as “were any organisms that were significant (but no

longer require therapeutic attention) isolated within the last approximately 30

days?” or “were there any other significant earlier cultures from which pathogens

were isolated?” [Buchanan and Shortliffe, 1984, pp. 120].  Again, the expected

answer is YES or NO, and the information cannot be used further, except possibly
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for addition of a new node to the program’s context tree [Buchanan and

Shortliffe, 1984, pp. 118].

3.2.1.1  Encapsulation of Time as Syntactic Constructs

An approach related to the encapsulation of time as a symbolic token is the

syntactic approach of encapsulating time inside syntactic constructs.  Such

constructs denote data structures for time, but they lack any particular semantics.

An example is the Arden syntax [Hripcsak et al., 1990].  The Arden syntax is a

general procedural syntax for clinical algorithms.  The Arden syntax provides

data types for time points, and might in the future include data types for time

intervals, or durations .  However,  it does not allow for any predefined semantic

aspects that are crucial knowledge roles for methods that perform task-specific

temporal reasoning, such as for the interpretation task.  Parameter temporal

attributes such as ALLOWED SIGNIFICANT CHANGE, temporal properties such as

DOWNWARD-HEREDITARY (see Section 3.1.6), and the semantics of temporal

relations have no place in purely syntactic approaches.

3.2.2  Encapsulation of Time as Causal Links

Many knowledge-based decision-support systems in clinical domains model the

underlying fundamental relations in the domain as causal rules.  These rules do

not need to mention time at all, although temporal precedence is usually a

necessary prerequisite for causality (but note Simon’s objection [Simon, 1991]:

Sometimes more than one variable in a closed system can be considered as a

cause, depending on which variable can be manipulated exogenously; in

addition, causes should at least be allowed to be simultaneous with their effects).

This particular encapsulation of time has been termed causal-based temporal

ignorance [Kahn, 1991d].

Causal representations might use explicit causal links; for instance, the CASNET

system [Weiss et al., 1978] had causal rules of the type STEROID MEDICATIONS =>

INCREASED INTRAOCULAR PRESSURE.  Causality also can be expressed as

conditional-probability links; for instance, Pathfinder [Heckerman et al., 1992]
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includes expressions of the type P(X) = P(X|Y) * P(Y).  Other options include

Markov transition probabilities between state nodes (e.g., S1 —>p S2) and explicit

functional relations (e.g., Y  = f( X)).  Qualitative-physics systems (see Section

3.1.3.3) often denote an increasing monotonic relationship between X and Y as

Y = M+(X) [Kuipers, 1986], or Y ∝ Q+ X  [Forbus, 1984].   The former notation

means that there is some unspecified function f  such that Y = f(X).  The latter

notation means that Y = f(...,X,...), where Y’s dependence on X is monotonically

increasing, if all other variables are held equal.  As Forbus notes [Forbus, 1984],

there is in fact little information in this dependence: The dependence says

absolutely nothing about how  X  affects Y.  Furthermore, except possibly for

explicit causal models, it is not clear that causality in such systems is anything

but some functional—possibly even bidirectional—relationship between two

parameters.  In any case, time is not used at all, and reasoning can progress from

state to state or from variable to variable, without consideration for any

particular, real-world time delays.

3.2.3  Fagan’s VM Program: A State-Transition Temporal-Interpretation Model

Fagan’s VM  system was one of the first knowledge-based systems that included

an explicit representation for time.  It was designed to assist physicians who are

managing patients who were on ventilators in intensive-care units [Fagan, 1980;

Fagan et al., 1984].  VM was designed as a rule-based system inspired by MYCIN,

but it was different in several respects: VM could reason explicitly about time

units, accept time-stamped measurements of patient parameters, and calculate

time-dependent concepts such as rates of change.  In addition, VM relied on a

state-transition model of different intensive-care therapeutic situations, or

contexts (in the VM case, different ventilation modes).  In each context, different

expectation  rules would apply to determine what, for instance, is an ACCEPTABLE

mean arterial pressure in a particular context.  Except for such state-specific rules,

the rest of the rules could ignore the context in which they were applied, since

the context-specific classification rules created a context-free, “common
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denominator,” symbolic-value environment.  Thus, similar values of the same

parameter that appeared in meeting intervals (e.g., IDEAL mean arterial pressure)

could be joined and aggregated into longer intervals, even though the meaning

of the value could be different, depending on the context in which the symbolic

value was determined.  The fact that the system changed state was inferred by

special rules, since VM was not connected directly to the ventilator output.

Another point to note is that the VM program used a classification of expiration

dates  of parameters, signifying for how long VM could assume the correctness of

the parameter’s value if that value was not sampled again.  The expiration date

value was used to fill a GOOD-FOR slot in the parameter’s description.  Constants

(e.g., gender) are good (valid) forever, until replaced.  Continuous parameters

(e.g., heart rate) are good when given at their regular, expected sampling

frequency unless input data are missing or have unlikely values.  Volunteered

parameters (e.g., temperature) are given at irregular intervals and are good for a

parameter- and context-specific amount of time.  Deduced parameters (e.g.,

hyperventilation) are calculated from other parameters, and their reliability

depends on the reliability of these parameters.

VM did not use the MYCIN certainty factors, although they were built into the

rules.  The reason was that most of the uncertainty was modeled within the

domain-specific: Data were not believed after a long time had passed since they

were last measured; aberrant values were excluded automatically; and wide (e.g.,

ACCEPTABLE) ranges were used for conclusions, thus already accounting for a

large measurement variability.  Fagan notes that the lack of uncertainty in the

rules might occur because, in clinical contexts, physicians do not make inferences

unless the latter are strongly supported, or because the intensive-care domain

tends to have measurements that have a high correlation with patient states

[Fagan et al., 1984].

VM could not accept data arriving out of order, such as blood-gas results that

arrive after the current context has changed, and thus could not revise past

conclusions.  In that sense, VM could not create a valid historic database, as the
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RÉSUMÉ system does (by maintaining logical dependencies among data and

conclusions, and by using some of the temporal inference mechanism’s

conclusions to detect inconsistencies), although it did store the last hour of

parameter measurements and all former conclusions; in that respect, VM

maintained a rollback  database of measurements and conclusions (see Section

3.1.7).

The RÉSUMÉ methodology is similar in some respects to the VM model.  As I

show in Chapter 5, in RÉSUMÉ, most of the domain-specific knowledge that is

represented in the domain’s ontology of parameters and their temporal

properties is specialized by contexts.  This knowledge is used by the temporal-

abstraction mechanisms.  Thus, although, strictly speaking, the same domain-

independent rules apply to every context, their parameters (e.g., classification

tables, maximal-gap–bridging functions) are specific to the context.  However,

the various classifications possible for the same parameter or a combination of

parameters in each context can be quite different (e.g., the GRADE_II value of the

SYSTEMIC_TOXICITY parameter makes no sense when a patient received no

cytotoxic therapy, even though the same hematological parameters might still be

monitored), and additional conditions must be specified before meeting interval-

based propositions with the same value can be aggregated.  The role of the

context-forming mechanism in RÉSUMÉ (namely, to create correct interpretation

contexts for temporal abstraction) is not unlike that of the state-detection rules in

VM, although the mechanism’s operation is different and its output is more

flexible (e.g., the temporal extension of an interpretation context can have any of

Allen’s 13 temporal relations to the event or abstraction which induced it).

In addition, as I explain in Sections 4.2.1 and 5.1.2, RÉSUMÉ makes several finer

distinctions with respect to joining parameter values over different contexts:

Typically, an interpretation of the same parameter in different contexts cannot be

joined to an interpretation of that parameter in different contexts.  However,

RÉSUMÉ allows the developer to define unifying, or generalizing , interpretation

contexts for joining interpretations of the same parameter in different contexts

over meeting time intervals (e.g., the state of the Hb parameter over two meeting
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but different treatments regimens within the same clinical protocol), and

nonconvex interpretation contexts  for joining interpretations of the same parameter

in the same context, but over nonconsecutive time intervals (e.g., prebreakfast

blood-glucose values over several days).

The RÉSUMÉ local and global maximal-gap functions extend the idea of GOOD-

FOR parameter- and context-specific persistence properties.  RÉSUMÉ also does

not use uncertainty in a direct fashion.  Rather, the uncertainty is represented by

domain-specific values with predefined semantics, such as the context-specific

SIGNIFICANT CHANGE value for each parameter, the local and global truth-

persistence (maximal-gap) functions, and the temporal patterns that are matched

against the interval-based abstractions, and that usually include flexible value

and time ranges.  In terms of updating outdated conclusions, the RÉSUMÉ

system is well suited for historic, valid-time updates by old data arriving out of

temporal order, a phenomenon I term updated view .  This flexibility is provided

by the nature of the temporal model underlying the knowledge-based temporal-

abstraction method, and because a truth-maintenance system is included in the

RÉSUMÉ architecture.  Thus, at any time, the RÉSUMÉ conclusions for past and

present data reflect the most up-to-date state of knowledge about those data.

Furthermore, RÉSUMÉ can bring knowledge from the future back in time to bear

on the interpretation of the past, a phenomenon termed hindsight by Russ

[1989], by using retrospective contexts, as I shall explain in Chapters 4 and 5.

3.2.4  Temporal Bookkeeping:  Russ’ Temporal Control Structure

Russ designed a system called the temporal control structure (TCS), which

supports reasoning in time-oriented domains, by allowing the domain-specific

inference procedures to ignore temporal issues, such as the particular time

stamps attached to values of measured variables [Long and Russ, 1983; Russ,

1986; Russ, 1989; Russ, 1991].

The main emphasis in the TCS methodology is creating what Russ terms as a

state abstraction  [Russ, 1986]: an abstraction of continuous processes into steady-

state time intervals, when all the database variables relevant for the knowledge-
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Figure 3.4 :  The TCS system’s rule environment.  A control system is introduced between the

system database and the environment in which the user’s rules are being interpreted.

based system’s reasoning modules are known to be fixed at some particular

value.  The state-abstraction intervals are similar to VM’s states, which were used

as triggers for VM’s context-based rules.  TCS is introduced as a control-system

buffer between the database and the rule environment (Figure 3.4).  The actual

reasoning processes (e.g., domain-specific rules) are activated by TCS over all the

intervals representing such steady states, and thus can reason even though the

rules do not represent time explicitly.  That ignorance of time by the rules is

allowed because, by definition, after the various intervals representing different

propositions have been broken down by the control system into steady-state,

homogenous subintervals, there can be no change in any of the parameters

relevant to the rule inside these subintervals, and time is no longer a factor.

Figure 3.5 shows an example of a set of interval-based propositions being

partitioned into steady-state intervals.

 The TCS system allows user-defined code modules  that reason over the

homogenous intervals, as well as user-defined data variables  that hold the data

in the database.  Modules define inputs and outputs for their code; Russ also

allows for a memory variable that can transfer data from one module to a

succeeding or a preceding interval module (otherwise, there can be no reasoning



Chapter 3: Temporal Reasoning in Clinical Domains

80
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Input 1:

Input 2:

Input 3:

Output:

Figure 3.5 :  Partitioning the database by creation of stable intervals in the TCS system.  A rule

such as IF A and B and C, THEN Z would be attached to all the stable components I1–I5, in which

there is no change in premises.  (Source: Adapted from [Russ, 1991, p. 34].)

about change).  Information variables from future processes are termed oracles;

variables from the past are termed history .

The TCS system creates a process  for each time interval in which a module is

executed; the process has access to only those input data that occur within that

time interval.  The TCS system can chain processes using the memory variables.

All process computations are considered by the TCS system as black boxes; the

TCS  system is responsible for applying these computations to the appropriate

variables at the appropriate time intervals, and for updating these computations,
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Figure 3.6:  A chain of processes in the TCS system.  Each process has in it user-defined code, a

set of predefined inputs and outputs, and memory variables connecting it to future processes

(oracle variables) and to past processes (history variables).  (Source: Adapted from [Russ, 1991,

pp. 31–32].)

should the value of any input variable change.  Figure 3.6 shows a chain of

processes in the TCS system.

The underlying temporal primitive in the TCS architecture is a time point

denoting an exact date.  Propositions are represented by point variables or by

interval variables .  Intervals are created by an abstraction process [Long and

Russ, 1983] that employs user-defined procedural Lisp code inside the TCS

modules to create steady-state periods, such as a period of stable blood pressure.

The abstraction process and the subsequent updates are data driven.  Variables

can take only a single value, which can be a complex structure; the only

restriction on the value is the need to provide an equality predicate.

A particularly interesting feature of TCS that is relevant to the RÉSUMÉ

methodology is the truth-maintenance capability of the system—that is, the

abilities to maintain dependencies among data and conclusions in every steady-

state interval, and to propagate the effects of a change in past or present value of

parameters to all concerned reasoning modules.  Thus, the TCS system creates a

historic database that can be updated at arbitrary time points, in which all the
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time-stamped conclusions are valid.  Another interesting property of Russ’s

system is the ability to reason by hindsight—that is, to reassess past conclusions

based on new, present data [Russ, 1989].  This process is performed essentially by

information flowing through the memory variables backward in time.

The RÉSUMÉ system contains several concepts that parallel key ideas in the TCS

system, such as maintaining dependencies between data and conclusions,

allowing arbitrary historic updates, reasoning about the past and the future, and

providing a hindsight  mechanism (albeit by a different methodology).  In fact, the

RÉSUMÉ system also allows foresight  reasoning (setting expectations for future

interpretations based on current events and abstractions).  The RÉSUMÉ system,

like the TCS system, also assumes time-stamped input, although propositions are

interpreted only over intervals.

The RÉSUMÉ system also uses the idea of context-specific interpretation, but the

partitioning of the intervals is not strictly mechanical (depending on only

intersections of different intervals): Rather, it is driven by knowledge derived

from the domain’s ontology (e.g., PART-OF relations among events) as used by the

context-forming mechanism, and contexts are thus created only when

meaningful.  In addition, on one hand, contexts can be prevented from being

joined, even when in steady state, depending on the underlying proposition’s

properties; on the other hand, abstractions might be joined over time gaps due to

the temporal-interpolation mechanism.  Furthermore, contexts can be created not

only by direct intersections of interval-based abstractions, such as the TCS

partitions, but also dynamically, induced by a task, an event, an abstraction, or a

combination of any of these entities, anywhere in time in the database, with

temporal references to intervals that occur before, after, or during the inducing

proposition.  Thus, the RÉSUMÉ system’s dynamic induced reference contexts

(discussed in Chapters 4 and 5) implement a limited form of causality and

abductive reasoning (i.e., reasoning from effects to causes), and constitute  a

major part of the hindsight and foresight reasoning in the RÉSUMÉ system.
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A major tenet of the TCS philosophy is that the system treats the user-defined

reasoning modules as black boxes with which the system does not reason; the

TCS system supplies only (sophisticated) temporal bookkeeping utilities.  In that

respect, it is highly reminiscent of the time specialist  of Kahn and Gorry [1977] that

was discussed in Section 3.1.2.  Therefore, the TCS system is more of a temporal-

maintenance  system than it is a temporal-reasoning system.  It has no knowledge of

temporal properties of the domain parameters; has no semantics for different

types of propositions, such as events or facts; and does not reason with any such

propositions directly.

The philosophy of the TCS architecture, which leaves the temporal-reasoning

task to the user’s code, contrasts with the idea underlying the RÉSUMÉ system,

whose mechanisms provide temporal-reasoning procedures specific to the

temporal-abstraction interpretation task.  Furthermore, unlike the TCS system’s

domain-specific modules, implemented as arbitrary Lisp code, the RÉSUMÉ

system uses its own temporal-abstraction mechanisms that are domain

independent, but that rely on well-defined, uniformly represented domain-

specific temporal-abstraction knowledge, which fits into the respective slots  in the

mechanisms.

3.2.5  Discovery in Time-Oriented Clinical Databases:  Blum’s Rx Project

Rx  [Blum, 1982] was a program that examined a time-oriented clinical database,

and produced a set of possible causal relationships among various clinical

parameters.  Rx used a discovery module  for automated discovery of statistical

correlations in clinical databases.  Then, a study module used a medical

knowledge base to rule out spurious correlations by creating and testing a

statistical model of an hypothesis.  Data for Rx were provided from the American

Rheumatism Association Medical Information System (ARAMIS), a chronic-

disease time-oriented database that accumulates time-stamped data about

thousands of patients who have rheumatic diseases and who are usually

followed for many years [Fries and McShane, 1986].  The ARAMIS database

evolved from the mainframe-based Time Oriented Database (TOD) [Fries, 1972].
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Both databases incorporate a simple three-dimensional structure that records, in

an entry indexed by the patient, the patient’s visit and the clinical parameter, the

value of that parameter, if entered on that visit.  The TOD was thus a historical

database (see Section 3.1.7).  (In practice, all measurements were entered on the

same visit; therefore, the transaction time was always equal to the valid time.)

The representation of data in the Rx program included point events, such as a

laboratory test, and interval events , which required an extension to TOD to

support diseases, the duration of which was typically more than one visit.  The

medical knowledge base was organized into two hierarchies: states  (e.g., disease

categories, symptoms, and findings) and actions (drugs).

The Rx program determined whether interval-based complex states, such as

diseases, existed by using a hierarchical derivation tree: Event A  can be defined

in terms of events B1 and B2, which in turn can be derived from events C11, C12,

C13 and C21, C22, and so on.  When necessary, to assess the value of A , Rx

traversed the derivation tree and collected values for all A’s descendants [Blum,

1982].

Due to the requirements of the Rx modules—in particular, those of the study

module—Rx sometimes had to assess the value of a clinical parameter when it

was not actually measured—a so-called latent variable.  One way to estimate

latent variables was by using proxy variables  that are known to be highly

correlated with the required parameter.  An example is estimating what was

termed in the Rx project the intensity  of a disease during a visit when only some

of the disease’s clinical manifestations have been measured.  Blum [1982]

mentions that he and his colleague Krains suggested a statistical method for

using proxy variables that was not implemented in the original project.

The main method used to access data at time points when a value for them did

not necessarily exist used time-dependent database access functions.  One such

function was delayed-action(variable , day , onset-delay, interpolation-days), which

returned the assumed value of variable  at onset-delay  days before day , but not if

the last visit preceded day by more than interpolation-days  days.  Thus, the dose of
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prednisone therapy 1 week before a certain visit was concluded on the basis of

the dose known at the previous visit, if that previous visit was not too far in the

past.  A similar delayed-effect  function for states used interpolation if the gap

between visits was not excessive.  The delayed-interval  function, whose variable

was an interval event, checked that no residual effects of the interval event

remained within a given carryover time interval.  Other time-dependent

database-access functions included functions such as previous-value(variable,

day), which returned the last value before day ; during(variable, day), which

returned a value of variable if day  fell within an episode of variable ; and

rapidly_tapered(variable , slope), which returned the interval events in which the

point event variable was decreasing at a rate greater than slope .  All these

functions and their intelligent use were assumed to be supplied by the user.

Thus, Rx could have a modicum of control over value uncertainty and persistence

uncertainty  (see Section 3.1.8).

In addition, to create interval events, Rx used a parameter-specific intraepisode

gap  to determine whether visits could be joined, and an interepisode definition

using the medical knowledge base to define clinical circumstances under which

two separate intervals of the parameter could not  be merged.  The intraepisode

gap was not dependent on clinical contexts or on other parameters.

The RÉSUMÉ system, although its goal is far from that of discovering causal

relations, develops several concepts whose early form can be found in the Rx

project.  The domain ontology contains parameters  and events , and can be seen as

an extension of the states  and actions in the Rx medical knowledge base.  The

RÉSUMÉ parameters’ abstraction hierarchy used for the various classification and

computational-transformation subtasks (in particular, the IS-A and ABSTRACTED-

INTO links), and its qualitative relations (such as “positively proportional”)

constitute an extension of the Rx derivation  trees.  The context ontology and the

indexing of abstractions by contexts enables retrieval of abstractions that

occurred within certain contexts, not unlike the Rx during function.  As I show in

Section 4.2.1, the dynamic induction relations of interpretation contexts, that are

induced by various propositions involving parameters and events, create a
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context envelope (backwards and forwards in time) around an event or a

parameter abstraction.  Interpretation contexts might be induced whose temporal

span is disjoint from the inducing proposition.  Thus, one of the several uses of

interpretation contexts and relations is for purposes similar to those for which the

Rx delayed-effect  function is used.

As I show in Section 4.2.4.1, the global maximal-gap persistence functions are used

by the temporal-interpolation mechanism in RÉSUMÉ to join disjoint interval-

based abstractions of any type, not unlike the Rx intraepisode gaps, but in a

context-specific manner and using additional arguments.  The abstraction

proposition types (see Section 3.1.6), such as whether a proposition type is

CONCATENABLE, are used by RÉSUMÉ in a more generalized manner.  They play,

among others, the role of the interepisode  definition in Rx that prevents interval

events from being merged.

3.2.6  Downs’ Program for Summarization of On-Line Medical Records

Downs designed a program whose purpose (unlike those of the VM and Rx

systems) was specifically to automate the summarization of on-line medical

records [Downs et al., 1986a; Downs, 1986b].  The database that Downs used, like

Rx, was drawn from the Stanford portion of the time-oriented ARAMIS database.

The knowledge base of Downs’ program contained two classes:

ABNORMAL.ATTRIBUTES, which included abnormal findings such as PROTEINURIA

(i.e., any positive value for the URINE-PROTEIN database attribute), and

DERIVED.ATTRIBUTES, which included diseases that the system might potentially

infer from the database, such as NEPHROTIC.SYNDROM (Figure 3.7).

Each ABNORMAL.ATTRIBUTE parameter pointed to a list of DERIVED.ATTRIBUTES

that should be considered if the value of the parameter were true.  When an

ABNORMAL.ATTRIBUTE parameter was detected, and the system looked for

evidence in the database for and against each hypothesis derived from that

parameter, this list was used as the differential diagnosis.  This combination of
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ATTRIBUTES

DERIVED.ATTRIBUTES

ABNORMAL.ATTRIBUTES

GLOMERULONEPHRITI S

NEPHROTIC.SYNDROME

UTI

ACUTE.RENAL.FAILURE

CHRONIC.RENAL.FAILURE

AZOTEMIA

HEMAT URIA

HIGH.CHOLESTEROL

HIGH.CREATININE

PROTEINURIA

PYURIA

Figure 3.7 :  The knowledge base of Downs’ summarization program.  Attributes are classified as

either abnormal findings (A B N O R M A L . A T T R I B U T E S ) or as disease hypotheses

(DERIVED.ATTRIBUTES).  (Source: adapted from [Downs, 1986, p. 7].)

data-driven hypothesis generation followed by discrimination among competing

hypotheses is known as the hypothetico-deductive method, and is akin to the

cover-and-differentiate  diagnostic problem-solving method [Eshelman, 1988]

mentioned in Chapter 2.  Down’s system combined the evidence for the

hypothesis using Bayesian techniques, starting with an initial prior likelihood

ratio and updating the likelihood ratio with every relevant datum.  Part of the

evidence was the result returned by temporal predicates that looked at low-level

data (e.g., “the last five creatinine values were all above 2.0”).

Downs’ program represented its conclusions using a graphic, interactive

interface for presenting levels of likelihood of DERIVED.ATTRIBUTES and for

generating appropriate explanations for these likelihood values, when the user

selected an attribute box, using a mouse, from an active screen area [Downs,

1986b].
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Downs’ system was novel in its application of probabilistic methods to the task

of summarizing patient records.  It was also innovative in its graphic user

interface.

Downs’ program, however, assumed that DERIVED.ATTRIBUTES did not change

from visit to visit, which was unrealistic, as Downs himself pointed out [Downs,

1986b].  Furthermore, there was no clear distinction between general, static

medical knowledge  and dynamic , patient-specific medical data.  Several of these

issues—in particular, the persistence assumption, were the focus of de Zegher-

Geets’ program, IDEFIX, discussed in Section 3.2.7.

The issues of both knowledge representation and the persistence of data raised

by Downs’ program are treated in great detail by the RÉSUMÉ system’s

temporal-abstraction mechanisms.  These mechanisms rely on knowledge that is

represented as an ontology ; this ontology represents explicitly, amongst other

knowledge types, local and global persistence knowledge.

3.2.7 De Zegher-Geets’ IDEFIX Program for Medical-Record Summarization

De Zegher Geets’ IDEFIX  progam [de Zegher-Geets, 1987; de Zegher-Geets et al.,

1987; de Zegher-Geets et al., 1988], had goals similar to those of Downs’

program—namely, to create an intelligent summary of the patient’s current

status, using an electronic medical record—and its design was influenced greatly

by Downs’ program.  IDEFIX also used the ARAMIS project’s database (in

particular, for patients who had systemic lupus erythematosus [SLE]).  Like

Downs’ program, IDEFIX updated the disease likelihood by using essentially a

Bayesian odds-update function.  IDEFIX used probabilities that were taken from

a probabilistic interpretation of the INTERNIST-I [Miller et al., 1982] knowledge

base, based on Heckerman’s work [Heckerman and Miller, 1986].  However,

IDEFIX dealt with some of the limitations of Downs’ program mentioned in

Section 3.2.6., such as the assumption of infinite persistence of the same abnormal

attributes, and the merging of static, general, and dynamic, patient-specific,

medical knowledge.  IDEFIX also presented an approach for solving a problem

closely related to the persistence problem—namely, that older data should be
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used, but should not have the same weight for concluding higher-level concepts

as do new data.  In addition, Downs’ program assumed that abnormal attributes

either contributed their full weight to diagnosing a derived attribute, or were not

used; IDEFIX used weighted severity functions , which computed the severity of

the manifestations (given clinical cut-off ranges) and then the severity of the state

or disease by a linear-combination weighting scheme.  (Temporal evidence,

however, had no influence on the total severity of the abnormal state [de Zegher-

Geets, 1987, p. 56]).  Use of clinical, rather than purely statistical, severity

measures improved the performance of the system—the derived conclusions

were closer to those of human expert physicians looking at the same data [de

Zegher-Geets, 1987].

The IDEFIX medical knowledge ontology included abnormal primary attributes

(APAs), such as the presence of protein in the urine; abnormal states , such as

nephrotic syndrome; and diseases, such as SLE-related nephritis.  APAs were

derived directly from ARAMIS attribute values.  IDEFIX inferred abnormal states

from APAs; these states were essentially an intermediate-level diagnosis.  From

abnormal states and APAs, IDEFIX derived and weighted evidence to deduce the

likelihood and severity of diseases, which were higher-level abnormal states with

a common etiology [de Zegher-Geets, 1987].  IDEFIX used two strategies.  First, it

used a goal-directed strategy, in which the program sought to explain the given

APAs and states and their severity using the list of known complications of the

current disease (e.g., SLE).  Then, it used a data-driven strategy, in which the

system tried to explain the remaining, unexplained APAs using a cover-and-

differentiate approach using odds-likelihood ratios, similar to Downs’ program.

De Zegher-Geets added a novel improvement to Downs’ program by using time-

oriented probabilistic functions  (TOPFs).  A TOPF was a function that returned

the conditional probability of a disease D given a manifestation M , P(D|M), as a

function of a time interval, if such a time interval was found.  The time interval

could be the time since M was last known to be true, or the time since M started

to be true, or any other expression returning a time interval.  Figure 3.8 shows a

TOPF for the conditional probability that a patient with SLE has a renal
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Time since apparition of SLE

Probability
of Lupus
Nephritis

.06

365

.5

x

y

1

Figure 3.8:  A time-oriented probabilistic function (TOPF) associated with the predicate “previous

episode of lupus nephritis.”  The function returns, within a particular predefined time range, the

conditional probability y of lupus nephritis, given that the patient has systemic lupus

erythematosus (SLE), as a function of the temporal interval x (measured in days, in this case)

since the last lupus nephritis episode.  In this case the TOPF is a logarithmic one.  (Source:

adapted from [de Zegher-Geets, 1987, p. 42].)

complication (lupus nephritis) as time passes from the last known episode of

lupus nephritis.  A temporal predicate that used the same syntax as did Downs’

temporal predicates, but which could represent higher-level concepts, was used

to express the temporal interval for which IDEFIX looked.  For instance,

PREVIOUS.ADJACENT.EPISODE (LUPUS.NEPHRITIS) looked for the time since the last

episode of lupus nephritis.  Thus, as time progressed, the strength of the

(probabilistic) connection between the disease and the manifestation could be changed in

a predefined way.  For instance, as SLE progressed in time, the probability of a

complication such as lupus nephritis increased as a logarithmic function (see

Figure 3.8).  TOPFs were one of four functions: linear increasing, exponential
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decreasing, exponential increasing and logarithmic.  Thus, only the type and

coefficients of the function had to be given, simplifying the knowledge

representation.

Note that TOPFs were used to compute only positive evidence; negative  evidence

likelihood ratios were constant, which might be unrealistic in many domains.

The derivation of diseases was theoretically based on derived states, but in

practice depended on APAs and states.  In addition, TOPFs did not depend on

the context  in which they were used (e.g., the patient is also receiving a certain

therapy) or on the value  of the manifestation (e.g., the severity of the last lupus-

nephritis episode).  TOPFs were not dependent on the length of time for which

the manifestation was true (i.e., for how long did the manifestation, such as the

presence of lupus nephritis, exist).

TOPFs included an implicit strong assumption of conditional independence  among

related diseases and findings (some of which was alleviated by grouping

together of related findings as disjunctions).  Knowledge about APAs included

an expected time of validity  attribute, but it was also, like TOPFs, independent of

the clinical context.

Also note that the goal  of the IDEFIX reasoning module was to explain, for a

particular patient visit, the various manifestations for that visit, taking as certain

all previous data.  Unlike the goal of the RÉSUMÉ system, there was no explicit

intention of creating interval-based abstractions, such as “a 6-month episode of

lupus nephritis” for the purposes of enabling queries by a physician or by

another program; such conclusions were apparently left to the physician who,

using the graphic display module, looked at all the visits.4  Therefore, such

intervals were not used explicitly by the reasoning module.

4In fact, the graphic module originally assumed infinite persistence  of states, and concatenated
automatically adjacent state or disease intervals, regardless of the expected duration of each state;
it was modified by the introducion of an expected-length  attribute that was used only for display
purposes [de Zegher-Geets, 1987, page 77].
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The RÉSUMÉ system uses several key ideas that are comparable to those

introduced in IDEFIX.  The domain’s clinical ontology of parameters and events,

as it is mapped into the RÉSUMÉ system’s internal ontology (i.e., the knowledge

structures assumed by the knowledge-based temporal-abstraction method),

resembles the IDEFIX medical knowledge base of APAs, states, diseases, and

drugs.

The IDEFIX severity  scores and the cut-off ranges used to compute them from

APAs are a private case of a range-classification function in RÉSUMÉ, which is

used to abstract parameters (at any level of abstraction) into the corresponding

value of their state abstractions.  The contemporaneous abstraction knowledge,

which is used by RÉSUMÉ to combine values of several parameters that occur at

the same time into the value of a higher-level concept, includes the particular

case of a linear weighting scheme as used by IDEFIX to combine severity scores.

As does IDEFIX, RÉSUMÉ uses only clinically meaningful ranges and

combinations, taken from the domain’s ontology.

The local persistence  functions used by RÉSUMÉ are an extension of validity times

and TOPFs, but RÉSUMÉ’s persistence functions use the value of the clinical

parameter, the clinical context, and the length of time the value was already

known; their conclusions pertain not only to the present or future, but also to the

past (before the conclusion or measurement was known).  Unlike TOPFs, global

maximal-gap functions  and the dynamically induced interpretation contexts in

RÉSUMÉ denote not the strength of a probabilistic connection, such as between a

disease and its complications, but rather the notion of persistence  of certain

predicates forward and backward in time.  In one sense, however, these

persistence functions extend the TOPF notion, by looking at relevant states both

before and after the potentially missing one, and by using interval-based

abstractions of states, rather than just single visits.

Unlike the probabilistic conclusions of IDEFIX, the final conclusions of RÉSUMÉ

do not express levels of uncertainty in the state concluded—partially due to one

of the main reasons for solving the temporal-abstraction task in clinical domains
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(that of supporting a guideline-based therapy planner in the given domain, a

planner that requires identification of discrete states), and partially due to the

implicit uncertainty expressed by the temporal patterns themselves.

3.2.8  Rucker’s HyperLipid System

Rucker [Rucker et al., 1990] implemented an advisory system, HyperLipid, that

supports management of patients who have elevated cholesterol levels, by

implementing the clinical algorithm implicit in the recommendations of the

expert panel for the 1988 national institutes of health (NIH) cholesterol

education program [1988].  HyperLipid was implemented with an expert system

shell that has object-oriented programming capabilities (Nexpert Object) and a

simple flat-text database format.  Patient visits were modeled as point-based

objects called events; administration of drugs was modeled as therapy  objects

whose attributes included a time interval.  Various events and therapies were

grouped into phases.  Phases were a high-level abstraction inspired by the NIH

clinical algorithm, which uses different rules for different phases of the overall

therapy plan.  The events, therapies, and phases were connected through the

objects by a temporal network.  HyperLipid sent input to the temporal network

by using the rule syntax of Nexpert, and extracted output from the network by

operators of a C-based query language, such as computing an average cholesterol

level.

The HyperLipid system was a domain-specific implementation of a particular

clinical protocol that represented only lipid-measurement values, and did not

have any general, albeit task-specific, temporal semantics.  However, it did

demonstrate the advantages of an object-oriented temporal network coupled

with an external database.  The RÉSUMÉ system’s architecture (Chapter 5) has

several similar conceptual similarities, although it is a domain-independent

problem solver, specific only for the task of temporal abstraction.
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3.2.9  Qualitative and Quantitative Simulation

An approach different from purely symbolic AI systems has been taken by

several programs whose goal is to simulate parts of the human body’s

physiology for clinical purposes.  In these approaches, time is usually an

independent, continuous variable in equations describing the behavior of other

variables.

3.2.9.1  The Digitalis-Therapy Advisor

The digitalis-therapy advisor  was developed at MIT [Silverman, 1975; Swartout,

1977].  The goal of the program was to assist physicians in administering

effectively the drug digitalis, which is often used in cardiology, but has

considerable potential side effects.  The program combined an underlying

numeric model, which simulates the effects of an initial loading dose of digitalis

and of the drug’s metabolism in the body, with a symbolic model that assesses

therapeutic and drug-toxicity conditions.  The symbolic model can deduce

patient states, change certain parameters, and call on the numeric model when

the context is appropriate.  I shall discuss at length the issues inherent in the use

of combined models when I analyze the hybrid architecture underlying Kahn’s

TOPAZ system in Section 3.2.10; in that section I compare some of TOPAZ’s

features to the RÉSUMÉ system’s implementation.  The digitalis-therapy advisor

was an early example of a hybrid system.

3.2.9.2  The  Heart-Failure Program

The heart-failure (HF) system [Long, 1983; Long et al., 1986] is a program

intended to simulate global changes in the cardiovascular system brought about

by external agents, such as drugs with several well-defined local effects (e.g., on

heart rate).  The HF program includes a model of the cardiovascular system

[Long et al., 1986].  The model represents both qualitative and quantitative causal

and physiologic relations among cardiovascular parameters, such as between

heart rate and heart-muscle oxygen consumption.  The causal qualitative

representation includes explicit temporal constraints between causes and effects,
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such as the time over which a cause must persist to bring about its effect, and the

time range for an effect to end after its cause ends [Long, 1983].  The developers

assume that causes and effects must overlap (i.e., the cause cannot end before its

effect starts), and that, once it has started, causation continues until there is a

change in the cause or in the corrective influences, such as external fluid intake

[Long, 1983].  The key assumptions underlying the HF model are that (1) the

cardiovascular system is inherently stable, and tends to go from steady state to

steady state; and (2) the relationships among system parameters can be modeled

as piece-wise linear [Long et al. 1986].  The developers assume also that the

cardiovascular system starts in a steady state and is perturbed by the simulated

influence until it settles back into a steady state.  The model was geared toward

clinical interpretations, unlike purely physiological models, so as to approximate

more closely the thinking of cardiologists.

The model representing causal relations as temporal constraints allows

interesting temporal abductive reasoning (i.e., from effects to possible causes), in

addition to deductive  reasoning (i.e., from causes to their known effects).  For

instance, given that high blood volume is a cause of edema, and that no other

cause is known, the presence of edema would induce the conclusion of a high

blood volume starting at (at least) a predefined amount of time before the edema

started [Long, 1983].  The HF quantitative simulation system uses techniques

from signal-flow analysis for propagating changes [Long et al., 1986]; these

techniques can handle well the negative-feedback loops common in the

cardiovascular domain.  The HF program predicted consistently the overall

effects of several drugs with well-known local effects [Long et al., 1986].

The temporal model used in the HF program has a limited amount of

uncertainty: The causal links can be either definite or possible , for either causing

states or stopping them [Long, 1983].  The HF program is, due to its goals, highly

specific to the cardiology domain (and to only one area in that domain).  I shall

elaborate more on the issues that face model-based simulation, diagnosis, and

therapy in the context of describing Kahn’s TOPAZ system, in Section 3.2.10.
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Although the RÉSUMÉ system does not use any simulation model or a

constraint-propagation network model for maintaining temporal relations

between causes and effects, it has several features comparable to those in the HF

program.  The knowledge-based temporal-abstraction method contains a context-

forming mechanism, whose retrospective and prospective dynamic

interpretation contexts, induced by events or by abstractions, resemble in part the

abductive and deductive reasoning modes, respectively, in the HF program.  In

addition, the RÉSUMÉ truth-maintenance system propagates any changes,

caused by external data updates to past or present information, to all the

interpretation contexts and the concluded abstractions.  Finally, the RÉSUMÉ

model includes simple, declarative, qualitative (although not quantitative, unlike

the HF program) dependencies between every concept and the concepts from

which it is abstracted.  These qualitative dependencies assist the RÉSUMÉ system

in detecting complex trends, such as trends abstracted from multiple parameters

(see Section 4.2.4).

3.2.10 Kahn’s TOPAZ System: An Integrated Interpretation Model

Kahn [1988] has suggested using more than one temporal model to exploit the

full power of different formalisms of representing medical knowledge.  Kahn

[1991a, 1991c] has implemented a temporal-data summarization program,

TOPAZ , based on three temporal models (see Figure 3.9):

1.  A numeric model represented quantitatively the underlying processes,

such as bone-marrow responses to certain drugs, and their expected

influence on the patient’s granulocyte counts.  The numeric model was

based on differential equations expressing relations among hidden

patient-specific parameters assumed by the model, and measured

findings.  When the system processed the initial data, the model

represented a prototypical-patient model and contained general, population-

based parameters.  That model was specialized for a particular patient—

thus turning it into an atemporal patient-specific model—by addition of

details such as the patient’s weight.  Finally, the parameters in the
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Numeric model:
Model Fitting

Estimates patient-specific
model-parameter values
and model predictions,
based on time-ordered
clinical observations.

Symbolic interval-based model:
Interval abstraction

Combines intervals of
"interesting" deviation
from expectation.

Symbolic state-based model:
Problem-based text generation

Converts internal structures
into the domain language.

Observations

WBC: 12.9  9.2  13  3.4  2.1

Nitrogen
mustard:  11  11  11   8

Implications

Abstractions

Marrow
mass:   1.9  1.9  1.0  .7  .5

Drug effect elevated

Summarizations

This patient had increased
drug effect, which led to
increased myelosuppression
and lower-than-expected WBC
counts.

Figure 3.9 :  Summarization of time-ordered data in the TOPAZ system.  Three steps were taken:

(1) estimation of system-specific model features from observations, using the numeric model, (2)

aggregation of periods in which model predictions deviate significantly from system

observations, using the symbolic interval-based model, and (3) generation of text by presentation

of “interesting” abstractions in the domain’s language, using the symbolic state-based model.

(Source: modified from [Kahn, 1988, pp. 16 and 118]).
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atemporal patient-specific model were adjusted to fit actual patient-specific

data that accumulate over time (such as response to previous therapy),

turning the model into a patient-specific temporal model  [Kahn, 1988].

2.  A symbolic interval-based model aggregated intervals that were clinically

interesting in the sense that they violated expectations.  The model

encoded abstractions as a hierarchy of symbolic intervals.  The symbolic

model created these intervals by comparing population-based model

predictions to patient-specific predictions (to detect surprising

observations), by comparing population-based model parameters to

patient-specific parameter estimates (for explanation purposes), or by

comparing actual patient observations to the expected patient-specific

predictions (for purposes of critiquing the numeric model).  The

abstraction step was implemented by context-specific rules.

3.  A symbolic state-based model generated text paragraphs that used the

domain’s language, from the interval-based abstractions, using a

representation based on augmented transition networks (ATNs).  An

ATN is an enhanced, hierarchical version of a finite-state automaton,

which moves from state to state based on the input to the current state.

An arc leading from state to state can contain actions to be executed when

the arc is traversed.  The ATNs encoded the possible summary statements

as a network of potential interesting states.  The state model transformed

interval-based abstractions into text paragraphs.

In addition, Kahn [1991b] designed a temporal-maintenance system, TNET, to

maintain relationships among intervals in related contexts and an associated

temporal query language, TQuery  [1991d].  TNET and TQuery were used in the

context of the ONCOCIN project [Tu et al., 1989] to assist physicians who were

treating cancer patients enrolled in experimental clinical protocols.  The TNET

system was extended to the ETNET system , which was used in the TOPAZ

system.  ETNET [Kahn, 1991b] extended the temporal-representation capabilities

of TNET while simplifying the latter’s structure.  In addition, ETNET had the
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ability to associate interpretation methods with ETNET intervals; such intervals

represented contexts  of interest, such as a period of lower-than-expected

granulocyte counts.  ETNET was not only a temporal-reasoning system, but also a

flexible temporal-maintenance system.  Kahn noted, however, that ETNET could

not replace a database-management system, and suggested implementing it on

top of one [Kahn, 1988].

TOPAZ used different formalisms to represent different aspects of the complex

interpretation task.  In that respect, it was similar to the HF program and to the

digitalis therapy advisor.  TOPAZ represents a landmark attempt to create a

hybrid interpretation system for time-oriented data, comprising three different,

integrated, temporal models.

The numeric model used for representation of the prototypical (population-

based) patient model, for generation of the atemporal patient-specific model, and

for fitting the calculated parameters with the observed time-stamped

observations (thus adjusting the model to a temporal patient-specific model), was

a complex one.  It was also was highly dependent on the domain and on the task

at hand.  In particular, the developer created a complex model just for predicting

one  parameter (granulocytes) by modeling one  anatomical site (the bone marrow)

for patients who had one disease (Hodgkin’s lymphoma) and who were receiving

treatment by one particular form of chemotherapy (MOPP , a clinical protocol that

administers nitrogen mustard, vincristine, procarbazine, and prednisone).  Even

given these considerable restrictions, the model encoded multiple simplifications.

For instance, all the drugs were combined into a pseudodrug to represent more

simply a combined myelosupressive (bone-marrow–toxicity) effect.  The model

represents the decay of the drug’s effect , rather than the decay of the actual drug

metabolites [Kahn, 1988].  This modeling simplification was introduced because

the two main drugs specifically toxic to the bone-marrow target organ had

similar myelosuppressive effects.  As Kahn notes, this assumption might not be

appropriate even for other MOPP toxicity types for the same patients and the

same protocols; it certainly might not hold for other cancer-therapy protocols, or

in other protocol-therapy domains [Kahn, 1988, p. 143].  In fact, it is not clear how
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we would adjust the model to fit even the rather related domain of treatment of

chronic GVHD patients (see Section 1.1).  Chronic GVHD patients suffer from

similar—but not quite the same—effects due to myelosuppressive drug therapy,

as well as from multiple-organ (e.g., skin and liver) involvement due to the

chronic GVHD disease itself; such effects might complicate the interpretation of

other drug toxicities.

In addition, many clinical domains seem to defy complete numeric modeling.

For instance, the domain of monitoring children’s growth.  Similarly, in many

other clinical domains, the parameter associations are well known, but the

underlying physiology and pathology are little or incompletely understood, and

cannot be modeled with any reasonable accuracy.

Even if a designer does embark on modeling, it not obvious when she should stop

modeling.  Kahn [1988] cites examples in which adding another component to his

bone-marrow compartment model, thereby apparently improving it, generated

intolerable instability.  Similar effects were introduced when the model was

adjusted to rely on more recent laboratory results, thus downplaying the weight

of old data.  Another disturbing issue was that spurious results can have a

significant affect in the wrong direction on such a model, but if the model-fitting

procedure is built so as to ignore aberrant data until a clear pattern is established,

the fitting procedure might not be able to detect changes in the patient-specific

parameters themselves—that is, changes in the underlying model.  Failing to

detect a changing patient model might be problematic if we were to rely

completely on the model in data-poor domains, such as for the task of managing

patients enrolled in clinical protocols, in which measurements are taken

approximately each week or each month.  The problem would be even more

serious in the domain of monitoring children’s growth, where measurements

often include just three or four data points, taken at 1- to 3-year intervals.

Yet another issue in fitting data to a model is the credit-assignment problem:

Just which parameter should be corrected when the model does not fit the

observations?  If, in fact, the responsible parameter is not included in the model,
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the model’s parameters might be adjusted erroneously to fit the particular data

up to the present time, actually reducing  the model’s predictive abilities.

TOPAZ used the patient-specific predictions, not the actual observed data, for

comparisons to the expected population data.  The reason for this choice was that

data produced for patient-specific predictions (assuming a correct, complete,

patient-specific model) should be smoother  than actual data and should contain

fewer spurious values.  However, using predictions rather than observed data

might make it more difficult to detect changes in patient parameters.

Furthermore, the calculated, patient-specific expected values do not appear in the

generated summary and therefore would not be saved in the patient’s medical

record.  It is therefore difficult to produce an explanation to a physician who

might want a justification for the system’s conclusions, at least without a highly

sophisticated text-generating module.

The ETNET system was highly expressive and flexible.  It depended, however,

on a model of unambiguous time-stamped observations.  This assumption also

was made in Russ’ TCS system and in the RÉSUMÉ system (at least as far as the

input, as opposed to the interpretation, is concerned).  In addition, TOPAZ did

not handle well vertical (value) or horizontal (temporal) uncertainty, and, as

Kahn remarks, it is in general difficult to apply statistical techniques to data-poor

domains.

The ETNET algorithm, which depended on the given search dates being within

the context-interval containing the  context-specific rule, could not detect events

that were contextually dependent on a parent event, but were either disjoint from

that event (beginning after the causing event) or even partially overlapping with

it [Kahn, 1988].  As I show in Chapters 4 and 5, this problem is solved

automatically in the RÉSUMÉ architecture by the inclusion in the domain model

of dynamic induction relations of context intervals  .  Using dynamic induction

relations, context intervals are created anywhere in the past or future in response

to the appearance of an inducing event, an abstraction, an abstraction goal, or a

combination of several contemporaneous context intervals that are part of a



Chapter 3: Temporal Reasoning in Clinical Domains

102

SUBCONTEXT semantic relation in the domain’s theory. Context intervals

represent a particular context for interpretation during a certain time interval,

and trigger within their temporal span the necessary abstraction rules.  These

rules are independent of the domain, and are parameterized by domain-specific

temporal-abstraction knowledge.  Thus, the abstraction rules in RÉSUMÉ (within

the temporal-abstraction mechanisms) are not attached to any particular

interpretation context.  Temporal properties of domain-specific parameters are

specialized by different interpretation contexts (in the domain’s ontology).  These

properties are accessed using the relevant interpretation context(s); more than

one such context might be in effect during the temporal span of interest.

Nevertheless, the idea of having context-specific rules, even if in only an abstract

sense, as it is used in RÉSUMÉ, certainly bears resemblance to that concept as

expressed in VM and TOPAZ.  Interpretation contexts, like the TOPAZ ETNET

context nodes, limit the scope of inference, making it easier to match patterns

within their scope, to store conclusions, and to block the application of

inappropriate inference procedures (e.g., rules appropriate for other

interpretation contexts).

3.2.11 Kohane’s Temporal-Utilities Package (TUP)

Kohane [1986; 1987] has written the general-purpose temporal-utilities package

(TUP) for representing qualitative and quantitative relations among temporal

intervals, and for maintaining and propagating the constraints posed by these

relations through a constraint network of temporal (or any other) intervals.  The

use of constraint networks is a general technique for representing and

maintaining a set of objects (called the nodes of the network) such that, between

at least some pairs of nodes, there are links (known as arcs) which represent a

relation that must hold between the two nodes.  Updating a constraint network

by setting the values of certain nodes or arcs to be fixed propagates the changes

to all the other nodes and arcs.
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Kohane's goal was mainly to represent and reason about the complex, sometimes

vague, relations found in clinical medicine, such as "the onset of jaundice follows

the symptom of nausea within 3 to 5 weeks but before the enzyme-level

elevation."  When such relations exist, it might be best not to force the patient or

the physician to provide the decision-support system with accurate,

unambiguous time-stamped data.  Instead, it may be useful to store the relation,

and to update it when more information becomes available.  Thus, a relation

such as "2 to 4 weeks after the onset of jaundice" might be updated to "3 to 4

weeks after the onset of jaundice" when other constraints are considered or when

additional data, such as enzyme levels, became available.  Such a strategy is at

least a partial solution to the issue of horizontal (temporal) uncertainty in clinical

domains, in which vague patient histories and unclear disease evolution patterns

are common.

The TUP system used a point-based temporal ontology.  Intervals were

represented implicitly by the relations between their start points and end points,

or by the relations between these points and points belonging to other intervals.

These relations were called range relations (RRELs).  A simplified structure of an

RREL is shown in Figure 3.10.

Essentially, Kohane had implemented a point-based strategy for representing

some of Allen's interval-based relations that were discussed in Section 3.1.4—

namely, those that can be expressed solely by constraints between two points.

(RREL <first-point specification>  <second-point specification>

<lower-bound distance>     <upper-bound distance>

<context>)

Figure 3.10:  A range relation (RREL).  The RREL constrains the temporal distance between two

points to be between the given lower bound and the upper bound in a certain context.  (Source:

modified from [Kohane, 1987, p. 17].)
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For instance, to specify that interval A precedes interval B, it is sufficient to

maintain the constraint that "the end of  A is between +INFINITY and +ε before the

start of B."  This more restricted set of relations is the one discussed by Villain

and Kautz [Villain and Kautz, 1986; Villain et al., 1989], who were mentioned in

Section 3.1.4 as showing that the full Allen interval algebra is computationally

incomplete (in tractable time).  The point-based, restricted temporal logic

suggested by Villain and Kautz is computationally sound and complete in

polynomial time, since point-based constraints can be propagated efficiently

through the arcs of the constraint network.  However, such a restricted logic

cannot capture disjunctions of the type "interval A  is either before or after interval

B,” since no equivalent set of constraints expressed as conjunctions using the end

points of A and B can express such a relation.  Whether such relations are needed

often, if at all, in clinical medicine is debatable.  I mentioned in Section 3.1.5 that

van Beek formulated a similar restricted algebra (SIA) and implemented several

polynomial algorithms for it [van Beek, 1991].  SIA is based on equality and

inequality relations between points representing interval end points, and

disallows only the strict inequality relation.  Using van Beek's SIA algebra and

associated algorithms, we can refer queries to a system of intervals such as is

managed by Kahn's TNET temporal-management system, and get answers in

polynomial time to questions such as, "Is it necessarily true that the patient had a

cycle of chemotherapy that overlapped a cycle of radiotherapy?"  Van Beek

claimed that his limited  interaction with physician experts suggested that many

domains do not, in fact, need more than the SIA algebra to express temporal

relations [van Beek, 1991].  This simplification, of course, results in considerable

time and space savings, and ensures the user of soundness and completeness in

conclusions involving temporal relations.

Kohane tested the TUP system by designing a simple medical expert system,

temporal-hypothesis reasoning in patient history  (THRIPHT).  The THRIPHT

system accepted data in the form of RRELs and propagated newly computed

upper and lower bounds on temporal distances throughout the TUP-based

network.  The diagnostic, rule-based algorithm (in the domain of hepatitis)



Chapter 3: Temporal Reasoning in Clinical Domains

105

waited until all constraints were propagated, and then queried the TUP system

using temporal predicates such as, "Did the patient use drugs within the past 7

months, starting as least 2 months before the onset of jaundice?" [Kohane, 1987].

The THRIPHT system used the hierarchical diagnostic structure of the MDX

diagnostic system [Chandrasekaran and Mittal, 1983] to limit the contexts in

which it looked for evidence for specific hypotheses.  (MDX was an ontology of

diseases designed for the use of a generic classification  problem-solving method

[see Section 2.1].)

3.2.12 Haimowitz’s and Kohane’s TrenDx System

A recent system, demonstrating initial encouraging results, is Haimovitz's and

Kohane’s TrenDx  temporal pattern-matching system [Haimowitz and Kohane,

1992; Haimowitz and Kohane, 1993a, 1993b; Kohane and Haimowitz, 1993;

Haimowitz, 1994].  The goals of TrenDx do not emphasize the acquisition,

maintenance, reuse, or sharing of knowledge.  Moreover, TrenDx does not aim to

answer temporal queries about clinical databases.  Instead, it focuses on using

efficient general methods for representing and detecting predefined temporal

patterns in raw time-stamped data.

The TrenDx system uses Kohane’s TUP constraint-network utilities (see Section

3.2.11) to maintain constraints that are defined by temporal trend templates

(TTs).  TTs describe typical clinical temporal patterns, such as normal growth

development, or specific types of patterns known to be associated with

functional states or disease states, by representing these patterns as horizontal

(temporal) and vertical (measurement) constraints.  The TrenDx system has been

developed mainly within the domain of pediatric growth monitoring, although

hypothetical examples from other domains have been presented to demonstrate

its more general potential [Haimowitz and Kohane, 1993a, 1993b].

A typical TT representing the expected growth of a normal male child is shown

in Figure 3.11.  The growth TT declares several predefined events, such as

PUBERTY ONSET; these events are constrained to occur within a predefined
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0 2 3 10 13
Age (years)

Wt Z-scoreHt Z-score

Ht Z score - Wt Z score

Establish centiles

Birth

Puberty onset

Prepuberty

Figure 3.11:  A portion of a trend template (TT) in TrenDx that describes the male average normal

growth as a set of functional and interval-based constraints.  All Z scores are for the average

population.  The Birth landmark, assumed to  denote time 0, is followed by an uncertain period of

2 to 3 years in which the child’s growth percentiles are established, and in which the difference

between the Ht Z score and the Wt Z score are constrained to be constant.  During an uncertain

period of prepuberty ending in the puberty onset landmark sometime between the age of 10 and

13, the Ht Z score and the Wt Z score are both constrained to be constant.   = landmark or

transition point;  = constant value indicator; Ht = height; Wt = weight; Z score indicates

number of standard deviations from the mean.  (Source: adapted from [Haimowitz, 1994, p. 45]).

temporal range: For instance, PUBERTY ONSET must occur within 10 to 15 years

after birth.  Within that temporal range, height should vary only by ±δ.

In general, a TT has a set of value constraints of the form m ≤ f(D) ≤ M, where m

and M are the minimum and maximum values of the function f defined over the

measurable parameters D in the temporal range of the interval.

TrenDx has the ability to match partial  patterns by maintaining an agenda of

candidate patterns that possibly  match an evolving pattern.  Thus, even if TrenDx

gets only one point as input, it might (at least in theory) still be able to return a

few possible patterns as output.  As more data points are known, the list of

potential matching patterns and their particular instantiation in the data is
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modified.  This continuous pattern-matching process might be considered a goal-

directed  approach to pattern matching, contrasting with the RÉSUMÉ approach

of first generating meaningful basic abstractions (that were considered important

by the expert for the particular context in question), then using a simpler pattern-

matching mechanism to retrieve arbitrary patterns.

TrenDx has been tested in a clinical trial on a small number of patients; its

conclusions agreed partially with a three-expert panel on the appropriate

diagnosis [Haimovitz and Kohane, 1993a].

The design of the TrenDx system is quite different from that of other systems

described in this chapter, reflecting different goals.  TrenDx does not have a

knowledge base in the sense of the IDEFIX medical knowledge base or the

RÉSUMÉ parameter, event, and context ontologies; thus, many TTs, or parts of

TTs, will have to be reconstructed for new tasks in the same domain that rely on

the same implicit knowledge.  In the case of TrenDx, this knowledge is encoded

functionally in the set of value constraints that serve as lower and upper bounds

for, essentially, black-box functions.  The lack of a distinct knowledge base means

that TrenDx does not represent explicitly that a construct that appears in several

TTs, such as “the allowed function f(D) values are within ±δ” might play the

same knowledge role  (see Chapter 2) in many TTs—namely, the allowed

significant deviation  of that parameter in that context, such as might be useful for

recognizing a DECREASING trend.  Furthermore, even if the same parameter

appeared in a somewhat different TT using the same implicit significant-

deviation concept (with the same function f  and even with the same δ), the

designer of the new TT would have to specify both f and δ repeatedly.

Since TrenDx does not have a hierarchical parameter knowledge base, it cannot

inherit knowledge about, for instance, the Hb parameter, the parameter’s

ALLOWED RANGE value, or its DECREASING properties, from any other context

involving Hb.  In particular, TrenDx cannot inherit a top-level context that

defines the basic properties of Hb in any context, such as in the IDEFIX medical

knowledge base or in the RÉSUMÉ ontology.  An additional implication of the
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lack of an explicit knowledge base would be a difficulty in representing basic

qualitative relationships for all contexts, whereas the HF program, TOPAZ, and

RÉSUMÉ (to some extent) can.  Therefore, acquiring a set of new TTs, even for the

same clinical domain, might involve redefining implicitly many functions, value

constraints, units of measurement, partial trends, and so on, that in fact play the same

knowledge roles in previously acquired TTs.  It might therefore be quite difficult to

support the design of a new TT by a domain expert, since that design might

involve the equivalent of a significant amount of low-level programming.

As I have mentioned, TrenDx has different goals compared to systems such as

Downs’ medical-record summarization program, IDEFIX, TOPAZ, and

RÉSUMÉ.  TrenDx does not form intermediate-level abstractions (such as

DECREASING(HB)), save them, or maintain logical dependencies among them

(e.g.,  by a truth-maintenance system) as RÉSUMÉ or TCS do.  Instead, TrenDx

tries to match in the input data a predefined set of templates.  TrenDx does not

answer arbitrary temporal queries at various intermediate abstraction levels (e.g.,

“was there any period of a DECREASING standard-deviation score of the height

parameter for more than 2 years?”).  TrenDx assumes that all the interesting

queries in the domain had been defined as TTs, and that no new queries will be

asked by the user during runtime.

Due to the different design, TrenDx cannot answer queries regarding an

intermediate-level concept (such as bone-marrow toxicity levels), even if the

answer has been part of its input (e.g., the physician might have recorded in the

chart that the patient has bone-marrow toxicity grade III).  The reason is that TTs

are defined in terms of only the lowest-level input concepts (e.g., height, weight,

Hb-level values).  This limitation does not exist in systems such as IDEFIX,

TOPAZ, and RÉSUMÉ.

Note also that the lack of intermediate abstractions might pose grave difficulties

in acquiring complex new patterns, since the TrenDx patterns seem much more

complex than are the typical high-level queries presented to Kahn’s TQuery

interpreter or to RÉSUMÉ’s query mechanism: The TTs essentially encapsulate
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all levels of abstraction at once, and all would have to be captured (and

redefined) in the pattern.

RÉSUMÉ, consequently, has different, more general, goals: Representation of

temporal-abstraction knowledge in a domain-independent, uniform manner,

such that the problem-solving knowledge might be reusable in other domains

and that the domain knowledge be sharable among different tasks.  In addition,

one of the goals in RÉSUMÉ is to formalize and parameterize temporal-

abstraction knowledge so that it can be acquired directly from a domain expert

using automated KA tools (see Chapter 6).  This desire for uniformity and

declarative form in the representation scheme, and the fact that either the

available input or the requested output might be at various intermediate (but

meaningful) levels of abstraction, influenced my decision to avoid domain-

specific patterns using low-level input data as the sole knowledge

representation5.

Although their goals are different, RÉSUMÉ and TrenDx are similar in at least

one sense: They assume incomplete information about the domain, which

prevents the designer from building a complete model and simulating that

model to get more accurate approximations.  Thus, both systems use

associational patterns, albeit in a different manner, that fit well domains in which

the underlying pathophysiological model cannot be captured completely by a

mathematical model, and, in particular, domains in which data are sparse.

3.2.13 Larizza's Temporal-Abstraction Module in the M-HTP System

M-HTP [Larizza, 1990; Larizza et al., 1992] is a system devoted to the abstraction

of time-stamped clinical data.  In the M-HTP project, Larizza constructed a

system to abstract parameters over time for a program monitoring heart-

5The initial goal and the tools used to construct these two systems also might explain some of the
design differences.  For instance, TrenDx is built on top of a constraint-propagation network, the
TUP system, and naturally defines patterns as constraints.  TrenDx also assumes that the top-
level, final diagnosis is the main goal, implying a goal-driven control strategy, while one of the
reasons for the mainly (but not only) data-driven control in RÉSUMÉ is the desire to generate all
relevant intermediate-level abstractions.
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transplant patients.  The M-HTP system generates abstractions such as HB-

DECREASING, and maintains a temporal network (TN) of temporal intervals,

using a design inspired by Kahn’s TNET temporal-maintenance system (see

Section 3.2.10) [Larizza et al., 1992].  Like TNET, M-HTP uses an object-oriented

visit taxonomy  (Figure 3.12) and indexes parameters by visits.

M-HTP also has an object-oriented knowledge base that defines a taxonomy of

significant-episodes—clinically interesting concepts such as DIARRHEA or

WBC_DECREASE.  Parameter instances can have properties, such as MINIMUM (see

Figure 3.13).  The M-HTP output includes intervals from the patient TN that can

be represented and examined graphically, such as “CMV_viremia_increase”

during particular dates [Larizza et al., 1992].

Visits

Date_dd_mm_yy = unknown

Day_since_transplantation = unknown

Visit_date = unknown

Visit_hour = unknown

Visit_number = unknown

Date_dd_mm_yy = 12 Dec 1990

Day_since_transplantation = 37

Visit_date = 90/12/12

Visit_hour = 11:00

Visit_number = 14

(+)Visit 14

(+)WBC14

(+)EA14

(+)Antiviral14

(+)IEA14

(+)cya_dose14

Date_dd_mm_yy = 12 Dec 1990

Day_since_transplantation = 37

Visit_date = 90/12/12

Symbolic_value = mild_leukopenia

Visit_number = 14

(+)Visit2

(+)Visit10

Numeric_value = 14

(+)Visit13

(+)Visit15

(+)Visit7

(+)Visit1

Figure 3.12 :  A portion of the M-HTP visits  taxonomy.  Clinical-parameter values are indexed by

visits.  Visits are aggregates of all data collected in the same day.   = class; ∆ = object;  = slot.

(Source: modified from [Larizza et al., 1992, p. 119].)
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Clinical_contexts Significant_episodes

WBC_decrease

Fever_episodes

Diarrhea

CMV_viremia
_increase

CMV_antigenemia
_increase

Gastric_pain

cya_level_decrease

cya_level_increase

immunosuppresion

Average

Duration

End_date

First_visit

Granularity

Last_visit

Left_bound

Maximum

Minimum

Pattern

Right_bound

St_deviation

Start_date

Figure 3.13 :  A portion of the M-HTP significant episodes  taxonomy.  Each significant episode has

multiple attributes.   = class;    = slot.  (Source: modified from [Larizza et al., 1992, Page

120].)

The temporal model of the M-HTP system includes both time points and

intervals.  The M-HTP system uses a temporal query language to define the

antecedent part of its rules, such as “an episode of decrease in platelet count that

overlaps  an episode of decrease of WBC count at  least for  3 days during the past

week implies suspicion of CMV infection” [Larizza et al., 1992].

The M-HTP system can be viewed as a particular, domain-specific instance of the

RÉSUMÉ system.  There is no indication that the M-HTP system is easily

generalizable for different domains and tasks.  For instance, concepts such as

WBC_DECREASE are hard-coded into the system (see Figure 3.13).  As I show in

Chapter 5, this hardcoding is conceptually different from the RÉSUMÉ system’s
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representation of knowledge about several domain-independent abstraction

classes (states, gradients, rates and patterns).  For instance, in RÉSUMÉ, the

gradient-abstractions class contains knowledge about abstracting gradients.

Particular domains can have domain-specific subclasses, such as

WBC_GRADIENT.  In a gradient subclass, a particular value (e.g., one of the

default values DECREASING, INCREASING, SAME and so on), and its inference

properties can be inherited from the gradient abstractions class, and can be used

by all instances of the gradient subclass.

In the M-HTP system, there is no obvious separation between domain-

independent abstraction knowledge and domain-specific temporal-reasoning

properties.  In an example of the patient TN [Larizza], we can find the class

SIGNIFICANT EPISODES, which presumably includes knowledge  about clinical

episodes, subclasses of that class (e.g., WBC_DECREASE), and instances of the

latter subclass (e.g., WBC_DECREASE_1), that presumably denote particular

instances of patient data.  This situation is not unlike that in Downs’ program

(see Section 6.2.6), which influenced de Zegher-Geets’ definition of a separate

medical knowledge base.  Note also that a slot such as the MINIMUM VALUE of a

parameter does not define a new abstraction class, such as are state abstractions

in RÉSUMÉ: It is a function  from the values of a particular instance into the values

of the same instance (e.g., into the potential Hb levels—say, 7.4 gr./dl Hb), rather

than into the range of values of a new class—namely the state abstractions of Hb

(e.g., possible state values—say, LOW).  Abstraction classes, including patterns,

are thus not first-class parameters in the M-HTP system (unlike their status in the

RÉSUMÉ model), and cannot be described using the full expressive capacity of a

language that might describe properties of parameters (e.g., the scale—say,

ORDINAL).

 RÉSUMÉ can therefore be viewed as a metatool   for a representation of the

temporal-abstraction knowledge of M-HTP.  The representation would use

RÉSUMÉ’s domain-independent (but task-specific) language.  As I show in

Chapter 6, most of that knowledge can be acquired in a disciplined manner,
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driven by the knowledge roles defined by the temporal-abstraction mechanisms

that solve the tasks posed by the knowledge-based temporal-abstraction method.

3.3 Discussion

Each of the approaches used to solve the temporal-abstraction task in clinical

domains has various features, advantages, and disadvantages.  In presenting

these approaches, I have pointed out some of these features, and have discussed

these features with respect to comparable aspects in the RÉSUMÉ system's

methodology.  It is clear that most of the systems presented had different

philosophical and practical goals, and it is therefore difficult to evaluate them in

any real sense, except for pointing out the outstanding features relevant to the

task of temporal reasoning.

Many systems used for monitoring, diagnosis, or planning, employ temporal

reasoning, although that subject is not the main focus of the research.  A major

example of such a framework in the clinical domain is the Guardian architecture

for monitoring intensive-care unit patients and for suggesting therapeutic actions

for these patients [Hayes-Roth et al., 1992].  In Guardian, a distinction is made

among intended, expected  and observed  parameter values.  Values have temporal

scopes.  Thus, arterial oxygen pressure might have a desirable intended range of

values; a suggested correction in an external variable might be expected to

produce within 1 minute a certain value in the patient’s measured parameter;

and a particular observation, 2 minutes later, might return a value quite different

from either of these, thus suggesting some type of a problem.  The time-stamped

input data is preprocessed using a set of parameter-specific filters that initiate, in

effect, the abstraction process [Washington and Hayes-Roth, 1989].  A Fuzzy-

logic system based on trasholding sigmoidal functions is used in order to detect

temporal patterns ([Drakopoulus and Hayes-Roth, 1994]; see also Section 8.4.4).

Although most of the systems I have discussed in Section 3.2 seem, on the

surface, to be solving an interpretation task in a temporal domain, we have to

distinguish systems that summarize patient data over time (e.g., Downs’

program, IDEFIX, TOPAZ, M-HTP, and RÉSUMÉ), and answer random or
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structured queries about their interpretations (e.g., TOPAZ and RÉSUMÉ) from

systems that try to generate final diagnoses from low-level data (e.g., TrenDx).  A

closely related issue is whether the system attempts to perform a temporal

management  function, in addition to the temporal reasoning  one (e.g., TOPAZ and

M-HTP).  An extreme case is Russ’s TCS system, which did not perform any

domain-dependent temporal reasoning, although it performed a considerable

amount of domain-independent temporal-management work behind the scenes

to ensure that the user could effectively not worry about time.  Thus, TCS could

be considered a temporal-reasoning–support system.   We also should make a

distinction between systems whose implicit or explicit summarization goal is just

a subgoal of another task, such as treating patients (e.g., VM) or predicting the

next state of the monitored system (e.g., the HF program), and systems whose

major purpose is to summarize the patient’s record (e.g., IDEFIX and RÉSUMÉ)

or at least to detect significant temporal or causal trends in that record (e.g., Rx).

Other distinctions can be made, since no two systems are alike.

Nevertheless, most of the systems I have discussed—at least those that needed to

perform a significant amount of the temporal-abstraction task—in fact solved

tasks closely related to the five tasks that I presented in Section 1.1 as the

fundamental subtasks of the temporal-abstraction task.  Recall that the temporal-

abstraction task is explicitly decomposed into these five subtasks by the

knowledge-based temporal-abstraction method (see Figure 1.2).  Furthermore,

the systems that I have described often relied implicitly on the four types of

temporal-abstraction knowledge I defined: structural knowledge, classification

knowledge, temporal-semantic knowledge, and temporal-dynamic knowledge.

This knowledge, however, often was not represented declaratively, if at all.  For

instance, all systems described had to solve the context-restriction task before

interpretation could proceed and therefore created various versions of

interpretation contexts (e.g., the intervals created by TOPAZ and the TN module

of M-HTP, the external states determined by the state-detection rules of VM, and

the steady states partitioned by TCS).  There was always a classification task (e.g.,

determining severity levels by IDEFIX, or creating interval-based abstraction
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from numeric patient-specific and population-dependent data).  There was

always the need to create intervals explicitly or implicitly, and thus to reason

about local and global change (e.g., Downs’ program used temporal predicates,

IDEFIX defined TOPFs, and Rx required a library of time-dependent database

access functions).  All systems assumed implicitly some model of proposition

semantics over time—for instance, allowing or disallowing automatic

concatenation of contexts and interpretations (VM, IDEFIX).  Finally, all systems

eventually performed temporal pattern matching, explicitly (e.g., TOPAZ, using

ETNET) or implicitly (e.g. Downs’ temporal predicates, which were also used in

IDEFIX as input to the odds-likelihood update function, and the TrenDx pattern-

matching algorithm, using the low-level constraints).  In addition to the task

solved, there were common issues to be resolved inherent in maintaining the

validity of a historic database (e.g., Russ’s TCS system and RÉSUMÉ use a truth-

maintenance system).

The knowledge-based temporal-abstraction method makes explicit the subtasks

that need to be solved for most of the variations of the temporal-abstraction

interpretation task.  These subtasks have to be addressed, explicitly or implicitly,

by any system whose goal is to generate interval-based abstractions.  The

temporal-abstraction mechanisms that I have chosen to solve these subtasks

make explicit both the tasks  they solve and the knowledge  that they require to

solve these tasks.

None of the approaches that I have described focuses on the knowledge-

acquisition, knowledge-maintenance, knowledge-reuse, or knowledge-sharing

aspects of designing and building large knowledge-based medical systems.  In

other words, the approaches described, as applied to the temporal-abstraction

task, were not represented at the knowledge level.  We might therefore expect these

approaches to be plagued by most of the design and maintenance problems of

knowledge-based systems that were discussed in Chapter 2.  In particular, we

would expect difficulties when we attempt (1) to apply these approaches to

similar tasks in new domains, (2) to reuse them for new tasks in the same

domain, (3) to maintain the soundness and completeness of their associated
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knowledge base and its interrelated components, and (4) to acquire the

knowledge required to instantiate them in a particular domain and task in a

disciplined and perhaps even automated manner.

In Chapter 4, I present a knowledge-level view of the knowledge-based

temporal-abstraction method and its mechanisms, designed precisely so that

such limitations might be removed or their burden be lessened.  I present a

unified, explicit framework for solving the temporal-abstraction task by (1)

defining formally the ontology  of the temporal-abstraction task assumed by the

knowledge-based temporal-abstraction method, namely, the domain entities

involved and their relationships, (2) defining the subtasks into which the

temporal-abstraction task is decomposed by the knowledge-based temporal-

abstraction method; (3) defining formal mechanisms that can be used to solve

these subtasks; and (4) pointing out the domain-specific knowledge roles used in

these mechanisms, their explicit nature, semantics, and interrelationships, and

the way they can be organized and used to solve the temporal-abstraction task.
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4  Knowledge-Based Temporal
Abstraction

In Chapter 1, I gave several examples of the temporal-abstraction task (see Figure

1.1.), and I presented an overview of the knowledge-based temporal-abstraction

method  (see Figure 1.2).  This method decomposes the temporal-abstraction task

into five subtasks , and solves these five subtasks using five knowledge-based

temporal-abstraction mechanisms .  As I have shown in Section 3.2, some or all of

the five subtasks had been in fact implicit goals for every system that has

attempted to solve the temporal-abstraction task in clinical domains, and are thus

very general.  (In theory, the knowledge engineer that designs a temporal-

abstraction system for a new domain might select mechanisms other than the

ones that I am suggesting to solve one or more of the five subtasks posed by the

knowledge-based temporal-abstraction method, such as the task of forming

contexts, as long as the input and output semantic constraints of these subtasks

are satisfied).  The knowledge-based temporal-abstraction mechanisms I suggest

rely in turn on four domain-specific knowledge types.  These four types of

knowledge constitute the only interface between the knowledge-based temporal-

abstraction method and the knowledge engineer who is using that method.

Thus, the development of a temporal-abstraction system particular to a new

domain relies on only the creation or editing of a predefined set of four

knowledge categories, most of which are purely declarative.  These knowledge

categories need to be acquired, manually or in an automated fashion, from a

domain expert (e.g., an expert physician).

In this chapter, I present a detailed knowledge-level  view (see Section 2.1) of the

knowledge-based temporal-abstraction method and of the five temporal-

abstraction mechanisms that I suggest for solving the five subtasks that method

poses.  I define precisely the nature of the four types of domain-specific

temporal-abstraction knowledge, and the roles   (see Section 2.1) that these four

types play in the five mechanisms.  In Chapter 5, I describe a particular
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implementation of the five temporal-abstraction mechanisms and the knowledge

they rely on (i.e., the RÉSUMÉ system).   The RÉSUMÉ system demonstrates

additional design concepts important for a discussion of the knowledge-based

temporal-abstraction method as an appropriate solution for the temporal-

abstraction task.  In particular, I discuss several issues pertaining to the

appropriate organization and representation of the temporal-abstraction

knowledge.  I also discuss several computational issues, such as control methods

and the handling of nonmonotonicity.

To describe the working of the knowledge-based temporal-abstraction method

and mechanisms, I start by defining a formal model of the temporal abstraction

task as that task is solved by the knowledge-based temporal-abstraction method.

The formal model will enable us to define clearly the inputs and outputs to the

five subtasks defined by that method and to the five mechanisms solving,

respectively, these subtasks.  I then describe each of the five temporal-abstraction

mechanisms, the task that each mechanism solves, and the formal specifications

of its knowledge requirements.  Since the mechanisms create abstractions that

might change as more data arrive, I discuss (in Section 4.2.6) the nonmonotonic

nature of the conclusions output by the five mechanisms.  Finally, I summarize

the model and evaluate its main features.  The model of temporal abstraction, the

knowledge types of which this model is constructed, and the inferences that this

model permits, together define a knowledge-based temporal-abstraction theory.

The reader might find that the description in Chapter 3 of general temporal

models and of particular clinical temporal-reasoning systems is helpful (although

not absolutely necessary) when reading this chapter, since at times I compare the

temporal-abstraction model and its implied inference framework to other

approaches.

4.1  The Temporal-Abstraction Ontology

The knowledge-based temporal-abstraction method, and the five temporal-

abstraction mechanisms solving the five subtasks posed by that method when it

solves the temporal-abstraction task, make several assumptions with respect to
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the underlying temporal model of the domain.  In particular, they assume a

certain structure of time and of propositions that can be interpreted over time.

Thus, the temporal-abstraction mechanisms assume a task-specific ontology (i.e.,

a theory of what entities, relations, and properties exist, at least in a particular

domain) for temporal abstraction.  My intention in this section is to define an

ontology of events (e.g., drug administrations), an ontology of parameters (e.g.,

blood-glucose value), an ontology of interpretation contexts within which

parameters will be interpreted and abstracted into higher-level concepts, and the

relations among these ontologies.  I will then use these ontologies to formally

define the temporal-abstraction task that the knowldge-based temporal-

abstraction method is solving.

Informally, the temporal model that I use includes both time intervals  and time

points .  The points are the basic temporal primitives, but propositions, such as

occurence of events and existence of parameter values, can be interpreted only

over time intervals.  All propositions are therefore fluents [McCarthy and Hayes,

1969]; that is, they must be interpreted over a particular time period (e.g., the

value of the Temperature parameter at time [t, t]).

The various types of entities and propositions that I define can be seen as logical

sorts.  I will usually clarify immediately which set of symbols denotes each sort;

thus, the notation “a parameter π ∈ Π ” means that each individual parameter,

denoted by π, will be a member of a new set of symbols Π (denoting only

parameters).  Other conventions are used; for instance, relation names are

denoted by small capital letters.  The List of Symbols in the preamble to this

dissertation lists all the symbols and conventions I use; the reader might use it as

a glossary.

The temporal-abstraction model comprises the following set of entities:

1.  The basic time primitives are time stamps, T i ∈ T.  Time stamps are

structures (e.g., dates) that can be mapped, by a time-standardization

function fs(Ti), into an integer amount of any element of a set of

predefined temporal granularity units Gi ∈  Γ  (e.g., DAY).  A zero-point
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time stamp must exist, with relationship to which the time stamps are

measured in the G i  units.  (Intuitively, the 0 point might be grounded in

each domain to different absolute, “real-world,” time points: the patient’s

age, the start of the therapy, the first day of the 20th century.)  The domain

must have a time unit G0 of the lowest granularity (e.g., SECOND), similar

to the chronons defined by Clifford [1988] (see Section 3.1.7); there must

exist a mapping from any integer amount of granularity units G i into an

integer amount of G0.  A finite negative or positive integer amount of Gi

units is a time measure .

(Intuitively, time stamps might be represented using units such as days,

hours, or seconds, or at any finite granularity level.  However, such time

units must be convertible to the lowest granularity level of the domain.

The lowest granularity level actually used is a task-specific choice; for

instance, in the domain of monitoring children’s growth, a reasonable

granularity unit might be MONTH).

The special symbols +∞  and -∞ are both time stamps and time measures,

denoting the furthest future and the most remote past, respectively.  Any

two time stamps must belong to either a precedence relation or an

equivalence  relation defined on the set of pairs of time stamps.  The

precedence relation is areflexive, antisymmetric, and transitive, intuitively

corresponding to a temporal order, while the equivalence relation denotes

temporal equivalence, at least for the domain at hand.  The -∞ time stamp

precedes any other time stamp; the +∞ time stamp follows (is preceded

by) all other time stamps.  In addition, the operation of subtracting any

two time stamps from each other must be defined and should return as a

result a time measure, including +∞  or -∞.  Finally, the operation of

adding or subtracting a time measure to or from a time stamp must return

a time stamp.

Time stamps resemble the result of applying a date function  to

McDermott’s states [McDermott, 1982], which I described in Section 3.1.5.
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However, McDermott maps states (snapshots of the world) to the real-

numbers line.  The discreteness of time stamps is necessitated by the

nature of the temporal-abstraction task (i.e., interpretation), and of that

task’s input (i.e., time-stamped data).  The temporal-abstraction

mechanisms are quite general, however, and do not rely on that

discreteness.  The temporal-abstraction mechanisms do depend on the

unambiguousness inherent in time stamps, on the existence of the

temporal precedence and equivalence relations, and on the computational

properties defined above.  Temporal uncertainty is therefore modeled by

the nature of the processing  of time-stamped data, but is not modeled by

the time stamps themselves.

2.  A time interval I is an ordered pair of time stamps representing the

interval’s end points: [I.start, I.end].  Time points  Ti are therefore

represented as zero-length intervals where I .start = I.end.  Propositions

can only be interpreted over time intervals.

As will be clear from the rest of the definitions of the temporal-abstraction

ontology, the set of points included in a time interval depends on the

proposition interpreted over that interval.  A time interval can be closed

on both sides (in the case of state-type and pattern-type parameter

propositions and interpretation contexts), open on both sides (in the case

of gradient- and rate-type abstractions), or closed on the left and open on

the right (in the case of event propositions).

3.  An interpretation context  ξ ∈ Ξ  is a proposition that, intuitively,

represents a state of affairs (e.g., “the drug insulin has an effect on blood

glucose during this interval”).  When interpreted over a time interval it

can change the interpretation of one or more parameters within the scope

of that time interval (e.g., of the state of the blood-glucose level, by

suggesting a different definition of the LOW value).

A SUBCONTEXT relation is defined over the set of interpretation contexts.

An interpretation context in conjunction with one of its subcontexts can
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create a composite interpretation context.  Composite interpretation

contexts are interpretation contexts.  Formally, the structure <ξ i, ξj> is an

interpretation context, if the ordered pair (ξj , ξi) belongs to the

SUBCONTEXT relation.  In general, if the structure <ξ1, ξ2,...ξ i> is a

(composite) interpretation context, and the ordered pair (ξ j, ξi) belongs to

the SUBCONTEXT relation, then the structure <ξ 1, ξ 2,...ξ i, ξ j> is a

(composite) interpretation context.

Intuitively, composite interpretation contexts allow us to define

increasingly specific contexts (e.g., a specific drug regimen that is a part of

a more general clinical protocol), or combinations of different contexts, for

interpretation of various parameters.  Composite interpretation contexts

represent a combination of contemporaneous  interpretation contexts whose

conjunction  denotes a new context that has some significance in the

domain for the interpretation of one or more parameters.

4.  A context  interval  is a structure <ξ , I>, consisting of an interpretation

context ξ and a temporal interval I.

Intuitively, context intervals represent an interpretation context

interpreted over a time interval; within the scope of that interval, it can

change the interpretation of one or more parameters .  Thus, the effects of

chemotherapy form an interpretation context that can hold over several

weeks, within which the ranges of hematological parameters should be

defined differently.

5.  An event  proposition  e  ∈ Ε (or an event , for short, when no ambiguity

exists) represents the occurrence of an external volitional action or process

(as opposed to a measurable datum, such as temperature), such as

administering a drug .  Events have a series ai of event  attributes (e.g.,

dose).  Each attribute ai must be mapped to an attribute value νi.

Formally, there exists an IS-A hierarchy (in the usual sense) of event

schemas (or event types).  Event schemas have a list of attributes ai, where
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each attribute has a domain of possible values Vi, but do not necessarily

contain any corresponding attribute values.  Thus, An event proposition is

an event schema in which each attribute ai is mapped to some value νi ∈

Vi.  A PART-OF relation is defined over the set of event schemas.  If the pair

of event schemas (e i, ej) belongs to the PART-OF relation, then event

schemaei can be a subevent of an event schema e j.  (e.g., a CLINICAL

PROTOCOL event can have several parts, all of them MEDICATION events).

6.  An event interval is a structure <e , I>, consisting of an event proposition e

and a time interval I  .

Intuitively, e is an event proposition (with a list of attribute–value pairs),

and I  is a time interval over which the event proposition e is interpreted.

The time interval represents the duration of the event.

7.  A parameter schema  (or a parameter, for short)π ∈ Π  is, intuitively, a

measureable aspect or a describable state of the world (in particular, the

patient’s world), such as the patient’s temperature.  Parameter schemas

have various properties , such as a domain Vπ of possible symbolic or

numeric values, measurement units, and a measurement scale (which can

be one of NOMINAL, ORDINAL, INTERVAL, or RATIO, corresponding to the

standard distinction in statistics among types of measurement6).  Not all

properties need have values in a parameter schema.  There is an IS-A

hierarchy (in the usual sense) of parameter schemas.  The combination <π,

ξ> of a parameter π and an interpretation context ξ  is an extended

parameter schema (or an extended parameter for short).  Extended

parameters are parameters.  (For instance, blood glucose in the context of

insulin action, or the platelet count in the context of chemotherapy effects.)

6Nominal-scale parameters have values  that cannot be ordered (e.g., color).  Ordinal-scale
parameters have values that can be ordered, but the intervals among these values are not
meaningful by themselves and are not necessarily equal (e.g., army ranks).  Interval-scale
parameters have meaningful, comparable intervals, although a ratio comparison is not
necessarily meaningful (e.g., temperature measured on different temperature scales).  Ratio-scale
parameters have, in addition to all of the above, a fixed zero point and therefore a ratio
comparison, such as “twice as tall” is meaningful regardless of the height measurement unit.
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Note that an extended parameter can have properties, such as possible

domains of value, that are different from that of the original

(nonextended) parameter (e.g., in a specific context, a parameter might

have a more refined set of possible values).  Extended parameters also

have a special property, a value  ν ∈ Vπ.  Values typically are known only

at runtime.

(I usually denote parameter names by using leading capital letters, and a

particular value of a parameter property by using small capital letters).

Intuitively, parameters denote either input (usually raw) data, or any level

of abstraction of the raw data (up to a whole pattern).  For instance, the

Hemoglobin (Hb) level is a parameter, the White-blood–cell (WBC)

count is a parameter, the Temperature level is a parameter, and so is the

Bone-marrow–toxicity level (that is abstracted from, among other

parameters, the Hb parameter).

The combination of a parameter, a parameter value and an interpretation

context, that is, the tuple <π, ν , ξ> (i.e., an extended parameter and a

value) is called a parameter proposition (e.g., the state of Hb has the value

LOW in the context of therapy by the PAZ protocol).  A mapping exists

from all parameter propositions and the parameter properties of their

corresponding parameter (or extended parameter) schema into specific

property values.

Parameter properties can be viewed as multiple-argument relations  in

which some of the arguments (i.e., a parameter, a context and a value)

denote a parameter proposition.  This will be clear when I enumerate the

knowledge requirements of each of the temporal-abstraction mechanisms

that solve, respectively, each of the temporal-abstraction subtasks.  Much

of the knowledge about abstraction of higher-level concepts over time

depends on knowledge of particular parameter and parameter proposition

properties, such as persistence over time of a certain parameter with a

certain value within a particular context.  As will be seen in Section 4.2,
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different temporal-abstraction mechanisms typically require knowledge

about different parameter properties of the same parameter propositions.

These properties will be enumerated, defined, and discussed at length in

Section 4.2.

Primitive parameters  are parameters that play the role of raw data in the

particular domain in which the temporal-abstraction task is being solved

and that cannot be inferred by the temporal-abstraction process from any

other parameters (e.g., laboratory measurements).  Primitive parameters

can appear in only the input of the temporal-abstraction task.

Abstract parameters  are parameters that play the role of intermediate

concepts at various levels of abstraction; these parameters can be part of

the output of the temporal-abstraction task, having been abstracted from

other parameters and events, or they may be given as part of the input

(e.g., the state of Hb is MODERATE_ANEMIA).  In the former case, there is an

ABSTRACTED-INTO relationship between the input parameters and some of

the output parameters.  Each pair of parameters that belongs to an

ABSTRACTED-INTO relation represents only one abstraction step; that is, the

ABSTRACTED-INTO relation is not transitive.  It is also areflexive and

antisymmetric.  If the parameter-pair (πi, πj) belongs to the ABSTRACTED-

INTO relation, either both parameter types are abstract or πi is primitive

and πj is abstract.  Abstract-parameter propositions are created during the

temporal-abstraction process by all the temporal-abstraction mechanisms

except the context-forming one.

Constant parameters  are parameters that are considered atemporal in the

context of the particular interpretation task that is being solved, so that

their values are not expected to be time dependent (e.g., the patient’s

gender, the patient’s address, the patient’s father’s height).  There are in

fact only a few, if any, truly constant parameters (including gender).

When I discuss the temporal-inference mechanism and the inferential

properties knowledge it uses in Section 4.2.3, I mention a way to represent
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constants as fluents with a particular set of temporal-semantic inferential

properties, thus removing, in effect, the traditional distinction between

temporal and atemporal variables.  It is often useful to distinguish

between (1) internal (or runtime) constants , which are specific to the

particular case being interpreted (e.g., to the current patient) and appear in

the runtime input (e.g., the patient’s name, gender, or age), and (2)

external (or static) constants, which are inherent to the overall task, and

are typically prespecified or appear in the domain ontology (e.g.,

population distributions of heights, or the value of the mathematical

constant π).

8.  A parameter interval  is a tuple <π, ν , ξ, I>, where <π, ν, ξ> is a parameter

proposition and I is a time interval.  If I  is in fact a time point (i.e., I .start =

I.end) we can also refer to the tuple as a parameter point .

Intuitively, a parameter interval denotes the value ν of parameter π in the

context ξ during time interval I.

Usually, when meaningful, I denote the value of parameter π in the

beginning of interval I1 as I1.start.π, and the value of parameter π  in the

end of interval I as I1.end.π, (see Figure 1.1b for an example of intervals

and parameters).

9.  Abstraction functions θ ∈ Θ  are unary or multiple-argument functions

from one or more parameters to an abstract parameter.  The “output”

abstract parameters can have one of several abstraction types (which are

equivalent to the abstracion function used).  I distinguish among at least

three basic abstraction types: state, gradient , and rate .  (Other abstraction

functions and therefore types, such as acceleration and frequency, can be

added).  These abstraction types correspond, respectively, to a

classification (or computational transformation) of the parameter’s value,

the sign of the derivative of the parameter’s value, and the magnitude of

the derivative of the parameter’s value during the interval (e.g., LOW,

DECREASING, and FAST abstractions for the WBC-count parameter).  The
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state abstraction is always possible, even with qualitative parameters

having only a nominal scale (e.g., different values of the Color parameter

can be mapped into the abstraction D A R K); the gradient and rate

abstractions are meaningful for only those parameters that have at least an

ordinal scale (e.g., ordinal numbers) or an interval scale (e.g.,

temperature), respectively.  In practice, the state-, gradient-, and rate-

abstraction types and their compositions (e.g., the gradient of the state of

the parameter’s value) cover most of the numerical and qualitative data in

clinical domains.

In addition, a special type of abstraction function (and type) is pattern:

The abstract parameter is defined as a temporal pattern of several other

parameters (e.g., a QUIESCENT-ONSET pattern of chronic graft-versus-host

disease; see Figure 1.7).

The θ abstraction of a parameter schemaπ  is a new parameter schemaθ(π),

that is, a parameter different from any of the arguments of the θ  function

(e.g., STATE(Hb), which I usually write as Hb_State).  This new parameter

has its own domain of values, measurement scale, and any other possible

properties.  It can also be abstracted further (e.g., GRADIENT(STATE(Hb)),

or Hb_State_Gradient).  Note that the new parameter typically has

properties (e.g., scale) that are different from those of the one or more

parameters from which it was abstracted.

Statistics such as minimum, maximum, and average value  are not abstraction

types in this ontology.  Rather, these are functions on parameter values , that

return simply a value  of a parameter, possibly during a time interval, often

from the domain of the original parameter (e.g., the minimum Hb value

within a time interval I  can be 8.9 gr/dl, a value from the domain of Hb

values), rather than a parameter schema, which can have a new domain of

values (e.g., the Hb_STATE can have the value  INCREASING).

10.  An abstraction  is a parameter interval <π, ν, ξ, I> where π is an abstract

parameter.  If I is in fact a time point (i.e., I .start = I .end), we can also refer
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to the abstraction as an abstraction point ; otherwise, we can refer to it as

an abstraction interval.

11.  An abstraction goal ψ ∈ Ψ  is a proposition that denotes a particular goal

or intention that is relevant to the temporal-abstraction task during some

interval (e.g., the goal of monitoring AIDS patients; the goal of analyzing

growth charts; the intention to control a diabetes patient’s blood-glucose

values).  Intuitively, an abstraction goal represents the fact that an

intention  holds or that a goal  should be achieved during the time interval

over which it is interpreted.

12.  An abstraction-goal interval is a structure <ψ, I>, where ψ is a task and I

is a temporal interval.

Intuitively, an abstraction-goal interval denotes a temporal-abstraction

goal (e.g., one of certain specific types of diagnosis or therapy) that is

posed (e.g., by the user or by an automated planner) during an interval.  A

an abstraction-goal interval is used for creating correct contexts for

interpretation of data.

13.  Intuitively, context intervals are inferred dynamically (at runtime) by

certain event, parameter, or abstraction-goal propositions being true over

specific (i.e., known) time intervals.  The interpretation contexts

interpreted over these context intervals are said to be induced by these

propositions (e.g., by the event “administration of four units of regular

insulin”).  Certain predefined temporal constraints must hold between the

inferred context interval and the time interval over which the inducing

proposition is interpreted.  For instance, the effect of regular insulin with

respect to changing the interpretation of blood-glucose values might start

at least 30 minutes after the start of the administering and might end up to

8 hours after the end of that administraction.

Two or more context-forming propositions might induce indirectly a

composite interpretation context, when their corresponding induced context
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intervals are contemporaneous, if the interpretation contexts that hold

during these intervals belong to the SUBCONTEXT relation.  I discuss

interpretation contexts and further distinctions among them, as part of the

description of the context-forming mechanism, in Section 4.2.1 and in

Section 5.2.

Formally, a  dynamic induction relation of a context interval  (DIRC) is a

relation over propositions and time measures, in which each member is a

structure of the form <ξ , ϕ, ss , se, es, ee>.  The symbol ξ  is the interpretation

context that is induced.  The symbol ϕ ∈  Ρ is the inducing proposition , an

event, an abstraction-goal, or a parameter proposition.  (An event schema

is also allowed, as shorthand for the statement that the relation holds for

any event proposition representing an assignment of values to the event-

schema’s arguments.)  Each of the other four symbols is either the

“wildcard” symbol *, or a (positive, negative or infinite) time measure.

A proposition ϕ that is an inducing proposition in at least one DIRC, is

termed a context-forming proposition.

The inference knowledge represented by DIRCs is used by the context-

forming mechanism to infer new context intervals at runtime.  Intuitively,

the inducing proposition is assumed, at runtime, to be interpreted over

some time interval I with known end points.  The four time measures

denote, respectively, the temporal distance between the start point of I and

the start  point of the induced context interval, the distance between the

start  point of I   and the end point of the induced context interval, the

distance between the end  of I  and the start  point of the context interval,

and the distance between the end point of I  and the end point of the

induced context interval (see Figure 4.2).  Note that, typically, only two

values are necessary to define the scope of the inferred context interval

(more values might create an inconsistency), so that the rest can be

undefined (i.e., they can be wildcards, that match any time measure), and

that sometimes only one of the values is a finite time measure (e.g., the ee
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distance might be +∞).  Note also that the resultant context intervals do

not have to span the same temporal scope over which the inducing

proposition is interpreted.

Due to the existence of DIRCs, a proposition such as an event (or an event

schema), for instance, when interpreted over a particular time interval, can

induce at runtime a multiple  series of interpretation contexts.  Thus, a

therapy event can induce an context interval whose intuitive meaning is

“a toxicity period for hematological paramters is expected from 2 weeks

after the start of therapy until 4 weeks after the end of the therapy,” as

well as a context interval whose intuitive meaning is “kidney

complications of a very particular sort might occur from 6 months after

the end of the therapy until the unspecified (remotest) future.”

I discuss induced interpretation contexts and context intervals further in

Section 4.2.1, and I examine their details when I describe the architecture

of the context-forming mechanism in Section 5.2.

The use of time stamps as primitives, and interpretation of propositions over

intervals, corresponds to the point-based temporal model as developed by

Shoham [Shoham, 1987; Shoham & Goyal, 1988].  In general, I use a reified

representation [Shoham 1987], in which the proposition “the WBC count is

decreasing during interval I1 in the context ξ” is stated formally as True(I1,

DECREASING(WBC_GRADIENT, ξ)), thus separating the temporal component of the

sentence from the atemporal (parameter-proposition) component.  For simplicity,

however, I often refer to this proposition as DECREASING(I1, WBC_GRADIENT, ξ)).

I also use simply DECREASING(WBC) as a syntactic abbreviation when no

confusion is likely; it should be read as “the value of the gradient abstraction of

the WBC-count parameter (i.e., the WBC_GRADIENT parameter) is DECREASING

(during the relevant context and over the relevant time interval).”
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Given these definitions, I now can clarify exactly which basic propositions exist

in the ontology of the temporal-abstraction problem-solving method I suggest:

abstraction goals, event propositions, parameter propositions, and interpretation

contexts.  These fluents are interpreted over time intervals.

The set of all the relevant event schemas and propositions in the domain, their

attributes and subevents, form the domain’s event ontology .  The set of all the

potentially relevant contexts and subcontexts of the domain, whatever their

inducing proposition, defines a context ontology for the domain.  The set of all

the relevant parameters and parameter propositions in the domain and their

properties form the domain’s parameter ontology .  These three ontologies,

together with the set of abstraction-goal propositions and the set of all DIRCs,

define the domain’s temporal-abstraction ontology.  In Chapter 5, I discuss

examples of ontologies of events, contexts and parameters in a domain and their

conceptual repreentation.

Finally, I am assuming the existence of a set of temporal queries, expressed in a

predefined temporal-abstraction language that includes constraints on parameter

values and on relations among start- and end-point values among various time-

intervals and context intervals.  That is, a temporal query is a set of constraints

over the components of a set of parameter and context intervals.  Intuitively, the

temporal-abstraction language is used (1) to define the relationship between a

pattern-type abstract parameter and its defining parameter intervals, and (2) to

ask arbitrary queries about the result of the temporal-abstraction inference

process.  The result of such an “external” query regarding the state of the

knowledge base (including the input and the inferred propositions) depends on

the type  of the query.  The query type can be either (1) a value query, returning a

value for a parameter-proposition fulfilling the rest of the constraints (e.g., Hb =

9.4 mg/dl during some context), (2) a boolean query asking for the existence of a

proposition given the constraints and returning a boolen value (e.g., TRUE), or (3)

a set query  returning a set of parameter propositions (e.g., all parameter

propositions that satisfy a given set of constraints).
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The temporal-abstraction task  solved by the knowledge-based temporal-

asbtraction method is thus the following task: Given at least one abstraction-goal

interval <ψ, I>, a set of event intervals <e j, Ij>, and a set of parameter intervals

<πk, νk, ξk, Ik> (where ξ k might be an empty interpretation context), and the

domain’s temporal-abstraction ontology, produce an interpretation—that is, a

set of context intervals <ξ n, In> and a set of (new) abstractions <πm,νm, ξm, Im>

(see Figure 1.1), such that the interpretation can answer any temporal query

about all the abstractions derivable from the transitive closure of the input data

and the domain knowledge.

Note that in order that output abstractions be meaningful, the domain

knowledge representing the relationship between primitive and abstract

parameters, such as ABSTRACTED-INTO relations, must be given as part of the

input.  (In the case of the knowledge-based temporal-abstraction method, as will

be obvious in Section 4.2, the domain’s temporal-abstraction ontology must also

include certain specific parameter properties, all of the relevant DIRCs, etc.)

Note also that other measures of usefulness to the user, such as sensitivity,

specificity, predictive value, and relevance of the output abstractions to the task

at hand, are difficult to define precisely; such issues are discussed in Chapter 6,

when I describe applications of the knowledge-based temporal-abstraction

method in several domains.

Finally, important computational considerations, such as the inherent

nonmonotonicity of the temporal-abstraction process and the other desiderata

mentioned in Section 1.1 for any method solving the temporal-abstraction task,

have not been mentioned in the formal definition of that task.  Strictly speaking,

these considerations are not essential for defining the output of that task (for

instance, the  reasoning mechanisms could, in theory, recompute all inferences

when each new datum arrives).  These considerations are extremely important,

though, for efficient acquisition, representation, and utilization of temporal-

abstraction knowledge; they are discussed at length in Chapter 5 and Section 8.2.
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4.2  The Temporal-Abstraction Mechanisms

In Chapter 1, I listed the five subtasks into which the knowledge-based temporal-

abstraction method decomposes the temporal-abstraction task (see Figure 1.2.).

These subtasks can be restated informally, using the temporal-abstraction

ontology:

1. Temporal-context restriction  involves creation of interpretation contexts

from a set of input abstraction-goal, parameter and event intervals, relevant

to focusing and limiting the scope of the inference

2. Vertical temporal inference  involves creation of parameter points or

parameter intervals, by inference from contemporaneous parameter

propositions into parameter propositions to which they have an

ABSTRACTED-INTO relation

3. Horizontal temporal inference involves creation of parameter intervals, by

performing inference on parameter propositions of the same parameter

(e.g., Hb), abstraction type (e.g., STATE), and interpretation context (e.g.,

AIDS therapy), attached to intervals that are not disjoint, but that differ in

temporal span

4. Temporal interpolation involves creation of parameter intervals by joining

of disjoint parameter points or parameter intervals associated with

propositions of the same parameter, abstraction type and interpretation

context

5. Temporal-pattern matching involves creation of parameter intervals by

matching of patterns—constraining parameter values and time-interval

values and relations—over possibly disjoint parameter intervals, associated

with parameter propositions of various parameters and abstraction types).

The five temporal-abstraction mechanisms  solve these five temporal-abstraction

subtasks .  The inputs and the outputs of these mechanisms can now be defined at

a greater level of detail (see figure 1.2):
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1. The context-forming mechanism creates context intervals, given

abstraction-goal intervals, event intervals, abstractions, DIRCs, or several

existing (meeting or contemporaneous) context intervals.

2. The contemporaneous-abstraction mechanism creates abstraction points

and intervals, given contemporaneous parameter points and intervals and

context intervals and the parameter ontology.

3. The temporal-inference mechanism  performs, as I will show, two subtasks.

Temporal horizontal inference involves inferring a parameter proposition (e.g.,

NONDEC) from two given parameter propositions (e.g., SAME and INC) when

the temporal elements to which the parameter propositions are attached are

disjoint.  Temporal-semantic inference involves inferring a parameter

proposition given a parameter interval and a time interval (e.g., a

subinterval of the parameter interval), attaching a parameter proposition to

the time interval, thus creating another parameter interval.  The parameter,

abstraction type, and interpretation context of the input propositions must

be the same.  The input also includes the parameter ontology.

4. The temporal-interpolation mechanism joins disjoint parameter points or

parameter intervals, both with the same parameter name , abstraction type,

and interpretation context.  The input also includes the parameter ontology.

The output is a parameter interval.

5. The temporal-pattern–matching mechanism creates new abstraction points

and intervals by matching patterns over disjoint parameter intervals or

parameter points.  The patterns include restrictions on parameter values

and time-interval values and relations; the parameters, abstraction types,

and interpretation contexts might differ among the involved parameter

propositions.  Pattern classifications and other types of knowledge are

represented in the parameter ontology, which is included in the input.  The

input might also include a set of runtime temporal queries.
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As will be seen in the rest of this section, the temporal-abstraction mechanisms

require knowledge (usually expressed as particular parameter properties) that is

more specific than the rather general knowledge categories used for defining the

temporal-abstraction task.  I distinguish among four domain knowledge types

used by the temporal-abstraction mechanisms (Figure 1.2):

1. Structural knowledge (e.g., IS-A, ABSTRACTED-INTO and P A R T-OF

relations in the domain)

2. Classification knowledge (e.g., classification of Hb count ranges into

LOW, HIGH, VERY HIGH)

3. Temporal-semantic knowledge (e.g., the DOWNWARD-HEREDITARY

relation [see Section 3.1.6] between a LOW(Hb) proposition attached to

an interval and a LOW(Hb) proposition attached to a subinterval of that

interval )

4. Temporal-dynamic  knowledge (e.g., persistence of the truth value of

LOW(Hb) when the Hb parameter is not measured)

An example of the interaction among several temporal-abstraction mechanisms is

presented in Figure 4.1, and will be helpful for reference when presenting the

temporal-abstraction mechanisms in the rest of this chapter.

 In the subsections that follow, I shall describe the five temporal-abstraction

mechanisms, and point out the precise knowledge that each mechanism needs to

be instantiated  in (applied to) a new domain.  This knowledge is usually a

combination of the four knowledge types shown in Figure 1.2 and listed above.
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Figure 4.1:    Processing of parameter points and intervals by the temporal-abstraction

mechanisms.  For example, parameter points T1 and T2 are abstracted into two abstraction points,

over which a LOW(Hb) state abstraction in interpreted, by contemporaneous abstraction; these point

abstractions are joined into a L O W(Hb) interval abstraction I1 by temporal interpolation.

Abstractions I1 and I2 are joined by temporal inference into the longer LOW(Hb) interval

abstraction I5, as are I3 and I4 into I6.  Interval abstractions I5 and I6 are joined into a LOW(Hb)

interval abstraction I7 by temporal interpolation .  A DECREASING(Hb) gradient abstraction during

interval I7 is computed similarly, if all steps in the computation are permitted by the domain’s

temporal-abstraction properties.  • = Hb levels;  = event interval;  = closed context

interval;  = closed abstraction interval.  The interpretation context “protocol CCTG-522” was

induced by the event of protocol CCTG-522 administration and, for that particular event, is

contemporaneous with it.
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4.2.1  The Context-Forming Mechanism

Abstractions are meaningful only within the span of a relevant context interval,

such as “treatment according to AIDS protocol CCTG-522,” or “administration of

AZT, as part of protocol CCTG-522,” or “known diagnosis of AIDS.”  Context

intervals create a relevant frame of reference for interpretation, and thus enable a

temporal-abstraction mechanism to conclude relevant abstractions for that

context.  Context intervals are created by the context-forming mechanism.

As was mentioned in Section 4.1 when defining DIRCs, context intervals can be

induced by several types of propositions.  Context intervals might be inferred by

the existence of an abstraction-goal interval , such as “diagnosis of chronic graft-

versus-host disease states” or “therapy of insulin-dependent diabetes,” or by the

existence of an event  interval , that is, an external process or action, such as

treatment in accordance with a protocol.  (Typically, events are controlled by the

human or by an automated planner, and thus are neither measured data, nor can

they be abstracted from the other input data, such as from input parameter

propositions.)  A context interval can also be induced by the existence of a

parameter interval which includes a context-forming parameter proposition <π, ν,

ξ>—namely, the value ν of the parameter π, in the context ξ, is sufficiently

important to change the frame of reference for one or more other parameters

(e.g., the LOW value of the Hb_STATE abstract parameter in the context of

protocol CCTG-522 might affect the interpretation of WBC values).

As defined in Section 4.1, a composite  interpretation context can be composed from

a conjunction of single, or basic , interpretation contexts that have a SUBCONTEXT

relation.  A composite interpretation context is often induced by an event

chain—a connected series of events <e1, e2,...,en>, where ei+1 is a subevent of ei.

In that case, the composite interpretation context would denote an interpretation

context induced by a more specific component of a event, such as administration

of a particular drug as part of a certain protocol.  Note that subevents of an event

typically induce interpretation contexts that have a SUBCONTEXT relation to the

interpretation context induced by the event.  This knowledge can be used as a
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default in the context ontology, and can also be exploited during a manual or

automated knowledge-acquisition process, either for knowledge elicitation or for

knowledge verification and cross-validation.

The context-forming mechanism also operates on the induced context intervals.

One operation is temporal intersection of context intervals.  Composite

interpretation contexts are interpreted over a context interval formed from a

temporal intersection of two or more context intervals whose respective

interpretation contexts form a composite interpretation context by belonging to

the SUBCONTEXT relation, as defined in Section 4.1.  The temporal intersection

operation is relevant for context intervals that have one of the following Allen

relations: EQUAL, OVERLAPPS, STARTS, FINISHES, DURING (see Figure 3.1).  A new

context interval is created, whose temporal scope is the intersection of the two or

more corresponding temporal intervals (that is, the set of time stamps included

in the temporal scope of all the participating context intervals).  Another

operation is temporal concatenation of context intervals.  Interpretation contexts

are assumed as default to be concatenable propositions (see Sections 3.1.6 and

4.2.3); thus, meeting context intervals whose interpretation contexts are equal can

be joined into longer context intervals over which the same interpretation-context

proposition can be interpreted.  (The temporal concatenation operation is thus

relevant when the two context intervals have a MEETS relation (see Figure 3.1).)

An interpretation context might be relevant for only certain abstractions, such as

for detecting anticipated (but only potential) complications after a procedure.  It

might also be a context inferred for the past.  Thus, a context-forming proposition

interval can create a context envelope that might include, in addition to a direct

context (concurrent with the temporal scope of the proposition’s interval)

retrospective  context intervals (e.g., the preceding prodrome of a disease),

prospective (or expectation) context intervals (e.g., potential complications), or

both.  Note that, intuitively, retrospective interpretation contexts represent a

form of abductive  reasoning (e.g., from effects to causes, such as preceding

events and abstractions), while prospective interpretation contexts represent a
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form of deductive  reasoning (e.g., causal reasoning, such as from an event to

potential future complications).

Since the four temporal measures of a DIRC, representing temporal constraints

over an induced context interval with respect to the start time and the end time

of to the inducing proposition, can be positive, negative, or infinite time

measures, the context interval induced by a context-forming proposition can

have any one of the 13 binary temporal relations—as defined by Allen [1984] and

discussed in Section 3.1.4 (e.g., BEFORE, AFTER, or OVERLAPS)—to the time interval

over which the inducing proposition is interpreted (Figure 4.2).  Since a context-

forming proposition can be an inducing proposition in more than one DIRC, it

can induce dynamically one or more contexts, either in the past, the present, or

the future, relative to the temporal scope of the interval over which it is

interpreted (see Figure 4.2).  That is, a context-forming task, event, or parameter

proposition, might appear in a set of DIRCs  (see Figure  4.2).  I discuss the

implementation implications of DIRCs in Section 5.2.

The context-forming mechanism creates retrospective and prospective contexts

mainly to enable the use of context-specific temporal-abstraction functions, such

as the correct mapping functions related to ABSTRACTED-INTO relations and the

relevant maximal-gap (∆) functions (that will be discussed at length in Section

4.2.4), that  should not be considered in other contexts.  Creation of explicit

contexts enables the temporal-abstraction mechanisms both to focus on the

abstractions appropriate for particular contexts, such as expected consequences

of a certain event, and to avoid unnecessary computations in other contexts.  In

addition, the ability to create dynamically retrospective contexts enables a form

of hindsight ([Russ, 1989] (see Section 3.2.4), since the interpretation of the

present and future (and thus the inferrence of new parameter propositions) can

induce new interpretation contexts for the past and thus shed new light on old

data.
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AZT-administration event
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Hepatitis B

HB prodrome Chronic active hepatitis

(b)

CCTG-522 protocol

Figure 4.2:  Dynamic induction relations of context intervals (DIRCs).

(a)  A direct/prospective overlapping AZT-toxicity interpretation context induced by the

existence of an AZT-administration event in the context of the CCTG-522 AIDS-treatment

experimental protocol.  The interpretation context starts at least 2 weeks after the start of the

inducing event, and ends at most 4 weeks after the end of the inducing event.  Note that

structural knowledge about the PART-OF relation of the CCTG-522 protocol event and the AZT-

administration subevent and the context-subcontext relation between the two interpretation

contexts induced by these events are also required to create the interpretation context of “AZT-

therapy–toxicity within the CCTG-522 protocol.”

(b) Prospective (chronic active hepatitis complication) and retrospective (hepatitis B prodrome)

interpretation contexts, induced by the external assertion or internal conclusion of a hepatitis B

abstraction interval, which is flagged as a context-forming abstraction in the parameter ontology.

Note the temporal constraints.

 = event interval;  = closed context interval;  = open context interval;  =

abstraction interval.
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There is another advantage to the fact that parameter propositions include an

explicit interpretation context.  Since several different context intervals (during

which different interpretation contexts hold) can coexist temporally (that is,

concurrently), it is possible to represent several abstraction intervals where the

same  abstract paarameter  (e.g., the state abstraction of the Hb-level parameter) has

different  values  at the same time—one for each valid and relevant context (e.g., two

contemporaneous parameter intervals, LOW(Hb) in the context of having AIDS

without complications, and NORMAL(Hb) in the context of being treated by the

CCTG522 protocol when AZT is administered and has expected side effects).

Thus, the context-forming mechanism supports maintenance of several

concurrent views  of the abstractions in the resultant abstraction database,

denoting several possible interpretations of the same data.  This is one of the

reasons that parameter propositions (including, as I show in Section 5.4,

temporal-pattern queries to the abstraction database) must include an

interpretation context.

Dynamic induction of context intervals by parameter propositions might lead to

new interpretations of the some parameters, thus potentially inducing new

context intervals within which the original parameter value (e.g., the input

datum) might have new interpretations.  However, it can be shown that there are

no contradictions or infinite loops in the reasoning process of the context-forming

mechanism.

Claim 1:  The context-forming process has no “oscillation cycles” among

different interperations of the same parameter.

Proof:  Parameter propositions are not retracted by the addition of a new

interpretation context.  Rather, a new interpretation is added to the set of true

parameter propositions.  (As I show in Section 4.2.6, retractions can  occur due to

the nonmonotonic nature of temporal abstraction, but in different circumstances.)

Therefore, if a parameter proposition <π, ν1, ξ1> induces a new interpretation

context ξ2 over some interval, and within the scope of that interval the parameter

π is interpreted to have another value, a new parameter proposition
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<π, ν2, ξ1>would simply be inferred and added to the set of true propositions.

This, of course, creates no contradictions since the parameter π—or some

abstraction of π, say, state(π)—is interpreted within two different contexts and

can thus have two different values at the same time.  ❏

Claim 2:  The context-forming process is finite.

Proof:  The total number of different interpretation contexts that, potentially, can

be inferred (including composite ones) is limited by an existing upper bound: the

size of the context ontology and the number of potential subcontext chains

(analogous to event chains) of interpretation contexts that have SUBCONTEXT

relations.  Furthermore, for each parameter π, the number of possible induced

context intervals is bound by the number of DIRCs in which a parameter

proposition including π is an inducing proposition.  Since claim 1 ascertained

that there are no contradictory loops either, the process must end for any finite

number of input (interval-based) propositions.  ❏

The separation between propositions and the contexts they induce (as explicitly

modelled by DIRCs) enables us to be flexible with respect to the temporal scope

of the induced context interval (relative to that of the inducing event, parameter

or task interval).  The separation enables us to model the induction of multiple

different  (in type and temporal scope) context intervals by the same proposition.

In addition, the same  interpretation context (e.g., a certain type of bone marrow

toxicity) might be induced by different propositions, possibly even of different

types (i.e., different event schemas) and at different times (e.g., several types of

chemotherapy and radiotherapy events).  The domain’s temporal-abstraction

ontology would then be representing the fact that, within the particular

interpretation context induced by any of these propositions (perhaps with

different temporal constraints for each proposition), certain parameters would be

interpreted in the same way (e.g., the state of Hb, allowing us to represent the

properties of the state(Hb) parameter within a bone-marow–toxicity context

interval without the need to list all the events that can lead to the creation of such

a context interval)).
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Additional important distinctions are enabled by the explicit use of interpretation

contexts and DIRCs.  Usually, abstractions are specific to a particular

interpretation context, and cannot  be joined (by the temporal inference or

temporal interpolation mechanisms) to abstractions in other interpretation

contexts (e.g., two LOW(Hb_STATE) abstractions might denote different ranges in

two different subcontexts of the same interpretation context induced by a

chemotherapy-protocol event).  This restriction is reasonable, since the primary

reason for having contexts is to limit the scope of reasoning and of the

applicability of certain types of knowledge.  Parameter propositions including a

basic  (single) interpretation context, or a composite one (as defined in Section 4.1),

are said to be interpreted within a simple  interpretation context.  However, as I

show in more detail when presenting the RÉSUMÉ temporal-abstraction

ontology in Chapter 5, it is both desirable and possible to denote that, for certain

classes of parameters, contexts, and subcontexts, the abstractions are sharable

among two meeting context intervals (with different interpretation contexts).

Such abstractions denote the same state, with respect to the task-related

implications of the state, in all sharing contexts.  For instance, two meeting

LOW(Hb) abstractions might indeed denote different ranges in two different

contexts, and the Hb_State parameter might even have only two possible values

in one context, and three in the other, but the domain expert might want to

express the fact that the LOW value  of the Hb_State abstraction might still be

joined meaningfully to summarize a particular hematological state of the patient.

The sharable abstraction values would be defined within a new, unified (or

generalized), interpretation  context, that is equivalent neither to either of the

two shared subcontexts (e.g., those induced by two regimens within the CCTG-

522 protocol), nor to their parent context (e.g., the one induced by the CCTG-522

protocol itself, within which the Hb_STATE parameter might have yet another,

default, LOW(Hb) range, for instance).  This unified context can be viewed as a

generalization of two or more subcontexts of the parent interpretation context.

Note that Fagan’s VM system [Fagan, 1980] (see Section 3.2.3) assumed by default

that all contexts for all parameters are sharable.  Thus, if VM were invoked in the

hematology domain, it would enable a rule such as “LOW Hb values and LOW
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WBC counts imply a suppression of the bone marrow” to be lifted  [Guha, 1991]

out of one context and used in another context, where the antecedents of the rule

denote, in fact, different propositions, since LOW(Hb) might mean different

ranges in different contexts.  The context and parameter ontologies permit a

definition of such a lift operation in a more controlled, context- and value-

sensitive, fashion.

Finally, note that we might want to abstract the state of a parameter such as

preprandial glucose, over the context of two or more temporally disjoint, but

semantically equivalent, interpretation contexts (e.g., the PRELUNCH and

PRESUPPER interpretation contexts are both PREPRANDIAL interpretation contexts).

We might even want to create such an abstraction within only a particular

preprandial context (e.g., a PRESUPPER preprandial interpretation context)

skipping intermediate preprandial contexts (e.g., PREBREAKFAST and PRESUPPER

interpretation contexts).  This interpolation is different from sharing abstractions

in a unified interpretation context, since the abstractions in this case are created

within the same  interpretation contexts, but the interpolation operation joining

them needs to skip temporal gaps, including possibly context intervals of ver

which different interpretation contexts hold.  The output would thus be a new

type of a parameter interval—a nonconvex interval, as defined by Ladkin (see

Section 3.1.4).  A LOW(glucose) abstraction would be defined, therefore, within

the nonconvex context of “prebreakfast episodes.”  Note that parameter

propositions within such a nonconvex context will have different temporal-

semantic inference properties (see Section 4.2.3) than when the same parameter

propositions are created within a simple, convex, context.  For instance,

propositions will usually not be downward hereditary (see Sections 3.1.6 and 4.2.3)

in the usual sense of that property, unless subintervals are confined to only the

convex or nonconvex intervals that the nonconvex superinterval comprises (e.g.,

only morning times).

We can now represent the interpretation context of a parameter proposition as a

combination of simple (basic or composite), unified, and nonconvex

interpretation contexts.  Assume that a Unif (unify) operator returns the
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unifying-context parent (if it exists) of a parameter proposition in the parameter-

properties ontology.  Assume that a Gen* (generalize) operator, that generalizes

the Unif operator, returns the least common unifying-context ancestor (if it

exists) <π, ν , ξu>of two parameter propositions <π, ν, ξ1>, <π, ν, ξ2>, in which the

parameter π and the value ν  are the same, but the interpretation context is

different.  Assume that an NC  (nonconvex) operator returns (if it exists) the

nonconvex-context version of a parameter proposition.  Then, the parameter

proposition that represents the nonconvex join (over disjoint temporal spans) of

two parameter propositions in which only the interpretation context is different

can be represented as

NC (Gen* (<π, ν, ξ1>, <π, ν, ξ2>).

For instance, we would first look for a generalizing interpretation context for the

Glucose_State abstractions in the PRELUNCH and PRESUPPER interpretation

contexts, in this case the PREPRANDIAL one; then we would represent the

parameter proposition “low preprandial glucose-state values” as

LOW(Glucose_State) in the nonconvex extension of the PREPRANDIAL

interpretation context.  This proposition would be interpreted over some time

interval to form a parameter interval.  Both the unified and the nonconvex

interpretation contexts would appear in the context ontology.

In summary, the knowledge required for forming context intervals includes:

• an ontology of event schemas and propositions, including the PART-OF

relation

• an ontology of parameter schemas and propositions

• an ontology of interpretation contexts, including the SUBCONTEXT relation

• the set of abstraction-goal propositions

•  The set of all DIRCs.
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4.2.2  Contemporaneous Abstraction

The contemporaneous-abstraction mechanism accepts as input one or more

parameter points or intervals and returns as output an abstraction point or

interval (see Figure 1.4).  One type of knowledge required by the

contemporaneous-abstraction mechanism is structural knowledge , such as the

ABSTRACTED-INTO relation mentioned in Section 4.1 (the relation that defines the

fact that the values of one or more parameters are abstracted into the value of

another, abstract parameter).

The time stamps of all the time intervals of the input parameter points or

intervals must be equivalent (a domain- and task-specific definition).  For

instance, if the task has DAY as the lowest granularity level, parameters measured

at different hours of the same day might be considered to have the same time

stamp.  In addition, temporal dynamic knowledge about the dynamic behavior of

the parameters involved might be required, such as expected persistence (validity)

of a measurement both before and after  that measurement was actually taken.

Such temporal-dynamic knowledge enables abstraction of primitive or abstract

parameter values that have been recorded as valid at different times (e.g., the Hb

level was measured on Tuesday, but the WBC count is not known until

Thursday, and a bone-marrow–state abstraction requires both parameters).  I will

say more about persistence of truth-values of propositions in Section 4.2.4.1.

Contemporaneous temporal abstraction is used for two related subtasks.  The

first is classification of the value of the parameter of an input parameter point or

parameter interval.  Examples include HIGH, MEDIUM, or LOW WBC count values,

or any finite set of domain-specific categories (see Figure 4.1).  The knowledge-

acquisition requirements include a list of states, as well as range tables that map

primitive- or abstract-parameter values into discrete-state values.  The

classification might be sensitive to other parameters (e.g., the patient’s age) and

to the relevant interpretation context (e.g., a chemotherapy-protocol event).  The

second purpose, computational transformation, is really an extension of

classification.  It uses a function that maps the values of one or more parameters
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into the value of another, abstract, parameter.  For example, a transformation

function might compute the percentage of white blood cells that are lymphocytes

at a specific time point and map that value into a predefined category.  This

category might depend on the context.  Thus, computational transformation

might use additional parameters, might involve additional computation, and

might require special function tables (which I discuss in Section 5.1) that are

specific for the domain, the task, and the context.

Note that the computational-transformation subtask is a very general one, and

might involve computing a given “black-box” function.  In Section 5.1, I discuss

several measures used in the RÉSUMÉ system to reduce the ambiguity of such

functions and to increase the amount of potential automated reasoning possible

regarding such functions.  Such measures include, for instance, the disciplined

use of classification tables with predefined semantics, when possible, and the

explicit representation of ABSTRACTED-INTO relations and qualitative-

dependencies relations in the parameter ontology.  Nevertheless, the

computational-transformation functions might be arbitrarily complex, even

though their management and use is disciplined.

Both subtasks need vertical classification knowledge, a subtype of the

classification knowledge type, that is relevant for mapping contemporaneous

parameter values into another, contemporaneous value of a new parameter.  For

either purpose, I distinguish between single-parameter contemporaneous

abstraction, which maps a single parameter directly into its state-abstraction

values, and multiple-parameter contemporaneous abstraction, which maps several

parameters into one abstract value.  As I explain in Section 4.2.4, the distinction

between single- and multiple-parameter contemporaneous  abstractions might

affect the definition of θ -abstraction types denoting changes in an abstract

parameter across time intervals.  For instance, with respect to the values of the

gradient  abstraction type, an abstract parameter might be defined as INCREASING

if all the parameters from which it is abstracted that are qualitatively proportional

to it [Forbus, 1984] are INCREASING themselves, although the value of the state

abstraction of the parameter has not changed.
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Other possible approaches to the problem of vertical classification—that is,

mapping of several parameter values into discrete categories at the same time—

and the implications that these approaches would have for the knowledge-

acquisition requirements, are discussed in Section 8.4.4.  Whatever the approach,

however, an abstraction is attached to the time interval that is the intersection of

the temporal attributes of all the parameter intervals from which the abstraction

is created.  Efficient approaches for representation of classification knowledge are

discussed in Section 5.1.1.

In summary, the knowledge required for forming contemporaneous abstractions

is an ontology of parameter schemas and propositions that includes:

• the ABSTRACTED-INTO relation

• vertical-classification knowledge, as range-classification tables

• vertical-classification knowledge, as computational-transformation

functions

• the appropriate interpretation contexts for applying each type of vertical-

classification knowledge

• local-persistence temporal dynamic knowledge.

4.2.3. Temporal Inference

The temporal-inference mechanism involves logically sound inference regarding

interpretation of a proposition or a combination of propositions over one or more

temporal intervals.  The temporal-inference mechanism performs two related

subtasks: temporal-semantic inference and temporal horizontal inference.  Both

subtasks involve very restricted forms of temporal inference.

Temporal-semantic inference employs a set Φ of domain-specific temporal-

semantic properties of parameter propositions, an extension of Shoham’s

propositional properties [Shoham, 1987] (see Section 3.1.6) to a set of temporal-

inference actions.  Temporal-semantic inference can be performed in several
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ways, depending on the input types and the temporal-semantic properties that

apply.  It accepts as input either one abstraction and a time (or context) interval,

or two abstraction intervals.  It returns as output an abstraction interpreted over

either the time (or context) interval, or a newly defined superinterval of the two

abstraction intervals (see Figures 1.5 and 4.1).  The time intervals of the two input

abstractions can have, in general, any of Allen’s 13 binary temporal relations

[Allen, 1984] (see Section 3.1.4) except BEFORE and AFTER (i.e., there must be no

gap between the intervals; the case where a temporal gap exists is discussed in

Section 4.2.3; it is handled by the interpolation mechanism).  The resulting

conclusion holds for the intersection or the union of the intervals.  In the case of

one abstraction and a time interval, the relations include STARTS, FINISHES,

DURING, and the inverses of these relations (see Section 3.1.4); the inferred

conclusion would hold for the duration of the input time interval.

For instance, certain propositions, when known at interval I1, can be inferred for

every subinterval I2 that is contained in I1 (e.g., the characterization “patient is in

coma”).  These propositions have the inferential property that I referred to in

Section 3.1.6 as downward hereditary [Shoham 1987] (see Figure 1.5b).  That is,

the downward-hereditary  property of these proposiitons has the value TRUE.  This

property, however, is not  true, for instance, in the case of the NONMONOTONIC

gradient abstraction, for any parameter.  Using the temporal-abstraction

ontology, the downward-hereditary temporal-semantic inference can be

expressed as follows (universal quantifiers have been dropped):

Input : abstraction <π1, ν1, ξ, I1>, time interval I2

Conditions: I2 DURING I1 and <π1, ν, ξ> is DOWNWARD HEREDITARY

and ¬  [<π2, ν2, ξ , I1>, ν1 ≠ ν2]

Conclude : abstraction <π1, ν1, ξ, I2>

The interval I2 is the temporal element of some other entity (e.g., an existing

abstraction).  The negative condition is checked to ensure consistency; if all other
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conditions succeed but this condition fails, the inference returns FALSE: an

indication for a contradiction (this situation will be discussed later in this section).

To join two meeting abstraction intervals (e.g., two intervals previously classified

as DECREASING for the gradient abstraction of some parameter) into one

(super)interval (e.g., a longer DECREASING abstraction of that parameter), we

need another inferential property—namely, the claylike property [Shoham and

Goyal, 1988] also called the concatenable property [Shoham, 1987] (see Figure

1.5a).  That is, we need a TRUE value for the concatenable  property of the

DECREASING value of the gradient abstraction of that parameter in that context.

A parameter proposition is concatenable if, whenever it holds over two

consecutive time intervals, it holds also over their union.  The input for the

inference action in this case includes two abstraction intervals over which the

same parameter proposition holds; the output, if the inference is relevant, is the

abstraction (super)interval.  (When the values of the same parameter are different

for the two parameter propositions, we need horizontal classification knowledge ; see

later in this section).  For instance, when the proposition “the patient had HIGH

blood pressure” is true over some interval as well as over another interval that

that interval meets, then that proposition is true over the interval representing

the union of the two intervals.  Note that two meeting, but different, 9-month

pregnancy episodes are not  concatenable, since it is not  true that the patient had

an 18-month pregnancy episode.

Additional useful inferential properties for parameter propositions, originally

defined by Shoham for general propositions, are gestalt  and solid  [Shoham, 1987]

(see Section 3.1.6).  A parameter proposition is gestalt  if it never holds over two

intervals, one of which properly contains the other (e.g., the interval over which

the proposition “the patient was in a coma for exactly 2 weeks” is true cannot

contain any subinterval over which that proposition is also true).  A parameter

proposition is solid if it never holds over two properly overlapping intervals

(e.g., “the patient received a full  course of the current chemotherapy protocol,

from start to end ,” cannot hold over two different, but overlapping intervals).  In
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both case, the input to the inference action includes two abstraction intervals, and

the conclusion is simply FALSE if a contradiction is detected.

I have defined additional inferential properties (and implied temporal-inference

actions), such as universally diffusive : The parameter proposition can be

inferred for any superinterval of the proposition interval, in a particular context.

This property is assumed to have the value FALSE,, as a default.  (However, the

NONMONOTONIC value of the gradient abstraction proposition for all parameters

and contexts has the universally-diffusive inferential property as default, since

typically any interval including a NONMONOTONIC interval is NONMONOTONIC

for that parameter.)  Constant parameters, however (e.g., gender), can be

assumed, as a default, to be universally diffusive for all contexts, once their value

is set for some interval.  Constant parameters, although usually considered

atemporal, can therefore be modeled  as temporal  parameters that have the

universally-diffusive inferential property, as well as the downward-hereditary

property.  Thus, they can induce corresponding interpretation-context intervals.

In fact, the universally diffusive property can be refined further.  Some

propositions are naturally only backward diffusive—that is, they are true as a

default only from -∞ up to the time in which they are known to be valid (e.g.,

“the patient was living in England until now,” and other propositions of the type

“P is true until now,” are backward diffusive, and, when asserted at any time [ t,

t], hold over the interval [-∞, t ]).  Other propositions are naturally forward

diffusive ; that is, they are true as default only from the present until +∞ (e.g.,

“the patient had a liver transplant,” and other propositions of the type “P was

true in the past”).  Note that the input in the case of the three diffusive properties

includes an abstraction interval and a context interval; the output, if the inference

holds, is an abstraction interval where the scope of the temporal element varies,

dependent on the scope of the input abstraction and context intervals.

Defaults for the temporal inferential properties of propositions exist and can be

overridden for any specific parameter, value and context by the knowledge

engineer defining the basic concepts and entities of the task, or by the domain

expert elaborating the temporal-abstraction knowledge.  The temporal-semantic
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knowledge  for a domain can be summarized as a relation which I call an

inference-properties table, where every tuple in the relation (π, ν , φ, τ , ξ)

represents that the inferential property φ ∈ Φ, for value ν, of parameter π, in the

context  ξ, has the truth value τ (τ ∈ {TRUE, FALSE}).   The parameter π is assumed

here to include its abstraction type.

Most temporal-semantic properties have, as a default, values that are stable over

many domains; thus, the inference-properties table can be defined at a high,

domain-independent level, and modified for particular parameters only when

necessary.  Both the downward-hereditary property and the concatenable

property can be assumed to have the value T R U E as a default for most

abstractions, as well as for interpretation contexts, unless specified otherwise.

The solid and gestalt properties can be assumed to be TRUE by default, although

the values of these properties can vary.  The three diffusive properties are

assumed to have the value FALSE by default.  External events are considered as

nonconcatenable  and solid as a default, but interpretation contexts   are assumed, as a

default, to be downward hereditary and concatenable .

The  temporal-semantic inference subtask uses the temporal-semantic properties

for two types of conclusions:

1.  Positive inference : Creation of new abstractions, as when the downward-

hereditary property is used to interprete a parameter proposition over a

subinterval of the input abstraction interval

2.  Negative inference : Detection of contradictions, such as when a parameter

proposition for which the gestalt  temporal-semantic property has the value

TRUE is detected within the temporal scope of an identical parameter

proposition.  (In that case, following the contradictory inference, we need to

decide which parameter proposition, if any, should be retracted, and how to

propagate the results of such a retraction to the rest of the abstraction

database.  I discuss this case in Section 4.2.6.)
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If two abstractions containing the propositions ϕ1, ϕ2 overlap and there is a

vertical classification rule such that ϕ1 and ϕ2 =>ϕ3, we cannot immediately infer

φ3 over the intersection interval I .  Both ϕ1 and ϕ2 must be downward hereditary.

In that case, ϕ3 is necessarily true over I at our current state of information

(unless new data invalidate that conclusion).  If ϕ1 is gestalt , we cannot infer ϕ3;

we can infer, however, that ϕ1 is necessarily false over I.  Finally, if ϕ1 is not

downward-hereditary  but is not gestalt , (e.g., the NONMONOTONIC(blood pressure)

parameter proposition) we can conclude only that ϕ1 is possibly true  over I , or,

equivalently, is possibly false.  New data can change the truth value of the

proposition ϕ1 over I to either necessarily true or necessarily false.  Similar

analysis holds for other temporal relations between interval-based propositions,

leading to a modal logic [Hughes and Cresswell, 1968] of combining

propositions over time.  (Modal logics usually define operators over

propositions, such as Lp ≡ necessarily  p, and Mp ≡ possibly  p.  In fact, one operator

is sufficient:  Lp ≡ ¬M¬p.)  Thus, answering a temporal query involving one or

more inferred parameter propositions might generate, in principle, answers such

as “the value ν  for parameter π  is possibly true during the period denoted by

interval I.”

The second temporal-inference subtask is temporal horizontal inference.  This

subtask determines the value of the join operation (⊕ ) of two meeting abstraction

intervals in the same context, where the same parameter has equal or different

values (e.g., one over which the parameter is abstracted as INCREASING, and one

over which the parameter is abstracted as DECREASING) into an abstraction

superinterval (e.g., with a parameter value NONMONOTONIC).  It uses, apart from

temporal semantic knowledge (i.e., whether the concatenable property of the

parameter has the value TRUE), horizontal classification knowledge.  Note that

such knowledge is a classification-type knowledge.  In general, a horizontal-

inference table should be constructed for all the task-relevant abstraction

combinations, possibly specialized also for the context.  A horizontal-inference

table is a relation that includes tuples of the form (π, ν1, ν2, ν3, ξ), meaning that,

for parameter π (assuming that π includes its abstraction type), when an
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abstraction interval with parameter value ν1 meets an abstraction interval with

parameter value ν2, in the context ξ, the value of the parameter of the joined

abstraction interval should be ν3.  That is, ν1 ⊕ ν2 =ν3.  In a horizontal-inference

table, it is assumed that concatenated abstractions are of the same type—for

instance, a state abstraction type (e.g., HIGH or LOW) or a gradient abstraction

type (e.g., INCREASING or SAME).  The ⊕  operator is the horizontal-join operator.

In the case of the gradient abstraction type, I have defined a default, domain-

independent horizontal-inference table, denoting a qualitative ⊕  operation for

joining gradient-abstracted intervals.  The default ⊕ operation assumes that the

set of allowed gradient-abstraction values is {DECREASING, INCREASING, SAME,

NONINCREASING, NONDECREASING, NONMONOTONIC}.  The abstractions SAME,

DECREASING, and INCREASING can be the results of primary interpolation from

two parameter points (see Section 4.2.4) using standard algebra; the rest are

concluded only as the result of secondary abstractions of abstraction intervals

(e.g., DECREASING ⊕ SAME = NONINCREASING).  The default ⊕ operation can be

viewed as a modification of the ⊕ operation in the Q1 algebra (Williams, 1988), if

the sign of the derivative of the parameter, whose gradient is abstracted in the Qi

algebra, is mapped in the following fashion: {0} →  SAME, {+} → INCREASING,

{-} → DECREASING, {?} → NONMONOTONIC .  I have  added the NONINCREASING

symbol for the set {0, -}, and the NONDECREASING symbol for the set {0, +}.  It can

be easily proven that my extension still preserves associativity, that is,

(X  ⊕  Y)  ⊕  Z = X  ⊕  (Y  ⊕  Z) and commutativity, that is, X  ⊕  Y = Y ⊕  X.  As usual,

the problem of qualitative algebras remains: There is no additive inverse.  Thus,

we cannot reconstruct the values of the abstractions that were joined.7   Table 4.1

presents a summary of the default ⊕ operation for the secondary gradient-

abstraction operation.

Most of the entries in the horizontal-inference table, for a particular application

task, can exist as domain-independent (or at least as context-independent)

defaults.  Otherwise, these entries can be filled in by the knowledge engineer; the

7The values still exist, of course, as part of the original input parameter propositions, since no
deletion occurs during horizontal inference, but they cannot be deduced from the conclusion.
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Table 4.1:  The default horizontal-inference join (⊕ ) operation for the gradient abstraction type.

⊕ DECb NONINC SAME NONDEC INC NONMON

DECa DECc NONINC NONINC NONMON NONMON NONMON

NONINC NONINC NONINC NONINC NONMON NONMON NONMON

SAME NONINC NONINC SAME NONDEC NONDEC NONMON

NONDEC NONMON NONMON NONDEC NONDEC NONDEC NONMON

INC NONMON NONMON NONDEC NONDEC INC NONMON

NONMON NONMON NONMON NONMON NONMON NONMON NONMON

aRows denote the parameter value of the first abstraction.

bColumns denote the parameter value of the second abstraction.

cEntries represent the parameter values of the joined interval.

DEC = DECREASING; INC = INCREASING; NONMON = NONMONOTONIC; NONINC =
NONINCREASING; NONDEC = NONDECREASING.

domain expert can add more abstraction values and then can define the result of

concatenating meeting intervals already abstracted by temporal abstractions.

As I show in Section 4.2.4, the horizontal-inference table is also used by the

temporal-interpolation mechanism.

In summary, the temporal-inference mechanism requires an ontology of

parameter propositions that includes the following knowledge:

• Temporal-semantic properties (an inference-properties table)

• Horizontal classification knowledge (a horizontal-inference table).
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4.2.4  Temporal Interpolation

The temporal-interpolation mechanism accepts as input two parameter points,

two parameter intervals, or a parameter interval and a parameter point, and

returns as output an abstraction, interpreted over a superinterval of the input’s

time points or intervals, interpolating over the gap between these time intervals

(see Figures 1.6 and 4.1).  For instance, we need temporal interpolation to create a

DECREASING gradient abstraction for a certain parameter over an interval, when

the start-point parameter value in that interval is greater than the end-point

parameter value (and no parameter values of intermediate time points are

known), or when we are abstracting two sufficiently close interval abstractions of

LOW(WBC) counts, into a longer one (see Figure 4.1).

We can distinguish between two types of temporal interpolation, depending on

the temporal component of the input.  Primary interpolation accepts two

parameter points and returns an abstraction interval.  Secondary interpolation

accepts two parameter intervals (or a parameter interval and a parameter point),

and returns an abstraction (super)interval.

The following presentation of the temporal-interpolation subtasks uses the

default gradient-abstraction values (see Table 4.1).  Note that even these high-

level, essentially domain-independent values, in principle, can be modified, since

the operations described are quite general.

Primary state interpolation accepts two disjoint state-abstraction points T1, T2

for the same parameter π (e.g., a state abstraction of π with the value LOW), and

bridges the gap between them to infer a state-abstraction of π interpreted over

the interval [T1, T2].  Primary gradient interpolation accepts two parameter

points T1, T2 of the same parameter π and, if certain conditions hold, infers a

gradient abstraction of π interpreted over the interval [T1, T2]  whose value is

DECREASING, INCREASING, or SAME with respect to the change in  π.  Primary rate

interpolation  infers rate abstractions; it classifies change rates in π (e.g., STABLE,

SLOW, or other domain-specific values) between two parameter points of the

same parameter.  Secondary state interpolation occurs when, from two state-
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abstraction intervals I1 and I2 of parameter π, a state abstraction of π is inferred,

interpreted over a new interval I j = [I1.start, I2.end].  An example is joining two

sufficiently close (temporally) intervals over which the state abstraction of the

WBC count has the value LOW.  Secondary gradient interpolation infers, from

two gradient-abstraction intervals of parameter π, a gradient-abstraction

(super)interval of π whose value is I N C R E A S I N G, DECREASING, SAME,

NONDECREASING, N O N I N C R E A S I N G , or NONMONOTONIC (see Table 4.1).

Secondary rate interpolation  infers, from two rate-abstraction intervals of

parameter π, a rate-abstraction (super)interval of π.  Note that a parameter, such

as the WBC count, might be abstracted as INCREASING  in a certain interval with

respect to the gradient abstraction, might be abstracted as SLOW with respect to

the rate abstraction in that interval, and might be abstracted as NORMAL with

respect to the state-abstraction type.  The three abstraction types are thus mostly

independent, except for a possible correlation between the gradient and the rate

(e.g., a value of the rate abstraction other than STABLE, or its domain-specific

equivalent, might imply that the value of the gradient abstraction was other than

SAME).

Temporal interpolation requires that the temporal distance between the two time

points or intervals be less than a certain time gap.  Within that time gap, the

characterization  of the parameter, as defined by the specific value of the given

abstraction (e.g., LOW or INCREASING), can then be assumed to hold.  The

maximal allowed gap must be a domain-, task-, and context-dependent function

(e.g., the maximal allowed gap for LOW(WBC) in the domain of oncology, the

task of caring for patients using protocols, and the interpretation context of

patients receiving X-ray therapy).  The interpretation context is usually induced

(see Section 4.2.1) by events or other context-forming propositions that create a

context common to both joined intervals (e.g., an interpretation context induced

by a specific protocol, or by an abstraction that is supplied as part of the data,

such as an AIDS diagnosis interval).  The arguments of the maximal-gap function

for each specified context include the parameter that we are abstracting and the

specific abstraction that we have in mind.  They also include a measure of the

rate of change of the parameter before and after the time gap.  As an
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approximation of the arguments affecting the rate of change, I use the length of

the intervals before and after the gap.  Thus, for every context ξ, I denote the

maximal-gap function  ∆ a s  ∆(π, ν , L(I1), L(I2), ξ) of the specific abstracted

parameter π (assuming that π includes its abstraction type) and the lengths L(I1),

L(I2) of the intervals  I1 and I2, to be joined in the context ξ  into an interval with

an abstraction value ν .  The ∆ function returns the length of the maximal

temporal gap that still allows interpolation between I1 and I2.  For instance, in

any context, joining two intervals where the WBC-count state abstraction was

classified as LOW into a longer interval whose WBC-count state abstraction is

classified as LOW depends on the time gap separating the two intervals, on the

properties of the WBC-count state abstraction for the value LOW in that context,

and on the length of time in which the LOW property was known both before and

after the time gap (see Figure 4.1).

A prerequisite to an interpolation operation is that the value ν of the parameter π

is has the value TRUE for the concatenable inferential property in the context ξ.

This prerequisite involves temporal semantic knowledge  represented in the inference-

properties table , as discussed in Section 4.2.3.

Similarly, deciding what  is the value of the resulting abstraction when joining two

abstraction intervals with different values, ν1 and ν2, of the same parameter π

requires using horizontal classification knowledge as it is represented in the

horizontal-inference table (see Section 4.2.3).  In the latter case, both the temporal-

semantic knowledge (inferential property) and the temporal-dynamic knowledge

(∆ function) that are used for interpolation are those specific to the value ν3 that

is the result of joining ν1 and ν2, ν1 ⊕ ν2.

In the following discussion, I shall usually omit the context argument of the ∆

function.  In addition, the value of an abstraction (e.g., INCREASING) usually

implies the abstraction type (e.g., gradient), so the type of the abstraction usually

will be omitted as well.

If the temporal attributes I1 and I2 of two parameter intervals are sufficiently

close, as judged by the relevant ∆ maximal-gap function, for their parameter
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attribute π and the resultant (possibly joined) abstraction value ν , I say that

I1 ⇔  I2, or that I2  extends  I1, with respect to π, ν.  Note that primary interpolation

is the initial constructor  of abstraction intervals, since it joins two separate time

points T1 and T2, where T1 ⇔  T2  with respect to joining over some π, ν , into a

new interval [T1, T2], over which ν is true for  π.  Thus, a necessary requirement

for primary interpolation is that  L([T1, T2])  ≤ ∆(π,  ν, 0, 0),  where L(I) is the length

of I.

Secondary state, gradient, and rate interpolation require additional conditions,

apart from an upper bound on the gap between the intervals, to preserve

consistency.  These conditions, as well as the maximal gap specified by the

maximal-gap function, can be summarized by an extension of the horizontal-

inference table, an interpolation-inference table, which defines the interpolation

operation for every abstract parameter (e.g., WBC_COUNT_STATE) and

combination of abstraction values (e.g., INCREASING and S A M E).  An

interpolation-inference table represents both the horizontal classification

knowledge and the special temporal conditions that should hold between the

temporal elements of the involved abstractions, so that indeed I1 ⇔  I2.

For example, we need to check that, when we use secondary temporal

interpolation to join two DECREASING abstractions for π that are true over two

intervals I1, I2, into a DECREASING abstraction for π  over a superinterval I j , the

value of π has indeed decreased, or at least has not increased above a certain

predefined threshold during the time gap [I1.end, I2.start]  (see Figure 4.1).  In

other words, we have to check that I1.end.π ≥ I2.start .π–Cπ, where Cπ represents a

measurement variation for π—the maximal increment in parameter π, below

which a change in π will not be considered as an increase.  Cπ can be interpreted

as a measurement error of π, or as a natural random variation of π  over time, or

as a clinically significant change of π, for a particular task, depending on the

context.  Cπ is a function of π, ƒc(π), that is defined either by the domain expert or

through analysis of the distribution of π.  In general, ƒc(π) might also use a

context argument ξ  and the initial value of π, I1.end.π (e.g., what is considered as

a significant variation in the value οf the granulocyte-count parameter might
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have a different value within the interpretation context BONE-MARROW

DEPRESSION, and furthermore, when the last granulocyte-count value known is

abstracted as VERY LOW).

Using the Cπ property, we can ignore minor absolute changes in the value of π

that are less than a certain threshold when we wish to identify general qualitative

trends.  Furthermore, in the case of primary temporal interpolation for the

INCREASING gradient abstraction, we require that T2.π – T1.π  ≥ Cπ.  Similarly, in

the case of primary temporal interpolation for the DECREASING gradient

abstraction, we require that T1.π – T2.π  ≥ Cπ.  In the case of primary temporal

interpolation for the S A M E gradient abstraction, we require that |T2.π -

 T1.π| ≤ Cπ.

Table 4.2 provides an example of the secondary temporal-interpolation operation

for extending a DECREASING abstraction in a given context.

In certain cases, the secondary interpolation operation also can be interpreted as

follows: If parameter π can be interpolated by primary interpolation as, for

example, DECREASING over the gap interval Ig between the two abstractions I1

and I2 (Ig = [I1.end, I2.start]), then we infer a DECREASING abstraction of π  over Ig.

That is, we infer by interpolation that DECREASING([I1.end, I2.start], π).  At this

point, the temporal-inference mechanism suffices to infer DECREASING(Ij, π) by

iterative joining of I1, Ig, and I2.  However, in general, an overall INCREASING or

DECREASING abstraction might be created even when the gap interval could only

be abstracted as SAME, since the secondary interpolation operation considers the

abstractions both before and after the gap.

The temporal-interpolation mechanism can be seen as a heuristic extension of the

logically-sound temporal-inference mechanism, for the particular case when the

temporal-semantic–inference subtask joins meeting, concatenable, abstractions.

Alternatively, the specific use of the temporal-inference mechanism for

concatenating two meeting parameter intervals (possibly after computing the

value of the resultant joined abstraction to check if it is concatenable) can be
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Table 4.2 :  An interpolation-inference table representing the secondary temporal-interpolation

operation for extending a DECREASING value of the gradient abstraction.

Interval I1

abstraction for

parameter π

Interval I2

abstraction for

parameter π

Additional required

conditions for the

interpolation operationa

Temporal-

interpolation

resultb

DEC(I1, π) DEC(I2, π) 1)  I1.end.π ≥I2.start.π–Cπ

2)  I2.start–I1.end ≤

∆(π, DEC, L(I1), L(I2))

DEC(Ij, π)

DEC(I1, π) INC(I2, π)      ––––––––––––– NONMON(Ij, π)

DEC(I1, π) NONDEC(I2, π)      ––––––––––––– NONMON(Ij, π)

DEC(I1, π) NONINC(I2, π) 1)   I1.end.π ≥I2.start.π–Cπ

2)  I2.start–I1.end ≤

∆(π, NONINC, L(I1), L(I2))

NONINC(Ij, π)

DEC(I1, π) SAME(I2, π) 1) I1.end.π ≥I2.start.π–Cπ

2) I2.start–I1.end ≤

∆(π, NONINC, L(I1), L(I2))

NONINC(Ij, π)

DEC(I1, π) NONMON(I2, π)      ––––––––––––– NONMON(Ij, π)

a∆ is the maximal-gap function for the parameter π in the context containing both intervals; Cπ is
the threshold increment defined for π. in that context.

bIj = [I1.start, I2.end], or the joined temporal interval

DEC = DECREASING; INC = INCREASING; NONMON = NONMONOTONIC; NONINC =
NONINCREASING; NONDEC = NONDECREASING.

modeled as a private case of temporal interpolation.  As noted above, however,

the conclusions of the temporal-interpolation mechanism often override the

somewhat weaker conclusions of the temporal-inference mechanism (e.g., a

stronger conclusion of a DECREASING abstraction might be formed for a joined

interval, ignoring a potentially SAME intermediate gap interval, instead of the

weaker NONINCREASING abstraction that would be formed if the gap interval
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were abstracted only as SAME; see Figure 4.1 in the case of the creation of interval

I7 from intervals I5 and I6).

multiple-parameter interpolation: The case of creating gradient and rate

abstractions by primary interpolation from point abstractions of abstract

parameters whose values are concluded by a multiple-parameter

contemporaneous (state) abstraction is somewhat special.  The primary

interpolation mechanism should first check whether there exists at least an

ordinal scale for the possible output states; otherwise, there is no meaning to the

gradient and rate abstractions.  Even if the resulting states can be ranked at least

on an ordinal scale (for gradient abstractions) or on an interval scale (for rate

abstractions), there are, in general, two options regarding the meaning of the

gradient- or rate-interpolation operation for multiple-parameter point

abstractions.  The direct option is to consider the state values of the abstract

parameter as the latter’s only values, assuming (for a gradient abstraction) that

they are ranked on the ordinal scale from lowest to highest (e.g., LOW,

MODERATE, HIGH, EXTREME).  Then, we specify that an interval spanning the

distance between two multiple-parameter state abstractions also can have

attached to it, for instance, an INCREASING gradient abstraction, if and only if a

positive change in the rank of the states of the two end points of the abstracted

interval has taken place.  An equivalent definition can apply to rate abstractions.

The indirect  option, which I call a trend abstraction, is to define the meaning of

an INCREASING primary interpolation either for a single- or multiple-parameter

abstraction such that, if all the qualitatively proportional parameters determining

π are INCREASING, then π can be abstracted as INCREASING, even if the value of its

state over the interval I has not changed.  To denote the direction of the

qualitative relationship, I use the notation πi  ∝ Q+ πj  or πi  ∝ Q- πj .  This notation

is taken from Forbus [1984] and means, in the case of πi  ∝ Q+ πj, that πi  is

qualitatively proportional  to πj (i.e., there is a function that determines πi, which

is monotonically increasing in its dependence on πj).  In the case of πi ∝ Q- πj, the

dependence is monotonically decreasing.  Thus, the INCREASING value of the
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gradient abstraction would be defined indirectly in the following recursive

fashion:

1.  A primitive parameter π is INCREASING over interval I  if all conditions hold

for the primary INCREASING interpolation of π over I (i.e., the time gap is

less than or equal to ∆(π, INC, 0, 0) function, and the parameter-value

change direction and change magnitude of π are consistent with the

interpolation-inference table constraints over Cπ).

2.  An abstract parameter π is INCREASING over interval I if the value (rank) of

the (state) abstraction of π has increased between I.start and I .end (i.e.,

I.start.π < I.end.π), and the other conditions for primary interpolation of π

hold.

3.  An abstract parameter π is INCREASING  over interval I if

a.  The value of π in the beginning of I is the same as the value of π in the

end of I (i.e., I.start.π = I.end.π).

b.  All the abstract or primitive parameters πi from which the state

abstraction of π is mapped, such that π ∝ Q+ πi, can be abstracted as

INCREASING.

c.  All the abstract or primitive parameters πj  from which the state

abstraction of π is mapped, such that π ∝ Q- πj,  can be abstracted as

DECREASING.

d.  All other conditions for primary INCREASING interpolation of π hold.

Note that I have used a strong definition for INCREASING.  A weaker definition is

possible: I could require that at least  one positively proportional parameter that is

mapped into π should be INCREASING, or that at least  one negatively proportional

mapping parameter be DECREASING, and that the other parameters need only to

be abstracted as SAME (or else to be abstracted as INCREASING or DECREASING,

depending on their qualitative proportional relation to π).
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The conditions for the DECREASING indirect abstraction are symmetrical, as is the

extension for other secondary gradient and rate interpolations between

abstracted intervals.  If the gradient abstraction is not DECREASING or INCREASING

and the other conditions hold (e.g., the constraints over the ∆-function and Cπ

value), then the gradient abstraction’s value is SAME.

The qualitative dependencies (i.e., positively proportional, negatively

proportional, and no monotonic dependence) between an abstract parameter and

the primitive or abstract parameters that that parameter is abstracted from are

part of the domain’s structural  knowledge .  They are modeled as an additional

aspect of the ABSTRACTED-INTO relation, the relation that defines the fact that the

values of several parameters are abstracted (by contemporaneous abstraction)

into the value of another, abstract, parameter.

In many domains and tasks (e.g., monitoring patients in an intensive-care unit), it

is plausible for either the knowledge engineer working at the level of the

PROTÉGÉ–II system, or the domain expert working at the level of the

knowledge-acquisition tool, to define gradient and rate abstractions for

abstractions determined by multiple parameters using the indirect (trend) option.

In addition, forming a trend abstraction for abstract parameters whose value

depends on several parameters is useful even if the semantics of the gradient and

rate abstractions are direct.  Note that, even in the simple case of a single-

parameter abstraction from the WBC count (see Figure 4.1), a domain expert

(e.g., a hematologist) would be interested not only in that the state of the WBC

count is LOW throughout interval I7, but also in that the WBC count’s gradient is

DECREASING (as abstracted from the primitive parameter, WBC count).  A similar

abstraction, however, might be useful even if the WBC-count abstraction was a

function of several parameters, such as the various types of the WBCs.  A case in

point is the BONE-MARROW–TOXICITY abstract parameter, which is abstracted

from several hematological parameter—Hb values, WBC counts and platelet

counts.  An INCREASING trend for the BONE-MARROW–TOXICITY parameter

(whose values are GRADE I through GRADE IV) might be noted, based on

DECREASING trends in certain of its (negatively proportional) defining
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parameters, even when the value of the overall BONE-MARROW–TOXICITY value

has not changed.  The indirect semantics, therefore, can be the default for a

particular task, if chosen by the knowledge engineer for the gradient and rate

abstractions in the case of abstract parameters mapped by multiple-parameter

point abstractions.  The default semantics, however, might be overridden by the

domain expert at knowledge-acquisition time.

The knowledge-acquisition requirements for the temporal-interpolation

operation include definition of the time units used in the domain.  We also need

to acquire ƒc(π) (i.e., a definition of what is a significant change—increment or

decrement—for the parameter π), as well as a classification of the various change

rates of π (e.g., SLOW, FAST) in terms of change per unit time.  The main

knowledge-acquisition requirement for the temporal-interpolation mechanism is

defining the maximal-gap function ∆, including additional domain- and task-

specific arguments.  Finally, it is also necessary to define which parameters

should be tracked by the system (e.g., age always increases and should not be

abstracted).  A problem solver based on the knowledge-based temporal-

abstraction method can meet the last requirement easily by not including in the

ontology of the domain, for certain contexts, gradient or other irrelevant

abstractions of certain parameters.  In practice, however, it is best to include all

information about the domain in its ontology, but to include, for each application

system, only instances of relevant parameters.  These instances might be

considered to form an application ontology  [Gennari et al., in press].  Such a

control mechanism is one of several goal-directed control options used by the

RÉSUMÉ system, as I show in Chapter 5.

In summary, the temporal-interpolation mechanism requires an ontology of

parameter propositions that includes the following knowledge:

• Classification knowedge: classification of domain-specific gradient and, in

particular, rate abstraction values

• Horizontal-classification knowledge: the horizontal-inference table
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• Temporal-dynamic knowledge: the maximal-gap ∆ functions

• Temporal-dynamic knowledge: significant change values or functions for

the relevant parameters in various contexts

• Temporal-dynamic knowledge: additional temporal constraints for

completing the interpolation-inference table.

• Structural knowledge: the qualitative-dependencies aspect of the

ABSTRACTED-INTO relation

• Temporal-semantic knowledge: the truth values of the concatenable

property for the relevant input and inferred parameters.

4.2.4.1  Local and Global Persistence Functions and Their Meaning

The maximal-gap ∆ functions, which allow interpolation between point and

interval primitive and abstract parameters, can be interpreted as creating a

default abstraction during the maximal-gap interval.  Like all conclusions

inferred by the temporal-abstraction mechanisms, the inference that creates such

default abstractions is nonmonotonic : It can be overridden by additional data or

by other inferences.  This inherent nonmonotonicity is especially relevant to the

semantics of the temporal-interpolation operation.  For instance, conflicting data

might become available at a later transaction time, whose valid-time stamp (see

Section  3.1.7) occurs within the gap interval, invalidating a conclusion of a

continuous truth value for a parameter proposition created by temporal

interpolation (such as INCREASING(WBC) in a certain context).  Alternatively,

new data valid at the present time, such as new parameter points extending an

existing parameter interval, might suggest a longer permissible time gap in the

past  that can be bridged between that parameter interval and another one.

The maximal-gap functions represent domain- and task-dependent knowledge

regarding the rate of change of a parameter proposition <π, ν, ξ> over time, or
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the persistence of the truth of that proposition over a temporal gap (recall the

discussion of temporal uncertainty and persistence in Section 3.1.8.2).

I distinguish between two types of persistence functions: Local (ρ) persistence

functions  and global  (∆) maximal-gap  functions .  For the purpose of the

following discussion, we assume that the context ξ  and the value of π, unless

mentioned explicitly, are known and fixed (these arguments can serve as indices

to a function with fewer arguments).

4.2.4.1.1  Local Persistence Functions

Local  (ρ) persistence functions represent the local persistence of the truth of a

parameter proposition, given a single parameter point or interval: ρ(π, L(I), t),

where is L(I) is the length of the interval I  over which the parameter proposition

is known to be true, and t is the time since that proposition was true.  The ρ

function returns a degree of belief—a probability distribution—in the proposition

<π, ν>  being true at time t0 + t, given that <π, ν> was true at time t0.  The ρ

persistence function is an extension of McDermott’s persistence assumption

[McDermott, 1982], and of McCarthy’s inertia principle [McCarthy, 1986], both of

which include infinite persistence as a default.  The ρ function model is similar to

Dean and Kanazawa’s model of propositions that decay over time [Dean and

Kanazawa, 1988] (see Section  3.1.8.2), and to de Zegher-Geets’ time oriented

probabilistic functions (TOPFs) [de Zegher-Geets, 1987] when a TOPF represents

the probability of a state or disease given a previous identical state  (see Section

3.2.7).  However, ρ functions are more general in the sense that they extend

temporally in both  directions:  to the future and also to the past .  Assuming that

time t0  is a random time in which the proposition was measured, there is no

particular reason to assume that a parameter proposition was not true before that

time.  Thus, t might actually have a negative value.  We need this extension if we

are to include an approximation of the past value of a parameter, for purposes of

interpretation, as opposed to forecasting a future value of the parameter.  Thus,

we can include a model of forward decay  and backward decay  in belief.  The

function describing this decay is equivalent to a statistical survival function .
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In practice, the important question for performing an interpolation using a local

persistence function is how long t can be before the belief in the parameter

proposition ϕ ∈ Ρ  drops below a certain threshold ϕth (Figure 4.3).

Using a threshold creates a value- and context-specific validity time for a

parameter proposition, similar to McDermott’s lifetime  of a fact (see

Section3.1.8.2) and to the expected length  attribute of states in IDEFIX.  (As

mentioned in Section 3.2.7, that attribute was used by IDEFIX mainly for time-

oriented display purposes, and was not part of the interpretation framework [de

Zegher-Geets, 1987].)

The threshold belief ϕ th can be interpreted as the point when the probability of

the truth value of the proposition ϕ in which we are interested falls below a

certain threshold (say, 0.9).  The threshold has a task-and context-specific value.

 

1

0

I1 I2

∆t
ϕ1 ϕ2

ϕth

Time

Bel (ϕ)

Figure 4.3 : Local and global persistence functions.  The maximal time gap ∆t  returned by a global

∆ function is used to decide whether the parameter propositions ϕ1 and  ϕ2, attached to intervals

I1 and I2, can be joined (possibly, if they do not denote the same value of the relevant parameter,

into a new proposition ϕ3  = ϕ1 ⊕ ϕ 2) .   The time gap ∆t  can be interpreted—in the case that

ϕ1 ≡ ϕ2, and that the truth values of the propositions are relatively independent—as the maximal

time gap in which the belief produced by either the local forward or backward decay

(represented by a local persistence ρ function) stays above the predefined confidence threshold

ϕth.  Bel(ϕ) = degree of belief in ϕ; ϕth = the task- and context-specific belief threshold value.
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4.2.4.1.2  Global Persistence Functions

Global  (∆) maximal-gap functions bridge the gap between two propositions.  ∆

functions are an extension of ρ functions, and, in special cases, as I shall show in

this section, they can be constructed from the latter functions.  The ∆ function

returns the maximal time gap that still allows us to join the propositions into an

abstraction that is believed to be true, with a sufficient, task-specific, predefined

degree of belief in the proposition, during the gap (and thus over a superinterval

of the input propositions, given that both were true for some time before and

after the gap).  Thus, the ∆ functions are a global extension of the local (ρ)

persistence functions, since they implicitly assume both forward and backward

decay of the propositions involved.

Figure 4.3 presents a graphic view of the ∆ function as an interpretation of a

decay in the belief in the truth of a proposition.  For instance, in the case that the

abstractions’ parameter values are identical—that is, the propositions are the

same before and after the gap interval—and the forward and decay times are

relatively independent, we are interested in whether, at all points inside the gap

interval, either of the values, approximated by the forward belief decay in

proposition ϕ, BELforward(ϕ), or by the backward belief decay, BELbackward(ϕ), is

true with a probability p ≥ ϕth.  As the time gap ∆t  between the two abstractions

increases, the belief that either the backward- or forward- decay value is true will

eventually fall below the predefined threshold value ϕth (see Figure 4.3).

If the local persistence ρ function is an exponential-decay survivor function, such

as used in several of de Zegher-Geets’ TOPFs, and the backward- and forward-

decay rates are independent, we can compute the ∆ function.  Assume that the

probability p(t) of the parameter proposition ϕ being true is e-λ t, a function of the

time t since the reference time in which P  was true, regardless of the length of the

time interval I during which ϕ was true.  Let the forward decay rate be λ1 and the

backward decay rate be λ 2.  Then, we need to know the maximal gap ∆t such

that, in the point of minimal belief, p(t) is at or above the threshold ϕ th.  But note
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that the minimum point of BELforward(ϕ) or BELbackward(ϕ) is precisely when the

values of the forward- and backward-decay functions are equal (see Figure 4.3).

That is, at the minimal p(t),

BELforward(ϕ) = BELbackward(ϕ),

that is,

e-λ1t = e-λ2(∆t-t ) ,

so, when p(t) is minimal,

t = [λ2/(λ1 +λ2)] ∆t;

but p(t) ≥ ϕ th implies, after substituting for t  in  BELforward(ϕ), that

e-[(λ1*λ2)/(λ1+λ2)]∆t  ≥ ϕth = e-K ,

and thus

∆t ≤ [(λ1 +λ2)/(λ1 *λ2)] K,     K = -lnϕth.

In other words, the ∆ function for two parameter points, ∆(π, 0, 0), or for two

parameter intervals when the duration of the intervals has no effect on the

persistence of the propositions, is a constant determined by the forward- and

backward-decay rates and the desired level of confidence.

We can generalize this analysis.  Assume that the longer ϕ is known to be true in

the past or in future, the longer we are likely to keep believing it or to believe

that it already existed in the past, before we measured it (this assumption will be

discussed in Section 4.2.4.1.3).  One (not necessarily the only) way to represent

that assumption would be to modify the decay rate λ  by assuming that it is

inversely proportional to the length of the relevant intervals, L(I i), which I denote

simply as Li.  Let

BEL (P) = e[-λ i/L i]t,    i = 1,2.
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So, if p(t) is minimal, and as before, BELforward(ϕ) = BELbackward(ϕ),

e[-λ1 /L1]t = e[-λ2/L2](∆t-t );

that is, when p(t) is minimal,

t  =  [(L1λ2)/(λ1L2+λ2L1)]∆t.

Substitute for t in BELforward(ϕ), and assume p(t) ≥ ϕth:

∆t  ≤ [(λ2L12+λ 1L1L2)/λ1λ2L1]K,    K = -lnϕth.

For instance, if λ1 =λ2 =λ  and L(I1) = L(I2) = L, then

∆t  ≤ [(λL2+λL2)/λ 2L]K;

that is,

∆t ≤ [2L/λ]K,    K = -lnϕth.

In other words, if exponential decay rates decrease (equally) linearly forward and

backward as a function of the duration of the proposition, then the maximal time

gap allowing us to join equal-length abstractions would be proportional to a

linear function of the length of either interval, with the rest of the factors kept

constant.  The duration of the gap would be inversely proportional to the

uniform decay rate.

These simplified examples serve to show that even though the decay rates λ i are

in general unknown, and the decay function is perhaps difficult to compute, the

resulting global ∆ function (using a belief threshold) might be a simple constant

or polynomial, and thus can be more easily described, computed, or acquired,

than the underlying local-persistence function.

Furthermore, if there is evidence for a particular type of decay function (e.g.,

logarithmic), we can compute the latter’s coefficients by acquiring from the

domain expert a few maximal-gap values—that is, several examples of ∆t .  We

might even check the expert’s consistency (or the adequacy of the decay function)
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by repeating the calculation for several other examples.  Alternatively, we can

simply acquire a table of typical ∆t values for various common L(I1) and L(I2)

values,  and can interpolate between these values, or extrapolate from them,

when necessary.  (In Section 7.3, I discuss the option of using a machine-learning

algorithm to derive local and global persistence functions from large clinical

temporally oriented databases without resorting to domain experts, and I

examine the problems associated with that option).

Note that, due to the lack of independence between the forward decay of a

parameter proposition attached to one time point and the backward decay of that

proposition at a later time point, and, therefore, an implied joint distribution of the

forward and backward belief values, we usually need the actual global (∆)

function, in addition to (or instead of) the local (ρ) persistence function.  In

practice, the domain expert often knows several ∆ function values (such as what

is the maximal time gap allowed in order to join two parameter points for several

parameter values in each context), even if she cannot define any particular,

precise, local-decay function ρ (except, possibly, for specifying the forward and

backward local decay times ∆t  corresponding to reaching the local threshold

value ϕ th).  Knowing only the global ∆ function still enables interpolation

between two point-based or interval-based parameter propositions.  In view of

the preceding discussion, in many clinical domains, knowing only the values

needed to maintain Bel(ϕ) above the threshold value ϕth—that is, the (simpler) ∆

function—would be a common state of affairs.

4.2.4.1.3  A Typology of ∆ Functions

In general, there can be four qualitative types of ∆ functions, depending on

whether the ∆ function is either

• Positive monotonic, or

• Negative monotonic
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with respect to

• The length of the first parameter interval L(I1), or

• The length of the second parameter interval L(I2)

 (see Figure 4.3).

Theoretically, there are positive-positive (PP), positive-negative (PN), negative-

positive (NP), and negative-negative (NN) monotonic ∆ functions.  I refer to

these categories as qualitative persistence types .

Formally, PP ∆ functions are functions such that

L(I’) > L(I) => ∀ i [∆(I’, i) ≥ ∆(I, i) ∧  ∆(i, I’) ≥ ∆(i, I)].

NN ∆ functions are functions such that

L(I’)> L(I) => ∀ i [∆(I’,i) ≤ ∆(I, i) ∧  ∆(i, I’) ≤ ∆(i, I)],

where L(I) is the length of interval I, and ∆(I, i) stands for ∆(L(I), L( i)).

Most ∆ functions, in practice, seem to be positive monotonic with respect to the

length of both the time interval before the gap and the time interval after the gap.

In other words, the longer we know that a parameter proposition was true either

before or after a time gap, the longer we would allow that gap to be while

maintaining our belief that the parameter proposition stayed true throughout

that gap (i.e., its probability was always above a certain threshold).  (For instance,

the proposition denoting the MODERATE ANEMIA value of the Hb-State (abstract)

parameter usually would be associated with a PP ∆ function, as would be the

proposition denoting the DEEP COMA value of the Consciousness parameter).

Negative-monotonic ∆ functions occur, when a longer duration of either I1 or of

I2 lowers the probability that the abstraction was true during the gap, and the

longer the lengths, the shorter the allowed ∆t.  For instance, a long I1 interval of

an almost-fatal cardiac arrhythmia (say, ventricular fibrillation) actually lowers

the probability that the (following) gap interval had the same property, assuming
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that the patient is alive.  Most of the negative-monotonic functions emerge from a

total-length constraint on the time allowed for the abstraction (or an analogous

probabilistic distribution on the expected total time), or from a total cardinality

constraint on the number of events allowed.

We can limit ourselves, as a first approximation, to PP ∆ functions.  This function

type is the most common one in clinical medicine.  However, there is also an

important computational advantage in adhering to PP functions.

Claim 1 : PP ∆ functions are associative.  (The order of joining intervals and

points cannot change the resulting set of abstractions.)

Proof:  Assume a situation where parameter points T1, T2, and T3 exist in that

temporal order.  If we can form  both the parameter interval [T1, T2] and the

parameter interval [T2,T3 ], then, if we can eventually form  the interval [T1, T3 ],

we can do so  by forming initially  either subinterval, since the ∆ function is PP.

That is, if we can join one point to another, we can certainly join that point—

forwards or backwards, as necessary—to an interval starting or ending,

respectively, with the other point.  For instance,

L([T1, T2]) ≤ ∆(0,0) => L([T1, T2]) ≤ ∆(0, L([T2, T3])),

since the ∆ function is PP, and therefore ∆(0,0) ≤ ∆(0, L([T2, T3])).

A similar argument holds for any four consecutive points.

Thus, the claim is true for any combination of point–point, interval–point, point–

interval, and interval–interval primary or secondary interpolation, since ∆

functions are applied only when there are no intervening points between the two

intervals or points to be joined.  ❏

Note that the exponential-decay local (ρ) function that was given as an example

in Section 4.2.4.1.2 for a decay function dependent on the length of the interval,

L(I), implied, with the independence assumption, PP-type ∆ functions.
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The associativity property is important for data-driven systems (e.g., RÉSUMÉ).

This property is necessary also to ensure that the final abstractions do not

depend on the order of arrival of the input data.

Claim 2: NN ∆ functions are not associative.

Proof: It is easy to construct a case for consecutive parameter points T1, T2, and

T3, where, if we create the interval [T1, T2], we no longer can join it to T3, and if

we create the interval [T2, T3], the ∆ function value will prevent our joining it to

T1 (e.g., a total-sum distribution does not allow creating the interval [T1, T3 ] with

high enough probability).  ❏

Note:  NP and PN functions cannot be associative for similar reasons.  Whether

such functions can even exist, especially in clinical domains, is doubtful.  It

would seem that appropriate semantic restrictions on the nature of ∆ functions

would preclude their existence.

In the case of ρ  (local) persistence functions, we can categorize functions into P

and N categories with similar meaning (i.e., whether the longer I, the longer or

shorter the validity interval before or after I).

The dynamic knowledge about the domain does not necessarily need to include

complete, closed, definitions of ∆ functions—partial tables may suffice, or the

actual functions might be approximated.  But knowing whether a maximal-gap

function is positive (PP) or negative (NN) is important for estimating the value of

that function from a few examples or for interpolating that value from several

discrete entries in a table.  This qualitative-persistence type is easy to acquire,

since domain experts usually have an excellent intuition about whether,

qualitatively, a longer duration of a parameter proposition before or after a gap

increases or decreases the probability of the proposition being true during a

longer gap, even if the probabilities involved are in fact unknown.
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4.2.5 Temporal-Pattern Matching

In addition to the context-forming mechanism and the three basic temporal-

abstraction mechanisms described in Sections 4.2.1–4.2.4, a temporal-pattern–

matching mechanism is required, for abstracting more complex data patterns

over time.  For instance, such a mechanism is required for abstraction of an

episode of drug toxicity from a state of a LOW(WBC) count lasting more than  2

weeks and starting within  0 to 4 weeks of a state of LOW(Hb) lasting more than  3

weeks, in a patient who is receiving certain drugs.  Another example is

recognizing a quiescent-onset pattern of chronic GVHD (see Figure 1.7).  Such a

pattern occurs when acute GVHD is resolved, followed by the appearance of

chronic GVHD, and certain temporal constraints hold.  The temporal-pattern–

matching mechanism extends the temporal-inference and temporal-interpolation

mechanisms by abstracting over multiple intervals and parameters, and typically

reflects heuristic domain- and task-specific knowledge.  This mechanism solves

the temporal pattern-matching task.  The resulting patterns are also parameters

and are attached to their respective time intervals.

Note that, when the temporal-pattern–matching mechanism is used, a

considerable part of the temporal-abstraction task, depending on domain-specific

knowledge, has been already solved by the three basic temporal-abstraction

mechanisms and by the context-forming mechanism.  These preliminary patterns

include contemporaneous abstractions of different parameters as well as

horizontal inferences and interpolations, at various abstraction levels.  Thus, the

pattern-matching mechanism does not have to create abstractions such as a

significantly DECREASING blood pressure, or to decide in what contexts the Hb

level should be considered as LOW.  Essentially, the pattern-matching process can

use interval-based abstractions, possibly with their end-point values.

Furthermore, the pattern-matching mechanism can rely on the semantics of the

abstractions (e.g., it can take advantage of the small, finite number of abstraction

types, such as STATE, and the way these abstractions are derived, including

relations such as ABSTRACTED-INTO).  Thus, the pattern-matching mechanism

employs in fact (1) a temporal-abstraction query language  that assumes the
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existence of context intervals and abstractions, at various levels of abstraction

and that allows the expression of value and time constraints involving these

interval-based propositions, and (2) a temporal-abstraction–pattern matcher that

returns abstractions queried in that language.

The knowledge used by the temporal-abstraction mechanism is mainly a

classification-type knowledge.  The input is one or more parameter points and

intervals, possibly including different parameters, different abstraction types,

and different interpretation contexts.  The output is an abstraction of type

PATTERN.  The constraints on the abstractions include value constraints on the

parameter values of the parameter propositions involved, and temporal

constraints  on the temporal attributes of the abstractions involved.  Typically, the

temporal span of the output abstraction is the union of the temporal span of the

input abstractions.  Value constraints defined in the temporal-query language

must include at least allowed ranges and simple comparison functions.

Temporal constraints must include at least the 13 Allen relations (see Figure 3.1)

and absolute-temporal–difference functions (thus allowing for different internal

structures of time stamps).

Conceptually, the pattern-matching mechanism can be realized in several ways.

As I show in Section 5.4, the RÉSUMÉ system uses an internal  temporal-pattern–

matching language for defining the underlying patterns that define parameters

of type PATTERN, using both temporal and value constraints.  In addition, an

external temporal-query language is used for querying the database of context

intervals, parameter points, and parameter intervals at various abstraction levels,

resulting from the application of the other four temporal-abstraction

mechanisms.  The external query language enables the user to query the

temporal fact base by using a set of standard queries whose semantics are

predefined.  These queries include arguments such as a parameter’s name,

abstraction type, parameter value, and temporal bounds.

Furthermore, our research group is developing an SQL-based temporal-query

language to access an external relational database in which time-stamped data,
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including abstractions created by RÉSUMÉ, are stored [Das et al., 1992; Das and

Musen, in press].  This temporal-query language is able to query the external

database for the existence of complex patterns, provided that the application

saves the abstracted intervals with the raw time-stamped data.  The resulting

patterns can be reported back to the temporal fact base.

As we shall see when I discuss the nonmonotonicity issues in Section 4.2.6 and

when I present the temporal-abstraction ontology in Chapter 5, it is

advantageous to consider pattern parameters as first-class entities in the

temporal-abstraction ontology, and to consider patterns identified by the

temporal-pattern–matching mechanism as parameter intervals whose abstraction

type is PATTERN.  (Pattern intervals, however, are often nonconvex intervals; see

Section 3.1.4.)  This uniform representation both allows further temporal

reasoning in a general manner, using the derived pattern intervals, and preserves

the logical dependencies of these pattern intervals on the other parameters (and

contexts) from which they were derived.  Maintaining these dependencies allows

updates to the past or present data to be propagated to all abstractions, including

the temporal patterns.  Furthermore, representing patterns as first-class entities

in the ontology of the domain permits the use of uniform methods for knowledge

acquisition, maintenance, sharing and reuse.  For instance, structural knowledge

such as allowed parameter values and ABSTRACTED-INTO relations, and temporal-

semantic  knowledge such as DOWNWARD- HEREDITARY and other inferential

properties, are useful for reasoning also about pattern abstractions.  Such

knowledge categories are represented in a uniform manner in the domain’s

temporal-abstraction ontology when that ontology includes pattern parameters.

In summary, the temporal-pattern–matching mechanism requires an ontology of

parameters that includes

• Structural knowledge (e.g., ABSTRACTED-INTO relations from parameters to

patterns)
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• Classification knowledge about PATTERN-type abstract parameters

(classifying sets of abstraction points and intervals using value and time

constraints).

4.2.6  The Nonmonotonicity of Temporal Abstractions

The five temporal-abstraction mechanisms discussed in Sections 4.2.1–4.2.5 create

state, gradient, rate, and pattern abstractions.  Unlike actual data attached to

time-stamped data points, however, these new abstract data are potentially

refutable by any modification or addition to the known data points or events.

Since intervals are created by the temporal-abstraction method only on the basis

of repeated classification, inference, and interpolation, every interval depends on

defeasible assumptions and is potentially retractable.

Thus, one of the inherent requirements of temporal abstraction is that we allow

for a defeasible  logic—that is, a logic of conclusions that can be retracted when

more data are known.  Since data might arrive in the present, but pertain to an

earlier time point, we must allow for at least a partial revision of the current

abstracted evaluation of the history of the time-oriented database.  In particular,

in domains such as monitoring therapy of patients who have chronic diseases

(i.e., when progress is being monitored episodically over a long time), we should

be able to revise efficiently our former assessments of the situation.  For instance,

Fagan’s VM system [1980], discussed in Section 3.2.3, whose domain was the fast-

changing one of intensive-care–unit monitoring, dealt with incoming data

incrementally, but could not accept data out of temporal order, and thus did not

update old assessments when newly available data about the past arrived.  The

need to update past or present abstractions when older (but formerly

unavailable) data arrive was noted by Long and Russ [Long & Russ, 1983; Russ,

1986].  I refer to this phenomenon as an updated view.  Another phenomenon,

consisting of updating former conclusions and revising assessments of former

decisions given new data (in particular, the present result of past decisions) is

referred to as hindsight  by Russ [1989] in the context of the TCS system, which I

described in Section 3.2.4.  In the first  case, we need to evaluate precisely that
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part of our interpretation and abstraction of the former data that is affected by

the newly added old data, such as laboratory reports that are returned a few days

after the initial assessment was done.  Thus, the past  influences the interpretation

of the present.  In the second case, we need to bring to bear our current

understanding of the situation on the interpretation of the former events, even if

no direct  additional information about the past has been uncovered; usually,

that understanding is a function of current developments, such as the effect of

the therapy.  Thus, the present  influences the interpretation of the past.

Past decisions themselves (i.e., events, in my notation) cannot be changed.  Only

our interpretation of the data (i.e., the abstractions) can change, as well as the

assessment of the best decision that could have been made in the past, or that can

be made in the present.  The possible changes include modifying the value of an

existing data point; adding a newly known  data point to the past history; adding

a new, present-time data point; adding (initiating) a new event; and modifying

knowledge about past events, which induce most of the interpretation contexts in

which abstractions are created.  It is also possible, in theory, to add abstraction

intervals that are not inferred by any abstraction mechanism and thus do not

depend logically on any other input data (e.g., “the patient  is known to have had

AIDS during the interval spanning the past 20 months”).  Such independent

abstracted intervals often serve as contexts for other abstractions.  In each case,

the newly added information should reflect on the past and on the present by

retracting previous abstractions, or by adding new abstracted points and

intervals.

Note also that, although most conclusions depend on the existence of certain

facts (e.g., the interpolation operation between two time points, which creates an

abstraction, depends on the data attached to the original end points), some

conclusions also depend on the nonexistence of certain facts (e.g., no point of a

different abstracted state of the same parameter existing between the two

interpolated points).  Some of the underlying conditions—in particular, the

negative ones—are not trivial to track, and depend implicitly on specific domain

knowledge to decide whether to establish new conclusions, or to retract
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previously correct old ones that are no longer valid, when new or modified data

become available.  As I have mentioned in Section 4.2.3 when discussing the

downward-hereditary , solid , and gestalt  inferential properties, the temporal-

semantic properties of parameter propositions are used not only for the task of

deriving further conclusions, but also for the task of detecting contradictions in

existing ones.  When a contradiction is detected (i.e., the result of the inference is

FALSE), several heuristics can be used to decide which  of the parameter intervals,

if any, should be retracted (e.g., primitive input data might be never retracted,

only abstract conclusions that might be no longer true).  Finally, the results of

retracting one or more parameter intervals should be propagated to previous

conclusions that are logically dependent on the retracted conclusions.  Similarly,

when an event interval is modified, or a context interval that depended on a no-

longer-valid event or abstraction is retracted, the modification should be

propagated to the rest of the abstraction database, regardless of the way that

database is implemented.

In my point-based model, changes in abstraction points and intervals occur

incrementally, following updates in either present or past time-stamped data,

starting always with a specific point (or points), and propagating the change to

other abstractions, using the abstraction knowledge acquired for the relevant

parameters.  (As I show in Section 5.5, the RÉSUMÉ system uses an augmented

truth-maintenance system for that process.)  In particular, the knowledge-based

updating process uses the temporal-semantic knowledge and various ∆ functions

to retract conclusions that are no longer valid, or to add new conclusions.  For

instance, modifying the Hb value of time point T2  in Figure 4.1 to a value that

can be abstracted as HIGH not only changes the abstraction attached to the time

point T2, but also causes retraction of the LOW(Hb) abstracted intervals I1, I2

(which were created through interpolation depending on T2), retraction of

interval I5 (which was created by inference depending on I1, I2),  and, therefore

(due to the maximal-gap function of the L O W(Hb) state abstraction), also

retraction of interval I7 ,  which was created by interpolation depending on

interval I5.  Similarly, the DECREASING(Hb) abstractions attached to intervals

spanning the same time lengths are retracted.  If there were, within one of the
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retracted intervals, parameter points that inherited the parameter-value of their

parameter propositions from one of the retracted intervals through the temporal-

inference mechanism, they might have lost that particular proposition, unless

another logical justification for the parameter value exists.  In addition, new

abstractions would be created, such as an INCREASING(Hb) abstracted-interval I1.

Other updates would cause changes in a similar fashion.

4.3  Discussion and Summary

My goal in defining the knowledge-based temporal-abstraction method, and the

five temporal-abstraction mechanisms that solve the five subtasks that that

method creates when solving the temporal-abstraction task, is to define formally

reusable and sharable components for a knowledge-based temporal-abstraction

system.  These components are both the temporal-abstraction mechanisms and

the domain-specific, well-defined knowledge that these mechanisms need to

solve the temporal-abstraction task in a particular domain.

I have presented a temporal-abstraction theory at the knowledge-level.  The

theory refers to structural, functional, logical, and probabilistic knowledge about

the domain.  These knowledge types are used by all mechanisms (see Figure 1.2),

although different subtypes of each knowledge type are usually used to fill the

knowledge roles (see Section 2.1) of different mechanisms.

The temporal model that I use employs time points  (i.e., the time stamps) as

primitives, but interprets propositions only over time intervals .  This model, as

well as some of the temporal semantic knowledge used by the temporal-

inference mechanism (namely, the idea of propositional types for the parameter

propositions) is influenced by Shoham’s temporal logic [Shoham, 1987], which I

discussed in Section 3.1.6.

The local and global ∆ and ρ functions used by the temporal-interpolation

mechanism extend McDermott’s [1987] lifetime property for facts, Dean and

Kanazawa’s [1988] persistence functions, and de Zegher-Geets’ [1987] TOPFs,

which I discussed in Chapter 3.  However, my goal is somewhat different: I wish
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to interpret  the past  and present, rather than to plan for the future.  An additional

major goal of my methodology is to define the required knowledge in a way that

might assist in acquiring that knowledge from a domain expert, in representing

it, and in maintaining and reusing it.  Thus, I formulated these functions as

maximal time gaps or as persistence intervals, based on thresholding a

probabilistic belief function in the truth of a parameter proposition.  In addition,

the representation of local forward  and backward  persistence allows for abstraction

of several parameter points that are superficially not contemporaneous, but in

fact have an overlapping interval of validity, by the contemporaneous-

abstraction mechanism.

The role of knowledge in the interpolation of missing data when monitoring

patients over time has been examined, to some extent, by other investigators.  In

particular, Albridge and his colleagues in the ARAMIS rheumatoid-arthritis

clinical-database project, one of the first longitudinal studies based on a clinical,

time-oriented database (see Section 3.2.5), attempted to compare several methods

for guessing data values that were “hidden” from the program, but in fact

existed in the database [Albridge et al., 1988].  The results suggested that even for

raw data, it is insufficient to use methods such as naive persistence or simple

statistical regression, to predict hidden values.  This result was especially

apparent in the case of a small number of sparse data points.  Knowledge about

the behavior of specific parameters, such as persistence of hematological-

parameters values, improved the predictions considerably.  The results for more

abstract parameters (such as bone-marrow toxicity), derived from a

computational-transformation of several parameters, and possibly expressed in

symbolic terms (e.g., GRADE_ II  or LOW) should be even more dramatic.

Interpreting and interpolating abstract parameters usually requires even more

parameter- and context-specific knowledge.  Similar reasoning would certainly

hold for interpolating other abstract types, such as gradients, rates and patterns.

The bidirectional propositional-decay functions that I propose also allow for a

certain limited amount of hindsight  and foresight  by interpreting the uncertain

near past and future in the light of the certain present.  I permit, however,
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additional, further outreaching hindsight (and foresight) by using interpretation-

context intervals that are induced dynamically by context-forming tasks, events,

and abstractions, and that reach (with unlimited access) into the past and the

future to enable additional interpretation.  Note also that such context-specific

interpretation takes place only during the relevant contexts, thus focusing and

limiting the computation.  For instance, ∆ functions and classification functions

are retrieved, and their value is computed, only in the narrow range of the

temporal context relevant for the application of these functions.  Finally,

temporal-pattern matching permits a special kind of hindsight, by including both

past and present data in overall patterns.

The output of the temporal-abstraction mechanisms must depend on the

intended use of the abstractions.  Different users need different parameters and

different levels of abstraction.  The reasoning module of a planning system needs

detailed abstraction output, including lengths of intervals, to reason about plan-

execution problems and about possible modifications to planned or executed

events and their respective parameters, which can affect the states on which the

system is focusing.  In the medical domain, a user might be a dermatologist

called for a consultation regarding a patient’s  skin rash; this expert might need

only a brief summary of the parameters relevant to her, over a certain limited

period, and would not want more details than are necessary for her purpose (say,

assessment of the patient’s current state).  High-level abstractions (e.g., “a

toxicity episode, typical of the drug vincristine, during the past 3 weeks”) might

be sufficient.  In addition, each user has different levels of knowledge about the

domain and task.  For instance, in the clinical domain, the expert dermatologist

might herself fill in missing details regarding a drug-allergy event, but the

internist would need further elaboration.  I suggest, as an extension implied by

the knowledge-based temporal-abstraction theory, that this user model (of the

different parameters and abstraction levels required) should be part of the

system’s knowledge.  The knowledge needed to instantiate the user model might

have to be acquired at three different levels.  The three levels correspond to three

user types described in Chapter 2: the knowledge engineer, working with the

metalevel PROTÉGÉ–II tool; the domain expert, working with the output of
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PROTÉGÉ–II, an OPAL-like knowledge-acquisition tool; and the end user,

working with the final knowledge-based application system produced by a

combination of the problem-solving method chosen by the knowledge engineer,

and the knowledge base instantiated by the domain expert using the knowledge-

acquisition tool.  User models might consist of further-specialized interpretation

contexts.

There are several advantages associated with the explicit representation of the

knowledge needed for the basic temporal-abstraction mechanisms.  Such a

representation is important for the acquisition, maintenance, sharing, and reuse

of temporal-abstraction knowledge.

The formal definition of the temporal-abstraction mechanisms combined with the

explicit representation of their knowledge requirements enables separation of

these mechanisms from the planning and execution components of a medical

decision-support system.8  This separation (apart from modularity advantages)

enables these mechanisms to reason about the data regardless of interactive

sessions with a user, using data directly from a temporally oriented database.

In addition, the direct access to the temporal-abstraction ontology enables the

knowledge-based mechanisms to accept input data or return output abstractions

at any desired abstraction level, a flexibility important for clinical applications.

Finally, the temporal abstraction process (at various explicit levels of abstraction)

transforms large volumes of data into a concise, more meaningful representation.

The process can be controlled, exploiting the structure of the parameter ontology,

to support different types of users  (e.g., attending physicians, nurses, and

specialists) interested in different parameters and abstraction types.

The knowledge required to apply the domain-independent temporal-abstraction

mechanisms to any particular clinical domain and task should be formulated

precisely and should be acquired from an expert.  Since the knowledge

8In Section 6.3, I present an experimental proof that, at least in certain clinical domains,
separation of the temporal-abstraction process from the planning process is essential for
intelligent evaluation of either human or automated reasoning.
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requirements of the temporal-abstraction mechanisms are well defined, the

knowledge-acquisition process can use automatically generated knowledge-

acquisition tools tailored to the domain and to the task, such as the knowledge-

acquisition tools generated by the PROTÉGÉ–II system.  I discuss what might be

the requirements for such a tool in Section 7.2.
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5  The RÉSUME System

In Chapter 4, I presented a detailed, knowledge-level view of the knowledge-

based temoral-abstraction method.  In this chapter, I describe on a conceptual

level an implementation of the temporal-abstraction mechanisms and a

representation scheme for the knowledge these mechanisms require (the

temporal-abstraction ontology).

I have implemented the knowledge-based temporal-abstraction method and its

implied methodology for development of temporal-abstraction knowledge bases

as a computer program:  The RÉSUMÉ  system.  The RÉSUMÉ system generates

temporal abstractions, given time-stamped data, events, and the domain's

temporal-abstraction ontology of parameters, events, and contexts.

I omit the symbol-level details of the RÉSUMÉ program.  I will, however, address

important issues such as organization of temporal-abstraction knowledge and

the computational aspects of the knowledge-based temporal-abstraction method.

Therefore, I will describe the RÉSUMÉ architecture at the knowledge-use level.  The

knowledge-use level [Steels, 1990] is an intermediate level between Newell’s

[1982] knowledge level  and symbol level  (see Section 2.1) and is an important step

towards implementing methods presented at the knowledge level.

The RÉSUMÉ system demonstrates several concepts important for a discussion

of the knowledge-based temporal-abstraction method as an appropriate solution

for the temporal-abstraction task.  In the following sections, I address several

issues pertaining to the appropriate organization, representation, reuse, and

maintenance of temporal-abstraction knowledge.  I also discuss several

computational issues, such as control methods for temporal abstraction and the

handling of nonmonotonicity.

The architecture of the RÉSUMÉ system is intended to provide most of the

desired properties for a temporal-abstraction system that I discussed in Section
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1.1, thus complementing the theoretical advantages of the knowledge-based

temporal-abstraction method underlying it.

I wrote the RÉSUMÉ system in CLIPS, a software shell for knowledge-based

systems, developed by the NASA Software Technology Branch [Giarratano and

Riley, 1994].  CLIPS is written in the C language and therefore runs on a variety

of hardware platforms, such as various Unix machines, Apple Macintosh

machines, and IBM Personal Computers.  The CLIPS shell includes (1) an

independent production-rule language that matches patterns in a fact base, (2) a

general functional LISP-like interactive programming language, and (3) an object

system known as the CLIPS object-oriented language (COOL).

The general architecture of the RÉSUMÉ system is shown in Figure 5.1.  The

RÉSUMÉ system is composed of a temporal-reasoning module (the five

temporal-abstraction mechanisms), a static domain knowledge base (the

domain’s ontology of parameters and events), and a dynamic temporal fact base

(containing the input and output parameter points and intervals, event intervals

and context intervals).  The temporal fact base is loosely coupled to an external

database, where primitive time-stamped patient data and clinical events are

stored and updated, and where abstractions can be stored by the RÉSUMÉ

system for additional analysis or for use by other users.

5.1  The Parameter-Properties Ontology

In Chapter 4, I described the nature of the five temporal-abstraction mechanisms,

the tasks that they perform, and the precise types of domain-specific knowledge

that each of these mechanisms uses.  In this section, I describe how temporal-

abstraction knowledge involving the domain’s parameters is organized and

represented in the RÉSUMÉ system.  This knowledge is used by all five

temporal-abstraction mechanisms.  (The context-forming mechanism also needs

ontologies of domain-specific events and contexts, which I decribe in Section 5.2.)

The temporal-abstraction mechanisms require four types of knowledge (see

Figure 1.2).  The subtypes of these knowledge types should now be clearer,



Chapter 5:  The RÉSUMÉ System

189

Context-forming mechanism

Temporal-abstraction mechanisms

∆∆∆

Temporal  fact base

Events

Contexts

Abstractions

Primitive data ∆

Temporal-reasoning mechanisms

Domain knowledge base

Event ontology

Parameter ontology

External  patient database

Context ontology

Figure 5.1:  The RÉSUMÉ system’s general architecture.  The temporal fact base stores intervals

representing input event intervals, abstractions, and primitive parameter points and intervals, as

well as system-created context intervals and abstractions.  The context-forming mechanism is

triggered by events, abstractions, and existing contexts to create or remove contexts, relying on

the knowledge represented in the ontologies of the domain’s events and contexts for

disambiguation of relations among contexts.  The other temporal-abstraction mechanisms are

triggered by primitive- and abstract-parameter points and intervals in the temporal fact base, as

well as by contexts created by the context-forming mechanism, and rely on the knowledge

represented in the domain’s ontology of parameter properties to create or retract abstracted

intervals.  Data in the temporal fact base are derived from an external, loosely coupled database.

 = event;  = closed context interval;  = abstraction interval;  = data or

knowledge flow.
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 since they are exactly the knowledge roles used by the five temporal-abstraction

mechanisms.

1. Structural knowledge:  Relations such as IS-A (e.g., Hb I S-A

hematological parameter), PART-OF (e.g., for event–subevent relations),

ABSTRACTED-FROM (used by all abstraction types) and SUBCONTEXT

(between interpretation contexts); qualitative interparameter

dependencies (e.g., POSITIVELY PROPORTIONAL); basic parameter

properties (e.g., type of values, scale, units of measurement, range)

2. Classification knowledge:  Vertical classification (e.g., mapping Hb

count ranges into LOW, HIGH, VERY HIGH); horizontal classification (e.g.,

INC ⊕  DEC = NONMON); classification of temporal patterns (e.g., acute

graft-versus-host disease (GVHD) for up to 100 days followed by chronic

GVHD implies a Quiescent-Onset-Chronic-GVHD pattern)

3. Temporal semantic knowledge:  Inferential properties (e.g., downward-

hereditary, concatenable, gestalt , universally diffusive) and their truth values

(e.g., TRUE)

4. Temporal dynamic knowledge:  Persistence functions (e.g., ρ local-

persistence functions; ∆ global maximal-gap functions); qualitative

persistence types (e.g., P or N (local) and PP or NN (global) persistence

functions); Cπ values or fc(π) significant-change functions.

The four types of domain-specific knowledge are represented, apart from event-

specific knowledge, in a special knowledge structure called the domain’s

parameter-properties ontology , a detailed representation of the parameter

ontology  defined in Section 4.1.  The parameter-properties ontology represents the

parameter entities in the domain (e.g., Hb, WBC_STATE), their properties (e.g.,

inferential properties, such as CONCATENABLE), and the relations between them

(e.g., ABSTRACTED-INTO).  Figure 5.2 shows part of the parameter-properties

ontology—in this case, a part of the section used for the task of managing

patients who are being treated according to clinical protocols, such as for GVHD.
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      Rate
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Figure 5.2:  A portion of the RÉSUMÉ parameter-properties ontology for the domain of protocol-

based care, showing a specialization of the temporal-abstraction properties for the

platelet_state_abstraction (PSA) abstract parameter in the context of the prednisone/azathioprine

(PAZ) experimental protocol for treating chronic graft-versus-host disease, and in the context of

each part of that protocol.   = class;  = property;   = I S-A relation;  =

PROPERTY-OF relation.  ABSTRACTED-INTO relations are not shown in this figure.

The parameter-properties ontology is an IS-A frame hierarchy that specializes

parameters and their properties by their type (e.g., abstract parameters versus

primitive laboratory or physical-examination data), by their domain role (e.g.,

hematology versus chemistry parameters), and by their relevant interpretation

contexts (e.g., classification tables for the Hb parameter might be different during

administration of a certain protocol or medication).  Other relations, such as the

ABSTRACTED-INTO relation and qualitative dependencies, are represented as slots,

or properties.  Properties common to all parameters include, for instance, the

allowed values (or range of values), the amount of change considered to be

clinically significant in each context (Cπ), and the type of scale with which the
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parameter can be measured and reasoned (e.g., a nominal, ordinal, or interval

measuring scale).  Properties can be inherited from one or more classes.  For

instance, all laboratory parameters inherit the interval scale as a default, whereas

the default for abstract parameters is an ordinal scale.  Properties common to all

abstract parameters include ABSTRACTED-INTO relations to defining parameters

and the corresponding qualitative dependencies on these parameters (i.e.,

positive monotonic, negative monotonic, and neither of these).

An important feature of the representation scheme is organization of abstract

parameters by the four basic output-abstraction types (STATE, GRADIENT, RATE

and PATTERN).  Thus, PLATELET_GRADIENT_ABSTRACTIONS is a subclass of the

gradient-abstractions class (see Figure 5.2), and inherits slots such as the default

values and secondary-interpolation–inference table (see Table 4.2) for gradient

abstractions.  State abstractions include properties such as mapping tables (see

Section 5.1.1) from which the contemporaneous-abstraction mechanism creates

them.  Rate abstractions include properties such as rate-classification tables.

Pattern abstractions include a defining input pattern (a set of parameter

intervals), conditions (a set of value and time constraints), and concluded pattern

(an abstraction interval).  Each abstraction type is specialized further by

particular abstract parameters (e.g., PLATELETS) and by specific interpretation

contexts in which these abstractions are relevant (e.g., the PAZ protocol).  As I

show in Chapter 6, this structure proved very flexible for representing and

modifying quickly temporal-abstraction knowledge in several domains.

The parameter-properties ontology is implemented in CLIPS as a COOL class

hierarchy.   The temporal-abstraction functions are stored as high as possible in

the frame hierarchy of the parameter ontology, often as defaults for the

corresponding abstraction type (e.g., GRADIENT) and parameter class (e.g.,

hematological parameters) and are specialized only if necessary during the

knowledge-acquisition process.  Temporal-abstraction functions and tables are

therefore indexed by the parameter (e.g., platelet), by the abstraction type (e.g.,

state), by the abstraction value (e.g., PLATELET_TOXICITY_GRADE_I), and by the

relevant context (see Figure 5.2).
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Most of the knowledge needed for the three basic temporal-abstraction

mechanisms (contemporaneous abstraction, temporal inference, and temporal

interpolation) and for the temporal-pattern–matching mechanism is contained in

the abstract-parameters class.  In fact, the RÉSUMÉ system identifies the abstract-

parameter class with the abstractions class; thus, every abstraction is a parameter.

For easier conceptualization of the organization scheme, these classes are

represented separately in Figure 5.2, to emphasize the double view of each

abstract parameter:  a parameter and  an abstraction.

For example, the class PLATELET_STATE_ABSTRACTION in Figure 5.2 is both an

abstract parameter  (which has a set of values, such as TOXICITY_GRADE_1) and a

state abstraction, and represents knowledge needed to abstract states of the

platelet-count parameter.  This knowledge is specialized in the context of a

particular protocol (PAZ) for the treatment of chronic GVHD following a

transplantation event, and is further specialized in different phases of that

protocol.  The temporal-abstraction knowledge requirements are inherited from

the state-abstractions class, and include mapping functions, inferential

properties, inference tables, and local ρ and global (maximal-gap) ∆-functions.

So that it can facilitate knowledge acquisition, knowledge representation,

knowledge maintenance, and knowledge sharability, the parameter ontology

represents the four types of knowledge about the domain as declaratively and as

explicitly  as possible.  Structural relations such as IS-A, PART-OF and ABSTRACTED-

INTO are represented by different types of inter-class links, as are qualitative

relations.  Static parameter properties (e.g., scale) are represented as slots in the

CLIPS shell COOL frame that corresponds to the parameter.  Classification

tables, inference property tables and horizontal abstraction-inference tables are

represented declaratively as tables with predefined semantics (see Section 5.1.1).

Maximal-gap ∆ functions are represented mainly as tables or as predefined types

of functions (e.g., INFINITY or LINEAR with coefficients for the weight of the

lengths of the abstractions before and after the gap).  Local ρ functions are

represented by the valid time of belief persistence above treshold.
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Table 5.1 lists some of the slots and their values in the frame of the Hb_Gradient

parameter specialized to the interpretation context of the CCTG protocol for

treatment of AIDS patients.  Additional slots, such as various range-classification

tables, exist in frames of other abstraction types (e.g., state-abstraction frames).

Table 5.1: Some of the slots in the frame of the Hb_Gradient_CCTG parameter

Slot name Slot value Comments

IS-A link Hb_Gradient Class link

Parameter type ABSTRACT Inherited from class

Abstraction type GRADIENT Inherited from class

Allowed values {SAME INC DEC...} Default for gradients

Scale ORDINAL Default for gradients

Abstracted_from Hb Inherited from class

Dependence type SINGLE Default for gradients

Inference properties {<INC, conc , TRUE>...} Default for gradients

Horizontal inference {<SAME, INC, NONDEC>...} Default for gradients

∆ function type RANGE, AND, MAX Table axes (Section 5.1.1)

∆ function time unit HOUR Inherited from class

∆ function table {<INC, 4, 5, 4>...} ƒ:value, time, time ->time

Interpolation-inference

constraints

{<INC, [-Cπ, +∞]>,

<DEC, [-∞, +Cπ]>...}

ƒ:value -> constraint on

range of I2.s.π - I1.e.π
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For the purposes of representing knowledge required by mechanisms that

perform various classification and indexing functions, and of assisting in the

acquisition and maintenance of that knowledge, the RÉSUMÉ system employs

several types of mapping tables whose semantics are well defined.

5.1.1  Dimensions of Classification Tables

Classification tables, representing certain types of functions, are useful in the

parameter-properties, event, and context ontologies for representing all four

types of knowledge needed for temporal abstraction.  The following are

examples of such functional temporal-abstraction knowledge:

1. Determining the bone-marrow toxicity grade (in a certain context), given

the values of several contemporaneous hematologic parameters that

define that grade (classification knolwedge)

2. Finding out whether a semantic temporal property, such as

CONCATENABLE, is true, given the parameter’s value and the property

(for a certain parameter in a certain context) (temporal semantic

knowledge)

3. Returning the maximal interpolation gap, given a ∆ function that accepts

the lengths of two intervals and the value of the (potentially) joined

interval, for a certain parameter and context (temporal dynamic

knowledge)

It is useful to have tables (functions) whose semantics are well defined.  This

property allows us, for instance,

1.  To design knowledge-acquisition interfaces that can actually assist the

user when that knowledge is acquired (e.g., by a PROTÉGÉ-II interface)

2.  To  perform simple validity checking of the input (a “compilation of

knowledge” phase) both during and after knowledge-acquisition time

3.  To perform more knowledgeable reasoning during run time.
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The third item refers to the fact that an “introspective” type of reasoning can be

performed on the knowledge base itself, if the properties of the knowledge are

better known to the reasoning mechanisms.  Thus, we can guess, for instance, a

missing value of a PP ∆ (maximal-gap) function (see Section 4.2.4.1.3) by

interpolating in the correct direction (realizing that the function is increasing

monotonicaly as the length of either interval involved increases) or by setting

lower and upper bounds for a possible value.  We can reason about properties of

the output parameter of a table, given properties of its input, and so on, since we

understand the semantics of the function represented by that table (e.g., a

particular type of an OR function).

The RÉSUMÉ system uses several types of tables for representing knowledge.

The internal representation of these tables is, in fact, uniform: Table objects that

contain one or more lists of indices (arguments) and a list of output values

(function values), and some predefined general message handlers.  However, the

RÉSUMÉ system defines different access methods through which it can

interprete the same table in different ways, depending on the table’s declarative

semantic type (i.e., the classification-function type that the table represents).

There are several advantages to using table objects for representing temporal-

abstraction  knowledge in the RÉSUMÉ system:

1.  Tables (such as abstraction-inference tables) are, in fact, a very concise,

declarative, representation for rules.  A single table can represent, in a

parameterized, economic format, dozens or even hundreds of rules.

This property relies on the standarized, domain-independent nature of

the temporal-abstraction mechanism’s inference rules.

2.  Table objects can be inherited by more specialized parameter classes.  For

instance, classification ranges and ∆-function values for the same

parameter in a more restricted context are typically inherited as defaults,

and require that a developer perform only minor editing of the table

during the knowledge-acquisition process or during maintenance time.

Implicitly, hundreds of rules are inherited and manipulated.
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3.  Table objects have simple, well-defined semantics for interpreting the

function that the table represents, depending on the table’s type(s).

Thus, knowledge acquisition, development of a new knowledge base,

maintenance of that knowledge base, and even sharing of the knowledge

base’s contents are facilitated.  In fact, as I show in Section 5.1.1.1,

employing predefined semantics can lead in certain cases to significant

computational gains.

The table-function types are categorized along several different orthogonal

dimensions, or axes.  These axes have been sufficient for most examples

encountered in several therapy-planning domains (e.g., AIDS, GVHD) and

monitoring domains (e.g., pediatric growth , insulin-dependent diabetes).

Apart from the declarative axes described below, the RÉSUMÉ system also

employs a last-resource, catch-all function type, called simply FUNCTION, which

simply points to the name of a predefined general computational-transformation

function that operates on the values of the parameters that define the output’s

value.  The FUNCTION type allows the user (e.g., a knowledge engineer working

with a domain expert) to add any user-defined function or to reuse a previously

defined function.  Note that the function still would be invoked in a principled

manner, with certain restrictions on its use, since all of its inputs and outputs

(i.e., values of parameters) and their relations (e.g., ABSTRACTED-INTO and

qualitative relationships), as well as the proper contexts for applying the

function, are defined in the parameter ontology.  Thus, acquisition and

maintenance of the knowledge would be still be facilitated, although not as much

as in the case of the more formally defined table functions.

In the case of an abstraction function, the input and output types (e.g., FLOAT and

SYMBOL into SYMBOL) and the relationship of output values to each other (e.g.,

nominal or ordinal scale) are often already known, if the involved arguments are

defined in the parameter ontology.  For instance,  ABSTRACTED-INTO relations of

the input parameters and qualitative dependencies of the output parameter on

the values of these parameters, are part of the structural knowledge included in
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the parameter ontology.  However, it is useful to specify clearly for each

classification table, for instance, whether the values of the arguments are

intepreted as (alpha)numeric classification ranges, or as symbolic values that are

matched to an enumerated list of indices (these being used as the real index list).

5.1.1.1 Table Axes

Classification functions (tables) in RÉSUMÉ are categorized along six axes.  A

combination of table axes defines precisely the semantics of the classification

function that the table represents, though all table structures are uniform n-

dimensional arrays.

1.  Index input type: Types can be symbolic, numeric, and so on.  For

instance, the  default horizontal-inference (⊕ ) table for gradient

abstractions that I described in Section 4.2.3, which joins values such as

INCREASING and SAME into NONDECREASING, uses these symbolic values

as indices into the (symbolic) output (see Table 4.1).  Maximal-gap (∆)

functions use actual numeric time units as indices.

2.  Value output type:  Output types can be symbols (INCREASING), numbers,

or even time units.

3.  Dimension : Dimensions can be classified as 1:1, 2:1, or 3:1 mappings, and

so on.  Maximal-gap (∆) functions, for instance, need 3:1 mapping tables

(the parameter value and the length of the two time intervals involved,

for a given parameter and context).  Horizontal-inference tables (whose

indices include two parameter-proposition values) and inference-

properties tables (whose indices include a parameter value and a

temporal-semantic property; see Section 4.2.3) have a 2:1 dimension.

Some parameters can be mapped to another parameter (typically, a state-

abstraction of the first parameter) using a 1:1 table.

4.  Index mapping type : Index types include a range  index  and a direct

index .  For instance, classification of (numeric) ranges of Hb values and

of WBC counts into hematologic status (which requires finding first the
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respective range for any given parameter value) uses range indices.

Inference-properties tables employ a direct mapping of a parameter value

and a semantic property type (for a particular parameter and context)

into a boolean value.

5.  Boolean type:  The boolean table-types include AND and OR .  An AND

table is a standard function: it is a conjunction of n parameter values that

are mapped into a certain parameter-value output.  An AND mapping

explicitly lists all valid or nonvalid value combinations and their output

value, but is very time consuming to create at knowledge-acquisition time

and very space consuming at run time.  For instance, 4 parameters with 5

values each would require a 4-dimensional table with 54 = 625 values.  An

example of a 2:1 symbolic-symbolic direct AND table was shown in Table

4.1, the default join (⊕ ) operation inference table.

An OR  table merges several values and combinations in a succinct

manner, by decomposing the arguments into their respective parameter

sets, first mapping every one of the arguments individually to the output

value, then selecting among the output values, using a maximum-value or

a minimum-value function (Table 5.2).  OR tables are, in fact, quite

common in clinical medicine.  Given n  parameters, each with k  possible

values or ranges that are being abstracted into an abstract parameter with j

possible values, an OR table reduces the space complexity from  O(kn) to

O(n*j).  Adding additional attributes to an OR table increases the size of

the table linearly and not exponentially (as in the case of AND tables)—a

considerable gain, if an OR representation is possible.  It is sometimes

adventageous to represent complex functions as combinations of AND

and OR tables.  Thus, multi-dimensional functions are represented in a

“flat,” easily modifyable format.
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Table 5.2 : A 4:1 (numeric and symbolic to symbolic) maximal-OR range table for the SYSTEMIC

TOXICITY parameter in the context of the CCTG-522 experimental AIDS-treatment protocol.  The

toxicity-grade value is determined for every one of the index parameters, or rows, in the table

(e.g., Fever = 39 C, Chills = RIGOR), and the maximal value (in this case,  GRADE III) is selected.

Value/

parameter

GRADE  I GRADE  II GRADE  III GRADE  IV

Fever ≤ 38.5 C ≤ 40.0 C > 40 C > 40 C

Chills NONE SHAKING RIGOR RIGOR

Skin ERYTHEMA VESICULATION DESQUAMATION EXFOLIATION

Allergy EDEMA BRONCHOSPASM BRONCHOSPASM

REQUIRING

MEDICATION

ANAPHYLAXIS

6.  Selection type: This type can be either MIN or MAX, denoting whether the

minimal or maximal output value is chosen among several candidate

values.  Specifying the selection type explicitly is necessary for the

common OR tables, in which, in the first stage, an output value is

determined for each of the participating arguments of the function (see

Table 5.2).  The selection type can also represent the direction in which to

use range mapping-type indices (e.g., the range list <4 6 8 10> represents,

in fact, the ranges [-∞ 4], [4 6], [6 8], [8 10], [10 +∞]; which range includes

8?).  The selection type could, in principle, be different for every argument

(i.e., each “row” in the table).

In summary, table axes are a convenient method for representing concisely the

semantics of many classification functions in various domains, in particular in

clinical medicine.  The tables have a uniform representation and are easily

acquired and modified.  Their semantics rely on a small set of interpretation axes.
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5.1.2  Sharing of Parameter Propositions Among Different Contexts

Usually, abstractions are specific to a particular context (e.g., a particular protocol

or a part of that protocol), and cannot be joined (by the temporal-inference or

temporal-interpolation mechanisms) to similar abstractions in other contexts.

That is desirable, since the primary reason for having contexts is to limit the

scope of reasoning and of applicabiliy of certain types of knowledge.  The LOW

value of Hb_State in one context might be mapped from Hb-values in the range 7

to 9, whereas, in another context, it might be mapped from the range 8 to 10.

Furthermore, the LOW value of Hb_State in the first context might be one of three

values, but in the second, it might be one of four  values of that state abstraction,

making comparison between the two syntactically similar values meaningless.

Finally, some parameter values might be meaningless in certain contexts (e.g., the

value GRADE_II_TOXICITY of the Platelet_State parameter is irrelevant when a

patient is not within the temporal scope of the interpretation context of having

received cytotoxic therapy, even when the platelet state is monitored for some

other reason).  It is therefore a highly dubious undertaking to attempt joining the

parameter propositions such as the LOW value of Hb_STATE indiscriminately

across various contexts.  In fact, that danger is one of the reasons for explicitly

having the context as part of the parameter proposition.

However, it should possible to denote the fact that, for certain classes of

parameters, contexts, and subcontexts, the abstractions denote the same state,

with respect to certain task-related implications, in both contexts.  For instance,

two LOW(Hb_STATE) abstractions might denote different ranges in two different

contexts, but the abstractions might still be joined to create a longer

LOW(Hb_STATE) abstraction meaningful for a higher-level context (e.g., the

overall task).  In other words, we might want to unify two parameter intervals

where the parameter name is identical, which were created during two but

different interpretation contexts, possibly using different classification tables.  We

can assume that the intervals are meeting or that the temporal gap between them

can be bridged using the proper ∆ function (and that during the gap no other

interpretation context exists).
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The solution, as hinted in Section 4.2.1, is simple and exploits the hierarchical

nature of the parameter-properties ontology and the latter’s specialization by

contexts.  When a parameter node is created in the parameter-properties

ontology at any level (e.g., Hb in the context of protocol CCTG522), it is possible

to note what values of the parameter are sharable  among abstractions of that

parameter in all the nodes that are descendants of the new node—that is, in

subcontexts of the current context (see Figure 5.2).  For instance, if the platelet

state abstraction (PSA) parameter in the context of the PAZ protocol is sharable

for the GRADE II TOXICITY value, abstractions of this value formed in contexts that

are subcontexts of that node (i.e., below it in the parameter-properties ontology

hierarchy, such as PSA in the context of PAZ and prednisone, or PSA in the

context of PAZ and the study drug being given; see Figure 5.2) can be

concatenated and, in general, reasoned with, as though they belonged to  the

same context.  This concatenation can take place  even though mapping tables for

the PSA abstraction might be quite different in contexts where the drug is being

given and in contexts where it is witheld.  Note however, that the sharable

abstraction values, as well as the appropriate ∆ functions to use and other

temporal-abstraction knowledge types, would be defined within a new, unified

(or generalizing) context (see Section 4.2.1).  The unified context is equivalent to

neither of the two shared subcontexts or their parent context; it is a new

subcontext of the parent context, the unified extension of that context.  Within that

unified context the temporal-abstraction mechanisms can, in effect, continue to

perform their reasoning functions within the same context.  The human or

automated user of the temporal-abstraction system can now ask queries such as

“what was the generalized state of the Hb-level parameter over the past 3

months, in the context of the CCTG-522 protocol (possibly adjusting

automatically for the various parts of the CCTG-522 protocol and their context-

specific tables)?”9  Note that Fagan’s VM system [Fagan, 1980] (see Section 3.2.3)

9 In the RÉSUMÉ system, the sharable declaration accurs, in fact, in a bottom-up fashion:  The
developer denotes which values of the parameter for each of the subcontext nodes are sharable
with other  subcontexts in the unified context of the parent node, thus achieving a finer level of
resolution, essentially by signifying the parameter proposition into which these parameter
propositions can be generalized.
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assumed by default that all contexts for all parameters  and parameter valuess were

sharable .

The RÉSUMÉ system employs a solution with a similar flavor to the inverse

problem, that of joining parameter intervals created within the same

interpretation context, but that are separated temporally by one or more different

interpretation contexts.  For instance, we might want to abstract the state of a

parameter such as PREPRANDIAL_GLUCOSE, in the context of two or more,

possibly consecutive, mornings (i.e., in the context of several prebreakfast-

context measurements), skipping intermediate contexts such as pre-lunch and

pre-supper interpretation contexts.  Queries about such a “fragmented” interval

are in fact referring by definition to a nonconvex interval as defined by Ladkin

(see Section 3.1.4) which is generated (and therefore also queried) within the

scope of a nonconvex context  (see Section 4.2.1) that is the nonconvex subcontext

of the parent context.

Note that the maximal-gap ∆ function interpolating between two propositions

within a nonconvex interpretation context might be quite different from the

function used for interpolation within each convex segement of the nonconvex

context.  The ∆ function would be an interphase ∆ function (e.g., between

different mornings) as opposed to an intraphase ∆ function (e.g., within the same

morning).  The corresponding parameter propositions and interpretation

contexts would appear, respectively, in the parameter-properties ontology and in

the context ontology.

5.2  The Context-Forming Mechanism and The Event and Context Ontologies

In Chapter 4, I explained that abstractions are meaningful only within the span of

a relevant context  interval , such as “treatment by clinical protocol CCTG522” (see

Figure 4.1).  Context intervals create a frame of reference for interpretation, and

thus enable a temporal-abstraction mechanism to conclude relevant abstractions

for that and for only that interpretation context.

Interpretation contexts are important for two major reasons:
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1.  Creation of meaningful, context-sensitive abstractions

2.  Optimization of computational resources  (since rules and functions are

only enabled within the temporal scope of the appropriate interpretation

context).

Context intervals are created by the context-forming mechanism .  As I explained in

Section 4.2.1, a valid interpretation context can be induced by an event  proposition.

or by an abstraction-goal  proposition.  An interpretation context can also be

induced by specific context-forming parameter propositions that are flagged in the

parameter-properties ontology as sufficiently important to change the frame of

reference for one or more other parameters (i.e., the relevant value of that

parameter in the parameter ontology, for the relevant context, is flagged as

CONTEXT FORMING).  In addition, contemporaneous context intervals whose

interpretation contexts have a SUBCONTEXT relationship in the context ontology

can form composite  contexts (see Sections 4.1 and 4.2.1).

Context intervals induced by a context-forming proposition do not have to be

concurrent with it.  Thus, an event, an abstraction goal, or a context-forming

parameter proposition can induce a context envelope  that might include, in

addition to a direct  context interval concurrent with the interval over which the

inducing proposition is interpreted, retrospective context intervals prior to it (e.g.,

the prodrome of a disease), prospective (or expectation) context intervals following

it (e.g., potential complications), or any other of the 13 Allen temporal relations

discussed in Section 3.1.4.  Retrospective and prospective interpretation contexts

enable the use of context-specific temporal-abstraction functions, such as

mapping tables and maximal-gap (∆) functions, that should not be considered in

other interpretation contexts.  Forming interpretation contexts correctly enables

the temporal-abstraction mechanisms both to focus on the abstractions

appropriate for these particular contexts and to avoid unnecessary computations

in other contexts.

The above explanation of the origin of interpretation contexts implies that either

parameter points, parameter intervals, abstraction-goal intervals, or event
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intervals (and, indirectly, some combinations of these entities, by inducing

contemporaneous context intervals) can induce dynamically new context

intervals.  As mentioned in Section 4.2.1, an abstraction goal, an event schema or

an event proposition (that is, possibly only for certain context-forming attribute–

value instantiations of the event schema) and a parameter proposition (at least

certain context-forming propositions) can be part of a dynamic induction

relation of a context interval  (DIRC).  As explained in Section 4.1, a DIRC is a

structure of the form <ξ , ϕ , ss , se, es, ee>.  The symbol ξ  is an interpretation

context.  The symbol ϕ ∈ Ρ  is an abstraction-goal, event or parameter proposition,

that is assumed, at runtime, to be interpreted over some time interval I with

known end points.  Each of the other four symbols is either the “wildcard”

symbol *, matching any value, or a time measure.  The four time measures

denote, respectively, the temporal distance between the start point of the context-

forming interval-based proposition and the start point of the induced context, the

distance between the start  point of the context-forming proposition and the end

point of the induced context, the distance between the end  point of the inducing

proposition and the start  point of the context, and the distance between the end

point of the proposition and the end point of the induced context (see Figure 4.2).

Note that only two values are necessary (more values might create an

inconsistency), and that sometimes only one of the values is a finite time measure

(e.g., the es distance might be +∞).

For example, in the case of AZT therapy (as part of the CCTG-522 protocol), a

typical DIRC might be <AZT-TOXICITY, AZT, +2w, *, *, +4w>, meaning that,

whenever an AZT event interval is asserted, a corresponding AZT-TOXICITY

context interval is induced, whose start point is 2 weeks after the beginning of

the AZT treatment event, and whose end point is 4 weeks after the end of the

AZT treatment.  Dependencies are maintained between the proposition and its

induced contexts, and thus updates to event or to parameter propositions cause

updates to or retractions of context intervals.  Note that each of the four distance

values, in particular ss, might be negative, thus allowing the developer to

represent any of Allen’s [1982] 13 temporal relations between the induced context

interval and the inducing propostition.  In particular, induced interpretation-
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context intervals can be formed in the future, after the inducing proposition, or in

the past , before the inducing event or abstraction.  Including prospective and

retrospective DIRCs in the domains’ ontology is one of the techniques for

representation of foresight  and hindsight  that the RÉSUMÉ user can employ.  It

allows the resultant application system to anticipate certain interpretation

contexts where certain context-specific types of knowledge-based inference

should be enabled, or to add new interpretations in retrospect to the past when

given new data.

For every domain, the context-forming mechanism assumes that the domain

theory includes an event ontology—that is, a theory that represents the external

events in that domain (e.g., protocols, medications, specific drugs), the

relationships among them (e.g., a medication might have a PART-OF relationship

with a protocol), and any DIRCs in which event schemas and propositions are

the inducing proposition (see Section 4.1).  In practice, it is conceptually useful to

regard the relevant DIRCs as indexed from each event type.  Figure 5.3 shows a

simplified section of an event ontology for the task of managing patients on

protocols.

The event ontology, like the parameter-properties ontology, is a frame hierarchy,

but with IS-A and PART-OF relations among frames.  Typically, a pair of

interpretation contexts that are induced by event types that belong to a PART-OF

relation in the event ontology belongs to a SUBCONTEXT relation in the context

ontology, and in general, the list of interpretation contexts that are induced by

event types that belong to an event chain  forms an interpretation context.  The

definition of an event chain in the event ontology conforms to the definition of

Section 4.2.1: It is a directed path in the graph created by the event ontology,

starting from the topmost (EVENT) node, ending in any nonterminal or terminal

node, and including PART-OF relations.  Typically, contemporary events whose

event types can be found in the event ontology along the same event chain form

at runtime a composite context by inducing a chain of interpretation contexts

where each pair belongs to a SUBCONTEXT relation in the context ontology.  (This,

however, is just a default assumption regarding a new domain, useful for
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azathioprine

Events

Protocols Medications

PAZ CCTG-522

T/S AZTprednisone

Figure 5.3 : A portion of the event ontology in the protocol-management domain, showing the

AIDS-treatment CCTG-522 protocol and the chronic graft-versus-host-disease (GVHD) PAZ

protocol, and the representation of these external therapy events by their constituent parts.  

= class; Classes are shown as ovals;   = I S-A relation;  = PART-OF relation.

Dynamic induction relations of  context intervals (DIRCs) are not shown in this figure.

acquisition of knowledge and for disambiguation of the structure of new

interpretation contexts, and is not a necessary property of events and contexts.)

An example of a composite context is the combination of the CCTG-522 protocol

and the administration of AZT; however, the combination of the CCTG-522

protocol, the drug trimetoprim/sulfamethoxazole (T/S), and the drug AZT (see

Figure 5.3) is not  an example of a composite context, since no directed path

connects the AZT node with the T/S node .

The event ontology includes all relevant events and subevents and their

corresponding DIRCs, which the context-forming mechanism can use at runtime.

The default DIRC list for an event comprises a single DIRC representing a direct
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(i.e., contemporaneous) interpretation context, whose name is the event’s name,

and without any reference to values of the event’s attributes—that is, the DIRC

<event name, event name , 0, *, 0, *>.  In addition, the event ontology is also used by

the context-forming mechanism to disambiguate the relationship (e.g., PART-OF)

of several coexisting events, and thus to decide when is it reasonable to form a

new, more specialized, context when two or more events coexist (e.g., when both

a CCTG-522 protocol event and an AZT event are detected), and which event is

the subevent (i.e., the subcontext) of the other.  Similar reasoning is useful also

for knowlede-acquisition and maintenance purposes.

The parameter-properties ontology (see Figure 5.2) does not necessarily contain a

node corresponding to every possible event chain (that is, not every potential

composite context is represented).  The nonexistence of a specialization signifies

that, for that particular context, the abstraction is not  relevant, thereby cutting

down on unnecessary inferences.

Contemporaneous context intervals whose respective interpretation contexts

belong to the subcontext relation can form a composite interpretation context.  As

mentioned in Section 4.2.1, the set of all the potentially relevant interpretation

contexts and subcontexts of the domain and their properties defines a context

ontology  for the domain.  Figure 5.4 presents a small part of the context ontology

for the protocol-management domains.

The context ontology, like the parameter and event ontologies, is represented as a

frame hierarchy.  The types of semantic links among context nodes in the context

ontology include IS-A and SUBCONTEXT relations.  The knowledge represented in

the context ontology complements the knowledge represented in the parameter

ontology and the event ontology and assists the context-forming mechanism in

forming correctly context intervals from several contemporaneous context

intervals.  For instance, the interpretation context induced by an event, or one of

that events’ subevents (subparts), does not necessarily bear the name of its

inducing event, nor does it necessarily have the same temporal scope; the only

indication for a SUBCONTEXT relationship exists in that case in the context

ontology.  Thus, an AZT subevent within the CCTG-522 protocol event (see
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Contexts

PAZ protocol CCTG-522 protocol

T/S_therapy AZT_toxicity

High-dose_AZT_toxicity

Figure 5.4:  A portion of the context ontology in the protocol-management domain, showing the

interpretation contexts induced by the CCTG-522 AIDS-treatment protocol and by its subevents.

 = class;   = IS-A relation;  = SUBCONTEXT relation.  See also Figure 4.2

(dynamic induced reference contexts) and Figure 5.3 (part of the corresponding event ontology).

Figure 5.3) induces a potential AZT-TOXICITY interpretation context that has a

different name, that whose context interval has a somewhat different temporal

scope (see Figure 4.2) from its inducing event, and that has a SUBCONTEXT

relation to the CCTG-522 (direct) interpretation context (see Figure 5.4).

In addition, knowledge such as that the PREBREAKFAST interpretation context

(induced by a morning meal), important for interpreting correctly glucose values

(in the diabetes-monitoring domain), has an IS-A relationship to the more general

PREPRANDIAL context (induced by any meal), is represented explicitly only in the

context ontology of the diabetes-monitoring domain.  (More information about
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the diabetes domain will be presented in Section 6.3.)  Finally, special

interpretation contexts such as uniform contexts  and nonconvex contexts  (see

Section 5.1.2), if required for the particular domain and task, appear explicitly in

the context ontology.

The context-forming mechanism is implemented as a set of domain-independent

rules and functions in CLIPS that are triggered by the assertion of new tasks,

events, or abstractions in the temporal fact base, by the existence of certain

combinations of context intervals in the temporal fact base, or by updates to

existing events or abstractions.  The rules have access to the event, context and

parameter ontologies.  Thus, the context-forming mechanism depends implicitly

on the structure  of the event ontology, although it does not depend on that

ontology’s specific content.  A knowledge engineer using the context-forming

mechanism in domains that are already modeled by an ontology, possibly with a

different structure, must either model the domain’s events as a RÉSUMÉ event

ontology, or create an appropriate mapping between the existing domain’s

ontology and the event ontology needed by RÉSUMÉ.  Such a mapping might

allow for adding some knowledge at knowledge acquisition time (such as

DIRCs) and redefine missing relations (e.g., the PART-OF relation assumed by the

context-forming mechanism might simply have no equivalent in the new

domain, or, more commonly, might map to a different existing relation, such as

COMPONENT).  The context ontology is an internal structure to a temporal-

abstraction ontology, since it lists the relations among interpretation contexts, a

concept, unique to the knowledge-based temporal-abstraction method, that is not

expected to exist in the domain or to be mapped to an entity within that domain.

A similar argument applies to the parameter  ontology, though some of that

ontology’s relations (in particular, IS-A) might be mapped from an existing

ontology of the domain.

It is important to note that the rest of the temporal-abstraction mechanisms,

which operate strictly within the temporal span of context intervals, do not

depend on the way that interpretation contexts are created.  These mechanisms

assume the existence of context intervals and of the interpretation contexts as
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part of the parameter propositions.  The context-forming mechanism is thus the

only interface with the domain’s events (or rather, with the task-specific

representation of these events in the event ontology), and shields the rest of the

temporal-abstraction mechanisms from any need to know about these events or

their structure.

5.3  The Temporal-Abstraction Mechanisms in the RÉSUMÉ System

The temporal-abstraction mechanisms that I discussed in Section 4.2 create in the

temporal fact base (see Figure 5.1) state-, gradient-, rate- or pattern-abstraction

intervals.  The mechanisms are implemented as sets of domain-independent

rules and functions in CLIPS that can access the frame-based parameter-

properties, context, or event ontologies.  The rules are triggered in a data-driven

fashion, creating (or deleting) abstraction intervals continuously in response to

the assertion of new data or events in the temporal fact base.  The temporal-

abstraction mechanisms do not operate in a fixed order, but instead iterate

alternately, activated by the currently available data and by the previously

derived abstractions.  (See also Section 5.3.1 and 5.4 for more details regarding

temporal-pattern matching.)

5.3.1  Control and Computational Complexitiy of The RÉSUMÉ System

In general, the temporal-abstraction mechanisms operate in a data-driven

manner.  However, an organization of the temporal-abstraction mechanisms by

input and output types permits a goal-oriented approach to the use of these

mechanisms by an automatic planner or by a human user of the RÉSUMÉ

system.  A goal-oriented approach controls the type of output abstractions

desired, thus providing a view of the temporal-abstraction task oriented toward

the specifications of the task to be solved, rather than toward the mechanisms to

be used.  The rules are organized by the kind of mechanism, by the type of input

(point, interval) and by the type of output (abstraction type).  Input types include

primary (point-based) or secondary (interval-based) data (see Section 4.2.4).

Output types include state , gradient , rate,  and pattern  abstractions.  The three basic

temporal-abstraction mechanisms (i.e., the contemporaneous-abstraction,
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temporal-inference, and temporal-interpolation mechanisms) usually form

abstracted intervals only from abstractions that have the same abstraction type—

for instance, state (e.g., HIGH or LOW) or gradient (e.g., INCREASING or SAME).  In

addition, these abstractions are usually formed only within the same context and

for the same parameter.  Both access to and computation of potentially applicable

temporal-abstraction functions are thereby reduced to a minimum.

Ordinarily, the temporal-abstraction task, as solved by the knowledge-based

temporal-abstraction method, involves all temporal-abstraction mechanisms, and

creates all relevant abstractions.  However, we may wish, for instance, to invoke

only those parts of the mechanisms that involve primary or secondary state

abstractions.  Moreover, we may be interested in only specific classes of

abstracted parameters and contexts.  Such an extension is built into the current

system and allows the knowledge engineer configuring the knowledge-based

temporal-abstraction method for a particular task to decode which mechanisms

should be employed and what types of output abstractions are required, by

modifying a special RÉSUMÉ domain-specific control file .  In addition, the

structure of the parameter-properties ontology created (or mapped from an

existing one) for a task can be used as part of the control:  If the gradient

abstraction class of Hb is not included in a certain context, the creation of

Hb_GRADIENT values in that context and all of its subcontexts is prevented.

Finally, the parameter-properties, context, and event ontologies includes only

classes and subclasses, but not instances , thus always allowing the option of

subspecializing any existing class.  When creating a particular application for a

specific domain, using the temporal-abstraction ontology created for that

domain, the designer has to specify an ontology instances file.  The instances file

includes the only instances of parameter, event, and context classes (from the

parameter-properties, event and context ontologies) that will actually be used in

that particular application, thus allowing even tighter control.  (In principle, since

the knowledge-acquisition process is driven by the ontology of the knowlege-

based temporal-abstraction method, there should be in the resultant domain

ontology no  completely redundant parameters or contexts; that is, they should

have a role in some  temporal-abstraction task relevant to the domain.  The reason
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is that the domain expert has indicated, in the case of parameters, that they

should be included in the structure of the ontology; or has chosen, in the case of

subcontexts, to distinguish, for some domain-related reason, between several

variations of the same context.)

By limiting the type of output abstractions, the class of required parameters, the

contexts in which outputs are being generated, the parameter instances with

which reasoning  can be done, and the type of inferences occuring, the RÉSUMÉ

system mimimizes the number of intervals that actually are generated and the

complexity of the inference involved in generating these intervals.

Furtheremore, no more than O(n ) basic-abstraction intervals (namely those

generated by the contemporaneous-abstraction, temporal-inference or temporal-

interpolation mechanisms) can be generated for any given parameter, context,

and abstraction type, given n data points, since basic-abstraction intervals are

convex.  Even if we also count all possible intermediate abstractions of the same

value that can be joined up recursively to one interval, there cannot be more than

O(n) intervals, since once a parameter point is made part of a parameter interval,

it cannot be used as part of another parameter interval for the same parameter

and abstraction type.  Thus, new parameter intervals for the same parameter are

longer then those from which they are derived.  The temporal-pattern–matching

mechanism (which can use any number of different parameters and contexts) can

have, in theory, exponential complexity.  However, that mechanism mostly

serves as a filter for the user, detecting highly specific internal patterns, or

presenting only patterns specifically queried at runtime.  In addition, the

RÉSUMÉ system exploits, in the case of internally matched patterns, the efficient

RETE pattern-matching algorithm [Forgy, 1982].  This algorithm is employed by

the CLIPS shell to match left-hand sides of rules, and fits especially well with the

task of matching temporal patterns from data arriving in some temporal order.

The RETE algorithm incorporates each new datum (in this case, usually a

parameter interval) into a network of tokens  in a continuous manner.  Although

complexity is still exponential in the worst case, typical cases have linear time

complexity, since patterns are being matched partially in a continuous manner.
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5.4  The Temporal Fact Base and Temporal-Pattern Matching

The input data for the RÉSUMÉ system and the system’s intermediate and final

output conclusions are stored in the system's temporal fact base.  The temporal

fact base is a database of intervals of various types (events, contexts, primitive

parameters, abstract parameters) that are implemented as different types of

CLIPS templates (dynamically typed records).  An interval has a start point and

an end point.  Both points have a varying temporal granularity.  For instance, the

start point might be known up to only 1-day’s accuracy (e.g., “January 29, 1992”).

The temporal granularities used for specifying the knowledge in the domain’s

ontologies can also vary (e.g., YEAR, DAY, or HOUR might be preferred by the

domain expert when creating a maximal-gap (∆-function) table). However, the

designer can always specify what is the standard time unit into which all units of

static data (i.e., existing knowledge) and dynamic data (i.e., the input and

concluded output) should be translated during runtime.  (Thus, the internal

values of ∆-function or rate-classification tables are preprocessed for efficiency

purposes before reasoning is initialized, by converting them into the standard

time unit.  Such a conversion exploits the declarative nature of these functions;

see Section 5.1.1.)

The temporal fact base is loosely coupled to an external database (e.g., a

relational database from which tuples are read and converted into the RÉSUMÉ

format), and derives events and primitive data from the latter.  Insertion into the

temporal fact base of an event (possibly inducing a new interpretaion context), of

a new data point (creating a 0-length, usually primitive, parameter interval), or

even of a physician-asserted time-stamped abstract parameter (creating an

abstraction) can trigger one or more of the data-driven temporal-abstraction

mechanisms, thus either adding or deleting other abstracted intervals or contexts

to or from the temporal fact base.  The abstractions also can be stored in the

external database, permitting complex temporal queries to the external database,

by other temporal-query mechanisms, for other purposes [Das et al., 1992; Das

and Musen, in press].
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The RÉSUMÉ system implements the temporal-pattern–matching mechanism as

two temporal-pattern–matching languages:

1.  An internal language for representing in the parameter ontology, and for

detecting in the temporal fact base, domain-specific abstractions of type

PATTERN

2.  An external language for the user, for updating and querying the internal

temporal fact base during runtime.

The internal temporal-pattern–matching language is used mainly to represent in

the parameter ontology classification knowledge involving abstract parameters

of type PATTERN (see Section 4.2.5).  Recall that pattern abstractions are first-class

parameters in the domain’s parameter-properties ontology.  Their main

distinguishing properties are a set of defining temporal templates, similar in

structure to intervals in the temporal fact base (abstraction, context, and event

intervals), a set of parameter-value and temporal constraints, and a concluded

abstraction interval of type PATTERN.  At runtime, the temporal-pattern–

matching mechanism can create pattern-type abstractions from these templates,

in an analogous manner to the creation of state abstractions by the

contemporaneous-abstraction mechanism from mapping tables of state

abstractions.

The external temporal-query language is another part of the temporal-pattern–

matching mechanism.  That language enables the user to assert data and events

into the fact base and to query the data using a set of predefined queries, each of

which includes the parameter’s name, the abstraction type, parameter value,

lower and upper temporal bounds, minimal and maximal abstraction length

looked for, minimal and maximal parameter-value deviation between start and

end points, relevant contexts, and several simple relations between the given

time bounds and the abstractions looked for.  Several common types of queries

can be asked.  Query types include predicate  queries, set queries, and value

queries.  Predicate queries  (“is some pattern true?”) return TRUE or FALSE.  Set

queries  (“in what intervals does some pattern exist?”) return a set of intervals for
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which the pattern is true.  Value queries (“what is the value of some parameter

during some interval?”) return a numeric or a symbolic parameter value, if that

parameter exists during the interval queried, or else return the value UNDEFINED.

Here are some of the external query types predefined for the RÉSUMÉ user, and

can be used for interaction with RÉSUMÉ.  (Additional query arguments—such

as minimal and maximal time spans or minimal and maximal value deviations at

the interval edges—exist, but are not presented in the examples).

• OVERALL (parameter name, abstraction type, start time, end time, context)—a

set query:  Return all  values of the parameter and abstraction

type relevant to the given time span and context

• EXISTS_WITHIN (parameter name, abstraction type, parameter value, start

time, end time, context)—A set query:  Return intervals with

specified value whose temporal span is completely included

within the time interval [start time, end time] and is within the

temporal span of the interpretation context context .  The

intervals might exist only during some of the time span

specified.

• EXISTS_THROUGHOUT (parameter  name, abstraction type, parameter value,

start time, end time, context)—a set query:  Return intervals with

the specified values whose temporal span includes the given

time span (i.e., is it true that this abstraction holds throughout

the given time span and context, and if so, what are the longest-

possible intervals including that abstraction?)

• VALUE (parameter name, abstraction type , start time, end time , context)—a

value query:  Return—if possible—the value of the respective

parameter and abstraction type that holds throughout  the given

time span; otherwise return UNDEFINED.

In general, contained (intermediate-conclusion) intervals with the same

properties are not  returned, as we are interested in only the longest interval, as a
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default, even though intermediate conclusions might have created intervals

contained within the longest interval.

The query language’s notation includes the temporal terms INIT (0 time),

PRESENT, +INFINITY (both greater than the time of any measured value), -INFINITY

(smaller than the time of any measured value), NIL (unbound value), and *? (the

wild card, that stands for any value).  (A similar notation is used by the domain

expert or the designer when defining or acquiring tables of ∆-function,

inferential-properties, or inference.)  The RÉSUMÉ system’s internal temporal-

comparison functions (e.g., BEFORE and DURING, as well as absolute time

differences) are in fact a set of methods  that can deal with various argument types,

including symbolic measures of time (and allowing for domain-specific time

units that might have complex structures).

Because several context intervals over which different interpretation contexts are

interpreted can exist contemporaneously, and because the parameter-properties

ontology is specialized by the different contexts, it is possible to have several

abstraction intervals with different values for the same parameter (e.g., the

Hb-level state abstraction) at the same time—one for each valid and relevant

context (e.g., two contemporaneous parameter intervals, LOW(Hb) in the context

of having AIDS without complications, and NORMAL(Hb) in the context of being

treated by a medication that has an expected side effect of bone-marrow toxicity).

Thus, the RÉSUMÉ system maintains several concurrent views  of the

abstractions in the temporal fact base, denoting several possible interpretations of

the same data; a meaningful query thus must specify one or more contexts.

Effects of updates to input parameter points and intervals or to input event

intervals, that might cause deletion of existing, previously concluded contexts

and abstractions are mediated in the RÉSUMÉ system through a truth-

maintenance system.  Thus, the propagation of changes throughout the temporal

fact base is limited to only those intervals that might be affected by the change,

while maintaining the validity of the temporal fact base.  (The temporal fact base

is thus essentially a historic  database; see Section 3.1.7).
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5.5  The Truth-Maintenance System

In Section 4.2.6 I explained that all system-created intervals (abstracted and

context intervals) are potentially refutable by any modification of the known data

points, abstractions, or events.  Thus, one of the inherent requirements of the

temporal-abstraction task is that we allow for a defeasible logic.  Data might arrive

in the present (with respect to the transaction  time; see Section 3.1.7), but pertain

(with respect to the valid  time; see Section 3.1.7) to an earlier time point.  We must

then be able to revise efficiently our former assessment of the situation.  I call this

phenomenon (see Section 4.2.6) an updated view .  Alternatively, we might have

to update former conclusions and to revise assessments of former decisions when

given new data (this has been called by researchers the hindsight phenomenon).

Changes in parameter points and intervals occur incrementally, following

updates to either present or past time-stamped data or events.  The changes

always start with a specific parameter point or interval, and propagate

throughout the dependency graph of events, contexts, primitive data, and

abstracted intervals.  The updating process uses the CLIPS internal justification-

based truth-maintenance system  (TMS ) to retract all conclusions that are

potentially not valid.  For instance, parameter points that inherited their

parameter value through the use of the temporal-inference mechanisms from an

abstraction (super)interval that was retracted would be retracted, unless at least

one other valid justification remains for that value.  (The reasoning process is

activated after a retraction process; some abstractions might then be recreated

due to a new valid inference.)  The temporal-abstraction mechanisms use the

CLIPS TMS to create dependencies among data points and intervals, among

abstracted points and intervals, and among abstracted intervals and other

abstracted intervals.  For instance, when two meeting intervals are concatenated,

the truth value of the characterization attached to the resulting superinterval

depends on the truth value of the characterizations attached to both of the

subintervals that formed the longer superinterval, and should be modified

correctly, if either of the determining characterizations changes.  In addition, the

temporal-inference mechanism extends the CLIPS TMS.  The extensions use the
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temporal-abstraction semantics and the temporal-abstraction knowledge

represented within the parameter-properties ontology to detect previously false

conditions that became true , necessitating retraction of prior conclusions.  For

instance, using the DOWNWARD-HEREDITARY semantic property (see Section

4.2.3), the temporal-inference mechanism can not only create new conclusions for

subintervals of parameter intervals, but also can notice that parameter values for

similar-type parameter propositions within those subintervals (e.g., LOW(Hb))

actually differ from the parameter value of the parameter superinterval (e.g.,

HIGH(Hb), a longer interval that was created when the included interval was

unknown).  Such a difference is a contradiction and requires retraction of at least

one of the intervals.  Thus, the temporal-semantic properties of parameter

propositions are used not only for the task of deriving further conclusions, but

also for the task of detecting contradictions in existing ones.  Following that task,

several heuristics are used in order to decide which of the parameter intervals

should be retracted (e.g., primitive input data is never retracted, only abstract

conclusions that might be no longer true).  Finally, the results of retracting one or

more parameter intervals are propagated through the underlying TMS.  A new

abstraction (reasoning) cycle is always performed following such a retraction, so

that new conclusions that became true might be generated and asserted in the

temporal fact base, and so that conclusions that were retracted but that might still

be true would be reasserted.

Note that certain of the advantages inherent in the TMS are usually lost for the

purpose of conducting, say, another consultation on the following week, when

the resultant conclusions are saved in an external database.  Typically,

commercial databases do not have TMSs and therefore the dependency

information is lost, making it dangerous to rely on conclusions whose justifying

data might have been modified.  The complex issues raised by an integration of

temporal-reasoning and temporal-maintenance systems are myriad.  I discuss

some of these in Section 8.4 when I describe several implications of this research.
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5.6  Discussion and Summary

I have presented the structure of the RÉSUMÉ system, which implements the

knowledge-based temporal-abstraction method and the five temporal-abstraction

mechanisms I defined in Chapter 4 for solving the five subtasks that that method

poses.  The RÉSUMÉ system includes a temporal-reasoning module that interacts

with an internal temporal fact base, and that draws its knowledge from the

domain-specific event, context, and parameter ontologies.

Note that most of the desired computational properties for temporal-abstraction

systems that were emphasized by previous researchers in clinical summarization

systems (see Section 3.2), and in particular, those that I summarized in Section

1.1, are an automatic byproduct of the RÉSUMÉ system’s architecture.  For

instance, the ability to accept data out of temporal order is inherent in the

temporal fact base that preserves valid time stamps and in the temporal-

abstraction mechanisms that, at all times, have access to all of input parameters

and output abstractions.  Similarly, the ability to handle input at any level of

abstraction derives from the knowledge of and the access to the domain’s clinical

abstraction hierarchy (i.e., the structural and classification knowledge).  Updates

to present and past data are propagated by the enhanced TMS.  Several features

of the RÉSUMÉ system contribute to its flexibilty.  Both the foresight  and the

hindsight  aspects are derived from the forward- and backward-decay local and

global persistence functions, from the prospective and retrospective dynamic

contexts that are created when certain events or abstractions are asserted, and

from the temporal pattern-matching queries that include past and present data.

Another desired feature is that RÉSUMÉ can handle several interpretations of the

same data concurrently  by maintaining several predefined or dynamically

generated interpretation-context intervals, each of which has its own set of

classifications and other temporal properties.  Thus, there can be several

interpretations of the same data pattern, depending on the interpretation context;

the end user (e.g., the attending physician) is presented with the interpretation

corresponding to the interpretation context specified in the query, and can make

the final judgement as to which interpretation context is more relevant.
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Sometimes, more than one of the interpretation contexts is relevant, since they

are not necessarily mutually exclusive.  On the other hand, contexts can share

results by using the context-sharing  feature, which can be specialized to particular

interpretation contexts and parameter values.

The acquisition and maintenance of temporal-abstraction knowledge is facilitated

by the uniform table objects, which have several well-defined semantic types.

The tables are inhereted to more specialized contexts and represent hundreds of

parameterized abstraction rules.  In general, the acquisition of temporal-

abstraction and its maintenance is facilitated by the structure of the parameter,

event, and context ontologies.  For instance, the organization of the parameter

ontology by abstraction types with specialization by interpretation contexts

maximizes the inheritance of abstraction knowledge through higher-level

abstraction types (e.g., GRADIENT) and parameter schemas (e.g., the Hb

parameter).

I have also discussed the data-driven and goal-directed modes of controlling the

output of the RÉSUMÉ system.  Even when many abstractions are created, the

user does not need to see all of the intermediate abstractions, since she

communicates with the resulting abstraction database by using a temporal query

language (either by accessing the temporal fact base directly or by storing the

resultant abstractions in a relational, temporally oriented database and by

referring the question to that database).

One promising line of future research is developing the full specification of the

internal and external temporal-abstraction pattern-matching languages that are

based on the semantics of the  abstraction and context intervals created by the

other temporal-abstraction mechanisms, possiby within a generalized

architecture for both temporal reasoning and temporal maintenance (see Section

8.4.2).  Implementing such an architecture was not a major effort of the current

research, whose major thrust was to understand the abstraction process and the

knowledge needed for that process and to represent that knowledge as clearly as

possible.
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6  Application of Knowledge-Based
Temporal Abstraction

In Chapter 4, I presented a knowledge-level  view of the knowledge-based

temporal-abstraction method.  In Chapter 5, I presented a knowledge-use  view of a

particular implementation of that method: The RÉSUMÉ system.  In this chapter,

therefore, I address several natural questions regarding the methodology that I

described: What are the knowledge-acquisition implications of that

methodology, what are the applications of the knowledge-based temporal-

abstraction method to specific domains, and how can we evaluate its multiple

aspects?

There are several possible evaluation criteria for the knowledge-based temporal-

abstraction method and its implementation as the RÉSUMÉ system.  Rather than

being one method or a single problem solve, the problem-solving method I

described and its implementaion constitute a framework for reasoning about

abstractions in time and for building problem solvers for that task.  I have

mentioned several of the possible evaluation criteria in Chapter 3, when I

compared the completeness of the representation and the expressiveness of the

knowledge-based temporal-abstraction method with previous temporal-

reasoning approaches and systems.  A comprehensive discussion of the

knowledge-based temporal-abstraction method and the RÉSUMÉ problem solver

based on it, compared to the desiderata of Section 1.1, and to previous systems, is

presented in Sections 8.2 and 8.3.

Additional criteria useful for evaluating knowledge-based systems were

discussed in Chapter 4, such as knowledge representation, knowledge

acquisition, and knowledge maintenance advantages of the explicit interface

presented by the four knowledge types required for instantiating the five

temporal-abstraction mechanisms, and the clear computational semantics of

these mechanisms.  These criteria are also discussed in Section 8.2.
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I discussed yet other representational and computational aspects in Chapter 5, in

which I described the implementation of the knowledge-based temporal-

abstraction method as the RÉSUMÉ system.  For instance, I described the

organization of temporal-abstraction knowledge by abstraction types specialized

by contexts; the declarative representation of classification functions as tables

with several semantic axes; the use of multiple concurrent interpretation

contexts; the flexibility of sharing selectively abstractions over different contexts;

the use of the underlying nonmonotonic framework (the TMS), and the

integration of the TMS with the temporal-semantic–inference subtask executed

by the temporal-inference mechanism.

Therefore, in this chapter, I demonstrate (1) the work involved in acquiring and

representing the four types of knowledge that the knowledge-based temporal-

abstraction method requires, for the purpose of building a temporal-abstraction

system in a new clinical area; (2) the results of that knowledge-acquisition effort,

and (3) the results of using the RÉSUMÉ system in several specific clinical

domains, assuming that the knowledge acquired for these examples was

sufficiently complete to demonstrate meaningful conclusions.  (Note that the

assumption of a complete (and sound) knowledge base is a strong one; therefore,

the results of using any particular knowledge base neither validate nor invalidate

the other aspects of the framework presented in this dissertation.)

In the following sections I shall present examples of the use of the RÉSUMÉ

system in several different clinical domains: protocol-based care (and three of its

subdomains), monitoring of children’s growth, and therapy of insulin-dependent

diabetes patients.  I have applied the RÉSUMÉ methodology to each domain in

varying degrees.  Sometimes, my focus was evaluating the feasibility of

knowledge acquisition (including the time required for that process), knowledge

representation and knowledge maintenance (i.e., modifications to the resultant

knowledge base).  In other cases, I emphasize application of the resultant

instantiated temporal-abstraction mechanisms to several clinical test cases.  In

one domain, I applied the RÉSUMÉ system, instantiated by the proper domain

ontology, to a larger set of clinical data.  I shall therefore demonstrate most of the
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expected life cycle in the development and maintenance of a temporal-

abstraction system.

6.1  Protocol-Based Care

The knowledge-based temporal-abstraction method seems especially suitable for

representing and applying the knowledge required for application of clinical

guidelines.  In particular, it is suitable for representing knowledge specified in

clinical protocols for treatment of chronic diseases.  I have therefore tested the

knowledge representation capabilities of the initial RÉSUMÉ prototype using

knowledge acquired from two protocols:  (1) The California Collaborative

Treatment Group (CCTG) CCTG-522 experimental protocol for AIDS therapy

(CCTG, personal communication) and (2) The prednisone/azathioprine  (PAZ)

protocol for treating patients who have chronic graft-versus-host disease

(GVHD) (a complication of bone-marrow transplantation), that  was used by

investigators at the Fred Hutchinson Cancer Center in the University of

Washington, Seattle (Sullivan, K.M., personal communication).

Apart from these two main experiments, I have also collaborated with an AIDS

expert (J. Sison, M.D.) to determine the work required for acquisition of the

knowledge needed for instantiating the RÉSUMÉ problem solver in the domain

of protocol-based prophylaxis of toxoplasmosis  infections in patients who have

AIDS.

In the first two cases, the knowledge-acquisition effort involved reading all the

protocol-related documents carefully (approximately 2 hours each) and acquiring

certain specific knowledge item, such as maximal-gap functions, from Dr. Sison

and other collaborating physicians, who had more experience in these domains

(approximately 2 more hours).

In the toxoplasmosis-prophylaxis  domain, the process involved three 1-hour

interviews, using the protocol text as a starting point.
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In all cases, I determined the classification tables for the contemporaneous-

abstraction mechanism directly from the protocols, and represented them using

the formal classification-table types supplied by RÉSUMÉ (see Section 5.1.1).  An

example of a maximal-OR range table defining the SYSTEMIC TOXICITY parameter

in the CCTG-522 context appears in Table 5.2.  For inferential properties and

inference tables, I used the default values inherited from the appropriate

abstraction class.  I set the maximal-gap ∆-function tables manually, based on the

estimates provided by the collaborating physicians.  In Figure 5.2, I present a part

of the resultant parameter-properties ontology for the protocol-based therapy

domains; in Figure 5.3, I show a part of the corresponding event ontology; in

Figure 5.4, I show part of the resulting context ontology.

In the case of the CCTG-522 and the toxoplasmosis protocols, my goal was

mainly to prove the feasibility of representing in a disciplined fashion the

temporal-abstraction knowledge implicit in a large protocol, using the language

supplied by the RÉSUMÉ parameter and event ontologies.  I have applied the

knowledge represented in this way to several demonstration cases, to test the

RÉSUMÉ prototype.  In the case of the GVHD domain, I was also given several

realistic GVHD scenarios by organizers of the American Association of Artificial

Intelligence (AAAI) 1992 Spring Symposium on Artificial Intelligence in

Medicine.  I applied to these scenarios (augmented by additional simulated data

of the type expected in such cases) the knowledge represented in the parameter

and event ontologies that was relevant to the domain of chronic-GVHD therapy

(see Figures 5.2 and 5.3).  The knowledge regarding abstraction of chronic-GVHD

states was represented in the parameter ontology mainly as parameters

specialized by the PAZ context and its subcontexts (see Figure 5.2) and was

available to the RÉSUMÉ system when the input parameters were asserted in the

temporal fact base [Shahar et al., 1992a].

In Figure 6.1, I show several of the hematological state abstractions that RÉSUMÉ

created during a PAZ protocol event from a set of platelet- and granulocyte-

count (primitive) parameters.  The time line in Figure 6.1 corresponds to days

after a bone-marrow–transplantation event that occurred on day 0.  The figure
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Figure 6.1:  Abstraction of platelet and granulocyte counts during administration of a

prednisone/azathioprine (PAZ) protocol.  The AGVHD and CGVHD abstractions were asserted,

in this case, by the attending physician.  The PAZ interpretation context was induced by the

presence of a PAZ protocol-administration event, which is not shown.  The time line starts with

the BMT event.

 = open context interval;  = closed context interval;  = open abstraction interval;

 = closed abstraction interval.  • = platelet counts; ∆ = granulocyte counts; BMT = bone-

marrow transplantation event; AGVHD = acute graft-versus-host-disease; CVGHD = chronic

graft-versus-host disease; M[n] = myelotoxicity grade n ;  P[n ] = platelet toxicity grade n ;  G[n] =

granulocyte toxicity grade n.
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also demonstrates prospective interpretation contexts for acute and chronic

GVHD states that are induced by the bone-marrow–transplantation event.

Prospective interpretation contexts enable, for instance, the efficient use of a

context-specific mapping function that can recognize acute GVHD states that are

meaningful in only the first few months following the transplantation.

The PAZ interpretation context in Figure 6.1 was induced by the presence of a

contemporaneous PAZ protocol-administration event, which is not shown.  The

acute and chronic GVHD abstractions were assumed, in this case, to be asserted

by the physician; they could have been created by RÉSUMÉ, if the input included

necessary parameters, such as liver-enzyme values and results of physical

examinations.

Most of the knowledge about primitive and abstract hematological parameters

turned out to be shared by the three protocols I have mentioned, and therefore

did not have to be acquired again, once it was defined.  All that was necessary

was to add additional contexts that inherited all of the known abstraction

knowledge, and to modify small parts of the declarative tables (see Figure 5.2).

This aspect of designing new knowledge-based temporal-reasoning systems in

the domain of clinical guidelines is quite encouraging.

The abstractions shown in Figure 6.1 conform to the conclusions that I reached by

examining the data and the protocol manually.  This simple experiment

demonstrated the feasibility of the approach for representing and sharing the

knowledge implicit in several different protocol-based–care subdomains as

temporal-abstraction ontologies.  It also showed that the automated application

of the knowledge represented as these ontologies, using the domain-independent

temporal-abstraction mechanisms, results in meaningful output abstractions.

6.2  Monitoring of Children’s Growth

Wishing to evaluate the knowledge-acquisition process required to create a

domain-specific  temporal-abstraction ontology, and to examine the resultant
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abstractions using that ontology, I chose the domain of monitoring children’s

growth to detect possible growth problems.

Pediatricians record parameters related to growth using growth charts.  Growth

charts  include measurements of height , weight, and sexual-maturation (Tanner)

stages (mainly breast development for females; pubic hair paterns for both sexes;

penis and testicle sizes for males).  Parent data, such as height, also are often

recorded.  X-ray images of the wrist are often taken to determine the child’s bone

age  (as opposed to chronological age).  The physician’s major goal in the analysis of

pediatric growth charts and related data is to detect an abnormal growth curve—

in particular, a growth pattern that is too slow or too fast.

In the domain of monitoring children’s growth, I also tested a different aspect of

the knowledge-based temporal-abstraction method: The feasibility of acquisition

of the required knowledge by a knowledge engineer.  A physician (M. Kuilboer,

M.D.), as part of her Master’s degree research on the representation and analysis

of pediatric growth charts, performed most of the knowledge-acquisition process

manually, creating a growth-monitoring ontology [Kuilboer, 1994; Kuilboer et al.,

1993].

The knowledge-acquisition effort required five 2-hour interviews with a pediatric

endocrinologist (D. Wilson, M.D).  Drs. Kuilboer and Wilson did not have access

to the program code for the temporal-abstraction mechanisms.  The physicians,

therefore, could use only the domain-ontology structures (and the knowledge-

acquisition methodology implied by the knowledge-based temporal-abstraction

method) as an interface to RÉSUMÉ.  Dr. Kuilboer was not familiar with CLIPS

(the development shell of RÉSUMÉ), and used a text editor to create the growth-

monitoring ontology.10  Figure 6.2 shows a part of the resulting structure of the

parameter-properties ontology for the growth-monitoring domain.

10Dr. Kuilboer and I considered using a preliminary version of a PROTÉGÉ-II tool for acquiring
ontologies [see Section 2.2] for creating at least the basic structure of the growth-chart ontlogy,
but we decided to avoid complicating the experiment by introducing additional factors.  In
addition, several additional features are necessary for automated acquisition of temporal-
abstraction knowledge; see Chapter 7 for that discussion.
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In the domain of monitoring children’s growth, acquiring the structural knowledge

of the parameter-properties ontology turned out to be the main task. It required

three meetings (about 4 hours of Dr. Wilson’s time), since it was crucial to define

precisely the relevant parameters, interpretation contexts, and relations among

the parameters.  Once the structural ontology was approved by the expert, filling

in the declarative classification and inference tables was relatively

straightforward (another 2 hours of the expert’s time).  Maximal-gap (∆)

functions of abstract parameters were set to infinite persistence of value, since

most abstract parameters were measured by, or abstracted from, standard

deviation scores from the expected, individualized curve for that parameter.

Parameters

Abstract Primitive

Abstractions

State

abstractions

Gradient

abstractions

Rate

abstractions

Physical Radiology

Tanner

 HTSDS

Height Boneage

Maturation

HTSDS_state

HTSDS_STATE_STATE

(alarm states)

HTSDS_gradient HTSDS_rate

Constant

Population
distribution

Tanner_state
(Tanner SD)

Boneage_state
(boneage SD)

Figure 6.2 :  Part of the parameter-properties ontology for the domain of monitoring children’s

growth.  The HTSDS parameter has an ABSTRACTED-FROM relation to the Height parameter, to

the internal constant parameters Gender and Midparental_height (not shown), and to the external

constant parameter Population-distribution.  The Tanner class includes several primitive and

abstract subclasses of Tanner sexual-maturation–staging parameters, such as measurements of

breast development and pubic-hair.   = class;  —> = IS-A relation; --> = ABSTRACTED-INTO

relation; SD = standard deviation; HTSDS = height SD score; HTSDS_state = HTSDS

classification; HTSDS_state_state = HTSDS_state mapping into (potential) alarm states.



Chapter 6:  Applying Knowledge-Based Temporal Abstraction

230

The growth-monitoring domain includes relatively few primitive parameters.

Thus the base of the growth-monitoring ontology—the number of primitive

parameters for the task—is small, relative to other domains.  With respect to the

height—measured by the length of the maximal directed path in the graph

representing the relations among classes—the ABSTRACTED-INTO hierarchy of the

growth-monitoring domain was relatively tall (See Figure 6.2).  The growth-

monitoring ontology’s ABSTRACTED-INTO hierarchy contrasts with ontologies of

typical protocol-based–care domains.  In such domains, the ABSTRACTED-INTO

hierarchy usually has a broad base of primitive, measured data, but often

includes only one or two abstraction levels.  The context-specific IS-A hierarchy in

such domains, however, is often taller (see Figure 5.2).

Some of the domain-specific computational-transformation functions which

created the patient-specific state abstractions of the height and maturation

parameters were complex domain-specific functions.  For instance, the height

standard-deviation score (HTSDS) was abstracted from the Height parameter,

the internal-constant Gender and Mid-parental-height parameters, and the

external-constant Population-distribution (of height values) parameter (see

Section 4.1).  The Maturation parameter was abstracted from the individual

Tanner stages (e.g., breast development), the bone age, and the Population-

distribution (of maturation stages) parameter.  All such abstractions could be

computed, in principle, by classification tables and functions, since the relations

among all parameters were explicitly defined in the parameter ontology.

However, we found it more efficient to exploit one of the features of the

RÉSUMÉ system—flexibility in input and output abstraction levels—and use an

external module for computing these intermediate-level abstractions.  The

HTSDS values were computed by Dr. Kuilboer’s CALIPER system for

computing expected individualized reference curves (IRCs).  IRCs use the

population distribution, but correct for the patient’s parents’ height and other

parameters [Kuilboer, 1994].  Thus, in this case the RÉSUMÉ system used as

input mostly intermediate-level abstractions, such as HTSDS and Maturation

scores.  (Such values might also be supplied as primitive-input parameters by a
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physician user.)  The RÉSUMÉ system is designed to accept data at any

conceptual level; all relations among the HTSDS abstract parameter, the

Maturation abstract parameter, and the rest of the parameters in the growth-

monitoring parameter ontology, are well defined.  Thus, this arrangement fit well

with the RÉSUMÉ philosophy and demonstrated the advantage of knowledge-

based, multiple-level input.

Since for technical reasons the knowledge acquisition and the use of the

RÉSUMÉ system in the domain of pediatric growth monitoring extended over

almost 1 year, we had several opportunities to test the flexibility of the

knowledge-representation methodology with respect to the maintenance. aspect.

Modifications and additions to existing tables often proved necessary (e.g.,

adding a new state abstraction or defining a pattern), and new interpretation

contexts and related abstractions were sometimes added for testing purposes

(e.g., MALE in addition to FEMALE).  Maintaining the domain ontologies required

minimal effort (typically a few minutes per modification), due to the

organization of abstractions by type (e.g., rate abstractions), the explicit relations

among parameters, and the frame-based inheritance of most temporal-

abstraction properties from higher abstraction classes.  The ease of maintenance

was tested severely when I had to maintain the knowledge base that was

originally created by Dr. Kuilboer.  Due to the explicit nature and semantics of

the growth-monitoring ontology, I needed only a few hours to understand its

structure completely and to add a modification.

Dr. Kuilboer and I tested RÉSUMÉ on three clinical cases previously diagnosed

by Dr. Wilson.  Figure 6.3 shows part of the resulting output for case 1 (a girl

who had precocious puberty).  The input included eight data points: Seven

values of the abstract HTSDS parameter and one value (not shown) of the

abstract Maturation parameter.  The output represents an answer to an

OVERALL-type query (see Section 5.4) regarding abstractions of the HTSDS

parameter.  The overall output abstractions were sufficient to conclude several
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Figure 6.3:  Part of the result of running RÉSUMÉ in the domain of monitoring children’s growth,

using the acquired parameter-properties ontology, on case 1 (female patient with precocious

puberty).  Input data and resultant abstractions are shown.  The input included seven values of

the abstract HTSDS parameter and one value (+1.53 SD) at the age of 10.2 years (not shown) of

the abstract parameter Maturation, abstracted from the breast (stage 4) and pubic-hair (stage 3)

Tanner stages and the bone age (14 years).   Intermediate-length abstractions are not shown.  The

external temporal-pattern query  was an OVERALL-type query for HTSDS abstractions.  The

overall pattern was compatible with a pattern of PRECOCIOUS PUBERTY.   = open-

ended context interval;  = closed abstraction interval.  HTSDS = height standard-deviation

score, measured in standard deviations from the expected individualized reference curve; • =

HTSDS abstraction; HTSDS_SS = HTSDS_state_state abstraction; HTSDS_G = HTSDS_gradient

abstraction; HTSDS_R = HTSDS_rate abstraction.
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meaningful alarm states and a pattern abstraction of a precocious-puberty

syndrome11 as that pattern was defined by Dr. Wilson.

The total number of abstractions at various levels created in the temporal fact

base was 50.  These abstractions included intermediate-length and intermediate-

level abstractions, which can be viewed also as partial computations (e.g., two

DECREASING(HTSDS) gradient abstractions that were joined into a longer

DECREASING(HTSDS) abstraction).  Intermediate-level abstractions were stored in

the temporal fact base and maintained by the truth-maintenance system for

additional queries necessitating them.  However, these abstractions were hidden

from the user; they were used mainly by the temporal-abstraction mechanisms.

The external-pattern–matching interface was sufficient to query when necessary

for only the interesting abstractions, and thus to sift quickly through the resulting

database of primitive and abstract parameter points and intervals.

The RÉSUMÉ system produced, in this case, 16 (88%) of the 18 abstractions

mentioned by Dr. Wilson.  Dr. Wilson agreed with 48 (96%) of the 50 abstractions

produced.

The abstractions in Cases 2 and 3 were compatible with a pattern of “short-

stature,” as that pattern was defined by Dr. Wilson12.

The abstractions that were produced in the three cases included most of those

that were volunteered by Dr. Wilson.  In particular, they included all of the

abstractions defining the highest-level pattern in these cases.  These abstractions

were not sufficient to conclude only one diagnosis.  However, the abstractions

produced by RÉSUMÉ in all three cases were sufficient for answering most

intermediate-level queries that Dr. Wilson would have asked, regarding possible

growth-development disorders, and for suggesting additional workup of the

11Precocious puberty is a hormonal disorder caused by various reasons.  The patient experiences
an early onset of sexual maturation during childhood, often accompanied by a fast, positive
change in the patient’s HTSDS, typically leading to a relatively very tall child.  The situation is
usually followed by an early onset of closure of the bone growth centers and thus a fast decrease
in the HTSDS, leading to a relatively very short child.
12“Short stature “ denotes usually a possible growth problem, but with no clear pathology; often,
it is explained by genetic reasons.
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patient.  For instance, a precocious-puberty diagnosis would typically be made

on the basis of additional hormonal tests, and not  on the basis of the growth-

monitoring parameters that suggested it.

The results of applying RÉSUMÉ to these three cases are summarized in Table

6.1.  For each case, the number of input parameter points (except for constant

parameters, such as Gender) is given, as is the total number of abstractions made

by the expert.  The total number of abstractions created by RÉSUMÉ is listed, too,

including intermediate-level abstractions.  The number of the generated

abstractions that were considered correct by the expert is noted, providing some

measure of a “temporal-abstraction predictive value.”  Finally, the number of the

expert’s abstractions that was produced by RÉSUMÉ is shown, providing some

measure of “temporal-abstraction sensitivity.”

One reason the expert did not agree with all the RÉSUMÉ output abstractions

was that, in some cases, the temporal-semantic properties (such as

CONCATENABLE) seemed to depend on the length of the interval over which a

parameter proposition was true.  Thus, a MILD-ALARM value of the HTSDS

abstraction might in general be concatenated to another MILD-ALARM value, but

Table 6.1 .  Abstractions formed by the pediatric endocrinologist and by the RÉSUMÉ system in

the domain of monitoring children’s growth.

Measure Case 1 Case 2 Case 3

Number of input data points 8 6 5

Number of expert’s abstractions 18 10 9

Total number of abstractions

generated by RÉSUMÉ

50 14 19

Number of generated abstractions

considered correct by the expert

48 13 18

Number of expert’s abstractions

generated by RÉSUMÉ

16 9 7
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 if the two abstractions existed for a significant period (e.g., 2 years each), the

result of the join might be better characterized as a more alarming state, due to

the long period.  In other words, two small problems might together prove to be

a bigger one.  Several solutions suggest themselves: Such a time-dependent join

might be represented as an abstraction of type PATTERN (while other joins are

prevented), or the length of time might be a factor for determining temporal

semantic properties, or the maximal-gap (∆) function for joining such intervals

should prevent the join.  It would seem that the first solution should suffice for

most domains, and has the advantage of not adding any undue complexity.

The main goal  in the growth-monitoring domain was not  to reach any final

diagnosis, but rather was only to decide whether there was any abnormality in

the growth chart that might fit a set of predefined internal patterns.  In addition,

a goal was to answer multiple user-defined temporal queries regarding relevant

intermediate-level abstractions.  If an  abnormality were detected by such an

internal or external query, the physician’s attention would be called to monitor

the particular child, or ask additional queries.

These two goals, an alarm-sounding goal and an interactive-querying  goal, are

typical of the intermediate-level diagnosis of the temporal-abstraction task.  They

are important both for highly structured, guideline-oriented domains, such as

protocol–based care, and for open-ended domains, such as growth-chart analysis.

The goal of supporting therapy decisions is demonstrated in the domain of

insulin-dependent–diabetes treatment, presented in Section 6.3.

6.3  The Diabetes-Monitoring Domain

As part of the AAAI 1994 Spring Symposium on Artificial Intelligence in

Medicine, participants were given access to a large electronic database including

measurements of glucose, administrations of insulin, and other data pertinent to

several patients who have insulin-dependent  diabetes mellitus (DM) (Kahn, M.
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G., personal communication).  I used this clinical database to test additional

aspects of the RÉSUMÉ system.  Working with two endocrinologists who

specialize in the care of patients who have insulin-dependent diabetes (F. B.

Kraemer, M.D., and L. V. Basso, M.D.), I created a parameter-properties ontology

for the domain of insulin-dependent diabetes (Figure 6.4), an event ontology

Mapping

  tables

Inference

  tables

Inferential

properties

Maximal-gap

   functions

Parameters

Glucose Qualitative_physical

Hypoglycemia_symptomsGlucose_state

Glucose_state_DMGlucose_state_state_DM

Glucose_state_DM_preprandialGlucose_state_DM_postprandial

State abstractions

Laboratory PhysicalAbstract

Glucose_state_DM_prebreakfast

Figure 6.4:  Part of the diabetes parameter-properties ontology.  The Glucose parameter is

abstracted into the Glucose_state parameter.  This abstract parameter has a specialized subclass in

the DM context, and is abstracted in that context into the Glucose_state_state parameter.  The

Glucose_state_DM class is further specialized in the preprandial and postprandial contexts, each

of which has several subclasses corresponding to the different relevant premeal contexts.   =

class;  = property;  = I S-A relation;  =  ABSTRACTED-INTO relation;

 = PROPERTY-OF relation; DM = diabetes mellitus.
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(e.g., insulin therapy, meals, physical exercise) (Figure 6.5), and a context

ontology (e.g., preprandial and postprandial contexts and subcontexts, and

postexercise contexts) (Figure 6.6).  Creating the ontologies and filling all tables

required about four 2-hour meetings with Dr. Kraemer.  (Three additional

meetings with each of the two experts were needed for carrying out the

particular experiment that I describe in this section).

In the diabetes-therapy ontology, administrations of regular insulin and of

isophane insulin suspension (NPH) are events  (see Figure 6.5), inducing different

insulin-action interpretation contexts that are subcontexts of the DM (DM treatment)

interpretation context  (see Figure 6.7a).  Meals are events that induce preprandial

and postprandial contexts (see Figure 6.7b).  Thus, values for the

Regular_insulin NPH_insulin UL_insulin

Breakfast Lunch Supper Snack

Events

Medications

Insulin

Physical exerciseMeals

Warm up Main effort

Regular_insulin_action

Figure 6.5 .  Part of the diabetes event ontology.   = class;  = induced interpretation

context;   = IS-A relation;  = PART-OF relation;  = INDUCED-BY relation.
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Glucuse_state_DM_prebreakfast parameter (see Figure 6.4) can be created, when

relevant, regardless of absolute time.  The Glucose_state parameter is a new

parameter with six values defined from corresponding ranges used by the

domain expert (HYPOGLYCEMIA, LOW, NORMAL, HIGH, VERY HIGH, EXTREMELY

HIGH).  These values are sensitive to the context in which they are generated; for

instance, postprandial values allow for a higher range of the normal value.

Glucose_State value propositions have the value TRUE for the temporal-semantic

property concatenable (see Section 4.2.3) in the same meal-phase context.  The

Glucose_State_State  parameter is a higher-level abstraction of the Glucose_State

parameter, which maps its six values into three (LOW, NORMAL, HIGH—or L,N,H

for short).  It has different semantic properties, and allows creation of daily

horizontal-inference patterns within a nonconvex preprandial context

Contexts

Insulin_action

Regular_insulin
action

DM

Preprandial PostprandialPost_PE

Prebreakfast

Post_PE

Prelunch Presupper

Figure 6.6.  Part of the diabetes context ontology.    = class;   = I S-A relation;

 = SUBCONTEXT relation; DM = diabetes mellitus; PE = physical exercise.
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+0.5 hrs
+10 hrs

Regular_insulin_action

Regular_insulin

DM_regular_insulin_action

PostprandialPreprandial

+1 hrs

Meal

0 hrs

-1 hrs
0 hrs

DM_PostprandialDM_preprandial

DM

Time

(a)

(b)

Figure 6.7.  Formation of contexts in the diabetes-treatment domain.

(a) Creation of a Regular_insulin_action context, induced by a Regular_insulin administration

event, and of the corresponding DM subcontext.

(b) Creation of the Postprandial and Preprandial (prospective and retrospective, respectively)

context intervals, induced by a Meal event, and formation of the corresponding DM

subcontexts.

 = event;  = closed context interval.  DM = diabetes mellitus (therapy context).
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(see Section 5.1.2) representing abstraction over several meal phases, such as LLH

(LOW, LOW and HIGH Glucose_State_State values over breakfast, lunch, and

supper, respectively).

Patterns such as L L H(Glucose_State_State), especially in the preprandial

subcontext, are extremely useful when a physician must decide how to modify a

patient’s insulin regimen.  Furthermore, once created, the prevalence of such

patterns can be calculated—an important step in determining whether the

pattern is a common one for the patient.

Glucose_State_State values that are measured within different phases (e.g.,

prelunch and presupper), but within the same-day, can be joined by

interpolation within the same interpretation context (e.g., a (nonconvex)

PREPRANDIAL context interval, that comprises several preprandial context

intervals), up to 6 to 8 hours apart, the maximal gap being defined by a global ∆

function.  In addition, diurnal state abstractions that are measured in the same

phase but over different (usually consecutive) days, such as several values of the

Glucuse_state_DM_prebreakfast parameter, can be joined by interpolation

within the same interpretation context (e.g., a [nonconvex] PREBREAKFAST context

interval, that comprises all breakfasts within a given interval), up 24 to 28 hours

apart.

The temporal-abstraction process is initiated by asserting in an appropriate place

in the temporal fact base an abstraction-goal proposition named DM_PLANNING.

Asserting this proposition initiates the reasoning by inducing a DM

retrospective-context interval for the preceding 2 weeks.  This interpretation

context enables, within its scope, creation of the DM domain abstractions.  The

time window of 2 weeks is used by the domain expert in practice.  It can be easily

modified for particular applications, by changing the declarative definition of the

dynamic induction relation of a context interval (DIRC) (see Section 5.2)

associated with the abstraction-goal proposiiton.

The raw data were originally stored in a text format (patient identification

number, parameter code, time, value).  Most of the glucose-parameter codes
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referred to specific meal times (e.g., a presupper-glucose code) but some referred

to simply “nonspecific” glucose values, in which case only the time stamp was

known.  The data included mostly glucose and insulin codes.  Special events

(e.g., physical exercise and larger-than-usual meals) were sometimes reported

too, as well as symptoms of hypoglycemia.

The data were converted into tuples in a relational database.  From the database,

it was relatively straightforward to map the data into the RÉSUMÉ temporal fact

base as event and parameter intervals (see Section 5.4), adding the implied

contexts when relevant.  From the database, it was also possible to map the data

into a spreadsheet, organizing the data by common measurement times, thus

highlighting contemporaneous events or parameters.  The spreadsheet was

useful for the production of graphical charts (Figure 6.8) and spreadsheet tables

(Figure 6.9) during the knowledge-acquisition and evaluation processes.

Patient  30 during  4/1-4/7/91

0

50

100

150

200

250

300

4/1/91

0:00

4/2/91

0:00

4/3/91

0:00

4/4/91

0:00

4/5/91

0:00

4/6/91

0:00

4/7/91

0:00

4/8/91

0:00

Regular

NPH

Nonspec GL

Prebreak GL

Prelunch GL

Presupper GL

Figure 6.8: One of the charts representing data from case 30.  Such charts were presented to the

experts as convenient means for detecting temporal patterns.  Temporal and statistical

abstractions were marked as intervals on the chart.
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I submitted to the two experts (separately) eight data segments from eight

different patients, each segment consisting of 2 consecutive weeks (14 days) of

glucose-measurement and insulin-administration data.  The data were presented

to the experts as graphical charts (see Figure 6.8) and as spreadsheets (see Figure

6.9).  The spreadsheets were included for additional reference, such as for

Time Regular
insulin

NPH
insulin

Nonspecific
glucose

Prebreakfast
glucose

Prelunch
glucose

Presupper
glucose

4/1/91 8:00 5 27 153
4/1/91 12:00 3 137
4/1/91 22:00 167

4/2/91 8:00 5 27 162
4/2/91 12:00 3 157
4/2/91 18:00 6 168
4/2/91 22:00 197

4/3/91 8:00 5 27 265
4/3/91 12:00 3 243
4/3/91 18:00 6 213
4/3/91 22:00 189

4/4/91 8:00 5 27 115
4/4/91 12:00 3 129
4/4/91 18:00 6 164
4/4/91 22:00 182

4/5/91 8:00 5 27 212
4/5/91 12:00 3 193
4/5/91 18:00 6 177
4/5/91 22:00 201

4/6/91 8:00 5 27 193
4/6/91 12:00 3 176
4/6/91 18:00 6 198
4/6/91 22:00 189

4/7/91 8:00 5 27 253
4/7/91 12:00 3 231
4/7/91 18:00 6 181
4/7/91 22:00 141

Figure 6.9: A portion of a spreadsheet representing data from case 30.  Such spreadsheets were

presented to the experts to complement the charts presenting the same data :  The spreadsheet

enabled the experts to examine precise values of insulin doses and glucose values.
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looking up the precise dose of insulin administered or a glucose value.  Overall, I

showed to each expert 112 days of data.  Each day included 3 to 4 insulin-

administration events and 3 to 5 time-stamped glucose measurements.  Thus,

each expert examined approximately 800 points of data.  (The “nonspecific”

glucose measurements such as are shown in Figure 6.9 were mostly bedtime

measurements that were unconnected with a meal, or special measurements,

such as following a hypoglycemia-symptoms episode.)

I asked the experts to mark on the charts the significant point- or interval-based

abstractions (both temporal and statistical) that they would make from the data

for the purpose of therapy.  I also asked for their therapy recommendations.

An example of running the RÉSUMÉ system on certain of the data, using as

inputs both the diabetes ontology (Figures 6.4 through 6.6) and the patient-

specific raw data, is shown in Figure 6.10.

In the particular time window shown, two significant findings are demonstrated:

1.  A period of 5 days of HIGH presupper blood-glucose values was created by

the abstraction process.  This abstraction was returned in response for an

EXISTS_THROUGHOUT external query for a period of at least 3 days of

the Gl_S_S parameter, with value HIGH, in the presupper [nonconvex]

context).

2.  A set of three Gl_S_S abstractions representing a repeating diurnal pattern,

consisting of NORMAL or LOW blood-glucose levels during the morning

and lunch measurements, and HIGH glucose levels during the presupper

measurements.  Individual abstractions in the set were created by the

abstraction process; the whole set was returned in response to an

OVERALL external set query for Gl_S_S values in the preprandial

[nonconvex] context.
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∆
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∆∆
∆

Time (date in 1990)

|
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glucose
values

100

DM_planning_event

DM
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7/267/257/247/237/22

GLSS_DM_PS

•

•
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•

GLSS_DM_preprandial

H

Figure 6.10:  Abstraction of data by RÉSUMÉ in case 3.

 = (open) context interval;  = abstraction interval; ❒  = prebreakfast glucose; • =

prelunch glucose; ∆ = presupper glucose;  DM = diabetes mellitus therapy context; GLSS_DM_PS

= Glucose_state_state abstraction in the DM and presupper context; GLSS_DM_PREPRANDIAL =

Glucose_state_state abstraction in the DM and preprandial context.

The combined pattern suggests that an adjustment of the intermediate-acting

insulin (e.g., NPH) may be indicated.  This pattern was noted in the data as

significant by both experts.

Either pattern also can be predefined as an internal PATTERN-type parameter, if

desired.  However, the second pattern involves, in the general case, a counting

step (n occurrences of pattern P within a certain period).  Counting is a simple

statistical abstraction, but currently outside of the scope of the RÉSUMÉ

temporal-pattern–matching language, which focuses on time and value

constraints.  (Statistical patterns could be queried by saving the abstractions in

the database and employing additional temporal-query mechanisms; see

discussion in Section 8.4.2.)
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The results of the abstraction experiment are listed in Table 6.2.  Together, the

two experts noted 402 abstractions.  The abstractions included 218 different

interval-based abstractions (185 temporal abstractions, such as “increasing

glucose values from prebreakfast values to presupper values during the week,”

and 29 different statistical abstractions, such as “large variance of presupper

glucose values”).  One hundred and eighty eight different abstractions (164

temporal and 24 statistical) were noted by both experts.  Of the remaining 30

abstractions mentioned by only one of the experts, most were noted by only that

expert because the other expert omitted to comment explicitly on the same data

point(s), but his interpretation either was compatible with the first expert’s

abstraction, or clearly supported or implied that interpretation.  (Each expert was

asked to comment about other, alternative interpretations, that included the

other expert’s abstractions.)  Only nine abstractions overall (six temporal, three

statistical), each of which was created by just one of the experts, were indeed

noncompatible abstractions of the same data (that is, mutually exclusive with the

bstractions created for that time period by the other expert).  For example, in one

abstraction, one expert interpreted a particular pattern of early morning

hypoglycemia followed by a high prebreakfast glucose value as a possible

Table 6.2: Abstractions formed by two experts in the diabetes domain.

Expert     Temporal abstractions     Statistical abstractions Total

compatible noncompatible compatible noncompatible

I 179 2 24 1 206

II 164 4 26 2 196

subtotal 343 6 50 3 402

Total 349 53 402
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a Somogii effect.13  The other expert interpreted the same sequence as rebound

hyperglycemia caused by increased food intake due to the hypoglycemia

symptoms.  Other idiosyncratic abstractions included noting a pattern of very

high glucose levels following larger than usual meals during particular phases of

the day, a pattern of low prebreakfast and high presupper glucose values in the

context of an UltraLente insulin regimen, a high variance in bedtime glucose

measurements, and a weekend “large brunch” phenomenon.

Since all the 164 compatible abstractions mentioned by Expert II were mentioned

by Expert I, I considered that set as the set of common abstractions.  The

RÉSUMÉ system created 132 (80.4%) of the 164 temporal abstractions noted by

both experts.  None of the nine noncompatible abstractions mentioned by only

one of the experts were created; these abstractions usually involved complex

temporal or statistical contexts, such as contexts defined by particular insulin

regimens or by glucose variance and minima during specific diurnal phases.

Additional characteristics of the abstractions that proved hard to create are

discussed in Section 6.4.

As was the case in the domain of monitoring children’s growth, the RÉSUMÉ

system produced many additional abstractions, most of which were low- and

intermediate-level abstractions such as glucose-value range classifications and

gradient abstractions, and intermediate-length abstractions.  Again, most of these

could be viewed as partial computations that are invisible to a user that defines a

particular internal pattern or that asks a particular external query, but that are

useful for anticipating potential queries.  For reasons of limited expert time, not

all these  low-level abstractions were examined.  Examination of the output for

the first three cases with one of the experts showed that the expert agreed with

almost all (97%) of the produced abstractions, a similar result to the one

presented in the domain of growth monitoring.  This high predictive value was

expected, since the domain ontology directly reflected that expert’s knowledge

13 A Somogii effect occurs when an excess of insulin lowers the blood glucose to a state of
hypoglycemia, thus invoking several hormonal defense mechanisms that increase the blood
glucose.  The overall effect is a paradoxical (rebound) elevation of the blood glucose in the
context of a sufficient and even too large insulin dosage.
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about these low- and intermediate-level abstractions.  In the few cases with

which the expert did not agree, the reason was often due to the rigid

classification of ranges (e.g., a blood-glucose value of 69 mg/dl glucose should

not have been interpreted as LOW even if the expert agreed that, in general,

normal values lie between 70 mg/dl  and 110 mg/dl).  I discuss the range-

classification issue in Section 8.4.

Of considerable interest (and quite different from the result we expected) is the

fact that, although the abstractions identified by the two domain experts were

remarkably similar, the  therapy recommendations suggested by the experts differed

for all  of the eight cases (Table 6.3).  I discuss the meaning of this result in Section

6.4.

Another surprising result was that both experts arrived at most of their

conclusions by looking only at the graphical charts produced from the

spreadsheets (see Figure 6.8), whose data representation was rather qualitative

and more suitable for general temporal-pattern matching.  The detailed

spreadsheets  (see Figure 6.9) were used almost exclusively only when the therapy

options were considered (e.g., increasing the regular-insulin dose in the morning

required looking at the current dose of that and other insulin types).  The

phenomenon would seem to suggest that the experts base most of their

conclusions on context-sensitive patterns of blood-glucose value (e.g., HIGH

fasting [prebreakfast] glucose values in a patient that is being treated by a

regimen of NPH and regular insulin twice a day), and need the actual doses of

insulin only infrequently.
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Table 6.3:  Therapy recommendations made by the diabetes experts

Case

ID

Current insulin-therapy

regimena

Expert I

recommendation

Expert II

recommendation

1 NPH at MT

REGx3 (MT, LT, DT)

Check lifestyle

(highly erratic)

Add NPH at BT

2 REGx4 (MT, LT, DT, BT) Add NPH at BT Add NPH at BT

Increase REG at MT

3 UL at MT, DT

REG at AM, DT

Substitute UL at MT

 by NPH at MT, DT

Add REG at LT

5 NPH at MT, DT

REG at AM, DT

Increase NPH at MT,

decrease NPH at DT

Increase NPH at MT,

then adjust REG, if
necessary

6 NPH at MT

REGx3 (MT, LT, DT)

Decrease dinner meal

or  add NPH at BT

Shift NPH to BT,

then add NPH at MT,
if necessary

7 NPH at MT

REGx3 (MT, LT, DT)

Check life style,

change diet

Check life style,

change diet,

reduce REG when
glucose is low

30 NPH at MT

REGx3 (MT, LT, DT)

Substitute NPH at MT
by UL at AM

or  shift NPH to BT and
increase REG before
meals

Shift NPH to BT

55 UL at MT

REGx4 (MT, LT, DT, BT)

Substitute UL at MT

 by NPH at BT,

remove REG at DT

Increase UL at MT,

shift REG at MT to LT

remove REG at DT

aMT = morning time; LT = lunch time; DT = dinner time; BT = bedtime; REG = regular insulin;
NPH = isophane insulin suspension; UL = UltraLente.
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6.4  Discussion and Summary

In previous chapters, I have presented mainly the theoretical and the potential

merits of the knowledge-based temporal abstraction method.  In this chapter, I

have evaluated the implementation of that method as the RÉSUMÉ system.  By

doing so, I have added an empirical weight to my argument.  I have argued that

most of the desired properties that were emphasized by previous researchers in

clinical summarization systems (see Section 3.2), and, in particular, all of the

requirements for temporal-abstraction systems which were listed in Section 1.1,

are either inherent in the representational and computational aspects of the

knowledge-based temporal-abstraction method or are an integral part of the

RÉSUMÉ architecture.  I will discuss this claim in detail in Section 8.2.

In this chapter, I have presented initial, encouraging results regarding

representation of several different temporal-abstraction tasks in several different

clinical domains using the knowledge-based temporal abstraction methodology.

I also have demonstrated positive results of applying  certain of the resulting,

domain-specific temporal-abstraction systems to a number of clinical test cases,

some of which (those involving growth monitoring and diabetes therapy)

originated in domains that differ significantly from the one that supplied the

original motivation for developing a domain-independent, task-specific

architecture for temporal abstraction.

Each clinical application domain demonstrated different facets of the RÉSUMÉ

system.  Due to their diversity, none of the domains truly tested all of the aspects

of the RÉSUMÉ system and the underlying knowledge-based temporal-

abstraction methodology.

The “tall” ABSTRACTED-INTO ontology of the growth-monitoring domain

challenged mainly the capabilities of the contemporaneous-abstraction and

temporal-pattern–matching mechanisms to perform multiple-parameter

abstraction, given any level of abstraction in the input (e.g., accept not only raw
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height measurements and Tanner maturation stages as input, but also the

intermediate-level parameters HTSDS and Maturation).  The number of input

data points per case was rather small, as is typical for this sparse-data domain.

The protocol-based–care domains did include many data points, and the breadth

of the parameter ontology was considerable (clinical protocols often involve

many dozens of primitive parameters).  However, the depth of the ontologies of

those domains was not due to the ABSTRACTED-INTO relation, but rather was due

to the specialization of the abstractions, by the IS-A relation, into different

contexts.  These contexts, some direct and some prospective, were induced

mainly by different phases of therapy or by different medications, demonstrating

the use of the context-forming mechanism and of the event and context

ontologies.  In addition, the hematological abstractions over weeks and months

required the use of dynamic temporal knowledge (i.e., local and global

persistence knowledge) by the temporal-interpolation mechanism.  Finally, due

to laboratory data coming out of temporal order, or modifications in existent

laboratory-data values, these domains demonstrate the importance of

maintaining logical dependencies by the truth-maintenance system.

The diabetes therapy domain included only one laboratory parameter (glucose

values at different phases of the day) and one qualitative parameter

(hypoglycemia symptoms) and several events (different types of insulin

administrations, meals, and physical exercise).  However, the emphasis on

temporal and statistical dimensions in that domain made abstracting concepts

that are meaningful for therapy purposes quite challenging, and pushed the

temporal-inference and temporal-pattern matching mechanisms to their limits.

In fact, the results of the relatively small experiment have shown that additional

features are needed for a complete temporal-abstraction architecture that is

suitable for supporting the treatment of insulin-dependent patients.  (Most of the

required features are in fact planned for a future system that will include in its

architecture the RÉSUMÉ system discussed in this dissertation.)



Chapter 6:  Applying Knowledge-Based Temporal Abstraction

251

I have noticed three limitations of the current RÉSUMÉ system with respect

to the challenging diabetes-therapy domain:

1.  There are difficulties in querying general cyclical (e.g., diurnal) patterns,

especially patterns dependent on external times.  In the current design

of the diabetes knowledge base, for instance, diurnal patterns are

detected through horizontal-inference tables (e.g., creating an LLH

abstraction for prebreakfast, prelunch and presupper times).  It would

have been awkward to represent, say, a repeating pattern of LOW

bedtime glucose followed by HIGH prebreakfast glucose.  First, the

“bedtime” abstraction would have to be created as a repeating, cyclic

abstraction—say, the absolute , external , time being about 10 p.m. each

day.  But absolute time is currently converted in RÉSUMÉ to the more

common internal  time (e.g., patient-age in the growth-monitoring

domain; days of therapy in the protocol-based care domains), and only

one time stamp is kept.  Similarly, a “weekend” abstraction would be

awkward to define.  Representing both external time (e.g., 10 p.m.) and

internal time (e.g., 5 days of therapy) might enable RÉSUMÉ to create

both types of temporal abstractions.  Second, bridging the gap between

bedtime and prebreakfast time would be prevented by the preprandial

interphase ∆ functions that currently permit bridging only shorter gaps

(e.g., from lunch to dinner), thus keeping the abstractions within the

same day.  The join might need to be defined as a temporal-pattern, or

as an extension of ∆ functions that enables different contexts.

2.  There is a difficulty in integrating statistical queries (e.g., means and

standard deviations) with temporal queries.  The statistical queries are

straightforward (mean, variance, minimum, maximum, general

distribution, count) and usually can be queried through the underlying

database.  However, the statistical computation needs a temporal context

(e.g., prelunch times) in which to operate, and a temporal scope  to limit
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the computation (e.g., previous 2 weeks).  I discuss a possible solution

in Section 8.4.2.

3.  It might have been desirable to detect patterns defined by events, such as

insulin use, in addition to those defined by parameters , such as glucose

states.  Such a requirement has not been noted in other domains, since the

external events were usually assumed to be controlled by the human or

automated therapy planner (e.g., chemotherapy administration was

controlled by the physician and the current protocol was well known).  Such

event-based patterns in the diabetes domain might generate more

meaningful interpretation contexts, by detecting periods in which the

patient varied her own therapy significantly, or by detecting insulin-therapy

regimens implicit in the data but never asserted by the physician or the

patient (see Table 6.3 for examples of insulin-therapy regimens).  Such early

work in the diabetes domain has been described by Kahn and his colleagues

[Kahn et al., 1990], with encouraging results.  Alternatively, complex

contexts might be asserted in the temporal fact base by the user before the

RÉSUMÉ system is called for performance of abstraction.

These insights seem more significant than the measures of sensitivity and

predictive value I have presented in the domains of monitoring growth and

treatment of diabetes.  The number of generated abstractions or their accuracy is

useful for some purposes but might be highly misleading with respect to

evaluating a temporal-abstraction system.  As I have mentioned, many of the

abstractions that RÉSUMÉ generates can be viewed as partial computations.

These partial computations are cached, and have an important role for truth

maintenance purposes and for answering multiple-level queries.  Most of these

abstractions are invisible to the user, whether a human or an automated therapy

planner, and are used by the temporal-pattern–matching mechanism for

detecting internal (predefined) or external (online) temporal patterns.  Therefore,

the question I have attempted to answer usually was “would the system be able to

answer the temporal queries that the user needs for performance of the task at hand?”  In
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this respect the results were quite encouraging, although, as I have listed above,

there is some room for extensions.

Although the abstractions identified by the two domain experts were remarkably

similar—there were few differences in the interpretation of the various data

segments presented—the therapy recommendations suggested by the experts

differed for all of the eight cases (see Table 6.2).  This observation would seem to

validate one of the basic premises underlying the goal of the temporal-

abstraction task—namely, that intermediate conclusions from the data (the

interval-based abstract concepts and patterns) are significantly more stable than

are specific therapy rules predicated on these conclusions.  Thus, knowledge

about forming the intermediate patterns should be represented explicitly and

separately from knowledge about therapy, which might depend on the expert’s

level of comfort and experience with particular forms of therapy when several

legitimate options exist, as is the case for insulin-dependent DM.  The optimal

therapy might also depend on the patient’s preferences (e.g., using a long-acting

insulin and thus reducing the number of injections per day might be considered

desirable by the patient, even though control of glucose is not optimal).  In other

words, therapy also implies a physician model and a patient model of utilities of

various options, and should not be confused with the interpretation task.

The observation that both experts in the diabetes domain seemed to rely almost

exclusively on the rather qualitative graphical charts for interpretation of the

data, and used the full spreadsheets only for final decisions on therapy

modification, is significant.  This observation lends further support to the use of

the qualitative interpretation contexts as a major tool for organizing temporal-

abstraction knowledge.  For instance, both experts noted immediately, before

creating a single abstraction, particular temporal patterns of insulin

administration (e.g., one NPH-insulin shot in the morning and three regular-

insulin shots during morning, lunch and supper).  It did not seem to matter what

were the precise doses involved.  This behavior is analogous to the way the

context-forming mechanisms creates context intervals: Events and abstractions

induce interpretation contexts that are mostly qualitative, such as “regular-
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insulin action” or “therapy by high-dose AZT.” Within these context intervals,

creation of abstractions is highly focused.

My initial assessment of the knowledge-acquisition requirements for typical clinical

domains is based on the experience I gained in applying the knowledge-based

temporal-abstraction method to the AIDS protocol-based–care domain, to the

chronic GVHD domain, to the growth-chart–monitoring domain, and to the

diabetes-therapy domain.  My experience in these application areas suggests

that, for any particular context in one of these domains, a significant, but

manageable amount of knowledge must be acquired.  This knowledge must be

entered either by the knowledge engineer who designs the system, or by a

clinical expert from whom specific knowledge (e.g., classification tables) is

acquired and represented in the domain’s temporal-abstraction ontology.  Both

these users can benefit from an automatically generated knowledge-acquisition

tool that can acquire the appropriate domain-specific knowledge needed to

instantiate the temporal-abstraction mechanisms (see Chapter 7).

The minimal amount of clinical knowledge that needs to be acquired includes (1)

the primitive or abstract clinical parameters relevant to the task and their

structural relations—in particular, IS-A and ABSTRACTED-INTO relations

(including all the relevant abstractions of these parameters, classified into the

four basic abstraction types: state, gradient, rate, and pattern); (2) a clinically

significant change for each relevant primitive parameter, if gradient abstractions

are required; (3) the list of potential state- and rate-abstraction values for all

parameters relevant to the task for which these abstraction types are required;

and (4) the maximal-gap ∆ functions, when interpolation is required in the task,

for each relevant parameter and context.

The inferential (temporal-semantic) properties, gradient-abstraction horizontal-

inference values, and the interpolation-inference tables are more stable than the

knowledge types listed above, and are less dependent on the interpretation

context.  The default values for these types of temporal-abstraction knowledge

either can be inherited through the appropriate abstraction class (e.g., state
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abstractions), or can be acquired for only the most general parameter class (e.g.,

platelet state abstractions in the context of the overall task).  As additional

applications are designed, the gain in development time is more apparent, as I

have noticed in the case of the several subdomains of protocol-based care.

Although instantiating the temporal-abstraction mechanism for a new domain

would appear superficially to involve significant amounts of knowledge

acquisition, it is, in fact, important to note the following encouraging results of

my experiments with respect to this aspect of the methodology:

1.  The major knowledge-acquisition effort in these nontrivial domains

usually required two to four meetings (each 1 to 2 hours long) with the

expert—a tenable amount of time.  Also, the size  of the ontologies was

certainly manageable, even though one or more explicit, intermediate

levels of abstraction were added.  The addition, however, was related to

the abstraction levels of the expected input and of the expected queries.

Furthermore, maintenance of the resultant knowledge base by the

knowledge engineer, including additional classifications by the expert,

required significantly less time than would be needed to create or modify

pure programming code.

2.  The knowledge-acquisition process was driven by the knowledge-based

temporal-abstraction method, thus creating a purposeful structure to the

process, and enabling the knowledge engineer to predict, for instance, a

possible existence of a gradient abstraction of a state abstraction of a

known parameter.  Thus, a certain measure of completeness is

guaranteed.  Additional sessions served to explore and refine the

evolving parameter, event, and context ontologies, as was particularly

apparent in the growth-monitoring domain [Kuilboer et al., 1993].  Dr.

Kuilboer and I felt that, without that methodology, it is doubtful whether

either of us would progress very far in a few meetings with the expert, or

whether I would be able to share and reuse the knowledge acquired by

Dr. Kuilboer.
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3.  Most important parameters and their values must  be represented in one

way or another to perform the temporal-abstraction task at hand.

Hematological toxicity tables (in protocols for treatment of AIDS or

chronic GVHD), HTSDS rate abstractions (in the growth-monitoring

domain), and ranges and patterns of blood glucose in the domain of caring

for diabetes patients need be noted in some  fashion.  Thus, most of the

knowledge-acquisition effort was really spent on organizing in a useful

architecture a significant amount of knowledge that must be accessed and

represented, implicitly or explicitly, to solve the task.  Explicit

representation, as I have shown, has multiple additional benefits; in the

experiments that I have conducted, its cost was not too prohibitive, while

the results seemed to justify the effort.
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7  Acquisition of Temporal-Abstraction
Knowledge

In Chapter 4, I defined the knowledge-based temporal-abstraction method, an

inference structure that solves the temporal-abstraction task by decomposing that

task into five subtasks  (see Figure 1.2).  Each subtask can be solved by one of five

separate temporal-abstraction mechanisms  (see Section 4.2).  I defined four

domain-specific knowledge types (structural, classification, temporal-semantic, and

temporal-dynamic) that are used as knowledge roles (see Section 2.1) by the

temporal-abstraction mechanisms.  The four knowledge types and their precise

use by the mechanisms were described formally in Chapter 4.  The subtypes of

the four main categories of domain-specific knowledge were described in Section

5.1.  The representation of every subtype of domain knowledge in the RÉSUMÉ

system was discussed in Sections 5.1 through 5.4.

In Chapters 2 through 5, I elaborated the various advantages of explicit

representation of the knowledge needed for abstracting data over time, such as

enabling the reuse of domain-independent, but task-specific, temporal-abstraction

mechanisms, and the sharing of some of the domain-specific knowledge by

different problem solvers.  In particular, I explained in Chapter 2 the rational for

a knowledge-level analysis and representation of problem-solving methods.  One

of my goals in categorizing the various types and subtypes of the domain-specific

knowledge needed for abstraction of time-stamped data, and for designing the

frame-based parameter-properties ontology, was to facilitate the acquisition of

that knowledge from several possible sources.  Once we understand the

knowledge required for temporal abstraction (e.g., temporal inferential

properties), and have constructed a model of the use of that knowledge, it is

easier to acquire the particular knowledge that can play the role we need in the

knowledge-based temporal-abstraction method.  It is also easier to maintain  the
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acquired knowledge when the role of every piece of knowledge is well defined

[McDermott, 1988].

There are three possible approaches to the task of acquiring the knowledge

required by the temporal-abstraction mechanisms.  All approaches exploit the

formal, explicit representation of the temporal-abstraction knowledge types.  In

Sections 7.1 through 7.3, I elaborate these approaches.  The three approaches are

not mutually exclusive, and might even complement each other.

7.1  Manual Acquisition of Temporal-Abstraction Knowledge

One possibility for acquiring temporal-abstraction knowledge is to use classical

manual or semimanual knowledge-acquisition  (KA) techniques that have been

developed to elicit knowledge by direct interaction of the system developer with

domain experts.  Such techniques include, for example, analysis of verbal

protocols  documenting the expert’s problem-solving process (e.g., [Ericsson and

Simon, 1984]), or construction of repertory grids  that associate domain

constructs (e.g., findings such as “low blood pressure”) with domain elements

(e.g., diagnoses such as “myocardial infarction”).  Tools have been built that

facilitate construction of repertory grids [Boose and Bradshow, 1986].  However,

these particular approaches conceal the actual problem-solving method implied by

the KA tool.

The knowledge roles defined by the knowledge-based temporal-abstraction

method and by the mechanisms that I suggest for performing the subtasks that

that method posts are explicit.  The explicit roles suggests using at least a

method-specific  KA approach [Musen, 1989b]; that is, acquisition of precisely the

knowledge required by the five temporal-abstraction mechanisms (e.g.,

temporal-semantic knowledge).  Furthermore, for any particular domain, a task-

specific  approach [Musen, 1989b] is indicated; that is, we can acquire precisely

the knowledge required for instantiating the temporal-abstraction mechanisms

for a particular task in a particular domain (e.g., only knowledge required for

creating state and gradient abstractions, but not for creating rate abstractions,

and for only a particular class of parameters).  Task-specific KA tools require that
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we use the terms of the domain, such as cycles of chemotherapy.  Note that the

original PROTÉGE system [Musen, 1989a] was a method-specific KA tool, which

generated task-specific KA tools similar to OPAL [Musen et al., 1987] (see Section

2.2).  Both were automated tools.

However, method- and task-specific KA techniques do not have to rely on

automated tools, such as OPAL; they also can be manual.  Note that use of the

term manual  here does not mean that the knowledge is acquired in some ad hoc

manner.  On the contrary, if the knowledge engineer knows what knowledge she

requires, and manages to build a good conceptual model of the problem-solving

method that underlies the system being designed, she can elicit that knowledge

and incorporate it into the conceptual model of the task that she is constructing.

Incorporating the knowledge will be done in a principled manner, such that the

use of the knowledge will be well defined, and its maintenance facilitated.  The

emphasis in that case is on a principled approach driven by a well-defined

model.

I have used manual techniques for acquiring the knowledge required by the

knowledge-based temporal-abstraction method in the domains of protocol-based

care, pediatric growth monitoring, and therapy of insulin-dependent diabetes.  In

the protocol-based–care domain (see Section 6.1), apart from using written

protocols (CCTG-522 and PAZ), I interviewed a domain expert (J. Sisson, M.D.)

and acquired the knowledge needed for instantiating the RÉSUMÉ problem

solver in the case of a protocol for prevention of toxoplasmosis infections in

patients who have HIV infection.  In the domain of pediatric growth monitoring,

Dr. Kuilboer acquired, with my assistance, the growth-chart–analysis parameter-

properties ontology that was described in Section 6.2 (see also Figure 6.2).  In the

domain of treatment of patients who have insulin-dependent diabetes, I acquired

the knowledge from one of the two domain experts who participated in the

experiment (see Section 6.3).

In all three domains, I found the RÉSUMÉ methodology highly useful.  The

methodology implied by the knowledge-based temporal-abstraction method
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focused the KA effort on the essential input and output parameters and their

structural relations, on the potential abstractions of these parameters, and on the

four types of knowledge necessary to create the desired output abstractions in

each domain.  The advantages were especially obvious when another  knowledge

engineer (Dr. Kuilboer), who was not familiar with the internals of the RÉSUMÉ

system, acquired a complete temporal-abstraction ontology from an expert in the

domain of monitoring children’s growth (see Section 6.2).  In that case, the only

support for Dr. Kuilboer was the knowledge-based temporal-abstraction model

and the declarative description of the knowledge she was eliciting.  Since

maintenance of the evolving ontology by both Dr. Kuilboer and, eventually, by

myself was part of the KA process, it was doubly important to clarify what was

the role of the knowledge acquired in each refinement cycle [Kuilboer et al.,

1993].

One conclusion I can draw from these experiments is that, in domains such as

monitoring growth and therapy of insulin-dependent diabetes, which have a

small number of primitive parameters but many levels of abstraction from these

parameters or many context-specific specializations, the primary KA task is to

acquire the structural  domain knowledge.  This knowledge type is embodied in

the parameter, event, and context ontologies as various qualitative relations (e.g.,

IS-A, PART-OF, ABSTRACTED-INTO, SUBCONTEXT relations) and, once acquired,

limits the scope of the rest of the KA process to acquiring knowledge about

relevant parameters and contexts.  Thus, the structural knowledge drives the

process of KA for the parameter-properties ontology (e.g., the arguments of the

classification functions or tables should be known by the time the entries are

acquired).  It was reasonably straightforward, once the structural knowledge was

acquired, to refine the parameter-properties ontology, the event ontology, and

the implied interpretation-contexts ontology by filling (or inheriting from higher

abstraction classes) classification, inference and interpolation tables.

In addition, it was both necessary and helpful to motivate the cooperation of the

experts in this process by explaining the knowledge roles that these tables play in

the problem-solving process.  The problem-solving method used by the RÉSUMÉ
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system is not intuitive.  Nevertheless, the steps that all experts took in their

eventual analysis of the data were remarkably similar, on close inspection, to the

inference structure of the RÉSUMÉ system's underlying knowledge-based

temporal-abstraction method.  Thus, it was useful to point out the similarities.

As I mentioned in Section 6.4, the minimal amount of clinical knowledge that I

needed to acquire in the three domains included (1) the parameters (and all

abstractions of these parameters) relevant to the task and their structural

relations—in particular, IS-A and ABSTRACTED-INTO relations; (2) a clinically

significant change for each relevant primitive parameter, if gradient abstractions

were required; (3) the list of potential state- and rate-abstraction values for all

parameters relevant to the task for which these abstraction types were required;

and (4) the maximal-gap ∆ functions, when interpolation was required in the

task, for each relevant parameter and context.  Inferential (temporal-semantic)

properties, gradient-abstraction horizontal-classification tables, and the

qualitative interpolation constraints inherent in the interpolation-inference tables

were usually more stable than the knowledge types listed above, and were less

dependent on the interpretation context.  The default values for these knowledge

categories either could be inherited through the appropriate abstraction class

(e.g., state abstractions), or could be acquired for only the most general

parameter class (e.g., platelet state abstractions in the context of the overall task).

Thus, manual method-specific and task-specific KA techniques can certainly

exploit well-defined problem-solving principles, and can use the latter to build a

conceptual model of the task, such that the knowledge acquired from the expert

will play predefined roles.  In particular, manual techniques can take advantage

of the four formal knowledge types defined by the knowledge roles of the five

temporal-abstraction mechanisms.

7.2  Automated Acquisition of Temporal-Abstraction Knowledge

The second option for acquiring temporal-abstraction knowledge is to use

automated KA tools, such as those produced by the PROTÉGÉ-II project [Puerta

et al., 1992; Musen, 1995] (see Section 2.2).  In this way, we exploit the power of
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method-specific and task-specific KA tools, and combine that power with the

advantage of generating an automated tool that can interact with the domain

expert without intervention of the knowledge engineer, assuming that the proper

ontological commitments (e.g., defining an event ontology for the domain) have

been specified at the level of the PROTÉGÉ-II user.

One issue that developers must consider when designing automated KA tools is

the ontology-mapping  process.  Problem-solving methods have their own

private model of the data on which they operate, a method ontology, that should

be mapped onto the description of the particular domain modeled by the

knowledge-based system, the domain ontology.  Ontology mapping should be

sufficiently general to include complex structures, relations, and inference

methods.  The process of mapping ontologies includes an instantiation of the

knowledge roles of the problem-solving method by particular domain structures,

or by transformation functions of domain structures (e.g., drug-toxicity tables in

the domain of protocol-based care can be mapped into the vertical-classification

knowledge role of the knowledge-based temporal-abstraction method).  The

PROTÉGÉ-II group has been working on defining classes of such mappings

[Gennari et al., in press].  However, certain knowledge roles in the problem-

solving method might not be filled at all by direct mapping, since the domain

may not normally contain any structures that can easily be mapped to these roles

(e.g., maximal-gap ∆ functions or local-persistence ρ functions).  Thus, the

domain’s basic, core  ontology (devoid of any task-specific aspects) might have to

be augmented by the terms of the particular method using it.  I term that the

ontology-enhancement  process.  These method-specific terms might be useful to

other methods (e.g., propositional inference types, such as the concatenable

inferential property, might be useful for other problem-solvers and other tasks)

and might even be shared with these methods; but they (or their equivalents) do

not exist in the domain’s core ontology.  Whether, in general, application

domains have any such platonic core ontologies is perhaps a philosophical issue,

but it assumes crucial importance when a method’s ontology has to be

instantiated by domain terms.  In any case, to develop a KA tool for the



Chapter 7: Acquisition of Temporal-Abstraction Knowledge

263

knowledge-based temporal-abstraction method will involve augmenting the

domain of interpretation by terms that denote knowledge types that do exist

implicitly in the domain, as my knowledge-acquisition experiments show, but in

no obvious, easy to identify form.

Another important issue that a designer of a knowledge-based system must

consider when developing a KA tool for a method such as the knowledge-based

temporal-abstraction method is whether a stable domain ontology exists when

the KA process takes place; I term this issue the fluid-ontology problem.  Tools

of the OPAL type, and even of the PROTÉGÉ type [Musen, 1989a], assume a

stable domain ontology, usually defined by the knowledge engineer.  The

domain ontology, once defined, drives the task-specific KA process.  For

instance, the ESPR method discussed in Section 2.2, as represented in PROTÉGÉ,

assumed the existence of well-defined planning entities [Musen, 1989a].  The

planning entities can be combined to form plans; the names and attributes of

these entities can be used as domain-specific labels in a task-specific graphic

interface of a tool such as OPAL.  In other words, the OPAL and PROTÉGÉ

models assumed that the structural knowledge is relatively straightforward to

represent, and can be modeled even by the designer of a new system (e.g., major

entities in the domain, such as chemotherapy and radiotherapy events, and their

interrelationships) and that, based on the stable top-level ontology, a KA tool can

be generated that uses the domain terms.  This, in fact, is often the case when

applying the ESPR method to the task of supporting treatment with clinical

guidelines in a particular domain.

However, in the case of the knowledge-based temporal-abstraction method, the

knowledge inherent in the ontology entities and relations themselves is often a

crucial and major part of the knowledge needed by the temporal-abstraction

mechanisms—namely, the structural knowledge types and subtypes.  The

structural knowledge is important for the event ontology, for the context

ontology, and for the parameter-properties ontology.  Therefore, a prerequisite to

efficient acquisition of parameter-properties ontologies is the ability to acquire

and modify easily domain ontologies at KA time, as part of the KA process (i.e.,
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while interacting with the domain expert), not just at the time of designing a

specific KA tool.  The PROTÉGÉ-II group is, in fact, developing ontology

modeling tools, such as Maítre [Gennari, 1993].  These tools are intended mainly

for knowledge engineers, and are highly useful for modeling and for maintaining

ontologies of new domains by a developer.  In general, however, the knowledge

engineer cannot define alone the domain’s complete ontology, or even a

significant part of it.  Most of the KA process might comprise acquiring the

domain’s structure, including the definition of intermediate levels of abstraction,

as was the case when acquiring the growth-monitoring ontology (see Section 6.2).

This implies that the ontology-modeling tool might be, in the case of problem-

solving methods such as the knowledge-based temporal-abstraction method and

its mechanisms, the major method-specific KA tool for the domain expert, since

acquiring the domain’s basic ontology might be the main KA process we are

trying to automate.

The third issue brought up by the possibility of automated acquisition of

temporal-abstraction knowledge, and especially by the prospect of acquiring a

temporal-abstraction ontology, is how to enforce semantic relations, between

different parts of the ontology, during the KA process.  I term this the semantic-

enforcement problem.  For instance, as explained in Section 4.2.1, events  and

event chains, among other propositions, can induce (directly or indirectly) basic

and composite interpretation contexts, respectively.  (Abstraction goals and

context-forming parameter propositions also can induce, of course, interpretation

contexts, as defined by the set of DIRCs.)  Thus, splitting nodes in the IS-A

hierarchy of the parameter ontology (see Figure 5.2), by distinguishing between

at least two different subcontexts of the current node’s interpretation context for

the same parameter, is an operation that must chose between at least two

legitimate  interpretation contexts.  These interpretation contexts must be defined

at some point somewhere in the domain’s temporal-abstraction ontology; the

definition might involve adding one or more relations such as DIRCs, SUBPART

relations and SUBCONTEXT relations.
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For instance, Hb_State_CCTG might be the node representing knowledge about

the state abstraction of Hb within the interpretation context induced by the

CCTG protocol (see Figure 5.2); splitting that node (creating two or more

descendant nodes) might involve distinguishing between at least two

interpretation contexts.  These more specialized, composite , interpretation contexts

could be, for instance, induced by events that have a PART-OF relation, in the

event ontology, to the CCTG protocol (e.g., the AZT and the T/S regimens; see

Figure 5.3), and thus might induce interpretation contexts that have a

SUBCONTEXT relation to the interpretation context induced by the CCTG event.

Other options for creating a legitimate composite interpretation context include

the use of any other interpretation contexts that have a SUBCONTEXT relation, in

the context ontology, to the interpretation context induced by the CCTG protocol.

Such interpretation contexts might be induced, for instance, by context-forming

parameter propositions that exist in other parts of the parameter ontology (e.g.,

the SEVER-LEUKOPENIA value of the WBC_State parameter in the context of the

CCTG protocol).

Thus, when the user tries to split a node in the parameter-properties ontology,

the KA tool should be able to judge that a new interpretation context is needed,

to check in either the parameter ontology, the event ontology, or the context

ontology if the new context created is a legitimate one, to suggest choosing or to

assist in constructing a default legitimate interpretation context, and, when

necessary, to augment the context ontology of the domain by a new

interpretation context, that has been defined during the KA process.  Provision of

such a semantic-enforcement feature requires sophisticated tools.  In effect, the

ontology of the domain should be built by a recursive, bootstrapping process.

However, that process clearly resembles the iterative manual process that I

experienced in several domains, in particular in the domain of monitoring

children’s growth [Kuilboer et al., 1993].  Thus, there is a need for investigating

the automated-KA needs of complex methods, such as the knowledge-based

temporal-abstraction method, in the context of the PROTÉGÉ-II project.
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7.3   Knowledge Acquisition Using Machine Learning

The third option for acquisition of some of the knowledge required for

instantiation of the temporal-abstraction mechanisms is to use different

techniques to acquire the qualitative and the quantitative  aspects of the temporal-

abstraction knowledge.

It should be straightforward to acquire the qualitative  knowledge types that

domain experts find intuitive, such as inferential properties and classification

tables, manually or through an automated KA tool.  However, we might learn

some of the quantitative  knowledge, such as local-persistence (ρ) and maximal-

gap (∆) functions, using machine learning (ML) techniques, by inspecting large,

time-oriented clinical databases.  In Section 4.2.4.1 I elaborated on a probabilistic

interpretation of persistence functions, and I showed that, under certain

conditions, maximal-gap ∆ functions might be much simpler to express and to

acquire than the implicit forward- and backward-belief–decay ρ functions that

generate these functions.  Thus, if we assume that the data are consistent, and

that there is some simple polynomial function describing the persistence of those

data, then it might be possible, given sufficient time-stamped data, to learn that

polynomial function, using an ML approach.

To do that, we might ignore systematically certain parameter points, forming

artificial gaps in the input data, and ultimately check the value of the primitive or

abstract parameter during the gap.

At the very least, we should be able to form upper and lower bounds on

particular ∆(π, L(I1), L(I2)) values—namely, on the maximal-gap persistence of a

parameter when it was true over one time interval before the temporal gap and

true over another time interval after that gap.

For instance, if we express ∆ just as a function of the lengths of the two intervals,

L(I1), L(I2)—or L1 and L2 for short—and if we are trying to fit the data with a

linear maximal-gap function ∆ such that
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 ∆(L1, L2) = AL1 + BL2 + C

then a good starting point would be looking for the maximal time gap between

two consecutive parameter points  such that π does not change its value inside the

gap.  Thus, we can get an estimate of C when L1 = L2 = 0:

∆(0, 0) = C,

for joining point parameters.

If we assume that the function is a PP ∆ function (see Section 4.2.4.1.3), then the

possibilities are constrained further, since

∀ (L1, L2),    ∆(L1, L2) ≥ C,

since the time interval of any abstraction is at least as long as a point; and so on.

Notice that A and B can be seen as relative weights of past evidence and future

evidence, respectively, on the persistence of π  during the gap.  The domain

expert might be able to shed light, at least qualitatively, on the relative

importance of these two types of evidence; perhaps she could estimate that they

are equal, or that the future evidence is more important.

Determining the qualitative persistence types of ρ and ∆ functions is a qualitative

task, relatively easy to accomplish once the nature of the persistence functions

has been explained to the expert.  Experts in the domains I have explored were

very certain whether persistence was qualitatively positive or negative

monotonic with respect to either the time interval before or after the gap.

The prerequisites for applying ML techniques include having available sufficient

data in machine-readable format, and the vertical classification knowledge for

interpretation of low-level data and formation of higher-level concepts, such as

characterizing certain Hb-level states as L O W (alternatively, such abstract

concepts can be part of the input).  Otherwise, we shall not be able to learn

anything meaningful about the higher-level concepts we are interested in.  The

acquisition of independent ∆ functions for higher-level concepts is very



Chapter 7: Acquisition of Temporal-Abstraction Knowledge

268

important in domains in which data input includes several abstraction levels,

and in which there is no deep model of the domain (see Section 2.1).  The

persistence of higher-level concepts is often longer than that of the parameters

defining those concepts.   For instance, bone-marrow toxicity values might be

abstracted as STABLE while individual platelet and granulocyte values vary

markedly (see Figure 6.1).

Finally, it is crucial to know in what context were the parameters measured or

the abstractions created.  If the available data, does not contain, for instance,

therapy events, the value of the resultant persistence functions would be

doubtful.

7.4  Discussion and Summary

I have discussed three options for acquiring temporal-abstraction knowledge: (1)

using manual, but method- and task-specific techniques, (2) using automated KA

tools such as might be produced by the PROTÉGÉ-II project, and (3) using

machine-learning techniques to learn automatically certain of the terms that are

not part of the domain’s natural, core ontology.  All three options are promising

for future investigation.  In particular, combining any two of these approaches,

and possibly all three, is a distinct possibility.  For instance, manual acquisition of

the domain-specific structural knowledge, using the method-specific ontology of

the knowledge-based temporal-abstraction method for guidance, might be

followed by automatic generation of a task-specific KA tool that enables the

domain expert to enter particular tables using the domain’s ontology.

I have also pointed out advantages and disadvantages of using each method for

KA of temporal-abstraction properties.  Currently, it seems that a combination of

manual KA combined with active research on automated KA tools (in particular,

on effective solutions to the problems of ontology mapping, ontology fluidity,

and semantic enforcement) is the most promising path for defining an effective

methodology for acquisition of temporal-abstraction knowledge.
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It is clear from the description of problem-solving methods and knowledge roles

in Chapter 2 and in this chapter, however, that only a full understanding of the

knowledge requirements of temporal-abstraction methods will make it possible

to acquire knowledge for these methods efficiently, to reuse these methods, and

to reuse the knowledge on which these methods depend.  Facilitating the KA

process as well as the maintenance, reuse, and sharing of the acquired temporal-

abstraction knowledge was my main reason for defining clearly the types and

subtypes of knowledge needed for abstraction of time-oriented data, and for

specifying the precise role of these knowledge categories in the mechanisms I

presented in Chapter 4.  As I have mentioned In Chapter 6, the KA process in the

domains in which I have experimented benefited considerably from the guidance

afforded by the knowledge-based temporal-abstraction method.
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8  Summary and Discussion

In Chapter 1, I presented the task of abstracting meaningful interval-based

concepts from time-oriented data (see Figure 1.1).  The temporal-abstraction task

is important in many time-oriented domains.  I have focused on clinical domains,

but both the temporal-abstraction task and the framework I suggest for solving

that task are common to other domains.  The interval-based abstractions that are

the output of the temporal-abstraction task can be used for planning

interventions for diagnostic or therapeutic reasons, for monitoring plans during

execution, and for creating high-level summaries of electronic medical records

that reside in a clinical database.  Temporal abstractions are also helpful for

explanation purposes.  Finally, temporal abstractions can be a useful

representation for comparing the system’s recommended plan with that of the

human user, when the overall and intermediate goals in both plans can be

described in terms of creating, maintaining, or avoiding certain temporal

patterns.

Typically, the knowledge requirements for performance of the temporal-

abstraction task are implicit in traditional domain-specific applications.  This lack

of explicit representation prevents using general principles common to

performance of that task in different domains, and prevents sharing knowledge

common to several tasks in the same domain.

I listed in Section 1.1 the behavior desired in a method that creates meaningful

abstractions from time-stamped data, emphasizing both the conceptual and the

computational aspects:  flexibility in accepting input and returning output at all

levels of abstraction; generation of context-sensitive output (that is, specific to the

context in which the interpretation is being performed); ability to control the

output types; ability to accept and use data that are valid for any time,

incorporating these data in a new interpretation of the present, given new past

data (view update), or in a new interpretation of the past, given new present data
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(hindsight); the ability to maintain several possible concurrent interpretations of

the data; ability to represent uncertainty in time and value; and ability to

generalize easily to other domains and to other tasks.

The last desirable requirement mentioned above—generality and ease of

development (including the facilitation of the acquisition, maintenance, sharing

and reuse of temporal-abstraction knowledge) was my main goal when I

developed the knowledge-based temporal-abstraction model.

8.1.  Summary of This Dissertation

I have presented a knowledge-based approach to the temporal-abstraction task:

the knowledge-based temporal-abstraction method.  The knowledge-based

temporal-abstraction method  decomposes the temporal-abstraction task into five

subtasks  (see Figure 1.2):

1. Temporal-context restriction  (creation of relevant interpretation contexts
crucial for focusing and limiting the scope of the inference)

2. Vertical temporal inference  (inference from contemporaneous propositions
into higher-level concepts)

3. Horizontal temporal inference (inference from similar-type propositions
attached to intervals that span different periods)

4. Temporal interpolation (joining of disjoint points or intervals, associated
with propositions of similar type)

5. Temporal-pattern matching (creation of intervals by matching of patterns
over disjoint intervals, associated with propositions of various types)

My approach embodies a knowledge-level view of the task of temporal abstraction.

The reasoning underlying that view in general, and the task-oriented approach to

temporal abstraction in different domains in particular, were presented in

Chapter 2.  I emphasized in that chapter the importance of enabling reuse, sharing ,

maintenance , and acquisition of temporal-abstraction knowledge for any sizable

knowledge-based system that works in a time-oriented domain.  In Chapter 3, I

presented a broad overview of temporal-reasoning approaches in philosophy

and computer science in general, and in medical applications in particular.  I
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discussed several systems whose task was temporal abstraction, and showed

that, in fact, all these systems had to solve implicitly most or all of the five

explicit subtasks that are generated by the knowledge-based temporal-

abstraction method, although these systems used different control strcutures.

Thus, the knowledge-based temporal-abstraction method also can be viewed as

an inference structure, not unlike Clancy’s heuristic classification (see Section 2.1).

I proceeded to suggest five knowledge-based temporal-abstraction mechanisms

that can solve the five subtasks posted by the knowledge-based temporal-

abstraction method (see Figure 1.2).  These mechanisms were described in detail

in Chapter 4.  The temporal-abstraction mechanisms are built on top of a formal

inference model which I described in Chapter 4:  knowledge-based temporal-

abstraction theory.  The theory incorporates functional, logical, and probabilistic

reasoning.

In Section 4.1, I defined formally the ontology  of the temporal-abstraction task as

it is solved by the knowledge-based temporal-abstraction method, and the goals

of that task, expressed in the terms of the task-specific ontology.

The following description of the five temporal-abstraction mechanisms employs

the temporal-abstraction–ontology definitions of Section 4.1.

1. The context-forming mechanism creates relevant context intervals, given

abstraction-goal intervals, event intervals, abstractions, or combinations of

context intervals.  It relies on the parameter, event, and context ontologies,

the set of abstraction goals, and the set of all DIRCs.

2. The contemporaneous-abstraction mechanism creates abstractions from

contemporaneous parameter intervals and context intervals.  It performs

either several variations of range classification, or a computational

transformation.  It relies on classification knowledge represented in the

parameter ontology.
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3. The temporal-inference mechanism  performs two subtasks.  It infers a new

abstraction from two given abstractions, whose temporal spans are different

(e.g., one is a subinterval of the other), using temporal-semantic knowledge.

In the particular case of concatenating two meeting parameter intervals, it

can also determine the value of the join of two abstractions whose temporal

spans are consecutive, using temporal horizontal-classification knowledge.

Both types of knowledge are represented in the parameter ontology.

4. The temporal-interpolation mechanism  joins disjoint parameter intervals

or abstractions, in which the parameter is the same.  It uses local and global

temporal dynamic knowledge to determine persistence, and, when joining

disjoint parameter intervals, uses the same temporal horizontal–

classification knowledge as that used by the temporal-inference mechanism.

Both types of knowledge are represented in the parameter ontology.

5. The temporal-pattern–matching mechanism creates new abstractions by

matching patterns over potentially disjoint parameter intervals and context

intervals, where the parameters are of different types.  The required

knowledge exists in the parameter ontology as a more complex form of

temporal-classification (pattern-matching) knowledge, and, implicitly, in

the real-time temporal queries processed by this mechanism.

I analyzed formally the nature of the task that the temporal-abstraction

mechanisms solve.  As a consequence of that analysis, it became clear that four

knowledge types  are required for instantiating these mechanisms in any particular

domain (see Figure 1.2):

1. Structural knowledge  (e.g., IS-A and PART-OF relations in the domain;

QUALITATIVE-DEPENDENCY relations; SUBCONTEXT relations)

2. Classification knowledge (e.g., classification of Hb-level ranges into

LOW, HIGH, VERY HIGH; joining INC and SAME into NONDEC; pattern

matching)



Chapter 8: Summary and Discussion

274

3. Temporal-semantic knowledge (e.g., relations among propositions

attached to intervals, and propositions attached to their subintervals,

such as the downward-hereditary and gestalt  properties)

4. Temporal dynamic knowledge (e.g., local, ρ, forward- and backward-

persistence functions of the value of a parameter over time; global,

maximal-gap, ∆ functions; significant-change functions)

These four types of knowledge are all that is necessary to instantiate the domain-

independent knowledge-based temporal-abstraction method for any particular

application area.  These knowledge types can be used as a declarative,

parameterized interface for a knowledge engineer developing a temporal-

abstraction system in a new domain.  Furthermore, the knowledge types can be

used for efficient, task-oriented acquisition of knowledge from domain experts.

In Chapter 5, I presented a computer program that I designed, the RÉSUMÉ

system, that implements the knowledge-based temporal-abstraction inference

structure and, in particular, the five temporal-abstraction mechanisms.  The

RÉSUMÉ system incorporates in its architecture several additional features that

enable it to fulfill the requirements presented in Chapter 1 for temporal-

abstraction systems.  The RÉSUMÉ system represents in its knowledge base a

task-oriented model of the domain, the domain’s temporal-abstraction ontology

of parameter properties, of events, and of interpretation contexts.   In addition, the

RÉSUMÉ system incorporates a truth-maintenance system that maintains

dependencies among the inherently nonmonotonic conclusions of the

knowledge-based temporal-mechanisms.  The RÉSUMÉ system can accept input

data, and can return output abstractions, at any desired level of abstraction,

when that level was specified in the domain’s ontology.

As I demonstrated in Chapter 6, I used the RÉSUMÉ system to model the

temporal-abstraction knowledge in several subdomains of the domain of treating

patients using clinical protocols, such as treating patients who have AIDS or who

have chronic GVHD.  In addition, I used the RÉSUMÉ system to model the

temporal-abstraction knowledge in two significantly different domains:
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Monitoring of children’s growth and therapy of insulin-dependent diabetic

patients.  Finally, I applied the temporal-abstraction mechanisms implemented in

RÉSUMÉ, combined with the knowledge acquired in certain of the domains, to

several clinical cases in these domains.  The result was a set of intermediate-level

abstractions and patterns in these clinical domains.  In the domain of monitoring

children’s growth, for several clinical cases, the RÉSUMÉ system generated

temporal-abstraction intervals that would be sufficient to conclude growth

abnormalities of the type defined by the domain expert from whom another

knowledge engineer acquired the ontology.  In the domain of diabetes therapy,

the RÉSUMÉ system generated meaningful intermediate abstractions similar to

those that were indicated as useful, for the purpose of therapy recommendation,

by two domain experts.  Although the two diabetes-therapy experts agreed on

most of the abstractions that they produced from the clinical cases, they did not

agree on the therapy plan for even one of these cases.  This observation validates

a basic premise underlying the goal of the temporal-abstraction task—namely,

that intermediate conclusions from the data (the interval-based abstract concepts

and patterns) are significantly more stable than are specific therapy rules

predicated on these conclusions.  Such intermediate-level abstractions should be

represented explicitly, separate from knowledge about therapy.

8.2  The RÉSUMÉ System and the Temporal-Abstraction Desiderata

In Section 1.1, I listed several key attributes of the desired behavior of a method

that creates meaningful abstractions from time-stamped data.  The knowledge-

based temporal-abstraction method and its implementation as the RÉSUMÉ

system addresses most of these desiderata, and several additional features:

8.2.1  Accepting as input data of multiple types and abstraction levels.  Indeed,

an inherent property of the parameter ontology (see Section 5.1) is its uniform

representation of all clinical parameters of all types, numeric and symbolic.

Furthermore, the input data can be at different levels of abstraction (e.g., in the

domain of pediatric growth monitoring, the RÉSUMÉ system can be given, as

primary input, either raw data, such as height measurements, or higher-level
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concepts, such as the HTSDS abstraction).  Thus, some input data can be partially

abstracted by the physician, or by another computational module before they are

entered into the RÉSUMÉ system.  This feature is an automatic result of the

explicit ABSTRACTED-INTO hierarchy and of the fact that each parameter—

including state, gradient, rate, and pattern abstractions—is a first-class citizen in

the parameter ontology.  Thus, the abstraction process, as happened in the

domain of growth monitoring, simply continues from the given level of

abstraction.  Finally, the input can include variable temporal representations

(e.g., both time points  and time intervals) and variable temporal granularities; all

time elements are represented internally as time intervals (time points are simply

zero-length intervals), and time units are converted, if necessary, from those used

in the runtime input or from those indicated by the expert in the ontology during

knowledge acquisition.

8.2.2  Availability of output abstractions at all levels of abstraction .  Enabling

queries at different levels of abstraction is one of the major hallmarks of the

RÉSUMÉ architecture.  It enables the expert to define temporal patterns at

knowledge-acquisition time, while enabling the user of the application system to

query the resulting temporal fact base for new, arbitrary temporal patterns.  The

outputs generated by RÉSUMÉ are controlled partially in a goal-oriented fashion

(see Section 5.3.1), since it is possible to indicate in the application’s control file

which temporal-abstraction mechanisms should be activated and what

abstraction types are desired.  In addition, the very inclusion or exclusion of an

abstraction (i.e., a parameter class) in the domain’s temporal-abstraction

ontology, and, in particular, in the application’s ontology-instances file, restricts

even further the number and type of abstractions that can be created at run time

(see Section 5.3.1).   Finally, both the task of sifting through the resultant

temporal fact base for additional patterns and the task of aggregating relevant

conclusions together as much as possible (e.g., returning only the longest

possible interval within a given time span, hiding individual intermediate

abstractions), are performed automatically by the temporal-abstraction

mechanism when that mechanism performs another of its tasks, that of

answering a runtime query.
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8 . 2 . 3   Context-sensitive interpretation.  The knowledge-based temporal-

abstraction model separates interpretation contexts from the events,

abstractions, abstraction goals or (possibly indirectly) combinations of these

entities that induce these contexts.  The RÉSUMÉ system models the separation

as dynamic induction relations of context intervals (DIRCs) which represent

inference rules for inducing context intervals whose time interval can have any of

Allen’s 13 temporal relations to the interval over which the inducing entity is

interpreted, including quantitative temporal constraints on these relations (see

Sections 4.1 and 4.2.1 and Figure 4.2).  Contemporaneous interpretation contexts

belonging to the SUBCONTEXT relation can form more specific composite

interpretation contexts.

Abstractions are specialized in the parameter ontology by interpretation contexts.

Interpretation contexts both reduce the computational burden and specialize the

abstraction process for particular contexts, by enabling within their temporal

context the use of only the temporal-abstraction knowledge (e.g., mapping

functions) specific to the interpretation context.  The use of explicit interpretation

contexts and DIRCs allows us to represent both the induction of several different

context intervals (in type and temporal scope) by the same  context-forming

proposition, and the induction of the same  interpretation context by different

context-forming propositions (thus allowing us to represent the properties of the

Hb parameter within a bone-marow–toxicity context interval without the need to

list all the events that can lead to the creation of such a context interval).  The

expressiveness of the interpretation-contexts language includes also allowing

unified  (or generalized) contexts  (a union of different, temporally meeting

contexts) and nonconvex  contexts  (interpolation between similar, temporally

disjoint contexts), thus enabling, when desired, sharing of abstractions of the

same parameter among different contexts and temporal phases.

As noted in Section 6.3, the human experts in the diabetes-therapy domain

seemed to be using a similar strategy to that embodied in the use of the context-

forming mechanism by first defining a qualitative context to their interpretations,

defined by a pattern of the external therapy events.  The temporal patterns were
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detected within that context.  Numeric event attributes were utilized only for

therapy-planning decisions.

8.2.4  Acceptance of input data out of temporal order .  Input data to  the

RÉSUMÉ system can be incorporated in the interpretation process without the

creation of unsound conclusions even if they arrive out of temporal order (e.g., a

laboratory result from the previous Tuesday arrives today).  This, of course, is an

immediate byproduct of the truth-maintenance system underlying the temporal-

reasoning process (assisted by the temporal-inference mechanism), which can

retract conclusions that are no longer true, and can propagate new abstractions to

the rest of the temporal fact base.  Thus, the past can change our view of the

present;  I called that change a view update .  Furthermore, new data enable the

RÉSUMÉ system to reflect on past interpretations; thus, the present (or future)

can change our interpretation of the past, a property referred to as hindsight

[Russ, 1989].  The hindsight task is performed by several components of the

RÉSUMÉ system’s architecture: (1) the truth-maintenance system, which

propagates the new conclusions, possibly retracting old ones if these contradict

the new data, and that is augmented by the temporal-inference mechanism’s

ability to detect contradictions, using the temporal-semantic properties of

parameter propositions in the domain (see Section 6.4); (2) the context-forming

mechanism, which can create both prospective and retrospective  contexts

dynamically (thus creating new retrospective interpretations when new events

are known or new abstractions have been asserted or created), using knowledge

represented in the parameter, event, and context ontologies and the set of DIRCs;

and (3) the temporal-interpolation mechanism, which has the ability to reason

about both forward and backward persistence of belief in the truth of parameter

propositions.  For instance, an additional data point, extending the length of the

time interval of a certain abstraction interval, might enable that interval to be

concatenated to a previous one of the same type.

8.2.5   Maintenance of several concurrent interpretations.  Several possible

interpretations of the data can be maintained in parallel by the RÉSUMÉ system,

through the employment of the context-forming mechanism.  Several concurrent
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contexts can be maintained, creating different interpretations for the same data

point (e.g., one in the context of the patient having AIDS, and one in the context

of having complications of certain drugs).  The interpretation is specific to the

context in which it is applied, due to the specialization of the parameter-

properties ontology by more restrictive interpretation contexts  (e.g., particular

therapy regimens).  All reasonable interpretations of the same data relevant to

the task at hand are available automatically or on query, since all are kept in the

temporal fact base and each query refers to a specific context.

8.2.6  Enablement of temporal and value uncertainty.  There is room for some

uncertainty in the expected data values , and for some uncertainty in the time  of

the input or the expected temporal pattern.  For instance, the Cπ (significant

change) parameter captures the concept of measurement errors or clinically

insignificant value changes; the ∆ functions capture the notion of persistence of

parameter propositions over time before and after the latter’s measurement or

creation; the temporal patterns leave room for variability in value and in time

spans.

8.2.7  Facilitation of development, acquisition, maintenance, sharing and reuse

of the knowledge base .  The  knowledge-based temporal-abstraction method has

been demonstrated as easily generalizable to several quite different clinical

domains and tasks, such as those presented in Chapter 6.  The uniformity of this

method is one of its main characterizing aspects.  Its underlying concept is to use

uniform temporal-abstraction mechanisms, in which predefined, declarative,

knowledge roles are parameterized (instantiated) for new, specialized, segments

of the parameter ontology—namely, for new clinical domains.

The domain-specific assumptions underlying the knowledge-based temporal-

abstraction method are explicit, and are as declarative as possible (as opposed to

being represented in procedural code).  The explicit representation supports

acquisition of the knowledge necessary for applying the method to other domains,

maintenance  of that knowledge, reuse of the domain-independent temporal-

abstraction mechanisms, and sharing  of the domain-specific temporal-abstraction
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knowledge with other applications in the same domain.  The organization of the

knowledge in the RÉSUMÉ system into parameter, event, and context ontologies

plays a major role in accomplishing these goals.  The use of declarative

representations, such as uniform multidimensional tables, where several

semantic axes  combine to indicate the proper interpretation of the table (see

Section 5.1.1) facilitates both modification of the knowledge base by the user and

introspective reasoning by the temporal-abstraction mechanisms.  The

organization of the knowledge in the parameter ontology as subclasses of the

four general abstraction types (state, gradient, rate and pattern) with frame-based

inheritance of general abstraction-type and domain-specific properties, further

enhances the ease of designing new systems, acquiring the necessary knowledge

and maintaining the temporal-abstraction knowledge base.

8.2 .8   Separation of interpretation from planning.  The knowledge-based

temporal-abstraction method, whose subtasks are solved by the five temporal-

abstraction mechanisms, performs a temporal-abstraction task, whose scope is

limited to interpreting past and present data.  This latter task is separate from the

tasks of planning actions or of executing these actions.  Separation of the

treatment-planning and treatment-execution components in a medical decision-

support system has immediate useful byproducts.  In particular, intermediate-

level abstractions seem to be much more consistent among experts than the

resultant therapy recommendations, as I have demonstrated in Section 6.3 for the

diabetes-therapy domain.  Furthermore, that separation allows a temporal-

abstraction system to reason about the data offline, possibly accessing data

directly from a temporally oriented database, such as an electronic medical-

record database.

8.2.9  Summarization of medical records.  The process of temporal abstraction

transforms large volumes of data into a concise representation—an important

goal for clinical temporal-abstraction systems.  This goal is achieved explicitly by

the RÉSUMÉ system, whose main objective is to support both predefined

(internal) and online (external) temporal queries in multiple levels of abstraction.

The intermediate abstractions are maintained, enabling further arbitrary queries.
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The  process of abstraction in the RÉSUMÉ system can be controlled, in principle,

to support different types of users (e.g., attending physicians, nurses, and

specialists), who need different types of output abstractions.

8.2.10   Provision of explanations .  Another advantage of emphasizing the

process of creating temporal abstractions and separating that process from the

use of these abstractions is the ability to supply intermediate-level explanations to

a user questioning, for instance, a therapy planner.  Since the abstractions are

created, reasoned with, and saved independently of the recommendations using

these abstractions, they are available for inspection.  In fact, the user can be

supplied with increasingly refined levels of explanations for the final output

pattern, by moving along the links of the ABSTRACTED-INTO hierarchy, from the

most abstract to the most primitive (raw) parameters.  (In principle, the logical

justification links of the truth-maintenance system can be used similarly,

exploiting the runtime logical-dependency graph.)

8 .2 .11   Support of plan recognition and human-computer collaboration .

Finally, since a medical decision-support system works cooperatively with a

physician, the high-level goals of a therapy planner can be represented as

temporal patterns annotating  nodes in a tree of goals and subgoals (e.g., a general

policy might be stated to the effect that Hb values should be kept in a certain

context above 7 gm/dl, and that an episode of SEVERE_ANEMIA should not last

for more than 2 weeks).  Goals would typically include either achievement,

maintenance, or avoidance of certain temporal patterns.  This ability to represent

goals and higher-level policies explicitly as temporal abstractions, combined with

knowledge about the effects of therapy-planning actions, can support a limited

form of plan recognition .  It enables, in principle, a critiquing  planning system

[Miller, 1986] to realize when the physician is actually following a higher-level

policy, even though superficially she has overridden the system’s

recommendation (e.g., she is giving the patient a transfusion of blood instead of

attenuating the dose of the myelotoxic drug, thus still following the higher

directive of avoiding a pattern of low Hb values).  Thus, the system will still be

able to support intelligently other, independent planning-decisions of the human



Chapter 8: Summary and Discussion

282

user.  Such an ability would certainly increase the usefulness of knowledge-based

decision-support systems to clinical practice, by enabling an intelligent dialog

between two planners: the physician and the decision-support system.

8.3  RÉSUMÉ and Other Clinical Temporal-Reasoning Systems

In Section 3.1, I presented a classification of general temporal reasoning

approaches in philosophy and computer science.  In Section 3.2, I presented a

broad view of temporal-reasoning systems applied to clinical domains, and

compared these systems to the RÉSUMÉ system and its underlying

methodology.  In this section, I present a brief summary of the main points of

that comparison, in the light of the work presented in Chapters 4–6, and overall

conclusions from that comparison.

The role of the context-forming mechanism  is not unlike that of the state-

detection rules in Fagan’s VM ventilation-management system, although the

mechanism’s operation is quite different and its output is more flexible with

respect to the temporal extension of the created interpretation context and the

semantic distinctions possible among different types of interpretation contexts

(e.g., basic , composite , unified, nonconvex).  The local and global maximal-gap

functions in the RÉSUMÉ system extend the VM idea of GOOD-FOR parameter-

and context-specific persistence properties.  Unlike VM, RÉSUMÉ can accept

data out of temporal order due to several mechanisms for handling

nonmonotonicity; thus, at any time, RÉSUMÉ’s conclusions regarding past and

present data reflect the current state of knowledge about those data.

The RÉSUMÉ system contains several concepts that parallel key ideas in Russ’

temporal control structure (TCS)  system, such as maintaining dependencies

between data and conclusions, allowing arbitrary historic updates, reasoning

about the past and the future, and providing a hindsight  mechanism (albeit by a

different methodology).  In fact, the RÉSUMÉ system also allows foresight

reasoning (setting expectations for future interpretations based on current events

and abstractions).  Like TCS, the RÉSUMÉ system assumes time-stamped input
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(i.e., time points  are the temporal units), although propositions in RÉSUMÉ are

interpreted only over time intervals.

Like TCS, the RÉSUMÉ system uses the idea of context-specific interpretation,

but the partitioning of the intervals is not strictly mechanical (depending on only

intersections of different intervals): Rather, partitioning is driven by knowledge

derived from the domain’s ontology, and contexts are created only when

meaningful.  Abstractions can be prevented from being joined, even when in

steady state, depending on the underlying proposition’s temporal-semantic

properties; on the other hand, abstractions might be joined over time gaps due to

the temporal-interpolation mechanism.  Context intervals can be created not only

by direct intersections of interval-based abstractions, such as the TCS partitions,

but also can be induced dynamically anywhere in time in the  fact base.

TCS treats the user-defined reasoning modules as black boxes, and supplies only

temporal bookkeeping utilities.  In that respect, TCS is highly reminiscent of the

time specialist of Kahn and Gorry: It has no knowledge of temporal properties of

the domain.  Unlike TCS, which leaves the semantics of the temporal-reasoning

task to the user’s program code, the RÉSUMÉ system’s mechanisms provide

predefined temporal-reasoning procedures specific to the temporal-abstraction

interpretation task, that need only be parameterized by the four knowledge types

and their subtypes.  Unlike the TCS system’s domain-specific modules,

implemented as procedural Lisp code, the RÉSUMÉ system uses its domain

independent temporal-abstraction mechanisms that rely on declarative, domain-

specific temporal-abstraction knowledge.

The RÉSUMÉ system, although its goal is far from that of discovering causal

relationships, develops several concepts whose early form can be found in

Blum’s Rx  discovery project.  The ontology of parameters  and events  is an

extension of the states  and actions in the Rx medical knowledge base.  The IS-A

and ABSTRACTED-INTO hierarchies are an extension of the Rx derivation  trees .  The

Rx time-dependent database access functions have a somewhat similar effect to that
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of RÉSUMÉ’s local and global persistence functions, dynamically induced

interpretation contexts, and temporal-semantic properties.

RÉSUMÉ’s ontology of parameters and events resembles the knowledge base of

abnormal primary attributes, states, diseases, and drugs in de Zegher-Geets’

IDEFIX summarization system.  The contemporaneous-abstraction knowledge,

which is used by RÉSUMÉ to combine values of several parameters that occur at

the same time into a value of a higher-level concept, includes the particular case

of a linear weighting scheme as used by IDEFIX to combine severity scores.  The

local persistence  functions used by RÉSUMÉ are an extension of the IDEFIX

validity times and time-oriented probabilistic functions (TOPFs), but are

sensitive to the value of the clinical parameter, the clinical context, and the length

of time the value was already known; their conclusions pertain not only to the

present or future, but also to the past (before the conclusion or measurement was

known).  Unlike the TOPFs, RÉSUMÉ’s global (∆) maximal-gap functions and

induced interpretation contexts denote not the strength of a probabilistic

connection, such as between a disease and its complications, but rather the

notion of persistence  of certain predicates forward and backward in time.  In one

sense the persistence functions extend the TOPF notion, by looking at relevant

states both before and after the potentially missing one, and by using interval-

based abstractions of states, rather than just single visits.

Kahn’s TOPAZ  system employed the ETNET temporal-maintenance and

temporal-reasoning system.  The ETNET algorithm, which depended on the

given search dates being within the context interval containing the  context-

specific rule, could not detect events that were contextually dependent on a

parent event, but that were either disjoint from that event (beginning after the

causing event) or even partially overlapping with it.  This problem is solved in

the RÉSUMÉ architecture automatically by the event- and abstraction-induced

interpretation contexts, which are created dynamically anywhere in the past or

future in response to the appearance of an inducing proposition, and which

enable, only within their context, the use of context-specific temporal-abstraction

knowledge by the domain-independent temporal-abstraction mechanisms, thus
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creating a different version of context-specific rules than the one expressed in VM

and TOPAZ.  However, interpretation contexts, like ETNET context nodes, limit

the scope of inference, making it easier to match patterns within their scope, to

deposit conclusions, and to limit application of inappropriate inference

procedures (e.g., context-specific mapping functions).

Haimovitz's TrenDx  system uses Kohane’s TUP  constraint-network utilities to

detect temporal and parameter-value constraints that are defined by temporal

trend templates  (TTs).  Unlike RÉSUMÉ, TrenDx neither represents in its

knowledge base nor maintains at runtime explicit intermediate abstractions of

parameters, and does not answer arbitrary temporal queries.   This goal-directed

approach to pattern matching, contrasts with the RÉSUMÉ approach of

generating meaningful intermediate abstractions and then using a simpler

pattern-matching mechanism both to detect predefined patterns and to answer

online queries in terms of the intermediate abstractions.

TrenDx does not maintain a hierarchical knowledge base; the domain-specific

knowledge is incorporated implicitly into the TT instances, even though some of

these instance rely on the same implicit knowledge.  Since TTs are defined in

terms of only the lowest-level concepts TrenDx can accept as input, and can

reason with, only raw data, and no intermediate-level abstractions, unlike the

RÉSUMÉ system.  The lack of intermediate abstractions might pose grave

difficulties when acquiring from a domain expert complex new patterns, since

typical TrenDx patterns, essentially encapsulating all levels of abstraction at the

same time, are much more complex than are typical pattern abstractions or high-

level queries presented to RÉSUMÉ’s temporal-pattern–matching mechanism.

The differences between TrenDx and RÉSUMÉ are mainly due to the fact that

RÉSUMÉ has different, more general, goals: representation of temporal-

abstraction knowledge in a domain-independent, uniform manner, such that the

problem-solving knowledge be reusable in other domains and that the domain

knowledge be sharable among different tasks; answering arbitrary temporal

queries involving several levels of abstraction; and formalizing the temporal-
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abstraction knowledge so that it can be acquired directly from a domain expert

using manual or automated KA tools.

Larizza’s M-HTP temporal-abstraction system for heart-transplant patients can

be seen as a particular, domain-specific instance of the RÉSUMÉ system.  The M-

HTP system is not easily generalizable for different domains and tasks.  Concepts

such as WBC_DECREASE are hard-wired into the system; this hardwiring is

conceptually different from the RÉSUMÉ system’s implementation of a set of

domain-independent abstraction classes, such as the gradient-abstractions class.

The latter class contains domain-independent knowledge about abstracting

gradients, and its domain-specific subclasses, such as WBC_GRADIENT (similarly

for state and rate abstractions).  In a gradient subclass, a particular value of the

abstract parameter, such as DECREASING (or INCREASING, SAME, and so on), and

its inference properties, can be inherited from the gradient abstractions class, (or

specialized for a particular subclass, if it were a new value) and used by all

instances of the gradient subclass, such as the WBC_GRADIENT subclass.

In addition, in the M-HTP system, there is no obvious separation between

domain-independent abstraction knowledge and domain-specific temporal-

reasoning properties.  The patient’s temporal network includes classes denoting

knowledge  about clinical episodes as well as instances of patient data.

 RÉSUMÉ, therefore, can be viewed as a metatool  that might, in principle, simulate

the temporal-abstraction module of M-HTP, when all the domain-specific

knowledge inherent in M-HTP is represented in a proper domain ontology.

8.3.1  Conclusions from Comparison to Other Approaches

Despite the differences among the systems that I discussed in Section 3.2, most of

these systems—at least those that needed to perform a significant amount of the

temporal-abstraction task—in fact solved tasks closely related to the five  tasks

that I presented in Section 1.1 as the fundamental subtasks of the temporal-

abstraction task, when that task is decomposed by the knowledge-based

temporal-abstraction method (or inference strcuture).



Chapter 8: Summary and Discussion

287

Furthermore, the systems that I have described often relied implicitly on the four

types of knowledge I mentioned: (1) structural knowledge, (2) classification

knowledge, (3) temporal-semantic knowledge, and (4) temporal dynamic

knowledge.  This knowledge, however, often was not represented explicitly.  For

instance, all systems described had to solve the context-restriction task before

interpretation could proceed and therefore created various versions of

interpretation contexts (e.g., the intervals created by TOPAZ and the temporal-

network module of M-HTP, the external states determined by the state-detection

rules of VM, and the steady states partitioned by TCS).  There was always a

classification task (e.g., determining severity levels by IDEFIX, or creating

interval-based abstraction from numeric patient-specific and population-

dependent data).  There was always a need to create intervals explicitly or

implicitly, and thus to reason about local and global persistence (e.g., Downs’

program used temporal predicates, IDEFIX defined TOPFs, and Rx required a

library of time-dependent database-access functions).  All systems assumed

implicitly some model of proposition semantics over time—for instance, allowing

or disallowing automatic concatenation of contexts and interpretations (VM,

IDEFIX).  Finally, all systems eventually performed temporal pattern matching,

explicitly (e.g., TOPAZ, using ETNET) or implicitly (e.g. Downs’ temporal

predicates, which were also used in IDEFIX as input to the odds-likelihood

update function, and the TrenDx pattern-matching algorithm, using the low-level

constraints).  In addition to the task solved, there were common issues to be

resolved inherent in maintaining the validity of a historic database (e.g., Russ’s

TCS system and RÉSUMÉ use a truth-maintenance system).

Thus, it is clear that the knowledge-based temporal-abstraction method makes

explicit the subtasks that need to be solved for most of the variations of the

temporal-abstraction interpretation task.  These subtasks have to be solved,

explicitly or implicitly, by any system whose goal is to generate interval-based

abstractions.  The temporal-abstraction mechanisms that I have chosen to solve

these subtasks make explicit both the tasks  they solve and the knowledge  that they

require to solve these tasks.
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As I mentioned while describing these systems, none of the approaches described

in Section 3.2 focuses on the knowledge-acquisition, knowledge-maintenance,

knowledge-reuse, or knowledge-sharing aspects of designing and building large

knowledge-based medical systems.  The approaches described, as applied to the

temporal-abstraction task, are not representing their inference strategy at the

knowledge level  (see Section 2.1).  We might therefore expect these approaches to

encounter several design and maintenance problems of knowledge-based

systems discussed in Chapter 2.  In particular, we would expect difficulties, some

perhaps insurmountable, when we attempt (1) to apply these approaches to

similar tasks in new domains, (2) to reuse them for new tasks in the same

domain, (3) to maintain the soundness and completeness of their associated

knowledge base and its interrelated components, and (4) to acquire the

knowledge required to instantiate them in a particular domain and task in a

disciplined and perhaps even automated manner.

8.4  Implications and Extensions of the Work

Many intriguing issues have been raised by my investigation into the

fundamental nature of temporal-abstraction knowledge.  In this section, I will

describe briefly several of the most interesting practical and theoretical issues,

including their implications for further research into the problem of acquiring,

representing and using temporal-reasoning knowledge.

8.4.1  Implications for Knowledge Acquisition

As I have mentioned, one of my major goals in constructing the knowledge-

based temporal-abstraction model, and for specifying formally the nature of the

knowledge required by each of the temporal-abstraction mechanisms solving the

subtasks of that method, was to facilitate, eventually, automated acquisition of

that knowledge.  I have analyzed the requirements for an automated KA tool for

the temporal-abstraction mechanisms, assuming a framework similar to the

PROTÉGÉ-II project.  In Section 7.2 I described some of my conclusions

regarding the issues that need to be resolved for a full implementation of a

knowledge-acquisition tool for the knowledge-based temporal-abstraction
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method.  Ultimately, I expect that a temporal-abstraction KA tool can be

produced for both knowledge engineers and domain experts.  More work needs

to be done in this intriguing area.  Techniques emerging from the areas of visual

programming and acquisition of procedural knowledge might be useful, such as

more intuitive, possibly graphical, techniques to facilitate the representation and

acquisition of temporal patterns.

As I have explained in Chapter 7, one method that might be applied (apart from

the manual and the automated ones) to the problem of acquisition of temporal-

abstraction knowledge is the machine-learning  approach.  A possible fascinating

project would be to discover consistent local and global persistence functions

using data from large electronic clinical databases.  As I have explained in

Section 7.3, this process needs additional annotation of the data to be effective (in

particular, explicit interpretation contexts and definition of the intermediate

abstractions).  A similar approach might be used for learning inference

(temporal-semantic) properties.

8.4.2  Implications for a Broader Temporal-Reasoning Architecture

One question that might naturally be asked is, how would the RÉSUMÉ problem

solver be integrated within a broader context, such as a method that uses the

knowledge-based temporal-abstraction method to solve one of its subtasks? In

the PROTÉGÉ-II project, we have begun development of an explicit mapping

interface from the RÉSUMÉ problem solver to EON, a problem solver [Musen et

al., 1992b], which implements the ESPR method [Tu et al., 1992] (see Section 2.2).

Our goal is to use the RÉSUMÉ problem solver to solve the problem-

identification subtask posed by the ESPR method (see Figure 2.2).  The problems

raised by this method-to-method mapping, using the two methods’ internal

ontologies, is of special interest to the PROTÉGÉ-II project.  Each method has its

own internal ontology (e.g., a different representation of events), and therefore

might require a different set of mapping relations to the domain’s ontology.  A

static mapping is required during the design and knowledge-acquisition times,

and when defining a particular instance of the task to be solved.  In addition, a
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dynamic  mapping is required during runtime, as new domain data need to be

incorporated.  A significant amount of work was inspired by this need in the area

of ontology mapping [Gennari et al., in press], but clearly, additional techniques

need to be developed.

The planned EON architecture will include the Tzolkin system, which will

comprise the RÉSUMÉ system for temporal reasoning and the Chronus system

[Das et al., in press] (see Section 3.1.8.1) for temporal maintenance and querying.

The Tzolkin system proposes a temporal mediator  architecture [Das et al., 1994] in

which temporal queries by the user will be referred to the appropriate system

component, and in which the results of the query will be integrated by the

temporal mediator.  For example, as described in Section 6.4, I have noticed

difficulties in the current RÉSUMÉ architecture in integrating the results of

temporal and statistical queries, in representing cyclic temporal patterns, and in

relating the internal time (e.g., months since the beginning of therapy, the

patient’s age) to the external, absolute time (e.g., 10 p.m., Sunday).  In addition,

RÉSUMÉ assumes a single patient record.  In the Tzolkin system, abstractions

created by RÉSUMÉ might be saved, when appropriate, in the external database;

a statistical query, such as a count query, would then be referred to the Chronus

module.  Similarly, multiple-patient queries would be processed by a

combination of the temporal-reasoning mechanisms in RÉSUMÉ and the

temporal-maintenance facilities of Chronus.

8.4.3  Implications of the Nonmonotonicity of Temporal Abstraction

Integrating the RÉSUMÉ system with an external database creates additional

problems.  An especially intriguing one is the inherent nonmonotonicity of

temporal abstractions.  As described in Section 5.5, this problem was solved

successfully in the RÉSUMÉ system by the use of a truth-maintenance system.

No complications occurred when data from an external Sybase relational

database were translated into the RÉSUMÉ format (such as was done in the

diabetes-therapy domain; see Section 6.3).  The assumption in such cases is that

one single patient record is being read into the system’s memory, available for
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interpretation and querying during a consultation session, but that no output

needs to be saved back to the original database.

However, in a broader context, such as when interacting with a large, multiple-

user patient database, there are many interesting new issues that need to be

examined.  For one, how is the system to maintain the dependency links created

among abstractions, if these abstractions will be saved in some storage space,

such as the common database?  Most commercial databases do not provide an

underlying truth-maintenance system or other logical-dependency links among

tuples in the database, and offer no mechanism for recursively propagating

updates.  Therefore, using a system such as RÉSUMÉ in the context of, say, a

hospital database, might create inconsistency problems:  The RÉSUMÉ system

will update old conclusions in the temporal fact base as new data arrive (possibly

out of temporal order); but the database system, not having the benefit of the

dependency links and the truth-maintenance propagating mechanism, will also

keep the old, incorrect conclusions.

In addition, arrival of new data to the patient database should be reported to the

RÉSUMÉ temporal fact base.  Thus, we need to investigate whether the temporal

fact base and the external database should be tightly coupled (each update is

reflected immediately in the other database), loosely coupled (updates are sent

intermittently to the other database) or not coupled at all (an unlikely solution,

but, unfortunately, the state-of-the-art for most stand-alone expert systems).

Several protocols for connecting and mutually updating the internal and external

databases are theoretically possible  The choice among the alternatives also might

depend on the properties of the domain, and the capabilities of the external

database (object-oriented databases handle links among entities much better), but

the problem deserves further research.

An issue, relevant to the nonmonotonicity and database coupling ones, is

whether some, all, or none of the temporal abstractions should be saved in the

global patient database.  Given that some of these abstractions are only

intermediate, whereas other abstractions might be changed by future data
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(possibly with a past time stamp or having some influence on the interpretation

of that past), it might be advisable not to save any abstractions, due to their

logically defeasible nature.  However, it is obviously useful, from an efficiency

point of view, to cache several key conclusions for easy future use, either to

respond to a direct query or to support another temporal-abstraction process.

The caching is especially important for saving high-level abstractions, such as

“nephrotic syndrome,” that have occurred in the past and that are unlikely to

change, and that are certainly useful for interpreting the present.  Such

abstractions might be available for querying by other users (including programs),

who do not necessarily have access to the RÉSUMÉ problem solver or to the

domain’s full temporal-abstraction ontology.  It is therefore worthwhile to

investigate the episodic use of “temporal checkpoints” beyond which past

abstractions are cached, available for querying, but not for modification.

8.4.4  The Threshold Problem

Some of the issues raised by the use of the RÉSUMÉ system are relevant to most

systems solving an interpretation task.  An especially pertinent one is the implied

classification subtask.

Classifying time-stamped numerical data into discrete categories using

predefined ranges of values, as is done in RÉSUMÉ by the contemporaneous-

abstraction mechanism when the range-classification scheme is used, presents

several problems, one of which is the threshold problem.  The expert abstracting

a body temperature up to 98˚ F as NORMAL does not necessarily mean that 98.01˚

F should be considered HIGH.  Such use of the definition might lead to erroneous

conclusions when similar cases are compared, where the temperatures are

essentially the same.  Some aspects of this problem are handled, in the case of the

gradient abstractions, by the Cπ (significant change) attribute or context-specific

function, and clinical protocols typically use well-defined ranges, but in general,

state abstractions might still be classified too rigidly.  One way to approach the

threshold problem is to represent the cut-off points between different categories

as a set of constraints, using heuristics to choose a specific cut-off value when
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necessary [Goyal and Shoham, 1992].  These constraints must be acquired from

the domain expert.  Another possibility is to represent cut-off points in a

probabilistic fashion, assigning to each value (or range) a certain probability of

belonging to the LOW or HIGH abstraction class.  In this case, the probability

distribution of every abstraction across the parameter values must be acquired.

Another option is to use a fuzzy-logic representation, assigning each parameter

value a certain measure of belonging to each abstraction-class value.  One such

recent approach uses sigmoidal functions for recognition of time-dependent

patterns [Drakopolous and Hayes-Roth, 1994].  The tradeoff of using  a

probabilistic or a fuzzy representation includes not only a representational

burden, but also a computational one, since all possible interpretations, as

unlikely as these are, must be saved and monitored in parallel.  It is also unclear

in what way would, or should, a human or automated user use the resultant

probabilistic or fuzzy abstractions (e.g. a 15% probability of HIGH(Hb), a 55%

probability of NORMAL(Hb), and a 30% probability of LOW(Hb), or a 0.8 fuzzy

measure of HIGH(Hb)) and the resultant probabilistic or fuzzy time intervals of

varying lengths.  It would seem likely that the reasoning process using the

abstraction module’s output (e.g., a physician or an automated planner) would

still have to apply, in practice, some threshold, perhaps arbitrary, to the resulting

fuzzy or probabilistic measure, when it needs to commit itself to some action.

The process of mapping several numerical, time-stamped, data parameters into a

discrete, predefined category requires further investigation.  (The knowledge-

based temporal-abstraction model does not depend, of course, on any particular

implementation of the classification knowledge, and can only benefit from

progress in that area.  The tradeoff involved in a complex classification scheme

includes, among other considerations, the effort required to acquire a complex

classification function from a domain expert and to modify that function when

necessary.)

8.4.5  Implications for Semantics of Temporal Database Queries

In Section 4.2.3, I described the temporal-inference mechanism.  One of the two

main types of knowledge used by that mechanism is temporal-semantic knowledge,



Chapter 8: Summary and Discussion

294

an extension of Shoham’s [1987] classification of the relationship of predicates

interpreted over one time interval to predicates interpreted over other time

intervals.  As described in Sections 4.2.3 and 5.5, the temporal-semantic

properties of parameter propositions are valuable both for inferring further

abstractions and for detecting contradictions among existing ones, leading to

retraction of potentially incorrect conclusions and to propagation of the new

conclusions by the truth-maintenance system.  The temporal-semantic properties

can be useful for performing similar functions in temporal databases.  For

instance, two tuples representing a certain predicate, whose temporal attributes

refer to meeting time intervals, should not necessarily be concatenated for

purposes of summarization.  In addition, queries such as “was p necessarily true

during time interval I?” or “is it possibly true  that p held over a certain time

interval?” when I is has some temporal relation to an interval I1 over which p is

true, might be answered, among other means, by using temporal-semantic

properties.

As mentioned in Section 4.2.3, the full use of the inferences implied by the

temporal-semantic knowledge might be viewed as a modal logic  of combining

propositions over time, and representing what is possibly  true and what is

necessarily  true.  Further research would be useful and might elucidate some

issues in the semantics of temporal queries referred to temporal databases.

8.4.6  Relationship to Other Knowledge-Based Problem-Solving Frameworks

It is interesting to compare the inference actions implied by the temporal-

abstraction mechanisms with the basic inferential components existing in other

problem-solving frameworks mentioned in Section 2.2.  Such a comparison

would enable us to appreciate more to what extent the knowledge-based

temporal-abstraction method is general and potentially sharable with

frameworks substantially different from PROTÉGÉ II.  I have started that process

by collaborating with researchers in the European KADS-II project, a newer

version of the KADS  methodology (see Section 2.2), comparing the temporal-

abstraction mechanisms with the KADS-II primitive inference actions (PIAs)



Chapter 8: Summary and Discussion

295

[Aben et al., 1994].  We constructed an inference structure in KADS-II terms,

which represented the essence of the contemporaneous-abstraction, temporal-

inference, and temporal-interpolation mechanisms.  One of the main insights we

gained was that the temporal-abstraction mechanisms operate at a much higher

level of inference granularity, as opposed to very low-level, highly nonspecific

PIAs such as select or generalize.  Thus, the KADS-II architecture has highly

generalizable, low-level, components; however, the tradeoff in using such highly

modular components, and in representing all classification functions, for

instance, as a SELECT operation, is that these components are not sufficiently task

specific.   Representing the temporal-interpolation mechanism, for example, as a

set of PIAs, tends to obscure the way that the domain-specific temporal-

abstraction knowledge is used by different mechanisms.  Also, it volunteers no

clue as to the knowledge-use level [Steels, 1990] represented explicitly by the

temporal-abstraction mechanisms’ ontology of parameters, events, and contexts.

The knowledge-use level, however, seems highly useful for bridging the gap

between theoretical problem-solving methods and working applications.

8.4.7  Implications for Plan Recognition and Critiquing

As mentioned in Section 8.2, one of the additional potential uses for the

knowledge-based temporal-abstraction framework is the representation of the

high-level goals of a plan as temporal patterns.  For instance, in medical domains,

a plan might be a therapy plan, or a set of policies inherent in a clinical guideline.

This representation might be achieved by an annotation of nodes in a tree of

goals and subgoals.  Annotations might include temporal patterns that should be

created or maintained, and temporal patterns that should be avoided (either

when detected or when generated hypothetically by a planner considering

therapy options).  The therapy planner would also need a library of plans

corresponding to particular goals, subgoals, and expected problems that the

planner might encounter while executing a plan (so called plan  bugs in the case-

based planning literature [Hammond, 1989]).  Combining the annotated plan

with the plan library might enable the planning system to realize when the
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physician actually is following a higher-level policy, even though, superficially,

she has overridden the system’s recommendation.

Such an ability for an intelligent, goal-oriented dialog with the user seems crucial

for most clinical expert systems if these systems are ever to be accepted by

health-care providers.  I expect that future work will include using the temporal-

abstraction mechanisms and related knowledge for the process of plan

recognition and plan critiquing.  Initial work in the PROTÉGÉ-II group has

already focused on the plan-revision subtask, one of the subtasks into which the

ESPR method decomposes its initial task of managing patients using clinical-

protocols (see Section 2.2).

8.5  Summary

My work elucidates the nature of the knowledge required for solving the

temporal-abstraction task by a knowledge-based method.  In particular, I have

investigated five temporal-abstraction mechanisms that can be used to solve,

within the knowledge-based temporal-abstraction method, the five subtasks into

which that method decomposes the temporal-abstraction task.  Thus, the

knowledge-acquisition and knowledge-maintenance requirements for these

mechanisms become apparent.  I have also shown that the five subtasks of the

knowledge-based temporal-abstraction method appear implicitly in most

systems that perform temporal-reasoning, especially in clinical domains.

The knowledge used by expert physicians to extract meaningful temporal

intervals from a set of data is intricate and is largely implicit.  This intricacy is

reflected in the complexity of the temporal-abstraction knowledge, when that

knowledge is represented explicitly in the knowledge-based temporal-

abstraction model by a domain-specific temporal-abstraction ontology of

parameters, events, contexts, abstraction goals, and DIRCs.  Designers of medical

knowledge-based systems cannot escape this complexity if they wish to support

tasks that involve significant amount of reasoning about time-stamped data.
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I have implemented the knowledge-based temporal-abstraction method in the

RÉSUMÉ problem-solver.  The architecture of the RÉSUMÉ system tests

additional claims with respect to the desired representation of temporal-

reasoning knowledge.  The RÉSUMÉ parameter-properties ontology is organized

by abstraction types (state, gradient, rate, and pattern) and is specialized by

contexts.  Most of the knowledge is represented uniformly and declaratively as

multidimensional tables (each representing implicitly a large number of inference

rules) with a small number of semantic axes that determine the correct

interpretation of the table.  The inherent nonmonotonicity of temporal

abstraction is addressed by a combination of the temporal-inference mechanism

(using the temporal-semantic properties of the domain’s parameter propositions)

and a truth-maintenance system that maintains logical dependencies among all

data and abstractions.

My discussion of the theoretical domain-independent temporal-abstraction

model presented in Chapter 4, and of the task-specific architecture of the

RÉSUMÉ system presented in Chapter 5, suggests that both the temporal-

abstraction task as I have defined it, and the methodology I proposed for solving

it, are relevant to many other application domains besides clinical medicine.  The

temporal-abstraction task and its solution are relevant to domains in which

abstraction of concepts over time from primitive, input data is needed, and in

which most of the features described in Section 1.1 are desired.  The

methodology I present is especially useful when several abstraction levels and

data types exist as possible inputs or outputs of the temporal-abstraction task,

when data might arrive out of temporal order, and when several context-specific

interpretations might need to be monitored in parallel.

I have defined four types of knowledge required to apply the domain-

independent temporal-abstraction mechanisms to any particular domain, and

especially to clinical domains.  That knowledge should be formulated precisely;

as I have demonstrated in Chapter 6, most of that knowledge can be acquired

from domain experts, and can be used for solving the temporal-abstraction task

in that domain.  Since the knowledge requirements of the temporal-abstraction
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mechanisms are well defined, the knowledge-acquisition process, as I have

explained in Chapter 7, can either use a manual methodology driven by the

knowledge roles defined in the knowledge-based temporal-abstraction inference

structure, or use automatically generated knowledge-acquisition tools, tailored to

the domain and to the task, such as the knowledge-acquisition tools generated by

the PROTÉGÉ–II system.

Whatever the knowledge-acquisition methodology chosen, however,

understanding the knowledge required for abstracting clinical data over time in

any particular domain is a useful undertaking.  A clear specification of that

knowledge, and its representation in an ontology specific to the task of

abstracting concepts over time, as was done in the architecture of the RÉSUMÉ

system, supports designing new knowledge-based systems that perform

temporal-reasoning tasks.  The formal specification of the temporal-abstraction

knowledge supports also acquisition of that knowledge from domain experts,

maintenance of that knowledge once acquired, reusing the problem-solving

knowledge for temporal abstraction in other domains, and sharing the domain-

specific knowledge with other problem solvers that might need access to the

domain’s temporal-reasoning knowledge.
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