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Abstract

In a constantly changing and partially unpredictable environment, robot motion planning

must be on-line. The planner receives a continuous 
ow of information about occurring events

and generates new plans, while previously planned motions are being executed. This paper

describes an on-line planner for two cooperating arms whose task is to grab parts of various

types on a conveyor belt and transfer them to their respective goals while avoiding collision with

obstacles. Parts arrive on the belt in random order, at any time. Both goals and obstacles may

be dynamically changed. This scenario is typical of manufacturing cells serving machine-tools,

assembling products, or packaging objects. The proposed approach breaks the overall planning

problem into subproblems, each involving a low-dimensional con�guration or con�guration�time

space, and orchestrates very fast primitives solving these subproblems. The resulting planner

has been implemented and extensively tested in a simulated environment, as well as with a real

dual-arm system. Its competitiveness has been evaluated against an oracle making (almost) the

best decision at any one time; the results show that the planner compares extremely well.

1 Introduction

O�-line robot motion planning is a one-shot computation prior to executing any motion. It requires

all pertinent data to be available in advance. In contrast, on-line planning is an ongoing activity

that receives a continuous 
ow of information about events occurring in the robot environment.

While planned motions are being executed, new plans are generated in response to incoming events.

O�-line planning is virtually useless in dynamic environments that involve events whose occurrences

in time and space are not precisely known ahead of time. On the other hand, while on-line planning

can potentially deal with such environments, it raises di�cult temporal issues which have not been

thoroughly addressed by previous research. Indeed, timing is highly critical since motions must

be both planned and executed while their goals are still relevant. Opportunities to achieve a goal

may exist only during short periods of time. If the on-line planner is too slow or does not focus on

the right subproblem at the right time, it will fail to achieve goals that could have been attained

otherwise. The e�ciency of the planner measures against an instantaneous oracle making the best

decision at every time. The greater the e�ciency, the better the planner. But failing to achieve

some goals is acceptable. In fact, for the kinds of problems that we will consider in this paper, even

a perfect oracle may not achieve all goals.
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In this paper we investigate on-line motion planning for a speci�c, but practically interesting part-

feeding scenario where two robot arms must grab parts as they arrive on a conveyor belt and transfer

them to given goals without collision. This scenario is typical of robotic cells loading machines,

assembling products, or packaging/palettizing objects. Today, imprecise events are eliminated by

costly engineering and/or handled by enforcing time-consuming coordination rules. On-line motion

planning has the potential to signi�cantly reduce the development time and implementation cost of

these cells, while increasing their throughputs. Since the timing of the operations would no longer

require o�-line prior analysis, the cells would also be more 
exible; in particular, they could be

dynamically assigned new tasks without interrupting current operations.

Our approach to on-line planning is to break the overall planning problem into a series of subprob-

lems and orchestrate very fast primitives solving these subproblems according to the incoming 
ow

of information. We have implemented a planner embedding this approach and have experimented

with it in a simulated environment to evaluate its e�ciency against quasi-optimal oracles. The

results show that it is quite competitive. We have also connected the planner to a real dual-arm

robot system and successfully run experiments with this integrated system.

In our scenario, the transfer of a part to its goal may require \hand-over" operations between the

two arms, i.e.: an arm may have to ungrasp the part at an intermediate location (e.g., because the

goal is not reachable by the arm), where it will later be regrasped by the other arm. Therefore,

the planner must not only compute arm motions. It must also include grasp/ungrasp/regrasp

operations between these motions. For that reason we call it a manipulation planner.

Section 2 relates our work to previous research and reviews motion planning concepts used in the

rest of this paper. Section 3 describes the part-feeding scenario that we use to investigate on-

line manipulation planning. Section 4 gives an overview of our planner and Section 5 describes

in detail the techniques it uses. Section 6 presents several extensions. Section 7 describes the

implementation. Section 8 provides measures of its e�ciency in a simulated robot environment.

Section 9 reports on the connection of the planner to a real robot system.

2 Relation to Previous Work

Motion planning has attracted a great deal of interest over the last 15 years. Most of the research,

however, has focused on o�-line planning in static environments. A motion plan is then computed

as a geometric path. A major concept produced by this research is the notion of the con�guration

space, or C-space, of a robot [25]. Various path planning algorithms based on this concept have

been proposed [22]. A number of very fast planners have been implemented for robots with few

degrees of freedom (usually, 3) [3, 4, 24]. A typical technique consists of exploring a uniform

grid in C-space, using a best-�rst search algorithm guided by a goal-oriented potential �eld [3].

Reasonably e�cient planners have also been developed for robots with many degrees of freedom

(6 or more) [3, 9, 14, 15, 21]. But these planners still take too much time to be used on-line; their

time performance also lacks consistency.

Existing path planners can be used to facilitate o�-line robot programming or to check the feasibility

of future operations. For example, the path planner in [9] is used to compute collision-free paths of

an 8-dof manipulator among cooling pipes in a nuclear plant. In [12] a planner generates paths of

a 5-dof riveting machine to assemble portions of an airplane fuselage. The planner in [6] is used to
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check for the maintainability of aircraft engines. Today, a number of commercial cad environments

integrate o�-line robot programming tools and some include automatic collision checkers and path

planners. Such planners will soon be standard components of o�-line robot programming systems.

However, they will only provide limited help to deal with dynamic, imperfectly known environments.

As such environments become more frequent in manufacturing, the need for more sophisticated

planning tools increases.

Motion planning in the presence of obstacles moving along known trajectories is a step toward

dealing with a dynamic environment. It has been studied in particular in [10, 11, 32, 33], where

previous path planning methods have been extended to deal with the temporal aspect of this new

problem. Motion plans are generated in the form of robot's trajectories, i.e., geometric paths indexed

by time. The C-space is extended by adding a dimension, time, yielding the con�guration�time

space, or CT-space, of the robot. The obstacles map to a static forbidden region in this space. A

trajectory is computed as a curve segment connecting the initial and goal con�guration�time points

and lying outside the forbidden region. This curve must be time-monotone, i.e., at any time t
0
its

tangent must point into the half-space t > t
0
. When the velocity of the robot is upper-bounded,

the tangent must further point into a cone determined by the maximal velocity.

Motion planning for several robots sharing the same space has been addressed in [3, 4, 8, 16].

Two approaches have been proposed. The centralized approach consists of treating the various

robots as if they were one single robot, by considering the Cartesian product of their individual

C-spaces [3, 4]. This space is called the composite C-space. The forbidden region in this space

is the set of all con�gurations where one robot intersects an obstacle or two robots intersect each

other. A drawback of this approach is that it often leads to exploring a large-dimensional space,

which may be too time-consuming. An alternative is the decoupled approach, which consists of

planning for one robot at a time. In one technique, the robots whose motions have already been

planned are treated as moving obstacles constraining the motions of the other robots [8]. This

technique requires searching the C-space of the �rst robot and the CT-spaces of all other robots.

Another technique, called velocity tuning, plans the path of each robot separately and then tunes

the robots' velocities along their respective paths so that no two robots ever collide [16]. However,

the decoupled approach is not complete, i.e., may fail to �nd a motion of the robots even if one

exists.

Manipulation planning extends motion planning by allowing robots to move objects. It consists

of interweaving transit paths, where a robot moves alone, and transfer paths, where it moves

objects, separated by grasp/ungrasp/regrasp operations. These paths lie in di�erent subspaces of

the composite C-space de�ned as the Cartesian product of the C-spaces of all robots and movable

objects. Manipulation planning has been studied for a single robot in [2, 35] and for multiple robots

in [18, 19, 20, 21]. The regrasping issue with one robot has been speci�cally investigated in [34].

3 Scenario

The scenario considered in this paper involves two robot arms, a conveyor belt, an overhead vision

system, a working table, movable parts, and obstacles. The arms must grab parts as they arrive

on the belt and transfer them to speci�ed goals on the table where, for example, they will form an

assembled product.
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Figure 1: Two-arm robotic cell

The robot system is depicted in Fig. 1. It consists of two identical scara-type arms [7], each

having three links and four degrees of freedom. The �rst two links of each arm form a horizontal

linkage with two revolute joints. The third link, which carries the gripper, translates up and down.

Finally, the gripper can rotate about its vertical axis. Each arm shares part of its workspace with

the other arm, so that the same part may be grasped by one arm or the other; space sharing also

allows for hand-over operations between the two arms. The arm that is closest to the beginning of

the belt is called arm1. The other arm is called arm2; it can be seen as a backup for arm1.

Parts of di�erent types arrive on the belt at any time, in random order, and with arbitrary positions

and orientations. An overhead vision system detects and identi�es them, and tracks their locations

while they are on the belt. The task of the arms is to grab as many parts as possible and transfer

them to their goals (shown white in the �gure), without collision. For each part X , the position

and orientation (relative to X) where an arm's gripper can grasp X is unique and given. The goal

of a part of any type is unique and within reach of at least one arm. When an arm releases a part

at its goal, the part stays there until it is removed by an external mechanism. We assume that this

mechanism never interferes with the arms, so that it is not taken into consideration by our planner.

Static obstacles (shown black in the �gure), e.g, �xturing devices and other machines, are lying on

the table. If an arm releases a part on the table, this part also becomes a static obstacle, until it is

removed. All obstacles on the table lie below the horizontal volume swept out by the �rst two links

of each arm. Similarly, an arm's gripper in its upmost position cannot collide with any obstacle.

Hence, if an arm is not holding a part and its gripper is all the way up, it can only collide with the

other arm. Such an arrangement is classical for scara-type arms, since otherwise motions would

be too constrained to perform any useful task. However, when an arm holds a part, this part shares

the same space as the obstacles. Hence, no part can be stacked on top of an obstacle or another

part. But the belt is low enough so that when an arm holds a part with its gripper in its upmost

position above the belt, the part is not hit by other arriving parts. This condition allows an arm

to lift a part above the belt and stay there for a while, e.g., waiting for the next motion command.
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A single-processor computing resource is dedicated to planning. The planner, which gets all its

information about the arriving parts from the vision system, must use this resource to decide on-line

which arm motions to execute in order to transfer as many parts as possible to their goals. Ideally,

the e�ciency of the planner should be measured against an instantaneous oracle that would always

make the best decision. The ratio Np=No, where Np (No) denotes the numbers of parts successfully

moved to their goals when the planner (the oracle) is in command, computed over a run, de�nes

the e�ciency of the planner for that run. The closer to 1, the better.

Example: The above scenario is illustrated in Fig. 2, 3, and 4, with a series of snapshots produced

by our planner. Snapshots are indexed by time, with the run starting at time 0 and the sampling

rate being 0.25sec per frame. The belt is on the left-hand side and moves downward. Each snapshot

displays two con�gurations of the arms and moving parts; the one in darker grey is the current

con�guration, while the one in lighter grey is a con�guration between the previous and the current

snapshot. Parts of two types are fed during the run. We denote them by Xi and Yj , where X

and Y refer to the pentagonal and T-shaped parts, respectively, and i and j indicate the order of

arrival. Each part disappears as soon as it is delivered to its goal.

In snapshots (2)-(4), arm1 (the top arm) and arm2 (the bottom arm) are simultaneously delivering

X
2
and X

1
to their goals. In (6), X

1
reaches its goal and disappears. In (7)-(11) arm1 performs

the deliver motion of X
2
, while arm2 clears the way for this motion. There are two new parts, Y

1

and X
3
, arriving on the belt. In (12), immediately after arm1 has delivered X

1
to its goal, arm2

starts executing a motion to grasp Y
1
. Simultaneously, arm1 performs a short motion to free the

way for arm2, as shown in snapshots (12)-(13). Snapshots (12)-(21) display the grasp motion of

arm2. Concurrently, in (15)-(21), arm1 performs a motion to catch X
3
. In (21), the arms grab

X
3
and Y

1
.

In (24)-(34) arm2 delivers Y
1
to its goal, while arm1 is staying still holding X

3
above the belt. In

(36)-(38) arm2 clears the way for arm1, which starts executing the deliver motion of X
3
. Note

that the goal ofXi has changed between (34) and (36). This change is taken into account in arm1's

deliver motion, as shown in snapshots (40)-(51). In (40)-(42) arm2 executes a grasp motion to

catch Y
2
and starts moving Y

2
toward its goal in (51). In (53), since X

3
's goal is not reachable

by arm1, arm1 releases X
3
at an intermediate location reachable by arm2. X

3
then becomes an

additional obstacle which is taken into account by the deliver motion of arm2 shown in (56)-(66).

In (53)-(60) arm1 �rst frees the way for arm2 and then performs a grasp motion to catch Y
3
. In

(64)-(66) it starts transferring Y
3
, while arm2 is still delivering Y

2
to its goal. In (68) arm2 clears

the way for arm1, which delivers Y
3
to its goal in (70)-(76). In (70)-(78) arm2 changes posture

before grasping X
3
in (80) and moving it toward its goal in (82)-(85).

In (70) part X
4
leaves the workspace ungrasped. In (78) arm1 has �nished delivering Y

3
and starts

moving toward the belt to grasp Y
4
. In (82)-(96), arm1 grasps Y

4
and moves it to its goal. In

(88)-(98), arm2 moves to grasp X
5
. Finally, in (98)-(100), arm1 starts another grasp motion to

catch part X
6
.

In the following two sections we describe a planner that tackles the manipulation problem of the

above scenario. Next, in Section 6 we will consider extensions of this problem allowing for dynamic

changes in the types of parts, the goals of the parts, and the obstacles. We will also consider the

case where some parts require being held by two arms simultaneously, in order to be moved from
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Figure 2: Example (part 1)
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Figure 3: Example (part 2)
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Figure 4: Example (part 3)
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one con�guration to another.

4 Overview

Our approach to on-line manipulation planning is to orchestrate very fast planning primitives

solving a succession of subproblems selected according to the data provided by the vision system.

Here, we give an overview of this approach and we state the assumptions and heuristics it relies on.

We denote the arms by A
1
and A

2
, with A

1
standing for either arm1 or arm2, and A

2
standing

for the other arm.

4.1 Planning Primitives

In principle, if the arrival times of the parts on the belt were known in advance, the manipulation

planning problem of our scenario could be solved o�-line by searching through the high-dimensional

composite C-space of the two arms and the parts. However, the fact that manipulation is con-

strained by time, i.e., that parts must be grabbed at the right place at the right time, would still

make the problem very tricky. For instance, one can imagine sequences of incoming parts where

it is preferable to let a part pass ungrasped, though it could be grasped, because this will free the

arms for grabbing more parts later. Today, there exists no planning method that would do the

work, without taking prohibitive time to run. So, the problem needs to be simpli�ed.

Obviously, performing planning on-line makes simpli�cations even more necessary. One way to

proceed is to consider several low-dimensional C-spaces, rather than a single, large-dimensional

one. However, such simpli�cation yields a planner that is no longer complete. Usually, the more

simpli�cation, the faster, but the less complete the planner.

So: How much simpli�cation is suitable? We use the following rule-of-thumb: Planning a motion

should take signi�cantly less time than executing this motion. We justify this rule as follows: If

planning is longer, the performance of the robot system degrades quickly; but if it only takes a

small fraction of the time needed for execution, making it even faster has little e�ect on the system

e�ciency. This justi�cation is actually supported by experimental evidence with our implemented

planner (see Section 8). The above rule leads us to reduce the planning problem to a succession of

subproblems in spaces of dimension three. Indeed, there exist techniques that plan motions in such

spaces much under the second on current workstations, while planning in spaces of dimension four

or higher takes one or several orders of magnitude longer [3]. Reducing planning to even smaller

spaces, if possible, would yield faster, but weaker primitives. The time gain would contribute little

to the total e�ciency of the robot system; but the greater weakness of the primitives would likely

lead to missing opportunities.

Our planner mainly searches through two types of 3D spaces: the CT-space of an arm and the

C-space of a part. We brie
y discuss below the assumptions and heuristics which allow us to

decompose the problem and limit planning to these spaces. A more thorough description will be

given in Section 5.

First, let us consider the arms. We allow the �rst two links of an arm to move only when its gripper

is all the way up. Hence, an arm can only collide with the other arm. This allows us to represent

the two arms in a 2D workspace as was shown in Fig. 2-4. Links are modeled by rectangles and
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joints by disks. The disk at the extremity of each second link also includes the vertical link and

the gripper. With this representation, planning a collision-free motion of the two arms requires

dealing with a 4D C-space. To reduce the problem further, we decouple arm planning so that we

always plan for a single arm, say A
1
, at a time while the other arm, A

2
, can be idling or executing

a previously planned trajectory. This problem can be formulated as computing a trajectory in the

3D CT-space of A
1
. A part X moving on the belt maps into A

1
's CT-space as the set of all tuples

(q
g

1
; tg) such that if A

1
is at con�guration q

g

1
at time tg, it can grasp X .

To make our presentation shorter, we will assume that translating the gripper to grasp or ungrasp

a part is instantaneous, and that orienting the gripper can always be coordinated with the motions

of the other two links. We will also consider that parts disappear from the table immediately after

they have been delivered to their goals. These assumptions can easily be removed and are not made

in the implemented planner.

Let us now consider a part X . We represent X as a 2D object by projecting it on the horizontal

plane. When X is being transferred by an arm, the part both translates and rotates in the plane,

hence tracing a path in its 3D C-space. Stationary obstacles map into this C-space as a forbidden

region that X 's path must not intersect. Our planner computes X 's path between its grasp and

goal con�gurations in the subset of its C-space that is reachable by at least one arm. Through the

arm's inverse kinematics, this path then entails the path of the arm holding X . If X leaves the

space reachable by this arm, the planner will command the arm to ungrasp X at an intermediate

location on the table where it can be regrasped by the other arm.

One way to make it possible to plan the path of X in its 3D C-space is to require that the arms

move no more than one part at a time. But such a condition may lead one arm that has picked up

a part to wait for the completion of the other arm's motion before actually moving the part. On

the other hand, planning for the motion of two parts X and Y simultaneously entails reasoning

in their 6D composite C-space and planning for one part at a time, considering the other part

as a moving obstacle, still requires searching a 4D CT-space. This leads us to use the following

technique: The planner always computes the path of a part X in its 3D C-space. If another part Y

is currently being moved, this motion is temporarily ignored. When X 's motion has been computed,

its execution is coordinated with the current motion of Y by computing the earliest time when X 's

motion can start without causing collision.

In addition to the simpli�cations made above, our planner assumes perfect sensing. It also assumes

that the arms can perfectly track the planned trajectories, with each joint being able to instan-

taneously change velocity. Unlike previous simpli�cations, these assumptions yield discrepancies

between the planning model and the real world. In Section 9 we will discuss how we overcome these

discrepancies in order to run the planner with real robots.

4.2 Planning Processes

A crucial issue in on-line motion planning is to react to events by focusing quickly on urgent

subproblems and sizing opportunities to grab parts before they vanish. Planning processes are the

main tool used by our planner to manage its activities over time.

Whenever a new part is detected on the belt by the vision system, a message is recorded in a queue

Q. When a part is grabbed or reaches the end of the belt, the corresponding message is removed
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from Q. At any time, Q lists all the parts currently on the belt or at intermediate locations on the

table, along with their current con�gurations.

Assume that the planner starts with no parts on the belt and the table, and no arms moving. The

arrival of a part on the belt triggers planning which consists of selecting a part X in Q (here, there

is no choice, but usually there is one) and an arm A
1
, and setting up a planning process whose

task is (X;A
1
), i.e., plan a motion of A

1
to grasp and deliver X to its goal. This process will be

terminated upon the completion or the failure of its task. Although its main task is to plan for

A
1
, this process may also generate a motion of A

2
; for instance, if A

2
is currently immobile or if

its motion ends before the yet-to-be-planned motion of A
1
is over, the process may command A

2

to free the way for A
1
. We call such a motion an accommodating motion.

A new process is created whenever a process is killed or interrupts itself to allow for the execution

of an already planned motion (process interruption will be presented in the next subsection), and

there exist a part X 2 Q and a non-moving arm Ai (i = 1 or 2) such that neither are currently

assigned to a planning process. (The planner considers that an arm is moving as soon as it has

sent a motion command to the robot controller, and that it has stopped moving when it is told so

by the controller.) Since there are only two arms and each process \consumes" one arm, no more

than two processes can exist simultaneously.

The robot operations in our scenario may be accomplished with di�erent orderings of the parts

and di�erent assignments of arms to parts. Computing plans for all possible orderings/assignments

and choosing the one that can grasp the largest number of parts in the shortest time would take

prohibitive time to run. This would even not guarantee to produce the best solution, since this

solution may also depend on parts yet to come. Instead, we assign tasks to processes according to

the following heuristic rules:

1. The parts at intermediate locations on the table have higher priorities than those on the conveyer

belt, since they may obstruct possible paths for these new parts.

2. The parts that are more advanced on the belt have higher priorities than those which are less

advanced, since they will leave the arms' workspace earlier.

3. When both arms are not moving, arm1 has higher priority than arm2, since arm2 is at the

ending side of the belt and thus can be used as a backup for arm1.

A planning process with task (X;A
1
) may fail to solve its task; for example, it may not �nd a

trajectory for A
1
to grab X from the belt on time. The process is then killed. According to the

third rule above, if A
1
was arm1, then there is still a chance that the process (X;arm2) will be

created. For every part in the queue Q, the planner keeps track of failures to avoid reassigning a

combination part-arm to a new process, if that combination is guaranteed to fail again.

4.3 Concurrent Planning

Recall from Section 3 that a single processor is always available for planning. While a planning

process is using this processor for a task (X;A
1
), other parts may arrive on the belt and the other

arm A
2
may be idling. The planner could wait until the current process is killed before creating a

new process. However, it may be urgent to plan for A
2
, in order to avoid missing parts. But the

task of the �rst process is also urgent. This con
ict leads us to break the task (X;A
1
) performed

by a process into two subtasks: the grasp subtask { plan a trajectory to grasp X { and the deliver
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subtask { plan a trajectory to deliver X to its goal.

A grasp subtask, in general, is more urgent than a deliver subtask since the latter's goal is time-

independent. For that reason, a planning process interrupts and puts itself on hold between the

two subtasks, allowing for the creation of a new process. More precisely, suppose that a process P
1

is created to plan for the task (X;A
1
). P

1
�rst plans the motion for the grasp subtask and then

puts itself on hold if a feasible motion has been found. While A
1
is executing this motion, the

processor is free and can be used by other processes, say P
2
, to plan for other tasks. Once A

1
has

grasped X , P
1
resumes and solves for the deliver subtask. However, if P

2
is currently running, P

1

is put in the waiting state until P
2
is either interrupted or killed. While waiting for a deliver path,

A
1
stays still with its gripper holding X all the way up above the belt, so that parts arriving on

the belt can pass below. Processes thus take turns in using the processor.

Hence, a planning process P may traverse the following states during its lifetime:

- Running: P is running if it uses the computing resource to compute a plan.

- On hold: P is on hold while the arm assigned to it performs the grasp or deliver motion.

- Waiting: P is waiting if it needs to compute a delivery motion, but the computer resource is

being used by another process.

At any one time, there exist 0, 1, or 2 planning processes. In theory, while one process P is on

hold or waiting, several other processes can be successively created (and killed). In practice, the

number of these other processes is small; indeed, as soon as one solves its grasping subtask or no

new parts arrive on the belt, P will be running again.

If a process whose task is (X;A
1
) fails to solve either the grasp or deliver subtask, it is immediately

killed. However, in the second case, A
1
is already holding X . Then A

1
releases X on the belt as

soon as there is enough distance between two incoming parts. (We will see that if X was picked up

from the table, the delivery subtask cannot fail.) Part X is updated in the queue Q accordingly.

There might still be a chance that the other arm can accomplish the task.

A planning process P
1
may be unable to plan the motion of an arm A

1
to deliver a part X at its

goal because this goal lies outside the space reachable by A
1
or because obstacles force X 's path

to leave A
1
's reachable space. Then P

1
does not fail. It produces a motion of A

1
that delivers X

at an intermediate con�guration where it can be regrasped by the other arm A
2
. Q is updated, P

1

is killed, and it will require another process P
2
(with arm A

2
) to move X to its goal. Heuristic rule

1 in Subsection 4.2 will give this part a higher priority than any other part on the belt. This kind

of hand-over operation from one arm to the other can happen more than once for the same part.

The interruption of a planning process between the grasp and deliver subtasks relies on the as-

sumption that the deliver subtask will rarely fail. In a realistic robot setting, the obstacles on the

table should be distributed to allow incoming parts to be moved from the belt to their goals. But

it may occur that, due to hand-over operations, all paths for a part are obstructed by other parts

resting at intermediate location on the table and waiting to be regrasped.

This simple process coordination is free of deadlocks. No two processes communicate with each

other and the computation carried out by each process before it is killed or interrupted is always

�nite.
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5 Planning Techniques

We now present a detailed account of the activities carried out by the planner within the lifetime

of a planning process solving for the task (X;A
1
).

5.1 Representation of C-Spaces and CT-Spaces

Each primitive invoked by the planner searches through a low-dimensional C-space or CT-space.

This subsection describes how these spaces are parameterized and represented.

As indicated in Subsection 4.1, each arm Ai, i = 1 or 2, is modeled as a planar two-revolute-joint

linkage, hence has a 2D C-space Ci. We parameterize a con�guration qi of Ai by the arm's two

joint angles, which we denote by �i1 and �i2. Each angle spans an interval of amplitude less than

2� determined by the mechanical stops of the corresponding joint.

We use the following metric over Ci: Let !i;1 and !i;2 be the respective maximal velocities of the

�rst and second joints of arm Ai. Let qi = (�i1; �i2) and q0

i
= (�0

i1
; �0

i2
) be two con�gurations of Ai.

The distance D(qi; q
0

i
) between these two con�gurations is:

D(qi; q
0

i
) = maxf

j�i1 � �0

i1
j

!i;1

;
j�i2 � �0

i2
j

!i;2

g:

This de�nition is consistent with our assumption that arm joints achieve their planned velocities

instantaneously: D(qi; q
0

i
) then measures the minimal time that Ai takes to travel between qi and q

0

i
.

The straight-line segment joining qi and q
0

i
in Ci is the shortest among all possible paths connecting

these two con�gurations; its length is D(qi; q
0

i
).

The CT-space CTi of Ai is de�ned as Ci � [0;+1), with Ci parameterized as above and the third

dimension being time. At every point (�i1; �i2; t) in CTi, the maximum velocities !i;1 and !i;2 de�ne

a cone of points reachable from (�i1; �i2; t).

Each part X arriving on the conveyor belt has a 3D C-space. A con�guration of X is parameterized

by the coordinates x and y of a reference point attached to X in a �xed coordinate system and the

angle � de�ning the orientation of X relative to this system. The pair (x; y) is called the position

of X . While an arm is holding X , the arm's con�guration determines the position of X .

All C-spaces and CT-spaces searched by our planner are represented as bitmaps. Cells containing

\1"s designate the forbidden region where collision occurs. Cells containing \0"s form the free

region in which paths and trajectories must lie. We will describe e�cient techniques to construct

these bimaps in Subsection 5.5. The set of cells in a CT-space bitmap projecting onto the same

time interval is called a time slice.

The resolution along the two axes of an arm's C-space bitmap is chosen so that, when the arm

is fully extended, moving the �rst joint or the second joint by one increment roughly causes the

same displacement " of the arm's endpoint. The resolution along the time axis of the CT-space

bitmap is such that when one joint moves at maximal velocity during an increment of time, the

arm's endpoint moves by approximately one increment in the C-space bitmap. The resolution of

the C-space bitmap of a part X is the same along the two dimensions representing X 's position

and roughly equal to ". The resolution along the orientation axis is such that when X rotates by
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one increment about its reference point, the point of X that undergoes the maximal displacement

(i.e., the point in X the furthest away from the reference point) moves by approximately " [3].

5.2 Planning a Grasp Motion for a Part on the Belt

Let us now consider the grasp subtask of the task (X;A
1
). X may either be a part arriving on

the belt, or a part previously ungrasped at an intermediate location on the table. The two cases

receive basically the same treatment, with a few minor di�erences. Here we consider the �rst case,

which is also the most frequent.

We let tc stand for the current time. Hence, tc is continuously changing value. We let qs
1
designate

the con�guration of A
1
when it starts executing the grasp motion.

For any given time t, we let q
g

1
(t) denote the con�guration of A

1
at which it can grasp X . The

map q
g

1
is de�ned over the time interval [tmin

g
; tmax

g
] during which X is on the belt within A

1
's

reach. It may yield two con�gurations, since the inverse kinematic equations of A
1
usually have

two distinct solutions corresponding to two postures of the arm. The planner always selects the

con�guration which is closest to qs
1
according to the metric D. This is a reasonable choice since this

grasp con�guration is likely to be the quickest to reach. (An alternative would be to successively

apply the planning techniques presented below to both con�gurations de�ned by the map q
g

1
and

select the con�guration allowing for the earliest grasp. This variant would roughly take twice as

much planning time, but could produce a better motion plan once in a while.)

We distinguish between two cases: In (A), the second arm A
2
is not moving; in (B), it is moving.

(A) Arm A
2
is not moving: While a grasp motion is being planned and then executed, X keeps

moving on the belt. To plan A
1
's motion, we must know when and where X can be grasped, which

in turn depends on how much time it will take to plan and execute this motion. This di�culty

leads us to iteratively determine the time tg at which A
1
will grasp X .

We initially schedule the grasp at the latest possible time, i.e., we set tg = tmax

g
. If A

2
is not

holding a part, the planner generates A
1
's path between qs

1
and q

g

1
(tg) as the straight-line segment

connecting these two points in C
1
. An accommodating motion of A

2
, if needed, is generated in CT

2
,

into which A
1
's path maps as a forbidden region. Since actual velocities will be computed later,

we momentarily take time equal to the abscissa along A
1
's path. A

2
's motion is computed in the

form of a time-monotone curve, i.e., a curve whose tangent at any time t
0
points into the half-space

t > t
0
. This curve joins (qs

2
; 0) to some (qe

2
; L), where qs

2
denotes the current con�guration of A

2
,

qe
2
stands for any con�guration of A

2
where it does not collide with A

1
at the grasp con�guration

q
g

1
(tg), and L = D(qs

1
; q

g

1
(tg)).

If the line segment joining (qs
2
; 0) and (qs

2
; L) in the bitmap representing CT

2
traverses \0" cells only,

no accommodating motion of A
2
is needed. Otherwise the accommodating trajectory is constructed

by searching the CT
2
's bitmap in a depth-�rst manner for a sequence of free cells connecting the

cell containing (qs
2
; 0) to the time slice containing L. At every iteration of the search, let c be the

last cell reached (initially, c is the cell containing (qs
2
; 0)). The algorithm considers the seventeen

cells adjacent to c in the same or next time slice, and moves to a closest free cell that is not already

in the current path (the distance between two cells being measured as the distance D between

the projections of their centers into C
2
). This greedy algorithm tries at each step to minimize the
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time that will be required to execute the accommodating trajectory, but by no means does this

guarantee an optimal result. If all of the seventeen cells are non-free or already part of the current

path, the search backtracks and possibly fails.

If A
2
is holding a part Y , the planner could proceed as above. But it would also have to make

sure that Y does not hit any obstacle on the table during the accommodating motion of A
2
. This

additional check would yield longer computation time. For this reason, the planner does not make

A
2
accommodate to A

1
's motion. Instead, it treats A

2
as a static obstacle and searches C

1
for a

path of A
1
avoiding this obstacle.

At this stage, the planner knows the geometry of the coordinated paths of A
1
and A

2
(possibly, A

2
's

path is void). It then computes the velocity pro�les of the joints to execute these paths in minimal

time. This is done by discretizing the curvilinear abscissa along A
1
's path into small intervals and,

in each interval, letting the joint that takes the longest time at maximal velocity set the pace for

the other joints. This computation yields the duration � of the coordinated motion, hence the

latest starting time ts = tg � � for the motion. If ts is smaller than the current time tc, grasping

X with A
1
is considered impossible and the planning process is killed; the pair (X;A

1
) will not be

reassigned to a planning process. Otherwise, the grasp scheduled at tg is feasible. But if ts � tc is

rather large, say, more than a few times the time spent planning the motion, executing this motion

will lead A
1
to wait for the arrival of X . A better motion may then be possible and the planner

iterates the above procedure by scheduling an earlier grasp time tg. At the end of every iteration,

the latest starting time of the best motion computed so far is used to bound the computation time

allowed to the next iteration. If one iteration exceeds the time allocated to it, it is aborted and

the best motion computed so far is executed. The successive times tg are chosen by dichotomically

decomposing the interval [tmin

g
; tmax

g
].

A motion computed as above is shown in snapshots (12)-(21) of Fig. 2. In this example, A
1
is

arm2 moving to grasp Y
1
; in snapshots (12)-(13), arm1 performs a short accommodating motion

the clear the way for arm2. (The grasp motion of arm1 shown in snapshots (15)-(21) is generated

by the technique described in Case (B) below.)

(B) Arm A
2
is moving: The motion being performed by A

2
constrains the future motion of

A
1
. It is mapped to a forbidden region in CT

1
and the trajectory of A

1
is computed between

some (qs
1
; ts) and some (q

g

1
(tg); tg), where ts > tc stands for the starting time of A

1
's motion and

tg 2 [tmin

g
; tmax

g
] is the time when A

1
grasps X .

Let us temporarily assume that A
2
's motion is scheduled to end after time tmax

g
. Therefore, if A

1

can grasp X , its motion will terminate before the one of A
2
. As in case (A), the planner iteratively

determines tg . For every tg such that A
1
at q

g

1
(tg) does not obstruct A2

's trajectory at any time

t � tg , it searches for a trajectory joining the line f(qs
1
; t)jt > tcg to (q

g

1
(tg); tg), avoiding the

forbidden region, satisfying the joint velocity constraints, and starting after tc.

The planner performs the search backward, from the selected (q
g

1
(tg); tg) toward the line f(q

s

1
; t)jt >

tcg, using a best-�rst technique. At every iteration of the search, it selects a pending node (q
1
; t)

of the current search tree such that D(qs
1
; q

1
) is minimum over all pending nodes. It computes

nine potential successors of this node by successively setting the velocity of each joint to zero,

its maximal value with positive sign, and its maximal value with negative sign, and integrating

the corresponding motion over the duration of a time slice in the bitmap representing CT
1
. If a
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potential successor belongs to a \0" cell c of this bitmap and c has not been visited before, then it

is included in the search tree as a new pending node and c is marked `visited'. The actual point is

recorded in the search graph, so that the velocity bounds along the entire trajectory are perfectly

respected. The best-�rst algorithm and the de�nition of D guarantee that the computed trajectory

takes minimal time over all valid trajectories in the discretized search space. The search fails when

no leaves in the search tree lie in time slices occurring after tc.

The planner selects the successive values of tg in increasing order between tmin

g
and tmax

g
, at the

centers of the time slices in CT
1
's bitmap. If the search fails for one value of tg and another value

is considered, the new search will discard every node's successor lying in a cell visited by a previous

search. Indeed, at the bitmap resolution, this successor cannot be on a valid trajectory, otherwise

the previous search would not have failed. Therefore, each new value of tg usually yields a small

amount of additional computation, and the total number of search nodes generated to compute

A
1
's trajectory is at most equal to the number of free cells in CT

1
's bitmap. At soon as the planner

succeeds in �nding a trajectory for A
1
, this motion is executed.

Let us now consider the case where A
2
's motion is scheduled to end at time t

2
< tmax

g
. Beyond t

2
,

A
2
may then perform another motion to clear the way for A

1
. To take advantage of this possibility,

the planner proceeds as follows: For every selected value of tg greater than t
2
, it generates A

1
's

grasp trajectory as the concatenation of two trajectories: one connects qs
1
to some qi

1
chosen as the

closest con�guration to q
g

1
(tg), outside the forbidden region at time t

2
; the other connects qi

1
to

q
g

1
(tg) and may require an accommodating motion of A

2
. The second motion is computed �rst (if

qi
1
6= q

g

1
(tg)) using the techniques of case (A), with qi

1
substituted for qs

1
and qs

2
replaced by A

2
's

expected con�guration when it terminates its current motion. If the latest starting time t0
s
of the

computed motion is less than t
2
, the motion cannot be performed, and the planner tries the next

value of tg. Otherwise, a trajectory of A
1
between f(qs

1
; t)jtc < t < t0

s
g, and (qi

1
; t0

s
) is generated

using the above backward best-�rst search algorithm, with A
2
mapping into the same forbidden

region in all the time slices of CT
1
between t

2
and t0

s
. If this computation yields a starting time

greater than tc, the motion is executed; otherwise the next value of tg is considered. Again, the

marking of the cells in CT
1
's bitmap saves considerable time.

An example of a motion computed as above is the motion of arm1 to grasp X
3
in (15)-(21) of

Fig. 2. This motion terminates approximately at the same time as the ongoing grasp motion of

arm2 and requires no accommodating motion of arm2. Another example is the motion of arm2

to catch Y
2
in (40)-(42) of Fig. 3; this short grasp motion ends before the ongoing transfer motion

of arm1 terminates. A third example is the motion of arm1 to grasp Y
3
in (53)-(60). A fourth

example is the motion of arm2 to grab X
5
in (88)-(98); this motion ends after the ongoing deliver

motion of arm1, but does not require arm1 to perform an accommodating motion. A �fth example

is the motion of arm1 to grasp Y
4
in (78)-(82) of Fig. 4. This motion required no accommodating

motions of arm2. A sixth example is the motion of arm1 to grasp X
6
in (96)-(100).

5.3 Planning a Grasp Motion for a Part on the Table

In this case, X is not moving; hence, time is slightly less critical. We let q
g

1
denote the con�guration

of A
1
where it can grasp X ; if two such con�gurations are feasible, we select the one that is closest

to qs
1
. Again, we distinguish between cases: (A) A

2
is not moving; (B) it is moving.
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(A) Arm A
2
is not moving: This case could be treated like case (A) in the previous subsection,

with one di�erence: there is no need for guessing successive values of the grasp time. However, we

proceed in a slightly di�erent manner. Whether A
2
is holding a part or not, we �rst treat it as a

static obstacle and we try to generate a path of A
1
avoiding this obstacle. If such a path is found,

it is executed. Otherwise, if A
2
is not holding a part, we plan a motion of A

1
along a straight-line

path and we make A
2
accommodate to this motion.

The �rst tactic, which treats A
2
as a static obstacle, aims at avoiding an accommodating motion

of A
2
, since while executing such a motion, A

2
cannot grab a new part on the belt. However, this

tactic tends to fail more often than the second one, which makes A
2
accommodate. Since X is not

moving, we can a�ord to waste a short amount of computation time trying the less reliable tactic

�rst and using the other tactic as a backup.

(B) Arm A
2
is moving: The treatment is as in case (B) of the previous section, with tg chosen

at the centers of the successive time slices beyond the current time. Since X does not move, one

iteration eventually succeeds.

In snapshots (68)-(80) of Fig. 3-4, the motion of arm2 to grasp X
3
on the table illustrates this case.

This motion changes arm2's posture, because grasping X
3
with the other posture is not feasible.

5.4 Planning a Deliver Motion

Like in the previous subsection, the goal of the motion is time-independent; but now we must plan

for both X and A
1
.

(A) Arm A
2
is not moving: The planner �rst generates a path connecting the initial and goal

con�gurations of X by conducting a best-�rst search in the bitmap representing X 's C-space. This

search is guided by a goal-oriented potential �eld similar to the NF2 function described in [22] and

is restricted to the con�gurations of X where A
1
and/or A

2
can grasp X , as proposed in [21]. An

alternative, which could save time-consuming hand-over operations, is to �rst restrict the search to

the con�gurations of X where A
1
can grasp X ; only if this search fails, the con�gurations reachable

by A
2
would also be considered. The generation of a path for X may fail due to parts previously

placed on the table by the arms. Then A
1
puts X down on the belt or the table at its current

location and the planning process is killed. The planner will not reassign the task to grasp X to

any arm as long as none of the parts currently on the table has been removed.

If a path is found for X , it entails a path for A
1
through the arm's inverse kinematics. The initial

posture of A
1
is the one at the end of the previous grasp path. If in this posture one joint of A

1

reaches a limit, while changing posture would allow A
1
to continue transferring X , the planner

includes an ungrasp operation in A
1
's path before the joint limit is attained, then a subpath to

change A
1
's posture, and �nally a regrasp operation, before resuming tracking X 's path. A

1
may

change posture several times along X 's path. If A
2
lies along the way of A

1
's path, a motion of

A
2
to clear the way for this path is generated. As much as possible, we would like to avoid a long

accommodating motion of A
2
, since during this motion A

2
cannot grasp new parts. The planner

proceeds as follows:

- It �rst tries to generate a path of A
2
to clear the way for A

1
. This motion is planned in C

2
, into
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which the discrete sequence of con�gurations describing A
1
's path (minus the subpaths changing

A
1
's posture) maps as a union of forbidden regions. The �nal con�guration of A

2
's is any con�gura-

tion outside this union. If a path is found, A
2
's �nal con�guration is mapped to a forbidden region

in C
1
and the subpaths to change A

1
's posture are computed then. The path of A

2
is executed at

maximal velocity. The motion of A
1
, also at maximal velocity, starts as soon as it can no longer

collide with A
2
. To determine the starting time of A

1
's motion, the planner maps A

2
's trajectory

to a forbidden region in CT
1
. It then represent A

1
's trajectory as a curve segment in CT

1
with its

initial point at the time when A
2
is scheduled to terminate its motion. Finally it translates this

curve toward smaller values of time. The position of the curve just before it intersects the forbidden

region due to A
2
gives the starting time of A

1
's motion.

- If the previous computation fails to generate paths for A
1
or A

2
, the planner computes an accom-

modating motion of A
2
as in case (A) of Subsection 5.2. Prior to this computation, it completes

the path of A
1
by inserting the subpaths changing the arm's posture. These subpaths are simply

straight-line segments in C
1
.

If X 's path leaves A
1
's workspace, the planner commands A

1
to put down X at a intermediate

con�guration where it can be regrasped by A
2
and the planning process is killed. The planner

memorizes that A
2
will have to be assigned to the regrasp of X . Note that when A

1
releases X ,

there exists a path for X to its goal. But this path may later be obstructed by additional parts

ungrasped on the table. For that reason, the planner computes regrasp motions for parts on the

table by reversing the chronological order in which they have been ungrasped. In this way, there is

no need to recompute paths for these parts.

In snapshots (24)-(34) of Fig. 2-3 the deliver motion of arm2 to transfer Y
1
to its goal was computed

as above. The path computed for Y
1
directly entailed a path of arm2 free of collision with arm1.

Snapshots (36)-(51) illustrate the above planning techniques in a more complicated case, in which

arm1 must move X
3
to its goal. This goal was changed between (34) and (36) and is now out of

reach of arm1. The path of X
3
entails a path of arm1 that collides with arm2. Thus, a motion

of arm2 is planned to clear the way and is executed in (36)-(38). It is followed by the motion of

arm1 in (40)-(51). The path of X
3
is then close to leaving the space reachable by arm1; so, in

(51), arm1 ungrasps X
3
.

(B) Arm A
2
is moving: The planner generates X 's path as in case (A), with one di�erence: If

A
2
is currently transferring a part to an intermediate con�guration, the part at this con�guration

is treated as an additional obstacle for X . The path of X entails a path of A
1
. A

1
's motion at

maximal velocity along this path is coordinated with A
2
's current motion using the same technique

as above, that is, by translating A
1
's trajectory toward smaller values of time. However, if A

2

holds a part Y , collision must be avoided not only between A
1
and A

2
, but also between X and Y .

This is done by using a separate bitmap representing the C-space of X relative to Y . This check

guarantees that if X 's goal lies along Y 's path, X will not be moved to an obstructing location

before Y has already been through that location.

There is an additional di�culty. It may happen that the �nal con�guration of A
2
lies along A

1
's

path. Then let t
2
denote the time when A

2
's motion is expected to terminate. A

1
's motion is

coordinated with A
2
's motion by mapping A

2
into CT

1
until time t

2
only. Thus, A

1
will execute

as much as possible of its motion prior to t
2
. At t

2
, the motion of A

2
ends and the motion of A

1
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is also temporarily stopped. We then plan a motion of A
2
to clear the way for A

1
as in case (A).

Though the planning process for A
1
is idling between the time A

1
starts moving and t

2
, it is not

put on hold; since A
2
is moving, this arm could not be assigned to another part anyway.

The above computation is illustrated with the motion of arm2 in snapshots (51)-(66) of Fig. 3. This

motion was planned and is executed while arm1 is still moving. Since arm1 is going to release X
3

at an intermediate location, this part will become an additional obstacle that is taken into account

by the planner when it computes the path of Y
2
(see (60)-(64)). Here the �nal con�guration of

arm1 lies along the way of arm2, which requires planning a motion of arm1 to clear the way. As

indicated above, the motion of arm2 is temporarily stopped (see (53)). The new motion of arm1

is executed in (53)-(56); it precedes arm1's grasp motion in (56)-(60). A second deliver motion

(arm arm1) computed as above is shown in (64)-(76). Because arm2 obstructs the path of arm1,

a motion of arm2 to clear the way is �rst planned and executed in (68). Notice that immediately

after, starting in (70), arm2 starts executing a grasp motion to grab the partX
3
lying on the table.

This motion was computed after the motion of (68) was executed; the planner then realized that

it was safe to execute it concurrently with the ongoing motion of arm1. A third illustration of the

above computation is the motion of arm1 shown in (82)-(96).

5.5 Bitmap Construction

The role of a bitmap representing a C- or CT-space is twofold. It provides a discretization of

a continuous space prior to searching that space. It also allows for quasi-instantaneous collision

checks. Of course, we must consider the cost of generating the bitmap, but most of this computation

can be done in a preprocessing phase. Furthermore, computing an entire bitmap is often not more

time-consuming than performing a few explicit collision checks in the workspace. The idea of using

precomputed bitmaps to accelerate collision checking is also used in [21, 23].

Part's C-space: The C-space bitmap for a part X represents the forbidden region created by

the obstacles. We model both X and the obstacles as unions of convex polygons, fXigi=1;2;::: and

fOjgj=1;2;:::, respectively. Every pair (Xi; Oj) of convex polygons yields a subset of the forbidden

region in X 's C-space. Any cross-section of this subset at a constant orientation of X is itself a

convex polygon that is computed in time linear in the number of vertices of Xi and Oj [13, 25].

A polygon-�lling function transforms this polygon into a 2D bitmap. The 3D C-space bitmap of

X is constructed by stacking �xed-orientation 2D slices. Each slice is generated by computing the

forbidden regions due to all pairs (Xi; Oj) and drawing them into the same 2D bitmap.

If all obstacles were �xed, the C-space bitmap for a given type of part would only be computed

once. However, the obstacles include parts that have been temporarily released on the table. In

the next section we will also allow dynamic changes in the obstacles. Whenever there is a change

in the obstacles, the bitmap must be updated. To reduce updating costs, we precompute a bitmap

representing the forbidden region corrsponding to every pair part-obstacle and part-part. The size

of this bitmap is just large enough to enclose the forbidden region; hence, it is much smaller than

the full C-space bitmap. The C-space bitmap is �rst computed by �lling it with \0"s and copying

the \1"s of each individual bitmap in the right cells. Whenever an object is removed from the

table, the bitmap is recomputed in the same way. When a new object is placed on the table, \1"s

are added to the C-space bitmap according to the individual bitmaps involving this object.
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In case (B) of Subsection 5.4, we allow a part X to move while another part Y is already moving.

This requires performing collision checks at various con�gurations of X and Y . The part-part

bitmap corresponding to the types of X and Y is used there. Whenever a collision check is needed,

the relative con�guration of X and Y is computed; this con�guration determines the bitmap cell

to look into.

Arm's C-space: A technique to compute the 2D C-space bitmap of an arm A
1
, given the con-

�guration of the other arm A
2
, is to enumerate all con�gurations in the bitmap (e.g., the centers

of the cells) and, for each one, test if it is collision-free. Collision checking between arms requires

considering four or three pairs of links, depending on whether the �rst links of the two arms can

touch each other, or not (in our setting, only three pairs of links must be considered). To check

if two links collide, we simply look into a link-link bitmap. This bitmap is precomputed using the

technique of the previous paragraph by treating one link as a �ctitious robot free to translate and

rotate in the plane and the other link as an obstacle. This technique is reasonably fast, but it can

be improved as follows.

In each arm, we choose the reference point of the second link at the center of rotation of the second

joint. Thus, if we �x the �rst joint angle �
11
of arm A

1
, the reference point of the second link is also

�xed. Given the con�guration of A
2
, we scan all possible values of �

11
in C

1
's bitmap. Each value

determines a cell in two bitmaps, each representing the interaction between the �rst link of A
1
and

a link of A
2
. If the �rst link of A

1
collides with a link of A

2
, the whole column in C

1
's bitmap

is �lled with \1"s. Otherwise, the position of the reference point de�ned by the current value of

�
11

determines a column in the bitmaps representing the interaction between A
1
's second link and

each of the two links of A
2
. After shifting these two columns appropriately (to align their origins

with the origin of the column of C
1
's bitmap at the current �

11
) and removing the cells beyond the

second-joint mechanical stops, we compute their boolean union and copy the result into the column

of C
1
's bitmap at the current value of �

11
. In our implementation this improvement cut the time

to compute an arm C-space bitmap by almost two orders of magnitude.

Other e�cient techniques to compute C-space bitmaps for articulated arms are proposed in [5, 26,

27].

Arm's CT-space: The 3D bitmap representing an arm's CT-space is computed one time slice

at a time. The computation of the 2D bitmap in one time slice is done as above, only when the

planner needs this time slice. A 2D bitmap is memorized at least as long as it is beyond the current

time.

6 Extensions and Improvements

Changes in goals: The goal of a part can be changed at any time. If a part X arrived before

its goal changed, but the deliver motion has not been computed yet, the new goal will be used by

the planner when it solves for the deliver subtask. If, instead, the deliver motion has already been

planned, it is executed without modi�cation. However, immediately after X reaches its previous

goal, the planner plans a new motion to transfer it to its new goal. Similarly, if X has been delivered
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to its goal and this goal changes prior to the removal of X by the external mechanism, the planner

generates a motion to transfer X to the new goal.

One possible exploitation of this planner's ability is the following: Let the parts be used to assemble

several copies of a product. Parts delivered to their goals are removed only when a product is

complete. However, since parts arrive in random order, too many parts of one type may arrive

during a period of time. Because the goals of these parts are occupied, the arms will let them pass

ungrasped. Instead, one can de�ne several sites for assembling the product. Initially, the goal of

each part is in the �rst site. When this goal is �lled, a new goal is set in the second site, and so

on. Whenever a site contains a complete product, this product is removed and all the goals in that

site become free again.

New types of parts: New types of parts can be dynamically introduced. For the user, adding

a new part means describing its geometry, de�ning its goal, and specifying the grasp position of

a gripper. For the planner, it only requires computing new bitmaps. As long as the number of

obstacles and parts of di�erent types is not too large, this computation can be carried out on-line

without signi�cantly weakening the total system performance.

Changes in obstacles: The positions and orientations of the obstacles can be changed. However,

we impose that such changes happen when no deliver motion is being executed. They only require

the planner to update the C-space bitmaps of the incoming parts. This modi�cation is very fast.

Obstacles can also be added or removed. Whenever an obstacle is added, new bitmaps describing

the interaction of this obstacle with the various types of parts that may be fed are computed.

Cooperative manipulation: We allow the introduction of parts that require two arms to be

moved, say, because they are too heavy for a single arm, or because they have elongated shapes.

Two grasp positions are de�ned for the grippers on each such part.

Let us assume that such a part X arrives on the belt. The planner assigns it to a planning process

only if the two arms are non-moving. The two arms are also jointly assigned to this process. The

planner generates the grasp motion very much like in case (A) of Subsection 5.2 by iteratively

guessing a grasping time tg . However, at each iteration it must compute the coordinated motion of

the two arms: First, it generates the path of arm1 to attain the grasp position on X (at tg) that

is closest to the beginning of the belt. This path is simply constructed as a straight-line segment

in arm1's C-space. Next, the planner generates a coordinated path for arm2 to attain the other

grasp position on X (at tg). This motion is computed by searching through arm2's CT-space, with

time taken equal to the abscissa along arm1's path. Planning for the deliver subtask is done like

in Subsection 5.4. No hand-over operations are possible, but the planner may put down the part

on the table to change an arm posture or swap grasps (see [20]).

Fig. 5 shows a series of snapshots in which the two arms perform a coordinated motion generated by

the planner to grasp the same long part and transfer it to its goal. The transfer requires ungrasping

the part at an intermediate location to change the posture of both arms. Note that during the

grasp and deliver motions more parts arrive on the belt. Since no arm is available to grab them,

they pass ungrasped.
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Figure 5: Cooperative manipulation of a long part

Anticipating catches: The process coordination described in Section 4 may sometimes let the

planner idling. In fact, rather than idling, if an arm is not moving, the planner then generates a

motion for that arm to bring it to a prede�ned con�guration where its gripper is close to the belt.

Thus, when a new part arrives on the belt, the arm will be in a better position to catch it quickly.

We could extend this idea and keep the planner always busy by making it work on what may

happen beyond the next round of motions. To be really fruitful, however, this generalization

requires additional study.
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7 Implementation

The planner described in Sections 4, 5, and 6 has been fully implemented in C on a DEC Al-

pha workstation (Model Flamingo) running under DEC OSF/1. This machine is rated at 126.0

SPECfp92 and 74.3 SPECint92 on the SPECMARKS benchmark. The planner has been connected

to both a robot graphic simulator and a real robotic system.

The robot system in our simulator has the same general characteristics as the real system. The

lengths of the �rst and second links of each arm are both 24in. The �rst joint rotates within a 135dg

interval and the second in a 285dg interval. The maximal velocities of the joints are 15.2dg/sec. The

belt moves at 4in/sec. The interval of time during which a part can be grasped is approximately

15sec.

An arm C-space bitmap has size 36� 76, which corresponds to increments along each axis of about

3.75dg. The size of the bitmap representing a part C-space is on the order of 128� 128� 96; the

increments along each of the two position axes are approximately 0.57in long. Having the same

increments along all angular axes allows for simpli�cations in the planner's code; nevertheless,

setting the size of the increments as suggested in Subsection 5.1 raises no particular di�culty and

should be done in a new version of the planner.

We performed various tests with our software to measure the running times of some of its key

components. We obtained the following average times for a representative sample of components:

� Computing a bitmap representing the interaction between two objects takes 41ms.1

� Computing a complete C-space bitmap for a new type of part using the precomputed part-obstacle

and part-part bitmaps takes 8.3ms.

� Updating a part C-space bitmap when an object is added onto the table takes 5.6ms.

� Constructing an arm C-space bitmap using the precomputed link-link bitmaps takes 0.4ms.

� Searching a part C-space bitmap with the best-�rst search technique of Subsection 5.4 is done at

a rate of 65,000 nodes/sec.

� Searching an arm CT-space with the best-�rst search technique used in case (B) of Subsection 5.2

is done at a rate on 870,000 nodes/sec.

The sequence of snapshots shown in Fig. 2-4 was produced by our planner connected to the graphic

simulator.

8 Evaluation in Simulated Environment

We have generated several measures of the e�ciency of the planner connected to the graphic

simulator, by running it on multiple sequences of arriving parts. Each run lasts 8min, during which

on the order of 100 parts are being fed. No parts require being moved by two arms simultaneously.

Parts disappear immediately after they are delivered to their goals, so that no part is ungrasped

because its goal is occupied. The simulator uses the same model of the physical world as the

planner. We de�ne the missing ratio of the planner over a run as the number of parts that go

ungrasped, in percents of the total number of parts fed during this run.

1Our implementation uses no hardware-implemented polygon-�lling function to compute such a bitmap.
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Feeding Uncertainty (sec) 0.0 0.5 0.5 0.75 0.75 1.0 1.0

Slowing Down Feeding Rate No No Yes No Yes No Yes

Number of Parts per Minute 13.19 13.19 11.88 13.19 11.32 13.19 10.81

Missing Ratio (Oracle) 0% 20% 0% 25% 0% 28% 0%

Missing Ratio (On-line Planner) 13% 19% 6% 17% 2% 14% 0%

Table 1: Comparison of our on-line planner to a quasi-optimal oracle

Comparison to quasi-optimal oracle: Ideally, the planner's e�ciency should be evaluated

relative to an instantaneous oracle always making the best decision. However, building such an

oracle is not realistic, since it requires implementing an optimal o�-line manipulation planner.

Instead, we built a quasi-optimal oracle as follows: We let each of the two arms move at maximal

velocity along a simple path connecting two con�gurations, one where the gripper is above the belt,

the other where it is above the table away from the belt. The two arms perform these motions

alternately, forward and backward, so that when one arm is above the belt the other arm is at the

other end of its trajectory above the table. The trajectories are de�ned so that no collision occurs

in the middle. Then we de�ne a feeding sequence of parts so that when an arm reaches the end of

its trajectory above the belt, a part is right there to be grasped and the goal of this part is exactly

at the other end of the arm's trajectory. Finally, we distribute the obstacles on the table so that

no part collides with an obstacle when it is moved by an arm. By construction, the missing ratio

of this oracle for the sequence of parts de�ned above is 0%.

We ran the planner with the same obstacle distribution and the same sequence of parts. Table 1

compares results obtained with the oracle and the planner. In column 1, we feed the part with no

uncertainty. The number of parts fed per minute is 13.19. The missing ratio of the oracle is 0%,

while the missing ratio of the planner is 13%.

In columns 2 and 3 of the table, instead of feeding parts at exactly the times computed above, we let

them arrive within a �0:5sec uncertainty interval. If the feeding rate is unchanged (column 2), the

missing ratio of the oracle increases sharply to 20% (this is obtained by temporarily stopping the

arms' motions whenever an arm reaches the belt prior to the arrival of the part); on the other hand,

the missing ratio of the planner increases slightly to 19%. Let us slow down the feeding rate just

enough so that the oracle's missing ratio becomes zero again (column 3); this requires stopping the

arm motions given by the oracle, for a maximum of 1sec prior to any grasping operations. The belt

now feeds 11.88 parts/min. The missing ratio of the planner is also reduced to 6%. The subsequent

columns show similar results when feeding uncertainty is �0:75sec and �1sec. When the feeding

rate is slowed down just enough to make the oracle's missing ratio equal to 0%, the planner's missing

ratio drops to 2% and 0%, respectively. Note the stability of planner's performance throughout

these experiments.

We have run several experiments similar to the above. In all cases, our planner showed the same

high degree of competitiveness. Combined with the fact that it also allows for dynamic changes in

the parts and the obstacles, these results suggest that in many situations an on-line planner such

as ours can be more attractive than an excellent o�-line planner.
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CPU speed factor S
1

S
2

S
3

S
4

S
5

average

0.1 34 33 29 28 35 31.8

0.2 26 30 23 22 27 25.6

0.5 18 15 15 13 12 14.6

1.0 9 10 9 13 8 9.8

2.0 6 6 10 9 10 8.2

Table 2: E�ect of planning time on missing ratio

belt speed S
1

S
2

S
3

S
4

S
5

average

0.5 15 10 20 20 13 15.6

0.75 12 5 9 15 11 10.4

1.0 9 11 9 13 8 10.0

1.25 7 8 8 13 12 9.6

1.5 10 11 7 11 11 10.0

2.0 6 11 12 11 12 14.4

2.5 19 16 16 20 16 17.4

3.0 20 21 20 25 19 21.0

Table 3: E�ect of belt velocity on missing ratio

E�ect of planning time: We also analyzed the e�ect of planning time by arti�cially changing

the planner's running speed. This is done as follows: Whenever the planner solves for a grasp or

deliver subtask, we interrupt the simulator and measures the planner's running time. When the

computation is over, we let the simulator update the state of the environment according to the

running time of the planner. For this update, we can set the running time as we desire, e.g., to

twice what it actually was, or half of it, or even zero. The variations of the missing ratios for

di�erent planning speeds gives us an idea of the planner's e�ciency if we used a slower or faster

computer.

Table 2 gives the missing ratios of the planner for �ve feeding sequences S
1
; : : : ; S

5
and �ve planner's

speeds (0.1, 0.2, 0.5, 1.0, and 2.0 times its nominal speed). When the planner's speed is half the

nominal one, the missing ratio is still reasonably small. When the speed is twice the nominal one,

the planner's performance is not greatly improved. When the planner's speed is even greater (not

shown in the table), planning time becomes negligible relative to execution time, and the missing

ratios remain approximately constant.

These results suggest that, as computers become faster, it will be worth making the planner devote

more computation than it currently does generating motion plans that are quicker to execute, e.g.,

by reducing the number of hand-over operations and the number of changes in arm posture, and

by increasing parallelism between motions.
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Figure 6: Dual-arm robotic system and experimental setup

E�ect of belt velocity: Table 3 shows the planner's missing ratios for �ve di�erent runs and

eight di�erent velocities of the belt (0.5, 0.75, 1.0, 1.25, 1.5, 2.0, 2.5, and 3.0 times the nominal

velocity). The feeding rate is �xed, so that slowing down the belt results in more parts on the belt

at any one time. In general, the table indicates that the planner's performance is rather insensitive

to the belt speed. However, above some speed (about twice the nominal speed), it degrades more

rapidly. When the belt is slowed down, one could expect an increase in performance, since parts

stay longer on the belt and so can be grasped over larger intervals of time. Surprisingly, the

contrary happens. This seems to be caused by the presence of more parts on the belt at the same

time, leading the arms to constrain each other more severely than when the speed is higher. This

suggests that our heuristics to assign parts to arms should be improved in this case; e.g., we may

too frequently assign arm1 to an arriving part whose goal is not reachable by arm1 or hard to

reach, while we could let this part advance on the belt and then assign it to arm2. This kind of

improvement could bene�t the planner even when the belt's velocity is nominal.

9 Connection to Robotic System

System description: We have connected our planner with the dual-arm robotic system shown

in Figure 6, which has been developed in the Aerospace Robotics Laboratory at Stanford [31].

The integrated system comprises �ve major modules: the user interface, the on-line manipulation

planner, the dual-arm robot control system, the real-time vision system, and the graphic simula-
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Figure 7: Extending the forbidden region in CT-space

tor [28, 29]. Characteristic arrangements of LEDs are mounted on all objects of interest (arriving

parts and obstacles); the overhead vision system senses these LEDs, identi�es their arrangements,

and computes the positions of the objects in real time. This information leads to updating a model

of the environment that is used by all other modules. For example, the planner learns that a new

part arrives on the belt or that the position of an obstacle has changed by periodically accessing

this model. The user interface provides commands to interactively specify and modify the goals of

the parts arriving on the belt. The graphic simulator allows the user to observe graphic renderings

of what the vision and the control modules believe is going on in the real world and what the

planner predicts will happen soon.

This software is integrated under ControlShell, which provides object-oriented tools for combin-

ing software components developed separately [1]. The �ve modules are implemented on several

computers and communicate through a subscription-based network data sharing system called the

Network Data Delivery Service (NDDS) [30]. In the current implementation, the user interface and

the planner run on two di�erent UNIX workstations, while the control and vision modules run on

several VME-based real-time processors.

We have successfully experimented with this integrated system on various examples similar to the

one shown in Fig. 2-4, as well as on examples involving long objects requiring two arms for their

transfer.

Interfacing the planner with the rest of the system: The planner assumes that the arm

joints can change velocity instantaneously. Planned trajectories are thus impossible to execute

accurately. Hence, after a trajectory has been passed by the planner to the controller, the lat-

ter recomputes its time parameterization using a realistic dynamic model of the arms. The new

trajectory has the same geometry as the one produced by the planner.

Let us assume for a moment that the arms can exactly execute the recomputed trajectories. In

some cases, to guarantee that the trajectories recomputed by the controller are still collision-free,

the planner takes a more conservative planning approach than the one previously described. For

example, consider a grasp trajectory of A
1
to be performed while A

2
is moving. The planner

maps A
2
's trajectory to a forbidden region in CT

1
and extends this region by its shadow along the

negative time dimension, as illustrated in Fig. 7. (Note that the previous generation of A
2
's motion
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accounted for the current con�guration of A
1
; therefore, this con�guration lies outside the extended

forbidden region.) Thus, the planned trajectory of A
1
can be arbitrarily translated toward the right

(greater values of time) without causing any collision. It is then su�cient for the controller, when

it recomputes A
1
's trajectory, to make sure that A

1
is never ahead of time relative to A

2
.

With slight modi�cations as the above, recomputed motions remain collision-free. But an arm

may now fail to arrive in time to grab a part on the belt. This problem is handled by setting the

maximal joint velocities in the planner smaller than the actual values. Some tuning is necessary:

If the velocity values selected for the planner are too small, the planner will often fail to �nd grasp

paths; but if the values are too large, the actual motions will often arrive too late to grasp the

parts. On our implementation, the velocity bounds given to the planner are constants that have

been estimated through preliminary experiments. Using these bounds, it may happen (though

rarely) that an arm arrives too late to grasp a part. In that case, the planner may decide to make

another try by generating another motion, possibly with the other arm.

In our network-distributed implementation, the planning and control modules run on di�erent

machines. Communication delays are not negligible. We model them by a duration proportional to

the length of the transmitted trajectory, plus some small latency. The planner adds this delay to the

computed start time of a grasp trajectory to determine if the robot reaches the grasp con�guration

on time.

We assumed above that the arms perfectly track the recomputed trajectories. However, control

errors cannot be totally avoided. In our implementation we bounds the angular errors of the joint

angles of an arm by two constants �
1
and �

2
. These bounds specify that, if the arm is expected

to be at con�guration q at time t, it may actually be anywhere in the parallelepiped centered at q

whose sides have lengths �
1
and �

2
. Every con�guration along a trajectory of A

1
is mapped into

CT
2
by considering the region swept by A

1
between the two extreme con�gurations it may achieve.

Appropriate link-link bitmaps are precomputed, so that this computation brings no additional cost.

Vision sensing is also imperfect. Errors in the positions of the objects on the table measured by

the vision system have been bounded by preliminary experiments. These bounds are used to grow

the geometric models of the objects used by the planner. Errors on the grasp position of a part are

also bounded in order to generate safe C-space bitmaps for the parts.

Finally, we must consider the grasping operations on the belt. Taking conservative approaches as

above would not allow an arm to reliably grasp a moving part. Hence, we proceed di�erently:

When a gripper arrives within some distance to the part it is expected to grasp, the controller does

not try to track further the planned trajectory. Instead, it tracks the part using the last position

given by the vision sensor (when the gripper is almost above the part, this sensor no longer sees the

part) and the measured velocity of the conveyor belt (which makes it possible to infer the motion

of the part). When the gripper is above the part, both moving at the same velocity, the controller

commands the grasp operation. While in this autonomous mode, the controller checks for collision

between the arms. If one is going to happen, it stops both arms. It also reports the failure to

the planner, which may try to generate new trajectories to catch the parts that have been missed.

During a grasp operation, the vision sensor keeps updating the environment model. By accessing

this model, the planner is informed of the new con�gurations taken by the grasping arm.
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� � = �0:5 � = �0:25 � = 0:0 � = 0:25 � = 0:5

0.0 12 13 9 17 29

0.25 11 10 10 16 31

0.5 13 11 14 18 23

average 12 11.33 11 17 27.67

Table 4: E�ect of belt velocity on the missing ratio of di�erent part sequences

Evaluation of planner: The way we deal with discrepancies between the world model used in

planning and the real world a�ects the e�ciency of the total system. Thus, the following question

arise: Could it be preferable to use a more realistic model of the real world at planning time? Using

such a model would certainly increase planning times, but on the other hand it would also reduce

delays in the interface between the planner and the robot controller. We do not have a de�nite

answer to this question, but we have conducted experiments that shed some light on it.

Our experiments consisted of running the planner connected to a modi�ed version of the simulator

used in the previous section. Consider a motion generated by the planner. Let � be the duration

of the motion according to the planner's model. The modi�ed simulator executes this motion in a

time randomly selected in the interval [� � (1:0+ �� �); �� (1:0 + �+ �)], where � and � are two

parameters. Table 4 gives the planner's missing ratio for the �rst feeding sequence used in Table 2,

for several values of � and �. The third entry of the �rst row in Table 4 is the missing ratio (9%)

when there are no discrepancy between the planner and simulator models.

Note that the missing ratio increases more rapidly when � > 0 (i.e., when the planner over-estimates

the performance of the arms) than when � < 0 (the planner under-estimates the performance of the

arms). When the planner over-estimates performance, the motions arrive late to grasp the parts;

this requires the arms to spend more time tracking the parts on the belt; the chances to miss parts

also increase. When the planner is conservative, it may fail to generate grasp motions that would

actually be feasible; but whenever a grasp motion is found, this motion is usually executed with

success; moreover, less time is wasted tracking the parts to be grasped. Table 4 also shows that the

planner is rather insensitive to the variations of �. By comparing Table 4 and the �rst column of

Table 2, we notice that the e�ect of � = 0:25 has about the same magnitude as doubling planning

time, while setting � = 0:5 has about the same e�ect as increasing planning time by a factor of 4.

These results combined with those of Section 8 (E�ect of planning time) suggest that future increase

in computer speed could usefully be exploited by making use of a more realistic arm model at

planning time.

10 Conclusion

This paper has described an on-line manipulation planner for a dual-arm robot system whose task

is to grab parts arriving on a conveyor belt and deliver them at speci�ed goals. Parts arrive at

any time, in random order. The planner uses information provided by a vision system to break the

overall planning problem into a stream of rather simple subproblems and orchestrate fast planning

primitives solving these subproblems. Experiments conducted with this planner in a simulated
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robot environment show that it compares very well to quasi-optimal oracles. Experiments with a

real dual-arm robot system have demonstrated the viability of on-line planning in the real world.

Since the planner also allows dynamic changes in obstacles, goals, and tasks, this result suggests

that on-line planning may rapidly become more attractive than o�-line planning (whose e�ciency

is also very sensitive to feeding accuracy). In fact, we believe that our on-line planner enables

low-cost, 
exible, and e�cient part feeding.

Evaluation of the planner shows that, as computers become faster, future research should focus on

spending more planning computation to produce motion plans that are quicker to execute (e.g.,

avoiding hand-over operations and changes in arm posture) and on using more realistic arm models

to reduce delays in the planner/controller interface. Additional research could also be done to keep

the planner always busy, by making it anticipate future motions whenever there is time available

for that. Other interesting research topics include dealing with more than two arms and with more

than one computing resource (possibly shared with other activities, like sensing and control).
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