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Abstract

The modification of collision-free paths is proposed as the basis for a new framework
to close the gap between globa path planning and real-time sensor-based robot control.
A physically-based model of a flexible string-like object, called an elastic band, is used
to determine the modification of a path. The initial shape of the elastic is the free path
generated by aplanner. Subjected to artificial forces, the elastic band deformsin real timeto
a short and smooth path that maintains clearance from the obstacles. The elastic continues
to deform as changes in the environment are detected by sensors, enabling the robot to
accommodate uncertaintiesand react to unexpected and moving obstacles. While providing
a tight connection between the robot and its environment, the elastic band preserves the
global nature of the planned path.

The greater part of thisthesisdeal s with the design and implementation of elastic bands,
with emphasis on achieving real-time performance even for robots with many degrees of
freedom. To achieve these goal's, we propose the concept of bubblesof free-space—aregion
of free-spacearound agiven configuration of the robot generated from distance information.
We aso develop a novel agorithm for efficiently computing the distance between non-
convex objects and a real-time algorithm for calculating a discrete approximation to the
time-optimal parameterization of a path. These various developments are combined in a
system that demonstrates the elastic band framework for a Puma 560 manipulator.
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Chapter 1

| ntroduction

1.1 Background

One of the fundamental characteristics of an autonomous robot system is its ability to
move without collision. An “intelligent” robot should avoid undesirable and potentially
dangerous impact with objects in its environment. This apparently simple capability has
been the subject of much research in robotics.

The problem of collision-free motion has generally been approached from two direc-
tions: planning and reactive control. With planning, before moving, the robot system uses
model s of the environment and itself to determine afeas ble sequence of motionsto achieve
a specified goal. With reactive control, the motion of the robot for some small time period
is determined just before the motion is executed, typically by examining the current sensor
data. Such adivisionisvagueand there are many systemsthat fall somewhereinthemiddle.

A key advantage of planning is that it enables a robot to achieve complex goals. For
arobot to move from one configuration to another in a cluttered environment may require
a long sequence of motions in which each step must be performed correctly. A classical
example is moving a large piano into a small room; unless one thinks before acting, it is
quite possible to end up in a situation where the piano cannot be moved into its desired
position and one isforced to take the piano out of the room and start over.

Although planning is essential in many situations, it is generally infeasible to blindly
follow theactionsof aplan. Buildingaplan requiresthe ability to predict the future states of
both the robot and the environment. Such predictionswill be based on models of the world
that inevitably contain errorsand these errorsmay causethe planto fail. Asaconsequence,
relying solely on planning to avoid collision is not robust.

A reactive approach to robot motion is based on the idea of using sensing to interact
dynamically with the environment. By relying on sensing, arobot can use simpler models
of theworld than required by aplanner, and can thereby increase the robustness of its ability
to avoid collison. The mgor limitation of many reactive approaches is their inability to

1



2 CHAPTER 1. INTRODUCTION

deal with the global problem of moving to an arbitrary goal.

In this thes's, we propose a novel architecture for combining planning and reaction in
a complete robot system for executing motion tasks. A motion planner provides a global
solution to move the robot to the goal. During the execution of the planned path, the path
is modified in response to changes in the environment and unexpected obstacles.

1.2 Executing Collision-Free Motion Tasks

Suppose we desireto build acompl ete system to move arobot autonomously from an initial
configuration to agoal configuration. The conventional architecture [38] for such asystems
isillustrated in Figure 1.1. The user specifies atask and the planner, using a model of the
world, generates a collision-free path which is converted to afeasible trgjectory. A motion
controller tracks thetrajectory using feedback from sensory information about position and
velocity. We note two points about such an architecture.

Task

i

World Path
Model Planning

Trajectory
Generation
Position &
Velocity Control

Robot
&
Environment

Figure 1.1: A conventional architecture for arobot system.

First, suppose achangein the environment is detected while moving along the path. One
way to react to thissituation is to halt the robot and plan a new path. In such an approach,
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the responsiveness of the robot to changes would be dominated by the time needed to plan
apath. Given the complexity of motion planning in genera, thistime may be rather large.
An aternative is to add some type of reactive behavior to the controller. If the controller
is to implement some sort of real-time obstacle avoidance scheme then it must be able to
deviate from the path. Once the robot is off the path, it is unclear how the controller should
use the original path to reach the goal.

Second, path planners are often designed to find any feasible path, with little attention to
its suitability for execution. Often the path is represented as a sequence of linear segments
and thus will contain many discontinuities in the direction of motion. For the robot to
track such a path it must come to a complete stop at each of these discontinuities, greatly
increasing the time to reach the goal. Other problems include paths that are unnecessarily
long, or maintain little clearance from the obstacles.

1.3 A New Architecture

We propose a new architecture for building systems for executing collision-free motion
tasks in which an intermediate level is interposed between the planning and control levels.
At thisintermediatelevel the path generated by the planner istreated as a deformabl e object.
In real time, the path is modified in response to changes in the environment and to improve
properties such as smoothness, length, and clearance from obstacles. The architecture is
illustrated in Figure 1.2.

We can view this architecture as a hierarchy of three feedback loops with the environ-
ment. These feedback |oops operate with reaction times that decreases from dow (at the
planning level) to fast (at the control level). Thethree levels are:

e Path planning: A world model is used to generate global solutions to specified tasks.

e Path modification: The path from the planner is modified in real time to handle
changes in the environment detected by sensors and to improve the path.

e Control: A motion controller isused to move the robot along the modified path.

This framework has the advantage of providing reactivity without limiting the robot’s
ability to achieve global goals. By modifying the path when changes in the environment
are detected, the framework avoids the cost in time of recalling the path planner. The robot
can react in real time to information obtained by sensors; however, while performing local
motions a compl ete collision-free path to the goal is maintained.

Given a collision-free path, what characteristics do we desire from an incrementally
modified version of the path?

The most important criterion isthat the new path should be collision-free. Maintaining
this condition, especially for robots with many degrees of freedom, is one of the major
issues we address in later chapters.
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Task
World Path
Model Planning
Local Path
Obstacles Modification
Trajectory
Generation
Position &
Velocity Control

Robot
&
Environment

Figure 1.2: The proposed architecture for a robot system.

One extension to the collision-free criterion is to require the path to provide a certain
amount of clearance from obstacles. Such a property recognizes that the underlying control
system will not perfectly track a specified path. A situation may arise where the robot must
come close to the obstacles, for instance, to squeeze through a small opening—more than
minimal clearanceis beneficia but not essential.

Other desirable properties of the path are smoothness, low curvature, and shortness.
These properties will tend to reduce the amount of time the robot takes to reach the goal
position. We should emphasize, however, it is a difficult problem to determine the path
whose total execution timeisminimal [6]; we aim to create paths that are reasonably good.

Depending on the application, there may be other desirable properties for the path.
For example, we may desire the robot to stay well clear of internal joint limits. Although
we limit our discussion to the basic properties mentioned above, the general approach we
propose can handle other characteristics.
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1.4 Elastic Bands

Asthe basis for determining the modification of a collision-free path, we use a physically-
based model of a flexible string-like object subjected to internal and external forces. We
call such an object an elastic band [50].

Toillustratethe basic behavior of elastic bands, consider aplanar robot that can trand ate,
but not rotate, in an environment with obstacles. Suppose a motion planner has computed
apath for the robot to move between two positions as depicted in Figure 1.3a. A controller
would experience difficulty moving the robot along the path since there are discontinuities
in the direction of the path which would require the robot to come to a complete stop.

To improve the shape of the path, two forces are applied: an interna contraction force
and an external repulsion force. The contraction force smulates the tension in a stretched
elastic band and removes any dack in the path. To counter the contraction force and to
givethe robot clearance around the obstacles, the elastic band is subject to arepulsion force
from the obstacles. The two forces deform the elastic until equilibrium isreached as shown
in Figure 1.3b.

These two types of forces aso enable the elastic band to handle changes in the environ-
ment. The appearance of new obstacles or the detection of uncertaintiesin the environment
change the forces on the elastic, causing it to deform to a new equilibrium position. In our
example, Figures 1.3c and 1.3d depict the deformation of the path in the presence of anew
moving obstacle.

Obvioudy, if the changes in the environment are large, the elastic band could fail to
deform to a collision-free path, even if one exists. An example of thiswould be closing the
door through which arobot had planned to move. A different path may exist, say through a
different door, but finding such apath may requireaglobal search. Thisproblemistypical of
local collision avoidance methods and isthe primary reason that path planning isneeded. In
such asituation, thefailure can be detected and a new path found by re-planning. However,
for small changes, the elastic band is expected to deform to a good path that reflects the
new state of the environment.

1.5 Other Applicationsfor Elastic Bands

With élastic bands, collision-free paths are treated as dynamic objectsthat are continuoudy
responding to the applied artificial forces. We developed elastic bands for the robot ar-
chitecture shown in Figure 1.2, but one can conceive of other useful applications for this
capability. By bringing collision-freepathsto “life,” we avoid the tedioustask of specifying
exactly the motion of the robot; rather, we specify an initial rough path and let the path
evolvein rea timetowards a path that is better suited for the robot.

One smple application of elastic bands is as a post-processor for paths generated by
motion planners or specified by users. In this scenario, we specify forces on the path that
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0) d)

Figure 1.3: a) A path generated by a planner. b) Applying both an internal contraction
force and an external repulsion force. ¢, d) A new moving obstacle deforms the path.
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improve its shape and let the elastic deform until a static configuration is achieved. Such
an application of elastic bands does not take advantage of the real-time nature of the path
maodifications, and more traditional optimization techniques may be equally suited to this
task.

A more exciting application of elastic bandsinvolves the interface between arobot and
theuser. Traditionally, users create paths for arobot by specifying a sequence of via points.
Supposeinstead that the user movesthe robot roughly along the desired path. For aphysical
robot, this motion may be achieved by teach pendant or by floating the robot and moving it
by hand. For off-line programming systems, the path may be entered by moving acomputer
model of the robot through the environment.

To record the motion, one end of an elastic band is attached at the start configuration and
the other end to the robot. As the robot moves, the elastic band will be dragged out along
the path. The elastic will not record the exact motion generated by the user, but instead will
deformin real-timeto an improved path.

Suppose, after viewing the motion along the elastic band, the user desires some mod-
ifications. By providing a mechanism to influence the forces on the elastic band, the user
can ssimply push and pull the path into the desired shape. One possibility for providing this
mechanism would be to alow the user to specify points that either attract or repel the path.
This mechanism to interact with a deformable path seems both powerful and intuitive.

One may aso envision using elastic bands to aid in updating paths when minor mod-
ifications are made to a robot work-cell. Rather than having to re-program all the robot
motions, one could let the paths deform as the various fixtures and parts in the work cell
are changed.

1.6 Overview of the Thesis

The greater part of this thesis deals with the design and efficient implementation of elastic
bands. Thistopic has many interesting aspects, and along the way we shall propose several
ideas which, we feel, have relevance in other areas of robotics.

An emphasis in the work described throughout this thesis is a desire for real-time
performance. By real-time, we do not always mean that the algorithms we develop have
bounded execution time; many do not. Rather, real-timeistaken in the sense of interactive
and applicable on-line using computer hardware that is available at the present time. Such
emphasis has directly contributed to the devel opment of ideas presented in this thesis.

Another requirement we placed on this research is that it should apply to robots with
many degrees of freedom. Numerous problemsin robotics have special-case solutions for
robots with only a few degrees of freedom. Although they have relevance to real world
problems, these solutions often do not extend to systems with alarge number of degrees of
freedom. We have tried to avoid these specia case solutions and directly solve the more
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genera problem.

A brief outline of the various chaptersin the thesis follows:

In Chapter 2, previous work on the collision-free motion of robotsis reviewed. Basic
concepts, such as generalized coordinates, configuration space, configuration space obsta-
cles, and collision-free paths are summarized. Using these tools, approaches in reactive
control, path planning, and hybrid systems are described.

In Chapter 3, atheoretical model for the elastic band isdeveloped. The model isloosely
based on the physics of aflexible string-like object in afield of forces.

In Chapter 4, the concept of bubbles of free-space isintroduced. We derive methodsfor
computing bubbles for a variety of robots including open-chain manipulators with many
degrees of freedom such as the PUMA 560.

In Chapter 5, the implementation of elastic bands using bubbles is described.

In Chapter 6, a novel algorithm for distance computation between non-convex objects
IS presented.

In Chapter 7, acompleterobot system we have built that uses elastic bandsis described.
One of the main points of interest is areal-time incremental agorithm for the generation of
time-optimal trajectories along a given path.

In Chapter 8, we conclude with a summary of the contributions of thisthesis.

In the Appendix A, the functional gradient operator V is developed. This operator is
used to determine the forces on a elastic band, given a potential functional over the space
of possible paths.

In the Appendix B, the curvature vector is described.



Chapter 2

Collision-Free M otion of Robots

2.1 Introduction

The task of moving a robot to a desired position while avoiding collision with objects in
the environment has been extensively studied. In this chapter, we briefly describe some of
this previous work.

In Section 2 of this chapter, some of the basic concepts used throughout the robotics
literature and thisthesisare reviewed; theseinclude: generalized coordinates, configuration
space, free-space, configuration-space obstacles, paths, and trajectories.

In Section 3, a few of the approaches used for reactive control, including: artificia
potential fields, the subsumption architecture and boundary following are presented. These
methods provide real-time collision-avoidance in the presence of uncertain and changing
environments.

In Section 4, an overview of the various approachesto path planning is provided. Using
path planning and appropriate model s of theworld, it is possibleto generate acollison-free
path that the robot can follow to reach a specified goal.

In Section 5, severa attempts to combine planning and reactive control in a hybrid
system are described.

2.2 Basic Concepts

Throughout the robotics literature on collision-free motion, a few basic concepts appear
repeatably. One needs to be able to describe where a robot is located, the set of possible
locations that the robot could be, and a sequence of locations that the robot should move
through to reach a desired goal. In this section, the conventional methods of formalizing
these ideas are presented.
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Generalized coordinates

In robotics, it is often required to describe the configuration of a robot with respect to
the environment. Typically, a robot can be described as a collection of rigid bodies; for
mani pul ator-type robots, these bodies are referred to as links. The configuration of a robot
is the position and orientation of its various constituent bodies.

It iswell known that the position and orientation of arigid body in athree-dimensional
space can be represented by six parameters [26]. For arobot that is composed of V rigid
bodies, a configuration can be described by 6 N parameters.

For most robots, there are constraints that limit the motion of the various constituent
bodies; for example, links of a manipulator may be connected by joints. In general, each
constraint can be viewed as placing restrictions on the alowable set of 6 N parameters. A
detailed study of the various possible types of constraintsis beyond the scope of thisthesis
and we refer the interested reader to the excellent text of Lanczos [36].

A common form of constraint, called holonomic, can be eliminated by the appropriate
selection of aset of n generalized coordinates ¢ . . . ¢,. These n parameters are sufficient
to describe al valid configurations of the robot and are minimal in that no set of less
than n parameters can describe all configurations. A holonomic robot with » generalized
coordinates isreferred to as an n-degree-of-freedom robot. A configuration of the robot is
represented by the vector notation q.

Consider the case of a six link manipulator such as the Puma 560. To represent a
configuration of the robot, we describe the rel ative angle between neighboring links at each
joint, a single number per joint. For such arobot there are six joints and thus there are six
degrees of freedom. In contrast, to specify the position and orientation of each link in a
three-dimensional space would require thirty-six parameters.

There are certain types of constraints that cannot be eliminated by the appropriate
selection of coordinates. These constraints, referred to as non-holonomic, result in a
situation where the number of parameters needed to describe the configuration of arobot is
greater than the instantaneous number of degrees of freedom of motion. In thisthess, we
restrict our attention to robots that are free of non-holonomic constraints.

An example of a non-holonomic mechanism is a car on a flat surface. Assuming a
global reference frameis specified, the coordinates used to describe a configuration of the
car might be the «, y coordinate of the center of the car, and an angle § between the axis
of the car and the = axis. It is not possible to describe a configuration with less than three
parameters. On the other hand, at a given configuration, the motion of the car can be
described by two parameters, say, the linear speed and the rate of turn; the car has only two
degrees of freedom.
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Configuration space

A powerful tool for developing solutions to problemsin roboticsis the configuration space
representation. A given configuration of a robot is described by the values of a set of
n generalized coordinates ¢4, . . ., ¢,. We can consider these values as the coordinates of
a particular point in a Euclidean space where the ¢’s form the n coordinate axes. This
n-dimensional spaceisreferred to as the configuration space, denoted by the set C' .. -

The concept of a configuration space is useful because it allows problems in robotics
that deal with many bodiesto be transformed into problemsthat concern only asingle point.
Configuration spaceswere originally devel oped asatool for analytical mechanicsinthe 19th
century [26] and were popularized in robotics by Lozano-Pérez [40]. As described below,
the basic motion planning problem can be succinctly formulated in terms of configuration
spaces.

For a given configuration space, it is quite possible for two points to correspond to the
same configuration of the robot. For example, joint angles are a natural set of generalized
coordinates for robot manipulators such as the Puma 560. If these angles are expressed in
radians, the addition of multiples of 2x to any coordinate will not effect the configuration
of the robot. Mathematically, one can remove these redundancies by embedding the
configuration space as amanifold in a higher-dimensional Euclidean space; see the text by
Latombe [38] for details.

In practice, the non-Euclidean nature of most configuration spaces can be handled by
[imiting the range of the generalized coordinates and adding special code to handle wraps.
In the case of manipulatorswith revolutejoints, we could limit the joint angles to the range
[0,27). Special care must be taken to allow the robot to move from one end of this range
and reappear on the other side.

Configuration space obstacles and free space

Typically, arobot moves in an environment that contai ns obstacles which must be avoided.
These obstacles can be mapped into obstacles in a configuration space of the robot.

The configuration space obstacles consist of al pointsin C,,... for which the robot
at the corresponding configuration intersects with the obstacles in the environment. More
formally, suppose the robot at configuration q and the obstacles are respectively described
by the subsets R, and O of the three-dimensional environment space R®. The set of
configuration space obstacles, denoted by €, is given by the equation

Copst = {Q € Copace : Ry N O # 01,

Closely related to the configuration space obstacles is the concept of the free-space,
denoted by the set C'y,... The free-spaceistheregion of (.. in which therobot isnot in
collison with the obstacles, i.e., C',.. isthe complement of C's;.
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As an example, consider the two-degree-of-freedom manipulator shown in Figure 2.1a
surrounded by a few objects. Using joint angles ¢; and ¢, as generalized coordinates, the
configuration space for thisrobot istheregion [0, 27) x [0, 27 ). Figure 2.1billustrates both
C'ree @nd Cops; fOr thisrobot in the given environment. The shaded region represents €',
whilethewhite areaiis C'y,...

qz

a) b)

Figure2.1: a) A manipulator with two degrees of freedomin an environment with obstacles.
b) The joint space configuration space for the manipulator. The shaded region represents
Copst, Whilethe white areais C'y, ...

The notions of a path and atrajectory

A path specifies a continuous sequence of configurations for a robot. More formally, a
path from theinitial configuration g+ to agoal configuration q,..; is defined as asmooth
parameterized function c(s), with ¢ : [0, 1] — Cspace, €(0) = Qstart, ad (1) = qgour. The
parameterization variable s does not represent any physical quantity, and the range of s is
arbitrarily set to [0, 1].

A path specifies the exact configurations the robot will occupy during a motion. As-
suming a perfect model of theworldisavailable, and the environment is static, it ispossible
to check if the motion of the robot is free of collisions. A path c(s) iscollision-freeif for
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A trajectory is a path for which the parameterization variable is interpreted as time.
A trajectory specifies not only where the robot should move, but also the speed of the
motion, and is a standard representation used by robot control systems to specify adesired
motion. A path can be converted to atrgjectory by the process of time-parameterization;
the parameterization variable s of apath c(s) isrepresented by a smooth scalar function of
time, i.e, s(t).

2.3 Reactive Control

Reactive control is a term we use to describe a wide variety of schemes that have been
proposed to enable robots to move without collision. Although the term is vague, what
these schemes have in common is a philosophy of determining the desired motion of the
robot in real time by examining some up-to-date model of the world. Asthe model of the
world changes, the robot reacts. Typically, the model of the world is determined by the
robot’ssensors. Also, themodel may belocal inthat itisafunctiononly of the current sensor
information and does not contain global state that is determined over time. Reactive control
goes under many names such as reactive behaviors, behavior-based control, sensor-based
control, and local collision avoidance.

In the following, three reactive control schemes are described: artificial potential fields,
the subsumption architecture, and boundary following.

Potential fields

The artificial potential field method proposed by Khatib [32, 33] is a popular approach for
implementing real-time obstacle avoidance. The basic ideain this approach is to consider
therobot to be moving in afield of forces. Theforces are composed of two components. an
attraction to the goal configuration, and arepulsion from the obstacles in the environment.
Applying these “artificial” forces via the robot’s actuators, the robot moves towards the
goa while avoiding collision.

The potential field method can be viewed as increasing the capabilities of low level
control. Instead of the control system simply tracking a given trgectory, the presence of
obstaclesistaken into account and the robot responds accordingly. The smpleformulation
of the avoidance strategy is such that it can be implemented efficiently and incorporated
directly in the real-time servo-loop of the control system.

In the potential field method, the force on the robot is specified as the negative gradient
of apotential function. More formally,

f(q) = -VV(a),
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where V(q) is a non-negative scalar function over the configuration space of the robot.
The function V' can be considered as specifying the potential energy of the robot at a
configuration and hence the name for the approach.

Anadvantage of specifying aforceasthegradient of apotential isthat general statements
can be made about the behavior of the system without knowing the exact sequence of
configurationstherobot will go through. In particular, if the configuration space isbounded
and the potential functionistime invariant, it can be shown [32] that the robot will move to
aloca minimum of the potential.

A key requirement for the above analysisis that the potential function istime invariant.
In a typica application of the potential field method, the potential is a function of the
environment, thus time invariance corresponds to a static environment. Even in the case
where this condition is not meet, the potential function approach to defining forces still
means that robot is continuously moving in areasonable direction.

Another important property of potential functions is that they are additive. Potentials
can be devel oped independently to provide capabilitiesfor therobot. Using the sum of these
potentials to control the robot will result in abehavior that attempts to combine the desired
capabilities. For example, a potential may be developed to move the robot towards a goal,
while a separate potential avoids collision with the obstacles. Combining these potentials
provides a goal-seeking collision-avoiding behavior. If at alater date we desire the robot
to avoid internal joint limit, this capability can be included by designing an appropriate
potential and addingitin.

Adding potentials that have conflicting goals may cause the robot to become trapped in
alocal minimum. There may exist configurations in which the forces associated with the
potential s sum to zero and consequently the robot does not move. For example, suppose the
robot is attracted to agoal configuration and repelled from the obstacles. The combination
of these behaviorswill not enabletherobot to achieve thegoal in asituation such asdepicted
in Figure 2.2.

Local minima prevent the potential field method from directly solving the problem of
collision-free motion of robots. The potentia field method, however, has been the basis
from which successful approachesto motion planning have been developed (see Section 4).

Subsumption architecture

Another popular method of building reactive systems is the subsumption architecture pro-
posed by Brooks[12]. In this architecture, arobot control system is decomposed in terms
of a hierarchy of behaviors or levels of competence. The ideais that additional levels can
be added to an existing system to obtain more complex and sophisticated abilities. For
example, Brooks proposes collision avoidance as the lowest level of control. The next
higher level builds on thisability to wander aimlessly around without hitting objects. Next,
the robot should be able to “explore” by moving in directions that seem “interesting.”
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Figure 2.2: At the shown configuration, the attraction force f, toward the goal and the
repulsive force f, are equal and opposite. As a result, the robot will not move. This
corresponds to alocal minimum in the potential function.

The behavior at each level of Brooks architecture is intended to be self sufficient.
Higher level behaviors are integrated into the system by a mechanism that can override the
actions of the lower level; they can subsume the lower levels behaviors. The advantage of
this approach is that the robot system can be built incrementally. Simple behaviors can be
developed and debugged as a complete robot system. These simple behaviors can continue
to operate, unaware that more complex behaviors are being built on top.

The individual layers are constructed from finite state machines connected by asyn-
chronous communication lines. In addition, outputs from the state machines may be
inhibited by other state machines, and inputs may be suppressed. Thisdesign for the layers
enables them to be implemented by aloosely coupled set of ssimple microprocessors, which
has advantages for mobilerobots. The design can aso be implemented efficiently on more
conventional computer equipment.

One difficulty with the subsumption architectureis analyzing the global behavior of the
robot. In particular, one would like to ensure stability and convergence towardsthe desired
goals. Some progress has been made in developing tools for such analysis, for example
Brock and Salisbury [10] use behavior diagrams to examine the behavior of arobot in all
possible situations.

Boundary following

For the special case of arobot with atwo-dimensional configuration space, Lumelsky [41]
devel oped areactive-control method that isguaranteed to convergeto thegoal configuration.
The method does not require any knowledge about the configuration space obstacles; it only
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assumes that the robot is equipped with a position sensor and a touch sensor. The basic
strategy is as follows:

e Move towardsthe goal location in a straight line.

¢ If anobstacleisencountered, record the current configuration then start to move along
the obstacle’s boundary in a predetermined direction, say clockwise.

¢ Astherobot moves along the boundary, keep track of the configuration that is closest
to the goal. Continue until the robot returnsto the original configuration at which the
object was encountered, indicating the robot has circled the object.

e Moving along the object boundary, return to the point that was closest the goal.
Resume moving towards the goal ocation.

Unfortunately, it is difficult to envision how thisagorithm may be extended to situationsin
which the configuration space has dimension greater than two.

2.4 Motion Planning

One of the classical problems of robotics is the basic motion planning problem: given a
perfect model of arobot in astatic environment and two configurations, find acollision-free
path between the configurations.

Solving the basic motion planning problem, often referred to as path planning, is
important. The problem ignores many issues that appear when actually moving arobot, but
any robot that can autonomously execute motion tasks will have to solve this problem to
some degree (one could always simulate such a robot system and use the resulting motion
as a solution path). The problem is well defined, and is one of the most active areas of
researchin thisfield.

It has been shown that a complete solution to the basic motion planning problem
is computationally very expensive [51, 14]. Much progress has been made, however,
in producing fast planners for practical Situations by considering schemes that are not
complete, i.e., may fail to find a path when one exits.

In this section, some of the basic approaches to path planning are described. We
follow Latombe [38] and divide these approaches into three broad categories. roadmap,
cell decomposition, and potential field.

Roadmap

The roadmap approach to path planning represents the free-space for arobot as a collection
of connected collision-free paths. This set of collision-free paths, called aroadmap, is used
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to plan apath asfollows. A path is constructed from the start configuration to some part of
the roadmap. Similarly, a path is constructed from the goal configuration to the roadmap.
Next, using standard graph algorithms, the roadmap is searched for a path between the two
points of connection on the roadmap. For a static environment, the roadmap is constructed
once, and can be used to solve multiple planning problems.

The many variations of the roadmap approach differ mainly in the method for construct-
ing the roadmap. These variations include: visibility graphs [43], Voronoi diagrams [44],
freeways networks [11], and randomized roadmaps [31, 27]. The first three of these vari-
ations are among some of the earlier attempts to build path planners, however, they are
applicable only for simple mobile robots with two or three degrees of freedom. Recently,
there hasbeen renewed interest intheroadmap approach inwhich theroadmap isconstructed
using randomized techniques. Such randomized roadmaps have been found experimentally
to capture the structure of a robot free-space in a surprisingly efficient manner, even for
complex robots with many degrees of freedom.

Cell decomposition

Until recently, the most common approach to path planning was based on constructing
a cell decomposition of a robot’s free-space. A cell is aregion of the free-space with a
simple shape such that a path can be easily constructed between any two configurations
within the cell. By describing the free-space as a collection of cells, path planning can be
reduced to a search of the graph representing the adjacency relationship between cells. Cell
decompositions can be exact or approximate.

Exact decompositions use cells that can precisely represent the free-space. For al
but the simplest configuration spaces, such cells must be described by complex analytical
expressions. Planners based on exact cell decompositions tend to be more of theoretical
interest as they are complex to implement and are extremely inefficient [55]. On the
other hand, such planners prove the existence of algorithmsthat can exactly solve the path
planning problem.

Approximate decompositions use some ssimple cell shape, typicaly a rectanguloid, to
represent the free-space up to a given resolution. The regular shape of the cells resultsin
smplified algorithms for generating and representing the decomposition. A planner that
uses an approximate cell decomposition may fail to find a path when one exists, however,
such failure occurs only when the robot must move through a region of the free-space that
issmaller than the resolution of the decomposition, a parameter the user can control.

The classical approximate cell decomposition algorithm, proposed by Brooks and
Lozano-Pérez[13], isasfollows. The configuration spaceis divided into rectanguloid cells
at successive levels of approximation. Cells are divided into three categories. EMPTY,
FULL, and MIXED. EMPTY cells are completely contained in C',.., FULL cells are
completely contained in ', and the remaining cells are MIXED. The planner iterates
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between searching for a sequence of adjacent EMPTY cells connecting the start and goal
configurations, and dividing MIXED cellsinto smaller cellsthat arethen classified into one
of thethree categories. The planner terminates when a sequence of EMPTY cellsisfound,
or when some level of resolution is reached. The many variations of this algorithm differ
mainly on how MIXED cells are selected for division and how they are divided [38].

The mgjor limitation of cell decomposition planners is that the representation of the
cells tends to grow exponentially with the dimension of the configuration space. This
property effectively limits the plannersto robots with no greater than perhaps four degrees
of freedom.

Potential field

The artificial potential field method was described earlier in this chapter as an approach
for implementing reactive control. With potential fields, the robot is attracted to the goal
position and repulsed from the obstacles in the environment. Such a scheme can be
implemented to operate in real time, and can be incorporated directly into a robots control
system.

For many simple situations, the potential field method will successfully move arobot to
the desired goal configuration. Since this capability is achieved without costly representa-
tionsof thefree-space, there has been much interest in adapting the potential field method to
path planning. The major difficulty that must be overcome is the presence of local minima
in the potential (see Section 3).

One approach to overcoming the problem of local minima is the design of special
potential functions called navigation functions. Navigation functions have only one min-
imum and hence the robot will move to the desired configuration. Analytical navigation
functions have only been developed for restricted environments; for example, Rimon and
Koditschek [52, 53] present such potentials for environments consisting of digoint spher-
ical and star shaped objects. Numerical navigation functions can be developed over a
discrete representation of the configuration space [4]. These numerical navigation func-
tions, however, require an exponential amount of memory with respect to the dimension of
the configuration space, and are only practical when the dimension is not greater than say
four.

A more successful approach to using potential fields for path planning, proposed by
Barraguand and Latombe [4], utilizes random walks to escape local minima. The ideais
to follow the gradient of a potential function until aminimum isreached. If the minimum
is not the goal configuration, a random walk is performed, followed by another gradient
descent of the potential until a new local minimum is reached. If the new local minimum
is still not the goal, the process is repeated from the lower of the two local minima. The
planner continues until the goal is attained or some time limit is reached. One can view
such a planner as using the potential field as a heuristic. A local minimum corresponds
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to a situation where the heuristic cannot suggest any further course of action, thus random
motion seems appropriate.

The randomized path planner has been used to plan paths for complex, many-degree-
of-freedom robots. By its nature, however, the performance of such a planner can only
be determined empirically. The planner does not guarantee to find a path if one exists,
and there are many parameters, such as the length of each random walk, that influence the
efficiency of the planner in a specific situation. Of particular importanceis the specification
of the potential function. Barraguand and Latombe [4] describe a variety of potentials
that they found to be successful. First, numerical navigation potentials are constructed for
various control points on the robot; these potentials are of dimension two or three, and thus
are computational feasible. Next, the potential for a configuration of the robot is cal culated
by combining the low-dimensional navigation potentials using an arbitration function.

The paths produced by the randomized path planner consist of an aternating sequence
of gradient descent and random walks. Obvioudly, it is advantageous to smooth these paths
before moving the robot. As mentioned in the Chapter 1, elastic bands could provide an
efficient method of performing such a post-processing.

2.5 Combining Planning and Reactive Control

When building a robot system, we ideally would like to combine both path planning and
reactive control. Path planning provides the ability to move to specified goal positions,
even in the presence of complex obstacles. Reactive control provides robust performance
in order to deal with uncertainties and unexpected obstacles while executing the planned
path.

The problem with combining planning and reactive control isthat a path specifiesexactly
where arobot should move to reach the goal. Apart from tuning the velocity along the path
to avoid collision with moving obstacles[ 28], areactive controller will need to move off the
original path. Deviating from the path, however, may or may not have severe repercussions
with respect to reaching the goal position; a path provides no information about the degree
of flexibility in the planned motions.

One common approach to combining planning and reaction involves replacing paths
as the specification of the planned motion of a robot. By designing a representation that
reducesthelevel of commitmentinherentin apath, areactivecontroller can adapt themotion
of the robot in response to information obtained during execution while still following the
original plan. Note that the architecture based on elastic bands, proposed in Chapter 1,
does not fit into this category—apath is still used to represent the planned motion, however
during execution, the path itself is modified.

Krogh and Thorpe[35] propose replacing a path with a sequence of critical points. The
potential field method is then used to move the robot through the sequence of points. As



20 CHAPTER 2. COLLIS ON-FREE MOTION OF ROBOTS

the robot moves between points, the potential field controller allows the robot to deviate
from the original path. The drawback of this approach is that the freedom provided by the
representation isdifficult to control.

Animproved representation, proposed by Choi et a. [57, 15], isthe channel—asequence
of adjacent cells of free-space connecting the start and goal configurations. As the robot
moves through a channel, the robot has aregion of thefree-spacein whichit isfreeto move.
By designing a suitable potential field within the channel, the robot can use this freedom to
avoid unexpected obstacles.

A drawback of the channel method is that the range of contingencies possible during
the motion of the robot isartificially restricted. The boundary of the channel is established
before the robot begins moving, and the placement of the boundary is more a result of
the planning algorithm used, rather than representing some actual constraint on the robot’s
motion. During the motion of the robot, the environment may evolve in such away that the
channel boundary becomes an unnatural constraint. As an extreme example, suppose all
the obstacles in the environment were to be removed. Ideally, the robot should then move
directly to the goal position. Thiswill not occur with channels.

The channel method was designed with the implicit assumption that the path planning
system would be based on a cell decomposition. This restriction is not inherent in the
approach, as one could envision building a channel directly from a collison-free path. In
fact, in Chapter 4, we present such an algorithm for performing this construction.



Chapter 3

Elastic Bands

3.1 Introduction

Inthis chapter we devel op atheoretical model for elastic bands. The model isloosely based
on the physics of flexible materials under the influence of external forces. At the end of the
chapter we compare this approach with an alternative point of view based on optimization
theory.

The model we develop is theoretical in the sense that it is continuous and cannot be
directly implemented on acomputer. The continuous caseisinteresting as paths are defined,
at least formally, as functions. To specify an arbitrary path is equivalent to describing an
arbitrary function, which cannot be achieved with a discrete representation. In subsequent
chapters we utilize the theoretical model to develop a computationally feasible discrete
model that approximates the continuous case.

As stated in the introduction chapter, we use physics as the inspiration for the devel op-
ment of elastic bands. Therationalefor thisapproach isitsintuitive appeal. The behavior of
objectsinthereal worldiswell understood and can be exploited to assist in the development
of an algorithm that solves a specific problem.

The development of physical-based algorithms is quite common in computer science.
A classic example is the optimization technique of smulated annealing [34]. Simulated
annealing modelsthe physics of cooling metalsand freezing liquidsto effectively find near-
optimal solutions to difficult problems such as the traveling salesman and circuit layout.
These problems are characterized by many spurious local minima and were considered
difficult for traditional optimization techniques.

One should remember that we are using a model of a physical process only as the
foundation for an algorithm. Asamodel of elastic bandsis devel oped, wewill lowly depart
from an exact physical model. Thisis not adrawback; we are not interested in accurately
smulating some physical system as is the case with many engineering applications. For
example, smulated annealing is based on the behavior of thermodynamic systems, but it is

21
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not atrue simulation in the sense that it does not accurately model the actual behavior of
metal annealing or freezing liquids. When it seems appropriate, the underlying physics of
the simulation may be modified to suit the task at hand.

3.2 Relation to Previous Work

In previous research, models of deformable materials have been used for applications in
computer vision and graphics. Onewell know exampleisthe snake, as developed by Witkin
et a [30]. A snakeisapieceof stretchy, springy wiremoving in afield of forces generated
from digital images. The image forces move the snake towards features of interest in the
image such a contours while the internal forces maintain smoothness.

The elastic band model adopts the same basic approach as snakes. Elastic bands,
however, are designed for a different application and as such share few implementation
details. A key differenceisthe condition that an elastic band must represent acollision-free
path. Such aconstraint is difficult to maintain and |eadsto the development of an innovative
idea called bubbles.

The elastic band model is aso similar to the artificial potential field method described
in the previous chapter. As in potentia fields, artificial forces are used to influence the
behavior of the robot. The principa difference is that the robot is influenced indirectly
via the modification of a path. In this way, global information about how to achieve the
goal can be maintained while reacting to changes in the environment. In other words,
we can integrate the powerful reactive capabilities of the potential field method with the
goa information necessary to achieve the motion to a globa configuration in a complex
environment.

3.3 A Model for an Elastic Band

An elastic band is a deformabl e collision-free path under the influence of forces. To build
amodel for an elastic band we need to consider the nature of the applied forces and their
effect on the shape of the path. In this section these two issues are considered.

Recall from the last chapter the mathematical description of a path. A parameterized
path c(s) is defined as a smooth function ¢ : [0,1] — Cspace, With ¢(0) = qstert, and
c(1) = dyoat.

We intend to consider a path as aphysical object. The first thing to noticeisthat a path
is specified as a continuous function and thus, in general, cannot be described by afinite or
even countably infinite configuration space. In physics, the motion of such objectsis the
subject of continuum mechanics.

Suppose we consider a path to define the configuration of aone-dimensional continuous
solid where each value of s intherange [0, 1] correspondsto an infinitesimal particlein the



3.3. AMODEL FOR AN ELASTIC BAND 23

object. The position of each particleis given by the function c(s). Note that the particles
of an elastic band movein an n-dimensional configuration space that, as we saw in Chapter
2, may or may not be Euclidean.

At agiven instant in time, we wish to apply aforce to each particle of the elastic band.
The force on agiven particle can be represented as an n-dimensional vector in which each
element correspondsto the force applied along the corresponding axisin the n-dimensional
configuration space. In general the force will vary aong the elastic band, and thus we
represent theforcef(s) asasmooth functionf : [0, 1] — R"™, whichisreferredto asaforce
function.

After determining the force function on the elastic, we need to determine the evolution
though time of the shape of the path. Instead of attempting to simulate the full dynamics of
atruephysical system, a pseudo-static approach is used.

I nternal and external forces

The force applied to a particle of an elastic band can be decomposed into the sum of
component forces, the most important divison being between an internal force and an
external force. We can consider the particles of the elastic band as a system. The internal
force isthe result of interaction between particles within the system while external forceis
due to sources outside the system. The total force function can be written

f(s) = fini(s) + feui(s)

wheref;,,; and f.., represent the internal and external force functions respectively.

The division of the force function into internal and external components emphasizes
the relationship between the elastic band model and the potentia field method. We can
consider each of the particles of the elastic band to be under the influence of a potential
function represented by the externa force. Each particle moves under the influence of the
external force; however, the internal force maintain the constraint that the particles form a
continuous curve.

The internal force determines the properties of the artificial “material” that an elastic
band is made of. In the example from the introduction chapter, the internal force was
described as a contraction force similar to that of a piece of elastic rubber, and hence
the name for our model. As the élastic band is a one-dimensional curve, we restrict
the interaction between particles of the system to those that are within an infinitesmal
distance of each other; such interaction will be a function of the local shape of the elastic.
Mathematically, this corresponds to restricting the internal force to be a function of the
derivatives of the path with respect to the spatial parameterization variable s. The internal
force can thus be written as

de d*c dPc
Zm(ds’ ds?’ ds®’ " )
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or more concisely
(' "™ ).

The external force reflects the effect of the environment on the path. For each particle,
the force is independent of the other particlesin the elastic. We restrict the external force
so that it is dependent on only a particle’s position in the configuration space; the external
force hastheform

f..i(c(s)).

The external force specifies how we want each particle to move regardless of the other
particles. This is not to say that the external force on a particle will have no effect on
neighboring particles. As particles move, the shape of the path will change. The internal
force, which is afunction of the shape, will cause neighboring particlesto be affected.

Motion of an elastic band

After the forces on the elastic band are determined, the resulting motion of the path needs
to be calculated. Mathematically, the shape of the elastic band and the applied force can
be considered as function of both a spatial parameterization variable s and a temporal
parameterization variable ¢, in other words, c(s,¢) and (s, ¢) respectively. The motion of
the elastic band can then be described by a set of partial differential equations relating c
andf.

From a physical point of view, the motion of the elastic band can be determined by an
application of Newton's laws of motion. For each infinitesimal particle s on the elastic, a
mass 1(s) isspecified. Applying the classical f = ma law gives

d*c

Assuming there are sufficient initial conditions, the partial differential equation (3.1) can
be integrated twice with respect to time to determine the motion of the elastic band. Such
an approach isequivalent to adynamic simulation of our artificial elastic material under the
influence of forces.

We use a pseudo-static model to determine the motion of an elastic band. To integrate
equation (3.1), the time rate of change dc/dt of the elastic band must be known. Instead,
we assume that the elastic band is at rest. A Taylor series expansion of ¢ gives

de 1 ,0%
c(s,t+ At) =c(s,t) +Atat + 2At 5 + -
If at timet the particleisat rest, i.e., dc/dt = 0, and high order termsareignored, theinitial
instantaneous motion of each particle will be in the direction of the acceleration 9*c/d1? .
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From equation (3.1) it can be seen that direction of acceleration is also the direction of the
force, thus mathematically we have

Ac x f. (3.2
The behavior of such a system can be approximated by the partial differential equation
dc

Such an approach ignores the dynamic components of the motion of the elastic band, but
retains the same steady state configurations or low frequency behavior. The analogous
physical situation is to imagine that the elastic band isimmersed in a viscous fluid.

The use of pseudo-static motion rather than simulating the full dynamics is the same
smplification that is used when applying the potential field method to path planning. The
justification for this approach is that for path planning and elastic bands, the dynamic
behavior of the ssimulated objects is of little interest, thus it appears unnecessary to spend
effort smulating it.

3.4 Using Potential Functionsto Specify Forces

In the artificial potential field method, the force on the robot is specified using the negative
gradient of apotential function, that is

f(q) = -VV(q).

Under suitable conditions, subjecting the robot to aforce defined in this manner will result
in the robot moving to alocal minimum in the potential. Thisis a powerful property—a
potential can be designed to meet variouscriteria, and even though the effect of the resulting
forcesis extremely complex, the global behavior of the system can still be analyzed.

We would like to specify force function acting on an elastic band in a smilar fashion.
The difficulty is that the configuration of the elastic band is specified by the parameterized
function c(s) and not some finite number of coordinates. The potential should considers
the entire configuration of the elastic band and returns a scalar value. As the state of the
elastic band isitself afunction, the potential isafunction of afunction, often referred to as
afunctional. The gradient operator can not be applied to functionals.

Luckily, we can utilize variational calculus to develop an operator that has many of
the same properties as the gradient operator V, but applies to functionals. Although
this development is interesting, it is rather mathematical in nature and adds little to an
understanding of the elastic band idea. For this reason, the development of the operator
appearsin Appendix A; the following few paragraphs state the relevant results.

One natural way to specify the potential functional is to define a potential density v(s)
for each particle on the elastic band and then integrate this density over theelastic. Likethe
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force functions considered in the previous section, the energy density can be divided into
internal and external components. The internal component is a function only of the shape
of the elastic, while the external component is afunction of the position of aparticlein the
configuration space. Mathematically we have

U(S) = vint(cl7 CH? Cl/lv .. ) + vext(c)7

where v;,,; and v.,, are the internal and externa potential density functions respectively.
The potentia functional V[c] over the elastic is given by

For potential functionals such as V, we can derive a functional gradient operator ¥V given

by
— ov d Ov d?> ov . dr o Ov
V=5 " @oe aaer T G gem
Thisoperator has many anal ogous propertiesto the well-known gradient operator as applied
to functions of severa variables, some of which are listed below:

(3.4)

1. Given afunction ¢g(x) and a unit vector n, the derivative of ¢ in the direction n is

defined as
dg(x +in)

dt

In a similar fashion, suppose we let 7(s) be afunction that maps the interval [0, 1]
into the same n-dimensional space as ¢(s), and has the property that

1
[ i =1.
0

We can view 1y asaunit function, and define the derivative of V' in the direction of i
as

=Vyg- n.

dV(c+1tn)
dt '
Using the functional gradient operator, the direction derivativeis given by the expres-
son )
/0 Vv - nds.

2. For afunction ¢(x), the direction of maximal increase is given by the vector V.
Similarly, the direction that causes the greatest increasein V' is given by the function
Vo(s).
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3. If x isafunction of timet, the changein the function ¢(x(#)) is given by the equation
§g=Vg-x%.

Similarly, if ¢ isafunction of both s and ¢, then V[c] = V/(¢) isafunction of {. We
may now consider the derivativeof V with respect to¢. Using thefunctional gradient,
this quantity can be expressed as

. 1_
V(t):/ Vo - éds.
0

4. The vector x isastationary value of ¢ if
Vg(x) = 0.
An elastic band c isin astationary configuration if, for all values of s,
Ve(s) = 0.

By stationary, we mean that any infinitesimal changesin ¢ will not result in achange
inV]c].

5. A potentia function can be considered as defining an energy function over the con-
figuration space. If the force on a particle is specified by

f(x) = -Vy,

then thefunction ¢ can be viewed as the potential energy of the particle. In particular,
the work done in moving a particlefrom configuration x, to x; in the presence of the
force f isgiven by the expression
9(x0) — g(x1).
Similarly, if theforce on a particle of the elastic is specified by
f(s) = -V,

then the functional V'[c] defines a potential energy over the space of possible paths.
Thework donein deforming apath ¢, to apath ¢, inthe presence of theforcefunction
f isgiven by the expression

Vieo] — Veq].

AsV istheintegra of v over the path, we label v an energy density function.
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3.5 AnElasticBand Madefrom Idealized Elastic M aterial

Suppose the elastic band is made of an idealized elastic material with the following two
properties:

1. Itsunstrained state correspondsto zero length.

2. When deformed, the strain energy takes the standard form $4z*, where k is the
constant of elagticity and « is the magnitude of the deformation of the material.

For such a model of the elastic band, we can specify the interna energy density by the
equation
oo = SHIE @9)

To see how eguation (3.5) is derived, notice that ||c’|| can be thought of as describing the
deformation of the infinitesimal particle s; alarge value of ||c’|| indicates the particle is
“stretched out” and “thin”. These terms, of course, are intended only as mental aids for
visualizing the mathematical equations.

Using the functional gradient operator, the corresponding force can be determined for a
particle of the elastic band. As v;,; in equation (3.5) contains only thefirst derivative of c,
V hasthe simplified form of

Vo=———. (3.6)
Applying (3.6), it can be seen that the contraction forces f;,.; is given by,

fint(s) — _vvint
iavint
ds Oc’
= kc". (3.7

Now consider the external force. Asstated above, the external forcefor aparticleon the
elastic is restricted to be a function of only its position in the configuration space. Given
thisrestriction, it is easy to see that the external energy density must also be afunction only
of the particle’s position. For such an energy function, the operator V is identical to the
standard gradient operator V, giving

fext(s) — _vvext(c)
— Voue). (38)

In other words, the external force on a particle of the elastic band is specified in the same
fashionastheforceonarobot intheartificial potential field method. Thisisto beexpected as
an elastic band can be viewed as an infinite number of robots, each under the influence of an
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external potential field whiletheinternal force provide the connection between neighboring
robots.
In summary, our first model for an elastic band specifies the force on a particle of an
elastic by the equation
f(s) = kc"(s) — Vve(c(s)),

where k is the constant of elasticity and v.,, is a user-specified potential over the configu-
ration space of the robot.

3.6 A Problem with the Elastic Band M odel

The model that we have developed above represents the forces on an elastic band made
of an idealized linear elastic material. Such a material seems physically appealing as we
expect it to behave in amanner similar to actual physical objects. Of course, the property
that the material has an unstrained state of zero length is somewhat unrealistic, but this can
be seen as the extreme case of materials that have short unstrained lengths that are then
stretched considerably.

Unfortunately, the model based on an idealized elastic band has a serious problem when
used for our application of path modification. The problem results from the variationin the
tension in the elastic band as the total length of the elastic changes.

Consider stretching a physical object that is similar to our elastic band. Intuitively, as
the length increases, the internal tension becomes greater. One result of an increase in
tension is that it becomes more difficult to deform the shape of the object.

In terms of our elastic band model, increasing the length of the elastic will decrease the
deformation dueto agiven external force. In particular, if the external forceis used to repel
the elastic from the obstacles in the configuration space, the distance from the obstacles at
which the repulsive force and the contraction force balance each other will depend on the
length of the elastic.

This property isundesirable for two reasons. First, the contraction and repulsion forces
aredesigned to producean elastic that is short, smooth, and has clearance fromthe obstacles.
As discussed previoudly, these criteria conflict with each other. By allowing the length of
the elastic to influence the amount of external force needed to modify the shape, it becomes
difficult to design the external force and set the constant of elasticity £ such that a suitable
compromiseis achieved.

Second, changesin the environment may cause non-local changesin the path. Suppose
a new obstacle appears and starts to deform an elastic. If this deformation substantially
changes the length of the elastic, the tension will increase and we expect the entire elastic
band to change shape. In the case of a repulsion external force, changes in one segment
of the elastic may cause the entire path to move closer to the obstacles. Such global
deformations of the elastic seem undesirable.
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3.7 A New Modd

We now consider anew model for elastic bandsthat isdightly less physical. Inthis model,
theinternal contractionforceisdesigned so that thetension in the elastic isaways constant.
Itisdifficult toimaginean actual material with thisproperty and such an artificial “material”
has its own problems. However, we feel this model iswell suited to the task of modeling a
deforming collision-free path.

Consider a materia that has constant tension when deformed. The strain energy for
such a material has the form kz, instead of the usua 1kz?, where k is the constant of
elagticity and = is the magnitude of deformation. For a model of the elastic band, internal
energy density can be specify by the equation

vint = Kl

Using the functional gradient operator V, the corresponding force on a particle of the
elastic can be determined. Applying (3.6), the contraction force f;,; isgiven by

fint(s) — _vvint
i avint

ds Oc’
d ¢

& e
k " c// . C/ /)
= - . 3.9
el ( e (39)

The force described by equation (3.9) is almost equivalent to the curvature vector of c.
In Appendix B we describe the notion of a curvature vector in detail, however, the basic
ideais the direction and extent that the curve bends at a given point is given by the vector

1 c// . c/
K(s) = —— (c" — —c’) : (3.10)
]2 le’|I”
This equation can be interpreted as follows. First notice that the expression
¢!
WC/ (311)

represents the component of ¢” along the unit vector ¢’/||c’||, which is the direction of the
path at the given point. Subtracting (3.11) from ¢” gives the component of the acceleration
that is not along the path. Scaling this vector by one over the square of the magnitude of
the velocity along the path gives the curvature of the path. The curvature vector for a point
on acurve is afunction only of the shape of the curve at that point and not the particular
parameterization that is used to describe it.
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Comparing equations (3.9) and (3.11), we see that the internal force can be expressed
as
fine(s) = k |[c/|] (s).

The force f;,,; has the same direction as &, but its magnitude is scaled by ||¢’|| and the
constant £. Recall that for an elastic ¢, the quantity ||c’|| represents the local amount of
stretchintheelastic. 1n other words, the magnitude of theinternal forceisstill dependent on
how stretched the elastic is, and the problem described in section 3.6 till applies. However,
the degree of coupling is much reduced from the original force defined by equation (3.7).

Given that thetension inthe elastic band is constant, it maybe surprising that the internal
force varies with the degree of stretch in the elastic. One way to picture the Situation is as
follows. Each infinitesmal particle experiences aforce from its two neighboring particles.
As the tension is constant, these forces are of equal magnitude The direction of the two
forces, however, are not quite opposite due to the curvature of the path; the discrepancy in
the directions results in a non-zero resultant force. If the elastic band is stretched in some
region while maintaining the same shape, the neighboring particleswill move further apart
and the discrepancy in the directions of the two forceswill increase. For the elastic to bein
equilibrium, the magnitude of the external force must increase.

Ideally, wewould likean internal forcethat isaconstant multiple of the curvature vector
. Such aforceis appealing as it is proportional to the degree of bending in the elastic
and is dependent only on the elastic’s shape and not on the distribution of particlesalong it.
Unfortunately, we have not found an energy density that describes such aforce. Without
such an energy density, it is difficult to make any statements about the global stability of
the elastic when the forceis applied.

Later in the chapter, we will return to the issue of decoupling theinternal forcefrom the
amount of stretch in the elastic band. We now discuss another problem that arises when we
use our new interna force.

3.8 A Problem with the New Internal Force

Theinternal forcedescribed in the last section is based on amodel in which the elastic band
is constructed from a material that has constant internal tension. Although this model is
less “physical” than the original model based on an idealized elastic material, it does have
advantages as a model of a deforming path. There is, however, a mgor problem with the
force resulting from this model—it contains no component tangential to the path.

The lack of atangential component of the internal force meansthat, in general, thereis
no feasible steady state configuration for the elastic. Any component of the external force
that acts along the elastic will not be opposed by an internal force. The external force can
continuoudly push particles of the elastic band along the path, resulting in an elastic that
becomes progressively thinner in some regions.
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To see that f;,,; contains no component along the elastic, consider the dot product of f;,,;

andc'. /
k c -
’ "o [V
e €= 1] ( e ) =0

The fact that the elastic may not have a static configuration may seem surprising. After
all, theforces on the elastic are derived from non-negative energy functions and it might be
expected that gradient descent of the sum of the energy functions should lead to aminimum.
Such aproperty holdsfor energy functionsthat are defined over afinite set of variablessuch
asinthe potentia field method. For energy functionals, functionsof functions, itispossible
to move down the gradient without converging to a minimum. In fact, no minimum may
exist!

For our model of an elastic band, the internal energy remains constant as particles are
moved along the path. Consider the expression for the total internal energy,

1
‘/int[c] - /Ovintds
1
- k/ Ic'|| ds.
0

This expression can be seen to be £ times the length of the elastic, which is obviousy
invariant under a re-parameterization of the path.

By moving particles along the elastic, the total energy of the elastic can be reduced.
As the internal energy will remain constant, such a reduction can be achieved by smply
moving particles aong the path from configuration in which the external energy v.,.; ishigh
to regionsin which it islow. This process can continue indefinitely, progressively making
the elastic thinner and thiner in the higher energy regions.

It is worth noting that such a problem does not occur with the original internal energy
density specified by (3.4). If the particles are moved along the path, the internal energy will
change. As the eastic becomes thinner in some regions, the local tension and hence the
internal energy increases.

3.9 AddingaConstraint Force

One solution to the above problem is to constrain the motion of particles of the elastic.
Consider adding a constraint force that eliminates the motion of particles along the elastic.
For a given particle, this constraint force will be equal and opposite to the component of
the external force aong the elastic band. As the elastic band deforms, the direction of the
constraint will vary accordingly. More formally, we can add a constraint force f...,.;, given
by the equation,

(3.12)

fconst - -
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The constraint force given by (3.12) can be seen to be non-holonomic; it is similar to the
constraint force that stops acar from diding sddeways. Asf....,; isnon-holonomic, it cannot
be expressed as the gradient of an energy function. However, at any given instant, the force
f..ns: fOr agiven particleis along a direction in which the particle does not move; thisisthe
raison d’ étre of the force. Thusthe constraint force does no work and can be ignored when
considering the energy of an elastic.

We conjecture that the addition of the forcef.,,.;; will ensure that a static configuration
for the elastic always exists. This statement has not been proved, but is supported by our
experience with implementations based on this approach.

3.10 Changingthelength of the elastic

We now return to the issue of decoupling the internal force from the stretch in the elastic
band. First, note that the addition of the constraint force partially solves the problem. As
particles in the elastic can no longer move along the elastic, local changes in the stretch
will not propagate to other regions and thus the elastic will be reasonably decoupled. This
property does not mean that local changes will have no global effect—the particles can still
move perpendicular to the elastic causing a change in the local shape, which can have a
global effect.

A problem still remains. If alocal region of the elastic is deformed, the local stretch
will change, resulting in a variation of the amount of external force needed to modify the
band. Thisvariation will be afunction of both the shape of the elastic and the stretch, while
we would prefer it to be a function only of the shape.

To overcome this problem, our current implementation uses a rather ad hoc solution
that workswell in practice. We postpone a compl ete description of the solution to Chapter
5, but the basic ideaisto vary the length of the elastic band.

Suppose some local region of an elastic band is being deformed in such away that the
amount of stretch isincreasing. At some point, we decide to add additional “materia” to
this section of the elastic and thus decease the amount of stretch. Vice versa, if the amount
of stretch decreases to a certain point, some of that section of the elastic isremoved. Inthis
way, a reasonably consistent amount of stretch can be maintained along the elastic.

Adding such an ad hoc meta-behavior to the elastic band raises many complex issues.
Even though the underlying force-based behavior of the elastic can be shown to be well
behaved, it is unclear whether the addition and removal of parts of the elastic may interact
with theforcesin some undesirable fashion. Although we have littletheoretical justification
for this approach, we have found in practice that it provides the desired behavior.

Intuitively, it is easy to see that certain problems will not occur. As particles cannot
move aong the elastic, we do not expect a situation in which elastic material is created in
one region, propagates to another region, and is then removed.
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A problem that did occur was that the addition of material caused the shape to change
dightly such that material is then removed. This problem can be avoided by adding a
hysteresis-like property to the process.

3.11 A Summary of the Mod€

In summary, we have devel oped the following model for elastic bands.

An elagtic band is a one-dimensional continuous solid described by a parameterized
function c(s) where s € [0,1]. The force applied to each particle s of the elastic is given
by the function

f(s) = £ine(s) 4+ fene(8) + foonse (),

wheref.,;, ..., and f.,,.,; aretheinternal, externa and constraint force functions. These
functions are defined by the following equations

fini(s) = k]| r(s),

fext(s) — _vvext(c)a
fo.-c
fconst(s) - - HS/HQ Clv

where k isthe constant of elasticity, «(S) isthe curvature vector of the path at s, and v, IS
auser specified potential function over the configuration space of the robot.

The internal and external forces are defined in terms potential functionals of the shape
of the elastic ¢ respectively given by

1
Vadle) = [kl .
1
‘/ext[c] - /vel’t ds.
0

Theforcef..,.; imposesthe constraint that particles do not move along the elastic band.
The constraint force is not derived from a potential functional, but by its nature, does no
work and thus does not influence the energy of the elastic.

The resultant force on each particle causes a pseudo-static motion given by the relation

dc

— o f.

ot

Finally, to overcome the coupling between the amount of stretch in the elastic band and
the magnitude of the internal force, we apply a procedure, described in Chapter 5, that adds
and removes material from the elastic.

Theprocessesof devel oping the el astic band model wasiterative and essentially followed
thedescriptioninthischapter. Theoriginal ideawasto bring collision-freepathsto“life’ by
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treating them as deformable physical objects. Our first implementation of thisidea closely
modeled the true physical behavior of such objects, but as problemsarose, we modified our
model in more and more non-physical ways. None the less, we till tried to maintain the
spirit of modeling a physical object as we feel this provides a powerful metaphor for the
design of computer algorithms.

3.12 Modifying a Path using Optimization Theory

To round out this chapter, we next briefly describe an approach to modifying a path based
on optimization theory. In some respects, such an approach has a more solid mathematical
foundation than the elastic band model described above. It isinteresting that the resulting
model is similar, but not identical, to the elastic band model.

The classical form for an optimization problem [25] may be expressed as:

minimize F(x) xr e R”
subject to  fi(x) =0, ¢=1,2,...,m;
filz) =0

The function F' is called the objective function, the functions f; are equality constraints,
and the functions f! are inequality constraints. Most optimization algorithms do not find
the globa minimum of ' but find some local minimum.

Optimizing a path cannot be directly expressed in the above form as an arbitrary path
cannot be described by a point in some finite-dimensional space R”. In practice, some
finite-dimensional representation would be used that can describe a large subset of the
possible paths. In this section, we will not consider the particular approximations that
could be used to implement the optimization of a path; rather, we consider optimizing the
path directly. In particular, the optimization problem we are interested in solving can be
stated as:

[07
[

Y y =yt

minimize F[c] c:[0,1] - C
subject to  ¢(s) € Cypee, s €[0,1]
C(O) = Qstart, C(l) = Yyoal,

c isasmooth function.

Y

Notethat /' isafunction of thefunction c, i.e., afunctional.

Given that a path is a geometric object, it seems natural that optimizing a path refers
to optimizing its shape. Reparameterizing a path does not change its shape and hence we
require that the objective functional F' be independent of the particular parameterization of
the path. Mathematically, given amonotonic function g : [0, 1] — [0, 1] with ¢(0) = 0 and
g(1) = 1, we can define areparameterization of ¢ asthe path ¢* where
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For al such reparameterizations of ¢, the functional /' should have the property that

For example, consider defining F' as the length of apath, i.e,

o= [ 1% as

For areparameterization c*(s) = c(g(s)), the functional £ can be written

el = [t Hd

dc
——||d
/OH 9D 4,
L de(g)  dg
= =01 4
1 g ds
As g ismonotonic increasing
dg/ds >0,
hence
Flcrl =
[c”] dg

What objective functional should we use to implement the path modification described
in Chapter 1?7 Many possibilities exist, but one that seems intuitive is an extension of the
notion of path length mentioned above. As the path is constrained to be collision-free, the
minimum length path will consist of straight line segments separated by segmentsthat lieon
the boundary of the free space. To improve the shape of the minimum length path, suppose
a positive cost is associated with each configuration in the free space and the objective
function £ is defined as a path length that is weighted by this cost. More formally, given a
scaar functionv : Cy,.. — R, the objective functiona F'[c] isdefined as

de(s)
d
) s,

Fle) = [ oels)
_ /Olv(c)Hc’Hds. (3.13)

The idea behind the objective functional (3.13) is that the cost function » can be used
in a manner similar to the potential function v.,., in the elastic band model. For example,
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increasing the cost near the boundary of C',.. will move the minimum cost weighted path
away from the obstacles.

Using the functional gradient operator V described earlier in this chapter, we can
examine the properties of paths that minimize the objective functional given by (3.13).
Suppose the path ¢ is well inside the free space; we can ignore the constraint that ¢
be collison-free. As shown in Appendix A, a necessary condition for a minimum of a
functional of the form

1
F=
| sy
is
Vf(s)=0, Vse[0,1].
For the functional defined by (3.13)

v = (-2 el

Jv d c
JR— / - -
- HC ’ de dSv(C)HC,Hv
,’@_ v ,,_c”-c’c, 8v‘c, c
dc ||| e’

s
Vo-c

!
Tele

= |l

= [I'(Vo —ve -

where « isthe curvature vector of ¢ (see Appendix B). For V f = 0 we have

vk — Vo + %c’ = 0. (3.19)
C
What isinteresting about equation (3.14) isits smilarity with the equilibrium condition
of the elastic band model. A particle of an elastic band isin equilibrium when the resultant
force acting on the particle is zero. Using the model described in the last section, this
condition occurs when

!
Vvext - C ’

el

By inspection, it can be seen that the only difference between (3.14) and (3.15) isthe scalar
multipleof the curvaturevector «. For theelastic band model, « isscaled by auser specified
constant & and the local stretch in the elastic ||c¢’||. The optimization approach scales « by
the value of the cost function v at c(s).

It isunclear, at least to this author, what the effect of the difference between the elastic
band model and the optimization based approach will have on on the modification of
collison-free paths. We have not implemented the optimization based approach, but we
suspect the difference will be minimal.

fint + fext + fconst =k HC/H K — vvel’t +






Chapter 4

Bubbles of Free Space

4.1 Introduction

In this chapter we describe the bubble concept. A bubble represents alocal subset of the
free-gpace around a given configuration of the robot. Bubbles are generated efficiently
from distance information obtained by examining a model of the robot and the objectsin
the environment. Bubbles enable applicationsto utilize information about the free-spacein
complex and changing environmentswithout resorting to computationally infeasiblemodels
of the free-spacein its entirety. In Chapter 5, the bubble concept is used to implement the
elastic band model efficiently.

The motivation for the bubble concept is the difficulty of generating or representing
the entire free-space for arobot. As seen in Chapter 2, it is possible to build models of
the free-space, however, these methods grow exponentially in both time and space with
the dimension of the configuration space. For configuration spaces with dimension higher
than three or four, the cost associated with building and storing a model of the free-
gpace is prohibitive. For example, a uniform discrete representation of a six-dimensional
configuration space with one hundred divisions of each axis requires 10'? bits, which is
approximately 100 gigabytes of memory. Assuming the time to determine if a single
configuration is in the free-space is one nanosecond, it will still require 15 minutes to
generate the entire free-space.

Even for low-dimensional configuration spaces, the cost of generating a representation
of C'y... may be large enough that it is difficult to maintain, in real-time, for a changing
environment.

Instead of representing the entire free-space, we propose to compute, on the fly, local
subsets of C'y,... around specified configurations of the robot. These local subsets are called
bubbles. We use the notation /3, to indicate the bubble around the configuration q.

The bubble at configuration q is generated from information about the distance between
the robot when in configuration q and the current state of the obstacles in the environment.

39
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If the configuration of the robot is in ..., the distance from the obstacles should be
greater than zero. In addition, the magnitude of the distance enables us to infer that
certain neighboring position in C,,.. aredso in Cy,... A bubbleis aset of neighboring
configurationsthat areinferredto bein C,...

Consider the two-link revolute manipulator shown in Figure 4.1a. At the given config-
uration, the minimum distance between the robot and the environment is shown by theline
segment AB. The diamond-shaped region in Figure 4.1b represents a bubble of free-space
generated from the length of AB. For reference, the shaded region in Figure 4.1b repre-
sents the configuration space obstacles in joint space. These obstacles were generated by
sampling ten thousand different configurationsof the manipulator. Note, the bubble of free-
space was constructed solely on the distance information and did not use the configuration
space obstacles shown in the figure.

a) b)

Figure4.1: a) A manipulator with two degrees of freedomin an environment with obstacles.
Theline segment A B representsthe minimum distance between the robot and the obstacles.
b) Thejoint configurationsspace for therobot. The shaded arearepresentsthe configuration
space obstacles generated by sampling. The diamond represents the bubble generated from
the length of AB.

A bubble represents a local collision-free region around a configuration of the robot.
An application can generate bubbles around various configurations of interest and hence
determine useful information about the free-space. The advantage of the bubble concept
isthat information is generated only about areas of interest rather than trying to model the
entire free-space. By examining only asmall area of the free-space, real-time performance
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can be achieved. For example, to deform a collison-free path using the elastic band
model, we are interested in the free-space around the current path. 1n a high-dimensional
configuration space, the volume of the free-space around a path is a miniscule fraction of
the total volume of the free-space.

For a specific robot, the shape of a bubble of free-space is restricted to a smple
geometric object such as a hypersphere. This restriction enables a bubble to be described
by a small number of parameters and simplifies tasks such as determining whether two
bubblesintersect. The restriction on the shape of a bubble may limit our ability to directly
describethe extent of the free-space around therobot, however, thisdoesnot poseaproblem;
if an application requires more information about the free-space, additional bubbles can be
created around other configurations of the robot.

It is also useful to require that bubbles are convex. This property facilitates the con-
struction of collision-free paths within the bubble. The straight line motion between two
configurationsin a convex bubble will be collision free. In addition, many representations
of curves have the property that they remain within the convex hull of their defining control
points. For example, Figure 4.2 illustrates a Bézier curve defined by four control points.
The dotted line represents the convex hull of these control points and it can be seen that
the curve remains within thisregion. If al the control points are within a bubble, the entire
curveiscollision free.

P2

Figure 4.2: A Bézier curve defined by four control points. The dotted line is the convex
hull of these four points.

4.2 Bubblesand Cell Decompositions

In many ways, bubbles of free-space are similar to the cells in a decomposition of C',..
(see Chapter 2). Likeabubble, acell isaregion of C'y,.. represented by some simple shape
with properties such as convexity.

In contrast to bubbles, with a cell decomposition, the geometric shape and placement
of cells is designed to facilitate complete coverage of the entire free-space. For some
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applications, notably path planners, the complete coverage of the free-spaceis an important
criterion. If this global property is not needed, however, the somewhat arbitrary nature
of the cell boundaries can be rather inconvenient. Consider using a cell decomposition
to determine the free-space around a collision-free path. The set of cells that covers the
path may contain boundaries such that the free-space around the path is marginal. These
boundaries do not indicate that the path comes close to collision; rather, they are artifacts
of the precomputed cell decomposition.

An analogy can be drawn between a cell decomposition and an atlas of maps. When
we are interested in some area of the world, we can turn to the appropriate page in the
atlas for information. Since the division of the world into pages has been determined to
facilitate the complete coverage of the various land masses, the location of interest may be
inconveniently near the edge of a page.

The equivalent analogy for the bubble approach would be a system that generates a
custom map with the location of interest at the center. Such custom maps would avoid the
problem of being near the artificial boundary of the page.

Bubbles and cell decomposition methods also differ on the basic computation that is
performed. In the bubble approach, a region of free-space is calculated from distance
information. The most expensive part of the bubble approach is the generation of distance
information. For typical cell decomposition algorithms, the fundamental procedure is
determining whether a given cell is contained entirely, partially, or not at al within the
free-space. This operation requires the intersection of the cell and the boundary of the
free-space and can be quite complex [38].

4.3 Applicationsof Bubbles

We feel the bubble concept has many potentia applications in various areas of robotics.
A bubble represents local information about C';,... and this information can be obtained
efficiently, even for robots with high-dimensional configuration spaces or in environments
that are changing. We developed the bubble concept to implement the modification of a
collision-freepath; however, itisnot difficult to envision using bubblesin other applications
such as path planning, off-line programming, or robot control. In thissection, some of these
other applications of bubbles are briefly outlined.

Path planning

As mentioned in Chapter 2, one of the trends in path planning for robots with many
degrees of freedom is to abandon systematic search of C'y,.. in favor of randomized search.
One common step in a randomized search is to move the robot from one collision-free
configuration to another neighboring configuration along a smple path such as a straight
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line. How do we determinethat such a motion does not move the robot through an obstacle?
A common solutionisto restrict the distance between the two configurationsto berelatively
small. Since the two configurations are in C',.., it is probable that the motion between
the configurations will not cause a collision. However, setting the step size is an awkward
problem. A small step size will reduce the likelihood of moving through an object, but
setting the step size too small greatly decreases the efficiency of the search.

By using bubbles, the step-size for the search routine can be determined adaptively and
the motion between successive configurations will be collision free. For a configuration
of the robot, the associated bubble represents a local region of C's,... To step in adesired
direction, the robot is moved up to the edge of this bubble with full confidence that no
collision has occurred. When the robot is far from the obstacles in the environment, we
expect the bubbles of free-space to be relatively large and hence the robot can take large
steps; conversely, in atight situations, small steps will be taken.

The cost of generating bubbles is dominated by the cost of obtaining distance infor-
mation. Chapter 6 presents an algorithm that can obtain this distance information with
only marginally more effort than determining solely whether a configuration is collision
free. With such an algorithm, the use of bubbles in randomized path planners seems truly
advantageous.

Path smoothing

Under the reasonable assumptions that apath ¢ is compact, C'y,.. isopen, and the bubble at
any configurationin C',.. iSanon-empty open set with aminimum size that is greater than
some constant factor of the distance between the robot and the obstacles, it can be shown
that ¢ can be covered with afinite number of bubbles. Informally, this may be seen by the
following procedure. Determine the bubble at the start of the path, i.e., find .. Move
along the path until the first value of s isfound such that

c(s) & Be(o)-

Since bubbles are open, either such avalue of s will exist or the bubble contains the entire
path.

Next, generate another bubble at ¢(s) and repeat the above process until the end of the
path is covered as illustrated in Figure 4.3. Since the path is collision free and Cy,.. IS
open, there exists some minimum clearance between the path and the obstacles. From this
property and the restriction on the minimum size of a bubble, it can be seen that thereisa
minimum sized bubble along the path. Thus, each iteration of the above step will move at
least some constant distance along the path.

At the end of this process we will have a series of values, sg, s1, . . ., $,, Such that

Be(sn N Besizy) £ 0
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a)

Figure4.3: a) A pathin atwo-dimensional configuration space. b) The path covered with
bubbles. Note that the bubbles are generated without computing the configuration space
obstacles and hence can be done in high-dimensional configuration spaces.

forall : < m. Also, for each s € [0, 1] there exists some ¢ such that

C(S) € ﬂc(si). (4.1)

One may question the practicality of finding the first value of s such that c(s) € SBe(s,).
For many discrete representations of ¢, thisvalue can be determined efficiently. The details
are tedious and depend on the particular representation that is used, but the general idea
is as follows. Using a standard root finding procedure, a value of s can be found such
that (4.1) holdsfor s and not for s — . Next, it isdetermined if the path between s; and s
is contained in the bubble. For representations such as B-splines, Bézier curves, etc, a set
of points for any segment of the curve can be found such that the segment lies within the
convex hull of these points. Furthermore, as the length of the segment is reduced, the set
of points converges towards the curve. Using this property, we can construct an algorithm
that determinesif a path segment liesin a bubble by examining the corresponding control
pointsto seeif they liein the bubble. If the control points are not contained in the bubble,
the segment is divided into two parts and the procedureis recursively called for each part.
This process will continue until it is determined that the segment isin the bubble or a new
point is found that is not contained in the bubble.

After covering the path with bubbles, we have a representation for a connected region
of Cy,.. that includes both the start and the goal position. One can view this region as
describing an infinite bundle of homotopic pathsfrom the start to the goal. Any one of these
possible paths can be selected as a replacement for the original. One practical application
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of this capability is the conversion of continuous piecewise differential pathsto a C'' or
C? path. In particular, a path from a planner that is constructed of line segments can be
converted to a path suitable for a control system.

Path collision checking

A common problem in off-line programming systems is determining whether a user-
specified path is collision free. The typical approach to this problem is to check for
collision at incremental steps aong the path. An issue that arises with this approach is the
size of the steps. Smaller steps increase the confidence that the path is collision free, but
also increase the time required to check the path.

By asimple modification of thea gorithmfor covering acollision-free path with bubbl es,
bubbles can be used to determine efficiently and rigoroudly if a path is collison free.
Consider attempting to cover agiven path with bubbles. If this process succeeds, the path
is obvioudy collision free. By setting a minimum size for a bubble, it can be seen that
attempting to cover a path that is not collision free will fail in afinite number of steps.

Tracking tolerances

By covering a path with bubbles, useful information can be obtained about the tolerance
with which the control system must track the path if collisions are to be avoided.

Given thenature of control systems, when moving arobot along apath thereisinvariably
some degree of tracking error. This error is aresult of unmodeled disturbance forces that
the robot experiences during motion and is often correlated to the speed with which the
robot moves. Since the size of a bubble is related to the distance from the obstacles, it
seems reasonabl e to limit the speed of the robot at a given point on the path based on the
size of the corresponding bubble.

4.4 Computing Bubbles

In the remainder of this chapter we examine various specific types of robots and describe
viable schemes for computing bubbles of free-space.

For a particular robot there are many possible approaches that can be taken to deriving
some local region of the configuration space that is contained in C'y,... These different
approaches often represent tradeoffs between the size of the bubble and the computation
cost for itsgeneration. For our application, implementing elastic bands, the effect of having
smaller bubbles is to increase the number of bubbles required to represent a collision free
path; the tradeoff is between the cost per bubble and the number of bubbles needed. It
is unclear what the net effect on the total computation cost will be. In the following
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examples we have tended towardsfinding simple bubbles as these are easier to describe and
implement. Overal, we feel that such an approach provides good performance although
thereis certainly opportunity for experimentation with different balances of computational
cost and size.

Computing the distance information needed to generate a bubble requiresamodel of the
robot and the current state of the environment. Such models are at most three-dimensional,
and compared to models of the free-space, are simple to generate and maintain. Although
there are many interesting issues involved in generating and maintaining models of the
robot and environment, we assume below that these models are available.

In general we expect that a robot operates in a changing environment. In fact, one of
the main goals of elastic bandsis to implement reactive behaviors which implies that some
information about the environment in not availablea priori. Oneissuethat isavoided inthis
thesisrelatesto situationsin which the changesin the environment can be predicted to some
degree, for example, an object that is moving at a constant velocity. For such situations
it would be feasible to specify the bubble at a given configuration and a given time. This
extension is quite difficult when applied to implement elastic bands and throughout the
thesis we consider only the current state of the environment. Such an assumption appears
reasonable when the environment changes relatively slowly or unpredictably.

The general strategy for computing a bubble at a configuration q is as follows. First,
for each point on the robot a lower bound on its distance from the obstacles is determined.
This distance information may be generated by computing the minimum distance between
the robot and the obstacles resulting in the same lower bound for each point on the robot.
Alternatively, the lower bound for various components of the robot may be increased by
separately computing the minimum distance between these components and the obstacles.
Next configurationsof therobot arefound such that the motionfromtheinitial configuration
to these configurations moves each point on the robot a distance | ess than the corresponding
lower bound to the obstacles. Such configurations arein the free-space.

Underestimating the free-space around a configuration can be beneficia as it is often
possible to calculate more efficiently a conservative bubble from distance information.
For a specific robot with an n-dimensional configuration space, we select some simple
n-dimensional bubble shape defined by a smal number of parameters. The possible
instances of the shape form the basis from which bubbles will be determined. At agiven
configuration, the system computes information about the distance between the robot and
the environment. From this information a set of values of the parameters are determined
such that the corresponding instance of the shapeiscontained in C'y,..; thisisthe bubble at
the configuration.

For the following examplesit is assumed that there exists an agorithm for determining
the minimum distance between two objects in either two or three dimensions. Given two
objects A and B, the minimum distance between the sets is defined by the function

d(A,B) = inf{[x—y|| : x € A,y € b}
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An efficient algorithm for computing d( A, B) isgiven in Chapter 6.

Another useful capability is the ability to determine the maximum distance between a
point and a set of objects. More formally, given the object A and a point x, we wish to
find the minimum value for r such that the hypersphere that is centered at x with radius r
completely contains A. The distance r will be used to determine an upper bound on the
motion of all pointsin A resulting from a rotation about an axis that passes through the
point x.

4.5 A Non-Rotating Free-Flying Robot in the Plane

Thefirst robot we will examineis anon-rotating free-flying robot in a planar environment.
For such arobot, the natural generalized coordinates are the Cartesian coordinates (x, i)
of some fixed point on the robot, which describes the position with respect to some fixed
reference frame.

Consider moving the robot from configuration q to configuration p along astraight line.
Given that the robot is rigid and does not rotate, we know that every point on the robot
moves a distance ||q — p||. Now suppose the minimum distance d is calculated between
the robot at configuration g and the obstacles in the environment. If the robot is in the
free-space then d > 0. Also, if the robot moves a distance less than d, no collision can
occur.

The above property suggests we define the bubble at g as the open circle of radius d
centered at configuration q. More formally,

Bqa=1{p: la—p| < d}. (4.2)

Figure 4.4 depicts an example bubble for such arobot.

d
—_—
Robot

Obstacle Bubble

Figure4.4: A bubble for anon-rotating robot that is a distance d from the obstacles.

The bubble defined by (4.2) follows rather naturally from the given distance informa-
tion d. In some sensg, it fully utilizes the distance information as any motion larger than d
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may cause collision. We now consider an alternative bubble definition for this robot. This
aternative offersfew advantages over (4.2) and isnot particularly useful, but we include it
as an example of the different possible bubbles that can be computed for a given robot.

Consider again the motion of the robot from q to p. The shortest path for thisrobot is
the line segment between g and p. An alternative path isto successively move along the =
and then i axes. The distance traveled by every point on the robot along such a path equals
the Manhattan distance (1-norm metric) betweenq and p, i.e,,

| —p| =gz — pe| + gy — pyl-

The Manhattan distance is always greater or equal to the usual Euclidean distance and for
this particular type of robot it seems unattractive. For more complex robots, the utility of
decomposing a motion into separate steps along subspaces of the configuration space will
become apparent.

Given that the Manhattan distance bounds the distance traveled by any point on the
robot when moving from q to p, we can define a bubble as follows:

By =1{p:la—p|<d}.

Such bubbles will have the shape of a diamond as shown in Figure 4.5. For a given
configuration, the bubble 3; will be a proper subset of 3, and hence the bubble defined
by (4.2) ispreferable.

d
_>
Robot

Obstacle Bubble

Figure 4.5: An aternative bubble for a non-rotating robot that is a distance d from the
obstacles.

Another, perhaps more useful, aternative to defining bubbles for this robot is to use
more information than provided by the minimum distance between the robot and the
obstacles. One common suggestion is to somehow determine the minimum distance in
various directions. These multiple distances could enable us to derive bubbles that are
larger than those defined above. We will not explore this possibility, but it illustrates the
following general property of bubbles: The region of the configuration space that can be
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deduced as lying in Cy,.. depends on the form of distance information that is provided.
This property opens up many schemes for computing bubbles, but in this thesis, we limit
ourselves to rather simple approaches.

4.6 Planar Robotswith Rotation

Let us now consider the case in which the planar robot can rotate. In this situation, the
natural parameterization of the configuration space is the Cartesian position and angle of
rotation of afixed frame on the robot with respect to some global frame. A configurationis
represented by the standard three coordinates «, i, and 6.

Let d be the minimum distance between the robot at a configuration g and the obstacles.
Suppose, in addition, a constant r,,,... has been determined that represents the maximum
distance from the origin of the robot to any other point on the robot.

The general scheme to define a bubble for this robot will be the same as the previous
case. Wewill consider the motion of the robot from one configuration to another and derive
a bound for the distance traveled by any point on the robot. The bubble will consist of
configurations which the distance traveled is less than d.

Consider moving the robot from configuration q to configuration p. The straight line
motion between g and p will, in general, cause the robot to rotate and trandate at the
same time. For such motion, the path traveled by any particular point on the robot is quite
complex. To avoid thisproblem, let usexaminethe simpler, albeit longer, motion consisting
of atranglation followed by arotation. During the tranglation part of the motion, each point
on the robot moves a distance equal to the Euclidean distance between the points (¢.., ¢, )

and (p.,py), 1.€,

dirans(@:P) = /(60 — po)? + (g, — p,)%.

For the rotation part of the motion, the distance traveled by each point on the robot varies
depending on its distance from the origin of the robot. The largest distance traveled will
be for the point farthest from the origin. Given the constant r,,,.,, ahd using some smple
geometry, the maximum distance can be shown to be

o1
drot(qv p) = 2rmaac s §|Q€ - p€| (43)

The sum of thetrandational and rotational distances is an upper bound on the distance
traveled by any point on the robot. From the this bound, we can define the bubble 3, as,

6q = {p : dtrans + drot < d} (44)

Recall that for thisrobot, the configuration space isthree-dimensional. The bubble specified
by (4.4) consists of aregion of this space asillustrated in Figure 4.6.
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Obstacle X
Bubble

Figure4.6: A non-convex bubble for arotating robot.

As can be seen in Figure 4.6, the bubble defined by (4.4) is non-convex. Non-convex
bubbles are undesirable as it is difficult to design smooth paths that remain within the
bubble. Simpleinspection shows that the reason the bubble is non-convex is aresult of the
sinefunctionin the definition of d,.; in equation (4.3). One smple solution to this problem
is the use a different bound for d,,;. Given the inequality sin § < ¢, we can define the
alternative bound

dyoi (A P) = a6 — pol-

Combining this aternative bound on the rotational distance with the trandation distance,
we arrive at a bubble with a conic shape as shown in Figure 4.7. Another way to view this
alternative rotational distance is the arc distance traveled by a point on a circle of radius
rmaz- SUCh @adistanceislinear with the angle of rotation.

\@m &

4>

Obstacle X

Bubble

Figure4.7: A convex bubble for arotating robot.



4.7. OPEN CHAIN MANIPULATORS 51

4.7 Open Chain Manipulators

Let us now consider the case of open chain manipulators, the type of robot that motivated
much of the work in this thesis. These robots are common in industrial situations, yet
algorithms in robotics often have difficulty handling their many degrees of freedom and
complex motions. Asshown below, itisrelatively easy to generate bubblesfor manipulators.

For manipulators, the most natural configuration space isthe displacement in each joint,
often referred to asjoint space. For an n degree-of-freedom manipulator, a configurationis
described using the n joint variables¢;. In this section, we consider only manipulatorswith
revolute joints; the extension to prismatic or screw joints is straightforward. For revolute
joints, ¢; € [0, 27).

Let d be the minimum distance between the manipulator and the obstacles in the
environment. Also, suppose that for each joint of the manipulator, aradiusr; is determined
such that the cylinder centered along the axis of the joint contains all the subsequent links
of the manipulator. For example, consider the two-degree-of-freedom manipulator shown
in Figure 4.8. Sincethe manipulator is planar, the bounding cylinder becomesacircle. The
circle of radius r; contains the entire manipulator, while the circle of radius r, contains
link 2.

In the same fashion as for the previous types of robots, a set of configurations around
q can be determined such that, along a specified path, no point on the manipulator moves
a distance greater or equal to d. Consider moving the manipulator to a configuration p by
first rotating joint 1 to position p;. From the bounding cylinder at joint 1, we know that no
part of the manipulator will move a distance greater than r; |p; — ¢1|. Next, rotatejoint 2 to
po—Ilink 1 does not move, and the other links move a distance no greater than r|p; — ¢2|.
Each joint of the manipulator is moved in turn, and the total distance traveled by these
motionsis bounded by

Z Ti|pi — Qi|- (45)
=1
This expression represents a type of weighted 1-norm distance between p and q where the
weightings are given by the different values of r;.

Using expression (4.5) and the distance d, we can specify ajoint space bubble 3, by

ba={p: Ll — il < d). (4.6)

The resulting bubble will be diamond shaped. For a two-degree-of-freedom manipulator,
the diamond will have aratio of width to height equal to theratio of 1/r4 to 1/r,. We have
already seen an example of such a bubble in the beginning of the Chapter (see Figure 4.1).
Figure 4.9 illustrates two more examples. For both examples, the configuration space
obstacles are shown for reference. Note that the configuration space obstacles are not
needed to calculate the bubbles.
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Obstacle

Figure 4.8: A two-degree-of-freedom manipulator. The minimum distance between the
manipulator and the obstacle is given by d. The circle at the axis of joint 1 of radius r4
contains the entire manipulator. The circle at joint 2 of radius r, containslink 2.

The bubble shown in Figure4.9b extends almost to the boundary of C',;,,. Thisindicates
that a motion of the type used to specify the bubble will bring the manipulator almost into
contact with the obstacles. As can be seen, this motion corresponds to a clockwise rotation
of joint 2. Such a bubbleis desirable as it indicates that the distance information is being
well utilized.

The bubble shown in Figure 4.9d does not have the above property. The bubbleissmall,
yet it is far from the configuration space obstacles. Examining the relationship between
the manipulator and the obstacles in Figure 4.9c illuminates the problem. The manipulator
is indeed close to the obstacle in the bottom right hand corner but kinematic constraints
prohibit any collision. The motion of link 1 is such that this link cannot come in contact
with the obstaclein question. Link 2 can collide at the given point, but by only arelatively
large motion.

The discrepancy between the size of the bubble in Figure 4.9d and the distance to
collision reflects the fact that equation (4.6) considers the manipulator to be surrounded by
obstacles at a distance d. To generate less conservative bubbles would require a different
type of distance information.
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Bubble

q:

d)

Figure 4.9: Two example bubblesfor a manipulator
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Asan example of where different distance informationis needed, consider the situation
where the manipulator is attached to a base. We could argue that the distance between the
manipulator and the environment is aways zero and the above bubbles would be empty.
Such a gituation is obvioudy rather common. To avoid this problem we could set d in
equation (4.6) to the lesser of the distance between link 1 and all the obstacles in the
environment other than the base, and the distance between the other links and everythingin
the environment.

Joint limits

The bubble derived in equation (4.6) ignores the effect of joint limits, which are a charac-
teristic of most manipulators. Assuming the joint limitsfor each link are independent, we
can place the joint constraintsin the expression used to define the bubble. If the minimum
and maximum position of each joint is given in the vectors g™ and q™* respectively, a
bubble can be specified as

Bg={p: Y rilpi — g <dand g™ < p; < g}, (4.7)

The problem with this selection is that the shape of the resulting bubbles becomes more
complex as shown in Figure 4.10; such shapes would require, in general, many parameters
for their explicit representation.

A better solution to the joint limit problem is based on the observation that the bubble
in Figure 4.10 is ill convex. If the maximum and minimum position of each joint is
calculated separately, then as the constraints are linear, any convex combination of these
extreme joint positions will reside in C,... Mathematically, the extreme joint positions
p™** and p™*" are determined by

Pyt = min(q; +d/ri, ¢"*7),

4.8
Y = maX(qi—d/ri, q, ) (48)

A bubble can then be specified by
Bq={p:pi = ¢+ aip]" + bip/* and > lail + 16| =1}, (4.9)
Such a bubble isshown in Figure4.11.

Salf collision

Another desirable constraint on the motion of a manipulator is that its various links do
not collide with each other. Collision between successive links can be avoided by the
appropriate selection of joint limits. Avoiding collision between links that are not directly
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Figure4.11: A simpler bubble for a two-degree-of-freedom manipulator with joint limits.
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adjacent can be achieved by a dlight change in the distance information used to construct
the bubble.

Let ¢ be the minimum distance between the :th link of amanipulator and the combina-
tion of the obstacles in the environment and the other non-adjacent links of therobot. Let d’
be the minimum of the various distances d’. If d’' is used in equation (4.8) instead of d, the
resulting bubbles defined by (4.9) will be free of collision between non-adjacent links. To
see this property, suppose that non-adjacent links : and 5 could collide, where: < j. First,
links: and ; areat least adistance d; apart by definition, and hence are at |east adistance d’'
apart. Now, because the manipulator is an open chain, the motion of link 1 thru z will not
affect the relative distance between links: and ;. In addition, the motion of link z -+ 1 thru 5
does not effect the position of link . Thus, since the links collide, the motion of links: + 1
thru ; must move link j adistance of at least d’. Thisisacontradiction, since the bubbleis
defined so that no part of the robot moves a distance of d’ or gregter.



Chapter 5

| mplementation of Elastic Bands

This chapter describes how we implement elastic bands. An elasticisrepresented asafinite
series of configurations with the constraint that the bubbles at successive configurations
overlap; this constraint ensures that the elastic band represents a collision-free path. To
modify the elastic, the configurations are moved utilizing artificial potentials.

5.1 Representing an Elastic Band

In Chapter 3, a theoretical model for an elastic band was developed. This model was
based on representing a path as a parameterized function ¢(s) where s € [0, 1]. Since it
isinfeasible to represent an arbitrary real-valued function in a computer, an approximate
model that can be implemented must be devel oped.

Inthe current implementation, an elasticisrepresented asthe position of afinitesequence
of particles corresponding to equally-spaced values of s, i.e., for the selected values of s,
c(s) isspecified. The position of theinfinite number of other particlesisinterpolated from
the specified particles.

A problem with the above approach is ensuring that the elastic band represents a
collison-free path. By selecting a large enough set of particles aong the elastic band and
checking that the robot is not in collision at the corresponding configurations, we can be
fairly certain that the elastic indeed describesacollision free path. But how isthe number of
particles determined? Using too many will increase the processing time needed to perform
the check. Using too few will decrease thelikelihood that the elastic band in fact represents
acollision-free path as an obstacle could intervene between adjacent particles.

In Chapter 4 we described the bubble concept, a region of free-space around a given
configuration of the robot generated from distance information. Using bubbles, we can
guarantee the specified particles represent a collision-free elastic.

Suppose an elastic is represented by m particles, and at a given instant, these particles

57
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are at configurationsqy, qz, - - - , 9., respectively. Also, suppose the bubbles at consecutive
configurations overlap, i.e.,

6qim6qi+1 7£®7 i:1727"'7m_1' (51)

Itispossibleto construct acollision-freepathfromq; toq,,. For example, onepossible path
can be constructed as follows. Between each pair of neighboring particles, a configuration
is found that lies in both the corresponding bubbles; such a configuration exists as the
bubbles overlap. Consider the line segments from the particlesto this shared configuration.
Since bubbles are restricted to convex shapes, these line segments will liein the free-space,
and together, they form a collision-free path from one particle to the other asillustrated in
Figure 5.1. This process can be repeated down the sequence of particles to construct the
desired path.

Shared Point

N

Line segments from which
the path is constructed

Figure 5.1: Constructing a path through two bubbles.

Figure 5.2 illustrates, for a non-rotating planar robot, the bubbles around a series
of configurations of the robot. As can be seen, consecutive bubbles overlap and the
interpolation of particles, depicted by the path, remains within these bubbles—such an
elasticis collision free. Note that the bubbles and path are in the configuration space, while
therobot and the obstaclesarein the environment space. Thesetwo spacesare superimposed
inthe figureasthey are closely related; they have the same dimension, the same coordinate
axes, and the configuration space obstacles are generated from the environment obstacles
by a simple expansion based on the shape of the robot [38].

As mentioned above, the interpolated particles can be generated by line segments. In
Figure 5.2, however, the depicted path is not constructed in that manner; the details for
computing the interpolation shown are given in Chapter 7, but the important point is the
interpolated particles remain with the bubbles of the specified particles. The advantage of
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Figure5.2: A path though a series of bubbles

the smooth path shown in the figure isit removes the discontinuities in direction present in
the smple line segment path; such smooth paths are preferred from a control point of view.
As shown in Chapter 4, bubbles can be generated efficiently for robots with many
degrees of freedom. Figure 5.3 shows the configurations used to represent an elastic band
for a planar stick-like robot that can rotate, and Figure 5.4 depicts an elastic for a planar
six-degree-of-freedom manipulator. Note, for the first example, the configuration space
and bubbles have dimension three. For the second example they have dimension six. In
these illustrations, the bubbles associated with the particles of the elastic are not shown due
to the difficulties of displaying three- and six- dimensional objects. Although they are not
displayed, the bubbles associated with successive particles overlap with each other.

5.2 TheForceson aBubble

The magnitude and direction of the motion of each particle is determined by calculating
aforce. The force is composed of three components: internal, external, and constraint.
In the current implementation, the internal force acts to remove slack in the elastic band,
the external force moves the elastic away from the configuration space obstacles, and the
constraint force inhibits motion of particles along the elastic band.

As described in Chapter 3, the internal and external forces for the continuous model
of an elastic band are derived from potential functionals. For the implementation, the
elastic is represented discretely and the corresponding potentials are functions of a finite
number of parameters—the resulting forces can thus be determined by the standard gradient
operator V. In the following two subsections these potential functions are described and
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Figure 5.3: The configurations describing an elastic band for arobot.

Figure 5.4: The configurations describing an elastic band for a manipulator.
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the corresponding forces acting on the particles are derived.

Theinternal contraction force

For the continuous elastic band model (see Chapter 3), the internal potential functional is
specified as
1
‘/in — kc ! d )
el = k. [ el ds

where k. isthe constant of elasticity.

For theimplementation, the sequence of configurationsq; , qs, - - - , q,,, that describesthe
elastic band correspondsto values of ¢(s) at regularly spaced values of the parameterization
variable s. If & isthe distance between successive values of s, a discrete equivaent to the
continuous potential is

m—1

Vi (1, A2y - -, Q) = kczhw
=1

m—1
= ke Y ldipr — qill- (5.2)
=1

The contraction force on the particle at q; may be derived from equation (5.2) by
the negative gradient of V;,,, with respect to q;. Since q; and q,, are the start and goal
configurations, these quantities are constant and no force need be calculated. For each
of the other configurations, the right of side of (5.2) contains two dependent components.
Performing the partial differentiation, the contraction force on particle: wherel < i < m
isgiven by

fznt(l) — _vqi ‘/int
0
= —kca—% ([dir — aill + [ldi — qi-1ll)
_ ( dit1 — Y i qi-1 — Y ) (53)
i+ —aill  [[di-1 — qill

This equation captures the nature of uniform tension. Each particle experiences two forces
of magnitude k. directed towards its two neighbors. Alternatively, each particle pulls its
two neighborstowardsit with aforce ..

The external repulsion force

For the continuous model, the external potential functional is specified as

1
‘/ext[c] :/0 vext(c) dS?
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wherev.,, iSsome potential function over the configuration space of therobot. The discrete
equivalent to this potential is

‘/ext(qlv q2,..., qn) — Z hvext(qi)- (54)
=1

Notice that equation (5.4) islinearly dependent on the value of %, while equation (5.2)
isnot. Thisdifferenceraisesthe question asto asuitablevaluefor . In Chapter 3 we stated
that s € [0, 1]. Spacing the m configurationsevenly in s gives h avalueof 1/(m —1). The
selection of the range [0, 1] is completely arbitrary, and for reasons explained below, it is
advantageousto set i = 1.

The form of equation (5.4) enables considerable latitude in the design of the external
force—one can select any potential function over the configuration space. The potential we
use is described in the following; however, there are many other possibilities such as the
potentials described by Khatib [33].

The current usage of the external force is to repel the elastic from the configuration
space obstacles. Such aforcewill givethe path clearance from the obstacles, and by careful
design, will interact with the internal contraction force to generate smooth paths.

In Khatib’'s artificial potential field method, the repulsion force is designed to increase
towards infinity as the robot approaches the boundary of C,... Such aforce ensures the
robot does not collide with the obstacles. In contrast, the repulsion force in the current
implementation does not increase in such an unbounded fashion. Instead, the algorithm
that modifiesan elastic band explicitly takes into account the collision-free constraint when
deforming a path. This approach has the advantage of avoiding numerical problemsdueto
the large forces near the boundary of C,...

Assuming d(q) is the minimum distance between the robot at configuration g and the
obstaclesin the environment, we propose that the external potential energy v.xt isgiven by

b (do — d())? if d(ct) < do

Vear(q)) = { 0 otherwise (55)

where &, is a user specified repulsion gain and dy is the distance up to which the force is
applied. Equation (5.5) takes the form of alinear spring; the energy is proportiona to the
displacement squared, where the displacement is the amount the robot has breached the
desired clearance d,. Clearance greater that d, is not detrimental and thus the potential is
one-sided.

Determining the force associated with equation (5.5) is non-trivial. For many envi-
ronments there will exist a manifold of points in the configuration space where the force
is not defined. Recall that the force associated with a potential function is derived from
the gradient operator V. Consider a situation in which the robot is equidistant from two
obstacles as shown in Figure 5.5, and assume d for this configuration is less than d,. It
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should be clear that d will decrease, and the potential function will increase, if the robot
moves either to the left or right. Asaconsequence, the derivative of v, with respect to the
horizontal direction is not well defined, and the resulting force cannot easily be computed.

Obstacle Robot Obstacle

Figure 5.5: When the robot is an equa distance d from two obstacles and d < dy, the
potential v, isnot differentiable.

Ignoring such problem configurationsfor amoment, let us attempt to compute the force
associated with equation (5.5) when d < dy.

Suppose, when calculating the minimum distance d, we record the minimum vector d
from the obstaclesto therobot. More mathematically, if £, istheregion of the environment
occupied by the robot in configuration q and O is the region occupied by the obstacles, d
is the vector

d=x-y,x€ Ry, ycO

such that
|| = d.

The pointsx and y are the closest points between the robot and the environment. Typically,
such information is calculated in order to determine d in the first place (see Chapter 6).
Note that for some configurations of the robot, such as shown in Figure 5.5, the vector d is
not unique. These configurations are the ones for which the repulsion force is not defined.

After moving the robot some infinitesimal amount, suppose x and y are still the closest
points between the robot and the environment. Using the Jacobian J associated with the
point x of the robot, the force associated with (5.5) is given by

fext(q) — _vvext

_avel’t

dq
_ 1 T a 2
= kL o (do — [|d])

= k3L (dy— ) (56
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As can be seen, thisforceis proportional to (d, — d) along the unit vector d/d, aswewould
expect from the spring-like energy function.

The above analysis breaks down when x and y do not remain the closest points during
the differential motion. In particular, if x and y change suddenly, as would occur for
small motions of the robot in Figure 5.5, then the gradient of the potential function may
be undefined. Even when such a discontinuity does not occur, we expect x and y to move
continuously along the surface of the robot and the environment. To takein to account this
motion is difficult, however, as it requires a parameterization of the objects and robot’s
surfaces, and even then, will not work for polygonal models.

Even through equation (5.6) is not perfect, it can still be used to move a particle of the
elastic band. Thedetailsare given below, but thebasicideaisto use (5.6) when determining
adirection of motion, and by monitoring the sum of the potential functions, to ensure that
the energy of the elastic is decreasing. In addition, if such an approach does not succeed,
an approximate gradient is cal culated employing finite difference.

The motion constr aint

In the continuous model of the elastic band, we added the constraint that particles do not
move along the elastic. This constraint can be implemented by calculating a force to
counteract any component of the other forces along the elastic, or by directly restricting the
motion of the particles.

Oneissue isthe specification of the direction along the elastic. For the continuous case,
thisissmply ¢’. We use the symmetrical finite difference approximation to this derivative,
i.e, thedirection at particle: is

Qit1 — i1
2h '

One result of using equation (5.7) is that, unlike the continuous case, the contraction
force (5.3) may contain acomponent along thisdirection. An alternative direction that does
not have this property is given by

(5.7)

AQi+1 — Y i qi — 9i—1 ‘ (5.8)
ldivt — il [[ai — qi-1]]

We have experimented with both these expressions and observed no discernible distinction.

5.3 DeformingtheElastic

We now describe how an elastic band is deformed. The overal strategy isto scan up and
down the sequence of particles that describe the elastic, moving each in turn. To maintain
the elastic band as a collision-free path, we must ensure that the bubble at each of these



5.3. DEFORMING THE ELASTIC 65

particles overlaps with its immediate neighbors. This constraint may require particles to
be added to the representation of the elastic. In addition, it is desirable to remove excess
particlestoimproveefficiency. Figure 5.6 showsthe bubblesaround the particlesdescribing
an elastic as an obstacle moves in the environment. Figure 5.7 and Figure 5.8 depict the
deformation of elastic for a three-degree-of-freedom robot and a six-degree-of-freedom
manipul ator respectively. For these two figures, the robot is drawn at the configurations of
the particles.

The elastic is deformed by moving one particle at a time. Consider a particle at
configuration q; how do we select the next configuration g’ for this particle? Given the
forceon aparticle, one smple update procedureis. movethe particleaongtheforce, scaled
by some constant factor o. Mathematically, we have

a = q; + ofiorar. (5.9)

The above update equation will approximately implement the pseudo-static ssimulation of
the elastic described in Chapter 3.

Using equation (5.9) has two problems. First, there is no guarantee that the new
configuration of the particle will be collision-free. Second, equation (5.9) implements an
explicit Euler method which tends to be unstable [47]; in other words, the elastic may
oscillate wildly and never cometorest. Inthefollowing, we describe solutionsto these two
problems.

Maintaining a collision-freeelastic

Consider three neighboring particles of an elastic band at configurationsq;_1, q;, and q;11
respectively. If theelastic band isin avalid state, the pair of bubblesat q;_; and q; and the
pair at q;, and q;;1 overlap as shown in Figure 5.9a.

Suppose the :th particle of the elastic is to be moved. We must ensure that the new
configuration of the particleisin the free-space. Thisis achieved by restricting the motion
of the particle such that it remains in the bubble at q;, i.e., the new position g’ € 34,. To
ensure that the bubble at the new configuration has some volume, the motion is restricted
to lie dightly inside the boundary of the bubble.

After moving a particle, the bubble at new configuration is determined. 1t may occur,
as shown in Figure 5.9b, that the bubble does not intersect the two neighboring bubbles.
Such asituation meansthat the set of particles does not represent avalid elastic band. Even
though all the explicitly represented particlesarein the free-space, theinterpolated particles
may not be.

To restore the validity of the representation of the elastic band, additional particles
are added until the bubbles overlap asillustrated in Figure 5.9c. Although the details are
tedious, itisnot difficult to seethat it isalwayspossibleto generate avalid representation for
an elastic by the addition of particles. Suppose the bubble at ¢’ does not overlap the bubble
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Figure 5.6: Asthe circular obstacle moves, the elastic deforms to minimize the forces. If
needed, extra particles are inserted and deleted to maintain a collision-free path.
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Figure 5.7: An elastic band for a stick robot deformsto avoid an obstacle.
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Figure5.8: An elastic band for a manipulator deformsto avoid an obstacle.

d:+1 asin Figure 5.9b. Assuming the elastic was in a valid state before the particle was
moved, the bubble at g; does overlap thebubbleat q;,; and there exists some configuration,
say p, in the intersection of these two bubbles. The line segment between ¢’ and p will
remain entirely within the bubble a q; and thusis collision-free. The elastic band can be
reconnected by adding particles aong this line segment.

After adding particlesto the representation of the elastic band, subsequent particles are
renumbered.
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Figure 5.9: Moving a particle. a) The initia state of the elastic. b) The :th particle is
moved from configuration q; to g. The new configuration must be within the bubble 3, .
¢) The bubble at configuration g’ does not overlap the bubble around the particle at q;4.
To ensure the particles represent a collision-free elastic, a particle at configuration q;_ , is
added. The other particlesin the elastic are renumbered.
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The effect of adding particles

Adding particles to the elastic can be viewed in two way: representing the elastic at more
values of s, or increasing the amount of material that the elastic band is composed of. For
the current implementation, the second interpretation is used.

Earlier in this chapter, the discrete representation of the elastic was described as the
configuration c(s) of aset of particles corresponding to equally spaced values of s where
isthe spacing between the particles. Suppose aparticleis added between the particles s and
s + h. We could consider this as the addition of the particle s + A /2 to the representation.
In other words, the values of s for the represented particles are no longer equally spaced
in s, but are determined adaptively so that the bubbles around the corresponding particles
overlap.

Representing the elastic with particles at unequally spaced values of s changes the
development of theexternal andinternal forcedescribed earlier inthechapter. Toimplement
these changes, the value of s associated with each particle needs to be maintained.

An aternative interpretation for the addition of particles to the representation is that
the amount of material in the elastic isincreased. Near the end of Chapter 3, we proposed
changing the length of the elastic as a scheme for decoupling the internal force from the
amount of stretch in the elastic. The intuitive idea is to add material to a section of the
elastic when the local amount of stretch increases past some point. The addition of material
will decrease the local stretch. Similarly, if the local stretch decreases too much, material
isremoved.

In general, the addition of particles, as described in the last subsection, occurs when the
elastic is being pushed by some moving obstacle. When the bubbles associated with the
represented particlesno longer overlap, it seems reasonable to treat this as asituation where
the local stretch hasincreased too far. Of course, the truelocal stretch is determined by the
distance between particlesin the configuration space. We combine the addition of particles
to re-obtain a valid elastic band representation and the addition of material to reduce the
local stretch.

Treating the addition of particles asthe addition of elastic material has the consequence
that the values of s for the particles can remain equally spaced. When a particle is added,
we consider therangefor s to beincreased by the constant ~. Since i isarbitrary, we assign
it avalue of one, resulting in the particles having integer values of s.

Stable motion of particles

Recall that theinternal and external forces are specified as the negative gradient of potential
functions and the constraint force does no work. These conditions imply that the motion
of aparticle should always decrease the total energy of the elastic. If the update procedure
ensures the total energy does indeed decrease when a particle is moved, the motion of the
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elastic will be stable.

Using equation (5.9) does not enable us to make any statement about the change in
the energy of the elastic. Although moving in the direction indicated by the force should
decrease the energy, afinite step in that direction may not; it depends on the value of «.
Since « is an arbitrary constant, it seems reasonable to move in the direction given by the
force until the energy stops decreasing or until the edge of the bubble is reached. This
procedure corresponds to a bounded one-dimensional minimization of the potential aong
the direction given by the force at the initial configuration.

Using a minimization procedure has an added advantage when the external force is
considered. As mentioned earlier, the gradient of the external potential does not exist in
some configurations, and even whenit doesexist, itisdifficult to determineprecisely. Using
the force suggested in equation (5.6) may not move the elastic in a direction that decreases
the potential function. The minimization procedurewill not completely solve this problem,
but at least the effect of such aforcewill be that the particle does not move. In other words,
an incorrect force will cause the elastic to get stuck, but will not cause instabilities. The
details of the minimization procedure are important and are given later in the chapter.

Even though the motion of a particle reduces the total energy of the elastic, two other
effects can increase the energy: motion of the obstacles and the addition of elastic material.

If the obstacles in the environment move, the external potential function can change in
an arbitrary manner. Once the obstacles stop moving, the energy of the elastic should start
decreasing and eventually come to rest.

The addition of particlesto the elastic band representation can a so increase the energy
of the elastic. If the addition of particles was considered as representing the elastic at
more values of s (see the last subsection), the changes in the energy would correspond to
different sampling of acontinuous function and could probably be neglected. Inthe current
implementation, the addition of particlesisviewed asthe addition of elastic material, which
cannot so easily be ignored. In practice, however, we have found the addition of particles
does not seem to reduce the stability of the elastic band.

Removing particles

Another modification to the elastic band is to remove redundant particles. The series of
particles of the elastic are scanned for situations in which the bubbles overlap for apair of
particlesthat are not immediate neighbors. If such apair isfound, the particles between the
two are removed from the representation. For example, in Figure 5.10, the bubble at ¢, can
be removed as the bubbles at ¢,_; and q,;, overlap. For efficiency, only pairs of particles
separated by one particle are considered.

Removing particlesfrom the elastic band increases the efficiency with which the elastic
can be modified. Also, to be consistent with the addition of particles, the removing of
particlesis viewed as areduction in the amount of material in the elastic.
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Figure 5.10: A situation in which the particle at g, can be removed from the elastic. The
particle can be removed because the bubbles at q;_; and g, overlap.

From an energy perspective, the removal of particles always decreases the energy of
the elastic. One precaution must be taken. It is possible for a cycle to occur in which a
particle is removed, the elastic deforms dightly, a particle is added, the elastic deforms, a
particle is removed, etc. To avoid such a Situation, a small amount of hysteresisis added.
In particular, aparticleis removed only if the neighboring two bubbles overlap to a certain
degree. In our current implementation, we require 20 percent overlap.

54 Minimization Procedure

We desireto move aparticlein agiven direction until the potential energy of the elastic band
stopsdecreasing or until the edge of agiven bubbleof free spaceisreached. Suchaprocedure
corresponds to a bounded one-dimensional minimization of the potential along the given
direction. In this section, we develop a dightly non-standard method for performing this
minimization.

There exist many efficient and robust methods for bounded one-dimensional minimiza-
tion [47]. A typical algorithm efficiently decreases a bounded segment of thereal line that
contains the desired minimum. A good exampleis the method by Brent [9].

For the implementation of elastic bands, the calculation of the potential energy of the
elasticisrelatively expensive. In particular, the externa component of the elastic’s potential
energy isdefined asthe sum of the potential v.,.,, given by (5.5), at the configuration of each
particle of the elastic. To compute v.,, a a single configuration of the robot requires the
minimum distance between the robot and the obstacles. To compute thetotal energy of the
elastic requires a distance calculation for each particle of the elastic. In the case where one
particle is moved, the change in the potential can be determined using only one distance
calculation, but even oneis expensive.

To increase efficiency, we have implemented a non-standard minimization procedure
that attempts to evaluate the potential function v, as few times as possible. The idea



5.4. MINIMIZATION PROCEDURE 73

is to repeatedly use a standard minimization algorithm with successive approximations to
vert. EaCh use of the standard minimization algorithm results in a configuration of the
particle that minimizes the approximation function, but may or may not minimize v.,.
The potential function is sampled at this new configuration to determine if the energy of
the elastic agrees with the approximation. If it does, the configuration is used as the new
position of the particle. Otherwise, the approximation function isimproved and the process
IS repeated.

To approximate the potential function v.,.,;, suppose the minimum distance between the
robot and the obstacles has been determined at various configurations. 1n addition, suppose
the points x; and y; were the closest points between the robot and the environment for the
ith distance computation. The minimum distance between the robot and the environment
for some given configuration can be approximated (and bounded) by the minimum distance
between the pairs of points x; on the robot and y; in the environment, i.e.,

d(q) ~ min([|xi(q) — yil})-

Note that the points x; move with the robot while the points y; are stationary in the
environment. This approximate distance can be used to approximate the potential v...

Selecting a direction of motion

It iswell know in optimization theory [25] that successive one-dimensiona minimizations
along the instantaneous direction of steepest descent results in rather slow convergence to
astationary point. Anintuitive explanation for this property isthat the direction of steepest
descent is the best direction of motion only at beginning of the step. During the step the
best direction will change and thus the total reduction in the potential may be relatively
small.

To overcome this problem we use an idea adapted from optimization theory [25].
Consider the first-order Taylor expansion of the force around a particle at configuration g,

of(q)

fla+dq) ~f(q) + a—q5q- (5.10)
Note that since f = —VV, the expression 0f /dq represents the negative Hessian of the

potential V. ldeally, we would like to move a particle to a position in which the force is
expected to be zero. If the gradient and Hessian are known, the approximation to the force

given by (5.10) is zero along the direction 6q where

of
f(q) + ﬂ&q = 0. (5.11)
dq

The constraint that particles do not move aong the elastic prevents us from directly
using the direction 6q suggested by the solution of (5.11). A good direction of motion
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should respect the constraint and minimize the expected value of the force. The constraint
can be expressed mathematically as

6q-c’' =0

where ¢’ is the direction of the elastic at configuration q. Using the well-known method
of Lagrange undetermined multipliers [37], the direction 6q that minimizes (5.10) and
conformsto the constraint is a solution to the equation

f
f 4+ 8_501 = A/,
dq

where ) is some undetermined quantity. Writing this equation and the constraint in matrix
form, we have
of/oq ¢ oq | | —f
ct 0 Al 0|

If the dimension of the configuration space is n, we have n + 1 equations and n + 1
unknowns, 6¢ and A, which can be solved using standard linear algebra.

Computing a finite difference gradient

When the minimization procedure fails to find a configuration along the given direction
that reduces the potential energy, a second attempt is made along an alternative direction.
The alternative direction is selected by afinite difference approximation to the gradient of
the potential. Theideais, by sampling the potential around the configuration, a promising
direction for minimization can be determined. Sincethisdirection doesnot useinformation
about the gradient of the potential, it does not suffer from the non-differentiable regions of
the external potential.

To avoid the expense of sampling the potential when computing the finite difference
gradient, an approximation to the potential is used. The approximation is the same as the
one used during the original minimization procedure as described earlier in the section.

5.5 Moving Multiple Particles Simultaneously

In the present implementation, the elastic is deformed by moving one particleat atime. By
scanning up and down the sequence of particles, the effect of the motion of a particle will
propagate along the elastic and potentially cause a global change. The number of scans of
the elastic needed for the global changes to propagate, however, can be quite large. For
example, if al the obstacles in the environment are removed, the elastic will deform to a
straight line in the configuration space. Therate of convergence towardsthisfinal state will
be approximately linear.
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To increase the rate of convergence, one could envison moving multiple particles
simultaneoudly; by extending the method described in Section 5.5, quadratic convergence
should be possible. The difficulty with moving multipleparticles, however, ismaintaining a
valid representation of the elastic. In particular, amethod isneeded for moving the particles
such that they remain in the free-space, and perhaps after adding new particles, the bubbles
along the elastic overlap. We have not yet developed such a procedure, but it appears an
interesting areafor future research.

5.6 Concluding Remarks

In this chapter, the current implementation of elastic bands has been described in some
detail. Theimplementation seemsrather far removed fromtheoriginal ideaof smulating the
motion of an elastic material in the presence of artificial forces. We till feel, however, that
the original physical model provided much inspiration and motivation for the development
of the above ideas.






Chapter 6

Distance Computation

6.1 Introduction

Computing the distance between objectsis acommon problem in robotics. Using a mathe-
matical model of two objects, apoint isfound on each object such that the distance between
the pointsis minimized. If one object is arobot and the other object is the union of all the
obstaclesin the environment, such information describes how close therobot isto collision.
Distance computation has been used for real-time collision avoidance [33], real-time path
modification [49], and optimal path planning [6].

Previous work on the distance computation problem has focused on convex objects.
Lumelsky [42] describes an efficient algorithm for pairs of line segments. Gilbert et al.
[24], Bobrow [7], and Lin and Canny [39] present algorithmsthat find the distance between
two convex polyhedra. Each of these three algorithmsiiteratively finds pairs of points, one
on each object, such that the distance between the points monotonically converges to the
minimum. These algorithmsrely heavily on the properties of convex objects and it appears
difficult to extend them directly to the non-convex case.

To compute the distance between non-convex objects, we can break each object into
convex components and then use one of the above algorithms to determine the distance
between components. The distance between the two objects is then the smallest distance
between any pair of convex components. However, a naive implementation that examines
all such pairs has complexity O(nm), where n and m are the number of components of
each of the objects.

Collision detection is related to distance computation; two objects are in collision
if and only if the distance between the objects is zero. Collision detection has been used
extensively in roboticsfor applications such as path planning [38], and in computer graphics
for physical based modeling [2]. For such applications, collision detection often consumes
asignificant percentage of the execution time and much research has been directed at finding
efficient algorithms.

77



78 CHAPTER 6. DISTANCE COMPUTATION

Two related approaches for efficient collision detection are hierarchical models and
bounding representations. A hierarchical model, such as proposed by Faverjon [21], de-
scribes an object at various levels of detail. The collision detection algorithm uses the
different levels of detail to reduce the number of components that are examined. Similarly,
bounding representations approximately model an object with ssimple primitives such as
rectangles. Efficient algorithms, such as described by Baraff [3], determineif collision has
occurred between the bounding representation and only then are components of the original
model examined.

In this chapter, we present an efficient algorithm for distance computation between non-
convex obstacles. The approach builds on the research on collision detection and convex
distance computation. Objects are described as a set of convex components and we refer to
thisdescription as the underlying model. From thismodel we build ahierarchical bounding
representation, based on spheres, that approximates the object. A search routine examines
the hierarchical bounding representation of each object and determines pairs of components
to compare with a convex distance algorithm. Experimental results show that only a small
fraction of the possible pairs are compared, thus avoiding the O(nm) complexity of the
naive implementation.

To increase the efficiency of our algorithm, we propose computing the distance between
objects with a relative error. The idea is that, for some applications, it is acceptable
to partially underestimate the distance between objects. The error between the reported
distance and the exact distanceislimited to be auser-specified fraction of the exact distance;
the magnitude of the error is reduced as the two objects approach each other and goes to
zero as they touch.

By using arelative error, exact distance computation and collision detection become
two extremes of the same problem. When the user specifies zero relative error, the exact
distance is computed. Conversely, when the acceptable relative error approaches one
hundred percent, the value returned by the distance computation becomes meaningless,
but a value of zero is returned if and only if the objects intersect. Providing a continuum
between these two extremes enables applications to gain the benefits of some distance
information with the efficiency of collision detection.

The remainder of the chapter is divided into five sections. First, we describe the
bounding representation and how it is built from the underlying model. Next, we examine
the time to build the bounding representation and discuss how it can be precomputed.
We then describe the search routine used to determine the distance between objects. To
examine the efficiency of the algorithm, we present the results of several empirical trials.
We conclude with asummary of the two main ideas of this chapter and their consequence.
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6.2 TheHierarchical Bounding Representation

Before computing the distance between objects, the underlying model of the objectsis used
to build a hierarchical bounding representation.

The version of our algorithm described in this chapter assumes the underlying model
is a surface representation consisting of a set of convex polygons. This assumption is not
fundamental and extending the approach to other representations would not be difficult.
Using a surface representation implies that collision will not be detected when one object
completely contains another object, but such situations are avoided in many applications.

The bounding representation is based on spheres. The sphere isthe simplest geometric
solid; it can be specified with a position vector and a radius. To calculate the distance
between two spheres requires only seven additions, three multiplications, and one square
root. Other primitives, such as rectanguloids or ellipsoids, may better approximate compo-
nents of the underlying model, however, we feel the simplicity of the sphere makes it the
preferred bounding shape. A collision detection algorithm by del Pobil et al [18] also uses
spheres to build a bounding representation.

The bounding representation consists of an approximately balanced binary tree. Each
node of the tree contains a single sphere and the tree has the following two properties: the
union of all the leaf spheres completely contains the surface of the object and the sphere at
each node completely contains the spheres of its descendant leaf nodes.

The idea behind the bounding representation is as follows. The leaf spheres closely
approximate the surface of the object. Interior nodes of the tree represent approximations
of descendant leaf spheres. One can use the sphere at an interior node to determine alower
bound for the distance to any of the descendant leaf nodes, and hence to the object’s surface.
Nodes that are close to the root of the tree represent many leaf nodes, although to a coarse
resolution. Conversely, nodes near the bottom of the tree closely approximate the shape
of the few leaf spheres below them. The tree represents a hierarchical description of the
object.

The first step to building the tree is to cover the object’s surface with small spheres.
These spheres form the leaf nodes of the tree. The underlying model of the object is a set
of convex polygons; the surface is covered by covering each polygon. The covering of a
convex polygon isdonein aprocess similar to scan conversion in computer graphics [54]

A regular grid of equal sized spheres covers the polygon with the center of each sphere
lying in the plane of the polygon. In addition, each leaf sphereislabeled with the polygon
for which it wascreated; such labeling enabl es the search routineto determinewhich convex
components to compare.

After covering the object with small spheres, a divide and conquer strategy is used to
build the interior nodes of the tree. The set of leaf nodes is divided into two approximately
equal subsets. A treeis built for each of the subsets and these are combined into a single
tree by creating a new node with each of the subtrees as children. The subtrees are built by
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recursively calling the same algorithm until the set is reduced to a single leaf node.

Each node has a sphere that contains al the spheres of the descendent leaf nodes and
represents an approximation to these leaves. The two children of the node are intended
to represent a dightly more accurate approximation of the same leaves. To maximize the
improvement of the approximation, we desire to divide a set of leaf nodes into two subsets
so that the bounding sphere for each subset will be small. Although we have not found an
optimal method of dividing a set of leaf nodes, the process used is smple, efficient, and
effective.

To divide a set of leaf node into two subsets, a bounding rectanguloid box is calculated
that is aligned with the object’s coordinate frame and contains the centers of all of the leaf
spheres. Such a bounding box can be found by determining the minimum and maximum
value for each of the three coordinates for the leaves position vectors. Next, the algorithm
selects the axes along which the bounding box is longest, and divides the leaf nodes using
the average value along this axis as the discriminant. Each of the resulting two subsets
should be rather compact and contain approximately equal numbers of elements.

After dividing the set into two subsets, trees for each subset are built by recursively
invoking the algorithm. The two trees are combined by creating a new node with the two
subtrees as children. All that remains is to determine a bounding sphere that contains al
the descendant leaf spheres.

There is no obvious way to compute the smallest sphere that contains a set of spheres,
S0 we use two heuristic methods and select the smaller of the two resulting spheres. The
first method finds a bounding sphere that contains the spheres of the two children nodes and
hence, by induction, al the descendant leaf nodes. The position and size of such a sphere
can be determined optimally and uniquely aswe are only bounding two spheres; the details
are trivial and not included here. The second method directly considers the leaf spheres.
A center for the bounding sphere is selected and each of the descendant leaf spheres is
examined to determine the minimum radius required. The selection of the bounding sphere
center is done by using the average position of the centers of the leaf spheres, which has
already been calculated in the process of dividing the leaf spheres. The first method works
well near the leaves of the tree, while the second methods produces better results closer to
theroot.

Figure 6.1 illustrates a bounding tree generated by the above agorithm. Due to the
difficulty of visualizing three-dimensional objects, we show the analogous two-dimensional
verson. The object is a polygon approximation to the letter “g” as shown in Figure 6.1a.
Figure 6.1b depicts the one hundred and thirty leaf spheres used to cover the outline of
the object. The resulting bounding tree has eight levels. Figure 6.1c shows level five and
Figure 6.1d shows the root of the tree.
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Figure 6.1: The bounding tree for an object.



82 CHAPTER 6. DISTANCE COMPUTATION

6.3 Execution Time

The bounding tree is expected to be approximately balanced. If there are n leaf nodes, we
expect there to be about » interior nodes and the depth of the tree to be about log n. To
divide a set of nodes is into two and form the bounding sphere taken time of order O(n;)
complexity, where n; isthe number of |eaf nodes descending from the :th node. A close
look at the execution time of the above algorithm reveals an expected execution time of
O(nlogn), but aworst case of O(n?).

The worst case execution time can be reduced to O(nlogn) if we use the median
rather than the average to partition a set. The median can be foundin O(n) viathe classic
algorithm [1], or more simply, by performing an initial sort of the leaf nodes along each
of the three axes and carrying out some additional bookkeeping [46]. The disadvantage
of using the median is the higher constant factor in the expected execution time. A close
analogy can be drawn with the relative benefits of Quicksort, which has worst case O(n?)
performance, versus merge sort, which has worst case O(n log n); Quicksort is preferred
for itsfaster expected execution time[1].

For many applications, building the bounding representation can be performed as a
precomputation step. If the two objects are rigid bodies, we compute the bounding tree for
each object in it local coordinate frame. Before computing the distance between the two
objectsat specific positionsand orientations, each treeis augmented with the corresponding
transformation matrix describing the positions of the object with respect to some global
coordinate frame. Before anode is used in the search routine, the node’'s sphere is mapped
through the tree's transformation matrix. The mapping is done only when a node is used
because the search routine examines only a small fraction of the total nodes of a tree;
mapping all the nodes before the search would result in lower efficiency.

A similar scheme can be devised if an object consists of severa rigid bodies. A treeis
built for each rigid body as a precomputation step. For a given configuration of the rigid
bodies, we build a meta-tree with one leaf node per rigid body. The algorithm for building
the meta-tree is identical to the algorithm for the individua rigid body trees. Each leaf
node corresponds to the root of the tree for one rigid body and contains the transformation
matrix needed to map the body from its local coordinate frame to the global frame. The
bounding sphere for a leaf node is the bounding sphere of the root of the rigid body tree
mapped into the global frame. In this fashion, only the construction of a relatively small
tree need be done before each distance computation. The search routine traverses the tree
in such amanner that any node can be mapped into the global frame when needed.

6.4 Computingthe Distance between Two Objects

In this section we describe the algorithm to compute the distance between objects. As
mentioned in the introduction, the goal of our algorithm is to compute the distance with
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a user specified relative error; to aid the presentation we first describe a version of the
algorithm that has no error.

To compute the exact distance between two objectswe need to find apair of points, one
on each object, such that the distance between the pointsislessthan or equal to the distance
between any other pair. In our implementation, the object’s surfaces are described as a set
of convex polygons and we assume one object does not completely contain the other object;
the distance between the objects is calculated by finding a pair of polygons such that the
distance between the polygons is less than or equal to the distance between any other pair.
The distance between polygonsis computed using a convex distance agorithm.

An overview of our algorithm to compute the distance, d, between objectsisasfollows.
We initially set d to infinity. A search routine attempts to show the objects are at least a
distance d apart. Suppose the search findstwo polygonsfrom the underlying model that are
less than d apart; for the initial value of d thisis not difficult. If the polygons intersect, we
know that the distance between the two objectsis zero and we are done. Otherwise, we set
d to the distance between the two polygons and continue the search with the new value of
d. Eventually, the search shows that either the objects are a distance d apart or the objects
intersect.

The key to the algorithm is be able to show the two objects are a distance d apart
without examining all possible pairs of polygons. Since each polygon is covered by a set
of leaf nodes in the bounding tree, we need only examine pairs of polygons for which
a corresponding pair of leaf spheres are less than a distance d apart. Of coursg, if we
had to examine all possible pairs of leaf spheres, we would have gained nothing, but the
hierarchical structure of the bounding tree enables us to avoid this situation.

The search routine finds pairs of leaf nodes that are less than a distance d apart. The
search examines pairs of nodes in a depth-first manner starting with the root nodes of the
two trees. If the distance between the nodes spheresisgreater or equal to the current value
of d, then from the structure of the bounding trees, we know the distance between the two
sets of descendant leaf spheresis greater or equal to ¢ and can thus be ignored. If the two
nodes are less than d apart, we must further examine the children of the nodes. There are
three cases to consider.

1. If both the nodes are from the interior of the tree, we decompose one of the nodes
into itstwo children then recursively search the two pairs consisting of achild and the
other node. Deciding which node to decompose is based on the heuristic of selecting
the node with the larger associated sphere. If al leaf spheres are assumed to be
roughly the same size, we would expect the node with the smaller sphere to more
closely approximate the shape of the underlying surface; moreinformation about the
surface will be obtained by decomposing the larger sphere. Of the two subsequent
recursive searches, we first examine the pair of nodes with spheres that are closer
together. This heuristic aids the search in quickly lowering the value of d, reducing
the number of nodes that are examined.
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2. Inthe case of one interior node and one leaf node, the interior node is decomposed.
The order of the two subsequent searches is the same as above.

3. Inthe case where two leaf spheres are less than the distance d apart, the underlying
model must be examined. Each leaf sphereislabeled with the polygon that it covers.
The distance between two polygons can be computed using one of the many available
distance algorithms for convex objects. In the current implementation, we used the
algorithm developed by Gilbert et al. [24]. If the distance between the two polygons
islessthan d, we havefound anew minimum. If thedistanceiszero, i.e., thepolygons
intersect, we know the distance between the objects is zero and the search need not
be continued. Otherwise, we set d to the new distance and continue the search.

Each polygon may be covered by many leaf spheres, thus it is possible that the search
routine may compute the distance between the same pair of polygons multipletimes. Since
such repeated computations are redundant, we record which pairs of polygons have been
examined, and before computing the distance between two polygons, we check whether
the computation has aready been performed. Due to the large number of possible pairs of
polygons, we record thisinformation using a hash table.

The search routinecan bemodified to include our notion of relativeerror. Inthemodified
algorithm, the user specifies arelative error . We calculate adistance d’ such that ' < d
and d — d’ < ad. Notethat d’ can equa zero only if d equals zero; we will not incorrectly
report collision.

To implement the modified algorithm, the search routine must guarantee that the objects
areadistance d', rather than d, apart. Theinitial value of d' is set to infinity asin the exact
case. However, when we find two polygons that are closer than ' apart, we set d' to be
afraction 1 — « of the distance between them. After completing the search, we know the
objectsare at least ¢’ apart. In addition, the true distance d between the objectsis obvioudy
less than or equal to the distance between the two polygonsthat were used to set ¢’. Hence,
it can be shown that the error between d and d' meets the relative error specification.

6.5 Empirical Trials

To illustrate the performance of the distance computation algorithm, we present the results
of several empirical trials. The nature of the algorithm is such that its performance depends
on many factors. the shape of the objects, the underlying representation, the specified
relative error, the distance between the objects, the accuracy of the bounding tree, etc.
Since these factors depend on the application for which the distance algorithm is used, it
is difficult to make general statements about its performance. Instead, we have chosen one
scenario and examined the performance with respect to a few factors. Hopefully, these
results give a reasonable impression of the behavior of the algorithm. Reported execution
times are from an implementation on a DECstation 5000/240.



6.5. EMPIRICAL TRIALS 85

The scenario for which the experiments are performed is based on determining the
distance between chess pieces. Six chess pieces, a king, queen, rook, bishop, knight and
pawn, are randomly placed in three-dimensional space. For each chess piece, we determine
itsdistanceto the union of the other five pieces. Figure6.2 representsatypical configuration
of the chess pieces.

Figure 6.2: A typical configuration of the chess pieces.

The model of the pieces was designed by Randy Brown and is publicly available by ftp
fromwuarchive.wustl.edu. Each pieceis described by aboundary representation consisting
of roughly 2,000 triangles. The pieces are non-convex, have rather detailed features, and
are roughly 100 units high. It isworth noting that the naive implementation for computing
the distance from one chess piece to the other five pieces would examine al of the possible
2,000 x 10,000 pairs of triangles.

As a precomputation step, the bounding tree for each of the chess pieces was built. For
the first two experiments, the radius of the leaf spheres was set to 2 units, resulting in a
total of 34461 leaf nodes. A smaller leaf size would increase the number of nodes and the
accuracy of the bounding tree. The result would be an increase in the search time and a
decrease in the number of polygon comparisons. The net effect of such a change depends
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on the situation; in this case 2 units was found to be a reasonable size. The bounding trees
for al the pieces was built in 6.4 seconds.

The objects were placed with random position and orientation. The orientation was
selected from a uniform distribution of all possible orientations. The position vector was
selected from a uniform distribution within a cube measuring 500 units along the sides.
Each point in thefollowing graphs represent the average for one hundred random positions.

Before performing each distance computation, we built a meta-tree for the five chess
pieces to be compared to the current piece. Sincethe tree contains only five leaf nodes, the
time to build the tree was negligible.

Figure 6.3 illustrates the effect of varying the relative error. The smaller relative errors
effectively correspond to computing the exact distance between objects. Even inthese case,
the number comparisons of both nodesand trianglesisfar lessthan the possible 20, 000, 000.
Astherelative error isincreased, the number of comparisons drops dramatically. Thereis
approximately two orders of magnitude improvement if a 20% relative error is specified.

10000
1000
Search
Size 100
10 «— Nodes T
« - - Triangles T
1 T
| | | | |
0.01 0.1 1 10 100

Percent Relative Error

Figure 6.3: Search Size vs Relative Error. Note that both axes are log scale.

Thecurrent implementation can examine 80,000 pairsof nodesasecond and computethe
distance between 11,000 triangles a second. For a20% relative error, the average execution
time is 2.0 milliseconds. We speculate that such execution time would be comparable to
the performance of a good collision detection algorithm, with the advantage that we obtain
considerabl e distance information.

As two objects get closer, one would expect the search routine to examine more nodes
and triangles. Figure 6.4 depicts this relationship for a relative error of 20%. As can be
seen, the algorithm runs alot slower when the objects are close. The effect on the average
time to perform adistance computation depends on the distribution of distancesfor agiven
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application. Note that the far |eft points correspond to configurations where a chess piece
intersected with one of the other five pieces.
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Figure 6.4: Search Size vs. Distance between Objects. Note that both axes arelog scale.

Onefeature of the second graph isthe drastic decrease in the number of triangle distance
computations as the distance increases past about 20 units. Since the leaf spheres have a
radius of 2 units, the error between two bounding treesisabout 4 units. With arelativeerror
of 20%, one would expect the bounding representation would enable the search routine to
eliminate amost all pairs of triangles when the objects are more than 20 units apart.

Figure 6.5 examines the effect of increasing the amount of detail used to describe each
of the chess pieces. Sincewe have only one polygona model of the pieces, we performthis
experiment by assuming the leaf spheres of the bounding representation exactly describe
the object. We use the underlying model only to build the bounding trees; it is not used
during the search routine. By varying the radius of the leaf spheres, we can vary the detail
of the description. As can be seen, the number of nodes searched appearsto be proportional
to the log of the number of leaf spheres. Thisis very encouraging; a more detailed model
of the object can be used with very little affect on the execution time. These results were
obtained with a relative error of 20%. Unfortunately, the same relationship does not hold
for very small relative errors.

6.6 Conclusion

An efficient distance algorithm for non-convex objects can be built by combining a hierar-
chical bounding representation, a smple search routine.
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Figure 6.5: Search Size vs. Number of Leaf Nodes. Note that the horizontal-axisis log
scale.

The notion of relative error enables exact distance computation and collision detection
to be unified as two extremes of asingle problem. By accepting areasonable relative error,
the performance of a collision detection algorithm can be achieved while still obtaining
useful distance information.

Efficient distance computation opens the possibility of modifying applications that
currently employ collision detection. Since distance computation provides information
about how close objectsareto collision, itispossibleto reason rigorously about the collision
free motion of objects. In contrast, reasoning about collision-free motion is difficult if we
consider only the question of whether or not a given configuration of the objectsis not in
collision, since any motion of objects may bring them into contact.



Chapter 7

System Integration

So far, we have described how one may efficiently modify a collision-free path for arobot.
In this Chapter, we turn our attention to integrating this capability into a complete robotic
system. Several issues need to be addressed:

¢ In Chapter 5, a scheme for constructing a collision-free path from the representation
of an elastic band was described. The resulting path consisted of a sequence of line
segments through the bubbles associated with the representations. Unfortunately,
such a path is not ideal from a control perspective; the transition from one line
segment to the next involves a discontinuous change in direction. An alternative
scheme for constructing a path is described that avoids this problem. The schemeis
based on B-splines, and resultsin a path with C'? continuity.

e A path must be converted to a trgjectory before a control system can move a robot.
A path specifies only where a robot should move, while a trajectory specifies atime
history for the motion. Using atrajectory, afeedback controller can determine where
the robot should be at any given instant, and then apply actuator effort to achieve
this goal. Many schemes have been used for generating a trgjectory from a path;
Craig [17] gives agood introduction. Below, we present a novel real-time algorithm
that can construct trajectories that minimize the time to reach the goal.

e Separating the tasks of modifying a path and constructing a trajectory can cause
problems. If the robot is moving along a path that is then modified, it may not be
possible to construct a trajectory that the robot can follow. This problem occurs
because the robot has constraints on its acceleration. We present a few ideas for
overcoming this problem.

Finally, the chapter concludes with a description of arobotic system we have built that
incorporatestheideas presented inthisthesis. The system consists of three Puma560 robots

89
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operating in a shared environment. Paths may be specified for each arm, and these paths
are modified to account for the position of the other arms and changes in the environment.

7.1 Constructing a Smooth Path

In Chapter 5, an implementation of elastic bands was described in which an elastic is
represented by afinite sequence of particles. To ensurethat acollision-free path can be con-
structed between successive particles, the bubbles associated with the current configuration
of neighboring particles are required to overlap. Asillustrated in that chapter, a path can
be constructed through the bubbles using line segments and configurations that are shared
between adjacent bubbles.

The construction of a collision-free path from the representation of the elastic band
need not be limited to a sequence of line segments. As long as the path remains inside
the bubbles, it will be collision-free. The disadvantage of line segments is that the robot
will have difficultly moving along the path when a corner is reached as the direction of the
path changes discontinuously. By selecting more complex curves, these sharp corners can
be eliminated, thus improving the path from a control point of view. In this section we
describe the construction of such a smooth path.

The difficulty with constructing a smooth path from an elastic band is ensuring that the
path is completely collision-free. To achieve thisgoal, we specify the path using aB-spline
[22, 5, 20], and utilize the convex hull property of this representation. The convex hull
property enablesusto bound theregioninwhich thecurvewill lie. If thisregioniscontained
in the bubbles associated with the elastic band, the path is collision-free. This approach is
similar to the work of Kant and Zucker [29] where B-splines are used to construct smooth
paths from a cell decomposition of the free-space.

Before describing the details of the path construction, it is desirable to change dightly
the constraint imposed on the bubbles associated with the representation of an elastic band.
Previoudly, we have stated that the two bubbles associated with consecutive particles must
overlap. To facilitate the construction of smooth paths, we strengthen this constraint and
require that the bubbles overlap along the line segment joining the location of the two
particles. Figure 7.1 illustrates examples where this condition is and is not met. Note,
for some shapes of the bubbles, such as hyperspheres, the new constraint is equivalent to
requiring the bubbles smply overlap.

A cubic B-spline approximates a series of m + 1 control points pg, p1,...,p» Dy @
curve composed of m — 2 cubic polynomia segmentscy, cs, ..., c,_2. The:thsegmentis
specified by the control pointsp;_1, p:, Pi+1, Pit2, a8Nd isgiven by the parametric equation

1
c(s) = 6[(1 — 5)°pi1 + (35 — 6% + 4)p; + (=35 + 35> + 35 + 1)pig1 + 5°Pita),
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Figure 7.1: Anillustration of the new constraint on the bubbles of an elastic band. a) The
new constraint is met. b) A counter-example. The bubbles do not overlap along the line
segment joining the two configurations from which the bubbles were created.

where s € [0,1]. The end of each segment corresponds to the start of the succeeding
segment, and the place where thistransition occursis referred to as a knot point.
Some of the important properties of B-splinesinclude:

¢ Each polynomial segment iscontainedinthe convex hull of the associated four control
points.

e Thefirst and second derivatives of a cubic B-spline are continuous, i.e., the curve has
C? continuity.

e The curve does not, in general, interpolate any of the control points. However, a
suitable selection of control points can be made to cause the curve to interpolate
specific points.

Figure 7.2 shows a B-spline curve defined by seven control points. Note, the curve inter-
polates control points p; and p; due to the specia selection of the pair p, and p,, and the
pair p, and pe respectively.

We now describe the procedure for constructing a smooth collision-free path from the
representation of an elastic band. The description isin the form of a worked example for
an elastic band represented by four particles; the extension to more than four particlesis
not difficult.

Consider the elastic band shown in Figure 7.3a. The elastic band is composed of four
particles at configurations qi, q2, qs, and q4. Let us assume the bubbles associated with
the robot are circles and the bubbles around the given configurations are as shown.

As required, the bubbles overlap aong the line segments connecting adjacent particles.
Along the line segments q; q2, the configuration m; is selected so that it liesin the inter-
section of 3, and 34, asshown in Figure 7.3b. Similarly, configurations m, and m; are
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B
Figure 7.2: An example B-spline defined by seven control points.

selected along the line segments q.qs and qsq4 respectively. These three configurationsact
as the transition points from one bubble to the next, and will be included as control points
in the B-spline path. The exact equation used to select these points depends on the shape
of the bubbles for a given robot.

Next, for each bubble 3,,, a set of configurations p, ; are selected using the equa-
tions given below (see Fig. 7.3c). These configurations along with the transition points
m;, m,, mz form the set of the control pointsfor the B-spline path. There are many possi-
ble choices for these configurations; the following selection was found to give satisfactory
results in terms of smoothness.

For the first bubble, the points p, ; are selected so that the B-spline will start at ¢, and
progressin the direction towards m;. The points are defined by

1
Pia = a1 — g(ml - 011)7
P12 = 41,
1
P13z = di+ g(ml — 1),
2
P14 = di1+ g(ml — ).

For the second and third bubble, the points p; ; are defined by

2
Pii = qi+ g(mi—l —q;),
1
Pi2 = Qi+ g(mi—l —q;),
1 1
Piz = Qi+ Z(mi—l —qi) + Z(mi —qi),
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d)

Figure 7.3: The construction of a B-spline path for an elastic band represented by four
particles. a) The four particles of the elastic and the associated bubbles. b) Selecting the
transition points between successive bubbles. ¢) The additional configuration used to define

the B-spline. d) Thefinal curve.
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1
Pia = Qi+ g(mz —q;),

2
Pis = i+ g(mi — ).
These points approximate a reasonably smooth path through the bubbles. If there were
more than four particlesin the elastic, additional sets of the above pointswould be selected
for each of the extraintermediate bubbles.
For the last bubble, the points p,.; are selected so that the B-spline will end at q4. The
points are defined by

2

P41 = Qa4+t g(m:a — 1),

1
Pi2 = Qi+ —(ms—q),

3
P43 = 4a,
1

P14 = 014—§(m3—0h)-

The B-spline path is specified by the control points

P11,---yP14,1M9,P2.1,-..,P25,1M2, P3.1,...,P3.5,1M113, Pa.1,...,P4a.4.

The resulting spline is shown in Figure 7.3d. This spline can be shown to lie within
the bubbles associated with the elastic. To see this, first notice that the control points
m;_1, p;.j, m; liewithinthe:th bubbles. Fromthe convex hull property, any of the segments
of the spline generated by pointswithin asingle bubblewill be collision-free. For segments
that pass from one bubble to another, notice that the associated control points fall on the
line segments between the particles. By the convex hull property, the B-spline segments
will also fall on these line segments, and thus are collision-free.

7.2 TimeParameterization

To move the robot along a path, a time parameterization is needed to convert the path
into atragjectory. A time-parameterization corresponds to associating a desired time with
each point on the path. An equivalent aternative to a time-parameterization is to specify a
desired speed for each point along the path.

A time-parameterization must respect the capabilities of the given robot. In particular,
all robots have constraints on the maximum rate of acceleration that they can achieve. Such
acceleration constraints may vary with the configuration of the robot and may be velocity
dependent. A robot may have other constraints, such as a maximum velocity, but these
can typicaly be expressed in terms of acceleration constraints. For example, a velocity
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constraint can be represented by specifying a zero maximum acceleration when the robot
iSsmoving at the maximum velocity.

The acceleration constraints provide an upper bound on the possible speed at each point
along apath. Inaddition, the constraint at one point on the path may propagate; for example,
arobot must begin to dow down before entering a sharp bend in apath, otherwise the speed
may be too large to remain on the path.

Apart from satisfying the acceleration constraints, we may desire other criteria. A
common criterion isthat the robot minimizesthe time required to move along the path; this
is the time-optimal time parameterization problem.

Finding time-optimal parameterizations has been well studied; two early analyses of the
problem are given by Bobrow et a. [8] and Shin and McKay [56]. This section describes
an original agorithm, based on their work, that enables a discrete approximation to the
optimal-time parameterization to be determined incrementally and in real time.

Overview of the problem

The time parameterization problem can be specified moreformally asfollows. Assume we
have aC? continuous parameterization of the the path for the robot given by ¢(s). We must
compute s as a function of time, that is find a function s(¢). From this we can determine
the velocity and acceleration of the robot by

_d_c_dc'
dt ds

C

d*c dc. d*c.,
— = —s5 4+ —5

¢ =
dt?  ds ds
Suppose the robot has acceleration constraints of the form

a(s,$) < ¢ < b(s,$),

where « and b represent functions that return the maximum possible deceleration and
acceleration respectively. These functions are dependent on the configuration of the robot
and its velocity, both of which can be determined for a given path by knowing s and s. Itis
possible to rewrite these conditions on the acceleration in terms of conditionson s, i.e., we
determine functions f(s, $) and ¢(s, $) such that

F(5,8) <5 < g(5,9). (7.1)

Bobrow et a. give details of this transformation.

The set of values of s and s for which f(s, s) < ¢(s, $) iscalled the admissible region.
Values of s and s in this region correspond to states for which it is possible for the robot to
track the path. If the robot ever enters a state which is not in this region, thereis no valid
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acceleration of the robot that will maintain it on the path; leaving the admissible region
must be avoided.

The basic idea of the time-optimal solution is to choose the acceleration 3 to make the
velocity s as large as possible, while maintaining the constraint given by equation (7.1).
Bobrow et a. [8] have shown that the minimum time trajectory has the property that for
each point on the trgjectory either § = ¢(s,$) or § = f(s,$). These ordinary differential
equations (ODEs) correspond to the robot accelerating and decelerating along the path
as quickly as possible. Finding the optimal parameterization corresponds to finding the
switching points, the positions along the path at which § switches between its maximum
and minimum value.

Consider the B-spline path shown in Figure 7.4 for joints two and three for a Puma 560
manipulator. The path is defined by the seven control points po, . . ., ps and the resulting
B-splineis defined for values of s € [0, 4].

30| b

ol bsy
Joint 3 : : :
(degrees) : : :

10|......... TP P :p.4 .......

Joint 2 (degrees)
Figure 7.4: A path for two links of a Puma 560.

The complete state of the robot is given by s and s, the position and speed along the
path respectively. As a consequence, a useful way to visualize the time-optimal solution is
to examine the s—s phase-plane.

Using the phase plane, Figure 7.5 depicts the time-optimal solution for the path in
Figure 7.4, calculated from a conservative model of the Puma 560's actuator capabilities.
The trajectory is given by the lower linein the figure, while the the upper line indicates the
boundary of the admissible region. As expected, the trgjectory starts by accelerating along
the initial straight section of the path. The acceleration is at the maximum rate possible
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given by § = ¢(s, s). Thefirst switching point occurs when s ~ 1; the robot decelerates
at the maximum rate of § = f(s,$) as it moves into the corner. The next switching
point is reached when s = 2 as the robot accelerates out of the corner. Notice that this
switching point ison the boundary of the admissibleregion, a characteristic of time-optimal
parameterizations [56]. Finally, a third switch occurs when s a~ 3, enabling the robot to
decelerate to rest at the end of the path.

Inadmissible region
5_| f(s,8) > g(s,9)

Boundary
4| f(s,8) = g(s,9)

3
VeIZCIty §=f §=f e Switching point
2_|
$=9 Admissible region -
1 f(s,8) < g(s,3)
0 w w w i =
0 1 2 3 4
Position s

Figure7.5: Thetime-optimal parameterization of the pathin Figure 7.4 using aconservative
model of the Puma 560's actuator capacity. The trajectory has three switching points.

Early algorithms for computing the time-optimal trgjectory along a path were off-line
in nature [8, 56]; these algorithm required extensive numerical computation and emphasis
was placed on accurately finding the true optimal trajectory. More recent algorithms [45]
sacrifice accuracy to decrease the total time needed to find a solution. These algorithms
attempt to reducethe cost of finding near-optimal solutionsto the point whereitisfeasibleto
use such algorithmsin on-line situations; in this way, time-optimal trajectories can replace
the less sophisticated trapezoid trajectories that are commonly used in industry [17].

A real-timealgorithm

Thealgorithm we have devel oped finds an approximation to thetime-optimal trajectory. The
major advantage of our algorithm isthat it can be performed incrementally along the path;
thetime parameterization for the first A¢ seconds can be computed without determining the
time parameterization along the remainder of the path. By ensuring that each iteration of
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the algorithm takes, at most, a constant amount of time, the time parameterization can be
overlapped with the motion of the robot. Such a scheme effectively reduces the time-cost
of the of the time-parameterization to zero. In addition, for elastic bands, the path the
robot isfollowing may change; an incremental algorithm enables usto avoid wasting effort
computing the time parameterization of an entire path when only a small section may be
used.

The basic idea of the algorithm is to restrict the possible switching points to moments
in time that are integer multiples of some sampling interval At. Between each of these
possible switching points, the robot is either accelerating or decelerating at the maximum
possible rate. Figure 7.6 illustrates this idea for the path in Figure 7.4. The sample time
At was set to 0.1 seconds. Each of the possible switching pointsis shown by a bullet. As
can be seen, the resulting trajectory is areasonable approximation to the optimal trajectory,
whichisaso indicated in figure. Note that during final segment of the trgjectory, the robot
is not decelerating at the maximum possible rate. As explained in afollowing section, this
specia segment is needed to ensure the robot comes to rest at the end of the path.

5 e Possible switching points

| f(s,8) = g(s,9)

3 Optimal trgj.
Velaocity P A
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2_|
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0 I I I i =
0 1 2 3 4
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Figure 7.6: The time-parameterization generated when the possible switching points are
restricted to occur at multiples of At seconds. In this figure At = 0.1 seconds. For
reference, the time-optimal trgjectory isalso shown.

Eachiteration of theal gorithm generatesatime-parameterizationfor thenext At seconds
along the path. Given the restriction on the possible switching points, generating the time-
parameterization corresponds to determining if the robot should accelerate or decelerate
from the current state. Accelerating will reduce the time to reach the goal configuration,
but may not be feasible. If accelerating is not feasible, the robot should decel erate.
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A robot may not be able to accelerate for At along apath, given its current position and
velocity, for two reasons:

1. The acceleration moves the robot out of the admissible region.

2. The new state of the robot, after accelerating, is such that no feasible trgjectory exits
for the remainder of the path.

Thefirst condition can be checked by integrating the ODE § = ¢(s, $) fromthe current state
for At seconds. If theintegration causes the state of therobot to |eave the admissibleregion,
accelerating the robot is not feasible. The second condition isalittle more difficult. Under
suitable assumptions, however, the new state of the robot can be checked by determining if
it is possible to decelerate to rest along the path.

Let us assume that the boundary of the admissible regionisasingle valued functionin
the s—s plane. In other words, for each point on the path, there exists a speed such that any
lower speed is valid and any greater speed isinvalid. This assumption seems reasonable,
but Shin and McKay [56] have shown that this property does not hold in the case where
afriction model isincluded in the acceleration constraints. Such situations are difficult to
handle correctly, but we may reduce the admissible region so the above property does hold
at the cost that suboptimal trajectorieswill be generated; see the mentioned paper for more
details.

Suppose the final velocity of the robot at the end of the path is zero; thisis the case for
many applications. We claim, without proof, that a feasible trgjectory exits if and only if
the robot can come to rest along the path by decelerating at the maximum rate f(s, $). The
intuitionfor thisclaim isasfollows. If therobot can cometorest, it can continueto theend
of the path at some infinitesmally slow speed. If it cannot come to rest, the deceleration
trajectory must cross into the inadmissible region. Any other trgjectory will be above the
deceleration trgjectory and hence will also cross into the inadmissible region.

We now describe an iteration of our time-parameterization algorithm. The ODE § =
g(s, ) isintegrated from the current state for A¢ seconds, recording the trajectory in phase
space. If the integration succeeds, i.e., does not leave the admissible region, the ODE
§ = f(s, $) isintegrated from the new state of therobot. If this second integration reaches
a state where s = 0 without leaving the admissible region, the robot can safely come to
rest along the path from the new state. The acceleration is deemed valid, and the recorded
tragjectory is returned as the time-parameterization for the next A¢. If either of the above
integrations fails, the robot decelerates, the ODE i = f(s, ) isintegrated from the current
state of therobot for A¢ secondsand theresulting trajectory isreturned. Figure7.7 attempts
to illustrate this process for the trgjectory generated in 7.6 by showing all the integrations
that were performed.

One can view the algorithm as “filling-in” the region enclosed by the time-optimal
trajectory. This filling-in process proceeds from left to right in discrete segments. The
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Figure 7.7: ODE integrations used to generate the trgjectory

advantage of the algorithm is that only one segment needs to be generated in order to
determine the time-parameterization for a At time step.

Real-time perfor mance

In order to overlap thegeneration of thetrgectory with the motion of therobot, the execution
timefor oneiteration of theal gorithm must belessthan At; it must operateinreal time. Our
current implementation, which has not been optimized, can achieve thisgoal for At = 0.1
seconds on a 10 MIPs processor.

One problem with achieving real-time performance is that checking that the robot can
come to rest from a given state can take an arbitrarily amount of time. For example, for a
robot with constant accel eration on a straight path, one expects the robot to accel erate until
the middle of the path, then decelerate the remainder of the way. When the robot reaches
the middle, the ODE integration that checks the robot can stop will cover half the length of
the path.

To bound the execution time of the ODE integrations, we place alimit on the number of
iterations performed by the numerical integrator. This bound has the effect of limiting how
far forward the deceleration check will examine, thus potentially producing sub-optimal
trajectories. Inpractice, itisrarethat arobot cannot stop in asecond or two along any given
path; a reasonable integration bound will have negligible effect on the trajectory.
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End conditions

As described so far, the time-parameterization algorithm will not, in general, be able to
generate atrgectory that bringsthe robot to rest at the end of the path. Consider a situation
in which a robot is near the end of the path. The velocity of the robot may be such that
if it decelerates at the maximum rate it will come to rest before reaching the path’s end.
Alternatively, if the robot accelerates for At seconds, the velocity may be too great to stop
before overshooting the end. The time-optimal solution to this problem is to accelerate for
some small amount of time, then decelerate at the maximum rate; this implies, however,
that thefinal switching point isnot ainteger multiple of A¢. Another solution, although not
optimal, isto decelerate at arate that isnot maximal; thisisthe solution we use.

During each iteration of the time-parameterization algorithm, several trgjectories are
considered that take the robot from the current state to the final rest state at the end
of the path. These trajectories are constructed by computing a cubic Bézier curve be-
tween these two states. The difference between the trgjectoriesis the time-period that the
curve is defined over; in the current implementation we consider trajectories with duration
At,2At,3At,4At. When therobot isfar from theend of the path, each of these trgjectories
would require very large accelerations from the robot. As the robot approaches the end
configuration, the magnitude of these accelerations will decrease, until avalid trajectory is
found. Thistrajectory isthen used to end the motion of the robot.

Improving thetrajectories

The trgjectory shown in Figure 7.6 only roughly approximates the true time-optimal pa-
rameterization. The approximation can be improved in two ways. increasing the number
of possible switching points, and adding additional acceleration options for each interval.
The number of possible switching points can be increased by reducing At. In this
way, the algorithm can find switching points that are closer to those of the time-optimal
trajectory. Figure 7.8 illustrates the effect of reducing At to 0.05 seconds. As described
above, the computational cost of each iteration of the algorithm can be made constant,
however, decreasing At increases the number of iterations; halving At will doublethetotal
execution time. In situations where the generation of the trgjectory is overlapped with the
motion of the robot, At must be greater than the worst case time for one iteration.
Although Bobrow et al. [8] have shown that the time-optimal trgjectory consists of
only periods of maximal acceleration and deceleration, additional acceleration options can
improve our approximation. For example, Figure 7.9 illustrates a trajectory in which the
option to maintain a constant speed has been added. If it is not feasible for the robot to
accelerate at the maximum rate, the algorithm tries to maintain the robot’s current speed;
if this option is also not feasible, the robot decelerates. The feasibility of maintaining
the current speed can be checked by a procedure that is smilar to the one used for the
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Figure 7.8: The time-parameterization generated when At = 0.05sec.

accelerating case. Comparing this trgjectory with the one shown in Figure 7.8, we see that
as~1,s~ 3, ands =~ 3.6, the algorithm selects this new option instead of decelerating.
These changes result in a better approximation to time-optimal trajectory.

7.3 Combining Path Modification and Trajectory Gener-
ation

In this section, some ideas are presented for combining path modification and trajectory
generation. The simplest method isto allow a path to deform until a static configurationis
reached, convert this path to a trgectory, and move the robot along the trgjectory using a
control system. Such a scheme is useful as a pre-motion optimization of a path, however,
sensor data acquired during the motion of the robot would not influence its behavior.

Allowing the path to deform during the motion of the robot enables sensor data to be
incorporated, providing aform of reactive behavior. If the pathis modified, anew trajectory
must be computed, however, this may not always be possible. The problem arises because
the robot has a non-zero velocity. Thisinitial velocity may make it infeasible for the robot
to follow the modified path, especially when the trajectory along the original path was
time-optimal.

One solution to this problem is to freeze an initial section of the path and modify only
the subsequent portion. To see how this can work, consider a robot moving aong a path
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Figure 7.9: Adding the option of maintaining a constant speed. At = 0.05.

using avalid time parameterization. If the robot wasto decelerate at the maximum possible
rate, it can come to rest at some point aong the path. If modifications are made only to the
path after this point, avalid tragjectory can always be generated for the new path.

Although the above schemewill work, it may not be satisfactory. Consider thefollowing
situation: arobot is moving along a straight line path with a time-optimal trajectory. For a
simple acceleration bound, the trajectory will consist of accelerating at the maximum rate
until the middle of the path is reached, then decelerating at the maximum rate to come to
rest at the goal position. Obvioudy, after passing the middle point, the robot cannot come
torest beforethe end of the path and hence the previously described a gorithmwould freeze
the entire remaining path and would not allow any changes. The problem is that the robot
isworking at its limits of performance.

One intuitive, although less rigorous, scheme is to use some percentage of the robot’s
full actuator capacity when computing a time parameterization. A small segment of the
path isfrozen and the remainder is allowed to change according to sensor data. Thereserve
actuator capacity will enable valid time parameterizations to be generated in response to
changes in the path. Such an approach is more ad hoc but works quite well in practice,
however, situations can still occur inwhich no valid tragjectory ispossible eveniif all actuator
effort is used. We currently handle such rare cases by reverting to the original path and
associated trajectory.

Maintaining reserve actuator effort is also useful for another reason. The time-optimal
trgjectory along a path provides no margin for error during the motion of the robot. In
practice, arobot followsatrajectory by using some type of feedback loop that comparesthe
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current state of the robot with the desired state specified by the trajectory. This comparison
isused by the robot to adjust the actuator effortin order to correctly follow the trgjectory. A
time-optimal trajectory, however, uses one hundred percent of the available effort of some
actuator; there is no room for adjustment.

Insummary, it ispossible to decompose the problem of modifying atrajectory of amov-
ing robot into the two steps of modifying the path, and generating a time parameterization.
Precautions must be taken, however, to prevent situations where no time parameterization
is feasible given the current velocity of the robot.

7.4 A Robotic System

We have constructed a prototyperobotic system to validate the ideas presented in thisthesis.
The system was designed for the following scenario: three Puma 560 manipulator arms,
operating in a shared environment, are required to perform user specified motions while
avoiding collision with each other and the environment.

In the current system, each of the Puma manipulators operates independently. Thereis
a separate elastic band for each manipulator, and the shape of an elastic is not effected by
the planned motions of the other manipulators. The elastic is influenced, however, by the
current configuration of the other arms; they can be considered as obstacles that can move.

Through a command language and a graphical interface resembling atraditional teach
pendant, auser can movethe manipulators. Motionsof an arm arerestricted so that collision
is avoided with the other arms and the environment. For each arm, there is an associated
elastic band. One end of the elastic band is connected to the current configuration of the
robot. Asan arm is moved, the elastic band records the motions; in this way, the user can
gpecify the initial shape of the elastic.

The elastic band associated with each arm continuously deforms in response to the
applied artificial forces. Such deformation attempts to improve the shape of the path for
thearm. If the user stops moving the manipulators and the environment is static, the elastic
band eventually reaches a state of equilibrium.

The user can interactively modify the path of a manipulator by varying several param-
eters of the potential functions associated with the elastic. The parameters include: the
contraction gain, the repulsion gain, and the distance that the repulsion force extends for
the obstacles. Varying these parameters produces global changesto the elastic.

A desirable addition to the system would be the ability to make local changes to the
elastic. Oneidea, not yet implemented, isto provide a mechanism to specify configurations
of attraction and repulsion. In thisway, the user could “push” and “pull” the elastic into a
desired shape. The specified configurationswouldinfluence the el astic by adding additional
terms to the external potential defined over the configuration space of the robot. At the
same time, the original potentials would maintain smoothness and obstacle avoidance for



106 CHAPTER 7. SYSTEM INTEGRATION

the elastic.

When requested, the manipulator moves along the elastic band. The speed along the
elastic is determined by the algorithm, described earlier in the chapter, for generating an
approximation to the time-optimal trgjectory. The trajectory is generated incrementally,
and is overlapped with the motion of the manipulator.

The experimental environment

The hardware for the robotic system consists of three Puma 560 manipulators, a real-time
computer system, and several graphical workstations. The software consists of a set of
communicating processes distributed across several processors. The software runs on top
of a combination of a custom real-time operating system, called Oz, and UNIX.

The three Puma 560 manipulators are mounted on atable in such a way that they share
acommon workspace. Figure 7.10 depicts the manipulatorswhen al joint angles are equal
to zero. The Pumas are connected to modified Unimate controllers. These controllers have
had most of the supplied electronics replaced by a single interface boards that enables high
speed reading of the manipulators joint encoders, and writing of the motor torques.

Thereal-time computer system consists of anumber of boardsinstalled in two connected
VME backplanes. These boardsinclude: several CPUs, an interface to each of the PUMA
controllers, asafety watchdog for the manipulators, video capture and processing, A/D and
D/A boards, alaser light strip system, Ethernet, and SCSI. The system is used for several
projects within the Stanford Robotics Laboratory.

Real-time computation is performed on two boards that are based on the Motorola 88K
RISC CPU. Thefirst board containsasingle CPU, while the second contains four integrated
CPUs. Each CPU operates at 20MHz, and is benchmarked at about 10 VAX MIPs.

Another CPU board, based onthe Motorola68030, runsaversion of the UNIX operating
system. Through an Ethernet connection onto the Stanford-wide network, this board acts
as the bridge between the other UNIX machinesin the laboratory and the real-time system.
It also provides access to local magnetic storage.

The graphical workstations, running various versions of the UNIX operating system,
provide the development environment and user interfaces for the robotic system.

The softwarearchitecturefor the system isbased on asmall operating system, which we
developed, called Oz [48]. With Oz, processes can communicate only by sending messages.
Such an architecture enables transparent distribution across multiple processors, and can be
implemented on top of standard operating systems such as UNIX.

Oz has been implemented for the five 88K CPUs in our system, and on top of UNIX.
The 88K implementation provides real-time performance—scheduling is based on multi-
level round-robin, context switch times are about 14 microseconds, and message passing
is implemented by shared memory, even between processes on different processors. The
UNIX version is not real-time, but has two distinct uses. Firdt, it enables the robotic
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Figure 7.10: Three Puma manipulators mounted on a table.

system to be ssmulated using the same code as the real-timeimplementation. Thisfeatureis
beneficial in our environment, wherethe real-time hardwareis concurrently used for several
projects. Second, it provides the interface between the real-time version of Oz and UNIX.
When Oz is started on the 88K CPUs, a UNIX version is also executed on the Motorola
68030 processor in the VME cage. Messages can be sent between processes on any of the
CPUs. In particular, a process on one of the 88K CPUs, can send a message to a process
on the UNIX machine. A process on the UNIX machine can execute both Oz and UNIX
system calls, and can respond to a message by, for example, writingto a UNIX file system,
communicating over the network, displaying graphical output, etc.

Theworld model

To implement elastic bands, a model of the manipulators and obstacles in the environment
is needed. Such a model changes as the manipulators move, and as unexpected obstacles
and changes in the environment are detected.

Each of the Puma manipulators is modeled as six movable links and a fixed base, al
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of which are assumed to be rigid. The links and the base are described by a boundary
representation consisting of convex polygons. These polygons were determined by careful
measurement of a Puma manipulator, and are accurate to approximately 2mm.

The position and orientation of the linksfor amanipulator are determined using forward
kinematics and the displacement of each joint. The joint angles are measured by digital
encoders incorporated in the manipulator. Errors in the calibration of the manipulator,
backlash, and flexibilities in the actuator transmissions result in an accuracy of about
1-2mm for each of thelinks.

Thevariouscablesand tubesthat passbetween linkson the outsi de of themanipul ator are
not modeled. It seemsunrealisticto ignorethese elements; they can protrudeaconsiderable
distance from the manipulator, and their shape is particularly prone to snare objects in the
environment. The flexible nature of cables and tubes, however, makes prediction of their
shape difficult. The only solution that seems feasible is a conservative model that encloses
the entire region where the cable and tubes may reside. We have yet to develop such a
model.

In the current implementation, the model of the obstacles in the environment is not
created automatically from sensor data. Instead, the user describes the environment as a
collection of polygonal objects using a text-based modeling language. The model of the
environment can be changed by specifying a new file to read.

Wewould much prefer to buildthemodel of the environment from sensory input. Ideally,
the model should be updated automatically and promptly as changesin the environment are
detected. Towards this goal, we designed and constructed a structured light sensor, based
on the conventional design of a plane of laser light with a cameramounted at an offset [23].
The sensor uses triangulation to determine the distance between the laser and the objects
intersected by the plane of light. The accuracy of the range datais approximately 1mm.

The original plan was to mount the sensor on one of the Puma manipulators, enabling
the sensor to scan the environment. Although some preliminary trials were conducted with
thissetup, it hasyet to beintegrated into the robotic system. The major issue that need to be
addressed is the representation of the model constructed by the sensor. The representation
should be able to describe complex three-dimensional environments and be easily updated
using the range data provided by the sensor.

An overview of the implementation

The robot system isimplemented as a collection of communicating processes. Figure 7.11
depicts the various processes and their relationship to each other. The arrows indicate the
direction in which communication between processesisinitiated. The system iscomprised
of the following processes:

Joint Controller: For each armthereisajoint control processthat implementsacomputed
torque feedback loop. The joint controller accepts trajectories from the elastic band
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process, and movesthe robot along these trgjectories. During the motion of the robot,
thejoint controller will accept updated trajectoriesthat are consistent with the robot’s
current motion. The processalso actsasaserver for information about the state of the
corresponding manipulators; other processes can query the controller to determine
where the arm is. The process has the highest priority, and operates with a 200Hz
servo loop.

Elastic Band: At the heart of this robotic system are the elastic band processes, one for
each arm. Each processisresponsiblefor theelastic band associated withitsarm. The
process modifies the elastic, and when requested, incrementally time-parameterizes
the path and passes the resulting trajectory fragments on to the associated joint con-
troller. The process also accepts commands to move the arm in specified directions,
and serves information about the current state of the elastic. At regular intervals, the
control processes are queried to determinethe current state of all thearms. The envi-
ronment model is obtained by reading a user specified file. Future implementations
will compute an environment model for sensor data acquired by alight strip sensor.

Command Interpreter: The command interpreter is responsible for parsing user com-
mands and interacting with the other processes in the system. Commands are pro-
vided to examinethe current state of the system, move the robot arms, modify various
parameters, etc.

Command Window: A standard text window is provided on a graphical workstation for
the input commands and display of textual information.

Control Panel: A graphica control panel enables the user to move the arms in manner
smilar to a traditional teach pendant. A window on a workstation depicts various
buttons, which can be pressed to move the manipulators in joint space, task space,
and global coordinates.

3D Displays: Several windows on a workstation provide three-dimensional graphical in-
formation about the state of the system. One window depicts the state of the robots
and the environment. For each arm, a separate window displays the current state
of the associated elastic band by depicting a stylized version of the robot at each
configuration in the discrete representation of the elastic.

Data Gathering: To analyze the behavior of the control process, information about the
state of the robot can be recorded and stored as a MATLAB file. The data gathering
process collects the data, and performsthe file I/O.

Light Stripe Sensor: Thelight strip sensor hasyet to beincorporatedinto the robot system.
Theplanisfor thisprocessto collect the datafrom the sensor and build aworld mode!.
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Figure 7.11: The various processes of the system

The implementation of the elastic band process deserves a more detailed description.
As described in the Chapter 5, the elastic band is represented as a sequence of particles,
with the constraint that the bubbl es associated with consecutive particles overlap. Although
thereis no upper bound, atypical elastic for a Puma has twenty to forty particles.

The Puma 560 is an open chain manipulator, thus the bubble associated with a configu-
ration can be generated as described in Chapter 4. The bubbles are computed from distance
information obtained using the algorithm described in Chapter 6. We use arelative error of
20 percent to speed the distance computation. The time to compute the distance depends
on the configuration of the arms and the obstacles, but typically fallsin the range of ten to
fifty milliseconds, corresponding to arate of 20-100Hz.

The elastic band is modified by moving one particle at a time. When suitably im-
plemented, the motion of a particle requires approximately one distance computation on
average. The distance computation dominates the computation cost of this operation; one
particle can be moved every ten to fifty milliseconds.

When the manipulator is not in motion, the particles of the elastic are moved in a
sequential order, starting from each end of the elastic in alternating cycles. For an elastic
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of approximately twenty particles, the entire elastic is updated at about 1-5Hz. Thisrateis
sufficient to avoid the other manipulatorsif they move dowly, i.e., less than say 10 degrees
per second. If the manipulators move faster, the elastic band may not respond sufficiently
quickly to remain collision-free. In such asituation, the part of the elastic that isin collision
stops deforming until the cause of the collision is removed.

A major issue that has not been resolved is how the elastic is modified when the
associated manipulator is in motion. Modification of the path must be completed before
the manipulator reaches the modified section, otherwise the manipulator will no long be
on the path. In addition, as mentioned in the previous section, the interaction between
path modification and trajectory generation must be considered if situations where no
feasible trajectory exists are to be avoided. The situation is further complicated by the
non-deterministic time required to move a particle of the elastic, and the computational
requirements of the incremental time-parameterization that occurs concurrently with the
motion.

In the current implementation, the shape of the elastic is frozen while the manipul ator
moves. This“solution” to the above problemisnot particularly attractive. After all, amajor
goal of the elastic band framework isthe implementation of reactive behaviors; thefreezing
of the elastic band precludes changes to the motion of the robot. One the other hand, the
Puma manipulators can move along a given path in a short amount of time; a few seconds
istypical. Given that the elastic band can only respond to slow changes, little modification
to the elastic would occur if it was permitted during motion.

In ssimulation, we have combined the modification of an elastic band and the motion of
therobot for both amobilerobot and the Pumamanipulators. With ssmulation, thereal-time
congtraints of the system can be relaxed. In particular, the modification of the elastic band
is alowed to complete a full cycle before simulated time is advance on time-step; thisis
only possible because the robot is not actually moving. Also, the smulation of the robot
system can be implemented on current workstation technology, which has considerably
more computational power than our four-year-old real-time hardware. These simulations
suggest that improved computational power and the development of a more sophisticated
scheduling algorithm for the modification of the elastic should enable the full elastic band
architecture to be implemented on actual robots.

During the motion of the manipulator, the real-time incremental time-parameterization
algorithm, described early in the chapter, is used to compute the desire speed of the robot
along the path. This scheme requires each iteration of the time-parameterization algorithm
to be completed in less time than the interval At associated with the algorithm. For the
current implementation, At is 0.1 seconds.

To increase the robustness of the system, each iteration of the time-parameterization
algorithm generates a trajectory that brings the robot to rest. The first At seconds of
the tragjectory correspond to the approximation to the time-optimal parameterization. The
remainder of the tragjectory smply decelerates the robot at the maximum rate. The next
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iteration of the time-parameterization algorithm should replace the second segment of the
trajectory. If the iteration fails to complete before the required dead-line, the control
process will not receive an updated trajectory and will follow the remainder of the previous
trajectory; i.e, the robot will decelerate.

Evaluation and futurework

The robotic system described above demonstrates that the elastic band concept can be
implemented for complex real-world robots such as the Puma560. The current implemen-
tation enables a path to be specified by the user. The path deforms to improve its shape
and to react to the motion of the other manipulators. The deformation occurs in real-time,
although the update rate of the el astic is slower than we would have preferred. Thereal-time
trajectory generation algorithm has been implemented successfully, allowing the robot to
move quickly from one end of the elastic to the other.

On the other hand, the robotic system we have developed isonly afirst prototype. There
are many areas where the system could be improved, including:

1. Modifying the elastic while the manipulator is moving. The modifications must be
performed in some fixed amount of time, perhaps equal to the time-parameterization
interval At. Scanning the entire elastic, moving one particle at atime, isnot feasible
and more sophisticated strategies are needed for determining which particlesto move.
Increased computational power would a so help.

2. Building the environment model from sensor data. The addition of this capability
would add greatly to robustness and autonomy of the system. The issues involved,
however, are complex. What representation should be use? How are the obstacles
differentiated from the manipulators? How is conflicting data resolved? How should
the light strip system scan the environment? This problem s interesting, but requires
substantial work to solve satisfactorily.

3. Improved task specification. Inthe current implementation, the robots can only move
back and forth along an elastic. Theinitial shape of the elastic is specified by moving
the robot along the desired path. A more realistic system would alow a much richer
specification of the desired motions. For example, we envison a system with a
powerful robot programming language that incorporates the elastic band capability.
Also, asmentioned in the text, users should be ableto interactively “push” and “pull”
an elagtic into a desired shape by varying the various potentials that determine the
applied artificial forces.

4. Integration of path planning. Enabling the systemto plantheinitial shape of an elastic
would allow auser to specify tasks at ahigher level. Path planning could also be used
to generate non-local modifications to the elastic. In the current implementation,
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changes to the path are restricted to a single homotopic class; the path will never
changeitsinitial topology. If the environment is changing, it may not be possible for
the elastic to remain collision-free. This problem may be overcome by enabling the
system to to plan an aternative path for a segment of the elastic.

The implementation of the prototype robotic system demonstrates that there are many
issues to be explored. The elastic band concept isfeasible, and provides auseful capability.
Integrating this capability into a practical robotic system that can be used for real-world
applications, however, remains a challenging problem. We feel this problem is worthy of
further study.






Chapter 8

Conclusion

In the following, the major ideas of thisthesis are summarized.

Elastic bands form the basis for an effective framework to deal with real-time collision-
free motion control for arobot operating in an evolving environment. A planner provides
an initial path that is a solution to the problem of moving a robot between a start and goal
configuration. Incremental adjustments to the path are made while maintaining a global
path in thefree-space. These modificationsarebased on sensory dataabout the environment
and desired criteriaconcerning the path, such aslength, smoothness, and obstacle clearance.
Implemented as a real-time servo-loop, an elastic band provides many of the benefits of
reactive systems without sacrificing global planning.

Bubbles enable elastic bands to be implemented efficiently. A bubbleisalocal region
of free-space around a configuration of the robot. The bubbles are in the configuration
space of the robot, but the global free-space is not computed. The bubbles are generated
from distance information obtained directly from amodel of the environment and the robot.
We believe that bubbles have potential applications in many areas of robotics. A bubble
provides information about where a robot can move from a given configuration. This
information is generated efficiently, even for robots with many degrees of freedom.

The computational effort required to generate a bubble is dominated by the necessary
distance computations. We have developed a novel agorithm for efficiently computing
the distance between non-convex objects. The algorithm is based on a combination of
a hierarchical bounding representation, a ssmple search routine, and a convex distance
algorithm.

To move arobot along a path requires a time-parameterization. We have devel oped an
incremental time-parameterization algorithm that generates a discrete approximation to the
time-optimal trgjectory. The generation of the parameterization can be overlapped with the
motion of the robot, effectively eliminating the time-cost of the algorithm.

To demonstrate the ideas presented in the thesis, we have implemented a prototype
robotic system. The system controls three Puma 560 manipulators, operating in a shared
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environment. Although the prototype system could be improved, it demonstrates that a
path for a complex robot such as the Puma can be modified in real-time. The system also
demonstrated the overlapping of the time-parameterization algorithm with the motion of
the manipul ator.



Appendix A

The Functional Gradient Operator V

In this appendix, the functional gradient operator V is developed. This operator represents
a generdization of the standard gradient operator V. In particular, V can be applied to a
class of functionals (functions of functions), whereas the standard gradient operator can be
applied only to functions of afinite number of variables.

Suppose we define some quantity that is determined by the shape of agiven curve. Since
a curve can be represented as a parameterized function, such a quantity can be defined by
afunctional, afunction of afunction. For example, the length of a curve can be defined as
the functional L|[c], where

Llel = [ le/ts))1ds. (A1)

The problem we wish to address is: how does the value of afunctional vary with small
changes of the curve? Such questions are connected with the calculus of variations, a
classical branch of analysis[16]. In particular, the calculus of variationsis concerned with
finding extremaof functionals, that is, finding curves that maximize or minimize the value
of thefunctional. Inthe following, we present the calculus of variations as a generalization
of the gradient operator V.

The class of functionalswe are interested in have theform of an integral of some known
function that depends on the given curve and the derivatives of the curve. The domain of the
functional is a set of parameterized curvesin some n-dimensiona space, with continuous
derivatives up to the 2m-th order. Assuming the curves are defined over the domain [0, 1],
the functional V[c] hasthe form

1
V[c]:/ v(e, e c”, ..., c™)ds,
0

where v is a function that has continuous partial derivatives up to the 2m-th order with
respect to its argumentsc, ¢/, ¢”, . .., ¢(™). Asan example, the length functional defined in
equation (A.1) hastherequired form aslong as the domain of curves has continuous second
derivatives.
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Now, consider afunction n(s) that mapstheinterval [0, 1] into the same n-dimensional
space as c¢(s), and also possesses continuous derivatives up to the 2m-th order. We can
construct a series of variations of a curve ¢ using the equation

c(e) =c+em,

where e parameterizes the variations.

For agiven ¢ and 5, the functional V'[€] may beregarded asafunction V' (¢). Ate = 0,
thederivativeof V' with respect to e describeshow V' varieswhen ¢ ismoved with avel ocity
of . By the method of differentiating under the integral sign and applying the chain rule,
one finds that

dV Lfogv de dv ode  Jv oJe’ dv  gelm
= (%'&+%'E+aﬁ" PR = R v )ds- (A-2)

Consider the second term in thisintegral:

1y 9c 1y 9%
0 ﬁ'ads_/o ﬁ'asaed&
Integrating by parts we have
1 gy 9% dv del'  pd (v ot
oﬁ—asaeds—ﬁ'ao—/o@(%)@d& (A3

If werequirethat the endpoints of ¢ remain fixed with respect to ¢, thefirst term on theright
hand side of (A.3) vanishes.

By repeated integration by parts, and requiring that the (rm — 1)-th order derivatives of
€ remain constant at the endpoints, successive term of equation (A.2) can be transformed
such that the variation of V' is given by

d_v_/l @ i@+d_zav _|_( 1)md_m av @d

de Jo \9¢ dsde = ds?dc” ds™ gglm) Je 5

At ¢ = 0, thisequation reduces to
dV 1 f0ov d Jv d* Ov d™  Ov
— = —_—— — —1)"——— 1| -mds. A4
dt |, /o (8c ds oc’ + ds? Oc” +(=1) ds™ 8c(m)) 7 as (A4)

Using the notion

v_@ ia_v_|_£av _|_( )md_m I
v dc  dsoc  ds?Jc” dsm gelm)’

(A.5)
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we can rewrite (A.4) as
dv

1
= Vo - nds. A.6
dto/o”’” (A6)

The functional gradient operator V can be viewed as a generaization of the standard
gradient operator V. In the following, we illustrate four properties that the two operators
have in common.

1. Given afunction ¢g(x) and a unit vector n, the derivative of ¢ in the direction n is

defined as
dg(x +in)

dt
Using the gradient operator, the directional derivative can be written as

dg(x +in)

—Vg-n. A7
o g-n (A.7)

When the direction is given in terms of a vector whose norm is not one, the vector
must first be divided by its norm before applying the above equation.

We can extend the notion of adirectional derivativeto functionals. Suppose () has

the property that
1
[ it = 1. (A9
We can view 1y asaunit function, and define the derivative of V' in the direction of iy
as
dV e + tn]
dt '
Using equation (A.6), the direction derivativeis given by the equation
1
dVle + tn] :/ Vo - nds. (A.9)
dt 0

Note the smilarity between right hand sides of equations (A.7) and (A.9). We can
view (A.9) as the dot product of the gradient and the direction n over the infinite
number of degrees of freedom inherent in the curve c. As with the discrete caseg, if
the directionis given in terms of afunction that does not satisfy the condition (A.8),
the function must first be normalized.

2. For afunction ¢(x), the direction of maximal increase is given by the vector V.
Similarly, the direction that causes the greatest increasein V' is given by the function
Vo(s).
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The function Vu(s) will not, in general, have unit norm. To find the directional
derivativeusing (A.9), let 8 be the normalized version of Vu(s), i.e,

0(s) = lvv(s),

C
where

1
c:/ [Vol| ds.
0

Now, suppose 1 isanother unit function. Given that the square of anumber isaways
positive, it can be seen that

1
/ (6 —n)2ds > 0.
0
Expanding and recalling that § and n are unit functions, we have
1
2—2/0 9 -nds>0.
Rearranging terms gives
1
/ 0.mds <1.
0
Using equation (A.9), the derivativein the direction 8 is
1 1
/ vv-GdSZC/ 0-0ds=-c.
0 0

For the direction 7, the derivativeis

1 1
/Vv-nds:c/e-ndsgc.
0 0

Thus, the directional derivative is greatest in the direction @ which is equivaent to
the direction Vu(s).
If x isafunction of time, the derivative of afunction g(x(#)) with respect to timeis
given by the equation

¢=Vyg-x.
In an analogous fashion, if ¢ is a function of both s and ¢, then V[c] = V(¢) isa
functionof ¢. If attime¢, welet n = ¢, then using equation (A.6),

e 1
dV1e] :/ Vo - ¢ds.
de |, 0
Noting that dc/de = ¢, at timet? we have
: dVie] dV]e] /1— .
= = — . d . A.l
V(t) o dc |, = Vov-c¢ds (A.10)
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4. The vector x isastationary value of ¢ if
Vg(x) = 0.

A curvec isastationary value of V[c] if any infinitesmal variationin ¢ will not result
inachangein V. The fundamental lemma of the calculus of variations states that ¢
isastationary valueiff, for all values of s,

Ve(s) =0. (A.11)

The proof of thislemmamay be foundin most texts on the calculus of variations[16].






Appendix B

The Curvature Vector

One of the properties of a curve is how much the curve “bends’ at a given point, referred
to as the curvature. From differential geometry [19], the curvature «(s) for a curve c(s)
parameterized by arc length is defined as

d*c

(o) = | 5] = I

An informal justification for the above definition is as follows. For a point p on a curve,
consider the circle that has second order contact with the curve as shown in Figure B.1.
This circle, referred to as the osculating circle, aways exits and is unique as long as the
curveisnot linear at the point p. The radius p of the osculating circle indicates how much
the curve bends at p; intuitively, as the radius increases, the curvature decreases. In the
next paragraph, we show that «(s) = 1/p(s).

The arc length parameterization for acircle in the x—y plane, of radius p, and centered
at the origin, can be written as follows:

S

r = pcos—,
.S
y = psin—.
P
Differentiating with respect to s we get
/ .8
T = —sIn-—,
P
’ S
y = cos—.
P

Asrequired for an arc length parameterization, the magnitude of the velocity vector («/, y')

isequal to onefor all s. Differentiating again with respect to s we get
) 1 S
T = ——cos—,

p p
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Figure B.1: The osculating circle for apoint p on the curve c(s). Thecircleis centered at
the point o and hasradius p. The vector t isthe tangent to the curve at p

y' = ! sin 2.

P P
The magnitude of the acceleration vector (=", y”) equals 1/p. Now, the osculating circle at
agiven point is required to have second order contact with the curve. If the curveisaso
parameterized by arc length, the magnitude of ¢” should equal the magnitude of (x”, y"),

i.e., .
k(s) = ||<"(s)]| = )

Related to the curvature « isthe curvature vector «, defined as the vector of magnitude
« that points from the point p on the curve towards the center o of the osculating circle.
One can see that the vector (2", y") pointstowardsthe center of the associated circle. If cis
parameterized by arc length, the second order contact between the curve and the osculating
circleimpliesthat the vector ¢” points towardsthe center o. Thus, we have
k(s)=1c".

Now suppose, that curve c(s*) isnot parameterized by arc length. Differentiating c(s*)
twice with respect to arc length s, we have

e _ d (e

ds?  ds ¢ ds
ds* d?*s*

//_2 ! Bl

¢ (ds) te ds? (8.1)

Since s isthe arc length of ¢, the function relating s and s* is given by

s(s%) :/0 /][ ds™.




Thus, p
S*
— =<l
giving
ds* B 1
ds — |l¢/||’

Differentiating with respect to s, we have

d%s* c e

ds® et

Substituting into equation (B.1), we have

d*c 1 ., c -,
w8 = 5 T P ( TeES )
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