
PARTIAL INFORMATION BASED INTEGRITY CONSTRAINT

CHECKING

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Ashish Gupta

December 1994

c
 Copyright 1995 by Ashish Gupta

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Je�rey D. Ullman
(Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Jennifer Widom
(Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Hector Garcia-Molina

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Inderpal Singh Mumick

Approved for the University Committee on Graduate Studies:

iii

Abstract

Integrity constraints are useful for specifying consistent states of a database, especially in distributed

database systems where data may be under the control of multiple database managers. Constraints

need to be checked when the underlying database is updated. Integrity constraint checking in a

distributed environment may involve a distributed transaction and the expenses associated with

it: two phase commit protocols, distributed concurrency control, network communication costs,

and multiple interface layers if the databases are heterogeneous. The information used for con-

straint checking may include the contents of base relations, constraint speci�cations, updates to

the databases, schema restrictions, stored aggregates etc. We propose using only a subset of the

information potentially available for constraint checking. Thus, only data that is local to a site

may be used for constraint checking thus avoiding distributed transactions. The approach is use-

ful also in centralized systems because relatively inexpensively accessible subsets may be used for

constraint checking. We discuss constraint checking for the following three subsets of the afore

mentioned information.

� Constraint Subsumption: How to check one constraint C using a set of other constraint

speci�cations C and no data, and the knowledge that the constraints in set C hold in the

database?

� Irrelevant Updates. How to check a constraint C using the database update, a set of other

constraints C, and the knowledge that the constraints fCg [C all hold before the update?

� Local Checking. How to check a constraint C using the database update, the contents of

the updated relation, a set of other constraints C, and the knowledge that the constraints

fCg [C all hold before the update?

Local checking is the main focus and the main contribution of this thesis.

iv

Acknowledgements

A lot of people helped me make this thesis a reality. It is di�cult to do justice to the thanks I owe

my teachers and friends.

I thank Je� for his continued support, encouragement, and advice throughout my stay at

Stanford. I thank Jennifer who gave me a lot to be grateful for, both while at IBM and even more

when at Stanford. Inderpal initiated me in the ritual of doing and enjoying research at strange

hours of the night and mornings. I am fortunate to have you all as friends, advisors, inspirations,

and more. From you I have learned and gained a lot technically and personally. I also thank

Surajit, Craig, Arthur, and Hector for their advice on numerous occasions.

I worked most closely with Sanjai. It was a wonderful experience and we had a lot of fun.

His contribution to this thesis is immense. I thank Sanjai for all the discussions, (dis)agreements,

encouragement, criticism, and most of all for his friendship.

All the people in the NAIL! group and in the database group made meetings fun (yes, even

before the lunches started). My friends in the CS department, students and sta� members, turned

corridors and doorways into conversation areas, to be remembered fondly on every visit to the

department. Outside the department my family of friends and relatives made living in the US and

at Stanford a time to enjoy, a time to learn, a time to forge bonds, and a mixture of innumerable

experiences to be cherished. I thank all of them who make me wish that now was still a few years

ago. I would like especially to thank Anoop, Anurag, Dinesh, Nita, and Ramana.

I dedicate this thesis to four other members of my family for their love and support, my parents

Urmila and Dharampaul, my aunt Nirmala, and my sister Shikha.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Notation : 3

1.2 Problem Statement : 4

1.2.1 Our Approach { Use Partial Information : 4

1.2.2 Properties of Partial-Information-Based Methods : : : : : : : : : : : : : : : : 7

1.2.3 Partial Information Yields Partial Answers : : : : : : : : : : : : : : : : : : : 10

1.3 View Maintenance : 10

1.4 Application Scenario : 12

1.5 Thesis Outline : 12

2 Notation, Intuition, and Local Checking 16

2.1 Constraint Query Languages : 17

2.2 How to Use Partial Information : 18

2.2.1 Pictorial Intuition : 19

2.3 What is Local Checking? : 20

2.3.1 Pictorial Intuition for Local Checking : 21

2.4 Formalizing the Local Checking Problem : 22

2.5 Properties of Local Checking Methods : 23

2.6 Approaches for Exploring Local Checking Methods : : : : : : : : : : : : : : : : : : 26

2.7 Conjunctive Query Constraints with Arithmetic Inequalities : : : : : : : : : : : : : : 27

2.7.1 Relationship Between Conjunctive Query Containment and Local Checking : 28

2.7.2 Results on Conjunctive Query Containment : : : : : : : : : : : : : : : : : : : 29

2.7.3 Using Containment for Local Checking : 30

vi

3 Conjunctive Query Constraints 34

3.1 Characterizing the Class of IQC Constraints : 35

3.1.1 Geometric Intuition : 37

3.1.2 Building the Datalog Rules : 39

3.2 Further Restrictions on Conjunctive Query Constraints : : : : : : : : : : : : : : : : 42

3.2.1 Geometric Intuition : 42

3.2.2 De�ning LibCQCs : 43

3.2.3 Generating Datalog Rules for LibCQCs : 44

3.3 Complexity Issues : 45

3.3.1 LibCQC : 45

3.3.2 IQC : 45

3.3.3 General CQCs : 46

3.4 Arbitrary Interpreted Predicates : 46

4 More General First Order Constraints 47

4.1 Language : 48

4.1.1 Syntax : 48

4.2 Deriving Test Conditions : 50

4.2.1 Intuition : 51

4.2.2 Test Condition : 51

4.3 Evaluating the Test Condition : 53

4.4 Generalizations and Completeness of TC(C; l; �) : 55

4.4.1 Change the Order of Quanti�ed Variables �X, �Y , and �Z : : : : : : : : : : : : 55

4.4.2 Change the Position of the Conjunct L(�X) : : : : : : : : : : : : : : : : : : : 56

4.4.3 Use Multiple Symbol Mappings : 57

4.4.4 Completeness : 59

4.5 More General Constraints : 60

4.5.1 Unrestricted Quanti�ers : 61

4.5.2 Arithmetic Inequalities on the Right Hand Side : : : : : : : : : : : : : : : : : 64

4.5.3 More Complex Right Hand Sides : 64

5 Extending Local Checking 66

5.1 Deletions : 66

5.1.1 Intuition : 66

5.1.2 Language : 67

5.1.3 Test Condition for Deletions : 68

5.1.4 Modi�cations : 69

vii

5.2 Multiple Tests in Parallel : 70

5.3 Inferring Violations : 71

5.4 View Maintenance : 72

5.4.1 Update Does Not Contribute to View : 74

5.4.2 Update De�nitely Contributes to View : 77

6 Constraint Checking with No Data 78

6.1 Constraint Subsumption : 78

6.1.1 Containment Versus Constraint Subsumption : : : : : : : : : : : : : : : : : : 79

6.2 Using the Update : 81

6.2.1 Incorporating Insertions into Constraints : 82

6.2.2 Incorporating Deletions into Constraints : 84

6.3 Related Work : 87

7 Conclusions 90

7.1 Contributions : 90

7.2 Architecture of DCMS : 91

7.3 Future Work : 95

A Extending Conjunctive Query Containment 98

A.1 Preliminary De�nitions and Examples : 98

A.2 Algorithm for Conjunctive Query Containment : 101

A.3 Special Classes of Conjunctive Queries : 102

B Algorithm to Eliminate Remote Variables from Local Tests 106

B.1 Eliminating Remote Variables from TCD(C; l; �) : 109

C Formalizing Containment of Rectangles 110

C.1 Characterizing Conjunctions of Arithmetic Inequalities : : : : : : : : : : : : : : : : : 110

C.1.1 Manipulating (T) into a Desired Form : 113

C.1.2 Determining containment of 1-dimensional spaces : : : : : : : : : : : : : : : : 114

C.1.3 Eliminating Negation from the Datalog Rules : : : : : : : : : : : : : : : : : 117

C.1.4 Multiple Variables : 119

D Proofs for Theorems in Chapter 6 123

D.1 Insertions : 123

D.2 Deletions : 125

Bibliography 127

viii

List of Figures

1.1 Possible Paths to Explore for Local Checking : 9

2.1 Pictorial Representation of Illegal Database States : : : : : : : : : : : : : : : : : : : 20

2.2 Pictorial Representation for Local Checking : 21

2.3 Algorithm for locally checking constraints fC0; : : : ; Cmg : : : : : : : : : : : : : : : : 22

2.4 Possible Paths to Explore for Local Checking : 26

3.1 Constraint Classes Considered in Chapter 3 : 34

3.2 Determining Containment of Rectangles : 39

4.1 Constraint Classes Considered in Chapter 4 : 48

5.1 Locally Checking Constraints in Response to Deletions : : : : : : : : : : : : : : : : : 67

6.1 Pictorial Representation of Subsumption : 80

6.2 Classes of logical languages : 81

6.3 Classes preserved under insertion : 83

6.4 Classes Preserved Under Deletion : 85

7.1 The Distributed Constraint Management System : 92

ix

Chapter 1

Introduction

Traditionally databases have been used as an application tool that interfaces with a user, normally

human. However, databases are becoming increasingly important as a back-end utility to interface

with other applications such as analysis packages, inventory systems, CAD systems, to facilitate

interoperability, portability, and easy management of the underlying data. Many of these appli-

cations involve the use of multiple data sources that are administered and manipulated by several

persons. Changes made by one participant can potentially a�ect the functioning of many other

participants because related data may be owned and administered by multiple participants.

Thus an increasingly important functionality that databases need to provide is the ability to

ensure that related data satis�es certain consistency requirements. Referential integrity constraints

are one instance of such a consistency requirement. Traditionally, the users of the database were

responsible for ensuring that they did not make the database inconsistent. Thus, notions of con-

sistency stayed in the minds of system administrators, users, or in the application programs that

manipulated the database. In large systems this process is very cumbersome because people do not

work with the same application forever, and legacy code is di�cult to read. Thus, the consistency

conditions need to be speci�ed explicitly.

The need for imposing consistency is addressed by providing a facility to specify consistency re-

quirements as integrity constraints on the data [Bla81, BMM92, CG92, NY83]. Integrity constraints

specify those con�gurations of the data that are considered semantically correct.

EXAMPLE 1.0.1 Consider the following schema:

emp(E;D; S) % employee number E in department D has salary S

dept(D;MS) % some manager in department D has salary MS

Consider an integrity constraint I1 require that every department referenced by a tuple in the emp

relation exists in the dept relation. This kind of constraint is a referential integrity constraint. 2

A concept closely related to integrity constraints is that of views. Views provide the abstraction

1

CHAPTER 1 Introduction 2

needed to manage complex data. A view contains derived data de�ned in terms of base data.

Views are especially useful in applications that decompose a single logical structure in the original

application into multiple tuples in a relational database or multiple objects in an object oriented

database. The original structure can be de�ned as a view on top of the underlying data elements.

When an application needs some data structure, that structure is reproduced by issuing to the

underlying database a query that combines the relevant tables or objects as per the view de�nition.

The overhead introduced by using and querying a database should not a�ect the performance of

the original application.

Often, fast access to derived data is provided by computing and storing the answer to frequently

asked queries, i.e. by materializing frequently used views. A materialized view refers to a view

whose current value is stored in the database. Index structures can be built on the materialized

view. Consequently, database accesses to a materialized view may be much faster than accesses that

recompute the view. Materialized views are especially useful in distributed databases because often

the view may involve base data that physically is not at the querying site. Storing a materialized

view therefore avoids accessing remote data.

EXAMPLE 1.0.2 On the schema of Example 1.0.1 let view bad dept be de�ned as:

view bad dept(D)

select distinct D

from emp

where not exists (select D

from dept

where emp:D = dept:D)

View bad dept contains the names of all departments that have at least one employee but do not

have a salaried manager. 2

Integrity constraints and views are closely related. For instance, constraint I1 is violated if

some department occurs in a tuple of relation emp but the department does not occur in any tuple

of relation dept. In other words, I1 is violated if the view bad dept is nonempty. Given that only

the nonemptiness of view bad dept is of relevance to representing constraint I1, we could have

replaced bad dept with a 0-ary view that derives true when I1 is violated and false otherwise.

In general, the violation conditions for integrity constraints can be represented using 0-ary views,

i.e., views with no attributes. The violation condition for a constraint C is the condition satis�ed

by a database that is inconsistent with respect to C. If a database satis�es a constraint-violation

condition then the constraint is said to be violated by the database or not to hold in the database.

If the database does not satisfy the constraint-violation condition, then the database satis�es the

constraint, or the constraint holds in the database. Henceforth, we use the term integrity constraint

to refer to the violation condition for a constraint.

CHAPTER 1 Introduction 3

Both integrity constraints and materialized views have been discussed in many forms in the

literature and are well accepted as useful mechanisms for using and monitoring data and its se-

mantics. Thus, the relationship between constraints and views is important because similar issues

are of concern in making both materialized views and constraints usable in real systems.

1.1 Notation

Now we introduce some notation that will be used throughout this thesis. We will operate in the

framework of relational databases and we will use set semantics for relations, i.e., duplicates are

not retained in relations or views. We use the term EDB or Extensional Database to refer to the

base or non-derived portion of the database. IDB or Intensional Database refers to views de�ned

using the base relations. We mostly use Datalog [Ull89] notation for expressing views and integrity

constraints. For instance, view bad dept from Example 1.0.1 is de�ned in Datalog as follows:

r1: all dept(D) :{ dept(D;MS).

r2: bad dept(D) :{ emp(E;D; S) & not all dept(D).

Intuitively, the �rst rule de�nes an IDB relation (or view) all dept that contains the names of all

departments that occur in the EDB relation dept. The second rule r2 de�nes view bad dept as

containing the names of all those departments that occur in the emp relation but do not occur in

relation all dept. More formally, each rule is an if-then rule whose body appears on the right hand

side of :{ and consists of subgoals that are separated by the symbol \ & " that represents logical

AND. The head of the rule appears on the left hand of :{ . Logical negation is represented by not.

Words beginning with upper case letters are used to represent variables, and words beginning

with lower case letters represent constants, predicate names, and function symbols. We use a

predicate of the same name as a relation such that the predicate maps a tuple of the relation to true

if the tuple is in the relation, and false otherwise. For instance, dept and all dept are predicates

in rule r1. Thus, associated with each predicate is a relation that represents all the data for which

the predicate is true. We denote relations by uppercase letters, i.e., for predicate p we use the

capital letter P to denote the corresponding relation. A subgoal p(X; Y) is said to be true for a

given assignment of constants to variables (X; Y) if the \instantiated subgoal" p(a; b) is true, that is

tuple (a; b) is in relation P . P = fab;mng means that the tuples p(a; b) and p(m;n) are in relation

P . We consider only safe Datalog rules, i.e., rules where every variable in the head also occurs in

some positive subgoal in the body. In addition, every variable in a negative subgoal, for instance

variable D in subgoal \not all dept(D)" also appears in some positive subgoal in the same rule.

If a particular assignment of constants to the variables in rule r makes the body true, then the

rule derives the instantiated head. For instance, if dept(toy; 911) is true, then all dept(toy) is

derived by rule r1.

CHAPTER 1 Introduction 4

The view de�ned by rules r1 and r2 can be written in SQL as in Example 1.0.1. An SQL query

is a Select-From-Where statement in which the \select" clause speci�es the attributes that are

part of the view, the \from" clause speci�es the relations that are used in the view de�nition, and

the \where" clause speci�es the selection conditions used to de�ne the view. In this thesis we use

SQL queries with arithmetic inequalities, nested subqueries, and negated subqueries. We do not

use aggregation constructs.

An integrity constraint can be de�ned using a SQL or Datalog program that de�nes a 0-ary

view we call panic. The interpretation is that panic is satis�ed if and only if the constraint is

violated. For instance, constraint I1 can be written in Datalog by rewriting rule r2 as:

r3: panic :{ emp(E;D; S) & not all dept(D).

1.2 Problem Statement

A database that is initially consistent with respect to a set of integrity constraints can become

inconsistent if the database is updated. Similarly, materialized views can become incorrect if the

underlying database is updated. Hence, constraints need to be checked and materialized views need

to be updated in response to updates to the database. The brute-force method for updating views

and checking constraints, in response to database updates, is �rst to perform the update and then

reevaluate the constraint or recompute the view on the new database. Often incremental mainte-

nance and incremental checking are used to avoid completely recomputing the view or reevaluating

the constraint. Incremental evaluation relies on using the change to the database to limit the re-

computation process to only that part of the database that possibly interacts with the changes. We

refer to incremental evaluation as a brute-force method also because by default they use all the un-

derlying relations. When a constraint or view involves data from multiple sites, view maintenance

and constraint checking could involve a distributed transaction and the expenses associated with it:

two phase commit protocols, distributed concurrency control, network communication costs, and

multiple interface layers if the databases are heterogeneous. Even in a centralized system, accessing

more information involves more time and computation than accessing less information.

Thus, the question of interest to us is how to e�ciently maintain materialized views and how

to e�ciently check constraints.

1.2.1 Our Approach { Use Partial Information

In this thesis we propose using partial information as an alternative to the use of brute force tech-

niques for view maintenance and constraint checking. We focus primarily on integrity constraints

while keeping in mind that constraints are a special kind of views. Thus, some of the results de-

veloped for constraint checking extend to view maintenance. We explain the generalizations at the

CHAPTER 1 Introduction 5

end of the thesis. The following examples illustrate what we mean by partial information. The

examples consider only integrity constraints.

EXAMPLE 1.2.1 Recall constraint I1 that requires that every department referenced by a tuple

in the emp relation exists in the dept relation. Consider another constraint I2 that requires that if

the department referenced by a tuple t in emp does not exist in the dept relation, then the salary

�eld of t should be 0. I2 is written in Datalog as:

I2: panic :{ emp(E;D; S) & not all dept(D) & S 6=0.

We know that if constraint I1 holds, then the department attribute of all emp tuples exists in relation

dept. Thus, if constraint I1 holds then constraint I2 holds also. Thus, if we check constraint I1

successfully we need not check constraint I2.

Constraint de�nition I1 was used to infer that constraint I2 also holds. No base relation was

used. 2

EXAMPLE 1.2.2 Consider a constraint requiring that all employees in relation emp have salaries

at most 100000.

panic :{ emp(E;D; S) & S>100000.

Let tuple (b; toy; 100) be inserted into relation emp. Given that 100 6> 10000, we can infer that the

insertion does not violate the constraint if the constraint was not violated before.

The contents of the base relations emp were not used to check the constraint. Only the constraint

speci�cation and the update were used, along with the information that I1 was not violated before

the insertion. 2

EXAMPLE 1.2.3 Recall constraint I1 de�ned in Example 1.0.1. Let the constraint hold in

database DB2 where relation emp in database DB2 has only one tuple (mary; toy; 200). Let tuple

(john; toy; 100) be inserted into relation emp. Given that DB2 satis�es I1, we can infer that

department toy has a salaried manager. Therefore, the inserted tuple cannot possibly violate the

constraint if the constraint was not violated before.

The contents of the base relation dept were not used to check constraint I1. Only the old

contents of relation emp were used, along with the information that I1 was not violated before the

insertion. 2

EXAMPLE 1.2.4 Consider two constraints I3 and I4 de�ned on the employee-department database

of Example 1.0.1 respectively by rules r4 and r5.

r4: panic :{ emp(E;D; S) & D= toy & S>900.

r5: panic :{ emp(E;D; S) & dept(D;MS) & S>MS.

CHAPTER 1 Introduction 6

I3 is violated if any employee of the `toy' department earns more than 900. I4 is violated if any

employee (in any department) earns more than any manager of the same department. Consider a

database DB3 in which both constraints I3 and I4 hold.

Let tuple dept(toy; 911) be inserted into databaseDB3. This insertion does not a�ect constraint

I3 but could potentially violate constraint I4 if some employee of the toy department has salary

> 911. However, database DB3 satis�ed both the constraints before the insertion. Therefore, all

employees of the toy department have salaries at most 900, and thus no employee has salary > 911.

Therefore, constraint I4 is not violated by the new tuple dept(toy; 911).

Constraint de�nitions I3 and I4 were used to infer that the update does not violate I4 given

that neither constraint was violated before the insertion. No base relation was used. 2

The above examples illustrate constraint checking using various kinds of information. In general,

the available information can include the constraint speci�cation, the update to the database, the

updated base relations, the unchanged base relations, and other constraints. As illustrated in

the examples, often a subset of this information, i.e. partial information, is su�cient to check a

constraint.

Why are partial-information-based constraint checking methods interesting? These methods

provide alternatives to the brute-force method and often can be more e�cient. For instance, the

partial information used may be a subset of the relations used by the brute-force method, whereupon

fewer relations need to be locked and fewer disk accesses need to be made to read the relations.

In addition, these partial-information based methods can be used in scenarios where the brute-

force method cannot be used. For instance, the partial information used by our methods could be

entirely on the same site in a distributed database, and thereby all remote accesses are avoided.

In situations like disconnected networks, high-security databases, mobile computers, etc., it may

not be possible to access the other sites in the distributed system. In such situations, partial-

information-based methods are invaluable. Recall however, the idea of using partial information is

not restricted to distributed databases. The cost of accessing di�erent relations on the same site

may be di�erent because, for example, some critical data may be expensive to lock, or some data

may be periodically unavailable. Checking constraints using only the cheaper data then becomes

attractive.

Partial information could also include information about functional dependencies, schema re-

strictions, stored aggregates etc., in addition to the contents of base relations, constraints speci�-

cations, and updates. However, we do not consider such information in this thesis.

Which Subsets do we Consider?

In this thesis we consider three di�erent subsets of the set of possibly available information for

checking constraints. We refer to each of these subsets as an instance of partial information. In

CHAPTER 1 Introduction 7

particular, we consider:

� Constraint Subsumption, i.e., how to check one constraint C using a set of other constraint

speci�cations C and no data, and the knowledge that the constraints in set C hold in the

database. Constraint subsumption was illustrated in Example 1.2.1.

� Irrelevant Updates, i.e., how to check a constraint C using the database update, a set of other

constraints C, and the knowledge that the constraints fCg [C all hold before the update.

An irrelevant update was illustrated in Example 1.2.2.

� Local Checking, i.e., how to check a constraint C using the database update, the contents of

the updated relation, a set of other constraints C, and the knowledge that the constraints

fCg [C all hold before the update. Local checking was illustrated in Example 1.2.3.

Note, all the methods we consider use the Initial Consistency Assumption. This assumption

states that given a set of constraints C and an update made to the database DB, all constraints

in C hold in the database DB before the update is made.

Local checking is the main contribution of this thesis and the instance we study in most detail.

Because local checking uses one base relation it is more powerful than subsumption and irrelevant

update detection. At the same time because only the updated relation is used, constraint checking

can be done without accessing any other relations. Subsumption and irrelevant updates have

previously been studied in [BC79, BCL89, Elk90, LS93, ZO93]. We put the results of these papers

in the perspective of constraints. For the problem of irrelevant updates, we explore some new

aspects that have not been considered before.

Now we discuss some properties of partial-information-based constraint checking methods that

make them attractive and viable alternatives to brute-force techniques. These properties are of

interest in the case of most partial-information-based methods but we have explored them primarily

in the context of local checking.

1.2.2 Properties of Partial-Information-Based Methods

One property of interest is how \well" the available partial information is used. The following

example illustrates this idea.

EXAMPLE 1.2.5 Consider a database of intervals of a line and points on the line represented

by the following relations:

line(B;E) % The database has an interval from point B to point E

point(P) % Point P is in the database.

CHAPTER 1 Introduction 8

Consider constraint I5 on the above relations that requires that no point in relation point should

lie on any interval in relation line.

I5: panic :{ l(B;E) & r(P) & B�P �E.

If a database satis�es constraint I5 then all points in relation point lie outside every interval in

relation line.

We want to check constraint I5 using local checking, i.e. using only the contents of relation line

when the update to the database consists of inserting tuple (b; e) into line. Intuitively, line(b; e)

does not violate I5 if the interval [t:B; t:E] for some existing line tuple t contains the interval

[b; e]. The intuition is that if tuple t does not violate I5 then every point in relation point lies

outside the interval [t:B; t:E] and outside every subset of this interval, in particular the interval

[b; e]. Tuple t is said to cover tuple line(b; e).

However, the above method does not completely use the information available in relation line.

Why? An inserted interval could be contained in the union of two or more existing intervals but

not be contained in either of these intervals. Thus, a method that uses several existing tuples to

cover the inserted tuple is more powerful than a method that considers only one tuple. 2

We formalize how well a method uses the available information by de�ning the notion of com-

pleteness in Chapter 2. Informally, a complete method is the \most powerful" method given the

available information. That is, for a speci�ed amount of information, if any method can check a

constraint with that information then a complete method also checks the constraint. For constraint

I5, it can be proved that if all the tuples in relation line are used to cover the inserted tuple, then

the resulting method is complete.

Another desirable property of partial-information-based methods is that they should be query

based. For instance, in Example 1.2.5 a single cover tuple for the inserted tuple line(b; e) can be

found by the following Datalog query.

cover(B;E) :{ line(B;E) & B�b & E�e.

The above query can be executed using an existing database engine. Partial-information-based

techniques that are not query based may have to execute outside the database engine and may

have to either duplicate or forgo the use of indices, query optimizers, e�cient I/O strategies, etc.

that are otherwise provided by the database.

The above example would indicate that the queries that implement the partial information

method depend on the inserted, deleted, or updated tuple. However, all the local checking algo-

rithms discussed in this thesis derive the queries using parameters instead of the actual update

tuple and generate the query once, at compile time. At run time the parameters are instantiated

with the update before evaluating the query. For instance, the datalog query stated above uses the

CHAPTER 1 Introduction 9

parameters b and e from the inserted tuple line(b; e). The query is obtained without using the

actual value of the parameters b; e. The values of the parameters are obtained at run time. Thus

another property of interest is to be able to derive methods using parameters and not have to use

the actual update.

Tradeo�s

Both the existence of a partial-information-based method for checking a constraint, and the prop-

erties of the method, depend on how complicated the constraint is and on how much resources

we are willing to spend on the method. For instance, consider constraint I5 from Example 1.2.5.

If the local checking method looks at only one tuple in the relation line then the method is not

complete. However, if the method looks at the entire relation, then we do get a complete method.

The �rst method can be expressed in a nonrecursive, �rst-order language. However, the second

method needs a �rst-order + �xed-point language because the method needs to look at an arbitrary

number of tuples in relation line. On the other hand, for the referential integrity constraint I1, it

is possible to express a complete method in a �rst-order language.

@
@
@
@
@
@I

�
�
�
�
�
�
���

6
expressive
power of
constraint
language

Complete methods

Methods expressed
in more complex

languages

Methods that are not complete

Methods expressed
in simple

languages

Complete methods expressed in
simple languages

Figure 1.1: Possible Paths to Explore for Local Checking

There is a tradeo� between the properties of the partial-information-based methods, the ex-

pressive power of the constraint language, and the expressive power of the language used to encode

the constraint checking method. Thus, partial-information-based methods can be developed with

an intent to do better in terms of one metric while doing less well on another. We study these

tradeo�s for local checking methods.

The strategy for studying the tradeo�s is pictorially encoded in Figure 1.1. We pick increas-

ingly complex constraint speci�cation languages and try to derive local checking methods for these

constraint classes. Initially, when we are the stem of the \Y" in Figure 1.1, the methods obtained

are complete and expressible in fairly simple languages. When the constraints get more powerful,

we need to compromise either the completeness of the resulting methods or we need to resort to

using more powerful languages to express the methods. These two options respectively correspond

CHAPTER 1 Introduction 10

to the right and the left branches of the \Y." For constraints that use a very complex language, it

may not be possible to derive complete methods whereas it may still be possible to derive methods

that are not complete. Hence, the right branch of the \Y" goes farther. Later in this thesis we

instantiate the \Y" with speci�c constraint languages, methods and the language needed to express

them, and their properties in terms of completeness and complexity.

1.2.3 Partial Information Yields Partial Answers

One important point to note about partial-information-based methods is that they may not be

able always to check successfully a constraint. For instance, consider the constraint I2 from Ex-

ample 1.2.1 that is violated if an employee in emp whose department does not exist in dept has

salary 6= 0. Let a tuple emp(john; toy; 0) be inserted into relation emp. It is straightforward to

check that this tuple cannot violate I2 because its salary �eld is = 0. However, if the inserted tuple

was emp(john; toy; 10) then a simple inference is not possible. Now, if there was another tuple

(mary; toy; 50) in emp, we could use the reasoning of Example 1.2.3 to infer that the department

toy does indeed exist in dept and that I2 continues to hold after the insertion. The above line

of argument can be extended to illustrate that in some cases both relations emp and dept may be

required to compute the e�ect of the insertion. For instance, if (mary; toy; 50) were not in relation

emp then both relations would need to be accessed.

Thus, partial-information-based methods should be treated as the �rst line of defense for check-

ing constraints but not the last. They are possibly more e�cient than methods that use all the

available information, but are not a replacement for such methods. Constraint checking strategies

that use all the relations involved in a constraint, and are thus not partial-information based, are

discussed in [SSMJ90, BMM92]. These strategies optimize constraint checking using incremental

checking, �nite di�erencing, storing aggregate information, etc. We do not consider such methods

in this thesis.

1.3 View Maintenance

Now we brie
y consider the use of partial-information-based methods in maintaining materialized

views. Note, in the case of views the set of available information can also include the old contents

of the materialized view, in addition to the information used for constraint checking. The following

example illustrates the use of the old contents of the materialized view:

EXAMPLE 1.3.1 Consider the view bad dept de�ned in Example 1.0.1. Let the view contain

tuples (toy); (sales) for a given database DB1, i.e., departments toy and sales have at least one

employee but no salaried manager. Let tuple (john; toy; 100) be inserted into relation emp. This

new emp tuple could contribute the tuple (toy) to view bad dept. However, (toy) is already in the

CHAPTER 1 Introduction 11

view and therefore we can ignore the possible e�ect of the insertion on the view because we do not

retain duplicates in the view bad dept.

The contents of the base relations emp and dept were not used to discover that view bad dept

did not need to be updated. Only the old contents of view bad dept were used. 2

Recall, constraints are a special kind of views, namely 0-ary views. If a constraint holds in a

database, then the corresponding 0-ary view is empty; if the constraint does not hold in the database

then the view is nonempty. Using the initial consistency assumption for constraint checking is

equivalent to saying that the 0-ary view de�ned by the constraint is materialized and is known to

be empty. Thus, for checking constraints, we always essentially use the contents of the materialized

view which is always empty.

The primary problem in using partial information for view maintenance arises from the di�erence

between negative and positive inferences that can be made using partial information. A negative

inference means that an update does not contribute to a view and thus the inference process

need not go further. A positive inference means that an update does contribute to a view and

furthermore, the actual contribution can also be determined using only partial information. Often,

the actual contribution cannot be determined using only partial information. Thus, intuitively

positive inferences are more \di�cult" to make than negative inferences. The following example

illustrates the complication introduced by positive inferences.

EXAMPLE 1.3.2 Consider a view high paid emp de�ned as follows:

high paid emp(E;D;MS) :{ emp(E;D; S) & dept(D;MS) & S>MS.

That is, the view contains the name and department of an employee, and the salary of a manager

in the same department as the employee, if the employee's salary is greater than the salary of the

manager.

Let the available partial information consist of the relation emp and view high paid emp. Let

emp have tuple (john; toy; 100) and let the view have tuple (john; toy; 50). That is, department

toy has a manager with salary 50. Let tuple (mary; toy; 200) be inserted into relation emp. We

can infer, using emp and view high paid emp, that tuple (mary; toy; 50) is inserted into the view.

However, we cannot be certain that the inserted tuple does not cause any more insertions into the

view. For instance, there may be a manager with salary 125 in department toy thereby requiring

tuple (mary; toy; 125) to be inserted into high paid emp. 2

Thus, partial information based techniques are more useful in detecting irrelevant updates, that

is, updates that do not a�ect a materialized view, than for determining the exact change that

needs to be made to the view. Identifying irrelevant updates implies that fewer updates need to

be pushed through an incremental view maintenance process thereby resulting in more e�cient

CHAPTER 1 Introduction 12

view maintenance. An incremental view maintenance process computes the e�ect of the database

update, on the materialized view. The goal is to access as little of the underlying relations and

the old contents of the materialized view as possible, to compute the change to the view. The

incremental view maintenance problem is not considered in this thesis.

1.4 Application Scenario

We have explored integrity constraint checking and management in the context of a collaborative

design environment in the Civil Engineering domain [HKG+94]. The environment ties together

multiple participants like architects, structural engineers, HVAC (heating, ventilation, air condi-

tioning) experts, contractors, etc., in a distributed, heterogeneous, multiple database environment.

Together, these participants design and fabricate a facility like a power plant or a multistory build-

ing. Some stages of the project involve one participant more than others, but all stages involve

multiple participants. For instance, the architect has a larger contribution in the initial stages of

building design but the architect continues to participate and revise the design after the structural

engineers and contractors come into the picture.

In a collaborative design environment a lot of information sharing is required, and there are

also a large number of integrity constraints that need to be enforced across the shared information.

For instance, the contractor needs to know of the design decisions made by the structural engineer

and also of the design changes that take place subsequently. All the information is needed in a

timely fashion in order to avoid working on out of date designs.

The intuition of Section 1.2 that partial information based constraint checking techniques are

useful, is rati�ed in this environment. One characteristic of collaborative design in Civil Engineering

is that the participating databases are usually proprietary and thus it is of utmost importance

to maintain autonomy while tying together the various participants. The autonomy results in

occasional unavailability of some sites, higher expenses in accessing someone else's data, and often

complete inability to access remote data because of security considerations.

1.5 Thesis Outline

For developing our results, we focus on integrity constraints and �nally show how to extend our

results to materialized views. In all we consider three instances of partial information. The �rst

instance, local checking, is studied in most detail in this thesis and is discussed in Chapters 2, 3,

4, and 5. The other two instances, constraint subsumption and irrelevant updates, are studied in

Chapter 6. For each instance of partial information, we vary the expressive power of the constraint

speci�cation language and develop constraint checking methods. For local checking we follow the

strategy outlined in Figure 1.1. We vary the constraint speci�cation language and develop methods,

CHAPTER 1 Introduction 13

complete and otherwise, using di�erent classes of languages to express the methods.

Chapter 2

In this chapter �rst we give the intuition for how partial information is used to check integrity

constraints. Then we formalize the local checking problem, i.e., checking constraints using the

update to the database, the updated relation, and the constraint speci�cation. We illustrate the

issues relevant to the problem and lay the groundwork for the results that appear in subsequent

chapters.

We consider integrity constraints that can be expressed using conjunctive queries extended with

arithmetic inequalities [Klu88] and discuss how conjunctive query containment results (described in

Appendix A) are used to develop complete local checking methods. These methods are not query

based.

Chapter 3

In this chapter we consider the class of conjunctive query constraints with arithmetic inequalities

introduced in Chapter 2 and study restrictions that need to be placed on the constraint language

in order to obtain query-based local checking methods while retaining completeness. This chapter

studies points on the left branch and stem of the \Y" in Figure 1.1. First, we consider restrictions

that result in complete query-based local checking methods that are expressible in a non-�rst-order

language. Subsequently, we consider stronger restrictions on the constraint language that result in

the complete local checking method being expressible in a �rst-order language. We also discuss the

complexity of implementing the non-query-based methods derived in Chapter 2 for the unrestricted

class of conjunctive queries with arithmetic inequalities.

Chapter 4

This chapter corresponds to traversing the right branch of the \Y" in Figure 1.1. We explore

query-based methods that are not complete. We develop such methods for constraints that are

expressed in languages that are subsets of �rst order logic more expressive than conjunctive queries

with arithmetic comparison. The language is less expressive than general Datalog with negation

and arithmetic comparisons. For such constraints we give algorithms to derive methods that are

not complete but are expressible as nonrecursive queries on the accessible relation. The emphasis

of this chapter is to make the constraint language increasingly more expressive and still be able to

derive local checking methods.

CHAPTER 1 Introduction 14

Chapter 5

In this chapter we study some properties of the local checking techniques of Chapters 2, 3 and 4. We

extend local checking to consider deletions to relations that appear negatively in constraints, and for

modi�cations to relations that may occur positively or negatively. For instance, deletions from the

negatively occurring relation dept could violate referential integrity constraint I1 in Example 1.0.1.

We also study the application of local checking to materialized view maintenance.

Chapter 6

In this chapter we consider the other two instances of \partial information" and describe how

to apply existing results from conjunctive query containment and update independence to these

instances. In particular, we describe how to check integrity constraints using only other constraint

speci�cations, and how to check constraints using only the constraint speci�cation and update

made to the database. Finally, we compare the results of this thesis with other constraint checking

techniques described in the literature.

Chapter 7

In this chapter we summarize the contributions of this thesis and brie
y describe a prototype

distributed constraint management system that we designed and implemented in the context of

the \Collaborative Environment for the Design of Buildings" project. The system uses some of the

ideas described in this thesis. The details of the design and implementation can be found in [GT93,

GT94, TH93, Tiw94]. We also outline some directions for future work, based on extending partial-

information-based methods and on extending the constraint management system we have built.

Appendix A

Partial information based methods often result in a question that involves determining if one

conjunctive query is contained in another conjunctive query. In this appendix, we give necessary and

su�cient conditions for a conjunctive query with arithmetic comparison predicates to be contained

in a union of similar conjunctive queries. We also give restricted classes of conjunctive queries for

which stronger results can be stated. The results of this appendix are used in Chapter 3.

Appendix B

Partial information based techniques often produce implications of the form A) B where A and

B are sentences that use arithmetic comparison operators. In this appendix we discuss algorithms

that manipulate the above implication to derive su�cient conditions that are less expensive to

evaluate than evaluating the implication. The algorithms developed in this appendix are used in

Chapter 4.

CHAPTER 1 Introduction 15

Appendix C

Like Appendix B, this appendix also considers how to solve implications of the form A) B,

but with certain restrictions on A and B. In particular, if A and B are such that their solutions

lie in n-dimensional parallelepipeds then the implication problem is the same as determining if a

n-dimensional parallelepiped is contained in a union of other n-dimensional parallelepiped. We

discuss how to express this problem in Datalog and how to e�ciently evaluate the containment

question. The results of this appendix are used in Chapter 3

Appendix D

In Chapter 6 we describe how to check constraints using only the update and the constraint spec-

i�cation. The proposed solution reduces the speci�ed constraint into a di�erent constraint that

may be in a language that is more expressive than the language of the original constraint. In this

appendix we discuss the relationship of the language of the original constraint to the language of

the constraint generated by the reduction. The results of this appendix are used in Chapter 6.

Chapter 2

Notation, Intuition, and Local

Checking

Of the three instances of partial information considered in this thesis, local checking is studied in

most detail. Local checking involves checking a constraint using the constraint speci�cation, the

update, the updated relation, and the initial consistency assumption. This chapter introduces local

checking after introducing some preliminary concepts and notation.

All the results on constraint checking in this thesis use the following simple but useful assump-

tion:

De�nition 2.0.1 (Initial Consistency Assumption) Given integrity constraints

fC0; C2; : : : ; Cmg and an update made to the database DB, the initial consistency assumption

states that each Ci holds in the database DB before the update is made. 2

Chapter Outline

As illustrated earlier, the expressive power of the constraint language is an important factor in

deriving partial-information-based constraint checking methods. Thus, �rst we illustrate describe

possible constraint speci�cation languages in Section 2.1. Subsequently, we give a pictorial way of

thinking about checking integrity constraints using partial information.

In Section 2.3 we introduce the main problem considered in this thesis, namely local checking,

and for it we give a pictorial intuition. In Section 2.4 we formalize the pictorial understanding

developed in the previous section. In Section 2.5 we illustrate { via a set of examples { some of the

interesting properties of local checking that a�ect our study. In Section 2.6 we discuss the alternate

paths that can be followed in the e�ort to explore local checking, and we outline the paths that we

take in the remainder of this thesis using the \Y" introduced in Figure 1.1.

In Section 2.7 we de�ne the �rst class of constraints for which local checking is explored:

conjunctive query constraints with arithmetic inequalities. We discuss how to reduce the problem

16

CHAPTER 2 Notation, Intuition, Local Checking 17

of locally checking a conjunctive query constraint to a question of conjunctive query containment. In

this chapter, we use the results of Appendix A to establish the necessary mathematical background

that is required to develop local query-based methods for checking conjunctive query constraints.

The actual methods are developed in subsequent chapters.

2.1 Constraint Query Languages

A constraint query is a Datalog-like logic program with a distinguished 0-ary goal we call panic.

The interpretation is that panic is satis�ed if and only if the constraint is violated. Many possible

languages can be used to express constraint queries. Of the languages listed below, we consider a

select few when developing partial information based constraint checking methods.

1. Conjunctive queries [C88]. A conjunctive query (CQ) is a single Datalog rule that does not

use negation or arithmetic in its body. Equivalently, a CQ is a single select-project-join

statement where the selections are restricted to equating attributes with constants and joins

are restricted to be equijoins. For example, the following constraint speci�es that no employee

can be in both the \sales" and the \accounting" departments. The schema of relation emp is

as described in Example 1.0.1.

panic :{ emp(E; sales; S) & emp(E; accounting; S0).

2. Unions of CQ's [SY80]. This class can be used to express a set of constraints where each

constraint itself can be expressed as a single conjunctive query.

3. Conjunctive queries with arithmetic comparisons [Klu88]. For example, the following two

constraints together specify that every employee's salary is within a range for their department

as speci�ed by relation sal range.

panic :{ emp(E;D; S) & sal range(D;Low;High) & S<Low.

panic :{ emp(E;D; S) & sal range(D;Low;High) & S>High.

4. Conjunctive queries with negated subgoals [LS93]. For example, the following query requires

that every employee in relation emp have health insurance. insured(e) says that employee e

has health insurance.

panic :{ emp(E;D; S) & not insured(E).

5. Other combinations of (2) through (4), i.e., CQ's or unions of CQ's, with or without arithmetic

comparisons and with or without negated subgoals.

6. Nonrecursive Datalog, i.e., when intensional relations could be used. Also, we could consider

nonrecursive Datalog extended with arithmetic and with negation. For example, the following

CHAPTER 2 Notation, Intuition, Local Checking 18

set of rules speci�es a constraint that is violated whenever an employee with salary greater

than 10000 is not in any department.

panic :{ emp(E;D; S) & not all dept(D) & S>10000.

all dept(D) :{ dept(D;MS).

7. Recursive Datalog, including cases with or without arithmetic comparisons, with or without

negated subgoals, and with or without intensional relations. For instance, the following

constraint requires that no employee is their own boss.

panic :{ boss(E;E).

boss(M;E) :{ emp(E;D; S) & manager(D;M).

boss(B;E) :{ boss(B;B0) & boss(B0; E).

8. All of the above with arbitrary interpreted functions such as functions that compute volume,

distance, etc.

We assume that every constraint query includes exactly one rule with panic in the head. Any

constraint with multiple panic rules can equivalently be expressed as multiple constraints, as

illustrated in the salary range example in item 3 above. Thus, each constraint can be viewed as a

program that de�nes the view panic such that when the constraint is violated, the corresponding

program derives panic.

2.2 How to Use Partial Information

An integrity constraint restricts the possible legal states of the database to a subset of all the

possible states of the database. That is, for every non-trivial integrity constraint, some databases

will not be legal. For instance, consider integrity constraint I1 from Example 1.0.1. The constraint

prohibits all those states of the database where an employee is in a department that does not appear

in the dept relation. Thus, if we knew that relation emp has tuple (a; toy; 200) then we can infer

that all legal states of the database, i.e., databases that do not violate constraint I1, have at least

one tuple of the form dept(toy;ms) where ms is some constant. Thus, all databases that are legal

with respect to I1 and where relation emp has tuple (a; toy; 200), satisfy the following existentially

quanti�ed statement:

9MS : dept(toy;MS).

When all the relevant base data is available then full information is available about the database. If

only partial information is available then even though the contents of the database are not known,

often it is possible to infer certain facts about the unknown parts of the database given that the

CHAPTER 2 Notation, Intuition, Local Checking 19

database satis�es some constraints. The above paragraph illustrates such an inference about the

unknown relation dept that is made using the tuple emp(a; toy; 200) and the initial consistency

assumption. These facts can be expressed in some logical or geometric language and furthermore,

the facts can be used to infer the e�ect of database updates on constraints.

It is not possible always to represent easily or to infer facts about the unknown parts of the

database using some partial information. For instance, consider the constraint that requires the

average salary of all employees in the \toy" department to be less than the salary of each manager

of the \toy" department. If the available partial information consists of the initial consistency

assumption and the contents of the relation emp, then we can conclude that the salary of a manager

in department toy is at least as much as the minimum salary of any employee in department toy and

at most as much as the maximum salary of any employee in department toy. Such a fact possibly

can be used for checking the constraint if a new manager tom is introduced into department toy.

If tom has salary more than the maximum salary of an employee in toy then the constraint holds.

Aggregation capabilities are needed to express or use the inferred knowledge about salary values in

relation dept. In general, the language used to express constraints impacts the kind of facts that

can be asserted about the unknown portion of the database using the available partial information.

A more expressive language may allow more powerful assertions to be made but may make the

inference process correspondingly more di�cult and expensive. These issues come up many times

in the subsequent chapters and are addressed for the constraint classes considered by us.

2.2.1 Pictorial Intuition

Now, we introduce a pictorial way of representing available partial information and the correspond-

ing states of the unknown portions of the database. The representation is informal and is useful

in explaining the partial-information-based constraint checking results that we develop in this and

subsequent chapters. We divide the picture into two parts: the left side contains the available

information and the right side contains the unknown parts of the database. For instance, in Fig-

ure 2.1 the known information consists of the constraint I1 and the relation emp that has a single

tuple emp(a; toy; 200). The rectangle DR represents the set of all possible states for the inaccessible

part of the database. A particular inaccessible database state corresponds to a point in the box

DR. Within this rectangle we use a circle to specify the illegal states of the database with respect

to the available information. Thus, in Figure 2.1 the circle S represents all those database states

that violate constraint I1 given tuple (a; toy; 200) in relation emp. For a given constraint and par-

tial information, the initial consistency assumption implies that the actual state of the unavailable

database lies outside the set of illegal states.

We refer to the above �gure later in this chapter and also in subsequent chapters.

CHAPTER 2 Notation, Intuition, Local Checking 20

RD

S

Available Information

constraint I 1

Unknown Information

emp(a,toy,200)

Figure 2.1: Pictorial Representation of Illegal Database States

2.3 What is Local Checking?

Local checking involves checking a constraint using the constraint speci�cation, the update, up-

dated relation, and the initial consistency assumption. Consider the set of constraints C =

fC0; C1; C2; : : : ; Cmg, and suppose that the predicates in these constraints are p0; p1; p2; : : : ; pk.

We assume that the update to the database consists of inserting a single tuple into relation P0. We

want to check the constraints using the old contents of P0, the tuple inserted into P0, the set C,

and the initial consistency assumption for the set of constraintsC. For convenience of presentation,

we refer to relation P0 as L (for the \local" or accessible relation), and we let the other relations

be R1; R2; : : : ; Rn (for the \remote" or inaccessible relations). We use the symbol �R to refer to the

set of relations fR1; : : : ; Rng. Because the partial information consists of only the local relation,

we refer to this instance of partial-information-based constraint checking as local checking. The

following example illustrates local checking for referential integrity constraint I1.

EXAMPLE 2.3.1 Recall the employee-department database schema from Example 1.0.1 and the

referential integrity constraint I1 that requires every department referenced by a tuple in the emp

relation to exist in the dept relation.

Let tuple emp(john; toy; 100) be inserted into relation emp. If emp contains a tuple emp(mary; toy; 200)

and the database satis�es integrity constraint I1 before the tuple is inserted, then we can infer that

the inserted tuple does not violate constraint I1 using the intuition from Example 1.2.3. The

argument is that if I1 holds before the insertion then relation dept has a tuple (toy;ms), for

some constant ms, and this tuple ensures that inserted tuple emp(john; toy; 100) does not violate

constraint I1.

Conversely, if a tuple dept(toy; 300) is deleted and if relation dept has another tuple dept(toy;ms),

for some constant ms 6=300, then integrity constraint I1 can be veri�ed without remotely reading

relation emp. 2

CHAPTER 2 Notation, Intuition, Local Checking 21

We often refer to the local relation as the accessible relation and we refer to the remote relations

as inaccessible.

2.3.1 Pictorial Intuition for Local Checking

RD

2S

0S

1S

t2t1

L t0

Constraint C

Initial Consistency Assumption

Figure 2.2: Pictorial Representation for Local Checking

Figure 2.2 considers the database with respect to a constraint C and shows the information relevant

to C. Relation L, constraint speci�cation C, and the initial consistency assumption are available

and therefore are on the left hand side of the �gure. The point t0 represents an existing tuple t0

in the accessible relation L. Points t1 and t2 represent tuples to be inserted into relation L. The

box DR on the right represents all the possible states of inaccessible relations �R. We describe the

intuition for checking constraint C using the initial consistency assumption and the contents of the

accessible relation L when a tuple is inserted into L. Deletions are discussed later as they do not

add much to the intuition.

Circle S0 represents all possible states of �R that violate constraint C with tuple t0, i.e., the set

of illegal remote database states with respect to C given t0. The initial consistency assumption

says that the current database state does not violate constraint C. Therefore, the current state of

�R lies outside circle S0.

Now suppose tuple t1 is inserted into relation L. Circle S1 represents all the illegal states of �R

with respect to constraint C given tuple t1. Circle S1 is contained in circle S0. Thus, all states of

�R that violate constraint C with tuple t1 also violate C with tuple t0. Given that tuple t0 is in

L and that the current state of �R does not violate C with t0 (initial consistency assumption), we

CHAPTER 2 Notation, Intuition, Local Checking 22

infer that the current state of �R lies outside circle S0 and therefore outside circle S1. Hence, the

current state of �R does not violate constraint C with tuple t1. In this case, we say that the tuple

t0 \covers" the inserted tuple t1.

Now suppose tuple t2 is to be inserted into relation L, which contains tuple t0. Circle S2

represents all the illegal states of �R with respect to constraint C given tuple t2. Circle S2 is not

contained in circle S0. Thus, tuple t0 cannot be used to conclude that the current state of �R does

not violate C with tuple t2.

Local checking focuses on �nding cover tuples for the inserted tuple such that the cover tuples

guarantee that the inserted tuple does not violate the constraint.

2.4 Formalizing the Local Checking Problem

We formalize the constraint checking strategy outlined above in the following algorithm. That

is, we determine how to use the initial consistency assumption for a set of constraints C =

fC0; C1; : : : ; Cmg each of which uses some subset of the relations fL;R1; : : : ; Rng, tuple t inserted

into relation L, and the contents of relation L, to check the constraints Ci 2 C.

(1) for i 2 0 : : :m do
(2) if 8 �R : Ci(L [ftg; �R)) C(L; �R) then okay(Ci) true else okay(Ci) false

Figure 2.3: Algorithm for locally checking constraints fC0; : : : ; Cmg

Ci(L; �R) denotes the result of evaluating constraint Ci on a particular instance of relation L

and on an instance of the set of relations �R. C(L; �R) denotes the union of the results of evaluating

constraints fC0; C1; : : : ; Cmg on a particular instance of relation L and an instance of the set of

relations �R. The algorithm checks each constraint Ci when a tuple t is inserted into L, using the

old contents of relation L. The algorithm checks if any constraint in C is violated with relation

L and �R whenever Ci is violated with the relation L [ftg. If the implication of line (2) is true,

then we can conclude that a violation of Ci with L [ftg implies that some constraint Cj 2 C was

violated before inserting t, which contradicts the initial consistency assumption. The implication

has the set of remote relations �R universally quanti�ed. Thus, it does not use the contents of the

remote relations and uses only the contents of L. Thus the implication in line (2) represents the

check for determining if the illegal states of �R obtained using the tuples in relation L [ftg and

constraint Ci, are contained in the union of the illegal states of �R obtained using every existing

tuple in L and each constraint in set C. If the implication is true, then we can conclude that the

new tuple cannot possibly violate any constraint in C without contradicting the initial consistency

assumption.

Thus, the question of interest is whether the implication of line (2) in Figure 2.3 can be solved at

CHAPTER 2 Notation, Intuition, Local Checking 23

all, and if the implication can be solved then can it be solved e�ciently and what are the desirable

properties of the solution? First we discuss some of the properties that are of interest.

2.5 Properties of Local Checking Methods

Being Query based

Inferring the truth of the implication in line (2) could be expensive if we need to go through a

complicated inference procedure. Therefore, we are especially interested in query-based methods

for checking the implication. A local constraint checking method is query-based with respect to

a query language Q if the checks can be performed by executing queries in Q over the available

relation L. That is, a query-based method derives a query on the accessible local relation L such

that when this query has a nonempty answer, the implication of line (2), Figure 2.3, can be inferred

to be true. We refer to this query on L as the local test. The following example illustrates a local

test, with respect to the language SQL or nonrecursive Datalog with equality.

EXAMPLE 2.5.1 Consider the scenario of Example 2.3.1. When tuple (john; toy; 100) is inserted

into emp, an existing tuple in emp with department attribute value toy is su�cient to infer that the

new emp tuple does not violate the referential integrity constraint I1. The following query captures

this logic for an arbitrary parameterized inserted tuple �.1 If the query derives the fact ins ok

then we can conclude, based on the contents of emp, that � does not violate constraint I1.

ins ok :{ emp(E;D; S) & D = �:D

The above query encodes the reasoning of Example 2.3.1. 2

The obvious advantage of a query-based approach is that it can rely on an existing query

processor to �nd e�cient algorithms for realizing partial information based constraint checking.

A method that is not query-based might execute an algorithm directly on large amounts of data

and may need to duplicate a lot of the data accessing functionality already available to a query

processor. Query based methods can utilize the existing indices, query optimizers, and other

sophisticated mechanism designed for e�cient query execution. However, the use of a query on the

database does not guarantee the most e�cient algorithm. Thus, there may be non-query-based

methods that are more e�cient than any query-based method, but the non-query-based methods

may require specialized inference engines, as illustrated in Example 2.5.2 below. These special

methods may require enhancing the basic functionality of the database. Thus, we continue to

emphasize query-based methods because these do not require enhancing the basic functionality of

the database, although we do consider non-query-based methods as well.

1We use � to represent the parameterized insertion and t to represent an actual insertion. A parameterized tuple
is a tuple that consists of parameters and not actual values and thus captures the form, and not the content of the

insertion.

CHAPTER 2 Notation, Intuition, Local Checking 24

Completeness

Another interesting property of local constraint checking methods is the completeness of the meth-

ods. Example 1.2.5 introduced this idea and the following example develops it further.

EXAMPLE 2.5.2 Consider the two relation database introduced in Example 1.2.5: relation line

wherein each tuple represents an interval, and relation point wherein each tuple represents a

point. We assume that relation line is local (or accessible) and that relation point is remote (or

inaccessible). To emphasize the local/remote distinction, we use relation L to represent line and

relation R to represent point. Recall constraint I5 from Example 1.2.5 that says that no point in

relation point (R) can lie in an interval that is in relation line (L). The constraint is referred to

as the forbidden intervals constraint and can be stated as follows.

panic :{ l(B;E) & r(P) & B�P �E.

That is, if some point P in the remote relation is in some interval [B;E] in the local relation, then

constraint I5 is violated.

Let relation L have tuple (3; 6) and let the initial consistency assumption be true, i.e., constraint

I5 holds. Let tuple (4; 5) be inserted into L. We can infer that l(4; 5) does not violate I5 by

virtue of tuple (3; 6) because the forbidden interval corresponding to the existing tuple contains

the forbidden interval [4; 5]. Let us see how this inference is represented as a nonrecursive Datalog

query (assuming parameterized tuple � is inserted into relation L):

(A): ins ok :{ l(B;E) & �:B � B & �:E � E.

Thus, if query (A) derives ins ok for an inserted tuple t, then we can infer that I5 continues to hold

after the insertion of t into L. However, query (A) does not take full advantage of the information

in L. Let relation L have tuples (3; 6) and (5; 10) and let the initial consistency assumption be true.

Let tuple (4; 8) be inserted into L. We can infer that l(4; 8) does not violate I5 by virtue of tuples

(3; 6) and (5; 10) because the forbidden intervals corresponding to the two existing tuples together

contain the forbidden interval [4; 8]. Query (A) would not have made this inference because (A)

uses only one existing tuple at a time. Thus, query (A) is not complete.

In terms of Figure 2.2, query (A) looks for one existing tuple such that its circle of illegal states

contains the circle of illegal states for the inserted tuple. However, it may be the case that the

union of the circles for multiple existing tuples together contain the circle of illegal states for the

inserted tuple. Let us see how this more involved inference is represented as a query (assuming

parameterized tuple � is inserted into relation L):

(a): l union(B;E) :{ l(B;E) % Each existing tuple in L gives a forbidden interval.

(b): l union(B;E) :{ l union(B;X) & l union(Y;E) & X�Y % Combine intervals.

(c): ins ok :{ l union(B;E) & �:B � B & �:E � E % Forbidden interval for

CHAPTER 2 Notation, Intuition, Local Checking 25

% inserted tuple is contained in the union of forbidden intervals for existing tuples.

It can be formally proven that the recursive Datalog rules (a), (b), and (c) capture the information

available in relation L \completely." The above query cannot be represented in a language that

lacks recursive or iterative constructs. Note, even though query (A) does not use the available

information fully, query (A) is correct and is a su�cient local check.

We also make an observation regarding the e�ciency of query based methods. The Datalog

rules (a), (b), and (c), that constitute a query-based complete local constraint checking method

for the forbidden interval constraint, compute the transitive closure of relation L in a naive way.

Alternatively, we could use a matrix-multiplication based algorithm that is especially tuned to

e�ciently compute transitive closure. This method may not be query based but could be more

e�cient than the Datalog rules. 2

Formally, completeness of a local constraint checking method is de�ned as follows:

De�nition 2.5.1 (Constraint Checking Completeness) Let fC0; C1; : : : ; Cmg be a set of con-

straints over predicates l; r1; : : : ; rn, let tuple t be inserted into relation L, and let M be a method

that checks a constraint Ci (0 � i � m) using only t, L, and the speci�cations of fC0; C1; : : : ; Cmg.

MethodM is complete if wheneverM determines that Ci may be violated, there exist some relations

R1; : : : ; Rn for predicates r1; : : : ; rn such that: (1) no constraint in fC0; C1; : : : ; Cmg is violated by

R1; : : : ; Rn and L; (2) Ci is violated by R1; : : : ; Rn and L [ftg. 2

That is, a method is complete if, whenever the method cannot determine that a constraint

holds, then there is some value of the inaccessible information that together with the value of

the accessible information, violates the constraint with insertion t. Informally, a complete method

\does the best it can with the information it has."2 We use the term complete local test to refer

to the local query produced by a query-based method that is complete. Example 2.5.2 illustrates

many points:

� Some query-based methods are \su�cient" and not \complete."

� A complete query-based constraint checking method may need a more expressive query lan-

guage to express the resulting query than the language needed to represent the query produced

by a reasonable su�cient method. Thus, it may not be possible to utilize a complete method

in a system because the language supported by the system is not expressive enough.

� Complete methods may be more expensive to evaluate than su�cient ones. For instance,

nonrecursive query (A) may be less expensive to execute than the recursive query expressed

using rules (a), (b), and (c).

2The completeness of a method is impacted by additional information about the database, like functional depen-
dencies, restrictions on domains of attributes etc. Using extra information allows more powerful methods, rendering

otherwise complete methods incomplete.

CHAPTER 2 Notation, Intuition, Local Checking 26

� Methods that are not complete may be so to \di�erent degrees." For instance, in Exam-

ple 2.5.2 consider a method that uses two existing intervals to check if the inserted interval

does not violate the forbidden interval constraint. Using two tuples is better than using just

one but not as good as using an arbitrary number of tuples.

The algorithm in Figure 2.3 is a complete local checking method assuming that the implication

in line (2) can be solved. If the constraint is expressed in a language for which implication is

undecidable, then it is not possible to have any complete method for such constraints. An example

of such a language is Datalog with recursion. Even if the implication is undecidable in general,

for some cases it may be possible to infer that the implication holds, thereby yielding su�cient

methods. Thus, it is of interest to determine if complete methods exist for given constraints or if

only su�cient methods exist, and in each case their properties need to be studied.

2.6 Approaches for Exploring Local Checking Methods

Our strategy is to consider increasingly expressive constraint speci�cation languages and derive local

checking methods for them. We follow the path outlined by Figure 2.4 which is an elaboration of

the \Y" originally introduced in Figure 1.1.

@
@
@

@
@

@
@

@@I

�
�
�
�
�
�
�
�
�
�
���

t CQ constraints, CQ tests

t
LibCQC constraints, CQ tests

tIQC constraints, Recursive
Datalog tests

t
CQ+Arithmetic+

negated EDB constraints,
non-query-based tests

t
CQ+Arithmetic inequality constraints
- CQ tests
- Union of CQs tests

t CQ+Arithmetic+Negated EDB
constraints, CQ tests

t
CQ+Arithmetic+limited

negated IDB constraints,
CQ tests

Complete methods

Methods that are not complete

Figure 2.4: Possible Paths to Explore for Local Checking

Informally, the stem of the \Y" represents constraint classes for which complete local checking

methods exist and the local query produced by these methods is expressible in a \simple" language

such as conjunctive queries. As we consider more expressive constraint languages, we have to

choose between complicated complete methods and simpler su�cient methods. We explore the two

alternative routes as illustrated by the left and right branches of the \Y" in Figure 2.4.

� Retain Completeness. This route corresponds to the left branch of the \Y." The language

used to express the local query derived by the complete methods may be quite complex. In

CHAPTER 2 Notation, Intuition, Local Checking 27

some cases, we may not have a query based test.

� Sacri�ce Completeness. This route corresponds to the right branch of the \Y." Even for

constraint classes that do have complete query based methods, if the language used to ex-

press the local query is restricted, then completeness may be compromised as illustrated in

Example 2.5.2. Additionally, if the implication of line (2) is undecidable, then no complete

local checking method will exist but su�cient methods may still exist. Thus it is possible to

go further vertically on this branch than on the left branch of the \Y."

Recall, going up vertically in Figure 2.4 corresponds to considering more expressive constraint

languages. The �rst class of constraints that we consider, are conjunctive query constraints with

arithmetic inequalities. For this class of constraints, we show how the local checking problem can

be reduced to the query containment problem. Using this reduction and the results of Appendix A,

we convert the implication problem on line (2) of Figure 2.3 to an implication It that involves only

arithmetic inequalities. Thus, we build the necessary background for developing local queries for

checking conjunctive query constraints that use arithmetic inequalities.

Chapter 3 discusses how to convert the resulting arithmetic implication It to a complete local

query on L, for two restricted classes of conjunctive queries with arithmetic inequalities. The

chapter also discusses how to evaluate implication It using a non-query-based method but while

retaining completeness [Dav87, SKN89]. The results of Chapter 3 correspond to the stem of the

\Y" and the points labelled IQCs and LibCQC (we formally de�ne these classes in Chapter 3).

The point on the stem \CQ constraints" is a special case of LibCQC constraints.

Subsequently, in Chapter 4 we give up completeness and develop su�cient queries for checking

the general class of conjunctive queries with arithmetic inequalities. Then we extend the con-

straint language to a superset of conjunctive queries and develop query-based methods that are not

complete. Thus, Chapter 4 considers the right branch of the \Y" in Figure 2.4.

The following sections of this chapter provide the groundwork for the results in Chapters 3

and 4.

2.7 Conjunctive Query Constraints with Arithmetic Inequalities

In the remainder of this chapter, and in the next chapter, we consider constraint queries of the

following form:

C: panic :{ l(�X) & r1(�Y 1) & : : : & rn(�Y n) & c1 & : : : & ck

where relation L is accessible and relations R1; : : : ; Rn are inaccessible. l; r1; : : : ; rn are referred to

as ordinary predicates and ci is a arithmetic comparison of the form X op Y , where each of X and

Y is either an argument of some ordinary predicate or a constant, and op is one of <;>;�;�;=; 6=.

CHAPTER 2 Notation, Intuition, Local Checking 28

Predicate l has only one occurrence in the constraint. The remote predicates can appear multiple

times. All shared and constant value arguments are represented explicitly by equalities in the

ci's. Therefore, no argument is repeated in any of the ordinary predicates. The conjunction of

the arithmetic comparisons is referred to as I(C) and the conjunction of the ordinary predicates

is referred to as O(C). We refer to constraint queries of the above form as Conjunctive Query

Constraints or CQCs.

We use the term query containment as de�ned in [Ull89]. A query Q1 is contained in another

query Q2 if for every database the set of answer derived by Q1 is a subset of the answers derived

by Q2.

2.7.1 Relationship Between Conjunctive Query Containment and Local Check-

ing

We use the forbidden intervals constraint I5 from Example 2.5.2 to show that local checking can

be cast as a query containment problem. Note, the violation condition for I5 can be stated as a

CQC.

EXAMPLE 2.7.1 Constraint I5 from Page 24 is violated when the following rule derives panic.

E: panic :{ l(X; Y) & r(Z) & X�Z & Z�Y .

where l is line and r is point. Example 2.5.2 argued that if relation L had tuples (3; 6) and (5; 10),

then inserting tuple (4; 8) into L did not violate constraint I5 if the constraint was valid before

the insertion. Let's look at this inference from a query containment perspective. The tuples of

the inaccessible remote relation R that violate constraint I5 given tuple l(4; 8) satisfy the following

partially instantiated conjunctive query:

A: panic :{ r(Z) & 4�Z�8.

That is, all tuples r(Z) such that Z lies in the interval [4; 8] violate I5 given tuple l(4; 8). Similarly,

the values of Z that violate I5 using tuples (3; 6) and (5; 10) satisfy the partially instantiated

conjunctive queries A1 and A2:

A1: panic :{ r(Z) & 3�Z�6.

A2: panic :{ r(Z) & 5�Z�10.

It is the case that A � A1 [A2. That is, whenever conjunctive query A derives panic, one of A1

or A2 also derives panic. The initial consistency assumption tells us that neither A1 or A2 derive

panic. Therefore, we can conclude that A does not derive panic either and thus the inserted tuple

(4; 8) does not violate constraint I5. 2

In terms of Figure 2.1, the partially instantiated query A obtained by instantiating the constraint

query C with tuple l(4; 8) for relation L is satis�ed by every illegal state of the inaccessible data.

CHAPTER 2 Notation, Intuition, Local Checking 29

The partially instantiated query A represents the illegal circle of states corresponding to tuple

l(4; 8). The following de�nition formalizes how to represent the illegal states of the inaccessible

data using a partially instantiated conjunctive query.

De�nition 2.7.1 (Red(t; l; C)) Consider a CQC C as de�ned in Section 2.7 and let t be a tuple in

relation L for predicate l. The reduction of C by tuple t, Red(t; l; C), is the partially instantiated

CQC obtained by instantiating with tuple t the subgoal g that uses predicate l, then replacing all

occurrences of the variables in g by the constants they get uni�ed with, and �nally eliminating g.

2

Note, in Red(t; l; C) the constants introduced by t are propagated to the arithmetic comparisons

I(C) in C. Thus, Red(t; l; C) characterizes those states of the remote relations that violate CQC C

given L = ftg. This characterization does not apply if the local predicate appears multiple times.

The following example illustrates when Red(t; l; C) does not characterize the illegal states of the

remote database given tuple t.

panic :{ l(X; Y) & l(Y; Z) & r(X;Z).

Predicate l has two occurrences and the constraint could potentially be reduced twice by tuple t:

once for each occurrence of l. However, each of the reductions would regard one occurrence of l

as being remote. Thus, useful information might be lost and the completeness of local checking

could be compromised. Instead, we assume that if a local relation occurs multiple times, we merge

all the occurrences into one new relation and work with this new relation as the local relation.

Thus, despite the requirement that l occur only once in the constraint, the language we consider

has the same expressive power as conjunctive queries with arithmetic constraints, albeit with some

preprocessing.

2.7.2 Results on Conjunctive Query Containment

Before we build on Example 2.7.1 to show how conjunctive query containment is used for integrity

constraint checking with partial information, we state some results on CQC containment. The

results stated below are special cases of more general results stated and proved in Appendix A.

De�nition 2.7.2 (Symbol Mapping) A symbol mapping h is a function from a set of symbols

S to another set of symbols T ; i.e., for each symbol a 2 S, h(a) is a symbol in T . Consider two

CQCs q1 and q2 and let S be the set of variables in q1. Let h be a symbol mapping on S where

h(X) can be an arbitrary term and h is the identity mapping on predicate names, constants, and

function symbols. h is a symbol mapping from q1 to q2 if h turns every subgoal in O(q1) into some

subgoal in O(q2). 2

CHAPTER 2 Notation, Intuition, Local Checking 30

EXAMPLE 2.7.2 Consider the CQCs q1 and q2.

q1: panic :{ q(X; Y) & r(U; V) & r(W;Z) & W =V & U=Z.

q2: panic :{ q(X; Y) & r(U; V) & U <V .

The set of symbol mappingsM from q2 to q1 is:

1. X ! X; Y ! Y; U ! U; V ! V .

2. X ! X; Y ! Y; U ! W; V ! Z. 2

The following two theorems on the containment of a CQC in a (set of) CQC(s) are special cases of

Theorems A.2.1 and A.2.2 respectively, stated in Appendix A.

Theorem 2.7.1 Suppose q1 and q2 are two CQCs that use the arithmetic comparisons <;>;�;�

;=; 6=. Let M be the set of symbol mappings from CQC q2 to q1. Then q1 � q2 if and only if

8 �X 9h
in M : [I(q1)) h(I(q2)] (�X is the set of variables in q1). 2

Proof: Special case of Theorem A.2.1.

Theorem 2.7.2 Suppose fq1; : : : ; qmg are CQCs that use the arithmetic comparisons<;>;�;�;=.

Let q be another CQC of the same form. LetMi be the set of symbol mappings from CQC qi to q.

Then q � fq1 [q2 [: : :[qkg if and only if 8 �X 9qi 9hin Mi
: [I(q)) h(I(qi)]. 2

Proof: Special case of Theorem A.2.2.

Theorem A.2.2 that addresses the containment of CQs with arithmetic inequalities is also stated

in [ZO93]. Our results were developed independently from the results in [ZO93].

2.7.3 Using Containment for Local Checking

In this section we discuss how to use conjunctive query containment for realizing the algorithm for

partial-information-based constraint checking in Figure 2.3. The algorithm checks the implication

in line (2), i.e., 8 �R : Ci(L[ftg; �R)) C(L; �R). Example 2.7.1 illustrates this case when C contains

only constraint I5. In this section we consider the general case when C contains multiple constraints

and show how the above implication can be evaluated using conjunctive query containment. The

following lemma formalizes the intuition of the example and considers only one constraint in C.

Lemma 2.7.1 Let C be a CQC and let t be a tuple inserted into relation L for predicate l. Assume

C holds before the insertion. Then, 8 �R : C(L [ftg; �R)) C(L; �R) if and only if Red(t; l; C) is

contained in
S
s in L

Red(s; l; C). That is, the complete local method for guaranteeing that constraint

C holds after inserting t into L checks whether Red(t; l; C) is contained in
S
s in L

Red(s; l; C). 2

Proof: The lemma follows from the following observations:

CHAPTER 2 Notation, Intuition, Local Checking 31

1. C(ftg; �R) derives panic for a particular set of relations �R if and only if Red(t; l; C) derives panic with

�R. This observation holds because C has only one occurrence of predicate l and this occurrence is not

negated (follows from results in [Nic82]).

2. C(L[ftg; �R) � [C(L; �R) _C(ftg; �R)]. This observation holds because C has one non-negative occur-

rence of predicate l (follows from results in [Nic82]).

3. C(L [ftg; �R)) C(L; �R) is equivalent to C(ftg; �R)) C(L; �R). This observation is obtained from

Observation 2 and the logical equivalence (A _B)) A if and only if B) A.

Lemma 2.7.1 can be generalized to the case when there are multiple constraints in C.

Theorem 2.7.3 Let fC0; C1; : : : ; Cmg be CQCs, and let t be a tuple inserted into relation L for

predicate l. Assume each Ci holds before the update. The complete local method for guarantee-

ing that constraint C0 holds after inserting t into L checks whether Red(t; l; C0) is contained in
S
m

j=0

S
s in L

Red(s; l; Cj). 2

The results of Theorem 2.7.2 can be used to solve the containment question posed by Theorem 2.7.3

because Red(t; l; C0) is a CQC. If we map the containment question of Theorem 2.7.3 to the state-

ment of Theorem 2.7.2, we see that Red(t; l; C0) corresponds to query q in Theorem 2.7.2, and each

Red(s; l; Cj) corresponds to some qp in the set fq1; : : : ; qkg in Theorem 2.7.2.

The question that remains to be answered is how to decide the containment question q �

fq1[q2[: : :[qkg. Theorem 2.7.2 states the information needed for the evaluation. This information

is listed below along with some observations that hold in the case of Theorem 2.7.3.

1. Sets of symbol mappingsM1; : : : ;Mm from each Red(s; l; Cj) to Red(t; l; C0).

Recall, symbol mappings from one CQC to another CQC are computed using only the ordinary

predicates involved in the CQCs. Thus, the mappings from Red(s; l; Cj) to Red(t; l; C0) depend

only on the remote predicates r1; : : : ; rn and do not depend on the tuples t or s. Therefore, for

each constraint Cj we can compute the mappingsMj once, using a parameter � to represent

the inserted tuple t and a parameter � to represent existing tuple s in L. Thus, Mj is the

set of mappings from Red(�; l; Cj) to Red(�; l; C0).

2. h(I(qp)), that is, h(I(Red(s; l; Cj))).

Recall, I(q) represents the conjunction of interpreted subgoals in query q, and h is a mapping

from Red(�; l; Cj) to Red(�; l; C0). Mapping h is the identity mapping on all constants and

a�ects only the variables in Red(�; l; Cj). Therefore, h does not a�ect the parameter �.

Similarly, any assignment � of the parameter � to a tuple s in L, does not a�ect the variables

in Cj. Therefore, h(I(Red(s; l; Cj))) is the same as h(I(Red(�(�); l; Cj))) is the same as

�(h(I(Red(�; l; Cj)))).

CHAPTER 2 Notation, Intuition, Local Checking 32

3. I(q), that is, I(Red(t; l; C0)).

As in Item 2, an assignment � of parameter � to tuple t, does not interfere with the variables

in C0 and therefore I(Red(t; l; C0)) can be obtained by applying � to I(Red(�; l; C0)).

The above observations allow us to break the containment question of Theorem 2.7.3, Red(t; l; C0) �S
m

j=0

S
s in L

Red(s; l; Cj), into four steps.

1: Obtain the parameterized query Red(�; l; C0) and the set of parameterized queries

fRed(�; l; C0);Red(�; l; C1); : : : ;Red(�; l; Cm)g. Compute the set of mappingsMi

from each Red(�; l; Ci) to Red(�; l; C0).

2: Create a parameterized test condition T that is in the form of an implication.

LHS(T) is I(Red(�; l; C0)), and RHS(T) is
W
m

j=0

W
h inMj

h(I(Red(�; l; Cj))).

3: Obtain the instantiated test condition It as follows:

Instantiate parameter � in LHS(T) by tuple t to obtain LHS of It: I(Red(t; l; C0)).

Instantiate parameter � in RHS(T) by each s 2 L. Add the resulting term as a

disjunct to the RHS of It to obtain:
W
m

j=0

W
h inMj

W
s in L

h(I(Red(s; l; Cj))):

Thus, It is [I(Red(t; l; C0)))
W
m

j=0

W
h inMj

W
s in L

h(I(Red(s; l; Cj)))].

4: Check if instantiated test condition It is true.

Thus, for a given set of constraints it is possible to compute the required symbol mappings and

then produce a parameterized test condition T without using either relation L or inserted tuple t.

When insertions are made into relation L, then test condition T is instantiated and the resulting

implication It is evaluated. Test T needs to be derived only once, at constraint speci�cation time,

and the remainder can be done when insertions are made into L.

The following example illustrates this process:

EXAMPLE 2.7.3 Consider the \forbidden interval" constraint from Example 2.7.1:

E: panic :{ l(X; Y) & r(Z) & X�Z & Z�Y .

Let parameter � be l(a; b), and parameter � be l(x; y). The �rst step of the process yields:

Red(�; l; E) is panic :{ r(Z) & a�Z�b.

Red(�; l; E) is panic :{ r(Z) & x�Z�y.

The set of mappings from Red(�; l; E) to Red(�; l; E) contains just the identity mapping. Therefore,

the second step of the process yields the following parameterized test condition:

LHS(T): a�Z�b.

RHS(T): x�Z�y.

Now, let us consider a speci�c database and see how to use step 3 to generate the instantiated

test condition It from the above parameterized test condition template. We consider the database

CHAPTER 2 Notation, Intuition, Local Checking 33

from Example 2.7.1 where relation L has tuples l(3; 6) and l(5; 10), and tuple l(4; 8) is inserted.

Parameter � is instantiated in LHS(T) by (4; 8) to obtain 4�Z�8. Parameter � is instantiated by

tuples l(3; 6) and l(5; 10), resulting in two disjuncts in the RHS of It; one each for the two existing

tuples. Thus, It is:

It: 4�Z�8) 3�Z�6 _

5�Z�10.

It evaluates to true because every point in the interval [4; 8] is either in the interval [3; 6] or in the

interval [5; 10]. 2

Verifying the truth of the resulting implication It is a complex problem in general. The complexity

of evaluating It depends on the nature of the arithmetic inequalities permitted in the constraint

queries. If the inequalities are restricted adequately, then It may be represented as a union of

conjunctive queries or as a recursive Datalog program. These restrictions are explored in the next

chapter.

Chapter 3

Conjunctive Query Constraints

The previous chapter reduces the problem of locally checking conjunctive query constraints with

arithmetic inequalities to an implication It of arithmetic inequalities. In this chapter we consider

restrictions on the arithmetic inequalities permitted in the constraints so as to be able to solve the

arithmetic implication using Datalog and conjunctive queries with arithmetic. We want to generate

query-based methods for a subset of the class of conjunctive query constraints with arithmetic

inequality. In this chapter we consider the three circled points on the \Y" in Figure 3.1. Namely,

the class of conjunctive queries without any arithmetic, and two restricted classes of conjunctive

queries with arithmetic inequalities. We consider these points in the reverse order, i.e., top down

in the \Y."

@
@
@

@
@

@
@

@@I

�
�
�
�
�
�
�
�
�
�
���

t CQ constraints, CQ tests

t
LibCQC constraints, CQ tests

tIQC constraints, Recursive
Datalog tests

t
CQ+Arithmetic+

negated EDB constraints,
non-query-based tests

t
CQ+Arithmetic inequality constraints
- CQ tests
- Union of CQs tests

t CQ+Arithmetic+Negated EDB
constraints, CQ tests

t
CQ+Arithmetic+limited

negated IDB constraints,
CQ tests

Complete methods

Methods that are not complete

i

i

i

Figure 3.1: Constraint Classes Considered in Chapter 3

Chapter Outline In this chapter �rst we consider how to generate queries on relation L using the

test condition It for subclasses of CQCs. The �rst subclass we consider corresponds to the topmost

circled point in the \Y" of Figure 3.1. For this subclass the complete local test is expressible

34

CHAPTER 3 Query-Based Methods for CQCs 35

as a recursive Datalog program. Then in Section 3.2 we consider a further restriction on CQCs

with arithmetic inequalities such that the complete local test for checking this subclass can be

represented as a union of conjunctive queries. This class corresponds to the middle circled point in

Figure 3.1. The bottom-most circled class is a special case of the middle circled class.

Section 3.3 discusses the complexity of evaluating the queries derived earlier in the chapter and

also discusses other ways of evaluating It that are not query-based and apply to the general class of

conjunctive query constraints with arithmetic inequalities. These techniques do not convert It into

a Datalog or SQL query, but instead use complex data structures for e�cient inference. That is,

instead of using local queries, we consider inference techniques for evaluating It for the general class

of CQCs. Often these inference techniques are more e�cient than query-based methods for the

classes that do have query-based methods. The general solution for It corresponds to developing

a method for a subset of the topmost, uncircled point on the left branch of the \Y." Finally,

Section 3.4 remarks on the application of results of Appendix A to local checking of conjunctive

query constraints that use arbitrary interpreted predicates.

3.1 Characterizing the Class of IQC Constraints

In this section we describe a subclass of CQCs for which a Datalog program can be used to �rst

instantiate the test condition T to give arithmetic implication It, and then evaluate It.

De�nition 3.1.1 (Independently Constrained Variable) Consider a conjunction of arithmetic

comparisons that use the operators <;>;�;�;=. A variable X is independently constrained if all

the comparisons that involve X are of the form X op c where c is a constant. 2

De�nition 3.1.2 (Independently Constrained Sentence) Consider a conjunction of arith-

metic comparisons that use the predicates <;>;�;�;=. The sentence is independently constrained

if all the variables that appear in the sentence are independently constrained. 2

De�nition 3.1.3 (Independently Constrained Query (IQC)) Consider CQC C where equated

attributes are represented by using the same attribute multiple times, and not by explicit equalities.1

If I(Red(t; l; C)) is an Independently Constrained Sentence, then the query C is an Independently

Constrained Query. 2

The forbidden interval query E of Example 2.7.1 is an IQC.

EXAMPLE 3.1.1 The forbidden interval query is:

1Equated attributes represent natural joins. The de�nition of IQCs uses shared attributes to represent joins purely

for de�nition purposes. The IQC can actually be written by representing every join as an explicit equality, as assumed
in the rest of this thesis. The two alternative representations are equivalent and each can be generated from the other

in time O(v2) where v is the number of attribute occurrences in the query.

CHAPTER 3 Query-Based Methods for CQCs 36

E: panic :{ l(X; Y) & r(Z) & X�Z & Z�Y .

Relation L is local. Consider Red(t; l; E) for some tuple t = (a; b). The resulting conjunctive query

is:

panic :{ r(Z) & a�Z & Z�b.

The conjunction of arithmetic subgoals in Red(t; l; E) is referred to as I(Red(t; l; E)) (Section 2.7)

and this conjunction is an independently constrained sentence. Thus the original query E is an

IQC. 2

EXAMPLE 3.1.2 Consider another constraint query:

panic :{ l(X; Y) & r1(W;U) & r2(Z; V) & V >X & Z=W .

First, we rewrite the above query in the form required by De�nition 3.1.3. That is, we replace

equated attributes by the same attribute. In this case we replace attribute Z in r2(Z; V) by W .

panic :{ l(X; Y) & r1(W;U) & r2(W;V) & V >X .

The reduction of the above query with respect to tuple l(a; b) is:

panic :{ r1(W;U) & r2(W;V) & V >a.

The conjunction of arithmetic subgoals in the above query form an independently constrained

sentence thereby implying that the original query is an IQC. 2

In the following sections we consider IQCs, and for these constraints we discuss how test T can

be represented by Datalog rules that use relation L and inserted tuple t such that evaluating these

rules corresponds to instantiating T and evaluating the resulting implication It. The following

example illustrates the process for the forbidden intervals constraint.

EXAMPLE 3.1.3 Intuition: Example 2.7.3 described how the parameterized test T is derived

and instantiated for the forbidden interval constraint. Recall that T was de�ned as follows:

LHS(T): a�Z�b.

RHS(T): x�Z�y.

where the inserted tuple was represented by parameter � = l(a; b), and an existing tuple was

represented by parameter � = l(x; y). Example 2.7.3 showed how to instantiate test T using

inserted tuple l(4; 8) and existing tuples l(3; 6) and l(5; 10) to obtain It as:

It: 4�Z�8) (3�Z�6 _ 5�Z�10).

Consider an alternative approach to the instantiation process. The solutions to variable Z in a

sentence of the form x�Z � y is a closed interval that can be represented by a binary predicate

CHAPTER 3 Query-Based Methods for CQCs 37

whose �rst attribute represents the lower limit of the solution space and second attribute represents

the upper limit. Note, all the conjuncts in test T , both LHS(T) and RHS(T), are sentences of the

above form. First, we consider LHS(T). Solutions to the remote variable Z that occurs in LHS(T)

are stored as tuples of relation ins and computed by the following rule:

ins(A;B) :{ inserted into L(A;B) & A�B % Use the inserted tuple to instantiate ins.

The relation inserted into L contains the inserted tuples and each inserted tuple t adds one ins

tuple representing the forbidden interval for t. Thus inserted into L instantiates parameter �

that originally appears in LHS(T). Similarly, the solutions to variable Z that occurs in RHS(T) can

be represented by a binary predicate soln that is de�ned as:

soln(C;D) :{ l(C;D) & C�D % Use existing tuples in relation L to initialize soln.

The above rule uses predicate l to de�ne the basic intervals that are in predicate soln. Thus, pred-

icate l instantiates the parameter � that originally appears in RHS(T) and for each instantiation,

a tuple is added to soln. These basic intervals may have to be combined in order to obtain larger

intervals, as argued earlier. The following rule does this combination.

soln(C;D) :{ soln(C;X) & soln(Y;D) & X�Y % Combine soln facts.

Thus, for a given inserted tuple t and relation L, the above rules compute ins and soln facts that

respectively represent the inserted and existing intervals. The instantiation of test T is done by

predicates inserted into L and l. The resulting implication It evaluates to true if and only if the

following Datalog rule derives ins ok.

ins ok :{ ins(A;B) & soln(C;D) & A � C & B � D.

% Solution space for inserted tuple is contained in union of spaces for existing tuples.

2

The above example illustrates how to combine the instantiation of the parametric test T with

the evaluation of the resulting arithmetic implication It to produce a Datalog program that derives

ins ok if implication It evaluates to true. In subsequent sections we give the geometric intuition

for obtaining such a Datalog program for IQCs in general and then describe the actual process for

building the program.

3.1.1 Geometric Intuition

Recall from Page 31 that test T is built using the arithmetic subgoals of the constraints in set C,

i.e., T uses I(Red(t; l; C)) for every constraint C 2 C. For IQCs, every variable in I(Red(t; l; C))

is compared only to constants (by De�nition 3.1.3). Therefore, every variable has constants as

the lower and upper limits of its solution space. The set of constants includes plus and minus

CHAPTER 3 Query-Based Methods for CQCs 38

in�nity. Thus, the solution space for the variables that occur in I(Red(t; l; C)) corresponds to a

k-dimensional parallelepiped.

EXAMPLE 3.1.4 Consider an IQC I6 that extends the forbidden interval constraint to two

dimensions. Thus, relation L stores rectangles and R stores points in 2-dimensions and I6 is

violated if any point in R is in a rectangle in L. Thus, I6 is expressed as the following Datalog

rule.

panic :{ l(U; V;W; Z) & r(X; Y) & U�X�V & W �Y �Z.

The tuple l(2; 20; 4; 40) in relation L violates constraint I6 if relation R contains a tuple r(a; b)

such that 2� a� 20 and 4� b� 40. The values of a and b that violate I6 given l(2; 20; 4; 40) lie

in a rectangle of the above dimension such that a is along one dimension and b is along the other

dimension. If I6 is not violated by tuple l(2; 20; 4; 40), then we can conclude that the tuples of R

lie outside this rectangle.

In general, the initial consistency assumption implies that every tuple of L identi�es a prohibited

rectangle in R. A tuple t can be inserted safely into L if the prohibited rectangle of solutions for

r(X; Y) de�ned by t is contained in the union of prohibited rectangles de�ned by the existing tuples

in L. 2

Recall, for a single constraint C the implication It has I(Red(t; l; C)) as its LHS and a disjunction,W
ti2L

W
h2M h(I(Red(ti; l; C))), as its RHS. For an IQC C the solution to any I(Red(ti; l; C)) is

a k-dimensional parallelepiped. Thus, verifying It corresponds to determining if the k-dimensional

parallelepiped corresponding to the LHS of It is contained in the union of k-dimensional paral-

lelepipeds for each disjunct in the RHS of It. In this section, we discuss a solution to this problem.

The solution is developed for an IQC with 2 variables in I(Red(t; l; C)), in which case k is 2 and

the parallelepiped is a rectangle.

Computing the union of rectangles is more involved than computing the union of lines (as in the

case of Example 3.1.3). Two adjacent rectangles can be combined as illustrated in Figure 3.2(a).

Figure 3.2(b) illustrates how to check if an existing set of rectangles contain a new rectangle.

The new rectangle is drawn shaded in the �gure. The three existing rectangles are drawn unshaded

and have thick outlines. Each existing rectangle can be fragmented into smaller basic rectangles by

using the sides of the other existing rectangles as
exion lines. In the �gure, the
exion lines are

represented by broken lines. The basic rectangles are bounded by a mixture of broken and thick

lines and are labelled by the letters A� T . No lines pass through a basic rectangle. In Figure 3.2,

the basic rectangles D;E; F;G; I; J;K; L together contain the new rectangle. In general, it can

be proved that a new rectangle is contained in the union of existing rectangles if and only if it is

contained in a rectangle formed by combining some basic rectangles (Appendix C).

CHAPTER 3 Query-Based Methods for CQCs 39

Combining Rectangles

Horizontally

Vertically

A

B

C

E

G

H

I

J

K

L

M

N

O

P

Q

R

SF

T

D

(a) (b)

Figure 3.2: Determining Containment of Rectangles

The idea extends to k-dimensions where each existing k-dimensional parallelepiped is broken

into smaller, basic k-dimensional parallelepipeds which are then recombined to create the containing

parallelepiped. Appendix C discusses this extension.

3.1.2 Building the Datalog Rules

In this section, we describe how to build Datalog rules using the parameterized test T , relation

L, and tuple t. The Datalog program instantiates T to derive It and then encodes the rectangle

containment reasoning outlined above. We give only the intuition for building the Datalog program.

The details of the (substantial) formalism are discussed in Appendix C.

Just as a 2-ary predicate is used to represent the prohibited range of values for a single remote

variable as in Example 3.1.3, and a 4-ary predicate is used for to represent the prohibited rectangle

of values for two independently constrained remote variables as in Example 3.1.4, a 2k-ary predicate

can be used for to represent the k-dimensional parallelepiped for k remote variables. For simplicity,

we will restrict the discussion in this section to two variables.

The strategy for building the Datalog program is as follows:

CHAPTER 3 Query-Based Methods for CQCs 40

1. Use a 4-ary predicate ins to represent the solutions to the variables in the LHS of parameter-

ized test T . That is, ins stores solutions to the remote variables that appear in I(Red(�; l; C)).

Similarly, de�ne predicate soln to represent the solution to the variables in each disjunct,

h(I(Red(�; l; Cj))), in the RHS of test T .

2. Inserted tuple t and relation L are used to compute the tuples in the predicates ins and soln

respectively. These tuples represent the inserted and existing rectangles respectively.

3. Datalog rules are used to generate the tuples of soln that represent the basic rectangles

obtained by fragmenting the underlying existing rectangles.

4. Datalog rules are used to generate new tuples of soln that represent combinations of the

basic rectangles.

5. A Datalog rule is used to check if the rectangle represented by the tuple in ins is contained

in some rectangle represented by a tuple in soln.

We prove the correctness of the above steps in Appendix C. In this section we give Datalog rules

for the steps in the restricted case when the solution spaces are closed rectangles i.e., each rectangle

includes its boundary points. Predicates soln and ins each have 4 attributes (Xl; Xh; Yl; Yh). We

illustrate the steps using IQC I6 in Example 3.1.4.

Step 1 Let parameter � be l(u; v; w; z) and parameter � be l(xl; xh; yl; yh). Test T can be obtained

using the steps detailed on Page 31 as illustrated in Example 2.7.3 and is of the form:

LHS(T): u�X�v ^ w�Y �z.

RHS(T): xl�X�xh ^ yl�Y �yh.

The body of the rule de�ning ins is generated from LHS(T). Predicate inserted into L(�U) is

added to the body as a subgoal where �U is the set of variables appearing in the rule de�ning ins.

Thus, the rule for ins is:

ins(U; V;W;Z) :{ inserted into L(U; V;W;Z) & U�V & W �Z.

Similarly, soln can be de�ned by Datalog rules, one rule for each disjunct in RHS(T). For our

running example, there is only one disjunct and thus soln is de�ned by a single rule:

soln(Xl; Xh; Yl; Yh) :{ l(Xl; Xh; Yl; Yh) & Xl�Xh & Yl�Yh .

The subgoal l(�X) appears in the body where �X is a set of variables.

Step 2 The instantiation of T by the inserted and existing tuples is achieved by the subgoals

inserted into L(�U) and l(�X) in the rules de�ning ins and soln respectively. To begin with, we

assume that relation inserted into L contains a single tuple corresponding to a single inserted

tuple. Thus, in the rule de�ning ins the set of variables �U is instantiated by only this tuple. In

CHAPTER 3 Query-Based Methods for CQCs 41

contrast, set �X is instantiated by the tuples in relation L resulting in multiple tuples for soln. The

ins tuple gives a solution space for the inserted tuple and each soln tuple gives the solution space

for an existing tuple in L.

Step 3 Let R be the set of rectangular solution spaces corresponding to a particular relation L

such that soln has a tuple for each rectangle in R. The following Datalog rules compute the soln

facts for the basic rectangles underlying R. Each rule represents a possible way of fragmenting the

rectangle represented by soln(Xl; Xh; Yl; Yh).

soln(Xl; A; Yl; Yh) :{ soln(Xl; Xh; Yl; Yh) & % Fragment along the �rst attribute.

soln(; A; ;) & % Use the upper limit of some other

Xl < A < Xh % rectangle as the
exion line.

soln(A;Xh; Yl; Yh) :{ soln(Xl; Xh; Yl; Yh) & % Results in two rectangles.

soln(; A; ;) &

Xl<A<Xh .

Similar rules are de�ned using the lower limit of some rectangle as a
exion point.

Finally, rules are de�ned for fragmenting the rectangle along the second attribute.

Step 4 Rules for generating larger rectangles by combining basic rectangles are also de�ned

in Datalog. There is one rule for horizontally combining rectangles and one rule for vertically

combining the rectangles.

soln(Xl; Xh; Yl; Yh) :{ soln(Xl; A; Yl; Yh) & soln(B;Xh; Yl; Yh) & A�B.

soln(Xl; Xh; Yl; Yh) :{ soln(Xl; Xh; Yl; A) & soln(Xl; Xh; B; Yh) & A�B.

Step 5 The space represented by the inserted tuple is contained in some rectangle represented in

relation soln if the following rule derives ins ok.

ins ok :{ ins(U; V;W;Z) & soln(Xl; Xh; Yl; Yh) & U�Xl & V�Xh & W�Yl & Z�Yh.

If multiple tuples are inserted into relation L, then we can modify the rule de�ning ins ok by

making distinguished the attributes of ins. For our example, the rule in step 5 is:

ins ok(U; V;W; Z) :{ ins(U; V;W;Z) & soln(Xl; Xh; Yl; Yh) &

U�Xl & V �Xh & W �Yl & Z�Yh.

Thus, the rule for ins ok in step 5 identi�es those inserted rectangles that are contained in existing

rectangles. All rectangles that are not in relation ins ok but are in relation ins correspond to

inserted tuples that are not covered by existing tuples in L.

CHAPTER 3 Query-Based Methods for CQCs 42

The above discussion assumes that the solution intervals are always closed. In general, an IQC

can use < and > (De�nition 3.1.1) in which case the solution intervals may be open and each IQC

may yield a union of spaces. The strategy outlined in this section generalizes to open intervals and

also works for k-dimensional spaces, thereby covering all IQCs.

3.2 Further Restrictions on Conjunctive Query Constraints

Now, we further restrict the class of CQCs to yield classes for which It can be evaluated using

unions of conjunctive queries with arithmetic. First we consider the geometric intuition for the

existence and nature of such subclasses.

3.2.1 Geometric Intuition

EXAMPLE 3.2.1 Consider the forbidden intervals constraint I5. Local checking for I5 corre-

sponds to determining if an interval on the number line is contained in unions of other intervals.

Thus, we needed to combine existing intervals, via a recursive Datalog rule, and then check if the

inserted interval is contained in some combination of existing intervals.

Instead, consider the following constraint that requires that each point in R be greater that all

points in L.

panic :{ l(X) & r(Y) & X�Y .

Thus tuple l(a) prohibits tuples in R from lying in the closed interval (�1; a]. Hence, to check if

inserted tuple l(b) is covered by tuples in relation L we need to �nd some existing tuple l(c) such

that c�b. It can also be proved, and is intuitively obvious, that such a check constitutes a complete

local test.

Thus, each tuple of L prohibits tuples in R to lie in an interval from �1 to some constant

upper bound. The largest tuple in L de�nes an interval that has the largest upper bound and thus

contains the intervals de�ned by all other tuples in L. Geometrically, the union of a set S of lines

that extend from �1 to some constant upper bound is the same as the largest line in the set. 2

The intuition extends to rectangles also. Consider rectangles both of whose dimensions extend

from �1 to some closed upper bound in the domain of real numbers. We call this class of rect-

angles (and parallelepipeds) \left-in�nite, bounded-right-limit" (LIBRL). For a �nite set of LIBRL

rectangles, two or more LIBRL rectangles can be combined to yield a new LIBRL rectangle if and

only if one of the rectangles actually contains all the other rectangles. We refer to this \can be

combined if and only if one contains the others" property as the in-2-in-1 property.

It is the case that a LIBRL parallelepiped R is contained in a �nite set of LIBRL parallelepipeds

�R if and only if R is contained in one of the parallelepipeds in �R. The implication of this argument

CHAPTER 3 Query-Based Methods for CQCs 43

is that the parallelepiped containment problem considered earlier in this chapter becomes simpler

because we no longer need rules to combine parallelepipeds. There is no need to fragment and

combine parallelepipeds because combining parallelepipeds does not yield a larger parallelepiped.

We only need to de�ne parallelepipeds, via conjunctive queries, and we need to check containment

of one parallelepiped in another, also via a conjunctive query.

The in-2-in-1 property is preserved for at least three extensions of the class of LIBRL paral-

lelepipeds. One extension allows parallelepipeds to have either open or closed upper bounds. The

second extension allows each dimension of the parallelepipeds to go from either �1 to some closed

upper bound, or is equal to a constant. The third extension allows each dimension of the paral-

lelepipeds to go from either �1 to some open upper bound, or is equal to a constant. Note, if

the dimensions of the parallelepipeds are permitted to be either constants, or from �1 to some

open upper bound, or �1 to some closed upper bound, then the in-2-in-1 property is no longer

preserved.

We can also de�ne the class of RIBRL parallelepipeds by considering parallelepipeds whose

dimensions extend from constants to +1. This class can be extended exactly as the class of

LIBRL parallelepipeds.

3.2.2 De�ning LibCQCs

Now we de�ne classes of constraints for which It can be expressed and evaluated by unions of con-

junctive queries by ensuring that the solution space for the remote variables de�nes parallelepipeds

that have the in-2-in-1 property. In this section we identify some such classes that are collectively

represented by \LibCQC" at the junction of the \Y" in Figure 3.1.

De�nition 3.2.1 (\�" Variable) Consider a conjunction of arithmetic comparisons. A variable

X is a \�" variable if all the comparisons that involve X are of the form X�c or X<c where c is

a constant. 2

\�" variables are de�ned using � and > in place of � and <.

De�nition 3.2.2 (\�" Sentence) Consider a conjunction of arithmetic comparisons that use

arithmetic inequalities. The sentence is \�" if all variables in the sentence are \�" variables. 2

\�" sentences are de�ned using � in place of �.

De�nition 3.2.3 (LIBRL Conjunctive Query Constraints (LibCQC)) Consider CQC C

where equated attributes are represented by using the same attribute multiple times, and not by

explicit equalities. If I(Red(t; l; C)) is a \�" sentence, then the query C is a LibCQC. 2

CHAPTER 3 Query-Based Methods for CQCs 44

Note, the de�nition of LibCQCs disallows the use equijoins. LibCQCs can be rede�ned to use

equijoins by disallowing the use of one of either � or < comparisons. Thus we arrive at following

two alternative de�nitions of LibCQCs both of which have the desired in-2-in-1 property for the

rectangles representing the solution space regions for the remote variables. (1) A comparison

involving a \�" variable is either of the form X � c or of the form X = c. (2) A comparison

involving a \�" variable is either of the form X <c or of the form X= c. We refer to all three of

these classes as LibCQCs. Below is an example of an LibCQC.

EXAMPLE 3.2.2 Consider constraint I4 de�ned in Example 1.2.4:

panic :{ emp(E;D; S) & dept(D;MS) & S>MS.

Relation emp is local. Consider Red(t; emp; I4) for some tuple t = (e; d; s). The resulting conjunctive

query is:

panic :{ dept(D;MS) & D=d & s>MS.

The conjunction of arithmetic subgoals in Red(t; emp; I4) is referred to as I(Red(t; emp; I4)) (Sec-

tion 2.7) and this conjunction is a \�" sentence. Thus the original constraint query I4 is an

LibCQC. 2

RibCQCs and extensions thereof can be de�ned similar to LibCQCs by using the greater than

relationship instead of the less than relationship.

3.2.3 Generating Datalog Rules for LibCQCs

A subset of the steps outlined in Section 3.1.2 are su�cient to generate a union of conjunctive

queries that check a LibCQC, using L, when a set of tuples is inserted into relation L. Steps 1,

2, and 5 from Page 40 together generate the necessary queries. Note, by omitting Steps 3 and 4

we avoid fragmenting parallelepipeds and recombining them. Thus, the recursive component of the

rules is not incorporated. For Example 3.2.2 the rules are as follows:

EXAMPLE 3.2.3 Let the parameter � be emp(e; d; s) and parameter � be emp(x; y; z). Parame-

terized test T is:

LHS(T): d=D ^ s>MS.

RHS(T): y=D ^ z>MS.

Using the above test and Steps 1, 2, and 5 outlined on Page 39 we can generate the following

conjunctive queries for locally checking constraint I4.

ins(Xl; Xh;�1; Yh) :{ inserted into L(E;D; S) & Yh=S & Xl=D & Xh=D.

soln(Xl; Xh;�1; Yh) :{ emp(E;D; S) & Yh=S & Xl=D & Xh=D.

CHAPTER 3 Query-Based Methods for CQCs 45

ins ok :{ ins(Al; Ah; Bl; Bh) & soln(Xl; Xh; Yl; Yh) & Al=Xl & Yh � Bh.
2

In the case that C has a single LibCQC C and there is only one mapping from Red(�; l; C) to

Red(�; l; C), the conjunctive queries used to express the local test for checking C can actually be

folded into a single conjunctive query. The above example is an instance of such a query. Intuitively,

the folding can be done because of the structure of the parameterized test T for constraints that

satisfy the given restrictions. Recall from step 1 on Page 40 that for each disjunct in RHS(T),

one rule is generated for de�ning soln. If there is only one constraint and only one mapping from

Red(�; l; C) to Red(�; l; C), then RHS(T) has only one disjunct and thus only one rule de�ning

soln. Thus, the de�nitions of predicates ins and soln can be folded into the rule de�ning ins ok,

thereby resulting in a complete local query that is expressible as a single CQ.

3.3 Complexity Issues

In this section we discuss the complexity of local checking for conjunctive query constraints that use

arithmetic inequalities. We comment on the complexity of evaluating It as produced in Chapter 2

for the restricted classes LibCQC and IQC, and also for general CQCs.

3.3.1 LibCQC

Consider LibCQCs as de�ned by De�nition 3.2.3. For a LibCQC C0, the solution space to

Red(t; l; C0) is a k-dimensional parallelepiped all of whose sides extend to �1 and are either closed

or open at the upper bound. Thus Red(t; l; C0) corresponds to a left-semiinterval conjunctive query

(LSCQ) as de�ned by De�nition A.3.1 in Appendix A. For LSCQs we prove that a LSCQ C is

contained in a set of LSCQs S if an only if C is contained in one of the LSCQs in S. Thus, for

LibCQCs we can observe that Red(t; l; C0) is contained in the union [
Cj inC; ti inL

(Red(ti; l; Cj)) if

and only if Red(t; l; C0) is contained in some Red(ti; l; Cj).

Using the above result the parametric test T can be fragmented into �m

j=0
jMj j select queries

on L, where jMj j is the number of mappings from Red(�; l; Cj) to Red(�; l; C0). T evaluates to

true given t and L if and only if any one of these queries computes a nonempty answer. The total

number of queries could be m � (pp), where p is the maximum number of ordinary predicates in

any Ci
[Sar90] and m is the number of constraints in set C. Each of these queries can be evaluated

in time less than O(jLj) time by utilizing indexes on relation L. In terms of the Datalog program

derived in Section 3.2.3, m � (pp) rules are used de�ne the soln predicate.

3.3.2 IQC

IQCs are formally de�ned in De�nition 3.1.3. Again the question is how to verify It. As pointed out

before, the solutions to the variables in I(qi) are in a k-dimensional parallelepiped and checking It

is the same as checking containment of a k-dimensional parallelepiped in a union of k-dimensional

CHAPTER 3 Query-Based Methods for CQCs 46

parallelepipeds. The complexity of the technique described in Section 3.1.1 depends on how much

information is maintained about the parallelepipeds. If the basic parallelepipeds are stored then it

is possible to determine containment in time O(k � lg(jLj)). However the complexity of maintaining

the basic parallelepipeds is much higher, as high as O(jLj2k) time. If the Datalog rules executed

from scratch, and generated the basic rectangles, then too the complexity of checking containment

would be O(jLj2k).

More e�cient methods can be used to determine the parallelepiped containment. However, these

methods are not representable in Datalog. If k-dimensional interval trees are used, then containment

can be determined in O(lgk(jLj)) time [R93]. The interval tree itself can be constructed a priori in

O(jLjk) time. The use of interval trees is an instance of a more e�cient non-query-based alternative

to a not-so-e�cient query-based method.

3.3.3 General CQCs

A CQC is not an IQC if Red(t; l; C) includes a comparison X op Y where both X and Y are

variables. In this case, determining the truth of It is NP-hard [SKN89]. A naive strategy can

be implemented in O(jLjk) time, based on an extension of r-structures described in [KKR93].

An interval-tree-like storage structure can be used in this case too, by appending each node in

the interval tree with additional bits that keep track of the relative order of the variables. We

conjecture that the complexity is the same as when interval-trees are used for IQC, i.e. O(lgk(jLj)).

In general, the cost of evaluating It depends on the kind of arithmetic comparisons allowed in

C. If the most powerful comparisons are of the form X op Y+c or X op Y�c, then the implication

problem is decidable in exponential time. However, if the attributes can be added together and

compared to another attribute, then verifying It may be undecidable.

3.4 Arbitrary Interpreted Predicates

The containment results of Appendix A apply to conjunctive queries that use arbitrary interpreted

predicates for which there is a theory to solve implication sentences of the form described in Theo-

rem A.2.2. Therefore, complete local test conditions can be derived for corresponding conjunctive

query constraints of such classes.

Chapter 4

More General First Order

Constraints

In this chapter we consider local checking for constraint speci�cation languages more expressive than

conjunctive queries. For instance, referential integrity constraint I1 (Page 1) cannot be expressed

as conjunctive query constraints because negation is needed. All the languages considered in this

chapter are more expressive than conjunctive query constraints. Many of the constraints that we

have encountered in our example domain [GT93, GT94, TH93] require the additional expressive

power provided by the language of this chapter. For the classes we consider, we develop algorithms

that generate only su�cient test conditions for these languages, i.e., tests that are not complete.

Even for conjunctive query constraints for which complete methods exist, the techniques developed

in this chapter may derive tests that are not complete. We will trade o� completeness for the ability

to derive su�cient tests for more expressive languages. Thus, in this chapter we explore the right

branch of the \Y." In particular, we consider the three circled classes shown in Figure 4.1. All the

tests derived in this chapter are expressible as CQs or as unions of CQs.

We start at the lower most point in the right branch of the \Y" and consider progressively more

expressive constraint languages. Unlike conjunctive query constraints where deletions can never

violate a constraint { because all subgoals were positive { in this chapter deletions are relevant

because the languages of this chapter allows negated subgoals. Also, the methods of this chapter

do not use multiple constraints to check another constraint. Thus, we assume that the set of

constraints C contains only one constraint.

Chapter Outline

Section 4.1 describes the �rst constraint language considered in this chapter and explains how the

language relates to conjunctive query constraints considered earlier. Section 4.2 then describes the

actual test condition for this more expressive constraint language and illustrates the test condition

47

CHAPTER 4 More General Constraints 48

i

i

i

@
@
@

@
@

@
@

@@I

�
�
�
�
�
�
�
�
�
�
���

t CQ constraints, CQ tests

t
LibCQC constraints, CQ tests

tIQC constraints, Recursive
Datalog tests

t
CQ+Arithmetic+

negated EDB constraints,
non-query-based tests

t
CQ+Arithmetic inequality constraints
- CQ tests
- Union of CQs tests

t CQ+Arithmetic+Negated EDB
constraints, CQ tests

t
CQ+Arithmetic+limited

negated IDB constraints,
CQ tests

Complete methods

Methods that are not complete

Figure 4.1: Constraint Classes Considered in Chapter 4

via examples. Section 4.3 discusses evaluation issues for the test condition. Section 4.4 relates the

test to the containment mappings techniques used in Chapter 3. This section also discusses some

generalizations of the test condition and discusses completeness of the test condition. Section 4.5

further extends the expressive power of the constraint speci�cation language and describes how to

generate tests for these constraints.

4.1 Language

In this chapter we express constraints using a subset of �rst order logic (FOL). Unlike the previous

chapters where a constraint was expressed as its violation condition, in this chapter a constraint

will be expressed as an assertion. As assertion is the condition that a database needs to satisfy in

order for the constraint to hold. For instance, the integrity constraint assertion for the forbidden

interval constraint I5 from Example 2.5.2 on Page 24 is:

8B;E; P : [l(B;E)^ r(P)) (B�P _ P �E)].

That is, constraint I5 holds if for every point in relation R and every interval in relation L, either

the point is less than the lower limit of the interval or greater than the upper limit of the interval.

An assertion can be converted into a (set of) violation condition(s) by negating the assertion. The

class of assertions that are considered in this chapter result in violation conditions that cannot

always be expressed as conjunctive query constraints.

4.1.1 Syntax

The simplest integrity constraint assertion language we consider captures constraints that require

that if the database satis�es some conditions, then the database should also satisfy some other con-

dition. The language considered in this section requires the implied condition to be the existence

CHAPTER 4 More General Constraints 49

of a tuple in a relation. For instance, the language can express the assertion that if an employee is

in relation emp then the department of the employee should exist in relation dept. We start with a

simple assertion language in order to highlight the essential intuition for the test conditions devel-

oped in this chapter. In general, the implied condition may be a complicated condition involving

one or more relations in the database. In Section 4.5 we consider such extensions of the simple

assertion language stated below.

The assertion language is similar to that used in [CG92] and represents the �rst two circled

dots on the right branch of the \Y" in Figure 4.1. Each assertion is of the form:

C: 8 �X 8 �Y 9 �Z : [(L(�X) ^ R1(�Y 1) ^ : : :^ Rk(�Y k) ^ g(�X; �Y ; �Z; �c)))

(S1(�Y
0

1
; �Z

0

1
) _ : : :_ Sn(�Y

0

n
; �Z

0

n
))]

where:

L represents the accessible local relation.

R1; : : : ; Rk; S1; : : : ; Sn represent inaccessible remote relations.

�X is a set of universally quanti�ed (8) variables occurring only in L and g.

�Y is a set of 8 variables occurring only in R1; : : : ; Rk; S1; : : : ; Sn, and g.

�Z is a set of 9 variables occurring only in S1; : : : ; Sn, and g.

�c is a set of constants occurring only in g.

g(�X; �Y ; �Z; �c) is a conjunction of equalities (=) and inequalities (<;>;�;�).

�Y i � �Y is the set of 8 variables that occur in relation Ri; 1 � i � k.

�Y
0

i
� �Y is the set of 8 variables that occur in relation Si; 1 � i � n.

�Z
0

i
� �Z is the set of 9 variables that occur in relation Si; 1 � i � n.

No variable occurs in more than one relation. Constants do not occur in relations.

We often refer to the conjunction g(�X; �Y ; �Z; �c) as just g. The integrity constraint assertion must

also satisfy some restrictions in order to be evaluable [F82, VT91]. The restrictions on the integrity

constraint assertions are:

1. Existentially quanti�ed variables can occur only in relations on the right hand side (RHS) of

the implication in the integrity constraint assertion. Those existentially quanti�ed variables

that occur in g must be equal to a constant or to a universally quanti�ed variable.

2. Universally quanti�ed variables occurring in a relation on the RHS of the assertion must also

either occur in some relation on the left hand side (LHS), be equal to a variable that occurs

in a relation on the LHS, or be equal to a constant.

In the above restrictions, equality is transitively closed.

Examples

First, we express the referential integrity constraint I1 from Example 1.0.1 using the above notation

and then we consider constraint I4 from Example 1.2.4.

CHAPTER 4 More General Constraints 50

EXAMPLE 4.1.1 Constraint I1 requires that every department referenced in the emp relation

also exist in the dept relation.

8E;D; S 9D0;MS : [(emp(E;D; S) ^ D0=D)) dept(D0;MS)]

Constraint I1 is violated if there is an employee in a department that does not occur in any tuple

in the dept relation. We repeat the violation condition for the above constraint from Page 3.

r1: all depts(D) :{ dept(D;MS).

r2: panic :{ emp(E;D; S) & not all depts(D).

Constraint I1 can be expressed as an assertion in the language of this chapter, but the violation

condition for I1 cannot be expressed using a conjunctive query. Instead the violation condition

requires a Datalog program with negation, as above. 2

Now consider a constraint assertion that uses arithmetic.

EXAMPLE 4.1.2 Integrity constraint I4 on the employee-department database requires that the

salary of each employee should be no more than the salary of any manager in the same department

as the employee.

8E;D; S;D0;MS : [(emp(E;D; S) ^ dept(D0;MS) ^ D0=D)) MS�S]

The above constraint is not in the prescribed form because the RHS uses an arithmetic inequality.

In the prescribed form, the above constraint is represented as:

8E;D; S;D0;MS : [(emp(E;D; S) ^ dept(D0;MS) ^ D0=D ^ S>MS)) false]

Constraint I4 is violated if there is at least one employee whose salary is greater than the salary

of some manager in the same department. That is, I4 is violated when the following query derives

panic:

panic :{ emp(E;D; S) & dept(D;MS) & S>MS.

Constraint I4 can be handled by the techniques of Chapter 3 because its violation condition is

expressible as a conjunctive query with arithmetic inequalities. In fact, Example 3.2.3 states a

complete check for this constraint. Thus, we use I4 to illustrate how the results of this chapter

compare with results of the previous chapters. 2

4.2 Deriving Test Conditions

This section presents the test condition on the accessible relation L, derived using the constraint

speci�cation C and assuming that one tuple � is inserted into the accessible relation. We also

illustrate the test condition using our examples.

CHAPTER 4 More General Constraints 51

4.2.1 Intuition

The test condition for locally checking constraint C is derived using the intuition of Figure 2.2 on

Page 21. We would like to prove that the set of illegal remote database states corresponding to the

inserted tuple �, is contained in the union of the sets of illegal remote database states corresponding

to existing tuples in L. The initial consistency assumption then allows us to infer that inserting �

does not violate C because no existing tuple in L violates C.

Consider an assertion C of the form described in Section 4.1 and a tuple � inserted into L. All

illegal remote database states corresponding to tuple � make true the LHS of the assertion, but do

not make the RHS true. Thus, we attempt to prove that whenever the LHS of assertion C is true

with �, then the LHS of assertion C is true with some existing tuple in L. If we succeed, then we

are guaranteed that if C is violated with �, then C is violated with some existing tuple in L. The

implication involving the LHS of the assertion can be reduced to an implication involving just the

arithmetic inequalities as will be argued in the proof of Theorem 4.5.1. Thus the test condition

turns out to be an implication involving arithmetic inequalities.

The next section formally states the test condition.

4.2.2 Test Condition

De�nition 4.2.1 (TC(C; l; �)) Consider an integrity constraint C:

C: 8 �X 8 �Y 9 �Z : [(L(�X) ^ R1(�Y 1) ^ : : :^ Rk(�Y k) ^ g(�X; �Y ; �Z; �c)))

(S1(�Y
0

1
; �Z

0

1
) _ : : :_ Sn(�Y

0

n
; �Z

0

n
))]

Let � be a tuple inserted into the accessible relation L. The test condition TC(C; l; �) is:

TC(C; l; �): 9 �X 8 �Y 8 �Z : [L(�X) ^ (g(�; �Y ; �Z; �c)) g(�X; �Y ; �Z; �c))]

2

Note only relation L is involved in TC(C; l; �), and the test does not refer to any of the inaccessible

relations R1; : : : ; Rk; S1; : : : ; Sn.

The above test is derived at compile time by treating � as a parameter instead of using the

actual value for the inserted tuple. When a tuple is actually inserted into relation L at run time,

TC(C; l; �) is instantiated by the inserted tuple and evaluated using the accessible relation. The

following theorem proves the correctness of De�nition 4.2.1.

Theorem 4.2.1 Consider an integrity constraint C and a tuple � inserted into relation L. If the

database satis�es integrity constraint assertion C before adding tuple �, and if the test condition

TC(C; l; �) is satis�ed by the accessible relation L, then the database satis�es integrity constraint

assertion C after inserting tuple �. 2

CHAPTER 4 More General Constraints 52

Proof: Theorem 4.2.1 is a special case of Theorem 4.5.1 stated in Section 4.5 on page 61.

Test condition TC(C; l; �) requires solving an implication involving the arithmetic inequalities in

g. This implication is similar to the arithmetic implication It produced as a result of instantiating

parameterized test T in Section 2.7.3. The implication in TC(C; l; �) does not have disjuncts in

its RHS, making it a restricted case of implication It. We explain this di�erence in more detail in

Section 4.4. In Section 4.3 we discuss how the implication of TC(C; l; �) is evaluated.

Note, R1; : : : ; Rk, S1; : : : ; Sn are not restricted to be base relations. If some inaccessible relation

Ri uses L in its de�nition, or is a repeat occurrence of L, then updating L also causes an update

to Ri. In this case we would need two tests to be executed, one that checks the update to L and

the other that checks the update to Ri. For each test, all remaining relations are treated as being

remote. The correctness of executing multiple tests is discussed in Section 5.2.

Examples

EXAMPLE 4.2.1 Consider the referential integrity constraint I1 from Example 4.1.1.

8E;D; S 9D0;MS : [(emp(E;D; S) ^ D0=D)) dept(D0;MS)]

The accessible relation L is the emp relation, g is D = D0, and the inserted tuple parameter is

(e; d; s). The test according to De�nition 4.2.1 is:

A: 9E;D; S 8D0;MS : [emp(E;D; S) ^ ((D0=d)) (D0=D))]

Suppose tuple emp(john; toy; 50) is inserted. The parameterized variable d is replaced by the actual

department from the inserted tuple, namely toy, resulting in the test:

9E;D; S 8D0;MS : [emp(E;D; S) ^ ((D0= toy)) (D0=D))]

This condition is further simpli�ed in Example 4.3.2. 2

EXAMPLE 4.2.2 Consider the integrity constraint I4 as stated in Example 4.1.2.

8E;D; S;D0;MS : [(emp(E;D; S) ^ dept(D0;MS) ^ D0=D ^ S�MS)) false]

L is again emp, g is D0=D ^ S�MS, and the inserted tuple parameter is (e; d; s). The test

according to De�nition 4.2.1 is:

B: 9E;D; S 8D0;MS : [emp(E;D; S) ^ ((D0=d ^ s�MS)) (D0=D ^ S�MS))]

When tuple emp(john; toy; 50) is inserted, the parameter d is replaced by the department from the

inserted tuple: toy, and parameter s is replaced by the salary from the inserted tuple: 50. The

resulting test is:

CHAPTER 4 More General Constraints 53

9E;D; S 8D0;MS : [emp(E;D; S) ^ ((D0= toy ^ 50�MS)) (D0=D ^ S�MS))]

This condition is further simpli�ed in Example 4.3.3. 2

4.3 Evaluating the Test Condition

Test TC(C; l; �) as de�ned in the previous section produces an implication involving g, where g

is a conjunction of arithmetic predicates. If the relation L contains a tuple that satis�es this

implication then we say that the relation satis�es the test. There are two approaches to solving

this test condition, i.e., for checking if TC(C; l; �) is true given L.

1. Instantiate the test condition with every tuple in L, resulting in a set of arithmetic implications

each of which involves constants and the universally quanti�ed variables �Y and �Z. That is,

�X in the implication (g(�; �Y ; �Z; �c)) g(�X; �Y ; �Z; �c)) is instantiated with every tuple in L, and

each instantiation yields one implication. If any one of these implications is true, the test

condition is also true.

EXAMPLE 4.3.1 Consider the test derived in Example 4.2.2 when (john; toy; 50) is in-

serted into emp.

9E;D; S 8D0;MS : [emp(E;D; S) ^ ((D0= toy ^ 50�MS)) (D0=D ^ S�MS))]

Let relation emp have two tuples (mary; toy; 100) and (bob; shoes; 200). After factoring in the

extent of the accessible relation emp the test condition can be rewritten as:

8D0;MS : [(D0= toy ^ 50�MS)) (D0= toy ^ 100�MS)] _

8D0;MS : [(D0= toy ^ 50�MS)) (D0=shoes ^ 200�MS)]

2

The implications produced by the above approach can be evaluated by the methods discussed

in Section 3.3. There we considered how to evaluate the implication It of the form A)

B1 _B2 _ : : :_Bk where each of A;B1; : : : ; Bk is a conjunction of arithmetic inequalities. In

contrast, test condition TC(C; l; �) generates a disjunction of implications, each of the form

A) B. It is less expensive to verify each such disjunct than it is to verify It. Geometrically,

checking TC(C; l; �) involves determining if a parallelepiped is contained in one of a set of

parallelepipeds whereas checking It involves determining if a parallelepiped is contained in

the union of a set of parallelepipeds.

2. Eliminate the universally quanti�ed inaccessible variables in �Y and �Z from the implication

(g(�; �Y ; �Z; �c)) g(�X; �Y ; �Z; �c)) in the test condition TC(C; l; �). Eliminating the variables in �Y

and �Z results in a set of restrictions I on the variables in �X that serve as a selection condition,

or query, on the accessible relation L. This selection condition is a su�cient test, i.e., if some

CHAPTER 4 More General Constraints 54

tuple l(�X) in L satis�es condition I, then the implication (g(�; �Y ; �Z; �c)) g(�X; �Y ; �Z; �c)) is

also true. Appendix B describes how to eliminate the sets of variables �Y and �Z to obtain I.

EXAMPLE 4.3.2 Consider the test condition A from Example 4.2.1.

A: 9E;D; S 8D0;MS : [emp(E;D; S) ^ ((D0=d)) (D0=D))]

The universally quanti�ed variables D0;MS can be eliminated from A to give a condition IA

that involves only variables of the accessible relation emp. MS can be eliminated from A

simply by deleting MS from A. Variable D0 is eliminated by propagating the equality D0=d

as explained in Appendix B. If IA is satis�able then we are guaranteed that the test A is

true for all variables D0;MS.

IA: 9E;D; S : [emp(E;D; S) ^ D=d]

Condition IA is evaluated by querying relation emp for a tuple that has d as its department.

Thus if tuple (john; toy; 50) is inserted into emp then the test query looks for an existing tuple

in emp that has attribute D= toy. 2

EXAMPLE 4.3.3 Consider test condition B from Example 4.2.2.

9E;D; S 8D0;MS : [emp(E;D; S) ^ ((D0=d ^ s�MS)) (D0=D ^ S�MS))]

The universally quanti�ed variables D0 andMS are eliminated from the test condition to give

a condition involving only the variables of the accessible relation emp:

IB: 9E;D; S : [emp(E;D; S) ^ D=d ^ S�s]

This condition is evaluated by performing a query on the emp relation for a tuple that has d

as its department and S � s in the salary �eld. If tuple (john; toy; 50) is inserted into emp

then the test query looks for an existing tuple in emp that has attribute D= toy and S�50.

2

If g contains just equality predicates, then eliminating the universally quanti�ed variables

is simply a matter of propagating equalities. The cost of doing the propagation is linear

in the number of equality expressions in g. With arithmetic comparisons the complexity of

simplifying the implication is O(n3), where n is the number of inequalities in g [Dav87].

Approach 1 is more powerful, but it is not query-based. If we allowed the use of inequalities of

the form X op Y + c or X op Y � c in g, then the implication is solvable in exponential time using

approach 1. By contrast, a restricted form of the above sentences can be handled using approach

2 and the techniques of Appendix B. That is, universally quanti�ed variables can be eliminated in

limited cases when X op Y + c or X op Y � c are used. In particular, if both X and Y are not

CHAPTER 4 More General Constraints 55

remote variables, then the method of Appendix B applies. Intuitively, such inequalities introduce

limits of the form a � c for remote variables, where a is a parameter. Such limits do not cause

any problem in determining the parameterized bounds for remote variables. However, if both X

and Y are remote variables then it is not possible to determine the tightest parameterized bounds

for remote variables using the method of Appendix B. If other more sophisticated methods for

eliminating universally quanti�ed variables exist, then technique 2 will be applicable to a wider

class of constraints.

In general, the applicability of test TC(C; l; �) is restricted by the evaluability of the implication

based on g but the correctness of TC(C; l; �) does not depend on the structure of g. The test

condition is applicable to all theories that can solve the implication condition involving g.

4.4 Generalizations and Completeness of TC(C; l; �)

In this section we study three possible generalizations of the test condition TC(C; l; �) to produce

stronger tests than TC(C; l; �). The generalizations are motivated by comparing the test conditions

generated by the containment based algorithms of Chapter 3 with TC(C; l; �). The comparison gives

the intuition for why the generalizations make sense and what the cost associated with them is.

Finally, we also consider a restricted class of constraints for which TC(C; l; �) is a complete local

test.

4.4.1 Change the Order of Quanti�ed Variables �X , �Y , and �Z

Recall that TC(C; l; �) is of the form:

TC(C; l; �): 9 �X 8 �Y 8 �Z : [L(�X) ^ (g(�; �Y ; �Z; �c)) g(�X; �Y ; �Z; �c))]

TC(C; l; �) looks for a single cover tuple. The single cover tuple based nature of TC(C; l; �) arises

because 9 �X is the outermost member of the list of quanti�ed variables and thus forces that one

instantiation of �X su�ce to cover � for all values of variables �Y and �Z. Thus, TC(C; l; �) would

not always succeed in checking the forbidden interval constraint I5, when multiple tuples together

may be needed to cover the inserted tuple.

Now, consider an alternative form of TC(C; l; �) obtained by moving 9 �X to the end of the quan-

ti�ed list. This test can be proved correct by slightly varying Step 2 of the proof of Theorem 4.5.1.

TC(C; l; �)
[g
: 8 �Y 8 �Z 9 �X : [L(�X) ^ (g(�; �Y ; �Z; �c)) g(�X; �Y ; �Z; �c))]

Unlike test TC(C; l; �) that looks for one existing tuple that covers the inserted tuple for all values

of the variables �Y and �Z , TC(C; l; �)
[g

can use a di�erent tuple in L for every value taken by

variables �Y and �Z. Thus, TC(C; l; �)
[g

uses multiple cover tuples.

CHAPTER 4 More General Constraints 56

The above test condition cannot be manipulated by the techniques of Appendix B. The reason

is that the universally quanti�ed variables cannot be eliminated if the universal quanti�er occurs

before the existential quanti�er in the test condition. However, if g(�; �Y ; �Z; �c) is restricted to an

Independently Constrained Sentence (De�nition 3.1.2) or a \�" sentence (De�nition 3.2.2), then

we can use exactly the techniques of Sections 3.1 and 3.2 to convert the implication in the above

test condition to a recursive Datalog program or a union of conjunctive queries respectively.

Using the above intuition we can also explicitly factor the use of two cover tuples into test

TC(C; l; �) as follows:

TC(C; l; �)
2
: 9 �X1 9 �X2 8 �Y 8 �Z : [L(�X1) ^ L(�X2) ^ (g(�; �Y ; �Z; �c))

fg(�X1; �Y ; �Z; �c) _ g(�X2; �Y ; �Z; �c)g)]

In general, we could write explicitly a test that uses any �xed number of cover tuples. Note, the

above form involves an arithmetic implication with disjunction on its RHS similar to implication It

discussed on Page 31. If the RHS of the test involves disjunctions then the universally quanti�ed

variables �Y and �Z cannot be eliminated from the test using the techniques of Appendix B. Again,

if g(�; �Y ; �Z; �c) is restricted to be an independently constrained sentence or a \�" sentence then the

results of Sections 3.1 and 3.2 apply.

In this chapter we focus on tests that use single cover tuples, because it is simpler to understand

the derivation of test conditions that use single cover tuples. For all the classes we discuss, the

extension to multiple tuples (�xed or arbitrary) can be done as described above.

4.4.2 Change the Position of the Conjunct L(�X)

Recall that TC(C; l; �) is of the form:

TC(C; l; �): 9 �X 8 �Y 8 �Z : [L(�X) ^ (g(�; �Y ; �Z; �c)) g(�X; �Y ; �Z; �c))]

The conjunct L(�X) restricts the test condition by not being a part of the implication. We highlight

this point using an extension of Example 4.1.2.

EXAMPLE 4.4.1 Consider constraint I40 requiring that if an employee's salary is greater than

100 then the salary should not be greater than the salary of any manager in the same department.

I40 is violated if the following conjunctive query derives panic.

panic :{ emp(E;D; S) & dept(D0;MS) & S>100 & S>MS & D=D0.

If tuple emp(john; toy; 50) is inserted, constraint I40 need not be checked because the subgoal

50>100 cannot be satis�ed. However, consider TC(I40; l; �) for the above constraint:

9E;D; S 8D0;MS : [emp(E;D; S) ^ ((D0=d ^ s�MS ^ s>100))

(D0=D ^ S>MS ^ S>100))].

CHAPTER 4 More General Constraints 57

If the relation emp is empty when emp(john; toy; 50) is inserted, then TC(I40; l; �) does not evaluate

to true because of the conjunct emp(E;D; S) that requires that there be at least one tuple in emp

even though the implication is vacuously true. 2

The problem arises because if g(�; �Y ; �Z; �c) is false then the inserted tuple cannot violate the

constraint and thus a cover tuple need not exist. However, L may be empty and thus cause the

test as a whole to fail. This shortcoming can be recti�ed by including L(�X) in the LHS of the

implication. In all subsequent test conditions this optimization is made. For the above example,

the optimization results in the following test condition.

9E;D; S 8D0;MS : [(emp(E;D; S) ^ D0=d ^ s�MS ^ s>100))

(D0=D ^ S>MS ^ S>100)].

We introduced TC(C; l; �) �rst because excluding L(�X) from the implication simpli�es the impli-

cation condition and facilitates understanding the manipulation needed to convert the implication

to a su�cient condition on the variables �X.1

4.4.3 Use Multiple Symbol Mappings

EXAMPLE 4.4.2 Consider two relations from the database for a transportation company.

bus from(S;D) % Source S to destination D are connected by a bus

depot(A) % A is a depot.

Consider an integrity constraint I7 on this database that asserts that if there is a bus from source S

to destination D, then S and D cannot both be depots. The violation condition for this constraint

can be represented by the following CQ.

panic :{ bus from(S;D) & depot(S) & depot(D).

Let relation bus from be local, let the parameterized tuple � = (a; b) be inserted into the relation,

and let the parameterized tuple � = (u; v) represent existing tuples of bus from.

First we use the techniques of Chapter 3 to derive the parameterized local test condition. The

process is as outlined on Page 31. First, we compute Red(�; l; I7) and Red(�; l; I7).

Red(�; l; I7) : panic :{ depot(S) & depot(D) & S=u & D=v.

Red(�; l; I7) : panic :{ depot(S) & depot(D) & S=a & D=b.

There are four symbol mappings from Red(�; l; I7) to Red(�; l; I7).

h1: S ! S; D! D.

h2: S ! S; D! S.

1The optimized version of TC(C; l; �) detects irrelevant updates whereas the unoptimized version does not detect

irrelevant updates. Irrelevant updates are studied in [BCL89, Elk90, LS93].

CHAPTER 4 More General Constraints 58

h3: S ! D; D ! D.

h4: S ! D; D ! S.

Using the above mappings, the parameterized test condition T is:

LHS(T): (S = a;D = b).

RHS(T): (S = u;D = v)_ (S = u;D = u) _ (S = v;D = v) _ (S = v;D = u).

Now let us consider the strategy developed in this chapter and obtain TC(I7; L; �). First, we need

to state constraint I7 as an assertion:

8S;D;A;B : [(bus from(S;D)^ depot(A) ^ depot(B) ^A=S ^D=B)) false].

The test generated according to De�nition 4.2.1 is:

(b): 9U; V 8S;D : [bus from(U; V) ^ ((S = a;D = b)) (S = U;D = V))].

Test (b) considers only one mapping between the two partially instantiated queries, namely the

identity mapping, and thus produces a less complete but simpler test condition that has no disjuncts

on the RHS.

Three other assertions can be used to represent constraint I7. Namely, assertions where either or

both of the equality predicates A=S and D=B occur on the RHS of the assertion. However, these

assertions are not expressible in the language we have considered. In Section 4.5.2 we generalize

the assertion language to allow arithmetic conjuncts on the RHS. However, even with the more

general assertions, the test condition for the above example stays the same. 2

Intuitively, TC(C; l; �) is based on a single symbol mapping and is su�cient but not complete.

The point to be noted here is that using just the identity mapping generates su�cient test conditions

for constraints more powerful than conjunctive query constraints. For instance, for conjunctive

queries that use negation and no arithmetic the existence of a symbol mapping from the positive

subgoals of query Q2 to the positive subgoals of query Q1 and from the negative subgoals of query

Q2 to the negative subgoals of query Q1 is a su�cient condition for Q1 � Q2. However, the

condition is not necessary. When arithmetic inequalities are also used, the su�cient condition also

needs I(Q1)) I(Q2). The test condition stated in De�nition 4.2.1 is derived using this intuition.

The test condition can be proved correct for a class of queries that properly contains conjunctive

queries with negation and arithmetic inequalities (for instance constraint I1).

Using multiple mappings we can generate test conditions that are more powerful than TC(C; l; �).

Alternative mappings introduce disjunctions on the RHS of the test condition. Geometrically,

the problem corresponds to determining if a union of k-dimensional spaces contains another k-

dimensional space. This problem is computationally more expensive than determining if a k-

dimensional space is contained in another similar space. Also, it is not possible always to eliminate

CHAPTER 4 More General Constraints 59

universally quanti�ed remote variables when the RHS of an implication has disjunctions. Speci�-

cally, the strategy described in Appendix B does not work. However, if there are disjunctions on

the RHS of the test condition, then the discussion of Chapter 3 becomes relevant. The results of

Sections 3.1 and 3.2 can be used if g(�; �Y ; �Z; �C) is an independently constrained sentence or a \�"

sentence.

An alternative to having disjunctions on the RHS of the test condition is to generate one

test { similar to TC(C; l; �) { from each of the possible mappings. As a consequence we obtain

a disjunction of implications of the form
W
n

i=1
(A) Bi) instead of an implication of the form

A)
W
n

i=1
(Bi). Thus, for each constraint we could have several tests such that if any of these tests

succeeds, then the constraint continues to hold. Geometrically, this enhanced test corresponds to

determining if a k-dimensional parallelepiped is contained in one of a set of parallelepipeds and is

therefore not the same as checking containment in the union of the parallelepipeds. The following

example illustrates this approach.

EXAMPLE 4.4.3 Consider constraint I7 from Example 4.4.2.

panic :{ bus from(S;D) & depot(S) & depot(D).

Using the four mappings described earlier, we can generate the following four tests that are each

of the form of TC(C; l; �).

9U; V 8S;D : [bus from(U; V) ^ ((S = a;D = b)) (S = U;D = V))].

9U; V 8S;D : [bus from(U; V) ^ ((S = a;D = b)) (S = V;D = U))].

9U; V 8S;D : [bus from(U; V) ^ ((S = a;D = b)) (S = U;D = U))].

9U; V 8S;D : [bus from(U; V) ^ ((S = a;D = b)) (S = V;D = V))].

If any of the above tests successfully checks constraint I7 on insertion of tuple bus from(a; b), then

the constraint continues to hold. 2

In the remainder of this thesis we do not consider using multiple mappings. Instead we con-

centrate on how to handle more expressive constraint assertions using the simpler test condition

TC(C; l; �) that uses only the identity mapping. Thus, we compromise generating more powerful

tests and instead generate the weaker test TC(C; l; �) for a larger class of constraints.

4.4.4 Completeness

To highlight the completeness properties of TC(C; l; �), �rst we consider those of the assertions de-

scribed in Section 4.1 that produce violation conditions expressible as conjunctive query constraints

with arithmetic inequalities. For such constraints, the previous sections illustrate that TC(C; l; �)

is not complete because it considers only single cover tuples and single mappings. Now the question

CHAPTER 4 More General Constraints 60

of interest is if there are classes of constraints for which TC(C; l; �), without generalizations, is the

complete local test.

Recall the process of generating test conditions for conjunctive query constraints as described

by the four step process on Page 31. The resulting test condition, It, was an arithmetic implication

that had a disjunctive RHS. The disjunctions on the RHS arose out of three factors: multiple

constraints in the set of constraints C, multiple symbol mappings, and multiple tuples in L. Can

TC(C; l; �) express It for any speci�c class of constraints? We consider each of the three factors

that result in disjunctions in It and see how the factors a�ect TC(C; l; �).

Multiple constraints are not a factor in this chapter because we assume that there is only a

single constraint in the set C.

Next, we restrict the class of CQCs such that there is only one mapping from Red(�; l; C)

to Red(�; l; C). This restriction can be achieved in many ways, for instance by ensuring that no

predicate is used more than once in the constraint. The restriction of a single mapping eliminates

another source of disjunctions from the test condition obtained by using containment mapping.

The last source of disjunctions, multiple cover tuples, can be removed by restricting the kind of

arithmetic inequalities permitted in the constraint. In particular, consider the constraint classes

LibCQC and RibCQC described in Section 3.2. These classes guarantee that only a single tuple is

needed to check containment.

Thus, for constraints that satisfy the restrictions of the above paragraph, we can guarantee that

TC(C; l; �) is indeed the complete local test when C has only one constraint. In fact, if repeated

predicates are disallowed, then we can get complete local tests even if the conjunctive queries use

negated EDB predicates. Thus, we claim that if the assertion C introduced in Section 4.1 has no

repeated predicates and if g is either a \�" sentence or a \�" sentence as per De�nition 3.2.2 on

Page 43, then TC(C; l; �) is the complete local test for constraint C.

4.5 More General Constraints

Now we consider generating test conditions of the same form as TC(C; l; �) (without any of the

proposed generalizations) for constraint assertions more powerful than the assertion language of

Section 4.1. The �rst extension removes the restriction on the quanti�cation of �Y and �Z in sentence

C of Section 4.1. The second extension permits relational expressions with arithmetic inequalities

on the RHS of the integrity constraint assertion. The last extension allows disjunctions of relational

expressions with arithmetic to appear on the RHS of the assertion. Tests conditions for all these

languages are presented. The �rst extension does not correspond to an intuitive class of constraints

but is useful because it provides a proof for the class we considered in Section 4.1. The last two

extensions do correspond to intuitive constraint assertions classes that are more powerful than those

considered until now. The last two extensions are both instances of the topmost circled dot on the

CHAPTER 4 More General Constraints 61

right branch of Figure 4.1.

4.5.1 Unrestricted Quanti�ers

We consider a sentence C of the form described in Section 4.1 and remove the restrictions on the

quanti�ers of �Y and �Z. We therefore consider a �rst order logic sentence B with the variables

8 �Y 9 �Z replaced by a sequence of arbitrarily quanti�ed variables denoted ��Y .

B: 8 �X ��Y : [(L(�X) ^ R1(�Y 1) ^ : : :^ Rk(�Y k) ^ g(�X; �Y ; �c))) (S1(�Y
0

1
) _ : : :_ Sn(�Y

0

n
))]

where:

��Y = �1Y1�2Y2 : : :, each �i is a 8 or 9 quanti�er, and Y1; Y2; : : : are variables in �Y .

The other terms occurring in the assertion are the same as described before. The restrictions for

evaluability given in Section 4.1 also apply here.

De�nition 4.5.1 (TCg(B; l; �)) Consider an integrity constraint B:

B: 8 �X ��Y : [(L(�X) ^ R1(�Y 1) ^ : : :^ Rk(�Y k) ^ g(�X; �Y ; �c))) (S1(�Y
0

1
) _ : : :_ Sn(�Y

0

n
))]

Let � represent a tuple inserted into the accessible relation L. The test condition is as follows:

TCg(B; l; �): 9 �X 8 �Y : [g(�; �Y ; �c)) (L(�X) ^ g(�X; �Y ; �c))]

2

The following theorem proves the correctness of De�nition 4.5.1.

Theorem 4.5.1 Consider an integrity constraint B and a tuple � inserted into relation L. If the

database satis�es integrity constraint assertion B before adding tuple �, and if the test condition

TCg(B; l; �) is satis�ed by the accessible relation L, then the database satis�es integrity constraint

assertion B after inserting tuple �. 2

Proof: The integrity constraint assertion is assumed to be 8 �X ��Y : (�X; �Y ; �c) and the test condition

9 �X 8�Y : [(�X; �Y ; �c)) (�; �Y ; �c)]. We prove Theorem 4.5.1 in two steps. In Step 1 we prove that the

test condition along with the initial consistency assumption, 8 �X ��Y : (�X; �Y ; �c), implies that the database

is consistent after inserting tuple �. In Step 2 is replaced by the logical form of integrity constraint

assertions considered in Theorem 4.2.1 to generate the test condition TCg(B; l; �).

Step 1 Prove the following sentence:

t: (9 �X 8�Y : [(�X; �Y ; �c)) (�; �Y ; �c)] ^ 8 �X ��Y : (�X; �Y ; �c))) ��Y : (�; �Y ; �c)

However, we will use a di�erent form of goal t. The LHS of the implication will be restricted and instead of

using the sentence

a: 9 �X 8�Y : [(�X; �Y ; �c)) (�; �Y ; �c)] ^ 8 �X ��Y : (�X; �Y ; �c)

Let �X
o
be a particular instantiation of �X that makes (a) true. That is: sentence:

b: 8�Y : [(�X
o
; �Y ; �c)) (�; �Y ; �c)] ^ ��Y : (�X

o
; �Y ; �c)

Note, (a) implies (b) (assuming that the domain of �X is not empty) and therefore if we prove that (b) implies

CHAPTER 4 More General Constraints 62

the RHS of the implication in (t), then (a) also implies RHS(t). The proof is by induction over the number

of variables in �Y which is the same as the number of quanti�ers in �.

Base Case � is empty i.e. there are no variables in �Y . We need to prove:

[(�X
o
; �c)) (�; �c)] ^ (�X

o
; �c)) (�; �c)

The truth of the base case sentence is easy to observe.

Induction Step � contains n + 1 quanti�ers. Assume that when � contains n quanti�ers the following

sentence is true:

I: (8�Y : [(�X
o
; �Y ; �c)) (�; �Y ; �c)] ^ ��Y : (�X

o
; �Y ; �c))) ��Y : (�; �Y ; �c)

� Case 1: The n+ 1st variable Z is universally quanti�ed:

Initial Consistency Assumption: 8Z ��Y : (�X
o
; Z; �Y ; �c).

Test Condition: 8Z 8�Y : [(�X
o
; Z; �Y ; �c)) (�; Z; �Y ; �c)].

Intended Conclusion: 8Z ��Y : (�; Z; �Y ; �c).

We need to prove:

(8Z 8�Y : [(�X
o
; Z; �Y ; �c)) (�; Z; �Y ; �c)] ^ 8Z ��Y : (�X

o
; Z; �Y ; �c))) 8Z ��Y : (�; Z; �Y ; �c)

Consider z, an instance of variable Z. Because Z is universally quanti�ed in all formulas, we can

replace Z by z in all the components of the sentence to obtain:

(8�Y : [(�X
o
; z; �Y ; �c)) (�; z; �Y ; �c)] ^ ��Y : (�X

o
; z; �Y ; �c))) ��Y : (�; z; �Y ; �c)

This sentence has only n quanti�ers in � and the induction hypothesis (I) implies that the sentence

is true for the given constant z. Because the constant z was an arbitrary constant, the sentence would

be true for all variables Z proving our intended conclusion.

� Case 2: The n+ 1st variable Z is existentially quanti�ed:

Initial Consistency Assumption: 9Z ��Y : (�X
o
; Z; �Y ; �c).

Test Condition: 8Z 8�Y : [(�X
o
; Z; �Y ; �c)) (�; Z; �Y ; �c)].

Intended Conclusion: 9Z ��Y : (�; Z; �Y ; �c).

We need to prove:

(8Z 8�Y : [(�X
o
; Z; �Y ; �c)) (�; Z; �Y ; �c)] ^ 9Z ��Y : (�X

o
; Z; �Y ; �c))) 9Z ��Y : (�; Z; �Y ; �c)

Assuming that dom(Z) is not empty, consider z, an instance of variable Z such that the conjunct

9Z ��Y : (�X
o
; Z; �Y ; �c) is satis�ed. The initial consistency assumption gives us that the existing

inaccessible relations provide such a z. Substituting constant z for variable Z in the above sentence,

we get:

(8Z 8�Y : [(�X
o
; Z; �Y ; �c)) (�; Z; �Y ; �c)] ^ ��Y : (�X

o
; z; �Y ; �c))) 9Z ��Y : (�; Z; �Y ; �c).

The �rst component of the conjunction holds 8Z and therefore holds for Z = z resulting in:

g1: (8�Y : [(�X
o
; z; �Y ; �c)) (�; z; �Y ; �c)] ^ ��Y : (�X

o
; z; �Y ; �c))) 9Z ��Y : (�; Z; �Y ; �c)

In the LHS of the implication the quanti�er on predicate now has length n. The induction hypothesis

can therefore be used. The induction hypothesis states:

I: (8�Y : [(�X
o
; �Y ; �c)) (�; �Y ; �c)] ^ ��Y : (�X

o
; �Y ; �c))) ��Y : (�; �Y ; �c)

CHAPTER 4 More General Constraints 63

Replacing (�X
o
; �Y ; �c) with a predicate that has an additional constant argument in a �xed position,

we can derive the following sentence from the induction hypothesis:

I2: (8�Y : [(�X
o
; z; �Y ; �c)) (�; z; �Y ; �c)] ^ ��Y : (�X

o
; z; �Y ; �c))) ��Y : (�; z; �Y ; �c)

In addition z 2 dom(Z) and therefore:

I3: (��Y : (�; z; �Y ; �c)) 9Z��Y : (�; Z; �Y ; �c))

The sentences I2, I3 and modus-ponens gives us the goal g1 and hence the intended conclusion.

Step 2 Recall that when the integrity constraint assertion is of the form:

(L(�X) ^ R1(�Y 1) ^ : : :^ Rk(�Y k) ^ g(�X; �Y ; �c))) (S1(�Y
0

1) _ : : :_ Sn(�Y
0

n)).

then the test condition TCg(B; l; �) stated in Theorem 4.5.1 is:

TCg(B; l; �): 9 �X 8�Y : [g(�; �Y ; �c)) (L(�X) ^ g(�X; �Y ; �c))]

TCg(B; l; �) is obtained by substituting for in T :

T : 9 �X 8�Y : [(�X; �Y ; �c)) (�; �Y ; �c)]

After substituting (l(�X) ^R1(�Y 1) : : :^ g(�X; �Y))) (S1(�Y
0

1) _ : : :_ Sn(�Y
0

n)) for in T we get:

9 �X 8�Y : [f(l(�X) ^R1(�Y 1) ^ : : :^ g(�X; �Y))) (S1(�Y
0

1) _ : : :)g)

f(l(�) ^R1(�Y 1) ^ : : :^ g(�; �Y))) (S1(�Y
0

1) _ : : :)g]

l(�) is true because � is inserted into relation L. Thus the above sentence can be simpli�ed to yield:

9 �X 8�Y : [f(l(�X) ^R1(�Y 1) ^ : : :^ g(�X; �Y))) (S1(�Y
0

1) _ : : :)g)

f(R1(�Y 1) ^ : : :^ g(�; �Y))) (S1(�Y 1) _ : : :)g]

Using the valid logic sentence (a) b) � (:a _ b) we obtain:

9 �X 8�Y : [f:(l(�X) ^R1(�Y 1) ^ : : :^ g(�X; �Y)) _ S1(�Y
0

1) _ : : :g)

f:(R1(�Y 1) ^ : : :^ g(�; �Y)) _ S1(�Y
0

1) _ : : :g]

Using the valid logic sentence (a) b)) (a _ c) b _ c) we obtain:

9 �X 8�Y : [:(l(�X) ^R1(�Y 1) ^ : : :^ g(�X; �Y))) :(R1(�Y 1) ^ : : :^ g(�; �Y))]

Taking the contrapositive of the above, we get

9 �X 8�Y : [(R1(�Y 1) ^ : : :^ g(�; �Y))) (l(�X) ^R1(�Y 1) ^ : : :^ g(�X; �Y))]

Using the valid logic sentence (a) b)) (a ^ c) b ^ c) we get TCg(B; l; �). Every step of the

transformation produced either an equivalent sentence or one that implied the sentence before. Therefore,

TCg(B; l; �)) T .

If TCg(B; l; �) is satis�able, then the LHS of the sentence (t) (beginning of Step 1) becomes true. Because

(t) has been proved valid we conclude that the RHS also has to be true. Therefore the integrity constraint

assertion is true in the new database state when TCg(B; l; �) is satis�ed by the accessible relation.

CHAPTER 4 More General Constraints 64

4.5.2 Arithmetic Inequalities on the Right Hand Side

Until now we restricted the RHS of the assertion to be simple existential facts that referred to single

relations. However, constraint assertions may require more involved right hand sides. Thus, the

following assertion allows the RHS to be of the same form as the LHS. That is, the assertion is a

�rst-order logic sentence of the following form:

A: 8 �X 8 �Y 9 �Z : [(L(�X) ^ R1(�Y 1) ^ : : :^ Rk(�Y k) ^ g1(�X; �Y ; �Z; �c)))

(S1(�Y
0

1
; �Z

0

1
) ^ : : :^ Sn(�Y

0

n
; �Z

0

n
) ^ g2(�X; �Y ; �Z; �c))]

The same restrictions for evaluability, as in Section 4.1, apply to this language. In terms of Datalog,

the above integrity constraint assertion corresponds to a Datalog program that has one rule de�ning

panic. This rule is a conjunctive query with arithmetic inequalities (g1) and one negated subgoal

s. The predicate in subgoal s is an IDB predicate that is de�ned using a single conjunctive query

with arithmetic inequalities (g2). The test condition for this more general constraint language is

de�ned as follows.

De�nition 4.5.2 (TCa(A; l; �)) For integrity constraint A:

A: 8 �X 8 �Y 9 �Z : [(L(�X) ^ R1(�Y 1) ^ : : :^ Rk(�Y k) ^ g1(�X; �Y ; �Z; �c)))

(S1(�Y
0

1
; �Z

0

1
) ^ : : :^ Sn(�Y

0

n
; �Z

0

n
) ^ g2(�X; �Y ; �Z; �c))]

Let � represent a tuple inserted into the accessible relation L. The test condition is as follows:

TCa(A; l; �): 9 �X 8 �Y 8 �Z : [L(�X)^ (g1(�; �Y ; �Z; �c)) g1(�X; �Y ; �Z; �c))

^ (g2(�X; �Y ; �Z; �c)) g2(�; �Y ; �Z; �c))] 2

Theorem 4.5.2 Consider an integrity constraint A and a tuple � inserted into relation L. If the

database satis�es integrity constraint assertion A before adding tuple �, and if the test condition

TCa(A; l; �) is satis�ed by the accessible relation L, then the database satis�es integrity constraint

assertion A after inserting tuple �. 2

Proof: Similar to the proof of Theorem 4.5.1.

4.5.3 More Complex Right Hand Sides

We further extend the class of constraint assertions to allow even more complicated sentences on

the RHS of the assertions. We consider a �rst order logic sentence of the following form:

A0: 8 �X 8 �Y 9 �Z : [(L(�X) ^ R1(�Y 1) ^ : : :^ Rk(�Y k)^ g0(�X; �Y ; �Z; �c)))

(S11(�Y
0

11
; �Z

0

11
) ^ : : :^ S1n1(

�Y
0

1n1
; �Z

0

1n1
) ^ g1(�X; �Y ; �Z; �c)) _

(S21(�Y
0

21
; �Z

0

21
) ^ : : :^ S2n2(

�Y
0

2n2
; �Z

0

2n2
) ^ g2(�X; �Y ; �Z; �c)) _

: : : : : : : : :

(Sm1(�Y
0

m1
; �Z

0

m1
) ^ : : :^ Smnm(�Y

0

mnm
; �Z

0

mnm
) ^ gm(�X; �Y ; �Z; �c))]

CHAPTER 4 More General Constraints 65

The same restrictions for evaluability, as in Section 4.1, apply to this language. The above integrity

constraint assertion corresponds to a disjunction of m assertions, A0

1
_A0

2
_ : : :_ A0

m
, where A0

i
is

of the form:

A0

i
: 8 �X 8 �Y 9 �Z : [(L(�X) ^ R1(�Y 1) ^ : : :^ Rk(�Y k) ^ g0(�X; �Y ; �Z; �c)))

(Si1(�Y
0

i1
; �Z

0

i1
) ^ : : :^ Sini(

�Y
0

ini
; �Z

0

ini
) ^ gi(�X; �Y ; �Z; �c))]

The above assertion represents a Datalog program that has one rule de�ning panic such that

this rule is a conjunctive query with arithmetic inequalities and an arbitrary number of negated

subgoals. Each negated subgoal uses an IDB predicate that is de�ned using exactly one conjunctive

query with arithmetic inequalities.

The test condition for A0 is a disjunction of m test conditions, where the ith condition checks

that the assertion LHS) RHSi holds after the insertion. Each of the m test conditions is of the

form TCa(A
0

i
; l; �) from De�nition 4.5.2. The assertion A0 holds in the new database state if any of

the m test conditions succeeds.

Chapter 5

Extending Local Checking

Chapter Outline In this chapter �rst we consider how deletions are checked locally. Then we

prove the correctness of the use of multiple local checking methods in parallel by di�erent sites to

check the same constraint while treating their own updated relation as local and treating all other

relations as remote. In Section 5.3 we discuss the applicability of local constraint checking when the

initial consistency assumption does not hold. Finally, in Section 5.4 we describe how local checking

results can be applied to materialized view maintenance.

5.1 Deletions

Until now we have considered insertions as the only update. The techniques described earlier for

handling insertions can also be used to determine when deletions from relations do not violate

constraints. First we give the intuition for handling deletions by using the pictorial interpretation

of illegal states of the database introduced in Section 2.2. Then we describe the type of constraints

for which deletions can be handled and �nally give the test conditions for these constraints.

5.1.1 Intuition

Consider Figure 5.1, which is a variant of Figure 2.2 introduced earlier on Page 21. We reinterpret

the above �gure to illustrate the intuition for deletions. Let circle S0 represent all possible states of

relations �R that do not violate constraint C with tuple t0. That is, S0 represents all the legal states

of the inaccessible database given tuple t0.
1 Given that the current state of the remote database

does not violate C, we can infer that the current state of �R lies inside circle S0.

Let relation L contain tuples t0, t1, and t2, and let tuple t1 be deleted from L. Circle S1

represents all those states of �R that do not violate constraint C given tuple t1. Given that S1 is

contained in S0, all states of �R that do not violate constraint C given tuple t1 also do not violate

1As before, we are assuming that constraint C does not use multiple tuples from relation L in any derivation.

66

CHAPTER 5 Extensions 67

RD

2S

0S

1S

t2

t1
L

t0

Constraint C

Initial Consistency Assumption

Figure 5.1: Locally Checking Constraints in Response to Deletions

C given tuple t0. The initial consistency assumption implies that the current state of �R does not

violate C with t1 and thus we infer that the current state of �R lies inside circle S1 and therefore

inside circle S0. Hence, if tuple t1 is deleted from L then the current state of �R does not violate

constraint C with t0. In this case, we say that the tuple t0 covers the deleted tuple t1.

Now suppose tuple t2 is to be deleted from relation L, where L contains tuples t0 and t2. Circle

S2 represents all those states of �R that do not violate constraint C given tuple t2. Given that circle

S2 is not contained in the circle S0, there could be some state of �R that does not violate constraint

C given tuple t2, but that violates C given t0. Such a state would be in S2 but not in S0. The

current state of �R could be one such state. Therefore, tuple t0 cannot be used to conclude that the

current state of �R does not violate C when tuple t2 is deleted.

Locally checking deletions involves �nding a cover tuple for the deleted tuple such that the legal

states of the inaccessible relations �R, given the deleted tuple, are a subset of the legal states of �R,

given the cover tuple. Note, we could use a set of existing tuples to build a cover for the deleted

tuple �v, but we do not consider multiple cover tuple techniques for deletions.

5.1.2 Language

Consider constraint assertions of the form C:

C: 8 �X 8 �Y 9 �Z 9 �W : [(R1:::k(�Y) ^ g(�X; �Y ; �Z; �W; �c)))

(L(�X; �W) _ S1 (�Y
0

1
; �Z

0

1
) _ : : :_ Sn(�Y

0

n
; �Z

0

n
))]

CHAPTER 5 Extensions 68

Where R1:::k(�Y) represents a conjunction of k relations, each of which uses a subset of the variables

in �Y as arguments. The restrictions on the relations for evaluability are exactly the same as in

Section 4.1. These restrictions require that each variable in �X is equated to either a variable in �Y

or to some constant. Note, the assertion C is similar to assertion C in Section 4.1. However, the

updated relation, and thus the accessible relation, is on the RHS instead of the LHS. An assertion

of the form C can become false if more tuples are added to a relation on its LHS or if tuples are

removed from a relation on its RHS. This corresponds to the constraint being potentially violated

when tuples are inserted into relations occurring positively or when tuples are deleted from relations

occurring negatively. Thus, deletions to relation L are relevant updates.

5.1.3 Test Condition for Deletions

The test condition for locally checking constraint C is derived using the pictorial intuition given

above. We need to prove that the set of legal remote database states corresponding to the deleted

tuple �v is contained in the set of legal remote database states corresponding to some tuple remain-

ing in L. Note, C is of the form LHS(C)) RHS(C), or equivalently, :LHS(C) _ RHS(C). By

substituting �v into C we get a characterization of the legal states of the remote database given

�v. That is, states in which either LHS(C) is false after �v has been substituted into C, or RHS(C)

is true. That is, the legal states for �v are characterized by :LHS(C(�v)) _ K, where K represents

RHS(C(�v)). Similarly, the legal states for tuple t in L are characterized by :LHS(C(t)) _ K0.

Thus, t covers �v if the legal states of �R given �v are contained in the legal states of �R given t, i.e.,

[:LHS(C(�v))_K]) [:LHS(C(t))_K0]. A su�cient condition for the above implication to be true

is :LHS(C(�v))) :LHS(C(t)) or equivalently, LHS(C(t))) LHS(C(�v)). This implication involving

the LHS of the assertion can be reduced to an implication involving just the arithmetic inequalities.

Thus the test condition turns out to be an implication involving arithmetic inequalities.

De�nition 5.1.1 (TCD(C; l; �)) Consider an integrity constraint assertion C:

C: 8 �X 8 �Y 9 �Z 9 �W : [(R1:::k(�Y) ^ g(�X; �Y ; �Z; �W; �c)))

(L(�X; �W) _ S1 (�Y
0

1
; �Z

0

1
) _ : : :_ Sn(�Y

0

n
; �Z

0

n
))]

Let �v be a tuple deleted from the accessible relation L. The test condition is as follows:

TCD(C; l; �): 9 �W 9 �X 8 �Y 8 �Z : [L(�X; �W) ^ (g(�W; �X; �Y ; �Z; �c)) g(�vx; �vw; �Y ; �Z; �c))]

where �vw and �vx are the projections of tuple �v onto variables �W and �X respectively. 2

Theorem 5.1.1 Consider an integrity constraint C and a tuple �v deleted from relation L. If the

database satis�es integrity constraint assertion C before deleting tuple �v, and if the test condition

TC(C; l; �) is satis�ed by the accessible relation L, then the database satis�es integrity constraint

assertion C after deleting tuple �v. 2

CHAPTER 5 Extensions 69

Proof: Identical to the proof of Theorem 4.5.1 stated in Section 4.5 on page 61.

The techniques to evaluate TC(C; l; �), discussed in the previous chapter, can be used to eval-

uate TCD(C; l; �). However, in both cases there is a di�erence. In TC(C; l; �) the parameters

corresponding to the inserted tuple appear on the LHS of the implication, whereas in TCD(C; l; �)

the parameters corresponding to the deleted tuple appear on the RHS of the implication. The �rst

technique, where each existing tuple in L is substituted into the test condition and the resulting

implications are evaluated, can be used as before. The second technique, where universally quan-

ti�ed variables are eliminated from the test condition to give a selection condition on L needs to

be changed as described in Appendix B.

5.1.4 Modi�cations

We treat tuple modi�cations as a deletion followed by an insertion (in that order). We discuss

local tests for constraints in which the modi�ed relation occurs positively. An interesting point to

note here is that the deleted tuples can be stored temporarily and used in the local tests for better

performance. The following example illustrates this idea.

EXAMPLE 5.1.1 Consider constraint I4 from Example 4.1.2. Constraint I4 is violated if there

is at least one employee whose salary is greater than the salary of some manager in the same

department, i.e., when the following query derives panic.

panic :{ emp(E;D; S) & dept(D;MS) & S>MS.

Let the tuple emp(john; toy; 100) be modi�ed to emp(john; toy; 90). Given that constraint I4 was

not violated before the update, we can use emp(john; toy; 100) as a cover for tuple emp(john; toy; 90).

Instead, if the update was treated as a deletion+insertion and the deleted tuple was not used in

the test, then the local test would have failed to use the old value of the tuple to infer that the new

value does not violate the constraint. 2

Formally, the test condition for locally checking modi�cations is exactly the same as in the case

of insertions, i.e., as described in Sections 4.2 and 4.5. The di�erence is that the test is executed

on the old relation that includes the old value of the modi�ed tuple. Thus, the logic is the same as

in the case of insertions but the implementation needs to be slightly di�erent.

In case the modi�ed relation occurs negatively, then we can model a modi�cation as an insertion

followed by a deletion and use the going-to-be deleted tuple in the local check. The process is

symmetric to that for locally checking modi�cations in case the modi�ed relation occurred positively.

CHAPTER 5 Extensions 70

5.2 Multiple Tests in Parallel

Until now we have discussed local constraint checking assuming that only one relation is updated.

Consider the motivating scenario for our local checking methods: a constraint spans multiple

relations that are not all part of the same database. In such a scenario, di�erent sites may update

their relations independently, and each of these sites may use a local constraint checking method

to check if the constraint holds after the update. Thus, there is no coordination between the sites

even though the sites are checking the same constraint. The question that arises in such a situation

is whether this strategy may conclude that the constraint holds when actually the constraint is

violated.

Therefore, in this section we consider what happens when local checking is done independently

for multiple updated relations that are involved in the same constraint. That is, multiple relations

are updated, and for each update a di�erent test condition is executed that treats only the updated

relation as accessible and other relations as inaccessible. We prove that if multiple tests are run in

parallel then a constraint is inferred to hold only if it indeed does hold, and thus the independent

tests cannot result in undetected violations.

We use the notation for constraints introduced in Section 2.4. Thus, a constraint is represented

by its violation condition. Recall, C = fC0; C1; : : : ; Cmg is a set of constraints. Each Ci 2 C uses

some subset of the relations fL;R1; : : : ; Rng. Local checking uses the initial consistency assumption

for C, the update to relation L, and the contents of relation L, to check each constraint Ci 2 C.

The algorithm for locally checking the constraints in C, originally stated in Figure 2.3, is restated

below.

(1) for i 2 0 : : :m do

(2) if 8 �R : Ci(L [ftg; �R)) C(L; �R) then okay(Ci) true else okay(Ci) false

The results in Chapters 3 and 4 correctly implement the above algorithm for particular classes of

constraints.

If two or more relations are updated then each occurrence of an updated relation is treated

as an accessible relation and tests are run in parallel for each of these occurrences, to check for

constraint violations. If a relation occurs multiple times in a constraint, then each occurrence is

treated as an independent relation and a local check is executed for each occurrence. Thus, for

the following discussion, we assume that no relation is repeated. We prove that if the tests are all

successful, i.e. all tests conclude that no constraint in C is violated, then indeed the updates do

not violate any constraint in C. This result is crucial to the applicability of the test conditions

described in this thesis.

CHAPTER 5 Extensions 71

Theorem 5.2.1 Let C be a set of constraints that use relations fR1; : : : ; Rng such that no con-

straint in C is violated in the current database state DB. Let relations R1; : : : ; Rk, k � 1, in C

be updated to give a new database state DB0. Let test T j be the execution of the algorithm above

assuming that relation Rj is accessible and all other relations are inaccessible. If each of the k test

conditions fT 1; : : : ; Tkg independently infers that no constraint in C is violated, then indeed no

constraint in C is violated in the new database state DB0. 2

Proof: We represent the set of constraints C as a function �C(R1; : : : ; Rn) that computes panic, or is true,

if any constraint in C is violated. Without loss of generality, say that relations R1 and R2 are updated.

We want to prove that if the independent tests, one accessing just relation R1 and the other accessing just

relation R2, infer that no constraint in C is violated, then indeed no constraint in C is violated in the new

database state obtained by incorporating both updates (assuming initial consistency.)

Let relation Ri after update be referred to by R�
i . If the test for relation R1 infers that no constraint in

C is violated by changing R1 to R
�
1 , then we can infer that the implication in line 3 of the algorithm above

holds.

A: 8X2; : : : ; Xn : [�C(R�
1 ; X2; : : : ; Xn)) �C(R1; X2; : : : ; Xn)]

where Xi represents an instance of relation Ri. Similarly, if the test condition accessing relation R2 infers

that no constraint in C is violated by changing R2 to R
�
2, then we can infer that:

B: 8X1; X3; : : : ; Xn : [�C(X1; R
�
2; X3; : : : ; Xn)) �C(X1; R2; X3; : : : ; Xn)]

Suppose however, that some constraint in C is violated in the new database state i.e. �C(R�
1 ; R

�
2; : : : ; Rn)

is true. Using A we can conclude therefore that �C(R1; R
�
2; : : : ; Rn) is true. Similarly, using this new

conclusion and B we obtain that �C(R1; R2; : : : ; Rn) is true. However, the initial consistency assumption tells

us that �C(R1; R2; : : : ; Rn) is false. Therefore, the assumption that �C(R�
1; R

�
2; R3; : : : ; Rn) is true leads to a

contradiction.

As a result of the above theorem, constraints involving data on multiple sites can be checked

on each of these sites using local checking without fear of incorrectness arising from interference

from the other sites. If any one of these tests fails then alternative ways of checking constraints is

needed, as described in the introduction.

5.3 Inferring Violations

Until now we have used the initial consistency assumption to develop local checks for constraints.

However, suppose a constraint does not hold in a database. Can local checking be used in any

reasonable manner? The following example illustrates some issues in using local checking when the

initial consistency assumption does not hold.

EXAMPLE 5.3.1 Consider constraint I4 from Example 5.1.1. Let relation emp contain two

tuples (john; toy; 50) and (mary; toy; 150) and let relation dept contain only tuple (toy; 100). For

CHAPTER 5 Extensions 72

this database, we can infer that john does not violate constraint I4 and mary does violate the

constraint. Suppose we
ag a tuple in emp if that tuple violates constraint I4. So (mary; toy; 150)

is
agged and (john; toy; 50) is not
agged.

Now, we insert a tuple emp(bob; toy; 175) into the database and we also assume that only re-

lation emp is available for constraint checking. Using the
ags on the tuples we can infer that

emp(bob; toy; 175) also violates the constraint. The reasoning is as follows. If mary violates I4 then

department toy has a manager whose salary is less than 150 and therefore less than 175. In fact, the

reasoning is exactly as in the case of local checking to check if the inserted tuple does not violate

the constraint.

As before, if we insert tuple emp(sara; toy; 25) into the database then we can use (john; toy; 50)

to infer that sara does not violate constraint I4 since (john; toy; 50) is not
agged.

Note, if we insert tuple emp(cary; toy; 75) into the database then we cannot use the existing

tuples in emp in order to determine whether or not the inserted tuple violates the constraint. Such

an insertion \falls through the cracks" with respect to local checking. 2

Flagging tuples, as in the above example, partitions the tuples in the local relation into two

groups, one set that violates the constraint and the other set that does not violate the constraint.

We refer to these two sets as the OK and NOTOK sets. When the initial consistency assumption

was true, then the entire relation was OK.

Let us see how
agged tuples can be used to do local checking. Let tuple � be inserted into

local relation L. If tuple � is covered by a tuple in the set OK, then � is also in set OK. If tuple �

covers a tuple in the set NOTOK, then � is also in set NOTOK. If no tuple in OK covers � and �

does not cover any tuple in NOTOK, then we need an alternate scheme for determining the e�ect

of inserting � on constraint C.

Flagging can be seen as another kind of partial information. However, it is not clear always what

it means to say that \a tuple violates a constraint." For instance, consider the above example and

treat relation dept as local. It is not clear if the tuple dept(toy; 100) should be
agged NOTOK.

This decision depends on the semantics of the particular constraint being considered. In [GT94,

Tiw94] there is a detailed discussion that highlights the fact that the responsibility of constraint

violations is usually shared asymmetrically by the participating relations, and thus often only one

of the participating relations needs to be
agged. In addition, if there are multiple constraints

in the system then tuples may be
agged with respect to some constraints and not
agged with

respect to other constraints. Thus, the cost of
agging tuples is proportional to the number of

constraints.

CHAPTER 5 Extensions 73

5.4 View Maintenance

In this section we describe how to adapt the results of the previous chapters for updating materi-

alized views using only the view de�nition, the contents of the updated relation, and the update

to the database.

EXAMPLE 5.4.1 Consider the following schema for an employee-department database which is

an extension of the schema described in the introduction.

emp(E;D; S) % employee number E in department D has salary S

dept(M;D;MS) % manager M in department D has salary MS

Let view bad dept(D;M) be de�ned to have all departments D that have a manager M and an

employee whose salary is greater than the salary of manager M .

bad dept(D;M) :{ emp(E;D; S) & dept(M;D;MS) & S>MS.

Let tuple (john; toy; 50) be inserted into relation emp. If only the view de�nition and the update

are available then it is not possible to infer the e�ect of the insertion on the view, i.e., the update

cannot be inferred to be irrelevant with respect to the view [BCL89].

However, if we know that the updated relation emp already contains tuple (mary; toy; 65) then

we can infer that view bad dept will not change after the insertion (assuming set semantics). This

inference can be made by observing that if emp(john; toy; 50) would cause the insertion of tuple

(toy; henry) in bad dept, then the salary of manager henry must be < 50. Thus, the salary of

manager henry would also be <65, and (toy; henry) would be in bad dept even before the insertion,

by virtue of tuple emp(mary; toy; 65). This inference is made using the contents of the updated

relation emp. Relation dept and view bad dept are not used. Thus the results of Chapters 2, 3,

and 4 would seem applicable to this problem. 2

The above example illustrates that partial information can be used to determine that an update

to some base relation does not cause an update to the view. In this section we discuss how to apply

the results of the previous chapters to determine that an update does not a�ect a view, using only

the view de�nition, the update, and the updated relation.

However, what about the case where a base relation update does result in an update to the

view? For the case when only the updated relation is available, this problem is much more di�cult

to solve. Intuitively, it is di�cult to infer the contribution of an update using only the updated

relation because the contribution may involve tuples from other relations. We prove that this

problem cannot be solved if the view uses even one more relation other than the updated relation.

Note, however, that if the contents of the view are added to the partial information, then more

inferences may be made because the contents of the view reveal parts of tuples that exist in the

remote relation. Flagging tuples can also give information about which tuples contribute to the

CHAPTER 5 Extensions 74

view. However, in this thesis we consider the problem of determining if an update contributes to

the view using only the updated relation, the update, and the view de�nition. We do not use the

contents of the view itself or any additional information such as
ags.

5.4.1 Update Does Not Contribute to View

Example 5.4.1 illustrates this case. We refer to updates that are inferred to not contribute to the

view, using the contents of the local relation, as locally-irrelevant updates. Local constraint checking

methods extend naturally to detecting locally-irrelevant updates. Just as for constraints, �rst we

de�ne the notion of a complete local test for identifying locally-irrelevant updates. A local test for

determining that an update does not a�ect a view is complete if whenever the test fails, then there

is a state of the inaccessible relations that along with the updated accessible relation contributes a

tuple t to the view such that t was not in the view before the update.

First, we consider views that are de�ned using conjunctive queries with arithmetic inequalities

and we consider only insertions of single tuples into the accessible relation. As in the previous

sections, we assume that views have set semantics. We extend the query containment based results

of Chapters 2 and 3 to generate complete tests for detecting locally-irrelevant insertions. Insertions

are the only relevant update to conjunctive query views. Then we consider techniques that are not

complete but apply to a larger class of views. We show the results of Chapter 4 can be used to

detect locally-irrelevant insertions and deletions. These tests are not complete.

Complete Local Tests for Detecting Locally-Irrelevant Insertions

EXAMPLE 5.4.2 Consider a variant of view bad dept de�ned in Example 5.4.1.

bad dept(E;D) :{ emp(E;D; S) & dept(D;M;MS) & S>MS.

Let relation emp be accessible and tuple � = (e; d; s) be inserted into emp. Following the line of

argument in Example 5.4.1 we observe that an emp tuple t covers another emp tuple � only if t and

� agree on attributes E and D and if t:S � �:S.

In terms of conjunctive query containment, we can look upon the problem as follows. If we

substitute the tuples � = (e; d; s) and t = (e0; d0; s0) into the statement of the view, then we get the

following two partially instantiated conjunctive queries A� and At.

A�: bad dept(E;D) :{ dept(D;M;MS) & D = d & s>MS & E = e.

At: bad dept(E;D) :{ dept(D;M;MS) & D = d0 & s0>MS & E = e0.

Tuple t covers tuple � if At � A�. Using the results of Appendix A we see that the above

containment reduces to the condition:

(D = d0 ^ s0>MS ^E = e0)) (D = d ^ s>MS ^ E = e).

CHAPTER 5 Extensions 75

That is, e = e0, d = d0, and s�s0.

If attribute E was not distinguished, then the equality on E would not have been forced. However,

the equality on D would still have been forced because of the join involving D. Intuitively, all

distinguished attributes that appear locally participate in an equality because a cover tuple should

contribute the same tuple to the view as the tuple being covered. 2

The framework developed in Chapter 2 using query containment is applicable in a straightfor-

ward manner to views. In fact, in Chapter 2 we restricted the containment results of Appendix A

to 0-ary views to solve the constraint checking problem. Here we consider the more general form

as de�ned in the appendix on Page 98.

V : s(�X) :{ l(�Y 0) & r1(�Y 1) & : : : & rn(�Y n) & c1(�Z1) & : : : & ck(�Zk).

For such views, we can extend the containment based result for locally checking constraints stated

in Theorem 2.7.3. However, before stating the extension to the theorem we rede�ne the function

Red that was originally de�ned on Page 29. The rede�nition takes into account that Red(t; l; V)

retains all the constants introduced by tuple t that are relevant to the view even though some of

the constants may not participate in any built-in comparison.

De�nition 5.4.1 (Red(t; l; V)) Consider a conjunctive query (CQ) view V as de�ned above and

let t be a tuple in relation L for predicate l. The reduction of V by tuple t, Red(t; l; V), is the

partially instantiated CQ obtained by substituting tuple t for predicate l in C and eliminating l.

If an attribute A of l is distinguished then we substitute in the head of the query the constant

assigned to A by tuple t. 2

Using this new de�nition of Red, Theorem 2.7.3 generalizes to:

Theorem 5.4.1 Let V be a view de�ned using a conjunctive query with arithmetic inequalities and

let t be a tuple inserted into relation L for predicate l. Assume V is correctly materialized before

the update. View V stays unchanged after inserting t into L if and only if Red(t; l; V) is contained

in
S
ti in L

Red(ti; l; V). 2

The evaluation issues for detecting locally-irrelevant updates to views are the same as for locally

checking constraints, because the condition produced by Theorem 5.4.1 is not a�ected by the arity

of the head of the the rules and thus is similar to the condition produced by Theorem 2.7.3. The

only di�erence from the case of constraints is that more equalities are introduced on the LHS and

RHS of the implication condition It because now some variables are distinguished.

CHAPTER 5 Extensions 76

EXAMPLE 5.4.3 Consider view bad dept de�ned in Example 5.4.2.

bad dept(E;D) :{ emp(E;D; S) & dept(D;M;MS) & S>MS.

Let relation emp be accessible and tuple � = (e; d; s) be inserted into emp. Red(�; l; V) is:

bad dept(e; d) :{ dept(D;M;MS) & s>MS & D=d.

If Theorem 5.4.1 is used to derive the test condition for detecting a locally-irrelevant insertion, then

we need to check if Red(�; l; V) is contained in Red(�; l; V) where parameter � represents existing

tuples in L. This containment condition is checked using the steps outlined on Page 2.7.3, just as

the containment was checked for constraints. 2

Detecting Locally-Irrelevant Updates Using Local Tests that are not Complete

We reduce the problem of detecting a locally-irrelevant update to the problem of locally checking

an integrity constraint and then the results developed in Chapter 4 can be used.

EXAMPLE 5.4.4 Consider view bad dept de�ned in Example 5.4.1.

bad dept(D;M) :{ emp(E;D; S) & dept(D;M;MS) & S>MS.

If view bad dept is consistently materialized, i.e., correctly computed, then the following constraint

assertion holds:

Aok: 8E;D;S;M;MS : [(emp(E;D; S) ^ dept(M;D;MS) ^ S>MS)) bad dept(D;M)]

Let view bad dept be consistent before an update to relation emp, i.e., assertion Aok holds. If the

update to emp can be inferred not to a�ect the truth value of assertion Aok then we can conclude

that the contents of view bad dept do not need to be updated. Local constraint checking methods

can be used to check the truth value of assertion Aok using only the contents of updated relation

emp, and the update to emp. 2

In general, consider the view de�nition V for relation head:

V : head :{ body.

For a given database DB, if the view materialization is consistent then the following integrity

constraint assertion holds:

A: body) head.

Let some relation L in body be updated. The view relation head remains unchanged in the new

database state if and only if the assertion A holds in the new database. Chapters 2, 3, and 4

describe how to use only relation L to check that the update does not violate the constraint A. If

the methods determine that the constraint A continues to hold after the update, then we can infer

that the corresponding view does not need to be updated and thus the update is locally-irrelevant.

CHAPTER 5 Extensions 77

EXAMPLE 5.4.5 Continuing with Example 5.4.4, assume that only relation emp is available for

view maintenance. Let tuple (e; d; s) be inserted into emp. The update does not contribute to the

view bad dept if and only if the update does not violate assertion Aok. That is, if the following

query on emp derives fact no change:

no change :{ emp(E;D; S) & D=d & S�s .

When tuple (john; toy; 50) was inserted into relation emp then the above query would be satis�ed

by existing tuple emp(mary; toy; 65) (validating the intuition of Example 5.4.1). 2

Locally-irrelevant updates can be detected for all those views that can be reduced to a constraint

that is solvable using local constraint checking techniques.

5.4.2 Update De�nitely Contributes to View

We prove that it is not possible to infer that an update de�nitely contributes to a view if only

a subset of participating base relations is available. Note, this result applies even when relations

other than the modi�ed relation are accessible.

Theorem 5.4.2 Let view V be de�ned by a single rule r in a Datalog program D that may use recur-

sion, arithmetic inequalities, and strati�ed negation. Let program D use relations fL1; : : : ; Lm; R1; : : : ; Rng; m�

1; n�1 where no Ri is the same as any Lj. Also, rule r uses at least one of the relations R1; : : : ; Rn.

Let relation Lu be updated by update U . It is not possible to infer that U de�nitely inserts a tuple

into view V by any partial-information-based technique that uses only D, fL1; : : : ; Lmg, and U . 2

Proof: (By contradiction) We assume that update U de�nitely contribute tuple t to the view V and then

we prove a contradiction. Consider the following two cases:

1. Some inaccessible relation Ri occurs positively in rule r.

Consider a database in which relation Ri= ;. Thus, D computes an empty view independent of the

accessible relations. Thus, altering some Lj cannot add a tuple to view V .

2. All inaccessible relations that occur in R, occur negatively, and Ri is one of them.

Consider a database in which relation Ri has all possible tuples that can be obtained using the set

of constants in all the accessible relations and the updates. Thus, the subgoal that uses the negated

occurrence of Ri in rule r will always derive false, thereby causing D to compute an empty view

independent of the accessible relations. Thus, altering some Lj cannot add a tuple to view V .

Thus, assuming that the update contributes tuple t to the view V leads to a contradiction in either case.

If the contents of the view also can be used as a part of the partial information, then it may be

possible to infer the contribution of an update to the view. We do not discuss this problem in this

thesis, but we consider it in [GB94]. We illustrate it with an example:

CHAPTER 5 Extensions 78

EXAMPLE 5.4.6 Consider the view bad dept de�ned in Example 5.4.4 and let the view contain

tuple (toy; henry). That is, henry is a manager in the toy department and some employee in the

same department has salary greater than henry's salary. Let the relation dept contain the tuple

(henry; toy; 500). Now, insert tuple (diana; toy; 400) into relation dept. We can infer that the tuple

(toy; diana) needs to be inserted into the view because the inserted dept tuple covers an existing

dept tuple that contributed to the view. 2

Chapter 6

Constraint Checking with No Data

Two other instances of constraint checking with partial information are discussed in this thesis.

Both of these instances use less information than local checking.

Chapter Outline

First, in Section 6.1 we discuss constraint subsumption, i.e., how to check one constraint using a

set of other constraint speci�cations and no data. In Section 6.2 we consider irrelevant updates,

that is checking constraints using only the database update and a set of other constraints. Finally,

Section 6.3 describes the relationship of our work with existing work on constraint checking and

view maintenance in relational databases.

6.1 Constraint Subsumption

Constraint subsumption involves checking a constraint using only the constraint speci�cations and

not even the update. This problem is not applicable if the database has only a single constraint

because we cannot check if an update violates a constraint without at least examining the update.

However, in a database with multiple constraints, the validity of one constraint C1 may imply the

validity of another constraint C2; in this case, C2 need not be checked when it is known that C1

is not violated. Since we assume that all constraints must hold after all updates, if C1 implies (or

subsumes) C2 then C2 can be ignored altogether. Furthermore, since subsumption of C2 by C1

is independent of data or database updates, the subsumption can be inferred or checked once, at

constraint-de�nition time.

De�nition 6.1.1 (Constraint Subsumption) Let C be a constraint query andC = fC1; : : : ; Cmg

be a set of constraint queries. We say that C subsumes C if whenever C is violated in a database

D then some Ci in C is also violated in D. 2

79

CHAPTER 6 Constraint Checking with no Data 80

Since constraint queries only produce fpanicg or ; as a result, subsumption is a special case of

containment of programs. Then the following is obvious:

Theorem 6.1.1 Constraint set C = fC1; : : : ; Cmg subsumes constraint C if and only if, viewed as

programs, C � C1 [� � � [Cm. 2

Proof: Suppose C subsumes C. We need to show that C � C, i.e., we must show that for any database,

anything in the result of C is in the result of C. The result of the set of programs C is the union of the

results derived by the programs in the set. Each of these programs derives either empty or panic. Thus the

result of C also is either empty or panic. By De�nition 6.1.1, if the result of C is panic then the result of

C also is panic.

Conversely, suppose C � C. We need to show C subsumes C, i.e., we must show that for any database,

if C satis�es panic then C also satis�es panic. This follows directly from C � C.

There are many known results about program containment that apply directly to constraint

subsumption. For example, if the constraints are CQ's or unions of CQ's, the problem is NP-

complete [Sar90]. If the CQ's use arithmetic inequalities as subgoals or if the subsuming constraint

is a recursive Datalog program, then the problem is still solvable in exponential time. The former

case is �p

2
-complete [Klu88, Mey92] and the latter is exponential-time-complete [CLM81, Sag88].

If we allow the subsumed constraint to be a recursive Datalog program, while the subsuming

constraints are nonrecursive Datalog, the problem remains decidable [Cou91]. The complexity of

this problem was resolved in [Cha92], who showed it is complete for triply exponential time, with

some less complex special cases. On the other hand, when both the subsuming and subsumed

constraints are recursive Datalog, the problem becomes undecidable [Shm87].

Let us pictorially discuss subsumption using Figure 2.1 introduced in Chapter 2. If the con-

straint queries are all the information that is available, then the circle of illegal states S for C

represents all the possible database instances for which the constraint-violation condition C derives

panic. Similarly, for each constraint Ci in C there is a circle Si representing the databases for

which Ci derives panic, as illustrated in Figure 6.1. Thus, if we can infer that the union of circles

S1 [: : : [Sm contains circle S, then we are guaranteed that every database that violates C also

violates some constraint in C. Thus C subsumes C and C need not be checked if the constraints

in C are enforced.

6.1.1 Containment Versus Constraint Subsumption

Since constraint queries have a 0-ary goal predicate the question that arises is whether checking

constraint subsumption is easier than checking query containment. It turns out that for a large

class of queries the two problems are equally hard, that is, constraint subsumption is just as hard

as the corresponding query containment problem.

CHAPTER 6 Constraint Checking with no Data 81

RD

Available Information

1

Unknown Information

S1

S2S3

constraint C

constraint C

constraint C

constraint C

2

3

S

Figure 6.1: Pictorial Representation of Subsumption

First let us consider only conjunctive queries. The NP-completeness of containment for CQ's

with 0-ary heads was proved by Chandra and Merlin in [CM77]. The containment of conjunctive

queries is also NP-complete. In general, we can reduce CQ containment to constraint subsumption

in a very robust way. If Q is a CQ of the form h :- B, we rename the predicate of the head h if it

appears in the body B. We then \move" the head into the body, creating the CQ Q0 that is

panic :- h & B.

If Q and R are two CQ's, it is easy to check that Q � R if and only if Q0 � R0. Thus, we can claim

the following:

Theorem 6.1.2 For any class of CQ's that is closed under the addition of a subgoal that is of

the ordinary type (uninterpreted predicate with arguments, not negated), the containment problem

reduces to the corresponding constraint subsumption problem in time proportional to the size of the

query. 2

Proof: By the construction given above.

Thus for conjunctive query constraints, checking subsumption and checking containment are

equally hard problems. How about generalizations of CQ's? For slightly more powerful query

languages, like Datalog without negation, we do not know if subsumption and containment are

equally hard. For query languages that are even more powerful, where intermediate predicates are

allowed, and negation may be used (e.g., nonrecursive Datalog with strati�ed negation), it is easy

to reduce query containment to the corresponding constraint subsumption problem by adding rules,

thus providing a lower bound on the complexity of constraint subsumption for these classes. We

have not explored the boundaries where query containment stops being equivalent to subsumption,

if that is indeed the case, or the point where the equivalence resumes.

CHAPTER 6 Constraint Checking with no Data 82

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

One
CQ

Union
of CQ's

Recursive
Datalog

No Arithmetic
Inequalities

Arithmetic
Inequalities

Negated
Subgoals

No Negated
Subgoals

Figure 6.2: Classes of logical languages

6.2 Using the Update

The second problem we consider is when we are allowed to use a collection of constraints C and an

update u to determine that another constraint C is not violated. This problem has been studied

in [BC79, TB88, Elk90, LS93] as the \query independent of update problem." Only the update

and the expression of the query are needed to make this decision. The papers describe how to

decide if an update could a�ect the answer computed by a query, for queries expressed as CQs,

CQs with arithmetic, and CQs with negated EDB subgoals. The papers also consider updates that

change not only the underlying database, but the query itself. The focus of the papers is to develop

algorithms for detecting irrelevant updates for progressively more expressive query languages.

In this section, we study a particular way of detecting irrelevant updates, originally introduced

in [LS93]. The basic strategy for identifying an irrelevant update is to �rst incorporate explicitly

update u into the constraint program C to yield a program Cu that holds before the update if

and only if C holds after the update. The test for whether C holds after the update, given that

it and perhaps some other constraints C1; : : : ; Cm held before the update, is to see whether Cu is

contained in C [C1 [� � � [Cm. If constraints C;C1; : : : ; Cm held before the update, then we can

infer that C [C1 [� � � [Cm is empty. If Cu is contained in C [C1 [� � � [Cm, then we conclude

that Cu also does not derive any fact, in particular panic. Thus, Cu holds before the update and

therefore C continues to hold after the update.

When we construct Cu from C, it may not be guaranteed that Cu is expressible in the

same constraint language as C. We consider the twelve combinations of features for conjunc-

tive query constraints illustrated in Figure 6.2 to study the relationship between C and Cu. For

these classes �rst we study how incorporating insertions takes a constraint from one of the above

twelve classes into some other class. Then, in Section 6.2.2 we study the e�ect of incorporat-

ing deletions. Insertions and deletions are considered separately because insertions are incorpo-

rated into C di�erently from deletions and as a consequence it may be the case that the two

di�erent kinds of updates a�ect the class of Cu di�erently. We do not consider the problem

CHAPTER 6 Constraint Checking with no Data 83

of checking the containment of Cu in C [C1 [� � � [Cm. That problem is discussed in [LS93,

ZO93] and in Appendix A.

6.2.1 Incorporating Insertions into Constraints

The following example illustrates how constraints can be modi�ed to account for insertions and

also that di�erent languages may be needed to express C and Cu.

EXAMPLE 6.2.1 Consider the employee relation emp and consider the relation tall(E) where

tall(e) means that employee e is tall. Now consider the following constraint:

A: panic :{ emp(E;D; S) & tall(E).

That is, if some employee in relation emp is tall, then constraint A is violated. This constraint is a

conjunctive query that does not use arithmetic or negation.

Let a tuple (jones; shoe; 500) be inserted into emp. Constraint A can be rewritten as Au after

incorporating the inserted tuple into A.

Au: panic :{ emp1(E;D; S) & tall(E)

emp1(E;D; S) :{ emp(E;D; S)

emp1(jones; shoe; 500).

Au derives panic with a database DB if and only if A derives panic with

DB[femp(jones; shoe; 500)g. Note, even though A was in the language of conjunctive queries, Au

is expressed as a union of conjunctive queries. 2

The above example shows how to incorporate an insertion to a positive subgoal in a constraint

query. Intuitively, an additional fact contributes an alternative way of satisfying subgoals and thus

leads to disjunctions in rules. These disjunctions can be factored out using additional rules. The

example also illustrates that the language needed to express the resulting constraint may be more

expressive than the original language. Thus, the question arises as to whether Cu has to necessarily

be in a more expressive language than C. The following theorem proves that for a large class of

constraints, we cannot avoid going to a more expressive language.

Theorem 6.2.1 Consider a constraint A de�ned using a single conjunctive query (possibly using

arithmetic and negation) such that the predicate p occurs positively and only once in A, and the

number of p tuples that can satisfy A is not bounded a priori. Let t represent a tuple inserted into

relation P such that t is not irrelevant with respect to A. Let Au be the constraint A with inserted

tuple t incorporated into A as shown above. Hence, Au derives panic with DB if and only if A

derives panic with DB [fp(t)g. Constraint Au cannot be expressed as a single conjunctive query

even if the query uses arithmetic inequalities and negation. 2

CHAPTER 6 Constraint Checking with no Data 84

Proof: In Appendix D.

The above theorem proves that for each of the four uncircled classes some constraints necessarily

move to one of the circled classes after incorporating the insertion into the constraint. Thus none

of the four uncircled classes of constraints in Figure 6.3 is preserved in the presence of insertions.

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

One
CQ

Union
of CQ's

Recursive
Datalog

No Arithmetic
Inequalities

Arithmetic
Inequalities

Negated
Subgoals

No Negated
Subgoals

e e

e e

e e

e e

Figure 6.3: Classes preserved under insertion

The above theorem considers insertions only to the positive subgoal. How about insertions to

negatively occurring subgoals?

EXAMPLE 6.2.2 Consider relation emp de�ned in Chapter 1, and a relation insured(E) such

that insured(e) says that employee e has health insurance. Consider a constraint I8 that is

violated if any employee in relation emp is not in relation insured. Constraint I8 is represented by

the following rule:

panic :{ emp(E;D; S) & not insured(E).

We assume constraint I8 holds before the update. Suppose there is an update in which tom is

added to the set of insured employees. We can de�ne a constraint that represents I8 after the

update as

panic :{ emp(E;D; S) & not insured1(E).

insured1(E) :{ insured(E).

insured1(tom).

Call this constraint I9. I9 is in the language of nonrecursive Datalog with negation, even though

the constraint I8 from which it was derived is in the narrower class of conjunctive queries with

negation. Then in order to be sure that I8 has not become violated by the update we need to check

I9 � I8. This happens to be the case and we can conclude that I8 is not violated by the update.

Note, I9 is in the language of \union of CQ's with negation but no arithmetic inequalities."

Another way to express I9 is by the single rule

CHAPTER 6 Constraint Checking with no Data 85

panic :{ emp(E;D; S) & not insured(E) & E 6= tom.

Now, the constraint is in the language of \CQ's with both negation and arithmetic inequalities."

2

For the above example we prove that it is not possible to express the resulting constraint in a

simpler language that those used above.

Theorem 6.2.2 Constraint I9, stating that after insertion of \tom" into relation insured there

is no employee in a department that does not appear in insured, cannot be expressed as a single

CQ (over the predicates emp and insured denoting their values before insertion) without arithmetic

inequalities, even if negation is allowed. 2

Proof: Appears in Appendix D.

Now, let us consider the eight circled classes in Figure 6.3. The technique used to incorporate

an insertion into a relation as illustrated in Example 6.2.1 works for each of these classes. The

technique involved converting an EDB relation into an IDB using extra rules. Any language that

allows us to add rules, even nonrecursive ones and rules without negation or arithmetic inequalities,

allows us to express a constraint after an insertion in the same language. We thus claim

Theorem 6.2.3 The eight circled classes in Figure 6.3 are preserved by insertions; that is, a

constraint in the class after an insertion can be expressed in the same language. 2

Proof: Let tuple r(�u) be inserted into relation R that occurs in constraint C. Constraint Cu is obtained

by replacing all occurrences of the predicate r in C by a new predicate r1 and de�ning r1 as follows:

r1(�X) :{ r(�X).

r1(�X) :{ r(�u).

The only change to the original constraint is the additional of a rule. This change keeps Cu in the same

class as C for all the circled classes in Figure 6.3.

6.2.2 Incorporating Deletions into Constraints

In this section we study the e�ect of deletions on the expressive power of the language needed to

express a constraint after the deletion has been incorporated. The following example illustrates the

technique.

EXAMPLE 6.2.3 Continuing with Example 6.2.2, say we delete tuple (jones; shoe; 500) from

the emp relation. Then we need to construct a new predicate emp1 that re
ects the deletion of this

tuple. Here is one way to do so.

emp1(E;D; S) :{ emp(E;D; S) & E 6=jones.

emp1(E;D; S) :{ emp(E;D; S) & D 6=shoe.

CHAPTER 6 Constraint Checking with no Data 86

emp1(E;D; S) :{ emp(E;D; S) & S 6=500.

The predicate emp1 can substitute for emp in constraint I8 to create a new constraint I8' that

re
ects the situation after this deletion. Note that in this construction, conjunctive queries are

brought into the class of nonrecursive Datalog with arithmetic inequalities. 2

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

One
CQ

Union
of CQ's

Recursive
Datalog

No Arithmetic
Inequalities

Arithmetic
Inequalities

Negated
Subgoals

No Negated
Subgoals

u u u

e e

e e

e e

Figure 6.4: Classes Preserved Under Deletion

Alternatively, we could use negated subgoals instead of arithmetic inequalities in each of the

above three rules. For instance, we could replace the subgoal E 6= jones in the �rst rule of

Example 6.2.3 by not isJones(E), where predicate isJones is de�ned by

isJones(jones).

It does not appear to be possible to avoid using one of negation and arithmetic inequalities. Note,

if two tuples are deleted from emp instead of one tuple, then two de�ned intermediate predicates,

emp1 and emp2, are needed to capture the two deletions.

Now we consider di�erent constraint classes and study the e�ect of deletions on the language

needed to express the resulting constraint.

For Figure 6.4, we illustrate via examples that the three uncircled classes and the classes indi-

cated by the solid disks may not be preserved when deletions are incorporated into the constraint.

First, we consider CQs, union of CQs, and recursive Datalog constraints that do not use negation

or arithmetic. We prove that deletions may take such constraints out of their original class. These

classes are indicated by the solid disks. Consider constraint A introduced in Example 6.2.1:

A: panic :{ emp(E;D; S) & tall(E).

If tuple tall(mary) is deleted from relation tall then constraint A can be rewritten as:

Au: panic :{ emp(E;D; S) & tall1(E)

tall1(E) :{ tall(E) & E 6= mary.

We prove that negation or arithmetic inequalities have to be used to express constraint Au.

CHAPTER 6 Constraint Checking with no Data 87

Theorem 6.2.4 Consider constraint Au that states that no employee in emp is in tall after

\mary" is deleted from tall. There is no constraint C that is equivalent to Au such that C

uses neither negation nor arithmetic. 2

Proof: Appears in Appendix D.

The above example can be modi�ed to prove that union of CQs and recursive Datalog programs

need negation or inequalities when incorporating deletion. To build the required examples, we

replace the EDB relation emp by an IDB relation that is de�ned using unions of CQs and recursive

Datalog, respectively. The proof of Theorem 6.2.4 does not depend on the de�nition of emp thereby

allowing us to claim that constraints de�ned using union of CQs and recursive Datalog programs

may need negation or arithmetic when deletions are incorporated into the constraint. Thus, we

have shown that there exist instances of the three classes indicated by the solid discs that are not

preserved by deletions.

Next we consider constraints that use negation. Constraint I8 is an instance of such a constraint.

panic :{ emp(E;D; S) & not insured(E).

Deleting a tuple from a negatively occurring predicate is similar to inserting a tuple in a positively

occurring predicate. Thus, if tuple insured(john) is deleted then a union of CQs should be required

for expressing I8 after the deletion. The intuitive argument for this claim is that given the deleted

tuple, I8 is violated if john is in relation emp or if some other employee is not insured. This new

constraint is therefore a union of the old constraint and another condition, and should need two

rules. Thus, we claim:

Theorem 6.2.5 Constraint I8, after deleting tuple \john" from relation insured, cannot be ex-

pressed as a single CQ constraint that uses negation. 2

Proof: In Appendix D.

Thus, of the three unmarked classes of Figure 6.4, only two remain to be considered. The

remaining classes are CQ constraints that use arithmetic inequalities. For these classes, if deletions

are made only to monadic predicates, i.e. predicates of arity one, we can prove that the class of

CQ constraints with arithmetic inequalities is preserved under deletions.

Theorem 6.2.6 Let C be a CQ constraint that may use arithmetic inequalities such that deletions

are made only to monadic predicates. The constraint representing C after a tuple has been deleted

from any participating relation, can be expressed using a single CQ constraint with arithmetic

inequalities. 2

Proof: (By Construction) Consider a monadic predicate p in constraint C and let tuple p(a) be deleted

from relation P . From the statement of the theorem we know that C does not involve negation and thus p

CHAPTER 6 Constraint Checking with no Data 88

occurs positively. Replacing \p(X)" by \p(X) & X 6=a" incorporates the deletion of p(a). The constraint is

in the class of CQs with arithmetic inequalities.

If the deletions are made to predicates of arity more than one, then we conjecture, without proof,

that even simple CQ constraints with arithmetic need unions of CQs to express the constraints after

deletions.

After considering classes that are not preserved under deletions, we now state a theorem that

addresses the six circled classes of Figure 6.4 that are indeed preserved.

Theorem 6.2.7 The six classes circled in Figure 6.4 can express constraints that result from a

deletion. 2

Proof: Just as for Theorem 6.2.3, the construction of Cu uses only the features in the class of C. For

deletions, negation and inequalities are the only features that are needed to build Cu from C as illustrated

in Example 6.2.3. All the circled classes in Figure 6.4 include one of these two features.

6.3 Related Work

Many di�erent types of partial information based view maintenance techniques have been previously

studied. Some types of partial information have not been considered in this thesis, for instance,

aggregate information about relations. The techniques have been proposed for view maintenance

and therefore apply to constraint checking because constraints can be expressed as views. In this

section, �rst we compare these di�erent techniques with our work. In each case, we assume that

the view de�nition and the update are used in addition to the information listed explicitly in each

item. After we describe the existing results, we discuss original contributions of our work.

� No additional partial information is used. This problem has been called the \query inde-

pendent of update" or \irrelevant update" problem in [BC79, TB88, Elk90, LS93]. This

approach infers when a view remains unchanged after an update, independent of the underly-

ing database. This approach is potentially the most economical way of checking if an update

a�ects a view and thus could be the �rst step in a system for view maintenance. Note, the

results apply to general views and thus also carry over to constraints. The above cited papers

explore various classes of views for which irrelevant updates can be detected.

In Section 6.2 we studied an orthogonal aspect of this problem restricting ourselves only to

constraints. We use a reduction of the irrelevant update problem to the query containment

problem to study the relationship between the class of the original constraint and the class

of the resulting query for which containment needs to be checked. Our results also apply to

general n-ary view de�nitions.

CHAPTER 6 Constraint Checking with no Data 89

� The partial information consists of derived aggregate information about the base relations.

This problem is considered in [BBC80]. [BGM92] stores extra information about relations

that is not aggregate information, but is derived from the relation by a user. However, we

refer to it as aggregate information for the purpose of the following discussion. In this thesis

we do not consider aggregate information as a kind of partial information. Such techniques are

useful when the extra information is easily maintained and saves accesses to more expensive

information. The motivation is exactly the same as the work done in this thesis, and the

results complement our work.

Speci�cally, [BGM92] considers the distributed database scenario and considers only con-

straints on atomic variables. For such constraints [BGM92] stores extra information about

remote variables and uses this information to infer that changes to the local variables do not

a�ect the constraint. [BBC80] uses extra aggregate information (maxima and minima) about

the database to produce su�cient tests for constraints that are expressed by tuple calculus

formulas involving two tuple variables. Aggregates are computed and stored for both the

relations involved in a view or constraint. Thus, it may be possible to check a constraint

using the stored aggregate information about the remote relation even though it may not

be possible to check the constraint using only the local modi�ed relation. The techniques

developed in [BBC80] apply to a very limited language, that using only two relations. Our

techniques generalize the results of [BBC80] to identify the aggregate functions that need to

be computed and stored, for a much larger classes of views than those considered in [BBC80].

� The partial information consists of only the old contents of the materialized view. This prob-

lem was �rst introduced in [TB88] and the paper considered views de�ned using conjunctive

queries with arithmetic inequalities. However, the algorithm in [TB88] to update a view using

only the original contents of the view is erroneous. [GB94] reconsiders the problem for the

same class of views. The paper also proposes a way to use an arbitrary subset of the base

relations in addition to the old contents of the materialized view ([TB88] does not consider

using any base relations.)

In the context of constraints, local checking uses the contents of the view by using the initial

consistency assumption that implies that the original view is empty. That is, local checking

corresponds to using the available local relation in addition to the contents of the view. Thus,

the generalizations discussed in [GB94] that update views using the old materialized view and

an arbitrary subset of the base relations should apply to local checking also. [GB94] compares

the approach developed in this thesis with the approach used in [GB94] for conjunctive query

constraints that use arithmetic inequalities.

� The partial information consists of all the base relations and the old contents of the materi-

alized view. The available information is no longer \partial" but indeed the information is

CHAPTER 6 Constraint Checking with no Data 90

su�cient to compute the required answer. This problem is known as the \incremental view

maintenance" problem and has been studied from the perspective of accessing as little of the

database as possible. These techniques use the heuristic of inertia, i.e. only a part of the

view changes in response to changes in the base relations. Therefore, often it is cheaper to

compute only the changes in the view instead of recomputing the view from scratch by using

the update to prune the amount of \relevant" information. Thus, the issue is to use this

information in as clever a fashion as possible by avoiding redundant derivations and unnec-

essary database accesses. The problem has been studied in [BB82, BCL89, BLT86, Bla81,

BMM92, CW90, CW91, DS92, GMS93, HD92, KSS87, Kuc91, NY83, QW91, SI84, UO92,

WDSY91].

In the context of integrity constraints, [BMM92, KSS87, LST87, Nic82] discuss ways to incor-

porate the update made to the database into the constraint to make the checking phase more

e�cient. Just as for view maintenance, the idea is to reduce the amount of data read from

the database during checking. They use the initial consistency assumption to simplify the

expression that needs to be evaluated. That is, the techniques use the fact that the original

view is empty to simplify the checks that need to be executed. These papers can be considered

to provide ways of simplifying the incremental view maintenance problem for the case when

the views are 0-ary and when the initial view is empty. Several of these papers also state

general view maintenance algorithms on the way to developing more e�cient algorithms for

constraint checking.

Solutions to constraint checking discussed in the above cited papers correspond to the \brute-

force" approach in our framework, where all the underlying relations are used. The results

from the afore mentioned papers can be used for constraint checking when a potentially

cheaper partial information based technique fails to compute the answer.

The idea of using only the update, or only the contents of the view, for view maintenance and

constraint checking has been considered before. This thesis introduces the notion that these, and

other, kinds of partial information are actually part of a spectrum of options for developing e�cient

ways to do view maintenance and constraint checking. We introduce a yet unconsidered instance

of the partial information, namely the updated relation, and explore its application for constraint

checking. For some classes of constraints we develop complete local constraint checking methods,

while for other classes we develop only su�cient local methods. We also extend these results to

detecting locally irrelevant updates.

Chapter 7

Conclusions

In this chapter we brie
y summarize the contributions of this thesis and discuss the extensions and

other resulting ideas that we are currently exploring. We also describe the prototype Distributed

Constraint Management System (DCMS) we have participated in implementing.

7.1 Contributions

In this thesis we described strategies for checking integrity constraints while restricting the amount

of information used for the checking process. Such an approach is especially advantageous to avoid

using information that is expensive to access or unavailable. Di�erent combinations of available

information can be used for checking constraints depending on the particular constraint and the

update. We considered three instances of partial information and discussed how to check di�erent

classes of constraints using the information.

Local constraint checking That is, checking a constraint using the update to the database, the

contents of the updated relation, the constraint speci�cation, and the initial consistency assumption.

Figure 1.1 outlines our approach to investigating local checking.

� We considered conjunctive query constraints that use arithmetic inequalities (CQCs) and

showed how to reduce local checking to a conjunctive query containment problem. (Chapter 2)

� We identi�ed subclasses of CQCs for which constraints can be checked locally by posing

a Datalog query to the updated relation. The Datalog query is a complete local check.

(Chapter 3)

� We identi�ed subclasses of CQCs for which the complete local checks are expressible using

unions of conjunctive queries. (Chapter 3)

91

CHAPTER 7 Conclusions 92

� We studied local checking methods that are not complete. We tradeo� completeness in

favor of deriving su�cient local tests for a larger class of constraints than conjunctive query

constraints with arithmetic inequalities, for instance, constraints that use restricted negation.

For this larger class we developed algorithms that generate su�cient test conditions on the

updated local relation. (Chapter 4)

� We considered properties and extensions of local checking methods. (Chapter 5)

{ We discussed how to locally check constraints when tuples are deleted from the local

relation. The constraint language of Chapter 4 is used in the discussion because that

language has negation and thus deletions become relevant.

{ We discussed how to e�ciently locally check modi�cations to tuples.

{ We discussed the correctness of applying several local tests in parallel when the tests

check the same constraint but treat di�erent relations as local.

{ We discussed how to extend local checking developed in the context of constraints, to

updating materialized views using only the updated relation, the update to the database,

and the view de�nition.

Subsumption and Irrelevant Updates We considered two other instances of partial informa-

tion. (Chapter 6)

� Subsumption uses a set of constraints C to check another constraint C. If the set C subsumes

constraint C, then checking C obviates the need to check C.

� Irrelevant updates [BC79, TB88, Elk90, LS93] use only the update and the constraint C to

check C. We discussed how to incorporate the update into constraint C and then check if the

resulting constraint is contained in the original constraint. We identi�ed how the expressive

power of the language needed to express the resulting constraint changes when the update is

incorporated.

7.2 Architecture of DCMS

In this section we brie
y discuss the architecture of the Distributed Constraint Management System

(DCMS) we have built, shown in Figure 7.1. [Tiw94] contains a detailed discussion of the design and

implementation of the system. DCMS was developed as a part of the \Collaborative Environment

for Designing Buildings" project. An outline of the project appears in [HKG+94]. In this section,

we will brie
y touch upon the DCMS system and its components.

Interacting with the DCMS are applications that do domain-speci�c reasoning and analysis

and in the process alter the database objects comprising the design. The design cache manager at

CHAPTER 7 Conclusions 93

LCM

Constraint
 Parser

Constraint
Catalogue

GCM

Structural
 DB

LEGEND

LCM − Local Constraint Manager

MO − Monitor

LCM

GCM − Global Constraint Manager

Architect
 DB

MO

LCM

Applications

 Local
Constraint
Catalogue Structural

 DB

LCM

 Design
Cache Manager Data

Transactions
 Contractor
 DB

Figure 7.1: The Distributed Constraint Management System

each site supports interaction of the applications with design databases. The design cache manager

allows checkin-checkout transactions and keeps track of the changes made to the design [KL94].

Our prototype is built assuming that the databases are relational.

Our focus is on managing the constraints that regulate the design changes made by applica-

tions. In our system, constraints are speci�ed in an SQL-like language that is a variant of the

language proposed in [CW90], extended to express constraints on multiple autonomous databases.

Constraints are speci�ed as inconsistent design states, i.e. as constraint-violation conditions. The

following example illustrates a constraint speci�ed in our system.

EXAMPLE 7.2.1 Consider a construction scenario and a relation from the contractor's database:

crane(Crane id; F loor id; Capacity) % location and lifting capacity of cranes.

Now consider a relation in the structural designer's database:

column(Column id; F loor id;Weight) % location, weight of concrete support columns.

Consider constraint Cg that requires that every
oor that appears in relation column should have

at least one crane that has the capacity to lift the heaviest column on that
oor. The violation

CHAPTER 7 Conclusions 94

condition for Cg is expressed as follows. Structural::Columns refers to the Columns relation on the

Structural Designer's site.

Structural::Column.Weight � all (select Crane.Capacity

from Contractor::Crane

where Cranes.Floor Id= Column.Floor Id)

actions: Notify(Structural Designer, Contractor, Project Manager);

The above speci�cation says that constraint Cg is violated if there is a column whose weight is

greater than the capacity of every crane on that
oor. If such a column exists then the structural

designer, contractor, and project manager should be noti�ed. 2

The constraints may span multiple participant databases and are speci�ed at, preprocessed by, and

stored by the Global Constraint Manager (GCM). From the high-level speci�cation of constraints,

the GCM extracts at compile time information needed for constraint checking. The information

derived at compile time includes:

� Potentially invalidating operations, i.e., operations on the database objects that might violate a

constraint [CW90]. For the example constraint, the set of potentially invalidating operations

are:

Designer Site: Insert(Designer::column),

update(column.Weight), update(column.Floor Id).

Contractor Site: Delete(Contractor::cranes),

update(cranes.Capacity), update(cranes.Floor Id).

� Local tests that can check a constraint for some potentially invalidating operations. For in-

stance, consider constraint Cg and suppose the designer adds a new column col1 of weight 10

tons on
oor fl1. We need to ensure that there is a crane on
oor fl1 that can lift column col1.

Suppose
oor fl1 already had a column weighing 12 tons. Assuming that Cg was satis�ed

before adding col1, we can infer that
oor fl1 has a crane with capacity of at least 12 tons

and thus adding col1 of weight 10 tons will not violate Cg. Note, the remote relation crane

on the contractors site was not read for the above check.

� The global query that checks a constraint when the local tests fail. For the above constraint,

the query evaluates the violation condition.

select *

from Structural::Columns

where Weight � all (select Crane:Capacity

from Contractor::Cranes

where Cranes.Floor Id=Columns.Floor Id)

CHAPTER 7 Conclusions 95

Currently the system has the following functionality. We emulate multiple sites using multiple

table spaces in a single site database; henceforth \sites" refer to \table spaces." Thus, there

is a single user who forces constraint checking after making some changes. We envision that

eventually the constraint checking will be inititated by the design cache manager. The GCM

derives optimization information, and distributes this derived information to the participating

sites. The derived information currently includes local tests, potentially invalidating operations,

and the information to send to the GCM in case the local check fails. At individual sites the Local

Constraint Managers (LCM) are responsible for constraint checking. The LCMs contain most

of the run-time constraint checking machinery and store the site speci�c information derived by

the GCM at compile-time. The information derived by the GCM is stored by the GCM and the

LCMs in persistent catalogs (implemented as database tables). Catalogs support e�cient constraint

checking by providing the GCM and LCMs fast access at run-time to the information obtained at

compile-time. Catalogs also provide a facility for querying constraints at the local sites. We allow

queries like \which constraints may be violated if a column is inserted?" Currently, we Monitor

the database using triggers in Oracle.

We have designed, but not implemented, fragmentation methods for fragmenting global con-

straints into database speci�c local components that can be evaluated e�ciently locally at the

participating sites. For instance, if a constraint refers to two relation from site 1, then it may be

economical to compute the join of the relations on site 1 and shipping the result to the GCM in-

stead of shipping the two relations separately. Distributed query optimizer research addresses these

issues. Fragmentation may reduce the amount of information that local sites need to communicate

to the GCM for constraint checking.

Now we brie
y discuss the behavior of the system at runtime. Given an update, the LCM uses

the local test stored in its constraint catalog to check if the update violates any constraint. If the

local tests fail, then the GCM is informed about the updates. A global query { stored in the global

constraint catalog { is initiated to check the constraint globally. In the current system we always

run the local tests assuming that the database is initially consistent. This assumption may not be

true always in a real database system. In case the initial consistency assumption does not hold, we

could either use the idea of
agging tuples as outlined in Section 5.3 or not use local checking for

constraints that are known to not hold.

Noti�cation is the �nal phase of constraint management, activated only if a constraint is vio-

lated. Often noti�cations need to be issued to select participants who are responsible for resolving

the design inconsistency arising from the constraint violation. Thus all the participants in a con-

straint are not \equal." This asymmetric participation of sites is modeled by listing the participants

in order of their responsibility in the constraint speci�cation. For instance, the noti�cation list of

CHAPTER 7 Conclusions 96

constraint Cg may have only the contractor in which case only the contractor is informed of vi-

olations. Conversely, the noti�cation list may have more participants listed than are involved in

the constraint. If a noti�cation list is not provided then noti�cations are broadcast to all the sites

referred by the constraint. In the current implementation, noti�cations consist of messages that

contain the ID of the violated constraint.

As another part of the same project, there is work being done on e�cient change management

and the design cache manager [KL94]. We brie
y discuss some of the issues being addressed in

this e�ort. Note, in Figure 7.1 the cache manager monitors the database relations to detect the

updates that potentially violate any constraint. The cache manager should compute net changes

made to the database and thereby avoids redundant checks; for example, a deleted object that is

reinserted should not be considered as having changed. Only the relevant changes should be sent

to the LCM. Also, the notion of transactions is not well de�ned in the design domain. Therefore,

the research is also addressing the issue of when constraint checking should be initiated.

7.3 Future Work

We outline three main lines of future research. Two stem from the idea of using partial information

based techniques. The �rst direction to pursue is to enhance the kinds of partial information that

can be used and to do so for more expressive constraints and views than those considered in this

thesis. The second direction is to apply the local checking techniques developed in this thesis to

other problems. Finally, we point out some problems that came up while building the DCMS

system built to demonstrate the usefulness of constraints in the engineering design domain.

Using Di�erent Kinds of Partial Information

May di�erent kinds of partial information can be used for updating materialized views and checking

constraints, for instance, multiple base relations, the old contents of a view, functional dependencies,

and aggregate information. In [GB94] we discuss how to use multiple base relations and the old

contents of a view. The paper addresses incremental view maintenance of views de�ned using

conjunctive queries and arithmetic inequalities when the partial information consists of the old

contents of the materialized view and an arbitrary subset of the underlying base relations. The

paper also extends the techniques to constraint checking with the same amount of information.

However, there remain many extensions like using functional dependencies, aggregate information,

ags on tuples, etc.

Another extension is to determine test conditions for more expressive constraint and view lan-

guages. We are currently considering constraints that use functions like volume, distance, and other

complicated mathematical functions [HG95]. In this context we study the problem of determining

when a tuple covers another tuple with respect to a constraint that uses mathematical functions.

CHAPTER 7 Conclusions 97

Recall, the cover tuple property allows us to locally check an inserted tuple if there is an existing

tuple that covers the inserted tuple. One of the interesting aspects of the study is identifying the

conditions under which the complete covering condition involves the inserted tuple and just one

tuple from the available relation. This case is interesting because such cases are much more e�cient

to check than if an arbitrary number of existing tuples could together cover the inserted tuple. The

issue of single versus multiple cover tuples is covered in more detail in Section 3.3 and is illustrated

using the forbidden interval example.

Using Local Checking for Inferring Representative Relations

The following example illustrates application of local checking techniques to other problems.

EXAMPLE 7.3.1 Consider a multisite database with relations emp and dept as described in

Example 1.0.1. Suppose relation emp is on site 1 and dept is on site 2. Let site 2 use view

good dept de�ned as follows:

C: good dept(D) :{ emp(E;D; S) & dept(D;MS) & S �MS.

Suppose site 2 replicates the relation emp for the purpose of answering queries for view good dept.

If the relation emp has tuples emp(john; toy; 100) and emp(mary; toy; 50) then both tuples need not

be cached in order to answer queries on view good dept. Tuple emp(mary; toy; 50) is covered by the

other tuple with respect to view good dept. Thus, covered tuples can be deleted from the replica

of relation emp that is stored on site 2 resulting in a smaller replica. In addition, the replica can

also be maintained more e�ciently. Thus, if a covered tuple is inserted into relation emp on site 1,

the replica on site 2 need not be updated.

That subset of relation emp that contains only those tuples that have no cover in emp constitute

the \representative relation" of emp with respect to the view good dept. 2

The intuition for building representative relations is that not all the tuples in a base relation

provide new information with regard to a view, query, or constraint. Some tuples provide no addi-

tional information in the presence of other, covering, tuples. Therefore, the information contained

in a base relation often can be summarized into smaller representative relations. All those tuples

that are not covered by any other tuple constitute the representative relation. That is, covering

with respect to a view de�nition de�nes a partial order on the tuples in any relation. The repre-

sentative relation consists of the largest elements of this partial order. The smaller elements can

be pruned.

The idea of pruning the redundant portions of a relation with respect to a particular query is the

basis of most conventional query optimization techniques. The trick is in correctly and e�ciently

identifying the redundant portions of relations. Thus, we propose using the idea of pruning a part

CHAPTER 7 Conclusions 98

of a relation based on the remaining contents of the relation. We use this idea to develop the notion

of \Generalized Projections" that are useful for query optimization as discussed in [HG94].

Constraint Management Systems

Many interesting directions have emerged from the design and implementation of DCMS. One issue

is to keep track of design con
icts (constraint violations) that are detected and further track those

that have been resolved or are in the process of being resolved. Thus con
icts that do not receive

any attention for a given time period can be detected and reminders issued to participants. An

alternative approach to violations is to try to �x them automatically (constraint enforcement).

We believe that constraint enforcement is not a realistic approach to constraint management in

engineering design databases because not all constraints can be enforced automatically. However,

we need to be able to enforce some constraints and therefore we need to build constraint enforcing

machinery in the system even though automatic �xing may not be done always. In addition,

we need to better determine how best to use local checking and other partial-information-based

methods in the presence of violations.

There is also a need for allowing what-if changes to be made { a sort of pseudo commit process {

which will be very useful for iterative design. Thus, a designer can make changes that the designer

would like to either commit to the database or reconsider, depending on the actual e�ect of the

changes on the constraints in the system. The ability to make what-if changes provides designers

with the ability to view the e�ect of potential changes without actually making them. Another

area that needs work is the development of graphical constraint speci�cation languages. Most

constraints are speci�ed by design engineers who are not well versed in programming languages

and thus may prefer to use other more intuitive tools for constraint speci�cation.

Appendix A

Extending Conjunctive Query

Containment

In this appendix we consider the containment problem for conjunctive queries extended with inter-

preted predicates. The problem was �rst considered by Klug in [Klu88] using arithmetic inequalities

as the interpreted predicates. We present a more general approach for solving the problem for arbi-

trary interpreted predicates using the idea of \containment mappings" [CM77]. The same approach

has been used independently by [ZO93] to derive the results described in this appendix.

The results of this appendix are useful for building complete methods for locally checking

conjunctive query constraints that use arithmetic inequalities. We also discuss a restricted class

of conjunctive queries with arithmetic inequalities for which a stronger containment result can be

proved than for the general class.

A.1 Preliminary De�nitions and Examples

We consider conjunctive queries of the form:

C: s(�X) :{ r1(�Y 1) & : : : & rn(�Y n) & c1(�Z1) & : : : & ck(�Zk)

where r1; : : : ; rn are ordinary (uninterpreted) subgoals and c1; : : : ; ck are interpreted subgoals. The

ordinary subgoals represent relations that participate in query C and the interpreted subgoals could

be function computations. The conjunction of the interpreted subgoals of C is referred to as I(C)

and the conjunction of the ordinary subgoals is referred to as O(C). The following restrictions are

imposed on C:

1. Every variable that appears in an interpreted predicate must also appear in some ordinary

predicate, i.e. [k
i=1

(�Zi) � [
n

j=1
(�Y j).

2. �X � [n
j=1

(�Y j), i.e., variables of the head also appear in an ordinary subgoal.

99

APPENDIX A Conjunctive Query Containment 100

3. Constant arguments of ordinary subgoals and joins between ordinary subgoals are represented

explicitly by using equality in the ci's. Therefore, no two ordinary subgoals share a variable

or have a constant argument.

The interpreted predicates could be predicates like arithmetic comparison operators. Arithmetic

comparison operators are the predicates of most interest to us in the context of the discussion in

Chapter 2. However, we develop containment results for arbitrary interpreted predicates by not

considering the speci�c interpretation of the subgoals c1; : : : ; ck.

First we extend the de�nition of symbol mappings for conjunctive query constraints { as stated

by De�nition 2.7.2 on Page 29 { to conjunctive queries with interpreted predicates.

De�nition A.1.1 (Symbol Mapping) A symbol mapping h is a function from a set of symbols

S to another set of symbols T ; i.e., for each symbol a 2 S, h(a) is a symbol in T . Consider two

conjunctive queries Q1 and Q2 of the form C de�ned above.

Q1: P :{ J1 & : : : & Jn1 & K1 & : : : & Kk1

Q2: R :{ G1 & : : : & Gn2
& F1 & : : : & Fk2

where the J 's and G's are ordinary subgoals and the K's and F 's are interpreted subgoals. Let

�V be the set of variables in Q2 and let h be a symbol mapping on �V where h(v); v 2 �V can be

an arbitrary term and h is the identity mapping on predicate names and function symbols. h is a

symbol mapping from Q2 to Q1 if h turns R into P and every ordinary subgoal Gi of Q2 to some

ordinary subgoal Jj of Q1. 2

We illustrate the use of symbol mappings to determine containment for conjunctive queries with

no interpreted predicates.

APPENDIX A Conjunctive Query Containment 101

EXAMPLE A.1.1 Consider the conjunctive queries Q1 and Q2:

Q1: p(X; Y) :{ q(X; Y) & r(U; V) & r(V; U).

Q2: p(A;B) :{ q(A;B) & r(W;Z).

It is straightforward to observe that Q1 � Q2. The inference can be made using symbol mappings.

Consider the following symbol mappings de�ned on the variables that occur in query Q2:

1: h(A) = X ; h(B) = Y ; h(W) = U ; h(Z) = V .

2: g(A) = X ; g(B) = Y ; g(W) = V ; g(Z) = U .

Each symbol mapping converts the head of Q2 to the head of Q1 and converts every subgoal in the

body of Q2 to some subgoal in the body of Q1. Therefore, every variable assignment � for the query

Q1 in database D can be converted into a variable assignment for query Q2 in D by considering

either � � h or � � g. Therefore, every fact derived by Q1 will also be derived by Q2.

The symbol mappings h and g are called containment mappings [CM77] because the existence

of a symbol mapping from Q2 to Q1 that satis�es the requirements of De�nition A.1.1 is necessary

and su�cient to infer that Q1 � Q2 if both Q1 and Q2 are conjunctive queries. 2

However, the existence of a symbol mapping is not necessary and su�cient for containment of

conjunctive queries with interpreted predicates. An extension of the above example illustrates this

point when the interpreted predicate is �.

EXAMPLE A.1.2 This is Example 14:7 from [Ull89].

Q1: p(X; Y) :{ q(X; Y) & r(U; V) & r(V; U).

Q2: p(X; Y) :{ q(X; Y) & r(U; V) & U � V .

The last predicate of Q2 is interpreted in the obvious way. If \�" is treated as an ordinary

(uninterpreted) predicate, there is no symbol mapping from Q2 to Q1 and therefore Q1 � Q2

cannot be inferred.

However, if the data domain of r is totally ordered then it is indeed the case that Q1 � Q2.

Intuitively, the containment can be observed as follows. Consider a database D in which Q1 derives

the fact p(x; y) using facts q(x; y), r(u; v), and r(v; u). In addition, one of u and v has to be as

large as the other. Without loss of generality, let u � v. Therefore, r(u; v) & u � v would also be

true and thus query Q2 will also derive fact p(x; y) in D. Thus, we infer Q1 � Q2. 2

Intuition for Our Approach

Symbol Mappings encode the relationship between ordinary predicates of the two queries in ques-

tion. The algorithm described in this appendix breaks the question of containment into two steps.

The �rst step uses the mappings from the ordinary predicates of Q2 to the ordinary predicates of

APPENDIX A Conjunctive Query Containment 102

Q1 to produce a condition on the interpreted predicates in the two queries. This step does not

depend on the interpretation of the subgoals. The condition derived by the �rst step is evalu-

ated using the appropriate theory for the intended interpretation. For instance, if the interpreted

predicates were arithmetic comparison operators with a dense domain, then the theory of ordered

real numbers would be used to evaluate the condition produced by the algorithm. The following

example illustrates this intuition.

EXAMPLE A.1.3 Consider queries Q1 and Q2 from Example A.1.2 assuming that the domain

of the arguments of relation R is ordered. The mappings from the ordinary subgoals of Q2 to the

ordinary subgoals of Q1 are as illustrated in Example A.1.1.

1: h(A) = X ; h(B) = Y ; h(W) = U ; h(Z) = V .

2: g(A) = X ; g(B) = Y ; g(W) = V ; g(Z) = U .

The mappings h and g give the two ways of transforming the ordinary subgoals ofQ2 to the ordinary

subgoals of Q1. Mappings h and g transform the interpreted predicates of Q2 to U � V and V � U

respectively. In order to determine if Q1 � Q2, we need to ensure that whenever the interpreted

subgoals of Q1 are true, the transformed interpreted subgoals of Q2 are also true. Given that Q1

has no interpreted subgoals, i.e. the interpreted subgoals of Q1 are always true, we need to check

that

true) U�V or V �U .

The above statement is true given that U and V come from an ordered domain. Therefore, we can

infer that Q1 � Q2. 2

The algorithm is therefore applicable for all theories in which the resulting implication condition

can be evaluated. For many theories, specialized algorithms and logical simpli�cations techniques

evaluate the condition e�ciently. For other theories, the condition may be undecidable but su�cient

conditions could exist for these cases. For such theories, we can often infer containment of one query

in another even though the necessary and su�cient condition is not evaluable.

A.2 Algorithm for Conjunctive Query Containment

Recall, ordinary subgoals do not share any variables in their arguments. We now state the results

for containment of a conjunctive query Q1 in a conjunctive query Q2. We use the queries Q1 and

Q2 from De�nition A.1.1.

Theorem A.2.1 Suppose Q1 and Q2 are two conjunctive queries with interpreted predicates (as

in De�nition A.1.1). LetM be the set of symbol mappings from conjunctive query Q2 to query Q1.

Q1 � Q2 if and only if 8 �X 9 h
in M : [I(Q1)) h(I(Q2))] (�X is the set of variables in Q1). 2

APPENDIX A Conjunctive Query Containment 103

Proof: If Consider a variable assignment � that derives the fact f from query Q1 in database D.

Assuming that the conditions of the theorem hold, we construct a variable assignment for Q2 that derives

fact f from query Q2.

If the conditions of the theorem hold then �(I(Q1))) �(h(I(Q2))) for some mapping h 2 M. Given

that �(I(Q1)) is true, we can infer that �(h(I(Q2))) is also true. That is, I(Q2) is satis�ed by the variable

assignment ��h. In addition, hmaps every subgoalGi 2 O(Q2) to some subgoal Jj 2 O(Q1), i.e., h(Gi) = Jj.

Given that �(O(Q1)) is true in D, we can infer that �(O(Q2)) is also true in D. Finally, h(R) = P and

therefore, �(h(R)) = �(P) = f .

Only If Now suppose that I(Q1) does not imply _
h in MI(Q2). Then there must be an instantiation � for

the variables of Q1 such that �(I(Q1)) is true, yet for no h in M is �(h(I(Q2))) true.

Let D be the database consisting of exactly those tuples that are obtained by applying � to the ordinary

subgoals of Q1. Let f be the fact obtained by instantiating the head of Q1 by �. Suppose Q2 also produces

f on D. Then there has to be some instantiation � of the variables of Q2 that makes the ordinary subgoals

of Q2 become tuples of D and such that �(I(Q2)) is true. Because variables of Q1 and Q2 appear only once

in ordinary subgoals, it is possible to write � = � � h, where h is a containment mapping from O(Q2) to

O(Q1).

We know that �(h(I(Q2))) is false. That is, �(I(Q2)) is false, contradicting the assumption that � makes

I(Q2) true. We conclude that Q2 does not derive f on database D. Since Q1 does, we have shown that

when the condition of Theorem A.2.1 does not hold, Q1 is not contained in Q2.

Example A.1.3 illustrates an application of Theorem A.2.1. Note that the implication condition

involving the interpreted subgoals has to be checked separately and depends on the theory that

deals with the particular interpretation of the subgoals. The above theorem can be extended in the

obvious way to obtain a condition for the containment of a conjunctive query in a set of conjunctive

queries:

Theorem A.2.2 Suppose fQ1; Q2; : : : ; Qng are conjunctive queries that use interpreted predicates.

Let Q be another conjunctive query of the same form. LetMi be the set of symbol mappings from

conjunctive query Qi to query Q. Q � fQ1 [Q2 [: : : [Qng if and only if 8 �X 9Qi 9 h inMi
:

[I(Q)) h(I(Qi))]. 2

Proof: The proof is the similar to the proof of Theorem A.2.1.

A.3 Special Classes of Conjunctive Queries

This section considers conjunctive queries where the interpreted predicates are the arithmetic com-

parison operators <;>;�;�;= over a totally ordered dense domain. In particular, we describe

two subclasses for which the containment condition derived by Theorem A.2.1 can be simpli�ed.

The results of this section are used to identify subclasses of conjunctive query constraints for which

APPENDIX A Conjunctive Query Containment 104

complete local checking can be done using �rst-order test conditions as discussed in Section 3.2.

The two subclasses we consider are de�ned below:

De�nition A.3.1 (left-semiinterval conjunctive query (LSCQ)) A conjunctive query Q is

left-semiinterval if the arithmetic comparison subgoals in the query are either of the form X < c or

X � c or X = Y where X; Y are variables and c is a constant. A right-semiinterval query (RSCQ)

is de�ned using (>;�) in place of (<;�). 2

Recall from Theorem A.2.1 that the condition for query Q1 to be contained in query Q2 re-

quired computing all possible mappings from Q2 to Q1 and then checking an implication condition

involving the interpreted subgoals as modi�ed by each of these mappings. For LSCQs and RSCQs

the necessary and su�cient condition involves �nding just one mapping from Q2 to Q1 that satis�es

an implication similar to that used before.

EXAMPLE A.3.1 Consider the two left-semiinterval conjunctive queries Q1 and Q2 where we

want to check if Q1 � Q2:

Q1: p(X) :{ q(X; Y) & e(Y1; A) & e(Y2; B) & A�5 & B�15 & Y =Y1 & Y =Y2.

Q2: p(W) :{ q(W;Z) & e(Z1; C) & e(Z2; D) & C�10 & D�20 & Z=Z1 & Z=Z2.

The set of mappings from Q2 to Q1 are:

1: h1(W) = X ; h1(Z) = Y ; h1(Z1) = Y1; h1(C) = A; h1(Z2) = Y2; h1(D) = B.

2: h2(W) = X ; h2(Z) = Y ; h2(Z1) = Y1; h2(C) = A; h2(Z2) = Y1; h2(D) = A.

3: h3(W) = X ; h3(Z) = Y ; h3(Z1) = Y2; h3(C) = B; h3(Z2) = Y1; h3(D) = A.

4: h4(W) = X ; h4(Z) = Y ; h4(Z1) = Y2; h4(C) = B; h4(Z2) = Y2; h4(D) = B.

Consider mapping h1 and the implication I(Q1)) h1(I(Q2)).

(A�5 & B�15 & Y =Y1 & Y =Y2)) h1(C�10 & D�20 & Z=Z1 & Z=Z2).

(A�5 & B�15 & Y =Y1 & Y =Y2)) (A�10 & B�20 & Y =Y1 & Y =Y2).

The above statement is true and therefore the containment holds. The same conclusion can be

reached by using only mapping h2. 2

In general, for LSCQs and RSCQs one containment mapping is necessary and su�cient to infer

containment. The following theorems formalize this result.

Lemma A.3.1 Let each of D0; D1; : : : ; Dn be a conjunction of arithmetic constraints of the form

X<a or X�a. D0) (D1 _D2 _ : : :_Dn) if and only if D0) Di for some i; 1� i�n. 2

Proof: We give the intuition for the proof by considering the case when each of D0; D1; : : : ; Dn involves

a single variable X and only � is used. Let Di be X � ai. The values of X that are a solution to Di lie in

the interval (�1; ai]. Similarly for each of D0; D1; : : : ; Dn the solution space for X is an interval from �1

to some constant as the right limit. If D0) (D1 _D2 _ : : :_Dn) then the interval (�1; a0] is contained in

APPENDIX A Conjunctive Query Containment 105

the union of the solution intervals (�1; a1]; : : : ; (�1; an]. Let ak = max(a1; : : : ; an). Therefore, (�1; ak]

properly contains all the other solution intervals. Thus, D0) Dk.

In general, let each of the conjunctions D0; D1; : : : ; Dn use m variables X1; : : : ; Xm.

If Follows from: [A) B]) [A) (B _C _ : : :_K)].

Only If (By contradiction) Assume, D0) (D1 _D2 _ : : :_Dn) holds but D0) Dj does not hold for any

conjunction Dj ; 1�j�n. Therefore, for each Dj ; 1 � j � n there is a vector vj of constants a1; : : : ; am that

when assigned to variables X1; : : : ; Xm satisfy D0 but do not satisfy Dj; we say that vj di�erentiates the

pair (D0; Dj). Given that D0 does not imply any Dj , there is at least one di�erentiating vector for each of

the pairs (D0; Dj); 1�j�n.

Let V be such a set of di�erentiating vectors. Note, every vector in V satis�es constraint D0. From the

set V we then construct a new vector v0 such that v0(i) = maxfv(i)jv 2 Vg i.e. v0(i) is the maximum value

assigned to variable Xi by any vector in V .

Because variables X1; : : : ; Xm are independent of each other in each of the conjunctions, v0 satis�es the

constraint D0. However, v0 di�erentiates every constraint from D0. This contradicts the assumption that

D0) (D1 _D2 _ : : :_Dn).

Lemma A.3.1 assumes that comparisons of the form X=Y did not appear in the conjunctions.

The lemma also holds when such equalities are used in the conjunctions. If X=Y occurs in the

conjunction D0, all occurrences of Y can be replaced by X in D0; D1; : : : ; Dn without a�ecting

the truth of the implication. All equalities in D0 can be eliminated in this manner. In case some

equality remains in one of the Di's, say A=B in Dk, Dk can be replaced by Dka _Dkb
where Dka

is Dk with B replaced by A. It is easy to observe that the truth of the implication is not a�ected

in this case either. Note, comparisons of the form X=c are not allowed. Example A.3.2 illustrates

why.

Theorem A.3.1 LSCQ Q1 is contained in LSCQ Q2 if and only if I(Q1)) h(I(Q2)) for some

mapping h from Q2 to Q1. 2

Proof: By Theorem A.2.1, Q1 � Q2 if and only if 9h
in M : [I(Q1)) h(I(Q2))], where M is the set

of mappings from Q2 to Q1. The condition can be rewritten as I(Q1) implies
W

h2M h(I(Q2)). If Q1 and

Q2 are LSCQs, then I(Q1) and I(Q2) are conjunctions of left-semiinterval constraints. Lemma A.3.1 can be

used to infer that I(Q1) implies
W

h in M h(I(Q2)) if and only if I(Q1)) h(I(Q2)) for some h 2 M.

Theorem A.3.2 , LSCQ query q is contained in a union of LSCQs fQ1 [: : :[Qmg if and only

if q is contained in some Qi; 1� i � m. 2

Proof: Similar to the proof of Theorem A.2.1.

Theorems A.3.1 and A.3.2 apply to RSCQs also. The following example illustrates that if the

arithmetic comparison operators include inequalities of the form X= c in addition to X< c and

X�c, then the above theorems do not hold.

APPENDIX A Conjunctive Query Containment 106

EXAMPLE A.3.2 (This example was originally suggested by Surajit Chaudhuri.) Consider the

queries Q, Q1, and Q2; we want to check if Q � (Q1 [Q2).

Q: s(X) :{ t(X) & X�7.

Q1: s(X) :{ t(X) & X<7.

Q2: s(X) :{ t(X) & X=7.

It is simple to observe that Q � (Q1 [Q2) but Q 6� Q1 and Q 6� Q2. The example uses the fact

that the interval (�1; 7] can be broken up into the intervals (�1; 7) and [7; 7]. 2

Appendix B

Algorithm to Eliminate Remote

Variables from Local Tests

This appendix considers the problem of eliminating the universally quanti�ed variables from TC(C; l; �)

which is of the form:

TC(C; l; �): 9 �X 8 �Y 8 �Z : [L(�X) ^ (g(�; �Y ; �Z; �c)) g(�X; �Y ; �Z; �c))]

The intent is to eliminate the universally quanti�ed variables from the above test condition to

obtain a condition I involving only variables in �X, the parameter �, and the constants in �c, such

that:

9 �X : [I) 8 �Y 8 �Z : (g(�; �Y ; �Z; �c)) g(�X; �Y ; �Z; �c))]

The condition I on �X can be posed as a query on the accessible relation and if the query has a

nonempty answer then we conclude that test TC(C; l; �) is true. We would like to derive I using

only the parameter � and not the actual inserted tuple. Thus, I can be derived at compile-time

and then evaluated when the inserted tuple is available. Also, we use �Y to represent both the sets

�Y and �Z because both sets are treated similarly for elimination purposes.

EXAMPLE B.0.3 Consider the following arithmetic implication where the letters a; b represent

the parameter �, the variable A corresponds to the universally quanti�ed variables in �Y , and V;W

represent the existentially quanti�ed variables in �X.

9V;W 8A : [A�a ^A�b) A�V ^ A�W].

We want to eliminate variable A in order to get a condition I on variables V and W such if I

holds, then so does the above implication. We can replace the above implication by:

9V;W 8A : [A�max(a; b)) A�V ^ A�W].

If we can �nd V andW that are �max(a; b) then the above implication is guaranteed to hold. This

107

APPENDIX B Eliminating Remote Variables 108

intuition is used to develop the algorithm for eliminating universally quanti�ed variables without

using the inserted tuple.

Now consider a more complicated implication:

8A;B : [A�a ^B�b ^A�B) A�V ^ B�W ^ A�B].

The LHS of the above sentence implies that A�max(a; b). This inference can be made using one

transitive step. Thus, we can infer that if V �max(a; b) and W � b, then the above implication

holds. 2

I is computed from TC(C; l; �) in two phases.

1. From the LHS of the implication g(�; �Y ; �c)) g(�X; �Y ; �c), i.e., from g(�; �Y ; �c), compute the

tightest parametric bounds on the variables �Y .

2. Propagate the bounds for �Y computed in Phase 1 to the variables �X thereby obtaining a

query on relation L.

Phase 1: Generating Parametric Bounds on Variables in �Y

We describe how to infer the tightest parametric bounds on the remote variables using g(�; �Y ; �c).

For the sake of simplicity, we assume that comparisons < and > are not permitted. Shortly, we

relax this restriction.

� Build a graph that has one node for each remote variable.

� Draw a directed edge from node Y to node Z if Y � Z is in g(�; �Y ; �c) (or if Y < Z is in

g(�; �Y ; �c)).

� Each node Y is labelled with its lower and upper bounds yl and yh. Initially all nodes are

labelled (�1;+1).

� Given the inequalities Y �a1, Y �a2, : : : , Y �ak in g(�; �Y ; �c), node Y is labelled (max(�1; a1; a2; : : : ; ak);1)

� Given the inequalities Y �b1, Y �b2, : : : , Y �bk in g(�; �Y ; �c), node Y is labelled (yl;min(1; b1; b2; : : : ; bk)),

where yl is as computed by the previous item.

� If the equality Y =a occurs in g(�; �Y ; �c) then yl is changed to max(a; yl) and yh is changed

to min(a; yh).

� If there is an edge from node Y to node Z, and assuming that the label on node Y is [yl; yh],

and the label on node Z is [zl; zh], then:

{ Change yh to min(yh; zh).

{ Change zl to max(yl; zl).

APPENDIX B Eliminating Remote Variables 109

The above operation eventually reaches �xed point. That is, all labels in the graph remain

unchanged on subsequent applications of the above operation.

Note, yh and zh are de�ned using, possibly many occurrences of,min. If yh and zh do usemin

and further we need to computemin(yh; zh), then the inner application ofmin can be folded

into the outer application. That is, say yh was de�ned as min(a; b; c). Then min(yh; zh) is

the same as min(a; b; c; zh).

We can accomodate inequalities of the form Y > a, and Y > Z by storing an extra bit with

each limit. Thus, each of the limits yl and yh for Y are ordered pairs of the kind (a; b) where the

�rst element indicates the limit and the second element indicates if the comparison is strict or not.

Thus, if yl is (a; 1) then the comparison is of the form Y >a, and if yl is (a; 0) then the comparison

is of the form Y �a. min and max are de�ned over ordered pairs. That is, (a; 1) > (a; 0). Thus,

combining inequalities Y >2^ Y �2 yield the lower limit on Y as max((2; 1); (2; 0)) which is (2; 1)

and corresponds to Y >2 which is the more strict condition as we desired.

Phase 2: Propagating Bounds on �Y to �X

Phase 2 uses the bounds derived in the Phase 1 and g(�X; �Y ; �c), the RHS of the arithmetic implication

in TC(C; l; �), to derive condition I on the variables in �X. The strategy is as follows:

� For each remote variable Y in �Y create the condition yl�yh. When the value of the parameter

� is available, then these conditions can be evaluated. In case yl� yh evaluates to false for

any variable Y , then we can infer that the inserted tuple is such that it contradicts the

arithmetic comparisons of g. Thus, the integrity constraint assertion cannot be falsi�ed

because g appears as the antecedent of the assertion. In other words, the antecedent of the

implication in TC(C; l; �) becomes false and thus the implication evaluates to true. To capture

the requirement that the lower limit of each variable should be at most as big as the upper

limit of the variable, we add the condition not (yl�yh) as a disjunct to I .

� If g(�X; �Y ; �c) has an inequality of the form X �Y or X<Y , then add the condition X � yl

to I as a conjunct.

� If g(�X; �Y ; �c) has an inequality of the form X�Y or X>Y , then add the condition X � yh

to I as a conjunct.

� If g(�X; �Y ; �c) has an inequality of the form X = Y then add the condition X = yh to I as a

conjunct. Both yh and yl are forced to be equal because if X = Y occurs in g(�X; �Y ; �c) then

there has to be an equality of the form c = Y in g(�; �Y ; �c) which will force the upper and

lower limits of Y to become the same.

APPENDIX B Eliminating Remote Variables 110

B.1 Eliminating Remote Variables from TCD(C; l; �)

This section outlines the changes needed to change the strategy for determining I for TC(C; l; �)

such that I can be computed for TCD(C; l; �). The di�erence arises because in TC(C; l; �) the

parameterized component of the implication appears on the LHS of the implication whereas in

TCD(C; l; �) the parameterized component is on the RHS. The following example highlights the

di�erence.

EXAMPLE B.1.1 Consider the implication from Example B.0.3 with the LHS and RHS reversed.

8A : [A�X ^A�Y) A�a ^ A�b].

The above implication holds for a particular X and Y if the variables are �max(a; b). 2

Therefore, the bounds computed on remote variables need to be propagated to the local variables

di�erently. Thus, Phase 1 remains the same as before. Phase 2 changes as follows.

� If g(�X; �Y ; �c) has an inequality of the form X�Y or X<Y , then add the condition X � yh

to I as a conjunct. Note, in the case of TC(C; l; �) we added X � yl.

� If g(�X; �Y ; �c) has an inequality of the form X �Y or X>Y , then add the condition X � yl

to I as a conjunct. Note, in the case of TC(C; l; �) we added X � yh.

Appendix C

Formalizing Containment of

Rectangles

In Section 3.1.2 of Chapter 3 on Page 39 we discuss how to use Datalog rules to instantiate and solve

the parameterized test condition (T) using relation L and the inserted tuple t when the constraints

of interest are independently constrained queries (IQCs) (De�nition 3.1.3). On Page 40 we give a

�ve step process for generating a Datalog program that is su�cient to express (T) for IQCs.

The Datalog program was derived using the intuition that inferring the truth of (T) for a given

L and t was the same as determining if a k-dimensional parallelepiped is contained in a union of

other k-dimensional parallelepipeds. We derived the Datalog rules based on a fragment-combine

algorithm for rectangles described pictorially in Figure 3.2.

In this appendix we prove the correctness of the algorithm for checking if a rectangle is con-

tained in a union of other rectangles. We also prove that the Datalog rules that we generated in

Section 3.1.2 do indeed check the containment property that we are interested in. Finally, we also

prove the correctness of the Datalog rules generalized to k-dimensional parallelepipeds.

We start with proving some properties of arithmetic inequalities. Then we discuss the contain-

ment problem for 1-dimensional spaces, i.e., intervals on the number line. Then we generalize the

solutions to k-dimensions.

C.1 Characterizing Conjunctions of Arithmetic Inequalities

In this section we discuss some properties of conjunctions of arithmetic inequalities and show how

Datalog predicates relate to the conjunctions. Note, the conjunctions discussed are the type that

occur in IQCs.

Observation 1 Consider a conjunction of arithmetic inequalities:

111

APPENDIX C Containment of Rectangles 112

X opa1; X opa2; : : : ; X opan.

where \," represents logical \and" and each occurrence of op can be any of >;<;=; 6=;�;�. The

above conjunction can be equivalently represented as a disjunction of conjunctions where each con-

junction uses only the operators >;<;=. The transformation can be e�ected by the following

substitutions:

6= by < _ >

� by = _ >

� by = _ >

and then representing the resulting expression in disjunctive normal form. 2

Lemma C.1.1 Consider the conjunction:

X>a1; X>a2; : : : ; X>an.

where each ai is a constant or a parameter. The values of variable X for which the conjunction is

true are the same as the values of X for which the following inequality is true.

X >max(a1; : : : ; an).

The values can be represented by the open interval (max(a1; : : : ; an);1). 2

The proof of the above lemma is simple to observe. Henceforth, we also use maxn
i=1

(an) in place

of max(a1; : : : ; an).

Observation 2 If the possible values of a variable X lie in an open interval (a; b), a 2-ary predicate

can be used to represent the solution space for X. Let one such predicate be soln. The �rst argument

of soln represents the lower limit for X and the second argument represents the upper limit for

X. By de�nition, we assume that if the only solution to variable X is equal to a constant c, the

predicate soln has c as its �rst argument and NULL as the second argument. 2

Lemma C.1.2 The maximum element of a set s of n elements can be computed by a set of n

Datalog rules that use the order predicate �. 2

Proof: The rules to compute the maximum element of the set s are:

max(X1; : : : ; Xn; X1) :{ s(X1; : : : ; Xn) & X1 � X2 & X1 � X3 & : : : & X1 � Xn.

max(X1; : : : ; Xn; X2) :{ s(X1; : : : ; Xn) & X2 � X1 & X2 � X3 & : : : & X2 � Xn.

: : :.

max(X1; : : : ; Xn; Xn) :{ s(X1; : : : ; Xn) & Xn � X1 & Xn � X2 & : : : & Xn � Xn�1.

APPENDIX C Containment of Rectangles 113

The �rst n arguments of predicate max are elements of the set, and the last argument is the maximum

element.

Note, only the size of the set needs to be known, not the actual elements themselves. A similar set

of rules can be generated to compute the minimum element of a set of known size. Also, we use

max to represent the built-in function that computes the maximum of a set of arguments and max

to represent the predicate de�ned above that takes n + 1 arguments and assigns the maximum of

the �rst n arguments to the n+ 1st argument.

Lemma C.1.3 Consider the conjunction:

X>a1; X>a2; : : : ; X>an.

where each ai is a constant or a parameter. The solutions for variable X can be computed by a set

of Datalog rules. The solution is represented as a tuple in a 2-ary relation, say soln, as speci�ed

in Observation 2. The constant 1 is used in the rules given that 1> c is true for all constants

c 6=1. 2

Proof: By construction. The maximum element of the set of constants a1; : : : ; an can be computed using

Datalog as described in Lemma C.1.2. Let the maximum be de�ned by the predicate max of set. The

solutions for X are de�ned by the rule:

soln(Xl ;+1) () max of set(Xl).

Just as Lemmas C.1.1 and C.1.3 hold for conjunctions that use the arithmetic predicate >,

similar lemmas hold for conjunctions that use the predicate <. The constant �1 is introduced

for handling <. We now consider a sentence that uses all the three arithmetic predicates that we

allow: <;>;=.

Lemma C.1.4 Consider a conjunction of inequalities of the form:

V: X>a1; : : : ; X>an; X<b1; : : : ; X<bm; X=c1; : : : ; X=ck.

where each ai, bj, cl is a constant or a parameter. The values of X for which the conjunction V is

true is represented by one of the following four cases.

1. X=c1

if c1 = c2 = : : := cn and maxn
i=1

(ai) <c1<minm
i=1

(bi).

2. (maxn
i=1

(ai);minm
i=1

(bi))

if k=0 i.e., X is not equated to any constant, and maxn
i=1

(ai) <minm
i=1

(bi).

3. (�1;minm
i=1

(bi))

if k=0 and n=0 i.e., X is not equated to nor greater-than any constant.

4. (maxn
i=1

(ai);1)

if k=0 and m=0 i.e., X is not equated to nor less-than any constant.

APPENDIX C Containment of Rectangles 114

2

Proof: The conjunction X>a1; : : : ; X>an can be replaced by X>max
n
i=1(ai) (Lemma C.1.1). Similarly

X<b1; : : : ; X<bm can be replaced by X<min
m
i=1(bi). Finally,X=c1; : : : ; X=ck can be replaced by X=c1

if all the Cis are equal (else the conjunction is inconsistent and has no solution). The possible solutions for

the resulting conjunction:

V : X>max(ai); X=c1; X<min(bi)

are exactly as listed as the four cases.

Lemma C.1.5 Given a conjunction of the form V, it is possible to write Datalog rules de�ning

predicate soln such that if soln(a; b) is derivable by the rules and b 6= NULL, then a < X < b is

the solution space for the variable X in V. If b = NULL, then X = a is the only solution for X in

V. 2

Proof: A di�erent set of Datalog rules is de�ned for each case listed in Lemma C.1.4. We discuss only

one case in detail.

Case 1 The rule de�ning soln is:

soln(c1; NULL) :{ c1 = c2 = : : : = ck�1 = ck &

max(a1; : : : ; an; A) & A < c1 &

min(b1; : : : ; bm; B) & B > c1.

Rules for max and min are as de�ned by Observation C.1.2. We argue that the above rule derives soln(c1; NULL)

if and only if the solution of V is X = c1.

If: Note, the above rule repeats the conditions of Case 1. Therefore, if the conditions of Case 1 are true,

then this rule will also be true.

Only If: If the rule is not true then Case 1 cannot be true either.

The arguments for the other cases are similar and simple to see.

C.1.1 Manipulating (T) into a Desired Form

Recall the form of the local test (T) generated by the steps described on Page 31.

A0) B0

1
_ : : : _B0

n

where A0 is I(Red(�; l; C)) and B0

i
is I(Red(�; l; C)). Let's assume that the local test involves only

one variable X . Thus, A0; B0

1
; : : : ; B0

n
are conjunctions of arithmetic order predicates involving

>;<;�;�;= where each arithmetic predicate uses either X and a (parameterized) constant or two

(parameterized) constants. Using the transformation of Observation 1, the predicates �;� can be

eliminated such that (T) is transformed to:

APPENDIX C Containment of Rectangles 115

(A1 _ : : :_ Am)) (B1 _ : : :_Bk)

Using the logical equivalence of (a _ b)) c and (a) c) ^ (b) c), the above local test can be

rewritten as the following conjunction of m tests:

(T): ^m
i=1

(Ai) B1 _ : : :_ Bk) = T1 ^ T2 ^ : : :^ Tm

Each of A1; : : : ; Am; B1; : : : ; Bk is of the form V given in Lemma C.1.4. Using Observation 2 we

observe that the solution to each Ai can be represented as a tuple of a 2-ary relation that is

de�ned by a rule that uses the parameter � and constants in Ai. Let the predicate ins represent

the solutions to the Ais. Similarly, the solution to each Bj can be represented as a tuple of the

predicate soln and can be computed by rules that use the parameter � and the constants in Bj .

Note, each conjunct Ti of test (T) can be instantiated to obtain an arithmetic instantiation

Ii using the inserted tuple t and relation L just as (T) is instantiated to obtain It The LHS of

Ii is obtained by instantiating Ai with tuple t, and the RHS is obtained by instantiating each Bj

with a tuple in L and adding the resulting sentence as a disjunct in the RHS. The result of the

instantiation is the conjunction I1 ^ : : :^ Im. Note, the RHS of all I1 ^ : : :^ Im is the same.

Alternatively, each of Ai; B1; : : : ; Bk in Ti is of the form V and thus the solutions to the variables

in each component can be represented by Datalog rules as described in Lemma C.1.5. The tuples

of ins, corresponding to the solutions of the LHS of Ii, Ai, are computed using the tuple t to

instantiate parameter �. The rule that de�nes ins, and uses the parameter � in its body, has

the additional subgoal ins(�) to instantiate � with the inserted tuple t. Similarly, the soln tuple

that represents the solutions to the variables that occur in the disjuncts in the RHS of Ii can be

computed using the tuples of L to instantiate parameter �. Every rule that de�nes soln, and

uses parameter � in its body, has the additional subgoal l(�) such that the tuples in L provide

the alternative instantiations for �. The relations soln and ins can be de�ned by Datalog rules

derived using Lemma C.1.5 for each Ii; 1� i�m.

Thus, after having seen how to generate Datalog rules for the solutions for both the RHS and

LHS of Ii as generated above, we now describe how to determine the truth of Ii.

C.1.2 Determining containment of 1-dimensional spaces

First we consider conjuncts that use only one variable. That is, we consider Ii that uses only one

variable. Subsequently we extend the results to multivariable cases.

Lemma C.1.6 (splitting-lemma): Consider the sentence

D: a<X<c

where a<c. Consider constant b such that a<b<c. X satis�es a<X<c if and only if X satis�es:

D0: a<X<b _ X=b _ b<X<c.
2

APPENDIX C Containment of Rectangles 116

Proof: Simple to observe.

Lemma C.1.7 Let soln(a; c) represent the solution to a<X<c. Let constant b, a<b<c, be used

to partition a <X < c as in Lemma C.1.6. The solution facts that represent the solutions to the

resulting disjunction, are de�ned by the following rules:

soln(X; Y) :{ soln(X;Z) & constant(Y) & X<Y <Z.

soln(Y;NULL) :{ soln(X;Z) & constant(Y) & X<Y <Z.

soln(Y; Z) :{ soln(X;Z) & constant(Y) & X<Y <Z.

where constant is some base relation that is used to instantiate Y . 2

De�nition C.1.1 (cons) Consider a sentence S that uses the comparison operators <;>;= and

the logical connectives _;^. cons(S) refers to the set of constants that appear in S. 2

Observation 3 Consider a disjunction � of arithmetic predicates where each disjunct is of the

form a<X<b or X=c. Consider the corresponding soln facts that represent the solutions to �.

The set of constants cons(�) can be generated by the following rule:

cons(X) :{ soln(X; Y).

cons(Y) :{ soln(X; Y).

2

De�nition C.1.2 (Minimizing a disjunction of arithmetic inequalities) Consider a disjunc-

tion of sentences � where each disjunct is of the form a < X < b or X = c. Also, consider a set

of constants C and a particular constant c 2 C such that there is a disjunct a < X < b in � and

a<c<b. Using Lemma C.1.6, a < X < b can be replaced in � by a disjunction of three sentences

using c as the splitting point. � is said to be minimized with respect to C if no disjunct in �

can be split any further with respect to any constant in C and all repeated disjuncts have been

eliminated. 2

Given the predicate soln that represents solutions for a sentence of the form a < X < b,

and a predicate constant that represents a set of constants, the soln facts corresponding to

the minimization of a < X < b are generated by the recursive rules of Lemma C.1.7. However,

minimization required eliminating a disjunct D after D had been split to avoid having non-minimal

disjuncts in min(O). This elimination process is replicated in Datalog by �rst identifying all the

soln tuples that are not minimal, and then eliminating these from the set of all soln tuples

generated by the splitting rules.

not min soln(X; Y) :{ soln(X; Y) & constant(Z) & X<Z<Y .

min soln(X; Y) :{ soln(X; Y) & :not min soln(X; Y).

APPENDIX C Containment of Rectangles 117

Lemma C.1.8 Consider a disjunction � of arithmetic inequalities each of the form a<X<b or

X=c. Let min(�) be the minimization of � with respect to cons(�). The solutions for every pair

of disjuncts in min(�) are disjoint. 2

Proof: Simple to observe.

De�nition C.1.3 (Index) The index of the arithmetic inequality X = c is (c;=) and of the

inequality a<X<b is (a;<). The ordering relationship <x between indexes is de�ned as follows:

(i; opi) <x (j; opj) if

8<
:

i < j or

i = j and opi is = and opj is <

If opi is (c; <) and opj is (c; <), then the order predicate <x is not de�ned on the two indices. 2

Lemma C.1.9 (Ordering-lemma): Consider a set of inequalities D that is minimized with re-

spect to the constants in cons(D). The disjuncts inD can be ordered totally using the <x relationship

de�ned in De�nition C.1.3. 2

Proof: We prove the above lemma by contradiction. Let there be two distinct disjuncts D1 and D2 that

cannot be ordered with respect to each other. Therefore, the index of D1 is (c;<) and the index of D2 is

(c;<). By De�nition C.1.3, D1 and D2 are of the form c<X <b1 and c<X <b2 respectively. In addition,

b1 6= b2 because D1 and D2 are distinct. Without loss of generality assume that b1< b2. Then c < b1 < b2

and b1 2 cons(D) and therefore D2 is not minimal.

Consider I1 ^ : : :^ Im obtained by instantiating the local test (T) from Section C.1.1 by t and

L. Let the set of constants involved in the RHS of any of the Iis be K. Consider a particular Ii and

minimize both the RHS and the LHS of Ii with respect to K. Minimization replaces each sentence

by disjunctions of sentences. The disjunctions introduced in the LHS of Ii can be eliminated by

replacing Ii by a conjunction I1
i
^ : : :^ Ip

i
where each I

j

i
is of the same form as Ii before splitting

(using a process similar to the one used in Section C.1.1 to eliminate �;� from (T)). Therefore,

minimization of I1^ : : :^Im with respect to K results in a sentence of the same form as I1^ : : :^Im

except that the number of conjuncts is larger and every arithmetic inequality in the sentence has

been minimized wrt K.

Now we discuss how to solve one of the implications Ij .

Lemma C.1.10 Consider the implication:

I: A) B1 _ : : : _Bk.

where A and each Bj is minimized with respect to the constants occuring in B1_ : : :_Bk. I is true

if and only if there exists some i such that A) Bi. 2

APPENDIX C Containment of Rectangles 118

Proof: Simple to observe. Intuitively, if A is not contained in some Bi but is contained in a disjunction

of two or more Bis, then A could be further minimized.

We now discuss how to use Datalog rules to determine if a sentence A of the form X = c or

a<X<b implies (is contained in) another inequality B of the same form. Recall that the solutions

to inequalities of these two forms can be represented as facts of a 2-ary predicate.

Observation 4 Let inequalities A and B be of the form X=c or a<X<b. Let the corresponding

solution facts be ins(al; ah) and soln(bl; bh). A) B if and only if one of the following rules derives

OK.

OK :{ ins(al; ah) & soln(bl; bh) & bl�al & bh�ah.

OK :{ ins(al; NULL) & soln(bl; bh) & bl�al�bh.

OK :{ ins(al; NULL) & soln(bl; NULL) & bl=al.

2
Recall that predicate ins represents the solutions for the LHS of I1^: : :^Im and soln represents

the solutions for the RHS. Observation 3 says that we can get the constants in the RHS, cons(RHS),

using Datalog rules. In addition, Datalog rules can be used to minimize the LHS and RHS to give

predicates min ins and min soln. Lemma C.1.10 implies that if each min ins is \contained" in

some min soln fact, then the local test condition I1 ^ : : :^ Im is true. This check can also be run

as a Datalog program with negation (similar to the minimization process).

C.1.3 Eliminating Negation from the Datalog Rules

We now prove that it is possible to eliminate negation from the Datalog rules that check (T) given

t and L. First consider the converse of Lemma C.1.6.

Lemma C.1.11 (Combining Lemma): Consider the disjunction D:

D: a<X<b _ X = b _ b<X< c.

where a<b and b<c. The set of values of X for which D is true is the same as the set of values

for which D0 is true, where D0 is:

D0: a<X<c.

2

Proof: Simple to observe.

Lemma C.1.12 Consider the disjunction D:

D: (a<X<b _ c<X<d) ^ b>c.

where a<b and c<d. The set of values of X for which D is true is the same as the set of values

for which D0 is true, where D0 is:

APPENDIX C Containment of Rectangles 119

D0: a<X<d.

2

Lemma C.1.13 Let soln(a; b), soln(b;NULL), soln(b; c) represent the solutions to sentences

a<X<b, X=b, b<X<c respectively. The solution for the sentence a<X<b _ X=b _ b<X<c,

soln(a; c), is computed from the original soln facts by the following rule:

P : soln(X; Y) :{ soln(X;Z) & soln(Z;NULL) & soln(Z; Y).

2

Proof: The above lemma is the same as Lemma C.1.11, stated in Datalog terms.

Lemma C.1.14 Let soln(a; b), and soln(c; d) represent the solutions to sentences a<X<b, and

c<X<d respectively and let b > c. The solution for the sentence (a<X<b _ c<X<d) ^ b>c,

soln(a; d) is computed from the original soln facts by the following rule:

P : soln(X; Y) :{ soln(X;Z) & soln(W;Y) & Z>W .

2

Proof: The above lemma is the same as Lemma C.1.12, stated in Datalog terms.

Lemma C.1.15 Consider two sentences D1 and D2 of the form a<X <b and c<X <d respec-

tively. Let arithmetic inequalities Dc

1
and Dc

2
be such that D1) Dc

1
and D2) Dc

2
. If b> c then

D1 and D2 can be combined to yield D3 : a<X<d. In this case, Dc

1
and Dc

2
can also be combined

to yield Dc

3
such that D3) Dc

3
. 2

Proof: If D1) Dc
1 then Dc

1 is of the form e<X <f where e�a and f � b. Similarly, if D2) Dc
2 then

Dc
2 is of the form g < X < h where g � c and h� d. Given that f � b, b > c, c � g we can conclude that

f > g. Therefore, Dc
1 and Dc

2 can be combined to yield e < X < h where e � a and h� d and therefore

a<X<d) e<X<h, i.e., D3) Dc
3.

Lemma C.1.16 Consider three arithmetic inequalities D1, D2, and D3 of the form a < X < b,

X = b, and b < X < d respectively. Let arithmetic inequalities Dc

1
, Dc

2
, and Dc

3
be such that

D1) Dc

1
, D2) Dc

2
, and D3) Dc

3
. Given that D1, D2, and D3 can be combined to yield D4, then

Dc

1
, Dc

2
, and Dc

3
can also be combined to yield Dc

4
such that D4) Dc

4
. 2

We now discuss the impact of the above lemmas on the Datalog rules that derived and evaluated

I .

Consider the tests I1; : : : ; Im before minimization. Consider the test I1. After it has been mini-

mized with respect to K, I1 is replaced by a conjunction of tests I1
1
; : : : ; I l

1
of the same form as itself

except that each I i
1
is minimized wrtK. If I i

1
is true, then there is some sentence Si 2min(RHS(I1))

APPENDIX C Containment of Rectangles 120

such that LHS(I i
1
)) Si. Note, LHS(I1) can be obtained by combining LHS(I1

1
); : : : ; LHS(I l

1
) us-

ing lemmas C.1.12 and C.1.11. Therefore, S1; : : : ; Sl can also be combined to yield S such that

LHS(I1)) S (Lemmas C.1.15 and C.1.16).

The consequence of the above inference is that only the RHS of I1; : : : ; Im need be minimized.

The resulting minimized sentences, of the form X=c and a<X<b, can be combined in all possible

ways using Lemmas C.1.12 and C.1.11 to generate a set of sentences S. Furthermore, it can be

guaranteed that test Ii holds if and only if there is some sentence S in S such that LHS(Ii)) S.

Given that the sentences in the minimized RHS will be recombined in any case, it is not necessary

to isolate the minimized set. Therefore, the negation that was introduced for this isolation can be

eliminated.

The second negation step was required because minimizing the RHS of the tests I1; : : : ; Im could

result in an arbitrary number of tests. However, now that the RHS need not be minimized, we

know that the number of tests remains m. This number is known at compile time. Therefore, we

can generate m tests, one corresponding to each Ii.

In conclusion, for integrity constraints that are IQCs and have only one remote variable, it is

possible to write Datalog rules using test (T) such that given an inserted tuple t and a relation L,

the Datalog rules derive OK if and only if the test (T) is true with the given input. In general, we

could consider a set of inserted tuples instead of just one tuple.

C.1.4 Multiple Variables

Until now we considered constraints where test (T) involved a single variable. However, in general

the remote inaccessible relation(s) could have multiple attributes, resulting in multiple variables

in T . This section shows that the results and techniques of the previous section extend to the

n-variable case too.

In this section we consider IQCs, i.e., I(Red(�; l; C)) is an independently constrained sentence.

As before, the transformation of Observation 1 can be carried out on a sentence that uses <;>;�

;�;=; 6= to yield a disjunction of sentences � that use <;>;=. Consider one disjunct D 2 �. Let

D involve n variables fX1; : : : ; Xng, each of which is independently constrained and participates

in >;<;= comparisons with constants and parameters. Consider variable Xi. The conjunction of

the inequalities involving Xi is of the form V (Page 112). Now, let's order the n variables in some

arbitrary total order. The solutions to the variables in � can therefore be represented as tuples of a

Datalog predicate, say soln, that has 2n attributes; 2 for each variable. Note, each D 2 � may not

have all n variables. In fact some D may not have any variables, just constants and parameters.

However, soln is de�ned to have the same number of attributes for each D. Attribute 2i� 1 (2i)

represents the lower (upper) limit of the solution space for the ith variable. If D does not have an

arithmetic inequality involving the ith variable Xi, then the upper limit for Xi is 1 and the lower

APPENDIX C Containment of Rectangles 121

limit is �1. As before, if the upper limit is NULL, then the solution for the attribute is the lower

limit.

Using a Lemma similar to Lemma C.1.5, we can de�ne a soln fact representing the solution for

every sentence D 2 �. The solution for � is a union of the soln facts for the disjuncts in �. We

now de�ne a variant of the splitting-lemma.

Lemma C.1.17 (splitting-lemma): Consider the sentence

D: a<X<c ^ C.

where a<c and C does not involve the variable X. Let constant b be such that a<b<c. X satis�es

a<X<c ^ C if and only if X satis�es:

D0: (a<X<b ^ C) _ (X=b ^ C) _ (b<X<c ^ C).

2

In particular, the above lemma implies that a statement of type D can be split up into a disjunc-

tion of 3 sentences by using one of the variables in D as the splitting-variable. The corresponding

Datalog rules need to be de�ned for splitting using every possible variable. Therefore, we need 3n

Datalog rules for a soln predicate that represents the solutions to n variables. The rules for the

�rst variable are as follows:

soln(X l

1
; Y; : : : ; X l

n
; Xh

n
) :{ soln(X l

1
; Xh

1
; : : : ; X l

n
; Xh

n
) & constant(Y) & X l

1
<Y <Xh

1
.

soln(Y;NULL; : : : ; X l

n
; Xh

n
) :{ soln(X l

1
; Xh

1
; : : : ; X l

n
; Xh

n
) & constant(Y) & X l

1
<Y <Xh

1
.

soln(Y;Xh

1
; : : : ; X l

n
; Xh

n
) :{ soln(X l

1
; Xh

1
; : : : ; X l

n
; Xh

n
) & constant(Y) & X l

1
<Y <Xh

1
.

We now need 2n rules to compute the constants involved in set �; the ith rule captures the constants

that appear in the ith position of soln (in the spirit of Observation 5).

Sentences in � are minimized by splitting along every variable. That is, one variable is used

to split sentences in � at one time as presrcibed by the modi�ed splitting-lemma (Lemma C.1.17).

The minimization of a set �, min(�), is a disjunction of sentences where no sentence D 2 � can

be split along any variable using a constant from cons(�). Datalog rules for de�ning the solutions

for min(�) are similar to the rules in the 1-variable case.

The index for an n-variable arithmetic inequality of the form D is also rede�ned. Let the

arbitrary total order of the n variables be X1; : : : ; Xn.

De�nition C.1.4 (index) Consider a 1-variable sentence B of the form X=c or a<X<b. The

index of B is rede�ned as follows:

index B =

8<
:

(c;NULL;=) if B is X=c

(a; b; <) if B is a<X<b

Ordering between pairs of distinct indexes is de�ned as follows:

APPENDIX C Containment of Rectangles 122

(i1; i2; opi) <x (j1; j2; opj) if

8<
:

i1<j1 or

i1=j1 and opi is = and opj is <

If two indexes are identical, they are said to be equal to each other and satisfy the =x relationship.

That is:

(i1; i2; opi) = (j1; j2; opj) if

8<
:

i1=j1 and i2=j2 and opi is < and opj is < or

i1=j1 and i2=j2 and opi is = and opj is =

In all other cases, the relationship between indexes is unde�ned. 2

De�nition C.1.5 (Composite Index (Cindex)) The composite index is de�ned for an inequal-

ity of the form D. Cindex(D) is a list of n indexes, where the ith index corresponds to the index

for the inequality involving the ith variable in D. The ith index within Cindex(D) is referred to as

Cindex(D)(i).

Cindex(D1) is <x Cindex(D2) if 9k such that Cindex(D1)(k) <x Cindex(D2)(k) and 81� i�

k � 1 Cindex(D1)(i) =x Cindex(D2)(i).

No other relationship is de�ned between Cindexes. 2

The ordering-lemma for the single variable case can be extended to the n-variable case as follows.

Lemma C.1.18 (Ordering-lemma): Consider a set of inequalities � that is minimized with re-

spect to the constants in cons(�). The disjuncts in � can be ordered totally using the <x relationship

between the Cindexes as de�ned in De�nition C.1.5. 2

Proof: We prove the above lemma by contradiction. Let there be two distinct disjuncts D1 and D2 that

cannot be ordered with respect to each other. There are two cases to consider:

1. 9k such that 81� i�k�1 Cindex(D1)(i)=xCindex(D2)(i) and the relationship between Cindex(D1)(k)

and Cindex(D2)(k) is not de�ned.

The relationship between two indexes (i1; i2; opi) and (j1; j2; opj) is not de�ned only if i1 = j1 and

i2 < j2 and opi = opj =00<00. Note, i1 < i2 because (i1; i2; opi) corresponds to a consistent inequality

i1 < X < i2. Similarly j1 < j2. Therefore, we get that j1 < i2 < j2. However, i2 is in cons(�) and

therefore can be used to split D2. This would contradict the fact that � is minimized with respect to

cons(�).

2. 81� i�n Cindex(D1)(i)=xCindex(D2)(i)

This case violates the uniqueness of the members of minimized set of disjuncts.

Lemma C.1.19 Consider the implication:

I : A) B1 _ : : :_ Bk .

where A and each Bj is of the form D and has been minimized with respect to cons(RHS). I is true

if and only if there exists some i such that A) Bi. 2

APPENDIX C Containment of Rectangles 123

Proof: By induction on n, the number of variables involved in the implication.

n=1 Lemma C.1.10.

n=m+ 1 Say the lemma holds for m variables. Without loss of generality, assume than the new variable

is X1. Each of A;B1; : : : ; Bk is of the form S(X1) ^ S(X2) ^ : : :^ S(Xm+1). Recall that S(X) is either of

the form X=c or a<X<b. We now do induction on k, the number of disjuncts on the RHS.

k = 2 Therefore, there exists two vectors V1 :<x1; : : : ; xm+1> and V2 :<y1; : : : ; ym+1> that are solutions

to A and V1 is a solution to B1 but not to B2; and V2 is a solution to B2 but not to B1.

Consider two cases:

1. In A, S(X1) : X1 = c

In this case, x1 = y1 = c because both V1 and V2 are solutions to A. This contradicts the induction

hypothesis as follows: Consider the implication:

A) B1 _B2.

where each of A;B1; B2 is of the form S(X2) ^ : : :^ S(Xm+1), i.e., involves m variables. The vector

<x2; : : : ; xm+1> satis�es A and B1 but not B2; and <y2; : : : ; ym+1> satis�es A and B2 but not B1.

2. In A, S(X1) : a<X1<b

(a) In B1, X1=c

Given that B1 has exactly one solution, x1 must be c. If c is a solution to A, then a < c < b.

However, c 2 cons(RHS) and A is minimal with respect to cons(RHS). Therefore, if a<c<b then

A can be split with respect to c and the minimality would be violated.

(b) In B1, c<X<d; B2 : e<X<f

Without loss of generality, let d < e.

c<x1<d and a<x1<b x1 is a solution for A and B1 Therefore: a<d.

e<y1<f and a<y1<b y1 is a solution for A and B2 Therefore: e<b.

a<d and d<e and e<b implies that a<d<b .

However, d is in cons(RHS) violating the minimality of A with respect to cons(RHS).

k= l + 1 The argument is exactly as in Lemma C.1.10.

The combining lemmas and all the subsequent results of the single variable case carry over

exactly to the multivariable case.

Appendix D

Proofs for Theorems in Chapter 6

In this appendix we restate and prove some theorems from Section 6.2.

D.1 Insertions

Theorem 6.2.1: Consider a constraint A de�ned using a single conjunctive query (possibly using

arithmetic and negation) such that the predicate p occurs positively and only once in A and the

number of p tuples that can satisfy A is not bounded a priori. Let t represent a tuple inserted

into relation P such that t is not irrelevant with respect to A. Let Au be the constraint A with

inserted tuple t incorporated into A. Au derives panic with DB if and only if A derives panic with

DB [fp(t)g. Constraint Au cannot be expressed as a single conjunctive query even if the query

uses arithmetic inequalities and negation.

Proof: (By Contradiction) Let C be a conjunctive query, possibly using arithmetic inequalities and

negation, that is equivalent to Au. We prove a contradiction arises with this assumption. We assume that

p has arity three.

Claim 1 C derives panic for all databases with which A derives panic,i.e., C � A. This claim is proved as

follows. Let DB be a database such that A derives panic with DB. Given that A is monotonic with respect

to relation p, A derives panic with DB [fp(t)g. Thus, C � Au also derives panic with database DB.

Claim 2 C has no negated occurrences of subgoal p(X;Y; Z). We prove this claim by contradiction. Let C

have a negated subgoal not p(X;Y; Z). Consider a database DB such that A derives panic withDB[fp(t)g.

Thus, C derives panic with DB. Consider all instantiations of C in DB that derive panic. Let � be one

such instantiation, i.e., �(C) derives panic in DB. If the fact �(p(X;Y; Z)) is added to DB, to get a new

database DB+, instantiation � does not derive panic using C in DB+. Database DB+ [fp(t)g derives

panic using A because A is monotonic in p. Thus, Au derives panic with DB+ contradicting the claim that

C � Au.

Claim 3 C has at least one occurrence of the subgoal p(X;Y; Z). We prove this claim by contradiction. Let

C have no occurrence of the subgoal p(X;Y; Z). Thus, C is independent of p.

124

APPENDIX D Proofs for Chapter 2 125

Consider a database DB that satis�es A and is such that if all the p facts are deleted fromDB, then DB

no longer satis�es A. Such a database exists because p occurs only positively in A and is not a redundant

subgoal. Let the database resulting from the deletions be DB�. In addition, consider an inserted tuple t

such that DB� [fp(t)g does not satisfy A. Such a tuple has to exist because BD� is �nite and therefore

we can choose the constants in t appropriately.

Consider a database DB as de�ned above. A derives panic with DB and hence with DB[fp(t)g. Thus,

Au derives panic with DB, implying that C derives panic with DB. Now, C is independent of p and thus

C derives panic even if all p tuples are removed from DB. That is, C derives panic with DB� . However

A does not derive panic with DB� [fp(t)g leading to a contradiction.

The above three claims contradict the initial assumption that C derives panic with DB if and only if

A derives panic with DB [fp(t)g. Consider the following database: P = fg and the remaining relations

involved in A are such that they satisfy A when P = ftg. C does not derive panic with this database

(Claim 4) but A does derive panic with P = ftg.

Theorem 6.2.2: Constraint I9, stating that after insertion of \tom" into relation insured there

is no employee in a department that does not appear in insured, cannot be expressed as a single

CQ (over the predicates emp and insured denoting their values before insertion) without arithmetic

inequalities, even if negation is allowed.

Proof: (By Contradiction) Recall that constraint I9 is:

panic :{ emp(E;D; S) & not insured1(E).

insured1(E) :{ insured(E).

insured1(tom).

Let C be a CQ that does not use arithmetic inequalities and expresses I9.

Claim 1 C cannot have an unnegated subgoal with predicate insured. We prove this claim by contradiction.

Say C does have an unnegated subgoal with predicate insured. Then C would not produce panic whenever

insured is empty and emp has tuple (tom; a; b), thereby contradicting the claim that C is equivalent to I9.

Claim 2 C cannot have a subgoal not insured(d) where d is any constant such as tom. We prove this claim

by contradiction. Say C does have a subgoal not insured(d) for some constant d. In this case, consider the

database:

emp(mary; shoe; 50); insured(d).

where d 6= mary. C fails to cause panic with the above database, where I9 does derive panic.

Claim 3 The only insured subgoals in C are of the form not insured(E) for some variable E. Follows from

Claims 1 and 2.

Consider the database with tuples

emp(mary; shoe; 50), emp(tom; shoe; 50).

and no other tuple for either emp or insured. I9 produces panic because in the above database there are two

APPENDIX D Proofs for Chapter 2 126

employees in emp but relation insured is empty. Given that C is equivalent to I9, C must also derive panic.

Consider an instantiation of C's variables that satis�es the body of C. If any of the subgoals of the form

not insured(E) instantiates to not insured(mary), we claim we can replace these by not insured(tom)

and still produce panic. Why? If E appears nowhere else, surely this change can be made. If E appears

elsewhere, it can only be in another not insured(E) subgoal, which presents no problem, or in some subgoal

of the form emp(E;D; S). In the latter case, the instantiation of the subgoal must have been either

1. emp(mary; shoe; 50), in which case we can legally instantiate it instead to emp(tom; shoe; 50), or

2. not emp(a; b; c) for some constants a, b, and c, at least one of which (corresponding to variable E) is

mary. In this case, we can again replace mary by tom, and the negated subgoal will continue to be

true.

Now, consider the database with the same two tuples, emp(mary; shoe; 50) and emp(tom; shoe; 50) for

emp, but with additional tuple insured(mary). Constraint I9 does not produce panic with this database.

However, we established in the paragraph above that there is an instantiation of C that does not use mary

as an argument of an insured subgoal, the same instantiation produces panic on this database. Thus, we

contradict the assumption that C is an equivalent of I9. Therefore, there is no way to express I9 as a single

CQ without arithmetic inequalities.

D.2 Deletions

Theorem 6.2.4: Consider constraint Au that states that no employee in emp is in tall after

\mary" is deleted from tall.

Au: panic :{ emp(E;D; S) & tall1(E)

tall1(E) :{ tall(E) & E 6= mary.

Au cannot be expressed by an equivalent Datalog program C that uses neither negation nor arith-

metic.

Proof: (By Contradiction) Let C be such an equivalent constraint expressed as a Datalog program that

uses neither negation nor arithmetic. Let DB1 be the following database that causes Au, and hence C, to

derive panic:

emp = f(john; d; s)g; tall = f(john)g.

Given that C uses neither negation nor arithmetic, we can infer that C produces a derivation tree for panic

such that the tree uses only equijoins. We claim base facts emp(john; d; s) and tall(john) appear in the

tree (one or more times). For if one of the base facts does not appear in the tree, say tall(john), then we

can contradict the claim that C is equivalent to Au by using an empty tall relation in DB1.

Equijoins are preserved if all the participating arguments are transformed by a 1-1 function. Thus

replacing \john" in emp and tall by \mary" will not change the derivation tree for C. Thus C will still

APPENDIX D Proofs for Chapter 2 127

derive panic while Au will not, thereby violating the equivalence claim.

Theorem 6.2.5: Constraint I8, after deleting tuple \john" from relation insured, cannot be

expressed as a single CQ constraint that uses negation.

Proof: Let Au represent the rewritten version of constraint I8 after the deletion:

Au: panic :{ emp(E;D; S) & not insured1(E)

insured1(E) :{ insured(E) & E 6= john.

We argue that Au cannot be rewritten as a single conjunctive query C that may use negation and/or

arithmetic. We prove the theorem by contradiction.

Claim 1 C � I8. Observe that Au � I8, and C is equivalent to Au.

Claim 2 C has no positive occurrences of subgoal insured(E). We prove this claim by contradiction. If

there is a subgoal insured(E) then a database DB such that Au derives panic in DB. Given that Au

is anti-monotonic in insured, we can delete all insured facts from DB and still have Au derive panic.

However, then the positive subgoal in C would be false, thereby contradicting the equivalence of C and Au.

Claim 3 C has no occurrence of the subgoal not insured(a), where a is some constant. We prove this claim

by contradiction. If there is such an occurrence, then consider the database:

emp(mary; shoe; 50); insured(a).

Au derives panic with the above database, but C will not. Thereby contradicting the equivalence of C and

Au. Similarly, we can argue that C has no occurrence of the subgoals insured(E) & E 6=a.

Claim 4 C has at least one occurrence of the subgoal not insured(E). We prove this claim by contradiction.

Let C have no occurrence of the subgoal not insured(E), i.e., C is independent of relation insured. Now

consider a database with which Au, and thus C, derives panic. Let the set of constants in this database be

S. To this database add the fact insured(a) for every constant a 2 S. Thus, Au will no longer derive panic

but C will, thereby contradicting the equivalence of C and Au.

The above four claims contradict the initial assumption that C is equivalent to Au. Consider the database

emp(tom; shoe; 50) and insured(tom). Au derives panic from this database, whereas C will not.

Bibliography

[AHU83] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. Data Structures and Algorithms.

Addison-Wesley, 1983.

[ABW88] Krzysztof R. Apt and Howard A. Blair and Adrian Walker. Towards a Theory of Declar-

ative Knowledge. In Foundations of Deductive Databases and Logic Programming. Editor

J. Minker, 1988 Morgan Kaufmann.

[AH88] Serge Abiteboul and Richard Hull. Data Functions, Datalog, and Negation. In Proceed-

ings of ACM SIGMOD 1988 International Conference on Management of Data, Chicago,

IL, June 1988.

[AHU83] Alfred V. Aho, John E. Hopcroft, and Je�rey D. Ullman. Data Structures and Algorithms.

Addison-Wesley, 1983.

[BC79] Peter O. Buneman and Eric K. Clemons. E�ciently Monitoring Relational Databases.

In ACM Transactions on Database Systems, Vol 4, No. 3, 1979, 368-382.

[BCL89] J. A. Blakeley, N. Coburn, and P. Larson. Updating Derived Relations: Detecting Irrele-

vant and Autonomously Computable Updates. ACM Transactions on Database Systems,

14(3):369{400, 1989.

[BLR91] Veronique Benzaken, Christophe Lecluse, and Philippe Richard. Enforcing Integrity

Constraints in Database Programming Languages. Technical Report Altair 68-91, Altair,

France, 1991.

[BLT86] Jose A. Blakeley and P. Larson and Frank Wm. Tompa. E�ciently Updating Materialized

Views. In Proceedings of ACM SIGMOD 1986 International Conference on Management

of Data, Washington D.C., 61-71.

[BBC80] P. A. Bernstein, B. T. Blaustein, and E. M. Clarke. Fast Maintenance of Semantic

Integrity Assertions Using Redundant Aggregate Data. In Proceedings of the Sixth con-

ference on Very Large Data Bases, pages 126{136, 1980.

128

Bibliography 129

[BB82] P. A. Bernstein and B. T. Blaustein. Fast Methods for Testing Quanti�ed Relational

Calculus Assertions. In Proceedings of ACM SIGMOD 1982 International Conference on

Management of Data, pages 39{50, 1982.

[BGM92] D. Barbara and H. Garcia-Molina. The Demarcation Protocol: A Technique for Main-

taining Arithmetic Constraints in Distributed Database Systems. In Extending Database

Technology Conference, LNCS 580, pages 373{397, Vienna, March, 1992.

[Bla81] B. T. Blaustein. Enforcing Database Assertions: Techniques and Applications. PhD the-

sis, Harvard University, Cambridge, Massachusetts, Division of Applied Sciences, 1981.

[BMM92] F. Bry, R. Manthey, and B. Martens. Integrity Veri�cation in Knowledge Bases. In Logic

Programming, LNAI 592 (subseries of LNCS), pages 114{139, 1992.

[CG92] S. Ceri and F. Garzotto. Speci�cation and Management of Database Integrity Constraints

through Logic Programming. Technical Report 88-025, Dipartimento Di Elettronica -

Politecnico Di Milano, 1992.

[CG85] S. Ceri and G. Gottlob. Translating SQL into Relational Algebra: Optimization, Se-

mantics and Equivalence of SQL Queries. IEEE Transaction of Software Engineering,

11(4):324{345, April 1985.

[CP84] S. Ceri and G. Pelagatti. Distributed Databases: Principles and Systems. McGraw-Hill

Book Company, New York, N.Y., 1984.

[CW90] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Constraint Mainte-

nance. In Proceedings of the Sixteenth International Conference on Very Large Databases

(VLDB), pages 566{577, 1990.

[CW91] Stefano Ceri and Jennifer Widom. Deriving Production Rules for Incremental View

Maintenance. In Proceedings of the 17th VLDB Conference, Barcelona, Spain, 1991.

[CW92] Stefano Ceri and Jennifer Widom. Deriving Incremental Production Rules for Deductive

Data. IBM RJ 9071, IBM Almaden, 1992.

[C88] A. K. Chandra. Theory of Database Queries. In Proceedings of ACM SIGMOD 1988

International Conference on Management of Data, pages 1{9. ACM, 1988.

[CLM81] A. K. Chandra, H. R. Lewise, and J. A. Makowsky. Embedded Implicational Dependen-

cies and Their Inference Problem. In Proc. Thirteenth Annual ACM Symposium on the

Theory of Computing,. pp. 342{354.

Bibliography 130

[CM77] A. K. Chandra and P. M. Merlin. Optimal Implementation on Conjunctive Queries in

Relational Databases. In 9th ACM Symposium on Theory of Computing, pages 77{90,

ACM, 1977.

[Cha92] S. Chaudhuri and M. Vardi. On the Equivalence of Datalog Programs. In Proceedings of

the Eleventh Symposium on Principles of Database Systems (PODS), pages 55{66, San

Diego, CA, 1992.

[Cou91] B. Courcelle. Recursive Queries and Context-free Graph Grammars. Theoretical Com-

puter Science, 78:217{244, 1991.

[Dav87] E. Davis. Constraint Propagation with Interval Labels. Arti�cial Intelligence, (32):281{

331, 1987.

[DAJ91] S. Dar, R. Agrawal, and H. V. Jagadish. Optimization of Generalized Transitive Closure.

In Seventh IEEE International Conference on Data Engineering, Kobe, Japan, 1991.

[Doy81] Jon Doyle. A Truth Maintenance System. In Readings In Arti�cial Intelligence, pages

496{516. Morgan Kaufmann, 1981.

[DS92] Guozhu Dong and Jianwen Su. Incremental and Decremental Evaluation of Transitive

Closure by First-Order Queries. Technical Report TRCS 92-18, University of California,

Santa Barbara, 1992.

[DT92] Guozhu Dong and Rodney Topor. Incremental Evaluation of Datalog Queries. In Pro-

ceedings of the International Conference on Database Theory (ICDT), 1992.

[Elk90] C. Elkan. Independence of Logic Database Queries and Updates. In Proceedings of the

Ninth Symposium on Principles of Database Systems (PODS), pages 154{160, Nashville,

TN, 1990. ACM SIGACT-SIGMOD-SIGART.

[F82] R. Fagin. Horn Clauses and Database Dependencies. Journal of the ACM, 4(29):952{985,

1982.

[GB94] Ashish Gupta and J. A. Blakeley. Maintaining Views using Materialized Views . unpub-

lished document, 1994.

[GKM92] Ashish Gupta, Dinesh Katiyar, and Inderpal Singh Mumick. Counting Solutions to the

View Maintenance Problem . In Workshop on Deductive Databases, JICLSP, 1992.

[GM92] Ashish Gupta and Inderpal S. Mumick. Magic-Sets Transformation in Non-Recursive

Systems . In Proceedings of the Eleventh Symposium on Principles of Database Systems

(PODS), 1992.

Bibliography 131

[GMS93] Ashish Gupta, Inderpal Singh Mumick, and V. S. Subrahmanian. Maintaining Views

Incrementally. In Proceedings of ACM SIGMOD 1993 International Conference on Man-

agement of Data, pages 157{167.

[GSUW94] Ashish Gupta, Shuky Sagiv, Je�rey D. Ullman, and Jennifer Widom. Constraint Check-

ing with Partial Information. In Proceedings of the Thirteenth Symposium on Principles

of Database Systems (PODS), 1994, pages 45-55.

[GT93] Ashish Gupta and Sanjai Tiwari. Distributed Constraint Management for Collabora-

tive Engineering Databases. In Proceedings of the Second International Conference on

Information and Knowledge Management (CIKM), Washington DC, November 1993.

[GT94] Ashish Gupta and Sanjai Tiwari. Constraint Management On Distributed Design

Databases. IEEE Data Engineering Bulletin, Special Issue on Database Constraint Man-

agement, 17(2), June 1994.

[GU92] A. Gupta and J. D. Ullman. Generalizing Conjunctive Query Containment for View

Maintenance and Integrity Constraint Checking. In Workshop on Deductive Databases,

JICLSP, 1992.

[GW93] Ashish Gupta and Jennifer Widom. Local Checking of Global Integrity Constraints . In

Proceedings of ACM SIGMOD 1993 International Conference on Management of Data,

pages 49{59.

[HG95] Venky Harinarayan and Ashish Gupta. Optimization Using Tuple Subsumption. To

appear in ICDT 95, January 1995.

[HG94] Venky Harinarayan and Ashish Gupta. Generalized Projections: A Powerful Query-

Optimization Technique. Unpublished Document, October 1994.

[Hal91] K. Hall. A Framework for Change Management in a Design Database. PhD thesis,

Stanford University, Department of Computer Science, (report number STAN-CS-91-

1379), 1991.

[HD92] John V. Harrison and Suzanne Dietrich. Maintenance of Materialized Views in a Deduc-

tive Database: An Update Propagation Approach. In Workshop on Deductive Databases,

JICLSP 1992, pages 56{65, 1992.

[HKG+94] H. C. Howard, A. M. Keller, A Gupta, Karthik Krishnamurthy, K. L. Law, P. M.

Teicholz, Sanjai Tiwari, and J. D. Ullman. Versions, Con�gurations, and Constraints in

CEDB. Working Paper CIFE-31, Center for Integrated Facilities Engineering, Stanford

University, April 1994.

Bibliography 132

[ISO90] ISO ANSI. ISO-ANSI Working Draft: Database Language SQL2 and SQL3; X3H2;

ISO/IEC JTC1/SC21/WG3, 1990.

[JJ91] Manfred Jeusfeld and Matthias Jarke. From Relational to Object-Oriented Integrity

Simpli�cation. In Second International Conference, Deductive and Object-Oriented

Databases, LNCS 566, 1991.

[KKR93] P. Kanellakis, G.M. Kuper, and P.Z. Revesz. Constraint Query Languages. Personal

Communication, 1993.

[KL94] Karthik Krishnamurthy and Kincho Law. A Versioning and Con�guration Scheme for

Collaborative Engineering. In First Congress on Computing in Civil Engineering, Wash-

ington, D.C. ASCE, 1994.

[Klu88] A. Klug. On Conjunctive Queries Containing Inequalities. Journal of the ACM,

1(35):146{160, 1988.

[KSS87] R. Kowalski, F. Sadri, and P. Soper. Integrity Checking in Deductive Databases. In Pro-

ceedings of the Thirteenth International Conference on Very Large Databases (VLDB),

pages 61{69, 1987.

[Kuc91] V. Kuchenho�. On the E�cient Computation of the Di�erence Between Consecutive

Database States. In Second International Conference, Deductive and Object-Oriented

Databases, LNCS 566, pages 478{502, 1991.

[LS93] A.Y. Levy and Y. Sagiv. Queries Independent of Updates. In Proceedings of the Nine-

teenth International Conference on Very Large Data Bases, pages 171{181, Dublin, Ire-

land, August 1993.

[Lloyd84] John W. Lloyd. Foundations of Logic Programming. Springer-Verlag, 1984.

[LST87] J.W. Lloyd, E. A. Sonenberg, and R. W. Topor. Integrity Constraint Checking in Strat-

i�ed Databases. Journal of Logic Programming, 4(4):331{343, 1987.

[LY85] P. A. Larson and H. Z. Yang. Computing Queries from Derived Relations. In Proceedings

of the Eleventh International Conference on Very Large Databases (VLDB), pages 259{

269, 1985.

[MR89] Michael Maher and Raghu Ramakrishnan. D�ej�avu in Fixpoints of Logic Programs. In

NACLP, October 16-20 1989.

[Mey92] Van Der Meyden. The Complexity of Querying Inde�nite Data About Linearly Ordered

Domains. In Proceedings of the Eleventh Symposium on Principles of Database Systems

(PODS), pages 331{345, San Diego, CA, 1992. ACM.

Bibliography 133

[MS92] Inderpal Singh Mumick and Oded Shmueli. Aggregation, Computability, and Complete

Query Languages. In Workshop on Structural Complexity, JICLSP 1992, 1992.

[MPR90] Inderpal Singh Mumick, Hamid Pirahesh, and Raghu Ramakrishnan. The Magic of

Duplicates and Aggregates. In Proceedings of the Sixteenth International Conference on

Very Large Databases (VLDB), pages 264{277, Brisbane, Australia, August 13-16 1990.

[MS93] Inderpal Singh Mumick and Oded Shmueli. Finiteness Properties of Database Queries. In

Proceedings of the Fourth Australian Database Conference (ADC), Brisbane, Australia,

February 1-2 1993.

[Mum91] Inderpal Singh Mumick. Query Optimization in Deductive and Relational Databases.

Ph.D. Thesis, Stanford University, Stanford, CA 94305, USA, 1991.

[Nic82] J. M. Nicolas. Logic for Improving Integrity Checking in Relational Data Bases. Acta

Informatica, 18(3):227{253, 1982.

[NY83] J. M. Nicolas and Yazdanian. An Outline of BDGEN: A Deductive DBMS. In Information

Processing, pages 705{717, 1983.

[OV91] T. M. Oszu and P. Valduriez. Principles of Distributed Database Systems. Prentice Hall,

Englewood Cli�s, New Jersey, 1991.

[Prz90] T. C. Przymusinski. On the Declarative Semantics of Deductive Databases and Logic

Programs. In Foundations of Deductive Databases and Logic Programming. Editor J.

Minker, 1988 Morgan Kaufmann.

[QW91] Xiaolei Qian and Gio Wiederhold. Incremental Recomputation of Active Relational Ex-

pressions. In TKDE, 1991.

[RSUV89] Raghu Ramakrishnan, Yehoshua Sagiv, Je�rey D. Ullman, and Moshe Vardi. Proof-

tree Transformation Theorems and Their Applications. In Proceedings of the Eighth

Symposium on Principles of Database Systems (PODS), Philadelphia, PA, 1989.

[R93] G. Ramkumar. Personal Communication, November, 1993.

[RS93] Torre Risch and Martin Sk�old. Active Rules Based on Object-Oriented Queries. To

Appear, ACM TKDE, 1993.

[Sag88] Y. Sagiv. Optimizing Datalog Programs. In J. Minker, editor, Foundations of Deduc-

tive Databases and Logic Programming, pages 659{698, Washington D.C., 1988. Morgan

Kaufmann.

Bibliography 134

[SY80] Yehoshua Sagiv and Mihalis Yannakakis. Equivalences Among Relational Expressions

with the Union and Di�erence Operators. Journal of the ACM, 4(27):633{655, 1980.

[Sar90] Yatin P. Saraiya. Polynomial-time Program Transformations in Deductive Databases. In

Proceedings of the Ninth Symposium on Principles of Database Systems (PODS), pages

132{144, 1990.

[SPAM91] Ulf Schreier, Hamid Pirahesh, Rakesh Agrawal, and C. Mohan. Alert: An Architecture

for Transforming a Passive DBMS Into an Active DBMS. In 17th VLDB, pages 469{478,

1991.

[Shm87] Oded Shmueli. Decidability and Expressiveness Aspects of Logic Queries. In Proceedings

of the Sixth Symposium on Principles of Database Systems (PODS), pages 237{249, San

Diego, CA, March 1987. ACM SIGACT-SIGMOD-SIGART.

[SI84] Oded Shmueli and Alon Itai. Maintenance of Views. In Proceedings of Annual Meeting,

Sigmod Record, Vol 14, No. 2, 1984, 240-255.

[SSMJ90] D. Stemple, E. Simon, S. Mazumdar, and M. Jarke. Assuring Database Integrity. Journal

of Database Administration, 1(1):12{26, 1990.

[SKN89] Xian-He Sun, Nabil Kamel, and Lionel M. Ni. Solving Implication Problems in Database

Applications. In Proceedings of the ACM SIGMOD International Conference on Man-

agement of Data, pages 185{192, 1989.

[Tiw94] Sanjai Tiwari. Managing Design Constraints on Distributed Engineering Databases. PhD

thesis, Stanford University, Department of Civil Engineering, 1994.

[TH93] Sanjai Tiwari and H. C. Howard. Constraint Management on Distributed AEC

Databases. In Fifth International Conference on Computing in Civil and Building Engi-

neering, pages 1147{1154. ASCE, 1993.

[TB88] F. W. Tompa and Jose A. Blakeley. Maintaining Materialized Views Without Accessing

Base Data. Information Systems, 13(4):393{406, 1988.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volumes 1 and 2.

Computer Science Press, New York, 1989.

[UO92] Toni Urpi and Antoni Olive. A Method for Change Computation in Deductive Databases.

In Proceedings of the Eighteenth International Conference on Very Large Databases

(VLDB), pages 225{237, Vancouver, British Columbia, 1992.

Bibliography 135

[VG86] Allen Van Gelder. Negation as Failure Using Tight Derivations for General Logic Pro-

grams. In Third IEEE Symposium on Logic Programming, 1986. Springer-Verlag.

[VT91] A. V. Gelder and R W. Topor. Safety and Translation of Relational Calculus Queries.

ACM Transactions on Database Systems, 16(3):235{278, June 1991.

[Wal75] D. Waltz. Understanding Line Drawings of Scenes with Shadows. In The Psychology of

Computer Vision, New York, 1975. McGraw-Hill.

[WDSY91] Ouri Wolfson and Hasanat M. Dewan and Salvatore J. Stolfo and Yechiam Yemini.

Incremental Evaluation of Rules and its Relationship to Parallelism. In Proceedings of

ACM SIGMOD 1991 International Conference on Management of Data, Denver, CO.

[ZO93] X. Zhang and M. Z. Ozsogoglu. On E�cient Reasoning with Implication Constraints. In

Conference on Deductive and Object Oriented Databases, pages 236{252, Dec 1993.

