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Abstract

Robot motion planning has been a central problem of robotics research since its early

stages, yet no satisfactory solution has been found to date. The di�culty stems from

the fact that the real world is too complex to be modelled accurately. The details

that are omitted from a model create uncertainty. More detailed models have less

uncertainty, but increase computational complexity; less detailed models may result

in incorrect and/or incomplete planners. In this thesis, we investigate the e�ects of

uncertainty on the di�culty of robot motion planning, and we study the tradeo�

between physical and computational complexity.

Uncertainty makes the execution of motion plans non-deterministic. Sensing is

used to help the robot identify its state, but measurement errors interfere with the

process of state identi�cation. Reasoning about potential (actual and perceived)

states during plan execution is what makes planning with uncertainty a di�cult

problem. To keep the complexity of the problem polynomial, we have to represent all

possible states with a limited number of equivalence classes. We present a model of

a robot and its workspace, which yields a polynomial, correct, and complete motion

planning algorithm. The key idea is the existence of regions in the workspace (land-

mark regions), where the robot has perfect position sensing and can navigate without

error. Outside the landmark regions, the robot has no sensing at all and navigates

with bounded control error. The proposed algorithm creates a distributed motion

plan, by associating with every landmark region a motion command. This command

is guaranteed to bring the robot into the goal, or into another region with a similar

motion command attached to it.

Planning is performed using the preimage backchaining method. We extend
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the standard de�nition of a \nondirectional preimage" (the set of all points of the

workspace from where a robot can reliably achieve a goal set) to the case where a

motion command depends on an arbitrary number of control parameters. We show

that the resulting multi-dimensional preimage can be represented with a polynomial

number of 2-D slices, each computed for a critical combination of values of the pa-

rameters. We present implemented algorithms for one parameter (the commanded

direction of motion) and for two parameters (the commanded direction of motion

and the directional uncertainty). The latter algorithm has many interesting appli-

cations, like planning in anisotropic uncertainty environments, �nding probabilistic

plans when no guaranteed plans exist, avoiding unexpected obstacles, etc.

Experimentation with the algorithm using a real mobile robot has been successful.

By engineering the workspace, we have been able to satisfy all the assumptions of

our planning model. As a result, the robot can operate for long periods of time with

no failures. Since our planning algorithms are provably correct, experimental failures

can be attributed to violations of the assumptions on which the algorithm depends.

Recursive workspace engineering can be used until all assumptions are satis�ed. Thus,

experimentation and workspace engineering become essential tools for the creation of

useful robot motion planning algorithms.
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Chapter 1

Introduction

In dealing with physical reality, which is too complex to be accurately modelled, one

must decide on an appropriate modeling granularity level. The more details in the

model, the bigger the complexity, and the harder the problems become. If too many

details are omitted, then the class of solvable problems becomes uninteresting. Once

a model of the real world has been selected, everything that has been omitted from

the model becomes uncertainty. Dealing with uncertainty is the major problem of

most systems aspiring to operate in the real world, and has been the most signi�cant

obstacle for the introduction of robots in everyday life. This work addresses the

problem of dealing with uncertainty in robot motion planning. The general ideas

presented, however, are applicable to any system that deals with the physical world.

1.1 About robots, motions, and planning

A robot is an autonomous device that is capable of changing the physical state of

the world in which it operates, according to some guidelines speci�ed by an external

operator. The level of autonomy of a robot is determined by the level of details that

it requires for its operation. For example, a robot at the human level of autonomy

would accept commands expressed in ordinary human language; a superhuman robot

would accept a single command, \Satisfy my wishes!," and would act accordingly.

Since robots are neither human nor superhuman, guidelines must be expressed in an

1
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appropriately simple language.

As opposed to information, which requires very low energy and can be represented

and propagated with electromagnetic interaction, a physical change requires a rela-

tively high energy exchange. The simplest mechanism to deliver a burst of energy at

a speci�c location is contact. Contact requires motion, so most operations of a robot

involve some kind of motion. The study of robotic behavior is, to a large extent, the

study of the motion of mechanical devices.

Every task, expressed in some input language that a robot accepts, must be trans-

lated into a collection of motions. Such a collection is called a motion plan. The

procedure of deriving motion plans from more abstract task speci�cations is not an

easy task for humans, so we require that robots perform it automatically. Two mod-

ules are usually involved in this process. First, a task planner translates commands

expressed in a human-like language (e.g., \Get me a glass of water") into a set of geo-

metric speci�cations (e.g., \Go to the refrigerator, grab the door, open the door, ...").

Then, a motion planner translates the high-level geometric speci�cations into a set

of primitive motions, i.e., motions that can be easily e�ected with simple control of

the motors that drive the robot.

The physical state of a robot and its environment can be described by a vector

of parameters ~p. The geometric speci�cations of tasks can be described by a set of

constraints G(~p). The initial state of the system can be described by another set of

constraints I(~p). Motion planning amounts to the construction of an algorithm of

primitivemotions that transform I(~p) into G(~p), given some description of the e�ects

of primitive motions on ~p. This formulation indicates that robot motion planning is

just an instance of the more general problem of controlling the behavior of a system

that obeys certain rules. Therefore, most of the ideas that we develop here have a

much bigger domain of potential applications.

1.2 About uncertainty

In a perfect world, the result of primitive motions is deterministic. In the real world,

however, nothing is deterministic. After all, the Second Coming may occur any
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time. Introducing uncertainty to the outcome of primitive motions complicates mo-

tion planning considerably. To begin with, a motion plan may not be a simple string

of primitive motions any more. Since a primitive motion may lead the robot to a

number of di�erent states, which motion must be executed next may be a function of

the resulting state. This observation introduces the need to sense the state of the sys-

tem after the execution of each primitive motion. The sensing mechanism introduces

its own errors: The identi�cation of states may not be perfect. Because of that, a

motion-planning algorithm must reason about the information that may be revealed

after each primitive motion, as well as about the reliability of this information. As

uncertainty grows, the number of states that may result from a primitive motion also

grows, making the task of a motion planner more complex.

The deepest questions regarding uncertainty are philosophical in nature. Is it

possible to predict the future given complete knowledge of the present? Is there such

thing as complete knowledge? What constitutes knowledge? The �rst two questions

are equivalent to the question regarding the existence of God, to which no satisfactory

answer has be given to date. Adopting a utilitarian point of view, it is possible to

give an answer to the third question. Knowledge is a collection of \words" in some

representation language. Representation is the concept underlying knowledge. So the

question regarding complete knowledge becomes a question about complete represen-

tation. Are there languages rich enough to represent the physical world? Even if we

assume that such a language exists, we must use measurement in order to identify

the actual state of the world in the space de�ned by the language. Measurement is

subject to the limitations of measuring devices, and subject to Heisenberg's uncer-

tainty principle. Finally, there is always the question whether the real world is a

deterministic system or not, i.e., whether there exists some divine randomness.

Regardless of philosophical views, uncertainty is a major hindrance in the attempt

to control physical systems. Its existence must be acknowledged and dealt with.

Various approaches can be used in dealing with uncertainty.

- Ignoring: The simplest approach is to proceed as if uncertainty were not present

and converge to the goal state with iterative process execution. The advantage of

this method is that it is easy to design and execute. The disadvantages are (a)
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that it may often fail, (b) that, even when successful, it may take a big number of

iterations, and (c) that it is hard to explain failure and derive useful conclusions

from it.

- Engineering: Another approach is to attempt to eliminate as many sources of

uncertainty as possible by simplifying the structure of the physical system and

aligning it with the capabilities of the measuring devices. Care must be taken that

the engineering of the system do not interfere with its ability to perform its assigned

duties.

- Reducing: A third approach is to use a richer representation language. The more

detailed the description of a system, the less uncertain its operation is. However,

using a rich representation language increases computational complexity and may

make problem solving hard.

- Reasoning: Uncertainty that has not been ignored, eliminated by engineering, or

reduced by representation, becomes a parameter of the system model. To predict

the behavior of the system we must explicitly reason about uncertainty.

1.3 Problem solving methodology

Problem solving in the real world has four phases. The �rst phase (engineering) is

an attempt to reduce the physical complexity of a given problem, by means of physi-

cal alteration of the characteristics of the problem. Irrelevant details are eliminated,

helpful features are added, and mechanisms are devised and implemented, so that the

original problem becomes easier to solve. During the second phase (modeling), the

simpli�ed actual problem is transformed into a formal problem through the choice

of a representation language and a solution language. The formal problem is the

projection of the real problem onto the space de�ned by the representation and the

solution language. The physical complexity of the real problem is transformed into

the computational complexity of the formal problem. The choice of the representa-

tion and the solution language is a major factor in determining the computational

complexity of the formal problem. During the third phase (computation), a mapping

between the representation language space and the solution language space is de�ned
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Figure 1.1: Problem solving phases

as the solution of the formal problem. An algorithm is a procedure that attempts to

compute the above mapping. Finally, experimentation is used to evaluate the quality

of a problem solver. Failures are attributed to de�ciencies of engineering, modeling,

or computation, which are accordingly adjusted to increase the e�ectiveness of the

problem solver.

The quality of a problem solver is evaluated on three grounds: correctness, com-

pleteness, and complexity. Correctness measures the ability of the problem solver to

produce solutions which are actual solutions of the original problem. Completeness

measures the percentage of actual solutions which can be produced by the problem

solver. Complexity is judged by how fast the solver generates the solutions, as a

function of the size of the input problem.

Even though the above attributes can be associated with all phases of problem

solving, they are only used to evaluate the computation phase. The reason is that

it is easier to quantify the attributes using the description language of the formal

problem. The computational complexity of a formal problem is de�ned as the lowest

possible complexity of a correct and complete algorithm that solves the problem. The

computational complexity of a formal problem depends on the physical complexity

of the underlying physical problem, as well as on the representation and solution

language.

The term \epistemic adequacy" has been used to describe how well a formal

problem approximates a real one. The choice of the representation and the solution
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language determine the epistemic adequacy of modeling. Although high epistemic

adequacy is desirable, it usually results in formal problems that cannot be solved

with algorithms that are correct, complete, and of low complexity. In dealing with

hard problems, an important decision to be made is how many physical details of the

original problem we are willing to hide through engineering and modeling, in order

to produce a formal problem with su�ciently low complexity.

1.4 The philosophy of the proposed approach

Robot motion planning in the real world is a di�cult problem mainly because of the

existence of uncertainty. Two major schools of thought have evolved. The \reaction-

ists" ignore uncertainty, with the claim that it is too expensive to reason about it.

Motion planning is performed as if no uncertainty were present. Robots are equipped

with a set of prede�ned local behaviors to help them react to the eventual failures

during plan execution. The \reasoners" model uncertainty (or some part of it) and

devise algorithms that reason explicitly about it, so plans do not fail as often. How-

ever, the models that have been used to describe uncertainty result in intractable

formal problems. To date, no universally acceptable solution has been given to the

problem of robot motion planning with uncertainty. Algorithms are either too slow

or unacceptably incorrect.

The role of engineering Both approaches ignore the value of problem engineering

as a means to reduce the complexity of the motion-planning problem. In this work, we

begin from the premise that we need motion-planning algorithms which are correct,

complete, and have computational complexity that is a polynomial function of the

size of the formal problem. We use workspace and robot engineering to produce a

real problem that can be modeled into a formal problem, which in turn can be solved

with algorithms having the above properties. In our approach, engineering is not

con�ned to creating robots able to cope with a given environment, but it attempts

to adapt the environment to the capabilities of robots (much in the same way that

paved roads are constructed to help cars navigate). Therefore, our approach is geared
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towards applications in environments that can be controlled (at least to some extent),

and not towards purely exploratory applications.

The role of experimentation By insisting on the correctness of algorithms, we

are able to rede�ne the role of experimentation. When an algorithm is provably

correct, experimental failures can be directly attributed to the violation of one or

more modeling assumptions. Then, we can decide whether we can augment the used

model (always retaining the desired properties of the algorithm), or whether further

engineering is necessary. Thus, workspace engineering enters the problem-solving

loop, as experimental feedback can be used to provide guidelines for engineering.

Modeling requirements The correctness of a motion planning algorithm means

that the plans it produces are guaranteed to succeed. A motion plan can be guar-

anteed in the presence of uncertainty only if uncertainty is bounded. If anything

can happen, no plan is guaranteed to succeed. Therefore, we represent stochastic

quantities with distributions that are bounded over some domain. Since we are only

interested in the correctness of a plan (and not in its stochastic attributes), we do

not reason at all about the characteristics of the probability distributions; rather, we

only use their bounded domains as a su�cient representation.

To solve the motion-planning with uncertainty problem in polynomial time, it is

necessary that the planner only consider a small �nite number of world states. We

embed such a discrete structure into the robot workspace by introducing uniquely

identi�able characteristics called landmarks. Each state is characterized by the per-

ception of a unique landmark. All other information is shielded out of the planning

model to preserve its polynomial complexity. Each landmark is associated with a

region of the workspace (a landmark region) which allows a robot to navigate in it

without loss of information. Uncertainty increases during navigation outside such

regions and decreases when the robot enters one of them. Therefore, the role of the

planner is to make sure that every motion of the robot will eventually terminate

within some landmark region. Such a design allows the robot to navigate while keep-

ing its uncertainty bounded. This approach has distinct similarities to the binary
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transmission of signals, where a limited representation language (0 and 1) is used to

preserve the quality of data.

1.5 Overview of the thesis

In Chapter 2 we present a very general model of a system that is controllable through

a set of primitive commands, and that is capable of a�ecting the physical state of

the world in which it operates. We begin with a very simple example, and then we

gradually build on it introducing many important issues and structures. We study

planning under uncertainty, and we show how we can derive guaranteed plans by

bounding uncertainty over some domain. We discuss perception and interpretation

of perceived data, and we demonstrate how a planner must explicitly reason about

information that may become available at execution time. The more information

that is available, the more complicated the planning task is. Therefore, it is of

utmost importance to select the right pieces of information: those pieces that enable

a planner to solve most tasks in an e�cient manner. Too much information may

be unnecessary, too little information may be inadequate. We give several versions

of planning and execution algorithms. Since it is di�cult for a planner to produce

plans that react to the sensed data at a very fast rate, we decouple the motion

control loop from the plan-execution control loop and we introduce the notion of

continuously executed commands and the termination condition. Finally, we present

high-level de�nitions of the forward projection, the preimage, and the kernel, as tools

for producing guaranteed plans under uncertainty.

In Chapter 3 we present the general problem of robot motion planning and, more

speci�cally, robot motion planning under uncertainty. After an overview of the lit-

erature in the �eld, we introduce the notion of the con�guration space and formally

de�ne the planning problem. Then we present the preimage backchaining planning

technique and an implementable version in two dimensions, backprojection from a

target kernel. We consider three kinds of sensing, position sensing, force sensing and

sticking on obstacle edges, and we show that their combined use may have a nonlinear

e�ect on the capabilities of a planner. Several actual planning examples, solved with



CHAPTER 1. INTRODUCTION 9

the implemented planner are presented. We also present an algorithm to compute

the maximal preimage of a convex set, and we show that a concave set may have no

unique maximal preimage. By combining two-dimensional preimages computed for

all possible commanded directions of motion, we create three-dimensional omnidirec-

tional and nondirectional preimages; these are essential building blocks of complete

polynomial planners under uncertainty.

In Chapter 4 we discuss in detail how the amount of information considered by

a planner a�ects the complexity of the planning algorithm. Practical planners must

be fast and, therefore, must select carefully what information to consider. Since the

appropriate information may not always be available in the workspace, we propose

the idea of workspace engineering for planning complexity reduction. We introduce

the notion of landmarks as sources of information, and the notion of landmark regions

as information �elds in the workspace. By assuming a �nite number of such �elds,

we make the �rst step towards polynomial planning. We give a formal de�nition of

the problem of landmark-based navigation and a correct, complete, and polynomial

algorithm for it. The algorithm is based on the fact that a nondirectional preimage

can be represented with a data structure of polynomial complexity. This polynomial

description consists of a collection of slices (two-dimensional preimages) computed at

certain critical values of the commanded direction of motion d. The critical events that

produce the critical values of d are listed and explained in detail. We present several

examples of the algorithm. At the end of the chapter, we explain why the motion plans

produced by our planning algorithm have many desirable properties. Speci�cally, in

addition to having been produced by a correct, complete, and polynomial algorithm,

the motion plans are optimal in the number of executed steps, distributed over the

workspace, and robust (i.e., it is easy to reattach to a plan that has been disrupted

by an unexpected event).

In Chapter 5 we discuss several shortcomings of the landmark-based navigation

algorithm and we attempt to overcome them. We show that it is straightforward (a)

to allow generalized polygonal objects (instead of simple disks) in the con�guration

space, (b) to consider compliant motions, and (c) to allow contact between landmark

regions and C-obstacles. We also show that it is easy to precompute all possible plans
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in a speci�c workspace. The assumption that is the hardest (actually impossible)

to satisfy is that sensing and control are perfect within landmark areas. To deal

with this issue, we introduce the notion of generalized landmarks, where the robot is

only required to be able to get reliably within a subregion of the landmark region.

Planning with generalized landmarks is actually much easier than planning with our

standard de�nition of landmarks. We then attempt to relax the constraint that all

landmarks must be recognizable from each other, and present techniques that deal

with confusable landmarks. We conclude that confusable landmarks introduce too

many complications and, in general, lead to loss of polynomiality. Therefore, making

landmarks individually recognizable is an important goal of workspace engineering.

Finally, we give a graph representation of planning with uncertainty. We are able

to represent with a graph all possible plans, including guaranteed plans, plans that

always fail, and plans that may fail or succeed. An important family of plans are the

probabilistically guaranteed plans (introduced by Erdmann in [34]), which are plans

that are guaranteed to succeed, but the number of execution steps is not bounded.

(The expected number of execution steps, though, is a �nite number.) Many problems

that do not accept guaranteed plans accept probabilistically guaranteed plans. We

give a recursive algorithm to compute such plans within our landmark framework,

but we make no attempt to analyze its complexity.

Up to this point we have assumed that the robot controls a single parameter, the

commanded direction of motion d. In Chapter 6 we consider the situation where more

than one parameters are changeable, either under the control of the robot, or not.

In this case, the two-dimensional preimage depends on many parameters, and the

notion of nondirectional preimage is generalized to the multi-parametric preimage.

We show that the ideas of Chapter 5 can be easily extended to higher-dimensional

spaces. As a speci�c case, we study planning where the directional uncertainty half-

angle � is controllable by the robot. We wish to produce guaranteed plans using the

highest possible values of �, since, presumably, some kind of cost must be paid in

order to reduce uncertainty. We develop a correct, complete, polynomial, maximum-

uncertainty one-step planner, as well as a multi-step one that maximizes the value of

� at each step. We show that these algorithms can be also used in the case where �
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is not controllable by the robot, for problems that do not accept guaranteed plans.

In this case, the algorithms produce non-guaranteed plans that have the maximum

likelihood of success. The algorithms have been implemented and their use is demon-

strated with several examples. Because non-guaranteed plans may fail in undesirable

ways, we explore ways to produce plans that either succeed or fail recognizably (Don-

ald's EDR plans [23]). Finally, we present many practical problems that can be

solved using the multi-parametric planning technique (planning with anisotropic di-

rectional uncertainty, unexpected obstacle avoidance, controllable sensor sensitivity,

robot cooperation, and directional sensing).

In Chapter 7 we test our algorithms by experimenting with them on a real robot.

We use nomad-200, a small omnidirectional cylindrical robot from Nomadic Tech-

nologies. We conduct two sets of experiments. In the �rst set we use prismatic

landmarks standing in the workspace that are detected by the reection of a plane

of laser light on them. In the second set of experiments we use landmarks placed

on the ceiling that are detected by a camera �xed on the robot and looking straight

up. We describe in detail the computation of the induced landmark regions, and the

detection, recognition and localization algorithms. In the �rst set of experiments,

not all of our model assumptions are met and the execution of plans is not 100%

reliable. In the second set of experiments, we use iterative workspace engineering

(especially with respect to the location of landmarks) to eliminate as many sources of

errors as possible. Since we cannot completely eliminate uncertainty in the landmark

regions, we make use of the generalized landmarks algorithm. The result is a system

that operates reliably until the robot runs out of power (a little less than an hour).

This is possible because in our system errors do not deteriorate over time, but always

remain within their assumed bounds. We conclude that, with relatively little e�ort

and resources, it is possible to create a planning system that remains reliable over

time.

In the last chapter, we summarize the conclusions from this work, we identify

promising areas for future research, and we discuss questions raised by critics of our

approach.



Chapter 2

Models of Perception and Action

Before we can solve problems in the physical world, we must �rst build an adequate

representation of it. This representation, called a world model, is a projection of the

physical world onto the reasoning space. The projection must maintain all important

characteristics of the world (relative to the problem we wish to solve), but it should

conceal all parameters that are irrelevant to the problem. Selecting an appropri-

ate world model greatly a�ects the existence and the complexity of problem solving

algorithms.

In this chapter we consider a very generic dynamic world model. An agent (robot),

obedient to commands from a controlling system, operates in the world. The agent

acts as the interface between the controlling system and the world, by providing the

means to a�ect the world state, and also by providing sensory feedback. We begin

with a very simple discrete model with no uncertainty. Then we consider uncertainty

both about the present (initial state uncertainty, perceptual uncertainty) and the

future (control uncertainty). We introduce several functions that facilitate planning

with uncertainty, and we sketch a planning algorithm. Finally, we consider systems

with two distinct control loops, the motion control loop and the plan execution control

loop, and we introduce the notion of the \termination condition."

12
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2.1 Action

Consider a robot R operating in a workspace W. Let the vector s contain all the pa-

rameters that are needed to describe the combination of the robot and the workspace.

We will refer to s as the state of the system. Let c denote any primitive command

that the robot can execute. The function act describes the results of the execution

of c, i.e., it describes how s changes in response to the execution of c. Assume for

the moment that this is the only way in which s may change, and that the system is

completely deterministic.

Let s0 represent the initial state of the system. A plan is a sequence of com-

mands c0; c1; : : : ; cn�1, which, if executed, will cause the system to pass through states

s0; s1; : : : ; sn�1 and �nally arrive at sn, where si = act(ci�1; si�1), i = 1 to n. Plans

are provided by a user1 trying to achieve goals with the help of the robot. A goal is

de�ned as a set G of desirable �nal states of the system. Planning is the procedure

which takes as inputs s0, G and act and returns a sequence of primitive commands,

i.e., a plan. The trace of an execution of a plan is the trajectory of states s0; s1; : : : ; sn

that the system traverses during this execution. An execution is successful if sn 2 G.

As an example, consider a point robot that can move on a straight line. Let the set

of primitive commands that are available to the user be fF;Bg, and let the function

act be de�ned as follows:

act(c; s) =

(
s+ 1; if c = F ;

s� 1; if c = B.

If s0 = 0 and G = [2:5; 5], then plans (F;F; F ) and (F;F; F; F ) both achieve the

goal, the �rst one in three steps and the second one in four. Generally, plans with

fewer steps are preferable, unless there are other considerations like robustness. For

example, plan (F;F; F; F ) has a margin of error equal to 1, and might be preferable

to plan (F;F; F ) which has a 0:5 margin of error.

1A person, another robot, or a software program.
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2.2 Uncertainty

Planning in deterministic systems is straightforward, though not always easy. Un-

fortunately, real systems are never that well behaved. There is always a stochastic

aspect in their behavior. We call this stochastic aspect uncertainty. While in fully

deterministic systems a plan has a unique execution trace, this is not the case in

stochastic systems. We call a plan guaranteed if its executions are always successful.

The probability of success of a non-guaranteed plan is the percentage of its successful

executions.

Uncertainty about the initial state: Let us �rst consider the case where the

initial state is not precisely known at planning time. Thus, instead of a single value s0,

the planning procedure knows a probability density function f0(s) about the possible

initial states of the system. We introduce a new function ACT that takes fi(s) as

input (instead of s), and returns the updated distribution of s after the execution

of ci: fi+1(s) = ACT(ci; fi(s)). Now the success probability of a plan is equal toR
G fn(s) ds.

Returning to our simple example, assume that s0 is not known precisely, but it is

known to be somewhere in [-0.6,0.4] with uniform probability. If u[a; b] denotes the

uniform distribution on [a,b], then one possible form of ACT is the following:

ACT(c; u[a; b]) =

(
u[a+ 1; b+ 1]; if c = F ;

u[a� 1; b� 1]; if c = B.

With the goal being [2.5,5] the plan (F;F; F ), is not guaranteed. It maps u[�0:6; 0:4]

into u[2:4; 3:4], so its probability of success is 90%. However, the plan (F;F; F; F ) is

guaranteed.

Control Uncertainty: As long as act is deterministic, the variance of fi(s) remains

constant and equal to the variance of f0(s) throughout the execution of a plan. In

reality, however, this is rarely true. The mapping act is stochastic, causing the

variance of fi(s) to grow as i grows. We call this fact control uncertainty.
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In our example, let us assume for simplicity that ACT retains the uniformity of

the distribution, but stretches it a bit, like for example:

ACT(c; u[a; b]) =

(
u[a+ 0:8; b+ 1:2]; if c = F ;

u[a� 1:2; b� 0:8]; if c = B.

Plan (F;F; F ) maps the initial distribution u[�0:6; 0:4] into u[1:8; 4]; its probability

of success is equal to 15=22. But now, plan (F;F; F; F ) also becomes non-guaranteed,

because it results in a �nal distribution of u[2:6; 5:2] that is not fully included in the

goal; its probability of success is equal to 24=26.

2.3 Perception

In the above example, one could note that the plan (F;F; F; F ) is guaranteed to make

the robot reach the goal, but not to make the robot stop in the goal. Indeed, after

three steps the distribution of s is u[1:8; 4]. If s � 3:8 the robot will get (and stop)

in the goal after the next step. If 3:8 < s � 4 the robot is already in the goal, but

it may leave it with its next step. A successful plan must not only make sure that

the system achieves a goal state, but that it also remains in a goal state after the

execution of the plan.

If the robot had a way to verify goal achievement, we could derive the following

guaranteed plan: \while (not in the goal) execute F ." This is an example of a gen-

eralized plan structure, where the plan ceases to be linear and becomes an algorithm

that is parsed and executed by the robot. In order to facilitate decisions during the

plan execution, the robot observes the state s and transforms it into a variable ŝ that

is stored internally or fed to the execution module directly. This transformation is

called perception and is modelled with the function ŝ = per(s). However, decisions

like goal achievement, need to be functions of the actual state of the world s. There-

fore, we need to be able to obtain estimates of the actual state s from the perceived

state ŝ. Let us call this mapping interpretation: s = int(ŝ).

Perceptual Uncertainty: If the perception function is one-to-one, then interpre-

tation is a one-to-one function, too. Each value of s corresponds to a unique value of
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ŝ. Unfortunately, this is never the case in the real world. First, perception is a lossy

procedure: we cannot possibly record all parameters of a real system. Secondly, per

is not even deterministic because of measurement errors; it is a stochastic function. In

general, both perception and interpretation are many-to-manymappings. We call this

fact perceptual uncertainty. We can model perceptual uncertainty, with the introduc-

tion of functions PER and INT that accept probability distributions as arguments,

and return probability distributions: fper(ŝ) = PER(f(s)) and fint(s) = INT(f(ŝ)).

Back to our example, let us assume that: PER(u[a; b]) = u[a� 0:1; b + 0:1] and

INT(u[a; b]) = u[a�0:1; b+0:1]. The straightforward condition \not in the goal" must

now be transformed either into a condition on ŝ, or, equivalently, into a condition on

all possible interpretations of ŝ.

Consider the plan \while (ŝ < 2:6) execute F ." Figure 2.1 demonstrates the

execution of this plan. Dark-shaded areas correspond to all possible actual locations

of the robot (derived only by the knowledge of the initial state of the robot prior

to the execution of a command, and the accuracy of the controller). White boxes

represent all possible actual readings of the robot's sensor.

In the �rst line of the �gure the initial situation is shown: The robot lies somewhere

in [�0:6; 0:4] and its sensor may read anything in the range [�0:7; 0:5]. Since all

possible sensor readings are lower that the cuto� value of 2:6, the robot will necessarily

take a step forward. In fact, the robot will have to take two more steps forward before

its sensory reading may exceed 2:6.

The situation is depicted in the second line of Figure 2.1. After three steps, s may

lie anywhere in [1:8; 4] and ŝ anywhere in [1:7; 4:1]. If ŝ � 2:6, the execution of the

plan will stop. However, if ŝ 2 [1:7; 2:6), the execution will proceed for at least one

more step. If this happens, using the interpretation function and our prior knowledge

about s, we know that s must lie in [1:8; 2:7), as shown in the third line of Figure 2.1.

The fourth line of the �gure depicts the situation after such a fourth step: The

range of values of s is [2:6; 3:9), and the range of values of ŝ is [2:5; 4). Again, if

ŝ � 2:6 the execution will halt, otherwise it will proceed for a �fth step; s will start

in [2:6; 2:7) (line 5 of Figure 2.1), and will end up in [3:4; 3:9). The new ŝ will lie

in [3:3; 4), so the execution will terminate here (line 6 of the �gure). In all cases,
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Figure 2.1: Planning with perceptual uncertainty
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after the plan terminates, the system will be in a goal state [2:5; 5], i.e., the plan is

guaranteed.

Note that it is possible to terminate the execution of the plan after the fourth step,

because we know that the actual location of the robot lies in [2:6; 3:9], i.e., necessarily

in the goal. However, since our termination condition is based solely on ŝ, it is not

possible to do so. As we will see in the following chapters, it is much harder to derive

plans that take into consideration the derived actual state of the robot.

Another interesting observation is that during plan execution the robot will have

more accurate knowledge of its actual location s, because, after each step, the inter-

pretation function will narrow down the possible values of s into a 0:2-wide interval.

However, during the planning phase we need to take into account all possible situa-

tions that may result during plan execution, because we are interested in guaranteed

plans. This observation can be extended to argue that while the planning module

must use appropriate models for fast and guaranteed planning, the execution module

may use di�erent (yet compatible), more accurate models, so that the execution of

plans becomes more e�cient.

2.4 Deriving one-step plans

2.4.1 Algorithmic formulation of plan execution

Planning with uncertainty is quite complicated. In order to come up with a problem

that we can solve rigorously, we will make a few simplifying assumptions. As a

�rst step, we will not use probability density functions to represent beliefs about

the state of the system. Instead, we will assume that beliefs are limited to the

knowledge of a set, representing all values of s currently believed possible. We thus

represent a density function f(s) with the set F = fs j f(s) > 0g. According to

this representation, PER(S) represents the set containing all values of ŝ that can be

observed, if s can take any value in S; INT(Ŝ) is the set containing all values of s

that are compatible with a measurement ŝ 2 Ŝ; and ACT(c; S) is the set containing

all possible values of s after the execution of command c in a system starting at any
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state s 2 S. We also introduce the function dec(S; P ) which returns the command

prescribed by plan P when the state of the system can take any value s 2 S. Now

we can use the following algorithm to describe the execution of a plan P in a system

which starts at an initial state known to be in a set S0:

ŝ 2 PER(S0) is the perceived initial state of the system;

~S  INT(fŝg) \ S0;

while ( ~S 6� G) do f

c dec( ~S; P );

execute c;

S  ACT(c; ~S);

ŝ 2 PER(S) is the perceived new state of the system;

~S  INT(fŝg) \ S;

g

return success;

2.4.2 The preimage and the kernel

Suppose we are interested in �nding a one-step plan, i.e., a plan, all the executions

of which will traverse the loop of the execution algorithm just once. The question

whether a one-step guaranteed plan exists can be formulated as follows:

8ŝ 2 PER(S0); 9c : ACT(c; INT(fŝg) \ S0) �G

Essentially, deriving a one-step plan entails associating a command c with all possible

values of ŝ. This number is always �nite (since ŝ is the output of a physical instru-

ment), but it may be very large. It would be a tedious and time consuming task to

have the planner reason explicitly about each of these values separately.

Fortunately, there is a better way. Consider the preimage function (PRE), which

operates inversely to ACT: For a given set of system states S and a command

c, it returns the maximal set of system states SP such that: SP = PRE(c; S) )

ACT(c; SP ) � S. In other words, the preimage of a set S of system states for a

command c is another set of system states SP with the following properties: a) If c is
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executed with the system starting in any state in SP , the resulting state is guaranteed

to be in S. b) There is no set with the above property that is not a subset of SP .

An interesting property of the preimage, which follows directly from its de�nition, is

that the preimage of a subset of a bigger set is a subset of the preimage of the bigger

set for the same command.

If computation of preimages is possible, then the following algorithm can be used

to solve the one-step planning problem:

S  S0;

Ŝ  PER(S0);

while (Ŝ 6= ;) do f

select a new command c that has not been already processed;

if (all commands have been processed) return failure;

P  PRE(c;G);

S+  S \ P ;

S�  S n P ;

K  S+ n INT(PER(S�));

if (K 6= ;) associate c with each value ŝ 2 PER(K);

S  S nK;

Ŝ  Ŝ nPER(K);

g

return success;

This algorithm attempts to cover PER(S0) with a collection of sets PER(K i), and

associate a command ci with each of these sets. If PER(K i) \ PER(Kj) 6= ; with

i 6= j, then the states in this intersection have the following property: The command

prescribed by the plan, if the system initially lies in one of these states, may vary in

di�erent plan executions.

The set KER(S+; S) � S+ n INT(PER(S n S+)) is called the kernel of the set

S+, and it has a special signi�cance in reasoning about perception under uncertainty.

Suppose we know that the state of the system s lies in a set S, and we wish to derive

a condition based on the perceived value of the system state ŝ so that, if the condition
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is true, the state is guaranteed to lie in some prespeci�ed set S+. This condition is

simply ŝ 2 PER(KER(S+; S)). The structure INT(PER(S n S+)) represents all

the system states that may produce the same perceived value ŝ with some system

state not in S+, i.e., all system states that can be confused with a state outside S+.

Subtracting these states from our target set S+ leaves only those states in S+ that

cannot be confused with feasible states outside S+.

2.4.3 An example

Let us examine how the above ideas apply to a particular example. Consider again

the point robot that moves on a straight line. Let its initial position be known to be

in [�0:6; 0:4], and let the goal be [2.5,5]. This time, however, the command set that

is available to the user is richer: fMi; j i = 0;�1;�2; : : : ;�mg. The action function

is de�ned as follows:

ACT(Mi; [a; b]) = [a+ 0:8� i; b+ 1:2 � i];

hence the preimage function is

PRE(Mi; [a; b]) =

(
;; if 0:4� i > (b� a);

[a� 0:8� i; b� 1:2� i]; otherwise.

Keeping the same perception and interpretation function as before, the possible ini-

tial perceived values are included in [�0:7; 0:5], the perception set. The planning

algorithm visits all commands in arbitrary order (say, in increasing order of i), and

computes the preimage of the goal for this command and the kernel of the intersection

of the preimage with the initial set. The �rst command with a non-empty kernel is

M3. The preimage of the goal for this command is [0:1; 1:4], so S+ is [0:1; 0:4], S� is

[�0:6; 0:1), and INT(PER(S�)) = [�0:8; 0:3). Now we can compute the kernel to

be [0:3; 0:4] and its perception set to be [0:2; 0:5]. Thus, whenever the robot perceives

an initial value of ŝ0 in [0:2; 0:5], it should execute M3. We shrink the initial set to

[�0:6; 0:3) and the perception set to [�0:7; 0:2).

We move to the next command M4. The backprojection of the goal for this

command is [�0:7; 0:2], S+ is [�0:6; 0:2] and S� is (0:2; 0:3). We compute the kernel
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to be [�0:6; 0], and we associate M4 with any value of ŝ0 in [�0:7; 0:1]. The initial

set is shrunk to (0; 0:3) and the perception set to (0:1; 0:2).

Unfortunately, no other command produces a backprojection with a non-empty

intersection with the initial set, so the planner returns failure. Indeed, no guaranteed

plan exists. Imagine that we get an initial reading ŝ0 2 (0:1; 0:2). According to the

interpretation function, the actual position of the robot can be less than 0:1 or greater

than 0:2, but we have no way to know it. If for this value of ŝ0 we commandM3 and

the actual position of the robot is less than 0:1, then the resulting actual position

of the robot can be less than 2:5, i.e., outside the goal. If, on the other hand, we

command M4 and the actual position of the robot is greater than 0:2, the resulting

actual position may be greater than 5, once again outside the goal. Hence, there is

no safe command to associate with an initial measurement in the set (0:1; 0:2), a fact

that was discovered by our planner, too.

2.4.4 Conditional plans

Let us now consider the same example but with slightly smaller control uncertainty:

ACT(Mi; [a; b]) = [a+ 0:85� i; b+ 1:15 � i];

and

PRE(Mi; [a; b]) =

(
;; if 0:3� i > (b� a);

[a� 0:85� i; b� 1:15 � i]; otherwise.

In this case, the kernel that corresponds to M3 is found to be [0:15; 0:4], and the

kernel that corresponds to M4 afterwards is [�0:6; 0:15). Their perception sets cover

all possible initial readings of ŝ0, so we get the following guaranteed plan:

if (ŝ0 2 [0:25; 0:5]) executeM3;

else if (ŝ0 2 [�0:7; 0:05]) executeM4;

else if (ŝ0 2 (0:05; 0:25)) executeM3 or M4;

The above is an example of a conditional plan, where the selected command depends

on the initial perceived state, as opposed to a linear plan, where the choice of com-

mand is independent of the initial measurement. Conditional plans are much more



CHAPTER 2. MODELS OF PERCEPTION AND ACTION 23

powerful than linear plans, because they solve a richer class of planning problems.

However, complete planners that return conditional plans are more complicated to

build than their linear counterparts. Indeed, if we are seeking only linear plans, we

must just �nd a command for which the preimage of the goal fully includes the initial

set.

2.5 Multi-step plans

As we saw in the previous example, a guaranteed one-step plan may not exist. In

this case the planner must attempt to �nd a multi-step plan. Such plans have the

advantage of allowing perception actions between the execution of commands, thus

diminishing the uncertainty about the state of the system. The planner must reason

about what information might become available to the robot at execution time, and

try to create a plan that allows the robot to gather as much of this information is

necessary in order to reliably achieve the goal.

In the example of the previous section with the higher perceptual uncertainty, we

were not able to produce a one-step guaranteed plan when ŝ0 2 (0:1; 0:2). However,

the following two-step plan is guaranteed:

execute M2

get measurement ŝ

if (ŝ 2 (1:5; 2)) execute M2

else execute M1

To verify that this plan is guaranteed, notice that the possible initial positions of the

robot lie in the set (0; 0:3). The �rst M2 command transforms this set into (1:6; 2:5),

and the measurement ŝ can take any value in (1:5; 2:6). According to the plan, if

ŝ 2 (1:5; 2), another M2 is executed. In this case the possible starting positions of

the robot lie in the set (1:6; 2:1), so its possible �nal positions lie in (3:2; 4:5), i.e., in

the goal. Otherwise, ŝ is in [2; 2:6), the robot starts from [1:9; 2:5), executesM1, and

ends up in [2:7; 3:7), once again in the goal.
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The general problem of whether a guaranteed n-step plan exists can be formulated

as follows:

8ŝ0 2 PER(S0); 9c0 : S1 = ACT(c0; INT(fŝ0g) \ S0);

8ŝ1 2 PER(S1); 9c1 : S2 = ACT(c1; INT(fŝ1g) \ S1);

: : :

8ŝn�1 2 PER(Sn�1); 9cn�1 : ACT(cn�1; INT(fŝn�1g) \ Sn�1) �G

Finding a multi-step plan is a much harder problem than its one-step counterpart.

The most common technique for �nding multi-step plans under uncertainty is preim-

age backchaining. If the preimages of the goal do not cover the initial set in an

appropriate way, they are considered as intermediate goals, and the same algorithm

is called upon them, and so forth, until the entire initial set has been covered. In the

following chapters we will study several versions of this powerful technique.

2.6 Commands with termination condition

In the previous section we have assumed that the robot reassesses its behavior as fast

as it can perceive its environment and interpret the sensory readings. This assumption

places a tremendous burden on planners that attempt to fully exploit the capability

of robots for such adaptive behavior. This often yields very long plans, and thus

planning e�ciency is seriously a�ected.

In practice, the action and the perception-interpretation loops do not operate at

the same frequency; the action loop is usually much slower. A command consists of

a control statement cs and a termination condition tc, and prescribes the following

behavior for the robot: \while(:tc) obey cs." In general, the termination condition

depends on the most recent estimate of the state of the system. The robot begins to

alter the state according to cs; at the same time it keeps perceiving the current state,

updating its estimate about the true state of the system, and evaluating the termi-

nation condition continuously. When tc evaluates to true, the robot stops obeying

cs and seeks another command from the plan. Putting the above description into an

algorithm, we have:
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ŝ 2 PER(S0) is the perceived initial state of the system;

~S  INT(fŝg) \ S0;

while ( ~S 6� G) do f

(cs; tc) dec( ~S; P );

adjust the robot's behavior to conform with cs;

while (:tc( ~S)) do f

S  ACT(cs; ~S);

ŝ 2 PER(S) is the perceived new state of the system;

~S  INT(fŝg) \ S;

g

g

return success;

However general the above formulation may seem, real systems behave in more con-

voluted ways. In fact, in real systems the outcome of the ACT function may depend

on itself, yielding the recursive equation S  ACT(cs; S; ~S). The simplest such

situation occurs when we consider time t (a member of s in the above). Usually, the

outcome of ACT depends on the elapsed time, i.e., on the value of one member of s.

Many workarounds can be proposed (like splitting s into vectors with di�erent con-

straints and/or properties), but for the purposes of this discussion we will ignore time

(or more precisely its e�ects on ACT), and we will retain the notation ACT(cs; ~S)

to represent all states achievable by the system if cs is executed continuously with no

termination condition.

In the above algorithm the execution module keeps updating its estimate about

the current state of the system with each new value of ŝ it obtains. Let h, the sensing

history, denote the series of all observed values of ŝ, starting with the one that led to

the selection of the particular command (cs; tc), and up to the most recent one. We

can always obtain the most current estimate about the state of the system using only

S0 and h. Therefore, the termination condition depends only on h and S0. This most

general form of the termination condition (that makes use of all available information)

is called a termination condition with history and state.
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A plan which can be described with the above formulation, makes use of all avail-

able information. This fact contributes to the complexity of the planning problem

signi�cantly. In what follows, we will study a restricted class of termination condi-

tions, namely, those that do not depend on the sensing history. Therefore, we will

assume that the robot does not update its estimate about the state with each sensing

action. The execution algorithm of such a system looks like follows:

ŝ 2 PER(S0) is the perceived initial state of the system;

~S  INT(fŝg) \ S0;

while ( ~S 6� G) do f

(cs; tc) dec( ~S; P );

adjust the robot's behavior to conform with cs;

S  ACT(cs; ~S);

while (:tc( ~S)) do f

ŝ 2 PER(S) is the perceived new state of the system;

~S  INT(fŝg) \ S;

g

g

return success;

Since the set S remains constant throughout the evaluation of tc, we can essen-

tially treat tc as a function of Ŝ. Furthermore, tc is a boolean function, so we can

represent it with two sets Ŝtc and Ŝ:tc, where Ŝtc [ Ŝ:tc = 
̂. The �rst contains all

values of ŝ that cause tc to evaluate to true, whereas the second contains all values

that cause tc to become false. Their union 
̂ is the set of all possible measurements.

Consider again a one-step plan. Let us assume that for a particular execution

of the plan the command (cs; tc) has been chosen. In order to guarantee that the

execution will be successful, we have to make sure that at some point tc(Ŝ) will

evaluate to true, and that the �rst time that this happens the system will be in a

goal state. The function ACT is not adequate to facilitate reasoning like the above.

Because cs is executed continuously, we need a function that can return possible

trajectories of s instead of possible values of it. We call this function the forward
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projection (FP).

De�nition 2.1 (Forward Projection) The forward projection FP(cs; S) of a set

of system states S for control statement cs is the set of possible trajectories of the

system state s, that occur when the system, initially in some state in S, changes in

response to the continuous execution of cs.

Note that the set ACT(cs; S) consists of all the points of the trajectories included in

FP(cs; S). Similarly, instead of the function PRE we use the backprojection function

BP, de�ned as follows:

De�nition 2.2 (Backprojection) The backprojection BP(cs; S) of a set of system

states S consists of all system states, such that if a system initially being in one of

these states starts changing by obeying cs, all possible trajectories of its state will pass

through S.

We can now use these de�nitions to derive a one-step planning algorithm for such a

system. For each possible observable initial state of the system we need to compute a

pair (cs; tc), such that all possible trajectories of the system state that are compatible

with cs pass through the goal, i.e., we have to make sure that the goal is reachable.

Reachability, though, is not a su�cient condition for the correctness of a plan. We

also need to make sure that the system will stop following cs while it is still in the

goal, i.e., that along each possible trajectory there exists a point for which tc will

evaluate to true, and that the �rst time that this happens, this point will lie in the

goal. This is the problem of goal recognizability.

The set INT(Ŝtc) contains all the states that may cause tc to evaluate to true.

Also, the set Ktc = INT(Ŝtc) n INT(Ŝ:tc) contains all the states that always cause

tc to evaluate to true. As it can be veri�ed, Ktc = KER(INT(Ŝtc);
), where 
 is

the set of all possible states of s, hence Ktc is called the kernel of tc.

De�nition 2.3 (Kernel of a termination condition) The kernel of a termina-

tion condition consists of all system states which always give rise to perceived states

that cause the termination condition to evaluate to true.
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Clearly, all possible trajectories of a one-step guaranteed plan must lead the system

into the intersection of the goal with the kernel of the termination condition, without

�rst passing through a point that belongs to INT(Ŝtc) but not to the goal. Thus, a

planner should go over all possible combinations of cs and tc, and for each such pair

compute the backprojection of Ktc \G treating the set INT(Ŝtc) nG as an arti�cial

obstacle to be avoided. If several of these backprojections can cover the initial set S0

in the way described in Section 2.4, then we got a one-step guaranteed plan.

2.7 Selecting a termination condition

An e�cient planner cannot a�ord to examine all possible termination conditions in

order to determine the best one. Instead, planners must use heuristic algorithms

to select a \nice" termination condition that depends only on the selected control

statement.

The properties of a \nice" termination condition can be derived by our desire to

obtain as big a backprojection as possible. The size of the intersection of its kernel

with the goal is not always a reliable heuristic. What is of real importance is the size

of the boundary of this intersection that is not blocked by obstacles (including the

arti�cial obstacles induced by the termination condition). For example, if we use a tc

that is always true, the intersection of its kernel with the goal is the entire goal, but

it is totally surrounded by the arti�cial obstacle, which includes all non-goal system

states. Thus, there exists no control statement that can lead the system into the goal

from any state outside the goal. The backprojection for this termination condition is

empty, although the size of the intersection of its kernel with the goal is the maximum

possible. In other words, the power of the termination condition depends on its ability

to discriminate between points in the goal and points outside it. A typical heuristic

creates termination conditions which have the maximal kernel without inducing any

arti�cial obstacles.

Let us now, for one �nal time, visit our example, to demonstrate the above ideas.

We use again the command set (F;B), only this time we assume that these commands

are executed continuously (i.e., they are control statements) until some termination
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condition becomes true. We assume that we know nothing about the speed of motion

of the robot, thus the function ACT is de�ned as follows:

ACT(c; [a; b]) =

(
[a;+1); if c = F ;

(�1; b]; if c = B.

Since the robot moves on a line, it will eventually get into any non-empty set that

lies in the direction of its motion, so the backprojection function has the following

description:

BP(c; [a; b]) =

(
(�1; b]; if c = F ;

[a;+1); if c = B:

Consider the same one-step planning problem, with S0 = [�0:6; 0:4] and G = [2:5; 5].

How can we select a \nice" termination condition? In this case where the robot moves

on a line, the only consideration is not to create an arti�cial obstacle between the

initial set and the goal. Thus \ŝ � 2:6" is a good termination condition: It yields

Ŝtc = [2:6;+1), Ŝ:tc = (�1; 2:6), INT(Ŝtc) = [2:5;+1), INT(Ŝ:tc) = (�1; 2:7),

and Ktc = [2:7;+1). The intersection of the kernel with the goal is [2:7; 5], and the

arti�cial obstacle (5;+1) is safely behind the goal, allowing the preimage of [2:7; 5]

for control statement F to fully enclose the initial set. In this case the plan \while

(ŝ < 2:6) obey F" is guaranteed.

If, however, we use the termination condition \ŝ � 2:5," it will create the arti�cial

obstacle [2:4; 2:5)[ (5;+1) which fully encloses the goal: The robot cannot enter the

goal without getting in danger to stop before it reaches it.



Chapter 3

Robot Motion Planning with

Uncertainty

The di�erence between a robot and a computer is the ability of the former to exert

forces upon the physical world, thus altering its con�guration. Therefore, any task

that is performed by a robot (but cannot be performed by a computer) must involve

physical motion of the robot or components of its environment. Motion planning is the

foundation upon which most robotic reasoning systems must be built. Unfortunately,

motion planning is a very hard problem, and it is not surprising that a lot of e�ort

has been directed by researchers towards this area. A comprehensive analysis of the

various motion planning techniques can be found in [53].

Of all the parameters that describe the system of the robot and its environment,

we separate those that can be changed, and we call them the con�guration q. The

number of dimensions of the con�guration is referred to as the dimensionality of a

motion planning problem. The complexity of motion planning depends to a great

extent on the dimensionality of the problem.

Since no more than one physical object can occupy the same physical space,

not all values of q are possible. We describe this fact with a set of constraints

fB1(q); : : : ;Bnb(q)g, each corresponding to the existence of an obstacle in the

workspace. If a particular value of q results in a collision (i.e., violates one of the

30
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constraints) it is called infeasible; otherwise it is called feasible. In Chapter 2 we im-

plicitly assume that the existence of obstacles is incorporated into the function act,

which never returns an infeasible system con�guration. An alternative approach is to

de�ne act in the absence of obstacles, and reason about them explicitly.

In this chapter we make the ideas presented in the previous chapter concrete, by

presenting a practical algorithm for planning the motion of a robot under control and

sensing uncertainty. The algorithm uses the method of \preimage backchaining." We

consider three sensing schemes (sticking, position sensing, force sensing) and their

combination. Several planning problems, solved with the implemented algorithm, are

shown. Finally, we discuss the notion of maximal preimages and show that they do

not exist.

3.1 Background

3.1.1 The path-planning problem

Research in motion planning began in the mid-seventies. Some early results can be

found in [92, 66, 65]. It was soon understood that the pure topological and geometrical

aspects of motion planning constituted an interesting problem of its own, and a lot

of e�ort was directed towards its solution. This problem, the path-planning problem,

is the search for a path of feasible con�gurations (a collision-free path) starting at

the initial state and ending at a goal state. The robot is assumed to be able to

follow the path without error. The archetype of such problems is the so called piano-

movers problem. When the dimensionality is not �xed, the path-planning problem

has been shown to be pspace-hard [85]. Other theoretical results regarding lower

and upper bounds of multiple variants of the problem can be found in [88]. When

the dimensionality is �xed, algorithms have been proposed, which are polynomial in

the number of algebraic surfaces bounding the workspace and the obstacles and their

maximal degree [87, 13].

These results are of theoretical interest, but have little practical use in systems

with high dimensionality, even when uncertainty is not an issue. Several other
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planning techniques have been proposed in an attempt to �nd more practical al-

gorithms [11, 45, 57, 68]. Most of them trade completeness for e�ciency, i.e., they

search a smaller space with the hope that it contains at least one solution. The arti-

�cial potential �eld method, introduced by Khatib [50], has been widely adopted and

has resulted in many practical motion planning algorithms, like the one described

in [38]. The idea is that obstacles exert repulsive forces to the robot, whereas the

goal attracts it. These forces generate a potential �eld in the workspace having a

global minimum at the goal. The robot moves following the gradient of the potential

�eld until it reaches a minimum; if the minimum is local, the robot tries to escape,

otherwise the goal has been achieved. Detecting and escaping local minima is the

major problem of potential-�eld-based methods. Recently, the introduction of ran-

domized and parallel algorithms has resulted in very e�ective techniques to address

these problems. Barraquand and Latombe [5] described such a planner that is able

to solve complicated motion planning problems with more than 10 degrees of freedom

in a few seconds.

3.1.2 Dealing with uncertainty

Few of the algorithms described above can be used independently in real systems.

The reason is that they do not take into account uncertainty. Reasoning about

uncertainty complicates the motion-planning problem signi�cantly. Moreover, since

we cannot anticipate anything that may happen, we have to de�ne precisely the extent

to which uncertainty will be dealt with during the planning phase. This issue has

been the subject of debate among roboticists and AI researchers, and has led to the

formation of two major schools of thought.

The reactionists believe that planning should not be concerned with uncertainty.

If unexpected situations arise during the execution of a plan, the robot should attempt

to react to them following some prespeci�ed behavior. If the execution of the plan

cannot continue, the planner is asked to provide a new plan. The arguments of this

school are (a) that it is not worth to spent too much planning time preplanning about

low probability events, and (b) that even if we can anticipate some uncertainty, there

are so many unexpected events, that the plan will fail in one way or another; if the
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robot must deal with such failures, it will also be able to deal with failures that could

have been anticipated. Several systems using the above \reactive planning" method

have been proposed and implemented with various degrees of success [10, 39, 1, 73].

The major disadvantage of this method is the inability to model the behavior of the

robot in a meaningful way. Success or failure cannot be explained, so results cannot be

generalized or transferred to a di�erent system. Furthermore, uncertainty exists both

at planning time and at execution time. One example of execution time uncertainty is

perceptual errors that may prevent pure reactive schemes from completely eliminating

uncertainty by reading sensory inputs. Perceptual uncertainty may also hinder the

robot to correctly identify its own state, and the state of the workspace. False state

identi�cation may trigger inappropriate robot behavior. It is necessary for the robot

to reason in advance about the knowledge that may become available at execution

time, and make sure that this knowledge will be su�cient to lead it towards the goal

or recognize failure.

For these reasons, the other school proposes that a planner should anticipate \as

much uncertainty as possible." Typically, the term \as much uncertainty as possible"

means that the considered stochastic parameters have distributions with relatively

small variance (i.e., we do have some knowledge about these parameters), and that

an algorithm that solves the planning problem exists. Unfortunately, most planning-

with-uncertainty algorithms that have been proposed up to now require exponential

running time. Our view is that it is only worthwhile to reason about uncertainty if the

planning algorithm is fast enough to be practical. Moreover, we believe that reactive

behaviors (like unexpected obstacle avoidance) should be an integral part of a robust

robotic system, because there is no way that a planner can anticipate everything that

may happen all the time.

3.1.3 Planning with uncertainty

Four major approaches to planning with uncertainty have been proposed so far. The

�rst, called skeleton re�nement was introduced independently by Lozano-P�erez [66]

and Taylor [92]. It consists of (a) retrieving a plan skeleton appropriate to the task

at hand and taking that as an initial plan, and (b) iteratively modifying the skeleton
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by inserting complements (typically sensor readings). Complements are decided after

the correctness of the skeleton is checked, either by propagating uncertainty through

the steps of the plan skeleton [92] or by simulating several possible executions [66].

Subsequent contributions to the approach have been brought by Brooks [9], who

developed a symbolic computation technique for propagating uncertainty forward

and backward through plan skeletons, and by Pertin-Troccaz and Puget [81], who

proposed techniques for verifying the correctness of a plan and amending incorrect

plans.

The second approach to motion planning with uncertainty was proposed by Dufay

and Latombe [29], and is known as the inductive learning approach. It consists of

assembling input partial strategies into a global one. First, during a training phase,

the system uses the partial strategies to make on-line decisions and execute several

instances of the task at hand. Then, during an induction phase, the system combines

the execution traces generated during the training phase, and generalizes them into a

global strategy. In fact, the training phase and the induction phase are interweaved.

The generation of a strategy for the task ends when new executions do not modify

the current strategy. A system based on these principles has been implemented, and

experimented successfully on several part mating tasks.

A third method, called iterative removal of contacts creates plans using compli-

ant motions on obstacle faces. Compliant motions have the advantage that they

completely eliminate uncertainty along the normal to the contact surface. Several

variants of this method have been proposed [58, 44, 20].

The fourth approach is called preimage backchaining and it will be presented in

detail in the following.

3.1.4 Preimage backchaining

The �rst three approaches essentially operate in two phases: �rst, a motion plan is

generated assuming no uncertainty, and then it is transformed to deal with uncer-

tainty. Instead, preimage backchaining takes uncertainty into account throughout the

whole planning process. In principle, it can tackle problems where uncertainty shapes
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the structure of a plan to the extent that the plan cannot be generated by transform-

ing an initial one produced under the no-uncertainty assumption. This method was

�rst introduced by Lozano-P�erez, Mason and Taylor [69] and has since been accepted

as the primary method for the creation of guaranteed plans despite the presence of

uncertainty.

The preimage of a goal region, for a given motion command M, is the set of

all robot con�gurations such that if the robot starts executing the command from

any one of these con�gurations, it is guaranteed to reach the goal and stop in it.

Preimage backchaining consists of constructing a sequence of motion commands Mi

(i = 1; : : : ; n), such that, if Pn is the preimage of the goal for Mn, Pn�1 the preimage

of Pn for Mn�1, and so on, then P1 contains all possible initial con�gurations of the

robot.

One source of di�culty in computing preimages is the interaction between goal

reachability and goal recognizability. The robot must both reach the goal (despite

initial position and control uncertainty) and stop in the goal (despite sensing uncer-

tainty). Goal recognition often depends on the region from where the command is

executed. This region, which is precisely the preimage of the goal for that command,

also depends on the way the goal is recognized. This recursive dependence was noted

in [69]. Despite this di�culty, Canny [14] described a complete planner with very few

restrictive assumptions. This planner generates a plan consisting of r motion com-

mands by reducing the input problem to deciding the satis�ability of a semi-algebraic

formula with 2r alternating existential and universal quanti�ers. Such a decision

takes double exponential time in r. Even worse, the smallest r for which a plan may

exist grows with the complexity of the environment. Actually, various forms of the

above motion planning problem have been proven intrinsically hard [15, 77, 14].

At the expense of completeness, Erdmann [32] suggested that goal reachability

and recognizability be treated separately by identifying a subset of the goal, called

a kernel, such that when this subset is attained, goal achievement can be recognized

independently of the way it has been achieved. He de�ned the backprojection of a

region T , for a motion command M, as the set of all points such that, if the robot

executes M starting at any one of these points, it is guaranteed to reach T . He
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proposed an O(n log n) algorithm to compute backprojections in the plane when the

obstacles are polygons bounded by n edges. An implemented planner based on this

approach is described in [55].

3.2 The con�guration space

We have previously de�ned the con�guration q of a robot and its environment as the

values of the changeable parameters of the system. Let us now narrow this de�nition

for pure robot motion planning problems, i.e., for problems where the robot is the only

movable object in a workspace W, populated by stationary obstacles Bi, i 2 [1; nb].

A con�guration of the robot is a speci�cation of the position of every point of the

robot with respect to a coordinate system embedded in W [2]. The con�guration

space denoted by C, is the set of all possible con�gurations.

Each obstacle Bi is mapped to the subset CBi of con�gurations for which the robot

collides with Bi:

CBi = fq 2 C j R(q) \ Bi 6= ;g;

where R(q) denotes the subset of W occupied by the robot at con�guration q. The

region CBi is called a C-obstacle.

In general, C is a non-Euclidean manifold. For instance, if the robot is a rigid

planar object moving freely in W = <2, then C = <2 � S1, where S1 denotes the

unit circle. If the robot is a rigid three-dimensional object moving freely in W = <3,

C = <3�SO(3), where SO(3) denotes the Special Orthogonal Group of orthonormal

matrices with determinant +1 [2].

For the rest of the chapter, we assume that the robot is a two-dimensional polygo-

nal object that can only translate in the plane, e.g., an omnidirectional mobile robot

that cannot rotate. A con�guration is represented by q = (x; y) 2 <2, where x and y

are the coordinates of a speci�c point of the robot (the reference point) with respect to

the coordinate system embedded inW. Hence, both W and C are copies of <2. Both

the robot and the obstacles are modeled as polygonal regions, the robot as a simple

polygon, and each obstacle as a region whose boundary is a simple polygonal curve



CHAPTER 3. ROBOT MOTION PLANNING WITH UNCERTAINTY 37

CB

R
q

G

B

(a) (b)

Figure 3.1: Peg-Into-Hole Task

that may, or may not be a closed-loop curve (allowing for non-bounded obstacles).

Under these assumptions, each C-obstacle CBi is also a polygonal region.

Figure 3.1 illustrates the above concepts. A simple setting in the workspace is

depicted in Figure 3.1(a). The robot R is a rectangle and there is a single polygonal

obstacle B with a rectangular depression. The goal of the task is to insert R in B's

depression (\peg-into-hole" task). Figure 3.1(b) shows the mapping of this setting in

R's con�guration space. The robot R maps to the point denoted by q. The obstacle

B maps to the C-obstacle CB. The width of the rectangular depression in CB is equal

to the di�erence between the width of the depression in B and the width of R. The

goal of the peg-into-hole task is to move q (the con�guration of R) to any location in

the edge G at the bottom of CB's depression.

The union of the obstacles,
Snb
i=1 Bi, is called the obstacle region and is denoted

by B. The union of the C-obstacles,
Snb
i=1 CBi, is called the C-obstacle region and is

denoted by CB. The complement of the C-obstacle region in C is called the free space

and is denoted by Cfree. The subset of con�gurations q where R(q) intersects with

the obstacle region without overlapping its interior is called the contact space and is

denoted by Ccontact. The union of the free space Cfree and the contact space Ccontact

is called the feasible space and is denoted by Cfeasible. A feasible path between two
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con�gurations q1 and q2 in Cfeasible is a continuous map � : [0; 1]! Cfeasible such that

� (0) = q1 and � (1) = q2.

The set Cfree is an open subset of C, whose boundary @Cfree is a set of polygonal

curves. Ccontact is also made of polygonal curves. It can be shown that @Cfree � Ccontact

and cl(Cfree) � Cfeasible [48]. In Figure 3.1, the strict inclusion of @Cfree in Ccontact

occurs when R's width is exactly equal to the width of B's depression. Then the

depression in CB degenerates to a line segment contained in Ccontact, but not in @Cfree.

In order to avoid such pathological cases, we assume that each maximally connected

subset of the C-obstacle region CB is homeomorphic1 to a closed disc or a closed half-

space, i.e., is a manifold with boundary. This assumption entails that Ccontact = @Cfree

and Cfeasible = cl(Cfree); hence, a contact between R and the obstacle region can be

broken by an arbitrarily small displacement of R. It also implies that every vertex in

the contact space Ccontact is the extremity of only two edges; thus, Ccontact consists of

disjoint simple polygonal lines. An edge (resp. a vertex) in Ccontact is called a contact

edge (resp. a contact vertex). The outgoing normal of a contact edge E is the unit

vector ~�(E) normal to E pointing toward Cfree. The vector �~�(E) is the ingoing

normal of E.

Let nR be the number of edges of R, and nB be the number of edges of the obstacle

region. Ccontact contains O(n2Rn
2
B
) edges which can be computed in O(n2

R
n2
B
log nRnB)

time [89].

3.3 Control, sensing and uncertainty

3.3.1 Structure of a motion plan

According to the model of Chapter 2, the execution of a motion plan occurs in steps.

During each step the execution module selects a control statement cs which prescribes

a particular behavior to be followed by the robot, and a termination condition tc

which is a boolean function of the sensory readings. (Time is considered to be one

of the possible sensory readings.) The pair (cs; tc) constitutes a motion command.

1Two topological sets E and F are homeomorphic i� there exists a bijection f : E ! F such that
both f and f�1 are continuous.
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Figure 3.2: The control uncertainty cone

The robot moves obeying cs, until tc evaluates to true, at which point it stops

instantaneously.

The way in which the execution module decides what motion command to execute

next depends on the structure of the motion plan. Linear plans specify a sequence

of motion commands that are to be executed one after the other. Conditional plans

specify several possible motion commands at each execution step. The robot selects

one of them to execute next, based on its beliefs about its own state and the state

of the world. These beliefs depend mainly on sensory readings, but may also depend

on sensing history, and other prior information. Finally, randomized plans use a

stochastic function in order to select a motion command at each step. In this chapter

we consider only linear plans.

3.3.2 Control

Several schemes have been proposed to control the motion of a robot. Here, we

assume that the only control parameter is the commanded velocity of motion ~vcd. The

robot is commanded to move along ~vcd, but it is not always possible to do so because

of control uncertainty. At any instant during the motion in free space, the actual

velocity of the robot is a vector ~vd, such that the magnitude of the angle between ~vcd

and ~vd is less than a �xed angle � < �=2. In other words, ~vd lies in a cone of angle

2� whose axis points along the d direction. This cone is called the control uncertainty
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Figure 3.3: Reaction Force

cone. The modulus of the velocity of the robot is unknown to the planner, but is

assumed to have some reasonable (positive) value. For simpli�cation, we assume that

there is no uncertainty in the velocity modulus, i.e., k~vdk = k~vcdk. This assumption

has no signi�cant impact on the methods described below and can be easily relaxed.

For further simpli�cation (and without loss of generality), we assume that ~vcd (hence,

~vd) is a unit vector, so that the direction d su�ces to characterize the vector ~vcd

(and the range of vectors ~vd compatible with ~vcd). During motion in free space, ~vd

may vary arbitrarily between the two extreme orientations determined by ~vcd and �.

Thus, if the robot is in the free space, it moves along a trajectory whose tangent

at any con�guration is contained in the control uncertainty cone anchored at this

con�guration (see Figure 3.2).

The behavior of the robot when it comes in contact with obstacles depends on the

particular control scheme we use. Sometimes, contact with obstacles is not allowed.

In this case, Cfeasible = Cfree. In most cases, though, compliant motions are allowed,

because they eliminate the positional uncertainty along the normal to the contact

surface and allow the robot to cover long distances with no uncertainty penalty along

one axis.

The control scheme described above can be extended to deal with compliant mo-

tion [71, 83, 96]. It is called the generalized damper compliance model.

According to this model, the robot exerts a force on its environment that is pro-

portional to the actual commanded velocity ~vd, say ~fappl = B~vd. When the robot is in

free space, no reaction force is applied to the robot, and the force exerted by the robot

is entirely used to create motion. When the robot is in contact space and pushes on
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an obstacle, the obstacle generates a reaction force. If the vector �~vd lies in the fric-

tion cone at the contact con�guration, the reaction force is �B~vd, i.e., it completely

cancels the force exerted by the robot, and there is no motion (Figure 3.3(b)). If the

vector �~vd lies outside the friction cone, the reaction force only partially cancels the

force exerted by the robot and the net resulting force makes the robot's con�guration

slide in contact space (Figure 3.3(c)).

Let q be the actual con�guration of the robot at some instant t. We denote by

~freac(q; ~vd) the vector in con�guration space representing the reaction force applied

at the robot's con�guration when the actual commanded velocity is ~vd. ~freac(q; ~vd) is

exhaustively de�ned as follows:

if q 2 Cfree, then ~freac(q; ~vd) = 0;

if q 2 Ccontact, q is in the interior of a contact edge E, and ~vd projects positively on

the outgoing normal of E, then ~freac(q; ~vd) = 0;

if q 2 Ccontact, q is in the interior of a contact edge E, and �~vd lies in the friction

cone at the contact point, then ~freac(q; ~vd) = �B~vd (see Figure 3.3(b));

if q 2 Ccontact, q is in the interior of a contact edge E, and �~vd projects positively

on the outgoing normal of E but lies outside the friction cone at the contact con-

�guration, then ~freac(q; ~vd) is equal to the projection of �B~vd onto the nearest side

of the friction cone at q (the projection is taken normal to the axis of the cone, see

Figure 3.3(c));

if q 2 Ccontact, q is at a contact vertex, then the reaction force is a positive linear

combination of the reaction forces that can be exerted by the edges abutting the

vertex.

According to the above de�nition, if ~vcd and � are such that all directions in the

control uncertainty cone project positively on the outgoing normal of a surface, the

robot is guaranteed to move away from the surface. If the control uncertainty cone

is completely included in the inverted friction cone, then the robot is guaranteed to

stick on the surface. If all directions in the control uncertainty cone project positively

on the ingoing normal of the surface but none of them lies in the inverted friction

cone, then the robot is guaranteed to slide along the surface. In any other case the
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behavior of the robot cannot be predicted at planning time.

3.3.3 Sensing

Real robots are equipped with a variety of sensing equipment that provide mea-

surements of the actual con�guration of the robot and the workspace. These mea-

surements contain stochastic errors, whose distribution is called sensing uncertainty.

Clearly, the more information the robot has, the more complex tasks it is able to

perform. On the other hand, though, reasoning about sensing information at plan-

ning time is a signi�cant source of complexity for planners since the actual sensed

values are not known at planning time. It is therefore important to distinguish the

information that is more likely to have a signi�cant impact on the structure of a

plan, and ignore other potential sources of less important information. As a result,

researchers have been particularly frugal when selecting the sensing inputs that a

planner-with-uncertainty considers.

Sticking This is the simplest form of sensing, and for this reason robots that use it

are often called sensorless. The only thing that the robot can sense is its own motion

as a binary variable (1 if it is in motion, 0 if it is stopped). The robot moves following

the generalized damper model, using a termination condition that stops its motion

automatically (sticking on obstacle edges due to friction). Nevertheless, the robot

must realize that motion has stopped, in order to proceed with the execution of the

next command of the plan. It is assumed that the robot never makes a mistake in

deciding whether it moves or not, so no sensing uncertainty exists in this case.

Force sensing A force sensor measures the reaction force exerted on the robot.

The output of the sensor is a vector denoted by
~̂
f . For simpli�cation, we assume that

the modulus of the measured force is accurate. On the other hand, the magnitude

of the angle between ~f and
~̂
f (if they are non-zero vectors) is less than a �xed angle

" < �=2. Hence, ~f lies in an open cone of angle 2" whose axis points along
~̂
f .
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Position sensing A position sensor measures the current con�guration of the robot.

The sensed con�guration is denoted by q̂, while the current actual con�guration

is denoted by q. The uncertainty in the measurement is modeled as an open disc

Uq(q̂) � <2 of �xed radius � centered at the sensed con�guration q̂. This means that

if the position sensor returns q̂, the current actual con�guration q may be anywhere

in Uq(q̂) \ Cfeasible. Reciprocally, if the actual con�guration is known to be q, the

sensed con�guration q̂ should necessary lie in Uq(q).2

3.4 Preimage backchaining in two dimensions

3.4.1 Statement of the problem

Let I be a subset of Cfeasible, in which it is known at planning time that the robot's

con�guration will be when the execution of the motion plan starts. I is called the

initial region. Let G be another subset of Cfeasible called the goal region. Given

a robot that can be modelled as described in the previous sections, we want the

planner to generate a sequence of motion commands (a linear motion plan), whose

execution makes the robot move from its actual initial con�guration in I to a �nal

con�guration in G.

3.4.2 Preimage backchaining

The plan is generated by working backwards from the goal (backchaining). During

each step, we identify a target set T (initially the goal), we select a motion command

(~vcd; tc), and we compute the set of con�gurations P(d; tc;T ) from where the motion

command is guaranteed to make the robot reach the target set (reachability) and

stop in it (recognizability). P(d; tc;T ) is the preimage of T as de�ned in Chapter 2.

If the initial region is covered entirely by the preimage, then the motion command

(~vcd; tc) is guaranteed to bring the robot into T and make it stop in there. If this is

2This is not always true. It happens to be so in this case because the perception function Uq(q̂) is
symmetric with respect to q̂ (i.e., x 2 Uq(q̂) � 2q̂� x 2 Uq(q̂)). If this weren't so, the interpretation
function U�1

q
(q) would be the symmetric set of Uq(q) with respect to q.
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the case, the algorithm terminates; otherwise, P becomes the target set of the next

backchaining step. The number of motion commands in a plan is equal to the number

of backchaining steps.

The computation of preimages combines the notions of reachability and recogniz-

ability. Reachability relates to the fact that any trajectory obtained by executing a

motion commanded along ~vcd from a preimage of T should reach T . Given a start-

ing con�guration, ~vcd only determines a commanded trajectory � cd . Due to errors in

control, any execution produces an actual trajectory �d that is slightly di�erent. The

planner must be certain that all the possible actual trajectories consistent with both

~vcd and control uncertainty (i.e., �) will reach T at some instant.

Reaching T , however, is not su�cient since the termination condition could just

let the robot traverse the target set without stopping in it, or, instead, it could halt the

motion prematurely before T has been reached. In fact, the planner must be certain

that the termination condition tc will stop the robot in T (recognizability). The

function tc is an observer of the actual trajectory �d being executed. Since sensing

is imperfect, tc perceives �d as an observed trajectory �̂d which is most likely to be

neither the commanded one, nor the actual one. Thus, the problem for the planner

is to be sure that, for every possible observed trajectory �̂d, (a) tc becomes true at

some instant, and (b) at the instant tf when tc �rst becomes true, all the actual

trajectories �d consistent with �̂d (i.e., the trajectories which may be observed as �̂d

given the uncertainty in sensing) have reached the target set, namely, �d(tf) 2 T .

Preimage computation has been investigated in depth in [32, 52]. For a given

commanded velocity ~vcd, the ideal method would compute the maximal preimage of

T over all possible termination conditions, i.e., a preimage that is not contained in any

other preimage3 of T for ~vcd. The method would also return the termination condition

for the maximal preimage. Intuitively, a large preimage has more chance to include

the initial region I than a small one; in addition, if it is considered recursively as an

intermediate goal, a large preimage has more chance to admit larger preimages than

a small one. Thus, considering larger preimages may reduce the size of the search

3By de�nition, any subset of a preimage is also a preimage of the same set for the same motion
command.
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graph; it may also produce \simpler" strategies (strategies made up of less motion

commands). Nevertheless, Erdmann [32] showed that: (a) a maximal preimage does

not always exist; (b) if one does exist, it may not be unique; and (c) if a unique

maximal preimage exists, it may depend in a very subtle fashion on sensing history,

the elapsed time since the beginning of the motion, and the knowledge embedded in

the termination condition.

Most of the di�culties related to maximal preimages are due to the subtle inter-

dependence between reachability and recognizability. Indeed, even after a particular

termination condition has been selected, the region of the workspace where this con-

dition always evaluates to true (the kernel of the termination condition as de�ned in

Chapter 2), which is needed in order to compute the preimage, may depend on the

region from where this command is executed, which is precisely the preimage of this

region.

3.4.3 Backprojection from target kernel

One way of breaking this recursive dependence is to use restricted forms of the ter-

mination condition so that these two issues can be treated separately. The basic idea

is to identify a subset K of the target set T , in which achievement of T can be recog-

nized independently of the starting region. A termination condition is constructed,

so that it always evaluates to true when the robot is in K, i.e., K is the kernel of

this termination condition according to de�nition 2.3. In this case, though, we �rst

compute K = �(d;T ) as a function of the target set and possibly the commanded

direction of motion, and we construct the termination condition that corresponds to

K afterwards. It now remains to compute the region BP(d;K), from where the robot

is guaranteed to attain the kernel if the commanded velocity is ~vcd. In Chapter 2 we

call this region the backprojection of K.

For every possible termination condition, the backprojection of a set is bigger than

(or equal to) any preimage of the set for the same commanded direction of motion:

8d 8tc P(d; tc;T ) � BP(d;T ):

For example, look at Figure 3.4. Assume that the robot can only sense sticking on
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Figure 3.4: Preimage and backprojection

obstacle edges. Its target set T is the top edge of a rectangular box. For choices of ~vcd

such that the control uncertainty cone is not contained in the inverted friction cone,

the preimage of T is the empty set since the robot cannot stick on the target edge.

On the other hand, the backprojection of T is outlined with the thick dashed line in

Figure 3.4(b).

Conversely, there exists a termination condition tc, for which the preimage of a

set is bigger than (or equal to) the backprojection of the kernel of the set for the same

commanded direction of motion:

8d 9tc P(d; tc;T ) � BP(d;�(d;T )):

This follows directly from the de�nition of the kernel. Whenever the termination

condition q̂ 2 Uq(�(d;T )) is true, we know that q 2 T . The preimage of T for this

termination condition is equal to the backprojection of the kernel. Other termination

conditions may produce bigger preimages.

3.5 Kernel computation

The computation of the kernel of a target set depends on the particular sensing read-

ings that are being provided to the termination condition. In this section we describe

kernel computation for all the sensing schemes presented in Section 3.3 (sticking, force

sensing, position sensing), as well as for the combination of all three together.
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3.5.1 Sticking

When sticking on obstacles is the only thing that can be sensed, there is no sens-

ing uncertainty: once the robot sticks, motion terminates. Whether the robot will

stick or not on an obstacle edge depends on its actual direction of motion at execu-

tion time. Since we are interested in producing guaranteed plans, the planner must

identify those edges and vertices where the robot is guaranteed to stick (the sticking

edges/vertices). Therefore, the planner must make sure that all actual velocity vec-

tors that are compatible with the commanded velocity ~vcd make the robot stick on

such an edge or vertex.

The robot is guaranteed to stick on an edge, if the inverted control uncertainty

cone lies entirely inside the friction cone of the edge. However, when the robot hits

a vertex the situation is more complicated. We previously assumed that a vertex

can exert a reaction force that is a positive linear combination of the forces exerted

by the two edges forming the vertex. Consequently, the friction cone of a vertex

consists of the friction cones of the two edges and the region between them. If the

inverted velocity vector of the robot is included in the vertex friction cone, then the

robot sticks at the vertex. However, small perturbations in the position of the robot

may cause it to move on one of the two edges that form the vertex, and then move

according to the reaction force that is exerted by this edge only. If this force pushes

the robot back towards the vertex on both edges or makes it stick on the edge, then

sticking at the vertex is stable; otherwise, the robot will move away from the vertex.

We are only interested in stable sticking. The sticking cone of a vertex consists of the

inverted velocity directions of the robot that cause stable sticking at the vertex.

Consider the friction cones (anchored at the vertex) of both edges. The region

between each edge and its friction cone contains all inverted velocity directions that

push the robot towards the vertex. The union of this region with the friction cone

creates a bigger cone that contains all inverted commanded velocity directions that

cause the robot either to stick at the vertex or to slide on the edge towards the vertex.

The sticking cone of the vertex is the intersection of these cones of the two edges. In

Figure 3.5 we show the sticking cones of three vertices (the region outlined with thick

black rays): (a) For a concave vertex, the sticking cone is always equal to the friction
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Figure 3.5: The sticking cone of a vertex

cone; (b) for a convex vertex, the sticking cone is the intersection of the friction cones

of the two edges; but (c) when this intersection is empty, the sticking cone is null.

Given a commanded velocity ~vcd and a target set T , the computation of the kernel

is done by (a) identifying all edges and vertices in contact space that belong to T ,

(b) selecting those edges whose friction cone includes the inverted control uncertainty

cone for ~vcd, and (c) selecting those vertices whose sticking cone includes the inverted

control uncertainty cone for ~vcd. More speci�cally, the kernel consists of every edge E

in T \Ccontact such that jangle(�~vcd; ~�(E))j � ���, and every vertex V in T \Ccontact

such that, if V is concave, jangle(�~vcd; ~�(V ))j � � + � � �, and if V is convex,

jangle(�~vcd; ~�(V ))j � ���� �. Here ~�(V ) is the bisector of the angle of the normals

of the two edges, and � is half the angle between these normals.

Notice that guaranteed sticking on edges is possible only if � > �, i.e., the friction

cone is larger than the control uncertainty cone. This is not required for sticking at

concave vertices. In fact, sticking at a concave vertex is easier and more stable than

sticking along a contact edge, since the vertex may be reached by sliding along the

two abutting edges.

3.5.2 Force sensing

The force sensor measures the reaction force exerted by an obstacle edge on the

robot. Let Freac(q; d) denote the set of all possible reaction forces at a con�guration
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q, when the commanded velocity is ~vcd. If, for example, the inverted velocity cone

lies completely outside the friction cone, and it projects positively on the outgoing

normal on the surface, then Freac(q; d) consists of a single vector along one extreme

ray of the friction cone. Let F̂reac(q; d) denote the set of all possible sensed forces

at a con�guration q, when the commanded velocity is ~vcd. F̂reac(q; d) is derived from

Freac(q; d) as follows:

- If 0 2 Freac(q; d), then 0 2 F̂reac(q; d);

- If Freac(q; d) contains a non-zero vector ~f , then all vectors
~̂
f such that k

~̂
fk = k~fk

and jangle(~f;
~̂
f )j < " are in F̂reac(q; d).

Computing the set F̂ for each edge and its intersection with other such sets is straight-

forward and takes constant time.

Force sensing is not able to distinguish points in the same edge, it can only rec-

ognize that the robot is in contact with some edge whose orientation is compatible

with the sensed reaction force. If the reaction force on an edge may be null, this edge

cannot be distinguished from the free space. Thus, if only force sensing is available,

the kernel of a target set for a given commanded velocity consists of all contact edges

that are entirely in the target and can neither generate a force measurement that

could have been generated by an edge that does not belong to the target set, nor a

null measurement.

3.5.3 Position sensing

In the case of position sensing, the sensory readings at a particular con�guration

do not depend either on the commanded or on the actual velocity. If the execution

module makes use of only position sensing readings to decide whether the robot is

in the goal or not, the computation of the kernel is conceptually simple: The kernel

consists of all points of the target set T that cannot be confused with any point that

does not belong to T .

Two points of the con�guration space are confusable if they may produce the same

sensory reading. According to our position sensing uncertainty model, the distance
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Figure 3.6: Computing the kernel in free space

between a point in the con�guration space and the sensed con�guration, when the

robot lies at this point, is less than �, the position sensing uncertainty. Therefore,

only points that are closer than 2� may produce the same sensory reading (and

thus be confusable). In order to identify the points that are confusable with feasible

con�gurations but do not belong to T , we grow Cfeasible n T by 2�. All the points of

T that are not in this set constitute the kernel of T .

In general, a target set T consists of polygonal regions, edges and points in Cfeasible.

Edges and points are treated as degenerate polygons, so no special algorithms are

needed to handle them. If a target region T lies in the free space without intersecting

any other target regions, then its kernel K is found by shifting its edges inwards by

2� and drawing a circle of radius 2� at concave vertices. These lines are connected

to form the kernel of the region (Figure 3.6). Of course, if T is thinner than 4� its

kernel is the empty set. Also, the kernel of a connected set may be not connected, as

is evident in the example of Figure 3.6(b).

If two or more target regions in the free space touch or overlap, we need to compute

their union as a single set before we call the above algorithm. As an example, consider

two adjacent rectangular regions. Their common edge should not be shifted inwards,

as long as the robot does not need to know which of the two regions achieves. Indeed,
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Figure 3.7: Computing the kernel in contact with obstacles

the points of the two regions whose distance from the common edge is smaller that 2�

cannot be distinguished from points in the other region, but they are not confusable

with points which lie outside both regions.

Another interesting case occurs when a target region is in contact with some

obstacle. The interior points of the obstacle are not feasible, therefore we do not

mind if they are confusable with points in the kernel. The general idea is that the

edges of a target region that are in contact with obstacles should not be shifted

inwards (Figure 3.7(a)). However, if the obstacle is too thin (its thickness is smaller

than 2�), there are free space points that are confusable with points of the target set

near the contact edge. In such a case, we compute the kernel by shifting inwards all

target and obstacle edges that are not in contact with each other (Figure 3.7(b)). The

same technique can be used to handle the case where another target region lies on

the other side of the obstacle, and it is in contact with the obstacle (Figure 3.7(c)).

To formalize these ideas, we introduce the notion of the cylsphere. The cylsphere

of an edge is the set of points whose distance from the edge is less than a real number

r: cylsphere(E; r) = fq 2 C j dist(q;E) < rg. In order to compute the kernel K of a

collection of target polygonal regions Ti, we perform the following steps:

1. K = ;.

2. Select a target region Ti.
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3. Construct the maximal connected polygonal region S as follows: Ti is �rst included

in S; then, every connected component of CB and target polygon Tj, j 6= i, that

shares an edge with a region already in S is iteratively4 included in S, and it is

marked as visited.

4. S0 S.

5. For every edge E in the boundary of S, S0 S0 n cylsphere(E; 2�).

6. For all target regions Tj 2 S, add Tj \ S0 to the kernel K.

7. If all target regions have been visited, return K; otherwise, go back to step 2.

Let O(n) be the combined complexity of Ccontact and T . The region constructed

at step 3 has O(n) edges. Using a sweep-line algorithm, step 3 can be performed in

O((n + c) log n) time, where c 2 O(n2) is the number of intersections among target

region edges. Step 5 can be performed in the same bound, only in this case c is the

number of intersections among cylspheres. Tj \ S0 can be obtained from the sweep

algorithm with the same time complexity.

Once the kernel has been computed, the remaining task is to extract a termination

condition that is guaranteed to be true when the robot is in the kernel and false when

the robot is outside the target set (so that the robot does not stop before reaching the

target set). If q̂ is the sensed con�guration of the robot, the termination condition that

corresponds to kernel K is tc(q̂) � dist(q̂;K) < �. Equivalently, the robot terminates

its motion whenever q̂ lies within a set that we get by isotropically pushing out the

boundary of the kernel by �. By construction of the kernel, all actual con�gurations

that are compatible with sensory readings in this set lie in the target set. Figure 3.8

shows an example with a single target region T in contact with a C-obstacle CB. The

kernel K is the inner darker region; the set that contains the sensory readings that

make the termination condition evaluate to true is outlined with the thin dashed line;

and the set of con�gurations where the robot may stop is outlined with the thicker

dashed line. Note that this set is a proper subset of the target set.

4In other words, S is the transitive closure of all connected components of CB and target polygons
touching Ti.
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Figure 3.8: The kernel and the termination condition

3.5.4 Combination of sensing

Usually, robots have both position and force sensors, and can detect sticking, too. We

now investigate how to compute the kernel for the combination of all three sensing

schemes.

Sticking does not entail recognizing con�gurations, thus it does not interact with

the two other kinds of sensing; it merely contributes a number of sticking edges to

the kernel.

Position and force sensing do interact and create kernels that are bigger than the

union of the kernels computed individually for each sensor. Such points, that are in

neither individual kernel, but are in the combined kernel, must be in contact space so

that both sensors can be used. Indeed, points in contact space can now be recognized

using both position and force sensing, if they are either more than 2� apart, or if they

cannot generate the same reaction force. This computation can be done as follows:

For each contact edge E 2 T :

1. If F̂reac(E; d) contains the null vector, then the edge is discarded.
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Figure 3.9: The kernel of a target in contact space

2. Otherwise, S  E.

3. For every contact edge C 62 T :

If F̂reac(E; d) \ F̂reac(C; d) 6= ;, then S  S n cylsphere(E; 2�).

4. S is added to the kernel.

Consider the example of Figure 3.9. The goal is a single edge T of a C-obstacle

that is depicted in light grey for clarity. The commanded velocity is such that the

inverted control uncertainty cone is outside the friction cones of edges F , T , A and

B, and projects positively on the outgoing normal of these edges (i.e., the robot is

guaranteed to slide on these edges). The robot is also guaranteed to stick on C and

G, and move away from D and E.

The sticking termination condition yields no kernel edges, because no sticking is

possible on T . Using the above algorithm, we visit all edges in contact space, and if

the reaction forces they may produce are confusable with the reaction force that may

be produced by T , we subtract their cylspheres from T . The only reaction force ~fT

that can be generated by T lies along the right ray of the friction cone. This cannot

be confused with the forces generated by D and E (zero force), or C and G (~fT lies
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Figure 3.10: The kernel of a target lying both in free and in contact space

outside the friction cone of C or G). Edges F and B are parallel to T so they generate

the same force ~fT . They are confusable with T , and their cylspheres of radius 2� are

subtracted from T . While B is too far away to have any e�ect, the cylsphere of F

cuts a small part of T 's left end. Edge A can also generate a single reaction force ~fA.

Since the angle � between ~fT and ~fA is smaller than the force uncertainty ", edges

T and A are confusable relative to force sensing. The cylsphere of A cuts a piece of

length 2� from the right part of T . The remaining part of T , depicted as a solid black

line in the �gure, is the desired kernel.

As a further example consider Figure 3.10. Here, the target region T lies both in

free and contact space. Its kernel consists of the free space set Kf and of the contact

edge Kc. Note that neither Kc is included in Kf , nor Kf is included in Kc. This

means that by considering both position and force sensing simultaneously we create

larger kernels (and consequently preimages) than either of them would produce on

its own.
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3.6 Computation of backprojections

After the kernel has been computed as a collection of free space regions and contact

edges and vertices, we wish to compute its backprojection in order to �nd out whether

it includes the initial region or not.

An algorithm for this task computes the backprojection of each kernel component

independently and then merges them in a second pass [32, 52]. This algorithm has

been generalized by Canny and Donald [23] to a one-pass algorithm that generates the

backprojection of any region K described as the union of contact edges and polygonal

regions in Cfeasible. The algorithm sweeps a line L across the plane perpendicularly to

the commanded velocity ~vcd. The sweep starts at a position of L where it is tangent

to K, with K lying entirely on the side of L pointed to by the vector �~vcd. The

sweep proceeds in the direction of the vector �~vcd. During the sweep, the algorithm

maintains the status of L, i.e., the description of its intersection with Ccontact, K,

and rays parallel to the edges of the inverted velocity cone that are erected from

contact vertices and goal vertices. This status changes at events occurring when L

passes through a vertex of Ccontact, a vertex of K, the intersection of two rays, the

intersection of a ray and Ccontact, or the intersection of a ray and K. At each of these

events, the algorithm updates the status of the line and the list of future events.

During the sweep, the algorithm traces out the backprojection. The sweep stops

when the last event is encountered.

The key idea of this algorithm is that the backprojection's boundary consists of

straight segments, and that at every event there exists a local criterion (which does

not depend on what will happen later during the sweep) for deciding how to trace the

backprojection's boundary. This criterion leads to erecting rays from both contact and

goal vertices, in order to prevent the backprojection from containing con�gurations

from where a motion may reach a vertex or an edge, where it may stick or slide away

from the goal with no possibility of returning to it. The algorithm does not require

the backprojection to be bounded, but it does require that the actual velocity of the

robot never project negatively into the ~vcd direction. This condition is achieved if the

friction cone is larger than the control uncertainty cone, i.e., � � �.
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Figure 3.11: Computation of Backprojection

Let n be the number of vertices in Ccontact. Assume that the combined complexity

of Ccontact and K (the number of vertices in Ccontact plus the number of vertices of

K plus the number of intersections between K and Ccontact) is O(n). The sweep-

line algorithm erects O(n) rays. The contour of the backprojection consists of goal

edges (edges bounding K), rays in free space and contact edges. Each erected ray can

contribute at most one edge to the backprojection. Each goal edge contributes at most

one backprojection edge. Each non-goal edge in contact space can contribute one or

several backprojection edges, but whenever it contributes k backprojection edges, it

also \consumes" O(k) edges in free space. Hence, the boundary of the backprojection

consists of O(n) edges. Since each ray is interrupted at its �rst intersection with a

goal edge, a contact edge, or another ray, the backprojection can be computed in

O(n log n) time.

Figure 3.11 illustrates the backprojection of a kernel that consists of three regions

K1, K2, K3 and an edge E. The black polygons are C-obstacles. The backprojection

(outlined with a dashed line) consists of two disconnected components, one of which
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contains a hole. Since the initial position (the grey rectangular region I) is not

completely contained in the backprojection, the robot is not guaranteed to reach the

kernel if it starts from I and follows ~vcd. Indeed, it is possible for the robot to stick

on vertex S and never reach the kernel.

3.7 Implementation and experimentation

We have implemented a motion planner based on the preimage backchaining approach

(for details see [52, 54, 55]). This planner computes preimages using either the

sticking termination condition, or the combination of position and force sensing, or

all three together. The user inputs the description of the con�guration space, the goal

region G, and the initial region I. If successful, the planner returns a motion plan

in the form of a sequence of unit commanded velocities and the associated sequence

of computed preimages. The method used for computing the preimages determines

the termination condition of every motion command in the plan. The planner is

implemented in Allegro Common Lisp and runs on an Apple Macintosh II computer.

The planner constructs a graph of preimages by considering commanded veloci-

ties with the orientations fk�=Ngk=0;:::;2N�1, where N is input by the user. In our

experiments, we used N = 2 or 4. The program searches the graph in a breadth-�rst

fashion, but other (and perhaps more e�cient) search techniques could have been

used as well.

The algorithms implemented in the planner are essentially those described in

the previous sections, with minor variations. In particular, the backprojection of a

region is computed using an algorithm similar to that described in [52], rather than

the sweep-line algorithm (which might be faster). The planner also approximates

conservatively the generalized polygonal kernels by polygonal regions. These changes

have no major impact on the visible operations of the planner.

In all the examples shown, the initial region is a single point; in the �gures, it is

the center of a disc that depicts position uncertainty. The control uncertainty cone

and the force uncertainty cone are not depicted.

Figure 3.12(a) illustrates a plan generated with the sticking termination condition.
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Figure 3.12: Example 1
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Figure 3.13: Example 2

The computed preimages are not shown in the �gure. The goal is the rectangular

region G. The plan constructed consists of 5 steps, de�ned by the commanded ve-

locities ~vc
1
through ~vc

5
. The corresponding sticking edges are T1 through T5. (Ti is

the intersection of the preimage of Ti+1 and the sticking subset of Ccontact for ~vci . A

motion commanded along ~vci and issued from within Ti�1 is guaranteed to terminate

in Ti, but some con�gurations in Ti may not be reachable.) This plan is typical of

the \bouncing on obstacles" that is caused by the sticking termination condition. On

the other hand, if we use position and force sensing, the resulting plan consists of a

single motion command along ~vcd (Figure 3.12(b)).
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Figure 3.13 shows an example which cannot be solved by using sticking on obstacle

edges. The goal is just one obstacle edge marked with G in the �gure. In this case,

there are no edges facing each other so that the robot can bounce between them. The

combination of position and force sensing creates the three-step plan shown in the

�gure.

3.8 On the termination condition's knowledge

We now return to the computation of the kernel in the case where only position

sensing is available, and examine how the method described in this chapter relates

to the generic method described in Chapter 2. Consider the simple case where the

target set T is a rectangular region of the free space. According to the method

described in this chapter its kernel K is found by shrinking T by 2�. Then T 's

preimage is computed as the backprojection of K (Figure 3.14(a)). The termination

condition (i.e., the set of all sensory values for which the robot will stop) is found by

isotropically growing the kernel by �. (In Chapter 2 we called this set Ŝtc.) The set

of all con�gurations that are compatible with the termination condition (INT(Ŝtc),

according to the terminology of Chapter 2) is found by isotropically growing the kernel

by 2�. This set represents con�gurations where the robot may stop, so all the points

in this set that are not in the target set must be completely avoided. The method we

proposed in Chapter 2 was to compute the backprojection of the kernel considering

INT(Ŝtc)nT as an arti�cial obstacle that must be completely avoided (no sliding on

it is allowed).

The kernel computation presented in this chapter always creates sets INT(Ŝtc)

which are subsets of the target; therefore, no arti�cial obstacles are induced. However,

this method does not necessarily yield the biggest possible backprojection. Indeed,

only obstacles that lie between the backprojection and the kernel cause the backpro-

jection to shrink. It is possible to grow the kernel without inducing any obstacles

between the backprojection and the kernel. In this case, a bigger kernel produces a

bigger backprojection.

Consider again our simple example. If we use a kernel where only the top edge of
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Figure 3.14: Rectangular goal in free space

the rectangle is pushed inwards by 2�, the induced arti�cial obstacle (depicted in black

in Figure 3.14(b)) leaves the top edge of the kernel free. Thus, for the commanded

velocity shown in the �gure, we get a bigger backprojection.

Yet, we can do better. Figure 3.14(c) shows that we can keep pushing the rays of

the backprojection outwards, as long as the arti�cial obstacle does not interfere with

the achievement of the kernel. The arti�cial obstacle starts creeping on the upper

edge of the target set, and at some point it reaches the rays of the backprojection.

At this point, the length of the segments of the two rays of the backprojection that

lie in the target set is equal to 2�. Each ray can be moved outwards, up to the point

where the vertex of the kernel (where this ray is incident) starts creating an arti�cial

obstacle along the direction of this ray in front of the target set. Clearly, it is not

possible to push the rays any further. Therefore, this is the maximal backprojection

for the selected commanded velocity, i.e., the preimage of T .
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3.8.1 Maximal preimage of a convex set

The above method is applicable to arbitrary convex sets. Given a commanded velocity

~vcd and a convex target set T , the preimage of T is found by erecting two rays (a

left and a right one) parallel to the edges of the inverted control uncertainty cone,

such that they both cut segments of length 2� in the target set. The points where

these rays exit T are called the extreme points of the kernel. The computation of

the extreme points of the kernel can be done with two line-sweeps, one for each ray.

During a sweep, we track the length of the segment that is the intersection of the

sweep line and the target set. The orientation of the sweep line remains constant.

We call the mapping of the sweep line location onto the length of its intersection

with the target set the chord function �(�). The location of the line is represented by

its distance � from the point where the line is tangent to T , with T being ahead of

the line (hence, �(�) = 0 when � < 0). When T is a convex set, �(�) consists of an

increasing and a decreasing part and has a single global maximum. It is continuous

except in the case where the sweep line is parallel to an edge of T . The algorithm

stops when the chord function becomes equal to 2� while increasing, or at � = 0 if

�(0) � 2�. The worst-case performance of this algorithm is O(n log n), where n is the

complexity of T .

In the absence of obstacles and other target sets, the two rays found with the above

method constitute the upper boundary of the preimage P. It remains to construct the

kernel K that corresponds to P. The kernel, which is part of the preimage, will de�ne

the lower boundary of P. As mentioned before, no kernel point must be closer than

2� to any point in P n T . Therefore, we can �nd the kernel by growing P n T by 2�

and subtracting it from T . In Subsection 3.5.3 we de�ned the notion of the cylsphere

of an edge to be the set of points whose distance from the edge is less or equal to

some number. Similarly, the cylsphere of any set of points is the set which contains

all the points whose distance from the �rst set is smaller than a given distance:

K = T n cylsphere(P n T ; 2�)

In most cases this computation can be performed by connecting the extreme points

of the kernel with two lines, the lower and the upper. The lower line follows the
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Figure 3.15: Maximal backprojections

lower boundary of the target set. The upper line is parallel to the upper boundary

of the target set, at a distance 2� from it inwards. The upper line is connected to

the extreme points of the kernel with circular arcs of radius 2� centered at the points

where the rays enter the target set (see Figure 3.15). The termination condition is

then found by growing the kernel isotropically by �.

Sometimes, though, the upper boundary may not lie entirely in the target set (see

Figure 3.16). In this case, the above algorithm does not work. Then, we have to

push the preimage rays inwards, until the part of it outside T and expanded by 2� is

tangent to the lower boundary of T . Thus, we obtain the widest possible preimage.

The sweep-line algorithm used to �nd the original points can be adapted to handle

this case as well.

3.8.2 About the existence of a unique maximal preimage

Another complication arises when the target consists of more than one convex sets.

Consider the example of Figure 3.17(a). The target set consists of two parallelograms

T1 and T2. If we use the above algorithm independently for each set, then the com-

puted preimage may be incorrect. Assume, for example, that there exists a point A

in the preimage of T2 and outside both T1 and T2, whose distance from the kernel of
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T1 is less than 2�. A robot starting from A may actually think that it is at point B

in the kernel of T1 and terminate its motion outside both target sets.

The problem is that the arti�cial obstacle created by the kernel of T1 intersects

with the preimage of T2. When something like this occurs, there are two ways to

proceed:

(a) We can leave the preimage of T2 intact and shrink the kernel of T1, so that

their minimumdistance is 2�. In practice, we can �nd the 2�-cylsphere of the

preimage of T2, subtract it from T1, and then �nd the kernel and preimage

of their di�erence. In the example of Figure 3.17(b), the kernel of T1 is split

into two non-connected components, resulting in a much smaller preimage.5

(b) We can shrink the preimage of T2 up to the point that the upper boundary

of the kernel of T1 remains intact (see Figure 3.17(c)). In this case, we �nd

5See the next subsection on how to �nd the preimage of a concave set.
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Figure 3.17: Preimage of non-connected convex sets

the 2�-cylsphere of the upper boundary of the kernel of T1 and subtract it

from the preimage of T2.

We have thus computed two possible preimages of the target set T1[T2. The union

of these two preimages is not a preimage of the target set, because it contains points

likeA, where the robot may stop, although it is not in the target set. This means that

there does not exist a unique two-dimensional set that contains all possible preimages

of T1[T2. In other words, we have proven that there are cases when a unique maximal

preimage6 does not exist. This result was �rst reported by Erdmann [32], who used

non-compact sets to build a counterexample.

A complete algorithm must consider all possible maximal preimages, but it is

very hard to do so because their number may be in�nite (like in the example of

Figure 3.17). One possibility is to compute the preimage independently for each set,

and check for inclusion of all initial-region points. If this is true, there is hope that a

guaranteed plan may exist. Then, we can �nd all points that are actually attainable

by the robot during its motion (the forward projection), and check whether there

is any chance for the robot to stop outside the goal. We can do this by computing

the 2�-cylsphere of the part of the forward projection that lies outside the target set,

6A maximal preimage is a preimage that is not a proper subset of any other preimage.
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and subtracting from the kernel any points that lie in this cylsphere. If the preimage

of the reduced kernel still contains all initial-region points, then a guaranteed plan

exists.

3.8.3 Maximal preimage of a concave set

The computation of the preimage of a concave set is signi�cantly more complicated.

The intersection of the sweep-line with the concave set may consist of more than one

segments, so the chord function is a list of length functions �i(�). These functions do

not have the smooth behavior of the chord function of a convex set. They may have

local maxima and minima, they may split into two new functions, or two of them may

merge into one. Nevertheless, the sweep-line algorithm uses similar criteria to detect

kernel extremities. It returns all points �0 such that �i(�0) = 2� while �i is increasing,

�0 = 0 if �i(0) � 2�, and all points �0 where two functions �i and �j merge, with

lim
�!��

0

�i(�) � 2�, lim
�!��

0

�j(�) � 2�, and lim
�!��

0

(�i(�) + �j(�)) � 2�.

The above criteria may be satis�ed more than once, so we may end up with

multiple kernel extreme points and multiple preimage components. Furthermore,

these components may interact with each other, in which case a unique maximal

preimage does not exist. Figure 3.18 presents a complicated example with a concave

target set. The kernel and the preimage consist of four disjoint components each, but

no unique maximal preimage exists.

3.8.4 Recognition power

The termination conditions created with the above method, may ask the robot to

stop, despite a sensory reading that is compatible with con�gurations outside the

target set. They can do that because of the additional knowledge that is embedded

in them, knowledge about the initial state and knowledge about the �nal state. By

knowing the initial state (i.e., the preimage), the robot can rule out interpretations

that are not achievable. By knowing the �nal state (i.e., the kernel) the robot can

rule out interpretations that are beyond the kernel, since it is guaranteed that the

robot will stop in the kernel.
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Figure 3.18: Maximal backprojection of a concave set

3.9 Omnidirectional backprojections

In the implemented planner of Section 3.7 the major bottleneck is the selection of

the commanded velocity direction at each backchaining step. Not only do we lose

completeness by discretizing the considered directions, but the resulting search takes

exponential time in the number of backchaining steps.

The discretization problem can be solved if we �nd a way to e�ciently compute

for each point of the con�guration space all commanded velocity directions that are

guaranteed to bring a robot starting from that point into the target set T .

De�nition 3.1 (Nondirectional backprojection) We call nondirectional back-

projection of a target set T the two-dimensional set NBP(T ) 2 C, consisting of all

con�gurations, for which the above mapping produces a non-empty set of directions.

In other words, q 2 NBP(T ), 9d 2 S1 : q 2 BP(d;T ).
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De�nition 3.2 (Omnidirectional backprojection)

We call omnidirectional backprojection of a target set T the three-dimensional set

OBP(T ) 2 C � S1, such that (q; d) 2 OBP(T ), q 2 BP(d;T ).

The knowledge of the nondirectional backprojection is su�cient to allow us to

decide whether a one-step plan that connects a given initial region with a target set

exists, but it does not facilitate the generation of the plan. In order to be able to

derive the plan, we need to know the omnidirectional backprojection of the target set.7

In the future, whenever we wish to refer speci�cally to the regular backprojection of

a set, we will call it the directional backprojection.

The omnidirectional backprojection can be thought of as a stack of directional

backprojections (slices) computed for various values of the commanded direction of

motion. In order to create a one-step plan, we need to �nd out which of these slices

completely include the initial region. This is the only reason we need the omni-

directional backprojection. Essentially, what we need is a one-dimensional boolean

function that maps the various choices of the commanded direction of motion onto

[0; 1] (0 if the initial region is not included in the directional backprojection for this

direction, 1 otherwise). It turns out that this function changes value only at a polyno-

mial number of critical orientations of the commanded velocity vector. These values

divide S1 into regular sets (open intervals and points). If we compute the value of the

boolean function for one point of such a set, we know it for all the other set points.

This observation was �rst made by Donald [25], though the notion of omnidirec-

tional backprojections was introduced earlier in the original preimage backchaining

paper [69]. The value of the boolean function can be computed by a sweep-line al-

gorithm similar to the one that generates directional backprojections (Section 3.6).

Moreover, this algorithm creates data structures that can be used to help update

the value of the boolean function at each point considered, without having to call

the sweep-line algorithm again. Donald proposed an O(n4 log n) algorithm, with n

being the number of obstacle edges, to compute nondirectional backprojections and

7There has been a fair amount of confusion between the notions of nondirectional and omnidi-
rectional backprojection. Usually, the term nondirectional backprojection is used to describe both.
We believe that the adjective \omnidirectional" is a better description of the three-dimensional set,
since directional information is a vital part of it.
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embedded this algorithm into a polynomial one-step planner. Briggs [8] reduced the

time complexity of computing a nondirectional backprojection to O(n2 log n).

Unfortunately, this algorithm cannot be generalized to produce multi-step plans.

The reason is that as the backprojection varies with the choice of the commanded

direction of motion, its kernel (the target set of the next backchaining step) varies

too. Ultimately, of course, we are only interested in �nding out whether a sequence

of successive preimages includes the initial region or not. The answer to this question

changes a large number of times (the number of changes is an exponential function

of the number of backchaining steps), so it is not e�cient to track it.

This result is typical of algorithms that use the preimage backchaining method.

The core of our work, starting at the next chapter, shows how to avoid exponentiality

by using carefully selected models of the robot, the workspace, and the representation

of uncertainty.



Chapter 4

Landmark-Based Navigation

In this chapter we introduce the notion of landmarks as islands of perfection within

an otherwise imperfect world. Using speci�c assumptions, we present a sound, com-

plete and polynomial motion planning algorithm with uncertainty. The algorithm is

based on the preimage backchaining method [69], and makes use of the idea of the

omnidirectional preimage [25, 8]. We present an e�cient way to compute and store a

su�cient representation of an omnidirectional preimage, based on the idea of critical

slices. Finally, we show several planning examples, and the simulated execution of

the generated plans.

4.1 A new approach to motion planning with un-

certainty

The problem of general motion planning with uncertainty is intrinsically hard. Several

exponential lower bounds have been established, even for restricted subclasses of the

problem. In particular, the three-dimensional problem attacked by the preimage

backchaining method has been shown to be pspace-hard [77], as well as nexptime-

hard [15]. Canny gave a very general algorithm that takes double-exponential time in

the number of plan steps (i.e., the number of motion commands in the plan) [14]. This

algorithm assumes that the envelope of trajectories generated by the control system

71
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can be described algebraically, and that the robot has imperfect position and velocity

sensing. The motion planning problem is reduced to the satis�ability of a semi-

algebraic formula with alternating universal and existential quanti�ers, like the one

we introduced in Section 2.5. As Canny notes, \the existential quanti�ers represent

the actions taken by the plan executor, like choosing the direction to move or the

time to stop moving, and the universals represent the actions of nature, namely the

sensor readings." Its double-exponential bound stems precisely from the alternation

of the quanti�ers.

One exponential can be trimmed by eliminating sensing, so that the execution

module does not need to make choices based on sensor readings. In this case, the

number of alternations between universal and existential quanti�ers is equal to the

number of steps of the plan. Sensorless plans were �rst investigated in [37]. Don-

ald [25] created a planner for a sensorless robot moving in a two-dimensional con�gu-

ration space. The robot stops only by sticking on obstacle edges. Donald showed that

this planner creates one-step motion plans in O(n4 log n) time. Briggs [8] improved

this bound to O(n2 log n) using amortization techniques. Nevertheless, multi-step

plans still require time exponential in the number of steps.

To make things worse, the number of steps for which a plan may exist grows

with the complexity of the environment. Even in a three-dimensional polyhedral

world, this number may grow exponentially with the environment complexity [15].

In order to avoid exponentiality, we need to �nd a way to limit the maximal number

of steps of successful plans. Friedman [41] was able to do it by considering motions

in the interior of a simple polygon, and assuming that sensing is possible only when

the robot is in contact with one of the polygon edges. Under these assumptions,

the maximum number of steps of a successful plan is bounded by the number of

edges. Essentially, the polygon edges in Friedman's model are what in this work

we call landmarks. Only by limiting sensing in a given number of regions in the

workspace does it become possible to bound the number of planning steps, and thus

to derive polynomial planning algorithms. This is exactly the key idea behind the

work presented in this chapter. The framework, though, is signi�cantly more general

than Friedman's simple model.



CHAPTER 4. LANDMARK-BASED NAVIGATION 73

Notions similar to landmarks have been introduced in the literature with a vari-

ety of names, e.g., atomic regions [12], landmarks [64], signature neighborhoods [70],

perceptual equivalence classes [27], sensory uncertainty �eld [91], and visual con-

straints [49, 40]. Nevertheless, the relation between the use of landmarks and the

development of complete polynomial planners has not been explored up to now. In

this work we show that the use of landmarks considerably simpli�es the selection of

the set of states that the robot may traverse during plan execution, as well as the syn-

thesis of state-recognition functions. It mainly reduces planning to selecting motion

commands to navigate from landmark to landmark until the goal is achieved.

For a given problem, our planner generates a plan as a collection of motion com-

mands, each attached to a speci�c region of the con�guration space. When the robot

enters one of these regions, it executes the associated motion command. Such a plan

is reminiscent of the reaction plans proposed in [16, 28, 86] as a way to deal with

uncertainty at planning time. In particular, Schoppers [86] developed the notion of

universal plans whose rules cover all possible situations that may occur at execution

time, much like our plans do. The interesting point is that our planner takes polyno-

mial time, while the generation of universal plans is often believed to be exponential.

However, unlike the planners mentioned above, our planner addresses a restricted

family of planning problems in which uncertainty is well-bounded.

In this work we propose a new approach to robot motion planning with uncer-

tainty. We focus on a restricted class of problems, for which we present a sound,

complete, and polynomial planning algorithm. Then, we engineer a robot and its

workspace so that these assumptions are met, and we perform experiments. Because

the planner returns guaranteed plans, experimental failures can be tracked directly

to violations of one or more of the assumptions. Thus, it is possible to isolate those

assumptions that are the hardest (or the costliest) to satisfy, and then try to relax or

eliminate them. The e�ect of the relaxation or elimination of a certain assumption

on the complexity of the planning algorithm is an important part of our study. Since

we do not wish to leave the realm of polynomial algorithms, we call this approach the

search for the limits of polynomiality in motion planning with uncertainty.
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4.2 Statement of the problem

We consider a circular omnidirectional robot moving in a planar workspace amongst

circular forbidden regions that represent the obstacles. The de�nition of the obstacles

as forbidden regions implies that the robot is not allowed to be (or move) in contact

with them. Such a workspace maps onto a planar con�guration space, where a point

robot navigates amongst C-obstacles represented by forbidden circular regions (the

obstacle disks). The con�guration space also contains a set of landmark disks repre-

senting the regions of the con�guration space, from where certain identi�able features

of the workspace (the landmarks) are perceivable by the sensors of the robot.

The number of landmark disks is �nite and equal to `. The number of obstacle

disks is also �nite and in O(`). (Throughout this chapter the number ` is used to mea-

sure the size of the input problem.) Landmark disks may intersect with each other;

obstacle disks may intersect with each other, too. However, intersections between

landmark and obstacle disks are not allowed. Maximal connected sets of landmark

disks are called landmark areas, and their number is equal to s (� `). We assume

that the robot has accurate knowledge of the con�guration space model, i.e., it knows

the exact location and size of the obstacle and landmark disks at planning time. This

model does not change over time, i.e., landmarks and obstacles are stationary.

When the robot lies within a landmark disk, it can sense its con�guration with

perfect accuracy. Using its perfect sensing, the robot is able to navigate between any

two points in the same landmark area without control error. This mode of navigation

is called the perfect-control mode. When the robot lies outside all landmark disks, it

has no sensing at all and it navigates using the imperfect-control mode.

A command in the perfect-control mode (called a P-command) is a sequence of re-

gions (R1; R2; : : : ; Rn) of the con�guration space. The P-command simply prescribes

that the robot should visit all these regions in order. We are not interested in the

details of the execution of a P-command, as long as we know that it is guaranteed to

succeed.

A motion command in the imperfect-control mode (an I-command) is described

by a pair (d;LT ), where d 2 S1 is a direction in the plane, called the commanded
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direction of motion, and LT is a set of landmark disks, called the termination set of

the command. This command can be executed from anywhere in the con�guration

space outside the obstacle disks. The robot follows a path whose tangent at any point

makes an angle with the direction d that is no greater than some prespeci�ed angle

� called the directional uncertainty. The cone of angle 2� whose axis points along d

is the directional uncertainty cone. The robot stops as soon as it enters a landmark

disk in LT . The robot has no sense of time, which means that the modulus of its

velocity is irrelevant to the planning problem.

The initial position of the robot is known to be anywhere in a speci�ed region

I (the initial region) that consists of one or several disks called the initial-region

disks. The number of initial-region disks is assumed constant. At planning time,

we only know that the robot will be in the initial region when the execution of the

plan starts; but the robot may not be there yet. Furthermore, we do not want to

make any assumption about how it will move into the initial region; perhaps it will be

transported there, or it will use another control mode not considered here. Thus, each

initial-region disk may be disjoint from the landmark areas, or it may overlap with

some of them, or it may be entirely contained in one of them. The robot must move

into a given region G, called the goal region, which is any subset, connected or not,

of the workspace whose intersection with the landmark disks is easily computable.

The problem is to generate a motion plan, i.e., an algorithm made up of motion

commands in the perfect- and imperfect-control mode, which guarantees that the

robot will be in G when the execution of the plan terminates.

The problem we have described above is a planning problem, and the model we

have adopted is suitable for the purposes and capabilities of a planner. The model has

to be correct (i.e., produce results that are compatible with the operation of a real-

world system), but it does not have to describe every single capability of the system.

This abstraction is exactly the focus of our research, which attempts to develop models

simple enough for e�cient planning, but in enough detail so that they are useful. The

execution module need not be constrained to the use of our planning model; it may use

its own (usually more precise) model to optimize execution e�ciency. Nevertheless,

both models must be able to recognize the language used to formulate plans.
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4.3 Outline of a planning algorithm

4.3.1 An example

Consider the example of Figure 4.1(a). The black disks represent obstacle disks and

the grey disks represent landmark disks. There are four obstacle and seven landmark

disks, but only �ve landmark areas. The initial region consists of a single disk marked

with I. The goal region consists of a single disk marked with G.

The points of G that belong to some landmark disk are distinguishable from points

outside the goal by means of the perfect position sensing provided by the landmark.

Since G and landmark disk C have a common region, the robot can get from any point

of C into the goal with the P-command (G \ C). Similarly, the robot can get from

D to C and from there to the goal with the P-command (D \ C;G \ C). But from

no other landmark disk can the robot get into the goal using only the perfect-control

mode. We say that C and D form the extension set E(G) of the goal. The remaining

landmark disks are called the intermediate goals.

Since we cannot use the perfect-control mode to bring the robot into the extension

set, we must use the imperfect-control mode. We are interested in guaranteed plans,

so we need to �nd a commanded direction of motion for which, if the robot starts

from any point in I, it is guaranteed to get (and stop) in either C or D despite

control error. This is equivalent to �nding the preimage of the extension set for some

commanded direction d (as de�ned in Chapter 3), and making sure that it contains

I. In this case, the computation of the preimage is not subject to the complications

that arise from the interaction of goal reachability and recognizability. The reason

is that landmark recognition occurs immediately after the robot enters a landmark

region, and is independent of the way the landmark was achieved. Therefore, the

preimage of a set of disks is equal to the backprojection of the set.

In Figure 4.2(a) the extension disks are white. Several preimages, computed for

various values of the commanded direction d, are shown in the �gure, but none of

them completely includes the initial region I. In fact, in this example there is no

commanded direction d for which the preimage of C and D contains I. Nevertheless,
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Figure 4.1: An example
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(a) (b)

(c) (d)

Figure 4.2: An example (cont.)
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during our attempts we discover that intermediate-goal disks B, A, and E are inter-

sected by some of the preimages (Figures 4.1 (b), (c), and (d)). From any point in

these disks, as well as any other disks in the same landmark areas with them (disk

F in this example), the robot can use the perfect-control mode to move into the

intersection of a preimage with the disk, and then follow (in the imperfect-control

mode) the commanded direction corresponding to this preimage in order to get into

the extension set. From there, it can achieve the goal in the perfect-control mode.

Essentially, we have a guaranteed plan to lead the robot into the goal from any of

these disks. So, we can add them to the extension set and perform the same procedure

again. In Figure 4.2(b) we show this bigger extension and one preimage of it that

contains I. At this point we can stop and declare success. A guaranteed plan from

I to G has been found.

This plan is shown in Figure 4.2(c). With the initial-region I we associate an

I-command. The arrow attached to I represents the commanded direction of motion,

and the termination condition is the achievement of any of the white disks (i.e., the

disks in the �nal extension considered). To each white disk we attach one P-command

and possibly one I-command. If an I-command is attached, it is represented by an

arrow along the commanded direction of motion. The termination condition entails

the achievement of any disk in the goal extension whose preimage intersected this disk

when it was still an intermediate goal. In this case, the P-command corresponding to

this disk is represented by an outlined subset of the disk containing the arrow (disks

A, B, E in the �gure). If no I-command is associated with a white disk, then that

disk is necessarily intersecting another white disk or a goal disk (disks F , D, C). This

intersection is the �rst region of the P-command attached to the disk.

In Figure 4.2(c) we also show a sample simulated execution of the plan. The

robot starts from I and executes the associated I-command. When it hits A, it

moves into the outlined area in the perfect-control mode, and then it executes the

I-command attached to A. The termination condition of this command monitors

the achievement of C or D. Indeed, when the robot hits D, it switches back to the

perfect-control mode, moves into C, and from there into the goal. Another sample

execution is depicted in Figure 4.2(d). In this case, the initial I-command brings the
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Figure 4.3: Creating P-commands

robot directly to D.

4.3.2 The method

If no point of the goal G lies in a landmark disk, then the goal is unrecognizable.

Indeed, in this case no goal point can be distinguished from points outside the goal

through sensing.1 The planner returns failure, unless the initial region is a subset

of the goal, in which case the zero-step plan consisting of the NULL command is

guaranteed to leave the robot in the goal.

Otherwise, we identify all the landmark areas that intersect the goal, and we place

all their disks in the initial goal extension set E(G). From each disk in the extension

set we can get to the goal with a single P-command. The sequence of regions of

such a P-command has the following characteristics: (a) Each region is the (non-null)

1Of course, if all points outside the landmark disks belong to the goal, then they are distinguish-
able from the points outside the goal. However, this is a rather unlikely scenario.
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Figure 4.4: The exit region

intersection of two landmark disks, except the last region which is the (non-null)

intersection of a landmark disk with a goal disk; (b) for each two consecutive regions

there exists a landmark disk that contains both of them; and (c) there are no loops,

i.e., the same region never appears twice in the sequence. When the robot enters

an extension disk, it executes the P-command that is associated with the disk, and

moves into the goal. One way to devise such P-commands is to establish a connectivity

graph for all goal and extension disks and create spanning trees for the graph, with

their roots being goal disks (as in the example of Figure 4.3). Since the spanning tree

problem has several solutions, one may wish to select trees with minimumdepth, thus

minimizing at each extension disk the length of the P-command region sequence.

If the initial region is contained in the extension, then a plan has been found.

Otherwise, we try to discover a commanded direction of motion dI , for which the

preimage of the extension P(dI ; E(G)) includes the entire initial region. In such a

case the I-command (dI ; E(G)) is guaranteed to bring the robot into the extension
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set, from where it can move into the goal in the perfect-control mode. This is a one-

step plan. In general, we consider one step to be the combination of an I-command

and a P-command.

If no preimage contains the initial region, we identify all intermediate-goal disks

(i.e., landmark disks that are not in the extension set) that are intersected by one of

the preimages. Let L be such a disk and let P(dL; E(G)) \ L 6= ;. The P-command

(P(dL; E(G)) \ L) and the I-command (dL; E(G)) are attached to the disk (see the

example in Figure 4.4). Furthermore, P-commands are attached to all disks in the

same landmark area with L, as with the disks of the landmark areas that intersect the

goal. This time, the spanning tree must have L as its root, and the last region of each

P-command is precisely the intersection of L with the preimage. This intersection

is called the exit region, because the robot has to get into it, before it can leave the

landmark area of L. Thus, we start building a plan structure in a distributed fashion,

by storing individual commands at each visited disk. At execution time, when the

robot enters a disk that is part of the termination condition of the I-command that

is currently being executed, the P-command associated with that disk is triggered.

When the P-command terminates, the robot is either in the goal, or in a landmark

disk with an associated I-command. In the �rst case, the execution of the plan halts;

in the second case, the associated I-command is triggered.

From any point in the landmark areas that intersect a preimage of the extension

set, the robot is guaranteed to get into the extension set in one step. Thus, we can

add the disks in these landmark areas to the extension set and repeat this procedure

recursively, until we either �nd a preimage that totally includes the initial region, or

no more intermediate-goal disks can be intersected. In the �rst case, the algorithm

returns success; in the second it returns failure. This recursive procedure is called

preimage backchaining. Obviously, the number of backchaining steps cannot exceed

the number s of landmark areas. Consequently, the number of steps in a successful

plan is bounded by s. This is precisely the property that allows the planning algorithm

to remain polynomial.

Lemma 4.1 The number of steps in a successful plan is bounded by the number s of

landmark areas.
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During execution, the robot moves from larger to smaller extension sets until

it eventually reaches (and recognizes) the goal. The number of execution steps is

bounded by the number of backchaining steps, but it is not necessarily equal to it (as

in the example of Figure 4.2).

The following is pseudo-code for an algorithm that decides whether a plan exists

or not. I is the initial region, G is the goal region, and L is the set of all landmark

disks.

procedure IsThereAP lan?(I;G;L) f

if (I � G) return success;

E  E(G);

if (E = ;) return failure;

while (8d 2 S1 I 6� P(d;E)) f

IG L n E;

D  ;;

8d 2 S1 8g 2 IG if (P(d;E) \ g 6= ;) then D  D [ fgg;

if (D = ;) return failure;

g

return success;

g

4.3.3 Nondirectional and omnidirectional preimage

In Section 3.9 we de�ned the notions of directional, nondirectional and omnidirec-

tional backprojections. These de�nitions can be readily extended to preimages.

De�nition 4.2 (Nondirectional preimage) The nondirectional preimage of a set

T is the two-dimensional set NP(T ) 2 C, consisting of all con�gurations q, for which

there exists a commanded direction d 2 S1 such that q 2 P(d;T ).

De�nition 4.3 (Omnidirectional preimage) The omnidirectional preimage of a

set T is the three-dimensional set OP(T ) 2 C � S1, such that (q; d) 2 OP(T ), q 2

P(d;T ).
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Figure 4.5: Nondirectional preimage

We use the term directional preimage to describe a regular planar preimage, when

it is necessary to explicitly di�erentiate it from nondirectional and omnidirectional

preimages.

Note that covering the initial region with the nondirectional preimage is not suf-

�cient to guarantee the existence of a plan. Consider the example of Figure 4.5.

There is one extension disk E and two initial-region disks I1 and I2. The nondirec-

tional preimage of E is a bigger disk NP(E), which covers both initial-region disks.

However, no directional preimage of E covers both disks. If P(d1;E) covers I1 and

P(d2;E) covers I2, then the robot has to know from which initial-region disk it starts,

in order to decide whether to follow d1 or d2. However, if both I1 and I2 lie outside

all landmark disks, the robot may not be able to know from which region it starts.

In general, nondirectional preimages are not useful for planning, because they do

not provide directional information. It is the omnidirectional preimages that contain

this information, so we focus our attention on them. The omnidirectional preimage

has been de�ned as a three-dimensional set, however, because of the constraint that

the robot moves with constant commanded velocity direction (which can only change

when the robot is not moving), we can represent the omnidirectional preimage as the

disjoint union2 of all directional preimages for all possible values of d 2 S1. Thus, we

2as opposed to the regular union used to compute nondirectional preimages
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represent an omnidirectional preimage of a set of con�guration space points E with

the set f(d;P(d; E)) j d 2 S1g. Each member of this set is called a slice. The robot

can only move on a particular slice, or vertically across slices. It turns out that it is

not necessary to compute all possible slices (which are in�nite); for the purposes of

the planning algorithm, the omnidirectional preimage can be su�ciently represented

by a polynomial number of slices, for appropriately selected values of d.

4.4 Computation of directional preimages

4.4.1 Description

A directional preimage may consist of one or more connected components. Each

component may have holes, which in turn may contain other components of the

preimage. In Figure 4.6 we show a sample preimage with three components. One of

them lies in the hole of another component. The boundary of a component consists of



CHAPTER 4. LANDMARK-BASED NAVIGATION 86

circular segments called arcs and straight segments called edges. Each arc is a subset

of the boundary of an extension or an obstacle disk. The right ray (resp. left ray)

of an extension disk is the half-line tangent to the disk, erected from the tangency

point in the direction pointed by � + d + � (resp. � + d � �) that leaves the disk to

its left (resp. right). The same de�nition holds for obstacle disks, only in this case

the obstacle disk lies to the right of a right ray and to the left of a left ray. Each

edge is contained in the right or left ray of some extension or obstacle disk, and is

called a right or left edge, accordingly. One extremity of the edge, called its origin, is

the tangency point of the ray. The other extremity, called the edge's endpoint, is the

�rst intersection point of the ray with another extension or obstacle disk or another

erected ray. The right (or left) ray of any disk thus supports at most one edge of

the total preimage's boundary. If two edges share the same endpoint, this endpoint

is called a spike. A component may have zero or more spikes, but never more than

one plus the number of obstacle disks that form part of the component's boundary.

In the example of Figure 4.6, the upper two components have no spikes, whereas the

lower component has two.

The description of a preimage is a collection of circular lists consisting of arcs and

rays. Each list corresponds to a contiguous outer or hole boundary of a component.3

The total length of these lists is a linear function of the number of extension and

obstacle disks. Indeed, it is known that the boundary of the union of ` disks is linear

in ` [46]. Thus, the number of arcs in the boundary of a preimage, whose endpoints

do not coincide with the origin or endpoint of an edge is linear in `. Now, each ray

supports at most one preimage edge. There are only two rays per disk, so the total

number of edges is also linear in `. Finally, if an endpoint of an arc coincides with the

origin or the endpoint of an edge, then that arc can be attributed to that particular

edge. Obviously, only two arcs can be attributed to a single edge, so the total number

of arcs remains linear in `. Thus, we have proved the following lemma:

Lemma 4.4 The description of a preimage has size O(`).

3In the following, there is no need to di�erentiate between an outer and a hole boundary list.
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4.4.2 Computation

Before we compute the preimage we need to precompute all landmark areas and all

obstacle areas.4 This precomputation is carried out once, using a divide-and-conquer

algorithm that takes O(` log2 `) time [82]. The algorithm identi�es all disks belonging

to a particular area and constructs its boundary as one or several lists of circular

arcs. At the same time, it �nds out which initial-region disks are fully contained in a

landmark area, and whether a landmark area intersects the goal or not.

At this point we have a linear description of the boundary of the extension set.

Using this description and a sweep-line algorithm, we can compute the preimage of the

extension set in time O(` log `). The sweep line is perpendicular to the commanded

velocity of motion d, and moves in a direction opposite to d. The event queue contains

x-points corresponding (a) to the sweep line being tangent to an extension landmark

area or an obstacle area (start- and end-points), (b) to vertices of the extension

landmark areas and the obstacle areas (vertex-points), (c) to a left or right ray being

tangent to an extension landmark area or an obstacle area (l-tangent- and r-tangent-

points), and (d) to intersections of rays with the boundary of an extension landmark

area or an obstacle area (intersection-points, only one per ray). The total number of

x-points in the queue is linear in `.

Lemma 4.5 The computation of a preimage takes O(` log `) time.

With the addition of a few additional x-points it is possible to �nd out in the

same time bound which initial-region disks are included in the preimage, and which

intermediate-goal areas are intersected by the preimage. These x-points correspond

(a) to the sweep line being tangent to initial-region disks and intermediate-goal areas,

(b) to intersections of the boundary of the preimage with initial-region disks or the

boundaries of intermediate-goal areas, and (c) to intersections of the initial-region

disks among themselves and with the boundary of intermediate-goal areas.

4An obstacle area is de�ned similarly to a landmark area as a maximal connected set of obstacle
disks.
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4.5 Computation of omnidirectional preimages

In the previous section we described how to compute the preimage P(d; E) of a set

of extension disks E for a given commanded direction of motion d. Theoretically,

in order to compute the omnidirectional preimage, we need to call the sweep-line

algorithm for all possible values of d, i.e., an in�nite number of times. Fortunately,

this is not necessary. The planning algorithm does not really require the computation

of the omnidirectional preimage. It only requires answering the following questions

for all possible values of d 2 S1:

- Inclusion: Is the initial region included in the preimage?

- Intersection: Which intermediate-goal disks are intersected by the preimage?

We call these questions the signi�cant questions for planning. As d varies from

0 to 2�, the answers to the signi�cant questions do not change continuously, but

only at speci�c values of d, called critical orientations. Whenever the answer to one

of the signi�cant questions changes, we say that a critical event has occurred. The

answers remain unchanged throughout the interval between any two successive critical

events. Thus, it is only necessary to compute these functions once per such interval.

This computation can be performed with the sweep-line algorithm described in the

previous section.

Consider the very simple example of Figure 4.7, where there is only one extension

disk E and only one initial-region disk I. The answer to the question whether I

belongs to P(d;E) can change from NO to YES only when the left ray stemming from

E becomes tangent to I, with I being to the right of the ray (Figure 4.7(a)). However,

this may not happen at this orientation, either because I is too large (Figure 4.7(b)),

or because it is too far away (Figure 4.7(c)). Consequently, we cannot know whether

this orientation is critical or not without computing the preimage. We say that this

orientation is potentially critical. Similarly, there exists another potentially critical

orientation, when the right ray becomes tangent to I, with I being to the left of the

ray. In this case the answer may change from YES to NO. These are the only potentially

critical orientations in this example. They divide S1 in two intervals, so we need to
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Figure 4.7: Potentially critical event

run the sweep-line algorithm only twice.

Furthermore, if at the moment when the left ray becomes tangent to I we have a

description of the preimage, then it is possible to check whether a critical event will

occur or not, without computing the preimage. Indeed, we can compute the length

of the left edge at this orientation and make sure that it is greater than the length

of the external common tangent of the two disks. If, additionally, no other edges or

arcs of the preimage boundary intersect I at this orientation, then we can be sure

that a critical event will occur, and consequently I will become fully contained in

the preimage. In this case, there is no need to call the sweep-line algorithm. This

reasoning requires that we keep track of the topological description of the preimage.

Once again, this description does not change continuously, but only at some additional

critical orientations.

All critical events may occur only when a ray of the preimage becomes tangent to

a disk, or a spike of the preimage intersects a disk. We di�erentiate the various kinds

of critical events by naming them as follows: When the topological description of the

preimage changes, we have a T-critical event. T-critical events involving extension

disks are called E-critical; those involving obstacle disks are called O-critical. When

the inclusion of the initial region changes, we have an I-critical event. Finally, when

the set of intermediate-goal disks that are being intersected by the preimage changes,
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we have an L-critical event.5

Potentially critical orientations can be precomputed ahead of time, then sorted in

counterclockwise order and stored in a queue. The description of the preimage and the

answers to the signi�cant questions can be computed for an arbitrary direction d0 with

one run of the sweep-line algorithm. Then, we can start popping potentially critical

orientations from the queue, starting with the �rst one after d0, thus performing

an angular sweep. For each such orientation we check whether it is truly critical

(using the topological description of the preimage we have), and, if it is, we update

the description of the preimage and/or the answers to the signi�cant questions. We

continue until we have processed all potentially critical orientations in the queue, or

until we discover that all initial-region disks are included in the preimage for some

value of d, in which case we declare success and return a plan. During the angular

sweep, we keep track of the intermediate-goal disks that have been intersected by

the preimage for various values of d, and for each such disk we record a description

of its intersection with one of the preimages along with the corresponding value of

d. This information is used to create the motion commands to be attached to each

intersected intermediate goal: The intersection of a preimage with the disk is the

only region of the P-command attached to the disk, and the recorded value of d is

the commanded direction of the disk's I-command. The termination condition of the

I-command monitors the achievement of one of the disks in the current extension set.

If no plan has been found after one angular sweep all intersected intermediate goals

are inserted in the extension set, and the algorithm is called recursively according to

the preimage backchaining method.

4.5.1 Potentially critical events

We now give a complete list of potentially critical events. In all the �gures, extension

disks are white, obstacle disks are black, intermediate-goal disks are grey and initial-

region disks are light grey. The classi�cation of events assumes counterclockwise

movement of the commanded velocity orientation d.

5\L" stands for \landmark"
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Figure 4.8: E-critical potential orientations

E-critical events (see Figure 4.8)

- E-Left-Birth: A new left edge emerges at the intersection of two extension disks.

- E-Right-Death: A right edge disappears at the intersection of two extension disks.

- E-Left-Vertex: The endpoint of a left edge crosses the intersection between two

extension disks.

- E-Right-Vertex: The endpoint of a right edge crosses the intersection between two

extension disks.

- E-Reach: A left edge reaches an extension disk by becoming tangent to it.

- E-Include: A left edge leaves the extension disk that contains its endpoint by be-

coming tangent to it.

- E-Leave: A right edge reaches an extension disk by becoming tangent to it.

- E-Exclude: A right edge leaves the extension disk containing its endpoint by be-

coming tangent to it.

- E-Spike-In: A spike reaches an extension disk.

- E-Spike-Out: A spike leaves an extension disk.
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Figure 4.9: O-critical potential orientations

O-critical events (see Figure 4.9)

- O-Right-Birth: A right edge emerges at the intersection of two obstacle disks.

- O-Left-Death: A left edge disappears at the intersection of two obstacle disks.

- O-Left-Vertex: The endpoint of a left edge reaches the intersection of two obstacle

disks.

- O-Right-Vertex: The endpoint of a right edge reaches the intersection of two obstacle

disks.

- O-Reach: A left edge reaches an obstacle disk by becoming tangent to it.

- O-Exclude: A right edge leaves an obstacle disk by becoming tangent to it.

- O-Spike-Birth: A spike emerges as a left edge terminating on an obstacle disk

reaches the point where a right edge arises from this disk.

- O-Spike-Death: A spike vanishes as its left edge, pushed by its right edge, shortens

to zero length against an obstacle disk.

- O-Spike-In: A spike hits an obstacle disk and disappears.

- O-Spike-Out: A spike appears on the boundary of an obstacle disk.
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Figure 4.10: Catastrophic events

There are O(`) extension disks and obstacles. Each disk can produce at most two

rays, so the number of rays is also O(`). As mentioned before, the size of the boundary

of the union of O(`) disks is also in O(`). Hence, there are O(`) E-Left-Birth, E-Right-

Death, O-Right-Birth and O-Left-Death events, and O(`2) E-Left-Vertex, E-Right-

Vertex, O-Left-Vertex and O-Right-Vertex events. The E-Reach, E-Include, E-Leave,

E-Exclude, O-Reach, O-Include, O-Leave and O-Exclude events occur when one of

the O(`) rays becomes tangent to one of the O(`) extension or obstacle disks, so their

number is in O(`2). Finally, spike events combine two distinct rays and a disk, so

their number is O(`3).

Lemma 4.6 There are O(`3) T-critical orientations.

Most T-critical events cause only a local change in the description of the preimage,

so they can be processed in constant or logarithmic time. Instead of recomputing the

preimage from scratch, we just update its description. However, an E-Reach event and

an E-Exclude event may cause widespread changes to the preimage (See Figure 4.10).

The number of these changes may be linear in the number of extension and obstacle
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Figure 4.11: I-critical potential orientations

disks. These events are called catastrophic. At each catastrophic event we recompute

the preimage from scratch using the line-sweep algorithm. Catastrophic events may

cause the answers of the signi�cant questions to change as well, so according to our

de�nition they are potentially I-critical and L-critical too. Nevertheless, since we

have already considered them, we omit them from the following lists of I-critical and

L-critical events.

I-critical events (see Figure 4.11)

- I-Left-Vertex: A left edge crosses the intersection of the extension disk containing

its endpoint with an initial-region disk.

- I-Right-Vertex: A right edge crosses the intersection of the extension disk containing

its endpoint with an initial-region disk.

- I-Vertex-Cross: The origin of an edge crosses the intersection of its extension disk

with an initial-region disk.

- I-Reach: A left edge reaches an initial-region disk by becoming tangent to it.
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Figure 4.12: L-critical potential orientations

- I-Include: A left edge leaves an initial-region disk by becoming tangent to it.

- I-Leave: A right edge reaches an initial-region disk by becoming tangent to it.

- I-Exclude: A right edge leaves an initial-region disk by becoming tangent to it.

- I-Spike-In: A spike enters an initial-region disk.

- I-Spike-Out: A spike exits an initial-region disk.

The number of initial-region disks is assumed constant. Hence, events other than

I-Spike-In and I-Spike-Out produce O(`) I-critical directions. I-Spike-In and I-Spike-

Out events create O(`2) I-critical directions.

Lemma 4.7 There are O(`2) I-critical directions.

L-critical events (see Figure 4.12)

- L-Reach: A left edge reaches an intermediate-goal disk by becoming tangent to it.

- L-Include: A left edge leaves an intermediate-goal disk by becoming tangent to it.
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- L-Leave: A right edge reaches an intermediate-goal disk by becoming tangent to it.

- L-Exclude: A right edge leaves an intermediate-goal disk by becoming tangent to

it.

- L-Spike-In: A spike enters an intermediate-goal disk.

- L-Spike-Out: A spike exits an intermediate-goal disk.

There are O(`2) L-Reach, L-Include, L-Leave, L-Exclude events and O(`3) L-

Spike-In and L-Spike-Out events.

Lemma 4.8 There are O(`3) L-critical directions.

4.5.2 Technical details of the angular sweep algorithm

Up to now we have given a rather vague description of the angular sweep algorithm.

We now present it in more detail.

First, the line-sweep algorithm is called for an arbitrary direction d0 and returns

the following information:

A topological description of the preimage, consisting of circular lists of arcs and

edges. Each list represents a maximal contiguous (hence, closed-loop) boundary of

the preimage.

For each initial-region disk, the number of intersections with the boundary of the

preimage. This number is called the incount of the disk. If there are no intersections,

then the disk is either completely outside the preimage (incount = 0), or it is

contained in it. In this last case, the sweep-line algorithm returns incount = �1.

For each intermediate-goal disk, the disjoint regions that form the intersection of

the disk with the preimage. The number of these regions may be zero, one, or any

number less than the total number of landmarks and obstacles.

We now proceed with the angular sweep. All angular critical events are caused by

rotating edges and spikes. They are being kept in a queue, sorted in counterclockwise

order starting from the arbitrary initial orientation d0. Although it is possible to

schedule all potentially critical events ahead of time, it is not necessary to do so.
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Since we already have a description of the preimage, we know which edges and spikes

actually exist, so we can schedule only those events caused by existing edges and

spikes. The rays supporting these edges, and the pairs of rays forming these spikes

are marked so that they will not be reprocessed in the future. Thus, the same event

is never scheduled twice.

Rays cause critical events when they become tangent to another disk. It is straight-

forward to compute the value of d for which this happens. Spikes cause critical events

when they intersect other disks. If the two rays forming the spike stem from the same

disk, then the locus of the spike as d moves counterclockwise is a circular arc. Its

intersections with other disks de�ne the spike events. However, if the two rays of the

spike stem from di�erent disks, then the locus of the spike is a fourth degree curve

(discussed in Appendix A). Fortunately, its intersections with other disks are the

roots of a fourth degree polynomial and they can be found algebraically.

When the scheduling phase is over, we start popping events from the queue. For

each event we verify that it is an actual critical event, and if so, we process it.

Processing depends on the type of the event.

At T-critical events, the topological description of the preimage changes. If new

(unprocessed) rays or spikes appear, the critical events they may cause as the angular

sweep proceeds are inserted in the queue. At catastrophic events, the incount of

initial-region disks as well as the intersection of intermediate-goal disks with the

preimage may change. In this case, we obtain the updated values with the same call

to the sweep-line algorithm used to compute the new description of the preimage.

At I-critical events, the incount of some initial-region disk changes. If before the

event incount is �1 or 0, then necessarily after the event incount = 2. If, on the other

hand, incount is 2 before the event and goes to 0 after the event, we have to check

whether the disk becomes included in the preimage, or moves completely outside it.

This can be decided based on the type of event that occurs. For example, if the event

is an I-Include event, then the disk lies in the preimage and we set incount = �1;

if the event is an I-exclude event, then the disk is outside the preimage and we let

incount be 0.

At L-critical events, a new region is added to the intersection list of an



CHAPTER 4. LANDMARK-BASED NAVIGATION 98

intermediate-goal disk, or a region is deleted, or the topological description of a region

changes. After the angular sweep is over, each intersected intermediate-goal disk has

a list of regions (topological descriptions, along with the values of d for which they are

valid) associated with it. In order to create the motion commands associated with the

disk, we must select one of the regions and one of the associated values of d. In our

implementation, we perform this selection attempting to maximize the intersection

region. Although region selection is irrelevant under the assumptions of this chapter,

it becomes important when we start considering some uncertainty in landmark areas.

4.6 The complexity of the planning algorithm

The number of potentially critical events is in O(`3). Scheduling them in a height-

balanced tree (AVL-tree) takes O(`3 log `) time. Processing of most events can be

done in constant or logarithmic time, thus it requires time O(`3 log `). However,

catastrophic events require running the line-sweep algorithm that takes O(` log `).

Fortunately, there are only O(`2) catastrophic events, so their total contribution to

the complexity is O(`3 log `). Overall, one step of the backchaining process takes

time O(`3 log `). Since we have proved that there can be at most s (the number of

landmark areas) backchaining steps, we deduce:

Lemma 4.9 The complexity of the planning algorithm is O(s`3 log `).

This bound may not be a tight estimate of the complexity of the algorithm. In

practice, the algorithm seems to run much faster than this estimate. This is an

indication that there may exist a stricter lower bound. The major contributors to the

asymptotic complexity bound are the following:

The E-, O- and L-Spike events, whose number is O(`3).

The call to the line-sweep algorithm at catastrophic events.

The contribution of L-Spike-In and L-Spike-Out events can be easily discounted.

Indeed, if an intermediate goal is hit by a spike, then at the next backchaining step
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Figure 4.13: Hidden-spike transformation

it will be part of the extension set. Thus, L-Spike events do not occur twice through-

out the backchaining algorithm. Their total contribution throughout planning is

O(`3 log `).

When an E-Spike-In event occurs, two components of the preimage merge. How-

ever, since the \tip" of one component will be inside the other, there is no need to

perform this merger. We might as well keep the descriptions of the two components

separately. When a spike lies within a component of the preimage, we call it a hidden

spike. The description of the preimage that we get from the sweep-line algorithm can

be changed according to the hidden spike idea with the following transformation. Let

preimage arcs be represented by the letter d and a subscript that identi�es the disk

that contains the arc. Let also left (resp. right) edges of the preimage be represented

by the letter l (resp. r) and a subscript that identi�es the disk from which the preim-

age stems. If one of the lists describing the boundary of the preimage has the form

(�; di; lj; �; rk; dl; ), such that:

- �, �, and  are non-empty sublists,

- the endpoints of lj and rk are in the same landmark area LA, and

- � does not contain the name of any disk in LA,
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we say that the intersection of the two rays lj and rk forms a hidden spike. In this

case, we apply the transformation illustrated in Figure 4.13. We break D into two

lists D1 and D2, with D1 = (�; �0; ) and D2 = (lj; �; rk), where �0 is the sequence of

arc labels encountered while following the boundary of LA counterclockwise between

the last arc of � and the �rst arc of . For every connected subset of the directional

preimage, the transformation is repeated until it is applicable to none of the generated

lists.

In practice, we keep track of the edge endpoints on the boundary of every landmark

area. After the line-sweep is completed, we sort these points in counterclockwise cyclic

lists (one per landmark area). Whenever the endpoint of a left edge immediately

precedes the endpoint of a right edge in such a list, the rays supporting these two

edges should form a hidden spike, so we apply the transformation described in the

previous paragraph. The combined cost of all transformations is O(` log `).

During the angular sweep, we have to be careful to create and delete hidden

spikes when necessary. For example, at an E-Include event, if the exiting left ray

formed a hidden spike, that spike must be now deleted. Similarly, at an E-Leave

event the reaching right ray may form a new hidden spike in the disk it enters. These

computations do not a�ect the complexity of processing each event.

The remaining high complexity contributors (O-Spike events and catastrophic

events) constitute a problem that bears a striking similarity with the problem solved

by Briggs in [8]. In [8] , O-Spike events are called vertex critical and are shown

to be uniquely attributable to one of the other O(`2) events; hence, their number

is also in O(`2). Furthermore, it is shown that the total number of changes in the

preimage because of catastrophic events is not cubic, but quadratic. Using special

data structures that store a sorted list of the intersections of each ray with other rays

and disks, it is possible to compute the change at each catastrophic event in time

linear in the number of changes, without having to call the sweep-line algorithm. We

conjecture that similar reductions can be found for our problem too. If this conjecture

proves to be true, then the complexity of the algorithm will be reduced by one order

of magnitude to O(`3 log `).
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4.7 Implementation and examples

We implemented the planning algorithm, along with a robot simulator, in the C

language on a dec-5000 workstation. In the examples that follow obstacle disks are

black, landmark disks are white (if they are part of the plan) or grey (if they are

not involved in the plan), the initial region is marked with I, and the goal region is

marked with G.

Figures 4.14-4.17 present an example with 51 landmark disks, no obstacle disks, a

single initial-region disk and a single goal disk. In Figure 4.14 the control uncertainty

� has been set equal to 0.1 radian. The planner returns success after 2 iterations in

less than 3 seconds of computation time. Because the directional uncertainty is small,

the plan is almost directly aimed toward the goal. The simulated execution produces

a path traversing a single landmark disk designated by D before entering the goal

extension. Although the disk marked E is along the path between D and F , it is not

in the termination set of the I-command executed from D. The robot traverses E

without shifting to another motion command.

In Figure 4.15 the control uncertainty is 0.15 radian. It takes three backchaining

steps of the planner, and 5 seconds of computation, before the initial region can be

included in a preimage. In the process, the planner attaches motion commands to

the majority of the landmark disks. At execution time, the robot moves �rst into

landmark A, and from there it is able to get into D and eventually to the goal.

In Figure 4.16 we set � to 0.2 radian. It takes 4 iterations of the planner, and 18

seconds of computation, before the initial region can be included in a preimage. In

the process, the planner attaches motion commands to many landmark disks. The

simulated execution of the plan produced a path that uses three successive landmark

areas designated by B, D, and E, before entering the goal's extension. The area C is

also traversed by the path, but it is not part of the termination set of the I-command

executed from B.

Finally, in Figure 4.17 � is 0.3 radian. A plan is generated after 6 iterations,

and 45 seconds of computation. A quick comparison of the commanded directions of

motion attached to the white landmark disks shows that this plan is quite di�erent
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Figure 4.14: Example with � = 0.1 radian

Figure 4.15: Example with � = 0.15 radian
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Figure 4.16: Example with � = 0.2 radian

Figure 4.17: Example with � = 0.3 radian
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from the plans found for smaller values of �. The executed path traverses 5 landmark

areas designated by A, B, C, D, and E. Notice that both B and C are now used by

the navigation system, because it is no longer reliable to directly achieve D from B;

C has to be used along the way to reduce uncertainty.

Another example is shown in Figure 4.18. In this example there are 23 landmark

disks forming 19 landmark areas, and 25 obstacle disks forming 13 obstacle areas.

The directional uncertainty � is 0:06 radian. In this case the robot is able to move to

disk A, then to K, and from there get to the disk N that intersects the goal. This

plan can be found in approximately 30 seconds. In Figure 4.19 we present the same

example for � equal to 0:1 radian. The robot is no longer able to pass reliably through

the obstacles, so it is forced to take the long outside route. This plan is discovered

after 13 iterations of the planner (it takes about 4 minutes), and the shown execution

trace has also 13 steps.

Figure 4.20 shows a corridor of 15 obstacle and 15 landmark disks. The robot

stands in front of this corridor and wishes to get to the goal that lies at the other

end of the corridor inside a big landmark region. The robot starts out with a zig-

zag motion among the obstacles, but as soon as it discovers that it is safe to move

straight to the big landmark it does so. This example demonstrates the property of

our planner to produce plans with the minimum possible number of steps. The plan

is found after 5 iterations in less than 30 seconds.

Figure 4.21 shows a maze of 77 obstacles with 5 landmark disks scattered in the

maze, and two landmark disks outside the maze. The robot wishes to traverse the

maze, in order to get into the goal on the other side. Planning takes about 3 minutes

and a 7-step plan is constructed allowing the robot to move safely into the goal.

4.8 Properties of the motion plans

The planner we described in the previous sections has several desirable properties:

Soundness By de�nition, the planner creates only correct plans (i.e., plans guaran-

teed to succeed if the assumptions made in the problem statement hold). Therefore
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Figure 4.18: Example with obstacles with � = 0.06 radian

Figure 4.19: Example with obstacles with � = 0.1 radian
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Figure 4.20: Traversing a corridor of obstacles

Figure 4.21: Traversing a maze of obstacles
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the planner is sound.

Completeness At each backchaining step we identify all con�guration space points

that can achieve the current extension set in one step (the combination of a P-

command and an I-command). Therefore, during the i-th backchaining step the

extension set holds the maximal set of points that can get to the extension of the goal

in at most i � 1 steps. If a plan with n steps exists it will be found by the planner

after n iterations. If no plan exists, the planner will return failure after a number of

iterations that is bounded by the number of landmark areas. Thus, the planner is

complete.

Optimality We consider a motion plan to be optimal, if the maximal number of

steps required by its execution is minimal over all possible motion plans that are

guaranteed to reliably achieve the goal G. The maximal number of steps for a plan

produced by our planning algorithm is equal to the number of backchaining iterations

before an extension set or a preimage contains the initial region. By de�nition of the

omnidirectional preimage, the number of iterations is equal to the minimal number

of steps that is required to achieve the goal in the worst case. Hence, our algorithm

generates optimal plans. In addition, after the execution of any sequence of steps,

the subset of the motion plan that may still be used to attain the problem's goal is

also optimal.

Polynomiality The polynomial time bound of the algorithm permits fast execu-

tion even in complicated environments (like the examples presented in the previous

section).

Distribution over landmark disks A major characteristic of the plans created by

the planner is their distributed nature. Commands, stored locally at the landmark

disks, provide a way of reliable navigation from landmark area to landmark area,

and are almost independent from the initial region or the destination of the robot.

Indeed, we can create one plan to reliably achieve each landmark area from all points

of the workspace from where this is possible. Thus, we cover all possible planning
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Figure 4.22: Initial random motion

situations that may arise in this workspace with O(`) local commands per landmark

disk. The total size of the stored information is quadratic instead of exponential

(which is usually the case in such universal problems). For a detailed analysis of this

technique see Section 5.4.

Robustness with respect to failures Up to now we have only considered exam-

ples where the planning algorithm returns success. However, even when no guaran-

teed plan exists, our planner computes an incomplete plan that may be useful. This

plan does not associate an I-command with the initial-region, but it creates motion

commands for all the landmark disks in the �nal (largest) extension considered. If,
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somehow, the robot gets into one of these disks, then it has a guaranteed plan to

get into the goal. This incomplete plan is \maximal" in the sense that it attaches a

guaranteed plan to achieve the goal to every single point in the con�guration space,

for which such a guaranteed plan exists.

One way of letting the robot try to reach one of these disks is random (Brownian)

motion with reection on the boundaries of the workspace and the obstacles. Consider

again the example of Subsection 4.3.1, and let the directional uncertainty have a

higher value so that no guaranteed plan exists. In Figure 4.22 we see that a motion

command has been associated with every landmark disk in the workspace, but it has

not been possible to construct an I-command that is guaranteed to bring the robot

into one of the landmark disks. Initially, the robot is instructed to perform a random

motion according to a two-dimensional random walk. It moves aimlessly for a while

until it hits disk B; from there it gets to the goal using the computed plan. The

Brownian motion in a bounded subspace of the plane, is guaranteed at some point to

hit one of the white disks. However, the length of the random motion is unbounded.

The bigger the area of the white disks with respect to the rest of the workspace, the

smaller the expected duration of the random motion. By construction, our planner

computes the maximal such region.

The same idea may be used to help the robot deal with unexpected failures (e.g.

a landmark is turned o�, the robot is pushed outside a landmark area, etc.). Again

a random motion is guaranteed to bring the robot into a landmark area (possibly

di�erent from the one it was looking for) with a guaranteed plan to the goal.

In Chapter 6 we present a more intelligent way to select an initial non-guaranteed

command. We show that this command maximizes some measure of the likelihood

that the robot will enter one of the landmark disks that have an associated guaranteed

plan (i.e., one of the white disks).



Chapter 5

The Limits of Polynomiality

Despite the nice properties of the algorithm presented in the previous chapter, there

is still a major question to be answered: Is the algorithm applicable to real-world

situations, and, if yes, what is the cost of engineering the robot and its workspace, so

that the assumptions of the algorithm are satis�ed? If an assumption is too restrictive

(or too costly to implement), we would like to eliminate it, without sacri�cing the

soundness, completeness, or polynomiality of the planning algorithm. In this chapter

we investigate the e�ect of the elimination of several of the assumptions of the previous

chapter. In some cases, the elimination has no signi�cant e�ect; in others, it makes the

problem intractable. Throughout this chapter, d denotes the commanded direction

of motion, and � the directional uncertainty.

5.1 Landmark and obstacle geometry

So far, we have assumed that the shape of all con�guration space objects (initial,

obstacle and landmark regions) is circular. Even though we can approximate any

other shape with overlapping circular disks, we often need a big number of such disks

in order to get a reasonably good approximation. Fortunately, it is not hard to extend

the algorithm to the case where the objects are generalized polygons, i.e., regions of

the workspace bounded by straight edges and circular arcs. Such a con�guration

space corresponds to a workspace model of a circular robot navigating in a polygonal

110
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Figure 5.1: An anchored ray

world. This model is usually su�cient for most practical applications.

In this case, the computation of the directional preimage remains unchanged. The

straight edge segments are actually easier to handle than circular arcs. However, we

need to add a few additional critical events for the computation of the omnidirectional

preimage. In the circular case, rotating rays slide smoothly on the perimeter of

landmark and obstacle disks remaining at all times tangent to them. A ray sliding on

a curve, which contains points where the curve is not di�erentiable, (e.g., a generalized

polygonal curve) will stick at such points for a while, until it is ready to slide onto the

next edge of the curve. As an example, consider Figure 5.1. A left ray with orientation

� = d� �� � is shown anchored at vertex A. As d rotates counterclockwise, so does

the ray. The ray remains anchored at A as long as � is between � and �. Then it

starts sliding on the arc AB until � becomes equal to , at which point it sticks to

B. It remains so until � = �. At this point the ray is parallel to the straight edge

CB. A further counterclockwise motion of the ray causes its origin to jump to vertex

C, where it remains until � = �. Finally, the ray slides on the arc CA until it sticks

once again on A for � = �.

A ray which rotates about a �xed origin is called an anchored ray. An E-Left-

Anchor (E-Right-Anchor) critical event causes a sliding left (right) ray to become

anchored. An E-Left-Release (E-Right-Release) critical event causes an anchored left
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Figure 5.2: Rays stemming from sticky points

(right) ray to start sliding on an arc. At straight edges, an E-Release critical event

at one vertex coincides with an E-Anchor event at the other vertex. In this case, the

two events are combined into a single event. Such an event is called E-Left-Align (E-

Right-Align), since it occurs when a ray becomes aligned with an edge of a landmark

or obstacle region. In the example of Figure 5.1, we have E-Left-Anchor events for

d = � + � + � and d = � +  + �, E-Left-Release events for d = � + � + � and

d = � + �+ �, an E-Left-Align event for d = � + � + �, and similar events for a right

ray.

Anchored rays can be thought of as tangent to disks of zero radius, so all the

calculations for sliding rays work also for anchored rays. As a matter of fact, most

of the times it is easier to work with anchored rays; most notably, the locus of the

spike of two anchored rays is not the fourth degree curve described in Appendix A;

it is simply a circular arc.

If ` is the number of features of the con�guration space (edges and vertices), the

total number of E-Anchor, E-Release and E-Align events is O(`). Each such event

can be processed in constant time, so the complexity of the algorithm with respect

to the complexity of the con�guration space is not a�ected.

5.2 Compliant motions

Another assumption that is not too di�cult to remove, is the one that forbids the

robot to slide on obstacle surfaces. Although sometimes sliding is not desirable, often

it enhances the navigational e�ciency of a robot (see Chapter 3). Allowing compliant



CHAPTER 5. THE LIMITS OF POLYNOMIALITY 113

motions enlarges the preimage of a given goal.

Let us assume that the coe�cient of friction is uniform and equal to tan�, where

� is the half angle of the friction cone on all obstacle surfaces. In this case, rays

stemming from obstacles are not tangent to the obstacles, but their origins are the

endpoints of the sticky part of the obstacle boundary (sticky points). The sticky part,

is the part of an obstacle where there is a possibility that the robot may stick due

to obstacle geometry or friction. Some examples are shown in Figure 5.2, where the

sticky part is drawn with a thick dashed line. In (a), the upper edge of a rectangular

obstacle is sticky and must be avoided. In (b), the robot may stick in the triangular

depression of a concave obstacle. In (c), the sticky part of a circular obstacle lies

between the points where the friction cone and the inverted velocity cone are tangent

to each other without overlapping.

Rays stemming from sticky points behave like regular rays. They slide on circular

arcs1, they get anchored at obstacle vertices, and they jump suddenly from a vertex

of a straight obstacle edge to the other vertex of the edge. These sudden jumps occur

when an edge becomes part of the sticky part of the obstacle (in which case we have

an E-Stick event), or when an edge stops being sticky (an E-Slide event). The E-Stick

and E-Slide events are very similar to the E-Align events of the previous section. In

fact, when there is no friction, the E-Stick event degenerates to an E-Left-Align event,

and the E-Slide becomes an E-Right-Align event. The number of E-Stick and E-Slide

events is linear with the complexity of the workspace, and each such event can be

processed in constant time.

5.3 Allowing contact between obstacle and land-

mark disks

Ideas similar to the ones presented in the previous subsection can be used to remove

the assumption that obstacle and landmark regions are not in contact with each

other. This assumption is often too restrictive, especially in the case where workspace

1The angular position of the sticky points of a circular obstacle is given by d+ � � (� + �)
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Figure 5.3: Problem arising from overlapping landmark and obstacle regions

obstacles play the role of landmarks. A landmark region and an obstacle region that

are caused by the same physical object usually overlap.

If we allow overlapping obstacle and landmark regions we introduce two kinds

of complications. First, navigation between any two points in a landmark region, or

intersecting landmark regions may no longer be possible (see Figure 5.3). This can be

addressed by requiring that landmark regions do not overlap with obstacles, although

they can be in contact with them.

The second complication has to do with the computation of the preimage. The

vertices of the contact edges between landmark and obstacle regions (contact vertices)

play an important role in this computation. If sliding on the obstacles is not allowed,

then a ray must be erected at contact vertices, in order to make sure that the robot

will not hit the obstacle. Rays erected at contact vertices are anchored.

The example of Figure 5.4 shows the behavior of left and right rays when their

origin hits a contact vertex. In 5.4(a), the commanded direction d is such that the

preimage is not a�ected by the existence of the obstacle. When the origin of the

left ray hits the upper contact vertex (i.e., the slope of the left ray becomes �, so

d = � + � + �), we have an E-Left-Anchor event. The left ray rotates anchored at

its origin (5.4(b)), until it becomes parallel to �, at which point we have an E-Left-

Release event. The ray now starts sliding on the obstacle surface (5.4(c)), until it

is reduced to zero length pushed by the right ray on the obstacle surface. This is

the familiar E-Spike-Death event, which occurs when the right ray is aligned with
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Figure 5.4: Critical events at contact vertices

� (i.e., d = � + � � �). In the mean time, when the direction of left rays becomes

equal to , a left ray emerges at the other contact vertex during an E-Left-Birth. In

Figures 5.4(d)-(f) the symmetric events occur. The right ray vanishes at the upper

contact vertex (E-Right-Death event at d = �+���), a spike emerges (E-Spike-Birth

event at d = � + �+ �), the right ray of the spike gets anchored at the lower contact

vertex (E-Right-Anchor event at d = � + � � �), and, �nally, the anchored right ray

starts sliding on the landmark disk surface (E-Right-Release event at d = �+ �� �).

It is straightforward to compute the directions �, �, , �, �, �, � and �, and from

them the critical orientations of the commanded velocity.

Figure 5.5 shows a slightly di�erent example. The left ray of the spike gets an-

chored at the upper contact vertex, as before, when its slope becomes � (5.5(a)).

However, in this case the right ray pushes the left ray to zero length before the left

ray gets a chance to start sliding on the obstacle surface (i.e.,  � � precedes � + �,

so  � � < 2�). Thus, we get an E-Spike-Death event while the left ray of the



CHAPTER 5. THE LIMITS OF POLYNOMIALITY 116

δ

ε

α

β

γ

ζ

(a) (b)

(c) (d)

Figure 5.5: Birth and death of a spike with an anchored ray

spike is still anchored (Figure 5.5(b)). An E-Spike-Birth event occurs when a spike

emerges with its right ray anchored at the lower contact vertex for d = � + � + �

(Figure 5.5(c)). Finally, the anchored right ray is released during an E-Right-Release

event at d = � + � � � (Figure 5.5(d)).

Similar calculations allow us to deal with generalized polygonal obstacles and

landmarks in contact, as well as compliant motions on obstacle surfaces. As a result,

the algorithm given in Chapter 4 can be extended to deal with generalized polygo-

nal shapes, compliant motions and contact between obstacle and landmark regions,

without losing soundness, completeness, or polynomiality.

5.4 Universal plans

When there is need for frequent planning in a workspace with �xed landmark and

obstacle regions, it is possible to save planning time, by precomputing and storing a

guaranteed plan between any two landmark areas for which such a guaranteed plan
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exists. Given a planning problem speci�ed by an initial region I and a goal region G,

we only need to lead the robot from I to a landmark area, from where there exists a

known guaranteed plan to another landmark area that intersects G.

5.4.1 Precomputation

Let us index each landmark area LA in the workspace with a distinct integer i 2 [1; s].

Then, for each LAi we compute a maximal plan Ui by invoking the planner with LAi

as the goal and a dummy initial region that cannot be contained in any preimage.

The algorithm backchains until the extension set cannot grow any more. (The notion

of maximal plans was introduced in 4.8.) All maximal plans are combined in a data

structure, the universal plan U = (U1;U2; : : : ;Us).

The function disks(Ui) returns the set of landmark disks, from where there exists

a guaranteed plan to landmark area LAi. All these plans have already been found,

and they constitute the maximal plan Ui. Each landmark disk may belong to several

sets disks(Ui) (as many as the distinct landmark areas which are achievable from

this disk with a guaranteed plan). Therefore, at each landmark disk several motion

commands are stored. Each such motion command is marked with the index i of

the landmark area that is the goal of the maximal plan Ui containing this motion

command. In addition, each motion command in Ui is annotated with the maximum

number of steps needed to achieve the goal (using Ui) from the landmark disk where

the command is attached.2

5.4.2 Planning

Given a planning problem speci�ed by an initial region I and a goal region G in a

preprocessed workspace, we proceed as follows. First, we identify the landmark areas

which intersect the goal, and create a set M(G) containing all landmark disks from

which there exist guaranteed plans to one of these landmark areas. If the initial

region lies entirely within landmark disks belonging to M(G), then one (or more)

2This number is equal to the number of backchaining steps it took to reach the disk when creating
Ui.
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plans are readily available without further computation. Otherwise, we compute the

omnidirectional preimage of all disks in M(G). If the initial region can be contained

in this preimage, then a plan has been found; otherwise the planner returns failure.

No backchaining is needed.

In order to prove that no backchaining is needed, consider the case where G inter-

sects two landmark areas LAa and LAb. Let us assume that there exists a direction

d� for which the preimage of disks(Ua) [ disks(Ub) intersects a landmark disk L

which does not belong either to disks(Ua) or to disks(Ub). For this to happen, the

preimage component that intersects L must contain at least one disk that belongs to

disks(Ua) n disks(Ub) and at least one disk that belongs to disks(Ub) n disks(Ua).

Otherwise, the component would consist solely of disks belonging to either disks(Ua)

or disks(Ub). This is not possible, because the preimage of disks(Ua) (as well as

the preimage of disks(Ub)) cannot intersect any other landmark disks (otherwise

backchaining would not have terminated during the precomputation of Ua or Ub).

We have thus established that the preimage component that intersects Lmust con-

tain disks that do not belong to disks(Ua) and disks that do not belong to disks(Ub).

But this is not possible either. Were it true, it would be the case that either the

preimage of disks(Ua) would intersect a disk not in disks(Ua), or the preimage of

disks(Ub) would intersect a disk not in disks(Ub). In either case, backchaining (dur-

ing the precomputation of Ua or Ub) would not have stopped, a contradiction. Thus,

no new landmark disks can be intersected by the preimage of disks(Ua)[ disks(Ub),

and, therefore, backchaining is not needed.

5.4.3 Plan Execution

If the robot is not already in one of the landmark disks in M(G), it executes the

motion command attached to the initial region. When it �nds itself in a landmark

disk of M(G), the robot must select one of the commands that are attached to this

disk. The danger with selecting commands from di�erent plans is the possibility of

entering an in�nite loop of motion commands.

Consider the example of Figure 5.6. There are four landmark disks A, B, C and

D, each constituting a separate landmark area. The goal intersects only A and D.
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Figure 5.6: A possibly cyclic plan execution

In the �gure we show only the commands that belong to plans UA and UD. Assume

that the robot starts from landmark disk B. It has the choice of two commands,mcBA

which leads directly to A and mcBD which leads to disk C. If for some reason it selects

the latter and moves to disk C, it has again to choose between two commands, mcCA

and mcCD. If it selects mcCA, switching from executing UD to executing UA, it goes

back to disk B. If the criteria for choosing commands are deterministic and do not

change over time, then the robot will be stuck in the above loop forever.

The easiest way to avoid cycles during plan execution is to stick to a particular

plan (select motion commands with the same subscript), but then plan execution

may become unnecessarily long. For example, look at Figure 5.7. The goal intersects

landmark disks A and E, so we show only plans UA and UE. For each motion

command we also show the maximum number of steps that it may take the robot to

achieve the goal of the plan, where the command belongs. The preimage of A, B and

C intersects disk D, so there exists a guaranteed plan from D to A, whose execution

may take at most three steps. The preimage of E and C does not intersect D. A

robot that starts from D has to follow the single command mcDA . Given the policy to

stick to motion commands with the same subscript, if the robot gets to disk C, it will

follow command mcCA to get to B, and from there to A and to the goal. The number

of steps in this execution trace is three. If instead at disk C the robot decides to go

with command mcCE, it will get to disk E and to the goal immediately. The number
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Figure 5.7: Using the minimum number of execution steps

of steps of this execution trace is two.

It is possible to minimize the number of execution steps, and at the same time

avoid cycles altogether. At each landmark disk, the robot selects the motion command

that promises the least maximum number of steps to the goal.3 The \distance" of

the robot to the goal measured in steps strictly decreases with each execution step,

therefore the robot may not enter a cycle. In the above example, command mcCE

(promising at most one step) is preferable to mcCA which may take up to two steps.

Thus the robot will move from D to C, then to E and into the goal.

3The maximumnumber of steps to the goal for each motion command is equal to the number of
backchaining steps it took to �nd the particular command while computing the complete plan.
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5.4.4 Complexity

If l is the number of landmark and obstacle disks and s is the number of landmark

areas, precomputation takesO(s`3 log `) per landmark area, for a total ofO(s2`3 log `).

Planning takes O(` log `) to compute the intersection of G with the landmark disks

and createM(G), O(` log `) to check whether I is completely included in the disks of

M(G), and, if it is not, another O(`3 log `) to �nd the omnidirectional backprojection

of the disks in M(G).

5.5 Uncertainty in landmark areas

Perhaps the most disturbing assumptions in the previous chapter are those used in

the de�nition of the landmark areas, namely, that control and position sensing errors

are null within these areas, while position sensing is inexistent outside.

A typical mobile robot uses two techniques to continuously estimate its posi-

tion: dead-reckoning and environmental sensing. Environmental sensing provides

pertinent information only when some characteristic features of the workspace (i.e.,

\landmarks") are visible by the sensors. Then the robot knows its position with

good accuracy. When no or few features are visible, the robot mostly relies on dead-

reckoning, which yields cumulative errors that we model by the directional uncertainty

cone. Our assumption that sensing outside landmark areas is null is usually conser-

vative, but it does not prevent the robot's navigation system from using all available

sensing information at execution time to better determine the robot's current posi-

tion. (The navigation system does not have to use the same model as the planner; it

may use a more sophisticated one, if this is possible.) In the worst case, the no-sensing

assumption outside landmark areas may only lead our planners to return failure, while

reliable plans exist in practice and, possibly, could have been found by more powerful

planners able to deal with more sophisticated models.

The assumption that control is perfect in the landmark areas is rather liberal. We

believe, however, that it is a reasonable one, provided that we choose safe features and

equip the robot with the right sensors. Landmark areas with sharp boundaries can be

obtained by introducing arti�cial landmarks (e.g., radio or magnetic beacons) and/or



CHAPTER 5. THE LIMITS OF POLYNOMIALITY 122

L

R

R R

L

R

R1

2
3

1 2

Figure 5.8: Generalized landmarks

thresholding an estimate of the sensing uncertainty. For example, the notion of a

\sensory uncertainty �eld" (suf) is introduced in [91]. At every possible point q in

the con�guration space, the suf estimates the range of possible errors in the sensed

con�guration that the navigation system would compute by matching the sensory

data against a prior model of the workspace, if the robot were at q. The suf is

computed at planning time from a model of the robot's sensing system. Thresholding

it yields landmark areas. Uncertainty in the location of a landmark and/or fuzziness

of its boundary can be handled by de�ning a smaller landmark area for our planner.

It should also be noted that perfect control and sensing in landmark areas are not

strictly needed. Indeed, once the robot enters a landmark area, it is su�cient that it

reaches an \exit region" of non-zero measure prior to executing the next imperfect-

control command. This region is the intersection of the backprojection that yielded

the command with the landmark area. Position sensing uncertainty in a landmark

area could be half the radius of the largest disk fully contained in the exit region of the

landmark area without putting plan execution at risk. Thus, although the planner

assumes perfect sensing in landmark areas, we can create these areas by engineering

the workspace so that the sensors provide just the information that is needed by the

plan (see [36] for a similar idea).
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5.5.1 Generalized landmarks

The de�nition of a landmark can be further modi�ed without having to signi�cantly

change the planning techniques developed above. For example, we could accept a

landmark disk (or generalized polygon) L such that the robot correctly knows at

any time if it is inside or outside L, but, if it is in L, it does not know where. If

during planning, a backprojection intersects L, this is not su�cient to include L in

the extension of the goal. L must be completely contained in the backprojection.

The critical events for which this has to be tested are exactly those used to check the

containment of an initial-region disk.

The above variant of a landmark can be generalized into the notion of a generalized

landmark, as follows: Consider a region L, such that if the robot is in L, it knows

that it is in L and has a way to accurately reach a subregion R of L. However, the

robot may not have perfect control in L, nor perfect position sensing. For example,

the landmark may be a wall. When the robot makes contact with the surface of the

wall, its bumpers detect contact, but it still does not know precisely its position. By

tracking the wall in some given direction, the robot can detect the end of the wall, a

point where it knows its position with accuracy. This point (or a small disk around

this point) can be considered as a landmark area that the planner will try to enclose

in a backprojection. If this happens, the whole region L will be added to the goal

extension. Figure 5.8 presents two examples of generalized landmarks. The number

of subregions in each landmark can be greater than one, but it has to be bounded in

order not to a�ect the complexity of the planner.

Finally, it is possible to de�ne landmarks hierarchically, so that navigation within

landmark regions is based on smaller local landmarks. Thus, our landmark-based

navigation algorithm can be called recursively a number of times. In this way, we

can consider only a few landmarks each time the algorithm is called for considerable

savings of planning time. Hierarchical planning is a very powerful technique used

extensively by humans. Real-world robots will have to use it, too.
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5.6 Confusable landmarks

Up to now we have assumed that landmarks are unambiguously distinguishable by

the robot. Sometimes, though, this is not the case. For example, if wall corners are

used as landmarks, most of them look the same and cannot be distinguished from

each other. In this case, we say that the workspace contains confusable landmarks.

The robot may have perfect position sensing relative to a landmark, but if there is

uncertainty about the identity of the landmark, no unambiguous global positional

information can be deduced.

Confusable landmarks may belong to the same extension set, if we can derive a

common \exit strategy" for all of them, i.e., we attach the same (relative) exit region,

commanded velocity direction and termination condition to each landmark. If there

are intermediate goal landmarks that are confusable with landmarks in the extension

set, then these intermediate goal landmark regions should be treated as forbidden

regions (the same as obstacle regions), because if the robot gets into them it will

terminate its motion prematurely. Whether a larger extension set (along with the

corresponding forbidden regions) or a smaller extension set (with fewer or no forbidden

regions) is preferable depends on the particular planning problem, something that

makes a complete planner exponential.

5.6.1 Finding a common exit strategy

Sensory readings in each landmark region give positional information relative to a

frame of reference attached to this region. When global information is not available,

perfect-control motion is relative to this local frame of reference.

Consider the case where the goal G intersects two confusable landmarks L1 and

L2 (Figure 5.9). Let R1 = G \ L1 and R2 = G \ L2 be the intersection regions of

the goal with the landmarks, expressed in the local frames of reference of landmarks

L1 and L2 respectively. We map the two landmark regions so that their local frames

of reference coincide, and we compute the intersection R1 \ R2. If this intersection

is non-empty, then there exists a common perfect-control motion command that is

guaranteed to lead the robot into the goal. This command, expressed in the local
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Figure 5.9: Common exit region

coordinate systems, is (R1 \ R2). In the example of Figure 5.9 (R1 \ R2) leads the

robot either to the left (darker) part of R1 or to the upper (darker) part of R2, in

either case into the goal. L1 and L2 form the extension of the goal.

If T1 (T2) is the transformation from the frame of reference of L1 (L2) to the

workspace coordinate system, then the possible global coordinates of the robot after

the execution of the above motion command are given by T1(R1 \R2)[T2(R1 \R2).

Let us now consider the case of confusable landmarks that are being intersected

by the omnidirectional preimage of some extension set. Two confusable landmarks

will become part of the next goal extension only if they have identical perfect-control

motion commands and identical imperfect-control motion commands. Assume that

the robot senses its orientation independently of the landmarks (e.g., uses a com-

pass). In this case, the commanded velocity direction, speci�ed in the global frame

of reference, must be the same for both landmarks. Thus, both landmark regions

must be intersected by the same directional preimage. Additionally, the intersections

of this preimage with the landmark regions must have a common region (speci�ed in

the local coordinate frames), which will become the perfect-control motion command

(see Figure 5.10).

If the robot computes its orientation relative to the landmarks, then the com-

manded direction of motion is speci�ed in the landmark coordinate systems. This

situation is trickier. Since the robot cannot distinguish L1 from L2, the speci�ed
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(relative) value of the commanded direction d must be the same for both disks. Let

� be the absolute orientation of the frame of reference attached to L1, and � the

orientation of the frame of reference attached to L2. If the robot is in L1, its absolute

commanded direction will be � + d; if it is in L2, its absolute commanded direction

will be � + d. If � 6= �, we cannot use a single directional preimage to intersect both

landmark disks. If E represents the current extension set, we need to �nd an appropri-

ate value of d, such that, if R1 = P(d+�; E)\L1 and R2 = P(d+�; E)\L2, with R1

and R2 speci�ed in the local frames of reference attached to L1 and L2 respectively,

then R1 \R2 6= ;.

5.6.2 When no common strategy exists

If it is not possible to �nd a common (relative) motion command for two confusable

landmark disks, we may not include them both in the same extension set. Instead,

we add them one at a time, considering all possible cases. Each time, the landmark

disk that does not become part of the extension set must be considered as a forbidden

region (an obstacle). Otherwise, it can be mistaken for the landmark disk that belongs

to the kernel, and cause premature termination of the motion command.

It is necessary to try all possible kernels, because otherwise the completeness of
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Figure 5.11: Planning with confusable landmarks

the planner would be in jeopardy. For example, in Figure 5.11(a) the confusable

landmarks L1 and L2 are intersected by the goal but have no common intersection

region. Extension (L1; L2) cannot be considered, because if the initial region were

I1 [ I2, then the robot could enter either L1 or L2, and it wouldn't know which way

to move in order to reach the goal. If the initial region is I2 we will miss an existing

plan if we only consider extension set (L1); if the initial region is I1 we will miss an

existing plan if we only consider extension set (L2). Therefore, we need to consider

both combinations: L1 in the extension set with L2 being an obstacle, and L2 in the

extension set with L1 being an obstacle.

When there are more confusable landmarks, things get more complicated. In

Figure 5.11(b), L1 is confusable with L01 and L2 is confusable with L02. All of them

intersect the goal. We have to check all possible combinations of extension sets,
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Figure 5.12: Considering all possible extension sets

(L1; L2), (L1; L
0

2
), (L0

1
; L2) and (L0

1
; L0

2
), with the remaining disks being treated as

obstacles each time. In this �gure, it is evident that for each possible extension set

there exists a location of an initial region disk, for which this particular extension

set can produce a plan, but no other possible extension set can do so. For example,

in Figure 5.11(b) I2 is included in the preimage of (L1; L2) with L0
1
and L0

2
being

treated as forbidden regions. No other valid extension set can produce a preimage

that includes I2.

In general, if n pairs of confusable disks (with no common region) have to be con-

sidered for the next extension set, then all 2n possible combinations of non-confusable

landmarks must be tried. In this case, a complete algorithm is exponential.

5.6.3 More complications

Even when the extension set contains no two landmarks that are confusable, we still

have to be careful. If there are non-extension landmarks that are confusable with some

landmark in the extension set, they must be considered forbidden regions, because
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they may cause the robot to erroneously believe that it has achieved the extension

set. Therefore, the e�ect of adding a landmark disk to the extension set may not be

monotonic with respect to the existence of a plan, because it may introduce forbidden

regions that make the problem harder. As a result, it is not su�cient to consider the

biggest possible extension set when looking for a plan.

Consider the example of Figure 5.12. The goal G intersects the non-confusable

landmark disks L1 and L2. A third landmark L01, confusable with L1, exists in the

workspace. Normally, we add both L1 and L2 in the extension set (Figure 5.12(a)).

This makes L0
1
a forbidden region, so it is depicted in dark grey. If the initial region is

disk I1, a guaranteed plan exists. However, if the initial region is disk I2, no plan can

be found, because I2 is hidden behind the forbidden region L01. On the other hand,

if we keep L1 outside the extension set, the preimage of L2 intersects L01, and then

the preimage of both of them (with L1 being a forbidden region) includes I2 but not

I1 (Figure 5.12(b)). The �rst choice of the extension set returns a plan for I = fI1g,

but no plan for I = fI2g. The inverse is true for the second choice. Consequently, a

complete planner must consider both cases.

Let E be a potential maximal extension set that does not contain any pair of

confusable landmarks. Let F be a subset of E containing all landmarks of E that may

be confused with some landmark outside E. A complete planner needs to consider all

possible extension sets (E n F) [ S, where S is any subset of F . Once again, this is

an exponential number of extension sets.

It is evident that the existence of confusable landmarks makes the planning prob-

lem signi�cantly harder. Although algorithms that deal with this case can be found,

it may be preferable to avoid confusable landmarks altogether. After all, this is the

basic idea of this thesis: Find the factors that contribute the most to the complexity

of the planning with uncertainty problem, and engineer the robot and the workspace,

so that these factors do not a�ect the problem any more. Since confusable landmarks

make the planning problem intractable, we must try to use only distinguishable land-

marks.
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5.7 Stochastic plans

Up to now we have examined only plans which are guaranteed to succeed after a

bounded number of steps. In real life the class of planning problems that admits

such solutions may be too limited. Imagine, for example, trying to put a key in a

lock without looking. First, the key is moved to touch the lock. Then it is moved to

and fro until the slot is found. The termination of the to and fro motions is based

on the detection of the edge of the lock area. The number of such motions may be

unbounded, but usually it takes only a few of them until the key slides into the slot.

The expected duration of this plan (in steps) is bounded (see [34]).

A simpler formulation of the above example using landmarks can be found in

Figure 5.13. There are three landmarks, two big ones L1 and L2, and a small one L

between them. The goal intersects only L. The omnidirectional preimage of L does

not intersect either L1 or L2. But a preimage of L1 and L intersects L2, and a preimage

of L2 and L intersects L1. Let R1 = P(d1; fL2; Lg)\L1 and R2 = P(d2; fL1; Lg)\L2.

A robot starting from R1 and following d1 has some probability p to hit L (and from

there go to the goal) and probability q = 1 � p to terminate its motion on L2. In

the latter case, it can move into R2 and follow d2. Let us assume that everything is

symmetric, so that the probability that it stops in L is again p and the probability

that it goes back to L1 is q. In the worst case, the robot may move between L1 and

L2 for ever. However, the expected number of steps before the robot gets into the

goal can be easily found to be 1=p, which is a �nite number if p is positive.
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Stochastic plans like the above have been investigated in detail in [34, 43], but

the notion of landmarks facilitates their study. A deterministic plan, like the ones we

have been producing up to now, can be represented as a directed acyclic graph with

the following properties. One node represents the initial position, one node represents

the goal, and all other nodes represent landmark disks. There is one motion command

attached to each node except for the goal node. Edges stemming from each landmark

and initial position node n1 connect it with each landmark or goal node n2 which the

robot may reach, if it starts from n1 and executes the motion command attached to

it. If i is the initial position node and g is the goal node, then the existence of a path

can be veri�ed by �nding the truth value of the following recursive function:

path(i;g) � (i = g) _ (9mc ;8x 2 suc(i;mc) : path(x;g));

where the function suc(n;mc) returns the set of nodes that are achievable by a robot

starting from node n and executing motion command mc. The fact that the graph

does not contain any cycles guarantees that the computation of the above function

can be performed with a bounded number of recursions.

The basic idea behind a stochastic plan is that it allows cycles during its execution.

However, the probability of achieving the goal node from any node that is reachable

by the robot must be strictly positive. Otherwise, the achievement of the goal would

not be probabilistically guaranteed. The same function path theoretically de�nes the

existence of a stochastic path between i and g. Nevertheless, since the graph in this

case may contain cycles, the computation of path may enter an in�nite loop. An

alternative computable de�nition is the following:

path(i;g) � goodpath(i;g; nil)

goodpath(i;g;N) � (i = g) _

(i 62 N ^ 9mc ;8x 2 suc(i;mc) : goodpath(x;g; app(i;N))) _

(i 2 N ^ 9mc ;9x 2 tail(i;N) : goalpath(x;g; tail(i;N)))

goalpath(i;g;N) � (i = g) _

(9mc ;9x 2 suc(i;mc) : x 62 N ^ goalpath(x;g; app(x;N))):

The function app(x;N) puts element x at the end of list N; the function tail(x;N)

returns the part of N beginning with element x up to the end of the list. Starting
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Figure 5.14: Finding stochastic plans

from a particular node, the goodpath function requires that all possible successors of

the node have the same \goodpath" property. It keeps track of the visited trace of

nodes, and it terminates either by reaching the goal node, or by discovering a cycle. In

the �rst case, it returns success; in the second, it attempts to �nd out whether there

is positive probability to exit the cycle and get into the goal. This is the function

goalpath, which terminates successfully if it reaches the goal, and returns failure if it

leads back into the cycle or it creates a dead-end cycle itself.

Figure 5.14 shows two directed cyclic graphs. The �rst one, 5.14(a), corresponds

to the example of Figure 5.13. Function path(L1;G) works as follows:

path(L1;G) � goodpath(L1;G; nil)

� goodpath(L2;G; [L1]) ^ goodpath(L;G; [L1])

� goodpath(L1;G; [L1; L2]) ^ goodpath(G;G; [L1; L])

� (goalpath(L1;G; [L1; L2]) _ goalpath(L2;G; [L1; L2])) ^ 1

� goalpath(L;G; [L1; L2; L]) _ goalpath(L;G; [L1; L2; L])

� goalpath(G;G; [L1; L2; L;G])

� 1:

Figure 5.14(b) shows a di�erent example with two cycles:

path(a;g) � goodpath(a;g; nil)

� goodpath(b;g; [a]) ^ goodpath(c;g; [a])

� goodpath(a;g; [a;b]) ^ goodpath(d;g; [a; c]) ^ goodpath(g;g; [a; c])

� goalpath(a;g; [a;b]) ^ goodpath(c;g; [a; c;d]) ^ 1
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� goalpath(c;g; [a;b; c]) ^ goalpath(c;g; [c;d])

� goalpath(g;g; [a;b; c;g]) ^ goalpath(g;g; [c;d;g])

� 1 ^ 1 � 1:

The above examples have taken a �xed graph and attempted to �nd a probabilis-

tically guaranteed path on it. In reality, the topology of the graph depends on the

various choices of the motion commandsmc. Although we may consider only a �nite

number of motion commands (because we can group together all commands that pro-

duce a graph with the same topology), it is not clear how we can avoid considering

an exponential number of them. Another interesting problem is to �nd the optimum

combination of motion commands, so that the expected length of the execution trace

of a plan is minimum. In the next chapter we discuss a method that may be used to

address this problem.



Chapter 6

Multiparametric Planning

From our experimentation with the planner of Chapter 4, both in simulation and

with a real robot, it became apparent that the performance of the planner depends

heavily on the choice of the directional uncertainty �. On one hand, we wish to

be conservative on the choice of � (i.e., use a big value), so that the assumption of

guaranteed navigation within the control uncertainty cone is not violated. On the

other hand, unnecessarily high values of � not only cause the planner to return failure

(although a plan may exist), but they also increase planning time. Furthermore,

the choice of � is not straightforward, and requires experimentation. Many times, it

is possible to change the actual value of the directional uncertainty both at design

time (use more accurate sensors, make the workspace oor atter) and at execution

time (make the robot go slower, tighten the motion control loop, etc.). Also, when a

planner returns failure, it would be nice to know the maximum possible uncertainty

�m for which a guaranteed plan exists. If �m is close enough to the actual uncertainty

of the robot, then the plan found for �m may be usable; it is not guaranteed, but its

probability of success may be quite high.

In this chapter we present a planner that computes the dependence of plans on the

choice of �. This planner can solve all the problems presented above and, as we will see,

many more. The planner uses a technique for computing su�cient representations of

preimages depending on more than one parameters, with the help of an algorithm that

considers critical events in order to discretize the parameter space into a polynomial

134
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number of equivalence cells. Then, it su�ces to compute just one preimage per cell.

6.1 Higher dimension preimages

A directional preimage P is a two-dimensional subset of <2, which depends on the

following parameters: the commanded direction of motion d, the directional uncer-

tainty �, the target set T , the arrangement of the obstacles and landmarks in the

workspace, and the control uncertainty model. In Chapter 4 we studied the depen-

dence of the directional preimage on d when all other parameters remain constant,

and we called the resulting three-dimensional set an omnidirectional preimage. The

assumption that the commanded direction remains constant during the execution of

a motion command enables us to describe omnidirectional preimages as a set of di-

rectional preimages computed for various values of d (slices). We have proven that a

sound and complete planning algorithm needs to compute only a polynomial number

of such slices.

This technique can be extended in order to study the dependence of the directional

preimage on other parameters as well. For example, Donald [23] analyzed the e�ect

of error model on motion planning. If error model can be parametrized with a single

parameter, then a �nite number of directional preimages (slices), computed for critical

values of this parameter, can be used to adequately represent all possible preimages.

For a plan to be guaranteed, all these preimages must include the initial region. In

Figure 6.1(a) we show an example with model error. The commanded direction of

motion d is �xed. The location of the center C of the upper landmark disk is not

perfectly known, but it may lie anywhere on a small line segmentAB. Let p represent

the actual distance between A and C. When p = 0, the preimage consists of a single

component that includes the initial region I. As p grows, the topology of the preimage

does not change, up to the point where the preimage breaks into two components.

At this point I is still included in the preimage. As p continues to grow, the left ray

of the upper component moves to the right, and eventually it becomes tangent to the

single disk in I. From that point on, the initial region stops being included in the

preimage. The topology of the preimage changes once more, when the right ray of
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Figure 6.1: A two-parametric motion planning problem

the upper component hits the obstacle. Topological changes of the preimage occur

at critical values of p, for which an edge of the boundary of the preimage becomes

tangent to a landmark or obstacle disk. The inclusion of I in the preimage may

change at critical events that occur when an edge of the boundary of the preimage

becomes tangent to a disk in I. In the example of Figure 6.1(a) I is not included in

the preimage for all possible values of p, therefore a motion command along d is not

guaranteed to lead the robot into one of the two landmarks.

The above analysis is very similar to the analysis of Chapter 4. The problem

becomes more interesting if we allow d to vary as well, and attempt to �nd one value of
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d for which motion from I along d is guaranteed to terminate on one of the landmarks

despite control uncertainty and model error. In Figure 6.1(b) we show such a value

of d. It has been selected so that the left ray of the lower landmark leaves I to its

right, and so that the breakup of the components does not occur even when C reaches

its rightmost location. A direction d with these properties can be found as follows:

First, observe that each critical event occurs when a preimage edge is tangent to a

disk, or a spike of the preimage intersects a disk. These conditions occur for particular

combinations of the changeable parameters d and p. The relation between d and p, for

which a critical event occurs, de�nes a critical curve in the dp-plane. A motion across

a critical curve (in dp-space) triggers a change of some property of the preimage. If

we compute the curves that correspond to all critical events and overlay them, the

dp-plane is divided into cells. All points in a cell lie on the same side of all curves,

therefore the properties of the preimage (that are relevant to the planning problem)

remain unchanged at each point of a cell. Therefore, it su�ces to examine one point

in each cell, in order to �nd a preimage with desirable properties. The number of

cells is equal to the square of the number of critical events. The number of critical

events is usually a polynomial function of the complexity of the workspace. Thus the

overall algorithm is polynomial, too. The collection of directional preimages, each

corresponding to a unique cell in the decomposition of the dp-space, is a polynomial

description of a four-dimensional structure, representing the omnidirectional preimage

of the goal set for each possible value of the parameter p.

In general, we can solve problems where the directional preimage of a target

set T depends on a n-dimensional parameter p = (p1; p2; : : : ; pn) 2 Dp (with the

commanded direction d being one of the pi's). In this case, critical events correspond

to hyperplanes in the n-dimensional domain of p. These hyperplanes subdivide Dp

into cells. The n+1-dimensional preimage can be then represented by a �nite number

of 2-dimensional slices (directional preimages). This number is equal to the number

of cells in the subdivision.
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6.2 Planning with controllable directional uncer-

tainty

In this section we apply the above ideas to the case where p � �, i.e. the changeable

parameter is the directional uncertainty of the robot. In particular we assume that

the robot has control over its directional uncertainty and it can adjust it to take any

value in a given interval [�min; �max]. Such control is possible through other variables

like the speed of motion of the robot (a fast-moving robot will have bigger directional

uncertainty), or the computing resources dedicated to motion control. Undoubtedly,

uncertainty cannot be shrunk for free, the robot will have to pay some kind of cost.

If speed is the control variable, then the cost is the time it takes to execute the plan;

if the amount of computing resources for motion control determines the uncertainty,

then the cost is the opportunity cost of not using these resources for some other

function.

When both d and � change, the directional preimage of a set of landmark regions

changes by deformation, except for certain combinations of values of d and � where

topological changes occur. All pairs of d and � for which the same topological change

occurs form a critical curve in the d�-space. The four-dimensional preimage corre-

sponding to all possible uncertainty values and all possible velocity directions can be

represented by a polynomial number of 2-dimensional slices (directional preimages).

Using this representation we develop two basic planners, a one-step planner and a

multi-step planner. The former �nds the combination of d and � for which a motion

command along d with uncertainty � is guaranteed to lead the robot into the goal,

and at the same time the cost paid for the choice of � is minimum. The second uses

a greedy algorithm to create multi-step guaranteed plans with minimal cost at each

step but not necessarily minimal overall cost.

The same planners can be used even when the directional uncertainty is not con-

trollable by the robot, but either varies on its own (anisotropic workspaces like rivers),

or is actually constant. In the latter case, analyzing the dependence of plans on �

allows us to develop more robust plans (so that the robot may react to unexpected

events at execution time without the need for replanning), or, when no guaranteed
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plan exists, to �nd non-guaranteed plans with maximum likelihood of success.

Finally, we mention several other possible applications of two-parametric planning

problems that can be solved with similar algorithms. The only requirement is that

the number of critical curves remains polynomial, and that the equations of critical

curves can be easily computed and solved.

6.2.1 Statement of the problem

The problem we attempt to solve in this chapter di�ers from the problem of Chapter 4

only in the de�nition of the imperfect-control mode motion command (I-command).

Therefore, the problem statement of Section 4.2 can be used to de�ne this problem

as well, with just the following exception: Instead of de�ning an I-command as a pair

of a commanded velocity and a termination set, we now de�ne it as a triplet (d; �;L),

where d 2 S1 is the commanded direction of motion, � 2 [�min; �max] is the directional

uncertainty, and L is a set of landmark disks de�ning the termination set (the robot

stops as soon as it enters one of these disks). The directional uncertainty is now

part of the imperfect motion command, because we assume that it is controllable by

the robot in a connected interval [�min; �max] � [0; �=2). A decreasing function c(�)

de�nes the cost of navigating with uncertainty �.

We will use ` to describe the number of landmark disks in the workspace. The

number of obstacles is in O(`). We will denote with s the number of maximal con-

nected sets of landmark disks (landmark areas). Given a goal region G and an initial

region I, the problem is to generate a sequence of motion commands to make the

robot move from its initial position in I into G and stop there. In addition, we wish

to minimize the cost paid for the various choices of directional uncertainty in the

imperfect-control motion commands.

6.2.2 Outline of a planning algorithm

The planning method we use follows the technique outlined in Subsection 4.3.2. We

�rst construct the extension of the goal E(G) as the union of all landmark areas
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which intersect the goal. The remaining landmark disks are called the intermediate-

goal disks. If the goal does not intersect any landmark disk, then it is considered

unachievable, since the robot cannot sense its achievement. If the initial region I lies

entirely in E(G), no further planning is needed since a correct plan to achieve the goal

has already been found; the robot can move into the goal with a single perfect-control

motion.

The preimage of E(G) for the pair (d; �) is the maximal set of points, such that

executing the imperfect-control motion command (d; �; E(G)) from any of these points

is guaranteed to reach E(G). By de�nition of the goal extension, the robot cannot

move into it using the perfect-control mode. Therefore, if the initial region is not a

subset of the goal extension, the planner must try to �nd a pair (d; �), such that the

initial region I is contained in the preimage of E(G) for (d; �). If one such pair (d; �)

is found, the command (d; �; E(G)) starting from anywhere within I is guaranteed

to attain and terminate in E(G). From there a perfect-control motion command will

achieve the goal G. We call this plan a one-step plan.

A one-step plan may not exist, or may not be desirable, if its cost is too high. Then

the planner can attempt to create a multi-step plan iteratively. At each iteration,

it selects a pair (d; �), such that the corresponding preimage of the current goal

extension intersects one or more intermediate-goal disks. The disks in all landmark

areas containing the intersected landmark disks are added to the goal extension, and

stop being intermediate-goal disks. The new larger extension set is used for the next

iteration of the planner; The preimage of the new goal extension is computed, and

so on, until the initial region is contained in a preimage, or no new intermediate-goal

disks can be intersected, in which case a correct plan cannot possibly exist.

The construction of the search space explored by the above algorithm requires

discretizing S1 � [�min; �max], i.e., the continuous d�-space. In other words, we must

answer the following question: At each iteration, which values of (d; �) should the

planner consider? In the next subsection we show that the d�-space can be decom-

posed into a �nite number of cells and that only one pair (d; �) need be considered in

each cell to ensure that the planner is complete. From this result we derive a �nite

search space that can be explored exhaustively, if necessary.
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Since we allow � to vary, one may wonder if the planner can ever return failure.

The answer is obviously yes if the lower bound on � is strictly positive. It remains yes,

even if � is allowed to become zero and G intersects a landmark disk. For example,

this happens if the workspace contains a single landmark disk L intersecting G, while

I consists of a disk that is larger than L.

6.2.3 Building the discrete state space

Each planning iteration requires selecting a pair (d; �) such that the preimage of the

current goal extension either contains the initial region I, or intersects intermediate-

goal disks. We now show that the d�-space can be partitioned into an arrangement

of cells of dimensions 2, 1 (line segments), and 0 (points), which are regular in the

following sense: The preimage of the goal extension for any pair (d; �) in a cell C

contains the same initial-position disks and intersects the same intermediate-goal disks

as the preimage for any other pair (d0; �0) in C. The number of cells is polynomial in

the number of landmark and obstacle disks.

De�nition 6.1 (Critical points) Given an extension set E in the workspace, a

point (dc; �c) is considered critical, if there exists another point (d0c; �
0

c) lying arbi-

trarily close to (dc; �c) in the d�-space, such that the preimages of E computed for

each point have the following property: Either the sets of initial-region disks included

in each preimage are not equal, or the sets of intermediate-goal disks intersected by

each preimage are not equal.

Critical points occur when an initial-region or intermediate-goal disk becomes

tangent (internally or externally) to the preimage. Moreover, critical points may

occur when the preimage changes discontinuously during a catastrophic event. As we

discussed in Subsection 4.5.1, catastrophic events may occur only when two preimage

components become tangent to each other.

Therefore a critical point corresponds to a tangency condition between a preim-

age component and a disk, or between two preimage components. We call such a

tangency condition a critical event. Depending on what elements of the components'

contours come in contact we distinguish edge-to-arc tangency, vertex-to-arc tangency,
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Figure 6.2: Tangency conditions that create critical events

and spike-to-arc tangency. The remaining possible cases correspond to degenerate

arrangements and need not be considered if we assume general positioning of objects.

All the critical points that correspond to the same critical event lie on a curve in the

d�-space, which we call a critical curve.

In Figure 6.2(a) we show an edge-to-arc tangency condition. In this case the

critical curve is a straight line. Indeed, since the preimage edge that is tangent to

disk L is part of a left ray that is already tangent to extension disk D, its direction

must be equal to the �xed direction " of the internal common tangent of the two

disks. If d is the commanded velocity direction and � the directional uncertainty,

then " must be equal to d + � � �. If the tangent edge were a part of a right ray,

then " would be equal to d + � + �. Therefore, the equation of a critical curve that

corresponds to an edge-to-arc tangency is d = �� + " � �, which de�nes a straight

line with slope �1.

A similar critical curve corresponds to the case of vertex-to-arc tangency, shown

in Figure 6.2(b). Disk L is internally tangent to a preimage component, so it lies

completely inside the component. In this case a ray and two disks pass from the

same point. Since the ray must pass through a �xed point (the intersection of the
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Figure 6.3: I-critical events

two disks), its direction must be equal to a speci�c value ", de�ned by the direction of

the left tangent from the �xed point to disk D. Therefore, the corresponding critical

curve is once again a straight line with slope of �1.

Unfortunately, spike-to-arc intersections (Figure 6.2(c)) do not generate such sim-

ple critical curves. We call the critical curve that corresponds to this condition a

spike curve and we represent it with � = fspike(d). In Appendix B we show that a

spike curve has a single maximum and just one intersection with any line of slope

�1. This is useful because the number of the intersections of a spike curve with the

straight line critical curves is limited to one per curve.

Before even the planning search begins, it is possible to exhaustively list all (d; �)

pairs that may cause a critical event. However, it is not possible to know a priori

whether a critical event will actually occur or not, without computing the preimage.

Because of that, we refer to all such value pairs as potentially critical. We distinguish

three kinds of potentially critical events, I-critical, L-critical, and E-critical events.

I-critical events These occur when an initial-region disk is about to be included,

or stop being included in the preimage. There are four types of them, shown in

Figure 6.3. All correspond to straight-line critical curves.

I-Include event : A left ray of the preimage is tangent to an initial-region disk, with

this disk on its right-hand side.
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I-Leave event : A right ray of the preimage is tangent to an initial-region disk, with

this disk on its left.

I-Left-Vertex event : The endpoint of a left ray of the preimage coincides with the

entry intersection point1 of an initial-region disk by an extension disk.

I-Right-Vertex event : The endpoint of a right ray of the preimage coincides with the

exit intersection point of an initial-region disk by an extension disk.

L-critical events These occur when an intermediate-goal disk is about to be in-

tersected or stop being intersected by the preimage. There are three types of them,

shown in Figure 6.4.

L-Reach event : A left ray of the preimage is tangent to an intermediate-goal disk,

with this disk on its left.

L-Exclude event : A right ray of the preimage is tangent to an intermediate-goal disk,

with this disk on its right.

L-Spike event : A spike of the preimage lies on the boundary of an intermediate-goal

disk.

1When a disk �1 intersects another one, �2, we de�ne the entry intersection point of �2 by �1, as
the point where we enter �2 when we move counterclockwisely along the boundary of �1. The point
where we exit �2 is the exit intersection point.
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L-Reach and L-Exclude events have a straight line critical curve. However, the

critical curve that corresponds to L-Spike events is a spike curve.

E-critical events Whereas I-critical events and L-critical events can be attributed

to the interaction of a ray or a spike of the preimage with an initial-region or

intermediate-goal disk, E-critical events a�ect primarily the topology of the preim-

age, which changes discontinuously. During this change, initial-region disks may get

into or out of the preimage, and intermediate-goal disks may begin or stop being

intersected by the preimage. There is only two E-critical events, both resulting in a

straight line critical curve.

E-Reach event : A left ray of the preimage is tangent to an extension disk, with this

disk on its left.

E-Exclude event : A right ray of the preimage is tangent to an extension disk, with

this disk on its right.

As we mentioned before, not all the points of the curves that correspond to the

above events are actually critical. However, we know that any actual critical point has

to lie on one of the curves. The network of these curves determines an arrangement
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of cells in the d�-space. Figure 6.6 shows a cell arrangement with � 2 (0; �=2). Each

L-Spike curve can be attributed to a unique combination of three disks. Every other

critical curve can be attributed to a combination of just two disks, and only up to a

four such curves can be attributed to the same disk combination. Now, we can count

the number of cells as follows:

The number of landmark disks is `, the number of obstacle disks is O(`), and the

number of initial-region disks is assumed constant. Then the number of extension

and intermediate-goal disks is O(`). The number of I-Include and I-Leave curves is

O(`), the number of I-Left-Vertex, I-Right-Vertex, L-Reach, L-Exclude, E-Reach and

E-Exclude curves is O(`2), and the number of L-Spike curves is O(`3). Furthermore,

any two critical curves have at most one intersection (see Appendix B for proof).

Therefore:

Lemma 6.2 The number of cells in the arrangement determined by the critical curves

is O(`6).

6.2.4 Searching for guaranteed plans

We will now show how one can utilize the computed cell arrangement to generate

one-step and multi-step guaranteed plans for a robot that can control the parameter

� within the given interval [�min; �max]. In both cases the �rst step of the algorithm is

to �nd the extension E(G) of the given goal. Then, given E(G), the appropriate cell

arrangement is computed.
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One-step planning Let us �rst consider the generation of minimal-cost one-step

plans. In this case, the planner only needs to �nd a pair (d; �), with � 2 [�min; �max],

such that the preimage of the goal extension E(G) for the imperfect-control motion

command (d; �; E(G)) fully contains the initial region I. Thus, the planner can discard

the L-critical curves in the d�-plane. The remaining I- and E-event curves (all straight

lines) de�ne an arrangement of O(`4) cells. In every cell, the planner can select an

arbitrary pair (d; �) and compute the corresponding preimage using the O(` log `)

sweep-line algorithm presented in Subsection 4.4.2. In the worst case, the planner

scans all the cells. Hence, it returns a plan or declares failure in time O(`5 log `). The

resulting planner is complete.

Minimizing the decreasing cost function c(�) requires that we �nd the plan with

the highest possible value of �. The value of � for such a plan can only be �max or

the �-coordinate of the intersection of two critical lines. Otherwise, it would always

be possible to move to another (d; �) point in the same cell (i.e. without changing

the inclusion state of I) which has a bigger � value. This observation yields the

following planning algorithm: Set � to �max and compute the preimage of E(G) for

each cell of the arrangement intersecting the line � = �max. If one preimage contains

I, return success (and the corresponding value of d). If no preimage contains I, scan

the intersections of I- and E-event lines verifying � 2 [�min; �max] in decreasing order of

their �-coordinates. For every intersection point (d; �), compute the preimage of E(G).

If this preimage contains I return success, otherwise consider the next intersection

point. Return failure if all intersections with � 2 [�min; �max] have been considered

without success.

Using a sweep-line technique to scan the intersection points, this algorithm takes

output-sensitive time O((`2 + c`) log `), where c 2 O(`4) is the rank (in decreasing

order) of the value of � selected among the �-coordinates of the O(`4) intersection

points of the event lines.

Theorem 6.3 Minimum-cost one-step guaranteed plans can be found with the above

algorithm in O((`2 + c`) log `) time.

Figure 6.7 shows a simple example run with the implemented one-step planner.
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Figure 6.7: Maximum-uncertainty one-step guaranteed plan

The workspace contains two obstacle disks, and �ve landmark disks forming two

landmark areas that both intersect the goal G. The initial region consists of two disks,

I1 and I2. The directional uncertainty is controllable in the interval [0.1,0.5] radian.

The planner produces a one-step plan, i.e., a plan containing a single imperfect-control

motion command (d; �;L), with d shown in the �gure, � = 0:16 radian, and L made

up by the two landmark areas intersecting G. The set of points in the workspace from

which this command is guaranteed to reach L (i.e., the preimage of L) is outlined in

the �gure. It fully contains the initial-region disks I1 and I2. The value of the control

uncertainty selected by the planner is maximum over all correct one-step plans. Any

slight variation of the direction of motion or increase of the directional uncertainty

would cause an initial-region disk to be partially outside the preimage of L.

Multi-step planning When the one-step strategy yields too costly a plan or no

plan at all, we can perform backchaining and create multi-step plans. As explained

in detail in Chapter 4, during the backchaining process we compute a sequence of

successively growing extension sets. During each iteration of the planner, we add to
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the current extension all intermediate-goal disks that are intersected by some direc-

tional preimage of the current extension set. Backchaining stops when either we �nd

a preimage that includes all initial-region disks, or no more intermediate-goal disks

can be intersected by the preimages of the current extension set.

In order to compute minimum-cost multi-step plans, we have to generate and

compare all extension set sequences that yield a guaranteed plan. However, the

number of such sequences is exponential in the number of landmarks, so this algorithm

would be impractical. Instead, we present a greedy algorithm that minimizes the cost

of the current iteration step only:

1. The algorithm begins by running the �xed uncertainty planning algorithm of Chap-

ter 4 with � = �max. If a guaranteed plan is found, it is returned and the algorithm

terminates. Otherwise, let us callME the maximum extension set found (consist-

ing of all the disks from where the robot can reliably reach the goal using the value

�max for its directional uncertainty).

2. UsingME as the extension set and all other landmark disks as intermediate goals,

we compute the cell arrangement in the d�-plane. The planner sweeps a line

parallel to the d-axis in order to �nd the highest value of the directional uncertainty

�a 2 [�min; �max], such that there exists a preimage of ME which either contains

the initial region or intersects just one intermediate-goal disk. During the sweep

preimages are computed only at critical curve intersection points, as explained

in the one-step planning algorithm description. However, in this case there is an

additional type of points that must be visited, the points where L-critical curves

reach their maximum. Indeed, below such points an intermediate-goal disk may

start being intersected by the preimage.

3. If a preimage including the initial region is found, the minimum-cost multi-step

plan sought is the one-step plan corresponding to that preimage.2

2Here, we make the assumption that the aggregate cost function has \reasonable" properties,
e.g., that the cost of executing a one-step plan [(d; �; E(G))] is less than the cost of executing any
n-step plan [(d1; �1;L1); : : : ; (dn; �n; E(G))], where � � �i for all i 2 [1; n].
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4. If a preimage intersecting one intermediate-goal disk is found, that disk and all

other disks in the same landmark area are added to ME and new event curves

are introduced in the arrangement. Although the preimage of the new extension

set may include all initial-region disks or intersect another intermediate-goal disk

for a value � > �a, we do not need to backtrack the sweep line (see proof below).

Instead, we compute all events that correspond to intersections of the new curves

(among themselves and with the old curves) that occur for values of � > �a and

we sort them by decreasing �. Before we proceed with the line-sweep, we process

all these events.

5. This procedure is repeated until we �nd a preimage that includes all initial position

disks, or no more intermediate-goal disks can be intersected. In the latter case the

planner returns failure (this may happen, for example, if the initial region is too

big). Since there are at most O(`) iterations (each absorbing one intermediate-goal

disk into the extension set), an output plan has ` steps at most.

Whenever we compute the cell arrangement, we do not need the intersections

of the L-Spike event curves among themselves (unless this intersection occurs at the

maximumof one or both curves), since these intersection points cannot give rise to the

highest value of � we are looking for. Indeed, if at such a point c (see Figure 6.8) an

intermediate-goal disk is intersected by the preimage, it is always possible to move to

higher values of � while remaining beneath the curve that initiates the intermediate-

goal disk intersection (one of the two intersecting L-critical curves, or some other curve

that passes above c). We do not need to consider c, since the same intermediate-goal

disk can be intersected by the preimage for a higher value of �. As a result, we avoid

checking the O(`6) intersection points of the spike curves with themselves, and we are

left with only O(`5) points to test.

In order to make that possible, we need to exclude spike curves from the sweep-

ing process (otherwise the intersections among themselves would be needed for the

sweeping). All intersections of spike curves with the other curves are computed and

put in the event queue, whenever a spike curve emerges at its maximum � value. All

such maximum points (whose number is O(`3)) can be precomputed and inserted in
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the event queue before sweeping begins.

Lemma 6.4 Each point in the sweep event queue need be visited by the planning

algorithm only once.

The proof is as follows: Assume that an intermediate-goal disk D has been just

intersected by the preimage of some extension set E for � = �a and is being added to

E. Let us consider an already tested point (d�; ��) (�� > �a), for which the preimage

of E [ fDg intersects another intermediate-goal disk D0. (The arguments that follow

hold also for the case where (d�; ��) is a point for which the preimage of E [ fDg

covers the entire initial region.) A preimage consists of one or more disconnected

components. Let us consider the component that intersects D0.

- The component must include D. If it consisted solely of disks in E this same

component would have been present in the preimage of E, when the sweep line

passed from this point before. Since an intermediate-goal disk would have been

intersected, the previous iteration would have been terminated at ��, and would

not have proceeded down to �a.

- The component cannot include any disks from the previous extension

set E. To see this assume the component includes D and some disks from E. If

this were the case, when (d�; ��) was �rst visited (when D was still an intermediate
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goal), the preimage of the disks in E would have intersected D, and the iteration

would have not advanced down to �a.

- D cannot be the only disk of the component. The point (d�; ��) was present

in the event queue before D became part of the extension set. Therefore, in

general,3 it will not be critical with respect to the intersection of D0 by a preimage

component that contains only D. As a result, there must exist values of � higher

than ��, for which this component intersects D0. This means that D0 will be

intersected and become part of the extension set before the new iteration proceeds

down to (d�; ��). During subsequent iterations the point (d�; ��) will be irrelevant,

as D0 will not be an intermediate goal any more.

From the above arguments, it follows that if a point has already been visited

once, it cannot be critical again for any extension set of subsequent iterations. As

a result, we compute one directional preimage per point visited by the sweep line.

Since computing the preimage takes time O(` log `) and the sweeping process visits

O(`5) points, we derive the following theorem:

Theorem 6.5 The total complexity of the greedy multi-step planner is O(`6 log `).

Figure 6.9 illustrates the operation of this algorithm with an example. The

workspace contains seven landmark disks A through G, and four obstacles. The

goal G intersects landmark disk A. The initial region I consists of a single disk. The

directional uncertainty lies in the interval [0:0; 0:5] radian. This means that we are not

interested in uncertainty angles above 0.5 radian because the robot cannot do worse

than that. Using � = 0:5, the planner �rst �nds a guaranteed motion command to

reach A from the landmark disks B and C. The extension of goal then consists of A,

B, and C. For the commanded direction shown in Figure 6.9(a) and � = 0:41, the

preimage of this goal extension touches D, which is added to the goal extension. E is

then touched by a preimage for � = 0:28 (Figure 6.9(b)). G is touched by a preimage

for � = 0:32 (Figure 6.9(c)). Both disks F and G are added to the goal extension,

since they form a single landmark area. At this point, all landmark disks are in the

3I.e., barring a degenerate coincidence that can be disregarded.
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Figure 6.9: Multi-step greedy planning
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goal extension. The initial-position disk is then covered by a preimage for � = 0:1

(Figure 6.9(d)).

At every iteration, the algorithm maximizes directional uncertainty to achieve the

current extension of the goal. In general the generated plan, if any, would not min-

imize a given cost function. Generating minimum-cost plans is intrinsically harder.

It may require the selection of a smaller directional uncertainty at an early itera-

tion, if this choice allows larger values of the uncertainty to be selected at subsequent

iterations.

6.2.5 Extensions

The algorithms presented in this chapter were based on the same assumptions we used

in Chapter 4, namely, that region shapes are circular, no contact with the obstacles

is allowed, landmark and obstacle discs do not overlap or touch each other, and

navigation within landmark areas is accurate.

All these assumptions can be relaxed in exactly the same manner we described in

Chapter 5, without losing completeness or polynomiality. With these extensions, the

presented algorithms become powerful tools for e�cient planning under uncertainty.

6.3 Creating non-guaranteed plans

At the end of Chapter 4 we mentioned that there exist ways to generate non-

guaranteed commands (if no guaranteed ones exist) which have better chances to

succeed than a totally uninformed Brownian motion. To compute such commands

we can use the same algorithm we presented in the above sections, changing only the

de�nition of the cost function.

Consider again the problem we addressed in Chapter 4. Let the �xed directional

uncertainty of the robot be �f . If for a given planning problem there exists no guar-

anteed plan, we wish to �nd a non-guaranteed one, whose chances to succeed are

maximal.

Whenever the robot executes a motion command (d;L), which is only guaranteed
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Figure 6.10: Negative directional uncertainty

to succeed for values of the directional uncertainty up to �g < �f , the robot stands the

chance to miss all the landmarks in L. Obviously, the chance of failure is a decreasing

function of �g. Therefore, we can use the maximum value of directional uncertainty

for which a motion command is guaranteed to succeed as a measure of the likelihood

of success of the command. This suggests that the exact same algorithms presented

in the previous sections of this chapter can be used to �nd such motion commands. In

this case, the cost function represents the likelihood of plan failure during execution.

6.3.1 The algorithm

After planning with constant uncertainty �f fails, we can invoke the one-step

minimum-cost planner to �nd the initial motion command with the highest likeli-

hood of success. We use �f in place of �max (we are not interested in higher values,

because we already know that they cannot lead to a guaranteed initial command),

and we set �min = ��=2. The negative values are necessary to solve the case where

no guaranteed command exists even with zero directional uncertainty. This may be

the case if the initial region of the robot is too big with respect to the size of the

landmark areas. Figure 6.10 presents such a case. The commanded direction shown

maximizes the chances of the robot to hit the landmark area.4

The above idea can be extended for the creation of multi-step non-guaranteed

plans. Once again we set �max = �f and �min = ��=2, and we call the greedy

4Negative uncertainty may also be possible in certain environments where a potential �eld in the
workspace forces the robot to move within valleys.
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algorithm of Subsection 6.2.4. During each iteration the extension set is augmented

by one landmark disk, until the initial region becomes totally included in the preimage.

Note, however, that the probability of success of the total plan is not guaranteed to

be maximal.

6.3.2 Implementation and examples

We implemented the above planners in a program written in the C language and

running on a DEC-5000 workstation. The only major issue in this implementation

concerns the computation of the maxima of the L-Spike event curves and their in-

tersections with other event lines. We have not been able to calculate analytical

expressions for these points. Therefore, our planners use traditional numerical tech-

niques, which require some care to avoid inconsistent topological results in construct-

ing preimages. In order to visualize the plans generated by the planners, we have

developed a simple simulator. Imperfect-control motion commands are discretized

into short segments and a directional error is randomly selected for each segment.

The simulator allows the user to tune segment length and error distribution in the

interval [0; �], to generate various sample runs.

An example with the one-step planner In Figures 6.11(a)-(d) we present an

example run with the one-step planner. In the workspace, there are �ve landmark

disks (the white disks marked with A, B, C, D and E) and three obstacles (the black

disks O, P , Q). There is one initial-region disk, marked with I, in the upper part of

the workspace, and one goal disk, marked with G, in the lower part. In 6.11(a) we

show a preimage of the extension set containing all landmark disks in the workspace

calculated for � = �f = 0:4 radian. It is evident that no guaranteed plan exists

to achieve this goal. The planner returns an incomplete plan, so, according to the

strategy presented in Section4.8, the robot executes an initial random motion with the

hope that it will enter some landmark region in the extension set. In Figure 6.11(b)

the robot happens to enter landmark disk B. From there, the path to the goal is

guaranteed. Nevertheless, the likelihood of success of such a random motion in this

example is rather low. In most attempts the robot bumps either on the obstacles, or
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(a) (b)

(c) (d)

Figure 6.11: Non-guaranteed plan using the one-step planner
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on the boundary of the workspace.

In Figure 6.11(c) we let the planner utilize the one-step variable uncertainty plan-

ner. For � = 0:12 radian a preimage is found that includes the initial region. This

value of � is the highest value for which this inclusion occurs. If the uncertainty of

the robot were 0.12 radian, then the commanded direction of motion d� (for which

the preimage in Figure 6.11(c) was computed) would allow the robot to move into

a landmark disk from any point in the initial-region disk with no possibility of fail-

ure. This direction d� is depicted by the arrow stemming from the initial region in

Figure 6.11(d). It represents a non-guaranteed command: Because of its higher un-

certainty, the robot might actually hit O or Q, if it tries to follow d�. Nevertheless,

this happens only rarely. This command succeeds most of the time. In Figure 6.11(d)

we see such a successful execution.

An example with the greedy multi-step planner Figures 6.12(a)-(d)

and 6.13(a)-(d) present an example solved with the multi-step greedy planner. The

workspace has six landmarks and �ve obstacles. The initial region consists of two

disks, I and I 0. The goal region is the small disk at the center of landmark disk

A. Given the nominal uncertainty of the robot �f = 0:8 radian, the preimage of

A does not intersect any intermediate-goal disk, so the constant uncertainty algo-

rithm returns failure after one backchaining step. The greedy variable-uncertainty

algorithm sweeps down to 0.75 radian, at which point disk B is intersected (Fig-

ure 6.12(a)). During the next iteration of the algorithm disk D is intersected for

� = 0:72 (Figure 6.12(b)). For � = 0:29 disk E becomes part of the extension set

(Figure 6.12(c)). After yet another iteration disk F is included in the extension set

for � = 0:27 (Figure 6.12(d)). Finally, both initial-region disks are included in the

preimage for � = 0:15 (Figure 6.13(a)). The total run time of the algorithm is 81

seconds. In Figure 6.13(b) we show a successful execution of the non-guaranteed plan.

Despite its high directional uncertainty (0.8 radian), the robot �nds its way to the

goal safely. This is not the case though in Figure 6.13(c), where the robot crashes on

an obstacle, and in Figure 6.13(d) where it hits the boundary of the workspace. After

several simulated runs, the success rate of this plan was found to be 66% something



CHAPTER 6. MULTIPARAMETRIC PLANNING 159

(a) (b)

(c) (d)

Figure 6.12: Example with six landmark and �ve obstacle disks
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Figure 6.13: Example with six landmark and �ve obstacle disks (cont.)
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that is rather impressive, if we take into account that the actual uncertainty of the

robot is 0.8 radian. Of course, the success rate depends a lot on the way we simulate

control uncertainty.5

In the above example, the planner sweeps 0.6 radian in one minute and 20 sec-

onds. On the other hand, if the nominal uncertainty is set at 0.2 radian, a solution

is found in about 8 seconds. With a reasonable choice of the nominal uncertainty

we were able to produce plans for workspaces with up to �fty landmark and obstacle

disks in a matter of a few minutes. In general, the planners' runs tend to show that

the planners are more e�cient than our asymptotic worst-case complexity analysis

suggests. We believe that deeper combinatorial analysis of critical curves, cost amor-

tization over iterations, and output-sensitive complexity evaluation should make it

possible to produce tighter complexity results.

6.3.3 Error detection and recovery (EDR)

One major drawback of a non-guaranteed plan is that its execution may fail in a

non-recognizable way. Indeed, a non-guaranteed motion may miss all the disks in

its termination set and continue beyond them into uncharted territories. Introducing

some awareness of time is one way to address this drawback. Another approach,

inspired by Donald's EDR strategies [23], is to make sure that every non-guaranteed

imperfect-control motion command inserted in the plan will either succeed or fail

recognizably. Such commands have a termination set that they are guaranteed to

reach, but some disks in this set are not part of the goal extension at the time they

are selected.

Landmark taxonomy Consider the execution of the non-guaranteed motion com-

mand depicted in Figure 6.14. The robot moves from p with commanded direction

of motion d and nominal directional uncertainty �. The termination condition of the

5After the robot moves a �xed distance, it gets to choose a new actual direction of motion. In this
particular implementation we had the robot choose between d+ � and d� � with equal probability,
in an attempt to bias the motion towards the edges of the uncertainty cone. However, since choices
are statistically independent, most actual trajectories of the robot remain close to the axis of the
uncertainty cone.
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command consists of the four white disks in the �gure, which form the current exten-

sion set. The grey disks are intermediate-goal landmark disks. This non-guaranteed

motion command divides the workspace in three distinct sets:

The Unreachable Set: The three dark-shaded areas represent points that are un-

achievable by the robot with this motion command. These areas are the exterior

of the forward projection of p.6

The Hopeful Set: The intersection of the weak preimage of the extension set7 with the

forward projection of p contains all points from where the robot has positive

probability to hit one of the extension set disks. It is the white area outlined

with a thick border in the �gure.

The Failure Set: The remaining points of the workspace can be reached by the robot,

but from there there is no chance to hit one of the extension set disks. If the

robot can sense that it has reached a point in this region (lightly shaded in the

�gure), it should stop and declare failure.

Accordingly, we can classify intermediate-goal landmarks in the following way: If

they are totally included in the unreachable region we call them unreachable land-

marks. If they intersect the hopeful region we call them dilemma landmarks. Finally,

if they intersect the failure region but not the hopeful region, we call them failure

landmarks. In Figure 6.14 A and B are unreachable landmarks, C and D are dilemma

landmarks, and E and F are failure landmarks. Clearly, we are not interested in un-

reachable landmarks. On the other hand, if a robot �nds itself in a failure landmark,

it should stop and declare failure. From there, there may exist an already computed

plan to the goal, or we may have to replan. We call this kind of failure recognizable.

Since the failure landmarks also terminate the motion of a non-guaranteed command,

they are part of the termination set of the command. The extension-set landmarks

6The forward projection of a region R for a given motion command MC consists of all points
reachable by a robot starting from R and executing MC. It can be computed with algorithms
similar to those that compute preimages.

7The weak preimage of a region R for a given motion commandMC consists of all points from
where a robot has positive probability to reach (and stop in) R. It can be computed with algorithms
similar to those that compute preimages.
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Figure 6.14: Non-guaranteed command

form the success set and the failure landmarks form the failure set. A command that

either succeeds or fails recognizably is preferable to one that may fail unpredictably.

Given a motion command and an extension set, it is easy to compute a set F of

landmarks consisting only of unreachable or failure landmarks. F is constructed by

�nding those landmarks that do not intersect with the weak preimage of the extension

set for this motion command. We cannot tell whether a landmark in F belongs to

the unreachable or the failure set, but we know that the robot cannot enter any of the

unreachable landmarks. Therefore, if the robot during its motion enters a landmark

in F , this has to be a failure landmark, so the robot should stop and declare failure.

Selecting the commanded velocity direction Choosing d in such a way that

the robot will either hit a landmark in the extension set or a landmark in the failure

set is a much harder problem. This direction may not be the one that maximizes
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the chances of the robot to hit the extension set, but it may be preferable to one

that could allow the robot to fail in some inappropriate way. As long as the robot

has some positive probability to hit the extension set, we may be better o� to choose

strategies that o�er recoverable failure.

Consider the example of Figure 6.15. The workspace consists of two big landmark

disks A and B and a small landmark disk G that is also the goal of the robot. The

robot begins its motion from some point within the landmark disk A. Let us also

assume that the directional uncertainty is big enough, so that no preimage of G

can intersect either A or B, and, consequently, no guaranteed plan exists. If we let

the greedy algorithm presented above create a maximum-likelihood-of-success non-

guaranteed plan, we get the plan shown in Figure 6.15(a). The robot is asked to move

initially to point p1, and then follow the commanded direction d1. In the �gure we

also show the forward projection of p1 for the given motion command, from which

it is evident that there is some chance that the robot may move past G into terra

incognita.

In Figure 6.15(b) we show an alternative plan: whenever the robot is in A it

moves to point p2 and follows d2; whenever it is in B, it moves to q2 and follows d0
2
.

Both forward projections of p2 for d2 and q2 for d
0

2 are bounded, the �rst by B, the

second by A. Thus, the robot will bounce between A and B without possibility to

get lost. Unfortunately, the goal landmark G lies outside both forward projections,

so the robot will never reach it.

By selecting a di�erent exit point p3 and commanded direction d3 for disk A,

it is possible to make G part of the forward projection of A's exit command (Fig-

ure 6.15(c)). Now there exists a positive probability that the robot will achieve G

during its bouncing between A and B. The number of execution steps before the

robot gets to G is not bounded, but the success probability of this plan tends to one

as the number of execution steps becomes arbitrarily large. The expected number

of execution steps is bounded. Such plans are called probabilistically guaranteed and

have been investigated by Erdmann [34].
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Figure 6.15: Non-guaranteed plans
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A graph representation of EDR plans Although in the above simple example

it is easy to �nd a probabilistically guaranteed plan, in general it is quite hard. If

we employ a backward chaining technique, in the worst case we will have to test

the union of the extension set with all possible combinations of intermediate-goal

disks. The problem is simpli�ed if we assume the generalized landmarks model of

Subsection 5.5.1. In this case the robot does not have perfect navigation within

landmark disks; it can only move reliably into a speci�c region within each landmark

disk. Without the problem of exit region selection within a landmark disk, a forward

chaining algorithm is more appropriate.

Given an initial region (or an exit region if the robot is already within a land-

mark) an algorithm very similar to the one presented in Chapter 4 can be used to

compute in polynomial time the omnidirectional forward projection of the region.

The algorithm returns the list of all distinct landmark sets which completely block

the forward projection (if any), each associated with a certain interval of commanded

directions of motion. If the robot follows one of these commanded velocity directions,

it is guaranteed to terminate its motion into one of the landmark disks of the asso-

ciated termination set. Let us call this list the blocking list BL(L), where L is some

landmark disk. We can precompute BL(L) once for each landmark in the workspace

in O(`5 log `) total time.

Then, EDR planning is performed by choosing one element from each blocking

list, which is equivalent to prescribing an exit motion command for each landmark.

Instead of a speci�c commanded direction of motion, these commands determine an

interval of possible directions. Each such direction is guaranteed to make the robot

terminate its motion into another landmark region, if the motion starts from within

the exit region of the landmark. If the blocking list of a landmark is empty, then

there is no safe motion command from this landmark, thus no motion command

can be prescribed. If such a landmark is not a goal landmark, it is called a hole,

because it causes premature termination of the execution of a plan. A probabilistically

guaranteed plan must prevent the robot from reaching such landmarks.

An EDR plan is a collection of landmark sets consisting of one element from each

blocking list. Every possible EDR plan can be constructed in this way, therefore
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Figure 6.16: Graph representation of EDR plans

the blocking lists are a complete representation of all possible EDR plans in the

workspace. The number of elements in each blocking list is a polynomial function

of the complexity of the workspace, therefore the blocking lists representation not

only is complete, but polynomial too. The total number of EDR plans, though, is an

exponential function of the workspace complexity.

An EDR plan is probabilistically guaranteed, if during its execution the probability

to hit a hole is zero, and the probability to hit some goal landmark is positive.

We can use a directed graph to represent an EDR plan. Each node represents a

landmark. Arcs represent possible transitions from landmark to landmark. The

nodes representing the goal landmarks are called goal nodes. Non-goal nodes with

no arcs coming out of them represent the hole landmarks and are called hole nodes.

One or more nodes represent the possible initial state of the robot and are called

initial nodes. Figure 6.16 presents three EDR plans. Plan (a) is not guaranteed

because there exists a path from the initial node I to the hole node H. Plan (b)

is not guaranteed because a robot starting from I may get into the cycle BC with

no possibility to escape. Plan (c) corresponds to the example of Figure 6.15 and is

probabilistically guaranteed; the robot will eventually reach G after an unbounded

number of AB cycles.

Theorem 6.6 An EDR plan is probabilistically guaranteed, if and only if all the

maximal connected subgraphs that contain the initial nodes contain at least one goal

node but no hole nodes. This can be decided in linear time.

An alternative formulation of the above theorem uses Markov chains. Indeed,
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every directed graph is equivalent to a Markov chain with the arcs being the transition

probabilities. In this case, we say that an EDR plan is probabilistically guaranteed,

if and only if all recurrent classes that contain the initial nodes also contain a goal

node, but no hole node.

Various heuristics can be used in an A�-search of the exponential space of all EDR

plans for probabilistically guaranteed ones. However, it is unlikely that polynomial

search algorithms do exist.

The set of guaranteed plans with a bounded number of execution steps is a subset

of the set of probabilistically guaranteed plans.

Theorem 6.7 An EDR plan is guaranteed and has a bounded number of execution

steps, if and only if all the maximal connected subgraphs that contain the initial nodes

contain at least one goal node, no hole nodes, and no cycles.

We have already shown that such plans can be found in polynomial time.

6.4 Other applications of multiparametric plan-

ning

The planning methods described above can be used to solve a multitude of additional

practical planning problems. In this section we describe how this can be done in

several interesting cases.

6.4.1 Planning with anisotropic uncertainty

In Figure 6.17 we show the d�-space and the event curves. If the uncertainty of the

robot is �xed at a nominal value of �f , the intersections of these curves with the

line � = �f correspond to the critical events of the monoparametric case described in

Chapter 4. In some applications, however, the directional uncertainty depends on the

commanded direction of motion. For example, this can happen when a wheeled robot

moves on a carpet, when an underwater robot navigates in the presence of currents,

or more generally in any ow �eld. If we know the function � = f(d), then we can
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Figure 6.17: Modeling anisotropic directional uncertainty

compute its intersections with the event curves. These intersections correspond to

critical events that partition the curve � = f(d) in regular subsets. We need to

compute only one preimage per subset.

6.4.2 Unexpected obstacle avoidance

Assume that the robot workspace may contain unexpected obstacles, i.e., obstacle

regions that are not in the planner's model. Assume further that the robot can

detect the unexpected obstacles interfering with a motion command just before this

command is executed.

Figure 6.18 shows an environment with an extension disk in white, an

intermediate-goal disk in grey, and an unexpected obstacle in black. If �f is the

given constant directional uncertainty of the robot, the planner of Chapter 4 com-

putes a single preimage Pf of the extension disk that intersects the intermediate-goal

disk, and provides the corresponding value of d (e.g., the direction df shown in the

�gure). However, if the robot executes a motion commanded along df starting from

any point in the intersection of Pf with the intermediate-goal disk, it may hit the

unexpected obstacle.

Instead, we can compute the maximal value of �, �m, for which there exists a

preimage Pm of the goal extension that intersects the intermediate-goal disk, yield-

ing a direction of motion dm. Let C(dm; �m) be the cone of half-angle �m about dm.

Let the robot move in the perfect-control mode to the intersection of Pm with the
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Figure 6.18: Avoiding unexpected obstacles

intermediate-goal disk before executing an imperfect-control motion command of un-

certainty �f toward the goal extension. In the absence of unexpected obstacles, the

axis of any cone of half-angle �f contained in C(dm; �m) is a commanded direction of

motion guaranteed to achieve the goal extension with directional uncertainty �f . In

the presence of unexpected obstacles, as is the case in Figure 6.18, if there exists a

cone of half-angle �f included in C(dm; �m) but not intersecting the unexpected ob-

stacles, its axis is a valid commanded direction. The grey cone in Figure 6.18 contains

all valid commanded directions for this example.

The major bene�t of this planning technique is that it avoids unnecessary replan-

ning if something unexpected occurs. Instead of committing to speci�c imperfect-

mode commands, the robot computes a set of guaranteed commands for each land-

mark disk, and makes a choice only when necessary. Thus, if some of the commands

have become non-guaranteed due to an unexpected event, the robot can exclude them

from its available choices.

6.4.3 Adjustable sensor sensitivity

If the sensor that detects the landmarks has adjustable sensitivity, then e�ectively

the radius of the landmark disks is adjustable. The events that produce the critical

curves remain the same, but the critical curves depict now the relation between sensor

sensitivity � and the commanded direction of motion d. Consider an I-Include critical

curve for example. Let �i = Hi(�) denote the dependence of the radius of an extension

set landmark disk Di on the sensor sensitivity �. Call the radius of the initial-region
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Figure 6.19: Deriving the critical curve of an Include event

disk to be covered �, the distance of the two disks �, and the slope of the line that

connects their centers � (see Figure 6.19). The slope of the left ray is equal to

� � arcsin((Hi(�) � �)=�). It is also equal to d + � � �. Thus, the I-Include critical

curve has the following equation: � = H�1

i (�� � sin(�+ ��d)). Other critical curves

have analogous equations, and one can proceed to produce minimumcost plans, using

the algorithms described in this paper.

6.4.4 Robot cooperation

Another parameter that can a�ect the preimage is the location of the landmarks,

which determines the location of the landmark disks in the workspace. Consider

the following simple case: Along with �xed landmarks, the workspace also possesses

a movable landmark, that can position itself with in�nite precision anywhere in a

speci�ed subset of the free space. Motion of this landmark can be e�ected with the

help of a second highly precise robot. For example, if we constrain the motion of

this robot within a particular landmark region, it will be perfectly precise as per
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Figure 6.20: Limited sensing angle and the active region

our assumptions. In fact this second robot itself may play the role of the movable

landmark, in order to help the initial robot navigate safely. If we denote the position of

the movable landmark with (�; ), then critical events correspond to surfaces in the �-

 -d space. All critical events that do not involve the movable landmark create critical

planes parallel to the �- plane, since they do not involve either � or  . Critical

events that involve the movable landmark, however, create complicated surfaces. For

example, referring again to Figure 6.19, the critical surface that corresponds to the I-

Include event of the �gure, is the solution to the equation �(�; ) sin(�(�; )+��d) =

�� �i, with �(�; ) = ((��xc)2+ ( � yc)2)1=2 and �(�; ) = arctan(yc� ; xc��),

where xc and yc are the coordinates of the center of the disk to be covered, � its

radius, and �i the radius of the movable landmark.

6.4.5 Directional sensing

Up to now we have assumed that the sensor of the robot is omni-directional. Never-

theless, it is more realistic to restrict sensing within a cone of half-angle �, about the

aiming direction s of the sensor. Let us call this cone the visibility cone.

Given �, the choice of s determines which part of a landmark region can serve as
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termination condition for a motion, during which the robot aims its sensor along s.8

We call this part the active part of the landmark region. For example, look at Fig-

ure 6.20. Here we show a circular landmark region with a point landmark (marked

L in the �gure) located in its interior. Its active part (the dark shaded region in

the �gure) for some choice of s is its intersection with an inverted visibility cone,

anchored at the landmark and with its axis along s + �. This computation is valid

for arbitrary landmark region shapes and landmark locations (inside or outside the

landmark region). For every choice of s, instead of �nding the preimage of the entire

landmark regions in the extension set, we compute the preimage of their active parts.

These are generalized polygons and can be handled by the planner as claimed in Sub-

section 5.1. However, the relations between d and s that determine the critical curves

are signi�cantly more complicated. In Figure 6.20 we have outlined the preimage of

the active region for the shown choices of d and s.

A motion command is a triplet (d; s;L). As with d, usually there is no cost

associated with the choice of s.9 Thus, we need not sweep the ds-plane in a particular

direction; we just need to visit each cell once. If a cell is found for which the preimage

covers all initial-region disks, we are done. Otherwise, we need not stop visiting cells

as soon as we �nd a cell for which the preimage intersects an intermediate-goal disk.

Instead, we mark the intersected disk, and we associate with it the cell for which the

disk was intersected. This information will be used to create the motion command

associated with this disk. If all cells are visited and no preimage includes all initial-

region disks, all intersected intermediate goal disks become part of the new extension

set. If we mark visited cells so that we visit them only once over all iterations of the

algorithm, we can produce multi-step plans with the minimum number of steps in

O(`6 log `) time.

8We assume that s remains constant during the execution of a single motion command.
9Of course one could argue that the robot should prefer to aim its sensor in the direction of

its motion to avoid hitting unexpected obstacles, but we can assume that there are other sensors
dedicated to this task.
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6.4.6 Motions in three-dimensional con�guration spaces

Consider a three-dimensional con�guration space containing a point robot. Obstacle

and landmark regions are three-dimensional objects. Imperfect-control motions are

assumed to be always planar, in the sense that control errors cannot make the robot

move outside the chosen plane of motion. Within this plane, though, the standard

planar control uncertainty model applies. For example, the above model can describe

compliant motions on planar obstacle surfaces. On the other hand, perfect-control

motions can be fully three-dimensional. We further assume that we can compute the

intersections of the valid planes of motion of the robot with all obstacle, landmark,

goal, and initial regions. The available planes of motion are represented by the normal

vector ~p.

Under these assumptions, an imperfect-control motion command is determined by

the triplet (~p; d;L) assuming constant directional uncertainty �. The algorithms of

this chapter are directly applicable, if the critical surfaces (two dimensional surfaces

in the three-dimensional ~pd-space) can be computed.

6.5 Conclusion

In this chapter we presented algorithms for the e�cient computation and representa-

tion of preimages that depend on more than one parameters. We examined in detail

the case of planning with controllable directional uncertainty and discussed several

frameworks where such planning may be useful. Similar algorithms can be developed

for the dependence of the preimage on any number of parameters, however, their

computational complexity is an exponential function of the number of parameters

considered. Furthermore, computing critical hyperplanes becomes more complicated

as the dimension of the search space grows. Nevertheless, using numerical techniques

to compute critical hyperplanes and their intersections, it is possible to develop e�-

cient planners for a variety of interesting planning problems.



Chapter 7

Experiments with a Real Robot

In Chapters 4, 5, and 6 we argue that the only \practical" way to deal with the prob-

lem of planning with uncertainty is to adopt simpli�ed formulations of the problem

which can be solved with polynomial algorithms. We have presented several variants

of such simpli�ed formulations, along with correct, complete, and polynomial plan-

ning algorithms. In this chapter we validate our claim of \practicality" by using these

planning techniques in experiments with a real mobile robot.

To make the vague notion of practicality more concrete, we identify four major

components of it:

� Cost: Our planners are based on a speci�c set of assumptions regarding the

robot and the workspace. We have to make sure that these assumptions are

valid, by engineering, if necessary, the robot and the workspace. For the plan-

ners to be practical, the cost of such engineering must be low.

� Completeness: If the assumptions are valid, the planners are complete. How-

ever, to make the problem tractable, we use only a fraction of the information

that is available to the robot. Therefore, our planners can solve fewer problems

than more sophisticated (and slower) planners can. The set of problems solvable

by them must cover the majority of the tasks that the robot may be required

to perform.

� Correctness: Theoretically, no plan should fail. Nevertheless, it is not always

175
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possible to completely satisfy all the assumptions. For example, it is not phys-

ically possible to create regions with zero position uncertainty. The percentage

of successfully executed plans measures our ability to satisfy the necessary as-

sumptions at a given cost.

� Robustness: When failures occur, a practical system should be able to handle

them gracefully. In the experiments, we investigate to what extent our system

is able to do so.

We conducted two sets of experiments with two di�erent landmark designs. In

the �rst set, the landmarks are triangular prisms with one missing face, standing

vertically on the oor. The location and orientation of the prisms is precisely known.

The robot emits a horizontal plane of laser light, whose reection on the landmarks

is captured by a camera on the robot. By analyzing the reection, the robot can

detect and recognize a landmark, and localize itself with respect to the landmark.

Since the landmark coordinates are accurately known, the robot can also localize

itself in the workspace frame of reference. For this set of experiments we make use

of the standard landmark de�nition that requires perfect localization precision in the

landmark regions.

In the second set of experiments, the landmarks are marks on the ceiling. Images

from a camera (mounted vertically on the robot and aiming straight up) are used

for detection, recognition, and localization. Here, we use the notion of generalized

landmarks (see 5.5.1); the only requirement regarding localization is that for each

landmark region there exist a subregion which can be reliably achieved, once the

landmark has been detected and recognized.

7.1 The robot

The robot we use is nomad-200 from Nomadic Technologies. nomad is a three-

wheeled, cylindrical mobile robot. It is relatively small, with a radius of about 1 foot

and a height of about 2.5 feet. Barring slipping or jumping, the absolute orientation

of its body remains constant. The three wheels can rotate to any orientation relative
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Figure 7.1: nomad-200

to the body, but they always remain aligned with each other. The robot translates

along the direction of the wheels. A plate holding sensory equipment, called the

turret, is mounted on top of the body and can rotate freely.

Since nomad is a wheeled robot, its motions are subject to non-holonomic con-

straints. However, its wheels can assume any orientation, hence, the robot has zero

turning radius. Thus, in the absence of obstacles it can move between any two points

on the oor along a straight line. Its con�guration at each instant is given by a

quadruplet of coordinates (x; y; �; �), that de�ne its x- and y-position, the absolute

orientation of the wheels, and the absolute orientation of the turret respectively.
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nomad is equipped with many sensors (odometric sensors, infrared and sonar

proximity sensors, touch-detecting bumpers, a laser with a cylindrical lens that can

emit a plane of monochromatic light, and two cameras that can be attached to the

turret in a variety of orientations). Of all these sources of information, we must select

a subset that satis�es the assumptions required by our planners.

7.2 Landmark design

During the landmark design phase, we have to take into account three sources of

constraints: (a) the model of the robot and the workspace used by the planning

algorithms, (b) the status of the implemented algorithms, and (c) the availability of

hardware and software for real-time landmark recognition.

We conduct the experiments in an indoor o�ce-type environment. We obtain

very accurate workspace modeling through precise prior measurements. Small errors

during these measurements are taken into account by slightly growing the obstacles

in the model used by the planner.

The landmarks are physical features of the robot workspace. Each landmark

induces a region in the workspace (the landmark region), such that a robot standing at

any point of the region is able to (a) detect the landmark, (b) recognize the landmark,

and (c) localize itself with respect to the workspace. All three operations must be

extremely reliable. In addition, detection must be fast (ideally instantaneous) and

localization precise. These properties lead us to design arti�cial landmarks rather

than use \natural" ones (e.g., corners between walls).

An important consideration is the source of orientation information for the robot.

The planner assumes that the robot is aware of its orientation in the global frame

of reference, because the commanded direction of motion is speci�ed in this frame.

nomad's actual direction of motion is determined by the absolute orientation of the

wheels �. A compass, attached to the wheels, would be the straightforward way to

get an estimate of �, but in an o�ce environment it would be subject to big errors,

caused by the electromagnetic �elds of the various o�ce equipment. For this reason,

we get orientation information from the landmarks during the localization phase.
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Even though our algorithms apply readily to overlapping generalized polygonal

objects, the implemented version of them requires that landmark regions and C-

obstacles are circular, and that landmark regions and C-obstacles do not overlap.

7.3 Bounding the directional uncertainty

The orientation reading we get from the localization process, is an estimate �̂ of the

absolute orientation of the turret. (The sensing equipment is mounted on the turret.)

The encoders on the motors that turn the turret and the wheels provide estimates

for the relative angles between the turret and the body (�od) and the wheels and

the body (�od). Thus, our estimate of the global orientation of the wheels (which

determines the actual direction of motion) is computed as �̂ = �̂ � �od + �od. The

error �� = j�̂ � �j is the aiming uncertainty of the system, and it is the sum of three

independent errors, the localization error, the error of the wheel encoder, and the error

of the turret encoder. When the robot moves, it cannot follow a straight line because

of control uncertainty. Possible causes are slips, jumps, uneven oor, or wheels that

cannot be kept absolutely steady relative to the body. The combination of aiming and

control uncertainty constitutes the directional uncertainty of the system. To produce

guaranteed plans, the directional uncertainty must be bounded by the value � used

by the planner.

Assuming no slips in the motors that turn the wheels and the turret, the values of

�od and �od are accurate up to the resolution of the encoders. The error they contribute

is negligible with respect to the other sources of directional error. The experimental

bound of the orientation error of the localization algorithm is �3�. Regarding the

control uncertainty of nomad we found that it is bounded by 1� when the robot

moves on the oor of the laboratory. This control uncertainty is basically caused by

the uneven oor (linoleum and carpet with metallic joints between them).

There is one additional source of directional uncertainty: it is the error in the

initial orientation of the robot, if the initial location does not lie within a landmark

region. This error, of course, is eliminated once the robot localizes itself once. In our

experiments, the robot is transported manually to its initial position and orientation.
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In the �rst set of experiments, we make sure that the initial orientation has an error

of less than �5�, so it supersedes the aiming error. The value of � used is 6�. In

the second set of experiments, we make sure that the initial directional uncertainty

of the robot lies within the localization algorithm uncertainty bounds, so we may use

� = 4�.

7.4 Experiments with prismatic landmarks

The simplest landmark design that can provide position and orientation information

in two dimensions is a line and a point with known coordinates in the global frame of

reference. A robot that can sense its orientation relative to the line and its distance

from the point can compute its own global coordinates by means of a simple transfor-

mation. In our case, we also require that the landmarks possess a unique identifying

characteristic. A design that satis�es all these requirements is the following.

The landmarks are constructed as vertical corners, i.e., two intersecting vertical

planes (facets) of known orientations. The laser mounted on the turret of nomad

emits a horizontal plane of light at a height of 2.5 feet above the oor. A camera,

mounted on the turret and tilted downwards, detects the intersection of this plane

with the facets of each landmark. This intersection consists of two line segments with

a common endpoint (see Figure 7.2). We can estimate the orientation of the robot

relative to each segment and the distance of the robot from the intersection of the

segments (the vertex) very accurately. The di�erence of the two relative orientations

is the angle between the facets, and can be used for landmark recognition. After a

landmark is recognized, we can read from a landmark database the absolute orienta-

tions of the two facets and the absolute location of the vertex. From these data we

can deduce the absolute position and orientation of the robot.

We create landmarks by putting together white 8in�40in rectangular foam boards

to form an angle that stands vertically on the oor. Since no two landmarks should be

confusable, each landmark must have a distinct angle (the characteristic angle). For

this reason we cannot use wall corners as landmarks. Furthermore, the characteristic

angles we use, must not be observable by the laser-camera system when no landmarks
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Figure 7.2: A prismatic landmark

are present. Wall corners are detectable by the laser sensor, so our landmarks must

avoid using characteristic angles that are close to 90�.

7.4.1 Computing the landmark region

Although the camera is pointed downwards, its angle of vision is such that it can

theoretically see the laser plane out to in�nity. However, reliable recognition requires

that the images of the two landmark segments on the view plane of the camera have

a minimum length. This constraint can be used to derive a theoretical outer bound

of the landmark region. Moreover, other practical constraints, like lens aperture and

focus, illumination, and reectivity of the surfaces, cause the quality of the data to

vary with the location of the robot. The work of Takeda on sensory uncertainty �elds

(suf's) [91] can be used to select regions where localization uncertainty does not

exceed a certain bound. However, since our planner currently handles only circular

landmark regions, we would still have to extract a circular region from the sensory

uncertainty �eld. Instead, we use a simpler experimental approach. We determine

a minimum and a maximum distance between the vertex of the landmark and the

center of the robot (30 and 50 inches respectively), and a minimum angle between the
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Figure 7.3: Deriving the landmark region

line that connects the center of the robot with the vertex and each of the facets (25�),

for which the accuracy of the data is acceptable. We de�ne the landmark region as

the biggest disk all the points of which satisfy the above constraints (see Figure 7.3).

7.4.2 Recognition and localization

An intensity �lter can easily isolate the pixels that correspond to the reections of

the laser light on objects. The camera is calibrated, so that each pixel in the view

frame-bu�er can be transformed into the polar coordinates of the workspace point

that corresponds to that pixel (in the frame of reference of the robot). Essentially,

we get a sample of points from the line segments that form the intersection of the

laser plane with the objects in the �eld of view of the camera. The resolution of the

sample (i.e., how many pixels correspond to a sample point) can be de�ned by the

user. High resolution results in better accuracy, but makes the recognition algorithm

slow. We found that 60 points spanning the 30� of the camera angle of view give us

satisfactory accuracy (for viewing from within landmark regions) and a fast enough

recognition algorithm.

The next step is called segmentation and allows us to connect the sample points
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into line segments. We use a Kalman �ltering algorithm that allows us to get the

segments that �t our sample points best. Adjacent segments are joined in an elbow

and are returned as potential landmarks. The information contained in an elbow

structure consists of the orientations of the two segments and the coordinates of the

intersection of the segments (all in the frame of reference of the camera). From the

two orientations we extract the angle of the elbow, and we match it against the

characteristic angles of the landmarks. If the di�erence is smaller than the accuracy

of the algorithm, we have a match. In practice, we achieve good accuracy (less than

10�) in computing the angle of elbows from points within the landmark region. This

allows us to use several distinguishable landmarks of 60�, 90�, 120�, 240�, 270�, and

300� (their angles should be at least 20� apart).

After a matching landmark has been found, we enter the localization phase. We

select the con�guration of the landmark (position and orientation) in the frame of

reference of the camera, so that it best �ts the sample data. Since we already know the

con�guration of the landmark in the workspace frame, we can get the con�guration

of the camera in the workspace frame of reference with a simple transformation. The

algorithm also returns error bounds from the �tting process, which are 2.5 inches for

the position and �3� for the orientation. The value of � used is 6�.

7.4.3 Deviations from the planning model

The prismatic landmark design does not have all the properties regarding landmarks

and landmark regions required by the planning model. In this section we show how

we can work around these deviations by augmenting the behavior of the robot at

execution time.

Imprecise localization The planning model we use in this set of experiments

requires in�nitely precise localization within a landmark region. The error bound

of the localization algorithm was experimentally found to be 2.5 inches. That is,

the actual position of the robot lies in a disk with a 2.5-inch radius centered at

the measured robot position. For a motion command to be actually guaranteed, all

possible initial robot positions must lie within the exit region associated with this
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command. If a disk with a 2.5-inch radius cannot be inscribed in the exit region,

then the motion command (hence, the generated plan) may fail. Our planner selects

among all possible exit regions the one with the largest area, but it does not discard

exit regions that are too narrow. Therefore, whether a plan is guaranteed or not

is checked only after the creation of the plan. It may be possible to guarantee at

planning time that exit regions will be large enough to contain the error disk (by

adding additional critical events that correspond to this property of exit regions), but

we have not investigated this possibility. In the second set of experiments we avoid

this source of errors by using generalized landmarks.

In this set of experiments, we make sure that all exit regions are large enough

before accepting a plan. At execution time, whenever nomad detects and recognizes

a landmark, it localizes itself and attempts to move to the center of the maximum

circle that can be inscribed in the exit region. It repeats the same motion, until

all possible actual positions of the robot lie within the exit region, or until some

prespeci�ed number of attempts has been made.

Dependency of landmark detection on robot orientation The construction

of the landmark regions assumes that the camera is pointed towards the vertex of a

landmark. Although one of the extensions of the planner (see Section 6.4.5) solves

speci�cally this problem, it has not been implemented yet. Therefore, we have to �nd

another way for the robot to look towards a direction which guarantees that one of

the landmarks in the termination condition will become visible.

Let us assume for the moment that there is only one landmark in the termination

condition. The forward projection of the current position of the robot for the chosen

direction of motion must be completely blocked by the landmark disk, which means

that a left and a right ray of the forward projection cut through the landmark disk

(see Figure 7.4). The robot is guaranteed to cross any line segment that connects

the left and the right ray with its endpoints in the landmark disk. Consider one such

segment, such that the straight line it de�nes passes through the the vertex of the

landmark. If the camera is pointed along this line, the robot is guaranteed to see the

landmark while it is still in the landmark region. Since the view angle of the camera
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Figure 7.4: The guaranteed viewing direction

(30�) is larger than the angle of the directional uncertainty cone (12�), the landmark

is detected along this line.

If the termination condition contains more than one landmark, the robot has to

select one of them in order to aim the camera towards it. For this decision we make

use of the odometric sensor. First, we eliminate the landmarks in the termination

condition that do not intersect with the forward projection, because they cannot be

reached. Then, we sort the remaining landmarks along the commanded direction

of motion of the robot. At the beginning, the camera is pointed towards the �rst

landmark. When it is determined that the robot is past that landmark region (by

use of the odometric sensor), the camera is turned towards the next one, and so on.

If the landmark regions are separable along the commanded direction of motion (i.e.,

only one is detectable at a time), then the plan is guaranteed.

Our planner cannot ensure that the plans it creates have the above property.

However, after we have a plan, it is easy to check whether the above condition is

satis�ed. While this is a limitation of our experiment, it is easy to arrange landmarks

in the workspace so that the condition is met. The ceiling-landmark design avoids

this problem altogether.
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Non-instantaneous detection Another deviation from the assumptions of the

planner is that the detection algorithm does not run instantaneously. Its execution

requires about 0.2 seconds. To guarantee detection, the landmark must remain within

the camera range for at least 0.2 seconds. While it is certainly possible to work out

whether this will happen or not, we do not present such calculations here, because

the ceiling-landmark design considerably simpli�es this problem.

Non-instantaneous stopping Once the robot detects a landmark, it must stop

and localize itself. Since deceleration is not in�nite, it is possible that the robot will

not be able to view the landmark after it has completely stopped. If this occurs, the

robot scans the workspace (by turning its turret and running the detection algorithm)

until it sees the landmark again. If this approach fails, the robot backtracks a little

(one inch) and repeats the scanning. If this fails again, the robot declares failure.

7.4.4 Plan execution

We begin by building a model out of the physical arrangement of the workspace. We

describe above how we create the landmark regions. Since the obstacles in our model

need to be circular, we cover all physical obstacles1 with an arrangement of circular

disks. In our planning model we have to compute C-obstacles. For a circular robot

in two dimensions this is easy to do: We just grow the obstacles by the radius of the

robot.

The planner is called and returns a plan (or failure). The plan is preprocessed, to

associate one or more viewing directions with each command, and then it is executed:

1. The wheels are turned towards the initial commanded direction, and the turret

is turned towards the �rst viewing direction.

2. The robot starts moving forward, continuously checking for the presence of

landmarks. If the targeted landmark is found, motion stops immediately. If

a maximum distance is traveled without detecting the landmark, the turret is

1The foam boards that provide the landmarks are obstacles, too.
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Figure 7.5: The layout of the workspace

turned to face the next landmark. If no more landmarks exist in the termination

condition, the robot considers itself lost.

3. If a termination condition landmark is detected, the turret is turned towards its

vertex (for better viewing). Localization gives estimates for the current robot

position and orientation and error bounds.

4. If the error disk (the locus of all possible robot locations) is contained in the

exit region of the landmark, then the robot proceeds to execute the command

associated with the landmark. Otherwise, the robot moves towards the center

of the exit region, always facing the vertex of the landmark; after it gets there,

it localizes itself once again. If the error disk is still not contained in the exit

region, the robot keeps trying to get to the center of the region and relocalize.

It stops, when the exit region is achieved with certainty, or when a maximum

number of attempts has been performed.

5. If the exit region is in the goal, the execution terminates successfully.
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Figure 7.6: The con�guration-space model used by the planning algorithm

As an example, consider the workspace in Figure 7.5. There are four landmarks,

and three obstacles (a box, a trash can, and a Coke can). The initial position has a

5-inch uncertainty bound, and the goal is a 2-inch disk located right above the trash

can. The number beside each landmark is the characteristic angle. Figure 7.6 shows

the model input to the planner and the constructed three-step plan generated by the

planner.

nomad was successful in getting to and stopping in the goal 22 out of the 25

times we ran the experiment. First it moves towards landmark-240, then it passes

between the Coke can and the box, relocalizes itself at landmark-60, and heads to-

wards landmark-150. After relocalization at this landmark, the turret is turned to-

wards landmark-270, which helps the robot achieve the goal within the localization

algorithm accuracy. Twice, nomad failed to enter the exit region of landmark-240

because of its small width. After �ve attempts, we instructed it to continue with the

execution of the plan, and as a result it slightly touched the wooden box during its

motion. Once, nomad ran past landmark-240 without detecting it.
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7.5 Experiments with ceiling landmarks

The major source of complications in our �rst set of experiments is the dependence of

landmark detection on the orientation of the camera. Furthermore, the landmarks we

insert in the workspace are rather bulky and reduce the ability of the robot to move

in its workspace. Our second landmark design completely avoids both problems.

Landmarks are created by �xing on the ceiling black-and-white patterns (see Fig-

ure 7.7) at well-de�ned locations and orientations in the workspace coordinate system.

These patterns are sensed by an upward-looking camera �xed on the robot with its

axis collinear to the robot's axis of rotation. All landmark patterns are designed to

have the same size in the camera image. A landmark pattern consists of three ele-

ments: (1) an outer thick circle (black), (2) an opening into this circle (white), and

(3) an inner 3� 3 grid of black and white tiles aligned with the opening in the circle.

The �rst two elements are the same for all landmarks. The third is unique to every

landmark (thus, 29 = 512 distinct landmarks are possible).

Another problem we have in the experiments with the prismatic landmarks is the

requirement for in�nitely precise localization. During this set of experiments we use

the notion of generalized landmarks. Each landmark must be detected and recognized

whenever the robot enters its landmark region. Additionally, there should exist a

smaller region (the exit region) which can be achieved reliably from any point in the

landmark region. This landmark de�nition restricts the information considered by

the planner even further, but avoids the need for in�nitely precise localization, which

is realistically impossible to satisfy.

7.5.1 Computing the landmark region

During navigation, an on-board processor processes images iteratively. Each image is

acquired as a 260�240 frame. The detection algorithm detects a landmark only if the

outer circle is almost completely visible. Since the orientation of the camera relative

to the landmark pattern can be arbitrary, a speci�c landmark induces a circular

area C in the workspace from which the pattern is guaranteed to be entirely visible.

Fortuitous orientations of the camera may allow the landmark to be detected outside
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Figure 7.7: Two possible \ceiling" landmarks

this area, but this does not a�ect the validity of a plan generated by our planner

(although it may slightly speed up execution).

According to the above, landmark regions are created by �nding the radius rmax of

the biggest disk that can be inscribed in the viewing area of the camera (projected on

the ceiling), and then drawing a disk centered at each landmark with radius rmax�rl,

where rl is the radius of the outer circle of the landmark. Clearly, for landmark regions

to exist, rmax must be bigger than the radius of the outer circle of the landmarks.

Non-instantaneous detection may still cause a landmark to be missed. If the robot

follows a path almost tangent to C, it may traverse and exit C while analyzing an

image acquired just before entering C. This leads us to de�ne the actual landmark

region L concentric to C and "-smaller in radius. The di�erence " is derived from the

maximal velocity of the robot and the time necessary to analyze an image, so that,

if the robot follows a path tangent to L, it is guaranteed to acquire and process an

image while still in C.

7.5.2 Recognition and localization

The 260�240 camera frame is obtained as a gray-level image and it is binarized using

an adaptive threshold. Connected components in the binary image are identi�ed, and

their size is compared to the expected size of the landmarks. Each component whose

size is similar to the landmark size is compared pixel-by-pixel to a model of the

landmark outer circle. A su�ciently low number of pixel mismatches indicates that a

landmark has been found. Once the landmark has been detected, the opening of the
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outer circle is used to compute the orientation of the landmark relative to the robot.

The inside grid is used to uniquely identify the landmark. From this information (and

the landmark coordinates in the workspace frame) it is straightforward to compute

the position and orientation of the robot in the workspace frame of reference.

Localization assumes that the landmark patterns are horizontal and the camera

axis vertical. Deviations from these orientations cause errors. The ceiling of our

laboratory is su�ciently horizontal, but the oor is rather bumpy and sometimes

has noticeable local slopes. In order to get the best possible localization accuracy,

we must avoid placing landmarks over such uneven areas of the oor. After several

measurements, the experimental bound of the localization error was found to be �3�

for the orientation and 0:22 inches for the position.

Adding the 1� control uncertainty to the orientation error, and making sure that

the initial aiming uncertainty of the robot is less than 3�, we may use � = 4�.

The radius � of the exit region for each landmark must be bigger than the position

error. Our experience from the previous set of experiments prevents us from choosing

� too close to 0:22 inches, because in this case the achievement of the exit region would

be di�cult, and it would require several attempts. Thus, we choose � = 0:5. This

conservative bound also takes into account the small error in positioning the landmark

relative to the workspace and the fact that the oor is not perfectly parallel to the

ceiling (causing the camera to tilt slightly relative to the landmark). Theoretically, we

may put an arbitrary number of exit regions in each landmark region. For simplicity,

we use only one exit region per landmark, concentric with the landmark region.

(Localization precision is better near the center of the landmark region.)

The reliability of detection and recognition is a�ected by the proximity of the

landmarks to light sources. (Our laboratory is illuminated by ceiling uorescents.)

With no light sources adjacent to a landmark (so that the landmark region does not

overlap a light source), detection and recognition are 100% reliable.

The landmarks have an outside diameter of 10 inches and are located about 8

feet above the camera. The image of a landmark has a diameter of 92 pixels. The

diameter of the landmark region induced by a landmark is 16.2 inches. With the

hardware available on nomad-200, image processing takes about 0.6 seconds. A
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robot moving at 4 inches per second will move 2.4 inches during one cycle of image

processing. A landmark diameter of 16 inches is su�cient to guarantee that the robot

will never miss a landmark.

7.5.3 More engineering

There are several factors that constrain the placement of landmarks in the workspace.

First, they must not be adjacent to light sources. Second, they must not be over un-

even areas of the workspace oor. Third, the currently implemented planner requires

that landmark regions do not intersect C-obstacles. Obeying these constraints makes

it impossible to place enough landmarks in our laboratory workspace for reliable nav-

igation. In fact, using � = 4�, the planner returns failure for the con�guration of

Figure 7.8, because the robot cannot get safely through the narrow corridor at the

left. (There is a light �xture at the center of the corridor that prevents us from plac-

ing a landmark there.) Using a smaller value of � results in plans, but their execution

is unreliable; sometimes, the robot collides with the corridor walls.

To deal with this problem we use a re�ned version of the image analysis techniques

to compute the robot's orientation with greater accuracy (since this is the main cause

of directional uncertainty). By extracting contours at a sub-pixel resolution we are

able to reduce � from 4� to 2�, which is su�cient to navigate reliably through the

corridor. Even smaller values could be possible by designing a landmark pattern

containing a better orientational feature or by equipping the camera with a zoom to

get a higher-resolution image of the landmark, once it has been detected.

Extracting contours at sub-pixel resolution typically requires more computation

time than the techniques presented in Subsection 7.5.2. Although this does not a�ect

detection or recognition (therefore the size of the landmark regions is not a�ected),

it requires that the robot spend more time within the landmark region performing

localization. Since we wish to avoid this delay if it is not necessary, we use two values

of �, �1 (the directional uncertainty with the simpler image analysis technique) and

�2 (the uncertainty with the more sophisticated technique). The planner uses �1 until

it fails (if this eventually happens). If an iteration fails (i.e., no new landmark region

can be added to the goal extension), it is repeated with �2. If it is then successful, the
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planner shifts back to �1 at the next iteration, and so on. The planner associates the

value of control uncertainty, �1 or �2, to every command associated with a landmark

region. At navigation time, this value is used to decide whether the more sophisticated

image analysis techniques must be used, or not.

This approach can be easily extended to more than two values of control uncer-

tainty, or even to a continuous dependence of uncertainty upon image resolution, by

using a multi-parametric planning algorithm (see Chapter 6). Thus, we can derive

guaranteed plans which at each step use the maximum possible uncertainty value,

i.e., the lowest possible resolution, and, consequently, devote the least possible time

to the localization procedure.

7.5.4 Plan execution

Figure 7.8(a) shows a map of our laboratory. It consists of a narrow corridor leading

into an open space populated with landmarks (gray) and obstacles (black). The white

disk represents the robot, which has a diameter of 24 inches. Figure 7.8(b) shows the

model of the con�guration space input to the planner. C-obstacles are represented

as a collection of black disks. The landmark regions are represented as small white

disks with arrows attached to them. The arrows show the direction of motion that

the robot should follow once it gets in the exit region of the corresponding landmark.

One of the landmark regions completely contains the goal G of the robot. No arrow

is attached to this landmark region. The robot begins its motion from some point in

the small disk marked with I in the corridor.

Initially, the robot backtracks in the corridor to get into the leftmost landmark

region and obtain an accurate measurement of its position using sub-pixel resolution.

Then, it moves along the corridor into the open space, and, hopping from (landmark)

region to region, eventually gets into the goal. It should be noted that it is not possible

for the robot to move directly into the open space, because its initial uncertainty is

too high and it may hit a wall. The robot has to get into the landmark region �rst,

in order to reduce its position uncertainty.

We executed the above plan numerous times and it never failed. In fact, once

the robot reached its goal, we randomly selected a di�erent landmark as its new
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(a) the laboratory space

(b) the workspace model provided to the planner

Figure 7.8: The experiment with ceiling landmarks
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goal, replanned and executed again. We repeated the above procedure over and over

until the robot ran out of power. Our system was able to navigate the robot reliably

between landmark regions for the entire battery life of the robot (about one hour).

7.6 Evaluation

Experimentation always teaches that there are more sources of uncertainty than one

can anticipate. Our experiments are no exception. Nevertheless, through iterative

engineering of the workspace, we were able to eliminate all sources of uncertainty

that do not �t into our uncertainty model, and verify the successful execution of

the resulting plans. The major asset of our method is that the uncertainty of the

robot does not deteriorate over time (as when using odometric sensors), but remains

bounded by the localization error. A robotic system using our planning-navigation

method can operate with no problems over long periods of time. Furthermore, the

system has a fast response to requested tasks, because planning time is a polynomial

function of the complexity of the workspace, and it can deal with unexpected events

gracefully. The major problem with our method is that it solves only a fraction of

the planning problems, that would be solvable if more information were used by the

planner. This problem can be addressed with the placement of more landmarks in

the workspace, or with the use of hierarchical landmarks.

In what follows, we comment on the performance of our system with respect to

the criteria we established at the beginning of this chapter.

� Cost: The landmarks in both sets of experiments are very cheap and easy to

build. The major cost comes from the sensing system that requires the use of

a camera, a frame-grabber, and an image processor.

� Completeness: Our planner would be able to solve many more problems, if its

implemented version could handle overlapping generalized polygonal landmark

and C-obstacle regions. Covering the obstacles with circular disks unnecessarily

consumes free space (or, increases the complexity of the workspace). Also, not

being able to have overlapping obstacle and landmark regions places a signi�cant
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constraint on the location of the landmarks. After the implementation of these

two features, both problems will disappear.

A more important completeness issue is that our system is limited by the accu-

racy of the localization through landmarks, and it cannot achieve goal regions

that do not overlap landmarks, something that nomad can do by use of its

odometric sensors. However, nothing prevents the execution module from using

more information than that considered by the planner. Furthermore, we can

introduce a hierarchical structure of landmarks (easily recognizable landmarks

for general navigation at relatively high speeds, and more subtle landmarks for

more detailed tasks) to enhance the problem solving capabilities of our method.

� Correctness:

Using the standard landmark de�nition we are not able to produce correct plans,

because we cannot possibly eliminate position uncertainty in the landmark re-

gions. The only thing we can do is to verify correctness after the creation of

the plans. Using the generalized landmark de�nition in the experiments with

the ceiling landmarks and some further engineering of landmark placement, we

are able to produce plans that succeed every time they are executed.

� Robustness: This is an area where our system performs really well. Whenever

something unexpected happens, the robot attempts to detect some landmark

(if necessary, by moving randomly in the workspace). If successful, it calls the

localization algorithm and gets an estimate and an error bound of its current

position. Using this information as a new initial region, it either decides that

it is in some landmark region from where it knows how to get to the goal, or it

replans. Replanning is very fast, because a plan associated with many landmark

disks already exists. For the recognition of unexpected events we can use other

sensors of nomad, like odometric sensors to detect moving too far beyond the

landmarks in the termination condition, bumpers to detect collisions, etc.

Several other practical mobile robot systems have been built and tested success-

fully [44, 73]. Our system is di�erent in that it combines polynomial planning with
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reliability under uncertainty. The cost we pay is the e�ort to engineer the workspace,

and the opportunity cost of not using all information available to the robot. We have

shown that this tradeo� is acceptable. Our system is still in its infancy and requires

further development and rigorous testing.



Chapter 8

Conclusions

8.1 Summary

In this thesis we have addressed the problem of dealing with uncertainty in robot mo-

tion planning. This problem has been, up to now, a major obstacle for the widespread

use of robots in practical applications. The various formulations of the problem that

have been proposed result in planning algorithms of exponential complexity and,

hence, of no practical use. Another school of thought proposes not to reason about

uncertainty at all. Instead, it proposes to equip the robot with primitive heuristic

behaviors so as to help it deal with unexpected events at execution time. Although

fairly reliable and robust robotic systems of this kind have been built, their plan exe-

cution often lacks deliberation and can be sidetracked by local error-coping behaviors.

Even worse, when such plans fail, they do not provide useful feedback about their

failure.

Our work begins with the premise that intelligent agents should be deliberative

during plan execution. Therefore, they should be able to predict as many errors as

possible, so that their error-coping behavior will be dictated by the drive to achieve

the ultimate goal of the plan. Such plans require reasoning about uncertainty at

planning time. We also believe that planning should be fast; hence, we cannot use

uncertainty models that result in intractable problems. In Chapters 4, 5, and 6 we

198
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describe an uncertainty model that admits a correct, complete, and polynomial plan-

ning algorithm. We discuss several planning examples solved with an implemented

version of the algorithm. Next, we examine whether it is physically and �nancially

feasible to engineer the system of a robot and its workspace, so that the assumptions

underlying the model are satis�ed. By making sure that the planning algorithm is

provably correct, the role of experimentation shifts from validating the algorithm to

validating the assumptions on which the algorithm depends. Experimental failures

can be easily tracked down to discrepancies between the model and the real world, and

further engineering can be utilized to minimize these discrepancies. Thus, workspace

engineering becomes an essential ingredient of problem solving. In Chapter 7 we show

how this process actually leads us to the design of a cheap reliable robot navigation

system.

Typically, uncertainty grows during navigation. To design a system that does not

fail over long periods of navigation, some kind of information must be extracted from

the environment. As information does not come without errors, reasoning about it

adds complexity to the planning process. An e�cient planner must carefully select the

pieces of information it takes into account. In our model, the robot gains information

about the workspace through special features called landmarks. All the points of the

workspace from where a landmark is perceivable are considered equivalent from the

planner's point of view. Therefore, the world can be described by a �nite number

of states. By assuming that landmarks are individually identi�able by the robot, we

avoid having to consider combinations of states, and we preserve the polynomiality of

the world description. Whenever the robot can sense a landmark, it is able to identify

the state of the world without error. A guaranteed plan consists of motion commands

that always reveal at least one landmark when executed. Thus, planning is reduced

to computing the connectivity (with respect to the available motion commands) of

the graph representing the world states, and then searching this graph.

Computing the connectivity of the world states is performed with the help of the

preimage backchaining method. The preimage of a goal is a structure which depends

on the planning parameters (commanded direction of motion, directional uncertainty,

etc.), and which can be used to determine whether a motion command is guaranteed
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to succeed or not. We prove that we need not search the entire continuous parameter

space for guaranteed commands. Instead, it is possible to divide the parameter space

into a polynomial number of cells. All points in a cell have the same properties (with

respect to planning) and, thus, only one point per cell need be considered.

We implemented one such planner in two dimensions for one control parameter

(commanded direction of motion) and two control parameters (commanded direction

of motion and directional uncertainty). Both planners are polynomial in the com-

plexity of the workspace. We then attempted to create an actual workspace-robot

combination for which our assumptions are satis�ed to a large extent. By plac-

ing black-and-white patterns on the ceiling of the workspace and having a camera

mounted on the robot look straight up, we were able to satisfy most of the assump-

tions. Several sources of errors caused failures, but we were able to eliminate all

but one with recursive workspace engineering. The one unrealistic assumption is the

requirement that the robot have perfect position sensing whenever it enters a land-

mark region. To overcome this di�culty, we adapted our model to allow for some

uncertainty. We were able to do so with the notion of generalized landmarks, where

perfect position sensing is not required. The resulting system was able to repeatedly

operate without failures for the duration of the battery life of the robot (about one

hour).

Our experimental work has validated every single aspect of the proposed planning

paradigm. By working with a correct algorithm, experimental failures were easily

tracked down to discrepancies between the world model and the real world. Both

engineering and model re�nement were used to eliminate these discrepancies. The

cost of engineering the workspace was minimal, and the reliability and robustness of

the resulting system were high.

8.2 Limitations of the approach

Any new piece of work, especially one that proposes an alternative perspective of a

hard problem, is bound to draw some �re. In addition, computer scientists are tradi-

tionally suspicious of polynomial algorithms that are used for intractable problems.
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So it is no wonder that our work has attracted some criticism. In this section we

attempt to answer some of the questions that have been raised about our work, and

also try to evaluate its strengths and shortcomings.

Is the model realistic? One concern that has been voiced about our work is

that its assumptions are not realistic. This is not the point. Our approach is not

intended for workspaces over which we have no control. It is supposed to be used

in environments where we can intervene and make adjustments. We begin from a

set of assumptions that produce a polynomial algorithm, and then we engineer the

workspace to satisfy our assumptions. Therefore, the question becomes whether such

engineering is possible and at what cost. Experimentation indicates that it is possible

to enforce the assumptions at a reasonable cost.

Is the model simplistic? Another criticism has been that, by considering only a

small subset of the available information, our planner is not able to produce plans that

are within the capabilities of the robot. This is true. To obtain, however, polynomial

planning algorithms, it is necessary to simplify the information that is considered

by the planner. Several attempts to use more complex information structures have

yielded exponential algorithms. Also, information that is being ignored at planning

time may still be used during plan execution. We believe that it is of utmost impor-

tance that practical robotic systems have the capability of fast reliable planning. If

such planning fails, other more complex algorithms can be called to solve the problem.

What about model error? Small errors in the location of obstacles can be dealt

with by slightly growing the obstacles. Small errors in the location of landmarks

can be dealt with by shrinking the landmark region and growing the localization

uncertainty within landmark regions. These adjustments decrease the plan-�nding

capabilities of our planner, but preserve its polynomiality. We believe that an impor-

tant target of future research should be to augment our planning model to account

for model error without loss of polynomiality. We conjecture that such an extension

is possible.
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What about unexpected events? No planning system can cope with arbitrary

unexpected events. The term \unexpected event" (in the context of motion planning)

usually refers to gross discrepancies between the workspace model and the actual

world, and, as such, it is a form of model error. Our system is not designed to reason

about such situations, because it depends on prior knowledge of the planning environ-

ment. Since unexpected events cannot be completely eliminated, a realistic robotic

system should be equipped with the capability to deal with them e�ectively. In Chap-

ter 5, we mention a case where a robot can cope with one kind of unexpected events

(stationary unexpected obstacles that partially block the robot's forward projection)

without abandoning its current plan. However, a complete robotic system should be

able to cope with more disrupting events, like moving obstacles, complete blockage of

passage, disappearance of landmarks, etc. In this case, local heuristic behaviors will

be temporarily necessary. After the emergency is over, the robot should attempt to

locate a landmark and reattach to the current plan. Reattachment is easy because of

two important properties of the plans produced by our system, namely, that they are

distributed over the workspace, and that their execution need not be sequential. A

plan is simply a collection of motion commands, each attached to a landmark area.

Each motion command is guaranteed to lead the robot either to the goal or to another

landmark area with a similar motion command attached to it. In fact, the plans can

be constructed so that a motion command is attached to all landmark areas from

where a guaranteed motion plan (with respect to a speci�c goal) exists. Thus, if

the normal execution of a plan is disrupted, the chance of reattachment is maximal.

Hence, our system is robust in dealing with unexpected failures.

Why is this approach better? Several other practical robotic systems have been

designed and tested successfully ([44, 10]). However, no other system combines poly-

nomiality of planning and deliberation during execution. Our simple experiments val-

idate our problem solving methodology, and demonstrate that fairly simple workspace

engineering is su�cient for the creation of a reliable navigation system. By no means

do we claim that our system is ready for real-world applications. It should be aug-

mented with capabilities like automatic extraction and update of the workspace model
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and dealing with unexpected events. But the major problem, dealing with uncertainty

in an e�cient way, has been solved.

8.3 Further research

Several interesting problems warrant further research. Here we discuss the ones that

we consider as the most important.

Complexity issues In Section 4.6 we compute the computational complexity of

the monoparametric planning algorithm. If s is the number of maximal connected

landmark regions and l is the complexity of landmark and C-obstacle regions, we

prove that the complexity is in O(sl3 log l). We also mention that runs of the imple-

mented algorithm indicate that a tighter bound may exist, and we outline how one

could attempt to obtain an O(sl2 log l) bound. Two open problems that need to be

addressed before such a bound can be obtained are (a) to prove that the number of

O-Spike events during one iteration of the algorithm is quadratic instead of cubic,

and (b) to prove that the total number of topological changes of the preimage during

catastrophic events is also quadratic. We conjecture that both proofs are possible

with the use of techniques similar to the ones used in [8].

Extension to three dimensions The algorithms we developed apply to motions

in two dimensions. In Subsection 6.4.6, we show how to apply them in 3-D space,

if motions along the third dimension and motions in the plane are separated. It

would be interesting, and useful, to see whether our ideas can be extended to 3-D

translational motions, or to planar motions that combine simultaneous translation

and rotation. In the latter case, the robot is not con�ned within a single slice of the

nondirectional preimage during the execution of a motion command, but it can move

across slices. A motion command needs a number of parameters (not only one) to be

completely determined. The number of parameters depends on the available controls

of the robot's motion. Similarly, in 3-D translation the directional preimage is a 3-D

structure and the robot is free to move in all three dimensions. A motion command
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can be fully determinedwith a direction in 3-D space (i.e., two parameters are needed).

If appropriate uncertainty models are used, both problems can be probably solved

with the multiparametric analysis of Chapter 6.

Other models of uncertainty accepting polynomial planners Our model is

not the only one that admits a polynomial planner. It is certainly worthwhile devel-

oping other models that lead to polynomial planning algorithms. Di�erent models

may be useful under di�erent circumstances.

Probabilistically guaranteed plans and EDR plans Our planners produce

guaranteed plans. However, in many realistic situations guaranteed plans do not ex-

ist. In Section 6.3, we describe in detail how our methodology can be used to produce

probabilistic plans with maximum likelihood of success. Unfortunately such plans

may fail in unacceptable ways. In Subsection 6.3.3, we discuss plans the fail recog-

nizably (EDR plans), and in Section 5.7 we discuss plans that are probabilistically

guaranteed. Although we present algorithms for the computation of both kinds of

plans, we do not perform any complexity analysis. It is very interesting to inves-

tigate whether EDR and probabilistically guaranteed plans can be produced within

the landmark framework in polynomial time. Our conjecture is that exponential time

is indeed necessary. If this is the case, it would be instructive to identify further

adjustments to the uncertainty model that would render planning polynomial.

Application to other domains Our problem solving methodology does not specif-

ically apply to robot motion planning with uncertainty. Many applications that have

to deal with the complexity of the physical world may bene�t from the approach of

arti�cially decreasing the physical complexity of a system, in order to develop problem

solvers with su�ciently low computational complexity.



Appendix A

Properties of the Locus of a Spike

In this appendix we establish the equation of the locus of a spike and we compute

the intersection of this locus with a circle. These results are needed to schedule

potential spike events (I-Spike-In, I-Spike-Out, L-Spike-In, L-Spike-Out, O-Spike-In,

O-Spike-Out, E-Spike-In, E-Spike-Out).

Spike-Locus Curve

A spike is the intersection point of two rays parallel to the sides of the directional

uncertainty cone and tangent to two disks, which may, or may not, be distinct. The

angle of the rays is constant and equal to 2� (the directional uncertainty), and its

bisector is oriented along the commanded direction of motion d. We are interested

in the equation of the locus of the spike as d varies in S1. We also develop formulas

to identify the valid part of the locus curve. (A point of the locus is not valid, if one

of the rays that form the spike at this point crosses through a landmark or obstacle

disk.)

Let us consider the case where the intersecting rays are tangent to two distinct

landmark disks D1 and D2 of respective radii �1 and �2. One ray, l1, is the left ray

of D1; the other, r2, is the right ray of D2, as shown in Figure A.1. The results

established below remain valid when any of the disks is an obstacle disk, provided

that we change the corresponding radius �i (i = 1 or 2) into ��i. If the spike is

produced by a single landmark disk, then its locus is simply a circle having the same

205
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Figure A.1: A spike created by two landmark disks

center as the landmark disk; its radius is �=sin �, where � is the radius of the disk.

Let ', '1 and '2 denote the angles between the x-axis of a workspace coordinate

system and the direction d, the ray l1, and the ray r2, respectively. We have '1 =

' � � and '2 = ' + �. Let the center of the disk D1 (resp. D2) be c1 (resp. c2)

with coordinates (x1; y1) (resp. (x2; y2)). We let p1 (resp. p2) denote the origin of l1

(resp. r2) and s denote the intersection point of l1 and r2, i.e., the point we wish to

track. Let (xs; ys) be the coordinates of s in the workspace coordinate system.

The coordinates of p1 are (x1 � �1 sin'1; y1 + �1 cos'1), and those of p2 are

(x2 + �2 sin'2; y2 � �2 cos'2). Hence, the equations for l1 and r2 are:

l1 : �(x� x1) sin'1 + (y � y1) cos'1 � �1 = 0;

r2 : �(x� x2) sin'2 + (y � y2) cos'2 + �2 = 0:

Both equations must be veri�ed for x = xs and y = ys, yielding the following
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Figure A.2: Various shapes of spike-locus curves

parametric equations of the spike-locus curve:

xs =
1

sin 2�
[�1 cos'2 + �2 cos'1 � x1 cos'2 sin'1 +

x2 cos'1 sin'2 + (y1 � y2) cos'1 cos'2]; (A.1)

ys =
1

sin 2�
[�1 sin'2 + �2 sin'1 + y1 cos'1 sin'2 �

y2 cos'2 sin'1 � (x1 � x2) sin'1 sin'2]: (A.2)

Since both '1 and '2 are linear functions of ', both xs and ys are thus expressed as

functions of '. Eliminating ' from Equations (A.1) and (A.2) yields a fourth-degree

equation representing the locus of s. However, we will see that the above parametric

form su�ces.

Di�erent shapes of the spike-locus curve are possible, depending on the sign of

the quantities �1 = j�1 cos 2� + �2j � � and �2 = j�2 cos 2� + �1j � �, where � denotes

the distance between c1 and c2. These shapes are illustrated in Figure A.2, for two

intersecting landmark disks:

- If both �1 and �2 are positive, the locus is a simple (Jordan) curve that encloses the

two landmark disks without touching any of them.

- If �1 or �2 is positive and the other is negative, the locus is still a simple curve, but

it is twice tangent to the bigger disk.

- If both �1 and �2 are negative, the curve is no longer simple; it makes a loop and is

twice tangent to both disks.

In the �rst example of Figure A.2, �1 = 50, �2 = 15, and � = :25; both �1 and �2 are
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Figure A.3: Spike-locus curve for two disjoint landmark disks

positive. In the second example, �1 = 100, �2 = 30, and � = :65; �1 is negative and

�2 positive. In the third example, �1 = 50, �2 = 15, and � = 1:37; both �1 and �2 are

negative. In the case where the two disks do not intersect, the quantities �1 and �2

are always both negative; the spike-locus curve makes a loop and is twice tangent to

both disks, as shown in Figure A.3.

Notice that not all points in a spike-locus curve correspond to feasible spikes. Let

us draw the line tangent to both D1 and D2, and oriented so that it touches D1 before

D2 (the dashed line in Figure A.2). The valid part of the locus (shown in thicker line

in the �gure) lies on the left-hand side of this line. Intersecting a spike-locus curve

with a circle may yield both valid and invalid points, which must be subsequently

classi�ed accordingly.

Intersection of a Spike-Locus Curve with a Circle

Let us now consider a third disk D3 centered at c3 and having radius �3 (see

Figure A.1). We wish to compute the intersection of the spike-locus curve with the

circle C3 bounding this disk. To that end, we denote any intersection point of r2 with

C3 by t, compute the vectors s�p2 and t�p2 as functions of ', and solve the equation

s� p2 = t� p2 for '.
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We have s� p2 = (xs�x2� �2 sin'2 ; ys� y2+ �2 cos'2). Using Equations (A.1)

and (A.2), we get (after some calculation):

s� p2 =
A

sin 2�
(cos'2 ; sin'2); (A.3)

where A = (y1 � y2) cos'1 � (x1 � x2) sin'1 + �1 + �2 cos 2�.

Let the equation of the circle C3 be:

(x� x3)
2 + (y � y3)

2 = �3:

By solving it together with the equation of r2, we get the coordinates (xt; yt) of the

intersection t of r2 with C3. After yet some calculation, we �nd:

xt = x3 cos
2 '2 + x2 sin

2 '2 + �2 sin'2 �

(y2 � y3) sin'2 cos'2 � cos'2
q
�23 �B

2; (A.4)

yt = (x2 + x3) cos'2 sin'2 � �2 cos'2 +

y3 sin
2 '2 + y2 cos

2 '2 � sin'2
q
�23 �B

2; (A.5)

where B = (y2 � y3) cos'2 � (x2 � x3) sin'2 � �2.

We have t� p2 = (xt�x2� �2 sin'2 ; yt� y2+ �2 cos'2). Using Equations (A.4)

and (A.5), we get:

t� p2 = (C �
q
�23 �B

2) (cos'2 ; sin'2); (A.6)

where C = (x3 � x2) cos'2 + (y3 � y2) sin'2.

Comparing Equations (A.3) and (A.6) we see that the equality of the components

of the two vectors yields the same equation, namely:

A = (C �
q
�23 �B

2) sin 2�:

After rearranging to isolate the root, squaring, and performing a considerable amount

of calculation we end up with:

S0 + S1 sin'+ S2 cos' + S3 sin
2 '+ S4 cos

2 '+ S5 sin' cos' = 0; (A:7)
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where:

S0 = (x23 + y23 � �
2

3) sin
2 2� + �21 + �22 + 2�1�2 cos 2�;

S1 = 2�1(A1 +A2 cos 2� � C1 sin 2�) + 2�2(A2 +A1 cos 2� � C2 sin 2�);

S2 = 2�1(B1 +B2 cos 2� �D1 sin 2�) + 2�2(B2 +B1 cos 2� �D2 sin 2�);

S3 = A2

1 +A2

2 + 2A1A2 cos 2� � 2(A1C1 +A2C2) sin 2�;

S4 = B2

1 +B2

2 + 2B1B2 cos 2� � 2(B1D1 +B2D2) sin 2�;

S5 = 2[A1B1 +A2B2 + (A1B2 +A2B1) cos 2� �

(A1D1 +B1C1 +A2D2 +B2C2) sin 2�];

and
A1 = �x1 cos � + y1 sin �; A2 = x2 cos � + y2 sin �;

B1 = x1 sin � + y1 cos �; B2 = x2 sin � � y2 cos �;

C1 = �x3 sin � + y3 cos �; C2 = x3 sin � + y3 cos �;

D1 = x3 cos � + y3 sin �; D2 = x3 cos � � y3 sin �:

Using the transformation u = tan('=2), Equation (A.7) becomes:

(S0�S2+S4)u
4+2(S1�S5)u

3+2(S0+2S3�S4)u
2+2(S1+S5)u+(S0+S2+S4) = 0 (A:8)

which is a fourth-degree equation that can be solved analytically. From u, we compute

', and from it (xs; ys) using (A.1) and (A.2).

Classi�cation of Solutions

As we mentioned above, not every real solution of Equation (A.8) corresponds to

a feasible spike. We still have to disqualify invalid solutions. We also need to classify

the valid solutions into entry and exit angles when d moves counterclockwisely.

A spike-locus curve can have up to four intersection points with a circle. How-

ever, a spike is feasible only for values of ' in the interval ['min; 'max], where 'min

(resp. 'max) is the angle between the x-axis and the direction d when l1 (resp. r2)

is the exterior common tangent to both D1 and D2 (see Figure A.4). Denoting the

distance between c1 and c2 by �, and the angle between the x-axis and the vector

c2 � c1 by �, we have:

'min = �+ arcsin
�2 � �1

�
+ �;
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'max = � + � + arcsin
�2 � �1

�
� �:

Any solution ' 2 ['min; 'max] is either an entry angle (i.e., the spike enters the

disk) or an exit angle (i.e., the spike exits the disk), or both (i.e., the spike-locus

curve is tangent to the circle bounding the disk). Let 's = arctan(y0s=x
0

s), with

x0s = dxs=d' and y0s = dys=d', and 'd = arctan((x � x3)=(y3 � y)) be the angles of

the x-axis with the tangents to the spike locus and the circle C3, respectively, at their

intersection point. A solution ' is an entry angle if 's 2 ('d; 'd + �) and an exit

angle if 's 2 ('d + �; 'd + 2�). If 's = 'd + 2�, the spike locus and C3 are tangent

and exterior to each other (see Figure A.5 (a)). If 's = 'd the two curves are tangent

with one of them lying inside the other (see Figure A.5 (a) and (b)). Let �s be the
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radius of curvature of the spike locus at the point of tangency. We have:

�s =
[(x0s)

2 + (y0s)
2]3=2

jy00sx
0
s � x

00
sy

0
sj

;

with x00s = d2xs=d'
2 and y00s = d2ys=d'

2. If �s > �3 the spike locus encloses C3

(Figure A.5 (b)); if �s < �d the spike locus is enclosed by C3 (Figure A.5 (c)); if they

are equal we need higher derivative tie-breakers which are too tedious to mention

here. (Actually, in the main body of this paper, we assume that the disks are in

general position, so that no two critical events occur simultaneously. Therefore, we

may ignore the cases where the spike-locus curve is tangent to C3. However, the

study of this case is of interest if we wish to compute the critical values of � where

the envelope of a non-directional preimage becomes tangent to a disk.)

Spikes with Obstacle Rays

Spikes involving rays arising from obstacle disks are slightly di�erent. Since ob-

stacles must be avoided, a left ray leaves the obstacle on its right, and a right ray on

its left. Fortunately, the only di�erence in the spike equations established above is a

change of sign. If a ray of a spike arises from an obstacle disk of radius �i (i = 1 or

2), we just need to change �i into ��i wherever it appears in the equations.

However, the range of ' where a spike is feasible merits some discussion. Let us

consider a spike whose left and right rays stem from a landmark disk and an obstacle

disk, respectively. Assume for the moment that the two disks do not intersect. When

' varies (as d spans S1), this spike emerges from the obstacle disk, with its right

ray tangent to the obstacle at this same point. Therefore, the valid subset of the

spike locus begins exactly at a point where the spike-locus curve and the obstacle

disk intersect or are tangent. A straightforward calculation shows that:

'min = � + arcsin
�2 cos 2� � �1

�
+ �:

The spike terminates when its right ray becomes the internal common tangent of the

two disks. Hence:

'max = � + � � arcsin
�2 + �1

�
� �:
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Figure A.6: Spike-locus curve for disjoint landmark and obstacle disks

In a similar fashion, we can calculate the limits for an obstacle-landmark spike:

'min = �+ arcsin
�2 + �1

�
+ �;

'max = � + � + arcsin
�2 � �1 cos 2�

�
� �;

and for an obstacle-obstacle spike:

'min = �+ arcsin
�2 cos 2� + �1

�
+ �;

'max = � + � � arcsin
�2 + �1 cos 2�

�
� �:

Regarding the shape of the spike-locus curve, it still depends on the sign of the

two quantities �1 and �2 de�ned above, by substituting ��i for �i whenever we refer

to an obstacle disk.

When the two disks do not intersect, both quantities j � �1 cos 2� � �2j � � and

j � �2 cos 2� � �1j � � are always negative. Then the spike-locus curve always has an

inner loop (see Figure A.6).

Let us consider now the case when the two disks intersect with each other. (See

Section 5.3 for a description of this case.) Again we begin by examining a landmark-

obstacle spike. (See Figure A.7 for illustration.) The termination of this spike cannot
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Figure A.7: Spike-locus curve for intersecting landmark and obstacle disks

occur at the internal tangent point, since this point no longer exists. When the origin

of the right ray reaches the intersection point of the two disks (an E-Right-Anchor

event), it sticks there for a while as the ray continues to rotate counterclockwisely.

When the ray gets tangent to the landmark disk (an E-Right-Release event), it turns

into a landmark ray and its origin starts moving in the boundary of the landmark

disk. Thus, the landmark-obstacle spike is transformed, �rst into a right-anchored

spike, and then into a landmark-landmark spike. Since the right-anchored spike has

a di�erent equation, the termination of the original landmark-obstacle spike occurs

exactly at the E-Right-Anchor event. The calculation of the E-Right-Anchor angle

yields:

'min = � + arcsin
�2 cos 2� � �1

�
+ �;

'max = �=2 + � � arccos
�2
2
+ �2 � �2

1

2��2
� �:

The landmark-obstacle spike exists if and only if 'min < 'max, which translates into

the following constraint:

�21 + �22 � �
2 < 2�1�2 cos 2�: (A.9)
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Figure A.8: Spike-locus curve for two intersecting obstacle disks

This same constraint guarantees the existence of an obstacle-landmark spike with:

'min = �=2 + � + arccos
�2
1
+ �2 � �2

2

2��1
+ �;

'max = � + � + arcsin
�2 � �1 cos 2�

�
+ �:

Two intersecting obstacle disks may create a spike, but this spike can only occur

\under" the obstacles (see Figure A.8). The constraint for its existence is that the

(exterior) angle of the tangents to the two disks at an intersection point be less than

2�. This translates into the constraint:

�2 � �21 � �
2

2 > 2�1�2 cos 2�: (A.10)

The valid range of ' is the same as in the non-intersecting case.

Our �nal point will be to prove that whenever an obstacle disk is involved in a

spike, the spike-locus curve includes a loop. We already know that this is true for

two disjoint disks. So we only consider the case of two intersecting disks. First,

�1 � �1 cos 2� implies �1 � �2 � �1 cos 2� � �2. Since the disks intersect, we have

� > �1 � �2, thus:

� > �1 cos 2� � �2: (A.11)
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On the other hand, the constraint (A.9) for the existence of the spike implies:

�2 + �2
2
� �2

1

2�2�
>

�2 � �1 cos 2�

�
:

The left-hand side of this inequality is equal to the cosine of the angle between the

segment c2c1 and the segment joining c2 to an intersection point of the circles bounding

the two disks. So, it is less than one, which yields

� > �2 � �1 cos 2�: (A.12)

Combining the relations (A.11) and (A.12), we get � � j�2 � �1 cos 2�j, which yields

�1 � 0 for the obstacle-landmark and landmark-obstacle spikes. For the obstacle-

obstacle spike we can also prove that �1 � 0 starting from equation (A.10) and the

fact that �1 � ��1 cos 2�, and working in a similar as above fashion. In a symmetric

way, we also get �2 � 0 in all cases, proving that when at least one obstacle is involved,

the spike-locus curve always contains a loop when there exists a valid range of values

of '.



Appendix B

Properties of the Spike Curve

De�nition

A spike curve represents the relationship between the orientation of the com-

manded velocity vector d, and the half-angle of the uncertainty cone �, such that the

spike of two disks D1 and D2 lies on the boundary of a third disk D3. The right ray

(stemming from D2) has slope d+ � + �.

Parametric equations of the spike curve and its slope

Notice that we can �nd all points of the spike curve that corresponds to these three

disks, by having a point p move on the boundary of D3, and from every such position

draw tangents to D1 and D2. If the slopes of these tangents are s1 and s2 respectively,

then d = (s1 + s2)=2 + �, and � = (s2 � s1)=2. Now remember that each point on a

spike curve corresponds to an L-Spike critical event, where the rays forming the spike

just intersect an intermediate-goal disk. Therefore, there should exist another point

p0 lying arbitrarily close to p, such that, if we draw the tangents to D1 and D2 from it,

they do not intersect D3. This can only be true, if both rays drawn from p leave D3

immediately, without traversing its interior. Figure B.1 presents one acceptable and

one unacceptable case. We are only interested in the positions of p on the boundary

of D3, which lie between the tangency points of the appropriate common tangents

between D3 and the other two disks. This suggests that we can track the spike curve,

if we allow p to move counterclockwisely on the boundary of D3 from its leftmost to

217
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D2
D1

D2
D1

unacceptableacceptable

3D

3D
p

p

Figure B.1: Rays forming a spike should not cut through D3.
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D3
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Figure B.2: Limits of motion of p on D3.

its rightmost point, and compute d and � for each location. In Figure B.2 we show

the valid locations of p in two cases, when both D1 and D2 are landmark disks, and

when both are obstacle disks.

In the following we will assume that D1 and D2 are landmark disks. However,

it is easy to adapt the equations and the proofs for the cases, where either or both

are obstacle disks: In each formula or equation we just need to switch the sign of the

radii of obstacle disks, wherever they appear.

Look at Figure B.3. The parameter we use to represent the location of p on the

boundary of D3 is the angle x between the line connecting the center c3 of D3 and
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Figure B.3: Spike created by two landmark disks

p and the line connecting the centers c1 and c2 of D1 and D2. Let the radii of the

three disks be respectively �1, �2 and �3; let the distance between c1 and c3 be called

�1, between c2 and c3 �2, and between c1 and c2 �3; let the distance between p and

c1 be called �1, and between p and c2 �2. Let the point of intersection of the lines

that connect c3 with p and c1 with c2 be called q. Also, let the points where the two

rays are tangent to D1 and D2 respectively be called p1 and p2. We call angle dp1pc1
'1, angle dc2pp2 '2, angle dc1pq �1, angle dqpc2 �2, angle dc3c1c2 !1 and angle dc3c2c1 !2.
Finally, let the slope of the line that connects c1 with c2 be s. It is easy to see that:

� = ('1 + '2)=2 + (�1 + �2)=2 (B.1)

d = ('2 � '1)=2 + (�2 � �1)=2 + x+ s+ � (B.2)
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We will use the above equations to �nd a parametric representation (�(x); d(x)) of

the spike curve. The angle x is a suitable parameter, because it grows monotonically

as p moves from its leftmost to its rightmost position. We therefore need to express

'1, '2, �1 and �2 as functions of x. We can do this in two steps: �rst express them

as functions of �1, �2 and x, and then �nd the dependence of �1 and �2 on x, as the

following equations show:

sin'1 = �1=�1 (B.3)

sin'2 = �2=�2 (B.4)

sin�1 = �1 sin(x� !1)=�1 (B.5)

cos�1 = (�1 cos(x� !1)� �3)=�1 (B.6)

sin�2 = �2 sin(x+ !2)=�2 (B.7)

cos�2 = (��2 cos(x+ !2)� �3)=�2 (B.8)

�1
2 = �1

2 + �3
2 � 2�1�3 cos(x� !1) (B.9)

�2
2 = �2

2 + �3
2 + 2�2�3 cos(x+ !2) (B.10)

For the angles '1 and '2 we use only one equation because we know that they are

always positive, whereas for �1 and �2 we need a second equation for each, in order

to determine their sign. The above equations combined with the equations for �

and d de�ne the parametric form of the spike curve. The parameter x varies from

a minimum value x0 that corresponds to the rightmost location of p, to a maximum

value x1 that corresponds to the leftmost location of p. In the �rst case the left ray

is tangent to D3, and in the second case the right ray is tangent to D3. If both D1

and D2 are landmark disks we have:

x0 = !1 + arccos
�1 + �3

�1
(B.11)

x1 = � � !2 � arccos
�2 + �3

�2
(B.12)

One can attempt to extract the actual equation of the spike curve by substitution,

but the resulting form is too complicated. Furthermore, we can prove desired prop-

erties of the curve using just the parametric form. In order to prove these properties
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though, we need to �nd the equations of the slope of the curve.

We are interested in the function d�=dd = �0=d0, where the symbol 0 denotes

di�erentiation with respect to x. From Equations (B.1)-(B.2) we get:

�0 = ('1
0 + '2

0)=2 + (�1
0 + �2

0)=2 (B.13)

d0 = ('2
0 � '1

0)=2 + (�2
0 � �1

0)=2 + 1 (B.14)

and from Equations (B.3)-(B.10):

'1
0 = ��1�1�3 sin(x� !1)=�1

3 cos'1 (B.15)

'2
0 = �2�2�3 sin(x+ !2)=�2

3 cos'2 (B.16)

�1
0 = (�1

2 � �1�3 cos(x� !1))=�1
2 (B.17)

�2
0 = �(�2

2 + �2�3 cos(x+ !2))=�2
2 (B.18)

�1
0 = �1�3 sin(x� !1)=�1 (B.19)

�2
0 = ��2�3 sin(x+ !2)=�2 (B.20)

Properties of the spike curve

In Appendix A we showed that the locus of a spike of two disks for a given value

of � is a closed fourth degree curve. This curve has several interesting properties,

some of which we will need, in order to derive the properties of the spike curve. In

particular:

1. Not all points of a locus curve correspond to feasible spikes. We call the set of

points that correspond to feasible spikes the valid part of the curve.

2. The valid part of a locus curve is convex.

3. The valid part of a locus curve can have at most two intersections with a circular

disk.

4. The valid parts of the locus curves of two disks for all possible values of � de�ne

a family of convex curves such that:

(a) No two distinct curves in the family intersect.

(b) Curves that correspond to higher � values lie to the inside of curves corre-

sponding to lower � values.
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(c) A circular disk can be outside tangent to at most one of these curves.

Now consider the locus of the spike of D1 and D2 that passes from some position

of p on D3. Let � be the corresponding value of the uncertainty half-angle. From

property 3, there can be at most one other position of p on D3 that corresponds to

the same value of �. If we grow the value of �, the locus will shrink, and the two

points will move closer. If we continue growing � the two points will coincide at a

location pmax that corresponds to the maximum value of �. The locus corresponding

to this value is outside tangent to D3.

This is the only maximum for �. Indeed a maximum can occur only at a point

where a spike locus is outside tangent to D3. Otherwise, we would be able to move to

the interior of the locus while staying on the boundary of D3 and from property 4(b)

the new point would correspond to a higher value of �, contradicting the assumption

that the initial point was a local maximum. But from property 4(c) there is a single

locus curve corresponding to two given disks, that is outside tangent to a third given

disk. It remains to examine the case where the interesting part of the same locus

is outside tangent to D3 at two distinct locations. This again is impossible from

property 2. So we proved the following lemma:

Lemma B.1 As p moves counterclockwisely on the boundary D3 from its leftmost to

its rightmost location, � initially grows, reaches a global maximum, and then shrinks

again.

We can now use this result to examine the behavior of d, as p moves (see Fig-

ure B.4). Let p be located to the left of pmax. If the slope of the right ray is s2, then

s2 = d + � + �. If p makes a small counterclockwise move, so that it remains to the

left of pmax, the right ray rotates clockwisely by ds2, � grows by d� and d changes by

dd. In the new location we have: s2 � ds2 = d + dd+ � + d� + �, where ds2 > 0 and

d� > 0. After simplifying we get: dd = �ds2 � d� < 0. With similar reasoning for

the left ray we can prove that dd < 0 when p lies to the right of pmax, too. And of

course at pmax, where d� = 0, dd = �ds1 = �ds2 < 0. Note, that both rays always

move clockwisely, because of the restrictions we imposed on the motion of p on D3.

Thus we proved that:
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Figure B.4: Variation of the commanded velocity orientation.

Lemma B.2 As p moves counterclockwisely on D3 from its leftmost to its rightmost

location, d moves clockwisely.

Since d cannot assume all values in [0; 2�] with the spike remaining on the bound-

ary of D3, the previous lemmas lead to this corollary:

Corollary B.3 The spike curve is a continuous function � = fspike(d). This function

grows monotonically up to some point (dmax; �max), and then shrinks monotonically.

The continuity of the spike curve is intuitively obvious, so we omit the proof. We

will now prove that the slope of the spike curve is always less than or equal to 1 in

absolute value. We need to show that j�0=d0j � 1. When p moves counterclockwisely,

it is easy to see that x grows. Therefore, we can apply the above lemmas to �0 and

d0: From Lemma B.1 we get that to the left of pmax �
0 is positive, and to the right of

it it is negative. From Lemma B.2 we get that d0 is always negative. Thus, we can

distinguish two cases:

(a) Right of pmax: Prove that d0 � �0 � 0

Using Equations (B.13) and (B.14) the above becomes: �10+'10 � 1. Substituting

from Equations (B.17) and (B.15) and simplifying yields:

�1 cos(x� !1)� �3
�1

�
�1 sin(x� !1)

(�12 � �12)1=2
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Now notice that x � !1 is the angle between the lines connecting c3 with c1 and c3

with p. Also notice that the value of this angle, lies between the values corresponding

to the leftmost position of p and the rightmost position of p. The rightmost position

of p is found by drawing the common interior tangent of D1 and D3, and the value of

the corresponding angle is arccos((�1 + �3)=�1). The leftmost position of p is found

by drawing the interior common tangent of D2 and D3, and always lies to the right

of the point that corresponds to the other interior common tangent of D1 and D3.

This is true because the right ray cannot go beyond the position where it becomes the

right outside common tangent of D1 and D2. Thus the value of the angle we study

is always bigger than �arccos((�1 + �3)=�1). Consequently, the cosine of the angle is

always greater than (�1 + �3)=�1. From this, it follows that:

�1 cos(x� !1)� �3
�1

� 1

The equality holds only at the rightmost position of p. 1

In order to complete the proof, we will show that �1 sin(x�!1)=(�12��12)1=2 � 1.

After substituting �1, squaring and simplifying, the above is reduced to showing that

(�1 cos(x � !1) � �3)2 � �1
2, which follows directly from the inequality we proved

above. Once again the equality holds only at the rightmost position of p.

(b) Left of pmax: Prove that d0 + �0 � 0

This translates to �20 + '2
0 � �1, which can be proved in a similar fashion as

above. In this case, the equality occurs at the leftmost position of p. So our proof is

complete. We have:

Lemma B.4 The slope of a spike curve never exceeds 1 in absolute value. It is equal

to �1 when p is at its leftmost position, and to 1 when p is at its rightmost position.

So, a spike curve emerges from the L-Touch critical curve that corresponds to D1

and D3, and ends by blending into the L-Exit critical curve that corresponds to D2

and D3 (see Figure B.5). In both cases the transition is smooth, because the curves

have the same slope (1 and �1 respectively). We can now state the major property

of a spike curve:

1And at the leftmost in the degenerate case where all three disks share a common tangent.
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maxθ

dmax3(η −η  )/ζ1 1s+ 1ω  −  asin s+ +asinω (η −η  )/ζ2 3 2 2

d

θ

Figure B.5: Spike curve

Theorem B.5 A spike curve has at most one intersection with any straight line of

slope 1 or �1.

This follows directly from Lemma B.4 and the fact that the spike function is

continuous.
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