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Abstract

In the main part of this dissertation we present a new path planning method which

computes collision-free paths for robots of virtually any type moving among stationary

obstacles. This method proceeds according to two phases: a preprocessing phase and

a query phase. In the preprocessing phase, a probabilistic network is constructed and

stored as a graph whose nodes correspond to collision-free con�gurations and edges to

feasible paths between these con�gurations. These paths are computed using a simple

and fast local planner. In the query phase, any given start and goal con�gurations of

the robot are connected to two nodes of the network; the network is then searched

for a path joining these two nodes. The method is general and easy to implement. It

can be applied to virtually any type of holonomic robot. It requires selecting certain

parameters (e.g., the duration of the preprocessing phase) whose values depend on

the considered scenes, that is the robots and their workspaces. These values turn

out to be relatively easy to choose. Increased e�ciency of the method can also be

achieved by tailoring some of its components (the local planner, for example) to the

considered robots. In this thesis the method is applied to articulated robots with

many degrees of freedom. Experimental results show that path planning can be done

in a fraction of a second on a contemporary workstation (� 150 MIPS), after relatively

short preprocessing times (a few dozen to a few hundred seconds for the most di�cult

examples we have treated).

In the second part of this dissertation, we present a new method for computing

the obstacle map used in motion planning algorithms. The method, which is prac-

tical only for two-dimensional workspaces, computes a convolution of the workspace
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and the robot with the use of the Fast Fourier Transform (FFT). It is particularly

promising for workspaces with many and/or complicated obstacles, or when the shape

of the robot is not simple. Furthermore, it is an inherently parallel method that can

signi�cantly bene�t from existing experience and hardware on the FFT.

In the third part, we consider a problem from assembly planning. In assembly

planning we are interested in generating feasible sequences of motions that construct

a mechanical product or take it apart to its individual parts. The problem addressed

is the following: given a planar assembly of non-overlapping polygons, decide if there

is a proper subcollection of them that can be moved in the plane as a rigid body, and

separated from the rest of the assembly without colliding with or disturbing the other

parts of the assembly. We prove that this problem is NP-complete when the polygons

of the assembly can translate, and when they can both translate and rotate. Several

other variants of the above partitioning problem are shown to be NP-complete.
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Chapter 1

Introduction

1.1 On Robotics and Planning

Automation plays an ever more important role in our society. From the machine

that dispenses refreshments to a mechanical arm that paints an automobile along the

assembly line, tasks that are considered tedious, dangerous or physically demanding

are delegated to machinery. Thus, on the one hand, humans are free to deal with

work that requires intelligence (or free not to work at all) and, on the other, these

tasks are performed much more e�ciently and reliably by machines than by humans.

The need to have machines take over an ever larger part of our work creates the

need to have intelligent machines. It takes the combination of mechanisms, sensors,

dynamics, control and reasoning about the physical world to arrive to systems that

can synthesize some aspects of human function.

What we usually call a robot today, consists of two parts: a) a mechanical device

which, properly controlled, can perform a useful task (e.g. open the door of the can

dispenser and let one can out), and b) a computer which controls the mechanical part

and interacts with the outside world (e.g. senses that the amount of coins dropped

in the can dispenser is su�cient and orders the door to open).

A large class of robots have the ability to move in their surrounding space. The

1



Chapter 1. Introduction 2

robot can move as a whole (e.g. the robots that carry meals to the patients of Stanford

Hospital), or may rest on a �xed base and move parts of it (e.g. a painter arm along

the assembly line). In either case it is necessary for the robot to be able to avoid

hitting the obstacles that surround it while it is performing some useful task.

A principal problem in robotics, which will concern us in the main part of this

dissertation, is that of motion planning. We want to devise algorithms that will

enable a robot to move from one position to another without any collisions. Indeed,

this capability is most important in applications. The robot of Stanford Hospital

may have a map of the building and know at any given moment its exact position (or

con�guration), but when asked to go to a certain point in the building it will need to

�nd a collision-free path from its current position to its target.

Since the robot interacts with its environment it needs to have some knowledge

about the environment. This can either be given to the robot o�-line as a map or

can be obtained by the robot itself using certain sensors like cameras, sonars and

lasers. For the purposes of this thesis we will assume that the knowledge about

the surrounding space, the workspace, is complete and will not discuss how it was

acquired.

A fundamental task that is performed invariably by all motion planners is the

task of answering questions of the form \does this position of the robot give rise to a

collision?" This seems conceptually a very easy problem, but its importance is such

that any gain in the speed of processing such queries is re
ected almost intact in the

speed of the motion planner. Indeed, most planners ask this question a great many

times. And many planners treat collision checking as a black box subroutine. This

separation of the planning task from the collision checking task creates the need for

an e�cient, general purpose collision checker, that can be used by any planner.
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Finally, we deal with a problem from assembly planning, an important generaliza-

tion of the motion planning problem. In assembly planning we are interested to plan

the simultaneous motion of a collection of objects, from an initial con�guration in

space to a �nal one. (Incidentally, assembly planning can be put in the framework of

robot motion planning if we consider the system of objects as our robot, whose set of

degrees of freedom consists of the degrees of freedom of the individual objects.) The

importance of being able to perform this task is enormous for automatic assembly,

maintenance and repair of mechanical parts, as well as for the fast manufacturing

evaluation of assembly designs. The problem has been shown to be computationally

hard, as have many special cases of it, which one might initially expect to be easier

to handle. We discuss such a special case here, that of assembly partitioning into two

subassemblies.

1.2 Contributions of this Dissertation

There are three distinct parts in this dissertation.

Motion Planning

In the main part of this dissertation we present a new path planning method which

computes collision-free paths for robots of virtually any type moving among stationary

obstacles (static workspaces). This method proceeds according to two phases: a

preprocessing phase and a query phase. In the preprocessing phase, a probabilistic

network is constructed and stored as a graph whose nodes correspond to collision-free

con�gurations and edges to feasible paths between these con�gurations. These paths

are computed using a simple and fast local planner. In the query phase, any given

start and goal con�gurations of the robot are connected to two nodes of the network;

the network is then searched for a path joining these two nodes. The method is

general and easy to implement. It can be applied to virtually any type of holonomic

robot. It requires selecting certain parameters (e.g., the duration of the preprocessing

phase) whose values depend on the considered scenes, that is the robots and their
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workspaces. But these values turn out to be relatively easy to choose.

Increased e�ciency of the method can also be achieved by tailoring some of its com-

ponents (e.g., the local planner) to the considered robots. In this thesis the method

is applied to articulated robots with many degrees of freedom. Experimental results

show that path planning can be done in a fraction of a second on a contemporary

workstation (� 150 MIPS), after relatively short preprocessing times. These times

range from a few dozen seconds to a few hundred seconds for the most di�cult ex-

amples we have treated.

We also attempt a theoretical analysis of an abstracted model of our algorithm. Our

results give us a good idea of how the performance of the planning method depends on

certain characteristics of the space in which the probabilistic network is constructed.

Unfortunately these characteristics are hard to measure or estimate a priori.

Collision Checking

In the second part of this dissertation, we present a new method for computing

the obstacle map used in motion planning algorithms including the one described

above. The method, which is practical only for calculating low-dimensional maps,

computes a convolution of the workspace and the robot with the use of the Fast

Fourier Transform (FFT) algorithm. It is particularly promising for workspaces with

many and/or complicated obstacles, or when the shape of the robot is not simple. It

is an inherently parallel method that can signi�cantly bene�t from existing experience

and hardware on the FFT.

Assembly Partitioning

In the last part of this dissertation, we consider a problem from assembly planning.

In assembly planning we are interested in generating feasible sequences of motions

that construct a mechanical product or take it apart to its individual parts. The

problem addressed is the following: given a planar assembly of polygons, decide if

there is a subassembly that can be moved in the plane as a rigid body, and separated

from the rest of the assembly without disturbing the other parts of the assembly.



Chapter 1. Introduction 5

We prove that this problem is NP-complete when the polygons of the assembly can

translate, and when they can both translate and rotate. The same complexity result

is also shown for a planar assembly consisting of parts whose vertices are constrained

to lie on a grid, whose angles are right, and which are allowed to translate in the

horizontal and vertical directions only by grid increments. We �nally discuss some

variants of the problem that are also NP-complete. These include: assemblies with

parts of constant complexity, assemblies that can be completely separated to their

parts by repeated partitioning and assemblies of polyhedra.

The work described in the �rst part of this dissertation has appeared in

[Kavraki and Latombe, 93b, Kavraki and Latombe, 94a, Kavraki and Latombe, 94b]

and in collaboration with Petr �Svestka and Mark Overmars in [Kavraki et al, 94].

The work in the second part of this dissertation is also described in [Kavraki, 93].

The work in the third part has appeared in [Kavraki and Latombe, 93a] and in col-

laboration with Randy Wilson in [Kavraki et al, 93, Wilson et al 93].

1.3 Outline

The organization of this dissertation is as follows:

� Chapters 2, 3, and 4 are devoted to the presentation and evaluation of the path

planning algorithm.

In Chapter 2 we de�ne the motion planning problem using the con�guration

space formalization. We also discuss the complexity of the problem as well as

previously developed motion planners that work well in practice. The rest of the

chapter describes our path planning algorithm. The presentation is general and

appropriate for virtually any holonomic robot. The parameters of the method

are clearly identi�ed and summarized at the end of the chapter.
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In Chapter 3 our method is applied to articulated robots moving in two and

three dimensional workspaces. The robots used have up to 16 degrees of free-

dom. We describe speci�c techniques which can be substituted for more general

ones in the method to handle articulated robots more e�ciently (especially when

these have many degrees of freedom). Extensive experiments help evaluate the

performance of the method and explain how the choice of the parameters should

be done.

In Chapter 4 a theoretical analysis of a simpli�ed version of our algorithm is

carried out. The analysis sheds some light on how the performance of the

method depends on certain features of the space in which the robot moves.

� Chapter 5 describes an algorithm for computing the obstacle map used in many

planning algorithms. Some background is given on di�erent algorithms that are

available for computing the above-mentioned map. Our approach uses the FFT

algorithm to compute the convolution of the workspace and the robot. We

brie
y compare the FFT-based approach with other existing techniques and

note its advantages and disadvantages. In the path planning method described

in this dissertation, obstacle maps arising from two-dimensional workspaces

were calculated with the FFT-based algorithm.

� In Chapter 6 we present some lower bounds on the complexity of the planar

assembly partitioning problem. This problem is not directly related to motion

planning. It is an important problem from assembly sequencing and this line

of research aims at identifying restrictions that should be placed on assemblies

so that they can be handled e�ciently by automated robotic systems. We

de�ne the problem, discuss some previous work and proceed to reduce a well

known NP-complete problem (3-Satis�ability) to it. Several variants of planar

partitioning are also shown NP-complete.

� We conclude in Chapter 7 by stressing the contributions and the limitations of

the work described in this dissertation.



Chapter 2

Random Networks for Path

Planning

2.1 Collision-Free Path Planning

In its simplest form path planning can be de�ned as follows: Let A be a robot which

is either a single rigid body or a collection of rigid subparts (some of which may be

attached to each other at certain joints while others may move independently) and

suppose that A can move in a two or three dimensional workspaceW. The workspace

is populated by obstacles which are known to the robot. Given an initial position I

and a �nal position F of the robot, path planning consists of determining whether

there exists a continuous collision-free motion that takes A from I to F , and if so, to

�nd such a motion. Figure 2.1(b) shows a path for a planar robot. The initial and

�nal positions of the robot are drawn in Figure 2.1(a).

An alternative formulation of the problem is obtained through the abstraction

of the con�guration space (C-space) of the robot [Lozano-P�erez, 81]. The C-space

\encodes" the set of all possible placements (con�gurations) of the robot. Each point

in C-space is a d-tuple with values for the parameters that correspond to the d degrees

of freedom (dof) of the robot. Speci�cation of the values of the dof of A completely

7
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(a) (b)

Figure 2.1: In (b) we see a collision-free path that joins the two con�gurations of the
planar robot shown in (a)

determines the position of A in its workspace.

For example, assume that A is a rigid body (of any shape) that is free to translate

and rotate in the plane. Fix two points A and B on the robot as shown in Figure

2.2(a). In order to describe an arbitrary con�guration of the robot we need to specify

the coordinates (with respect to a �xed coordinate system) of the point A, which we

call x; y and � which is the angle that vector AB forms with the x-axis. So in this case

the C-space is the set of all possible triples (x; y; �), with x; y being real numbers and

� 2 [0; 2�). Suppose now that A can move freely in space. To specify an arbitrary

position of the robot, we have to give the coordinates (x; y; z) of the point A, describe

the orientation of the vector AB and any possible rotation about the AB axis. The

orientation of a vector in space requires two angles: the angle � that the projection

of AB onto the xy-plane forms with the x-axis, as well as the angle � formed by the

vector AB and its above-mentioned projection. Additionally, each rotation about the

AB axis requires a single angle. Thus the dimension of the C-space is 6. As a �nal

example of C-space, consider a planar articulated robot consisting of 7 links serially

connected by revolute joints (Figure 2.2(b)). Any con�guration of that robot can be

speci�ed if we give the values of the angle that each link forms with the previous one,
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Figure 2.2: (a) A rigid body moving freely in the plane and (b) a planar articulated
robot with �xed length links

except from the �rst link for which we give the angle it forms with the global x-axis.

In this case the C-space consists of all 7-tuples (�1; : : : ; �7) with �1; : : : ; �7 2 [0; 2�)

and is thus 7-dimensional.

For any speci�c robot, a large part of the C-space is not feasible. For example,

the planar robot of Figure 2.2(a) may move in a cluttered workspace and a large

part of the C-space will become infeasible because of collisions of the robot with

the surrounding obstacles. The robot itself may impose constraints on the feasible

con�gurations. The articulated robot of Figure 2.2(b) will collide with itself for most

assignments of values of the 7-tuple (�1; : : : ; �7). There may also be mechanical stops

in the joints of the robot and these further restrict the free C-space.

The points of the C-space can be classi�ed into three categories: those which give

rise to autocollision or are due to the mechanical design of the device (e.g., mechanical

stops), those at which the robot collides with the surrounding obstacles, and the rest

of the points which we call free or feasible. For all practical purposes the kind of

collision (autocollision, mechanical design restrictions, or collision with the surround-

ing obstacles) is immaterial when planning the motion of a robot. So we group the

points of the �rst two categories in one set (the forbidden set) which we usually call
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the C-obstacle. A detailed discussion on C-space and its formal representations can

be found in [Latombe, 91a].

Hereafter, we denote the C-space by C. The C-obstacle, O can be regarded as an

arbitrary subset of C of which we only demand that there exists an e�ective procedure

that answers the question

\Is the point P 2 O?"

The free part of the C-space F is the complement of the C-obstacle, that is F = CnO.

In the above setting the robot A can now be identi�ed with a point moving freely

in F , the (high-dimensional) free part of the C-space. The path-planning task now

becomes the task of �nding a continuous path in F which joins two given points I

(the initial con�guration) and F (the �nal con�guration) without intersecting the

C-obstacle (the points I and F are of course assumed to be in F), or answer that

such path does not exist.

In the rest of this chapter we will discuss the complexity of the path-planning

problem and present existing algorithms for solving it. Then we will describe a

method for planning paths for robots with many degrees of freedom. The di�culty

of path planning rises sharply as the number of dof goes up (see Section 2.3). It is

important to have algorithms that can be used e�ectively in the increasing number

of practical problems which involve many-dof robots. The work presented in this

dissertation is directed towards this end.

2.2 Other Aspects of Path Planning

In practice we are not only interested in obtaining a path of the robot from the initial

to the �nal position [Latombe, 91a]. Because of limitations on the ability to control

a mechanical device, the path that we give as a solution to a path-planning problem

should obey several restrictions. For example, it should be smooth since following an

irregular path would mean the exertion of strong forces on the mechanical parts of

the robot. Also, the length of the produced path may be an important consideration.
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It will be apparent from the next section of this chapter that the mere �nding of

any path joining I and F is already very di�cult when the dimension of the C-space

is high (6 or more is considered high), or when the workspace (and consequently

the C-space) is very cluttered with obstacles. Let us mention here that typically

the C-obstacle takes up almost all of the C-space in high-dimensional spaces. In

the examples we consider later in this dissertation the free part of the C-space is

approximately 0.1% of the C-space.

We adopt the point of view in this thesis, that for many-dof robots most of the

e�ort should be spent on constructing any path from I to F . This path will then

be subjected to a (heuristic) \smoothing" operation that will make it conform more

to the requirements mentioned above. Looking ahead, let us also mention that the

path-planning method that we shall propose inherently produces paths that are quite

satisfactory in terms of smoothness.

2.3 The Complexity of Path Planning

In this section we present some of the most important results that concern the com-

plexity of the path-planning problem. The upper and lower bounds we give are a

function of the size of the problem. What exactly we consider as the size of the prob-

lem is usually irrelevant if we only care for membership of the problem in classes such

as P, NP, NP-hard, etc. In these cases the size should be thought of as the size of

the most economical description of a problem instance, or any polynomial function of

that. For example, if we are planning the motion of a polygonal robot in a polygonal

workspace, then it is reasonable to take as the size of the problem the total number

of vertices of the robot and all the obstacles. In cases where the bounds (lower or

upper) are polynomial, the size of the problem is usually considered to be the num-

ber of vertices of the polygons involved, the degree of the polynomials involved in

describing subsets of the space, etc, and is explicitly de�ned in each case. For the

complexity classes mentioned see for example [Garey and Johnson, 79].
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2.3.1 Lower Bounds

We highlight some of the most important results which describe lower bounds on the

complexity of several problems. Most of them are hardness results proved via some

e�cient reduction from known hard problems.

Polyhedral World

Planning the motion of a robot which consists of a set of polyhedra in the three-

dimensional space connected together at some joint vertices in a workspace of poly-

hedral obstacles is PSPACE-hard [Reif, 79].

Multiple Rectangular Robots in a 2D Box

We have multiple independent robots each of which is a rectangle aligned with the

axes of the plane and can only move along the x or y direction and only within

an aligned rectangular workspace which is otherwise empty of obstacles. It is then

PSPACE-complete to decide whether two di�erent con�gurations can be joined by a

collision-free path [Hopcroft et al, 84, Hopcroft and Wilfong, 86].

Planar Arm Among Polygonal Obstacles

The robot is a planar arm with arbitrarily many non-extensible links serially con-

nected by revolute joints. The obstacles are arbitrary polygons in the plane. Path

planning is PSPACE-hard [Joseph and Plantiga, 85].

Moving Obstacles and Translating Robot in 3-Space

The robot is an arbitrary polyhedron free to translate in 3-space and the obstacles

are arbitrary polyhedra which can both translate and rotate along known trajecto-

ries. If the speed of the robot is bounded by a constant then the problem of avoid-

ing the obstacles while the robot is moving to its target position is PSPACE-hard

[Reif and Sharir, 85].
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Line Segment Moving Freely Among Polygons

The robot is a freely moving line segment (zero thickness) and is surrounded by

polygonal obstacles with total number of vertices equal to n. Then it is known

[O'Rourke, 85] that there exists a workspace and two placements of the robot which

are reachable from each other, but are such that any motion from one to the other

has \complexity" at least 
(n2). That is the robot has to alternate moving forwards

and backwards at least as many times during its motion. As a result, any algorithm

that �nds such a motion needs 
(n2) time.

Shortest Paths in Space Among Polyhedra

It is an NP-hard problem [Canny and Reif, 87] to �nd the shortest path between two

given points in space that avoids a collection of polyhedral obstacles. In the plane

this problem admits a polynomial time solution (see below).

2.3.2 Upper Bounds

We present the complexity of some known algorithms for solving various kinds of

path-planning problems.

Point in High Dimension

Planning the motion of a point in dimension d when the obstacles are described

by a set of n polynomial constraints of maximum degree m can be done in

time doubly exponential in the dimension d and polynomial in both n and m

[Schwartz and Sharir, 83b]. The method is based on the Collins decomposition al-

gorithm. Canny [Canny, 88] reduced this upper bound to simply exponential in d.

Both methods reduce path planning to the satis�ability of a sentence of the �rst order

theory of the real numbers.

Line Segment Moving Freely Among Polygons

There is an algorithm [Leven and Sharir, 87a] for the computation of the path of a
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line segment among polygonal obstacles of total number of vertices equal to n which

takes time O(n2 log n).

Disk Moving Among Polygons

Planning for a disk that moves freely among polygons can be done in time O(n log n)

[ �O'D�unlaing and Yap, 82] where n is the total number of vertices of the obstacles.

Convex Polygon Translating Among Polygons

When the robot is a convex polygon of a su�ciently simple shape translating among

polygons with total number of vertices equal to n then planning can be done in time

O(n log n) [Leven and Sharir, 87b].

Polygon Moving Freely Among Polygons

If the robot is a polygon (in the plane) with a constant number of sides which is

free to translate and rotate among polygonal obstacles with total number of sides

equal to n, then path planning can be done in O(n2+�) time, for any �xed � > 0

[Halperin and Sharir, 93].

Shortest Paths in the Plane Among Polygons

If the obstacles are polygons in the plane with total number of vertices equal to n,

then the shortest free path between two placements of a point robot can be found

[Hershberger and Suri, 93] in time O(n log n).

2.4 Practical Approaches to Path Planning for

Many Degrees of Freedom

The algorithms of the previous section assume that the environment is available in a

clean analytic representation. They return a path, or declare that there is no feasible
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path, in time that is known a priori.

The complexity of these path-planning methods in high-dimensional con�guration

spaces has led researchers to seek methods that embed weaker notions of completeness

(e.g., probabilistic completeness) and/or can be partially adapted to speci�c problem

domains in order to boost performance in those domains. The main characteristic

of such methods is that they are quite successful for non-pathological problems, and

can be expected to work well in \practice", but they may take inappropriately long

time in some cases. We refer to them as practical approaches to path planning.

Considerable attention is directed towards the creation of practical planners for

many-dof robots. Indeed, while such robots are becoming increasingly useful in in-

dustrial applications, there are very few planners that can e�ciently plan their mo-

tions. New emerging applications also motivate that trend, e.g., computer graphics

animation, where motion planning can drastically reduce the amount of data input

by human animators, and molecular biology, where motion planning can be used to

compute motions of molecules (modeled as spatial linkages with many dof) docking

against other molecules.

In recent years, some of the most impressive results in planning for robots with

many degrees of freedom were obtained using potential-�eld planning methods. Such

methods are attractive, since the main heuristic function they use to guide the search

for a path, the potential �eld, can easily be adapted to the speci�c problem to be

solved, in particular the workspace and the �nal con�guration. Two main lines of

research are given below:

- A method which uses the idea of \dynamic" potential �elds is proposed in

[Faverjon and Tournassoud, 87] for planning the paths of robots with many dof. The

potential function depends not only on the distance between the robot and the ob-

stacles, but also on the rate of variation of this distance along the current direction

of motion of the robot. The method can be very fast on rather simple examples,

but it may get stuck at local minima of the potential function on more di�cult

ones. It was used to compute paths of an 8-dof manipulator among vertical pipes
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in a nuclear plant, with interactive human assistance to escape local minima. In

[Faverjon and Tournassoud, 90] the same authors present a learning scheme to avoid

falling into local minima. During the learning phase, probabilities of moving between

neighboring con�gurations without falling into a local minimum are accumulated in

an rn array, where n is the number of dof and r is the number of intervals discretizing

the range of each dof. During the planning phase, these probabilities are used as

another heuristic function (in addition to the potential function) to guide the robot

away from the local minima. This learning scheme was applied with some success to

robots with up to 6 dof. However, the size of the rn array becomes impractical when

n grows larger.

- Techniques for both computing potential functions and escaping local min-

ima in high-dimensional C-spaces are presented in [Barraquand and Latombe, 91,

Barraquand et al, 92]. The Randomized Path Planner (RPP), which is described

in [Barraquand and Latombe, 91], escapes local minima by executing random walks.

It has been successfully experimented on di�cult problems involving robots with

3 to 31 dof. It has also been used in practice with good results to plan motions

for performing riveting operations on plane fuselages [Graux et al, 92]. Recently,

RPP has been embedded in a larger \manipulation planner" to automatically ani-

mate graphic scenes involving human �gures modeled with 62 dof [Koga et al, 94].

However, several examples have also been identi�ed where RPP behaves poorly

[Chalou and Gini, 93, Zhu and Gupta, 93]. In these examples, RPP falls into local

minima whose basins of attraction are mostly bounded by obstacles, with only narrow

passages to escape. The probability that any random walk �nds its way through such

a passage is almost zero. In fact, once one knows how RPP computes the potential

�eld, it is not too di�cult to create such examples. One way to prevent this from

happening is to let RPP randomly use several potential functions, but this solution

is rather time consuming.

Other interesting lines of work include the following: A promising method based

on variational dynamic programming is presented in [Barraquand and Ferbach, 94]

and that method can tackle problems of similar complexity to the problems solved
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by RPP. In [Gupta and Gou, 92, Gupta and Zhu, 94] a sequential framework with

backtracking is proposed for serial manipulators and in [Chen and Hwang, 92] a mo-

tion planner with performance proportional to task di�culty is developed for many-

dof robots operating in cluttered environments. The planner in [Kondo, 91] �nds

paths for 6-dof manipulators using heuristic search techniques that limit the part

of the C-space that is explored. Parallel processing techniques are investigated in

[Chalou and Gini, 93, Lozano-P�erez and O'Donnell, 91] and in [Ahuactzin et al, 92]

where a powerful planner is described. This planner utilizes genetic algorithms to

help search for a path in high-dimensional C-spaces.

The planning method that we shall present in the rest of this chapter di�ers signi�-

cantly from the methods referenced above, which are for the most part based on poten-

tial �eld or cell decomposition approaches. Our method applies a roadmap approach

[Latombe, 91a], that is it constructs a network of paths in the free C-space. Previous

roadmap methods include the visibility graph [Lozano-P�erez and Wesley, 79], Voronoi

diagram [�O'D�unlaing and Yap, 82], and silhouette [Canny, 88] methods. All these

three methods compute in a single shot a roadmap that completely represents the

connectivity of the free C-space. An exception is the planner in [Canny and Lin, 90]

which gradually builds a skeleton of the free C-space by using a local opportunistic

strategy. However, all the visibility graph and Voronoi diagram methods are limited

to low-dimensional C-spaces. In theory the silhouette method applies to C-spaces of

any dimension, but its complexity makes it impractical.

In contrast, our method builds a roadmap incrementally using probabilistic tech-

niques. These techniques apply to C-spaces of any dimension and produce a roadmap,

or a network of connections in the free C-space, in any amount of time allocated to

them. Of course, if this time is too short, the computed network may not represent

the connectivity of free C-space well. Actually, in our planner, the network is never

guaranteed to fully represent free C-space connectivity, though if we let our tech-

niques run long enough it eventually will. However, while building the network, our

method heuristically identi�es \di�cult" regions in free C-space and generates addi-

tional con�gurations in those regions to increase network connectivity. Therefore, the
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�nal distribution of con�gurations in the network is not uniform across free C-space;

it is denser in regions considered di�cult by certain heuristic criteria. This feature

helps to construct networks of reasonable size that represent the connectivity of the

free C-space well. In particular, it allows our implemented planner to e�ciently solve

tricky problems requiring choices among several narrow passages, i.e., the kind of

problems that potential �eld techniques tackle poorly.

A very similar method to what we shall present has been discussed in

[Overmars, 92, Overmars and �Svestka, 94]. A single-shot random planner was de-

scribed in [Overmars, 92] and was subsequently expanded into a learning approach

in [Overmars and �Svestka, 94]. In these papers the emphasis was on robots with a

rather low number of dof. Similar techniques have been applied both to car-like robots

that can move forward and backward (symmetrical nonholonomic robots) and car-like

robots that can only move forward [�Svestka, 93, �Svestka and Overmars, 94]. Indepen-

dently, a preprocessing scheme similar to the learning phase in the above papers was

introduced in [Kavraki and Latombe, 93b] for planning the paths of many-dof robots.

This scheme also builds a probabilistic network in free C-space, but focuses on the case

of many-dof robots. The need to expand the network in \di�cult" regions of C-space

was noted there and addressed with simple techniques. Better expansion techniques

were introduced in [Kavraki and Latombe, 94a, Kavraki and Latombe, 94b]. A com-

bination of the ideas developed independently by the two above teams has been done

in [Kavraki et al, 94].

Finally, it should be noted that another planner which bares similarities with our

planning approach is proposed in [Horsch et al, 94]. Also, planners that have used

in some way the idea of intermediate random subgoals can be found in [Glavina, 89,

Eldracher, 94].

2.5 Overview of the Method

In the rest of this chapter, we present a new planning method which computes

collision-free paths for robots moving among stationary obstacles (static workspaces).
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The method can be applied to a wide range of robots, such as mobile robots, car-

like vehicles and articulated linkages moving in the plane or in space. However, it

is particularly interesting for robots with many dof, say �ve or more, where it ex-

hibits a very good performance. Indeed, an increasing number of practical problems

involve many-dof robots, while very few e�ective motion-planning methods are avail-

able to solve them (see Section 2.4). The method proceeds according to two phases:

a preprocessing phase and a query phase.

In the preprocessing phase a probabilistic network or roadmap is constructed by

repeatedly generating random free con�gurations of the robot and trying to connect

these con�gurations using some simple, but very fast motion planner. We call this

planner the local planner. The random network thus formed in the free C-space of the

robot is stored as an undirected graph G. The con�gurations are the nodes of G and

the paths computed by the local planner are the edges of G. The preprocessing phase

is concluded by steps that aim to improve the network's connectivity. Typically, the

networks produced have a large number of nodes (order of thousands). They may

have one or more connected components, depending on the robot's free C-space and

the time spent on preprocessing.

Following the preprocessing phase, multiple queries can be answered. A query

asks for a path between two given free con�gurations of the robot. To process a

query the method �rst attempts to connect the given start and goal con�gurations to

two nodes of the random network, with paths that are feasible for the robot. Next,

a graph search is done to �nd a sequence of edges connecting these nodes in the

network. Concatenation of the successive path segments transforms this sequence,

if one has been found, into a feasible path for the robot. Any standard smoothing

algorithm can be used to improve the path.

The input to our method is a scene, i.e., a workspace and a robot. For example,

the input can be a set of polyhedra in space and an articulated robot which consists

of 7 serially connected links and has a �xed base. To run our planning method

the values of several parameters must �rst be selected, e.g., the time to be spent

in the preprocessing phase. While these values depend on the considered scene, it
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has been our experience that good results are obtained with values spanning rather

large intervals. Thus, it is not di�cult to choose one set of satisfactory values for a

given scene or family of scenes, through some preliminary experiments. Moreover,

increased e�ciency can be achieved by tailoring several components of our planning

method, in particular the local planner, to the considered robots. Overall, we found

the method quite easy to implement and run. Many details can be engineered in one

way or another to �t better the characteristics of an application domain.

In Chapter 3 we shall demonstrate the e�ciency of the proposed method on a va-

riety of di�cult examples involving many-dof articulated linkages moving in the plane

or in space. Our experimental results show that the preprocessing times required for

the construction of adequate networks, i.e., networks that capture well the connec-

tivity of the free C-space, are low. On a DEC Alpha workstation, they range from a

few dozen of seconds for relatively easy problems to a few dozen of minutes for the

most di�cult problems we have treated. Once a good network has been constructed,

most path planning queries are processed in a fraction of a second.

The very small query times make our planning method particularly interesting

for many-dof robots which perform several point-to-point motions in known static

environments. Examples of tasks meeting these conditions include maintenance of

cooling pipes in a nuclear plant, point-to-point welding in car assembly, and cleaning

of airplane fuselages. In such tasks, many dof are needed to achieve successive desired

con�gurations of the end-e�ector while avoiding collisions of the rest of the arm with

the complicated workspace. Explicit programming of such robots is tedious and

time consuming. An e�cient path planner can considerably reduce the programming

burden.

2.6 Detailed Description of the Method

We now describe our path-planning method in general terms for a holonomic robot

without focusing on any speci�c type of robot. During the preprocessing phase a

data structure called the roadmap, or the network, is constructed in a probabilistic
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way for a given scene, i.e., a given robot and a given workspace. In the query phase,

the network is used to solve individual path-planning problems in this scene. Each

problem is speci�ed by a start con�guration and a goal con�guration of the robot.

The network is stored as an undirected graph G = (V;E). The nodes in V are

properly generated free con�gurations of the robot and the edges in E correspond

to connections between con�gurations: an edge (a; b) corresponds to a feasible path

connecting con�gurations a and b. The vast majority of these paths are computed

by an extremely fast, though not very powerful planner, called the local planner.

The paths are not explicitly stored in the network, since recomputing them is very

inexpensive. This saves considerable space, but requires the local planner to suc-

ceed and fail deterministically. There are few paths in the above network which are

not computed by the local planner, but by a more powerful (but slow) path planner

which we call the auxiliary planner. We use the Randomized Path Planner (RPP)

[Barraquand and Latombe, 91] as the auxiliary planner. However, any other e�ective

planner can be substituted here. Paths produced by the auxiliary planner are explic-

itly stored in the corresponding network edge, since we want to avoid spending time

to recompute them. We will explain later in this chapter when the auxiliary planner is

used. Throughout our description of the algorithm, we assume that the preprocessing

phase is entirely performed before any path-planning query is processed. However,

the preprocessing and query phases can also be interwoven and this is discussed later

in the chapter.

In the query phase, given a start con�guration I and a goal con�guration F , the

method �rst tries to connect I and F to some two nodes ~I and ~F in V . The connection

is done using the local planner, or some simple randomized variant of that planner.

If the connection is achieved, our method searches G for a sequence of edges in E

connecting ~I to ~F . Finally, it transforms this sequence into a feasible path for the

robot by recomputing the corresponding local paths and concatenating them. The

way the search of G is done can a�ect some properties of the path, i.e., its length.

Failure is declared at this stage if we either cannot connect I or F to V , or we cannot

connect ~I and ~F along the edges of the network (disconnected graph).
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Figure 2.3: The network construction step

2.7 The Preprocessing Phase

The preprocessing phase of the method consists of three successive steps which are

outlined below:

1. Network construction step

During this step random con�gurations of the robot are generated over the free

C-space F of the robot and are interconnected by calling the local planner. The

objective of this step is to obtain a reasonably connected network in F , with

enough vertices to provide a rather uniform covering of the free C-space (see

Figure 2.3).

2. Network enhancement step

This step is aimed at further improving the connectivity of the network pro-

duced with the network construction step. It selects nodes of G which, according

to some heuristic evaluator, lie in di�cult regions of C-space and expands the
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Figure 2.4: The network enhancement step

network around these nodes by generating additional nodes in their neighbor-

hoods (see Figure 2.4). Hence, the covering of free C-space by the �nal network

depends on the local intricacy of that space. The local planner is still used in

this step.

3. Further component reduction step

In the case where more than one components (of signi�cant size) are present in

the network produced at the end of the enhancement step, the auxiliary planner

(RPP in our case) is used to connect nodes belonging to di�erent components.

The auxiliary planner is more powerful than the local planner. If this planner

fails to connect disconnected components in our network, it is assumed that any

remaining components correspond to disconnected regions of the free C-space,

or to regions whose interconnection is a task above the capabilities of current

planners.
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The use of the last step of preprocessing is a worst-case scenario and is required

only for very di�cult examples involving robots with many dof. For most cases the

application of the �rst and second steps su�ces.

Preprocessing aims at generating a network that captures as well as possible the

connectivity of the free C-space. Evaluation of the quality of the produced network

is done in the query phase. Multiple failures or long planning times are an indication

that more time should be spent in the preprocessing phase. Let us note here, that the

preprocessing and the query phase can be interwoven to adapt the size of the network.

For instance, a small network can be �rst constructed. Then it can be augmented

using data generated by queries, or by reapplication of the preprocessing steps. The

incremental nature of the method is one of its big advantages.

We proceed to describe in detail the three steps of the preprocessing phase.

2.7.1 Network Construction Step

This is the simplest but most time consuming part of the preprocessing. Initially

the undirected graph G = (V;E) is empty, i.e., V = E = ;. Then, repeatedly, a

random free con�guration is generated and added to V . For every such new node x,

we select a number of nodes from the current V and we try to connect x to each of

them using the local planner. Whenever this planner succeeds to compute a feasible

path between x and a selected node n, the edge (x; n) is added to E. The actual local

path is not memorized.

The selection of the nodes to which we try to connect x is done as follows: First,

a set Nx of candidate neighbors is chosen from V . This set is made of nodes within

a certain distance of x, for some metric D. Then we pick nodes from Nx in order of

increasing distance from x and we try to connect x to each of the selected nodes.

In our description of the algorithm we consider that the local planner is a sym-

metrical function � : F �F ! f0; 1g, which returns whether a feasible path can be

obtained between the two free con�gurations given as its arguments. The distance

function D is a function C � C ! R+ [ f0g, which de�nes a pseudo-metric in C. We
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1 V = ;
2 E = ;
3 loop N times
4 Select a random free con�guration x and put V = V [ fxg
5 Select the neighbors Nx of x from V

6 For each n 2 Nx in order of increasing D(x; n) :
7 If �(x; n) then E = E [ f(x; n)g
8 endloop

Figure 2.5: Algorithm for the network construction step

only require that D be symmetrical and non-degenerate.

The algorithm for the network construction step is shown in Figure 2.5. To clarify

further this description we need to explain how random nodes are generated (line

4), what it means for a node to be a neighbor of another (line 5), how the distance

function is speci�ed (line 6) and what are the requirements for the local planner.

Generation of Random Nodes

During the network construction step, a total of N nodes are generated in F , the

free part of the C-space. We try to produce a rather uniform distribution of these

N nodes in F . One way to approximate this is by sampling the value of each dof of

the robot uniformly and independently from the interval of the allowed values of the

corresponding dof. The resulting con�guration must be checked for collision with the

obstacles. For most robots that are not simple rigid bodies (e.g., articulated robots)

we should also check for autocollision, that is make sure that distinct bodies of the

robot do not intersect, and for other limitations imposed by the design of these robots

(e.g., mechanical stops). A con�guration is declared valid only if it passes these tests.

Collision checking can be done using a variety of existing general techniques

[Giezeman, 93, Gilbert et al, 88, Newman and Branicky, 91, Quinlan, 94]. In two-

dimensional workspaces we can use a faster but more speci�c collision checker

[Kavraki, 93] (see Chapter 5). The use of iterative collision checkers, like the one
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in [Quinlan, 94], may be especially bene�cial in three-dimensional workspaces. This

checker automatically generates successive approximations of the objects and the

robot. It can determine e�ciently if collisions occur at a coarse but reasonable res-

olution. Con�gurations that are collision-free with that resolution are the only ones

checked further for collisions.

It must be emphasized that for complex robots, only a very small percentage of the

generated con�gurations are collision-free. For example, if the robot is an articulated

serial linkage with 7 dof moving in the plane, it is typical that less than 0:1% percent

of the generated con�gurations are valid con�gurations. However, the potentially

large number of con�gurations that have to be generated is not the most expensive

step of the algorithm. It is the interconnection of these con�gurations that takes most

of the preprocessing time.

The Local Path Planner

Our choice for the planner used to achieve connections between con�gurations of the

robot is a simple and fast deterministic planner. We emphasize here simplicity versus

e�ectiveness. It is to be expected that the local planner will fail most of the time to

connect two con�gurations which can nevertheless be connected to each other. What

is expected from the local planner though is that it will succeed to connect most pairs

of con�gurations that are close to each other. The closeness is measured in terms of

the heuristic distance D in C-space.

Concerning how fast the local planner should be, there is clearly a tradeo� between

the time spent in each individual call of this planner and the number of calls. If a

powerful local planner was used, it would often succeed in �nding a path when one

exists. Hence, relatively few nodes would be required to build a network capturing

the connectivity of the free C-space su�ciently well to reliably answer path-planning

queries. Such a local planner would probably be rather slow, but this could be

somewhat compensated by the small number of calls needed. On the other hand, a

very fast planner is likely to be less successful. It will require more con�gurations to

be included in the network ; so, it will be called more often, but each call will be less



Chapter 2. Random Networks for Path Planning 27

expensive.

We have four arguments in favor of using a fast and deterministic local planner

instead of a more powerful (and slow) one:

1. The free part of the C-space in high dimension is very complicated. It is fre-

quently the case that in order to move from the initial to the �nal position, the

point-robot has to go through a narrow passage. But the only way this can be

achieved with our method (despite of the enhancement step which we have not

yet described) is to be lucky enough to place several of our random points in the

neighborhood of the narrow passage. For this to have a signi�cant probability

of happening, the total number of random points that we initially throw in the

free C-space has to be large. Thus, we do not need a powerful local planner

since all the pairs of nodes that we are going to try it on will be very close to

each other, and thus have a high chance of getting connected with the simple

and fast planner.

2. The choice of the local planner also a�ects the query phase. The purpose of

having a preprocessing phase is to make it possible to answer path-planning

queries quasi-instantaneously. It is thus important to be able to connect any

given start and goal con�gurations to the network, or to detect that no such

connection is possible, very quickly. This requires that the network is dense

enough, so that it always contains a few nodes (at least one) to which it is easy to

connect each of the start and goal con�gurations. It thus seems preferable to use

a very fast local planner, even if it is not too powerful, and build large networks

with con�gurations widely distributed over the free C-space. Furthermore, the

same local planner that is used in the preprocessing phase can be used in the

query phase to connect the start and goal con�gurations to the network.

3. Parallelization of the preprocessing phase of the planner can make the method

very attractive as discussed at the end of this chapter. In the network con-

struction step, the tasks of generating random nodes in C-space and trying to
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connect pairs of them can be carried out independently. So the task of generat-

ing a larger set of nodes which are to be connected using a simple local planner

is easier to parallelize. In addition to that, a simple local planner is easier to

implement in specialized hardware which would signi�cantly improve the per-

formance of the method. We adopt here the philosophy that it is better to have

a large number of small tasks than have a smaller number of larger tasks.

4. Perhaps the clearest argument of having a fast deterministic planner is that we

do not have to store the paths that are computed by the planner but just the fact

that they were found. As a result, the storage requirements for the produced

networks are low. During the query phase, whenever we need a certain path, we

run the fast local planner with the original arguments and we retrieve it. The

query times are not signi�cantly a�ected by the recomputation of these paths.

A quite general local planner which satis�es the above requirements and is appli-

cable to all holonomic robots, could work as follows. Given any two con�gurations of

the robot in d-dimensional space, that is two d-tuples

a = (a1; : : : ; ad); and b = (b1; : : : ; bd); with a1; : : : ; ad; b1; : : : ; bd 2 R;

the planner tries to connect a and b by moving along the straight-line segment ab in

C-space (Rd). In other words a su�ciently dense set of points on the set

f(1� t) � a+ t � b : t 2 [0; 1]g

is checked for collision. This can be done as follows [Barraquand and Latombe, 91]:

First, discretize the line segment (more generally, any path generated by the local

planner) into a number of con�gurations c1; : : : ; cm, such that for each pair of consec-

utive con�gurations (ci; ci+1) no point on the robot, when positioned at con�guration

ci, lies further than some eps away from its position when the robot is at con�guration

ci+1 (eps is an input positive constant). Then, for each con�guration ci, test whether

the robot, when positioned at ci and \grown" by eps, is collision-free. If none of the

m con�gurations yield collision, conclude that the path is collision-free. Since eps is
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constant, the computation of the robot bodies grown by eps is done only once. In

the following we will refer to the above local planner as the general local planner.

Let us note that by changing the parametrization of C-space, we can change the

actual motion of the robot in the workspace (the one that corresponds to a straight

line in C-space) in many ways. Nevertheless we have found that with a reasonable

parametrization the above technique works well. If the method is applied to a speci�c

class of robots (i.e., articulated robots), it is possible to write a local planner that takes

advantage of the geometry and the structure of these robots in a more sophisticated

way. In Chapter 3 we give some examples of local planners that are engineered

towards speci�c classes of robots. Such planners can further boost the performance

of the method.

Neighbors of a Node

The most time-consuming part of the network construction step is the interconnection

of the random con�gurations, that is the cumulative cost of the invocations of the

local planner. To reduce this cost, it is important to avoid calling the local planner

for con�gurations which are unlikely to get connected with the technique used. This

is the motivation behind the de�nition of the neighborhood Nx of a node x. We try

to avoid calls of the local planner that are likely to return failure, by submitting only

pairs of con�gurations whose relative distance (according to the distance function D)

is smaller than some constant threshold max distance. Thus

Nx = fy 2 V : D(x; y) � max distanceg:

Sometimes the neighborhood of a node may consist of too many nodes. This is

for example the case when the node lies in a large \easy" part of the C-space with

very little C-obstacle around it. In our experiments we found it useful to bound the

size of the set Nx by some constant max neighbors (typically in the order of 30).

This additional criterion guarantees that, in the worst case, the running time of each

iteration of the main loop of the construction step algorithm is independent of the

current size of V . Thus, the above choice makes the relation between N and the
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running time of the network construction step almost linear. We can safely ignore

the time it takes for each node to determine its neighborhood, which is quadratic,

since this a�ects only a tiny fraction of the running time (essentially because this

operation does not involve any collision checking).

Distance of Two Nodes

The distance function D(�; �) is used to both construct and sort the setNx of candidate

neighbors of each new node x. Nodes which, with respect to D(�; �), lie further

away than max distance from x are discarded as potential neighbors. We are not

attempting to connect them with x, since we believe that there is little chance that

our local path planner will be able to make this connection.

Thus to improve our chances of obtaining a good network in C-space, the distance

function D(x; y) should be de�ned in a way that re
ects the likelihood that the local

planner will fail to connect the two nodes x and y. In other words, D(x; y) should be

large if nodes x and y are unlikely to be connected by the local path planner.

If, for example, we are using the general local planner that joins two con�gurations

via a straight line in d-dimensional C-space, then it is reasonable to de�ne D(x; y) to

be the Euclidean distance of x and y in Rd. D(x; y) may also be de�ned as the longest

Euclidean distance that any point on the robot travels in the workspace, when the

robot moves along the line segment joining x and y in the con�guration space, i.e.,

D(x; y) = max
z2robot

jz(x)� z(y)j;

where z denotes a point on the robot, z(x) is the position of z in the workspace when

the robot is at con�guration x, and jz(x) � z(y)j is the Euclidean distance between

z(x) and z(y).

2.7.2 Network Enhancement Step

At the end of network construction step we have a graph G = (V;E), where the node

set V consists of N random con�gurations in the free C-space and two nodes are
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joined by an edge if we have managed to connect them using the local path planner.

If the number of nodes generated during the construction step is large enough, the

set N gives a fairly uniform covering of the free C-space F . In easy scenes G is

then well connected. But in more constrained ones where the free C-space is actually

connected, G often consists of a few large components and several small ones. It

therefore does not e�ectively capture the connectivity of F .

The enhancement step is intended to improve the connectivity of the graph G

generated by the construction step. Typically, if the graph is disconnected in a place

where F is not, this place corresponds to some narrow, hence di�cult region of the

free C-space. The idea underlying the enhancement step is to select a number of

nodes among those generated by the construction step which are likely to lie in such

regions and to \expand" them. By expanding a con�guration x, we mean selecting

a new free con�guration in the neighborhood of x, adding this con�guration to V ,

and trying to connect it to other nodes of V , in the same way as in the construction

step. So, the enhancement step increases the density of the network con�gurations in

regions of F that are believed to be di�cult. Since the \gaps" between components

of the graph G are typically located in these regions, the connectivity of G is likely

to increase.

We propose the following probabilistic scheme for the enhancement step: With

each node x generated in the construction step, we associate a positive weight w(x)

that is a heuristic measure of the \di�culty" of the region around x. Thus, w(x) is

large whenever x is considered to be in a di�cult region. We normalize w(�) so that

all weights together (for all N nodes) add up to one. Then, we repeat the following

step M times: we choose a node from among those N nodes that the construction

step generated with probability

Pr(x is selected) = w(x);

and we expand this node. Suppose that y is the node resulting from the expansion.

y is tried for connection with the nodes in V as in the network construction step.

The detailed algorithm for the enhancement step is shown in Figure 2.6. The total

number of nodes in V at the end of the enhancement step is N +M .
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1 Given (V;E), compute the function w(x); x 2 V

2 loop M times

3 Select a con�guration x, x generated in the construction step,
4 with probability Pr(x is selected) = w(x)

5 Expand x and obtain con�guration y

6 V = V [ fyg
7 Select the neighbors Ny of y from V

8 For each n 2 Ny in order of increasing D(y; n):

9 If �(y; n) then E = E [ f(y; n)g
10 endloop

Figure 2.6: Algorithm for the network enhancement step

Suppose for a moment that the function w(�) adequately identi�es the di�cult

parts of the C-space by having a large value at those parts and small value in the

\easy" parts. Then, if x lies in a di�cult region, w(x) should have a relatively large

value. As a result x will have a large probability of being selected and many random

nodes will be placed in its neighborhood. What our heuristic achieves is to �ll areas

with large w(�) value more than others.

It now remains to de�ne the heuristic weight w(�). It is obvious that w(�) is the

essential parameter in our enhancement scheme. It is important that this function

is a good measure of \di�culty" in C-space. Additionally, w(�) must be an easily

computable function. We should note that the identi�cation of the di�cult parts of

the C-space is no simple matter and the choices that we propose below clearly go

only a certain distance in this direction.

One possibility for w(x) is to count the number of nodes of V lying within some

prede�ned distance of x. If this number is low, the obstacle region probably occupies

a large subset of x's neighborhood. This suggests that w(x) could be de�ned inversely

proportional to the number of nodes within some distance of x. Another possibility is

to look at the distance distx of x from the nearest connected component not containing

x. If this distance is small, then x lies in a region where two components failed to

connect, which indicates that this region might be a di�cult one (it may also be
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actually obstructed). This idea leads to de�ning w(x) inversely proportional to distx.

Alternatively, rather than using the nodes of G to identify di�cult regions, we could

de�ne w(x) according to the behavior of the local planner. For example, if the local

planner often failed to connect node x to other nodes, this is also an indication that

x lies in a di�cult region. The number of connections that the local planner has

obtained for a node is also a measure of the di�culty of the area in which the node

lies. Which particular heuristic function should be used depends, to some extent, on

the input scene.

Nevertheless, the following function, which is based on the idea of using the be-

havior of the local planner to determine di�cult parts, has produced good results

whenever we tried it. We de�ne the degree dx of a node x as the number of connec-

tions that x has with other nodes at the end of the network construction step. In

other words, dx denotes the number of successful calls to the local path planner when

we attempted to connect the node x to the nodes in its neighborhood Nx (or the �rst

max neighbors of the nodes in Nx, in case Nx contained more than max neighbors

con�gurations). The numbers dx can be computed very easily. It is a reasonable

assumption that a node x which is in a \di�cult" area of free C-space will have a

smaller dx than a node which is away from the C-obstacle. Our strategy will put

con�gurations around nodes with small dx so that we have better chances of going

through \narrow passages" and thus create larger components.

The function w(x) can be computed as follows

w(x) =
1

dx + 1
=
NX
t=1

1

dt + 1
:

Clearly, w(x) gives small weight to the nodes which have large dx and larger weight

to those with smaller dx. The division by the sum
P
N

t=1
1

dt+1
normalizes the sum so

that
NX
x=1

w(x) = 1:

The addition of 1 in the denominator serves to avoid trouble in cases when dx = 0.

There is no argument on why we choose w(x) as this speci�c function of dx and not,

say, w(x) = (dx+1)�2 appropriately normalized so as to have
P
N

x=1w(x) = 1. Indeed,
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it seems that any decreasing function of dx could be used in the place of the one we

chose and it is true that many such functions give comparable results. Our choice

should be viewed as perhaps the simplest one.

The above choice of w(�) has been shown to work well in a large number of

experiments that we have performed (Chapter 3). These experiments indicate that

the enhancement step indeed helps

1. to obtain non trivial connections between sizable components by placing many

nodes between them and

2. to connect more of the initial randomly generated nodes to the main compo-

nents.

From the experimental results of Chapter 3 another important observation is made.

The addition of M nodes to the N nodes created by the network construction step

using the enhancement step that we just described, as opposed to just throwing in the

C-space N +M random nodes and doing no enhancement at all, gives much better

results in terms of e�ective covering of the free C-space.

Let us now discuss how to perform the expansion of a node. Again here, several

techniques give good results. One way to accomplish the expansion is to choose each

of the parameters that describe the con�guration uniformly at random from a small

interval centered at the current value of the corresponding parameter of x. Another

way, which is the one we use in our implementations, makes use of what we call

random-bounce walks (or rbw). For holonomic robots, an rbw consists of repeatedly

picking at random a direction of motion in C-space and moving in this direction until

an obstacle is hit. When a collision occurs, a new random direction is chosen. And so

on. To expand a node x, we compute a rbw starting from x. We limit the length of

the rbw to a small number of steps which we call rand bounce length (say, 100 steps).

The �nal con�guration n reached by the rbw and the edge (x; n) are included into

G. The path computed between x and n is explicitly stored, since it was generated

by a non-deterministic technique. Then we try to connect n to the other nodes of

the network in the same way as in the construction step. The enhancement step thus
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never creates new components in G. At worst, it fails reducing the number of existing

components.

To complete our discussion of the algorithm of Figure 2.6, let us discuss how large

is the fraction of nodes that is created with the enhancement process. We have found

experimentally that M = N=2 gives very good results. The number N cannot be

made too small: we cannot hope to cover a narrow passage during enhancement if

initially we do not manage to put any points near that passage that will be used to

guide the enhancement in that area.

Once the enhancement step is over, the remaining small components of G, if any,

are discarded. Here, a component is considered small if its number of nodes is less

than some min component percent (typically 1%) of the total number of nodes in

V . The graph G that remains after discarding small components may contain one or

several components.

In case G contains one major component, which in our examples happened very

often, this component can be used directly for planning and there is no need for the

third step of the preprocessing. If, on the other hand, at the end of the enhancement

step we end up with more than one connected components of signi�cant size, we can

elect to spend some more time in trying to merge them into one component, or, at any

rate, reduce the number of components. This of course is impossible if the number

of components re
ects the reality in C-space, that is it may well be the case that F

is disconnected. And there is unfortunately no simple way to tell whether this is the

case or not. The way we choose to view the situation therefore is the following: if

at the end of the second step we do not have one major component, we spend some

extra, but a priori �xed time, in trying to merge existing components using either (a)

a repetition of the network construction and enhancement steps, or (more often) (b)

a more powerful technique for connecting con�gurations from di�erent components,

which will be aided from the fact that it is now up to us to choose these con�gurations,

as explained in the next section.
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2.7.3 Further Reduction of the Number of Components

In case multiple major components remain at the end of the enhancement step we

may decide that it is worth spending some more time in trying to reduce the number

of these components. For this we invoke a more sophisticated path planner than the

local planner that we have used so far, the auxiliary planner. In our experiments

we used the Randomized Path Planner (RPP) as the auxiliary planner (described in

Section 2.4).

We proceed as follows: We select any pair of connected components, say A and

B. Our purpose is to use the auxiliary planner in order to connect some node, say a,

from component A to some node b from component B. The most important choice

that we have to make is to select nodes a and b so that the auxiliary planner will

have a good chance to connect them in a short time. A reasonable strategy for this

selection seems to be to select that pair of nodes a and b for which the heuristic

distance D(a; b) becomes minimum over all possible choices of a and b.

Our strategy follows this spirit but is slightly di�erent in order to be less prone to

failure. Assume that componentA is larger than componentB. We then select a node

b at random from B (with equal probability of selecting any node in B) and order

the nodes of component A in increasing distance D from the node b. We then invoke

the auxiliary planner to connect b with the �rst node in the list (i.e., the closest to b

node of A) and we allow the auxiliary planner to run for some prede�ned interval of

time. If it fails we try to connect b with the next closest node from A and so on, until

we either succeed or try a certain prespeci�ed number of nodes of A for connection

with b. If we have not succeeded by then we declare failure and components A and

B will remain unconnected, unless they get connected indirectly through a sequence

of connections of components that succeed in this step. If components A and B do

get connected by the auxiliary planner, we merge them into a new component.

The above procedure is repeated for di�erent components until there is either

one connected component only, or a prespeci�ed amount of time has elapsed. This

prespeci�ed amount of time is, in our examples, the sum of the times spent in the
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network construction and enhancement steps. The philosophy behind our choice

not to try to connect the pair (a; b) which achieves minimum distance over all pairs

in A � B is that we want to allow a certain randomness in the process and avoid

bad choices. The minimum-distance selection may give us a pair of nodes that is

very di�cult to connect with the auxiliary planner. Failure to obtain one connected

component at the end of this step is a strong indication that F is not connected,

or that the connection of any remaining components is beyond the capabilities of

existing planning techniques.

2.8 Query Phase

During the query phase, paths are to be found between arbitrary input initial and �nal

con�gurations, using the network constructed in the preprocessing phase. Assume for

the moment that the free C-space is connected and that the network consists of a

single connected component G. A query is answered in the following way: Given an

initial con�guration I and �nal con�guration F , we try to connect I and F to some

two nodes of G, respectively ~I and ~F , with feasible paths PI and PF . If this fails, the

query fails. Otherwise, we compute a sequence P of nodes in G connecting ~I to ~F .

A feasible path from I to F is eventually constructed by concatenating PI , the local

paths recomputed by the local planner when applied to pairs of consecutive nodes in

P , and PF reversed. Figure 2.7 illustrates the above idea.

The main question is how to compute the paths PI and PF . The queries should

preferably terminate quasi-instantaneously, so no expensive algorithm is desired here.

Our strategy for connecting I to G is to consider the nodes in G in order of increasing

distance from I (according to D) and try to connect I to each of them with the

local planner, until one connection succeeds. We ignore nodes located further than

max distance away from I, because we consider that the chance of success of the local

planner is too low. If all connection attempts fail, we perform one or more random-

bounce walks, as described in Subsection 2.7.2. But, instead of adding the node at

the end of each such rbw to the network , we now try to connect it to G with the local
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 I 

F

Figure 2.7: Answering a path planning query

planner. As soon as I is successfully connected to G, we apply the same procedure

to connect F to G.

If we did not succeed to connect either I or F to the network then our planner

declares failure. In practice, we bound the time allocated to each query by a user

de�ned constant query time and we declare failure if PI and PF have not been found

within that time. Assume now that I was connected to node ~I and F to node ~F of

the network (remember that our network is connected). Our task is then completed

by searching the network for a path (along the edges of the network now) connecting

~I to ~F .

This can be done, for example, in a very straightforward way if we start propa-

gating a \wave" from node ~I until it reaches node ~F (breadth-�rst search). In this

way we are going to �nd a path from ~I to ~F which is minimal in length (one network

edge having \length" 1). But we can also choose to use standard graph algorithms to

�nd paths from ~I to ~F that optimize other quantities. We could, for example, assign

a weight �(a; b) to the edge (a; b), where �(a; b) is the heuristic distance used in the
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preprocessing phase, or any other function that measures the di�culty of moving the

speci�c robot from con�guration a to con�guration b. It should be obvious that the

quality of the paths produced in this manner (or at least of the parts of the paths

that connect nodes on the network) is quite good.

Having found a path that joins I to F , we can now forget the network and invoke

any path smoothing algorithm that takes as input a collision-free path from I to F

and returns one with the same endpoints but with improved characteristics as far as

the total length, smoothness or other quantities of interest are concerned.

In general, however, the network may consist of several connected components Gi,

i = 1; : : : ; p. This is always the case when the free C-space is itself not connected.

It may also happen when the free C-space is connected if, for instance, the network

generated is not dense enough. If the network contains several components, we �rst

try to connect both I and F to two nodes in the same component. To do this, we

consider the components of the network in order of increasing distance from fI; Fg;

for each component we proceed as we did above with the single component G. We

de�ne the distance between fI; Fg and a component Gi as follows: Let the distance

D(x;Gi) between a con�guration x and Gi be the minimum of D(x; n) for all n 2 Gi.

The distance between fI; Fg and Gi is the maximum of D(I;Gi) and D(F;Gi). If

the connection of I and F to some component Gi succeeds, a path is constructed as

in the single-component case. The method returns failure whenever it fails to connect

both I and F to the same network component. Since in most examples the network

consists of rather few components, failure is rapidly detected.

Finally, we should note that certain kinds of local planners render unnecessary the

recomputation of collisions along the network edges when the corresponding paths

are reconstructed. This makes the planning stage even faster. For example, the

general local planner of Subsection 2.7.1 aborts when a collision is detected. During

planning time, intermediate con�gurations on a path induced by this planner have to

be recomputed, since they have not been stored, but we do not need to check each of

them for collision. The situation is di�erent if the local planner does not abort when

a collision is detected but performs a certain action. Then, in the planning stage
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Figure 2.8: An example: a serial robot with 7 links and a �xed base

collision must be checked along the recomputed path so that the same action can be

repeated just after the collision is detected.

2.9 The Numerical Parameters of the Method

Having completed the description of the method, we summarize here all its numerical

parameters. The values of these parameters should be speci�ed by the user. For most

of them there is no well-de�ned method of selecting them, and in our tests we chose

them more or less by experimentation. The situation is partly remedied by the fact

that, according always to our observations, the performance of the algorithm does not

depend on the value of any of them in an unstable manner. That is, there is usually

a quite large range of values for each parameter in which the method performs well.

The typical values of the parameters that we mention here concern the range of

scenes that we present in Chapter 3. As an example, we show in Figure 2.8 a 7-dof

robot moving in a planar workspace. The workspace is the unit square [0; 1]2 and the

length of each of the seven links of the robot is 0:16. The �xed base of the robot is

denoted with a thick square. A more detailed picture of this robot can be found in

Figure 2.2(b).

1. Number of random nodes N

This is the number of nodes that will be thrown at random in the free C-space
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during the network construction step. It is in the order of a few thousand (2,000-

3,000). The running time of the network construction step of the preprocessing

is roughly linear with N .

2. Number of nodes during enhancement M

This is the number of nodes that will be added during the enhancement step of

the preprocessing. We have found that the choice M = N=2 works very well in

practice. Again, the running time of the network enhancement step is roughly

linear with M .

3. Time spent in the third step of preprocessing (further component reduction)

We bound the time allocated to this step by the time we have spent in con-

structing the network so far, that is the sum of times spent in the network

construction and enhancement steps. We note however that the third step of

the preprocessing is rarely used.

4. Time spent per individual planning query query time

We require our queries to �nish quasi-instantaneously and we usually limit this

time to a few seconds (2-5 seconds). Most queries �nish within a fraction of

a second, once a good network has been constructed. query time provides an

upper bound on the time the query will take before declaring failure.

5. max distance, the distance that de�nes a neighborhood

We remind the de�nition for the neighborhood of a node x

Nx = fy 2 V : D(x; y) � max distanceg:

For an example of how large max distance should be, let us consider the robot

of Figure 2.8. Suppose we de�ne the distance D of two con�gurations by

D(x; y) =

 
7X

k=1

jJk(x)� Jk(y)j
2

!1=2

;

where Jk(x) denotes the position in the workspace of point Jk of con�guration

x (see Figure 2.2(b)), and ja� bj denotes the Euclidean distance of the points
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a and b of the plane. Good results are obtained if we choose

max distance = 0:427;

which, translates into a (mean square) displacement of 0:161 for each joint of

the robot.

6. max neighbors, the maximum number of neighbors examined for connection

If the neighborhood Nx of a node x has more than max neighbors con�gura-

tions in it, we keep only the �rst max neighbors of them when we are trying

to connect x with its neighbors. The remainder con�gurations of Nx are not

examined for connection with x. This makes the running time of the network

construction and enhancement steps roughly linear with the number of nodes

added in the graph during these steps. A typical value for this parameter is 30.

7. rand bounce length, the random bounce path length

Whenever we perform a random bounce walk in the free part of the C-space we

let it run for a certain �xed number of steps which we call rand bounce length.

We use consistently the value 100 for the number of these steps.

8. Small components

Components with less than min component percent of the total nodes at the

end of the network enhancement step are regarded small and are not considered

further in the third step of the preprocessing, or in the query phase. A typical

value of min component is 1%, that is components with less than 0:01 � jV j

nodes are discarded from the network.

The values given above for the last three parameters have been kept �xed across

a large range of examples (see Chapter 3). The fact that the performance of the

method does not crucially depend on any of them is a very good feature. Overall, we

have not found it di�cult to obtain good values for the numerical parameters of the

method with little experimentation.
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2.10 Some Remarks

We have described a two-phase method to solve robot motion-planning problems in

static workspaces. In the preprocessing phase, the method constructs a probabilistic

network as a collection of con�gurations properly selected in the free C-space. In the

query phase, it uses this network to quickly process path-planning queries, each spec-

i�ed by a pair of con�gurations. The method was described for a general holonomic

robot. Several aspects of this method deserve further investigation.

One of these aspects is if the performance of the method can be further increased

when the method is customized to a particular application. Customization is the

substitution of some of the components of the method that were designed for a general

robot (i.e., local planner) with techniques that �t better the characteristics of the

considered scenes. In the next chapter we answer this question in the a�rmative. We

also show the easiness with which the method can be applied to a speci�c class of

robots (i.e., articulated robots) and experiments which con�rm that the customized

implementation exhibits a better performance than the general method.

An issue not further explored in this dissertation is the incremental nature of

this method. The preprocessing and the query phases do not have to be executed

sequentially. Instead, they can be interwoven to adapt the size of the network to

di�culties encountered during the query phase, thus increasing the learning 
avor of

our method. For instance, a small network could be �rst constructed; this network

could then be augmented (or reduced) using intermediate data generated while queries

are being processed. If query times are not satisfactory for the application considered,

more nodes can be added to the network. This is simply done by resuming the

construction step algorithm and/or the enhancement step algorithm, starting with the

current network. We can also take advantage of the incremental nature of the method

to conduct trial-and-error experiments in order to decide how much computation time

should be spent in the preprocessing phase. Let us note here that the sizes of the

produced networks are very small since all the paths produced by the local planner

are not stored. Thus, given enough preprocessing time, a very large network that has
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good chances of capturing well the connectivity of the free C-space can be gradually

obtained.

We conclude this chapter by emphasizing that the randomized method we de-

scribed lends itself to parallelism. It escapes the sequential way of searching for a

path from the initial to the �nal con�guration of the robot. Instead, it looks at

the whole C-space from the beginning and tries to acquire information about the

connectivity of this space. The preprocessing phase, which is the computationally

expensive phase, can be massively parallelized. Take the network construction step

of the preprocessing for example. The random nodes can be generated in di�erent

processors and the interconnection of each of these nodes with its neighbors can be

done independently in di�erent processors. Having a fast local planner permits to

balance the workload among the processors used easily. There is virtually no com-

munication in the network construction step. The same arguments are valid for the

network enhancement step of the preprocessing. Once each processor has a copy of

the probability distribution function used in this step, it can start selecting nodes

among those generated by the construction step and expanding them. The third step

of the preprocessing phase requires calling a sequential planner, the auxiliary planner.

Here di�erent calls of this planner can be made for di�erent pairs of nodes belonging

to the components that we wish to connect. These calls can be initiated at inde-

pendent processors and all of them will be aborted once one of them succeeds. This

step involves more communication among the processors involved. However, the third

step of the preprocessing is hardly ever used in the one processor case, and we believe

that the increased computational power resulting from a parallel implementation of

the method will further eliminate the need of this step. Parallelization will make the

method even more interesting since it will radically reduce preprocessing time.



Chapter 3

Application of the Planning

Method to Articulated Robots

3.1 Introduction

This chapter describes the application of our planning method to articulated robots

with �xed or free bases moving in the plane or in space. We present techniques speci�c

to these robots that can be substituted for more general techniques in the planning

method in order to increase its e�ciency. Experimental results reported in this chap-

ter con�rm that robot-speci�c components can further improve the performance of

the method, although the general technique remains quite powerful even for di�cult

path-planning problems.

The purpose of presenting customized versions of our method is to illustrate the

easiness with which the general method for holonomic robots of Chapter 2 can be

engineered to better suit the needs of a particular application. Sections 3.2, 3.3, and

3.4 report extensive experiments with articulated robots which show the e�ectiveness

of the method, its dependence on the numerical parameters and the value of the

network enhancement step in di�cult examples.

45
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Figure 3.1: A planar articulated robot

3.2 Articulated Robots in the Plane

In this section we consider planar articulated robots with revolute and prismatic joints

having one or multiple kinematic chains. Our examples involve robots whose links

are line segments. In practice of course the links of robot arms are not line segments.

Our simpli�cation does not a�ect in any way the description of our method since the

shape of the links is information that we can always incorporate into the collision

checker.

Consider for a moment the robot shown at Figure 3.1. The links of that robot

are denoted by L1 through Lq (in the �gure, q = 5). Points J2 through Jq designate

revolute joints. Point J1 denotes the base of the robot; it may, or may not, be �xed

relative to the workspace. If it is �xed, then J1 is also a revolute joint. If it is not,

then J1 can translate freely in the plane and the robot is said to have a free base. The

point Jq+1 (J6 in the �gure) is called the endpoint of the robot; actually, it is any point

on the last link, preferably the one located the furthest away from Jq. Similarly, if the

robot's base is free, J1 can be any point on L1, preferably the one located the furthest

away from J2. Each revolute joint Ji (i = 1 or 2 to q) has de�ned certain internal

joint limits, denoted by lowi and upi, with lowi < upi, which constrain the range of

the possible orientations that Li can take relative to Li�1. If the robot's base is free,

the translation of J1 is bounded along the x and y axes of the Cartesian coordinate

system embedded in the workspace by lowx and upx, and lowy and upy, respectively.

Joints can also be prismatic. If joint J2 of the robot in Figure 3.1 is prismatic, the

relative displacement of J2 and J3 can be a translation, sometimes called the joint

o�set. In other words, when a prismatic joint is present, the corresponding link, L2

in our case, can be thought of as an extensible link.
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Let us make our discussion more precise by considering three examples of planar

articulated robots:

1. Serial robot with 7 links and with a �xed base (7 dof)

Figure 3.2 shows a robot with 7 links of the same length L moving in a planar

workspace. J1 in this robot has a �xed position and the parameters of the C-

space are the seven orientations of the links. The obstacles are in black and the

robot's �xed base is marked with a thick square.

2. Serial robot with 5 links and without a �xed point (7 dof)

The parameters of the C-space of the robot shown in Figure 3.3 are the two

coordinates x and y of J1, plus the �ve orientations that de�ne the position of

the �ve links. One of the ends of the robot in the above-mentioned �gure is

marked with a square in order to distinguish it from the other. We do not want

to identify two con�gurations of the robot which do not di�er in the geometry

but only in the order in which the links are placed in the workspace. Again, all

the links of the robot are of the same length.

3. Multiple-chain (hand-like) robot with a �xed base and 7 links of which the �rst 3

are extensible (10 dof)

The hand-like robot of Figure 3.4 has a �xed base and its �rst 3 links are

connected by prismatic and revolute joints. The length of these links can vary

between L and 2L. Then the chain of links branches into two sequences of two

links of length L each. The parameters of the C-space are the seven orientations

of the links plus the lengths of the �rst three extensible links. The �xed base

of the robot is again denoted by a thick square.

For all the robots described above, we do not allow any two consecutive links

to form an angle smaller than 10 degrees. This restriction was imposed to simulate

mechanical stops.

To customize the general method of Chapter 2 to a particular class of robots,

we tailor the computationally expensive components of the method to these robots.
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Figure 3.2: Serial robot with 7 links and a �xed base (7 dof)

Figure 3.3: Serial robot with 5 links and no �xed point (7 dof)

Figure 3.4: Multiple chain (hand-like) robot with a �xed base and 7 links of which

the �rst 3 are extensible (10 dof)
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Three are the components that deserve special attention: the local planner, the dis-

tance de�nition and the way collision checking is done. The local planner is called

thousands of times to connect con�gurations and its rate of success a�ects the density

of the produced network. The distance of two nodes should re
ect the likelihood that

the local planner will fail to connect two nodes and should be compatible with the

de�nition of the local planner. Finally, the collision checker is invoked frequently and

its performance is directly re
ected in the time spent in the preprocessing phase.

In the next three sections we describe speci�c techniques that can be substituted

for the more general ones described in Chapter 2 and which give better results for

planar articulated robots.

3.2.1 The Local Planner for Planar Articulated Robots

Let a and b be any two given con�gurations that we wish to connect with the local

planner. Let also Ji(a) denote the position in workspace of point Ji of the robot, when

the latter is in con�guration a. The local planner we use constructs a path as follows:

it translates at constant relative velocity all the movable J 's with an odd index, i.e.,

all J2i+1's, along the straight lines in the workspace that connect their positions at

con�guration a to their positions at con�guration b. So, for example, joint J3 will

move on the straight line segment (in the workspace, not in C-space) joining J3(a)

to J3(b). During this motion the planner adjusts the position of every other joint J2i

using the simple inverse kinematic equations of this point relative to J2i�1 and J2i+1.

A small detail here: the inverse kinematics give two possible positions for J2i for any

given position of J2i�1 and J2i+1 of which we choose the one closest to the previous

position of J2i.

Thus, the J2i's \follow" the motion led by the J2i+1's. Of course it may be the

case that the intermediate nodes J2i are not able to follow the motion dictated by the

odd numbered nodes. If all the links are L long, this can happen if the two enclosing

nodes have moved further than 2L apart. In this case the planner fails.

If q (the number of the last joint) is odd, the position of Jq+1 is not determined by



Chapter 3. Experimental Results 50

the above rule; it is then computed by rotating joint Jq at constant revolute velocity

relative to the linear velocity of point Jq+1. In our �rst example (Figure 3.2) where

q = 7 this means that the last parameter of the C-space, �7, moves with constant

velocity from �7(a) to �7(b), where �7(a) and �7(b) are the values of that parameter

at con�gurations a and b correspondingly. Since �7 is an angular degree of freedom

we always choose the direction of motion, from �7(a) to �7(b) in the clockwise or

counterclockwise direction, that results in the shortest distance covered.

Recall that any local path is discretized into a sequence of con�gurations for

collision checking and that the motion is aborted if a collision occurs (see Section

2.7.1). We have observed that in cases when the above motion does not manage to

connect con�gurations a and b, it nevertheless brings the robot to a con�guration b0

very close to b. It then pays o� to try to connect b0 and b with a straight line in C-space

and, only after this fails, to declare failure of the local planner to connect a and b. In

the following we will refer to the above planner as the speci�c local planner for planar

articulated robots. Our experiments have shown that the local paths generated by

the speci�c planner are more likely to be collision-free than those generated by the

general planner. On the other hand, the speci�c planner, though still very fast, is not

as fast as the general planner.

3.2.2 Distance Computation

In association with the above local planning technique we use the following distance

function D(�; �) in C-space

D(a; b) =

0@q+1X
i=1

jJi(a)� Ji(b)j
2

1A1=2

;

where jJi(a) � Ji(b)j is the Euclidean distance between the points Ji(a) and Ji(b).

Again, Ji(a), i = 1; : : : ; q + 1 denotes the position of the point Ji in the workspace,

when the robot is at con�guration a. It is reasonable to expect that this function

re
ects well the chances of failure of the speci�c local planner since it approximates

the area swept by the robot along the path induced by this planner.
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3.2.3 Collision Checking

The 2D workspace allows for a very fast collision checking technique. In this technique

each link of the robot is regarded as a distinct robot with two dof of translation and

one dof of rotation. A bitmap representing the 3D con�guration space of this robot

(in su�ciently high resolution; we used 128 � 128 � 128) is precomputed. The 0's

describe the free subset of the C-space and the 1's describe the subset where the

link collides with an obstacle. When a con�guration is checked for collision, the

3D con�guration of each link is computed and tested against its C-space bitmap,

which is a constant-time operation. The con�guration of a link is particularly fast to

compute when the speci�c local planner is used, since this planner directly provides

the coordinates of two points in the link. Note that we need not always create one

bitmap for each link of the robot. For example, when all the links are line segments

(as in all our examples), a single bitmap can be computed for the shortest link. We

then model the longer links as two or more short line segments. As a result, collision

checking for a long link may require multiple accesses to the bitmap.

The 3D bitmap for one link can be computed as a collection of 2D bitmaps,

each corresponding to a �xed orientation of the link. If the link and the obstacles

are modeled as collections of possibly overlapping convex polygons, the construction

of a 2D bitmap can be done as follows [Lengyel et al, 90]: First use the algorithm

in [Lozano-P�erez, 83] to produce the vertices of the obstacles in the link's C-space.

This algorithm takes linear time in the number of vertices of the objects. Then

draw and �ll the obstacles into the 2D bitmap. On many workstations, this second

operation can be done very quickly using raster-scan hardware originally designed to

e�ciently display �lled polygons on graphics terminals. Each 2D bitmap may also be

computed using the FFT-based method given in [Kavraki, 93] and described in detail

in Chapter 5 of this dissertation. The complexity of this method depends only on

the size of the produced bitmap. When using the FFT-based algorithm we can with

equal ease compute the parts of the C-obstacle that correspond to links whose shape

is not a straight-line segment but any other shape. This FFT-based method is also

advantageous when the obstacles are originally input as bitmaps. In any case, a 3D
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bitmap with a size on the order of 128�128�128 can be computed in a few seconds.

The computation of the 3D bitmap(s) needed for collision checking is performed only

once, prior to the preprocessing phase of our randomized algorithm.

Clearly, the above collision-checking technique is not yet practical for 3D

workspaces, since it requires the generation of 6D bitmaps.

Apart from checking for collision with the obstacles we should also check for

collision of the robot with itself. This is done by checking each line segment of the

robot against each other, checking �rst those that are more likely to give rise to

a collision. These depend on the geometry of the linkage and are usually the ones

furthest from the �xed base, if there is one. The situation gets more complicated if we

consider the links to have arbitrary polygonal shape rather than just line segments.

Then, the time spent in autocollision checking increases.

3.2.4 Experiments with Articulated Robots in the Plane

Our planner was implemented in the C programming language and we used a DEC

Alpha workstation (Model Flamingo) running under DEC OSF/1 for our experiments.

This machine is rated at 121.5 SPECmark89. In this section, we analyze in depth

the performance of our customized method for 2D robots with some examples. We

also show how these results compare with the results obtained when using the general

local planner of Section 2.7.1 and not the speci�c local planner of Section 3.2.1.

Since our algorithm depends on randomness any measure of its performance is a

random variable, which may change value from one run to another. To give more

reliable results we average all measures of performance over 40 independent runs of

our algorithm.

Let us also point out that because of the way path-planning queries are answered

(by joining the initial and the �nal position to the network) the essential measure of

the performance of our algorithm at the query phase is whether a given con�guration

can be easily connected to the network. Searching the network for a path that joins

two nodes takes little (and importantly predictable) time compared to connecting a
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con�guration to the network.

That is why in our experimental results we are not concerned with pairs of con�gu-

rations but only with connecting single con�gurations to the network. For each robot

and workspace in question we have chosen (manually) 8 con�gurations C1; : : : ; C8, in

a manner that re
ects the di�erent parts of the C-space. We refer to these con�gura-

tions as the test set of the scene. We then measure (by averaging over 40 independent

runs of the method) the probability that each of those con�gurations can be connected

to the network produced each time by preprocessing. We consider that we have failed

to connect a con�guration to the network if we have not succeeded in doing so within

10 seconds for all our examples. Notice that it is important to choose the con�gu-

rations in the test set manually. For obvious reasons, a random generation similar

to the one used during the preprocessing phase tends to produce con�gurations that

are very easily connected to the network. Instead, proceeding manually we can se-

lect \interesting" con�gurations, for example con�gurations where the robot lies in

narrow passages between workspace obstacles.

Our experiments are shown for various values of the parameters N and M , where

N is the size of the network before enhancement and N +M is its size after enhance-

ment. So for each such pair of numbers N;M we perform 40 times the following:

we run our preprocessing phase, we discard all components but the largest, and then

we try to connect C1; : : : ; C8 to the network (which is thus always connected). We

report: the average size of the largest connected component that is kept at the end

of preprocessing, the average time spent on preprocessing, and the frequency with

which each of the con�gurations of the test set was connected to that component.

All the 40 runs of the method are executed independently of each other. In this way,

we believe that we present a quite realistic characterization of the performance of our

planner. In particular, we ensure that the results do not re
ect just a lucky run, or

a bad one.

The same quantities (average size of the largest component, average preprocessing

time and success rates for connecting the test set to the network) are also reported

after averaging over a di�erent set of 40 runs of the program. These new 40 runs
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correspond to the previous 40 in the sense that for each pair N = n, M = m that we

tried in the �rst set, we are now trying the pair N = n+m,M = 0. This experiment

is done to illustrate the fact that the performance we get using enhancement is better

than the performance obtained by just distributing nodes randomly over the C-space.

Finally let us mention the values of the numerical parameters used in our examples.

A comprehensive list of these parameters can be found in Section 2.9. We assume

that the workspace is the unit square [0; 1]2. max neighbors and rand bounce length

have the values 30 and 100 respectively, for all three planar robots that we examined.

eps is consistently 0:01. The value of query time, which provides an upper bound in

the time spent to connect each of the con�gurations of the test set to the networks

produced, is 10 seconds. All the lengths of non-extensible links are 0:16 and the

length of each extensible link can vary from 0:16 to 0:32. Finally, the parameter

max distance has the value 0:42 for the �xed-base serial robot, 0:54 for the free serial

robot, and 0:47 for the hand-like robot. Notice that only the value of max distance

changes across the di�erent examples. The above numbers clearly support our claim

that the performance of the method does not depend on its numerical parameters in

an unstable way. Further tuning of the parameters may be possible, but overall we

have found that with little experimentation we can obtain a satisfactory set of values

for the parameters involved.

Fixed-base Serial Robot in the Plane (7 dof)

Figure 3.5 shows 8 di�erent con�gurations of the �xed-base 7-dof robot described in

Section 3.2. The workspace consists of two sequences of narrow gates. The �xed base

of the robot is shown with a thick black square.

For every row in Table 3.1 we generated 40 independent networks, each with

the indicated number of nodes. N is the number of nodes created in the network

construction step and M are the nodes added during the network enhancement step.

We use M = N=2 in our experiments. As in all similar tables that follow, in columns

1-3 we give N + M (total number of nodes), N and M . In column 4 we give the

average size (over all 40 runs) of the largest component at the end of preprocessing.
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Figure 3.5: Scene 1, with 7-revolute-joint �xed-base robot

In this example we have not used the third step of the preprocessing phase: we have

observed that even after short preprocessing times we obtain one major component

in the free C-space, thus there is no need for that step. In column 5 we report the

average time in seconds for preprocessing. And in columns 6-13 we give an estimate of

the probability that each of the con�gurations C1; : : : ; C8 of Figure 3.5 was connected

to the network. This estimate is nothing more than what fraction of the 40 times we

were able to make the connection in less than 10 seconds. Note that we discard all

but the largest component when answering path-planning queries.

From Table 3.1 we observe that some con�gurations like C1 and C6 are easily

connected to the network even when the number N +M is very small. The success

rates are consistently larger than 90% with N + M = 2700 which corresponds to

about 90 seconds of preprocessing time.

In Table 3.2 we present the results that were obtained by performing a similar

set of experiments as in Table 3.1. In each row of Table 3.2 N + M is preserved

the same as in the corresponding row of Table 3.1 but now M = 0. In other words,
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Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

1200 800 400 787 29 100.0 30.0 65.0 27.5 62.5 100.0 27.5 55.0
1500 1000 500 1089 40 100.0 45.0 67.5 40.0 77.5 100.0 40.0 72.5
1800 1200 600 1480 52 100.0 77.5 82.5 75.0 92.5 100.0 75.0 85.0
2100 1400 700 1833 64 100.0 85.0 97.5 87.5 97.5 100.0 82.5 97.5
2400 1600 800 2130 78 100.0 87.5 95.0 87.5 95.0 100.0 87.5 95.0
2700 1800 900 2451 90 100.0 97.5 95.0 97.5 92.5 100.0 97.5 90.0
3000 2000 1000 2771 104 100.0 100.0 97.5 97.5 97.5 100.0 97.5 97.5
3300 2200 1100 3091 118 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3600 2400 1200 3382 132 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3900 2600 1300 3665 146 100.0 100.0 100.0 97.5 100.0 100.0 97.5 100.0
4500 3000 1500 4284 176 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3.1: Success rates with customized planner for Scene 1 (with enhancement)

Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

1200 1200 0 697 31 100.0 5.0 40.0 2.5 32.5 100.0 5.0 20.0
1500 1500 0 954 43 100.0 17.5 40.0 17.5 35.0 100.0 17.5 35.0
1800 1800 0 1246 55 100.0 30.0 57.5 30.0 57.5 100.0 27.5 52.5
2100 2100 0 1560 69 100.0 40.0 70.0 42.5 70.0 100.0 42.5 72.5
2400 2400 0 1891 83 100.0 65.0 62.5 62.5 67.5 100.0 62.5 65.0
2700 2700 0 2285 96 100.0 77.5 82.5 77.5 82.5 100.0 80.0 87.5
3000 3000 0 2593 110 100.0 80.0 92.5 77.5 92.5 100.0 77.5 92.5
3300 3300 0 2933 125 100.0 92.5 92.5 90.0 90.0 100.0 90.0 90.0
3600 3600 0 3257 139 100.0 90.0 100.0 92.5 100.0 100.0 90.0 100.0
3900 3900 0 3571 154 100.0 95.0 100.0 95.0 97.5 100.0 95.0 97.5
4500 4500 0 4173 185 100.0 97.5 100.0 97.5 100.0 100.0 97.5 100.0

Table 3.2: Success rates with customized planner for Scene 1 (without enhancement)

enhancement is not performed. Here, the success rates are consistently larger than

90% when N +M � 3300 which corresponds to preprocessing time of roughly 125

seconds. This preprocessing time is signi�cantly higher than the preprocessing time

required to arrive to the same result but with the use of the enhancement step.

In general, the percentages of successful connections are lower in Table 3.2 (no en-

hancement) than in Table 3.1 (enhancement). The di�erence shows more clearly when

the preprocessing time is small. The version of the method that uses enhancement

starts giving high rates of success already from the third row (N +M = 1800 or 52

seconds preprocessing time) while the same is not true for the plain (no-enhancement)

method. If we are interested in obtaining a solution to a path-planning problem as fast
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as possible, it is thus better to spend part of the time allocated to the preprocessing

phase on the enhancement step rather than spend it completely on the construction

step. As mentioned above, the ratio M = N=2 gives good results over a wide range

of problems. This roughly corresponds to spending 2=3 of the preprocessing time

in the network construction step and 1=3 of the preprocessing time in the network

enhancement step.

To convey more the intuition behind the enhancement step we show in Figure

3.6 the four major components of the network that are produced during the graph

construction step of our algorithm with N = 1600 and M = 0. To be more precise we

show the \projection" of the con�gurations in each component onto the workspace,

that is for each con�guration belonging to a component we draw the position of the

robot in the workspace. Thus, every two con�gurations that are in the same picture

can be joined to each other with a series of applications of our speci�c local planner.

We can see that none of the con�gurations of the major component (Figure 3.6(b))

has gone through any of the doors in its workspace. Each of the other three large

components goes through one door of the �rst level. Several very small connected

components are not shown at all. They all had fewer than 10 nodes. The major

component here comprises 875 out of a total of 1600 nodes, or 55% of the total.

In Figure 3.7 we see the connected components of the network after we have

enhanced our initial network with 800 more nodes. We notice that the three large

components of Figure 3.6 have been merged into one comprising 2182 out of a total

of 2400 nodes. This is a percentage of 91% of the nodes, much higher than before

adding the 800 nodes. The two smaller components shown in Figure 3.7(b) and (c)

were not large enough to be visible in the Figure 3.6 before the enhancement. Notice

also that the large component goes through all doors of the �rst level and does quite

well at the second level too.

It is clear from Figure 3.6 that we would like to be able to characterize those

con�gurations that are close to the narrow gates. Indeed, adding con�gurations there

instead of anywhere else in the C-space will help the large components of Figure 3.6

merge. This is what we try to do with our enhancement heuristic. We are rather
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(c) (d)

(a) (b)

Figure 3.6: Connected components for N = 1600, M = 0 with sizes 272(a), 875(b),

163(c), 22(d)
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(c)

(a) (b)

Figure 3.7: Connected components for N = 1600, M = 800 with sizes 2182(a), 25(b),

15(c)
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Initial Enhanc Comp Size of Prepr Time to connect to largest component (sec)
N M (num) components (sec) C1 C2 C3 C4 C5 C6 C7 C8

800 400 67 683, 207, 149 29 0.00 F F F F 0.63 F F
1000 500 73 1327 41 0.03 0.00 0.02 0.17 0.00 0.12 0.00 0.02
1200 600 87 1302, 273, 15 51 0.00 0.02 F 0.18 8.37 4.63 0.02 F
1400 700 58 1897, 43, 15 66 0.00 0.02 0.00 0.17 0.00 0.30 0.00 0.02
1600 800 50 2182, 25, 15 77 0.02 0.00 0.02 0.00 0.02 0.05 0.02 0.00
1800 900 53 2515, 39, 16 92 0.00 0.02 0.00 0.00 0.02 0.07 0.00 0.02
2000 1000 36 2841, 31 106 0.00 0.00 0.02 0.00 0.02 0.02 0.02 0.00
2200 1100 43 3157, 50 118 0.00 0.02 0.00 0.02 0.00 0.02 0.00 0.02
2400 1200 41 3370, 66, 61 132 0.00 0.00 0.00 0.02 0.00 0.02 0.02 0.02
2600 1300 44 3675, 93, 38 144 0.02 0.02 0.02 0.00 0.02 0.02 0.02 0.02
3000 1500 56 4156, 110, 86 173 0.00 0.02 0.02 0.02 0.00 0.00 0.02 0.00

Table 3.3: Timings for connecting to the networks for Scene 1 (with enhancement)

Initial Enhanc Comp Size of Prepr Time to connect to largest component (sec)
N M (num) components (sec) C1 C2 C3 C4 C5 C6 C7 C8

1200 0 144 704, 197, 132 31 0.02 F F F F 0.42 F F
1500 0 172 873, 246, 176 41 0.02 F F F F 0.00 F F
1800 0 187 1577 54 0.00 0.02 0.00 0.18 0.02 0.13 0.05 0.02
2100 0 176 1873, 21 69 0.02 0.00 0.00 0.18 0.02 0.30 0.17 0.02
2400 0 169 2172 80 0.02 0.00 0.02 0.13 0.00 0.28 0.00 0.00
2700 0 187 1953, 496, 22 96 0.02 F 0.02 F 0.00 0.15 F 0.00
3000 0 186 2213, 511, 34 109 0.02 F 0.00 F 0.52 0.02 F 0.10
3300 0 191 3037, 29, 20 123 0.02 0.02 0.00 0.02 0.02 0.03 0.00 0.02
3600 0 196 3360 141 0.02 0.02 0.02 0.22 0.02 0.00 0.00 0.00
3900 0 181 3660, 26 152 0.02 0.02 0.00 0.20 0.02 0.00 0.02 0.00
4500 0 217 4159, 49, 47 182 0.02 0.02 0.00 0.25 0.02 0.02 0.00 0.02

Table 3.4: Timings for connecting to the networks for Scene 1 (without enhancement)

successful in this e�ort. Table 3.1 shows that for N = 1600, M = 800 we arrive

to a connected component which goes through all the doors in the workspace with

probability 0:875 (Table 3.1, row 5), while for N = 2400, M = 0 the corresponding

probability is only 0:625 (Table 3.2, row 5).

Overall, both the plain and the enhanced version of our method with the speci�c

local planner give very good results. Moreover, the connection of the con�gurations

in the test set to the networks built during preprocessing is performed very quickly.

To show this, we run our algorithm once (not 40 times) for the same values of N , M ,

and we report the time it takes to connect each of C1; : : : ; C8 to the largest component

of the network produced. We perform experiments both with enhancement (Table
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3.3) and without enhancement (Table 3.4). An F in the above tables denotes failure

to connect the con�guration to the corresponding network within 10 seconds.

Column 3 of Tables 3.3 and 3.4 shows the total number of components present

in the network at the end of the �rst two steps of preprocessing. Isolated nodes

count for one component here. Column 4 reports the sizes of those components with

more than 10 nodes. For example, for N = 800, M = 400 (Table 3.3) there were 67

components remaining at the end of preprocessing (row 1, column 3). Of them only

3 had more than 10 nodes and the sizes of these components were 683, 207 and 149

nodes respectively (row 1, column 4). Notice that few major components remain at

the end of the preprocessing phase. When N +M increases, the largest component

has signi�cantly more nodes than any other. Also, for large values of N+M , the total

number of components remaining at the end of preprocessing decreases. Subsequently,

isolated nodes become less and less frequent. Both these facts are an indication that

the networks capture well the connectivity of the free C-space for large N + M .

Also, we observe that when N +M is reasonably large, we get one major connected

component from the �rst two steps of preprocessing. This is the reason why the last

step of the preprocessing is never invoked for this robot.

The time needed to connect C1; : : : ; C8 to the largest component of the networks

is shown in columns 6 to 13 in Tables 3.3 and 3.4. Notice that whenever the planner

succeeded to connect a con�guration to the largest component, it took much less

than a second. The only two exceptions in this rule are C5 and C6 in row 3 of Table

3.3. The timings of about 8 and 4 seconds shown there are due to the fact that one

or more random-bounce walks were performed before the local planner was able to

connect C5 and C6 to the network (see Section 2.8).

Before ending this section and for comparison purposes let us show how the

method performs if we use the generic straight-line local planner instead of the spe-

ci�c local planner which is customized for planar articulated robots. Table 3.5 repeats

the experiments in Table 3.1 but uses the straight-line generic local planner and its

corresponding distance measure (Section 2.7.1). The fact that customization pays is

plain from the comparison of Tables 3.1 and 3.5: for the same preprocessing time
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Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

1200 800 400 626 24 100.0 12.5 30.0 5.0 35.0 100.0 10.0 27.5
1500 1000 500 841 31 100.0 17.5 22.5 12.5 25.0 100.0 15.0 25.0
1800 1200 600 1131 39 100.0 25.0 45.0 22.5 60.0 100.0 25.0 50.0
2100 1400 700 1418 48 100.0 37.5 65.0 35.0 62.5 100.0 35.0 55.0
2400 1600 800 1764 57 100.0 52.5 65.0 55.0 70.0 100.0 52.5 65.0
2700 1800 900 2128 66 100.0 72.5 80.0 67.5 80.0 100.0 67.5 77.5
3000 2000 1000 2368 76 100.0 70.0 67.5 70.0 70.0 100.0 70.0 70.0
3300 2200 1100 2709 86 100.0 72.5 87.5 70.0 90.0 100.0 75.0 92.5
3600 2400 1200 3112 96 100.0 85.0 97.5 85.0 95.0 100.0 85.0 95.0
3900 2600 1300 3433 106 100.0 90.0 100.0 90.0 100.0 100.0 90.0 97.5
4500 3000 1500 4052 128 100.0 95.0 95.0 95.0 95.0 100.0 95.0 95.0

Table 3.5: Success rates with straight-line planner for Scene 1 (with enhancement)

the success rates for connecting the test set to the network are higher when the cus-

tomized planner is used (Table 3.1). Nevertheless, the generic local planner does quite

well although it does not use any knowledge about the structure of the robot.

Free-
ying Serial Robot in the Plane (7 dof)

Figure 3.8 shows 8 di�erent con�gurations of the free-
ying 7-dof robot described in

Section 3.2. The thick black square at one end of the robot is not part of the body

of the robot; it just helps us to distinguish the one end of the robot from the other.

In Tables 3.6 and 3.7 we show the success rates for connecting each of these 8

con�gurations to the network, for enhancement and no enhancement respectively.

The third step of the preprocessing again has not been used in these calculations,

since when N +M is su�ciently large, one major component remains at the end of

enhancement. As was the case with the �xed-base serial linkage that we examined

before, we also have very good running times for both versions of the algorithm

with the enhanced version doing clearly better. At 34 seconds preprocessing time

(N + M = 1800) the enhanced version gives success rates of 90% or more, while

the same rates are achieved after 50 seconds of preprocessing without enhancement

(N +M = 2400). The di�erence (in favor of enhancement) shows again more clearly

for small values of N +M .

In Table 3.8 we give the time required for connecting C1; : : : ; C8 of Figure 3.8 to the
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Figure 3.8: Scene 2, with 5-revolute-joint free-base robot

network. We retain only the largest component at the end of the preprocessing phase.

The size of that component is reported in column 4 of the above table, together with

the sizes of any other components that remain at the end of the network enhancement

step and have more than 10 nodes. Again in Table 3.8 an F denotes failure to connect

to the network. Subsecond connection to network times are achieved after 48 seconds

of preprocessing (N + M = 2400). Connection to network timings larger than 1

second denote that the con�guration was connected to the network after one or more

random-bounce walks.

Note that the long connection to network timings (and failures) of row 5 are

due to the fact that some two major components did not get connected in the end,

which resulted in the use of the next-level-of-sophistication planner (random-bounce

walk followed by the local planner) for answering the queries. This is a randomized

algorithm and these occasional failures are to be expected. Our algorithm is to be

judged on how often these failures happen, which is answered by Tables 3.6 and 3.7.
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Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

900 600 300 362 12 90.0 22.5 27.5 35.0 17.5 87.5 25.0 20.0
1200 800 400 635 19 92.5 70.0 57.5 72.5 57.5 87.5 57.5 52.5
1500 1000 500 1010 25 100.0 92.5 80.0 80.0 77.5 95.0 80.0 72.5
1800 1200 600 1521 34 100.0 97.5 97.5 100.0 100.0 100.0 97.5 97.5
2100 1400 700 1829 40 100.0 100.0 100.0 100.0 97.5 100.0 100.0 97.5
2400 1600 800 2161 48 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
2700 1800 900 2469 56 100.0 100.0 100.0 100.0 100.0 97.5 100.0 100.0
3000 2000 1000 2779 65 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3300 2200 1100 3081 74 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3.6: Success rates with customized planner for Scene 2 (with enhancement)

Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

900 900 0 328 12 97.5 5.0 10.0 17.5 7.5 97.5 5.0 7.5
1200 1200 0 529 19 100.0 42.5 35.0 30.0 17.5 100.0 20.0 27.5
1500 1500 0 775 26 100.0 60.0 50.0 52.5 40.0 100.0 37.5 45.0
1800 1800 0 1001 34 100.0 60.0 60.0 60.0 50.0 100.0 50.0 47.5
2100 2100 0 1486 42 100.0 80.0 92.5 77.5 75.0 100.0 80.0 80.0
2400 2400 0 1997 50 100.0 100.0 97.5 100.0 97.5 100.0 97.5 97.5
2700 2700 0 2270 58 100.0 100.0 100.0 97.5 95.0 97.5 97.5 95.0
3000 3000 0 2615 68 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
3300 3300 0 2912 76 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3.7: Success rates with customized planner for Scene 2 (without enhancement)

Initial Enhanc Comp Size of Prepr Time to connect to largest component (sec)
N M (num) components (sec) C1 C2 C3 C4 C5 C6 C7 C8

600 300 123 365, 267, 14 12 0.00 1.10 F F F 2.92 F F
800 400 140 476, 402, 16 19 0.02 3.00 2.55 6.20 4.63 4.78 6.43 F
1000 500 124 1231 25 0.02 0.02 0.02 0.02 0.02 0.13 0.00 0.00
1200 600 113 1554, 11 33 0.07 0.05 0.00 0.02 0.33 1.05 0.00 0.02
1400 700 105 1051, 795, 23 40 0.03 1.28 2.10 6.47 F 0.12 0.00 F
1600 800 110 2191 48 0.02 0.02 0.02 0.02 0.10 0.13 0.00 0.02
1800 900 87 2502 56 0.08 0.02 0.00 0.00 0.03 0.00 0.00 0.00
2000 1000 83 2829 65 0.02 0.02 0.02 0.02 0.02 0.07 0.00 0.02
2200 1100 94 3101 74 0.03 0.02 0.02 0.03 0.00 0.22 0.00 0.02

Table 3.8: Timings for connecting to the networks for Scene 2 (with enhancement)
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Figure 3.9: Scene 3, with 10-dof hand-like robot

Multiple-chain, Hand-like Robot in the Plane (10 dof)

In Figure 3.9 we show 8 manually chosen con�gurations of the hand-like robot de-

scribed in Section 3.2. The �rst three links of this robot are extensible within limits.

Let us point out that the C-space in this case is disconnected for a trivial reason.

Indeed, since we distinguish between the two hands of the robot, say hand 1 and hand

2, two con�gurations which have the relative positions of the two hands reversed (that

is in one con�guration hand 1 is to the left of hand 2 and in the other con�guration

it is vice versa) cannot be connected. It is easy to overcome this problem though by

taking care not to ever produce random con�gurations which have hand 2 to the left

of hand 1. This is very easy to accomplish; once the position of hand 1 has been

randomly chosen, we restrict the range of the values for the dof of hand 2 in a way

that it will fall always to the left, or always to the right, of hand 1.

In Tables 3.9 and 3.10 we give the success probabilities of our planner when tried

on the con�gurations C1; : : : ; C8 for various values of N and M . Con�guration C6



Chapter 3. Experimental Results 66

Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

1500 1000 500 1420 87 97.5 85.0 80.0 100.0 100.0 17.5 47.5 100.0
2250 1500 750 2156 145 95.0 92.5 92.5 100.0 100.0 42.5 62.5 100.0
3000 2000 1000 2907 209 100.0 97.5 90.0 100.0 100.0 37.5 77.5 100.0
3750 2500 1250 3652 267 100.0 100.0 87.5 100.0 100.0 37.5 87.5 100.0
4500 3000 1500 4406 334 100.0 100.0 95.0 100.0 100.0 52.5 92.5 100.0
5250 3500 1750 5159 400 100.0 97.5 97.5 100.0 100.0 62.5 92.5 100.0
6000 4000 2000 5913 467 100.0 100.0 100.0 100.0 100.0 75.0 97.5 100.0
6750 4500 2250 6670 535 100.0 100.0 100.0 100.0 100.0 75.0 100.0 100.0
7500 5000 2500 7420 606 100.0 100.0 100.0 100.0 100.0 70.0 100.0 100.0
9000 6000 3000 8927 751 100.0 100.0 100.0 100.0 100.0 80.0 100.0 100.0

Table 3.9: Success rates with customized planner for Scene 3 (with enhancement)

Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

1500 1500 0 1389 101 45.0 7.5 2.5 100.0 100.0 0.0 0.0 100.0
2250 2250 0 2119 164 45.0 15.0 2.5 100.0 100.0 0.0 0.0 100.0
3000 3000 0 2852 230 55.0 15.0 7.5 100.0 100.0 0.0 0.0 100.0
3750 3750 0 3580 296 60.0 15.0 12.5 100.0 100.0 7.5 0.0 100.0
4500 4500 0 4328 362 80.0 40.0 37.5 100.0 100.0 5.0 10.0 100.0
5250 5250 0 5071 432 75.0 67.5 52.5 100.0 100.0 7.5 7.5 100.0
6000 6000 0 5805 502 85.0 57.5 55.0 100.0 100.0 22.5 32.5 100.0
6750 6750 0 6579 574 100.0 87.5 85.0 100.0 100.0 22.5 55.0 100.0
7500 7500 0 7313 646 95.0 77.5 67.5 100.0 100.0 25.0 52.5 100.0
9000 9000 0 8813 800 92.5 90.0 90.0 100.0 100.0 40.0 65.0 100.0

Table 3.10: Success rates with customized planner for Scene 3 (without enhancement)

proved to be very di�cult to connect here. If we only look down column C6 we

see that the enhancement step has indeed helped a lot. With the exception of C6,

success rates higher than 90% are achieved after 334 seconds of preprocessing when

enhancement is done. This is not the case without enhancement.

In Table 3.11 we give the time that is required for connecting each of the 8 con-

sidered con�gurations to the networks produced for di�erent values of N +M , when

enhancement is performed. Subsecond timings are the norm in all cases but C6, where

the large connection times of 5-6 seconds are due to the fact that a few random-bounce

walks were executed before we were able to connect the con�guration to the network.

The F's persist down the column of C6, and this was expected from the statistics in
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Initial Enhanc Comp Size of Prepr Time to connect to largest component (sec)
N M (num) components (sec) C1 C2 C3 C4 C5 C6 C7 C8

1000 500 1 1383 171 0.02 0.13 1.25 0.20 0.02 F F 0.02
1500 750 1 2072 287 0.00 0.03 0.20 0.02 0.07 6.92 F 0.02
2000 1000 1 2742 316 0.00 0.12 0.42 0.00 0.02 13.77 0.02 0.02
2500 1250 1 3402 324 0.02 0.02 0.02 0.00 0.02 5.93 F 0.02
3000 1500 1 4163 377 0.02 1.22 0.02 0.02 0.02 F 0.03 0.02
3500 1750 2 4757, 286 723 0.02 0.03 0.03 0.02 0.02 5.90 0.03 0.02
4000 2000 1 5450 473 0.03 0.02 0.02 0.02 0.02 8.03 0.02 0.17
4500 2250 1 6145 557 0.02 0.03 0.02 0.02 0.02 6.63 0.00 0.02
5000 2500 1 7436 595 0.02 0.02 0.02 0.02 0.03 F 0.02 0.03
6000 3000 1 8960 745 0.05 0.70 0.02 0.03 0.05 0.28 0.02 0.03

Table 3.11: Timings for connecting to the networks for Scene 3 (with enhancement)

Table 3.9.

This robot and workspace is the only one that we studied where it was advan-

tageous to use the third step of the preprocessing, that is the further reduction of

connected components with the auxiliary planner (the Randomized Path Planner -

RPP - in our case [Barraquand and Latombe, 91]). We noticed that we had to go to

very large values of N+M to get a single major component in the free C-space (Table

3.12). For small N +M we had consistently more than one major components at the

end of the network enhancement step. Thus, it paid o� to dedicate time to a powerful

planner. RPP was successful in merging connected components of signi�cant size in

reasonable time. In fact the time allocated to the third step of the preprocessing was

more than enough for RPP to merge all signi�cant components into one. We remind

here that the time allocated to the third step of the preprocessing is equal to the total

time of steps 1 and 2 of preprocessing. Because of the calls to the auxiliary planner,

the preprocessing times in column 5 of Table 3.11 behave rather irregularly.

In Table 3.12 we show (for the run of our algorithm of Table 3.11) how the pre-

processing time is divided among the three steps of preprocessing. In the last column

we give the time required by the auxiliary planner to make the connections among

the major components. This planner was not needed in the last two rows. Overall,

our experience showed that the larger N + M is, the shorter the time it takes for

step 3 of preprocessing to �nish. There are of course some exceptions in this table
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Initial Enhanc Prepr Step 1 Step 2 Step 3
N M time Construction Enhancement RPP connection

(sec) (sec) (sec) (sec)
1000 500 171 60 28 72
1500 750 287 101 46 138
2000 1000 316 146 61 108
2500 1250 324 189 83 51
3000 1500 377 229 103 43
3500 1750 723 274 122 327
4000 2000 473 324 144 4
4500 2250 557 369 167 20
5000 2500 595 409 185 -
6000 3000 745 507 238 -

Table 3.12: Breakup of preprocessing time for the robot of Scene 3

to the stated fact, but we should not forget that this is a randomized algorithm and

its running time may vary a lot from one run to another. It is especially true of the

auxiliary planner that we used, RPP, that its running time may vary a lot and this

is one of RPP's greatest disadvantages. Our algorithm is much more stable in this

respect.

3.3 Articulated Robots in Space

We consider now serial articulated robots in space with spherical joints. The links of

these robots are again line segments. To parametrize the C-space we need to describe

the orientation of each link of the robots in space. This requires two angles � and �

as described in page 8.

We consider two such robots:

1. The robot shown in Figure 3.10(a) has a �xed base and 6 spherical joints for a

total of 12 dof. We draw a small rectangle at the base of this robot.

2. The articulated robot in Figure 3.10(b) has 8 links (16 dof) and moves in a very

constrained environment. This is the example with the highest number of dof

presented in this dissertation.
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(a) (b)

Figure 3.10: (a) Fixed-base serial robot in space with 6 spherical joints (12 dof) and
(b) �xed-base serial robot with 8 spherical joints (16 dof)

As in the planar case, we do not allow any two consecutive links to form an angle

smaller than 10 degrees. This simulates mechanical stops. We describe now how the

method of Chapter 2 can be customized to articulated robots in space.

3.3.1 The Local Planner for Articulated Robots in Space

Let a and b be two con�gurations of the robot that we wish to connect. A planner

that is similar to the one used for planar robots (see Subsection 3.2.1) and gives better

results than the straight-line generic planner works as follows: it tries to move the

odd-numbered joints J2i+1 of the robot along the straight-line segment in workspace

that connects their positions in con�gurations a and b, that is J2i+1(a) and J2i+1(b),

and with constant speed. If q (the number of the last joint) is odd, the position of

Jq+1 is not determined by the above rule. We treat this problem as we did in the

planar case by letting the last (�; �) pair move in a straight line in (�; �)-space to

their �nal values.

Unlike the planar case the motion of the odd-numbered nodes does not uniquely

determine the motion of the intermediate even-numbered nodes. Indeed, for any �xed

position in space of J1 and J3 the joint J2 can be anywhere on a circle with center the



Chapter 3. Experimental Results 70

midpoint of J1J3. This circle lies on a plane perpendicular to J1J3, and has radius

r =

�
L2 �

1

4
jJ1J3j

2
�1=2

; (3:1)

where L is the common length of each segment.

So we proceed as follows: We start moving the odd-numbered nodes J2i+1 i =

0; : : : ; bq=2c, from their initial positions J2i+1(a) to their �nal positions J2i+1(b), along

the line segments J2i+1(a)J2i+1(b) and by making a (safe) small step at a time. At

each such step after having determined the new position of all J2i+1's the position of

the even-numbered nodes J2i i = 1; : : : ; bq=2c, is determined by projecting the old

position onto the new locus of the point J2i (that is the circle determined by the

new positions of the even-numbered nodes and (3.1)). It is not di�cult to carry this

projection. We �rst project the old position of J2i onto the plane perpendicular to

the (new) line segment J2i�1J2i+1 at the middle of it, and then we scale the resulting

vector to length r. It is easy to show that the point obtained in this manner is the

point of the circle which is closest to the previous position of J2i. These calculations

can be carried out very fast. However, the resulting local planner is not as fast as the

generic straight-line planner.

3.3.2 Distance Computation

The distance in this case is given by exactly the same formula as in the planar case,

that is

D(a; b) =

0@q+1X
i=1

jJi(a)� Ji(b)j
2

1A1=2

:

3.3.3 Collision Checking

Collision checking in a three-dimensional workspace is expensive and the collision

checking function should be written very carefully. We chose the following simple

solution. Our workspace is modeled as a collection of two-dimensional rectangles in

arbitrary position in space. We wrote a fast routine that checks for collision of a
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line segment and a 2D-rectangle in space and we apply this routine to all the links

of the robots used. For �xed-base robots we check the links starting from the one

further from the base to increase our chances of detecting a collision sooner rather

than later. If the robot has a �xed base which is outside the obstacles, one of its

links must intersect some of the rectangles that represent the obstacles, whenever the

robot collides with the obstacles. This is not the case with a free-
ying robot. Then

the whole robot might be enclosed in a 3D-box obstacle, that we have modeled as a

collection of 6 faces, without intersecting with any face. Of course this would be a

collision with the solid obstacle. This problem can be avoided in many ways, say by

testing a single joint of the robot for containment in all workspace obstacles along

with the previous test of line segments intersecting the faces.

A large amount of work has been conducted for developing e�cient collision check-

ers for 3D workspaces and the use of more sophisticated collision checking will be

necessary when the workspace involves more complicated obstacles. In particular, we

believe that collision checkers which generate successive approximations of the objects

and the robot will be bene�cial for this planner (for example see [Quinlan, 94]). The

reason is that many collisions can already be detected with a coarse approximation

of the robot and the obstacles, thus avoiding explicit checking of all the links of the

robot against all the obstacles.

3.3.4 Experiments with Articulated Robots in Space

The tables that we present here have the same format as in the planar case. For each

robot we manually de�ne a test set and report how successful we are in connecting

each of the con�gurations in the test set to the networks produced for di�erent values

of N and M . Success rates were measured over 40 independent runs of the method.

Again for comparison purposes we present results obtained with the use of the network

enhancement step and without it. The third step of the preprocessing has not been

used in the 3D examples. The lengths of the links of the robot are again 0:16 and

the workspace is [0; 1]3. The experiments were performed on the same machine as

in the planar case, a DEC Alpha, and 10 seconds were spent in trying to connect
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a con�guration to the largest component of the network produced by preprocessing

before declaring failure. As far as the other numerical parameters of the method

are concerned: rand bounce length and max neighbors have the values 100 and 30

respectively and eps is set to 0:01. The value of max distance is 0:42 for the 12-dof

robot, while for the 16-dof robot it is 0:54.

Fixed-base Serial Articulated Robot in Space (12 dof)

Figure 3.11 shows the 8 con�gurations of the 12-dof robot that we try for connection

to the networks produced for di�erent values of N and M .

In Tables 3.13 and 3.14 we report the results of our experiments with enhancement

and without enhancement respectively. From Table 3.13 we infer that 228 seconds of

preprocessing time are necessary for connecting the con�gurations of the test with a

100% success rate with the exception of con�guration C7. Con�guration C7 turned

out to be a di�cult case and the enhanced version does rather better on this than the

plain version of our algorithm. With enhancement we need 405 seconds to connect

this con�guration to the produced network 90% of the time (Table 3.13, row 6).

Without enhancement the corresponding preprocessing time is 620 seconds (Table

3.14, row 8). Otherwise the two versions give rather comparable results and this is

probably due to the fact that the example turned out to be an easy problem, despite

the 12 dof. We have generally observed that the superiority of the enhanced version

shows up mostly in di�cult examples.

In Table 3.15 we show the time required to connect each of the 8 con�gurations

examined to the networks produced. Subsecond connection times prevail after a

preprocessing of 236 seconds. Notice also that one major component that comprises

almost all the generated nodes is formed after a preprocessing time of 156 seconds.

The size of that component is shown in column 4 of Table 3.15. The absence of

smaller components (all other components had less than 10 nodes) proves that the

example was an easy one for the method.
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C1 C2

C3 C4

C5 C6

C7 C8

Figure 3.11: Scene 4, with a �xed-base robot which has 6 spherical joints (12 dof)
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Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

1200 800 400 1104 49 95.0 87.5 87.5 87.5 60.0 75.0 7.5 75.0
1800 1200 600 1733 95 97.5 95.0 100.0 97.5 77.5 100.0 35.0 92.5
2400 1600 800 2342 156 100.0 100.0 100.0 100.0 90.0 95.0 55.0 100.0
3000 2000 1000 2962 228 100.0 100.0 100.0 100.0 100.0 100.0 70.0 100.0
3600 2400 1200 3568 312 100.0 100.0 100.0 100.0 100.0 100.0 82.5 100.0
4200 2800 1400 4174 405 100.0 100.0 100.0 100.0 100.0 100.0 90.0 100.0
4800 3200 1600 4776 504 100.0 100.0 100.0 100.0 100.0 100.0 95.0 100.0
5400 3600 1800 5376 622 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0
6000 4000 2000 5988 734 100.0 100.0 100.0 100.0 100.0 100.0 100.0 100.0

Table 3.13: Success rates with customized planner for Scene 4 (with enhancement)

Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

1200 1200 0 1123 39 92.5 87.5 92.5 85.0 50.0 75.0 5.0 77.5
1800 1800 0 1738 87 100.0 100.0 97.5 100.0 92.5 97.5 17.5 100.0
2400 2400 0 2349 153 100.0 100.0 100.0 100.0 97.5 100.0 40.0 97.5
3000 3000 0 2958 228 100.0 100.0 100.0 100.0 97.5 100.0 57.5 100.0
3600 3600 0 3563 316 100.0 100.0 100.0 100.0 100.0 100.0 77.5 100.0
4200 4200 0 4172 411 100.0 100.0 100.0 100.0 100.0 100.0 82.5 100.0
4800 4800 0 4771 512 100.0 100.0 100.0 100.0 100.0 100.0 77.5 100.0
5400 5400 0 5373 620 100.0 100.0 100.0 100.0 100.0 100.0 90.0 100.0
6000 6000 0 5977 728 100.0 100.0 100.0 100.0 100.0 100.0 97.5 100.0

Table 3.14: Success rates with customized planner for Scene 4 (without enhancement)

Initial Enhanc Comp Size of Prepr Time to connect to largest component (sec)
N M (num) components (sec) C1 C2 C3 C4 C5 C6 C7 C8

800 400 31 1109, 22, 11 49 7.68 3.38 0.80 F 6.58 12.03 F 4.87
1200 600 15 1722, 15 98 0.02 0.38 0.00 0.02 0.28 1.98 F 0.02
1600 800 15 2336 156 0.00 0.13 1.95 0.03 0.03 3.55 F 1.38
2000 1000 10 2954 236 0.00 0.02 0.50 0.03 0.03 0.02 2.07 3.02
2400 1200 5 3577 323 0.02 0.08 0.17 0.07 0.00 0.02 0.02 2.88
2800 1400 4 4183 410 0.02 3.50 0.03 0.02 0.02 0.07 0.03 0.02
3200 1600 2 4795 510 0.02 3.07 0.13 0.07 0.02 0.02 0.03 3.10
3600 1800 2 5393 613 0.02 0.02 3.00 0.03 0.02 0.02 0.32 4.07
4000 2000 2 5989 726 0.02 0.05 0.03 0.07 0.03 0.02 7.18 0.15

Table 3.15: Timings for connecting to the networks for Scene 4 (with enhancement)
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Fixed-base Serial Articulated Robot in Space (16 dof)

Figure 3.12 shows one of the most di�cult examples we have run so far. The robot

involved has 16 dof and it moves among narrow gates. The x and y dimensions of

gates in the workspace of the robot are less than half the length of each link of this

robot.

Tables 3.16 and 3.17 contrast the performance of the planning method with en-

hancement and without enhancement respectively. Notice from Table 3.16 that con-

�gurations C1; C2 and C8 proved di�cult to connect to the networks produced by

preprocessing. However, after 478 seconds of preprocessing time the success rates for

connecting all of C1; : : : ; C8 to the network produced are at least 90% (Table 3.16,

row 5). This nice behavior is not observed when the enhancement step of the pre-

processing is not used. In fact, the success rates for a preprocessing time of around

500 seconds are only 60%. Last row of Table 3.17 shows that even for large values

of N , which amounts to a preprocessing time of nearly 1000 seconds, the version of

the method without enhancement does not perform satisfactorily: for C1 and C2 the

success rates for connecting them to the largest component of the network produced

are 87:5% and 85:0% respectively, while for C8 the corresponding success rate is only

72:5%.

In Table 3.18 we report the time needed to connect each of C1; : : : ; C8 to the

network when N + M increases and enhancement is performed. The size of the

largest component is again reported in column 4 of the above table and an F denotes

failure to connect to the network within 10 seconds. Subsecond times for connecting

C1; : : : ; C8 are di�cult to achieve in this example unless N +M is large. Typically

for this scene few random-bounce walks were performed before each of the C1; : : : ; C8

got connected to the network with the speci�c local planner. However, the timings

reported for connection to the networks are very low: most of them range between 2

and 5 seconds.
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C1 C2

C3 C4

C5 C6

C7 C8

Figure 3.12: Scene 5, with a �xed-base robot which has 8 spherical joints (16 dof)
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Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

1200 800 400 1088 72 77.5 62.5 62.5 70.0 97.5 97.5 57.5 67.5
1800 1200 600 1701 144 72.5 67.5 95.0 97.5 100.0 100.0 85.0 67.5
2400 1600 800 2316 241 85.0 77.5 100.0 100.0 100.0 100.0 87.5 70.0
3000 2000 1000 2917 350 85.0 80.0 100.0 100.0 100.0 100.0 92.5 80.0
3600 2400 1200 3522 478 97.5 90.0 100.0 100.0 100.0 100.0 100.0 90.0
4200 2800 1400 4123 620 95.0 92.5 100.0 100.0 100.0 100.0 100.0 87.5
4800 3200 1600 4725 769 97.5 90.0 100.0 100.0 100.0 100.0 97.5 92.5
5400 3600 1800 5331 931 97.5 97.5 100.0 100.0 100.0 100.0 100.0 90.0

Table 3.16: Success rates with customized planner for Scene 5 (with enhancement)

Initial Enhanc Avg Avg time Success Rate (%)
N+M N M size (sec) C1 C2 C3 C4 C5 C6 C7 C8

1200 1200 0 1043 66 67.5 52.5 42.5 52.5 97.5 95.0 35.0 45.0
1800 1800 0 1642 145 75.0 42.5 67.5 70.0 100.0 90.0 37.5 65.0
2400 2400 0 2235 251 77.5 55.0 87.5 85.0 100.0 97.5 60.0 62.5
3000 3000 0 2844 375 60.0 60.0 97.5 90.0 100.0 97.5 87.5 67.5
3600 3600 0 3447 513 80.0 65.0 97.5 97.5 100.0 100.0 82.5 60.0
4200 4200 0 4054 663 87.5 65.0 97.5 100.0 100.0 100.0 95.0 67.5
4800 4800 0 4648 824 77.5 70.0 100.0 100.0 100.0 100.0 95.0 70.0
5400 5400 0 5252 990 87.5 85.0 100.0 100.0 100.0 100.0 95.0 72.5

Table 3.17: Success rates with customized planner for Scene 5 (without enhancement)

Initial Enhanc Comp Size of Prepr Time to connect to largest component (sec)
N M (num) components (sec) C1 C2 C3 C4 C5 C6 C7 C8

800 400 37 1086, 27, 18 73 5.88 F F F 6.27 F F F
1200 600 51 1653, 18, 16 147 2.65 5.52 3.70 2.45 5.50 2.68 F 4.02
1600 800 26 2333 250 5.20 F 3.05 6.30 4.13 1.72 0.03 F
2000 1000 21 2907 360 5.48 F 0.42 9.95 0.02 1.40 2.40 2.90
2400 1200 22 3537 476 6.08 4.5 0.03 2.52 0.05 2.62 3.20 5.60
2800 1400 15 4128 628 4.43 2.65 0.07 2.05 0.13 0.10 4.42 4.07
3200 1600 16 4736 780 4.72 2.87 2.78 0.03 0.07 0.50 2.22 5.80
3600 1800 12 5354 961 2.77 3.25 1.03 0.05 0.10 0.03 0.02 4.30

Table 3.18: Timings for connecting to the networks for Scene 5 (with enhancement)
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3.4 Some Remarks

The experimental results shown in this chapter are very promising. For the robots

considered our method can e�ciently solve problems which are beyond the capabilities

of other existing techniques. For example, for planar articulated robots with many

dof, the customized implementation of Section 3.2 is much more consistent than

the Randomized Path Planner of [Barraquand and Latombe, 91]. The latter planner

although it can be very fast on some di�cult problems, it may also take prohibitive

time on some others. We have not observed such disparity with our randomized

network method. Notice however, that the problems considered in this chapter involve

many narrow gates in the workspace of the robot and are typically the problems that

cannot be handled satisfactorily by potential-�eld techniques like the Randomized

Path Planner.

Overall, we have found the method quite reliable and easy to use. When prepro-

cessing time increases, a better network is always obtained. The incremental nature of

the technique permits the gradual construction of a network that captures su�ciently

well the connectivity of the free C-space even for di�cult examples. Also, it helps to

select easily some of the numerical parameters of the method (N;M; query time) for

a given class of problems.

We would like to emphasize that the problems described in the previous sections

of this chapter are quite di�cult. We change below some of the workspace features of

these examples (i.e., make the gates in the workspace larger) to reveal the di�culty

of these problems. This short experiment also shows how well our method performs

in easier examples. All the percentages reported are obtained over 40 independent

runs of the method, as in Sections 3.2 and 3.3. Figure 3.13 shows the 10-dof hand-like

robot described in Section 3.2.4. The robot now moves in an environment where the

left gate of its workspace wall is as wide as the right gate. We used the customized

version of our randomized method with enhancement, and obtained the following

result: only 80 seconds of preprocessing time are required for success rates of at least

97:5% for the con�gurations C1; : : : ; C8 of Figure 3.9. This preprocessing time is very
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Figure 3.13: 10-dof hand-like robot moving in a less constrained environment

Figure 3.14: 16-dof �xed-base robot moving in an environment with wide gates

low compared to the 300 to 400 seconds reported in Table 3.9.

As another example consider the 16-dof robot of Section 3.3.4. Suppose we make

the gates in its workspace one and a half times wider than before, as shown in Figure

3.14. Then the preprocessing time needed to arrive to success rates that are larger

than 97:5% is only 72 seconds. The test set consists of the con�gurations C1; : : : ; C8

shown in Figure 3.12. Compare the above result with the preprocessing times for the

workspace with the narrow gates in Table 3.16, where 478 seconds were needed for

comparable success rates. It is indeed true that the method performs remarkably well

in easier scenes, despite the large number of dof of the robots involved.
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An important question is how our method scales up when we consider scenes with

more complicated geometry, since the cost of collision checking can be expected to

increase. First, let us note that in 2D workspaces the e�ect is likely to be limited if the

bitmap collision-checking technique of Chapter 5 is used. Indeed, once bitmaps have

been precomputed, collision checking is a constant-time operation; and the cost of

computing bitmaps using the FFT-based technique of Chapter 5 only depends on the

resolution (i.e., the size) of these bitmaps. However, more complicated geometry may

require increasing the bitmap resolution in order to represent geometric details with

the desired accuracy. With 3D workspaces the situation is completely di�erent, since

we can no longer use the bitmap technique. Our experiments of Section 3.3 show that

the higher cost of collision checking mainly increases the duration of the preprocessing

phase. It also increases the time needed in the query phase, since collision checking

is needed to connect the start and goal con�gurations to the network.

For more complicated shapes of robots and obstacles than the ones shown here,

the use of an iterative collision checker, like the one in [Quinlan, 94], will be advanta-

geous. This collision checker considers successive approximations of the objects and

its running time, on the average, does not depend much on the geometric complexity

of the scenes. It is possible to simplify the geometry of the space during a large part

of the preprocessing. In the network construction step, we could use a local planner

that is simple not only in the paths it generates but also in the geometry it considers

(as long as this geometry is conservative). Such a planner will create a number of con-

nected components at the end of the network construction step. Then a planner that

considers the exact geometry of the space can be used to obtain connections among

these components. RPP is another planner that heavily relies on collision checking.

For long RPP was run on geometrically simple problems; but, recently, it was used to

automatically animate graphic 3D scenes of complex geometry [Koga et al, 94] using

the above iterative collision checker. No dramatic slowdown was observed in the time

taken by the planner. Finally, we should emphasize that the potentially large cost of

collision checking can be o�set by a massive parallelization of the method which is

de�nitely possible, as explained in the end of Chapter 2.



Chapter 4

Theoretical Analysis of the

Performance of the Method

4.1 Introduction

In this chapter we attempt to analyze formally the performance of our algorithm.

This is a very di�cult task. Like any method employed in practice our method uses

heuristics, which may di�er from case to case, and takes shortcuts to achieve better

performance. It is thus necessary to work on a simpli�ed and concrete case and rid

the method from any elements that are either not essential or are too di�cult to take

into account.

We arrive at the following simpli�ed model of our method. In this model the

C-space is assumed to be two-dimensional. Later in this chapter, we show that our

analysis can be carried over to higher C-space dimensions without any complications.

The parameters of our model are given below:

� The Free Space

An arbitrary open subset F of the unit square W = [0; 1]2.

� The Robot

81
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A point which is free to move in F .

� The Local Planner

The local planner takes the robot from point x to point y along a straight line.

It succeeds if the straight line segment xy is contained in F .

� The Collection of Random Con�gurations

A collection of N independent points uniformly distributed over F .

In other words we throw N independent random points in F and connect any two

of them that can be connected by a free straight line. A graph G with possibly

more than one connected components results in this fashion. To solve any planning

problem, that is to go from any point a to any point b, we try to connect both a

and b to two nodes in the same connected component of G using straight lines. Our

algorithm succeeds if and only if this is possible.

Having made the situation as clear as it can be, our purpose becomes to analyze

the probability of success of our algorithm as a function of all the relevant parameters.

For this we take any two, but �xed, points a; b 2 F , for which we assume that they

can be connected via a continuous path

p : [0; 1] 7�! F ; where p(0) = a and p(1) = b:

Let also O be the complement of F in W (the C-obstacle) and for any x 2 W write

r(x) for the Euclidean distance of x to O, that is

r(x) = min
y2O

jx� yj;

where jx� yj is the Euclidean distance of the points x and y of the plane.

We shall give some upper bound for the probability of failure of our algorithm,

which involves the number N of random points, the function r(p(t)) for t 2 [0; 1], as

well as the length L of p. Our bound will hold for any path p that joins a and b.

The dependence on r(p(t)) and L is to be expected. If we have two points for which

any connecting path has small r(p(t)), this intuitively means that the problem is

di�cult since we have to go close to the C-obstacle. Similarly, if any connecting path
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is long, it gets more di�cult to �nd it, since a larger number of relevant intermediate

con�gurations must be present in our random sample of F .

Unfortunately the bounds computed here are hard to use a priori since they

depend on the properties of the postulated connecting path p(t) from a to b, which are

di�cult to measure. But they give us some idea of the dependence of the performance

on N , and allow some restricted questions to be answered.

We �rst introduce some notation. For any vector x = (x1; x2) we write jxj =q
x21 + x22 for its Euclidean length. We also write

BR(x) = fy 2 W : jx� yj � Rg

for the Euclidean ball with center x and radius R. If two points x and y belong to

a curve C : [0; 1] 7�! W we denote by d(x; y) the arc-length from x to y along the

curve C. We also denote by jFj the area of the free space.

4.2 The Failure Probability for Paths Uniformly

Away from the Obstacles

In this section we give some simple upper bounds on the failure probability when

connecting pairs of points a and b. It is assumed that a and b can be connected by

some path p : [0; 1] 7�! F which keeps uniformly away from the obstacles, that is

all its points are at least a certain distance away from the C-obstacles. The key idea

is that of covering the path with few balls which overlap to a certain degree. The

parameters mentioned in the theorem below are drawn in Figure 4.1.

Theorem 4.1 Let p : [0; 1] 7�! F be a path of length L, p(0) = a, p(1) = b, and let

R = min0�t�1 r(p(t)) be the distance of the path to the obstacles. Then the probability

that our algorithm will fail to connect the points a and b is at most

2L

R

 
1 �

�R2

4jFj

!N
: (4:1)
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p(t)

R 

b

L : path length

a 

Figure 4.1: The parameters involved in the theorem

Proof: Let n = 2L=R. Then we can �nd points x0 = a; x1; : : : ; xn = b on the curve

p, for which d(xj ; xj+1) � R=2, for all j. Notice that for each j

BR=2(xj) � BR(xj+1): (4:2)

This is a direct consequence of the triangle inequality and the inequality jx � yj �

d(x; y).

Assume now that c 2 BR=2(xj) and d 2 BR=2(xj+1). Observe then that also

c 2 BR(xj+1) because of (4.2), which implies that the straight line segment cd is free,

since both c and d are contained in the same free ball BR(xj+1). An illustration of

this argument is given in Figure 4.2.

Let now q1; : : : ; qN be the random points that our algorithm produced. According

to the preceding observation, it is enough that we have at least one of the qk's,

k = 1; : : : ; N in each ball BR=2(xj), for our algorithm to succeed to connect the

points a and b. Since the qk's are independent and uniformly distributed over F , we

conclude that the probability that the ball BR=2(xj) contains none of the qk's is equal

to (1� jBR=2j=jFj)
N , where jBR=2j is the area of the ball of radius R=2. Here we use

the fact that we have thrown N independent points in F .
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j+1
R

R/2
xj

x

c

d

a

b

Figure 4.2: The proof of the theorem

Thus,

Pr [FAILURE] � Pr [Some ball is empty]

�
nX
j=1

Pr [The j-th ball is empty]

= n

 
1 �

jBR=2j

jFj

!N
: (4.3)

But since in two dimensions the area of the ball with radius R=2 is �R2=4, the

above relation becomes

Pr [FAILURE] �
2L

R

 
1 �

�R2

4jFj

!N
;

which concludes the proof of the theorem. 2
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Let us note here that the same analysis applies in C-spaces of higher dimension. If

d is the dimension of the C-space, the balls covering any path p are also d-dimensional.

From (4.3) the estimate for the probability of failure becomes

Pr [FAILURE] �
2L

R

 
1� !d

Rd

2djFj

!
N

;

where !d is the volume of the unit sphere in d dimensions.

Although the quantities L and R are di�cult to know a priori, the preceding

theorem at least sheds some light on the nature of the dependence of the algorithm

on them. The fact that the dependence on N is exponential is a good feature. The

base of the exponential 1 � !dR
d=(2djFj) can of course be very close to 1 and this

means that we need to go to higher values of N . The dependence of this base on R is

also derived. Another nice feature revealed is that the dependence on L is only linear.

Any estimate on L, R and jFj would allow us, using the above analysis, to decide

how large N should be so that we have at least a certain probability of success.



Chapter 5

Computation of C-space Using the

Fast Fourier Transform

5.1 Introduction

In Chapter 3 of this dissertation we constructed C-space bitmaps to aid collision

checking in two-dimensional workspaces. Precomputed C-space bitmaps explicitly

represent the free part of the C-space (with 0's) and the part that gives rise to

collision with an obstacle (with 1's) and reduce collision checking to a constant time

operation [Latombe, 91b].

In fact, there is a variety of other ways a precomputed C-space bitmap can be

exploited by a planner. For example, in [Lengyel et al, 90] it is used by a wavefront

propagation algorithm to numerically compute a local-minima-free potential �eld with

a single minimum at the goal. Another possible use of the bitmap is to generate a

more concise representation of the free space by grouping adjacent free con�gurations

into hyperparallelepipeds of various sizes (\approximate cell decomposition" approach

to path planning [Brooks and Lozano-P�erez, 85, Zhu and Latombe, 91]).

We describe below a new method for computing the C-space bitmap. In its most

basic form, it applies to the case where the robot is a d-dimensional (d = 2 or d = 3)

87
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rigid object translating in an d-dimensional workspace among obstacles. The C-space,

which in this case is also d-dimensional, can be regarded as a convolution of the

workspace and the robot [Guibas et al, 83]. We compute this convolution via a Fast

Fourier Transform (FFT) algorithm. The running time of our algorithm depends only

on the resolution of the discretization used. For a �xed resolution it is independent of

the complexity and the shape of the robot and the obstacles. Moreover, the method

can bene�t directly from speci�c hardware developed for the FFT algorithm.

The same method can be extended to a robot that can both translate and rotate

in the plane by discretizing the range of orientations of the robot and building a

three-dimensional C-space bitmap slice by slice. In theory, this extension also applies

to a robot that translates and rotates in three dimensions, but then the dimension

(6) of the C-space makes the construction of an explicit bitmap unrealistic. However,

if the rotation is restricted to occur about a single axis, a relatively coarse four-

dimensional bitmap can be constructed as a set of three-dimensional slices, each

computed at a �xed orientation of the robot. If the robot is a planar set of K

rigid bodies connected by prismatic and revolute joints, the method can be used to

build K bitmaps, each representing the C-space of one of the bodies as if it were

free to translate and rotate. In the context of the planning approach described in

[Barraquand and Latombe, 91] and the method described in this dissertation, these

K bitmaps can be used to compute whether a con�guration of the robot is collision-

free or not in constant time.

Although there has already been considerable research and results in C-space

computation, fast computation of C-space obstacles remains an important issue. This

is in particular the case when the environment changes dynamically. We believe that

C-space computation is basic enough in robotics (and other domains) to make it

bene�t from parallel or speci�c hardware implementations. In that respect, bitmap

representations seem to be very suitable.

This chapter is organized as follows. Section 5.2 gives a survey of previous re-

lated work. In Section 5.3 we show that the C-space bitmap is a convolution of the

workspace and the robot. In Sections 5.4 and 5.5 we discuss how to use the FFT



Chapter 5. Computation of C-space Using the FFT 89

algorithm for the e�cient calculation of the above convolution. In Section 5.6 we

present an experimental evaluation of the proposed algorithm and in Section 5.7 we

discuss the possibility of hardware and parallel implementations using recent work on

the FFT.

5.2 Survey of Existing Algorithms

Let us �rst introduce some notation. The robot is denoted by A. A is a rigid body

and moves in the workspace W � Rd, with d = 2 or d = 3. Let B denote one of

the obstacles in W, and C the C-space of A. The subset of W occupied by A at

con�guration q is denoted by A(q). That is A(q) = A + q = fx + q : x 2 Ag. The

obstacle B in W maps into C to the region CB = fq 2 C j A(q) \ B 6= ;g , which is

called a C-obstacle.

Many proposed algorithms for computing the C-obstacles for A deal with the case

where A can only translate and restrict the shape of the robot and the obstacles. We

begin our survey with these algorithms.

The case where A and B are convex polygons has been extensively studied

[Lozano-P�erez and Wesley, 79, Lozano-P�erez, 83] and an optimal algorithm has been

proposed by Lozano-P�erez [Lozano-P�erez, 83] and Guibas [Guibas et al, 83]. They

obtain the vertices of the also convex CB in O(nA + nB) time, where nA and nB

denote the number of vertices of A and B respectively. In the case where A and

B are non-convex polygons, Sharir [Sharir, 87] gave an algorithm which computes

the boundary of CB in O(n2An
2
B log(nAnB)) time. In the case where A and B are

generalized convex polygons, i.e., regions bounded by straight-line segments or circu-

lar arcs, Laumond [Laumond, 87] showed that CB can be computed in O(nA + nB)

time. When A and B are locally non-convex generalized polygons a decomposi-

tion of A and B into convex generalized polygons yields an O(n2An
2
B log(nAnB))

algorithm [Laumond, 87]. For A or B not locally non-convex, the algorithm has

O((nAnB + c) log(nAnB)) time complexity, where c is O(n2An
2
B) in the worst case

[Latombe, 91a]. The case where A and B are convex polyhedra has been studied
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in [Lozano-P�erez, 81, Lozano-P�erez, 83]. The best known algorithm has been given

by Guibas and Seidel [Guibas and Seidel, 86]. It constructs the boundary of CB in

O(nA + nB + c) time, where c is in the worst case O(nAnB). Finally, the method of

Avnaim and Boissonnat in [Avnaim and Boissonnat, 88] can be adapted to compute

the boundary of CB in O(n3An
3
B log(nAnB)) time, when A and B are any polyhedra.

The above algorithms analytically compute the boundary of the C-obstacle for each

connected workspace obstacle and then take the union of all constructed boundaries

to �nd the boundary of all C-obstacles. Path planners operating in discretized C-

spaces feed the results produced by these methods to routines that build the C-space

bitmap. For example, Latombe [Latombe, 91b] and Lengyel et al. [Lengyel et al, 90]

used the O(nA+nB) algorithm of Lozano-P�erez and Guibas to compute the vertices of

the C-obstacles and then �lled the C-obstacles with a raster graphics polygon-�lling

routine. Paths were computed in the produced bitmap.

Other methods for computing C-space maps that are closer to the spirit of our

method have been proposed. Newman and Branicky [Newman and Branicky, 91]

identify \elemental building blocks" (shapes) that are easily transformed from the

workspace to the C-space. They store the C-space transforms of these shapes, fre-

quently as bitmaps, and combine them to obtain the C-space bitmaps for com-

plex shapes. They report experiments where the running time of their algorithm

is very good. Lozano-P�erez and O'Donnell [Lozano-P�erez and O'Donnell, 91] imple-

mented an algorithm on the Connection Machine that computes a family of C-space

bitmaps which are then combined to construct bitmaps for more complex workspace

objects and a 6-dof robot. An algorithm given by Dehne, Hassenklover and Sack

[Dehne et al, 89] computes C-space bitmaps for arbitrary obstacles but \rectilinearly"

convex robots on a N � N mesh of processors in O(N) time. The above bound is

generalized in here to non-convex robots. This improvement is also reported in similar

to ours work done independently by Schwarzkopf [Schwarzkopf, 93].

There are some inherent di�erences between the algorithms that analytically com-

pute the C-obstacles and the algorithms that construct bitmaps for the C-space. The

time complexity of the �rst is measured in terms of the number of vertices of the robot
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and the obstacles. On the other hand, the running time of the bitmap algorithms is

a function of the size of the constructed bitmap. Typically, robots and obstacles with

many vertices demand a high resolution of discretization for describing their shapes

with su�cient accuracy. Hence, there is a relationship between the two complexity

measures, but this relationship is not well-de�ned.

In the next sections we describe a method for computing C-space maps whose only

inputs are a bitmap of the workspace and an algorithm to draw the robot on that

bitmap. The output is a C-space bitmap representing both the boundary and the

interior of the C-obstacles (1's) and the free space (0's). Thus, when using C-space

maps, we restrict the C-space of the robot to a discrete space, where each dof can only

assume a �nite number of values. The running time of our method is independent of

the number and the shape of the obstacles in the workspace W, and depends only on

the resolution of discretization.

5.3 Con�guration Space as a Convolution

In this section, we explain in two dimensions how the C-space can be obtained as

a convolution of the workspace and the translating robot. The same discussion also

applies in three dimensions.

Consider a workspace W = [a; b]� [c; d] � R2. We discretize W into a N � N

array W 1, where N is large enough to represent the obstacles in W with the desired

accuracy. We de�ne

celli;j = [a+ i
(b� a)

N
; a+ (i+ 1)

(b� a)

N
]� [c+ j

(d � c)

N
; c+ (j + 1)

(d � c)

N
];

where i; j 2 S = f0; : : : ; N�1g. If there is an obstacle anywhere in the cell celli;j we

let W (i; j) = 1, else W (i; j) = 0. The bitmap array W can easily be constructed if

the obstacles are input as a collection of algebraic shapes, e.g., polygons represented

by their vertices. When the data about the obstacles is obtained through sensing,

1In general, W is discretized into a N �M array. The fact that we use a square array is only for

simplifying our presentation. It has no particular importance in our method.
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the bitmap representation may be more straightforward to obtain than an algebraic

representation.

As described in Section 2.1 C is the set of all triples (x; y; �), where (x; y) are the

coordinates of a �xed reference point on the robot, pA, and � is the orientation of the

robot. In general the parameters x; y; � can assume any real value in [a; b]� [c; d]�

[0; 2�]. We discretize the workspace and the orientations of the robot and de�ne

x = a+ i
(b� a)

N
; y = c+ j

(d� c)

N
and � = k

2�

N
;

where i; j; k 2 S. The C-space can then be stored as a N �N �N binary array.2

The robot A can be approximated by a set of points (i; j); i; j 2 S, which are

drawn by a simple procedure given the orientation � of the robot and the coordinates

(x; y) of pA. For each �xed value of (x; y; �) we consider the N � N binary array

A(x;y;�) where only the points that belong to the robot are marked with 1's.

With the conventions of the previous paragraphs, a point (x; y; �) in the (discrete)

C-space is legal (free) if and only if

C(x; y; �) �
N�1X
i;j=0

W (i; j)A(x;y;�)(i; j) = 0:

We observe that whenever � is �xed and x; y are varying, the various bitmaps A(x;y;�)

are all translations of each other, and in particular of A(0;0;�). Then

C(x; y; �) =
X
i;j

W (i; j)A(0;0;�)(i� x; j � y):

For the moment we will ignore any complication that might arise concerning the range

of the indices i; j. We can assume that W and A(0;0;�) are in�nite in all directions

and padded with zeros (which indicate free space and do not a�ect the above sum).

What we have shown is that the array C(�; �; �) is the convolution of the arrays W

and A0
�
, where

A0
�
(i; j) = A(0;0;�)(�i;�j):

Indeed, the convolution of two arrays Q and T is de�ned as (Q ? T )(x; y) =P
ij Q(i; j)T (x� i; y � j): Hence, C(�; �; �) =W ? A0

�
.

2Footnote 1 applies for � as well.
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5.4 Computation of Convolution Via FFT

The convolution of two functions f and g can be computed by taking the Fourier

Transform (FT) of the two functions, multiplying the two transforms pointwise, and

then taking the inverse FT of the product. This is asserted by the Convolution

Theorem given below:

Convolution Theorem: If functions f and g de�ned on R are integrable then,df ? g(x) = bf (x)bg(x); where bh denotes the FT of function h.

However, calculating the convolution with the use of the Convolution Theorem is

of computational interest only when the FFT algorithm can be applied. The FFT

algorithm can be used when the functions f and g are periodic with the same period,

or what amounts to the same thing, when they are de�ned on a \cyclic" space. The

convolution and the FT are then de�ned as follows for the two-dimensional case

[Ramirez, 85]:

De�nition 1: The convolution of two functions f and g de�ned on the set S2, where

S = f0; 1; : : : ; N�1g, is the function (f ? g)(x; y) �
P
i;j2S f(i; j)g(x� i; y� j) on S2,

where the arithmetic on the indices is done modulo N .

De�nition 2: The FT of f on S2 is the function bf(x; y) = P
j;k2S f(j; k)�

�jx�ky on

S2, where � = exp(2�i=N).

The Convolution Theorem now holds for f and g de�ned as above. When this

theorem is used, the convolution computed is the one given in De�nition 1.

The classic FFT algorithm computes the one-dimensional FT of functions on S,

as well as its inverse (which is again de�ned on S), in time O(N logN). The two-

dimensional FT can be computed by �rst taking the one-dimensional FT of all rows

of the array, which is a function on S2, storing the results in the rows themselves, and

then taking the FT of all columns and putting the result back in the columns. The

time needed to compute a two-dimensional FT is O(N2 logN). Analogous de�nitions

hold for the d-dimensional FT whose computation takes O(Nd logN), when d is �xed.
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5.5 Computation of Con�guration Space

5.5.1 Basic Algorithm

Let us now consider the problem of computing the convolution of the workspace

bitmap W and the robot map A0
�
. We could proceed by using the de�nition of the

convolution which directly yields an O(N4) time procedure. Rather, we wish to

use the FFT results and compute this convolution in O(N2 logN) time. However,

the functions W and A0
�
involved in the convolution are not \cyclic" as is required

by De�nition 1. We eliminate this di�culty by simply setting W (i; j) to 1 on the

boundary of S2. By doing so, we make sure that the robot cannot \wrap around"

the workspace without a collision.

The actual running time of the proposed method critically depends on how fast

we can compute the discrete FFT of N points. The FFT algorithm is a very popular

algorithm. Optimized implementations of this algorithm are available on virtually ev-

ery computer. Many FFT implementations have been tailored to exploit the pipelines

of RISC processors and achieve close to peak performance. As discussed in Section

5.7, FFT hardware can reduce the running time of our method.

5.5.2 Algorithm for a translating and rotating planar robot

In Figure 5.1 we give the algorithm that computes the C-space bitmap for a robot A

that can translate and rotate in the plane. As before, x and y are the coordinates of a

�xed reference point (pA) of the robot and � is the orientation of the robot; N is the

resolution of the discretization on the workspace bitmap W . If N is also the number

of the desired orientations of the robot, then a N �N �N C-space bitmap CSPACE

is constructed. Even when the number of desired orientations is chosen di�erent from

N , it is expected to be O(N) and the above assumption does not a�ect our analysis

in any way.
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1 Put W (i; j) = 1 when either i or j is 0 or N � 1,
or an obstacle is present.

2 Compute cW , the 2D FT of W .

3 For all desired values of �:

4 begin

5 Construct A0
�
.

6 Compute cA0
�
, the 2D FT of A0

�
.

7 Let X = cW � cA0
�
(pointwise multiplication).

8 Compute Y as the inverse FT of X.
9 Let CSPACE(x; y; �) = 1 i� jY (x; y)j = 1.

10 end

Figure 5.1: Computation of C-space map

If we have a good way to draw the robot in the bitmap for every new orien-

tation, the running time of the algorithm is not signi�cantly a�ected by the shape

of the robot. Its time complexity is essentially O(N3 logN). Robot drawing can

often be simpli�ed by drawing only the boundary of the robot. Then the region

�lled by 1's in the CSPACE bitmap is only a subset of the true C-obstacles, but

it contains the boundary of the latter. For planners like the one described in

[Barraquand and Latombe, 91], this is su�cient to prevent collision because the robot

is never allowed to cross a C-obstacle boundary.

5.5.3 Algorithm for a translating robot in three dimensions

Although we focused our previous discussion on a robot moving in two dimensions,

the same method applies in three dimensions. If A can only translate, a three-

dimensional C-space can be constructed in O(N3 logN) time, by taking the three-

dimensional convolution of the workspaceW and the robot A0
�� 

. If rotation is allowed

to occur about a single axis, say �, a four dimensional bitmap can be constructed by

an algorithm similar to the one given in Figure 5.1. The algorithm then has a time

complexity of O(N4 logN), if N is the number of desired values of �. The same
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principle applies if rotation is allowed along the other axes. However, if a reasonable

resolution of discretization is required, the size of the C-space bitmap becomes very

large and it is not realistic to store it in the memory of current workstations.

5.6 Experimental Evaluation

We have implemented the FFT-based algorithm as this is described in Figure 5.1

except for a minor change to compensate for possible arithmetic errors. We set

CSPACE(x; y; �) = 1 when jY (x; y)j > THRESHOLD, instead of when jY (x; y)j = 1

(line 9). In our experiments THRESHOLD was set to 0.9. We have conducted a

series of experiments aimed at comparing the performance of the algorithm with (i) an

implementation of the O(nA+nB)-time algorithm of Lozano-P�erez [Lozano-P�erez, 83]

and Guibas [Guibas et al, 83] and (ii) an optimized implementation of the O(N4)-

time algorithm that computes the convolution of the workspace and the robot in a

straightforward way. All algorithms in this section are implemented in C and run

on a DEC 5000 workstation. This machine is rated at 18.5 SPECmarks89. (This

machine is considerably slower than the one used in the experiments of Chapter 3.)

5.6.1 Comparison with the linear O(nA + nB) algorithm

As discussed in Section 5.2, the input and output data are di�erent for algorithms

that compute C-obstacles (in this case the O(nA + nB) algorithm) and algorithms

that compute C-space bitmaps (in this case the FFT-based algorithm). An an-

alytic comparison between these algorithms does not seem possible. We tried to

establish a reasonable framework for an experimental comparison. Our aim is to

provide orders of magnitude for the running times of the FFT-based algorithm

and the O(nA + nB) algorithm, which has been used in many motion planners

[Latombe, 91b, Lengyel et al, 90].

The input of the implemented FFT-based algorithm is an N � N bitmap W

of the workspace. The robot is de�ned as a polygon. Its bitmap representation is
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Figure 5.2: Workspace with 150 convex polygon obstacles

not precomputed; the algorithm computes the bitmap representation of the robot's

boundary for each of the N orientations of the robot that we considered. The output

is an N �N �N bitmap CSPACE representing the C-space.

The input of the implemented linear algorithm is a collection of convex polygons

representing the robot and another collection of polygons representing the workspace

obstacles. Hence, the decomposition of non-convex polygons into convex ones is not

part of the running times given below. The output of the linear algorithm is entered

into a routine mapping this boundary in a C-space bitmap of the same resolution

as the one built by the FFT-based algorithm. This bitmap is the output of the

algorithm. When we have an analytic description of the C-obstacles, we can construct

a CSPACE bitmap of high resolution with accuracy. In the FFT-based algorithm, we

�rst project the obstacles and the robot in the workspace bitmap and then compute a

CSPACE bitmap of the same resolution. Thus, in order to obtain an accurate C-space

bitmap, we have to work with a resolution high enough to represent the shape of the

obstacles. In our experiments we made sure that the CSPACE bitmaps produced by

the algorithms we compare were almost the same.

Figure 5.2 shows the workspace (150 convex polygonal obstacles) and Figure 5.3
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(a) (b) (c)

Figure 5.3: Polygonal robots

shows the three robots we used in one series of experiments. The larger dimension of

the robots is approximately 1/10 of the dimension of the workspace. The workspace

bitmap W was represented as a 128 � 128 array and we considered 128 orientations

for the robot. Hence, the algorithms built a 128 � 128 � 128 bitmap CSPACE.

� For the convex robot of Figure 5.3(a), the FFT-based algorithm took 90 seconds

to compute CSPACE and the linear algorithm 11 seconds.

� For the robot of Figure 5.3(b), which is non-convex, the FFT-based algorithm

took 91 seconds and the linear algorithm 22 seconds.

� For the robot shown in Figure 5.3(c), which has four convex parts, the FFT-

based algorithm took 91 seconds and the linear algorithm 32 seconds.

Experiments show clearly that the linear algorithm is preferable for simple polygo-

nal robots and workspaces. However, as the complexity of the environment increases,

our FFT-based algorithm becomes more and more comparable. One could imagine

more complex environments where the gap in the running times of the FFT-based

and the linear algorithm will be reduced or even inverted.

We emphasize that we ran our experiments with algorithms implemented in soft-

ware on a conventional single-processor architecture. A hardware or parallel imple-

mentation of the FFT algorithm would certainly lower the \break-even" complexity

where the FFT-based algorithm becomes preferable to the linear algorithm.

5.6.2 Comparison with the direct convolution algorithm

Although the FFT-based algorithm has an asymptotically better running time than

the O(N4) direct algorithm, the latter requires only a small bitmap for the robot and
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Size of robot bitmap Bitwise operations (sec)

5� 5 20

10� 10 39

20� 20 77

30� 30 115

40� 40 199

Table 5.1: Direct convolution with a 128 � 128 workspace

can be implemented using (fast) bitwise operations, instead of (slow) multiplications.

The input and the output of the implemented direct convolution algorithm are ex-

actly the same as those of the FFT-based algorithm. The direct algorithm augments

the workspace bitmap and pads it with zeros to avoid problems at boundary con�gu-

rations when the convolution is computed. Table 5.1 summarizes experimental results

for a 128�128 workspace. The FFT-based algorithm computes the bitmap CSPACE

in approximately 90 seconds. Column 2 of Table 5.1 shows the time required to com-

pute CSPACE for di�erent sizes of the bitmap of the robot when bitwise operations

are used. It is clear that the direct approach is preferable when the size of the robot

is small. Bitwise operations are implemented in hardware in the machine we used

and take at most a couple of machine cycles.

5.7 Hardware and Parallel Implementations

A hardware implementation of the basic FFT-based method for computing C-space

maps is possible because of the uniformity of the calculations involved in the algo-

rithm. Such an implementation may substantially reduce the running time of the

algorithm. Even if the whole method is not implemented in hardware, specialized

FFT hardware [Bilardi et al, 91] can be used. The latter is widely available and has

been used for years in signal processing and other applications.

Hardware implementations are also possible for the direct convolution algorithm

and cannot be regarded as an advantage of the FFT-based algorithm only. This is-

sue has been studied in the context of the morphological operations used in image
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processing [Haralick and Shapiro, 92]. The computation of these operations requires

a small bitmap, referred to as a kernel, to be moved over the original image. Many

specialized architectures have been proposed [Reeves, 84, Pratt, 85] to e�ciently per-

form these operations. However, these architectures achieve high performance for

operations with large images and small kernels. Typical kernel sizes for a 512 � 512

image are 3 � 3 or 5 � 5. In our problem, we might not want to restrict ourselves to

such small robots.3

As far as our basic algorithm is concerned, its parallel implementations can be

based on existing parallel implementations of the FFT. Let us mention some ex-

isting results. Leighton [Leighton, 92] showed that the N-point discrete FFT can

be implemented in logN steps on an N(logN + 1)-node butter
y or an N -node

hypercube. It can also be implemented in O(logN) steps on an N -node butter
y

[Leighton, 92]. Issues related to the implementation of the FFT on hypercubes are

discussed in [Swarztrauber, 87]. On an N � N mesh of processors, it is easy to im-

plement the (two-dimensional) FT of a function de�ned on N2 points in O(N) time

[Leighton, 92]. Then our basic algorithm will itself have a complexity of O(N). This

is asymptotically optimal for the problem, and is an improvement over the algorithm

of Dehne, Hassenklover and Sack [Dehne et al, 89] which can only deal with \recti-

linear" robots. For the Connection Machine there exist many implementations of the

FFT [Johnsson and Krawitz, 92, Tong and Swarztrauber, 91]. On a shared memory

bus-based multiprocessor with few processors (8) an implementation of the multi-

dimensional FFT exhibits a speedup close to linear with the number of processors

used.4

3Even in AVG applications, path planning frequently has to be done locally, since more global

planning often makes use of higher-level symbolic maps de�ning intermediate goals.
4The almost linear speedup is justi�ed by the way the d-dimensional FFT is computed. For

example, for d=2, we �rst take the FFT of the rows and then the FFT of the columns. We can

assign di�erent rows/columns to di�erent processors. The partial computations are independent.
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5.8 Some Remarks

We presented an FFT-based algorithm to compute the C-space map used by sev-

eral path planners including the one described in this dissertation. The algorithm is

based on the observation that the C-space map is the convolution of the workspace

and the robot and applies to obstacles and robots of any shape input as bitmaps.

The FFT-based method produces a bitmap representation of the C-space that is

directly exploitable by potential �eld based path planners such as those described

in [Barraquand and Latombe, 91, Lengyel et al, 90], and the planning approach de-

scribed in Chapters 2 and 3 of this dissertation. In particular, this bitmap allows

collision checking to be done in constant time for a rigid robot, or a robot with a

small number rigid parts. For a �xed discretization, the running time of our algo-

rithm is independent of the number and the shape of the obstacles in the workspace.

The FFT-based method was presented in the case of a planar translating robot.

Rotation is not directly handled by the method and requires slice by slice construction

of the C-space bitmap. The method also applies to a three-dimensional robot that

can only translate. Furthermore, it can be used when the robot is a planar articulated

linkage, by building a three-dimensional C-space for each link.

Our method depends highly on our ability to perform the FFT. When implemented

in software on a single-processor computer, its running time can be a disadvantage,

especially when the obstacles and the robot are simple. However, when the combined

complexity of the obstacles and the robot is high, the FFT-based method becomes

advantageous. It can also bene�t from existing special-purpose hardware. Implemen-

tations are possible on a wide variety of parallel architectures, by exploiting recent

work done on parallel implementations of the FFT. The use of speci�c hardware or

parallel architectures can drastically reduce the running time of our algorithm, mak-

ing it compare even more favorably to previous algorithms for computing C-space

maps.



Chapter 6

The Complexity of Assembly

Partitioning

6.1 Introduction

In the �nal part of this dissertation, we study the assembly partitioning problem in

the plane: given a collection of non-overlapping polygons, decide if there is a proper

subcollection of them that can be removed as a rigid body without colliding with or

disturbing the other parts of the assembly.

The partitioning problem arises in assembly planning, where a sequence of (pos-

sibly simultaneous) assembly motions are sought to bring separated parts into their

relative goal positions in an assembly. Automation of this process would be invalu-

able for the evaluation of the design process in manufacturing, as well as for the

repair and maintenance of mechanical parts. Natarajan [Natarajan, 88] showed that

in its most general form, assembly planning is PSPACE-hard. In practice, however,

most real assemblies can be constructed with monotone two-handed assembly plans

[Homem de Mello and Lee, 91]. Such plans consist of a sequence of operations, where

each operation merges two rigid subassemblies to make a larger one that stays rigid

for the rest of the plan. For instance, the assembly in Figure 6.1(a) can be constructed

102
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(a) (b)

Figure 6.1: Assembly (a) admits a monotone two-handed plan, while (b) does not

with a monotone two-handed plan, while the assembly in Figure 6.1(b) cannot.

Since assembly is the reverse of disassembly, a monotone two-handed assembly

plan can be found by partitioning the assembly|removing a rigid subassembly|

and then partitioning each of the two subassemblies, etc., and �nally reversing the

motions. Thus partitioning is the key to assembly planning in this case.

Recent work has presented polynomial-time partitioning algorithms in special

cases. Arkin, Connelly and Mitchell [Arkin et al, 89] give an algorithm to par-

tition assemblies of polygons if the separating motions are limited to single in-

�nite translations. Wilson [Wilson, 92] presents algorithms to partition assem-

blies of polyhedra, where the separating motions are either in�nite translations

or in�nitesimal rigid motions (the latter identifying a superset of the remov-

able subassemblies for general separating motions). Interestingly, Snoeyink and

Stol� [Snoeyink and Stol�, 93] present an assembly of convex polyhedra that can-

not be partitioned. Other related geometric separation problems are studied in

[Guibas and Yao, 83, Nussbaum and Sack, 93, Pollack et al, 88, Toussaint, 85].

Here we show that the partitioning problem for polygons in the plane is NP-

complete. Our proof extends to some interesting variants of the problem, including

the case where all motions are restricted to translations.
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6.2 Complexity of Planar Partitioning

Let a rigid motion of a subassembly S be a set of simultaneous motions (translations

and rotations) of the parts of S that preserve the relative positions of these parts

throughout the motion. The subassembly S is then called a rigid subassembly. The

problem considered is stated below:

Planar Partitioning (PP) Given a set A of non-overlapping polygons in the plane,

decide if there is proper subset S of A that can be separated from A nS by a collision-

free rigid motion of S.

We will show that PP is NP-complete. It is clearly in NP, since a nondeterministic

algorithm can guess S and then invoke a path planner to �nd the path of S out of

the assembly. Schwartz and Sharir [Schwartz and Sharir, 83a] have shown that path

planning can be done in polynomial time for the case considered here.

We show that PP is NP-hard by a reduction from 3-Satis�ability (3-SAT), a well

known NP-complete problem [Garey and Johnson, 79]. An instance of 3-SAT is a set

of clauses C = fc1; c2; : : : ; cmg on a set of boolean variables U = fu1; u2; : : : ; ung,

where each clause is a disjunction of 3 terms. A term is either a variable ui or

the negation of a variable ui. The problem is to determine if there exists a truth

assignment of the variables that satis�es the conjunction of the clauses.

For any instance of 3-SAT, we construct in polynomial time an assembly of non-

overlapping polygons that can be partitioned i� a satisfying truth assignment exists.

Figure 6.2 shows the outside box and the key of the constructed assembly. Other parts

are contained in the assignment mechanism and the AND/OR mechanism, detailed

in Figures 6.3 and 6.4 respectively. Our construction is summarized in the following:

� The part labeled as key in Figure 6.2 must be removed before any other part

is removed from the assembly. The reason is that the key blocks the only exit

gate of the assembly.

� The key can be removed only through the assignment construct. For this to



Chapter 6. The Complexity of Assembly Partitioning 105

Outside Box

Assignment
AND/OR  mechanismmechanism

Key

Figure 6.2: A sketch of the �nal assembly

happen some other parts of the assignment construct must move rigidly with

it. These parts represent a truth assignment for the variables of the 3-SAT

instance.

� The subassembly can be removed only through the AND/OR mechanism. This

mechanism enforces the clauses of the 3-SAT instance.

The assignment mechanism (Figure 6.3) consists of (i) the walls of the assignment

that are drawn in grey, (ii) the key which is a 3�1 rectangle drawn in black, and (iii)

two 3� 1 white rectangles for each of the variables of the 3-SAT instance. One of the

two rectangles that correspond to the variable ui is labeled with Ui, and the other

with Ui. Notice that Ui is placed always on top of Ui in the assignment construct.

If Ui, (Ui resp.) is a member of S, we consider that the truth assignment true (false

resp.), has been chosen for the variable ui. We indicate with x0 the initial position of

the key and with xi, the initial position of the assignment rectangles for the variable

ui, i = 1; : : : ; n. The choice of the xi's is crucial and it is described below.

From Figure 6.2 it is clear that the key initially can move only to the right. We

observe that the key will not be able to pass through the assignment mechanism if

no other parts of the mechanism are moved. In addition, the parts removed must

translate rigidly. Hence, the only subassembly S that stands a chance to move out of

the assignment mechanism, and eventually out of the total assembly, is a subassembly

that consists of the key and at least one of Ui or Ui, for each i. Since the exit gate of



Chapter 6. The Complexity of Assembly Partitioning 106

3 3 3 33

1
U 1

0 x o x 1 x 2 x i x n x n+3+L
L 

1

3

3

L

U 

U U 

U U 

U U 1 2

2 i

i n

n

Figure 6.3: The assignment construct (not drawn to scale)

the assignment mechanism has a height of only 1, exactly one of Ui or Ui, for each i,

must be selected in S. Let L be the length of the moving subassembly S.

The collision-free motion of S out of the assignment construct is possible only if

the xi's are selected carefully. We present now our choice of xi's and justify it. For

the following assume that S = fR0; R1; : : : ; Rng, where R0 denotes the key and Ri

denotes either Ui or Ui, 1 � i � n. Also, pos(Ri) denotes the x-coordinate of the

bottom-left vertex of the rectangle Ri.

Observation Let xi = 10 � ai, i = 0; 1; : : : ; n, where a0; a1; : : : ; an is an integer

sequence such that all pairwise di�erences ai � aj are distinct when i 6= j. When

jxp � pos(Ri)j < 4, p 6= i, then for all Rj, j 6= i, we have that jxq � pos(Rj )j > 4.

Proof: At some time during the motion of S, Ri is 4-close to the position xp, that is

jxp � pos(Ri)j < 4. Consider now any Rj , j 6= i, and any position xq. Let us bound

the quantity jxq � pos(Rj)j from below

jxq � pos(Rj)j � j(xp � pos(Ri))� (xq � pos(Rj))j � jxp � pos(Ri)j;

or equivalently,

jxq � pos(Rj)j � j(xp � xq) + (pos(Rj)� pos(Ri))j � jxp � pos(Ri)j:

But since jxp � pos(Ri)j < 4 and pos(Rj )� pos(Ri) = xj � xi = 10 � aj � 10 � ai the

above inequality becomes

jxq � pos(Rj)j > 10 � jap � aq � (aj � ai)j � 4:



Chapter 6. The Complexity of Assembly Partitioning 107

From the hypothesis about an the quantity jap�aq+(aj�ai)j = j(aj�aq)� (ai�ap)j

must be at least one, since j 6= i and i 6= p. Thus we get

jpos(Rj )� xqj > 10 � 1 � 4 > 4;

which completes the proof. 2

In other words, for any k when Rk is close to position xp, p 6= k, and needs to go

through the hole that has been created at this position, all the other parts of S are

in the wide free sections of the assignment mechanism and can follow the constrained

motion of the part that is close to xp. Hence, the assignment mechanism ensures

independent selection of the variable assignments of the 3-SAT instance and allows

the resulting subassembly to translate out of the mechanism.

The key element in the above proof is the property of the sequence ai, namely

that the pairwise di�erences of its terms are all distinct. The 10 is just a scal-

ing factor that gives extra space for the width of the parts. It is not hard to

choose the ai's; a straightforward example is given by ai = 2i. Using a result of

Erd}os [Halberstam and Roth, 83], it is possible to select the ai's in such a way that

maxfa0; : : : ; ang = n2. The complexity of the assignment mechanism is measured

in the number of vertices, and it is polynomial in n, no matter which of the above

sequences is used. Using the result of Erd}os the physical length of the assignment

mechanism is O(n2).

Let us also point out that if we just want a sequence an of polynomial growth

we can easily construct one with an � n3 as follows: Let a1 = 1 and having already

chosen a1; : : : ; an we select as the value of an+1 the smallest positive integer x such

that

x 6= ai + aj � ak; for all i; j; k = 1; : : : ; n:

Indeed this selection guarantees that all sums of two elements of the sequence

an are distinct and it is very easy to show that an � n3 by induction (see

[Kavraki and Latombe, 93a]).

Once S translates out of the exit gate of the assignment construct it must pass

through the AND/OR mechanism. This mechanism is a sequence of OR gates, one
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Figure 6.4: The OR gate for cl = ui _ uj _ uk (not drawn to scale)

for each clause of the 3-SAT instance. The OR gate for the clause ui_uj_uk is shown

in Figure 6.4. We observe from the �gure that there are three possible ways for S to

go from GateA to GateB. Each of these enforces a truth assignment for one of the

terms of the clause. Suppose for example that S goes through the section enclosed in

the dashed box in Figure 6.4. This section enforces the truth assignment true for the

variable ui. Here is why: when the key is at x0, the rectangle chosen for the truth

assignment of ui is at position xi. Unless Ui is selected in S, it is impossible for S to

go through the dashed box of Figure 6.4. Notice however that the rest of S can be

threaded through the gates at x0 and xi without problems: because of the property

of the xi's mentioned above, when a part of S needs to go through the above gates,

none of the other parts of S is close to a narrow passage. Hence, S can follow the

motion of its constrained part without being obstructed by the walls of the OR gate.

Suppose there exists a satisfying truth assignment for the 3-SAT instance. Let S

be the subassembly that consists of the key and encodes this truth assignment. S can
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go through the AND/OR mechanism since it can translate through each of its OR

gates. Then S can translate to the upper left corner of the assembly, rotate by 90

degrees and exit through the 2-unit wide gate that was initially blocked by the key.

Conversely, assume that the assembly in Figure 6.2 can be partitioned and let S

be the subassembly that is removed from it. S clearly contains the key. As we argue

above, the key can be removed only in a subassembly that contains a truth assign-

ment for the variables of the 3-SAT instance. Since S can pass through the AND/OR

mechanism, it represents a satisfying truth assignment for the 3-SAT instance. Fi-

nally, it can be shown easily that the reduction presented above is polynomial in the

size of the 3-SAT problem. It follows that:

Theorem 6.1 PP is NP-complete.

6.3 Variants of Planar Partitioning

In this section we present some variants of the partitioning problem that are

also NP-complete. A detailed discussion of these variants can be found in

[Kavraki and Latombe, 93a, Kavraki et al, 93]. A di�erent proof of variant 2.3 can

be found in [Wilson et al, 92].

6.3.1 Partitioning with Translations

In the construction of the previous section, the moving subassembly S rotates in the

upper-left corner of the assembly before exiting. We can modify that construction to

remove the rotation needed, and show the following theorem:

Theorem 6.2 Planar partitioning with translation only is NP-complete.

A more complicated exit gate allows S to pass through in translation, requiring small

changes in the rest of the construction.
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Figure 6.5: Partitioning with translation only: (a) the assignment mechanism (b) the
exit mechanism

The new exit gate is depicted in Figure 6.5(b). A series of vertical channels allow

the key and assignment rectangles to move down through the exit gate, then exit to

the left. However, with no other changes, rectangle Un or Un could be removed alone.

To prevent this, a sealing piece is added to the assignment construct, to the right of

all the assignment rectangles, at position xn+1 (see Figure 6.5(a)); a corresponding

channel (labeled G) is added to the exit gate. The sealing piece and channel G are

both 1 unit wider than the other channels, and no rotations are allowed, so the sealing

piece can only exit through gate G. Finally, since the key no longer touches the left

side of G, its shape is changed to only allow movement to the right.

The sealing piece blocks the motion of the assignment rectangles, so it must be

in S. The key blocks gate G, so it and exactly one of Ui or Ui, for all i, must also be

in S. Since the sealing piece is at position xn+1, it does not a�ect the ability of S to
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move out of the assignment construct or through the AND/OR mechanism.

6.3.2 Partitioning on a Grid

Consider a polygonal assembly whose parts must (i) have their vertices on an N �N

grid, (ii) have only right angles, and (iii) translate only in the vertical and horizontal

directions by grid increments. N is considered the size of the problem. The planar

partitioning problem for this assembly is called partitioning on a grid and is a very

constrained partitioning problem.

Partitioning on a grid is clearly in NP: we guess a subassembly and a path of N2

unit steps on the grid, then check whether the path is collision-free and remove the

subassembly.

The reduction from 3-SAT is possible only because we can construct an assignment

mechanism whose length is polynomial in the size of the 3-SAT instance (see Section

6.2). This leads to an assembly of length O(mn2), where n is the number of variables,

and m is the number of clauses of the 3-SAT instance. The construction of Section

6.3.1 satis�es the above restrictions on the assembly, and the grid rules out non

interesting motions. Thus, we have proved the following:

Theorem 6.3 Partitioning on a grid is NP-complete.

6.3.3 Assemblies With Parts of Constant Complexity

The NP-completeness result holds for partitioning with translation and rotation and

also for partitioning with translation only, even if we require that the assembly to be

partitioned is composed of parts of constant complexity. Parts with up to a constant

number of vertices are considered as parts with constant complexity.

The only parts of non-constant complexity in our assembly construction are the

walls of the assignment mechanism. We can build the same walls from parts of

constant complexity as shown in Figure 6.6. Note that none of the Di1;Di2 rectangles
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can move out of the assignment mechanism and their presence does not a�ect the

reduction from 3-SAT. It follows that:

Theorem 6.4 Partitioning an assembly with parts of constant complexity is NP-

complete.

6.3.4 Completely Separable Assemblies

Let us now consider the case of an assembly that can be completely separated to

its constituent parts by repeated monotone partitioning. This case is interesting

because it concerns assemblies that can also be built from their constituent parts by

a monotone assembly sequence.

The assembly constructed Figure 6.5 for PP without translation cannot be fully

decomposed. The basic parts are the only parts that can move out of the assembly.

Other parts, e.g., the walls of the assignment mechanism and the parts in the OR

gates, are too large to pass through the narrow exit gate. Below, we modify the

assembly of Figure 6.5 to allow its complete decomposition.

We �rst modify the exit mechanism. The new mechanism is shown in Figure

6.7(b). It is aligned below the assignment mechanism for PP without rotations, re-

peated and magni�ed here from Figure 6.5, for clarity purposes. The exit mechanism

is composed of polygons P1; : : : ; Pn+1. These parts are interlocked in their initial

positions. They cannot translate out of the assembly, unless the key is removed.

However, the relative positions of the gates in the exit mechanism are exactly the
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same as the relative positions of the parts in S. Hence, once S reaches the upper-left

part of the outside box, it can translate out by moving through the spaces between

P1; P2; : : : ; Pn+1.

After the key is removed with S, Pn+1 can move horizontally to the left until it

touches the walls of the assignment mechanism and then vertically down to translate

out of the assembly. Once Pn+1 is gone, all other Pi's can move out of the assembly.

To permit the translation of the other parts out of the assembly, we break them into

smaller parts. Namely, we break the assignment walls, as well as the walls and inside

parts of the AND/OR mechanism, into parts of length L. These will be able translate

out of the assembly one after the other through the opening, which is now L long.

The total number of the parts inside the assembly is polynomial, since the physical

size of the assembly can be made polynomial in the size of the 3-SAT instance. From

the above we infer that:

Theorem 6.5 Planar partitioning restricted to completely separable assemblies is

NP-complete.

6.3.5 Partitioning of Assemblies of Polyhedra

We now describe a polynomial transformation that reduces the problem of deciding if

there is a monotone partition of an assembly of polygons, to the problem of deciding

if there is a monotone partition of an assembly of polyhedra.

Let A be an arbitrary assembly of polygons. We construct an assembly of polyhe-

dra, A0, that has three layers. The lower and the upper layer are plates. The middle

layer consists of the polyhedra produced by giving all the polygons of A a thickness

of 1. Let P be one of these polyhedra. We connect P to the lower and upper layer to

form a single part. We also make the size of the lower and upper plates many times

the size of A. This is to ensure that in case P is chosen in the moving subassembly,

all the parts of the middle layer will remain in between the upper and lower plates,

until the moving subassembly is completely separated.
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There exists a monotone partition for the polygons of A when these move in the

plane, i� there exists a monotone partition for the polyhedra of A0 when these move

in space. Thus, monotone partitioning of a polyhedral assembly is at least as hard as

monotone partitioning of a planar assembly. In addition, partitioning of an assembly

of polyhedra is in NP from the results of [Schwartz and Sharir, 83a]. We have thus

proved the following:

Theorem 6.6 Deciding if there is a monotone partition of an assembly of polyhedra

is NP-complete.

All the polyhedral counterparts of the planar partitioning decision problems pre-

sented in this chapter can be shown NP-complete using an argument similar to the

above.

6.4 Some Remarks

We have shown that monotone partitioning of an assembly of polygons in the plane is

NP-complete when the polygons are allowed to both translate and rotate, and when

they are allowed only to translate. We also presented some variants of the above parti-

tioning problems that are NP-complete. Finally, we extended our results to assemblies

of polyhedra. For results in other special cases see [Wilson, 92, Wilson et al 93].

In experimental assembly sequencing, an additional constraint is often added, re-

quiring both S and A n S to be connected. A subassembly is considered connected if

the union of its parts is a connected set. This constraint is useful in practice, since

connected assemblies are easier to grasp and manipulate. It is not hard to see that

partitioning of assemblies of polyhedra into connected subassemblies is NP-complete:

in the construction of Section 6.3.5 a plate can be placed over the augmented parts,

rigidly attached to the key and removed with S. In [Kavraki and Kolountzakis, 94]

it is shown that partitioning of assemblies of polygons under the connectedness con-

straint is an NP-complete problem.
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Conclusion

7.1 Summary

This work addressed three di�erent problems in the area of robotics.

The main part of the dissertation (Chapters 2, 3, and 4) described a two-phase

method to solve robot motion-planning problems in static workspaces. In the pre-

processing phase, the method constructs a probabilistic network as a collection of

con�gurations properly selected across the free C-space. In the query phase, it uses

this network to quickly process path-planning queries, each speci�ed by a pair of con-

�gurations. The preprocessing phase includes a heuristic evaluator to identify di�cult

regions in the free C-space and increase the density of the network in those regions.

This feature is key to solving di�cult queries.

The method is general and can be applied to virtually any type of holonomic

robot. With little modi�cation it can also be useful for nonholonomic car-like robots

(see [�Svestka, 93, �Svestka and Overmars, 94]). It is also an inherently parallel method

permitting the class of solvable problems to go even beyond what we report in this

work. The distributed nature of processing the C-space, simultaneously as a whole,

makes the method conceptually simple and natural, not least in the sense that it
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follows the computational paradigm that the human brain does { processing the

information not piecewise but globally.

We also showed that the planning method can be easily customized to run more

e�ciently on a given family of problems. Customization consists of replacing general

components of the method, such as the local planner, by more speci�c ones �tting

better the characteristics of the considered scenes.

One of the goals of this dissertation was to demonstrate how e�ective the technique

is for di�cult path-planning problems involving many-dof robots. It is precisely these

problems for which there exist few practical path planners. To that e�ect, we reported

extensive experiments with articulated robots moving in the plane or in space. To our

knowledge, the problems we considered are very hard to solve, if they can be solved

at all, with other existing planning techniques.

Sections 2.10 and 3.4 discussed several other nice features of the randomized

method, as well as its drawbacks. It is clear from our experiments that the method

is quite stable and that there is no disparity in the time taken to answer di�erent

planning queries, once a good network is constructed in the free C-space. In addition,

failure to �nd a path between two con�gurations is quickly reported. In the case

when many queries fail, it is possible to take advantage of the incremental nature of

the technique and augment the current network. This can be done by reapplication

of the preprocessing steps. It is possible to further \train" the network to a particular

workspace/robot pair by recording in it the initial and �nal con�gurations of a series

of queries, as well as the paths computed for these queries.

The numerical parameters of the method have to be chosen manually at this stage

and this is a disadvantage of the approach. It would be nice to have some way to

predict these parameters (see Section 7.2). But we have observed that good values

for these parameters are easy to obtain through some preliminary experiments with

the considered scene. Another potential drawback of the method is its heavy reliance

on an e�cient collision checker. This checker is called often and its speed is crucial.

Of course, the latter observation holds for many other path-planning methods (the

Randomized Path Planner, for example).
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We �nally attempted a theoretical analysis of the performance of the method.

The analysis helps us to understand the dependence of the method on some of its

parameters (e.g., the number N of nodes of the random network) and certain features

of the space in which the robot moves (e.g., distance of possible paths between two

nodes from the C-obstacles). Unfortunately, these parameters appear to be very

di�cult to estimate in advance of applying our method. Their estimation would

greatly facilitate our selection of the numerical parameters for the scheme so that the

failure probability of path planning queries remains below a value that we are willing

to tolerate. Nevertheless, our analysis makes the nature of the dependence of the

running time on the parameters quite clear, and, we believe, can pave the way for a

more usable rigorous result.

In the second part of this dissertation (Chapter 5) we presented a method for

computing the C-space map of obstacles used in many motion-planning algorithms

including the one presented in Chapters 2 and 3. The C-space map reduces collision

checking to a constant time lookup operation as discussed in Section 5.1. We compute

this map as a convolution of the robot and the obstacles with the use of the Fast

Fourier Transform (FFT). The method is practical for two-dimensional workspaces.

It is particularly interesting that the method builds upon existing experience on the

FFT and can bene�t from hardware available for that transform and from other

optimized software.

In the third part (Chapter 6) a problem from assembly planning was discussed.

It was shown that partitioning an assembly of polygons with rigid motions in the

plane is an NP-complete problem. This result was obtained by a reduction from

3-Satis�ability, a known NP-complete problem. In a broader perspective, it is inter-

esting to �nd out if our complexity proof can suggest some reasonable restrictions

that can be imposed on the parts of an assembly, on an assembly as whole, or on

the allowed motions of its parts, so that, under these restrictions, the partitioning

problem can be solved in polynomial time.
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7.2 Future Work on the Planning Method

Theoretical analysis and estimation of numerical parameters

The theoretical analysis of the performance of the method deserves more attention.

First of all, we would very much like to obtain an analysis that can explain one of our

main experimental observations: namely, that the networks that capture su�ciently

well the connectivity of high-dimensional C-spaces are small compared to the size

these spaces.

Secondly, an analysis that will help estimate good values for the numerical parameters

of the method, will be especially helpful. It will reduce the time needed to tailor the

method to a particular set of problems. We note however that there may be an alter-

native to making progress in the theoretical understanding of the performance of our

method in order to estimate its numerical parameters. Statistical or learning methods

may be able to adaptively adjust the values of the parameters of the approach. It

seems that such methods will be easier to come up with, compared to achieving a

powerful theorem that will enable us to choose the parameters beforehand.

Parallel implementation of the method

A feature of the randomized planning method that should not be underestimated is

its large potential for parallelism. The preprocessing phase can be e�ciently imple-

mented on a massively parallel machine (e.g., on the Connection Machine). This will

permit the e�cient creation of networks with tens or hundreds of thousands of nodes.

Massive parallelization of the preprocessing phase will also keep network construction

times low, even in cases when collision checking is expensive.

Dynamic environments

A challenging research goal would be to extend the method to dynamic scenes. One

�rst question is: how should a network computed for a given workspace be updated if a

few obstacles are removed or added? Answering this question would be useful in order

to apply our method to scenes subject to small incremental changes. Such changes
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occur in many manufacturing (e.g., assembly) cells; while most of the geometry of

such a cell is permanent and stationary, a few objects (e.g., �xtures) are added or

removed between any two consecutive manufacturing operations. Similar incremental

changes also occur in automatic graphic animation.
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