
Randomized Query Processing in Robot Motion Planning

L. Kavraki
�

J-C. Latombe
y

R. Motwani
z

P. Raghavan
x

December 2, 1994

Abstract

The subject of this paper is the analysis of a randomized preprocessing scheme that

has been used for query processing in robot motion planning. The attractiveness of the

scheme stems from its general applicability to virtually any motion-planning problem,

and its empirically observed success. In this paper we initiate a theoretical basis for

explaining this empirical success. Under a simple assumption about the con�guration

space, we show that it is possible to perform a preprocessing step followingwhich queries

can be answered quickly. En route, we pose and give solutions to related problems on

graph connectivity in the evasiveness model, and art-gallery theorems.

�Robotics Laboratory, Department of Computer Science, Stanford University, Stanford, CA 94305-2140.

Partially supported by ARPA grant N00014-92-J-1809 and ONR grant N00014-94-1-0721.
yRobotics Laboratory, Department of Computer Science, Stanford University, Stanford, CA 94305-2140.

Partially supported by ARPA grant N00014-92-J-1809 and ONR grant N00014-94-1-0721.
zDepartment of Computer Science, Stanford University, Stanford, CA 94305-2140. Supported by an

IBM Faculty Development Award, an OTL grant, and NSF Young Investigator Award CCR-9357849, with

matching funds from IBM, Schlumberger Foundation, Shell Foundation, and Xerox Corporation.
xIBM T.J. Watson Research Center, Yorktown Heights, NY 10598.

1 Introduction

Planning obstacle-avoiding motion for a robot or a robot arm from a given initial con�gura-

tion to a goal con�guration is an important problem in robotics [Can88, Lat91]. Typically,

the environment is static and the goal con�guration is dynamic as the robot performs a

series of complicated maneuvers. A number of recent papers in the robotics literature

[KL94a, KL94b, KSLO94, O�S94, Ove92, HST94] have described the striking success of a

class of randomized preprocessing heuristics for query processing in robot motion planning.

The key idea is the use of random sampling in a preprocessing stage, following which queries

of the form \Is con�guration B reachable from con�guration A?" can be answered quickly.

The result is a general approach that can easily be tailored to any particular motion plan-

ning problem. The method has proved especially e�ective for robots with many degrees of

freedom, where traditional methods have either failed to yield algorithms or have yielded

algorithms that are too slow for normal use. There is another motivation for such a general

query processing scheme not bound to the speci�cs of any particular robot: it is clearly

infeasible to invest e�ort in tailor-made exact algorithms for every robot in existence. Fig-

ure 1 depicts several positions of a robot with 7 degrees of freedom to which the method has

been successfully applied. This paper initiates a theoretical basis for explaining the success

of the method.

The con�guration of a robot at any instant is characterized by an ordered tuple of real

values, each entry of which is the value of one component of its position. For example, a

unit square moving freely in the plane is captured by a triple: the x- and y-coordinates

of a designated corner, together with the angle made by the line containing a designated

edge with the x-axis. We therefore say that such a square has 3 degrees of freedom, and

represent its position by a point in 3-space. The motion of the square forms a trajectory in

this space. Given static obstacles in the plane that constrain the motion of the square, we

may represent them in the space as a set of forbidden regions that may never be entered

by the motion trajectory. The 3-dimensional space representing the position of the square

together with these forbidden regions is known as the con�guration space for this setting.

Such a con�guration space can be de�ned for any motion planning problem and, together

with a cost measure and possible constraints on the shapes of trajectories, de�nes the

problem completely. For instance, the position of the arm in Figure 1 may be represented

in a space with 7 dimensions, with each dimension corresponding to the angular position of

one of the joints. We refer to the subset of the con�guration space that is not forbidden as

the free space; in general, it may consist of more than one connected component.

This notion of a con�guration space is central to the randomized preprocessing method

we are about to describe. We assume that the con�guration space is the cube [0; 1]d, where

d is the number of degrees of freedom for the robot. (Our de�nitions and results can be

1

extended to cases where one or more dimensions of the con�guration space | say the

angular position of a joint of an arm | can \wrap around", but for simplicity we assume

[0; 1]d here.) For the purposes of this abstract, we also assume that the space is re
exive: if a

point p1 in free space is reachable from p2, then p2 is reachable from p1. Non-re
exive spaces

arise, for instance, when there are moving obstacles so that time becomes one dimension.

A key ingredient of the method is a fast simple planner that, given two points p1 and p2 in

the con�guration space, tries to connect them using a fast but simple strategy. For example,

one simple planner that has been used for this purpose [KSLO94, Ove92] checks whether

the line segment between p1 and p2 lies entirely in free space; if not, it reports failure (even

though a more complicated path might exist). This is usually implemented by a walk along

the line segment (suitably discretized), checking whether each of these discrete points is in

free space. In addition we assume that we have access to a complex planner that is expensive

to run, but is error-free in that it discovers a path between p1 and p2 whenever one exists,

and reports failure when there is none. One example of such a complex planner for general

con�guration spaces is due to Barraquand and Latombe [BL91]. Such an error-free planner

may be extremely slow and may not be run to completion in practice. However, if even the

complex planner cannot discover a path between two connected con�gurations, then we may

as well assume that these points are disconnected (i.e., we can view connectivity between

con�gurations as being de�ned by the ability of the complex planner to �nd connections).

Because of its expense, we seek to use this complex planner sparingly. As we will show, with

high probability the preprocessing will ensure that only the simple planner is needed for

answering queries. Our randomized preprocessing scheme may be summarized as follows:

1. [Sampling] Pick a random set of points in the free space. Call these points milestones.

2. [Simple Permeation] Try to connect all pairs of milestones using a simple planner.

3. [Resampling] For any milestones that are connected to relatively few others in this

process, pick additional milestones \near" them at random.

4. [Complex Permeation] As a last resort, try using the complex planner to connect

some pairs of milestones.

Step 4 is seldom used in practice, and would ideally be eliminated. In certain settings

in practice this elimination may be possible with su�cient resampling. The result of this

preprocessing may be viewed as a graph G each of whose vertices corresponds to a milestone,

with an edge signifying that its end-points are in the same component of free space. This

graph is sometimes called a probabilistic roadmap [KSLO94].

Given a query pair of con�gurations q1 and q2 in free space, we detect whether it is

possible to move from q1 to q2 as follows: we use the simple planner to connect q1 and q2

to milestones m1 and m2 respectively. We then use a graph search algorithm to determine

whether the milestones m1 andm2 are in the same connected component of the roadmap G.

2

Queries are never answered incorrectly; with some probability though, the query processing

algorithm may fail to give an answer.

In our analysis, we assume that the con�guration space is available as a membership

oracle: given a point p in the con�guration space, we can decide whether or not the point

is in free space. This is reasonable in implementations [Lat91, KL94a, KSLO94]: such

a membership test corresponds to checking whether a con�guration violates any of the

constraints in the input, and this can be done rather e�ciently. We treat the simple planner

(denoted BS) and the complex planner (BC) as black-boxes. We assume without loss of

generality that both planners are re
exive: i.e., if a planner succeeds in connecting p1 to

p2, it can also connect p2 to p1.

A word about the random sampling in Step 1 of the preprocessing: in the experimental

work [KL94a, KL94b, KSLO94] this is done simply by choosing a point at random from

[0; 1]d. If the chosen point is in the free space, it is retained; else it is discarded and the

process repeated. Clearly a point chosen at random in this fashion is uniformly distributed

in the free space, but in order for the number of repetitions to be reasonably small we need

the free space to constitute a good fraction of the con�guration space. We assume this

is the case based on empirical evidence (else no analysis is possible). Choosing a random

sample has a minuscule cost in practice compared with the other operations, and can be

repeated a very large number of times if necessary (see also Section 5).

Our main thesis is that the empirically observed success of the scheme stems from a

property we call �-goodness which we now de�ne. Let F denote the free space. For a

point p 2 F , let S(p) consist of those points of F that can be connected to p by the

simple planner BS . For a subset X of the con�guration space, let �(X) denote its volume.

(For readability in this abstract, we defer the issues of Lebesgue measurability and other

topological considerations to the �nal version.)

De�nition 1.1 Let � be a positive real. We say that a point p in the free space F is �-good

if �(S(p)) � ��(F). We say that the free space F is �-good if for all points p 2 F we have

�(S(p)) � ��(F).

While any non-degenerate con�guration space is �-good for some positive �, the intent in

this de�nition is that the space be �-good for a \reasonably large" value of �.

1.1 Contributions and Organization

The �rst contribution of this paper is a model of computation appropriate for the analysis

of such schemes, taking into account the realities of the problem at hand. In Section 2 we

de�ne a concrete algorithm based on the high-level outline given above. This algorithm

and its analysis do not make use of resampling (Step 3 above); we present this simpli�ed

3

version �rst in this abstract because it succinctly outlines the main ideas using only the

simple notion of �-goodness. We argue in Section 3 that if the free space is �-good then

every point of the free space F can, with high probability, be connected to a milestone

using only BS . In Section 4 we give a bound on the number of invocations of the complex

planner BC in constructing the probabilistic roadmap; this involves a new randomized

algorithm for determining connected components in a model related to the decision tree

model used in the study of evasive graph properties [LY91], and may be of independent

interest. We complement this with tight bounds for deterministic algorithms. These results

imply bounds on the work done in preprocessing and in query processing, in terms of the

running times of BC and BS ; in particular, the complex planner is not used for answering

queries. Section 5 summarizes results from experiments with the robot arm of Figure 1;

these suggest that most but not all points in the corresponding free space are �-good for

a reasonably large value of �. Interestingly, the resampling step seems to be helpful for

settings such as this arm. We therefore extend the de�nition of �-goodness and use it to

explain these observations: assuming the con�guration space satis�es a weaker condition

we call (�; t)-goodness for a small integer t, we give an explanation for the resampling step

similar to the analysis in Sections 3 and 4. Finally, our work is related to classic problems

in art-gallery theorems. In Section 6 we establish this connection, give some new results

related to our work, and mention some resulting open problems in art-gallery theorems.

2 Algorithms and Results

For the remainder of the paper, we say that two points p1; p2 2 F are mutually visible

when BS can connect p1 and p2. We do this primarily for brevity, and our usage is inspired

by a commonly used simple planner [KSLO94, Ove92] that checks whether the straight

line segment joining p1 and p2 is in F (equivalently, p1 and p2 are mutually visible in F);

however, our entire analysis works for any simple planner BS .

Let � 2 (0; 1] be a positive real constant which represents the failure probability we can

tolerate (this will become clear in the statements of Theorems 2.1, 2.2 and 2.3). Let c be a

�xed positive constant large enough that for any x 2 (0; 1], (1� x)(c=x ln 1=x) � x�=4. Let

s = (c=�)(ln 1=�). We �rst describe the algorithm for preprocessing.

4

The Preprocessing Algorithm:

1. Pick s points in F at random, and call these milestones.

2. Invoke BS on every pair of milestones.

3. Pick a representative milestone from each component that results.

4. Invoke the Randomized Permeation algorithm (page 10) on these representatives.

As we will see in Section 4, Step 4 probes the \edge-slots" of the roadmap, trying to

determine the structure of the connected components without expending too many calls to

BC . Note that the above algorithm does not make use of resampling; we will get to this in

Section 5. In practice Step 4 is a last resort; much if not all of the connectivity information

should have been discovered before this step.

Next, we describe the processing of a query. Given the query points q1 and q2, we

connect them to milestones m1 and m2 using BS as follows.

The Query Processing Algorithm:

1. For i = 1; 2 do:

(a) If qi can see a milestone v, set mi = v.

(b) Else Repeat log(2=
) times:

i. Choose vi uniformly at random from S(qi);

ii. If a milestone is visible from vi then set mi to be that milestone.

(c) If all log(2=
) trials fail then declare failure and halt.

2. If m1 and m2 are in the same component of G then output yes else output no.

Here
 2 (0; 1] is the allowable failure probability for a query. For each i, Step 1a can

be implemented using s invocations of BS , one for each milestone. Each trial of Step 1b

can be implemented using s invocations of BS .

Call a set of milestones M good if the volume of the subset of F not visible from any

milestones in M is at most (�=2)�(F). Intuitively, if we were to place a point source of light

at each milestone, we would like a fraction at least 1� �=2 of F to be illuminated.

Theorem 2.1 The preprocessing stage will generate a good set of milestones with proba-

bility at least 1� �.

Note that Theorem 2.1 only says that most of F is likely to be visible from some mile-

stone inM . In fact, we need a stronger property | which we may think of as permeation |

to guarantee that queries can be answered correctly. Permeation is essentially the following:

for any two milestones in the same connected region of F , we can infer this connectedness

5

from the preprocessing algorithm. Theoretically, we cannot hope to show that the use of BS

alone will provide such permeation: if F consists of two spheres each of diameter 1=2 and

the spheres touch at a single point p, we have a free space that is �-good for � = 0:5. Yet it

is extremely unlikely that BS can yield permeation in this case (if for instance BS simply

checks visibility between milestones). In such unusual con�guration spaces, the use of the

complex planner BC in Step 4 is inevitable to ensure a good overall success probability.

Theorem 2.2 Given a set S of s milestones lying in k connected components denoted

S1; . . . ; Sk, with high probability the preprocessing stage will determine the partition cor-

rectly. The expected number of invocations of BC is

O(jS1j+ 2jS2j+ � � �+ kjSkj):

With high probability the number of invocations of BC is within O(logn) of its expectation.

Theorem 2.3 Suppose that the set of milestones chosen during preprocessing is good. Then

the probability that the query processing algorithm outputs failure is at most
. When the

query processing algorithm does not output failure, it correctly answers the query.

The next two sections are devoted to proving Theorems 2.1, 2.2, and 2.3.

3 Nearly Complete Coverage

This section establishes Theorems 2.1 and 2.3. The expectation of the volume of points not

visible from any of the s randomly chosen milestones in M is

�(fp 2 F j p 62 [m2MS(m)g) = �(F)

Z
p2F

Pr[p 62 [m2MS(m)]:

The probability that a �xed point is not visible from any of the s milestones is at most

(1� �)s. Thus, the above is bounded by

�(F)

Z
p2F

(1� �)s = �(F)(1� �)s � �(F)��=4;

By the Markov inequality, we have

Pr[�(fp 2 F j p 62 [m2MS(m)g) > �(F)�=2] � �=2:

Thus with probability 1��=2 the \shadow region" not visible from any m 2M has volume

at most �(F)�=2, in which case it follows that for any p 2 F , the volume of the subset of

S(p) visible from some m 2M is at least �(S(p))� �(F)�=2 � �(F)�=2.

This establishes Theorems 2.1 and leads to Theorem 2.3: for either query point qi,

the probability that a random point chosen from S(qi) is not visible from any m 2 M is

(�=2)=S(qi) < 1=2. The probability that we fail on log(2=
) trials is less than
=2. Since

we do this for two query points, the overall failure probability is at most
.

6

4 Permeation

This section establishes Theorem 2.2. En route, we connect our problem to the decision

tree model used to study evasive graph properties, and prove some related results. The

permeation problem is the following: given a free space F containing n � (c=�) ln 1=�

milestones, determine which milestones are reachable from each other. (Note that because

of Step 2 in the Preprocessing Algorithm of page 5, nmay be much smaller than (c=�) ln 1=�.)

Given any pair of milestones the complex planner BC will decide whether they are connected.

The graph G can be computed with O(n2) invocations of BC by trying it on every pair of

points, but we show that far fewer invocations su�ce.

We work with the following abstract version of the permeation problem. The input is

a graph G(V;E) with n vertices, consisting of k disjoint cliques. The goal is to determine

this clique partition of G. The cost of an algorithm is measured by the number of entries

it examines in the adjacency matrix of G. This is the edge probe model used in the study

of evasive graph properties [LY91]. Let N(n;K) denote the non-deterministic complexity of

this problem.

Theorem 4.1 For 1 � k � n, N(n; k) = �(n+ k2).

We now characterize the worst-case deterministic complexity of this problem, denoted

T (n; k). Consider the following algorithm: by probing all edge slots incident on an arbitrary

vertex i determine the neighborhood of i, say �(i); let C1 = fig[�(i), and output C1. Now,

recur on the vertex-induced subgraph G[V n C1]. This algorithm probes O(nk) edge slots

in the worst case.

Theorem 4.2 For 1 � k � n, T (n; k) = O(nk).

The following lower bound establishes that the above algorithm is optimal. The proof

uses a non-trivial adversary argument.

Theorem 4.3 For 1 � k � n, T (n; k) =
(nk).

Proof: It will be convenient to present this lower bound argument in terms of the

complementary problem: given a graph G which is a complete k-partite graph for some k,

determine the k-partition of the vertices of G into independent sets. This problem is exactly

equivalent to the problem of determining a partition into k cliques of the complement graph

G.

We use an adversary argument to derive this lower bound. The adversary responds to

each probe for an edge by some deterministic algorithm, and its strategy is to say that edges

are present, as far as possible. The adversary chooses a value k initially, and ensures that the

graph it constructs (adaptively) is a complete K-partite graph for someK 2 fk�1; k; k+1g.

The algorithm can be provided this information without a�ecting the following argument.

7

The adversary maintains a graph H in which the edges are those edges of G which

have been probed already and for which the response was that the edge is present. When

the adversary is forced to concede that an edge (i; j) is absent in G, it then collapses the

two vertices i and j into a single meta-vertex whose neighborhood is the union of the

neighbors of i and j. Collapsing the two nodes together is equivalent to conceding that i

and j are in the same independent set of the k-partition. In general, meta-vertices can be

repeatedly collapsed into each other to obtain meta-vertices containing a large number of

\real" vertices. Finally, note that the missing edges in H correspond to edge slots in G

which have not been probed so far.

Any probe involving an edge (i; j), where i is contained in a meta-vertex i� obtained by

some earlier collapses, will be treated as referring to the edge (i�; j) since all vertices in i�

have exactly the same set of neighbors. The adversary can reveal this graphH together with

the meta-vertex structure to the algorithm without a�ecting the lower bound argument, and

so we can assume that the algorithm never makes redundant queries such as probing for an

edge between two vertices which belong to the same meta-vertex.

Initially, the graph H has n vertices but no edges or meta-vertices. At all times, the

adversary ensures the following invariants.

1. The graphH is k-colorable; in particular, it maintains a partition of the (meta)-vertices

into k non-empty color classes C1; . . . ; Ck such that each color class is an independent

set. Note that by the de�nition of H , none of the edges between the (meta-)vertices in

a color class have been probed yet, and all edge that were probed and deemed present

are between two distinct color classes.

2. For each meta-vertex, every vertex therein has had at least k�1 incident edges already

probed that were deemed to be present in G.

It is clear that the state of knowledge of the algorithm is exactly captured by the structure

of the graph H . Initially, the adversary arbitrarily partitions the vertices into k non-empty

color classes and thereby ensures that the invariants hold at the beginning.

The adversary strategy for responding to the probes made by an algorithm must preserve

the invariants. At each stage, given a probe for an edge (i; j) by the algorithm, the adversary

will respond as follows.

� If i and j belong to distinct color classes, it will say that the edge is present and will

add this edge to the graph H .

� If i and j belong to the same color class Cr, then it will check to see if there exists a

color class Ct with t 6= r such that at least one of i and j does not have neighbors in

Ct. Suppose that i does not have any neighbors in Ct, then the adversary will transfer

i from Cr to Ct and will then respond as in the previous case (i.e., say that the (i; j)

edge is present).

8

� Finally, there is the case where both i and j belong to the same component Cr and

each has at least one neighbor in every other color class. In this case, the adversary will

concede that the edge (i; j) is indeed absent and will then collapse i and j together.

It is easy to verify that �rst invariant holds since edges are always introduced between

vertices in two distinct color classes, and the color classes are always non-empty since a

vertex is collapsed or transferred from a color class only when it has at least two vertices in

it. To verify the second invariant, �rst observe that when two vertices (i; j) are collapsed,

both have at least one neighbor in the remaining k � 1 color classes. Thus, any time a

non-meta-vertex is collapsed (for the �rst time), it must have at least k � 1 incident edges

in H . Of course, either one or both of i and j may be meta-vertices, but that does not

a�ect the invariant.

We now claim that as long as there are at least k+1 (meta-)vertices in H , the algorithm

cannot be certain of the k-partition of G, or even whether there is a k-partition in the �rst

place. This is because with k+1 vertices, some color class Cr must have at least two distinct

(meta-)vertices, say i and j. The adversary can choose to make the edge (i; j) absent from

G, and thereby ensure that the current k-partition into color classes corresponds to the

correct k-partition of G. On the other hand, it could choose to decide that the vertex j is

adjacent to all other vertices (in particular, to i), and thereby obtain a complete (k + 1)-

partite graph. Thus, the algorithm cannot terminate at any stage where the number of

vertices in H exceeds k.

Furthermore, we claim that upon termination at least one edge is present in H between

each pair of color classes. Otherwise, the adversary could collapse a pair of color classes

and obtain a (k � 1)-partite graph.

We can now determine a lower bound on the total number of probes. When the algorithm

terminates, there are k (meta-)vertices in k non-empty color classes, i.e., one in each color

class. We claim that every one of the n vertices must have at least k�1 edges incident on it

which were probed and deemed to be present in G. The second invariant implies that this

is true for any vertex which participated in a collapse and is a part of some meta-vertex

when the algorithm terminates. A vertex which did not participate in any collapse must

also have at least k � 1 edges incident on it since it is the only vertex in its color class,

and there is an edge from its color class to every other class. Thus, the total number of

edges probed and deemed present in G is at least n(k � 1)=2. Also, there must be at least

n� k edges which were probed and deemed absent in G, since in going from n vertices to k

vertices at least n � k collapses need to be performed and each collapse requires a distinct

absent edge. Thus, the total number of probes must be
(nk). 2

We now give a randomized algorithm that beats the lower bound of Theorem 4.3, espe-

cially when the sizes of the k cliques di�er signi�cantly. This is crucial in our application to

9

motion planning because in practice the free space F usually consists of one large component

and a few small components.

Let w1 � w2 � � � � � wk be the sizes of the cliques in an instance G arranged in a

non-increasing order, where n =
Pk

i=1
wi. Denote by Ci the ith largest clique in G. We will

establish the following theorem.

Theorem 4.4 There is a Las Vegas algorithm which correctly determines the clique struc-

ture whose expected cost is at most

2(w1+ 2w2 + � � �+ kwk):

Furthermore, with high probability, the number of probes will be

O((w1+ 2w2 + � � �+ kwk) logn):

Observe that the worst case is when all wi are equal to n=k, in which case the expected

cost is �(nk). On the other hand when there is one giant clique and k � 1 cliques of size

O(1) the expected cost is �(n+k2), which is essentially the non-deterministic lower bound.

The randomized algorithm is derived from the deterministic algorithm described earlier.

The Randomized Permeation Algorithm:

1. Mark all vertices in V as being live.

2. Permute the vertices randomly so each is labeled by an integer in f1; . . . ; ng.

3. Initialize x 1.

4. While x < n do:

(a) �(x) ;.

(b) For y = x+ 1 to n do:

i. If vertex y is marked live

then probe the edge (x; y) in G.

ii. If edge (x; y) is probed and found present

then mark y as dead and add y to �(x).

(c) Output fxg [�(x) as being a clique.

(d) Mark x as being dead.

(e) Set x to the smallest numbered live vertex, or n if there are no live vertices left.

We omit the proof of correctness of this algorithm, and give a brief sketch of the analysis

of the expected running time. Also, the high probability bound is deferred to the �nal

version of the paper. For each edge slot, we will determine the probability that it is probed

10

during an execution of this randomized algorithm, and the sum of these probabilities over

all edge slots will give the desired bound on the expected running time.

We �rst consider the edge slots whose end-points lie in distinct cliques of G. Suppose

that an edge slot (x; y) has one end-point in a clique Ci and another in a clique Cj such that

i < j. We claim that the edge slot (x; y) is probed if and only if either x or y is assigned

the smallest (random) label from among all the vertices in Ci [Cj . The probability of this

event is exactly 2=(wi + wj). Summing over all wiwj edge slots between these two cliques

and over all choices of two distinct cliques, the expected number of probes to slots not

containing edges of G is at most

kX
j=1

X
i<j

2wiwj

wi + wj
� 2

kX
j=1

X
i<j

wj � 2
kX

j=1

(j � 1)wj:

Consider now those edge slots (x; y) with both end-points in the same clique Cj . We

claim that the edge slot (x; y) is probed if and only if either x or y is assigned the smallest

(random) label from among all the vertices in the clique Cj . The probability of this event

is exactly 2=wj. Summing over all wj(wj�1)=2 edge slots in the clique, and over all cliques

Cj , the expected number of probes to slots containing edges of G is at most

kX
j=1

wj(wj � 1)

2
�

2

wj
�

kX
j=1

wj :

Adding the two expressions together, we obtain the desired bound on the expected number

of edge slots probed by this algorithm.

5 Experiments and the Extended De�nition

The robot arm of Figure 1 was tested for �-goodness using 9000 random samples; it took 9.24

seconds to create the random con�gurations, and 1399 seconds to try connecting all pairs

using BS . (These �gures underscore that random sampling is not a signi�cant component

of the cost.) The samples with the \most" visibility could see about 0:06 (i.e., 6%) of the

remaining samples, suggesting that they are 0:06-good. As many as 3:3% of the random

samples could see no other random samples, and fully 22% could see 0:001 (i.e., 0:1%) or

less; in other words, only about 78% of the con�guration space is 0:001-good or better.

(For � = 0:001, we have (1=�) ln 1=� = 6908, which is of the same order as our number

of samples). Perhaps as a consequence, in practice the resampling step (Step 3) from our

high-level outline of Section 1 (page 2) helps in situations such as Figure 1. To address

these observations, we introduce a generalization of the notion of �-goodness and use it to

explain the success of the resampling step in situations such as the robot arm. Let us say

that a point p in free space is (�; 1)-good if �(S(p)) � ��(F), corresponding to our original

11

de�nition of �-goodness for a point. Next, we say a point p in free space is (�; t)-good

if �(fq 2 S(p) j q is (�; t� 1)-goodg) � �(S(p))=2. We say that a con�guration space is

(�; t)-good if every point in it is (�; i)-good for i � t. If a con�guration space is (�; t)-good

for a small value of t, we can give a theoretical basis for the resampling step (Step 3 in the

outline of Section 1). The main idea is that single links discovered by BS in the algorithm

of Section 2 are now simulated using t-link paths found by resampling and connecting using

BS . This leads to a generalized de�nition of a good set of milestones, and eventually to

a version of Theorem 2.3 in which the number of invocations of BS is larger by a factor

of 2t. The precise algorithm and the analysis that result will be given in the �nal version.

We are currently designing experiments to check the (�; t)-goodness of practical examples;

the experiment design is non-trivial since the parameter 2 in the above de�nition (while

su�cient for theorems) is somewhat arbitrary, and a�ects the value of t observed.

6 Related Combinatorial Results

A number of combinatorial problems concerning art-gallery theorems [O'Rou87] are related

to our work. For instance, given a simple polygon that is �-good we ask: how many guards

are necessary and su�cient to cover the entire polygon? The following would be an ideal

result: given an �-good con�guration space S, a random sample of poly(1=�) points from

the free space F will \illuminate" or cover the entire free space with high probability. In

practice it may be reasonable to assume that number of obstacle components ! is \small"

(for instance, bounded by a slowly growing function of the input size).

Conjecture 6.1 A random sample of poly(!+ 1=�) points is likely to cover an �-good free

space with ! obstacle components.

At present we only have the most rudimentary results of this type; for instance, we give

an upper bound on � so that one guard su�ces to cover an �-good simply-connected regions

in the plane. The proof, which is deferred to the �nal version, is based on a Helly-type

theorem from topology due to Moln�ar [Mol57]: for any collection of compact, simply-

connected sets in the Euclidean plane, if the pairwise intersection of the sets is compact and

simply-connected, and the triplewise intersection of the sets is non-empty, then the common

intersection of the sets in the collection is non-empty.

Theorem 6.1 Let R be a compact, simply-connected region in the plane that is 2=3-good.

Then there is a point p 2 R such that S(p) = R.

We can extend this to higher dimensions using Helly's theorem [Hel30]: for any collection

of compact, convex sets in Euclidean d-space, if the intersection of every d+ 1 sets is non-

empty, then the common intersection of the sets in the collection is non-empty.

12

Theorem 6.2 Let R be a compact, simply-connected �-good region in Euclidean d-space for

� > d=(d+ 1). Then there is a point p in R such that S(p) = R.

Various interesting (but hard) open questions remain. For instance, even the existen-

tial version of Conjecture 6.1 would be useful: given an �-good space F with ! obstacle

components, there must exist set of poly(!) + 1=poly(�) points which covers F .

Acknowledgements

We thank Don Knuth for helpful discussions.

13

Figure 1: Several con�gurations of a robot with 7 degrees of freedom. This robot arm has 7

articulated joints, and must maneuver through gaps in two walls.

References

[BL91] J. Barraquand and J.-C. Latombe. Robot motion planning: A distributed rep-

resentation approach. Int. J. Robotics Research, 10:628{649, 1991.

[Bol85] B. Bollob�as. Random Graphs. Academic Press, 1985.

[Can88] J.F. Canny. The Complexity of Robot Motion Planning. MIT Press, 1988.

[ER59] P. Erd�os and A. R�enyi. On random graphs. Publ. Math. Debrecen, 6:290{297,

1959.

14

[Hel30] E. Helly. �Uber Syteme abgeschlossenen Mengen mit gemeinschaftlichen Punk-

ten. Monatsh. Math., 37:281{302, 1930.

[HST94] Th. Horsch, F. Schwarz, and H. Tolle. Motion planning for many de-

grees of freedom | random re
ections at c-space obstacles. In Proc. IEEE

Int. Conf. Robotics and Automation, pp. 2138{2145, San Diego, CA, 1994.

[KL94a] L. Kavraki and J.-C. Latombe. Randomized preprocessing of con�guration space

for fast path planning. In Proc. IEEE Int. Conf. Robotics and Automation,

pp. 2138{2145, San Diego, CA, 1994.

[KL94b] L. Kavraki and J.-C. Latombe. Randomized preprocessing of con�guration space

for path planning: Articulated robots. In Proc. IEEE/RSJ/GI Int. Conf. In-

telligent Robots and Systems, M�unchen, Germany, 1994.

[KSLO94] L. Kavraki, P. �Svestka, J.-C. Latombe, M. Overmars. Probabilistic roadmaps for

path planning in high dimensional con�guration spaces. STAN-CS-TR-94-1519,

Stanford University, Stanford, CA, 1994.

[Lat91] J.-C. Latombe. Robot Motion Planning. Kluwer Academic Publishers, 1991.

[LY91] L. Lov�asz and N. Young. Lecture notes on evasiveness of graph properties.

Tech. Rep. CS-TR-317-91, Computer Science Dept., Princeton University, 1991.

[Mol57] J. Moln�ar. �Uber den zweidimensionalen topologischen Satz von Helly. Mat.

Lapok, 8:108{114, 1957. [Hungarian with German and Russian summaries]

[O'Rou87] J. O'Rourke. Art Gallery Theorems and Algorithms. Oxford University Press,

1987.

[O�S94] M. Overmars and P. �Svestka. A probabilistic learning approach to motion

planning. In Proc. of Workshop on Algorithmic Foundations of Robotics, 1994.

[Ove92] M. Overmars. A Random Approach to Motion Planning. Tech. Rep. RUU-CS-

92-32, Dept. Comput. Sci., Utrecht Univ., 1992.

[�SO94] P. �Svestka and M. Overmars. Motion Planning for Car-Like Robots, Using a

Probabilistic Learning Approach. Tech. Rep. RUU-CS-94-33, Dept. Comput.

Sci., Utrecht Univ., 1994.

[�Sve93] P. �Svestka. A Probabilistic Approach to Motion Planning for Car-Like Robots.

Tech. Rep. RUU-CS-93-18, Dept. Comput. Sci., Utrecht Univ., 1993.

15

