
ON COMPUTING MULTI-ARM MANIPULATION

TRAJECTORIES

a dissertation

submitted to the department of mechanical engineering

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Yoshihito Koga

November 1994

c Copyright 1994

by

Yoshihito Koga

ii

Abstract

This dissertation considers the manipulation task planning problem of automatically

generating the trajectories for several cooperating robot arms to manipulate a movable

object to a goal location among obstacles. The planner must reason that the robots

may need to change their grasp of the object to complete the task, for example,

by passing it from one arm to another. Furthermore, the computed velocities and

accelerations of the arms must satisfy the limits of the actuators. Past work strongly

suggests that solving this problem in a rigorous fashion is intractable.

We address this problem in a practical two-phase approach. In step one, using

a heuristic we compute a collision-free path for the robots and the movable object.

For the case of multiple robot arms with many degrees of freedom, this step may fail

to �nd the desired path even though it exists. Despite this limitation, experimental

results of the implemented planner (for solving step one) show that it is e�cient

and reliable; for example, the planner is able to �nd complex manipulation motions

for a system with seventy eight degrees of freedom. In step two, we then �nd the

time-parameterization of the path such that the dynamic constraints on the robot

are satis�ed. In fact, we �nd the time-optimal solution for the given path. We show

simulation results for various complex examples.

iii

Acknowledgements

I wish to thank my advisor Professor Jean-Claude Latombe for his skillful guidance

and encouragement during the course of the research. I was extremely fortunate to

have him for an advisor.

I would also like to thank Professor Oussama Khatib and Professor Mark Cutkosky

for serving on my reading committee and for the many helpful discussions.

Thank you to Koichi Kondo, James Ku�ner and Jonathan Norton for putting up

with me while collaborating on the human arm manipulation project. I am grateful

for the opportunity to have worked with them. Much thanks also to Tsai-Yen Li

for the many, many hours of help he gave me in debugging ideas on manipulation

planning. I am also indebted to Sean Quinlan for the use of his fast collision-detection

routine, and to Jerome Barraquand for guidance during the early stages of the work.

The Computer Science Robotics Laboratory was a fantastic place to be in with

all its friendly people. Thank you everyone for all your kindness. Thanks go to Mark

Yim, Lydia Kavraki, and Tsai-Yen Li for their help and encouragement during the

writing stage of the thesis.

Special thanks to Peter Chow and Margaret Abe for being such incredibly cool

people.

Finally, I'd like to thank Mom, Dad and Midori for their love, encouragement,

and help in the pursuit of my goals.

Financial support for this work was provided by a Canadian NSERC fellowship

and ONR contract N00014-92-J-1809.

iv

Contents

Abstract iii

Acknowledgements iv

1 Introduction 1

1.1 Problem and Motivation : 1

1.2 Computational Complexity and Completeness : : : : : : : : : : : : : 4

1.3 Related Work : 6

1.3.1 Manipulation Planning : 6

1.3.2 Time-Optimal Control : 8

1.4 Contributions : 9

1.5 Outline : 12

2 Problem Statement 13

2.1 Con�guration Space : 14

2.2 Manipulation Path : 15

2.3 Example Manipulation Paths : 18

3 Manipulation Planning in a 2D Workspace 23

3.1 The Scenario : 24

3.2 Overview of the Approach : 27

3.3 Dealing with the Constraints : 28

3.4 Finding the Object Path : 29

3.5 Extracting the Manipulation Path : 32

v

3.6 Details : 34

3.7 Minimizing the Number of Regrasps : : : : : : : : : : : : : : : : : : : 35

3.8 Resolution Completeness : 37

3.9 Examples : 38

4 Manipulation Planning in a 3D Workspace 42

4.1 Extending the Ideas from the 2D Case : : : : : : : : : : : : : : : : : 42

4.2 Finding The Object Path : 45

4.3 Extracting the Manipulation Path : 47

4.4 Sliding Grasps : 51

4.5 Incompleteness : 52

4.6 Results and Discussion : 53

4.6.1 Three General 6R Robot Arms : : : : : : : : : : : : : : : : : 53

4.6.2 Three PUMA 560 Arms : 60

4.6.3 Human Arm Manipulation : 60

5 Dynamic Constraints and Trajectory Planning 65

5.1 The Open-Chain Robot : 66

5.2 The Open-Chain Robot Carrying a Payload : : : : : : : : : : : : : : 68

5.3 The Closed-Chain Robot System : 73

5.3.1 Control Consistent Minimum-Time Parameterization : : : : : 75

5.4 Executing the Time Optimal Robot Motions : : : : : : : : : : : : : : 81

5.5 Simulation Results : 82

5.5.1 The Open-Chain Robot : 82

5.5.2 The Open-Chain Robot Carrying a Payload : : : : : : : : : : 83

5.5.3 The Closed-Chain Robot System : : : : : : : : : : : : : : : : 88

6 Conclusion 92

6.1 Suggestions for Future Work : 93

6.1.1 Improvements to the Manipulation Planner : : : : : : : : : : 93

6.1.2 Finding Locally Optimal Manipulation Paths : : : : : : : : : 94

6.1.3 Integrating Trajectory Planning with Real Robots : : : : : : : 94

vi

6.1.4 Dynamic Manipulation Planning : : : : : : : : : : : : : : : : 95

6.1.5 Task-Level Animation System : : : : : : : : : : : : : : : : : : 95

6.1.6 Ergonomics : 96

A Best-First Planning 97

A.1 The BFP? Algorithm : 97

A.2 The Potential Function Used in BFP? : : : : : : : : : : : : : : : : : : 99

B Connected Components of Carms 104

B.1 Computing the Free Space of Carms : : : : : : : : : : : : : : : : : : : 104

B.2 The Connected Components of GA : : : : : : : : : : : : : : : : : : : 104

B.3 The Transit Paths and Path Smoothing : : : : : : : : : : : : : : : : : 106

C Randomized Planning 108

C.1 The RPP? Algorithm : 108

C.2 The Potential Field Used in RPP? : 110

D Linear Programming I 115

D.1 Deriving the Linear Programming Problem for the Open-Chain Robot 115

E Linear Programming II 118

E.1 Deriving the Linear Programming Problem for the Open Chain Robot

with a Payload : 118

Bibliography 122

vii

List of Tables

5.1 Link parameters. : 83

viii

List of Figures

1.1 An example manipulation motion. : 3

1.2 The robots for the planar workspace. : : : : : : : : : : : : : : : : : : 10

2.1 A multi-arm robotic workcell. : 14

2.2 A manipulation task. : 15

2.3 Components of a manipulation path and their relation to the subspaces

of cl(Cfree). : 18

2.4 A manipulation path in a 2D workspace. : : : : : : : : : : : : : : : : 19

2.5 A manipulation path in a 3D workspace. : : : : : : : : : : : : : : : : 22

3.1 The robots for the planar workspace. : : : : : : : : : : : : : : : : : : 25

3.2 The robots for the planar workspace. : : : : : : : : : : : : : : : : : : 26

3.3 Restriction on the object path. : 35

3.4 The manipulation task. : 38

3.5 A manipulation path. : 40

3.6 A manipulation path with minimal regrasping. : : : : : : : : : : : : : 41

4.1 The layered graph. : 48

4.2 An example illustrating the complexity of changing grasps. : : : : : : 50

4.3 Manipulating a L-shaped object. : 54

4.4 Manipulating a T-shaped object. : 55

4.5 Manipulating a wheel. : 56

4.6 Puma example: light object. : 58

4.7 Puma example: heavy object. : 59

4.8 Manipulating a pair of glasses. : 62

ix

4.9 Cooperative motion between a human and a robot. : : : : : : : : : : 64

5.1 Velocity pro�le in the s� _s plane. : 67

5.2 Velocity pro�le and the limit curve. : : : : : : : : : : : : : : : : : : : 69

5.3 Multiple arm manipulation. : 75

5.4 Virtual linkage. : 78

5.5 The robot and its description. : 82

5.6 Robot path. : 83

5.7 Optimal velocity pro�le for Case 1. : : : : : : : : : : : : : : : : : : : 84

5.8 Torque history for Case 1. : 84

5.9 The robot and its payload. : 85

5.10 Optimal velocity pro�le for Case 2 (without friction model). : : : : : 86

5.11 Torque history for Case 2 (without friction model). : : : : : : : : : : 86

5.12 Resulting torsion and shear for Case 2 (without friction model). : : : 87

5.13 Optimal velocity pro�le for Case 2 (with friction model). : : : : : : : 87

5.14 Torque history for Case 2 (with friction model). : : : : : : : : : : : : 88

5.15 Resulting torsion and shear for Case 2 (with friction model). : : : : : 88

5.16 Closed-chain path. : 89

5.17 Optimal velocity pro�le for Case 3. : : : : : : : : : : : : : : : : : : : 90

5.18 Torque history for Case 3. : 91

5.19 Resulting shear forces at the grasp points. : : : : : : : : : : : : : : : 91

A.1 The wave propogation at various stages of computation. : : : : : : : 100

A.2 The numerical potential function NF1. : : : : : : : : : : : : : : : : : 101

B.1 The construction of the connected components of GA. : : : : : : : : : 105

x

Chapter 1

Introduction

1.1 Problem and Motivation

Robots today are doing useful work. In the factories, robots on the assembly line

e�ciently execute repetitive pick-and-place operations. In the hospitals, robots assist

in di�cult surgical procedures. In outer space, robots perform the dangerous manipu-

lation task of capturing satellites. These completely di�erent tasks and environments

are just a few examples of where robots are making a contribution. The next step is

to make them easier to use. Indeed, as robot systems become more exible in dealing

with greater varieties of tasks, they also become more di�cult to use.

Robot Motion Planning is the �eld within robotics aimed at solving this prob-

lem. In its fundamental form, robot motion planning is the automatic computation

of robot motions to achieve some goal arrangement of the environment. This could

be the piano movers' problem of �nding a collision-free path for a robot to move from

one con�guration to another. A more sophisticated problem would be the manipu-

lation planning problem of automatically computating a series of robot motions to

manipulate an object to a speci�ed goal location. Regardless of the di�erent tasks

involved, the goal of robot motion planning is to make robots autonomous. Thus

ultimately, a vague high-level command such as \insert the engine" would result in

say two robot arms automatically moving to grab the engine, placing it into the car,

and then �xing it onto the engine block.

1

2 CHAPTER 1. INTRODUCTION

The components needed to facilitate this high-level interaction with robots, such as

sensing and planning, are major areas of research in robotics today. This dissertation

presents our e�orts towards solving one piece of this bigger puzzle - given a goal

location for a movable object, automatically compute the cooperative motion for

multiple robot arms to manipulate the object to its speci�ed goal. The motion must

be collision-free, and the velocities and accelerations must be within the capabilities

of the robot actuators.

An example of the problem is illustrated in Fig. 1.1. Given a model of the robots,

obstacles, and the movable object, and the high-level task speci�cation \move the

L-shaped object to the other side of the workspace" we wish to develop a planner

that automatically generates the arm motions to complete the task. Snapshots (a) to

(l) in Fig. 1.1 is one solution to the task. This is a very intricate problem involving

grasping, regrasping, and cooperation between robots. Speci�cally, many di�erent

questions such as:

� how should the arm(s) intially grasp the object;

� which arm(s) at any one time should be responsible for manipulating the object;

� when and how should the arm(s) regrasp;

� how should the arm(s) cooperate to ensure the delivery of the object to its

speci�ed goal;

need to be addressed. We formalize and study these di�cult questions from which

we develop an implemented algorithm that solves many complicated instances of this

multi-arm problem. The solution given in Fig. 1.1 was generated by our planner.

We focus on multi-arm systems because of their inherent exibility. In contrast

to single-arm systems, multi-arm systems can be signi�cantly more e�cient by per-

forming motions simultaneously. They can also accomplish a greater variety of tasks.

For example, in addition to the arms working independently of each other, they can

cooperate to manipulate heavy and/or bulky objects by sharing the load for fast and

responsive motions. One can also increase the reachable space of the movable objects

by having the robots pass the object from one arm to another. With the advent of

1.1. PROBLEM AND MOTIVATION 3

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 1.1: An example manipulation motion.

4 CHAPTER 1. INTRODUCTION

new control techniques for such multi-arm systems, there already exist real robots in

need of a planner to simplify their use [Khatib, 1988][Schneider, 1992].

A motion planner for multiple robot arms has other applications. By replacing

the robot models with those of the human arms, the planner could automatically

generate simulations of human arm manipulation motions. Since human �gures often

play an integral role in computer animation, their motions could be easily generated

from task-level speci�cations by using the planner. The planner could also be useful

in ergonomics. Since most products are utilized, assembled, maintained, and repaired

by humans, and require for most cases some action by the human arms, one could

evaluate the design of a product in terms of its usability by viewing the simulation

of arm motions generated by the planner. This would reduce the number of mock-up

models needed to come up with the �nal design.

1.2 Computational Complexity and Completeness

Consider the problem of moving a robot from one con�guration to another in a

collision-free manner. The fastest known complete algorithm for solving this problem

is one with time complexity that is singly-exponential in the number of degrees of

freedom of the robot [Canny, 1988]. This algorithm is complete in the sense that

given a description of the robot and the environment as semi-algebraic sets, it �nds

a collision-free path connecting the intial and goal con�guration of the robot when it

exists, and reports failure when it does not. The algorithm is thorough but impractical

for any robot with many degrees of freedom. Although no proof exists to show that

the problem is intractable, the work of Canny [Canny, 1988], the establishment of the

PSPACE-hardness of the problem [Reif, 1979], and other related theoretical work as

cited in Chapter 1 of Latombe's book [Latombe, 1991] strongly suggests that this is

the case.

Consider now our problem of moving multiple robots through a series of steps

to manipulate an object to a speci�ed goal location. If the best algorithm to �nd a

collision-free path for a single robot has exponential-time-complexity, then including

additional robots and the added di�culty of having to �nd a series of robot motions to

1.2. COMPUTATIONAL COMPLEXITY AND COMPLETENESS 5

manipulate the object (this would involve grasping, ungrasping, and possibly �nding

intermediate placements for the object for regrasping) leaves us with a problem that

is at least as hard.

Since completeness implies the algorithm is inapplicable to any realistic robot

system with many degrees of freedom, we trade-o� completeness for an algorithm

that e�ciently and reliably solves a majority of realistic manipulation tasks involving

multiple arms. The practical planner we seek must then have the property that it

reliably and e�ciently deal with robot systems with many degrees of freedom, while

including regrasping operations when they are required to complete the task, and

ensuring that the velocities and accelerations of the robots are within the capabilities

of the actuators. Although not necessary for practicality, we also include the time-

optimal aspect.

Existing methods to determine the time-optimal trajectory between two states of

a robot with many degrees of freedom are notoriously slow to converge on a solution

[Slattery, 1991]. This is without the obstacle avoidance problem. Based on this

result, it seems unlikely to �nd a practical algorithm that in one step computes time-

optimal manipulation trajectories. This leaves us with a two-step approach; �nd the

collision-free paths and then time parameterize them while satisfying the dynamic

constraints and minimizing the travel time (for the given path). We refer to the �rst

step as the manipulation planning problem and the second step as the time

parameterization problem.

Fortunately this two-step approach is feasible. In the past few years much progress

has been made in the development of practical motion planners for high degree of

freedom robots [Barraquand and Latombe, 1991][Kondo, 1991][Kavraki and Latombe,

1994][Overmars and Svestka, 1994][Gupta and Zhu, 1994]. These planners lack the

thoroughness of a complete algorithm, but for a majority of problems they �nd a

solution in a short amount of time. Given the success of these approaches, the core

problem addressed in this work is the design and implementation of a practical planner

to �nd the series of multi-arm paths to solve realistic manipulation tasks.

To time parameterize the computed paths, we use the well established algorithm

6 CHAPTER 1. INTRODUCTION

of [Bobrow et al., 1985] and [Shin and Mackay, 1985]. The algorithm has linear-time-

complexity in the number of discrete points making up the path, resulting in fast

computation.

1.3 Related Work

The related work can be broken into two parts; manipulation planning, which con-

siders the spatial aspect, and time-optimal control, which considers the temporal

aspect.

1.3.1 Manipulation Planning

Path planning for one robot among �xed obstacles and various extensions of this basic

problem have been actively studied during the past two decades [Latombe, 1991].

However, research strictly addressing manipulation planning is fairly recent.

The �rst paper to tackle this problem is by Wilfong [Wilfong, 1988]. It considers a

single-body robot translating in a 2D workspace with multiple movable objects. The

robot, movable objects, and obstacles are modeled as convex polygons. The robot

\grasps" an object by making one of its edges coincide with an edge of the object.

This de�nition of \grasping" extends to several movable objects. Wilfong shows that

planning a manipulation path to bring the movable objects to their speci�ed goal loca-

tions is pspace-hard. When there is a single movable object, he proposes a complete

algorithm that runs in O(n3 log2 n) time, where n is the total number of vertices of

all the objects in the environment. Laumond and Alami [Laumond and Alami, 1988]

propose an O(n4) algorithm to solve a similar problem where the robot and the mov-

able object are both discs and the obstacles are polygonal.

Alami, Sim�eon and Laumond [Alami et al., 1990] describe a manipulation planner

for one robot and several movable objects. Both the number of legal grasps of each

object (positions of the robot relative to the object) and the number of legal place-

ments of the movable objects are �nite. The method was implemented for two simple

robots: a translating polygon [Alami et al., 1990] and a three-revolute-joint planar

1.3. RELATED WORK 7

arm [Laumond and Alami, 1989]. A theoretical study of the more general case where

the set of legal grasps and placements of the movable objects are continuous sets is

presented in [Laumond and Alami, 1989]. In our practical approach we concentrate

on planning motions for multiple robot arms and a single movable object, as opposed

to multiple movable objects and a single robot.

Ferbach and Barraquand [Ferbach and Barraquand, 1993], introduce a practical

approach to the multi-arm manipulation planning problem using a variational tech-

nique based on dynamic programming. They �rst solve the problem assuming the

movable object can be moved without the arms grasping it. This path is then varied

to force the robots to actually grab the object in order for it to move. Though many

interesting problems can be solved, their system is not fully automatic and requires

as input intermediate goal locations for the movable object.

Lynch addresses the problem of planning pushing paths [Lynch, 1993]. He estab-

lishes the conditions under which the contact between the robot and the movable

object is stable, given the friction coe�cients and the center of friction between the

movable object and its supporting surface. These conditions yield nonholonomic con-

straints on the the motion of the robot. One could view this pushing motion as a

manipulation task. However, Lynch does not consider the regrasping operations.

Regrasping is a vital component in manipulation tasks. Tournassoud, Lozano-

P�erez, and Mazer [Tournassoud et al., 1987] speci�cally address this problem. They

describe a method for planning a sequence of regrasp operations by a single arm to

change an initial grasp into a goal grasp. At every regrasp, the object is temporarily

placed on a horizontal table in a stable position selected by the planner.

The work on regrasping presented in [Tournassoud et al., 1987] is part of an inte-

grated manipulation system, handey, described in [Lozano-P�erez et al., 1987]. This

system controls a PUMA arm which builds an assembly in a 3D workspace. It inte-

grates vision, path planning, grasp planning, and motion control. While it embeds a

solution to many issues not considered in this thesis, it does not address the problem

of planning cooperative robot motions to accomplish manipulation tasks.

Planning coordinated paths for multiple robots without movable objects, is studied

in [O'Donnel and Lozano-P�erez, 1989]. Their approach consists of two steps. The

8 CHAPTER 1. INTRODUCTION

collision-free paths for the multiple robots are computed independently of each other,

and then coordinated such that the robots avoid collision with one another. The

method is based on a scheduling technique for dealing with limited resources. In our

work, we do not restrict the problem by decoupling the planning of the multiple arms.

Grasp planning is potentially an important component of manipulation planning.

One must decide how to position the �ngers of the gripper on the object such that

geometric and physical constraints are satis�ed. An example would be ensuring that

the grasp is stable, that is any slight displacement of the object tends to return

the object to its original position within the grasp. There exist implemented grasp

planners for parallel-jaw grippers grasping polyhedral objects [Laugier and Pertin,

1983][Tournassoud et. al, 1987]. See [Pertin-Troccaz, 1989] for a broad survey of

publications related to grasping.

Another potentially important aspect of manipulation planning is determining

the stable placements of the object for regrasping actions. These would be inter-

mediate placements of the object where the robots can completely ungrasp for the

purpose of regrasping. Using a simpli�ed model of friction, Boneschanscher et al.

[Boneschanscher et al., 1988] propose an algorithm that tests the stability of an ar-

rangement of polyhedra on a table in the six-dimensional space of translations and

rotations.

1.3.2 Time-Optimal Control

The time-optimal control problem for robots has attracted considerable interest.

There are two approaches for tackling this two point boundary value problem (TP-

BVP). The �rst approach involves �nding in one step the optimal path shape and

the corresponding control history that yields the global minimum travel time. The

second approach is to add a geometric path constraint to the TPBVP, thus restricting

the problem to �nding the optimal control history that yields the minimum travel

time for the speci�ed path.

The �rst to consider this problem under the general approach are Khan and Roth

[Khan and Roth, 1971]. They �nd the near time-optimal solution of a three-degrees-

of-freedom open-kinematic-chain manipulator. However, they simplify the problem

1.3. RELATED WORK 9

by linearizing the equations of motion of the robot. A solution for a two-link ma-

nipulator without linearizing the equations of motion, is given by Meier and Bryson

[Meier and Bryson, 1987]. Unfortunately, for more realistic robot systems with high

degrees of freedom their method becomes impractical. An algorithm for a closed

chain robot has been developed by Slattery [Slattery, 1991]. Unfortunately, even for

a relatively simple robot system the method is extremely slow in converging to the

solution. None of these methods consider obstacle avoidance.

Jacobs et al. [Jacobs et al., 1989] present an algorithm that guarantees bounds on

the closeness of an approximation to the global-time-optimal trajectory that includes

obstacle avoidance. However, the computational complexity of this algorithm is such

that it is impractical for realistic systems. Some other papers on the theoretical

aspects of this problem with obstacle avoidance are [Canny et al., 1988] and [Donald

and Xavier, 1989].

By introducing path constraints (prescribing the robot path) the problem is greatly

simpli�ed [Bobrow et al., 1985][Shin and Mackay, 1985]. This is due to the dramatic

reduction of the search space for the optimal solution. In particular, the algorithm

developed by Bobrow et al. [Bobrow et al., 1985] solves this path constrained problem

for an open-kinematic-chain robot in very short time. In addition, by using the

output of some path planner as the prescribed path, obstacle avoidance is satis�ed.

Furthermore, by perturbing this path shape and �nding the minimum travel time

for each new shape, a path that achieves a local minimum of the travel time while

avoiding obstacles can be found [Shiller and Dubowsky, 1991][Bobrow, 1988].

Others have modi�ed Bobrow's original algorithm to �nd the path-constrained

time-optimal motion for an open-kinematic-chain robot carrying a payload, and for a

closed-kinematic-chain robot system. Shiller and Dubowsky [Shiller and Dubowsky,

1989] �nd the time-optimal motion of an open-kinematic-chain robot subject to pay-

load constraints. Because the inertial e�ects on the payload may exceed the capacity

of the gripper to hold onto the payload, Shiller and Dubowsky consider a no-slip con-

straint for the payload. They model the friction interaction between the gripper and

the payload, however they only consider the translational slipping case. McCarthy

10 CHAPTER 1. INTRODUCTION

(a) Top View (b) Side View

Figure 1.2: The robots for the planar workspace.

and Bobrow generalize Bobrow's original algorithm for dealing with closed-kinematic-

chain robot systems [McCarthy and Bobrow, 1992]. However, this algorithm does not

consider the control strategy used by the real robots. In the actual execution of the

optimal trajectory, the multi-arm controller may partition the tracking e�ort to the

arms in such a way that one or more actuator exceeds their capacity.

1.4 Contributions

We present a practical two-step method to automatically compute path-constrained

time-optimal multi-arm manipulation trajectories. Whereas much of the previous

work in manipulation planning and kinodynamics is theoretical in nature, the focus

of this work is on developing an e�ective approach to computing the robot motions to

complete manipulation tasks of a complexity comparable to that of tasks encountered

in manufacturing and construction work (e.g., assembling, welding and/or riveting the

body of a car or the fuselage of a plane, assembling truss structures). This dissertation

describes the progress towards this end.

1.4. CONTRIBUTIONS 11

Manipulation Planning in a 2D Workspace To gain insight into what is needed

to develop a practical planner we carefully study a simple example. We introduce

an implemented manipulation planner for a speci�c case of two SCARA1 type robot

arms working in an environment where the obstacles are cylindrical bodies of in�nite

height. Both arms have four degrees of freedom; shoulder, elbow and wrist revolute

joints, and a prismatic joint to move the end e�ector up and down (see Fig. 1.2). By

the nature of the robots and the environment, the movable object moves essentially

in a plane, that is the workspace of the arms is two-dimensional. The input to the

planner is a model of the obstacles in the environment, the movable object and the

robot arms, and a manipulation task speci�ed by the goal location for the object

and the arms. The search space is discretized into a �ne grid, and for the given

discretization, this algorithm is guaranteed to �nd a series of collision-free paths to

manipulate the movable object to the desired goal location if it exists and report

failure otherwise. In the event of a failure, there may be a �ner resolution for which

a solution exists. We call this a resolution-complete algorithm.

Manipulation Planning in a 3D Workspace The methods for the 2D workspace

are extended for the 3D workspace with multiple manipulator arms. We introduce an

implemented practical manipulation planner for a three-dimensional workspace. This

planner is capable of dealing with multiple robot arms of various kinematics. The

only restriction on the method is that the arms must have some inverse kinematics

solution. The algorithm cannot guarantee that a solution will be found if it exists

and report failure if it does not exist. To keep the planner from running inde�nitely,

it is terminated when a preset time limit is reached. Despite this limitation, various

experiments demonstrate the e�ciency and reliability of the approach in �nding so-

lutions for realistic tasks. In particular, we compute the manipulation motions for a

system of three general 6R manipulators, a system of three PUMA robots, and the

arms of a human �gure.

1SCARA stands for selectively compliant assembly robot arm.

12 CHAPTER 1. INTRODUCTION

Time-Optimal Control For Multi-Arm Systems Finally, a time-optimal con-

trol scheme is presented for parameterizing the collision-free paths found by these

planners. We utilize an existing path-constrained optimal-control algorithm. How-

ever, we introduce additional constraints to deal with the variety of dynamic systems

arising in the manipulation motions. Speci�cally, we add a no-slip constraint to en-

sure that the payload remains rigidly �xed to the robots. Also, for the multi-grasp

case (i.e., multiple arms grabbing the same object), we add a control consistency

constraint to ensure that the optimization deals with the redundant actuation in the

same fashion as the actual multi-arm controller.

1.5 Outline

The dissertation is organized as follows:

In Chapter 2 the geometric aspect of the multi-arm manipulation problem is

formally de�ned. This is done within the framework of con�guration space.

In Chapter 3 a presentation of a resolution-complete manipulation planner for

a two-dimensional workspace is given. By adding a few restrictions to the problem

we describe a novel approach to solving the multi-arm manipulation problem. This

chapter serves to develop a framework for dealing with the more complex problem in

three-dimensional workspaces.

In Chapter 4 the multi-armmanipulation planner for three-dimensional workspaces

is presented. Again, restrictions are added to the general problem to make it more

manageable. However, the result is still a system capable of dealing with manymanip-

ulation tasks found in manufacturing and construction. A variety of example paths

generated by our planner are given.

In Chapter 5 an algorithm for computing time-optimal motions of the robot arms

constrained to the previously computed manipulation paths is described. The scheme

is based on the algorithm proposed independently by Bobrow et al. [Bobrow et al.,

1985] and by Shin and Mackay [Shin and Mackay, 1985].

Finally, in Chapter 6 we discuss directions for future research.

Chapter 2

Problem Statement

We address the problem of automatically computing the trajectories of multiple robot

arms to manipulate an object to a speci�ed location. We approach this problem by

splitting it into two steps; a �rst step that deals with the spatial aspect, and a second

step that deals with the temporal aspect.

By arti�cially breaking the problem into two steps, we limit the scope of tasks that

can be considered; the path found in step one must admit a time parameterization

(computed in step two) that satisfy the dynamic constraints on the robots. These are

tasks where a quasi-static motion is su�cient for its completion, that is the robots can

be slowed down to a crawling speed and still traverse the whole path. Consequently,

step one is restricted to consider only those con�gurations that yield su�cient torque

to admit quasi-static motion. Tasks that require the dynamic e�ects of the system

to be utilized for its completion can not be considered. For example, lifting a heavy

object to some high platform that �rst requires swinging the object back and forth

to generate su�cient momentum can not be solved by our two step approach.

In this chapter we make precise these notions and present the multi-arm manip-

ulation planning problem using the con�guration space formalization. This is the

problem statement for the �rst step of our two-phase approach for computing ma-

nipulation trajectories. Much of this chapter is an extension of ideas presented in

[Alami et al., 1990] and Chapter 11 of [Latombe, 1991]. Our presentation is general

except for the simpli�cation of considering only a single movable object.

13

14 CHAPTER 2. PROBLEM STATEMENT

Figure 2.1: A multi-arm robotic workcell.

2.1 Con�guration Space

Consider the workcell shown in Fig. 2.1. It consists of a 3D workspace W with p

robot arms Ai (i = 1; � � � ; p), a single movable objectM, and q static obstacles Bj

(j = 1; � � � ; q). Let

� Ci be the C-spaces (con�guration spaces) of the arms Ai. Each Ci has dimension

ni, where ni is the number of degrees of freedom of the robot Ai.

� Cobj be the C-space of the objectM. Cobj is a 6-dimensional C-space.

� C = C1 � � � � � Cp � Cobj be the composite con�guration space of the whole

system. Thus, a con�guration in C, called a system con�guration, is of the

form (q1; � � � ;qp;qobj), with qi 2 Ci and qobj 2 Cobj.

We de�ne the C-obstacle region CB � C as the set of all system con�gurations where

two or more bodies in fA1; � � � ;Ap;M;B1; � � � ;Bqg intersect.
1 We describe all bodies

as closed subsets of W; hence, CB is a closed subset of C. The open subset C n CB is

denoted by Cfree and its closure by cl(Cfree).

The problem at hand is to manipulate the objectM to some goal location. The

possible system con�gurations where the object con�guration is at its goal, lie on

a cross section of cl(Cfree) de�ned by the goal object con�guration. To make the

1We regard joint limits in Ai as obstacles that only interfere with the arms' motions.

2.2. MANIPULATION PATH 15

(a) Initial System Con�g. (b) Goal System Con�g.

Figure 2.2: A manipulation task.

planning problem more speci�c we speci�y the goal location for the arms as well.

The problem then becomes, \achieve some goal system con�guration qgsys, given an

initial system con�guration qisys" (see Fig. 2.2). The solution is a path within cl(Cfree)

connecting these two con�gurations.

2.2 Manipulation Path

The term \path" has been used loosely up to here. Let us formally de�ne this notion.

De�nition 2.1 A path is a continuous map � : [0; 1]! C, connecting two con�gua-

tions � (0) (the initial con�guration) and � (1) (the goal con�guration).

The path we seek has further restrictions. For example, since the objectM requires

some robots to grasp and manipulate it, a path � that has the movable object ying

on its own is not acceptable. Below we provide a formal de�nition of an acceptable

path. We call it a manipulation path.

There are two constraints that must be satis�ed in the manipulation problem.

The �rst constraint is that the movable object can move only when the robots act

16 CHAPTER 2. PROBLEM STATEMENT

on it and manipulate it accordingly. To be general, acting on an object may mean

grasping it in a �rm manner, or perhaps pushing it. The second constraint is that

when the object is not moving, it is in a stable con�guration.

For the most part we require that the arms, object, and obstacles not contact one

another. However to satisfy the aforementioned constraints, we allow the end-e�ector

of each arm manipulating M to make contact with it. Furthermore, M may also

make contact with the environment during the manipulation phase (i.e., sliding on

a table while a robot arm pushes it). For static stability,M may contact the end

e�ector of stationary arms and obstacles. No other contacts are allowed. This leads

us to de�ne two subsets of cl(Cfree):

De�nition 2.2 The grasp space Cgrasp is the set of all con�gurations in cl(Cfree)

where one or several arms contact M in such a way that they have su�cient torque

for quasi-static motion. The contact must be such that the object M does not slip

away from the robots.

By quasi-static motion, we mean a motion where the velocity and acceleration are

small. In the case of robots �rmly grasping M, an example con�guration in Cgrasp

would be one where the object does not slip out of the grasp of the end e�ectors,

and the arms have su�cient torque to allow quasi-static motion in any kinematically

feasible direction.

For a con�guration to be in the grasp space the appropriate robots must execute

a grasp operation. This would be the necessary action to ensure that the object

does not slip away from the robots (e.g., closing the �ngers of the gripper around the

object). grasp is approximated here as an on/o� switch. Notice that the con�gura-

tions in Cgrasp lie on constraint submanifolds in C de�ned by the rigid grasp relation

between the robots and the movable object.

De�nition 2.3 The stable space Cstable is the set of all con�gurations in cl(Cfree)

where M is statically stable. M's stability may be achieved by contacts between M

and the arms and/or the obstacles.

2.2. MANIPULATION PATH 17

Notice that Cgrasp � Cstable.

The manipulation path we seek must lie within these subsets of cl(Cfree). To

clarify this notion we de�ne transfer and transit paths.

De�nition 2.4 For a single �xed grasp relation, a transfer path is de�ned as the

motion of the arms that movesM.

It lies in a cross-section of Cgrasp de�ned by the attachment ofM to the end e�ector of

the manipulating arms. During a transfer path, not all moving arms need graspM;

for example, some arms may be moving to allow the grasping arms to move without

collision.

De�nition 2.5 A transit path is de�ned as the motion of the arms that does not

moveM.

Along such a path,M's static stability must be achieved by contacts with obstacles

and/or stationary arms. Examples of such a path involve moving an arm to a con�g-

uration where it can graspM or moving an arm to change its grasp ofM. A transit

path lies in the cross-section of Cstable de�ned by the current �xed con�guration of

M.

The manipulation path we seek consists of these transit and transfer paths that

lie within cl(Cfree) (see Fig. 2.3).

De�nition 2.6 Amanipulation path is a �nite alternating sequence (�1; �2; : : : ; �2p+1)

for non-negative integer p, such that:

� �1; �3; : : : ; �2p+1 are transit paths.

� �2; �4; : : : ; �2p are transfer paths.

� for every l 2 f1; : : : ; 2pg; �l(1) = �l+1(0).

At the end of a transit path when it attaches to a transfer path, at least one robot

is executing a grasp operation. At the start of a transit path where robots detach

18 CHAPTER 2. PROBLEM STATEMENT

Grasp Space

Stable Space

Transit Path

Transfer Path
Grasp Space

Grasp Space

qi
sys

q
sys
g

cl(Cfree)

Figure 2.3: Components of a manipulation path and their relation to the subspaces
of cl(Cfree).

from the objectM, then an ungrasp operation is executed. ungrasp is the action

needed to undo a previous grasp operation.

In a multi-armmanipulation planning problem, the geometry of the arms, movable

object, and obstacles is given, along with the location of the obstacles. The goal is to

compute a manipulation path between two speci�ed system con�gurations, qisys and

qgsys respectively.

2.3 Example Manipulation Paths

Having de�ned what a manipulation path is, we now consider some example paths

to clarify the terms introduced in the previous sections. We �rst look at a problem

in a two-dimensional workspace as shown in Fig. 2.4. The movable object is a long

bar AB (shown as a bold line) that can be moved in the plane by two identical arms,

each with 3 revolute joints. The object can translate and rotate yielding a composite

con�guration space of dimension nine. The arms can grasp the object by positioning

their endpoints at the extremities of the bar (then the grasp contacts behave as passive

revolute joints) and they have su�cient torque to move the bar from any collision-free

con�guration. The grasp space Cgrasp is then all collision-free con�gurations where

2.3. EXAMPLE MANIPULATION PATHS 19

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

A B

B A

Figure 2.4: A manipulation path in a 2D workspace.

20 CHAPTER 2. PROBLEM STATEMENT

both arms are grasping the object. In this two-dimensional workspace we assume that

the manipulated object slides on a table, hence every object con�guration is stable

and every con�guration in cl(Cfree) is in the stable space Cstable. The inital and goal

system con�guration, qisys and qgsys, are shown in snapshots (a) and (l) respectively,

with one possible manipulation path to solve the task illustrated by snapshots (a)

through (l). The two arms �rst execute a transit path to grasp the bar as shown in

(b). A transfer path is then executed where the arms manipulate the object towards

the goal, but a pending collision with the obstacle (c) yields the right arm to execute

a transit path by ungrasping the bar (d), moving around the obstacle (e), and then

regrasping the bar at a new con�guration (f). The motion of the bar is resumed (g)

(transfer path) until a collision between the two arms (h) requires them to swap their

grasp positions (i) (transit path). The motion of the bar is resumed again (j) and

the goal con�guration of the bar is achieved (k) (transfer path). The two arms then

ungrasp the bar and move to their �nal con�gurations (l) (transit path).

A manipulation problem in a three-dimensional workspace is more di�cult since

regrasping becomes more restrictive since not all object con�gurations are stable.

Indeed, in a two-dimensional workspace the arms can let go of the object at any

con�guration and have the object stay, whereas in a three-dimensional workspace the

object may fall down. We consider the problem of manipulating a L-shaped object

in the three-dimensional workspace (Fig. 2.5). In this example, there a three robot

arms each with six degrees of freedom and a L-shaped object, also with six degrees

of freedom. The result is a composite con�guration space of dimension twenty four.

The object is heavy and requires two arms to actually carry and move it, but is still

light enough that one arm can hold it in a static manner. The Cgrasp is then all

collision-free con�gurations where at least two arms are holding the object. Cstable

is all con�gurations where the object is stable such as resting against the obstacles,

but this also includes those con�gurations where one arm is holding the object in a

collision-free manner. The inital and goal system con�guration, qisys and qgsys, are

shown in snapshots (a) and (l) respectively, with one possible manipulation path to

solve the task illustrated by snapshots (a) through (l). Two arms �rst execute a

transit path to grasp the bar as shown in (b). A transfer path is then executed where

2.3. EXAMPLE MANIPULATION PATHS 21

the arms manipulate the object towards the goal, but a pending collision with the

obstacle (c) yields one arm to let go (d) and another arm to grasp the object (e)

(transit path). The motion of the object is resumed where its threaded through the

hole in the wall (transfer path) but again a pending collision causes the right arm

to regrasp (f) (transit path). The object is brought through the hole (g) (transfer

path) and a �nal regrasp is executed to the achieve the necessary grasp (h-k) to place

the object at its goal location (transit path). Once the object is placed on the oor

(transfer path) the arms let go and move to their �nal con�guration (transit path).

Notice that for every regrasping action at least one arm is holding the object in a

stable manner.

The next two chapters focus on developing a practical approach to solving this

multi-arm manipulation planning problem.

22 CHAPTER 2. PROBLEM STATEMENT

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 2.5: A manipulation path in a 3D workspace.

Chapter 3

Manipulation Planning in a 2D

Workspace

In the previous chapter we formalize the multi-arm manipulation planning problem.

Having de�ned what a manipulation path is, the next question is how do we �nd

it? To actually compute a path, many questions need to be answered. For example,

which arms should be responsible for manipulating the object, how should they grasp

the object, and where should the arms ungrasp and then regrasp the object? One

method to deal with all these questions in a uni�ed framework is the construction

and search of what is known as the manipulation graph. This is an idea originally

proposed by Laumond and Alami [Laumond and Alami, 1988].

The basic idea is to �rst determine the connectivity of the free space by manip-

ulation paths using Collins' decompositon algorithm, and then searching within the

representation (which has a graph structure) for an actual manipulation path. Un-

fortunately due to the double-exponential time complexity of Collins' decomposition

algorithm, this approach is impractical for dealing with robot systems with many

degrees of freedom.

Our approach is a local one [Latombe, 1992] that consists of placing a �ne resolu-

tion grid over the continuous con�guration space, and then utilizing a heuristically-

guided local search over the grid to obtain the solution. Our motivation for taking

this approach comes from the great success its had in dealing with the piano movers'

23

24 CHAPTER 3. MANIPULATION PLANNING IN A 2D WORKSPACE

problem (the basic path planning problem of moving the robot from one con�guration

to another). In particular there exist two e�cient planners called the best-�rst planner

(BFP) and the randomized path planner (RPP) [Barraquand and Latombe, 1991b].

BFP is a fast, resolution-complete planner well suited to solving the piano movers'

problem for robots with three degrees of freedom or less. RPP is a practical path

planner that for many complicated examples �nds the collision-free paths of robots

with many degrees of freedom. We refer the reader to Chapter 7 of [Latombe, 1991]

for details of the BFP and RPP algorithm.

In this chapter, we make an in-depth study of how the local approach to motion

planning can be applied to a simpli�ed multi-arm manipulation planning problem.

The speci�c example is for two robot arms and a single movable object in a two-

dimensional workspace. This scenario comes from the dual-arm robot system devel-

oped in the Aerospace Robotics Laboratory, Stanford University [Pardo et al., 1993].

We develop techniques for treating this complex manipulation problem (as de�ned in

Chapter 2) as a form of the more basic piano movers' problem, and then solve it using

BFP. The resulting implemented planner is resolution-complete. The exciting result

of this study is that it gives us a framework for developing a practical manipulation

planner. Indeed, using the same techniques, RPP can be used to solve many complex

instances of the transformed problem of manipulation planning in a three-dimensional

workspace.

3.1 The Scenario

We consider the following scenario (this is di�erent from the speci�c 2D example used

in Chapter 2):

� Two SCARA-type robot arms work in an environment where the obstacles are

cylindrical bodies of in�nite height.

� Each arm has four degrees of freedom; shoulder, elbow and wrist revolute joints,

and a prismatic joint to move the end-e�ector up and down. In addition, from

the top view of the robots, the end-e�ector and the prismatic joint are occluded

3.1. THE SCENARIO 25

(a) Top View (b) Side View

Figure 3.1: The robots for the planar workspace.

by the links of the forearm (see Fig. 3.1).

� The robots grasp the movable object M from above. Thus, the links of the

arms never collide withM.

� Both arms must �rmly graspM for it to move. Thus, the arms form a closed-

kinematic-chain when they manipulate it.

� Any closed-chain con�guration where both arms are graspingM is an element

of Cgrasp.

� All object con�gurations are statically stable regardless of whether the arms are

grasping it.

Notice that because of the structure of each arm, whenever the upper-arm and

fore-arm are collision-free, the prismatic link and end-e�ector are also collision-free.

Thus, from the planning viewpoint, the up/down, and rotational degrees of freedom

of the end e�ector of both arms can be ignored. Consequently, the manipulation

planning problem is for two robots, each with two degrees of freedom and a two-

dimensional workspace. The object has three degrees of freedom (two translational

and one rotational degree of freedom) resulting in a seven dimensional composite

26 CHAPTER 3. MANIPULATION PLANNING IN A 2D WORKSPACE

Arms

Obstacles

Object

Figure 3.2: The robots for the planar workspace.

con�guration space. The motion of the robots and the movable object are constrained

by the obstacles. However, acting alone the robots are not constrained by the movable

object since they move in a plane above the object. This is illustrated in Fig. 3.2.

In [Koga and Latombe, 1992] we describe a method to explicitly build the manip-

ulation graph to solve this two-dimensional problem. The method is an implemen-

tation of the ideas proposed in [Alami et al., 1990] and uses a discretized approach

rather than Collins' decomposition algorithm. In particular, the manipulation graph

is created by �rst determining the connectivity of the discretized freespace by transfer

paths and then linking these connected components by transit paths. The approach is

well suited to this two-dimensional problem but due to memory size limits it is unclear

how to extend it to the more complex problem of dealing with the three-dimensional

workspace. We instead develop a new method, keeping in mind that eventually we

need to deal with the complex three-dimensional case.

3.2. OVERVIEW OF THE APPROACH 27

3.2 Overview of the Approach

As well demonstrated by BFP and RPP, the local approach to motion planning is

well suited to solving the piano movers' problem. With this in mind, we opt to solve

the above problem in three steps:

1. Find a collision-free path for the object (call it �obj).

2. Compute a sequence of transfer paths where the object tracks �obj.

3. Connect the transfer paths with transit paths to complete the manipulation

path.

Steps (1) and (3) are instances of the piano movers' problem.

Although intuitively simple, there are complications that need to be addressed.

Speci�cally, we must impose constraints on step (1) to guarantee the completion of

steps (2) and (3). For example, an object path that has the object move out of the

robot workspace would be an unacceptable outcome of step (1).

How do we make such a guarantee? To guarantee the completion of step (2), every

object con�guration along the path �obj requires that both arms are able to grasp it

in a collision-free manner. To further guarantee the completion of step (3), we need

the transfer paths from step (2) to be connectable.

De�nition 3.1 Two transfer paths �a and �b are said to be connectable if there

exists qa 2 �a and qb 2 �b with the same object con�guration and with arm con�gu-

rations lying in the same connected component of CFarms (CFarms is the freespace of

the composite C-space of both arms).

Thus, if two transfer paths are connectable, then a transit path linking them together

is guaranteed to exist.

There is one last constraint that needs to be satis�ed. The �rst and last transfer

path extracted from �obj (call them �first and �last respectively) must be such that

the arm con�gurations at �first(0) and �last(1) lie in the same connected component

of CFarms as the arm con�gurations of qisys and qgsys, respectively. This ensures the

28 CHAPTER 3. MANIPULATION PLANNING IN A 2D WORKSPACE

existence of a transit path to connect the inital and goal system con�gurations to

�first and �last, respectively.

The rest of this chapter dicusses the details of our algorithm to solve the above

problem using these three steps. Many of these ideas will be extended in Chapter 4

to develop a practical manipulation planner in three-dimensional workspaces.

3.3 Dealing with the Constraints

To allow considerations of the added constraints that step (1) must satisfy, two tools

are constructed. These tools further impose a discretization of the search space. Our

method is to use these tools in conjunction with BFP to �nd the special �obj .

De�nition 3.2 A grasp assignment is a speci�cation of the point on the object that

each arm must grasp and the type of the inverse kinematics solution for the respective

arms (i.e., elbow in or elbow out).

Therefore, given an object con�guration and a grasp assignment, the con�guration

of the arms grasping the object is speci�ed. Notice that for each robot arm there are

two solutions to the inverse kinematics problem.

Tool 1: One constraint identi�ed in the previous section is that the arms must

grasp the object at all points of the object path. There is an in�nite number of ways

to grasp the object, with each grasp de�ning a constraint submanifold in C. Since

the objective is to �nd an object path from which the sequence of transfer paths are

extracted, then extracting an in�nite number of them is potentially computationally

explosive. With this is mind, we restrict the number of ways in which the arms can

grasp the object.

De�nition 3.3 The grasp set G is the �nite set of grasp assignments from which

all possible ways for the arms to grasp the object can be selected.

This set can be prede�ned by the user, or automatically computed using some grasp

planner (there are a variety of existing algorithms that could be used [Pertin-Troccaz,

3.4. FINDING THE OBJECT PATH 29

1989]). Thus, for every con�guration in �obj there must be at least one grasp assign-

ment in G which yields a collision-free system con�guration. This is a necessary but

not su�cient condition.

Tool 2: To determine whether two transfer paths are connectable, the planner must

have the ability to determine whether two collision-free con�gurations of the arms

lie in the same connected component of CFarms. This desired information comes

from the topology of the composite C-space of both arms (call it Carms). To sim-

plify matters, the freespace is approximated by placing a �ne regular grid over Carms

and then exhaustively pre-computing whether each discrete con�guration is collision-

free or not. Within this grid, we say that two con�gurations are adjacent if they are

collision-free and di�er by one discrete unit. By assuming that adjacent con�gurations

can be linked by a straight line collision-free path in Carms (a reasonable assumption

with a �ne enough discretization), the connected components of CFarms are then the

equivalence classes for the transitive closure of this adjacency relation. Because this

information is in a bitmap format, we can take any two collision-free arm con�gu-

rations and do a lookup to see whether they lie in the same connected component

of freespace. The amount of storage required for this bitmap representation grows

exponentially with the dimension of Carms.

Given these two tools, the problem of �nding the desired object path �obj can now

be addressed.

3.4 Finding the Object Path

We �rst describe the basic idea of BFP as it applies to �nding the object path.

To distinguish it from the general BFP we denote the algorithm as BFP?. This

presentation is derived from Chapter 7 of [Latombe, 1991].

The three-dimensional con�guration space Cobj is discretized into a �ne regular

grid and the path is found using a heuristically guided local search. The generalized

coordinates used to describe the con�guration of the object are x, y, and �, where x

and y are the translational terms and � is the rotational term. We denote the grid

30 CHAPTER 3. MANIPULATION PLANNING IN A 2D WORKSPACE

as GC. The heuristic is a potential �eld de�ned over GC having a global minimum at

the goal object con�guration q
g
obj (see Appendix A for a de�nition of this potential).

The path ofM is constructed from its initial object con�guration qiobj by exploring

collision-free neighboring con�gurations of GC in a best-�rst fashion. Given a con�g-

uration qobj in GC, its neighbour is de�ned as any con�guration in GC having at most

one coordinate di�ering from those of qobj by one increment of the discretization. The

potential �eld is used as the cost function and essentially guides the search to the

global minima at q
g

obj . To simplify the presentation we assume:

� Both qiobj and q
g
obj are in GC.

� If two neighbors in GC lie in the freespace, then the straight line path in Cobj

that connects them is also in the freespace.

� GC is bounded and forms a parallelepiped, but with the � = 0 and the � = 2�

faces being identical.

BFP? constructs the path by iteratively constructing a tree T whose nodes are

con�gurations in GC. With qiobj as the root of T , at each iteration, BFP? identi�es

the leaf of T with the lowest potential (call it lbest) and then visits its neighbors not

already in T . If a neighbor is collision-free, then its potential value is determined and

inserted into T as the successor to lbest. Each node in T has a pointer towards its

parent. The algorithm terminates with success when q
g
obj is attained. Otherwise, it

terminates with failure when the freespace of GC reachable from qiobj is fully explored.

If the search is successful, the path �obj is generated by tracing the pointers in T from

q
g

obj to q
i
obj.

To ensure that the same con�guration is not considered repeatedly, each visited

con�guration is marked as such, and never considered as a neighbor again. Hence,

for any local minima in GC, BFP? escapes the potential well by �lling it up (which is

reasonable in a three-dimensional grid).

We now describe how the other constraints on �obj are enforced.

Let R(g;qobj) be the resulting system con�guration when an object con�guration

is paired with a grasp assignment g.

3.4. FINDING THE OBJECT PATH 31

De�nition 3.4 The feasible grasp set FS for any given object con�guration qobj

is the subset of G where 8g 2 FS, R(g;qobj) is collision-free.

For our simpli�ed problem every arm con�guration along the manipulation path

must necessarily belong to the same connected component of CFarms, since the object

M has no inuence on the connectivity of CFarms. Thus, before starting the search

a few tests are conducted. First, it is veri�ed that the arm con�gurations for qisys

and qgsys lie in the same connected component of CFarms. If they do not, then a

manipulation path cannot be found. If they do, then the connected component is

labelled as CCarms. The second test involves the feasible grasp sets for the initial and

goal object locations. We denote them FSi and FSg, respectively. FS i must have at

least one grasp assignment g such that R(g;qiobj) lies in CCarms. Similarly, FSg must

have at least one grasp assignment g such that R(g;qgobj) lies in CCarms. If they do

not, then there is no manipulation path. If they do, then FS i is updated by keeping

only those grasp assignments which yield con�gurations in CCarms.

After passing the tests, �obj can be computed using BFP?. For the con�guration

qobj of lbest (initially, q
i
obj), the algorithm considers every neighbor q0obj of qobj that

have yet to be explored. For every q0obj , our version of BFP
? checks that it is collision-

free and if so, then computes its feasible grasp set and veri�es that at least one element

also lies in the feasible grasp set of qobj (initially, for q
i
obj the associated feasible grasp

set is FS i). Furthermore, it �lters out any grasp assignment in the feasible grasp set

of q0obj which are not in CCarms. This ensures the existence of the transfer paths, with

the transit paths to link them. If the resulting grasp set for q0obj is non-empty, then

q0obj and its associated feasible grasp set are inserted into T as a successor of qobj.

The search continues until q0obj = q
g
obj (success) or until all possible con�gurations are

visited without reaching qgobj (failure).

If the algorithm succeeds, it returns a �obj satisfying the required constraints. The

path �obj is described as a sequence of grid con�gurations. It remains to extract the

series of transfer paths and then compute the interconnecting transit paths. We refer

the reader to Appendix A for a formal expression of the BFP? algorithm.

32 CHAPTER 3. MANIPULATION PLANNING IN A 2D WORKSPACE

3.5 Extracting the Manipulation Path

Embedded within �obj is the manipulation path. We �rst extract the sequence of

connectable transfer paths.

The �rst con�guration qiobj in �obj and its feasible grasp set is considered. Depend-

ing on the size of the feasible grasp set, there will be one or several grasp assignments

associated with qiobj. For each one, the maximal subpath of �obj is computed, starting

at qiobj such that the same grasp assignment is associated with every con�guration in

this subpath. The planner selects the grasp con�gurations for qiobj that results in this

longest subpath (call it � 1obj and let g1 be the grasp assignment). � 1obj is transformed

into a transfer path by taking the resulting con�gurations of the pairing of g1 and the

con�gurations in � 1obj. This is the �rst transfer path in the sequence.

The second transfer path is obtained as follows (assume that the end of �obj is

not yet reached). Let qcobj be the last con�guration of � 1obj . The planner selects

the longest subpath � 2obj of �obj beginning at qcobj , whose grasp assignment (call it

g2) remains valid throughout. � 2obj is transformed into a transfer path by taking the

resulting con�gurations of the pairing of g2 and the con�gurations in � 2obj. This is the

second transfer path in the sequence. The search proceeds in the same way until the

last con�guration (qgobj) of �obj is attained.

We now show that this greedy algorithm is guaranteed to extract a sequence of

connectable transfer paths from �obj , and terminate at qgobj .

Lemma 3.1 The second transfer path is composed of at least two discrete object

con�gurations.

Proof: This is by construction of �obj . The feasible grasp set for the successor of qcobj

in �obj has at least one grasp assignment in the feasible grasp set of qcobj . Thus, in the

worst case this common grasp assignment will be g2, and the second transfer path

will have two object con�gurations. 2

Corollary: All the extracted transfer paths have at least two object con�gurations.

Lemma 3.2 For the given �obj the search for transfer paths will terminate at qgobj .

3.5. EXTRACTING THE MANIPULATION PATH 33

Proof: By the corollary to Lemma 3.1, in the worst case each transfer path will have

only two con�gurations. Neighboring paths share only one con�guration, thus the

search can proceed until the last con�guration in �obj is reached. 2

Lemma 3.3 The �rst and second transfer paths are connectable.

Proof: The grasp assignments g1 and g2 both belong to the feasible grasp set of qcobj

and the resulting arm con�gurations lie in CCarms. 2

Corollary: The sequence of extracted transfer paths are all connectable.

Having extracted the transfer paths (�2; �4; : : : ; �2p), the next step is to �nd the

transit paths (�1; �3; : : : ; �2p+1) to complete the manipulation path. The �rst transit

path (�1) connects q
i
sys to the con�guration �2[0] (the armmotion to grab the object at

its initial con�guration). The last transit path (�2p+1) connects the con�guration �2p[1]

to qgsys (the arm motion to let go of the object at its goal location). The remaining

transit paths �2i+1 connects the con�guration �2i[1] to �2i+2[0] (i = 1; : : : ; p� 1). The

resulting sequence, �1; �2; : : : ; �2p+1, is the manipulation path connecting qisys to q
g
sys.

Finding these transit paths is the simple matter of searching CCarms. In our

implementation, for each discrete con�guration in CCarms we previously encode a path

that connects it to a seed con�guration in CCarms (q
seed). Consequently, to �nd a path

between any two con�gurations qa and qb, it is simply a matter of concatenating the

two paths between qa and qseed and between qseed and qb, and then smoothing the

path to yield a more direct motion (see Appendix B for the smoothing algorithm). The

encoding is achieved during the precomputation phase of identifying the connected

components of CFarms. We refer the reader to Appendix B for a thorough explanation

of how the connected components are identi�ed and how the path data is encoded to

it members.

Proposition 3.1 From �obj we can extract a manipulation path connecting qisys to

qgsys.

Proof: By Lemma 3.2 and the corollary to Lemma 3.3, a sequence of connectable

transfer paths can be extracted from �obj. Furthermore, the arm con�gurations at

34 CHAPTER 3. MANIPULATION PLANNING IN A 2D WORKSPACE

qisys, q
g
sys and at all con�gurations of the transfer paths lie in CCarms. Thus, the

necessary arm motions (transit paths) can be constructed. 2

It may occur that a subpath � iobj has more that one grasp assignment gi associated

with it. It does not matter which one is used since the resulting arm con�gurations will

all lie in CCarms. However, there may be some criteria that makes one manipulation

path better than another. In this case, all the possible manipulation paths can be

constructed, and then evaluated to choose the most appropriate one.

3.6 Details

There is one potential problem in the above approach. When either arm is close to the

singular position where the two links of the arm are almost superimposed, then any

small change in the gripper location may cause a dramatic change in the joint angles

(the links may sweep a large area). Hence, for such a situation, when searching for the

object path, though the pairing of the two consecutive object con�gurations and the

grasp assignment yields system con�gurations that are collision-free, there may be no

collision-free path of the closed-loop chain between them. We illustrate this failure in

Fig. 3.3. For the start and end of a small displacement of the object, the system takes

the collision-free con�gurations shown in Fig. 3.3 (a) and (b). However, no collision-

free path exists to actually link them together. We deal with this problem as follows.

We say that two system con�gurations are close to each other if and only if the change

in the joint angles of the arms is within some threshold (and of course they have the

same grasp assignment). During the search for the path �obj , when a con�guration

q0obj is considered as a potential successor of qobj (see above), it is veri�ed that for each

common grasp assignment g in the feasible grasp sets of q0obj and qobj, that R(g;q
0

obj)

and R(g;qobj) are close to each other. If they are not close to each other, an additional

test is conducted to verify that the arm con�gurations are collision-free between qobj

and q0obj. This is done by interpolating between these two object con�guration with

a �ne enough discretization that the successive arm con�guration resulting from the

pairing of g and the discretized object con�gurations are close to each other. If any

3.7. MINIMIZING THE NUMBER OF REGRASPS 35

Arms

Obstacle

Object

(a) (b)

B
B
BBN

Figure 3.3: Restriction on the object path.

arm con�guration is in collision then this grasp assignment for q0obj is deleted from

its feasible grasp set.

3.7 Minimizing the Number of Regrasps

The algorithm we have presented will �nd a manipulation path, but with no regard

to minimizing the number of regrasp operations. Since regrasping can be a time

consuming operation for real robots, it might be desirable to �nd manipulation paths

that minimize the number of regrasps.

One method to minimize the number of regrasps would be to construct the ma-

nipulation graph and then �nd the path that minimizes the number of regrasping

motions. We present a local approach to solving this problem; it is a simple extension

of the previous algorithm. We simply augment the potential �eld with an appropriate

penalty function for the number of regrasps and with a slight further modi�cation to

BFP?, we ensure that �obj is such that the extracted manipulation path minimizes

the number of regrasps.

The slight modi�cation is as follows. Each con�guration qobj in GC has six neigh-

bors (recall, we de�ned a neighbour of qobj as any con�guration in GC having one

36 CHAPTER 3. MANIPULATION PLANNING IN A 2D WORKSPACE

coordinate di�ering from those of qobj by one increment of the discretization). We

modify BFP? to mark a con�guration as visited such that a con�guration can not

be visited from the same parent con�guration twice. This means that a best-�rst

search can insert the same con�guration in T a multiple of times, but never with the

same parent con�guration. Furthermore, for each object con�guration visited in the

search we keep a record of certain grasp assignments from its feasible grasp set and

call it the special feasible grasp set FS?. For the initial object con�guration, its

FS? is in fact just the feasible grasp set. For the other con�gurations, its FS? is

the intersection of its feasible grasp set FS and the FS? of its parent con�guration.

By keeping a FS? for each visited con�guration, whenever it becomes empty, we

know that a regrasp action is required at its parent con�guration. In this case, the

FS? for this con�guration is reset to equal the intersection of its FS and its parent

con�gurations FS. We thus have a method to determine the number of regrasping

steps required to get to any con�guration along a speci�c path. This is essentially

a sequential version of the greedy algorithm to extract the transfer paths from �obj.

Finally, we modify BFP? so that the search terminates with success when the qobj

of lbest matches qgobj (originally the search terminates with success when q0obj = q
g
obj).

This may cause some extra con�gurations to be considered but it guarantees that the

resulting path has the minimum number of grasps.

Proposition 3.2 Let N be the maximum value for the potential �eld on GC. Let the

potential value assigned to each node in T be the sum of the value from the original

potential �eld plus a penalty equal to N times the number of regrasps required to get

from the current node to the root node. Using the modifed BFP? it is guaranteed that

the successful termination of the search results in a path with the minimum number

of regrasps.

Proof: This is due to the penalty function added to the potential. From the potential

value associated to each node in T we can determine how many regrasp operations

there will be in tracing back to qiobj. If the potential value is between p and (p+1)N�1

then there will be p regrasp operations. Consequently, given a choice between a leaf

node with p regrasps or p + 1 regrasps for lbest, BFP
? will always choose the node

3.8. RESOLUTION COMPLETENESS 37

with p regrasps since its associated potential value will always be lower. Therefore,

all possible con�gurations with p regrasps will be considered before any with p + 1

regrasps. Since BFP? starts the search at qiobj, each new con�guration that appears

as lbest, will be such that it traces back to qiobj in the minimum number of regrasp

operations. Hence, when the the con�guration for lbest is the goal con�guration (the

search is terminated) the resulting path has the minimum number of regrasp actions.

2

3.8 Resolution Completeness

Proposition 3.3 The 2D Manipulation Planner is resolution complete, that is it will

�nd a manipulation path if it exists and will report failure otherwise (for the given

discretization).

Proof: If no �obj exists between q
i
obj and q

g
obj, then the modi�ed BFP? will visit every

possible reachable object con�guration from qiobj and then terminate (reports failure).

Clearly, if no �obj exists then a manipulation path cannot exists. Since BFP? in the

worst case will visit all possible reachable con�gurations from qiobj, then if a �obj exists

for the given GC, BFP? will �nd it. By proposition 3.1, a manipulation path will be

extracted. 2

Proposition 3.4 The worst-case time complexity of the 2D Manipulation planner is

O(d4 + sd3), where d is the number of discretization points for each axis of C and s

is the number of grasp assignments in the grasp set G.

Proof: The discretized Carms has sizeO(d
4). The time complexity to construct CFarms

is then O(d4) since it is a systematic search of the discretized Carms. To determine the

connected components and their encoding to generate a collision-free path between

any two con�guration within it, is also O(d4) (see Appendix B). We can represent T

as a balanced tree [Aho, Hopcroft, and Ullman, 1983] so that inserting each con�g-

uration in T and extracting lbest takes logarithmic time in the number of elements

in T . In addition, it takes in the worst-case s operations (the feasible grasp set FS

38 CHAPTER 3. MANIPULATION PLANNING IN A 2D WORKSPACE

(a) Initial Con�guration (b) Goal Con�guration

Figure 3.4: The manipulation task.

is G) to determine whether a con�guration should be added into T . The worst-case

size of T is O(d3), hence the time complexity of the procedure BFP? as described

above is O(d3 log d+ sd3). Furthermore, to �nd the sequence of transfer paths and to

determine the corresponding transit paths is both O(q), where q is the number of dis-

crete points making up each path. Thus, the time complexity of the 2D manipulation

planner is O(d4 + sd3). 2

3.9 Examples

We show the output of our implemented planner for the case where the number of

regrasps are not minimized, and for the case where they are. The same movable

object and environment, and the task of moving the object from the left side of the

workspace to the right side are considered for both cases (see Fig. 3.4).

The grasp set G consists of 24 grasp assignments, resulting from the possible

combination of arms, inverse kinematics solutions and the three locations on the

object for grasping; the front, middle, and end. The planner is implemented in the C

programming language and runs on a DEC Alpha workstation under UNIX.

Fig. 3.5 shows the path found without minimizing the number of regrasps. This

3.9. EXAMPLES 39

path was found using a workspace discretization of 200 � 200 for the translation

degrees of freedom of the object. The rotation angle of the object is discretized into

128 pieces. Each arm joint angle is discretized into 0.0491 radian pieces yielding a 4D

armC-space grid of 128�128�128�128 points. The joint limits for the �rst link of the

arms are when they are horizontal, and the joint limits for the second link are when

they are within 0.15 radians of the �rst link. Notice that seven regrasp operations

are required. Computing the arm freespace took on the order of ten minutes, while

the search for the path took around 5 seconds.

Fig. 3.6 shows the path found while minimizing the number of regrasp operations.

The environment, discretization, joint limits, and the inital and goal locations are the

same as above. In this case only two regrasps were required. The path was found in

around 10 seconds after the preprocessing stage.

40 CHAPTER 3. MANIPULATION PLANNING IN A 2D WORKSPACE

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

(m) (n) (o) (p)

(q) (r) (s) (t)

Figure 3.5: A manipulation path.

3.9. EXAMPLES 41

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 3.6: A manipulation path with minimal regrasping.

Chapter 4

Manipulation Planning in a 3D

Workspace

In this chapter we extend the methods for solving the two-dimensional problem to

the more challenging and interesting case of multi-arm manipulation planning in

a three-dimensional workspace; the three-dimensional case is where most realistic

manipulation tasks occur. The environment consists of two or more robot arms, a

movable object, and �xed obstacles. The result is a practical planner that reliably

�nds manipulation paths for a large variety of realistic problems. We demonstrate

the e�ectiveness of the algorithm by applying the implemented planner to di�erent

examples.

4.1 Extending the Ideas from the 2D Case

We use the three step approach outlined in Chapter 3 as the basis for a practical

manipulation planner. That is:

1. Find a collision-free path for the object (call it �obj).

2. Compute a sequence of transfer paths where the object tracks �obj.

3. Connect the transfer paths with transit paths to complete the manipulation

path.

42

4.1. EXTENDING THE IDEAS FROM THE 2D CASE 43

Recall that for the two-dimensional planner, the method imposes constraints on step

(1) and then uses BFP to solve the constrained instance of the piano movers' problem.

For this three-dimensional case, we give up the resolution-completeness for e�ciency

by relaxing the constraints on step (1) and by replacing BFP with RPP. Moreover,

we introduce some reasonable simpli�cations to facilitate the incorporation of the

constraints into a form easily handled by RPP. The modi�ed constraints on step (1)

for the practical planner and the associated simpli�cations are discussed below.

Grasp Set As in the two-dimensional case, we input a �nite grasp set G to discretize

the possible constraint submanifolds on which the transfer paths can lie. This requires

R(g;qobj) to completely specify the system con�guration for a given grasp assignment

g and object con�guration qobj . However, in this new problem we possibly have more

arms in the system than are needed to manipulate the object, that is we have working

arms and free arms.

De�nition 4.1 Working arms are the robot arms utilized to grasp the object M

for manipulation purposes.

De�nition 4.2 Free arms are the robot arms that are not used to manipulate M.

We deal with this complication by having a grasp assignment g 2 G explicitly specify

the working and free arms. For the working arms, g speci�es the grasp location for

the end e�ector of each arm and the particular inverse kinematics solution to use.

For the free arms, g sets its con�guration to a predetermined value where it is then

treated as a �xed obstacle. This con�guration is relatively non-obstructive and is the

home con�guration qhome
i associated to each robot Ai. As in the two-dimensional

case, the grasp set G is used in step (1) to ensure that the object path is tracing a

sequence of extractable transfer paths in Cgrasp.

Connectable Transfer Paths In the two-dimensional case, an explicit represen-

tation of the free regions in Carms is used during the construction of �obj . This is to

verify that the generated transfer paths are connectable. Unfortunately, in the three-

dimensional case, no such representation can be made since the space to store the

44 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

information is beyond current capabilities in terms of memory size. Instead, we as-

sume that there exists a transit path connecting any two collision-free arm con�gura-

tions. We thus rely heavily on the fact that for many situations in a three-dimensional

workspace this is true. Under this assumption, we can relax the constraint on step

(1) to searching for a �obj that generates a sequence of weakly-connectable (as opposed

to connectable) transfer paths.

De�nition 4.3 Two transfer paths �a and �b are said to be weakly-connectable by

a transit path if there exists qa 2 �a and qb 2 �b with the same object con�guration.

Stable Con�gurations of M In the two-dimensional case, there is no restriction

on where to place the object for regrasping since every object con�guration is statically

stable. In the three-dimensional workspace not every object con�guration is a stable

con�guration. For example, if the arms grasping the object suddenly ungrasp, then

due to gravity the object will fall. Unfortunately, incorporating the stable placements

of the object into the search is not obvious. To simplify matters, the only stable

placements considered for the object, where the arms are not supporting it, are the

initial and goal con�gurations of the object (which are speci�ed by the user). The

result then, is that when the arms need to change their grasp of the object (i.e. move

from one transfer path to another), they must do so while having a suitable number

of the arms working to hold the object in a statically stable manner, that is the object

is never placed against the obstacles. Note this fails in the case of only one robot arm

in the system.1

Details on Grasp Assignments For a given grasp assignment g and an object

con�guration qobj, to determine whether R(g;qobj) is capable of holding M in a

stable manner or is capable of moving it, requires some consideration of stability and

dynamics. For simpli�cation we further restrict the grasp assignments in G into two

groups.

De�nition 4.4 The static grasp assignments are the grasp assignments g such

that 8qobj with R(g;qobj) 2 cl(Cfree), R(g;qobj) 2 Cstable.

1In this case, handey could be used [Lozano-P�erez et al., 1987]

4.2. FINDING THE OBJECT PATH 45

De�nition 4.5 The motion grasp assignments are the grasp assignments g such

that 8qobj with R(g;qobj) 2 cl(Cfree), R(g;qobj) 2 Cgrasp.

Currently, we avoid the di�culty of automatically identifying these classes of grasp

assignments by having it as an user input. Based on experience, the user can specify

which grasp assignments are static grasp assignments and motion grasp assignments.

With this simpli�cation, the �obj we seek is simply one that generates a series of

weakly-connectable transfer paths found from motion grasp assignments. For the

transit paths, intermediate static grasp assignments may be needed to complete the

change of grasp ofM.

4.2 Finding The Object Path

The desired object path �obj is found using RPP. Although RPP is a general planner

for the piano movers' problem, we present the algorithm in the context of �nding the

desired object path. For a general description of RPP, we refer the reader to Chapter

7 of [Latombe, 1991]. We denote the speci�c algorithm for �nding �obj as RPP
?.

RPP? constructs �obj by �rst placing a �ne-resolution grid over Cobj, and then

searching the grid using a potential �eld as a guide to the goal con�guration. This

potential �eld has a global minimum at the goal con�guration q
g
obj (see Appendix

C for the de�nition of this potential). The path is generated as a list of adjacent

con�gurations by inserting one object con�guration after the other, starting with the

initial con�guration of qiobj.

The constraints on the object path are handled in much the same way as described

in Chapter 3. Starting with qiobj , RPP
? �nds all the motion grasp assignments g 2 G

such that R(g;qiobj) is collision-free. These grasp assignments are stored as the FS

of qiobj and also recorded in what is called the grasp assignment list GL. A gradient

motion from qiobj is then executed, where adjacent object con�gurations along the

negated gradient of the potential �eld are traced. An adjacent con�guration of qobj is

de�ned as a neighboring con�guration (call it q0obj) in the grid with at least one grasp

assignment from GL passing the feasibility criteria. A motion grasp assignment g is

considered feasible if R(g;q0obj) is collision-free and the change in the con�guration of

46 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

the working arms (for this grasp assignment) as the object con�guration goes from

the qobj to q
0

obj is within a preset bound. We bound the change in the con�guration of

the working arms to ensure that between adjacent con�gurations the system remains

collision-free (this is the same situation as shown in Fig. 3.3). With each new adjacent

con�guration q0obj found along the negated gradient, the infeasible grasp assignments

are removed from the grasp assignment list GL. The updated GL is also stored as

the FS of q0obj .

Unfortunately, prior to reaching the global minimum, an adjacent con�guration

along the negated gradient may fail to exist causing the gradient motion to get stuck.

Let qbest be the last adjacent con�guration found before the failure. If this failure is

due to a lack of motion grasp assignments in GL - that is there exist grasp assign-

ments in G that will clear the hold-up - then GL is reset to contain all the collision-free

motion grasp assignments for qbest. The gradient motion is then resumed from qbest.

Otherwise, the failure is due to the gradient motion falling into a local minima. To

escape the local minima, a random walk from qbest is executed which traces adjacent

con�gurations in a random manner, followed immediately by a gradient motion lead-

ing to a new local minima (or the global minimum). If the potential at the new local

minima is lower than the previous one, then the escape strategy is executed from this

new local minima, otherwise it is executed again from the previous one. Through this

process of gradient motion, random walks, and the occasional resetting of the grasp

assignment list GL, the search moves closer to the goal. If the global minimum is

attained, a path �obj of M described as a sequence of grid con�gurations and their

feasible sets is returned. Because the path is composed of many random motions, a

post processing step is used to smooth the motion. The smoothing algorithm is given

in Appendix B.

RPP? is probabilistically resolution-complete. This means that when a �obj exists,

it will �nd it, but the computation time may tend to in�nity. The proof is given in

[Barraquand and Latombe, 1991a]2. Unfortunately, if no path exists, RPP? may run

forever. Nevertheless, RPP? is usually very quick to return �obj when it exists, hence

a time limit can be set beyond which it is safe to assume that no path exists.

2The proof is for the general RPP but it also applies in this speci�c case.

4.3. EXTRACTING THE MANIPULATION PATH 47

4.3 Extracting the Manipulation Path

The sequence of connectable transfer paths are extracted from �obj using the same

greedy algorithm described in Chapter 3. The number of extracted transfer paths are

minimal for the given �obj, but RPP
? does not guarantee that this is the best path

in that respect. In addition, it may occur that each subpath � iobj has more that one

motion grasp assignment gi associated with it. Unlike the two-dimensional case, it

may very well matter which one is used, since there is no guarantee that there exists

a transit path to link the transfer paths together. In this case, choosing the correct

grasp assignments to construct the transfer paths may be critical for the successful

construction of the transit paths.

De�nition 4.6 A transit task speci�es the initial and goal locations for which a

transit path must be found to connect them.

The subpaths � iobj and their grasp assignments gi can be organized into successive

layers, as illustrated in Fig. 4.1. Each layer contains all the transfer paths generated

for the same subpath of �obj; the transfer paths di�er by the grasp assignment. Se-

lecting one such path in every layer yields a series of transit tasks: the �rst consists

of achieving the initial grasp of the object from the qisys; it is followed by a possibly

empty series of transit tasks to change grasps between two connectable transfer paths;

the last transit task is to achieve the goal system con�guration. Hence, it remains to

identify a grasp assignment in each layer of the graph shown in Fig. 4.1, such that

there exist transit paths accomplishing the corresponding transit tasks.

Assumewithout loss of generality that all arms are initially at their non-obstructive

con�gurations. Our planner �rst chooses a transfer path (anyone) in the �rst layer.

Consider the transit task of going from the initial system con�guration to the con�g-

uration where the arms achieve the grasp assignment speci�ed in the chosen transfer

path, withM being at its initial con�guration. The coordinated path of the arms is

generated using RPP, that is the general randomized path planner. If this fails, a new

attempt is made with another transfer path in the �rst layer; otherwise, a transfer

path is selected in the second layer. The connection of the system con�guration at the

48 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

Transfer path:
grasp assignment A1

Transfer path:
grasp assignment A2

Transfer path:
grasp assignment B1

Transfer path:
grasp assignment B2

qi
sys

qg
sys

A link can be constructed
between nodes Nodes corresponding

ττττobj
1to subpath

Nodes corresponding
ττττobj

2to subpath

Figure 4.1: The layered graph.

4.3. EXTRACTING THE MANIPULATION PATH 49

end of the �rst transfer path to the system con�guration at the start of this second

transfer path forms a new transit task.

The transit task between two transfer paths is more di�cult to solve. To under-

stand the di�culty, imagine the case where M is a long bar requiring two arms to

move. Consider the situation where the bar is grasped at its two ends and the regrasp

requires swapping the grasp location of the two arms. This regrasp is not possible

without introducing an intermediate grasp. We illustrate this example in Fig. 4.2.

After grasping and rotating the bar a change of grasp is required (sequence (a) to (d)

in Fig. 4.2); arm 1 ungrasps one end of the bar and regrasps it at its center while

arm 2 continues to hold the bar without moving (sequence (d) to (f)); then arm 2

ungrasps the bar and regrasps it at the other end (sequence (f) to (h)); �nally, arm

1 ungrasps the center of the bar and regrasps it at its free end, thus completing the

change of grasp (sequence (h) to (i)).

We address this di�culty by breaking the transit task between connectable trans-

fer paths into smaller transit subtasks. Each transit subtask consists of going from

one grasp assignment (at least a static grasp assignment) to another in such a way

that no two arms use the same grasp location at the same time. In this process, we

allow all the arms to be used. We start with the �rst grasp assignment and generate

all the potential grasp assignments that may be achievable from it (assuming the

corresponding transit paths exist). We generate the successors of these new assign-

ments, and so on until we reach the desired assignment (the one used in the next

transfer task). For each sequence that achieves this desired assignment, we test that

it is actually feasible by using RPP to generate a transit path between every two

successive grasp assignments. We stop as soon as we obtain a feasible sequence. The

concatenation of the corresponding sequence of transit paths forms the transit path

linking the two connectable transfer paths. We then proceed to link to the next layer

of transfer paths.

When we reach a transfer path in the last layer, its connection to the goal system

con�guration is carried out in the same way as the connection of the initial system

con�guration to the �rst layer.

50 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.2: An example illustrating the complexity of changing grasps.

4.4. SLIDING GRASPS 51

The resulting sequence of transit and transfer paths is the manipulation path

connecting qisys to q
g
sys.

4.4 Sliding Grasps

In the algorithms presented thus far, the robots are restricted to grasp the object

in a rigid fashion. In some manipulation situations, it may be useful to relax this

constraint and allow the object to slip within the grasp in a controllable manner. We

now consider this case in an ad hoc approach. We restrict sliding to the multi-grasp

case (i.e. two or more sets of grippers act on the object for dextrous manipulation),

and assume that any grasp can be made to slide on the object, when it is kinematically

feasible. We completely ignore the many important issues related to the actual control

of the slip as studied in [Kao and Cutkosky, 1992][Tremblay and Cutkosky, 1993].

Let G0 be a subset of G which contains motion grasp assignments and such that all

g 2 G0 have at least two working arms. To facilitate the sliding of the object within

a grasp, we de�ne the notion of neighbouring grasps.

De�nition 4.7 Two elements in G0 are said to be neighbouring grasp assign-

ments if they specify the same working arms, the change in position and orientation

between grasp locations for each arm is within some prede�ned threshold, and the net

torque on the object to realize the sliding grasp is zero.

Furthermore, for a given qobj and neighbouring grasp assignments g1 and g2, the

working arms move from R(g1;qobj) to R(g2;qobj) by having the end e�ectors slide

accordingly, that is the ungrasp/grasp operations are not invoked. We make the

assumption that, if R(g1;qobj) and R(g2;qobj) are collision free and the change in

con�guration of the working arms is within some preset bound, then they lie in the

same connected component of Cgrasp. Note that this is the same sort of assumption

we use in constructing the connected components of CFarms in Chapter 3. Thus,

transfer paths may now consist of motions where the object slides within the grasp

of the grippers.

52 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

We incorporate the sliding grasps by modifying the search for �obj . The basic

idea is to augment GL with the neighbouring grasp assignments of those already in

GL. Consequently, object con�gurations that previously were not reachable because

it required a sliding grasp can now be achieved.

More speci�cally, let GL0 be the set of neighbouring grasp assignments of those in

GL. RPP? is modi�ed to also consider GL0 for each adjacent con�guration encoun-

tered in the search. For a given adjacent con�guration q0obj RPP
? �lters out of GL0

those grasp assignments g that do not yield a collision-free R(g;q0obj). In addition, for

g1 in the updated GL0 and its neighbouring grasp assignment g2 in GL, if the change

in con�guration of the working between R(g1;q
0

obj) and R(g2;q
0

obj) is greater than the

preset bound, then g1 is removed from GL0. GL is augmented with GL0. The updated

GL is also stored as the FS of q0obj. The search proceeds accordingly.

In extracting the transfer paths, if two weakly-connectable transfer paths have

neighbouring grasp assignments, then they are glued into one transfer path by insert-

ing a sliding motion between the two.

4.5 Incompleteness

The step to �nd �obj is probabilistically resolution-complete. Given the sequence of

weakly-connectable transfer paths, the step to �nd the transit paths is also probabilis-

tically resolution-complete. This is because we use RPP. However, the combination

of the two steps yields an incomplete algorithm. This means that even if a manipula-

tion path exists, it may not �nd it, and if a solution does not exist, it cannot report

failure.

The reason is because the transfer paths extracted from �obj are only weakly-

connectable. Indeed, if there does not exist a transit path to link two weakly-

connected transfer paths, RPP will not report failure, and consequently, other se-

quences of transfer path will not be considered.

Despite this limitation various experiments with the planner demonstrate that it is

quite e�cient and reliable in �nding manipulation paths when they exist. Therefore,

if a path is not found by time T , where T is determined empirically, then a path is

4.6. RESULTS AND DISCUSSION 53

unlikely to be found. This is the failure condition for the algorithm.

4.6 Results and Discussion

We have implemented a multi-arm manipulation planner based on the presented

algorithm. It is written in C and runs on a DEC Alpha workstation under UNIX. We

have applied the planner to three di�erent situations to show its reliability. The �rst

example is for a system of three general 6R robot arms whose kinematics are such that

some interesting motions can be found. The second example is for three Puma 560

arms, modelled after the setup found in the Computer Science Robotics Laboratory,

Stanford University. And �nally, we show the planner applied to generating realistic

human arm motions.

For these examples, in computing the transit paths, RPP uses the sum of the

angular joint distances to the goal con�guration as the guiding potential. In �nding

both the transit paths and �obj , we limit the amount of computation spent in RPP and

RPP? to three backtrack operations (see Appendix C), after which the planner returns

failure. Failure to �nd �obj results in the immediate failure to �nd a manipulation

path. Similarly, a failure to �nd transit paths to link together the layers of transfer

paths results in a failure to �nd a manipulation path. The time for the planner to

report failure depends on the problem, with some examples ranging from 30 seconds

to a few minutes. To check collisions we use Quinlan's algorithm - a fast hierachical

collision checking algorithm [Quinlan, 1994].

4.6.1 Three General 6R Robot Arms

The system consists of three robot arms, each with six revolute joints, working in a

three dimensional workspace. The non-obstructive con�guration (qhome
i) of each arm

is one where the arm stands vertical.

Fig. 4.3 shows a manipulation path generated by the planner for an L-shaped

object. This object requires two arms to move it. The object is taken through the

window in the large obstacle located in the middle of the workspace. Notice that in the

54 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.3: Manipulating a L-shaped object.

4.6. RESULTS AND DISCUSSION 55

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.4: Manipulating a T-shaped object.

56 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.5: Manipulating a wheel.

4.6. RESULTS AND DISCUSSION 57

change of grasp, at least one arm is holding the object at all times. For this motion,

it took 45 seconds to �nd the object path and 30 additional seconds to complete the

manipulation path. For the generation of �obj, each axis of the object's C-space was

discretized into 100 units. For the generation of the transit paths, the joint angles of

the arms were discretized into intervals of 0.05 radians. There are 64 grasp locations

on the object, yielding a grasp set of around 25,000 elements.

Fig. 4.2 shows a manipulation path generated for a long bar requiring two arms to

move it. This example illustrates the complexity of changing grasps. For this motion,

it took 25 seconds to �nd the object path and an additional 20 seconds to complete

the manipulation path. The same discretizations as above were used. There are 24

grasp locations of the long bar, yielding a grasp set of around 10,000 elements.

Fig. 4.4 shows a manipulation path found for a T-shaped object. This object

requires a single arm to move it, and only two arms are used along the computed

path. One arm �rst grasps the object at one end of the T. It passes the object to

another arm that grasps it at its other end and brings it to its goal con�guration. For

this motion, the planner took 40 seconds to �nd the object path and then another 25

seconds to complete the manipulation path. The same discretizations as above were

used. There are 49 grasp locations on the T-shaped object, yielding a grasp set of

around 1,200 elements.

Fig. 4.5 shows a manipulation path found for rotating a giant wheel one and a

quarter turns. The wheel requires all three arms to rotate it. Notice that to complete

the desired rotation an intermediate ungrasp/regrasp operation is needed. For this

motion, the planner took 30 seconds to �nd the object path and then another 25

seconds to complete the manipulation path. The same discretizations as above were

used. There are 4 grasp locations on the T-shaped object, yielding a grasp set of

around 3,100 elements. Here we specify a static grasp assignment that requires no

arms, that is the wheel is always in a stable con�guration without the arms having

to hold it.

58 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 4.6: Puma example: light object.

4.6. RESULTS AND DISCUSSION 59

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k) (l)

Figure 4.7: Puma example: heavy object.

60 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

4.6.2 Three PUMA 560 Arms

We consider an actual robotics workcell by modelling the three PUMA arms found in

the Computer Science Robotics Laboratory, Stanford University. The non-obstructive

con�guration (qhome
i) of each arm is one where the arm stands vertical.

Fig. 4.6 shows a manipulation path generated by the planner for a light, rectan-

gular shaped object requiring only one arm for manipulation. The task is to take the

object to the other side of the workspace. Notice that to complete the task, the �rst

arm hands o� the object to the second arm (at snapshot (f) of Fig. 4.6). For this mo-

tion, it took three minutes to �nd the object path and an additional two minutes to

complete the manipulation path. For the generation of �obj , each axis of the object's

C-space was discretized into 100 units. For the generation of the transit paths, the

joint angles of the arms were discretized into intervals of 0.05 radians. There are 12

grasp locations on the object, yielding a grasp set of 288 elements. The cylinder in

the corner of the workspace should aid in viewing the series of snap shots.

Fig. 4.7 shows a manipulation path generated by the planner for a heavy, rect-

angular shaped object. The object is light enough for one arm to hold it statically,

but requires two arms to manipulate it. The task is to take the object to the other

side of the box and to rotate it 180 degrees. Half way through the manipulation,

the grasping arms regrasp the object to complete the desired rotation. The third

arm moves to hold the object statically as the other arms regrasps (sequence (c) to

(f)). For this motion, it took around three minutes to �nd the object path and an

additional three minutes to complete the manipulation path. The same discretization

as the one arm case was used. There are 12 grasp locations on the object, yielding a

grasp set of around 5,000 elements.

4.6.3 Human Arm Manipulation

To demonstrate the variety of di�erent manipulators that the planner can handle, we

show some examples where a seated human �gure and a robot arm execute manipula-

tion tasks. These examples are taken from [Koga et al., 1994]. Each human arm has

seven degrees of freedom, plus an additional nineteen degrees of freedom for the hand.

4.6. RESULTS AND DISCUSSION 61

The non-obstructive con�gurations for the human arms are ones in which they are

held out to the side. The robot has six revolute joints and three degrees of freedom

for the �ngers of the end-e�ector. The non-obstructive con�guration for the robot is

one in which it stands vertically. The inverse kinematics of the human arms come

from Kondo's algorithm [Kondo, 1994] where the redundant degree of freedom is re-

solved using the sensori-motor transformation model derived from neurophysiological

experiments [Soechting and Flanders, 1989]. A detailed description of the algorithm

is given in [Kondo, 1994]. In addition, we seat the human on a swivel chair. By

adding this extra degree of freedom, we allow the arms to access a greater region, and

hence tackle more interesting manipulation tasks. The rotation of the chair tracks

the object, to keep it essentially in an optimal position with respect to the workspace

of the arms [McCormick, 1982]. The dimension of the composite con�guration space

in these examples is seventy eight.

Fig. 4.8 shows a path generated by the planner for the human arms to bring the

glasses on the table to the head of the human �gure. We specify that both arms

should be used to manipulate the glasses (this is de�ned in the grasp set). Notice

that during the regrasping phase, at least one arm is holding the glasses at all times.

We consider sliding grasps in this example. For this motion it took one minute to

�nd the object path and an additional two minutes to complete the manipulation

path. For the generation of �obj, each axis of the object's C-space was discretized into

100 units. For the generation of the transit paths, the joint angles of the arms were

discretized into intervals of 0.05 radians. There are 70 grasp locations on the glasses,

yielding a grasp set of 424 elements.

Fig. 4.9 shows a path generated by the planner for the human arms and the

robot arm cooperating to manipulate a chess box. Having the di�erent arms working

together presents no di�culty to our planning approach. The planner simply needs

to know the correct inverse kinematics algorithm to apply to each arm. For this

example, in de�ning the grasp set, we specify two classes of grasps, one in which all

three arms are used, and another in which only the two human arms are utilized.

Also, the human grasps are allowed to slide. For this motion it took about one and a

half minutes to �nd the object path and an additional two minutes to complete the

62 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

Figure 4.8: Manipulating a pair of glasses.

4.6. RESULTS AND DISCUSSION 63

manipulation path. The same discretizations as above were used. There are 40 grasp

locations on the box yielding a grasp set of around 2,600 elements.

In addition, the planner was used to automatically generate a rather complex

computer animation clip [Ku�ner et al., 1994]. The motions consist of a human �gure

putting on his glasses, moving a box, lifting a robot out of the box, and then playing

chess with the robot. The major motions in the clip were computed by specifying

only ten intermediate systems con�gurations.

64 CHAPTER 4. MANIPULATION PLANNING IN A 3D WORKSPACE

Figure 4.9: Cooperative motion between a human and a robot.

Chapter 5

Dynamic Constraints and

Trajectory Planning

The manipulation planners presented in Chapters 3 and 4 deal with the �rst step of

our two phase approach to trajectory planning. This chapter deals with the second

step; we compute a time history of the position, velocity and acceleration for each

robot along the given path, while satisfying the dynamic constraints imposed by the

system (e.g. actuator torque limits). This is done by utilizing a time parameterizing

scheme that considers the dynamic models of the robots, their actuator limits, the

control strategy, and the friction interaction between the gripper and the movable

object (hereafter we call the movable object the payload). In fact, with these models

we determine the minimum-time parameterization for these manipulation paths. This

is the path-constrained-optimal-control problem for robots.

Speci�cally, we consider the minimum-time parameterization for three types of

paths:

� transit paths (open-kinematic-chain);

� transfer paths with one robot arm (open-kinematic-chain);

� transfer paths with cooperating robot arms (closed-kinematic-chain).

These three cases cover the possible combinations of robots and payload during a

manipulation path. We only consider rigid grasps.

65

66 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

By classifying the �rst case (transit path) as the basic problem, the other two

are the basic problem with added constraints. The second case of the single arm

transferring a payload has the additional constraint that the payload not slip out

of the grasp of the gripper. The third case has the additional constraint that the

optimization deal with the redundant actuation in the closed-chain motion in a fashion

compatible with the multi-arm control strategy for the real robots. Incorporating

these additional constraints into the basic problem is the focus of this chapter.

5.1 The Open-Chain Robot

There exists a well established path-constrained-optimal control algorithm for open-

chain robots [Bobrow et al., 1985][Shin and Mackay, 1985][Pfei�er and Johanni,

1987][Shiller and Lu, 1990]. We use this algortithm as the foundation for �nding

the minimum-time parameterization for the other two cases (the transfer paths). We

give a brief summary of the algorithm, and particulary concentrate on the portions

relevant for developing the algorithms for the other two cases.

Consider the situation where a robot is prescribed to follow a speci�ed path.

The generalized coordinates of the arm are then parameterized in terms of a single

variable s, where s can be regarded as the distance travelled along the path. The

optimal control problem is to �nd the time parameterization s = s(t) that minimizes

the travel time while satisfying the limits on the actuators.

These dynamic constraints are represented using the equations of motion for the

robot. For an n degrees of freedom open-chain robot the equations of motion can be

written as,

A(q)�q + b(_q;q) + g(q) = � (5:1)

where A is the n � n inertia matrix, b is the n � 1 vector of velocity dependent

forces, g is the n � 1 vector of the gravity forces, � is the n � 1 vector of actuator

torques, and q; _q, and �q are the generalized coordinates, velocities, and accelerations,

respectively. Furthermore, because the path is constrained, the equations of motion

become parameterized by s and the vector of actuator torques become,

� = a�s+ b0 _s2 + g (5:2)

5.1. THE OPEN-CHAIN ROBOT 67

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100_s

s

u u

���)
PPPq

(si; _si) (sf ; _sf)

Figure 5.1: Velocity pro�le in the s� _s plane.

a = A
dq

ds

b0 = A
d2q

ds2
+ ~b

where _s and �s are a measure of the velocity and acceleration of the robot along the

path respectively, and ~b is the vector b with the path velocity _s2 factored out (it can

be shown that each vector element of b has an _s2 term). The bounds on the actuators

are,

�min � � � �max: (5:3)

To �nd the minimum-time parameterization s(t), the two point boundary value

problem (TPBVP) with boundary constraints (si; _si) and (sf ; _sf) is considered, where

(si; _si) and (sf ; _sf) are the initial and �nal states of the robot respectively. In the s -

_s plane (see Fig. 5.1), this translates to �nding a curve that connects the two states

while satisfying Eq. (5.2) and the actuator torque bounds given by (5.3). Furthermore,

since the travel time is

tf =
Z sf

so

ds

_s
(5:4)

by maximizing _s we minimize the travel time. Hence, the curve we seek in the s - _s

plane is one that solves the TPBVP and maximizes the area it encloses.

68 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

Bobrow et al. show in [Bobrow et al., 1985] that the optimal curve has �s at its

maximum possible acceleration or deceleration at all times (Shiller and Lu show that

there exist some special paths with critical arcs where this is not true [Shiller and Lu,

1990] - we assume our paths are without the critical arcs). This reduces the problem

to �nding the switching points from maximum acceleration to maximum deceleration

while satisfying the aforementioned constraints. An e�cient and robust method for

�nding these switching points is given in [Shiller and Lu, 1990].

The algorithm for �nding the switching points makes use of what is called the

velocity limit curve and the maximum and minimum �s for a given s and _s. The

limit curve is the locus of the maximum instantaneous _s along the path and serves

as an upper bound for the optimal curve (see Fig. 5.2). The important point is

that regardless of the robot system (i.e. any one of the three cases we consider),

the switching point algorithm will return the optimal curve if these input values are

provided. Thus, from our viewpoint the key is the ability to compute the required

input information.

For the open-chain robot, these input values are found by noting that for a given

s we have a linear programming problem with variables _s2, �s, and � . This was �rst

noted in [McCarthy and Bobrow, 1992]. The details to transform the above problem

into a linear programming problem is given in Appendix D. Using the Simplex linear

programming algorithm, the desired input for the switching point algorithm can be

found, resulting in the minimum-time parameterization of the transit paths.

For this particular case of the open-chain robot, an elegant graphical method can

be employed instead of the Simplex algorithm. We refer the reader to [Pfei�er and

Johanni, 1987] for details.

5.2 The Open-Chain Robot Carrying a Payload

The simplest strategy for dealing with an open-chain robot carrying a payload is to

model the payload as rigidly attached to the manipulator. We can then apply the

same method as in Section 5.1. However, in the actual execution the inertial e�ects on

the payload may exceed the holding capacity of the gripper, resulting in the payload

5.2. THE OPEN-CHAIN ROBOT CARRYING A PAYLOAD 69

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

_s

s

�
�
�	

Velocity Pro�le

HHHHj

Velocity Limit Curve

Figure 5.2: Velocity pro�le and the limit curve.

70 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

ying out of the grasp. We need a no-slip constraint. In the following analysis, we

consider the generic case of parallel jaw grippers.

Friction is what maintains the rigid grasp of the payload. If the interaction forces

between the gripper and the payload are within the friction limits, then the rigid grasp

is maintained. This section discusses the approach taken to add this consideration of

friction limits into the minimum-time parameterization algorithm.

We consider �rst, an appropriate friction model. We use the viscoelastic rubber

friction model developed by Howe, Kao, and Cutkosky [Howe et al., 1990]. We justify

the use of such a model by the fact that most robot �nger tips have a rubber surface.

From experiments where they measure the point of slip for a soft rubber planar surface

under combined torsion and shear loading, they give the following conservative friction

model,

ft � �jfnj � �jmnj (5:5)

where ft is the shear loading, mn is the torsional loading, fn is the normal force, �

is a \proportionality constant", and � is the coe�cient of friction. � is equal to the

ratio of the maximummeasured torsion to the maximummeasured shear. As long as

the constraint in (5.5) is satis�ed, the contact will remain �xed.

The shear and torsional loading are related to the interaction forces between the

gripper and the payload by,

mz = mn (5:6)

and q
f2x + f2y = ft; (5:7)

where the interaction forces are represented by the vector,

�int =

2
66666666666664

fx

fy

fz

mx

my

mz

3
77777777777775

(5:8)

5.2. THE OPEN-CHAIN ROBOT CARRYING A PAYLOAD 71

acting at the grasp contact center. The x and y components lie in the contact plane,

and the z component lies perpendicularly to it. Thus by Eqs. (5.5), (5.6), and (5.7)

we can bound the interaction forces such that a rigid grasp is maintained.

We further approximate this bound to:

jfxj � 0:707(�(2fg + jfzj)� �jmzj) (5:9)

jfyj � 0:707(�(2fg + jfzj)� �jmzj)

jmzj �
�(2fg + jfzj)

�
;

where fg is the gripping force. Note that for the component of force normal to the

contact plane we use 2fg + jfzj. The 2fg component comes from the fact that there

are two contact planes in the grasp, while the jfzj component is due to the inertial

and gravity e�ects.

To bring into evidence �int, we break up the system into two pieces. We write the

equations of motion for the payload where the interaction forces become the active

forces on the payload, and the equations of motion for the arm where the interaction

forces become the external forces acting on the arm.

To the payload, a coordinate frame is attached at the grasp contact center such

that the z-axis of the frame lies perpendicularly to the contact plane. The position

and orientation of this frame with respect to some inertial reference frame forms a set

of generalized coordinates for the payload. The equations of motion for the payload

is then,

�obj(x)�x+ �obj(_x;x) + pobj(x) = �int (5:10)

where �obj is the 6 � 6 inertia matrix, �obj is the 6 � 1 vector of velocity dependent

terms, pobj is the 6 � 1 vector of gravity dependent terms, and x, _x, and �x are the

generalized coordinates, velocities, and accelerations respectively.

When there is no-slipping the payload is rigidly attached to the arm, thus,

x = T (q) (5:11)

where T maps the joint coordinates of the arm to the position and orientation of the

72 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

coordinate frame attached at the grasp contact center (forward kinematics). Further-

more, using the de�nition of the Jacobian we get,

_x = J _q (5:12)

and

�x = _J _q + J�q: (5:13)

The equations of motion for the arm can be written as:

A(q)�q + b(_q;q) + g(q) + JT�int = � (5:14)

where � , A, b, g, q, _q, and �q are from the de�nition associated to Eq. (5.1). JT

is the transpose of the Jacobian matrix and maps �int to equivalent joint torques of

the arm. Although we have written the equations of motion for the arm and payload

separately, their behaviour is coupled by Eqs. (5.11), (5.12), and (5.13), and to the

interaction forces �int.

We now consider the optimal control problem as before. The equations of mo-

tion for the payload become parameterized by s and the vector of interaction forces

become,

�int = �obj�s+ �0

obj _s
2 + pobj (5:15)

�obj = �obj

dx

ds

�0

obj = �obj

d2x

ds2
+ ~�obj

where ~�obj is the vector �obj with the path velocity _s2 factored out. Similarly, for the

robot arm, the vector of actuator torques for following the path becomes,

� = a�s+ b0 _s2 + g + JT�int (5:16)

a = A
dq

ds

b0 = A
d2q

ds2
+ ~b

5.3. THE CLOSED-CHAIN ROBOT SYSTEM 73

where ~b is the vector b with the path velocity _s2 factored out. We tidy up the notation

by substituting Eq. (5.15) into (5.16) to get,

� = a1�s+ a2 _s
2 + a3 (5:17)

The problem is a TPBVP with the equality constraints given by Eqs. (5.15) and

(5.17), and with bounds on �int and � given by Eqs. (5.9) and (5.3) respectively.

This again reduces to �nding the optimal curve in the s - _s plane that maximizes the

area under it while satisfying the boundary constraints. All that remains is to �nd

the maximum acceleration/deceleration and the maximum possible velocity at each

point along the prescribed robot path.

Notice that with exception to (5.9), the constraint equations, inequalities and

cost functions are all linear in _s2, �s, � , and �int. That is, we are close to having a

linear programming problem for �nding the necessary inputs for the switching point

algorithm. To get (5.9) into the required form, we remove the absolute values on

the fz and mz terms in the inequalities and consider the positive and negative cases.

Having removed the absolute values, we now have a linear programming problem in

terms of �nding the maximum _s and the maximum/minimum �s. By treating each

positive and negative case seperately and then taking the best result, we can �nd the

maximum acceleration/deceleration and the maximum velocity at each point on the

robot path. The details of how to actually transform the above problem into a linear

programming one is given in Appendix E. Using the Simplex linear programming

algorithm, the desired input for the switching point algorithm can be found, resulting

in the \no-slip" minimum-time parameterization of the transfer paths involving one

robot.

5.3 The Closed-Chain Robot System

When the multiple arms grasp an object they form a closed-chain system with n

degrees of freedom and m actuators, with m > n. The equations of motion for this

system can be expressed as,

n(q)�q + o(_q;q) + g(q) =M(q)� (5:18)

74 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

where n is the n�n inertia matrix, o is the n�1 vector of velocity dependent forces,

g is the n� 1 vector of the gravity forces,M is the m� n matrix that represents the

coupling of the redundant actuators in the equations of motion, � is the mx1 vector

of actuators torques, and q; _q, and �q are the generalized coordinates, velocities, and

accelerations, respectively.

The equations of motion for the closed-chain given in (5.18) can be rewritten

in terms of the the path parameter s, yielding this path-following equation for the

actuators,

M� = n�s+ o0 _s2 + g (5:19)

n = N
dq

ds

o0 = N
d2q

ds2
+ ~o

where again _s and �s are a measure of the velocity and acceleration of the robot along

the path, respectively, and ~o is the vector o with the path velocity _s2 factored out (it

can be shown that each vector element in o has a _s2 term).

The constraint equations, inequalities and cost function are all linear in _s2, �s,

and � , thus we have the same linear programming problem as in basic problem of

Section 5.1. Hence, using Simplex and the switching point algorithm we can �nd the

path-constrained-time-optimal motion of a closed-chain robot system [McCarthy and

Bobrow, 1992].

Unfortunately, these time-optimal motions may not be feasible trajectories for

the real robot controller to track. For example, the speci�c method of the con-

troller for partitioning the e�ort to the arms may be inconsistent with the resulting

partitioning of the optimization. Consequently, during the execution of the trajec-

tory the controller may oversaturate one or more of the actuators. We tackle this

problem by incorporating the controller strategy into the optimization algorithm.

For the purpose of illustration, we consider the multi-arm control strategy based

on the operational space formulation [Khatib, 1988] and the virtual linkage model

[Williams and Khatib, 1993]. Other methods such as the object impedance control

strategy [Schneider and Cannon, 1992] are incorporated in a similar manner.

5.3. THE CLOSED-CHAIN ROBOT SYSTEM 75

Figure 5.3: Multiple arm manipulation.

5.3.1 Control Consistent Minimum-Time Parameterization

The operational space formulation and the virtual linkage model provide tools to

break the control strategy into essentially two components. The bottom level acts to

mask the complex non-linear dynamics of the closed-chain system with a simple unit

mass rigid body. The top level then controls the behaviour of this simple system,

which in turn results in the control of the closed-chain system. We give a brief

description of the operational space formulation and the virtual linkage model.

The Operational Space Formulation Consider a multi-arm robot system as

shown in Fig. 5.3 with r robots whose end e�ectors are rigidly connected to the

same object. We restrict ourselves to non-redundant manipulators. To the object,

a coordinate frame is attached which is called the operational point. The position

and orientation of this operational point with respect to some inertial reference frame

forms a set of generalized coordinates which can be used to describe the con�guration

for the payload, each robot, or more generally for the closed-chain systems. For

simplicity, let the operational point be situated at the mass center of the payload.

Using these generalized coordinates, the equations of motion for the payload can

76 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

be written as,

�obj(x)�x+ pobj(x) = � (5:20)

where �obj is the n � n inertia matrix, pobj is the n � 1 vector of gravity dependent

terms, x, _x, and �x are the generalized coordinates, velocities, and accelerations re-

spectively, and � is the n � 1 vector of generalized operational forces acting on the

payload.

Simlarly, the equations of motion for the ith arm can be written as,

�i(x)�x+ �i(_x;x) + pi(x) + �ext
i = �i (5:21)

where �i is the n�n inertia matrix, �i is the n� 1 vector of Coriolis and centrifugal

forces, pi is the n � 1 vector of gravity dependent terms, �ext
i is the n � 1 vector of

external forces, and �i is the n� 1 vector of generalized operational forces. Both �i

and �ext
i act through the operational point.

We have written separate equations of motion for the payload and each robot arm,

but because the robots are rigidly grasping the payload, these equations are coupled

by the fact that � is the resultant of the forces exerted by each of the r manipulators

on the object, that is

� =
rX

i=0

�exti : (5:22)

The complex dynamics of the system is masked with a simple model by selecting

the control structure

� = �̂obj(x)�
? + p̂obj(x) (5:23)

where ^�obj, and ^pobj represent estimates of �obj and pobj . With perfect nonlinear

decoupling, the payload represented by equation (5.20) under the command (5.23)

becomes

In�x = �? (5:24)

which is equivalent to a single unit mass In moving in the n-dimensional space. We

can now design a control law for (5.24) as if it were the open loop dynamics of a

system to be controlled [Craig, 1985].

Whatever control structure we devise for computing �?, when plugged back into

(5.23) we get the net force � applied to the payload at the operational point. The next

5.3. THE CLOSED-CHAIN ROBOT SYSTEM 77

step is to partition � to the r arms such that Eq. (5.22) holds. In conjunction with

Eq. 5.21 and perfect non-linear decoupling, this determines the generalized active

forces for each robot to achieve the desired behaviour of the simple unit mass system.

The Virtual Linkage Model The utility of the virtual linkage model is that it

provides a method to partition � to the r arms according to Eq. (5.22), while also

providing a meaningful characterization of the internal forces and moments in the

object. The general idea is to replace the object with an actuated linkage which can

resist the same internal forces [Williams, 1994].

Consider a multi-arm system with r robots grasping the same object. A virtual

linkage is a mechanism connecting the r end e�ectors with actuated prismatic and

spherical joints to characterize the object's internal forces and moments. Since forces

applied by the robots act to produce stress throughout the object, by placing 3r � 6

actuated prismatic joints between pairs of end e�ectors, the necessary force from the

virtual actuators to maintain the rigid grasp yields a characterization of the internal

forces. Moreover, since applied moments produce essentially large local stress at the

grasp point, by having actuated spherical joints at each grasp point, the necessary

torque from the virtual actuator to maintain the rigid grasp yields a characterization

of the internal moments. For the two robot system grasping a bar (Fig. 5.3), the

corresponding virtual linkage is shown in Fig. 5.4.

Under this framework, it is possible to map the forces and moments exerted by

each manipulator to the resultant forces and moments acting on the object and the

set of internal forces and moments as characterized by the virtual linkage. By de�ning

a frame on the object (the operational point) the mapping is

2
6664
�

t

�

3
7775 = G

2
66666666664

f 1

m1

...

f r

mr

3
77777777775

(5:25)

where f i and mi are the forces and moments exerted by the ith manipulator on the

object described at the operational point, t and � are the internal forces and moments

78 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

Prismatic actuator

Spherical actuator Spherical actuator

Figure 5.4: Virtual linkage.

respectively, and � is the generalized operational force on the payload. The matrix G

is called the grasp description matrix and is speci�c to a particular grasp con�guration

(the location of the grasp points on the object). By using the inverse of G, we get

the relationship, 2
66666666664

f 1

m1

...

f r

mr

3
77777777775
=

2
6664
�ext
1

...

�ext
r

3
7775 = G�1

2
6664
�

t

�

3
7775 : (5:26)

Thus, given � and by specifying the desired internal forces and moments in the object

we get using Eq. (5.26) the corresponding interaction forces �ext
i each robot must exert

as described at the operational point.

Trajectory Following and Optimization We now combine the results of the op-

erational space formulation and the virtual linkage model, and consider the trajectory

following problem. We introduce some idealizations to obtain a direct relationship

between trajectory following and the neccessary actuator e�orts. Finally, we map

this into the required form for the path-constrained-optimal-control problem.

5.3. THE CLOSED-CHAIN ROBOT SYSTEM 79

The control structure given by Eq. (5.23) provides the generalized force � applied

at the operational point of the payload. Using Eq. (5.26) and setting the desired

values for internal forces and moments, we get the external forces �ext
i felt by each

manipulator at the operational point. Finally, the actual torque commands given to

the actuator are determined by,

� i = JTi (qi)(�i(x)�
? + �i(_x;x) + pi(x) + �ext

i) (5:27)

where for the ith manipulator Ji is the Jacobian matrix with respect to the operational

point, � i is the vector of actuator torques, and qi is the vector of its joint coordinates.

This is assuming a perfectly rigid grasp.

For trajectory following, that is

xd = x(s) (5:28)

the servo control law for the simple unit mass body is given by,

�? = �xd + kv _e+ kpe (5:29)

where e = xd�x, _e = _xd� _x, kv and kp are control gains, and xd, _xd, and �x are the

desired con�gurations, velocities, and accelerations respectively that the operational

point must track [Craig, 1985]. In the ideal case with zero tracking error and perfect

modelling �? = �xd. Thus the net forces and moments at the operational point is

� = �obj(xd) �xd + pobj(xd): (5:30)

This can be rewritten in terms of the path parameter s as,

� = �obj�s+ �obj _s
2 + pobj (5:31)

�obj = �obj

dxd

ds

�obj = �obj

d2xd

ds2
:

Similarly, for each robot arm we get,

�i = �i�s+ �0

i _s
2 + pi + �ext

i (5:32)

80 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

�i = �i

dxd

ds

�0

i = �i

d2xd

ds2
+ ~�i

where ~�i is the vector �i with the path velocity _s2 factored out.

Now by combining Eq. (5.31), the inverse of the grasp description matrix, and

Eq. (5.32) we can determine the actuator e�orts of each manipulator for trajectory

tracking. We assume the ideal case of a rigid grasp. To minimize the danger of

breaking the object or having the grippers slip due to excessive internal forces and

moments, we set t and � to zero. The resulting equation is,

2
6664
� 1
...

� r

3
7775 =

2
6664
JT1 0

. . .

0 JTr

3
7775

2
6664

2
6664
�1�s+ �0

1 _s
2 + p1

...

�r�s+ �0

r _s
2 + pr

3
7775+G�1

2
6664
�obj�s+ �obj _s

2 + pobj

0

0

3
7775

3
7775:

(5:33)

This can be rewritten as:

2
6664
� 1

...

� r

3
7775 =

2
6664
a1
...

ar

3
7775 �s+

2
6664
b1
...

br

3
7775 _s2 +

2
6664
c1
...

cr

3
7775 (5:34)

The inequality constraint on the actutator are,

� i
min � � i � � i

max: (5:35)

This has the exact form of the linear programming problem de�ned in Section 5.1.

Hence, using Simplex and the switching point algorithm we can �nd the \control-

consistent" minimum-time parameterization for a transfer path involving multiple

arms.

To further impose a \no-slip" constraint the interaction forces �ext
i for each robot

can be bounded as in Section 5.2. By applying G�1 to Eq. (5.31), then transforming

the values such that they are described at the grasp point, and after collecting terms

we get,

�inti = d1;i�s+ d2;i _s
2 + d3;i; (5:36)

5.4. EXECUTING THE TIME OPTIMAL ROBOT MOTIONS 81

where �int
i is �ext

i described at the ith grasp point. The time-optimal control problem

with constraint Eqs. (5.34) and (5.36) and the corresponding bounds (5.35) and (5.9)

has the exact form of the linear programming problem de�ned in Section 5.2. Hence,

using Simplex and the switching point algorithm we can �nd the \control-consistent-

no-slip" minimum-time parameterization for a transfer path involving multiple arms.

5.4 Executing the Time Optimal Robot Motions

We assumed the ideal case when deriving the minimum-time parameterization al-

gorithm. Consequently, for the real robot to actually execute the minimum-time

parameterization the dynamic models used by the optimal control algorithms need

to be exact, the real robots must perfectly track step responses in the torque (the

torque history of the optimal solution may have a bang-bang nature [McCarthy and

Bobrow, 1992]), and there can be no tracking errors or disturbances to correct during

the motion. Of course in reality, none of these assumptions hold.

However, there are existing experimental robots and robots under development

that closely approach this ideal. Torque-controlled manipulators approach the re-

quired capability of tracking step responses in the torque history [Pfe�er et al., 1989],

[Vischer and Khatib, 1990]. Furthermore, with low level joint torque control, one can

neglect to model friction in the joints and drive-train exibility for the equations

of motion of the system [Pfe�er and Cannon, 1993]. This greatly simpli�es obtain-

ing accurate dynamic models of the system. In addition, joint torque control allows

dynamic decoupling for high-performance control of the fast moving minimum-time

trajectories.

By executing the time optimal motions on a high performance robot such as the

ARTISAN robot1 [Khatib and Roth, 1991], the issues of accurate dynamic models

and torque control are satisfactorily addressed. Tracking errors however, will always

exist. This may result in a saturated actuator being called upon to exert additional

torque to correct for tracking errors while following the optimal trajectory. Of course,

the robot will fail to correct for the error. Conservative torque bounds must be used

1currently under construction at Stanford University

82 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

q1

q2

q3

A

B

C

?

gravity
A?

B?C?

Figure 5.5: The robot and its description.

in the optimization algorithm to ensure reserve torque for dealing with disturbances.

The question remains though, how conservative must one be? This is an open prob-

lem.

5.5 Simulation Results

We have implemented the path-constrained-time-optimal algorithms for the three

cases discussed above.

5.5.1 The Open-Chain Robot

For the open-chain robot we consider the simple planar three degrees of freedom robot

shown in Fig. 5.5. The robot consists of three rigid bodies A, B, and C with their

mass center at A?, B?, and C? respectively. The three generalized coordinates are q1,

q2, and q3 which measure the rotation of each body with respect to the same reference

axis. The robot moves in the vertical plane and has actuators at each of the joints

(the shoulder, elbow, and wrist). The parameters of the robot are given in Table 5.1.

We use Kane's method [Kane, 1985] to determine the equations of motion.

5.5. SIMULATION RESULTS 83

lA = 1.0m lA? = 0.5m IA = 0.2548 kg-m2 mA = 3.0 kg mshoulder = 5.0 kg
lB = 1.0m lB? = 0.5m IB = 0.2548 kg-m2 mB = 3.0 kg melbow = 5.0 kg

lC = 0.4m lC? = 0.2m IC = 0.0299 kg-m2 mC = 2.0 kg mwrist = 5.0 kg

Table 5.1: Link parameters.

Initial Con�guration Goal Con�guration

Figure 5.6: Robot path.

For the path shown in Fig. 5.6 a minimum time solution of 0.447s is computed.

The torque bounds are,

�530:0Nm � �shoulder � 530:0Nm (5:37)

�300:0Nm � �elbow � 300:0Nm

�100:0Nm � �wrist � 100:0Nm:

The optimal velocity pro�le is shown in Fig. 5.7 and the torque history is shown in

Fig. 5.8. Notice that at all points along the path at least one actuator is saturated.

5.5.2 The Open-Chain Robot Carrying a Payload

We now consider the case where the robot shown in Fig. 5.5 is carrying a payload

(see Fig. 5.9). With this particular grasp, the object may potentially slip out of the

gripper. The mass of the payload is 1 kg and its moment of inertia is 0.0267 kg�m2.

84 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

20

40

60

80

100

120

140

160

Figure 5.7: Optimal velocity pro�le for Case 1.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-300

-200

-100

0

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

100

150

Shoulder Motor Elbow Motor Wrist Motor

Figure 5.8: Torque history for Case 1.

5.5. SIMULATION RESULTS 85

Figure 5.9: The robot and its payload.

The gripping force exerted by each �nger is 20N, the coe�cient of friction is 0.9, and

the � coe�cient is 4.2

We �rst �nd the minimum-time parameterization for a path without the no-slip

constraint. The previous program is used to compute the solution, where the third

link of the arm (rigid body C) is the combination of the gripper and the payload. The

same speci�ed path for the robot is used (Fig. 5.6) yielding a minimum time solution

of 0.473s. The optimal velocity pro�le is shown in Fig. 5.10 and the corresponding

motor torques are shown in Fig. 5.11. The resulting torsion and shear forces between

the gripper and the payload along with the friction bounds from Eq. (5.9) are shown

in Fig. 5.12. The solid lines are the interaction forces and the dotted lines represent

the friction limits. For this optimal solution the friction limits are violated and the

payload will slip out of the grasp of the gripper.

The next set of �gures is for the minimum-time parameterization with the \no-

slip" constraint. The robot path is the same as above. The optimal velocity pro�le

is shown in Fig. 5.13 and the corresponding motor torques are shown in Fig. 5.14.

The torsion and shear forces between the gripper and the payload along with the

friction bounds from Eq. (5.9) are shown in Fig. 5.15. Again, the solid lines are the

interaction forces and the dotted lines represent the friction limits. The minimum

86 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

Figure 5.10: Optimal velocity pro�le for Case 2 (without friction model).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-300

-200

-100

0

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

100

150

Shoulder Motor Elbow Motor Wrist Motor

Figure 5.11: Torque history for Case 2 (without friction model).

5.5. SIMULATION RESULTS 87

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

2

4

6

8

10

12

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

0

10

20

30

40

50

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-10

0

10

20

30

40

50

60

Torsion X-shear Y-shear

Figure 5.12: Resulting torsion and shear for Case 2 (without friction model).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Figure 5.13: Optimal velocity pro�le for Case 2 (with friction model).

88 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-500

-400

-300

-200

-100

0

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

100

150

Shoulder Motor Elbow Motor Wrist Motor

Figure 5.14: Torque history for Case 2 (with friction model).

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

1

2

3

4

5

6

7

8

9

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

5

10

15

20

25

30

Torsion X-shear Y-shear

Figure 5.15: Resulting torsion and shear for Case 2 (with friction model).

time solution without the payload slipping is 0.630s.

5.5.3 The Closed-Chain Robot System

We now consider the case where two copies of the previous robot grasp and carry the

same payload as shown in Fig. 5.3. The three generalized coordinates of the resulting

closed-chain system are the position and orientation of the frame attached to the

payload at its center of mass (operational point). The mass of the payload is 3 kg

and its moment of inertia is 0.0299 kg�m2. For this simulation we also incorporate the

no-slip constraint. In this case, the Howe, Kao, Cutkosky friction model simpi�es to

the Coulomb friction model, since the interaction moments are zero (internal moments

are set to zero in the virtual linkage model). The coe�cient of friction is 0.905 and

each �nger exerts a gripping force of 50 N. The grasp description matrix comes from

the example given in [Williams and Khatib, 1993]. For the path shown in Fig. 5.16 a

minimum time solution of 0.809s is computed. The torque bounds for each arm are

5.5. SIMULATION RESULTS 89

Payload

@@R

(a) Initial con�g. (b) Motion

Figure 5.16: Closed-chain path.

the same as the previous examples. The optimal velocity pro�le is shown in Fig. 5.17

and the torque history is shown in Fig. 5.18. The interaction forces at each grasp

point is shown in Fig. 5.19, where the solid line is for the X-shear component and the

dotted line is for the Y-shear component. The friction limit is �32 N for the x and y

component of �int
i , and indeed the object is safe from slipping.

90 CHAPTER 5. DYNAMIC CONSTRAINTS AND TRAJECTORY PLANNING

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

10

20

30

40

50

60

70

80

90

100

Figure 5.17: Optimal velocity pro�le for Case 3.

5.5. SIMULATION RESULTS 91

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-300

-200

-100

0

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

100

150

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-600

-400

-200

0

200

400

600

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-400

-300

-200

-100

0

100

200

300

400

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-150

-100

-50

0

50

100

150

Shoulder Motor (A2) Elbow Motor (A2) Wrist Motor (A2)

Shoulder Motor (A1) Elbow Motor (A1) Wrist Motor (A1)

Figure 5.18: Torque history for Case 3.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

10

20

30

40

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
-40

-30

-20

-10

0

10

20

30

40

X-Y shear at grasp point 1 X-Y shear at grasp point 2

Figure 5.19: Resulting shear forces at the grasp points.

Chapter 6

Conclusion

Previous work in the problem of automatically computing e�cient robot trajectories

given high-level task commands has shown it to be hard. Theoretical results have

their merit, however the development of practical approaches to solving such problems

is just as important. To this end, we have presented a practical two-step method for

computing multi-arm manipulation trajectories.

For the �rst step, we have introduced a novel technique for computing the collision-

free paths for multiple robot arms to manipulate a movable object to a speci�ed goal

location. The approach embeds several simpli�cations yielding an implemented plan-

ner that is not fully general. However, experiments with this planner on various

complex examples show that it is quite reliable and e�cient in �nding manipulation

paths when such paths exist. In fact, the planner has succesfully computed rather

sophisticated manipulation motions for a system with seventy eight degrees of free-

dom; an impressive result given that other existing manipulation planners deal with

only a few degrees of freedom.

The input to our planner consists of:

� a geometric model of the environment. This includes models of the arms, the

movable object and the obstacles;

� a forward and inverse kinematics model for each robot arm;

� a set of static and motion grasp assignments;

92

6.1. SUGGESTIONS FOR FUTURE WORK 93

� a relatively unobstructive home con�guration for each arm;

� the initial and goal location for the movable object and arms.

The output is a series of paths where the multiple arms cooperate to �rst grasp the

object, and then deliver it to the goal location. During the manipulation phase,

the arms may ungrasp and regrasp the object for completing the task. The planner

takes full advantage of the resources of multiple arms, by utilizing them to execute

ungrasp/regrasp operations while suspending the object in the air.

For the second step, we time parameterize the paths found in step one with the

minimum-time solution. We do this by utilizing an existing path-constrained-optimal-

control algorithm. However, we incorporate additional constraints to deal with the

variety of dynamic systems arising in the manipulation motions. Speci�cally, we add

a no-slip constraint to ensure that the payload remains rigidly �xed to the robot, and

in the case of multiple arms grasping the same object, we add a control-consistency

constraint to ensure that the redundant actuation is dealt with in the same fashion

as the multi-arm controller for the real robots.

6.1 Suggestions for Future Work

6.1.1 Improvements to the Manipulation Planner

Two relatively simple improvements to the manipulation planner would be to add

a grasp planner to compute feasible grasp points on the object, and a program to

take these points and automatically compute the static and motion grasp assign-

ments. For instance, there already exists many grasp planning algorithms that could

be integrated with the planner [Pertin-Troccaz, 1989]. To compute the grasp as-

signments, tools for the design of robots such as the minimum isotropic acceleration

[Khatib and Burdick, 1987] could be used. The minimum isotropic acceleration for

a given arm, is the minimum available, end e�ector accelerations in all possible di-

rections, with the joint velocities at zero. Thus, a grasp assignment that yields a

minimum isotropic acceleration that is at least some � radius for all graspable object

con�gurations (it yields quasi-static motion), would be a motion grasp assignment.

94 CHAPTER 6. CONCLUSION

There are some other, more di�cult improvements. The planner is currently

unable to consider paths where the movable object is placed against some obstacles

for regrasping. Future work would involve �nding a reliable and e�cient heuristic to

incorporate this ability into the planner.

Another limitation of the planner is that it only considers a single movable object.

However, given the success of RPP in planning the motions of multiple robots, it may

be possible to extend RPP? to plan the motions of multiple movable objects. Another

possibility may be to extend the method in [Koga et al., 1992] where the sequence of

object motions are �rst determined and then each corresponding manipulation path

is found.

6.1.2 Finding Locally Optimal Manipulation Paths

The techniques presented in Chapter 5 provide the basis for further optimization of

the manipulation paths. Using variational methods and the minimum-time param-

eterization algorithm as a cost function, the path shape of the transit and transfer

paths could be perturbed in the direction of the negative gradient of the cost function

to some locally minimized solution [Bobrow, 1988][Barraquand et al., 1990][Shiller

and Dubowsky, 1991]. For a repetitive manipulation motion, a locally time-optimal

solution would be highly desirable.

6.1.3 Integrating Trajectory Planning with Real Robots

The two-phase approach to trajectory planning �ts directly into the development of a

\user-friendly" multi-arm robot system. In [Quinlan and Khatib, 1993], Quinlan and

Khatib present the elastic band concept as a link between path planning and actual

robot execution. They transform the computed path into an elastic band to allow its

deformation in real-time. By then utilizing a robot controller with real-time collision

avoidance [Khatib, 1986], any unexpected collisons (e.g. due to unexpected obstacles

or errors in the control) can be avoided. The manipulation planner of our �rst step

could provide the initial path from which the elastic band would be created.

Currently, Quinlan uses a fast, incremental version of Bobrow's algorithm to time

6.1. SUGGESTIONS FOR FUTURE WORK 95

parameterize the elastic bands [Quinlan, 1994]. The time parameterization algorithms

in our second step could conceivably be altered into a similar incremental version for

time parameterizing the elastic band created from the manipulation path.

By integrating the components from trajectory planning, elastic bands, and mo-

tion control, the result is a multi-arm robot system where a person could simply

specify the goal location for a movable object and then have the robots automatically

execute the motions to complete the task in a robust fashion. The realization of such

a system is not so far away.

6.1.4 Dynamic Manipulation Planning

By simultaneously planning for the position, velocity, and acceleration of the system

it would be possible to utilize the dynamic e�ects on the movable object for the

purpose of its manipulation [Mason and Lynch, 1993]. For example, in manipulating

a heavy object where the object must move in a region where the arms have very

little strength, the computed trajectory could be one where the object is accelerated

beforehand such that the object essentially coasts through the region of limited arm

strength. In fact, this is exactly the sort of strategy humans utilize to \heave" heavy

objects into high places. Dynamic manipulation can also be used to regrasp the

object. For instance, rather than changing grasps by placing the object on a table,

the object could be accelerated in an appropriate fashion such that it slips within

the gripper to the desired new grasp. The capabilty to utilize dynamic e�ects for

manipulation would be an exciting addition to the trajectory planner.

6.1.5 Task-Level Animation System

The manipulation planner has applications in computer graphics. The reliability

of the planner to compute manipulation motions for many complex tasks makes it

suitable as part of an interactive tool to facilitate the animation of scenes.

Initial experiments in integrating the planner with an inverse kinematics algorithm

for the human arms show that realistic animation of human manipulation motions

96 CHAPTER 6. CONCLUSION

can be automatically generated [Koga et al., 1994]. However, in the current imple-

mentation, the planner is unable to consider motions where the arms are required

to use their redundant degree of freedom to avoid obstacles. For example, a task

where the arms must place an object deep into a tight box is almost impossible for

our planner. The reason is simply that the inverse kinematics algorithm does not

consider obstacle avoidance; it would be useful to devise another algorithm that does.

Furthermore, incorporating other degrees of freedom of the human such as bending

and twisting of the torso would greatly enhance the usefulness of the planner as part

of a task-level animation package for human motions.

6.1.6 Ergonomics

Another exciting application of the planner is in ergonomics. By incorporating the

same kinematic models of the human arms as in the task-level animation package,

realistic motions of the human arms could be simulated to evaluate the design of a

product in terms of its usability. This would reduce the number of mock-up models

needed to come up with the �nal design. In addition, by adding human muscle models

and considerations of dynamics in the planning, it would be possible to evaluate the

design of an assembly process and locate potential dangers to the workers (i.e. muscle

strain). This would help to ensure a healthy work forces, and save companies from

spending millions of dollars on workers' compensation.

We hope to see continued progress in the development of practical approaches to

trajectory planning. Ultimately, this will bring about a drastic simpli�cation in the

interaction with robots, in the creation of computer animation, and in the develop-

ment of useful tools for ergonomics. This dissertation is a step in that direction.

Appendix A

Best-First Planning

We use the best-�rst planning approach (hereafter called BFP) to �nd the object path

in step one of our 2D manipulation planner as described in Chapter 3. We now give

a formal expression of BFP as it applies to �nding this object path. For an in-depth

explanation of the general BFP algorithm we refer the reader to [Latombe, 1991].

A.1 The BFP? Algorithm

To facilitate the presentation we make use of the following operations dealing with

the feasible grasp set:

� GRASP(qobj) returns the feasible grasp set associated with qobj;

� FILTER(qobj, FS) returns an updated feasible grasp set associated with qobj,

where the corresponding arm con�gurations of R(g;qobj) for each grasp assign-

ment g in the updated set lie in CCarms;

� INTERSECT(FS, FS0) returns true if FS and FS 0 have a grasp assignment in

common and otherwise returns false.

BFP uses a list OPEN than contains the leaves of T sorted by increasing values

of the potential function. The following list operations apply to OPEN:

97

98 APPENDIX A. BEST-FIRST PLANNING

� FIRST(OPEN) removes and then returns the con�guration and its associated

feasible grasp set in OPEN having the smallest potential value;

� INSERT(qobj , FS, OPEN) inserts the con�guration qobj and its associated fea-

sible grasp set FS in OPEN;

� EMPTY(OPEN) returns true if the list OPEN is empty and otherwise returns

false.

We assume that the potential function U(qobj) is de�ned such that when qobj is

collision-free, the potential is less than some large threshold M, and greater than or

equal to M when qobj is in collision.

The formal expression of BFP? is as follows:

1 procedure BFP?;

2 begin

3 install (qiobj , FS
i) in T ; [initially, T is the emty tree]

4 INSERT(qiobj , FS
i, OPEN); mark qiobj visited;

5 [initially, all the con�gurations in GC are marked \unvisited"]

6 SUCCESS false;

7 while :EMPTY(OPEN) and :SUCCESS do

8 begin

9 (qobj;FS) FIRST(OPEN);

10 for every neighbor q0obj of qobj in GC do

11 if U(q0obj) < M and q0obj is not visited then

12 begin

13 FS 0 FILTER(q0obj , GRASP(q
0

obj));

14 if INTERSECT(FS;FS0) then

15 begin

16 install (q0obj, FS
0) in T with a pointer

17 towards (qobj , FS);

18 INSERT(q0obj, FS
0, OPEN); mark q0obj visited;

A.2. THE POTENTIAL FUNCTION USED IN BFP
? 99

19 if q0obj = q
g
obj then SUCCESS true;

20 end;

21 end;

22 end;

23 if SUCCESS then

24 return the constructed path by tracing the pointers in T

25 for (q
g

obj, FS
g) back to (qiobj , FS

i);

26 else return failure;

27 end;

Procedure BFP? is resolution-complete. This means that for the given discretiza-

tion of GC, the search will �nd a collision-free object path if it exists, and otherwise

return failure.

A.2 The Potential Function Used in BFP?

We use the following potential function to guide the search described by the above pro-

cedure BFP? in the two-dimensional workspace. It is based on the numerical potential

function computed by the NF1 procedure described in Chapter 7 of [Latombe, 1991].

NF1 is a general algorithm than can be used to build a potential function in the

free subset of GC that has a global minima at the goal con�guration and with only

saddle points for local minima. The value of the potential increases as a wave front

propagated away from the global minima. Fig. A.1 illustrates the basic idea of how

a wave is propagated from the goal con�guration. Fig. A.2 is the resulting numerical

potential function in GC. The saddle points can be escaped with a slight random

perturbation of the con�guration, hence with such a potential, a depth-�rst search

can be used to generate a path whenever qiobj and q
g
obj belong to the same connected

collision-free subset of GC.

In our implementation, we simplify matters by computing the NF1 potential in

a bitmap representation of the workspace for a �xed point on the object called the

control point. We denote this bitmap representation of the workspace as GW. Let a be

100 APPENDIX A. BEST-FIRST PLANNING

C-obstacle
goal configuration

GC

wave front

5

5

wave front

(a) (b)

(c)

Figure A.1: The wave propogation at various stages of computation.

A.2. THE POTENTIAL FUNCTION USED IN BFP
? 101

0

1

1 1

1

2 2

22

2

2

2

3 3

3

3

33

34

4

4

4

4

4

5 5

5

5

5

5 6

6

6

6

66 7

7

7

7

7

7

8

8

8

8

8

8

8 9

9

9

9

9

9

9

9 10

10

10

10

10

10

10

11

11

11

11

11 12

12

12

13

global minima

Figure A.2: The numerical potential function NF1.

102 APPENDIX A. BEST-FIRST PLANNING

the control point selected on the object, and let a(qobj) denote the (x; y) coordinate of

the control point in GW for an object con�guration in GC. The workspace potentialV

has the global minima at a(q
g
obj). The con�guration space potential function utilized

for �nding the object path is then

U(qobj) = V(qobj) + ��(qobj;q
g

obj) (A:1)

where � is a scaling factor and �(qobj;q
g

obj) returns the absolute value of the minimum

rotation needed to move the � value of qobj to the � value of q
g
obj.

Computing U in this manner saves time in computing the potential function

since the NF1 potential is computed in a two-dimensional bitmap instead of a three-

dimensional bitmap. The drawback is that U is a potential function most likely with

local minima which are not simple saddle points. BFP however, is very quick to

escape such local minima when GC has dimension three.

We bound GW within a rectangle and label each point in GW as \1" if it lies

inside an obstacle or along the boundary of GW; it is labelled \0" otherwise. The

free-space of GW denoted as GWfree is the subset of points of GW that are labelled

\0". A formal expression of the NF1 algorithm is as follows:

1 procedure NF1;

2 begin

3 for every con�guration x in GW do

4 begin

5 if x 2 GWfree then

6 V(x) M;

7 else

8 V(x) M+1;

9 end;

10 V(a(qgobj)) 0; insert a(qgobj) in L0;

11 [Li, i = 0; 1; � � � ; is a list of con�gurations; it is initially empty]

12 for i = 0; 1; � � � ; until Li is empty do

13 for every x in Li do

A.2. THE POTENTIAL FUNCTION USED IN BFP
? 103

14 for every neighbor x0 of x in GWfree do

15 if V(x0) = M then

16 begin

17 V(x0) i+ h; [typically h = 1]

18 insert x0 at the end of Li+1;

19 end;

20 end;

Other potential functions could be used such as the NF2 potential described in

[Latombe, 1991].

Appendix B

Connected Components of Carms

For �nding the object path in our 2D manipulation planner, a method to verify that

arm con�gurations are lying in the same connected component of collision-free arm

con�gurations, namely CCarms, is needed. We make this check using an approximate

representation of the freespace of Carms. In this Appendix we give details on how it

is constructed.

B.1 Computing the Free Space of Carms

A �ne regular grid is thrown over the four-dimensional Carms which we denote GA.

GA is represented as a parallelepiped and we assume that the joint limits are such

that each axis of the parallelepiped is bounded within 0 and 2� radians. For each

con�guration in GA we label it with \1" if it is a con�guration where the arms collide

with the obstacles, each other or violate a joint limit; the con�guration is labelled \0"

otherwise. The free space of GA, denoted as GAfree, is the subset of points in GA

that are labelled \0". Our assumption is that between neighboring points in GAfree,

there exists a straight line collision-free path connecting them.

B.2 The Connected Components of GA

104

B.2. THE CONNECTED COMPONENTS OF GA 105

GA

0 0

0 0

0

0

00

0

000

0

0

0

0

00

0

0

0

0

0

0

Sweep

GAfree

2 2

2 2

2

2

22

2

22

0

0

0

0

00

0

0

0

0

0

0

2

seed

sweep line

2 2

2 2

2

2

22

2

22

3

3

3

3

33

3

3

3

3

3

3

2

seed

sweep line

(a) Labelling points in GA. (b) Filling in the �rst component.

(c) Filling in the second component

Figure B.1: The construction of the connected components of GA.

106 APPENDIX B. CONNECTED COMPONENTS OF CARMS

A sweep algorithm groups the discretized collision-free con�gurations into connected

components. During the sweep, for each point encountered in GA that is labelled

\0", the connected component of GAfree in which it belongs is determined. This is

done by using the con�guration as a \seed" from which a wave is propogated within

GAfree until the component is fully explored. A variant of procedure NF1 is used

where each con�guration visited by the wave propogation is labelled with k, where

k is a number greater than \1" and unique to each seed con�guration. Then, any

two points in GA that have the same label k > 1 are two con�gurations lying in the

same connected component of collision-free arm con�gurations. Once the component

is �lled up, the sweep resumes where the next con�guration labelled \0" becomes

the \seed" for the next component. The steps in constructing this representation is

illustrated in Fig.B.1 for a simple two-dimensional GA. The shaded blocks are points

in GA labelled \1". CCarms is represented in an approximate manner by one of the

connected components of GA computed in this fashion. During the search for the

object path, the check whether relevant arm con�gurations are in CCarms is simply a

lookup operation (i.e., the closest point to the arm con�guration in GA must have the

label k > 1 associated with CCarms). The worst-case time-complexity to determine

the connected components is linear in the number of con�gurations in the grid GA.

B.3 The Transit Paths and Path Smoothing

To facilitate the search for transit paths within the free space of GA we encode

extra information in each connected component. During the construction of the

approximate representation of the components, for each valid neighbor visited by the

wave propogation we create a pointer back to its parent con�guration. Hence, for

any con�guration in a component, a path back to the \seed" con�guration can be

automatically computed by tracing the pointers. Fig. B.1(c) shows an example of the

pointers embedded in GA. Consequently, a transit path between two con�gurations

in the same component is constructed by concatenating the two paths that trace back

to the seed con�guration.

A transit path � extracted in the aforementioned method needs to be smoothed

B.3. THE TRANSIT PATHS AND PATH SMOOTHING 107

to produce a more direct path connecting the intial and goal arm con�gurations.

We do so using a simple algorithm that iteratively replaces subpaths of � of de-

creasing lengths with straight line segments in the space R4 containing the grid

GA. Each new straight segment is discretized at the resolution of the grid GA and

checked for collision before it is inserted in the new path. The algorithm initially

attempts to replace subpaths whose lengths are of the order of the total path length.

Then, it considers shorter and shorter subpaths until the resolution of GA is attained

[Latombe, 1991]. More sophisticated techniques may be applied, such as representing

the path as an elastic band under tension forces to pull the path tight. Repulsion

forces from the obstacles are added to keep the path from \hugging" the obstacles

[Quinlan and Khatib, 1993].

Appendix C

Randomized Planning

We use the randomized path planner (hereafter called RPP) to �nd the object path in

step one of our manipulation planner for a three-dimensional workspace. In Chapter

4 we give an overview of RPP as it applies to �nding the object path. We now give

a formal expression of the algorithm. An in-depth explanation of the general RPP

algorithm is given in [Barraquand and Latombe, 1991b] and [Latombe, 1991].

C.1 The RPP? Algorithm

The following is taken from [Latombe, 1991].

We make use of the following de�nitions to facilitate the presentation:

� � is a list of con�gurations representing the path constructed so far;

� LAST(�) returns the last con�guration in the path � , and it associated feasible

grasp set;

� PRODUCT(�1, �2) returns the list of con�gurations for the path �1 � �2 (the

product of �1 and �2);

� GRADIENT(qobj , FS) returns the collison-free path generated by following

the negative gradient of the potential starting at qobj (FS is its associated

feasible grasp set). The last con�guration in the path is at a local minima of

108

C.1. THE RPP
?
ALGORITHM 109

the potential. In addition, within GRADIENT the constraints on the grasp

assignment list GL are satis�ed as described in Chapter 4;

� RANDOM-WALK(qobj, FS, t) returns the path generated by a random walk

of duration t starting at qobj. The constraints on the grasp list are satis�ed as

described in Chapter 4;

� RANDOM-TIME returns a random duration;

� BACKTRACK(� , �1, � � �, �K) selects a backtracking con�guration and returns

the path from qiobj to this con�guration; if � includes a subpath generated by

a random motion, then the returned path is a subpath of � ; otherwise it is a

subpath of � � �i, with i randomly chosen between 1 and K;

� TIME-OUT returns true if a preset time limit is reached; otherwise it returns

false.

1 procedure RPP?;

2 begin

3 � GRADIENT(qiobj, FS
i); (qloc;FS) LAST(�);

4 while qloc 6= q
g
obj and :TIME-OUT do

5 begin

6 ESCAPE false;

7 for i = 1 to K until ESCAPE do

8 begin

9 t RANDOM-TIME;

10 �i RANDOM-WALK(qloc, FS, t);

11 (qrand;FS
0) LAST(�i);

12 �i PRODUCT(�i, GRADIENT(qrand, FS
0));

13 (q0loc, FS
0) LAST(�i);

14 if U(q0loc) < U(qloc) then

15 begin

110 APPENDIX C. RANDOMIZED PLANNING

16 ESCAPE true;

17 � PRODUCT(� , �i);

18 end;

19 end;

20 if :ESCAPE then

21 begin

22 � BACKTRACK(� , �1, � � �, �K);

23 (qback, FS) LAST(�);

24 � PRODUCT(� , GRADIENT(qback, FS));

23 end;

24 end;

24 end;

Without TIME-OUT, RPP? is probabilistically-resolution complete. This means that

if there exist an object path in GC that satis�es all the requirements (i.e., is collision-

free, connects qiobj to q
g
obj , and each con�guration has the required feasible grasp set),

then the probability of �nding such a path converges towards 1 when the running

time grows towards in�nty. Experimental results show that RPP is typically fast to

�nd the path when it exists, hence we can set a time-limit after which with some

degree of con�dence we can say that no path exists. In our implementation TIME-OUT

returns true when a preset number of backtrack operations are executed.

C.2 The Potential Field Used in RPP?

We use the following potential function to guide the construction of the path during

GRADIENT of the above procedure RPP?. It is based on the numerical potential

function computed by the NF1 procedure as described in [Latombe, 1991] and in

Appendix A. We have added some additional features to the \con�guration space

potential" which we found from experiments to improve the gradient motion of the

object.

C.2. THE POTENTIAL FIELD USED IN RPP
? 111

We �rst build a potential �eld in a bitmap representation of the workspace for

�xed points on the object which we call control points. We denote this bitmap

representation of the workspace as GW. Let a1, a2, and a3 be the control points

selected on the object, and let ai(qobj) denote the (x; y; z) coordinate of the i
th control

point in GW for a given object con�guration. For each control point i we compute

a workspace potential �eld Vi using a modi�ed version of procedure NF1 with the

global minima at ai(q
g
obj). The con�guration space potential utilized in GRADIENT

is composed of these workspace potentials Vi.

We now describe the modi�ed procedure NF1. The minor change we introduce is

to stage the propagation of the wave in selected regions of GW. These regions are

based on the space spanned by the workspace of each arm. With N arms, the selected

regions are:

� the space spanned by the intersection of all N arm workspaces; all points in

this region that are not part of an obstacle are labelled \2";

� the space spanned by the intersection of N � 1 arm workspaces; all points in

this region that are not part of an obstacle are labelled \3";

�

�

�

� the space spanned by only the workspace of a single arm; all points in this

region that are not part of an obstacle are labelled \N + 2";

� the remaining free space labelled \0'; all points in this region are labelled \N +

3".

In addition, if the point ai(q
g
obj) is not labelled \2", then a wave is propagated from

ai(q
g
obj) where each visited point that is not an obstacle is relabelled \2". This wave

is propagated until a point already labelled \2" is encountered.

112 APPENDIX C. RANDOMIZED PLANNING

Prior to calling the modi�ed procedure NF1, we grow the bitmap obstacles in

GW to plug up holes in the workspace in which the object cannot pass through (thus

eliminating some of the local minima in the con�guration space potential). Procedure

NF1 is then invoked where the potential is �rst computed only in the region labelled

\2". The neighbour points not labelled \2" are stored in listKi, where i is the label of

the point (i.e., a point labelled \3" is placed in K3). The variable h in V(x0) i+h

is set to 1. When the last Li becomes empty, the points in K3 are copied into the list

Li+1 and computation is resumed. This time however h is incremented by 4 and the

potential is computed only in the region labelled \3". This process is repeated until

each selected region has been visited by the wave front of NF1. The basic idea is to

create a workspace potential for each control point that keeps it within the workspace

of the arms, preferably in a region where all arms can reach the object.

A formal expression of the modi�ed NF1 algorithm is as follows:

1 procedure NF1 (modi�ed);

2 begin

3 for every con�guration x in GW do

4 if x 62 GWfree then

5 V(x) M+1;

6 V(a(qgobj)) 0; insert a(qgobj) in L0;

7 [Li, i = 0; 1; � � � ; is a list of con�gurations; it is initially empty]

8 g = 0; h = 1; P = 2;

9 while REGIONS do

10 begin

11 for i = g; g + 1; � � � ; until Li is empty do

12 for every x in Li do

13 for every neighbor x0 of x in GWfree do

14 begin

15 if x0 is labelled P then

16 begin

17 V(x0) i+ h;

C.2. THE POTENTIAL FIELD USED IN RPP
? 113

18 insert x0 at the end of Li+1;

19 end;

20 else

21 insert x0 at the end of Kj , where j is the label for x
0;

22 end;

23 g = i; P = P + 1, COPY(KP , Li+1); h = h+4;

24 end;

25 end;

where,

� REGION return true if there are selected regions still to be visited and false

otherwise;

� COPY(Kj , Li+1) copies the list of points in Kj into Li+1.

We get the con�guration space potential function U(qobj), from the potential

values associated to the control points a1(qobj) in V1, a2(qobj) in V2, and a3(qobj) in

V3. GRADIENT is slightly modi�ed to accommodate its computation.

For each control point, we �x a frame whose origin is located at ai. Each frame

de�nes a set of generalized coordinates for the object with respect to some world frame

and hence a con�guration space. We discretize each space into a �ne regular grid and

denote them as GC1, GC2, and GC3, where they correspond to the frames attached to

a1, a2, and a3, respectively. We use �i to rewrite con�gurations in GCi as qobj , where

�i is the transformation that takes the object con�guration de�ned by the frame

attached at ai and maps it to qobj as de�ned by some prede�ned frame on the object.

The potential U is based on one control point at a time, and induces gradient motion

in the GCi associated to that control point. Consequently, GRADIENT explores not

GC but rather a combination of points in GC1, GC2, and GC3.

Initially, U is based solely on the value given by a1. When this no longer yields a

motion in GRADIENT, U is based solely on a2, and then �nally on a3. The details

are as follows.

114 APPENDIX C. RANDOMIZED PLANNING

Let U be based on control point ai. A straight line path in GCi between the

current con�guration and the goal is constructed. The line is discretized at the

resolution of GCi and each point q along the line are given potential values equal

to the corresponding value given by ai(q) in Vi. Points not on the line are set to

have in�nite potential, consequently the negative gradient of the con�guration space

potential U is along the line. When GRADIENT no longer yields motion, U is reset

to equal the potential for ai in GCi (i.e., we no longer restrict the motion to the

straight line in GCi). When GRADIENT no longer yields motion then U is reset to

be based on the next control point.

UsingVi to guide the search in GCi only helps to get the control point ai to its goal

coordinate. By switching the focus from a1 to a2 and then to a3, the hope is that in

a coarse manner it moves the object to its goal con�guration. By initially restricting

the motion for each control point along a straight line to the goal con�guration,

the hope is that in a �ne manner it moves the object to achieve qgobj. We found

this potential function U to work well in moving the object through tight openings

between obstacles in the workspace.

Appendix D

Linear Programming I

D.1 Deriving the Linear Programming Problem

for the Open-Chain Robot

The problem is to �nd the minimum-time parameterization for the open chain robot.

In Section 5.1, we discuss how Bobrow's algorithm solves this problem. In this Ap-

pendix we give the details of how the input values to the switching point algorithm

are found using a linear programming approach.

The linear programming problem is de�ned as follows [Press et al., 1988]. Given

k independent variables represented as the vector

y =

2
6664
y1
...

yk

3
7775 ; (D:1)

maximize (or minimize) the function

z = cTy (D:2)

subject to the primary constraint

y � 0 (D:3)

and to the additional constraints

B1y � d1; (D:4)

115

116 APPENDIX D: LINEAR PROGRAMMING I

B2y � d2; (D:5)

B3y = d3; (D:6)

where Bi is a mi � k matrix, di is a mi � 1 vector, and di � 0, (i = 1; 2; 3).

We now modify the robot problem to obtain this general form. Let

x =

2
6664

�s

_s2

�

3
7775 (D:7)

and let it be bounded from above and from below by

xmin � x � xmax (D:8)

where

xmin =

2
6664

�smin

0

�min

3
7775 (D:9)

xmax =

2
6664

�smax

_s2max

�max

3
7775 :

We introduce �smin, �smax, and _s2max to simplify the presentation. Because �s and _s2 are

to be optimized, we must ensure that �smin, �smax, and _s2max are bounds way beyond

the values obtained during the optimal control of the system.

Using this notation, equation (5.2) can be rewritten as

Dx = h; (D:10)

where

D =
h
�a �b0 In�n

i
; (D:11)

h = g;

and I is the n� n identity matrix.

We now let

y = (x� xmin) � 0: (D:12)

APPENDIX D: LINEAR PROGRAMMING I 117

Furthermore,

y � (xmax � xmin): (D:13)

Combining (D.10) and (D.12) yields,

Dy = (h�Dxmin): (D:14)

To make the right hand side of equation (D.14) positive, any negative element and

its corresponding row in D is multiplied by �1. We get

~Dy = (~h� ~Dxmin) � 0: (D:15)

To �nd the maximum _s we set the cost function to be z = _s2 = [1 0 ... 0]y. In

conjunction with (D.12), (D.13) and (D.15) we have a linear programming problem.

We use the Simplex method to �nd the maximum _s.

To �nd the maximum (minimum) �s for a given _s = u, we make further modi�-

cations to the above equations. Since _s = u (i.e speci�ed) we must extract the _s2

variable from the x and y vectors accordingly. Consequently, we substitute the D

matrix and the h vector with,

~D =
h
�a In�n

i
; (D:16)

and

~h = g + b0u2: (D:17)

This is still a linear programming problem and by setting the cost function to z =

�s � �smin = [1 0 ... 0]y0, where y0 is the y vector without the _s2 variable, we get the

maximum �s for a given _s. To �nd the minimum �s we set z = ��s+ �smin.

By utilizing this linear programming approach, the desired input values for the

switching point alogorithm can be found, resulting in the minimum-time parameter-

ization of the transit paths.

Appendix E

Linear Programming II

E.1 Deriving the Linear Programming Problem

for the Open Chain Robot with a Payload

The problem is to �nd the minimum-time parameterization for the open chain robot

carrying a payload. The payload can not slip out of the grasp of the gripper. In

Section 5.2, we discuss how to incorporate a friction model to enforce the no-slip con-

dition. In this Appendix we give the details of how the input values to the switching

point algorithm are found using a linear programming approach. The method is an

extension of the ideas presented in Appendix D.

Let

v =

2
6666664

�s

_s2

�

�int

3
7777775

(E:1)

and let it be bounded from above and from below by

vmin � v � vmax (E:2)

118

APPENDIX E: LINEAR PROGRAMMING II 119

vmin =

2
6666664

�smin

0

�min

�min

3
7777775

(E:3)

vmax =

2
6666664

�smax

_s2max

�max

�max

3
7777775

We introduce the additional arti�cial bounds �min and �max to simplify the presen-

tation. These bounds are way beyond the values set by the constraints (5.9) during

the optimal control of the system.

Using this notation, Eqs. (5.17) and (5.15) can be rewritten as

Q1v = i; (E:4)

where

Q1 =

2
4 �a1 �a2 In�n 06�6

��obj ��
0

obj 0n�n I6�6

3
5 ; (E:5)

i =

2
4 a3

pobj

3
5 ;

and In�n, 0n�n, I6�6, and 06�6 are the n � n and 6 � 6 identity and zero matrices

respectively.

We now let

y = (v � vmin) � 0: (E:6)

Furthermore,

y � (vmax � vmin): (E:7)

Combining (E.4) and (E.6) yields,

Q1y = (i�Q1vmin) = r1: (E:8)

120 APPENDIX E: LINEAR PROGRAMMING II

To make the right hand side of the equation positive, any negative element and its

corresponding row in Q1 is multiplied by �1. We get

~Q1y = ~r1: (E:9)

The bounds on �int given by (5.9) can be rewritten in the form of (D.5) and (D.6).

We illustrate the steps by converting the upper bound

fx � 0:707(�(2fg + jfzj)� �jmzj): (E:10)

First, we substitute the absolute value on fz and mz with the variables � = �1

and = �1. The result is,

fx � (1:414�fg + 0:707��fz � 0:707� mz); (E:11)

�fz � 0; (E:12)

 mz � 0: (E:13)

The variables fx, fz, and mz are taken to the left side of the inequality and by

changing variables we get

h
1 0 �0:707�� 0:707�

i
 � c; (E:14)

2
4 0 0 � 0

0 0 0

3
5 �

2
4 0 0 �� 0

0 0 0 �

3
5min; (E:15)

where

c = (1:414�fg �
h
0 0 0:707�� �0:707�

i
min); (E:16)

 =

2
6666664

fx � fx;min

fy � fy;min

fz � fz:min

mz �mz;min

3
7777775
; (E:17)

and

min =

2
6666664

fx;min

fy;min

fz;min

mz;min

3
7777775
: (E:18)

APPENDIX E: LINEAR PROGRAMMING II 121

The terms fx;min, fy;min, fz;min, and mz;min come from the vector vmin. (E.14) and

(E.15) can be easily rewritten such that is replaced by y.

Following the same derivation we convert (5.9) to

Q2 � r2 (E:19)

and

Q3 � r3 (E:20)

where

Q2 =

2
6666666664

1 0 0:707�� �0:707�

0 1 0:707�� �0:707�

0 0 ��

�

0 0 � 0

0 0 0

3
7777777775
; (E:21)

Q3 =

2
6664
1 0 �0:707�� 0:707�

0 1 �0:707�� 0:707�

0 0 ���

�

3
7775 ; (E:22)

r2 =

2
6666666664

�1:414�fg

�1:414�fg
�2�fg

�

0

0

3
7777777775
�

2
6666666664

0 0 �0:707�� 0:707�

0 0 �0:707�� 0:707�

0 0 ��

�

0 0 �� 0

0 0 0 �

3
7777777775
min; (E:23)

r3 =

2
6664
1:414�fg

1:414�fg
2�fg

�

3
7775�

2
6664
0 0 0:707�� �0:707�

0 0 0:707�� �0:707�

0 0 ���

�

3
7775min: (E:24)

To make the right hand side of (E.19) and (E.20) positive, any negative element

and its corresponding row in matrix Qi is multiplied by �1. In addition, this element

and its corresponding row in the Qi matrix are moved to the other inequality. The

result is

~Q2 � ~r2 (E:25)

122 APPENDIX E: LINEAR PROGRAMMING II

and

~Q3 � ~r3: (E:26)

The inequalities (E.25) and (E.26) can be easily rewritten such that is replaced

by y. This is done by appropriately embedding the terms of ~Q2 and ~Q3 in a zero

matrix, and the terms of ~r2 and ~r3 in a zero vector. The result is,

�Q2y � �r2 (E:27)

and

�Q3y � �r3: (E:28)

The constraints (E.6), (E.7), (E.9), (E.27), and (E.28) in conjunction with the

cost functions given in Appendix D yield a linear programming problem. We then

consider the four linear programming problems with (� = 1; = 1), (� = 1; = �1),

(� = �1; = 1), and (� = �1; = �1) to �nd the optimal _s and �s. The best of the

four results is the maximum _s and the maximum/minimum �s we seek.

Bibliography

[Aho, Hopcroft, and Ullman, 1983] A.V. Aho, J.E. Hopcroft, and J.D. Ullman, Data

Structures and Algorithms, Addison-Wesley, Reading, MA, 1983.

[Alami et al., 1990] R. Alami, T. Sim�eon and J.P. Laumond, \A Geometrical Ap-

proach to Planning Manipulation Tasks: The Case of Discrete Placements and

Grasps," Robotics Research 5, H. Miura and S. Arimoto, eds., MIT Press, Cam-

bridge, 1990, pp. 453-459.

[Barraquand et al., 1990] J. Barraquand, B. Langlois and J.C. Latombe, \Robot Mo-

tion Planning with Many Degrees of Freedom and Dynamic Constraints," Robotics

Research 5, H. Miura and S. Arimoto, MIT Press, Cambridge, 1990, pp. 435-444.

[Barraquand and Latombe, 1991a] J. Barraquand and J.C. Latombe, \Robot Motion

Planning: A Distributed Representation Approach," Rep. STAN-CS-89-1257, De-

partment of Computer Science, Stanford University, CA, 1989.

[Barraquand and Latombe, 1991b] J. Barraquand and J.C. Latombe, \Robot Motion

Planning: A Distributed Representation Approach," The International Journal of

Robotics Research, 10(6), 1991, pp. 628-649.

[Bobrow et al., 1985] J.E. Bobrow, S. Dubowsky, J.S. Gibson, \Time-Optimal Con-

trol of Robotic Manipulators Along Speci�ed Paths," The International Journal of

Robotics Research, 4(3), 1985, pp. 3-17.

[Bobrow, 1988] J.E. Bobrow, "Optimal Robot Path Planning Using the Minimum-

Time Criterion," IEEE Journal of Robotics and Automation, 4(4), 1988, pp. 443-

449.

123

124 BIBLIOGRAPHY

[Boneschanscher et al., 1988] N. Boneschanscher, H. Van der Drift, S.J. Buckley, and

R.H. Taylor, "Subassembly Stability," Proceedings of the 7th National Conference

on Arti�cial Intelligence, AAAI 88, 1988, pp. 780-785.

[Canny, 1988] J.F. Canny, The Complexity of Robot Motion Planning, MIT Press,

Cambridge, MA, 1988.

[Canny et al., 1988] J. Canny, B. Donald, J. Reif, and P. Xavier, "On the Complexity

of Kinodynamic Planning," Proceedings of the 29th Symposium on the Foundations

of Computer Science, White Plains, NY, 1988, pp. 306-316.

[Craig, 1985] J.J. Craig, Introduction to Robotics, Addison-Wesley Publishing Com-

pany, Reading, MA, 1986.

[Donald and Xavier, 1989] B. Donald and P. Xavier, "A Provably Good Approx-

imation Algorithm for Optimal-Time Trajectory Planning," Proceedings of the

IEEE International Conference on Robotics and Automation, Scottsdale, AZ, 1989,

pp. 958-963.

[Ferbach and Barraquand, 1993] P. Ferbach and J. Barraquand, "A Penalty Function

Method for Constrained Motion Planning," Proceedings of the IEEE International

Conference on Robotics and Automation, San Diego, CA, 1994, pp. 1235-1242.

[Gupta and Zhu, 1994] K.K. Gupta and X. Zhu, "Practical Global Motion Planning

for Many Degrees of Freedom: A Novel Approach within Sequential Framework,"

Proceedings of the IEEE International Conference on Robotics and Automation,

San Diego, CA, 1994, pp. 2038-2043.

[Howe et al., 1990] R.D. Howe, I. Kao, and M.R. Cutkosky, "The Sliding of Robot

Fingers Under Combined Torsion and Shear Loading," Proceedings of the IEEE

International Conference on Robotics and Automation, Philadelphia, PA, 1990,

pp. 1258-1263.

[Jacobs et al., 1989] P. Jacobs et al., Planning Guaranteed Near-Time-Optimal Tra-

jectories for a Manipulator in a Cluttered Workspace, Rep. ESRC 89-20/RAMP 89-

15, University of Berkeley, CA, 1989.

BIBLIOGRAPHY 125

[Kane, 1985] T.R. Kane and D.A. Levinson, Dynamics: Theory and Application,

McGraw-Hill Publishing Company, New York, NY, 1985.

[Kao and Cutkosky, 1992] I. Kao and M.R. Cutkosky, "Quasistatic Manipulation

with Compliance and Sliding," The International Journal of Robotics Research,

11(1), 1992, pp. 20-40.

[Kavraki and Latombe, 1994] L. Kavraki and J.C. Latombe, "Randomized Prepro-

cessing of Con�guration Space for Fast Path Planning," Proceedings of the IEEE

International Conference on Robotics and Automation, San Diego, CA, 1994,

pp. 2138-2145.

[Khan and Roth, 1971] M.E. Khan and B. Roth, "The Near-Minimum-Time Con-

trol of Open-Loop Articulated Kinematic Chains," Journal of Dynamic Systems,

Measurement, and Control, 93(3), 1971, pp. 164-172.

[Khatib, 1986] O. Khatib, \Real-Time Obstacle Avoidance for Manipulators and Mo-

bile Robots," The International Journal of Robotics Research, 5(1), 1986, pp. 90-98.

[Khatib and Burdick, 1987] O. Khatib and J. Burdick, \Optimization of Dynamics

in Manipulator Design: The operational Space Formulation," The International

Journal of Robotics and Automation, 2(2), 1987, pp. 90-98.

[Khatib, 1988] O. Khatib, \Object Manipulation in a Multi-E�ector Robot System,"

Robotics Research 4, R. Bolles and B. Roth, eds., MIT Press, Cambridge, MA,

1988, pp. 137-144.

[Khatib and Roth, 1991] O. Khatib and B. Roth, "New Robot Mechanisms for New

Robot Capabilities," IEEE/RSJ International Conference on IROS, Osaka, Japan,

1991, pp. 44-49.

[Koga and Latombe, 1992] Y. Koga and J.C. Latombe, \Experiments in Dual-Arm

Manipulation Planning," Proceedings of the IEEE International Conference on

Robotics and Automation, Nice, France, 1992, pp. 2238-2245.

126 BIBLIOGRAPHY

[Koga et al., 1992] Y. Koga, T. Lastennet, J.C. Latombe, and T.Y. Li \Multi-Arm

Manipulation Planning," Proceedings of the 9th International Symposium on Au-

tomation and Robotics in Construction, Tokyo, June 1992, pp. 281-288.

[Koga et al., 1994] Y. Koga, K. Kondo, J. Ku�ner, and J.C. Latombe, "Planning

Motions with Intentions", Proceedings of SIGGRAPH'94, Orlando, Florida, July

24-29, 1994. To appear in Computer Graphics (1994).

[Kondo, 1994] K. Kondo, Inverse Kinematics of a Human Arm, Rep. STAN-CS-TR-

94-1508, Department of Computer Science, Stanford University, CA, 1994.

[Kondo, 1991] K. Kondo, "Motion Planning with Six Degrees of Freedom by Multi-

Strategic Bi-Directional Heuristic Free-Space Enumeration," IEEE Transactions

on Robotics and Automation, 7(3), 1991, pp. 267-277.

[Ku�ner et al., 1994] J. Ku�ner, K. Kondo, Y. Koga, J.C. Latombe, "End Game",

video transactions of the electronic theater of SIGGRAPH'94.

[Lacquaniti and Soechting, 1982] F. Lacquaniti and J.F. Soechting, \Coordination of

Arm and Wrist Motion During A Reaching Task," The Journal of Neuroscience,

Vol. 2, No. 2, 1982, pp. 399-408.

[Latombe, 1991] J.C. Latombe, Robot Motion Planning, Kluwer Academic Publish-

ers, Boston, MA, 1991.

[Latombe, 1992] J.C. Latombe, "Geometry and Search in Motion Planning," Annals

of Mathematics and Arti�cial Intelligence, 8(2-4), 1993, pp. 215-227.

[Laugier and Pertin, 1983] C. Laugier and J. Pertin, "Automatic Grasping: A Case

Study in Accessibility Analysis," Advanced Software in Robotics, A. Danthine and

M. G�eradin, eds., North-Holland, New York, 1983, pp. 201-214.

[Laumond and Alami, 1988] J.P. Laumond and R. Alami, A Geometrical Approach

to Planning Manipulation Tasks: The Case of a Circular Robot and a Movable

Circular Object Amidst Polygonal Obstacles, Rep. No. 88314, LAAS, Toulouse,

1989.

BIBLIOGRAPHY 127

[Laumond and Alami, 1989] J.P. Laumond and R. Alami, A Geometrical Approach

to Planning Manipulation Tasks in Robotics, Rep. No. 89261, LAAS, Toulouse,

1989.

[Lozano-P�erez, 1983] T. Lozano-P�erez, \Spatial Planning: A Con�guration Space

Approach," IEEE Transactions on Computers, 32(2), 1983, pp. 108-120.

[Lozano-P�erez et al., 1987] T. Lozano-P�erez et al., \Handey: A Task-Level Robot

System," Robotics Research 4, R. Bolles and B. Roth, eds., MIT Press, Cambridge,

MA, 1988, pp. 29-36.

[Lynch, 1993] K.M. Lynch, \Planning Pushing Paths," Proceedings of the JSME In-

ternational Conference on Advanced Mechatronics, Tokyo, 1993, pp. 451-456.

[Mason and Lynch, 1993] M. Mason and K. Lynch, "Dynamic Manipulation,"

IEEE/RSJ International Conference on IROS, Yokohama, Japan, 1993, pp. 152-

159.

[McCarthy and Bobrow, 1992] J.M. McCarty and J.E. Bobrow, "The Number of Sat-

urated Actuators and Constraint Forces During Time-OptimalMovement of a Gen-

eral Robotic System," IEEE Transactions on Robotics and Automation, 8(3), 1991,

pp. 407-409.

[McCormick, 1982] E.J. McCormick and M.S. Sanders, Human Factors in Engineer-

ing and Design, McGraw-Hill Book Company, New York, 1982.

[Meier and Bryson, 1987] E.B. Meier and A.W. Bryson, "An E�cient Algorithm for

Time Optimal Control of a Two-Link Manipulator," AIAA Conference on Guidance

and Control, Monterey, CA, 1987, pp. 204-212.

[O'Donnel and Lozano-P�erez, 1989] P.A. O'Donnell and T. Lozano-P�erez, \Deadlock

Free and Collision-Free Coordination of Two Robot Manipulators," Proceedings of

the IEEE International Conference on Robotics and Automation, Scottsdale, AZ,

1989, pp. 484-489.

128 BIBLIOGRAPHY

[Overmars and Svestka, 1994] M.H. Overmars and P. Svestka, "A Probabilistic

Learning Approach to Motion Planning," Proceedings of the First Workshop on

the Algorithmic Foundations of Robotics (WAFR), San Francisco, CA, 1994.

[Pardo et al., 1993] G. Pardo-Castellote, T.Y. Li, Y. Koga, R.H. Cannon,

J.C. Latombe, and S.A. Schneider, \Experimental Integration of Planning in a

Distributed Control System," Preprints of the 3rd International Symposium on

Experimental Robotics, Kyoto, October 1993.

[Pfei�er and Johanni, 1987] J. Pfei�er and R. Johanni, \A Concept for Manipula-

tion Trajectory Planning," IEEE Journal of Robotics Automation, RA-3(3), 1987,

pp. 115-123.

[Pfe�er et al., 1989] L.E. Pfe�er, O. Khatib, and J. Hake, "Joint Torque Sensory

Feedback in the Control of a PUMAManipulator," IEEE Transactions on Robotics

and Automation, 5(4), 1991, pp. 418-425.

[Pfe�er and Cannon, 1993] L.E. Pfe�er and R.H. Cannon, Jr., "Experiments with a

Dual-Armed, Cooperative, Flexible-Drivetrain Robot System," Proceedings of the

IEEE International Conference on Robotics and Automation, Atlanta, GA, 1993,

pp. 601-608.

[Pertin-Troccaz, 1989] J. Pertin-Troccaz, \Grasping: A State of the Art," The

Robotics Review 1, O. Khatib, J.J. Craig, and T. Lozano-P�erez, eds., MIT Press,

Cambridge, MA, 1989, pp. 71-98.

[Pieper and Roth, 1969] D. Pieper and B. Roth, \The Kinematics of Manipulators

Under Computer Control," Proceedings of the Second International Congress on

Theory of Machines and Mechanisms, Vol. 2, Zakopane, Poland, 1969, pp. 159-

169.

[Press et al., 1988] W.H. Press, B.P. Flannery, S.A. Teukolsky and W.T. Vetterling,

Numerical Recipes in C, Cambridge University Press, Cambridge, UK, 1988.

[Quinlan, 1994] S. Quinlan, PhD. dissertation (in preparation)

BIBLIOGRAPHY 129

[Quinlan and Khatib, 1993] S. Quinlan and O. Khatib, "Elastic Bands: Connecting

Path Planning and Control," Proceedings of the IEEE International Conference on

Robotics and Automation, Atlanta, GA, 1993, pp. 802-807.

[Reif, 1979] J.H. Reif, "Complexity of the Mover's Problem and Generalizations,"

Proceedings of the 20th IEEE Symposium on Foundations of Computer Science,

1979, pp. 421-427.

[Schneider and Cannon, 1992] S.A. Schneider and R.H. Cannon, \Object Impedance

Control for Cooperative Manipulation: Theory and Experimental Results," IEEE

Transactions on Robotics and Automation, 8(3), 1992, pp. 383-394.

[Shiller and Dubowsky, 1989] Z. Shiller and S. Dubowsky, "Robot Path Planning

with Obstacles, Acturator, Gripper, and Payload Constraints," The International

Journal of Robotics Research, 8(6), 1989, pp. 3-18.

[Shiller and Lu, 1990] Z. Shiller and H. H. Lu, \Robust Computation of Path Con-

strained Time Optimal Motions," Proceedings of the IEEE International Confer-

ence on Robotics and Automation, Cincinnati, OH, May 1990.

[Shiller and Dubowsky, 1991] Z. Shiller and S. Dubowsky, \On Computing the Global

Time-Optimal Motions of Robotic Manipulators in the Presence of Obstacle,"

IEEE Transactions on Robotics and Automation, 7(6), Dec. 1991.

[Shin and Mackay, 1985] K.G. Shin and N.D. McKay, "Minimum-Time Control of

Robotic Manipulators with Geometric Path Constraints," IEEE Transactions on

Automatic Control, AC-30(6), 1985, pp. 531-541.

[Slattery, 1991] R.A. Slattery, Optimal Control of Closed Chain Robotic Systems,

Ph.D. Dissertation, Dept. of Aerospace Engineering, Stanford University, 1991.

[Soechting and Flanders, 1989] J.F. Soechting and M. Flanders, \Sensorimotor Rep-

resentations for Pointing to Targets in Three Dimensional Space," Journal of Neu-

rophysiology, 62(2), 1989, pp.582-594.

130 BIBLIOGRAPHY

[Tremblay and Cutkosky, 1993] M.R. Tremblay and M.R. Cutkosky, "Estimating

Friction Using Incipient Slip Sensing During a Manipulation Task," Proceedings

of the IEEE International Conference on Robotics and Automation, Atlanta, GA,

1993, pp. 429-434.

[Tournassoud et al., 1987] P. Tournassoud, T. Lozano-P�erez, and E. Mazer, \Re-

grasping," Proceedings of the IEEE International Conference on Robotics and Au-

tomation, Raleigh, NC, 1987, pp. 1924-1928.

[Vischer and Khatib, 1990] D. Vischer and O. Khatib, "Design and Development of

Torque-Controlled Joints," Experimental Robotics I, V. Hayward and O. Khatib,

eds., Springer-Verlag, Berlin, Heideleberg, 1990, pp. 271-286.

[Wilfong, 1988] G. Wilfong, \Motion Planning in the Presence of Movable Obsta-

cles," Proceedings of the 4th ACM Symposium on Computational Geometry, 1988,

pp. 279-288.

[Williams and Khatib, 1993] D. Williams and O. Khatib, "The Virtual Linkage:

A Model for Internal Forces in Multi-Grasp Manipulation," Proceedings of the

IEEE International Conference on Robotics and Automation, Atlanta, GA, 1993,

pp. 1025-1030.

[Williams, 1994] D. Williams, Personal communication, 1994.

