
RANDOM SAMPLING IN GRAPH OPTIMIZATION

PROBLEMS

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

David R. Karger

January 1995

c
 Copyright 1995 by David R. Karger

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Rajeev Motwani

(Principal Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Serge Plotkin

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Andrew Goldberg

Approved for the University Committee on Graduate Studies:

iii

Abstract

The representative random sample is a central concept of statistics. It is often possible to

gather a great deal of information about a large population by examining a small sample

randomly drawn from it. This approach has obvious advantages in reducing the investiga-

tor's work, both in gathering and in analyzing the data.

We apply the concept of a representative sample to combinatorial optimization. Our

general technique is to generate small random representative subproblems and solve them

in lieu of the original ones, producing approximately correct answers which may then be

re�ned to correct ones at little additional cost. Our focus is optimization problems on

undirected graphs. Highlights of our results include:

� The �rst (randomized) linear time minimum spanning tree algorithm;

� A (randomized) minimum cut algorithm with running time roughly O(n2) as compared

to previous roughly O(n3) time bounds, as well as the �rst algorithm for �nding all

approximately minimal cuts and multiway cuts;

� An e�cient parallelization of the minimum cut algorithm, providing the �rst parallel

(RNC) algorithm for minimum cuts;

� The �rst proof that minimum cuts can be found deterministically in parallel (NC);

� Reliability theorems tightly bounding the connectivities and bandwidths in networks

with random edge failures, and a fully polynomial-time approximation scheme for esti-

mating all-terminal reliability|the probability a particular graph remains connected

under edge failures;

� A linear time algorithm for approximating minimum cuts to within (1+�) and a linear

processor parallel algorithm for 2-approximation, and fast algorithms for approximat-

ing s-t minimum cuts and maximum
ows;

iv

� For theNP-complete problem of designing minimum cost networks satisfying speci�ed

connectivity requirements (a generalization of minimum spanning trees), signi�cantly

improved polynomial-time approximation bounds (from O(logn) to 1+o(1) for many

such problems);

� For coloring 3-colorable graphs, improvements in the approximation bounds from

O(n3=8) to O(n1=4), and even better bounds for sparse graphs;

� An analysis of random sampling in Matroids.

v

Acknowledgements

Many people helped me to bring this thesis to fruition. First among them is Rajeev Mot-

wani. As my advisor, he made himself frequently available day and night to help me through

research snags, clarify my ideas and explanations, and provide advice on the larger ques-

tions of academic life. My other reading committee members, Serge Plotkin and Andrew

Goldberg, have had the roles of informal advisors, giving me far more time and assistance

than a non-advisee had a right to expect. I'd like especially to thank Serge for the time

spent as a sounding board on some of the �rst ideas on random sampling for cuts and min-

imum spanning trees which grew into this thesis. Earlier, Harry Lewis and Umesh Vazirani

were the people who, in my sophomore year, showed me what an exciting �eld theoretical

computer science could be.

I must also thank my coauthors, Douglas Cutting, Perry Fizzano, Philip Klein, Daphne

Koller, Rajeev Motwani, Noam Nisan, Michal Parnas, Jan Pedersen, Steven Phillips, G.

D. S. Ramkumar, Cli�ord Stein, Robert Tarjan, Eric Torng, John Tukey, and Joel Wein.

Each has taught me a great deal about research and about writing about research. I must

especially thank Daphne Koller, who by giving generously of her time and comments has

done more than anyone else to in
uence my writing (so it's her fault) and show me how to

strive for a good presentation. She and Steven Phillips also made sure I got o� to a fast

start by helping me write my �rst paper in my �rst year at Stanford. Thanks also to those

who have commented on drafts of various parts of this work, including David Applegate,

Don Coppersmith, Tom Cormen, Hal Gabow, Michel Goemans, Robert Kennedy, Philip

Klein, Micael Lomonosov, Laszlo Lov�asz, Je�rey Oldham, Jan Pedersen, Satish Rao, John

Tukey, David Williamson, and David Zuckerman.

Others in the community gave helpful advice on questions ranging from tiny details of

equation manipulation to big questions of my place in the academic community. Thanks

to Zvi Galil, David Johnson, Richard Karp, Don Knuth, Tom Leighton, Charles Leiserson,

vi

John Mitchell, David Shmoys, �Eva Tardos, Robert Tarjan, and Je�rey Ullman.

Thanks to my group at Xerox PARC, Doug Cutting, Jan Pedersen, and John Tukey,

for giving me an eye for the (relatively) practical side of computer science, as well as a

window on the exciting questions of information retrieval. Although none of our joint work

appears in this thesis, my experience with them reminds me that an important end goal of

algorithms is for them to be useful.

I wouldn't have enjoyed my stay at Stanford half as much had it not been for the

students who made it such a fun place: Edith, who convinced me that the best way to

spend conferences is climbing mountains; Donald, for keeping the o�ce well stocked with

food and books; Je�, for rebooting my machine often; Daphne, who was willing to spend

hours on one of my conjectures for the reward of being able to tell me I was wrong; Michael,

Michael, Sanjeev, Steven, Eric, Ram, Alan, Kathleen, Robert: : :.

Most of all, I must thank my family. My parents, for establishing my love of books and

learning; my siblings, for their subjection to my experiments in teaching. My wife and son,

for putting up with my mental disappearances as I chased down a stray thought and my

physical disappearances as I panicked over a paper deadline or traveled to a conference, and

for the constant love and support that took me through many times of doubt and worry.

They laid the foundation on which this thesis rests.

vii

Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Overview of Results : 2

1.1.1 Random Selection : 2

1.1.2 Random Sampling : 3

1.1.3 Randomized Rounding : 5

1.2 Presentation Overview : 6

1.3 Preliminary De�nitions : 8

1.3.1 Randomized Algorithms and Recurrences : : : : : : : : : : : : : : : 8

1.3.2 Sequential Algorithms : 10

1.3.3 Parallel Algorithms : 11

I Basics 13

2 Minimum Spanning Trees 15

2.1 Introduction : 15

2.1.1 Past Work : 15

2.1.2 Our Contribution : 16

2.1.3 Preliminaries : 16

2.2 A Sampling Lemma : 18

2.3 The Sequential Algorithm : 19

2.4 Analysis of the Algorithm : 20

viii

2.5 Conclusions : 23

3 Minimum Cuts 25

3.1 Introduction : 25

3.1.1 Problem De�nition : 25

3.1.2 Applications : 26

3.1.3 Past and Present Work : 27

3.2 Augmentation Based Algorithms : 28

3.2.1 Flow based approaches : 29

3.2.2 Gabow's Round Robin Algorithm : 30

3.2.3 Parallel algorithms : 31

3.3 Sparse Connectivity Certi�cates : 32

3.3.1 De�nition : 33

3.3.2 Construction : 34

3.4 Nagamochi and Ibaraki's Contraction Algorithm : : : : : : : : : : : : : : : 35

3.5 Matula's (2 + �)-Approximation Algorithm : : : : : : : : : : : : : : : : : : 37

3.6 New Results : 39

4 Randomized Contraction Algorithms 41

4.1 Introduction : 41

4.1.1 Overview of Results : 41

4.1.2 Overview of Presentation : 42

4.2 The Contraction Algorithm : 44

4.2.1 Unweighted Graphs : 44

4.2.2 Weighted Graphs : 46

4.3 Implementing the Contraction Algorithm : : : : : : : : : : : : : : : : : : : 46

4.3.1 Choosing an Edge : 47

4.3.2 Contracting an Edge : 48

4.4 The Recursive Contraction Algorithm : 49

4.5 A Parallel Implementation : 54

4.5.1 Using A Permutation of the Edges : : : : : : : : : : : : : : : : : : : 55

4.5.2 Generating Permutations using Exponential Variates : : : : : : : : : 56

4.5.3 Parallelizing the Contraction Algorithm : : : : : : : : : : : : : : : : 58

4.5.4 Comparison to Directed Graphs : 58

ix

4.6 A Better Implementation : 59

4.6.1 Iterated Sampling : 59

4.6.2 An O(n2)-Approximation : 62

4.6.3 Sequential Implementation : 63

4.6.4 Parallel Implementation : 65

4.7 Approximately Minimum Cuts : 65

4.7.1 Counting Small Cuts : 65

4.7.2 Finding Small Cuts : 68

4.8 Conclusion : 69

5 Deterministic Contraction Algorithms 71

5.1 Introduction : 71

5.1.1 Derandomizing the Contraction Algorithm : : : : : : : : : : : : : : : 72

5.1.2 Overview of Results : 72

5.2 Sparse Certi�cates in Parallel : 74

5.2.1 Parallelizing Matula's Algorithm : 77

5.3 Reducing to Approximation : 78

5.4 The Safe Sets Problem : 79

5.4.1 Unweighted Minimum Cuts and Approximations : : : : : : : : : : : 80

5.4.2 Extension to Weighted Graphs : 81

5.5 Solving the Safe Sets Problem : 82

5.5.1 Constructing Universal Families : 83

5.6 Conclusion : 88

6 Random Sampling from Graphs 89

6.1 Introduction : 89

6.1.1 Cuts and Flows : 90

6.1.2 Network Design : 91

6.2 A Sampling Model and Theorems : 92

6.2.1 Graph Skeletons : 92

6.2.2 p-Skeletons : 94

6.2.3 Weighted Graphs : 94

6.3 Approximating Minimum Cuts : 96

6.3.1 Estimating p : 96

x

6.3.2 Sequential Algorithms : 97

6.3.3 Parallel Algorithms : 98

6.3.4 Dynamic Algorithms : 99

6.4 Las Vegas Algorithms : 100

6.5 A Faster Exact Algorithm : 102

6.6 The Network Design Problem : 103

6.6.1 Problem De�nition : 104

6.6.2 Past and Present Work : 104

6.6.3 Randomized Rounding for Network Design : : : : : : : : : : : : : : 105

6.7 Conclusion : 107

7 Randomized Rounding for Graph Coloring 109

7.1 Introduction : 109

7.1.1 The Problem : 109

7.1.2 Prior Work : 110

7.1.3 Our Contribution : 110

7.2 A Vector Relaxation of Coloring : 112

7.3 Solving the Vector Coloring Problem : 112

7.4 Relating the Original and Relaxed Solutions : : : : : : : : : : : : : : : : : : 114

7.5 Semicolorings : 115

7.6 Rounding via Hyperplane Partitioning : 116

7.7 Rounding via Vector Projections : 118

7.7.1 Probability Distributions in <n : 120

7.7.2 Analyzing the Vector Projection Algorithm : : : : : : : : : : : : : : 124

7.8 Approximation for k-Colorable Graphs : 127

7.9 Duality Theory : 128

7.10 The Gap between Vector Colorings and Chromatic Numbers : : : : : : : : : 130

7.11 Conclusions : 133

8 Conclusion 135

II Extensions 137

9 Extensions of the Contraction Algorithm 139

xi

9.1 Multiway Cuts : 140

9.2 Derandomization Extensions : 142

9.2.1 Multiway Cuts : 142

9.2.2 Approximate Cuts : 143

9.3 Cut Data Structures : 144

9.3.1 The Cactus Representation : 145

9.3.2 The Chain Representation : 146

9.4 Parallel (1 + �)-Approximation : 148

9.4.1 Modifying the Contraction Algorithm : : : : : : : : : : : : : : : : : 149

9.4.2 Modifying the Recursive Algorithm : : : : : : : : : : : : : : : : : : : 150

9.4.3 Tracking the Degree : 152

9.5 Optimizing Space : 153

9.6 Optimizing Parallel Complexity : 154

9.7 Conclusion : 155

10 More Cut-Sampling Algorithms 156

10.1 Applications to Network Reliability : 156

10.1.1 A Reliability Theorem : 159

10.1.2 An Approximation Algorithm : 160

10.2 s-t Minimum Cuts and Maximum Flows : 162

10.2.1 Approximate Minimum Cuts : 162

10.2.2 Approximate Maximum Flows : 163

10.2.3 Exact Maximum Flows : 163

10.2.4 Las Vegas Algorithms : 167

10.3 Global Minimum Cuts : 167

10.3.1 Analysis of the Exact Algorithm : 167

10.3.2 Approximation Algorithms : 169

10.4 Weighted Graphs : 170

10.5 An Evolutionary Graph Model for Dynamic Algorithms : : : : : : : : : : : 171

10.5.1 Motivation : 172

10.5.2 Evolutionary Connectivity : 173

10.5.3 Weighted Graphs : 174

10.5.4 Dynamic Approximation : 174

xii

10.6 Evolutionary k-Connectivity : 176

10.6.1 Dynamic Maintenance : 177

10.6.2 Weighted Graphs : 178

10.7 Other Cut Problems : 178

10.7.1 Parallel Flow Algorithms : 178

10.7.2 Balanced and Quotient Cuts : 179

10.7.3 Orienting a Graph : 179

10.7.4 Integral Multicommodity Flows : 180

10.8 Conclusions : 181

11 Random Sampling in Matroids 182

11.1 Introduction : 182

11.1.1 Matroids and the Greedy Algorithm : : : : : : : : : : : : : : : : : : 182

11.1.2 Matroid Optimization : 183

11.1.3 Matroid Basis Packing : 184

11.1.4 Related work : 184

11.2 Sampling for Optimization : 185

11.2.1 A Sampling Theorem : 185

11.2.2 Optimizing by Verifying : 186

11.2.3 Application: Scheduling with Deadlines : : : : : : : : : : : : : : : : 187

11.3 Sampling for Packing : 188

11.3.1 Packing Theorems : 189

11.3.2 Packing Algorithms : 190

11.4 Proofs : 192

11.4.1 Finding a Basis : 192

11.4.2 Counting Bases : 193

11.5 Conclusion : 197

12 Network Design without Repeated Edges 199

12.1 Oversampling for Covering Problems : 199

12.2 Network Design : 201

12.3 Fixed Charge Networks : 203

12.4 General Distributions : 204

xiii

13 EREW Minimum Spanning Tree Algorithms 206

13.1 Reducing Work : 207

13.2 Reducing Work and Time : 208

13.3 Fast Algorithms for Dense Graphs : 209

13.3.1 Construction : 209

13.3.2 Veri�cation : 210

A Probability Distributions and Sampling Theorems 212

A.1 Probability Distributions : 212

A.2 The Cherno� Bound : 213

A.3 Nonuniform Random Selection : 213

A.4 Generating Exponential Variates : 216

Bibliography 219

xiv

Chapter 1

Introduction

The representative random sample is a central concept of statistics. It is often possible to

gather a great deal of information about a large population by examining a small sample

randomly drawn from it. This approach has obvious advantages in reducing the investiga-

tor's work, both in gathering and in analyzing the data.

We apply the concept of a representative sample to combinatorial optimization prob-

lems on graphs. The graph is one of the most common structures in computer science,

modeling among other things roads, communication and transportation networks, electri-

cal circuits, relationships between individuals, corporate hierarchies, hypertext collections,

tournaments, resource allocations, project plans, database and program dependencies, and

parallel architectures.

Given an optimization problem, it may be possible to generate a small representative

subproblem by random sampling (perhaps the most natural sample from a graph is a random

subset of its edges). Intuitively, such a subproblem should form a microcosm of the larger

problem. Our goal is to examine the subproblem and use it to glean information about the

original problem. Since the subproblem is small, we can spend proportionally more time

examining it than we would spend examining the original problem. In one approach we

use frequently, an optimal solution to the subproblem may be a nearly optimal solution to

the problem as a whole. In some situations, such an approximation might be su�cient. In

other situations, it may be easy to re�ne this good solution into a truly optimal solution.

1

2 CHAPTER 1. INTRODUCTION

1.1 Overview of Results

We show how these ideas can be used in several ways on problems of varying degrees of

di�culty. For the \easy to solve" minimum spanning tree problem, where a long line of

research has resulted in ever closer to linear-time algorithms, random sampling gives the

�nal small increment to a truly linear time algorithm. In harder problems it improves

running times by a more signi�cant factor. For example, we improve the time needed

to �nd minimum cuts from roughly O(mn) (O(n3) on dense graphs) to roughly O(n2),

and give the �rst parallel algorithm for the problem. Finally, addressing some very hard

NP-complete problems such as network design and graph coloring, where �nding an exact

solution is thought to be hopeless, we use random sampling to give better approximation

algorithms than were previously known. Our focus is optimization problems on undirected

graphs.

1.1.1 Random Selection

Perhaps the simplest random sample is a single individual. We investigate the use of random

selection. The intuition behind this idea is that a single randomly selected individual

is probably a \typical" representative of the entire population. This is the idea behind

Quicksort [91], where the assumption is that the randomly selected pivot will be neither

extremely large nor extremely small, and will therefore serve to separate the remaining

elements into two roughly equal sized groups.

We apply this idea in a new algorithm for �nding minimum cuts in undirected graphs.

A cut is a partition of the graph vertices into two groups; the value of the cut is the number

(or total weight) of edges with one endpoint in each group. The minimum cut problem is to

identify a cut of minimum value. This problem is of great importance in analyzing network

reliability, and also plays a central role in solving traveling salesman problems, compiling

on parallel machines, and identifying topics in hypertext collections.

The idea behind our Recursive Contraction Algorithm is quite simple: a random edge

is unlikely to cross the minimum cut, so its endpoints are probably on the same side. If

we merge two vertices on the same side of the minimum cut, then we shall not a�ect the

minimum cut but will reduce the number of graph vertices by one. Therefore, we can �nd

the minimum cut by repeatedly selecting a random edge and merging its endpoints until only

two vertices remain and the minimum cut becomes obvious. This leads to an algorithm that

1.1. OVERVIEW OF RESULTS 3

is strongly polynomial and runs in ~O(n2) time on an n-vertex, m-edge graph|a signi�cant

improvement on the previous ~O(mn) bounds. With high probability the algorithm �nds all

minimum cuts. The parallel version of our algorithm runs in polylogarithmic time using

n2 processors on a PRAM (Parallel Random Access Machine). It thus provides the �rst

proof that the minimum cut problem with arbitrary edge weights can be solved in RNC. A
derandomization of this algorithm provides the �rst proof that the minimum cut problem

can be solved in NC. Our algorithm can be modi�ed to �nd all approximately minimum

cuts and analyze the reliability of a network. Parts of this work are joint with Cli�ord

Stein [110].

1.1.2 Random Sampling

A more general use of random sampling is to generate small representative subproblems.

Floyd and Rivest [58] use this approach in a fast and elegant algorithm for �nding the

median of an ordered set. They select a small random sample of elements from the set and

show how inspecting this sample gives a very accurate estimate of the value of the median.

It is then easy to �nd the actual median by examining only those elements close to the

estimate. This very simple to implement algorithm uses fewer comparisons than any other

known median-�nding algorithm.

The Floyd-Rivest algorithm typi�es three components needed in a random-sampling

algorithm. The �rst is a de�nition of a randomly sampled subproblem. The second is an

approximation theorem that proves that a solution to the subproblem is an approximate

solution to the original problem. These two components by themselves will typically yield

an obvious approximation algorithm with a speed-accuracy tradeo�. The third component

is a re�nement algorithm that takes the approximate solution and turns it into an actual

solution. Combining these three components can yield an algorithm whose running time

will be determined by that of the re�nement algorithm; intuitively, re�nement should be

easier than computing a solution from scratch.

In an application of this approach, we present the �rst (randomized) linear-time algo-

rithm for �nding minimum spanning trees in the comparison-based model of computation.

The fundamental insight is that if we construct a subgraph of a graph by taking a random

sample of the graph's edges, then the minimum spanning tree in the subgraph is a \nearly"

minimum spanning tree of the entire graph. More precisely, very few graph edges can be

used to improve the sample's minimum spanning tree. By examining these few edges, we

4 CHAPTER 1. INTRODUCTION

can re�ne our approximation into the actual minimum spanning tree at little additional

cost. This result re
ects joint work with Philip Klein and Robert E. Tarjan [106]. Our

results actually apply to the more general problem of matroid optimization, and show that

the problem of constructing an optimum matroid basis is essentially equivalent to that of

verifying the optimality of a candidate basis.

We also apply sampling to the minimum cut problem and several other problems involv-

ing cuts in graphs, including maximum
ows. The maximum
ow problem is perhaps the

most widely studied of all graph optimization problems, having hundreds of applications.

Given vertices s and t and capacitated edges, the goal is to ship the maximum quantity of

material from s to t without exceeding the capacities of the edges. The value of a graph's

maximum
ow is completely determined by the values of certain cuts in the graph.

We prove a cut sampling theorem that says that when we choose half a graph's edges

at random we approximately halve the value of every cut. In particular, we halve the

graph's connectivity and the value of all s-t minimum cuts and maximum
ows. This

theorem gives a random-sampling scheme for approximating minimum cuts and maximum

ows: compute the minimum cut and maximum
ow in a random sample of the graph edges.

Since the sample has fewer edges, the computation is faster. At the same time, our sampling

theorems show that this approach gives accurate estimates of the correct values. Among

the direct applications of this idea are a linear time algorithm for approximating (to within

any constant factor exceeding 1) the minimum cut of a weighted undirected graph and a

linear time algorithm for approximating maximum
ows in graphs with su�ciently large

connectivities. Previously, the best approximation a linear or near-linear time algorithm

could achieve was a factor of 2.

If we want to get exact solutions rather than approximations, we still can use our samples

as starting points to which we can apply inexpensive re�nement algorithms. If we randomly

partition the edges of a graph into two groups, then each looks like a random sample of the

edges. Thus, for example, if we �nd maximum
ows in each half and combine them, we get

a nearly maximum
ow in the original graph. We can then use augmentation algorithms to

re�ne this nearly maximum
ow to a maximum one. This gives fast new randomized divide-

and-conquer algorithms for connectivity and maximum
ows. We also discuss applications

to other cut-related problems such as graph orientation and balanced cuts.

Our techniques actually give a paradigm that can be applied to any packing problem

where the goal, given a collection of feasible subsets of a universe, is to �nd a maximum

1.1. OVERVIEW OF RESULTS 5

collection of disjoint feasible subsets. For example, in the maximum
ow problem, we are

attempting to send units of
ow from s to t. Each such unit of
ow travels along a path from

s to t, so the feasible edge-sets are the s-t paths. We apply the sampling paradigm to the

problem of packing disjoint bases in a matroid, and get faster algorithms for approximating

and exactly �nding optimum basis packings.

1.1.3 Randomized Rounding

Yet another variation on random sampling is that of randomized rounding. This approach is

used to �nd approximate solutions to NP-hard integer programs. These problems typically

ask for an assignment of values 0 or 1 to variables xi such that linear constraints of the

form
P
aixi = c are satis�ed. If we relax the integer program, allowing each xi to take any

rational value between 0 and 1, we get a linear program that can be solved in polynomial

time, giving values pi such that
P
aipi = c. Raghavan and Thompson [168] observed that

we could treat the resulting values pi as probabilities. If we randomly set xi = 1 with

probability pi and 0 otherwise, then the expected value of
P
aixi is

P
aipi = c. Raghavan

and Thompson presented techniques for ensuring that the randomly chosen values do in

fact yield a sum near the expectation, thus giving approximately correct solutions to the

integer program. We can see randomized rounding as a way of sampling randomly from a

large space of answers, rather than subproblems as before. Linear programming relaxation

is used to construct an answer-space in which most of the answers are good ones.

We use our graph sampling theorems to apply randomized rounding to network design

problems. Such a problem is speci�ed by an input graph G with each edge assigned a

cost. The goal is to output a subgraph of G satisfying certain connectivity requirements

at minimum cost (measured as the sum of the costs of edges used). These requirements

are described by specifying a minimum number of edges that must cross each cut of G.

This formulation easily captures many classic problems including perfect matching, mini-

mum cost
ow, Steiner tree, and minimum T-join. An important practical application for

communication companies is deciding the cheapest way to add bandwidth to their commu-

nication networks. By applying randomized rounding, we get signi�cantly better results

than were previously known for a large class of network design problems, improving the

approximation bounds from O(logn) to 1 + o(1) in a large class of problems.

We also apply randomized rounding to the classic graph coloring problem. Linear pro-

gramming does not provide a useful fractional solution, and so we must use more powerful

6 CHAPTER 1. INTRODUCTION

semide�nite programming as our starting point. We give a new approximation algorithm

with a signi�cantly better approximation guarantee than the previously best known one.

Along the way, we discover new properties of the Lov�asz #-function, an object that has

received a great deal of attention because of its connections to graph coloring, cliques, and

independent sets. This work is joint with Rajeev Motwani and Madhu Sudan [108].

1.2 Presentation Overview

This work is divided into two main parts. Part I develops all our basic techniques and

applies them to several well known problems. In order to avoid cluttering this exposition

with excessive detail, we have reserved some of the more di�cult or esoteric applications of

these techniques to Part II, which can be seen as something of an extended appendix.

In Chapter 2, we present our sampling-based minimum spanning tree algorithm. The

key tool is a lemma bounding the number of edges that \improve" the minimum spanning

tree of a random sample of the graph edges. We give a sequential algorithm that runs in

linear time with all but an exponentially small probability. This chapter re
ects joint work

with Philip Klein and Robert Tarjan [106].

In Chapter 3, we begin our discussion of the minimum cut problem by de�ning it,

presenting previous work on which we shall be relying, and contrasting previous work with

our new results. In Chapter 4, we present the Recursive Contraction Algorithm (joint work

with Cli�ord Stein [110]), giving ~O(n2)-work sequential and parallel implementations that

signi�cantly improve on previously known bounds for �nding minimum cuts. Our algorithm

also gives an important new bound on the number of small cuts a graph may contain; this

has important applications in network reliability analysis.

In Chapter 5, we investigate deterministic solutions to the minimum cut problem. Using

some of the classic techniques of derandomization, we develop the �rst NC algorithm for

the minimum cut problem. Our NC algorithm relies on the previously discussed work on

cut counting and a new deterministic parallel algorithm for sparse connectivity certi�cates.

This chapter re
ects joint work with Rajeev Motwani [107].

In Chapter 6, we develop a general analysis of graph cuts under random sampling, and

apply it to cut,
ow and network design problems. Given a graph G, we construct a p-

skeleton G(p) by selecting each edge of G independently with probability p. We use the

cut counting theorem proved in Chapter 4 to show that all the cuts in G(p) have roughly p

1.2. PRESENTATION OVERVIEW 7

times as many edges as they did in G. In the most obvious application of this approach, we

give random-sampling based sequential, parallel, and dynamic algorithm for approximating

minimum cuts by computing minimum cuts in skeletons. Since the skeletons have few

edges, these computations are fast. This gives among other results a linear-time (1 + �)-

approximation algorithm for minimum cuts. We extend this approach to get a fast exact

algorithm for minimum cuts. We also consider randomized rounding. After discussing some

general techniques for set-cover problems (positive linear programs whose constraints are all

lower bounds), we apply them to network design problems. Our graph sampling theorems

provide the necessary tools for showing that randomized rounding works well in this case.

In Chapter 7, we take randomized rounding beyond the classic realm of linear program-

ming and into the newer world of semide�nite programming. Randomized rounding in this

framework gives the currently best known algorithm for graph coloring. We show that any

3-colorable graph can be colored in polynomial time with ~O(n1=4) colors, improving on the

previous best bound of ~O(n3=8). We also give presently best results for k-colorable graphs.

This chapter re
ects joint work with Rajeev Motwani and Madhu Sudan [108].

The chapters in Part II present extensions to the techniques described in Part I. In

Chapter 9, we describe several extensions of the Contraction Algorithm to �nding approx-

imately minimum cuts and minimum multiway cuts, as well as to constructing the cactus

representation of minimum cuts in a graph.

In Chapter 10, we give extensions to our cut random sampling algorithms, We use sam-

pling in analyzing the reliability (probability of remaining connected) of a network whose

edges fail randomly. Computing reliability is a]P-complete problem, but we give a polyno-
mial time algorithm for approximating it arbitrarily closely. We develop random-sampling

based approximation algorithms and randomized divide-and-conquer based algorithms for

exactly �nding s-t minimum cuts, and maximum
ows faster than could be done previ-

ously. We examine other problems including parallel
ow algorithms, balanced cuts, and

graph orientation. We also give an evolutionary model of graph sampling that is useful in

developing dynamic algorithms for approximating minimum cuts.

In Chapter 11, we put our results on graph sampling into a larger framework by exam-

ining sampling from matroids. We generalize our minimum spanning tree algorithm to the

problem of matroid optimization, and extend our cut-sampling and maximum
ow results

to the problem of matroid basis packing.

In Chapter 13, we return to our starting point, minimum spanning trees, and show how

8 CHAPTER 1. INTRODUCTION

the sampling approach can be used in a minimum spanning tree algorithm for the EREW

PRAM that runs in O(logn) time using m= logn processors on dense graphs, thus matching

the time and work lower bounds for the model.

A dependency chart of the various chapters is given in Figure 1.1; a gravitational de-

pendency denotes a presentational dependency.

1.3 Preliminary De�nitions

Throughout this work, we focus on undirected graphs, because directed graphs have so far

not answered to the sampling techniques we apply here. The variables n and m will always

denote the number of vertices and edges respectively of a graph under consideration. Each

edge may have a weight associated with it. Typically, graphs have only one edge connecting

each pair of endpoints. We use multigraph to refer to graphs with more than one edge

connecting the same endpoints, and refer to edges with the same endpoints as multiple or

parallel. If we want to emphasize that an edge is from a multigraph, we call it a multiedge.

A graph has m � �n
2

�
; but a multigraph has no such constraint.

The notation ~O(f) denotes O(f polylog n).

1.3.1 Randomized Algorithms and Recurrences

Our work deals with randomized algorithms. Our typical model is that the algorithm has

a source of \random bits"|variables that are mutually independent and take on values 0

or 1 with probability 1/2 each. Extracting one random bit from the source is assumed to

take constant time. If our algorithms use more complex operations, such as
ipping biased

coins or generating samples from more complex distributions, we take into account the time

needed to simulate these operations in our unbiased-bit model. Some of these issues are

discussed in the appendix. Event probabilities are taken over the sample space of random

bit strings produced by the random bit generator. An event occurs with high probability

(w.h.p.) if on problems of size n it occurs with probability greater than (1� 1
nk
) for some

constant k > 1, and with low probability if its complement occurs with high probability. If

a problem has more than one measure of size, we use the phrase with high probability in t

to emphasize that the probability is a function of parameter t.

There are two kinds of randomized algorithms. An algorithm that has a �xed (determin-

istic) running time but has a low probability of giving an incorrect answer is called Monte

1.3. PRELIMINARY DEFINITIONS 9

Derandomization

and Sparse

Certificates

Trees

Spanning

Minimum

Sampling in Matroids

1 Introduction

Extensions

Graph

Coloring

Cut Sampling

6

4
Contraction Algorithm

3
Minimum Cuts

5

2

7

9

11

Approximation

Cut and Flow

12

Network

Design

10
More

Cut Sampling

Figure 1.1: Chapter Dependencies

10 CHAPTER 1. INTRODUCTION

Carlo (MC). If the running time of the algorithm is a random variable but the correct an-

swer is given with certainty, then the algorithm is said to be Las Vegas (LV). Any algorithm

with a high probability of giving the right answer and a high probability of running in time

f(n) can be made Monte Carlo by having it terminate with an arbitrary wrong answer if it

exceeds the time bound f(n). Las Vegas algorithms can be made Monte Carlo by the same

method. However, there is no universal method for making a Monte Carlo algorithm into

a Las Vegas one, and indeed some of the algorithms we present are Monte Carlo with no

Las Vegas version apparent. When we state theorems about an algorithm's running time,

the su�xes (MC) and (LV) will denote that the algorithm is Monte Carlo or Las Vegas

respectively.

The notion of \high probability" becomes somewhat slippery when we are considering

recursive randomized algorithms. Deterministic recursive algorithms are typically described

by recurrences T (n) = f(n; T (g(n))) that have been well studied and solved. When we

consider randomized algorithms, the time to process a problem and the sizes of subproblems

can be random variables. For example, the recurrence T (m) = m + T (m=2) + T (m=4) is

easily seen to show T (m) = m. However, we shall encounter in our minimum spanning

tree analysis a recurrence T (m) = T (a) + T (b), where a � m=2 with high probability and

b � m=4 with high probability. When n is large, we might equate the high probability

claim with certainty. However, the recurrence indicates that large problems beget small

ones, and in a small problem, a low probability result is no longer as unlikely as we would

wish. Karp [111] has developed several tools for dealing with such probabilistic recurrences

in the same cookbook fashion as deterministic ones, but ironically none of the recurrences

we encounter in our work can be tightly bounded by his methods. Instead, we shall often

be forced to undertake a global analysis, unraveling the entire recursion tree, in order to

establish good bounds.

1.3.2 Sequential Algorithms

To analyze algorithms, we need a model of the underlying machine on which they will be

executed. Turing machines are believed to be able to simulate all reasonable computational

engines. However, when it comes to analyzing running times, they do not satisfactorily

re
ect certain aspects of real machines|in particular, their ability to randomly access

(bring into a register) any word in memory in unit time. The RAM (random access machine)

model has been developed to re
ect these concerns. A RAM contains a memory divided

1.3. PRELIMINARY DEFINITIONS 11

into cells, each of which contains an arbitrary integer. The RAM's processing unit contains

a �xed set of registers. In one time step, the RAM's processing unit can read the value

at one memory location into a register, where the memory location is identi�ed either as a

constant or by the value of some other register (indirect addressing). Alternatively, it can

write one register's value to a memory location speci�ed by another register, or perform

a basic operation|comparing, adding, subtracting, multiplying or dividing two registers;

reading input or printing output, setting a register to a constant; comparing two registers;

and branching on the result of a comparison. Careful discussion of the formal model can

be found in [184].

In many cases, the input to an algorithm divides naturally into two parts; the \struc-

ture" and the \numbers." The structural portion presents no obstacles to running time

descriptions: our goal is to �nd algorithms with running times bounded by a polynomial in

the size of the structure. The numbers are more problematic. Some algorithms have run-

ning times polynomial in the values of the input numbers while others are polynomial in the

size (number of bits of representation) of the input numbers, an exponential di�erence. The

second de�nition would appear to satisfy the strict Turing machine model of polynomial

time, but is still not entirely satisfactory when we consider practical issues such as
oating

point precision (which allows us to succinctly express numbers whose binary representation

has exponential length) and less practical issues of \elegance." A better model is that of

strongly polynomial algorithms. A discussion of the precise meaning and value of strong

polynomiality can be found in [98] (see also [176, Section 15.2]). Roughly speaking, an al-

gorithm is strongly polynomial if, in addition to being polynomial in the standard model of

computation, the number of operations it performs can be bounded by a polynomial inde-

pendent of the size of the input numbers. The only way the algorithm is allowed to access

input numbers is through the elementary arithmetic operations of addition, subtraction,

multiplication, division, and comparison, each assumed to take unit time.

1.3.3 Parallel Algorithms

We also consider parallel algorithms. We use the PRAM model, which generalizes the RAM

model to allow many processors to operate synchronously and access a single shared memory.

This model is discussed in depth in +[114]. In each time step of a PRAM computation, each

of the processors can perform one operation and access a single cell in the shared memory.

While this is not the place to argue for or against the realism of this model, we observe

12 CHAPTER 1. INTRODUCTION

that the PRAM provides a good domain for initially specifying a parallel algorithm, and

that many of our algorithms are su�ciently simple that they should port reasonably well

to actual machines. NC is the class of problems that, for inputs of size n, can be solved

deterministically in polylog n time using nO(1) processors. RNC extends NC by assuming

that each processor is equipped with a source of random bits; the distinction between Monte

Carlo and Las Vegas algorithms discussed earlier applies here as well. In addition to the

number of processors used, we shall consider the total work, given as the product of number

of processors used by time spent. Measuring the total work gives a sense of how e�ciently

a sequential algorithm has been parallelized: the ultimate goal is for the total work of the

parallel algorithm to equal that of the sequential one.

Given that multiple processors are accessing a shared memory simultaneous, it is con-

ceivable that many processors may try to read or write the same memory location. This

can be a problem in practice. We therefore distinguish several models of PRAM. In the

concurrent read model, many processors are allowed to read from the same memory location

simultaneously. In the exclusive read (ER) model, this is forbidden. Similarly, the exclusive

write (EW) model forbids more than one processor from writing to a given memory loca-

tion. If instead concurrent write (CW) is allowed, some rule must be established for the

outcome when multiple values are written to the same cell. For concreteness, we select the

arbitrary rule: an adversary chooses which of the written values are actually stored in the

memory cell. A PRAM model is speci�ed by giving both a reading and a writing rule; e.g.

a CREW allows concurrent reads but forbids concurrent writes.

Randomization has played an extremely important role in parallel algorithms, since one

of the biggest problems in designing e�cient algorithms seems to be symmetry breaking:

trying to spread the processors or the data around so that processors do not duplicate each

others' e�orts. Randomization has served very well in this capacity, and indeed may be

indispensable. In the sequential computation model nearly all problems known to have

randomized polynomial-time solutions are also known to have deterministic ones. But in

the parallel world, some of the most central algorithmic problems, such as �nding depth �rst

search trees, maximum matchings, and maximum
ows, are known to be solvable in RNC
but are not known to be solvable in NC. Thus, the problem of derandomization|removing

the use of randomness from an algorithm|is still widely studied in parallel algorithm design.

Part I

Basics

13

Chapter 2

Minimum Spanning Trees

2.1 Introduction

We begin our discussion with the problem of �nding a minimum spanning tree in a connected

graph with real-valued edge weights.1 Given a graph, each of whose edges has been assigned

a weight, we wish to �nd a spanning tree of minimum total weight measured as the sum

of the weights of the included edges. We investigate the intuition that a random sample of

the edges of a graph should contain a spanning tree which is \pretty good." This intuition

leads to the �rst linear time algorithm for the problem.

2.1.1 Past Work

The minimum spanning tree problem has a long and rich history; the �rst fully-realized

algorithm was devised by Bor�uvka in the 1920's [21]. An informative survey paper by

Graham and Hell [83] describes the history of the problem up to 1985. In the last two

decades faster and faster algorithms were found, the fastest being an algorithm of Gabow,

Galil, and Spencer [69] (see also [70]), with a running time of O(m log �(m;n)) on a graph

of n vertices and m edges. Here �(m;n) = minfi j log(i) n � m=ng.
This and earlier algorithms used as a computational model the sequential random-access

machine with the restriction that the only operations allowed on the edge weights are binary

comparisons. Fredman and Willard [62] considered a more powerful model that allows bit

manipulation of the binary representations of the edge weights. In this model they were

1This chapter is based on joint work with Philip Klein and Robert Tarjan and includes material from [101,

103, 124, 106].

15

16 CHAPTER 2. MINIMUM SPANNING TREES

able to devise a linear-time algorithm. Still, the question of whether a linear-time algorithm

exists for the restricted random-access model remained open.

A problem related to �nding minimum spanning trees is that of verifying that a given

spanning tree is minimum. Tarjan [180] gave a veri�cation algorithm running inO(m�(m;n))

time, where � is a functional inverse of Ackerman's function. Later, Koml�os [131] showed

that a minimum spanning tree can be veri�ed in O(m) binary comparisons of edge weights,

but with nonlinear overhead to decide which comparisons to make. Dixon, Rauch and

Tarjan [45] combined these algorithms with a table lookup technique to obtain an O(m)-

time veri�cation algorithm. King [120] recently obtained a simpler O(m)-time veri�cation

algorithm that combines ideas of Bor�uvka, Koml�os, and Dixon, Rauch, and Tarjan.

We also consider parallel algorithms for the minimum spanning tree problem in the

EREW model of computation. Previously the best known algorithm for this model [31] had

a running time of O(logn log log n) as compared to a lower bound of
(logn), and a work

bound of O(m logn log log n) as compared to a lower bound of
(m).

2.1.2 Our Contribution

We describe a randomized algorithm for �nding a minimum spanning tree. It runs in O(m)

time with high probability in the restricted random-access model.

The fundamental random-sampling intuition of our algorithm is that a random sample

of the graph edges will contain a \pretty good" minimum spanning tree|one that few

edges of the original graph can improve. Using a veri�cation algorithm, we can identify

this small set of improving edges, which turns out to contain all the minimum spanning

tree edges. This turns our original minimum spanning tree problem into two smaller ones:

one of �nding the minimum spanning tree of a small sample, and another of �nding the

minimum spanning tree of the edges improving the sample. Our algorithm solves these two

subproblems recursively.

Section 2.2 presents the random-sampling result that is the key to our algorithm. Sec-

tion 2.3 presents our algorithm, and Section 2.4 contains its analysis. A parallel implementa-

tion of the algorithm is discussed in Chapter 13. This section ends with some preliminaries.

2.1.3 Preliminaries

Our algorithm actually solves the slightly more general problem of �nding a minimum

spanning forest in a possibly disconnected graph. We assume that the input graph has no

2.1. INTRODUCTION 17

isolated vertices (vertices without incident edges).

If edge weights are not distinct, we can make them distinct by numbering the edges

distinctly and breaking weight-ties according to the numbers. We therefore assume for

simplicity that all edge weights are distinct. This assumption ensures that the minimum

spanning tree is unique. The following properties are also well-known and correspond

respectively to the red rule and the blue rule in [181].

Cycle property: For any cycle C in a graph, the heaviest edge in C does not appear in

the minimum spanning forest.

Cut property: For any proper nonempty subset X of the vertices, the lightest edge with

exactly one endpoint in X belongs to the minimum spanning forest.

Unlike most algorithms for �nding a minimum spanning forest, our algorithm makes use

of each property in a fundamental way.

We will be using two classical minimum spanning forest algorithms. Kruskal's algo-

rithm [133] constructs a forest F one edge at a time. It examines the graph's edges in

order of increasing weight. To examine an edge e, it checks whether the endpoints of e are

connected by a path of (smaller weight) edges already in F . If so, it discards e, since the

cycle property proves that e is not in the minimum spanning forest. Otherwise, it adds e

to F . Since the algorithm never discards a minimum spanning forest edge, it follows that

at termination F is the minimum spanning forest. The algorithm can be implemented to

run in O(m logm) time using basic data structures [41].

A less familiar algorithm is that of Bor�uvka. Bor�uvka's algorithm is just a repetition of

Bor�uvka Steps which we now describe:

Bor�uvka Step. For each vertex, select the minimum-weight edge incident to the vertex.

Contract all the selected edges, replacing by a single vertex each connected component

de�ned by the selected edges and deleting all resulting isolated vertices, loops (edges both

of whose endpoints are the same), and all but the lowest-weight edge among each set of

multiple edges.

The cut property shows that each selected edge is in the minimum spanning tree of the

graph. The cycle property shows that each deleted edge (from a group of multiple edges) is

not a minimum spanning tree edge. A Bor�uvka Step can be implemented to run in O(m)

time with elementary data structures [181]. One such step reduces the number of vertices

18 CHAPTER 2. MINIMUM SPANNING TREES

by at least a factor of two because each connected component induced by the selected edges

contains at least two vertices. Thus, O(logn) Bor�uvka steps su�ce to eliminate all the edges

and terminate, for a total running time of O(m logn). Although the number of vertices is

halved each time, Bor�uvka's algorithm cannot guarantee a better running time because the

number of edges is not guaranteed to decrease signi�cantly. Our random-sampling approach

solves this problem.

2.2 A Sampling Lemma

Our algorithm relies on a random-sampling step to discard edges that cannot be in the

minimum spanning tree. The e�ectiveness of this step is shown by a lemma that we present

below (this lemma was �rst proved by Klein and Tarjan in [124], improving on a weaker

version proved in [101]). We need some terminology. Let G be a graph with weighted edges.

We denote by w(x; y) the weight of edge (x; y). If F is a forest in G, we denote by F (x; y)

the path (if any) connecting x and y in F , and by wF (x; y) the maximum weight of an

edge on F (x; y), with the convention that wF (x; y) =1 if x and y are not connected in F .

We say an edge (x; y) is F -heavy if w(x; y) > wF (x; y), and F -light otherwise. Note that

the edges of F are all F -light. For any forest F , no F -heavy edge can be in the minimum

spanning forest of G. This is a consequence of the cycle property. Given a forest F in G,

the F -light edges of G can be computed in time linear in the number of edges of G, using

an adaptation of the veri�cation algorithm of Dixon, Rauch, and Tarjan (page 1188 in [45]

describes the changes needed in the algorithm) or of that of King.

Lemma 2.2.1 Let H be a subgraph obtained from G by including each edge independently

with probability p, and let F be the minimum spanning forest of H. The expected number

of F -light edges is at most n=p where n is the number of vertices of G.

Proof: We describe a way to construct the sample graph H and its minimum spanning

forest F simultaneously. The computation is a variant of Kruskal's minimum spanning tree

algorithm which was described in the introduction. Begin with H and F empty. Process the

edges in increasing order by weight. To process an edge e, �rst test whether both endpoints

of e are in the same connected component of the current F . If so, e is F -heavy for the

current F , because every edge currently in F is lighter than e. Next,
ip a coin that has

probability p of coming up heads. Include the edge e in H if and only if the coin comes up

heads. Finally, if e is in H and is F -light, add e to the forest F .

2.3. THE SEQUENTIAL ALGORITHM 19

The forest F produced by this computation is the forest that would be produced by

Kruskal's algorithm applied to the edges in H , and is therefore exactly the minimum span-

ning forest of H . An edge e that is F -heavy when it is processed remains F -heavy until

the end of the computation, since F never loses edges. Similarly, an edge e that is F -light

when processed remains F -light, since only edges heavier than e are added to F after e is

processed. Our goal is to show that the number of F -light edges is probably small.

When processing an edge e, we know whether e is F -heavy before
ipping a coin for

e. Suppose for purposes of exposition that we
ip a penny for e if e is F -heavy and a

nickel if it is not. The penny-
ips are irrelevant to our analysis; the corresponding edges

are F -heavy regardless of whether or not they are included in H . We therefore consider

only the nickel-
ips and the corresponding edges. For each such edge, if the nickel comes

up heads, the edge is placed in F . The size of F is at most n � 1. Thus at most n � 1

nickel-tosses have come up heads by the end of the computation.

Now imagine that we continue
ipping nickels until n heads have occurred, and let Y

be the total number of nickels
ipped. Then Y is an upper bound on the number of F -light

edges. The distribution of Y is exactly the negative binomial distribution with parameters

n and p (see Appendix A.1). The expectation of a random variable that has a negative

binomial distribution is n=p. It follows that the expected number of F -light edges is at

most n=p.

Remark: The above proof actually shows that the number of F -light edges is stochastically

dominated by a variable with a negative binomial distribution.

Remark: Lemma 2.2.1 generalizes to matroids. See Chapter 11.

2.3 The Sequential Algorithm

The minimum spanning forest algorithm intermeshes the Bor�uvka Steps de�ned in the

introduction with random-sampling steps. Each Bor�uvka step reduces the number of vertices

by at least a factor of two; each random-sampling step discards enough edges to reduce the

density (ratio of edges to vertices) to a �xed constant with high probability.

The algorithm is recursive. It generates two subproblems, but with high probability the

combined size of these subproblems is at most 3=4 of the size of the original problem. This

fact is the basis for the probabilistic linear bound on the running time of the algorithm.

Now we describe the minimum spanning forest algorithm. If the graph is empty, return

20 CHAPTER 2. MINIMUM SPANNING TREES

an empty forest. Otherwise, proceed as follows.

Step 1. Apply two successive Bor�uvka steps to the graph, thereby reducing the number of

vertices by at least a factor of four.

Step 2. In the contracted graph, choose a subgraph H by selecting each edge indepen-

dently with probability 1/2. Apply the algorithm recursively to H , producing the minimum

spanning forest F of H . Find all the F -heavy edges (both those in H and those not in H)

and delete them.

Step 3. Apply the algorithm recursively to the remaining graph to compute a spanning

forest F 0. Return those edges contracted in Step 1 together with the edges of F 0.

We prove the correctness of the algorithm by induction. By the cut property, every edge

contracted during Step 1 is in the minimum spanning forest. Hence the remaining edges of

the minimum spanning forest of the original graph form the minimum spanning forest of the

contracted graph. By the cycle property, the edges deleted in Step 2 do not belong to the

minimum spanning forest of the contracted graph. Thus when Step 3 (by induction) �nds

the minimum spanning forest of the non-deleted edges, it is in fact �nding the remaining

edges of the minimum spanning tree of the original graph.

Remark. Our algorithm can be viewed as an instance of the generalized greedy algorithm

presented in [181], from which its correctness follows immediately.

2.4 Analysis of the Algorithm

We begin our analysis by making some observations about the worst-case behavior of the

algorithm. Then we show that the expected running time of the algorithm is linear, by

applying Lemma 2.2.1 and the linearity of expectations. Finally, we show that the algorithm

runs in linear time with all but exponentially small probability, by developing a global

version of the analysis in the proof of Lemma 2.2.1 and using a Cherno� bound (Section A.2).

Suppose the algorithm is initially applied to a graph with n vertices and m edges.

Since the graph contains no isolated vertices, m � n=2. Each invocation of the algorithm

generates at most two recursive subproblems. Consider the entire binary tree of recursive

subproblems. The root is the initial problem. For a particular problem, we call the �rst

recursive subproblem, occurring in Step 2, the left child of the parent problem, and the

second recursive subproblem, occurring in Step 3, the right child . At depth d, the tree of

2.4. ANALYSIS OF THE ALGORITHM 21

subproblems has at most 2d nodes, each a problem on a graph of at most n=4d vertices. Thus

the depth of the tree is at most log4 n, and there are at most
P1

d=0 2
dn=4d =

P1
d=0 n=2

d = 2n

vertices total in the original problem and all subproblems.

Consider a particular subproblem. The total time spent in Steps 1{3, excluding the time

spent on recursive subproblems, is linear in the number of edges: Step 1 is just two Bor�uvka

Steps, which take linear time using straightforward graph-algorithmic techniques, and Step

2 takes linear time using the modi�ed Dixon-Rauch-Tarjan or King veri�cation algorithms,

as noted in the introduction. The total running time is thus bounded by a constant factor

times the total number of edges in the original problem and in all recursive subproblems.

Our objective is to estimate this total number of edges.

Theorem 2.4.1 The worst-case running time of the minimum spanning forest algorithm

is O(minfn2; m logng), the same as the bound for Bor�uvka's algorithm.

Proof: We estimate the worst-case total number of edges in two di�erent ways. First, since

there are no multiple edges in any subproblem, a subproblem at depth d contains at most

(n=4d)2=2 edges. Summing over all subproblems gives an O(n2) bound on the total number

of edges. Second, consider the left and right children of some parent problem. Suppose the

parent problem is on a graph of v vertices. Every edge in the parent problem ends up in

exactly one of the children (the left if it is selected in Step 2, the right if it is not), with the

exception of the edges in the minimum spanning forest F of the sample graph H , which

end up in both subproblems, and the edges that are removed (contracted) in Step 1, which

end up in no subproblem. If v0 is the number of vertices in the graph after Step 1, then

F contains v0 � 1 � v=4 edges. Since at least v=2 edges are removed in Step 1, the total

number of edges in the left and right subproblems is at most the number of edges in the

parent problem.

It follows that the total number of edges in all subproblems at any single recursive depth

d is at most m. Since the number of di�erent depths is O(logn), the total number of edges

in all recursive subproblems is O(m logn).

Theorem 2.4.2 The expected running time of the minimum spanning forest algorithm is

O(m).

Proof: Our analysis relies on a partition of the recursion tree into left paths. Each such

path consists of either the root or a right child and all nodes reachable from this node

22 CHAPTER 2. MINIMUM SPANNING TREES

through a path of left children. Consider a parent problem on a graph of X edges, and let

Y be the number of edges in its left child (X and Y are random variables). Since each edge

in the parent problem is either removed in Step 1 or has a chance of 1
2
of being selected in

Step 2, E[Y jX = k] � k=2. It follows by linearity of expectation that E[Y] � Pk Pr[X =

k]k=2 = E[X]=2. That is, the expected number of edges in a left subproblem is at most

half the expected number of edges in its parent. It follows that, if the expected number of

edges in a problem is k, then the sum of the expected numbers of edges in every subproblem

along the left path descending from the problem is at most
P1

i=0 k=2
i = 2k.

Thus the expected total number of edges is bounded by twice the sum of m and the ex-

pected total number of edges in all right subproblems. By Lemma 2.2.1, the expected num-

ber of edges in a right subproblem is at most twice the number of vertices in the subproblem.

Since the total number of vertices in all right subproblems is at most
P1

d=1 2
d�1 n=4d = n=2,

the expected number of edges in the original problem and all subproblems is at most

2m+ n.

Theorem 2.4.3 The minimum spanning forest algorithm runs in O(m) time with proba-

bility 1� e�
(m).

Proof: We obtain the high-probability result by applying a global version of the analysis in

the proof of Lemma 2.2.1. We �rst bound the total number of edges in all right subproblems.

These are exactly the edges that are found to be F -light in Step 2 of the parent problems.

Referring back to the proof of Lemma 2.2.1, let us consider the nickel-tosses corresponding

to these edges. Each nickel that comes up heads corresponds to an edge in the minimum

spanning forest in a right subproblem. The total number of edges in all such spanning

forests in all right subproblems is at most the number of vertices in all such subproblems,

which in turn is at most n=2 as shown in the proof of Theorem 2.4.2. Thus n=2 is an

upper bound on the total number of heads in nickel-
ips in all the right subproblems. If

we continue
ipping nickels until we get exactly n=2 heads, then we get an upper bound

on the number of edges in right subproblems. This upper bound has the negative binomial

distribution with parameters n=2 and 1=2 (see Appendix A.1). There are more than 3m

F -light edges only if fewer than n=2 heads occur in a sequence of 3m nickel-tosses. By the

Cherno� bound (section A.2), this probability is e�
(m) since m � n=2.

We now consider the edges in left subproblems. The edges in a left subproblem are

obtained from the parent problem by sampling; i.e., a coin is tossed for each edge in the

2.5. CONCLUSIONS 23

parent problem not deleted in Step 1, and the edge is copied to the subproblem if the coin

comes up heads and is not copied if the coin comes up tails. To put it another way, an edge

in the root or in a right subproblem gives rise to a sequence of copies in left subproblems,

each copy resulting from a coin-
ip coming up heads. The sequence ends if a coin-
ip comes

up tails. The number of occurrences of tails is at most the number of sequences, which in

turn is at most the number m0 of edges in the root problem and in all right subproblems.

The total number of edges in all these sequences is equal to the total number of heads,

which in turn is at most the total number of coin-tosses. Hence the probability that this

number of edges exceeds 3m0 is the probability that at most m0 tails occur in a sequence of

more than 3m0 coin-tosses. Since m0 � m, this probability is e�
(m) by a Cherno� bound.

Combining this with the previous high-probability bound of O(m) on m0, we �nd that

the total number of edges in the original problem and in all subproblems is O(m) with

probability 1� e�
(m).

2.5 Conclusions

We have shown that random sampling is an e�ective tool for \sparsifying" minimum span-

ning tree problems, reducing the number of edges involved. It thus combines well with

Boruvka's algorithm, which works well on sparse graphs. We shall see later in Chapter 6

that random sampling is also an e�ective tool for minimum cut problems, allowing sparse

graph algorithms to be applied to dense graphs.

Open Problems

Among remaining open problems, we note especially the following:

1. Is there a deterministic linear-time minimum spanning tree algorithm in the restricted

random-access model?

2. Can randomization or some other technique be used to simplify the linear-time veri-

�cation algorithm?

The algorithm we have described works in a RAM model of computation that allows bit

manipulation of pointer addresses (though not of edge weights). These bit manipulations

are used in the linear time veri�cation algorithm, in particular in its computation of least

24 CHAPTER 2. MINIMUM SPANNING TREES

common ancestors. Previous minimum spanning tree algorithms have typically operated in

the more restrictive pointer machine model of computation [181], where pointers may only

be stored and dereferenced. The best presently known veri�cation algorithm in the pointer

machine model is limited by the need for least common ancestor queries to a running time of

O(m�(m;n)), where � is the inverse Ackerman function. Using this veri�cation algorithm in

our reduction gives us the best known running time for minimum spanning tree algorithms

in the pointer machine model, namely m�(m;n). The problem of a linear time algorithm

in this model remains open.

Notes

The linear time algorithm is a modi�cation of one proposed by Karger [101, 103]. While

that algorithm in retrospect did in fact run in linear time, the weaker version of the sam-

pling lemma used there proved only an O(m + n logn) time bound. Thus, credit for the

�rst announcement of a linear-time algorithm must go to Klein and Tarjan [124], who gave

the necessary tight sampling lemma and used it to simplify the algorithm. Our results were

combined and an improved high-probability complexity analysis was developed collabora-

tively for publication in a joint journal paper [106].

Cole, Klein, and Tarjan [37] have parallelized the minimum spanning tree algorithm

to run in O(2log
� n logn) time and perform linear work on a CRCW PRAM. In contrast,

in Chapter 13, we give an EREW algorithm for minimum spanning trees which runs in

O(logn) time using m= logn processors on dense graphs and is therefore optimum for dense

graphs. The question of whether an optimum EREW algorithm can be found for sparse

graphs remains open.

Chapter 3

Minimum Cuts

3.1 Introduction

We now turn from the random sampling model, in which a random subgroup was used to

analyze the whole population, to Quicksort's random selection model, in which we assume

that a randomly selected individual is \typical." We investigate the minimum cut problem.

We de�ne it, discuss several applications, and then describe past work on the problem.

After providing this context, we describe our new contributions. All three types of random-

ization discussed in the introduction, random selection, random sampling, and randomized

rounding, are usefully applied to minimum cut problems.

3.1.1 Problem De�nition

Given a graph with n vertices and m (possibly weighted) edges, we wish to partition the

vertices into two non-empty sets so as to minimize the number (or total weight) of edges

crossing between them. More formally, a cut (A;A) of a graph G is a partition of the

vertices of G into two nonempty sets A and B. An edge (v; w) crosses cut (A;A) if one of

v and w is in A and the other in A. The value of a cut is the number of edges that cross

the cut or, in a weighted graph, the sum of the weights of the edges that cross the cut. The

minimum cut problem is to �nd a cut of minimum value.

Throughout this discussion, the graph is assumed to be connected, since otherwise the

problem is trivial. We also require that all edge weights be non-negative, because otherwise

the problem isNP-complete by a trivial transformation from the maximum-cut problem [74,

page 210]. We distinguish the minimum cut problem from the s-t minimum cut problem in

25

26 CHAPTER 3. MINIMUM CUTS

which we require that two speci�ed vertices s and t be on opposite sides of the cut; in the

minimum cut problem there is no such restriction.

Particularly on unweighted graphs, solving the minimum cut problem is sometimes

referred to as �nding the connectivity of a graph, that is, determining the minimum number

of edges (or minimum total edge weight) that must be removed to disconnect the graph.

3.1.2 Applications

The minimum cut problem has many applications, some of which are surveyed by Picard

and Queyranne [163]. We discuss others here.

The problem of determining the connectivity of a network arises frequently in issues of

network design and network reliability [36]: in a network with random edge failures, the

network is most likely to be partitioned at the minimum cuts. For example, consider an

undirected graph in which each edge fails with some probability p, and suppose we wish to

determine the probability that the graph becomes disconnected. Let fk denote the number

of edge sets of size k whose removal disconnects the graph. Then the graph disconnection

probability is
P

k fkp
k(1 � p)m�k. If p is very small, then the value can be accurately

approximated by considering fk only for small values of k. It therefore becomes important

to to enumerate all minimum cuts and, if possible, all nearly minimum cuts [170]. We will

give applications of our results to network reliability questions in Section 10.1.

In information retrieval, minimum cuts have been used to identify clusters of topically

related documents in hypertext systems [22]. If the links in a hypertext collection are

treated as edges in a graph, then small cuts correspond to groups of documents that have

few links between them and are thus likely to be unrelated.

Minimum cut problems arise in the design of compilers for parallel languages [26]. Con-

sider a parallel program that we are trying to execute on a distributed memory machine. In

the alignment distribution graph for this program, vertices correspond to program operations

and edges corresponds to
ows of data between program operations. When the program

operations are distributed among the processors, the edges connecting nodes on di�erent

processors are \cut." These cut edge are \bad" because they indicate a need for interproces-

sor communication. It turns out that �nding an optimum layout of the program operations

requires repeated solution of minimum cut problems in the alignment distribution graph.

Minimum cut problems also play an important role in large-scale combinatorial opti-

mization. Currently the best methods for �nding exact solutions to large traveling salesman

3.1. INTRODUCTION 27

problems are based on the technique of cutting planes. The set of feasible traveling sales-

man tours in a given graph induces a convex polytope in a high-dimensional vector space.

Cutting plane algorithms �nd the optimum tour by repeatedly generating linear inequalities

that cut o� undesirable parts of the polytope until only the optimum tour remains. The

inequalities that have been most useful are subtour elimination constraints, �rst introduced

by Dantzig, Fulkerson and Johnson [43]. The problem of identifying a subtour elimination

constraint can be rephrased as the problem of �nding a minimum cut in a graph with real-

valued edge weights. Thus, cutting plane algorithms for the traveling salesman problem

must solve a large number of minimum cut problems (see [135] for a survey of the area).

Padberg and Rinaldi [161] recently reported that the solution of minimum cut problems was

the computational bottleneck in their state-of-the-art cutting-plane based algorithm. They

also reported that minimum cut problems are the bottleneck in many other cutting-plane

based algorithms for combinatorial problems whose solutions induce connected graphs. Ap-

plegate [10] made similar observations and also noted that an algorithm to �nd all nearly

minimum cuts might be even more useful. In particular, these nearly minimum cuts can be

used to �nd comb inequalities|another important type of cutting planes.

3.1.3 Past and Present Work

Several di�erent approaches to �nding minimum cuts have been investigated; we describe

them in the next few sections. Besides putting our work in context, this discussion describes

tools that are needed in our minimum cut algorithms.

Previously best results, together with our new bounds, are summarized in Figure 3.1,

where c denotes the value of the minimum cut.

Until recently, the most e�cient algorithms were augmenting algorithms that used max-

imum
ow computations. We discuss these algorithms in Section 3.2. As the fastest known

algorithms for maximum
ow take
(mn) time, the best minimum cut algorithms inherited

this bound. Gabow showed how augmenting spanning trees rather than
ows could �nd

minimum cuts in ~O(cm) time|an improvement for graphs with small minimum cuts c.

Parallel algorithms for the problem have also been investigated, but until now processor

bounds have been quite large for unweighted graphs, and no good algorithms for weighted

graphs were known.

Recently, new and slightly faster approaches to computing minimum cuts without maxi-

mum
ows appeared. Nagamochi and Ibaraki developed an algorithm for computing sparse

28 CHAPTER 3. MINIMUM CUTS

minimum cut bounds unweighted weighted

undirected directed undirected directed

sequential previous c2n log
n

c
cm log

n2

m
mn+ n2 log n mn log

n2

m

time [67] [154] [89]

this work c3=2n logn n2 log3 n

processors previous n4:37 Unknown P-complete
used [115, 73] [79]

in RNC this work n2 n2

sequential previous (2 + �) in O(m)

approximation [148]

time this work (1 + �) in O(m)

Figure 3.1: Bounds For the Minimum Cut Problem

certi�cates (described in Section 3.3) that can be used to speed up the augmenting algo-

rithms. A side e�ect of their construction is the identi�cation of an edge guaranteed not to

be in the minimum cut; this leads to a contraction-based algorithm for minimum cuts that

is simpler than the augmenting algorithms but has the same ~O(mn) time bound; we discuss

this algorithm in Section 3.4. Matula observed that sparse certi�cates could also be used to

�nd a (2 + �)-approximation to the minimum cut in linear time; we discuss this algorithm

in Section 3.5.

After describing these previous results, we contrast our contributions with them in

Section 3.6.

3.2 Augmentation Based Algorithms

The oldest minimum cut algorithms work by augmenting a dual structure that, when it is

maximized, reveals the minimum cut. Note that the undirected minimum cut problem on

which we focus is a special case of the directed minimum cut problem. In a directed graph,

the value of cut (S; T) is the number or weight of edges with head in S and tail in T . An

algorithm to solve the directed cut problem can solve the undirected one as well: given an

3.2. AUGMENTATION BASED ALGORITHMS 29

undirected graph, replace each edge connecting v and w with two edges, one directed from

v to w and the other from w to v. The value of the directed minimum cut in the new graph

equals the value of the undirected minimum cut in the original graph.

3.2.1 Flow based approaches

The �rst algorithm for �nding minimum cuts used the duality between s-t minimum cuts

and s-t maximum
ows [50, 59]. A good discussion of these algorithms can be found in [3].

Since an s-t maximum
ow saturates every s-t minimum cut, it is straightforward to �nd an

s-t minimum cut given an s-t maximum
ow|for example, the set of all vertices reachable

from the source s in the residual graph of a maximum
ow forms one side of such an s-t

minimum cut. An s-t maximum
ow algorithm can thus be used to �nd an s-t minimum

cut, and minimizing over all
�
n

2

�
possible choices of s and t yields a minimum cut. In 1961,

Gomory and Hu [82] introduced the concept of a
ow equivalent tree and observed that the

minimum cut could be found by solving only n�1 maximum
ow problems. In their classic

book Flows in Networks [60], Ford and Fulkerson comment on the method of Gomory and

Hu:

Their procedure involved the successive solution of precisely n� 1 maximal
ow
problems. Moreover, many of these problems involve smaller networks than the

original one. Thus one could hardly ask for anything better.

This attitude was prevalent in the following 25 years of work on the minimum cut problem.

The focus in minimum cut algorithms was on developing better maximum
ow algorithms

and better methods of performing series of maximum
ow computations.

Maximum
ow algorithms have become progressively faster over the years. Currently,

the fastest algorithms are based on the push-relabel method of Goldberg and Tarjan [78].

Their early implementation of this method runs in O(mn log(n2=m)) time. Many sub-

sequent algorithms have reduced the running time. Currently, the fastest deterministic

algorithms, independently developed by King, Rao and Tarjan [121] and by Phillips and

Westbrook [162]) run in O(nm(log m

n log n

n)) time. Randomization has not helped signif-

icantly. The fastest randomized maximum
ow algorithm, developed by Cheriyan and

Hagerup [28] runs in O(mn+n2 log2 n) time. There appears to be some sort of O(mn) bar-

rier below which maximum
ow algorithms cannot go. Finding a minimum cut by directly

applying any of these algorithms in the Gomory-Hu approach requires
(mn2) time.

30 CHAPTER 3. MINIMUM CUTS

There have also been successful e�orts to speed up the series of maximum
ow compu-

tations that arise in computing a minimum cut. The basic technique is to pass information

among the various
ow computations so that computing all n maximum
ows together

takes less time than computing each one separately. Applying this idea, Podderyugin [164],

Karzanov and Timofeev [116], and Matula [147] independently discovered several algorithms

that determine edge connectivity in unweighted graphs in O(mn) time. Hao and Orlin [89]

obtained similar types of results for weighted graphs. They showed that the series of n� 1

related maximum
ow computations needed to �nd a minimum cut can all be performed in

roughly the same amount of time that it takes to perform one maximum
ow computation,

provided the maximum
ow algorithm used is a non-scaling push-relabel algorithm. They

used the fastest such algorithm, that of Goldberg and Tarjan, to �nd a minimum cut in

O(mn log(n2=m)) time.

3.2.2 Gabow's Round Robin Algorithm

Quite recently, Gabow [67] developed a more direct augmenting-algorithm approach to the

minimum cut problem. It is based on a matroid characterization of the minimum cut

problem and is analogous to the augmenting paths algorithm for maximum
ows. We

reconsider the maximum
ow problem. The duality theorem of [59] says that the value of

the s-t minimum cut is equal to maximum number of edge-disjoint directed s-t paths that

can be \packed" in the graph. Gabow's minimum cut algorithm is based on an analogous

observation that the minimum cut corresponds to a packing of disjoint directed trees.

Gabow's algorithm is designed for directed graphs and is based on earlier work of Ed-

monds [47]. Given a directed graph and a particular vertex s, a minimum s-cut is a cut

(S; S) such that s 2 S and the number of directed edges crossing from S to S is minimized.

Since the minimum cut in a graph is a minimum s-cut either in G or in G with all edges

reversed, �nding a global minimum cut in reduces to �nding a minimum s-cut. We de�ne

a spanning tree in the standard fashion, ignoring edge directions. We de�ne a complete

k-intersection at s as a set of k edge-disjoint spanning trees that induce an indegree of

exactly k on every vertex but s.

Gabow's algorithm is based upon the following characterization of minimum cuts:

The minimum s-cut of a graph is equal to the maximum number c such that a

complete c-intersection at s exists.

3.2. AUGMENTATION BASED ALGORITHMS 31

This characterization corresponds closely to that for maximum
ows. Gabow notes that

the edges of a complete k-intersection can be redistributed into k spanning trees rooted at

and directed away from s. Thus, just as the minimum s-t cut is equal to the maximum

number of disjoint paths directed from s to t, the minimum s-cut is equal to the maximum

number of disjoint spanning trees directed away from s.

Gabow's minimum cut algorithm uses a subroutine called the Round Robin Algorithm

(Round-Robin). This subroutine takes as input a graph G with a complete k-intersection.

In O(m log(n2=m)) time, it either returns a complete (k + 1)-intersection or proves that

the minimum cut is k by returning a cut of value k. Round-Robin can therefore be seen

as a cousin of the standard augmenting path algorithm for maximum
ows: instead of

augmenting by a path, it augments by a spanning tree. We can think of this as attempting

to send
ow simultaneously from s to every vertex in order to �nd the vertex with the

smallest possible max-
ow from s.

Gabow's algorithm for �nding a minimum cut is to repeatedly call Round-Robin until

it fails. The number of calls needed is just the value c of the minimum cut; thus the total

running time of his algorithm is O(cm log(n2=m)). Gabow's algorithm can be applied to

undirected graphs if we replace each undirected edge fu; vg with two directed edges (u; v)

and (v; u).

Gabow's algorithm is fastest on graphs with small minimum cuts, and is thus a good

candidate for a random sampling approach. We apply this idea in Section 6.3 to develop

linear time approximation algorithms and an ~O(m
p
c)-time exact algorithm for undirected

graphs.

3.2.3 Parallel algorithms

Parallel algorithms for the minimum cut problem have also been explored, though with much

less satisfactory results. For undirected and unweighted graphs, Khuller and Schieber [118]

gave an algorithm that uses cn2 processors to �nd a minimum cut of value c in ~O(c) time;

this algorithm is therefore in NC when c is polylogarithmic in n.

For directed unweighted graphs, the RNC matching algorithms of Karp, Upfal, and

Wigderson [115] or Mulmuley, Vazirani, and Vazirani [152] can be combined with a reduction

of s-t maximum
ow problems to matching [115] to yield RNC algorithms for s-t minimum
cuts. We can �nd a minimum cut by performing 2n of these s-t cut computations in parallel

(�x a vertex s, and �nd minimum s-v and v-s cuts for each other vertex v). Unfortunately,

32 CHAPTER 3. MINIMUM CUTS

the processor bounds are quite large|the best bound, using Galil and Pan's [73] adaptation

of [115], is n4:37.

These unweighted directed graph algorithms can be extended to work for weighted

graphs by treating an edge of weight w as a set of w parallel edges. If W is the sum of

all the edge weights then the number of processors needed is proportional to W ; hence the

problem is not in RNC unless the edge weights are given in unary. If we combine these

algorithms with the scaling techniques of Edmonds and Karp [49], as suggested in [115],

the processor count is mn4:37 and the running times are proportional to logW . Hence, the

algorithms are not in RNC unless W = npolylog n.

The lack of an RNC algorithm is not surprising. Goldschlager, Shaw, and Staples [79]

showed that the s-t minimum cut problem on weighted directed graphs is P-complete. In
section 4.5.4 we note a simple reduction to their result that proves that the weighted directed

minimum cut problem is also P-complete. Therefore, a (randomized) parallel algorithm for

the directed minimum cut problem would imply that P � NC (RNC), which is believed to

be unlikely.

An interesting open question is whether Gabow's Round Robin algorithm can be paral-

lelized e�ciently using maximal matching techniques as for maximum
ows; doing so would

give a more e�ective algorithm than the ones based on maximum
ows that must consider

all source-sink pairs simultaneously.

3.3 Sparse Connectivity Certi�cates

The augmentation-based algorithms we have just discussed typically examine all the edges

in a graph in order to perform one augmentation. It is therefore convenient that we can

often preprocess the graph to reduce the number of edges we have to examine.

The tool we use is sparse certi�cates. Certi�cates apply to any monotone increasing

property of graphs|one that holds for graph G if it holds for some proper subgraph of

G. Given such a property, a sparse certi�cate for G is a sparse subgraph that has the

property, proving that G has it as well. The advantage is that since the certi�cate is sparse,

the property can be veri�ed more quickly. For example, Eppstein et al [51] give sparse-

certi�cate techniques that improve the running times of dynamic algorithms for numerous

graph problems such as connectivity, bipartitioning, and minimum spanning trees.

Minimum cut algorithms can e�ectively use a particular sparse connectivity certi�cate.

3.3. SPARSE CONNECTIVITY CERTIFICATES 33

Using this certi�cate, it is often possible to discard many edges from a graph before com-

puting minimum cuts. Discarding edges makes many algorithms (such as Gabow's) run

faster. Nagamochi and Ibaraki [155] give a linear-time algorithm called scan-�rst search for

constructing such a certi�cate. A side e�ect of their algorithm is the identi�cation of one

edge that is not in the minimum cut; this motivates the development of contraction-based

algorithms as an alternative to augmentation-based algorithms. Matula [148] noticed that

the certi�cate could be used as the centerpiece of a linear time sequential algorithm for

�nding a (2 + �)-approximation to the minimum cut in a graph.

3.3.1 De�nition

De�nition 3.3.1 A sparse k-connectivity certi�cate for an n-vertex graph G is a subgraph

H of G such that

1. H contains at most kn edges, and

2. H contains all edges crossing cuts of value k or less.

This de�nition extends to weighted graphs if we equate an edge of weight w with a set

of w unweighted edges with the same endpoints|the bound in size becomes a bound on the

total weight of remaining edges. It follows from the de�nition that if a cut has value v � k

in G, then it has the same value v in H . On the other hand, any cut of value greater than

k in G has value at least k in H . Therefore, if we are looking for cuts of value less than k in

G, we might as well look for them in H , since they are the same. The advantage is that H

may have many fewer edges than G. Nagamochi and Ibaraki made this approach feasible

by presenting an algorithm that constructs a sparse k-connectivity certi�cate in O(m) time

on unweighted graphs, independent of k. On weighted graphs, the running time of their

algorithm increases to O(m+ n logn).

Consider, for example, Gabow's minimum cut algorithm from the previous section. It

runs in O(cm log(m=n))-time on an n-vertexm-edge graph with minimum cut c. If we knew

c, we could use the Nagamochi-Ibaraki algorithm to construct a sparse (c+ 1)-connectivity

certi�cate. This certi�cate would have the same minimum cuts of value c as the original

graph, but only (c+1)n edges. Thus Gabow's algorithm would run in O((nc)c log((nc)=n))

time on the certi�fcate. The overall time for Gabow's algorithm therefore improves to

O(m + c2n log(n=c)). If c is not known, we start by guessing c = 1 and then repeatedly

doubling our guess; the running time remains ~O(m+(1+22+42+ : : :+c2)n) = ~O(m+c2n).

34 CHAPTER 3. MINIMUM CUTS

The only sparse k-connectivity certi�cate known at present is a maximal k-jungle, which

we now de�ne.

De�nition 3.3.2 A k-jungle is a set of k disjoint forests in G.

De�nition 3.3.3 A maximal k-jungle is a k-jungle such that no other edge in G can be

added to any one of the jungle's forests without creating a cycle in that forest.

Lemma 3.3.4 ([154]) A maximal k-jungle contains all the edges in any cut of k or fewer

edges.

Proof: Consider a maximal k-jungle J , and suppose it contains fewer than k edges of some

cut. Some forest in J must have no edge from this cut. Any cut edge not in J could be

added to this forest without creating a cycle, so all cut edges must already be in J .

It follows that a maximal k-jungle is a sparse k-connectivity certi�cate, because each

forest in the jungle contains at most n� 1 edges.

3.3.2 Construction

The simplest algorithm for constructing a maximal k-jungle is a greedy one: �nd and delete

a spanning forest from G k times. Nagamochi and Ibaraki give an implementation of this

greedy construction called Scan-First-Search. It takes a single pass through the edges

and labels them according to which iteration of the greedy algorithm would delete them.

This labeling allows them to construct the k-jungle in linear time (or O(m+ n logn) time

on weighted graphs) by identifying the set of edges with labels at most k.

Scan-First-Search constructs certi�cates with an important additional property. In a

graph with minimum cut c, at least one edge will not be in the �rst c forests of the jungle.

This edge cannot be in the minimum cut, because by de�nition all edges in a cut of value

c are contained in the �rst c forests. This means that the edge given the largest label by

Scan-First-Search will not be in the minimum cut. We will see in the next section that

this information can be used e�ectively to �nd minimum cuts.

We can also consider parallel sparse certi�cate algorithms. These play in important

role in several other parts of our work. Cheriyan, Kao, and Thurimella [29] give a parallel

sparse certi�cate algorithm that runs in O(k logn) time using m+ kn processors. It is thus

in NC when k = O(polylogn). In Section 5.2, we give a better parallel sparse certi�cate

3.4. NAGAMOCHI AND IBARAKI'S CONTRACTION ALGORITHM 35

Figure 3.2: Contraction

algorithm that runs in O(polylogn) time using kn processors, and is therefore in NC when
k is polynomial.

3.4 Nagamochi and Ibaraki's Contraction Algorithm

As we just mentioned, Scan-First-Search has a side e�ect of identifying an edge that is

not in the minimum cut. Nagamochi and Ibaraki [154, 155] use this fact in developing a

minimum cut algorithm based on the idea of contraction. If an edge is not in the minimum

cut, then its endpoints must be on the same side of the minimum cut. Therefore, if we

merge the two endpoints into a single vertex, we will get a graph with one less vertex but

with the same minimum cut as the original graph. An example of an edge contraction is

given in Figure 3.2.

To contract two vertices v1 and v2 we replace them by a vertex v, and let the set of edges

incident on v be the union of the sets of edges incident on v1 and v2. We do not merge edges

from v1 and v2 that have the same other endpoint; instead, we create multiple instances of

those edges. However, we remove self loops formed by edges originally connecting v1 to v2.

36 CHAPTER 3. MINIMUM CUTS

Formally, we delete all edges (v1; v2), and replace each edge (v1; w) or (v2; w) with an edge

(v; w). The rest of the graph remains unchanged. We will use G=(v1; v2) to denote graph

G with edge (v1; v2) contracted (by contracting an edge, we will mean contracting the two

endpoints of the edge). Extending this de�nition, for an edge set F we will let G=F denote

the graph produced by contracting all edges in F (the order of contractions is irrelevant up

to isomorphism).

Remark: Note the di�erence between the contraction rule used here and that used in the

minimum spanning tree algorithm. There, all edges but the minimum weight edge in a

group of parallel edges were deleted; here, all edges in a parallel group remain.

Contraction is used as the fundamental operation in Nagamochi and Ibaraki's algorithm

NI-Contract shown in Figure 3.3.

Procedure NI-Contract(G)

repeat until G has 2 vertices

�nd an edge (v; w) not in the minimum cut using Scan-first-search

let G G=(v; w)

return G

Figure 3.3: A Generic Contraction-Based Algorithm

When NI-Contract terminates, each original vertex has been contracted into one of the

two remaining \metavertices." These metavertices de�nes a cut of the original graph: each

side corresponds to the vertices contained in one of the metavertices. More formally, at any

point in the algorithm, we can de�ne s(a) to be the set of original vertices contracted to a

current metavertex a. Initially s(v) = v for each v 2 V , and whenever we contract (v; w)

to create vertex x we set s(x) = s(v) [s(w). We say a cut (A;B) in the contracted graph

corresponds to a cut (A0; B0) in G, where A0 = [a2As(a) and B0 = [b2Bs(b). Note that a
cut and its corresponding cut will have the same value. When the Contraction Algorithm

terminates, yielding a graph with two metavertices a and b, we have a corresponding cut

(A;B) in the original graph, where A = s(a) and B = s(b).

Lemma 3.4.1 A cut (A;B) is output by NI-Contract if and only if no edge crossing (A;B)

is contracted by the algorithm.

3.5. MATULA'S (2 + �)-APPROXIMATION ALGORITHM 37

Proof: The only if direction is obvious. For the other direction, consider two vertices on

opposite sides of the cut (A;B). If they end up in the same metavertex, then there must be

a path between them consisting of edges that were contracted. However, any path between

them crosses (A;B), so an edge crossing cut (A;B) would have had to be contracted. This

contradicts our hypothesis.

Corollary 3.4.2 NI-Contract outputs a minimum cut.

Proof: By assumption, no edge in the minimum cut is ever contracted.

Now note that NI-Contract performs exactly n � 2 iterations, since the number of

vertices is reduced by one each time. Therefore, the running time of NI-Contract is n � 2

times the time needed to �nd a non-minimum-cut edge. Nagamochi and Ibaraki's sparse-

certi�cate algorithm identi�es a non-minimum-cut edge in linear time and therefore yields

an implementation of NI-Contract that runs in O(mn) time on unweighted graphs (and

O(mn + n2 logn) time on weighted graphs). This implementation improves on maximum

ow based algorithms in terms of both running-time bound and practicality.

3.5 Matula's (2 + �)-Approximation Algorithm

Matula's (2 + �)-approximation algorithm [148] also uses sparse certi�cates as its main in-

gredient. It modi�es the approach of Nagamochi and Ibaraki's contraction-based algorithm,

using the fact that if many non-minimum-cut edges are found and contracted simultane-

ously, only a few iterations will be needed. See Procedure Approx-min-cut in Figure 3.4.

We describe the algorithm as one that approximates the cut value; it is easily modi�ed

to �nd a cut with the returned value. The basic idea is to �nd a sparse certi�cate that

contains all minimum cut edges and then contract all edges not in the certi�cate. The

algorithm works quickly because so long as we do not have a good approximation to the

minimum cut at hand, we can guarantee that many edges are contracted each time.

Lemma 3.5.1 Given a graph with minimum cut c, the approximation algorithm returns a

value between c and (2 + �)c.

Proof: Clearly the value is at least c because it corresponds to some cut the algorithm

encounters. For the upper bound, we use induction on the size of G. We consider two cases.

38 CHAPTER 3. MINIMUM CUTS

Procedure Approx-Min-Cut(G)

1. Let � be the minimum degree of G.

2. Let k = �=(2 + �).

3. Find a sparse k-connectivity certi�cate for G.

4. Construct G0 from G by contracting all non-certi�cate edges.

5. Return min(�; Approx-Min-Cut(G0)).

Figure 3.4: Matula's Approximation Algorithm

If � < (2 + �)c, then since we return a value of at most �, the algorithm is correct. On the

other hand, if � � (2 + �)c, then k � c. It follows that the sparse certi�cate we construct

contains all the minimum cut edges. Thus no edge in the minimum cut is contracted while

forming G0, so G0 has minimum cut c. By the inductive hypothesis, the recursive call returns

a value between c and (2 + �)c.

Lemma 3.5.2 In an unweighted graph, the number of levels of recursion in the approxi-

mation algorithm is O(logm).

Proof: If G has minimum degree �, it must have at least �n=2 edges. On the other hand,

the graph G0 that we construct contains at most k(n�1) = �(n�1)=(2+�) edges. It follows

that each recursive step reduces the number of edges in the graph by a constant factor; thus

at a recursion depth of O(logm) the problem can be solved trivially.

Remark: The extra � factor above 2 is needed to ensure a signi�cant reduction in the

number of edges at each stage and thus keep the recursion depth small. The depth of

recursion is in fact �(��1 logm) and the total work done O(m=�).

Corollary 3.5.3 For unweighted graphs, a (2 + �)-approximation to the minimum cut can

be found in O(m=�) time.

Proof: All the steps of Matula's approximation algorithm take O(m) time, except for

�nding a sparse certi�cate which takes O(m) time using Scan-First-Search.

3.6. NEW RESULTS 39

Remark: Matula's Algorithm can be modi�ed to run on weighted graphs if we use the

O(m + n logn)-time weighted-graph version of Scan-First-Search. We need to use a

linear-time preprocessing step (described in Section ??) to ensure that the number of

iterations of scanning is O(logn). The resulting algorithm runs in O(m(logn)=�) time.

We can also consider using the parallel sparse certi�cate algorithm of [29]. This algo-

rithm uses m processors and �nds a sparse k-connectivity certi�cate in ~O(k) time.

Corollary 3.5.4 In a graph with minimum cut c, a (2+ �)-approximation to the minimum

cut can be found in ~O(c=�) time.

3.6 New Results

In the next few chapters, we will present new algorithms for solving the minimum cut prob-

lem. Here, we outline the various results we present and compare them to previous best

bounds. Consider a graph withm edges, n vertices, and minimum cut c. Many of our results

can be seen as circling around the following (quite possibly achievable) goal: develop deter-

ministic linear-time sequential and linear-processor parallel algorithms for �nding minimum

cuts.

In Chapter 4, we develop a powerful new application of the contraction ideas of Sec-

tion 3.4. Our randomized Recursive Contraction Algorithm is strongly polynomial (see Sec-

tion 1.3) and runs in O(n2 log3 n) time|a signi�cant improvement on the previous ~O(mn)

bounds. It is also parallelizable to run in RNC using n2 processors. This gives the �rst

proof that the minimum cut can be found in RNC. The algorithm can be used to enu-

merate all approximately minimum cuts in a graph (those with a value any constant factor

times the minimum cut's) in polynomial time and in RNC, and to prove that there are

few such cuts. These results have important applications in the study of network reliabil-

ity [170, 36]. For example, we use small-cut enumeration to give the �rst fully polynomial

time approximation scheme for the all-terminal network reliability problem|the problem

of determining the likelihood that a graph becomes disconnected if each of its edges fails

with a certain probability.

In Chapter 5, we apply derandomization techniques and our cut enumeration theorems

to develop a deterministic parallel algorithm for minimum cuts, yielding the �rst proof that

the minimum cut problem can be solved in NC. To do so, we present a new determin-

istic parallel algorithm for �nding sparse connectivity certi�cates. This lets us parallelize

40 CHAPTER 3. MINIMUM CUTS

Matula's sequential algorithm for �nding a (2 + �)-approximation to the minimum cut in

unweighted graphs. We then show that the minimum cut problem can be reduced in NC to
the unweighted minimum cut approximation problem just solved. Sparse certi�cates also

play an important role in many of the algorithms that follow.

In Chapter 6, we use our results on enumeration of small cuts to prove a cut sampling

theorem that shows that cuts take predictable values under random sampling. We show

how this fact leads to a linear time algorithm for estimating the minimum cut to within

(1+ �), thus improving on Matula's approximation algorithm. We also use it to extend our

linear processor 2-approximation algorithm to weighted graphs, and to give fast algorithms

for maintaining the minimum cut dynamically. In contrast to the Contraction Algorithm

which is Monte Carlo, these algorithms can be made Las Vegas. Using a randomized

divide-and-conquer scheme for unweighted graphs, we accelerate Gabow's algorithm to run

in ~O(m
p
c) time. In Chapter 10, we extend this approach, developing randomized divide

and conquer algorithms for s-t minimum cut and maximum
ow problems. We also give

applications to other cut-related problems such as minimum s-t cuts and maximum
ows.

In Chapter 9, we discuss extensions to our Contraction Algorithm. The Recursive

Contraction Algorithm can be used to compute (and enumerate) all minimum multiway

cuts. The Contraction Algorithm provides a signi�cantly faster solution than was previously

known, and also gives the �rst RNC algorithm for the problem. A variant of the algorithm

can be used to construct the cactus representation of minimum cuts in a graph. In two

complexity theoretic results, we show that the minimum cut can be found in polynomial

time using only O(n) space, and in O(logn) time on an EREW PRAM, matching the lower

bound.

Chapter 4

Randomized Contraction

Algorithms

4.1 Introduction

4.1.1 Overview of Results

In this chapter, we present the Recursive Contraction Algorithm.1 It is a random-selection

based algorithm, relying in the fact that a \typical" graph edge is not in the minimum

cut. It is therefore analogous to quicksort. While quicksort could use a linear time median

�nding algorithm to pick a pivot with guaranteed good performance, it instead assumes

that a randomly chosen pivot would work well. Similarly, rather than using Nagamochi

and Ibaraki's slow algorithm for identifying an edge not in the minimum cut, we pick one

at random and assume it is not in the minimum cut. This approach leads to a strongly

polynomial algorithm that runs in O(n2 log3 n) time|a signi�cant improvement on the

previous ~O(mn) bounds.

With high probability, our algorithm �nds the minimum cut|in fact, it �nds all min-

imum cuts. This suggests that the minimum cut problem may be fundamentally easier

to solve than the maximum
ow problem. The parallel version of our algorithm runs in

polylogarithmic time using n2 processors on a PRAM. It thus provides the �rst proof that

the minimum cut problem with arbitrary edge weights can be solved in RNC. It is also an
e�cient RNC algorithm for the minimum cut problem in that the total work it performs is

1Parts of this chapter appeared in [102] and (joint with Cli�ord Stein) [110].

41

42 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

within a polylogarithmic factor of that performed by the best sequential algorithm (namely,

the one presented here). In a contrasting result, we show that the directed minimum cut

problem is P-complete and thus appears unlikely to have an RNC solution.
Our algorithm is extremely simple and, unlike the best
ow-based approaches, does

not rely on any complicated data structures such as dynamic trees [177]. The most time

consuming steps of the sequential version are simple computations on arrays, while the

most time consuming steps in the parallel version are sorting and computing connected

components. All of these computations can be performed practically and e�ciently. We

have implemented the algorithm and determined that it works well in practice.

A drawback of our algorithm is that it is Monte Carlo. Monte Carlo Algorithms give

the right answer with high probability but not with certainty. For many problems, such a

aw can be recti�ed because it is possible to verify a \certi�cate" of the correctness of the

output and rerun the algorithm if the output is wrong. This modi�cation turns Monte Carlo

Algorithms into Las Vegas algorithms that are guaranteed to produce the right answer but

have a small probability of taking a long time to do so. Unfortunately, all presently known

minimum cut certi�cates (such as maximum
ows, or the complete intersections of Gabow's

algorithm) take just as long to construct when the minimum cut is known as when it is

unknown. Thus we can provide no speedup if a guarantee of the minimum cut value is

desired.

Matching the importance of the Contraction Algorithm is a corollary that follows from

its abstract implementation. This corollary bounds the number of approximately minimum

cuts in a graph, and is the linchpin of all the sampling theorems and algorithms that follow

in Chapters 5, 6, 10, and 10. It also has important implications in analyzing network

reliability.

4.1.2 Overview of Presentation

We start with an abstract formulation of the Contraction Algorithm in Section 4.2. This

extremely simple algorithm has an
(1=n2) probability of outputting a minimum cut. It is

based on the observation that the edges of a graph's minimum cut form a very small fraction

of the graph's edges, so that a randomly selected edge is unlikely to be in the minimum

cut. Therefore, if we choose an edge at random and contract its endpoints into a single

vertex, the probability is high that the minimum cut will be una�ected. We therefore �nd

the minimum cut by repeatedly choosing and contracting random edges until the minimum

4.1. INTRODUCTION 43

cut is apparent.

Moving from the abstract formulation to a more concrete algorithm divides naturally

into two stages. In the �rst stage, we show how to e�ciently implement the repeated

selection and contraction of edges that forms a single trial of the Contraction Algorithm.

Section 4.3 uses a simple adjacency matrix scheme to implement the algorithm in O(n2)

time.

The second stage deals with the need for multiple trials of the Contraction Algorithm.

Given the
(1=n2) success probability of the Contraction Algorithm, repeating it O(n2 logn)

times gives a high probability of �nding the minimum cut in some trial. However, this

approach yields undesirably high sequential time and parallel processor bounds of ~O(n4).

Thus in Section 4.4 we show how the O(n2 log n) necessary trials can share their work so

that the total work performed by any one trial is ~O(1). This amortization gives our ~O(n2)

sequential time bounds.

We next give parallel implementations of the Contraction Algorithm. To achieve par-

allelism, we \batch together" numerous selections and contractions, so that only a few

contraction phases are necessary. We present a simple but slightly ine�cient (by logarith-

mic factors) parallel implementation in Section 4.5. This implementation su�ces to show

that minimum cuts of undirected graphs can be found in RNC. In contrast, in Section 4.5.4
we show that the corresponding directed graph problem is P-complete.

In section 4.6, we give an asymptotically better (and more practical) implementation

of the Contraction Algorithm that runs in linear time sequentially and is more e�cient in

parallel than our previous implementation. This gives us improved sequential time bounds

on certain classes of graphs as well as a more e�cient parallel algorithm.

In Section 4.7, we return to the abstract description of the Contraction Algorithm and

use it to bound the number of approximately minimum cuts in a graph. We then show

how the algorithm can be modi�ed to �nd all the approximately minimum cuts. As an

application, in Section 10.1, we give the �rst fully polynomial time approximation scheme

for the all-terminal network reliability problem of determining the probability that a network

remains connected if its edges su�er random failures.

44 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

4.2 The Contraction Algorithm

In this section we present an abstract version of the Contraction Algorithm. This version of

the algorithm is particularly intuitive and easy to analyze. In later sections, we will describe

how to implement it e�ciently.

4.2.1 Unweighted Graphs

For now, we restrict our attention to unweighted multigraphs (i.e., graphs that may have

multiple edges between one pair of vertices). The Contraction Algorithm is a variant of

Nagamochi and Ibaraki's contraction-based algorithm (presented in Section 3.4). Assume

initially that we are given a multigraph G(V;E) with n vertices and m edges. The Con-

traction Algorithm is based on the idea that since the minimum cut is small, a randomly

chosen edge is unlikely to be in the minimum cut. The Contraction Algorithm, which is

described in Figure 4.1, repeatedly chooses an edge at random and contracts it.

Procedure Contract(G)

repeat until G has 2 vertices

choose an edge (v; w) uniformly at random from G

let G G=(v; w)

return G

Figure 4.1: The Contraction Algorithm

Theorem 4.2.1 A particular minimum cut in G is returned by the Contraction Algorithm

with probability at least
�
n

2

��1
=
(n�2).

Proof: Fix attention on some speci�c minimum cut (A;B) with c crossing edges. We will

use the term minimum cut edge to refer only to edges crossing (A;B). From Lemma 3.4.1,

we know that if we never select a minimum cut edge during the Contraction Algorithm,

then the two vertices we end up with must de�ne the minimum cut.

Observe that after each contraction, the minimum cut value in the new graph must still

be at least c. This is because every cut in the contracted graph corresponds to a cut of the

4.2. THE CONTRACTION ALGORITHM 45

same value in the original graph, and thus has value at least c. Furthermore, if we contract

an edge (v; w) that does not cross (A;B), then the cut (A;B) corresponds to a cut of value

c in G=(v; w); this corresponding cut is a minimum cut (of value c) in the contracted graph.

Each time we contract an edge, we reduce the number of vertices in the graph by one.

Consider the stage in which the graph has r vertices. Since the contracted graph has a

minimum cut of at least c, it must have minimum degree c, and thus at least rc=2 edges.

However, only c of these edges are in the minimum cut. Thus, a randomly chosen edge is

in the minimum cut with probability at most 2=r. The probability that we never contract

a minimum cut edge through all n� 2 contractions is thus at least

�
1� 2

n

��
1� 2

n � 1

�
� � �
�
1� 2

3

�
=

�
n� 2

n

��
n� 3

n� 1

�
� � �
�
2

4

��
1

3

�

=

n

2

!�1

=
(n�2):

Remark: This bound is tight. In a cycle on n vertices, there are
�
n

2

�
minimum cuts, one for

each pair of edges in the graph. Each of these minimum cuts is produced by the Contraction

Algorithm with equal probability, namely
�
n

2

��1
.

Remark: An alternative interpretation of the Contraction Algorithm is that we are ran-

domly ranking the edges and then constructing a minimum spanning tree of the graph

based on these ranks (using Kruskal's minimum spanning tree algorithm [133]). If we re-

move the heaviest edge in the minimum spanning tree, the two components that result have

an
(n�2) chance of de�ning a particular minimum cut. This intuition forms the basis of

the implementation of Section 4.6, as well as for certain dynamic approximation algorithms

in Section 10.5.

The Contraction Algorithm can be halted when k vertices remain. We refer to this as

contraction to k vertices. The following result is an easy extension of Theorem 4.2.1:

Corollary 4.2.2 A particular minimum cut (A;B) survives contraction to k vertices with

probability at least
�
k

2

�
=
�
n

2

�
=
((k=n)2).

46 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

4.2.2 Weighted Graphs

Extending the Contraction Algorithm to weighted graphs is simple. For a given weighted

graph G, we consider a corresponding unweighted multigraph G0 on the same set of vertices.

An edge of weight w in G is mapped to a collection of w parallel unweighted edges in G0.

The minimum cuts in G and G0 are the same, so it su�ces to run the Contraction Algorithm

on G0. We choose a pair of vertices to contract in G0 by selecting an edge of G0 uniformly

at random. Therefore, the probability that we contract u and v is proportional to the

number of edges connecting u and v in G0, which is just the weight of the edge (u; v) in

G. This interpretation leads to the weighted version of the Contraction Algorithm given in

Figure 4.2.

Procedure Contract(G)

repeat until G has 2 vertices

choose an edge (v; w) with probability proportional to the weight of (v; w)

let G G=(v; w)

return G

Figure 4.2: The Weighted Contraction Algorithm

The analysis of this algorithm follows immediately from the unweighted case.

Corollary 4.2.3 The Weighted Contraction Algorithm outputs a particular minimum cut

of G with probability
(1=n2).

4.3 Implementing the Contraction Algorithm

We now turn to implementing the algorithm described abstractly in the previous section.

First, we give a version that runs in O(n2) time and space. Later, we shall present a version

that runs in O(m) time and space with high probability and is also parallelizable. This

�rst method, though, is easier to analyze, and its running time does not turn out to be the

dominant factor in our analysis of the time to �nd minimum cuts.

To implement the Contraction Algorithm we use an n � n weighted adjacency matrix

W . The entry W (u; v) contains the weight of edge (u; v), which can equivalently be viewed

4.3. IMPLEMENTING THE CONTRACTION ALGORITHM 47

as the number of multigraph edges connecting u and v. If there is no edge connecting u

and v then W (u; v) = 0. We also maintain the total (weighted) degree D(u) of each vertex

u, thus D(u) =
P

vW (u; v).

We now show how to implement two steps: randomly selecting an edge and performing

a contraction.

4.3.1 Choosing an Edge

A fundamental operation that we need to implement is the selection of an edge with prob-

ability proportional to its weight. A natural method is the following. First, from edges

e1; : : : ; em with weights w1; : : : ; wm; construct cumulative weights Wk =
Pk

i=1 wi. Then

choose an integer r uniformly at random from 0; : : : ;Wm and use binary search to identify

the edge ei such that Wi�1 � r < Wi. This can easily be done in O(logW) time. While

this bound is not a strongly polynomial bound since it depends on the edge weights being

small, we will temporarily ignore this issue. For the time being, we assume that we have a

black-box subroutine called Random-Select. The input to Random-Select is a cumulative

weight array of length m. Random-Select runs in O(logm) time and returns an integer

between 1 and m, with the probability that i is returned being proportional to wi. In prac-

tice the lack of strong polynomiality is irrelevant since implementors typically pretend that

their system-provided random number generator can be made to return numbers in an arbi-

trarily large range by scaling. We provide theoretical justi�cation for using Random-Select

by giving a strongly polynomial implementation of it in the appendix (Section A.3).

We now use Random-Select to �nd an edge to contract. Our goal is to choose an

edge (u; v) with probability proportional to W (u; v). To do so, choose a �rst endpoint u

with probability proportional to D(u), and then once u is �xed choose a second endpoint

v with probability proportional to W (u; v). Each of these two choices requires O(n) time

to construct a cumulative weight array and one O(logn)-time call to Random-Select, for a

total time bound of O(n).

The following lemma, similar to one used by Klein, Plotkin, Stein and Tardos [122],

proves the correctness of this procedure.

Lemma 4.3.1 If an edge is chosen as described above, then Pr[(u; v) is chosen] is propor-

tional to W (u; v):

48 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

Proof: Let � =
P

vD(v). Then

Pr[choose(u; v)] = Pr[choose u] � Pr[choose (u; v) j chose u]
+ Pr[choose v] � Pr[choose (u; v) j chose v]

=
D(u)

�
� W (u; v)

D(u)
+
D(v)

�
� W (u; v)

D(v)

=
2W (u; v)

�

/ W (u; v):

4.3.2 Contracting an Edge

Having shown how to choose an edge, we now show how to implement a contraction. Given

W and D, which represent a graph G, we explain how to update W and D to re
ect the

contraction of a particular edge (u; v). Call the new graphG0 and compute its representation

via the algorithm of Figure 4.3.2. Intuitively, this algorithm moves all edges incident on v

to u. The algorithm replaces row u with the sum of row u and row v, and replaces column u

Procedure to contract edge (u; v)

Let D(u) D(u) +D(v)� 2W (u; v)

Let D(v) 0

Let W (u; v) W (v; u) 0

For each vertex w except u and v

Let W (u; w) W (u; w) +W (v; w)

Let W (w; u) W (w; u) +W (w; v)

Let W (v; w) W (w; v) 0

Figure 4.3: Contracting an Edge

with the sum of column u and column v. It then clears row v and column v. W and D now

represent G0, since any edge that was incident to u or v is now incident to u and any two

4.4. THE RECURSIVE CONTRACTION ALGORITHM 49

edges of the form (u; w) and (v; w) for some w have had their weights added. Furthermore,

the only vertices whose total weighted degrees have changed are u and v, and D(u) and

D(v) are updated accordingly. Clearly, this procedure can be implemented in O(n) time.

Summarizing this and the previous section, we have shown that in O(n) time we can choose

an edge and contract it. This yields the following result:

Corollary 4.3.2 The Contraction Algorithm can be implemented to run in O(n2) time.

Observe that if the Contraction Algorithm has run to completion, leaving just two

vertices u and v, then we can determine the weight of the implied cut by inspecting W (u; v).

We can in fact implement the Contraction Algorithm using only O(m) space. We do

so by maintaining an adjacency list representation. All the edges incident to vertex v are

in a linked list. In addition, we have pointers between the two copies of the same edge

(v; w) (in the adjacency list of vertex v) and (w; v) (in the adjacency list for w). When

v and w are merged, we traverse the adjacency list of v, and for each edge (v; u) �nd the

corresponding edge (u; v) and rename it to (u; w). Note that as a result of this renaming

the adjacency lists will not be sorted. To handle this problem, whenever we choose to merge

two vertices, we can merge their adjacency lists by using a bucket sort into n buckets based

on the edges' other endpoints; the time for this merge thus remains O(n) and the total time

for the algorithm remains O(n2). In the worst case m = �(n2), but for sparse graphs using

this approach will save space.

4.4 The Recursive Contraction Algorithm

The Contraction Algorithm can be used by itself as an algorithm for �nding minimum cuts.

Since each trial has an
(n�2) probability of success, performing O(n2 logn) trials will give

a high probability of �nding a minimum cut. However, the resulting sequential running

time of (n4 logn) is excessive. We therefore wrap the Contraction Algorithm within the

Recursive Contraction Algorithm. The idea of this new algorithm is to share the bulk of

the work among the O(n2 log n) Contraction Algorithm trials so as to reduce the total work

done.

We begin with some intuition as to how to speed up the Contraction Algorithm. Con-

sider the contractions performed in one trial of the Contraction Algorithm. The �rst con-

traction has a reasonably low probability of contracting an edge in the minimum cut, namely

50 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

2=n. On the other hand, the last contraction has a much higher probability of contracting

an edge in the minimum cut, namely 2=3. This observation suggests that the Contraction

Algorithm works well initially, but has poorer performance later on. We might improve

our chances of success if, after partially contracting the graph, we switched to a (possibly

slower) algorithm with a better chance of success on what remains.

One possibility is to use one of the deterministic minimum cut algorithms, such as

NI-Contract, and this approach indeed yields some improvement. However, a better ob-

servation is that an algorithm that is more likely to succeed than the Contraction Algorithm

is two trials of the Contraction Algorithm.

Therefore, we now use the Contraction Algorithm as a subroutine Contract(G; k), that

accepts a weighted graph G and a parameter k and, in O(n2) time, returns a contraction of

G to k vertices. With probability at least
�
k

2

�
=
�
n

2

�
(Corollary 4.2.2), a particular minimum

cut of the original graph will be preserved in the contracted graph. In other words, no

vertices on opposite sides of this minimum cut will have been merged, so there will be a

minimum cut in the contracted graph corresponding to the particular minimum cut of the

original graph.

Consider the Recursive Contraction Algorithm described in Figure 4.4. We perform

two independent trials. In each, we �rst partially contract the graph, but not so much

that the likelihood of the cut surviving is too small. By contracting the graph until it

has n=
p
2 vertices, we ensure a roughly 50% probability of not contracting a minimum cut

edge, so we expect that on the average one of the two attempts will avoid contracting a

minimum cut edge. We then recursively apply the algorithm to each of the two partially

contracted graphs. As described, the algorithms returns only a cut value; it can easily be

modi�ed to return a cut of the given value. Alternatively, we might want to output every

cut encountered, hoping to enumerate all the minimum cuts.

We now analyze the running time of this algorithm.

Lemma 4.4.1 Algorithm Recursive-Contract runs in O(n2 logn) time and uses O(n2)

or O(m log(n2=m)) space (depending on the implementation Contract).

Proof: One level of recursion consists of two independent trials of contraction of G to

n=
p
2 vertices followed by a recursive call. Performing a contraction to n=

p
2 vertices can

be implemented by Algorithm Contract from Section 4.3 in O(n2) time. We thus have the

4.4. THE RECURSIVE CONTRACTION ALGORITHM 51

Procedure Recursive-Contract(G;n)

input A graph G of size n.

if G has 2 vertices a and b

then return the weight of the corresponding cut in G

else repeat twice

G0 Contract(G; n=
p
2)

Recursive-Contract(G0; n=
p
2).

return the smaller of the two resulting values.

Figure 4.4: The Recursive Contraction Algorithm

following recurrence for the running time:

T (n) = 2

�
n2 + T

�
np
2

��
: (4.1)

This recurrence is solved by

T (n) = O(n2 logn);

and the depth of the recursion is 2 log2 n.

Note that we have to store one graph at each level of the recursion, where the graph at the

kth level has nk = n=
p
2k vertices. If we use the original adjacency matrix implementation

of the Contraction Algorithm, then the space required is O(
P

k n
2=2k) = O(n2). To improve

the space bound, we can use the linear-space variant of procedure Contract. Since at each

level the graph has no more than min(m;n2k) edges and can be stored using O(min(m;n2k))

space, the total storage needed is
P

kO(min(m;n2k)) = O(m log(n2=m)).

Remark: This analysis shows why the running time of the Contraction Algorithm is not

the bottleneck in the Recursive Contraction Algorithm. We shall later present a linear time

(in the number of edges) implementation of the Contraction Algorithm. However, since the

recurrence we formulate must apply to the contracted graphs as well, there is no a priori

bound on the number of edges in the graphs we encounter as subproblems. Therefore r2 is

the only bound we can put on the number of edges, and thus on the time needed to perform

a contraction to r=
p
2 vertices, in the the r-vertex graphs we encounter in the recursion.

52 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

Furthermore, the existence of n2 leaves in the recursion tree gives a lower bound of n2 on

the running time of Recursive-Contract, regardless of the speed of Contract. This is

why the linear-time implementation of Contract that we shall give in Section 4.5 provides

no speedup in general.

We now analyze the probability that the algorithm �nds the particular minimum cut

we are looking for. We will say that the Recursive Contraction Algorithm �nds a certain

minimum cut if that minimum cut corresponds to one of the leaves in the computation tree

of the Recursive Contraction Algorithm. Note that if the algorithm �nds any minimum cut

then it will certainly output some minimum cut.

Lemma 4.4.2 The Recursive Contraction Algorithm �nds a particular minimum cut with

probability
(1= logn).

Proof: Suppose that a particular minimum cut has survived up to some particular node in

the recursion tree. It will survive to a leaf below that node if two criteria are met: it must

survive one of the graph contractions at this node, and it must be found by the recursive call

following that contraction. Each of the two branches thus has a success probability equal

to the product of the probability that the cut survives the contraction and the probability

that the recursive call �nds the cut. The probability that the cut survives the contraction

is, by Corollary 4.2.2, at least

(n=
p
2)(n=

p
2� 1)

n(n� 1)
=

1

2
�O(1=n):

This yields a recurrence P (n) for a lower bound on the probability of success on a graph of

size n:

P (n) = 1�
�
1� 1

2
P

�
np
2

��2

� O(1=n): (4.2)

Assume for now that the O(1=n) is factor is negligible. We solve this recurrence through

a change of variables. Letting pk = P (
p
2k), the recurrence above can be rewritten and

simpli�ed as

pk+1 = pk �
1

4
p2k:

Let zk = 4=pk� 1, so pk = 4=(zk+1). Substituting this in the above recurrence and solving

for zk+1 yields

zk+1 = zk + 1 + 1=zk:

4.4. THE RECURSIVE CONTRACTION ALGORITHM 53

It follows by induction that

k < zk < k +Hk�1 + 3;

where Hk is the k
th harmonic number [126]. Thus zk = k+O(log k) and pk = 4=(zk+ 1) =

4=(k+ O(log k) + 1) = �(1=k). It follows that

P (n) = p2 log
2
n = �(1= logn):

In other words, one trial of the Recursive Contraction Algorithm �nds any particular min-

imum cut with probability
(1= logn).

To handle the O(1=n) term that we ignored, we can make a small change to procedure

Recursive-Contract and contract from n vertices to 1 + n=
p
2 instead of n=

p
2 before

recursing. This makes the probability that a minimum cut survives exceed 1=2, but also

keeps a depth of recursion of O(logn), so the analysis of P (n) becomes completely correct

without changing the running time analysis.

Remark: Those familiar with branching processes might see that we are evaluating the

probability that the extinction of contracted graphs containing the minimum cut does not

occur before depth 2 logn.

Theorem 4.4.3 All minimum cuts in an arbitrarily weighted undirected graph with n ver-

tices and m edges can be found in O(n2 log3 n) time and O(m log(n2=m)) space (Monte

Carlo).

Proof: It is known ([44] and [140], see also Theorem 4.7.6) that there are at most
�
n

2

�
min-

imum cuts in a graph. Repeating Recursive-Contract O(log2 n) times gives an O(1=n4)

chance of missing any particular minimum cut. Thus our chance of missing any one of the

at most
�
n

2

�
minimum cuts is negligible.

It is noteworthy that unlike the best algorithms for maximum
ow, Recursive-Contract

uses no non-trivial data structures. The algorithm has proven to be practical and easy to

code.

We can view the running of the Recursive Contraction Algorithm as a binary computa-

tion tree, where each vertex represents a graph with some of its edges contracted and each

edge represents a contraction by a factor of
p
2. A leaf in the tree is a contracted graph

with 2 metavertices and de�nes a cut, potentially a minimum cut. The depth of this tree

is 2 log2 n, and it thus has n2 leaves. This shows that the improvement over the direct use

54 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

of n2 trials of the Contraction Algorithm comes not from generating a narrower tree (those

trials also de�ne a \tree" of depth 1 with n2 leaves), but from being able to amortize the

cost of the contractions used to produce a particular leaf.

If it su�ces to output only one minimum cut, then we can keep track of the smallest cut

encountered as the algorithm is run and output it afterwards in O(n) time by unraveling

the sequence of contractions that led to it. If we want to output all the minimum cuts,

then the output might in fact become the dominant factor in the running time: there could

be n2 such cuts, each requiring O(n) time to output as a list of vertices on each side of

the cut. This problem is made even worse by the fact that some minimum cuts may be

produced many times by the algorithm. Applegate [10] observed that there is a simple

hashing technique that can be used to avoid outputting a cut more than once. At the

beginning, assign to each vertex a random O(logn)-bit key. Whenever two vertices are

merged by contractions, combine their keys with an exclusive-or. At a computation leaf

in which there are only two vertices, the two keys of those vertices form an identi�er for

the particular cut that has been found. With high probability, no two distinct cuts we �nd

will have the same identi�ers. Thus by checking whether an identi�er has already been

encountered we can avoid outputting any cut that has already been output.

An alternative approach to outputting all minimum cuts is to output a concise repre-

sentation of them; this issue is taken up in Section 9.3.

4.5 A Parallel Implementation

We now show how the Recursive Contraction Algorithm can be implemented in parallel

(RNC). To do so, we give an m processor RNC implementation of the Contract by

eliminating the apparently sequential nature of the selection and contraction of edges one

at a time. Parallelizing Recursive-Contract is then easy.

As a �rst step, we will show how a series of selections and contractions needed for the

Contraction Algorithm can be implemented in ~O(m) time. The previous O(n2) time bound

arose from a need to update the graph after each contraction. We circumvent this problem

by grouping series of contractions together and performing them all simultaneously. As

before, we focus initially on unweighted multigraphs. We start by giving our algorithms as

sequential ones, and then show how they can be parallelized.

4.5. A PARALLEL IMPLEMENTATION 55

4.5.1 Using A Permutation of the Edges

We reformulate the Contraction Algorithm as follows. Instead of choosing edges one at a

time, we begin by generating a uniform random permutation L of the edges. Imagine con-

tracting edges in the order in which they appear in the permutation, until only two vertices

remain. This algorithm is clearly equivalent to the abstract formulation of the Contraction

Algorithm. We can immediately deduce that with probability
(n�2), a random permuta-

tion will yield a contraction to two vertices that determine a particular minimum cut.

Given a random permutation L of the edges, contracting the edges in the order speci�ed

by the permutation until two vertices remain corresponds to identifying a pre�x L0 of L

such that contracting the edges in L0 yields a graph with exactly two vertices. Equivalently,

we are looking for a pre�x L0 of edges such that the graph H = (V; L0) has exactly two

connected components. Binary search over L can identify this pre�x, because any pre�x

that is too short will yield more than two connected components, and any pre�x that is

too long will yield only one. The correct pre�x can therefore be determined using O(logm)

connected component computations, each requiring O(m+n) time. The total running time

of this algorithm (given the permutation) is therefore O(m logm).

We can improve the running time by reusing information between the di�erent connected

component computations. Given the initial permutation L, we �rst use O(m+ n) time to

identify the connected components induced by the �rstm=2 edges. If exactly two connected

components are induced, we are done. If only one connected component is induced, then

we can discard the last m=2 edges because the desired pre�x ends before the middle edge,

and recurse on the �rst half of L. If more than two connected components are induced,

then we can contract the �rst m=2 edges all at once in O(m) time by �nding the connected

components they induce and relabeling the last m=2 edges according to the connected

components, producing a new, m=2 edge graph on which we can continue the search. Either

way, in O(m+ n) time, we have reduced the number of edges to m=2. Since the graph is

assumed to be connected, we know that n � m asm decreases. Therefore, if we let T (m) be

the time to execute this procedure on a graph with m edges, then T (m) � T (m=2)+O(m),

which has solution T (m) = O(m).

In Figure 4.5 we formally de�ne this Compact subroutine. We describe Compact with a

parameter k describing the goal number of vertices. Our running time analysis assumes that

k is two. Running times clearly do not increase when k is larger. Recall the notation G=F

that denotes the result of contracting graph G by edge set F . We extend this de�nition to as

56 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

Procedure Compact(G;L; k) input: A graph G and list of edges L and a parameter k

if G has k vertices or L = ;
then

return G

else

Let L1 and L2 be the �rst and second halves of L

Find the connected components in graph H = (V; L1)

if H has fewer than k components

then

return Compact(G;L1; k)

else

return Compact(G=L1; L2=L1; k).

Figure 4.5: Procedure Compact

follows. If E is a set of edges in G, then E=F denotes a corresponding set of edges in G=F :

an edge ([; v)][w]2 E is transformed in E=F to an edge connecting the vertices containing

v and w in G=F . Constructing E=F requires merging edges with identical endpoints. Since

each endpoint is an integer between 1 and n, we can use a linear-time sorting algorithm,

such as bucket sort, to merge edges, and thus Compact runs in O(m) time.

4.5.2 Generating Permutations using Exponential Variates

The only remaining issue is how to generate the permutation of edges that is used as the list

L in Compact. To show how the permutation generation can be accomplished in RNC, we
give in this section an approach to the problem that is easy to explain but gives somewhat

worse than optimum bounds in both theory and practice. In Section 4.6, we describe a

more e�cient (and practical) but harder to analyze approach.

For unweighted graphs, a simple method is to assign each edge a score chosen uniformly

at random from the unit interval, and then to sort the edges according to score. To extend

this approach to weighted graphs, we use the equivalence between an edge of weight w in

a weighted graph and a set of w parallel edges in the natural corresponding unweighted

4.5. A PARALLEL IMPLEMENTATION 57

multigraph. We use the term multiedge to mean an edge of the multigraph corresponding

to the weighted graph, and simulate the process of generating a random permutation of the

multiedges. The entire multiedge permutation is not necessary in the computation, since as

soon as a multiedge is contracted, all the other multiedges with the same endpoints vanish.

In fact, all that matters is the earliest place in the permutation that a multiedge with

particular endpoints appears. This information su�ces to tell us in which order vertices

of the graph are merged: we merge u and v before x and y precisely when the �rst (u; v)

multiedge in the permutation precedes the �rst (x; y) multiedge in the permutation. Thus

our goal is to generate an edge permutation whose distribution re
ects the order of �rst

appearance of endpoints in a uniform permutation of the corresponding multigraph edges.

As in the unweighted case, we can consider giving each multiedge a score chosen uni-

formly at random from a large ordered set and then sorting according to score. In this

case, the �rst appearance in the permutation of a multiedge with w copies is determined

by the minimum of w randomly chosen scores. We can therefore generate an appropriately

distributed permutation of the weighted edges if we give an edge of weight w the minimum

of w randomly chosen scores and sort accordingly.

Consider multiplying each edge weight by some value �, so that an edge of weight w

corresponds to �w multiedges. This scales the value of the minimum cut without changing

its structure. Suppose we give each multiedge a score chosen uniformly at random from the

continuous interval [0; �]. The probability distribution for the minimum score X among �w

edges is then

Pr[X > t] = (1� t=�)�w:

If we now let � become arbitrarily large, the distribution converges to one in which an edge

of weight w receives a score chosen from the exponential distribution

Pr[X > t] = e�wt:

Thus if we can generate an exponential random variable in O(1) time, then we can

generate a permutation in O(m) time. As in the unweighted case, we do not actually have

to sort based on the scores: once scores are assigned we can use median �nding to split the

edge list as needed by Compact in O(m) time. If all we have is coin
ips, it is possible to

use them to sample from an approximately exponential distribution in logarithmic time and

introduce a negligible probability of error in the computation. As we shall be describing a

better method later, we refer the reader to the appendix (Section A.4) for details.

58 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

4.5.3 Parallelizing the Contraction Algorithm

Parallelizing the previous algorithm is simple. To generate the permutation, given a list of

edges, we simply assign one processor to each edge and have it generate the (approximately)

exponentially distributed score for that edge in polylogarithmic time. We then use a parallel

sorting algorithm on the resulting scores. Given the permutation, it is easy to run Compact in

parallel. RNC algorithms for connected components exist that use m= logn processors and

run in O(logn) time on a CRCW PRAM [175] or even on the EREW PRAM [88]. Procedure

Compact, which terminates after O(logn) iterations, is thus easily seen to be parallelizable

to run in O(log2 n) time using m processors. As a result, we have the following:

Theorem 4.5.1 Contract can be implemented to run in RNC using m processors on an

m edge graph.

Using the linear-processor RNC implementation of Contract, we can give the �rstRNC
algorithm for the minimum cut problem.

Theorem 4.5.2 The minimum cut problem can be solved in RNC using n2 processors and
O(n2 log3 n) space.

Proof: Consider the computation tree generated by Recursive-Contract. The sequen-

tial algorithm examines this computation tree using a depth-�rst traversal of the tree nodes.

To solve the problem in parallel, we instead use a breadth-�rst traversal. The subroutine

Contract has already been parallelized. We can therefore evaluate our computation tree in

a breadth-�rst fashion, taking only polylogarithmic time to advance one level.

The space required is now the space needed to store the entire tree. The sequential

running time recurrence T (n) also provides a recursive upper bound on the space needed to

store the tree. Thus the space required is O(n2 log3 n) (on the assumption that we perform

all O(log2 n) trials of Recursive-Contract in parallel).

4.5.4 Comparison to Directed Graphs

The previous results indicate a distinction between minimum cut problems on directed and

undirected graphs. In a directed graph, the s-t minimum cut problem is the problem of

�nding a partition of the vertices into two sets S and T , with s 2 S and t 2 T , such that the
weight of edges going from S to T is minimized. Note that the weights of edges going from

4.6. A BETTER IMPLEMENTATION 59

T to S is not counted in the value of the cut. The s-t minimum cut problem on directed

graphs was shown to be P-complete [79]. A similar result holds for the global minimum cut

problem:

Lemma 4.5.3 The global minimum cut problem is P-complete for directed graphs.

Proof: Given an algorithm the �nds global minimum cuts, we �nd a minimum s-t cut as

follows. We add, for each vertex v, directed edges of in�nite weight from t to v and from

v to s. The global minimum cut in this modi�ed graph must now have s 2 S and t 2 T ,

for otherwise some of the edges of in�nite weight would cross in the cut. Hence the global

minimum cut must be a minimum s-t cut of the original graph.

The minimum cut problem is therefore in the family of problems, such as reachability,

that presently have dramatically di�erent di�culties on directed and undirected graphs [100,

159]. Indeed, in Section 9.6 we show that the minimum cut can be found in O(logn) time,

even on an EREW PRAM.

4.6 A Better Implementation

4.6.1 Iterated Sampling

We now discuss a harder to analyze (but easier to implement) version of the Contraction

Algorithm based on permutations. It has several advantages, both theoretical and practical,

over the exponential variates approach. First, it does not need to approximate logarithms.

Although we have argued that such a computation can be done in O(logn) time in theory,

in practice we would like to avoid any use of complicated
oating point operations. Second,

the sequential implementation runs in linear time rather than O(m polylogm) time. As we

have discussed, this new implementation will not produce any improvement in the worst-

case running time of the Recursive Contraction Algorithm on arbitrary graphs, since such

graphs might have n2 edges. However, it does give a slightly improved time bounds for

�nding minimum cuts in certain classes of sparse graphs. Yet another advantage is that

it uses O(m) space without using the pointers and linked lists needed in the O(m)-space

adjacency list version of the sequential implementation in Section 4.3. Finally, the parallel

version of this algorithm performs less work (by several polylogarithmic factors) than the

exponential variates implementation.

60 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

As in the exponential variates algorithm of Section 4.5.2, we generate a permutation

by treating each weighted edge as a collection of parallel unweighted edges. Rather than

generating scores, we repeatedly simulate the uniform selection of a multigraph edge by

choosing from the graph edges with probabilities proportional to the edge weights; the

order of selection then determines the order of �rst appearance of multigraph edges (this

approach is directly analogous to our analysis of the Contraction Algorithm for weighted

graphs in Section 4.2.2.

Suppose we construct an array ofm cumulative edge weights as we did in the sequential

algorithm. We can use the procedure Random-Select (Appendix A.3) to select one edge

at random in O(logm) amortized time and then contract it. Since it takes O(m) time

to recompute the cumulative distribution, it is undesirable to do so each time we wish to

sample an edge. An alternative approach is to keep sampling from the original cumulative

distribution and to ignore edges if we sample them more than once. Unfortunately, to make

it likely that all edges have been sampled once, we may need a number of samples equal to

the sum of the edge weights. For example, if one edge contains almost all the weight in the

graph, we will continually select this edge. We solve this problem by combining the two

approaches and recomputing the cumulative distribution only occasionally. For the time

being, we shall assume that the total weight of edges in the graph is polynomial in n.

Procedure Iterated-Sampling(G;k)

input A graph G

Let s = n1+�, for some constant 0 < � < 1.

repeat

Compute cumulative edge weights in G

Let M be a list of s edge selections using Random-Select on the cumulative edge

weights

G Compact(G;M; k)

until G has k vertices

Figure 4.6: Iterated-Sampling Implementation

4.6. A BETTER IMPLEMENTATION 61

An implementation of the Contraction Algorithm called Iterated-Sampling is pre-

sented in Figure 4.6. Take � to be any constant (say 1/2). We choose s = n1+� edges

from the same cumulative distribution, contract all theses edges at once, recompute the

cumulative distribution and repeat.

We now analyze the running time of Iterated-Sampling. We must be somewhat careful

with this analysis because we call Iterated-Sampling on very small problems that arise

in the recursive computation of Recursive-Contract. Therefore, events that are \low

probability" may actually happen with some frequency in the context of the original call

to Recursive-Contract. We will therefore have to amortize these \low probability" events

over the entire recursion. To do so, we use the following lemmas:

Lemma 4.6.1 The worst case running time of Iterated-Sampling is O(n3).

Proof: Each iteration requires O(m+ s logn) = O(n2) time. The �rst edge chosen in each

iteration will identify a pair of vertices to be contracted; thus the number of iterations is at

most n.

Lemma 4.6.2 Call an iteration of Iterated-Sampling successful if it �nishes contracting

the graph or if it reduces the total weight in the graph by a factor of 2n=s = O(n��) for the

next iteration. Then the probability that an iteration is not successful is e�
(n).

Proof: We assume that the weight reduction condition does not hold, and show that the

iteration must then be likely to satisfy the other success condition. Consider contracting

the edges as they are chosen. At any time, call an edge good if its endpoints have not yet

been merged by contractions. Since Iterated-Sampling is not aware of the contractions,

it may choose non-good edges. The total weight of edges in the next iteration is simply

the total weight of good edges at the end of this iteration. Suppose that at the start of the

iteration the total (all good) weight is W . By assumption, at the end the total good weight

exceeds 2nW=s. Since the total good weight can only decrease as contractions occur, we

know that the total good weight at any time during this iteration exceeds 2nW=s.

It follows that each time an edge is selected, the probability that it will be a good edge

exceeds 2n=s. Given that we perform s selections, the expected number of good selections

exceeds 2n. Then by the Cherno� bound (Appendix A.2), the probability that fewer than

n good edges are selected is exponentially small in n.

62 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

The number of contractions performed in an iteration is simply the number of good edges

selected. Thus, by performing more than n good selections, the iteration will necessarily

�nish contracting the graph.

Corollary 4.6.3 On an n-vertex graph, the expected running time of Iterated-Sampling

is O(m+ n1+�).

Proof: Recall our assumption that W = nO(1). Thus, in the language of Lemma 4.6.2,

after a constant number k of successful iterations Iterated-Sampling will terminate. The

previous lemma proves that for some constant n, the probability of a successful iteration is

p � 1=2. Therefore, the number of iterations needed to terminate has a negative binomial

distribution B�(k; p), with expectation k=p � 2k, a constant (see Appendix A.1 for details).

Since each iteration takes O(m+ n1+�) time, the result follows.

The above result su�ces to prove all the expected running time bound in the following

sections; for a high probability time bound we need the following two corollaries:

Corollary 4.6.4 On an n-vertex graph, the number of iterations before completion of

Iterated-Sampling is at most t with probability 1� e�
(nt).

Proof: As was just argued, we terminate after a constant number of successful iterations.

Thus the only way for it to take more than t iterations is for there to be roughly t failures,

each with probability e�
(n) according to Lemma 4.6.2.

Corollary 4.6.5 On an n vertex graph, the running time of Iterated-Sampling is O(t(m+

n1+�)) with probability 1� e�
(nt).

Note that we set s = n1+� to make the analysis easiest for our purposes. A more natural

setting is s = m= logm since this balances the time spent sampling and the time spent

recomputing cumulative edge weights. Setting s = m= logm yields the same time bounds,

but the analysis is more complicated.

4.6.2 An O(n2)-Approximation

We now show how to remove the assumption that W is polynomial in n, while maintaining

the same running times. The obstacle we must overcome is that the analysis of the number

4.6. A BETTER IMPLEMENTATION 63

of iterations of Iterated-Sampling deals with the time to reduce W to zero. If W is

arbitrarily large, this reduction can take arbitrarily many iterations.

To solve the problem, we use a very rough approximation to the minimum cut to ensure

that Corollary 4.6.3 applies even when the edge weights are large. Let w be the largest

edge weight such that the set of edges of weight greater than or equal to w connects all

of G. This is just the minimum weight of an edge in a maximum spanning tree of G,

and can thus be identi�ed in O(m logn) time using any standard minimum spanning tree

algorithm [41]. Even better, it can be identi�ed in O(m) time by the Compact subroutine if

we use the inverses of the actual edge weights as edge scores to determine the order of edge

contraction. It follows that any cut of the graph must cut an edge of weight at least w, so

the minimum cut has weight at least w. It also follows from the de�nition of w that there

is a cut that does not cut any edge of weight exceeding w. This means that the graph has a

cut of weight at most mw and hence the minimum cut has weight at mostmw � n2w. This

guarantees that no edge of weight exceeding n2w can possibly be in the minimum cut. We

can therefore contract all such edges, without eliminating any minimum cut in the graph.

Afterwards the total weight of edges in the graph is at most n4w. Since we merge some

edges, we may create new edges of weight exceeding n2w; these could be contracted as well

but it is easier to leave them.

Consider running Iterated-Sampling on this reduced graph. Lemma 4.6.2 holds un-

changed. Since the total weight is no longer polynomial, Corollary 4.6.3 no longer holds

as a bound on the time to reduce the graph graph weight to 0. However, it does hold as

bounds on the number of iterations needed to reduce the total remaining weight by a factor

of n4, so that it is less than w. Since the minimum cut exceeds w, the compacted graph

at this point can have no cuts, since any such cut would involve only uncontracted edges

and would thus have weight less than w. In other words, the graph edges that have been

sampled up to this point must su�ce to contract the graph to a single vertex. This proves

that Corollary 4.6.4 and 4.6.5 also hold in the case of arbitrary weights.

4.6.3 Sequential Implementation

Using the new, O(m+n1+�)-time algorithm allows us to speed up Recursive-Contract on

graphs with excluded dense minors.2 Assume that we have a graph such that all r-vertex

2A minor of G is a graph that can be derived from G by deleting edges and vertices and contracting

edges.

64 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

minors have O(r2��) edges for some some positive constant �. Then we can be sure that

at all times during the execution of the Recursive Contraction Algorithm the contracted

graphs of r vertices will never have more than r2�� edges. We use the O(m + n1+�) time

bound of Corollary 4.6.3 to get an improved running time for Recursive-Contract.

Theorem 4.6.6 Let G have the property that all r-vertex minors have O(r2��) edges for

some some positive constant �. Then with high probability the Recursive Contraction algo-

rithm �nds a minimum cut of G in O(n2 log2 n) time.

Proof: We need to bound the time spent in all calls to Iterated-Sampling over all the var-

ious calls made to Contract in the computation tree of Recursive-Contract. An expected

time analysis is quite easy. By Corollary 4.6.3, the expected time of Iterated-Sampling on

a problem with m edges is O(m+n1+�). By the assumption about graph minors, this means

that the expected running time of Contract on an r-vertex subproblem will be O(r2��).

This gives us an improved recurrence for the running time:

T (n) = 2(n2�� + T (n=
p
2)):

This recurrence solve to T (n) = O(n2).

To improve the analysis to a high probability result we must perform a global analysis

of the recurrence as we did for the minimum spanning tree algorithm. Consider two cases.

At depths less than logn in the computation tree, where the smallest graph has at least
p
n vertices, Corollary 4.6.5 says that the expected time bound for Iterated-Sampling is

in fact a high probability time bound, so the recurrence holds with high probability at each

node high in the computation tree. Below depth logn, some of the problems are extremely

small. However, Corollary 4.6.4 proves that each such problem has a running time that is

geometrically distributed around its expectation. Since there are so many problems at each

level (more than n), the Cherno� bound can be applied to prove that the total time per

level is proportional to its expected value with high probability. Thus at lower depths the

recurrence holds in an amortized sense with high probability.

Planar graphs fall into the class just discussed, as all r-vertex minors have O(r) edges.

Observe that regardless of the structure of the graph minors, any attempt to reduce the

running time below n2 is frustrated by the need to generate n2 computation leaves in order

to ensure a high probability of �nding the minimum cut.

4.7. APPROXIMATELY MINIMUM CUTS 65

4.6.4 Parallel Implementation

The iterated sampling procedure as also easy to parallelize. To perform one iteration of

Iterated-Sampling in parallel, we use m= logn + n1+� processors to �rst construct the

cumulative edge weights and then perform n1+� random selections. We call the selection

by processor 1 the \�rst" selection, that by processor 2 the \second" selection, imposing

a selection order even though all the selections take place simultaneously. We use these

selections in the parallel implementation of the procedure Compact. Corollary 4.6.5 proves

that until the problem sizes in the Recursive-Contract computation tree are smaller than

(logn), each application of Iterated-Sampling runs in O(log2 n) time with high proba-

bility. At levels below logn, we can use the worst case time bound for Iterated-Sampling

to show that the running time remains polylogarithmic.

4.7 Approximately Minimum Cuts

In this section, we consider cuts that are small but not minimum. Independent of its im-

plementation, the Contraction Algorithm can be used to bound the number of such cuts.

Given this bound, we can show that a modi�cation of the implementation can be used to

actually enumerate all of them with high probability. Although this is an interesting algo-

rithmic result, more important is a simple corollary bounding the umber of small cuts. This

corollary is the linchpin of all of the cut-sampling algorithms discussed in Chapters 6, 10,

and 10, as well as of our derandomization in Chapter 5.

We say that a cut survives a series of contractions if no edge from that cut is contracted,

so that it corresponds to a cut in the contracted graph.

4.7.1 Counting Small Cuts

To begin with, we have the following:

Corollary 4.7.1 The number of minimum cuts in a graph is at most
�
n

2

�
.

Proof: In analyzing the contraction algorithm, we showed that the probability a minimum

cut survives contraction to 2 vertices is at least
�
n

2

��1
. Since only one cut survives these

contractions, the survivals of the di�erent minimum cuts are disjoint events. Therefore, the

probability that some minimum cut survives is equal to the sum of the probabilities that

66 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

each survives. But this probability is at most one. Thus, if there are k minimum cuts, we

have k
�
n

2

��1 � 1.

Remark: This theorem was proved by other means in [44] and [140]. A cycle on n vertices

proves the analysis tight, since each of the
�
n

2

�
pairs of edges in the cycle determines a

minimum cut.

We now extend this analysis to approximately minimal cuts. No such analysis was

previously known.

De�nition 4.7.2 An �-minimal cut is a cut of value within a multiplicative factor of � of

the minimum.

Lemma 4.7.3 For � a half-integer, the probability that a particular �-minimal cut survives

contraction to 2� vertices exceeds
�
n

2�

��1
.

Proof: We consider the unweighted case; the extension to the weighted case goes as before.

The goal is to again apply Lemma 3.4.1. Let � be a half-integer, and c the minimum cut,

and consider some cut of weight at most �c. Suppose we run the Contraction Algorithm.

If with r vertices remaining we choose a random edge, then since the number of edges is at

least cr=2, we take an edge from a cut of weight �c with probability at most 2�=r. If we

repeatedly select and contract edges until r = 2�, then the probability that the cut survives

is

(1� 2�

n
)(1� 2�

(n � 1)
) � � �(1� 2�

(2�+ 1)
) =

n

2�

!�1

Remark: A cycle on n vertices again shows that this result is tight, since each set of 2�

edges forms an �-minimal cut.

Corollary 4.7.4 For � a half-integer, the number of �-minimal cuts is at most 22��1
�
n

2�

� �
n2�.

Proof: We generalize Corollary 4.7.1. Suppose we randomly contract a graph to 2� vertices.

The previous lemma lower bounds the survival probability of an �-minimal cut, but we

cannot yet apply the proof of Corollary 4.7.1 because with more than one cut still remaining

the survival events are not disjoint. However, suppose we now take a random partition of

4.7. APPROXIMATELY MINIMUM CUTS 67

the 2� remaining vertices. This partition gives us a corresponding unique cut in the original

graph. There are only 22��1 partitions of the 2� vertices (consider assigning a 0 or 1 to

each vertex; doing this all possible ways counts each partition twice). Thus, we pick a

particular partition with probability 21�2�. Combined with the previous lemma, this shows

that we select a particular unique �-minimal cut with probability exceeding 21�2�
�
n

2�

��1
.

Now continue as in Corollary 4.7.1.

Th n2� bound is more convenient in future discussions; it follows from the facts that

22��1 � (2�)!.

We can also extend our results to the case where 2� is not an integer. To explain our

results, we must introduce generalized binomial coe�cients in which the upper and lower

terms need not be integers. These are discussed in [126, Sections 1.2.5{6] (cf. Exercise

1.2.6.45). There, the Gamma function is introduced to extend factorials to real numbers

such that �! = �(� � 1)! for all real � > 0. Many standard binomial identities extend to

generalized binomial coe�cients, including the facts that
�
n

2�

� � n2�=�! and 22��1 � �!.

Corollary 4.7.5 For arbitrary real values of �, the probability that a particular k-minimal

cut survives contraction to d2�e vertices is
(n�2�).

Proof: let r = d2�e. Suppose we contract the graph until there are only r vertices re-

maining, and then pick one of the 2r cuts of the resulting graph uniformly at random. The

probability that a particular �-minimal cut survives the contraction to r vertices is

(1� 2�

n
)(1� 2�

(n� 1)
) � � �(1� 2�

r + 1
) =

(n � 2�)!

(r � 2�)!

(n� r)!

n!

=

�
r

2�

�
�
n

2�

� :
From [126, Exercise 1.2.6.45], we know that

�
n

2�

�
= �(n2�=r!). Since

�
r

2�

�
is a constant

independent of n, the overall probability is �(n�2�=r!).

Remark: For the tightness of this claim, consider a cycle with all edges of unit weight

except for two of weight (1 + �).

Arguing as for the half integer case, we deduce what we shall refer to as the Cut Counting

Theorem:

Theorem 4.7.6 In any graph and all �, the number of �-minimal cuts is at most n2�.

68 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

Remark: Vazirani and Yannakakis [185] give algorithms for enumerating cuts by rank,

�nding all cuts of kth-smallest weight by rank in O(n3k) time, while we derive bounds based

on the value of a cut relative to the others. They also give a bound of O(n3k�1) on the

number of cuts with the kth smallest weight. Note that this bound is incomparable with

ours.

4.7.2 Finding Small Cuts

The Contraction Algorithm can be used to �nd cuts that are not minimum but are relatively

small. The problem of �nding all nearly minimum cuts has been shown to have important

rami�cations in the study of network reliability, since such enumeration allow one to dras-

tically improve estimates of the reliability of a network. This was shown in [170], where an

O(nk+2mk) bound was given for the number of cuts of value c+k in a graph with minimum

cut c, and an algorithm with running time O(nk+2mk) was given for �nding them.

Theorem 4.7.7 For constant � > 1, all cuts with weight within a multiplicative factor �

of the minimum cut can be found in O(n2� log2 n) time or in RNC with n2� processors

(Monte Carlo).

Proof: Recall our analysis in Section 4.7 lower-bounding the probability that a minimum

cut survives contraction to 2� vertices by n�2�. This analysis extends in the obvious way

to contraction to k vertices. Change the reduction factor from
p
2 to 2�

p
2 in the Recursive

Contraction Algorithm. Stop when the number of vertices remaining is 2d�e, and check all
remaining cuts. The recurrence for the probability of success is unchanged. The running

time recurrence becomes

T (n) = n2 + 2T (n=21=2�)

and solves to T (n) = O(n2�). The recurrence for the probability of success is unchanged, so

as before we need to repeat that algorithm O(log2 n) times. The probability that any one cut

is missed is then polynomially small, and thus, since (by the Cut Counting Theorem 4.7.6)

there are only polynomially many approximately minimal cuts, we will �nd all of them with

high probability.

This theorem gives another way to make the Recursive Contraction Algorithm strongly

polynomial. Using the factor of n2 approximation to the minimum cut from Section 4.6.2,

we can scale and round the edge weights in such a way that all edges become polynomial

4.8. CONCLUSION 69

sized integers. At the same time, we arrange that no cut changes in value by more than

a small amount; it follows that the minimum cut in the original graph must be a nearly

minimum cut in the new graph. Thus an algorithm that �nds all approximate minimum

cuts will �nd the original minimum cut. It is arranged that the relative change in any cut

value is 1=n, so that the running time is changed only by a constant factor. This method

is necessary in the derandomization of Chapter 5.

4.8 Conclusion

We have given e�cient and simple algorithms for the minimum cut problem, yet several

interesting open questions remain. One desirable result would be to �nd a deterministic

version of the algorithm with matching sequential time and parallel processor bounds. In

Section 5 we use the Contraction Algorithm to prove that the minimum cut can be found in

NC; however, the resulting processor bounds are prohibitively large for practical purposes.

An important �rst step towards derandomization would be a so-called Las Vegas algo-

rithm for the problem. The Recursive Contraction Algorithm has a very high probability

of �nding a minimum cut, but there is no fast way to prove that it has done so, as the only

known certi�cate for a minimum cut is a maximum
ow, which takes too long to compute.

The Contraction Algorithm is thus Monte Carlo. A Las Vegas Algorithm for unweighted

graphs that is faster than the Recursive Contraction Algorithm when c = O(n2=3) is given

in section 10.3, but the problem remains open for weighted graphs.

Another obvious goal is to �nd a faster algorithm. There are several probably unneces-

sary logarithmic factors in the running time of the Recursive Contraction Algorithm. Recall

that we are simulating an algorithm with an
(n�2) success probability. This would suggest

as a goal an implementation that required only constant time per trial for a total time of

O(n2 logn). However, it seems unlikely that the techniques presented here will yield an

o(n2) algorithm, as our algorithm �nds not just one minimum cut, but all of them. Since

there can be
(n2) minimum cuts in a graph, any algorithm that �nds a minimum cut

in o(n2) time will either have to somehow break the symmetry of the problem and avoid

�nding all the minimum cuts, or will have to produce a concise representation (for instance

the cactus representation) of all of them. The ideal, of course, would be an algorithm that

did this in linear (O(m)) time.

Since we are now able to �nd a minimum cut faster than a maximum
ow, it is natural

70 CHAPTER 4. RANDOMIZED CONTRACTION ALGORITHMS

to ask whether it is any easier to compute a maximum
ow given a minimum cut. Ra-

machandran [169] has shown that knowing an s-t minimum cut is not helpful in �nding an

s-t maximum
ow. However, the question of whether knowing any or all minimum cuts

may help to �nd an s-t maximum
ow remains open.

Another obvious question is whether any of these results can be extended to directed

graphs. It seems unlikely that the Contraction Algorithm, with its inherent parallelism,

could be applied to the P-complete directed minimum cut problem. However, the question

of whether it is easier to �nd a minimum cut than a maximum
ow in directed graphs

remains open.

The minimum cut algorithm of Gomory and Hu [82] not only found the minimum cut,

but found a
ow equivalent tree that succinctly represented the values of the
�
n

2

�
minimum

cuts. No algorithm is known that computes a
ow equivalent tree or the slightly stronger

Gomory-Hu tree in time that is less than the time for n maximum
ows. An intriguing open

question is whether the methods presented here can be extended to produce a Gomory-Hu

tree.

Notes

The original Contraction Algorithm with an ~O(mn2) running time and processor bound,

as well as the connections to multiway and approximately minimum cuts and analyses of

network reliability discussed in the following chapter, originally appeared in [102]. The

Recursive Contraction Algorithm with faster running times and processor bounds was de-

veloped with Cli�ord Stein and originally appeared in [110]. Lomonosov [139] independently

developed some of the basic intuitions leading to the Contraction Algorithm, using them to

investigate questions of network reliability.

Chapter 5

Deterministic Contraction

Algorithms

5.1 Introduction

Some of the central open problems in the area of parallel algorithms are those of devising

NC algorithms for s-t minimum cuts and maximum
ows, maximum matchings, and depth-

�rst search trees. There are RNC algorithms for all these problems [115, 152, 1]. Now that

we have shown that the minimum cut problem is in RNC, the natural question is whether

there is an NC algorithm for it. We answer this question in the a�rmative by presenting

the �rst NC algorithm for the min-cut problem in weighted undirected graphs. Our results

extend to the problem of enumerating all approximately minimal cuts.1

The approach we take is typical of derandomization techniques which treat random bits

as a resource. We develop a randomized algorithm, and then show that it can be made to

work even if there are very few random bits available for it examine. If we can reduce the

number of bits the algorithm needs to examine to O(logn) without a�ecting its correctness,

then we know that it runs correctly on at least some of these small random inputs. Therefore,

by trying all nO(1) possible O(logn)-bit random inputs, we are guaranteed to run correctly

at least once and �nd the correct answer.

Unlike our RNC algorithm, this NC algorithm is clearly impractical; it serves to demon-

strate the existence of an algorithm rather than to indicate what the \right" such algorithm

is.

1This chapter is based on joint work with Rajeev Motwani. An abstract appeared in [107].

71

72 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS

An important step in our derandomization is the development of a new deterministic

parallel sparse certi�cate algorithm. Besides its role in the derandomization, this algorithm

plays a role in the minimum cut approximation algorithms of Section 9.4 and Chapter 6.

5.1.1 Derandomizing the Contraction Algorithm

Recall the contraction algorithm of Chapter 4. It operated by repeatedly selecting a single

edge at random and contracting it. Luby, Naor and Naor [145] observed that in the Contrac-

tion Algorithm it is not necessary to choose edges randomly one at a time. Instead, given

that the minimum cut size is c, they randomly mark each edge with probability 1=c, and

contract all the marked edges. With constant probability, no minimum cut edge is marked

but the number of graph vertices is reduced by a constant factor. Thus after O(logn) phases

of contraction the graph is reduced to two vertices which de�ne a cut. Since the number

of phases is O(logn) and there is a constant probability of missing the minimum cut in

each phase, there is an n�O(1) probability that no minimum cut edge is ever contracted so

that the cut determined at the end is the minimum cut (Lemma 3.4.1). Observing that

pairwise-independent marking can be used to achieve the desired behavior, they show that

O(logn) random bits su�ce to run a phase. Thus, O(log2 n) bits su�ce to run this modi�ed

Contraction Algorithm through its O(logn) phases.

Unfortunately, this algorithm cannot be fully derandomized. It is indeed possible to try

all (polynomially many) random seeds for a phase and be sure that one of the outcomes

is good (i.e., contracts edges incident on a constant fraction of the vertices but not the

minimum cut edges); however, there is no way to determine which outcome is good. In the

next phase it is thus necessary to try all possible random seeds on each of the polynomially

many outcomes of the �rst phase, squaring the number of outcomes after two phases. In all,

(nlogn) combinations of seeds must be tried to ensure that we �nd the desired sequence of

good outcomes leading to a minimum cut.

5.1.2 Overview of Results

Our main result is an NC algorithm for the minimum cut and minimum multi-cut problems.

Our algorithm is not a derandomization of the Contraction Algorithm but is instead a new

contraction-based algorithm. Throughout, we take G to be a multigraph with n vertices,

m edges and minimum cut value c. Most of the chapter discusses unweighted graphs; in

Section 5.4.2 we handle weighted graphs with a reduction to the unweighted graph problem.

5.1. INTRODUCTION 73

Our algorithm depends upon three major building blocks. The �rst building block is a

deterministic parallelization of Matula's algorithm that we give in Section 5.2.1. Recall that

Matula's algorithm relied on a sparse certi�cate algorithm. We give a sparse k-connectivity

certi�cate algorithm that runs in logO(1)m time using km processors. It is thus in NC
whenever k = O(m). In particular, we get an NC algorithm using m2=n processors to �nd

a (2 + �) approximation to the minimum cut in an unweighted graph.

Our next building block (Section 5.3) uses our cut counting theorem (Theorem 4.7.6)

which says that there are only polynomially many cuts whose size is within a constant factor

of the minimum cut. If we �nd a collection of edges which contains one edge from every such

cut except for the minimum cut, then contracting this set of edges yields a graph with no

small cut except for the minimum cut. We can then apply the NC approximation algorithm
of Section 5.2.1. Since the minimum cut will be the only contracted-graph cut within the

approximation bounds, it will be found by the approximation algorithm. One can view this

approach as a variant on the Isolating Lemma approach used to solve the perfect matching

problem [152]. As was the case there, the problem is relatively easy to solve if the solution

is unique, so the goal is to destroy all but one solution to the problem and then to easily

�nd the unique solution. Randomization yields a simple solution to this problem: contract

each edge independently with probability �(log n=c). Because the number of small cuts is

polynomially bounded, there is a su�cient probability that no edge from the minimum cut

is contracted but one edge from every other small cut is contracted. Of course, our goal is

to do away with randomization.

A step towards this approach is a modi�cation of the Luby, Naor and Naor technique. If

we contract each edge with probability �(1=c), then with constant probability we contract

no minimum cut edge while contracting edges in a constant fraction of the other small cuts.

Pairwise independence in the contracting of edges is su�cient to make such an outcome

likely. However, this approach seems to contain the same
aw as before:
(logn) phases of

selection are needed to contract edges in all the small cuts, and thus
(log2 n) random bits

are needed.

We work around this problem with out third building block (Section 5.4). The problem of

�nding a good set of edges to contract can be formulated abstractly as the Safe Sets Problem:

given an unknown collection of sets over a known universe, with one of the unknown sets

declared \safe," �nd a collection of elements which intersects every set except for the safe

one. After giving a simple randomized solution, we show that this problem can be solved

74 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS

in NC by combining the techniques of pairwise independence [32, 144] with the technique

of random walks on expanders [4]. This is the �rst time these two important techniques

have been combined in a derandomization, although similar ideas have been used earlier to

save random bits in the work of Bellare, Goldreich and Goldwasser [13]. We feel that the

combination should have further application in derandomizing other algorithms.

Finally, in Section 5.4.1 we apply the above results to �nding minimum cuts and to

enumerating approximately minimum cuts.

5.2 Sparse Certi�cates in Parallel

We now consider parallel sparse certi�cate algorithms. These play in important role in

several other parts of our work. We give a new (deterministic) parallel algorithm for con-

structing sparse certi�cates. This allows us to parallelize Matula's approximation algorithm.

This deterministic parallel approximation algorithm plays a fundamental role in our deran-

domization proof. Sparse certi�cates will also be used in randomized sequential and parallel

algorithms for �nding (1+ �)-approximations to the minimum cut in Chapter 6, improving

on Matula's approximation bound.

Cheriyan, Kao, and Thurimella [29] give a parallel sparse certi�cate algorithm which

runs in O(k logn) time using m + kn processors. It is thus in NC when k = logO(1) n.

We improve this result by presenting an algorithm that runs in O(logm) time using km

processors, and is thus in NC for all k = nO(1). It performs the same amount of work as

the algorithm of [29] but achieves a higher degree of parallelism. Our algorithm, unlike

those of [155] and [29] discussed in Section 3.3, does not simulate an iterated construction

and deletion of spanning forests. Instead, all the forests are constructed simultaneously.

Since our algorithm is not using scan-�rst search, it is not guaranteed to leave an edge

out of the certi�cate and therefore cannot be used to implement Nagamochi and Ibaraki's

contraction-based algorithm of section 3.4.

The notation needed to describe this construction is somewhat complex, so �rst we give

some intuition. To construct a maximal jungle, we begin with an empty jungle and repeat-

edly augment it by adding additional edges from the graph until no further augmentation is

possible. Consider one of the forests in the jungle. The non-jungle edges that may be added

to that forest without creating a cycle are just the edges that cross between two di�erent

trees of that forest. We let each tree claim some such edge incident upon it. Hopefully,

5.2. SPARSE CERTIFICATES IN PARALLEL 75

each forest will claim and receive a large number of edges, thus signi�cantly increasing the

number of edges in the jungle.

Two problems arise. The �rst is that several trees may claim a particular edge. However,

the arbitration of these claims can be transformed into a maximal matching problem and

solved in NC. Another problem is that since each tree is claiming an edge, a cycle might

be formed when the claimed edges are added to the forest (for example, two trees may each

claim an edge connecting those two trees). We will remedy this problem as well.

De�nition 5.2.1 An augmentation of a k-jungle J = fF1; : : : ; Fkg is a collection A =

fE1; : : : ; Ekg of k disjoint sets of non-jungle edges from G. At least one of the sets Ei must

be non-empty. The edges of Ei are added to forest Fi.

De�nition 5.2.2 A valid augmentation of J is one that does not create any cycles in any

of the forests of J.

Fact 5.2.3 A jungle is maximal i� it has no valid augmentation.

Given a jungle, it is convenient to view it in the following fashion. We construct a

reduced (multi)graph GF for each forest F . For each tree T in F , the reduced graph contains

a reduced vertex vT . For each edge e in G that connects trees T and U , we add an edge eF

connecting vT and vU . Since many edges can connect two forests, the reduced graph may

have parallel edges. An edge e of G may induce many di�erent edges, one in each forest's

reduced graph.

Given any augmentation, the edges added to forest F can be mapped to their corre-

sponding edges in GF , inducing an augmentation subgraph of the reduced graph GF .

Fact 5.2.4 An augmentation is valid i� the augmentation subgraph it induces in each for-

est's reduced graph is a forest.

Care should be taken not to confuse the forest F with the forest that is the augmentation

subgraph of GF .

Our construction proceeds in a series of O(logm) phases in which we add edges to the

jungle J . In each phase we �nd a valid augmentation of J whose size is a constant fraction

of the largest possible valid augmentation. Since we reduce the maximum possible number

of edges which can be added to J by a constant fraction each time, and since the maximum

jungle size is m, J will have to be maximal after O(logm) phases.

76 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS

To �nd a large valid augmentation, we solve a maximal matching problem on a bipartite

graph H . Let one vertex set of H consist of the vertices vT in the various reduced multi-

graphs, i.e., the trees in the jungle. Let the other vertex set consist of one vertex ve for

each non-jungle-edge e in G. Connect each reduced vertex vT of GF to ve if eF is incident

on vT in GF . Equivalently, we are connecting each tree in the jungle to the edges incident

upon it in G. Note that this means each edge in GF is a valid augmenting edge for F . To

bound the size of H , note that each vertex ve will have at most 2k incident edges, because

it will be incident on at most 2 trees of each forest. Thus the total number of edges in H

is O(km).

Lemma 5.2.5 A valid augmentation of J induces a matching in H of the same size.

Proof: Consider a valid augmentation of the jungle. We set up a corresponding matching

in H between the edges of the augmentation and the reduced vertices as follows. For each

forest F in J , consider its reduced multigraph GF . Since the augmentation is valid, the

augmenting edges in GF form a forest (Fact 5.2.4). Root each tree in this forest arbitrarily.

Each non-root reduced vertex vT has a unique augmentation edge eF leading to its parent.

Since edge e is added to F no other forest F 0 will use edge eF 0 , so we can match vT to ve.

It follows that every augmentation edge is matched to a unique reduced vertex.

Lemma 5.2.6 Given a matching in H, a valid augmentation of J of size at least half the

size of the matching can be constructed in NC.

Proof: If edge e 2 G is matched to reduced vertex vT 2 GF , tentatively assign e to forest F .

Consider the set A of edges in GF that correspond to the G-edges assigned to F . The edges

of A may induce cycles in GF , which would mean (Fact 5.2.4) that A does not correspond

to a valid augmentation of F . However, if we �nd an acyclic subset of A then the G-edges

corresponding to this subset will form a valid augmentation of F .

To �nd this subset, arbitrarily number the vertices in the reduced graph GF . Direct

each edge in A away from the reduced vertex to which it was matched (so each vertex has

outdegree one), and split the edges into two groups: A0 � A are the edges directed from

a smaller numbered to a larger numbered vertex, and A1 � A are the edges directed from

a larger numbered to a smaller numbered vertex. One of these sets, say A0, contains at

least half the edges of A. However, A0 creates no cycles in the reduced multigraph. Its

(directed) edges can form no cycle obeying the edge directions, since such a cycle must

5.2. SPARSE CERTIFICATES IN PARALLEL 77

contain an edge directed from a larger numbered to a smaller numbered vertex. On the

other hand, any cycle disobeying the edge directions must contain a vertex with outdegree

two, an impossibility. It follows that the edges of A0 form a valid augmentation of F of at

least half the size of the matching.

If we apply this construction to each forest F in parallel, we get a valid augmentation

of the jungle. Furthermore, each forest will gain at least half the edges assigned to it in the

matching, so the augmentation has the desired size.

Theorem 5.2.7 Given G and k, a maximal k-jungle of G can be found in NC using O(km)

processors.

Proof: We begin with an empty jungle and repeatedly augment it. Given the current

jungle J , construct the bipartite graph H as was previously described and use it to �nd an

augmentation. Let a be the size of a maximum augmentation of J . Lemma 5.2.5 shows

that H must have a matching of size a. It follows that any maximal matching in H must

have size at least a=2, since at least one endpoint of each edge in any maximum matching

must be matched in any maximal matching. Several NC algorithms for maximal matching
exist|for example, that of Israeli and Shiloach [93]. Lemma 5.2.6 shows that after we �nd

a maximal matching, we can (in NC) transform this matching into an augmentation of

size at least a=4. Since we �nd an augmentation of size at least one fourth the maximum

each time, and since the maximum jungle size is m, the number of augmentations needed

to make a J maximal is O(logm). Since each augmentation is found in NC, the maximal
jungle can be found in NC.

The processor cost of this algorithm is dominated by that of �nding the matching in

the graph H . The algorithm of Israeli and Shiloach requires a linear number of processors,

and is being run on a graph of size O(km).

5.2.1 Parallelizing Matula's Algorithm

Now observe that the central element of Matula`s approximation algorithm (Section 3.5)

is the call to a sparse certi�cate subroutine. Furthermore, it is easy to implement the

other steps of the algorithm in NC using a linear number of processors. Thus to parallelize
Matula's Algorithm we need only �nd sparse certi�cates in parallel. If we use our newly

developed sparse certi�cate algorithm (Section 5.2), we have:

78 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS

Lemma 5.2.8 A (2 + �)-minimal cut in an unweighted graph can be found in NC using

O(cm) = O(m2=n) processors.

Proof: A graph with m edges has a vertex with degree O(m=n); the minimum cut can

therefore be no larger. It follows that the approximation algorithm will construct k-jungles

with k = O(m=n).

5.3 Reducing to Approximation

In this section, we show how the problem of �nding a minimum cut in a graph can be

reduced to that of �nding a (2+ �)-approximation. Our technique is to \kill" all cuts of size

less than (2 + �)c other than the minimum cut itself. The minimum cut is then the only

cut of size less than (2 + �)c, and thus must be the output of the approximation algorithm

of Section 5.2.1. To implement this idea, we focus on a particular minimum cut which

partitions the vertices of G into two sets A and B. Consider the graphs induced by A and

B.

Lemma 5.3.1 The minimum cuts in A and in B have value at least c=2.

Proof: Suppose A has a cut into X and Y of value less than c=2. Only c edges go from

X and Y to B, so one of X or Y (say X) must have at most c=2 edges leading to B.

Since X also has less than c=2 edges leading to Y , the cut (X;X) has value less than c, a

contradiction.

It follows from the cut counting theorem (Theorem 4.7.6) that there are nO(1) cuts of

weight less than (2 + �)c. Call these cuts the target cuts.

Lemma 5.3.2 Let Y be a set containing edges from every target cut but not the minimum

cut. If every edge in Y is contracted, then the contracted graph has a unique cut of weight

less than (2 + �)c|the one corresponding to the original minimum cut.

Proof: Clearly contracting the edges of Y does not a�ect the minimum cut. Now suppose

this contracted graph had some other cut C of value less than (2 + �)c. It corresponds to

some cut of the same value in the original graph. Since it is not the minimum cut, it must

induce a cut in either A or B, and this induced cut must also have value less than (2+ �)c.

5.4. THE SAFE SETS PROBLEM 79

This induced cut is then a target cut, so one of its edges will have been contracted. But

this prevents C from being a cut in the contracted graph, a contradiction.

It follows that running the NC (2 + �)-approximation algorithm of Section 5.2.1 on the

contracted graph will �nd the minimum cut, since the actual minimum cut is the only one

which is small enough to meet the approximation criterion. Our goal is thus to �nd a

collection of edges that intersects every target cut but not the minimum cut. This problem

can be phrased more abstractly as follows: Over some universe U , an adversary selects a

polynomially sized collection of \target" sets of roughly equal size (the small cuts' edge

sets), together with a disjoint \safe" set of about the same size (the minimum cut edges).

We want to �nd a collection of elements that intersect every target set but not the safe

set. Note that we do not know what the target or safe sets are, but we do have an upper

bound on the number of target sets. We proceed to formalize this problem as the Safe Sets

Problem.

5.4 The Safe Sets Problem

We describe a general form of the problem. Fix a universe U = f1; : : : ; ug of size u.

De�nition 5.4.1 A (u; k; �) safe set instance consists of a safe set S � U and a collection

of k target sets T1, : : :, Tk � U such that

� constant � > 0,

� for 1 � i � k, jTij � �jSj, and

� for 1 � i � k, Ti \ S = ;.

We will use the notation that s = jSj, ti = jTij, and t = �s � ti. The value of s is not

speci�ed in a safe set instance but, as will become clear shortly, it is reasonable to assume

that it is known explicitly. Finally, while the safe set S is disjoint from all the target sets,

the target sets may intersect each other.

De�nition 5.4.2 An isolator for the safe set instance is a set that intersects all the target

sets but not the safe set.

80 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS

An isolator is easy to compute (even in parallel) for any given safe sets instance provided

the sets S, T1, : : :, Tk are explicitly speci�ed. However, our goal is to �nd an isolator in the

setting where only u, k and � are known, but the actual sets S, T1, : : :, Tk are not speci�ed.

We can formulate this goal as the problem of �nding a universal isolating family.

De�nition 5.4.3 A (u; k; �)-universal isolating family is a collection of subsets of U that

contains an isolator for any (u; k; �) safe set instance.

To see that this general formulation captures our cut isolation problem, note that the

minimum cut is the safe set in an (m; k; �) safe set instance. The universe is the set of

edges, of size m; the target sets are the small cuts of the two sides of the minimum cut; k

is the number of such small cuts and (by Theorem 4.7.6 and Lemma 5.3.2) can be bounded

by a polynomial in n < m; and � = 2 + �. The safe set size s is the minimum cut size c

and the approximation algorithm of Section 5.2.1 allows us to estimate s = c to within a

constant factor.

In Section 5.5, we give an NC algorithm for constructing a polynomial-size (u; k; �)-

universal isolating family. Before doing so, we give the details of how it can be used to solve

the minimum cut problem in NC.

5.4.1 Unweighted Minimum Cuts and Approximations

We begin by addressing unweighted graphs, extending to weighted graphs in Section 5.4.2.

We have already observed that we can solve the minimum cut problem by contracting an

edge from every cut of value less than (2+�)c except the minimum cut. Let k = nO(1) be the

bound on the number of target cuts. Using our NC solution to the Safe Sets Problem, we

can construct a polynomial size (m; k; �)-isolating family. One of the sets in the isolating

family intersects every target cut but not the minimum cut. Thus, if in parallel we try

each set in the isolating family, contracting all the edges in it and �nding an approximately

minimum cut in the resulting graph, then one of these trials will yield the minimum cut.

Since each trial can easily be implemented in NC using the NC approximation algorithm

of Section 5.2.1, and since there are only polynomially many trials, the entire process can

be implemented in NC.
We also have the following extension to approximately minimum cuts which we need for

the weighted graph analysis:

5.4. THE SAFE SETS PROBLEM 81

Lemma 5.4.4 If (A;B) is a cut with value (2 � �)c, then A and B both have minimum

cut size at least �c.

Proof: A variation on the proof of Lemma 5.3.1.

Corollary 5.4.5 Given any positive constant �, all cuts of size less then (2� �)c can be

found in NC.

Proof: Given a (2� �)-minimum cut (A;B), the problem of contracting all cuts in A and

B of size less than, say, 3(2� �)c is an (m; k; c) Safe Sets Problem with k = mO(1) (by the

previous lemma and Theorem 4.7.6). It follows that the safe sets approach can solve it.

Afterwards, we �nd the cut by applying the approximation algorithm.

Remark: This result says nothing about cuts of value exceeding twice the minimum. In

Chapter 9, we will show that in fact the derandomization holds for �nding cuts within an

arbitrary constant multiple of the minimum.

5.4.2 Extension to Weighted Graphs

If the weights in a graph are polynomially bounded integers, we can transform the graph

into a multigraph with a polynomial number of edges by replacing an edge of weight w with

w parallel unweighted edges. Then we can use the unweighted multigraph algorithm to �nd

the minimum cut.

If the edge weights are large, we use the minimum spanning tree technique of Sec-

tion 4.6.2 to estimate the weight of the minimum cut to within a multiplicative factor of

O(n2). Let w < c < n2w be this estimated bound in the minimum cut weight c. We

can immediately contract all edges of weight exceeding n2w, since they cannot cross the

minimum cut. Afterwards, the total amount of weight remaining in the graph is at most

n4w. Now multiply each edge weight by n3=w, so that that the minimum cut is scaled to be

between n3 and n5. Next round each edge weight to the nearest integer to get a graph with

polynomially bounded edge weights. This will change the value of each cut by at most n2

in absolute terms, implying a relative change by at most a (1+1=n) factor. Thus the cut of

minimal weight in the original graph has weight within a (1 + 1=n) factor of the minimum

cut in the new graph. By Corollary 5.4.5, all such nearly minimum cuts can be found in NC
with the previously described algorithms. All we need to do to �nd the actual minimum

cut is inspect every one of the small cuts we �nd in the scaled graph and compute its value

according to the original edge weights.

82 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS

5.5 Solving the Safe Sets Problem

In this section, we give the derandomization leading to an NC algorithm for constructing

an isolating family. Our goal is: given U , k, and �, generate a (u; k; �)-universal isolating

family of size polynomial in u and k in NC. We �rst give an existence proof for universal

families of the desired size. For the purposes of this proof we assume that the value of s,

the safe set size, is known explicitly. We discuss the validity of this assumption after the

proof.

Theorem 5.5.1 There exists a (u; k; �)-universal isolating family of size at most ukO(1).

Proof: We use a standard probabilistic existence argument. Fix attention on a particular

safe set instance. Suppose we mark each element of the universe with probability log k=s,

and let the marked elements form one member of the universal family. With probability

k�O(1) the safe set is not marked but all the target sets are. Thus if we perform kO(1) trials,

we can reduce the probability of not producing an isolator for this instance to 1=2. If we

do this ukO(1) times, then the probability of failure on the instance is 2�uk
O(1)

. If we now

consider all 2uk
O(1)

safe set instances, the probability that we fail to to generate a safe set

for all of them during all the trials is less than 1.

It is not very hard to see that this existence proof can be converted into a randomized

(RNC) construction of a polynomial size (u; k; �)-universal isolating family. In the appli-

cation to the minimum cut problem, we only know of an upper bound on the value of k but

it is clear that this su�ces for the existence proof and the randomized construction.

It may appear that the assumption that s is known will not allow us to apply this

randomized construction to the minimum cut problem where the whole point is to determine

the value of s = c. To remove this assumption, �rst note that it su�ces to have only

a constant factor approximation to the value of s, which is known in the minimum cut

application. In general, however, we do not even need this constant factor approximation

since we could construct universal sets for s = 1; 2; 4; 8; : : : ; u and take their union, obtaining

a family that was universal for all s. It would increase the number of sets in the family to

ukO(1) log u but would increase the total size of the family by only a constant factor.

5.5. SOLVING THE SAFE SETS PROBLEM 83

5.5.1 Constructing Universal Families

We proceed to derandomize the construction of a universal isolating family. To perform the

derandomization, we �x our attention on a particular safe set instance, and show that our

construction will contain an isolator for that instance. It will follow that our construction

contains an isolator for every instance.

Suppose we independently mark each element of U with probability 1=s. The probability

that a subset of size x does not contain any marked elements is (1 � 1=s)x. We use the

following standard inequalities:�
e�1

�
1� 1

s

��x=s
�
�
1� 1

s

�x
� e�x=s:

Let Ei be the event that Ti does contain some and S does not contain any marked elements.

Then, using the fact that S and Ti are disjoint, it follows that

Pr[Ei] =

1�

�
1� 1

s

�ti!�
1� 1

s

�s

� �
1� e��

��
e�1

�
1� 1

s

��
:

Since � is a constant, there is a constant probability of Ei, i.e. that no element of S is

marked but some element of Ti is marked. Call this event good for Ti or simply good for i

and call the set of marked elements a good set for Ti. For each trial, we have some constant

probability that the trial is good for a particular i. The marked elements would isolate S if

they were good for every Ti.

We now show that in fact pairwise independence in the marking of elements is all that

is needed to achieve the desired constant probability of being good for i. The analysis of

the use of pairwise instead of complete independence is fairly standard [32, 144], and the

particular proof given below is similar to that of Luby, Naor, and Naor [145].

Choose p = 1=�s where � = 2+�. Suppose each element of U is marked with probability

p pairwise independently to obtain a mark set M � U . For any element x 2 U , we de�ne

the following two events under the pairwise independent marking:

� Mx: the event that element x is marked,

� Sx: the event that element x is marked but no element of the safe set S is marked.

We have that Pr[Mx] = p and the events fMxg are pairwise independent. Further, the

mark set M is good for a target set Ti if and only if the event Sx occurs for some element

84 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS

x 2 Ti. The following lemmas help to establish a constant lower bound on the probability

that M is good for Ti.

Lemma 5.5.2 For any element x 2 U n S,

Pr[Sx] �
� � 1

�2s
:

Proof: The probability that x is marked but no element of S is marked can we written as

the product of the following two probabilities:

� the probability that x is marked, and

� the probability that no element of S is marked conditional upon x being marked.

We obtain that

Pr[Sx] = Pr[\j2SMj j Mx]� Pr[Mx]

= (1� Pr[[j2SMj j Mx])� Pr[Mx]

�
0
@1�X

j2S
Pr[Mj j Mx]

1
A� Pr[Mx]:

Since x 62 S, we have that j 6= x. The pairwise independence of the marking now implies

that Pr[Mj j Mx] = Pr[Mj], and so we obtain that

Pr[Sx] �
0
@1�X

j2S
Pr[Mj]

1
A� Pr[Mx]

= (1� sp)p

=

�
1� 1

�

�
1

�s

=
� � 1

�2s
:

Lemma 5.5.3 For any pair of elements x, y 2 U n S,

Pr[Sx \ Sy] �
1

�2s2
:

5.5. SOLVING THE SAFE SETS PROBLEM 85

Proof: Using conditional probabilities as in the proof of Lemma 5.5.2, we have that

Pr[Sx \ Sy] = Pr[(Mx \My)\ (\j2SMj)]

= Pr[\j2SMj j Mx \My]� Pr[Mx \My]

� Pr[Mx \My]

= p2;

where the last step follows from the pairwise independence of the marking. Plugging in the

value of p gives the desired result.

Theorem 5.5.4 The probability that the pairwise independent marking is good for any

speci�c target set Ti is bounded from below by a positive constant.

Proof: Recall that jTij � t = �s and arbitrarily choose a subset T � Ti such that jT j =
t = �s, assuming without loss of generality that t is a positive integer. The probability the

mark set M is good for Ti is given by Pr[[x2TiSx]. We can lower bound this probability as

follows

Pr[[x2TiSx] � Pr[[x2TSx]
�

X
x2T

Pr[Sx]�
X
x;y2T

Pr[Sx \ Sy];

using the principle of inclusion-exclusion. Invoking Lemmas 5.5.2 and 5.5.3, we obtain that

Pr[[x2TiSx] �
t(� � 1)

�2s
�

t

2

!
1

�2s2

� t(� � 1)

�2s
� t2

�2s2

=
�(� � 1)

�2
� �2

2�2

=
�

2(2 + �)
;

where the last expression follows from our choice of � = 2 + �. Clearly, for any positive

constant �, the last expression is a positive constant.

The pairwise independence used above can be achieved using O(logu + log s) random

bits as a seed to generate pairwise-independent variables for the marking trial. The O(log u)

term comes from the need to generate u random variables; the O(log s) term comes from the

86 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS

fact that the denominator in the marking probability is proportional to s. Since s � u, the

number of random bits needed to generate the pairwise independent marking is O(log u).

We can boost the probability of success to any desired constant � by using O(1) in-

dependent iterations of the random marking process, each yielding a di�erent mark set.

This increases the size of the seed needed by only a constant factor. We can think of this

pairwise independent marking algorithm as a function f that takes a truly random seed R

of O(log u) bits and returns O(1) subsets of U . Randomizing over seeds R, the probability

that f(R) contains at least one good set for target Ti is �.

The next step is to reduce the probability of failure from a constant 1 � � to an in-

verse polynomially small value. This reduction relies on the behavior of random walks on

expanders. We need an explicit construction of a family of bounded degree expanders, and

a convenient construction is that of Gabber and Galil [65]. They show that for su�ciently

large n, there exists a graph Gn on n vertices with the following properties: the graph is

7-regular; it has a constant expansion factor; and, for some constant �, the second eigenvalue

of the graph is at most 1� �. The following is a minor adaptation of a result due to Ajtai,

Koml�os and Szemer�edi [4] (see also [92, 35]) which presents a crucial property of random

walks on the expander Gn.

Theorem 5.5.5 ([4]) Let B be a subset of V (Gn) of size at most (1 � �)n, for some

constant �. Then there exists a constant
 such that for a random walk of length
 log k on

Gn, the probability that the vertices visited are all from B is O(k�2).

Notice that performing a random walk of length
 log k on Gn requires O(logn+ log k)

random bits|choosing a random starting vertex requires log n random bits and, since the

degree is constant, each step of the walk requires O(1) random bits. We use this random

walk result as follows. Each vertex of the expander corresponds to a seed for the mark

set generator f described above; thus, logn = O(log u), implying that we need a total of

O(log u + log k) random bits for the random walk. Choosing B to be the set of bad seeds

for Ti, i.e. those that generate set families containing no good sets for Ti, and noting that

by construction B has size (1� �)n, allows us to prove the following theorem.

Theorem 5.5.6 A (u; k; �) universal family for U of size (uk)O(1) can be generated in NC.

Proof: Use O(log u+log k) random bits in the expander walk to generate �(log k) pseudo-

random seeds. Then use each seed as an input to the mark set generator f . Let H denote

5.5. SOLVING THE SAFE SETS PROBLEM 87

the �(log k) sets generated throughout these trials (we give �(log k) inputs to f , each of

which generates O(1) sets). Since the probability that f generates a good-for-i set on a

random input is �, we can choose constants and apply Theorem 5.5.5 to ensure that with

probability 1 � 1=k2, one of our pseudo-random seeds is such that H contains a good set

for Ti. It follows that with probability 1 � 1=k, H contains good sets for every one of the

Ti. Note that the good sets for di�erent targets might be di�erent. However, consider

the collection C of all possible unions of sets in H . Since H has O(log k) sets, C has size

2jHj = kO(1). One set in C consists of the union of all the good-for-some-i sets in H ; this

set intersects every Ti but does not intersect the safe set, and is thus an isolator for our

instance.

We have shown that with O(log u+logk) random bits, we generate a family of kO(1) sets

such that there is a nonzero probability that one of the sets isolates the safe sets instance.

It follows that if we try all possible O(log u + log k) bit seeds, one of them must yield a

collection that contains an isolator. All these seeds together will generate (uk)O(1) sets, one

of which must be the desired one.

For a given input seed, the pairwise independent generation of sets by f is easily paral-

lelizable. Given a particular O(log u+ log k) bit seed for the expander walk, Theorem 5.5.5

says that performing the walk to generate the seeds for f takes O(log u+ log k) time. We

can clearly perform walks in parallel for all possible seeds. The various sets that are output

as a result must contain a solution for any particular safe set instance; it follows that the

output collection is a (u; k; c) universal isolating family.

Remark: It should be noted that by itself, this safe sets construction is not su�cient to

derandomize the minimum cut algorithm. Combined directly with the Luby, Naor, and

Naor technique, it can �nd a set of edges which contains an edge incident to each vertex

but not any of the minimum cut edges. Unfortunately, such an edge set need only halve

the number of vertices (e.g., if the edge set is a perfect matching), so
(logn) phases would

still be necessary|the same
aw as in [145]. The power of the technique comes through its

combination with the approximation algorithm, which allows us to solve the entire problem

in a single phase with O(logn) random bits. This, of course, lets us fully derandomize the

algorithm.

88 CHAPTER 5. DETERMINISTIC CONTRACTION ALGORITHMS

5.6 Conclusion

This chapter has shown that the minimum cut problem can be solved in NC. However,

the algorithm presented is somewhat impractical. The natural open problem is to �nd a

practical NC algorithm for minimum cuts. An easier goal might be to improve the e�ciency

of the approximation algorithm. Our algorithm uses m2=n processors. Matula's sequential

approximation algorithm uses only linear time, and the RNC minimum cut algorithm of

Chapter 4 uses only n2 processors. Both these facts suggest that a more e�cient NC
algorithm might be possible.

We also introduced a new combinatorial problem, the safe sets problem. This problem

seems very natural and it would be nice to �nd further applications for it. Other applications

of the combination of pairwise independence and random walks would also be interesting.

A preliminary version of this chapter has appeared earlier as an extended abstract [107].

Chapter 6

Random Sampling from Graphs

6.1 Introduction

Cuts play an important role in determining the solutions to many graph problems besides

global minimum cuts. The s-t minimum cut and maximum
ow are determined by the

smallest of all cuts that separate s and t. In the NP-complete network design problem,

the goal is to output a graph that satis�es certain speci�ed connectivity requirements by

containing no small cuts. A special case is to �nd a minimum size (number of edges) k-

connected subgraph of a k-connected graph. Other problems to which cuts are relevant

include �nding a minimum balanced cut (in which both sides of the cut are \large") and

�nding an orientation (assignment of directions) of the edges of an undirected graph which

makes it k-connected as a directed graph. Cuts also play an important role in multicom-

modity
ow problems, though the connection is not as tight as for the standard max-
ow

problem [137].

In this chapter we show that random sampling is a powerful tool for cut-dependent

undirected graph problems. We de�ne and use a graph skeleton. Given a graph, a skeleton

is constructed on the same set of vertices by including a small random sample from the

graph's edges. Our main result is that skeletons accurately approximate all cut values

in the original graph. Thus, random subgraphs can often be used as substitutes for the

original graphs in cut and
ow problems. Since the subgraphs are small, improved time

bounds result. Skeletons are conceptually related to the sparse connectivity certi�cates

discussed in Section 3.3. The skeleton is a kind of sparse approximate certi�cate.

In the most obvious application, by computing minimum cuts and maximum
ows in the

89

90 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

skeleton, we get fast algorithms for approximating minimum cuts and maximum
ows. In

Section 6.3, we give a linear time algorithm for �nding a (1+ �)-approximation to the mini-

mum cut in any weighted graph, thus improving on Matula's previous (2+�)-approximation

algorithm. We also improve the processor bounds of the parallel (2 + �)-approximation al-

gorithm of Section 5.2.1 and extend it to weighted graphs. Lastly, we show how to maintain

an approximately minimum cut dynamically as edges are added to or deleted from a graph.

These algorithms are all Monte Carlo. We give veri�cation techniques that can be used to

make the algorithms las Vegas. Finally, we give a randomized divide and conquer scheme

which to �nd a minimum cut in ~O(m
p
c) time, improving on Gabow's algorithm by a

p
c

factor.

In Section 6.6, we show how to apply our theorems in randomized rounding for network

design problems. In these NP-complete problems, the goal is to construct a minimum cost

network satisfying certain connectivity requirements. We improve the approximation ratios

from O(logn) to 1 + o(1) for a large class of these problems.

All of our techniques apply only to undirected graphs, as cuts in directed graphs do

not appear to have the same predictable behavior under random sampling. As might be

expected, the most direct applications of our techniques are to minimum cut problems; we

focus on these and leave extensions to other problems to Part II.

6.1.1 Cuts and Flows

We present algorithms for approximating and for exactly �nding s-t and global minimum

cuts and maximum
ows. To this end, we make the following extension to the de�nition of

�-minimal cuts.

De�nition 6.1.1 An �-minimal s-t cut is a cut whose weight is at most � times that of

the s-t minimum cut. An �-maximal s-t
ow is an s-t
ow of value at least � times the

optimum.

Supposing that an s-t minimum cut has value v, we give randomized Monte Carlo (MC)

and Las Vegas (LV) algorithms to �nd the following objects in unweighted, undirected

graphs:

� A minimum cut in ~O(m
p
c) time (LV),

� A (1 + �)-minimal cut in ~O(m+ n=�3) time (MC) or ~O(m=�) time (LV).

6.1. INTRODUCTION 91

� An s-t maximum
ow in ~O(mv=
p
c) time (LV),

� A (1� �)-maximal s-t
ow in ~O(mv=�c) time (LV),

� A (1+ �)-minimal s-t cut in O(m+n(v=c)��3) = O(mv=�3c2) time (MC) or ~O(mv=�c)

time (LV),

Our cut approximation algorithms extend to weighted graphs with roughly the same

time bounds. The
ow approximation algorithms and exact algorithms can use a \splitting"

technique that, for a given maximum edge weight U , increases the time bounds of the
ow

algorithms by a factor of
p
U rather than the naive factor of U .

Previously, the best time bound for computing maximum
ows in unweighted graphs

was O(m �min(v; n2=3;pm)), achieved using blocking
ows (cf. [181]). In the unit graphs

that arise in bipartite matching problems, a running time of O(m
p
n) is achieved (Feder

and Motwani [55] improved this bound by an additional O(logn) factor). Our exact algo-

rithm's bounds dominate these whenever the ratio v=
p
c is small, and in particular when c

is large. Our approximation algorithms are even better: for example, we can approximate

s-t minimum cuts to within any constant factor in ~O(m) time so long as c =
(
p
n). We

are aware of no previous work on approximating s-t minimum cuts or maximum
ows, al-

though blocking
ows can be used to achieve a certain large absolute error bound. Matula's

algorithm (Section 3.5) was previously the best approximation algorithm; we improve the

accuracy from (2+ �) to (1+ �) in a Las Vegas algorithm with the same time bound, as well

as giving e�cient parallel and dynamic approximation algorithms.

6.1.2 Network Design

From random sampling, it is a small step to show that randomized rounding can be e�ec-

tively applied to graphs with fractional edge weights, yielding integrally weighted graphs

with roughly the same cut values. This makes randomized rounding a useful tool in net-

work design problems. Here, we use random sampling as a postprocessing rather than a

preprocessing step.

A network design problem is speci�ed by an input graph G with each edge assigned a

cost. The goal is to output a subgraph of G satisfying certain connectivity requirements at

minimum cost (measured as the sum of the costs of edges used). These requirements are

described by specifying a minimum number of edges that must cross each cut of G. Since

the number of cuts is exponential, the requirements are typically described implicitly, for

92 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

example by specifying the desired connectivity of the output graph. The network design

formulation easily captures many classic problems, some NP-complete, including perfect

matching, minimum cost
ow, Steiner tree, and minimum T-join. It also captures the

minimum cost k-connected subgraph problem, where the goal is to build a minimum cost

graph with minimum cut k. The minimum cost 1-connected subgraph is just the minimum

spanning tree, but for larger values of k the problem is NP-complete even when all edge

costs are 1 or in�nity [53].

Our cut-sampling theorems allow edges to be sampled with di�erent probabilities. This

lets us apply the randomized rounding technique of Raghavan and Thompson [168] to the

fractional solutions and get good approximation ratios, despite the fact that the rounding

must simultaneously satisfy exponentially many constraints. Our techniques apply to a large

class of network design problems, the one restriction being that the minimum connectivity

requirement be large. For example, for the k-connected subgraph problem, we give an

approximation algorithm with performance ratio 1 + O(
p
(logn)=k). For any k � logn,

this improves on the previous best known approximation factor of 2 given by Khuller and

Vishkin [119]. We give the same approximation ratio for a broader range of problems in

which the previous best approximation ratio was O(logn).

6.2 A Sampling Model and Theorems

6.2.1 Graph Skeletons

Our algorithms are all based upon the following model of random sampling in graphs. We

are given an unweighted multigraph G with a sampling probability pe for each edge e, and

we construct a random subgraph, or skeleton, on the same vertices by placing each edge e

in the skeleton independently with probability pe. Let Ĝ denote the weighted graph with

the vertices and edges of G and with edge weight pe assigned to edge e, and let ĉ be the

minimum cut of Ĝ. There is an obvious 1 to 1 correspondence between cuts in G and Ĝ.

The graph Ĝ is in some sense the \expected value" of G, since the value of a cut in Ĝ is

the expected value of the corresponding cut in G. The quantity ĉ is the minimum expected

value of any cut, which must be distinguished from the expected value of the minimum cut.

Our main theorem says that so long as ĉ is su�ciently large, every cut in the skeleton takes

on roughly its expected value.

6.2. A SAMPLING MODEL AND THEOREMS 93

Theorem 6.2.1 Let � =
p
2(d+ 2)(lnn)=ĉ � 1. Then with probability 1� O(1=nd), every

cut in the skeleton of G has value between (1� �) and (1 + �) times its expected value.

Proof: We use two lemmas: The Cherno� bound (Appendix A.2) and Theorem 4.7.6 for

counting cuts. Theorem 4.7.6 applied to Ĝ says that the number of cuts with expected

value within an � factor of the minimum increases exponentially with �. On the other

hand, the Cherno� bound says that the probability one such cut diverges too far from its

expected value decreases exponentially with �. Combining these two lemmas and balancing

the exponential rates proves the theorem.

Let r = 2n � 2 be the number of cuts in the graph, and let c1; : : : ; cr be the expected

values of the r cuts in the skeleton. Without loss of generality, assume the ci are in increasing

order so that ĉ = c1 � c2; � � � � cr. Let pk be the probability that the kth cut diverges by

more than � from its expected value. Then the probability that some cut diverges by more

than � is at most
P
pk, which we proceed to bound from above.

According to the Cherno� bound pk � e��
2ck=2. We now proceed in two steps. First,

consider the n2 smallest cuts. Each of them has ck � ĉ and thus pk � n�(d+2), so that

X
k�n2

pk � (n2)(n�(d+2)) = n�d:

Next, consider the remaining larger cuts. According to Theorem 4.7.6, there are less than

n2� cuts of expected value less than �ĉ. Since we have numbered the cuts in increasing

order, this means that cn2� � �ĉ. In other words, writing k = n2�,

ck �
ln k

2 lnn
� ĉ;

and thus

pk � k�(d+2)=2:

It follows that

X
k>n2

pk �
X
k>n2

k�(d+2)=2

�
Z r

n2
k�(d+2)=2

= O(n�d)

94 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

6.2.2 p-Skeletons

In many of our applications, we will �x some value p and set pe = p for all e. We call the

resulting sample a p-skeleton of G and denote it G(p). We have the following immediate

corollary to Theorem 6.2.1.

Corollary 6.2.2 Let G be any graph with minimum cut c and let p = 2(d + 2)(lnn)=�2c

where � � 1. Then the probability that the value of some cut in G(p) has value more than

(1 + �) or less than (1� �) times its expected value is O(1=nd).

Proof: Note that the minimum expected cut is ĉ = pc and apply Theorem 6.2.1.

To generate a skeleton,
ip an appropriately biased coin for each edge. Flipping a biased

coin is a special case of Random-Select in which we choose from the two-element set fH; Tg,
and there requires amortized O(1) time per trial as is shown in Appendix A.3.

Lemma 6.2.3 A p-skeleton of an unweighted graph can be constructed in O(m) time.

6.2.3 Weighted Graphs

We need to use a di�erent approach to construct skeletons in weighted graphs. As with the

Contraction Algorithm, we can equate a weighted graph with its corresponding multigraph.

But under the previous scheme, we would need to
ip one coin for each unit of weight in

the graph, and this could take too much time. We therefore give an alternative scheme for

multigraphs that has a better extension to weighted graphs.

Corollary 6.2.4 Let G be an unweighted graph with minimum cut c and let p = 2(d +

2)(lnn)=�2c. Let H be constructed from G by choosing dpme edges from G at random. Then

the probability that the value of some cut of value v in G has value more than (1 + �)pv or

less than (1� �)pv in H is O(n�d
p
pm).

Proof: We could prove this corollary the same way we proved the cut-counting theorem,

using a variant of the Cherno� bound for �xed size samples. Instead, let ERR denote the

event that some cut diverges by more than � from its expected value. We know that if we

sample each edge with probability p, then Pr[ERR] is O(1=nd). Let S denote the number

of edges actually chosen in such a sample. Note that S has the binomial distribution and

6.2. A SAMPLING MODEL AND THEOREMS 95

that its so-called central term Pr[S = dpme] =
(1=
p
pm) (cf. [57]). We can evaluate ERR

conditioning on the value of S:

1=nd � Pr[ERR]

=
X
k

Pr[S = k] � Pr[ERR j S = k]

� Pr[S = dpme] � Pr[ERR j S = dpme]
=
(

1p
pm
� Pr[ERR j S = dpme]:

In other words, Pr[ERR j S = dpme] = O(
p
pm=nd).

This corollary tells us that so long as the expected number pm of edges in the skeleton

is polynomial in n, we can construct the skeleton by taking a �xed size sample and get the

same desired result of all cuts being within � of their expectations with high probability. We

can construct such a modi�ed p-skeleton by making pm random selections from among the

edges of the graph. In the weighted graph, we simulate this behavior if we choose each edge

with probability proportional to the weight of the edge. This is accomplished in amortized

O(logm)-time per selection using procedure Random-Select from Appendix A.3.

Corollary 6.2.5 In an m-edge graph with total edge weight W , a p-skeleton can be con-

structed in O(pW logm) time.

We have to deal with one small technicality. We would like to construct cumulative

edge weights only once, and then sample from them pW times. But this models a slightly

di�erent approach from our original one. When we use the original method, sampling each

edge of the corresponding multigraph with probability p, we select each edge at most once.

If we perform pm samples without deleting multiedges, we might pick the same multiedge

more than once. To see that such repeated selection does not a�ect the outcome, suppose

we multiply each edge weight by some large k. This scales all cut values without changing

their structure. Now suppose we build a (p=k)-skeleton in the new graph. We do so by

performing (kW)(p=k) = pW samples with the same biases as before. Now, however, there

are so many multiedges in the corresponding multigraph that the probability of picking the

same one twice is negligible. It follows that our analysis applies even if we do use a model

of sampling without updating the sampling probabilities.

96 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

6.3 Approximating Minimum Cuts

We now show how sampling can be used for global minimum cuts. We have already discussed

sequential (Gabow's algorithm of Section 3.2.2) and parallel (Section 5.2.1) minimum cut

algorithms that are e�cient on graphs with small minimum cuts. Using skeletons, we

can transform graphs with large minimum cuts into graphs with small minimum cuts and

then run these sparse graph algorithms. We use the following immediate extension of

Corollary 6.2.2:

Theorem 6.3.1 Let G be any graph with minimum cut c and let p =
((lnn)=�2c). Then

with high probability the minimum cut has value between (1� �)pc and (1 + �)pc.

6.3.1 Estimating p

The obvious algorithm for estimating minimum cuts is to construct a p-skeleton, compute

its minimum cut, and divide it by p to get a minimum cut in the original graph. In these

algorithms, given an approximation bound �, we will want to sample with the corresponding

p = �((ln n)=(�2c)) of Theorem 6.2.1 in order to ensure that in the skeleton no cut diverges

in value by more than � times its expectation. This would appear to require knowledge of

c. We now note that instead p can be determined by examining the skeleton.

Lemma 6.3.2 With high probability, if G(p) is constructed and has minimum cut ĉ =

((logn)=�2) for � � 1, then the minimum cut in G is (1� �)ĉ=p.

Proof: Suppose pc � (logn)=�2. Consider a particular minimum cut. The Cherno� bound

says that with high probability, at most O(logn) edges will be sampled from the minimum

cut and so the theorem is vacuously true. Otherwise, apply the sampling theorem.

In other words, so long as the skeleton has minimum cut
(logn), the value of the

minimum cut tells us the accuracy of the skeleton.

Remark: This lemma suggests yet another approach to constructing skeletons. Namely,

sample edges from G, adding them to the skeleton, until the skeleton has minimum cut

(logn)=�2. At this point, we know the skeleton approximates cuts to within �. This will be

important as we develop certain dynamic approximation algorithms in Section 10.5.

This lemma means we can use the following repeated-doubling scheme in our approxi-

mation algorithms. Suppose that the actual minimum cut is c and that the correct sampling

6.3. APPROXIMATING MINIMUM CUTS 97

probability is p = O((logn)=�2c). If we use the correct p, then the sampling theorem says

that the minimum cut is at least ĉ = O((logn)=�2) with high probability. Suppose we have

an overestimate C > c for the minimum cut, and determine the corresponding sampling

probability P = O((logn)=�2C) for constructing an �-accurate skeleton in a graph with

minimum cut C. Compute the minimum cut in this P -skeleton. If P < p=2, then sampling

theorem says that the minimum cut is less than ĉ with high probability. If we discover

this, we can halve our guess for C (doubling P) and try again. Eventually, we will have

P > 2p, at which point the sampling theorem says the minimum cut in the P -skeleton

exceeds ĉ. When we discover this, we also know by Lemma 6.3.2 that w.h.p. the P -skeleton

approximates all cuts to within �.

Assuming we have an overestimate C > c, we will require O(log(C=c)) iterations of this

doubling process to �nd the correct p. Furthermore, in each iteration, the minimum cut

will be at most ĉ = O((logn)=�2) and thus easy to compute.

We now apply these ideas to develop sequential, parallel, and dynamic algorithms for

approximating the minimum cut. In each case, the goal is to take a minimum cut algorithm

which is e�cient on sparse graphs and to extend it to dense graphs by constructing skeletons.

6.3.2 Sequential Algorithms

For a sequential approximation algorithm, we apply Gabow's minimum cut algorithm (Sec-

tion 3.2.2). Recall that Gabow's algorithm uses complete intersections, as an analogue to

using augmenting paths in maximum
ows to �nd minimum s-t cuts, and shows that the

maximum value (number of trees) in such a complete intersection is equal to the value of

the minimum cut in the graph. He uses a subroutine called Round-Robin to augment the

complete intersection by one tree in O(m log(m=n)) time, and thus �nds the minimum cut

in ~O(mc) time.

Lemma 6.3.3 In weighted graphs, a (1+�)-minimal cut can be found in O(m+n((logn)=�)4)

time (Monte Carlo).

Proof: Given an m edge graph, suppose �rst that c is known. Build a p-skeleton for p

determined by c and �, and use Gabow's min-cut algorithm to �nd a minimum cut in it.

The skeleton has minimum cut O((logn)=�2), so the running time is O(m(log4 n)=(�4c)).

Now note that before we run the approximation algorithm, we can use Nagamochi and

Ibaraki's sparse certi�cate algorithm (discussed in Section 3.3) to construct (in O(m) time)

98 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

an O(nc)-edge graph with the same approximately minimal cuts as our starting graph.

This reduces the running time of the sampling algorithm to the stated bound. If the graph

is weighted, the sparse certi�cate algorithm ensures that the total weight is cn; thus the

weighted skeleton construction runs in O(pcn) = O(n((logn)=�2)) time and does not a�ect

the time bound.

Now suppose that c is not known but the graph is unweighted. Using Matula's approx-

imation algorithm, we can get an estimate C for the minimum cut such that c < C < 3c.

If we let P = O((logn)=�2C) such that P > p, and generate a P -skeleton, it will cer-

tainly approximate cuts to within �. However, since P = O(p), the analysis of the previous

paragraph applies unchanged.

To extend the previous paragraph to weighted graphs, we need only modify our construc-

tion of the skeleton, since once we have constructed the skeleton our algorithms do not care

whether or not the original graph was weighted. We use the weighted skeleton construction

algorithm of Section 6.2.3. Since the total graph weight W could be arbitrarily large, the

number of samples needed for the skeleton (pW) could also be arbitrarily large. To handle

this problem, we construct a sparse 2C-connectivity certi�cate of the original graph, which

by de�nition has the same minimum cut and approximate minimum cuts as the original

graph. The resulting graph has total weight O(nC), so the number of random samples

made by the weighted skeleton construction is O(PnC) = O(n(logn)=�2) as desired.

6.3.3 Parallel Algorithms

The skeleton construction can also be used to improve parallel minimum cut algorithms.

Recall that in Section 5.2.1, we gave an NC algorithm for �nding a (2 + �)-approximation

to the minimum cut c using cm processors. Using a skeleton construction, we can reduce

the processor cost to m (at the price of introducing randomization). First consider the

skeleton construction. In an unweighted graph, it is easy to construct a p-skeleton in

parallel using m processors: assign one processor to each edge, and have each processor
ip

an appropriately biased coin to decide whether or not to include its edge. Similarly, we can

use pW processors to make pW selections from a graph of total weight W to construct a

weighted graph's p-skeleton.

Lemma 6.3.4 Let 1= logn < � < 1. In a weighted, undirected graph, a (2+ �)-minimal cut

can be found in RNC using m=�2 processors (Monte Carlo).

6.3. APPROXIMATING MINIMUM CUTS 99

Proof: We initially assume c is known. Construct a p-skeleton, p = O(logn=�2c), which

approximates cuts to within �=4 w.h.p. and has minimum cut O((logn)=�2). Use the sparse

cut approximation algorithm of Section 5.2.1 to �nd a (2+�=4)-minimal cut in the skeleton;

this can be done in RNC with m=�2 processors since the minimum cut is O((logn)=�2).

The resulting cut has value at most (2 + �=4)(1 + �=4)pc in the skeleton. Therefore, by the

sampling theorem, it corresponds to a cut of value at most (2 + �=4)(1+ �=4)c=(1� �=4) <
(2 + �)c.

Now suppose that c is not known but the graph is unweighted. We estimate the correct

sampling probability using the repeated doubling scheme of Section 6.3.1. In an unweighted

graph, we can initially upper-bound the minimum cut by n. Therefore O(logn) iterations

su�ce to converge to the correct minimum cut value. But until that happens, the skeletal

minimum cut will be at most O((logn)=�2) and this will guarantee that we need no more

processors than claimed.

To extend this approach to weighted graphs, we use the approach of Section 5.4.2 round

the edge weights down to polynomially bounded integers while introducing a negligible error

in the cut values. This gives graph with a polynomially bounded minimum cut and allows

us to use the same repeated doubling scheme as for unweighted graphs.

Remark: In Section 9.4, we give a parallel (1 + �)-approximation algorithm with roughly

the same processor bounds.

6.3.4 Dynamic Algorithms

We can also apply our skeleton techniques in a dynamic algorithm for approximating the

minimum cut. Eppstein et al [51] give a dynamic algorithm that maintains the minimum

cut c of a graph in ~O(c2n) time per edge-insertion or edge-deletion. This algorithm is in

turn based on an algorithm that maintains a sparse c-connectivity certi�cate of a graph

in O(c
p
n log(m=n)) time per update. After each update, once the certi�cate is updated,

they execute Gabow's minimum cut algorithm (which runs in O(mc log(m=n)) time on an

m edge graph) on the cn-edge certi�cate in O(nc2 log(m=n)) time.

We extend this approach to approximation of large cut values. First consider unweighted

graphs. We again use the repeated doubling approach to estimate the minimum cut. We dy-

namically maintain logn skeletons Gi, with Gi a (1=2
i)-skeleton. By the repeated-doubling

argument, we only care about skeletons with minimum cuts ĉ = O((log)=�2). There-

fore, within each skeleton, we use the algorithm of Eppstein et al to maintain a sparse

100 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

ĉ-connectivity certi�cate; each time it changes, we use our Gabow's Algorithm to recom-

pute the minimum cut in the certi�cate. Since each skeleton's certi�cate has minimum cut

O((logn)=�2), recomputing the minimum cut takes ~O(n=�4) time.

Whatever the minimum cut, there will be some i such that 1=2i is a proper sampling

probability for approximating cuts to within �. By Lemma 6.3.2, Gi will have a minimum

cut large enough to con�rm that it is in fact approximating cuts to within �, and we can

read the resulting approximately minimum cut from it.

Lemma 6.3.5 In an unweighted graph, a (1+�)-minimal cut can be maintained dynamically

in ~O(n=�4) time per edge insertion or deletion (Monte Carlo).

Corollary 6.3.6 In an unweighted graph with minimum cut known to exceed c, a (1 +

�)-minimal cut can be maintain dynamically in ~O(n=�4c) amortized time per insertion or

deletion.

Proof: Since we know the minimum cut exceeds c, we only need to construct p-skeletons

with p = ~O(1=c). Thus the probability is ~O(1=c) that an incoming edge will actually be

inserted in the skeleton, and this is the only time we have to update the skeleton. Similarly,

when an edge is deleted, the probability is ~O(1=c) that it was ever in the skeleton (this

assumes the adversary cannot see the random choices we are making).

If the graph is weighted, we can use the same approach, but must now maintain logW

di�erent skeletons, where W is the maximum edge weight.

Lemma 6.3.7 In a weighted graph, a (1 + �)-minimal cut can be maintained dynamically

in ~O(n(logW)=�4) time per edge insertion or deletion.

Remark: An additional 1=� factor can be eliminated from the running time by replacing

Gabow's algorithm with the faster one we develop in Chapter 6.5.

6.4 Las Vegas Algorithms

The algorithms we have just presented areMonte Carlo. That is, the algorithms have a small

chance of giving the wrong answer because the minimum cut in G(p) has a small probability

of not corresponding to a small cut in G. In this section, we show how this problem can

be surmounted in unweighted graphs. Our solution is to give a veri�cation algorithm for

6.4. LAS VEGAS ALGORITHMS 101

certifying that a graph's minimum cut is c. After running the Monte Carlo algorithm, we

can check its answer by using the veri�er. If the veri�er disagrees, we can repeat the Monte

Carlo algorithm until it gets an answer the veri�er likes. Since this happens eventually with

probability 1, we are guaranteed to get a correct answer after some number of attempts.

This means we have a Las Vegas algorithm.

Consider �rst the sequential algorithm. Our approach to veri�cation is the following.

Recall Gabow's argument that a graph has a minimum cut value exceeding c if and only if

it contains a complete intersection of value c. Therefore, if we �nd a cut of value K and a

complete intersection of value k in G, we know that necessarily k � c � K. If K=k � 1+ �,

then we know that K=c � (1 + �), i.e. that the cut of value K is (1 + �)-minimal.

Corollary 6.4.1 In an unweighted graph, (1+�)-minimal cut and (1��)-maximal complete
intersection can be found in O(m(log2 n)=�2) time (Las Vegas).

Proof: Suppose we �rst run the Monte Carlo algorithm to estimate c. Given p as deter-

mined by � and the claimed c, randomly partition the edges into 1=p groups, creating 1=p

graphs (this partitioning takes O(m) time using Random-Select). Consider a particular

one of these subgraphs H . Each edge is placed in H independently with probability p; i.e.

H is a p-skeleton. The presence of an edge e in H means it does not appear in any other

subgraph; but this simply means that the skeletons are not independent, without changing

the analysis of each skeleton individually. Since H is a p skeleton, with high probability it

has a minimum cut exceeding (1 � �)pc; thus by Gabow's analysis it contains a complete

intersection of value at least (1 � �)pc which can be found using Gabow's algorithm in

O((pc)(pm)) = O(p2mc) time. Suppose we do this for each of the 1=p skeletons, taking a

total of O(pmc) time. We now have 1=p mutually disjoint complete intersections, each of

value (1 � �)pc. Their union is therefore a complete intersection of value (1 � �)c. If the

intersection is smaller that we expected, run the whole algorithm again (including a new

run of the previous Monte Carlo algorithm to estimate c) until we get it right.

A similar approach works for the parallel algorithm, making it Las Vegas with no increase

in the processor cost. We do, however, lose another factor of two in the approximation.

Lemma 6.4.2 In an unweighted graph, for any constant �, a (4 + �)-minimal cut can be

found in RNC using m processors (Las Vegas).

102 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

Proof: We provide a veri�er for the Monte Carlo algorithm, just as we did in the sequential

case. Given a conjectured approximate minimum cut of value k and its corresponding

sampling probability p, divide the graph edges randomly into 1=p groups to get 1=p skeletons

with �(pm) edges. Run the deterministic approximation algorithm on each skeleton, using

(1=p)(pk)(pm) = kpm processors, and let K be the sum of the values of the minimum cuts

found therein.

Suppose that the actual minimum cut value is c. Since the minimum cut edges get

divided among the skeletons, the values of the minimum cuts in the skeletons sum to at

most c. Therefore, K < (2+�)c. It follows that if k < (2+2�)K, then we have a cut of value

at most (4 + 6�)c. We therefore run the cut-�nding algorithm and the veri�er until this

occurs. To see that it is likely to happen quickly, note that by the sampling theorem, each

of the 1=p skeletons has minimum cut at least (1 � �)pc with high probability. Assuming

this happens, the sum of returned values K > (1 � �)c. Therefore, if the cut which was

found had value less than (2+ �)c, which happens with high probability, then it will be the

case that k < (2 + 2�)K, as desired.

A similar argument can be made for the dynamic algorithm, where we replace each

(1=2i)-skeleton with a partition of the graph edges into 2i groups, in each of which we

maintain an O((logn)=�2)-connectivity certi�cate.

Lemma 6.4.3 In an unweighted graph, a (1+ �)-minimal cut can be maintain dynamically

in ~O(n=�4) amortized time per insertion or deletion (Las Vegas).

6.5 A Faster Exact Algorithm

The sampling approach can also be put to good use in an exact algorithm for �nding

minimum cuts; we sketch the approach here and elaborate on it in Chapter 10. Our approach

is a randomized divide-and-conquer algorithm which is used to speed up Gabow's algorithm;

we analyze it by treating each subproblem as a (non-independent) random sample. We use

the following algorithm which we call DAUG (Divide-and-conquer AUGmentation).

1. Randomly split the edges of G into two groups (each edge goes to one or the other

group with probability 1=2), yielding graphs G1 and G2.

2. Recursively compute maximum complete intersections in G1 and G2.

6.6. THE NETWORK DESIGN PROBLEM 103

3. The union of the two complete intersections is a complete intersection f in G.

4. Use Round-Robin to increase f to a maximum complete intersection.

Note that we cannot apply sampling in the cleanup phase (Step 4), because the graph

we are manipulating in the cleanup phase is directed, while our sampling theorems apply

only to undirected graphs. Note also that unlike our approximation algorithms, this exact

algorithm requires no prior guess as to the value of c. We have left out a condition for

terminating the recursion; when the graph is su�ciently \small" (say with one edge) we use

a trivial algorithm.

The outcome of Steps 1{3 is a complete intersection. Regardless of its value, Step 4

will transform it into a maximum complete intersection. Thus, our algorithm is clearly

correct; the only question is how fast it runs. Consider G1. Since each edge of G is in G1

with probability 1=2, we can apply Theorem 10.2.1 to deduce that with high probability

the minimum cut in G1 is (c=2)(1� ~O(
p
1=c)) = �(c=2). The same holds for G2 (the two

graphs are not independent, but this is irrelevant). It follows that the complete intersection

f has value c(1� ~O(1=
p
c)) = c� ~O(

p
c). Therefore the number of augmentations that must

be performed in G by Round-Robin to make f maximum is ~O(
p
c). Each augmentation

takes O(m0) time on an m0-edge graph, and we have the following sort of recurrence for the

running time of the algorithm in terms of m and c:

T (m; c) = 2T (m=2; c=2)+ ~O(m
p
c):

(where we use the fact that each of the two subproblems expects to containm=2 edges). If we

solve this recurrence, it evaluates to T (m; c) = ~O(m
p
c). Of course, we must actual analyze

a randomized recurrence, encountering some of the same problems as we did analyzing the

minimum spanning tree algorithm and the contraction algorithm; these details are addressed

in Chapter 10.

6.6 The Network Design Problem

We now turn to the network design problem. Here, rather than sampling as a preprocessing

step to reduce the problem size, we use sampling to as a postprocessing step to round a

fractional solution to an integral one.

104 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

6.6.1 Problem De�nition

The most general form of the network design problem is as an integer program with expo-

nentially many constraints. We are given a set of vertices, and for each pair of vertices i

and j, a cost cij of establishing a unit capacity link between i and j. For each cut C in the

graph, we are given a demand fC denoting the minimum number of edges that must cross

that cut in the output graph. Since there are exponentially many cuts, the demands must

be speci�ed implicitly if the problem description is to be of polynomial size. Our goal is to

build a graph of minimum cost that obeys all of the cut demands, i.e. to solve the following

integer program:

minimize
P

cijxijX
(i;j) crossing C

xij � dC (8 cuts C)

xij � 0

There are two variants of this problem: in the single edge use version, each xij must be 0

or 1. In the repeated edge use version, the xij an be arbitrary integers.

There are several specializations of the network design problem:

The generalized Steiner problem speci�es a connectivity demand dij for each pair of

vertices i and j, and the demand across a cut C is just the maximum of dij over all

pairs (i; j) separated by C. It was �rst formulated by Krarup (see [190]).

A unit cost network design problem has all edge costs equal to one (may be used in

the solution) or in�nity (may not be used).

The minimum cost k-connected graph problem has all demands dij = k.

The minimum k-connected subgraph problem combines the previous two restrictions.

Here the goal is to take an input graph (the edges of cost 1) and �nd a k-connected

subgraph of the input graph that contains the minimum number of edges.

Even the minimum k-connected subgraph problem is NP-complete for k = 2 [53].

6.6.2 Past and Present Work

Khuller and Vishkin [119] gave a 2-approximation algorithm for the minimum cost k-

connected graph problem; 2 is also the best known approximation factor for the minimum

(unit cost) k-connected subgraph problem when k > 2.

6.6. THE NETWORK DESIGN PROBLEM 105

Aggarwal, Klein, and Ravi [2] studied the repeated-edge-use generalized Steiner problem

(with costs) and gave an O(log fmax) approximation algorithm, where fmax is the maximum

demand across a cut, namely maxdij.

Williamson et al ([75], extending [189]) have recently given powerful algorithms for a

large class of network design problems, namely those de�ned by so-called weakly super-

modular demand functions (this category includes all generalized Steiner problems). Their

approximation algorithm, which we shall refer to as the Forest Algorithm, �nds a graph

satisfying the demands of cost at most O(log fmax) times the optimum. It applies to both

single and repeated edge use problems. They also note that a fractional solution, in which

each edge is to be assigned a real-valued weight such that the resulting weighted graph

satis�es the demands with a minimum total cost, can be found in polynomial time by using

the ellipsoid algorithm even though the number of constraints is exponential (see [71] for

details).

We give approximation algorithms whose bounds depend on fmin, the minimum connec-

tivity requirement between any pair of vertices. Here, we focus for brevity on the version

in which edges can be reused. In Chapter 12, we consider the case where edges may not

be reused. If fmin � logn, our approximation bound is O((logn)=(fmin)). If fmin � logn,

our approximation bound is 1 + O(
p
(logn)=fmin). This bound contrasts with a previ-

ous best bound of O(log fmax) due to Aggarwal, Klein, and Ravi [2], providing signi�cant

improvements when the minimum demand is large.

6.6.3 Randomized Rounding for Network Design

The network design problem is a variant of the set cover problem. In this problem, we are

given a collection of sets drawn from a universe, with each element of the universe possibly

assigned a cost. We are required to �nd a collection of elements of minimum total number

or cost which intersects every set. An extension of this problem corresponding more closely

to network design is the set multicover problem, in which a demand dS is speci�ed for each

set S and the covering set is required to contain dS elements of S. The network design

problem is an instance of set multicover in which each the universe is the set of edges, and

each cut induces a set consisting of the edges crossing it.

The set cover problem is easily formulated as an integer linear program, and its linear

programming dual is what is known as a packing problem: �nd a maximum collection of

sets that do not intersect. Raghavan and Thompson [168] developed a technique called

106 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

randomized rounding that can be used to solve such packing problems. The method is to

solve the linear programming relaxation of the packing problem and then use the fractional

values as probabilities that can be used to determine an integer solution by randomly setting

variables to 0 or 1.

In the Raghavan-Thompson rounding analysis, the error introduced by rounding in-

creases as the logarithm of the number of constraints. Thus, their approach typically

applies only to covering problems with polynomially many constraints. However, using the

graph sampling theorem (Theorem 6.2.1), we prove that the special structure of graphs

allows us to surmount this problem. This gives a simple approach to solving the multiple-

edge-use versions of network design problems. A more complicated approach described in

Chapter 12 gives us some weaker results for the single-edge-use version of the problem. We

now describe the randomized rounding technique.

Consider a fractional solution to a network design problem (which has been found, for

example, with the ellipsoid algorithm). Without loss of generality, we can assume every

edge has weight at most 1, since we can replace an edge of weight w by bwc parallel edges of
weight 1 and a single edge of weight w�bwc without changing the solution value. Therefore,
the weights on the edges can be thought of as sampling probabilities.

Suppose that we build a random graph by sampling each edge with the given probability.

As a weighted graph, our fractional solution has minimum cut fmin and each cut C has

weight at least dC. Therefore, by the Theorem 6.2.1, each cut in the random graph has

value at least dC(1 � O(
p
(logn)=fmin)) with probability 1� 1=n2. Now consider the cost

of the random graph. Its expected value is just the cost c of the fractional solution, which

is clearly a lower bound on the cost of the optimum integral solution. Therefore, by the

Markov inequality, the probability that the random graph cost exceeds (1+1=n)c is at most

1�1=n. Therefore, if we perform the rounding experiment O(n logn) times, we have a high

probability of getting one graph that satis�es the demands to within (1�O(p(logn)=fmin))

at cost (1 + 1=n)c. To get our results, we need only explain how to deal with the slight

under-satisfaction of the demands.

We consider the repeated edge-use version of the problem. Assume �rst that fmin >

logn. Before rounding the fractional solution, we multiply each edge weight by (1 +

O(
p
(log)=fmin)). This increases the cost by the same factor. Now when we round, we

get a graph with cut values 1 � O(
p
(logn)=fmin) times the new values (w.h.p.). Thus by

6.7. CONCLUSION 107

suitable choice of constants we can ensure that the rounded value exceed the original frac-

tional values. This is where permitted use of repeated edges is needed. We can constrain

the fractional solution to assign weight at most 1 to each edge in an attempt to solve the

single-edge-use version of the problem, but scaling up the fractional values in the solution

could yield some fractional values greater than 1 that could round to an illegal value of 2.

Now consider the case fmin < logn. The previous argument does not apply because

(1 � p(logn)=fmin) < 0 and we thus get no approximation guarantee. However, if we

multiply each edge weight by O((logn)=fmin), we get a graph with minimum cut
(logn).

If we round this graph, each cut gets value at least half its expected value, which is in turn

(logn) times its original value. This gives us the following:

Theorem 6.6.1 The network design problem for weakly supermodular demand functions

can be solved in polynomial time to within 1 +O(
p
(logn)=fmin + (logn)=fmin) of optimum

(Las Vegas).

6.7 Conclusion

We have demonstrated that random edge failures tend to \preserve" the minimum cut

information of a graph. This yields a linear time sequential approximation algorithm for

minimum cuts, as well as a parallel algorithm that uses few processors.

We can relate our sampling theorems to the study of random graphs [18]. Just as [19]

studied the probability that a classical random graph is k-connected, here we study here the

probability that a more general random graph is k-connected. An interesting open question

is whether our probability thresholds can be tightened to the degree that those for random

graphs have been.

Skeletons can also be seen as a generalization of expanders [4]. Skeletons of the complete

graph are expanders. Just as expanders approximate the expected cut values in the complete

graph, skeletons approximate the expected cut values in arbitrary graphs. This motivates

us to ask whether it is possible to deterministically construct skeletons, as is the case for

expanders [65]. Furthermore, just as the expander of [65] has constant degree, it may

be possible to deterministically construct a skeleton with a constant minimum cut, rather

than the
(logn) minimum cut produced by the randomized construction. One might �rst

attempt the easier task of constructing the skeletons de�ned here deterministically.

108 CHAPTER 6. RANDOM SAMPLING FROM GRAPHS

Our techniques extend to many other problems for which cuts are important. For

example, in the minimum quotient cut or balanced cut problems, the goal is to output a

cut of small value but with many vertices on each side. In Chapter 10, we give further

applications of this technique to approximating s-t minimum cuts and maximum
ows. We

also give an evolutionarymodel of sampling in which we pick edges one at a time until certain

connectivity conditions are met. This is useful in developing improved dynamic minimum

cut approximation algorithms. Among other results, this leads to a dynamic algorithm for

approximating the minimum cut to within
p
1 + 2=� in ~O(n�) time per edge insertion and

in ~O(n1=2+�) time per edge deletion. We also extend the dynamic algorithm in Section 6.3.4

to weighted graphs yielding an ~O(n=�4) time-per-update dynamic (1 + �)-approximation

algorithm.

Our approach has given improved approximation algorithms for network design problems

in which edges can be reused and the minimum demand across any cut is large. Note that

in fact, all that is necessary is that the minimum cut of the solution be large, even though

it may not be required in the design problem. In Chapter 12, we consider extensions of this

approach to the case where edges may be used only once, as well as to the case where edges

can have variable capacities.

An open question is whether we can get the same approximation ratio deterministically.

Raghavan and Thomposon use the method of conditional expectations to derandomized

their randomized-rounding algorithm. However, this approach requires a computation for

each constraint. This is not feasible for our problem with its exponentially many constraints.

Portions of this chapter appeared previously in [104] and [105].

Chapter 7

Randomized Rounding for Graph

Coloring

7.1 Introduction

In this chapter, we push beyond the classic application of randomized rounding to linear pro-

gramming problems and develop a new approach, pioneered by Goemans andWilliamson [77],

to randomized rounding in more general semide�nite programming problems. The problem

we attack is that of graph coloring.1

7.1.1 The Problem

A legal vertex coloring of a graph G(V;E) is an assignment of colors to its vertices such

that no two adjacent vertices receive the same color. Equivalently, a legal coloring of G by k

colors is a partition of its vertices into k independent sets. The minimum number of colors

needed for such a coloring is called the chromatic number of G, and is usually denoted by

�(G). Determining the chromatic number of a graph is known to be NP-hard (cf. [74]).

Besides its theoretical signi�cance as a canonical NP-hard problem, graph coloring

arises naturally in a variety of applications such as register allocation [23, 24, 25, 33] and

timetable/examination scheduling [16, 191]. In many applications that can be formulated

as graph coloring problems, it su�ces to �nd an approximately optimum graph coloring|a

coloring of the graph with a small though non-optimum number of colors. This along with

1This chapter is based on joint work with Rajeev Motwani and Madhu Sudan.

109

110 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

the apparent impossibility of an exact solution has led to some interest in the problem of

approximate graph coloring.

7.1.2 Prior Work

The analysis of approximation algorithms for graph coloring started with the work of John-

son [97] who shows that a version of the greedy algorithm gives anO(n= logn)-approximation

algorithm for k-coloring. Wigderson [188] improved this bound by giving an elegant algo-

rithm which uses O(n1�1=(k�1)) colors to legally color a k-colorable graph. Subsequently,

other polynomial time algorithms were provided by Blum [17] that use O(n3=8 log8=5 n)

colors to legally color an n-vertex 3-colorable graph. This result generalizes to coloring a

k-colorable graph with O(n1�1=(k�4=3) log8=5 n) colors. The best known performance guaran-

tee for general graphs is due to Halld�orsson [87] who provided a polynomial time algorithm

using a number of colors that is within a factor of O(n(log logn)2= log3 n) of the optimum.

Recent results in the hardness of approximations indicate that it may be not possible

to substantially improve the results described above. Lund and Yannakakis [146] used the

results of Arora, Lund, Motwani, Sudan, and Szegedy [11] and Feige, Goldwasser, Lov�asz,

Safra, and Szegedy [56] to show that there exists a (small) constant � > 0 such that no

polynomial time algorithm can approximate the chromatic number of a graph to within a

ratio of n� unless P = NP. Recently, Bellare and Sudan [14] showed that the exponent � in
the hardness result can be improved to 1=10 unless NQP 6= co-RQP , and to 1=13 unless

NP = co-RP . F�urer has recently given a further improvement to � = 1=5 [64]. However,

none of these hardness results apply to the special case of the problem where the input

graph is guaranteed to be k-colorable for some small k. The best hardness result in this

direction is due to Khanna, Linial, and Safra [117] who show that it is not possible to color

a 3-colorable graph with 4 colors in polynomial time unless P = NP.

7.1.3 Our Contribution

In this work we present improvements on the result of Blum. In particular, we provide a

randomized polynomial time algorithm that colors a 3-colorable graph of maximum degree

� with minf ~O(�1=3); O(n1=4 log n)g colors; moreover, this can be generalized to k-colorable

graphs to obtain a coloring using ~O(�1�2=k) or ~O(n1�3=(k+1)) colors. Besides giving the

best known approximations in terms of n, our results are the �rst non-trivial approxi-

mations given in terms of �. Our results are based on the recent work of Goemans and

7.1. INTRODUCTION 111

Williamson [77] who used an algorithm for semide�nite optimization problems (cf. [85, 5]) to

obtain improved approximations for the MAX CUT and MAX 2-SAT problems. We follow

their basic paradigm of using algorithms for semide�nite programming to obtain an opti-

mum solution to a relaxed version of the problem, and a randomized strategy for \rounding"

this solution to a feasible but approximate solution to the original problem. Motwani and

Naor [150] have shown that the approximate graph coloring problem is closely related to

the problem of �nding a CUT COVER of the edges of a graph. Our results can be viewed

as generalizing the MAX CUT approximation algorithm of Goemans and Williamson to

the problem of �nding an approximate CUT COVER. In fact, our techniques also lead to

improved approximations for the MAX k-CUT problem [63]. We also establish a duality

relationship between the value of the optimum solution to our semide�nite program and the

Lov�asz #-function [85, 86, 142]. We show lower bounds on the gap between the optimum

solution of our semide�nite program and the actual chromatic number; by duality this also

demonstrates interesting new facts about the #-function.

Alon and Kahale [7] use related techniques to devise a polynomial time algorithm for

3-coloring random graphs drawn from a \hard" distribution on the space of all 3-colorable

graphs. Recently, Frieze and Jerrum [63] have used a semide�nite programming formulation

and randomized rounding strategy essentially the same as ours to obtain improved approxi-

mations for the MAX k-CUT problem with large values of k. Their results required a more

sophisticated version of our analysis, but for the coloring problem our results are tight up

to poly-logarithmic factors and their analysis does not help to improve our bounds.

Semide�nite programming relaxations are an extension of the linear programming relax-

ation approach to approximately solving NP-complete problems. We thus present our work

in the style of the classical LP-relaxation approach. We begin in Section 7.2 by de�ning

a relaxed version of the coloring problem. Since we use a more complex relaxation than

standard linear programming, we must show that the relaxed problem can be solved; this

is done in Section 7.3. We then show relationships between the relaxation and the original

problem. In Section 7.4, we show that (in a sense to be de�ned later) the value of the relax-

ation bounds the value of the original problem. Then, in Sections 7.5, 7.6, 7.7, and 7.8 we

show how a solution to the relaxation can be \rounded" to make it a solution to the original

problem. Combining the last two arguments shows that we can �nd a good approximation.

Section 7.3, Section 7.4, and Sections 7.5{7.8 are in fact independent and can be read in

any order after the de�nitions in Section 7.2. In Section 7.9, we investigate the relationship

112 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

between vector colorings and the Lov�asz #-function, showing that they are in fact dual to

one another. We investigate the approximation error inherent in our formulation of the

chromatic number via semi-de�nite programming in Section 7.10.

7.2 A Vector Relaxation of Coloring

In this section, we describe the relaxed coloring problem whose solution is in turn used to

approximate the solution to the coloring problem. Instead of assigning colors to the vertices

of a graph, we consider assigning (n-dimensional) unit vectors to the vertices. To capture

the property of a coloring, we aim for the vectors of adjacent vertices to be \di�erent"

in a natural way. The vector k-coloring that we de�ne plays the role that a hypothetical

\fractional k-coloring" would play in a classical linear-programming relaxation approach to

the problem. Our relaxation is related to the concept of an orthonormal representation of

a graph [142, 85].

De�nition 7.2.1 Given a graph G = (V;E) on n vertices, a vector k-coloring of G is an

assignment of unit vectors ui from the space <n to each vertex i 2 V , such that for any two

adjacent vertices i and j the dot product of their vectors satis�es the inequality

hui; uji � � 1

k � 1
:

The de�nition of an orthonormal representation [142, 85] requires that the given dot

products be equal to zero, a weaker requirement than the one above.

7.3 Solving the Vector Coloring Problem

In this section we show how the vector coloring relaxation can be solved using semidef-

inite programming. The methods in this section closely mimic those of Goemans and

Williamson [77].

To solve the problem, we need the following auxiliary de�nition.

De�nition 7.3.1 Given a graph G = (V;E) on n vertices, a matrix k-coloring of the graph

is an n � n symmetric positive semide�nite matrix M , with mii = 1 and mij � � 1
k�1 if

fi; jg 2 E.

7.3. SOLVING THE VECTOR COLORING PROBLEM 113

We now observe that matrix and vector k-colorings are in fact equivalent (cf. [77]).

Thus, to solve the vector coloring relaxation it will su�ce to �nd a matrix k-coloring.

Fact 7.3.2 A graph has a vector k-coloring if and only if it has matrix k-coloring. More-

over, a vector (k+�)-coloring can be constructed from a matrix k-coloring in time polynomial

in n and log(1=�) time.

Proof: Given a vector k-coloring fvig, the matrix k-coloring is de�ned by mij = hvi; vji.
For the other direction, it is well known that for every symmetric positive de�nite matrix

M there exists a square matrix U such that UUT = M (where UT is the transpose of U).

The rows of U are vectors fuigni=1 that form a vector k-coloring of G.

An �-close approximation to the matrix U can be found in time polynomial in n and

log(1=�) can be found using the Incomplete Cholesky Decomposition [77, 81]. (Here by �-

close we mean a matrix U 0 such that U 0U 0T �M has L1 norm less than �.) This in turn

gives a vector (k + �)-coloring of the graph, provided � is chosen appropriately.

Lemma 7.3.3 If a graph G has a vector k-coloring then a vector (k + �)-coloring of the

graph can be constructed in time polynomial in k, n, and log 1
�
.

Proof: Our proof is similar to those of Lov�asz [142] and Goemans-Williamson [77]. We

construct a semide�nite optimization problem (SDP) whose optimum is � 1
k�1 when k is

the smallest real number such that a matrix k-coloring of G exists. The optimum solution

also provides a matrix k-coloring of G.

minimize �

where fmijg is positive semide�nite
subject to mij � � if (i; j) 2 E

mij = mji

mii = 1:

Consider a graph that has a vector (and matrix) k-coloring. This means there is a solution

to the above semide�nite program with � = � 1
k�1 . The ellipsoid method or other interior

point based methods [85, 5] can be employed to �nd a feasible solution where the value of

the objective is at most �1
k�1 + � in time polynomial in n and log 1

�
. This implies that for

114 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

all fi; jg 2 E, mij is at most � � 1
k�1 , which is at most �1

k+��1 for � = 2�(k � 1)2, provided

� � 1
2(k�1). Thus a matrix (k + �)-coloring can be found in time polynomial in k, n and

log 1
�
. From the matrix coloring, the vector coloring can be found in polynomial time as

was noted in the previous lemma.

7.4 Relating the Original and Relaxed Solutions

In this section, we show that our vector coloring problem is a useful relaxation because the

solution to it is related to the solution of the original problem. In order to understand the

quality of the relaxed solution, we need the following geometric lemma:

Lemma 7.4.1 For all positive integers k and n such that k � n + 1, there exist k unit

vectors in <n such that the dot product of any distinct pair is �1=(k � 1).

Proof: We prove the claim by induction on k. The base case with k = 2 is proved by the

one-dimensional vectors (1) and (�1). Now assume that we can �nd k vectors v1; : : : ; vk

such that hvi; vji � �1
k�1 for i 6= j. We use these vectors to create u1; : : : ; uk+1 as follows. For

i � k, let

ui =

�p
(k�1)(k+1)

k
v1i ; : : : ;

p
(k�1)(k+1)

k
vki ;�

1

k

�
;

where vji denotes the j
th component of the vector vi. In other words, ui contains �1=k in

the new coordinate and looks like vi (scaled to make ui a unit vector) in the old coordinates.

The �nal vector uk+1 = (0; : : : ; 0; 1).

Observe that the dot-product of any vector ui with uk+1 is �1=k. Moreover, for distinct

i, j � k,

hui; uji =
(k � 1)(k+ 1)

k2
hvi; vji+

1

k2

=
�(k � 1)(k+ 1)

k2(k � 1)
+

1

k2

which is also equal to �1=k.

Corollary 7.4.2 Every k-colorable graph G has a vector k-coloring.

Proof: Bijectively map the k colors to the k vectors de�ned in the previous lemma.

7.5. SEMICOLORINGS 115

Note that a graph is vector 2-colorable if and only if it is 2-colorable. Lemma 7.4.1 is

tight in that it provides the best possible value for minimizing the mutual dot-product of k

unit vectors. This can be seen from the following lemma.

Lemma 7.4.3 Let G be vector k-colorable and let i be a vertex in G. The induced subgraph

on the vertices fj j j is a neighbor of i in Gg is vector (k � 1)-colorable.

Proof: Let v1; : : : ; vn be a vector k-coloring of G and assume without loss of generality that

vi = (1; 0; 0; : : : ; 0). Associate with each neighbor j of i a vector v0j obtained by projecting

vj onto coordinates 2 through n and then scaling it up so that v0j has unit length. It su�ces

to show that for any two adjacent vertices j and j0 in the neighborhood of i, hv0j ; v0j0i � �1
k�2.

Observe �rst that the projection of vj onto the �rst coordinate is negative and has magni-

tude at least 1=(k�1). This implies that the scaling factor for v0j is at least
p
(k � 1)=(k� 2).

Thus

hv0j ; v0j0i �
k � 1

k � 2
(hvj; vj0i �

1

(k � 1)2
) � �1=(k � 2)

.

A simple induction using the above lemma shows that any graph containing a (k + 1)-

clique is not k-vector colorable. Thus the \vector chromatic number" lies between between

the clique and chromatic number. This also shows that the analysis of Lemma 7.4.1 is

tight in that � 1
k�1 is the minimum possible value of the maximum of the dot-products of k

vectors.

In the next few sections we prove the harder part, namely, if a graph has a vector

k-coloring then it has an ~O(n1�
3

k+1)-coloring.

7.5 Semicolorings

Given the solution to the relaxed problem, our next step is to show how to \round" the

solution to the relaxed problem in order to get a solution to the original problem. Both

of the rounding techniques we present in the following sections produce the coloring by

working through an almost legal semicoloring of the graph, as de�ned below.

De�nition 7.5.1 A k-semicoloring of a graph G is an assignment of k colors to the vertices

such that at most jV (G)j=4 edges are incident on two vertices of the same color.

116 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

Any constant larger than 2 can replace 4 in the denominator in the above de�nition.

An algorithm for semicoloring leads naturally to a coloring algorithm:

Lemma 7.5.2 If an algorithm A can ki-semicolor any i-vertex subgraph of graph G in

polynomial time, where ki increases with i, then A can be used to O(kn log n)-color G.

Furthermore, if there exists � > 0 such that for all i, ki =
(i�), then A can be used to color

G with O(kn) colors.

Proof: We show how to construct a coloring algorithm A0 to color any subgraph H of G.

A0 starts by using A to semicolor H . Let S be the subset of vertices that have at least one

improperly colored edge incident to them. Observe that jSj � jV (H)j=2. A0 �xes the colors

of vertices not in S, and then recursively colors the induced subgraph on S using a new set

of colors.

Let ci be the maximum number of colors used by A0 to color any i-vertex subgraph.

Then ci satis�es the recurrence

ci � ci=2 + ki:

It is easy to see that this any ci satisfying this recurrence, must satisfy ci � ki log i. In

particular this implies that cn � O(kn log n). Furthermore for the case where ki =
(i�) the

above recurrence is satis�ed only when ci = �(ki).

Using the above lemma, we devote the next few sections to algorithms for transforming

vector colorings into semicolorings.

7.6 Rounding via Hyperplane Partitioning

We now focus our attention on vector 3-colorable graphs, leaving the extension to general

k for later. Let � be the maximum degree in a graph G. In this section, we outline a

randomized rounding scheme for transforming a vector 3-coloring of G into an O(�log3 2)-

semicoloring, and thus into an O(�log
3
2 logn)-coloring of G. Combining this method with

Wigderson's technique yields an O(n0:386)-coloring of G. The method is based on [77] and is

weaker than the method we describe in the following section; however, it introduces several

of the ideas we will use in the more powerful algorithm.

Assume we are given a vector 3-coloring fuigni=1. Recall that the unit vectors ui and uj
associated with an adjacent pair of vertices i and j have a dot product of at most �1=2,
implying that the angle between the two vectors is at least 2�=3 radians or 120 degrees.

7.6. ROUNDING VIA HYPERPLANE PARTITIONING 117

De�nition 7.6.1 Consider a hyperplane H. We say that H separates two vectors if they

do not lie on the same side of the hyperplane. For any edge fi; jg 2 E, we say that the

hyperplane H cuts the edge if it separates the vectors ui and uj.

In the sequel, we use the term random hyperplane to denote the unique hyperplane

containing the origin and having as its normal a random unit vector v uniformly distributed

on the unit sphere Sn. The following lemma is a restatement of Lemma 1.2 of Goemans-

Williamson [77].

Lemma 7.6.2 (Goemans-Williamson [77]) Given two vectors at an angle of �, the

probability that they are separated by a random hyperplane is exactly �=�.

We conclude that for any edge fi; jg 2 E, the probability that a random hyperplane

cuts the edge is exactly 2=3. It follows that the expected fraction of the edges in G that are

cut by a random hyperplane is exactly 2=3. Suppose that we pick r random hyperplanes

independently. Then, the probability that an edge is not cut by one of these hyperplanes is

(1=3)r, and the expected fraction of the edges not cut is also (1=3)r.

We claim that this gives us a good semicoloring algorithm for the graph G. Notice that

r hyperplanes can partition <n into at most 2r distinct regions. (For r � n this is tight

since r hyperplanes create exactly 2r regions.) An edge is cut by one of these r hyperplanes

if and only if the vectors associated with its end-points lie in distinct regions. Thus, we

can associate a distinct color with each of the 2r regions and give each vertex the color of

the region containing its vector. The expected number of edges whose end-points have the

same color is (1=3)rm, where m is the number of edges in E.

Theorem 7.6.3 If a graph has a vector 3-coloring, then it has an O(�log
3
2)-semicoloring

that can be constructed from the vector 3-coloring in polynomial time with high probability.

Proof: We use the random hyperplane method just described. Fix r = 2 + dlog3�e, and
note that (1=3)r � 1=9� and that 2r = O(�log

3
2). As noted above, r hyperplanes chosen

independently at random will cut an edge with probability 1=9�. Thus the expected number

of edges that are not cut is m=9� � n=18 � n=8, since the number of edges is at most

n�=2. By Markov's inequality, the probability that the number of uncut edges is more than

twice the expected value is at most 1=2. But if the number of uncut edges is less than n=4

then we have a semicoloring.

118 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

Repeating the entire process t times means that we will �nd a O(�log
3
2)-semicoloring

with probability at least 1� 1=2t.

Noting that log3 2 < 0:631 and that � � n, this theorem and Lemma 7.5.2 implies a

semicoloring using O(n0:631) colors. However, this can be improved using the following idea

due to Wigderson [188]. Fix a threshold value �. If there exists a vertex of degree greater

than �, pick any one such vertex and 2-color its neighbors (its neighborhood is vector 2-

colorable and hence 2-colorable). The colored vertices are removed and their colors are not

used again. Repeating this as often as possible (or until half the vertices are colored) brings

the maximum degree below � at the cost of using at most 2n=� colors. Thus, we can obtain

a semicoloring using O(n=�+�0:631) colors. The optimum choice of � is around n0:613, which

implies a semicoloring using O(n0:387) colors. This semicoloring can be used to legally color

G using O(n0:387) colors by applying Lemma 7.5.2.

Corollary 7.6.4 A 3-colorable graph with n vertices can be colored using O(n0:387) colors

by a polynomial time randomized algorithm.

By varying the number of hyperplanes, we can arrange for a tradeo� between the number

of colors used and the number of edges that violate the resulting coloring. This may be

useful in some applications where a nearly legal coloring is good enough.

The bound just described is (marginally) weaker than the guarantee of an O(n0:375)

coloring due to Blum [17]. We now improve this result by constructing a semicoloring with

fewer colors.

7.7 Rounding via Vector Projections

This section is dedicated to proving the following more powerful version of Theorem 7.6.3.

Theorem 7.7.1 If a graph has a vector k-coloring, then it has an ~O(�1�2=k)-semicoloring

that can be constructed from the vector coloring with high probability in polynomial time.

As in the previous section, this has immediate consequences for approximate coloring

through Lemma 7.5.2.

We prove this theorem by analyzing a new method for assigning colors to vertices that

provides a signi�cantly better semicoloring than the hyperplane partition method. The

idea is to pick t random centers c1; : : : ; ct 2 <n and use them to de�ne a set of t colors,

7.7. ROUNDING VIA VECTOR PROJECTIONS 119

say 1; : : : ; t. Consider any vertex i and let ui be its associated unit vector from a vector

coloring. We color vertex i according to the center \nearest" to vector ui, i.e. the center

with the largest projection onto ui.

De�nition 7.7.2 Given any �xed vector a, we say that a center cj captures a if for all

i 6= j,

hci; ai < hcj; ai:

Note that this de�nition allows for some vertices not to be captured by any vector, but this

happens with probability approaching 0 in the limit.

Observe that the centers need not be of equal length and thus the nearest center to a

may not be the one of minimum angle displacement from a. Each vector ui is captured by

a unique center and the index of that center is assigned to vertex i as its color. Clearly, this

gives a t-coloring of the vertices of G, but this need not be a legal coloring or even a good

partial coloring in general. However, it is intuitive that since the vectors corresponding

to the endpoints of an edge are \far apart," it is unlikely that both are captured by the

same center; thus, as in the hyperplane rounding method, an edge is likely to be cut by the

coloring. We formalize this intuition and show how to pick centers so that the resulting

coloring is indeed a semicoloring with high probability.

Our basic plan for choosing centers is to give each center a \direction" selected uniformly

at random in <n. The most obvious method for doing this might be to choose the vector

uniformly from the points on the unit sphere in <n. Instead, we choose each center cj

independently at random from the n-dimensional normal distribution. This means that each

of the n components of cj is independently chosen from the standard normal distribution

with expectation 0 and variance 1. The reason for this choice of the distribution will become

clear shortly. Notice that the lengths of these vectors are random, and so they are not unit

vectors. It turns out that the limiting behavior of the random unit vector approach is

exactly the same as for the one we use, but it is much more di�cult to analyze.

We now give an overview of how and why this assignment of centers gives a semicoloring.

As before, the problem reduces to showing that the probability that an edge is cut by the

assignment of colors is high, which in turn reduces to showing that the two endpoints of

an edge are unlikely to be captured by the same center. In particular, suppose we have

a graph with an n-dimensional vector k-coloring. Suppose we throw in t random centers

and use them to assign colors as described above. By de�nition, the dot product between

120 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

the unit vectors assigned to the endpoints of an edge is �1=(k � 1). Let Pk(n; t) be the

probability that two such widely separated vectors are captured by the same center. The

technical work of this section shows that

Pk(n; t) � t�k=(k�2):

Given this fact, we can use the same techniques as the hyperplane rounding scheme to

construct a semicoloring. Take t to be about �1�2=k. Then Pk(n; t) is about 1=�. Using

the same approach as with the hyperplane rounding method, this gives us a semicoloring

with t colors.

We now discuss the analysis of Pk(n; t). This probability is just t times the probability

that both endpoints of an edge are captured by a particular center, say the �rst. To show

this probability is small, note that regardless of the orientation of the �rst center it must

be \far" from at least one of the two vectors it is trying to capture, since these two vectors

are far from each other. For example, in the case of a vector 3-coloring any center must be

at an angle of at least 60� from one of the endpoints of an edge. The center's projection

onto this distant vector is very small, making it likely that some other nearer center will

have a larger projection, thus preventing the center from capturing that far away vector.

We have therefore reduced our analysis to the problem of determining the probability

that a center at a large angle from a given vector captures that vector. We start by deriving

some useful properties of the normal distribution. In particular, we show that the properties

of the normal distribution allow us to reduce the n-dimensional problem under consideration

to a two dimensional one. But �rst, we develop some technical tools that will be applied to

the two-dimensional analysis.

7.7.1 Probability Distributions in <n

Recall that the standard normal distribution has the density function �(x) = 1p
2�
e�x

2=2

with distribution function �(x), mean 0, and variance 1. A random vector r = (r1; : : : ; rn)

is said to have the n-dimensional standard normal distribution if the components ri are

independent random variables, each component having the standard normal distribution.

It is easy to verify that this distribution is spherically symmetric, in that the direction

speci�ed by the vector r is uniformly distributed. (Refer to Feller [57, v. II], Knuth [128],

and R�enyi [173] for further details about the higher dimensional normal distributions.)

7.7. ROUNDING VIA VECTOR PROJECTIONS 121

Subsequently, the phrase \random d-dimensional vector" will always denote a vector

chosen from the d-dimensional standard normal distribution. A crucial property of the nor-

mal distribution that motivates its use in our algorithm is the following theorem paraphrased

from R�enyi [173] (see also Section III.4 of Feller [57, v. II]).

Theorem 7.7.3 (Theorem IV.16.3 [173]) Let r = (r1; : : : ; rn) be a random n-dimensional

vector. The projections of r onto two lines `1 and `2 are independent (and normally dis-

tributed) if and only if `1 and `2 are orthogonal.

Alternatively, we can say that under any rotation of the coordinate axes, the projections

of r along these axes are independent standard normal variables. In fact, it is known that

the only distribution with this strong spherical symmetry property is the n-dimensional

standard normal distribution. The latter fact is precisely the reason behind this choice of

distribution2 in our algorithm. In particular, we will make use of the following corollary to

the preceding theorem.

Corollary 7.7.4 Let r = (r1; : : : ; rn) be a random vector (of i.i.d. standard normal vari-

ables). Suppose we �x two orthogonal unit vectors u1 and u2 in <n. The projections of

r along these two directions, given by the dot products hu1; ri and hu2; ri, are independent

random variables with the standard normal distribution.

It turns out that even if r is a random n-dimensional unit vector, the above lemma still

holds in the limit: as n grows, the projections of r on orthogonal lines approach (scaled)

independent normal distributions. Thus using random unit vectors for centers turns out to

be equivalent to using random normal vectors in the limit, but is much more di�cult to

analyze.

The following two lemmas are also useful in our analysis. The �rst lemma states that the

square of the length of a random vector in two dimensions has the exponential distribution

with parameter 1=2. Recall that the exponential distribution with parameter � has density

function f(x) = �e��x, distribution function F (x) = 1� e��x and expectation 1=�.

Lemma 7.7.5 Let X and Y be standard normal random variables. Then, the random

variable S = X2 + Y 2 has the exponential distribution with parameter � = 1=2.

2Readers familiar with physics will see the connection to Maxwell's law on the distribution of velocities

of molecules in <3. Maxwell started with the assumption that in every Cartesian coordinate system in <3,
the three components of the velocity vector are mutually independent and had expectation zero. Applying

this assumption to rotations of the axes, we conclude that the velocity components must be independent

normal variables with identical variance. This immediately implies Maxwell's distribution on the velocities.

122 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

Proof: Let U = X2 (and V = Y 2) have the density function g(z) and distribution function

G(z). Observe that

G(z) = Pr[jX j � pz]
= �(

p
z)� �(�pz)

= 2�(
p
z)� 1:

Di�erentiating both sides with respect to z,

g(z) = 2
d�(
p
z)

dz
=

1p
z
�(
p
z) =

1p
2�z

e�z=2:

Let S = U + V have density f(x) and distribution F (x). Letting y = z=x, we have

f(x) =

Z 1

�1
g(z)g(x� z) dz

=

Z x

0

e�z=2p
2�z

e�(x�z)=2p
2�(x� z)

dz

=
e�x=2

2�

Z x

0

1p
z(x� z)

dz

=
e�x=2

2�

Z 1

0

1p
y(1� y)

dy

We can �nish here with the observation that the remaining integral is a constant, and

that the density function is shown proportional to e�x=2 and must therefore be equal to

1
2
e�x=2. Alternatively, recall that Euler's beta function B(a; b) (cf. Exercise 1.2.6 (40) [126])

is de�ned for all positive a and b as

B(a; b) =

Z 1

0

ya�1(1� y)b�1 dy

and can be alternatively written as

B(a; b) =
�(a)�(b)

�(a+ b)

where the gamma function has values �(1=2) =
p
� and �(1) = 1. Noting that the integral in

the expression for f(x) is B(1=2; 1=2), we obtain that f(x) = 1
2
e�x=2 de�ning the exponential

distribution with parameter � = 1=2.

7.7. ROUNDING VIA VECTOR PROJECTIONS 123

Lemma 7.7.6 Let Y1, : : :, Yr, and X have the exponential distribution with parameter

� = 1=2. Then the probability of the event E that fX � q �maxi Yig is

r + q

r

!�1
;

where
�
r+q

r

�
is the generalized binomial coe�cient when q is not necessarily an integer.

Proof: By elementary considerations, with f and F denoting the density and cumulative

distribution functions for the exponential distribution, and substituting y for e�x=2q,

Pr[E] =

Z 1

0

f(x) (F (x=q))
r
dx

=

Z 1

0

e�x=2

2

�
1� e�x=2q

�r
dx

=

Z 0

1

yq

2
(1� y)

r �2q
y

dy

= q

Z 1

0

yq�1 (1� y)
r
dy

= q

Z 1

0

yq�1

rX
i=0

r

i

!
(�1)iyi

!
dy

= q

Z 1

0

rX

i=0

r

i

!
(�1)iyi+q�1

!
dy

= q

"
rX

i=0

r

i

!
(�1)i y

i+q

i+ q

!#1
0

= q

rX
i=0

r

i

!
(�1)i
i+ q

=
1

r + q

r

! :

The last equation is Exercise 1.2.6 (48) in Knuth [126]. Since q need not be an integer, the

last expression is a generalized binomial coe�cient.

Notice that the probability bound is essentially r�q for large r. In our application,

q = 1= cos2 ! where ! is half the angle between the endpoints of an edge. Since for vector

3-colorings ! = �=3, we have cos! = 1=2, q = 4 and the probability bound is 1=r4.

124 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

7.7.2 Analyzing the Vector Projection Algorithm

We are now ready to analyze the quality of the partial coloring obtained by using the

projections of random vectors to color the vertices of G. The �rst step in the analysis is to

determine a tight bound on the probability that for a speci�c edge fx; yg the two endpoints
receive the same color. Let ux and uy denote the unit vectors associated with the two

vertices. Recall that the angle between these two vertices is at least 2�=3. Note that the

bad event happens when the same random center, say c1, captures both ux and uy. We will

show that this is unlikely to happen if the number of centers is large.

Fix any two unit vectors a and b in <n such that they subtend an angle of 2�=3 (as

do the vectors of adjacent vertices in a vector 3-coloring). We will study the probability of

the bad event with respect to these vectors, and by the spherical symmetry of the normal

distribution our analysis will apply to the case of two vertex vectors ux and uy. The crucial

step in this analysis is a reduction to a two-dimensional problem, as follows. Note that the

use of the n-dimensional normal distribution was motivated entirely by the need to facilitate

the following lemma.

Lemma 7.7.7 Let � be such that cos � = �1=(k� 1). Let Pk(d; t) denote the probability

of the event that, given any two vectors a, b 2 <d subtending an angle of �, they are both

captured by the same member of a collection of t random centers in <d. Then, for all d � 2

and all t � 1,

Pk(d; t) = Pk(2; t):

Proof: Let H(a; b) be the plane determined by the two vectors a and b. Rotate the

coordinate axes so that the �rst two axes lie in this plane and all other axes are perpendicular

to it. By Corollary 7.7.4, we can still view the random vectors as having been chosen by

picking their components along the new axes as standard normal random variables. Now,

the projection of any vector in <d onto any line of this plane depends only on its components
along the two coordinate axes lying in the plane. In other words, any event depending only

on the projection of the random vectors onto the lines in this plane does not depend on the

components of the vectors along the remaining d � 2 axes. In particular, the probability

Pk(d; t) is the same as Pk(2; t).

In the rest of this section, we will assume that all vectors are in <2, and by the preceding
lemma the resulting analysis will apply to the case of n-dimensional vectors. We focus on

7.7. ROUNDING VIA VECTOR PROJECTIONS 125

the case where the angle between the vectors a and b is 2�=3 and thus bound P3(n; t), but

the analysis generalizes easily to other values of k as well.

Theorem 7.7.8 Let 0 < � < �=3, p = �=�, � = �=3� �, and q = 1= cos2 �. Then,

P3(n; t) = P3(2; t) = O(tpq�dqe(pt)�q):

Proof: We will concentrate on bounding the probability that the �rst random vector, c1,

captures both a and b; clearly, multiplying this by t will give the desired probability. Note

that any vector must subtend an angle of at least �=3 with one of the two vectors a and b.

Assume that c1 subtends a larger angle with a, and hence is at least �=3 radians away from

it. Now, c1 captures a only if none of the remaining t � 1 vectors has a larger projection

onto a. We will bound the probability of this event from above. A similar argument applies

in the case where b is further away from c1.

Let R denote the wedge of the plane within an angle of � from a, and suppose that r

centers fall in this region. If c1 captures a, then its projection onto a must be larger than

that of the r centers in R. In fact, it is easy to see that the projection of c1 onto the

nearer of the two lines bounding R must be larger than the lengths of all the centers in R.

(Observe that the latter is a necessary, but not su�cient, condition for c1 to capture a.)

Essentially this corresponds to the event F that the projection of c1 onto a line at an angle

of � = �=3� � is longer than the lengths of all the centers lying in R.

We will upper bound the probability of the event F . If r random vectors fall into the

region R, then by Lemma 7.7.6 we know that the probability of F is given by

r + q

r

!�1
,

where q = 1= cos2 �. Since the random vectors have a spherically symmetric distribution, the

number of random vectors lying in R has the binomial distribution B(t; p) with p = �=�.

Thus, we obtain the following bound on the probability of F . In the �rst step of the

derivation, we use an identity given in Exercise 1.2.6 (20) of Knuth's book [126], which

applies to generalized binomial coe�cients.

Pr[F] =
tX

r=0

t

r

!
pr(1� p)t�r �

r + q

r

!�1

=

t + q

t

!�1 tX
r=0

t+ q

t � k

!
pr(1� p)t�r

=

t + q

t

!�1 tX
u=0

t + q

u

!
pt�u(1� p)u

126 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

�

t + q

t

!�1 tX
u=0

t + dqe

u

!
pt�u(1� p)u

= p�dqe

t+ q

t

!�1 tX
u=0

t+ dqe

u

!
pt+dqe�u(1� p)u

� pq�dqe

pq

t+ q

t

!!�1
(p+ (1� p))t+dqe

= O(pq�dqe(pt)�q)

By the preceding argument, multiplying this by t gives a bound on the probability Pk(n; t).

Remark: The reason for introducing dqe is that there are two problems with directly

applying the binomial theorem of calculus: for one, we are outside the radius of convergence

of the in�nite sum; and for the other, the in�nite sum has negative terms so we cannot

immediately make claims about the �rst few terms being less than the whole sum.

The above theorem applies regardless of how we choose � (thus determining p and q).

We now show how t and � should be chosen so as to ensure that we get a semicoloring.

Corollary 7.7.9 P3(2; t) = O(t�3 log4 t):

Proof: We set � = 1= log t. Thus p = 1=(� log t). To get q, we use the Taylor expansions

for sines and cosines. In fact, the particular constants do not matter: it su�ces to note

that q = 1= cos2(�=3� �) = 4� O(�). Thus, q � dqe = O(�) and

pq�dqe = ���(�) = log��(1= log t t = �(1):

By Theorem 7.7.8 we have

P3(2; t) = O(t(pt)�q)

= O
�
t(t log t)�4(1�O(1= log t))

�
= O(t�3 log4 t):

Lemma 7.7.10 The vector projection algorithm provides an O(�1=3 log4=3�)-semicoloring

of a 3-colorable graph G with maximum degree � (w.h.p.).

7.8. APPROXIMATION FOR K-COLORABLE GRAPHS 127

Proof: We use t = �1=3 log4=3� random vectors and apply the above corollary. It follows

that the probability that a particular edge is not legally colored is at most O(1=�). Thus

the expected number of edges that are not legally colored is at most O(n), and can be made

less than n=4 by proper choice of constants.

As in Theorem 7.6.3, we now apply the idea of �nding a legally colored set of linear size

and recursively coloring the remaining graph.

Theorem 7.7.11 A vector 3-colorable graph G with n vertices and maximum degree �

can be colored with O(�1=3 log
4=3

� logn) colors by a polynomial time randomized algorithm

(with high probability).

As in Corollary 7.6.4, we now use Wigderson's technique (with � = n3=4= logn) to get

a O(n1=4 logn)-semicoloring of any vector 3-colorable graph. The next result follows from

an application of Lemma 7.5.2.

Theorem 7.7.12 A vector 3-colorable graph G with n vertices can be colored with O(n1=4 log n)

colors by a polynomial time randomized algorithm (with high probability).

The analysis of the vector projection algorithm given above is tight to within polylog-

arithmic factors. A tighter analysis, due to Coppersmith [40], shows that the number of

colors used by this algorithm is �((n logn)1=4).

7.8 Approximation for k-Colorable Graphs

An easy generalization of the above shows that for any constant vector-chromatic number �,

we can color a graph of maximum degree � using �1�2=�+o(1) colors. The only change is in

the degree of separation between the vectors of the endpoints of an edge. Suppose a graph

is �-colorable. Then it is vector �-colorable, meaning we can assign unit vectors so that the

vectors on the endpoints of an edge have dot-product at most �1=(�� 1). We round these

vectors with the same approach of using random centers. The only change in the analysis

is in determining the probability that with t random centers, the same center will capture

both endpoints of an edge. This analysis is a generalization of Theorem 7.7.8, where now

� = 1
2
arccos(1=(�� 1))� �, so that q = 1= cos2 � � 2(� � 1)=(�� 2). We deduce that the

probability that an edge is cut is approximately t��=(��2) so that �1�2=�+o(1) centers su�ce

to give a semicoloring.

128 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

Ignoring the o(1) term, we determine absolute approximation ratios independent of �.

We identify a positive real function r(�) such that we can color a vector �-chromatic graph

with at most nr(�) colors. For each �, we establish a degree threshold �� = ��(n). While

the degree exceeds ��, we take a neighborhood of a vertex of degree d � �� and recursively

dr(��1)-color it and discard it (by Lemma 7.4.3 the neighborhood is vector (��1)-chromatic).
The average number of colors used per vertex in this process is dr(��1)�1 � �r(��1)�1

� . Thus

the total number of colors used up in this process is at most n�r(��1)�1
� colors. Once the

degree is less than ��, we use our coloring algorithm directly to use an additional �1�2=�
�

colors. We balance the colors used in each part by setting

n�r(��1)�1
� = �1�2=�

�

which implies that

n = �2�2=��r(��1)
� ;

�� = n1=(2�2=��r(��1))

We obtain a coloring with n(1�2=�)=(2�2=��r(��1)) colors, in other words

r(�) = (1� 2=�)=(2� 2=�� r(�� 1)):

By substitution, r(�) = 1� 3=(�+ 1).

Theorem 7.8.1 A vector �-colorable graph can be colored using ~O(�1�2=�) or ~O(n1�3=(�+1))

colors.

7.9 Duality Theory

The most intensively studied relaxation of a semide�nite programming formulation to date

is the Lov�asz #-function [85, 86, 142]. This relaxation of the clique number of a graph

led to the �rst polynomial-time algorithm for �nding the clique and chromatic numbers of

perfect graphs. We now investigate a connection between # and a close variant of the vector

chromatic number.

Intuitively, the clique and coloring problems have a certain \duality" since large cliques

prevent a graph from being colored with few colors. Indeed, it is the equality of the clique

and chromatic numbers in perfect graphs that lets us compute both in polynomial time.

7.9. DUALITY THEORY 129

We proceed to formalize this intuition. The duality theory of linear programming has an

extension to semide�nite programming. With the help of Eva Tardos and David Williamson,

we have shown that in fact the #-function and a close variant of the vector chromatic number

are semide�nite programming duals to one another and are therefore equal.

We �rst de�ne the variant.

De�nition 7.9.1 Given a graph G = (V;E) on n vertices, a strict vector k-coloring of G

is an assignment of unit vectors ui from the space <n to each vertex i 2 V , such that for

any two adjacent vertices i and j the dot product of their vectors satis�es the equality

hui; uji = � 1

k � 1
:

As usual we say that a graph is strictly vector k-colorable if it has a strict vector k-

coloring. The strict vector chromatic number of a graph is the smallest real number k

for which it has a strict vector k-coloring. It follows from the de�nition that the vector

chromatic number of any graph lower bounds by the strict vector chromatic number.

Theorem 7.9.2 The strict vector chromatic number of G is equal to #(G).

Proof: Using any reference to semide�nite programming duality (for example, [5]), we �nd

the dual of our vector coloring semide�nite program:

maximize �
X

pii

where fpijg is positive semide�nite
subject to

X
i6=j

pij � 1

pij = pji

pij = 0 for (i; j) =2 E and i 6= j

By duality, the value of this SDP is �1=(k � 1) where k is the strict vector chromatic

number. Our goal is to prove k = #. As before, the fact that fpijg is positive semide�nite
means we can �nd vectors vi such that pij = hvi; vji. The last constraint says that the

vectors v form an orthogonal labeling [86], i.e. that hvi; vji = 0 for (i; j) =2 E. We now claim

that optimization problem can be reformulated as follows:

maximize
�Phvi; viiP
i6=jhvi; vji

130 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

over all orthogonal labelings fvig. To see this, consider an orthogonal labeling and de�ne

� =
P

i6=jhvi; vji. Note this is the value of the �rst constraint in the �rst formulation of the

dual (so � � 1) and of the denominator in the second formulation. Then in an optimum

solution to the �rst formulation, we must have � = 1, since otherwise we can divide each vi

by
p
� and get a feasible solution with a larger objective value. Thus the optimum of the

second formulation is at least as large as that of the �rst. Similarly, given any optimum fvig
for the second formulation, vi=

p
� forms a feasible solution to the �rst formulation with the

same value. Thus the optima are equal. We now manipulate the second formulation.

max
�Phvi; viiP
i6=jhvi; vji

= max
�Phvi; viiP

i;jhvi; vji �
Phvi; vii

=

min

P
i;jhvi; vji �

Phvi; vii
�Phvi; vii

!�1

=

min�

P
i;jhvi; vjiPhvi; vii + 1

!�1

= �

max

P
i;jhvi; vjiPhvi; vii � 1

!�1
:

It follows from the last equation that the vector chromatic number is

max

P
i;jhvi; vjiPhvi; vii :

However, by the same argument as used to reformulate the dual, this is equal to problem of

maximizing
P

i;jhvi; vji over all orthogonal labelings such that
Phvi; vii � 1. This is simply

Lov�asz's #3 formulation of the #-function [86, page 287].

7.10 The Gap between Vector Colorings and Chromatic Num-

bers

The performance of our randomized rounding approach seems far from optimum. In this

section we ask why, and show that the problem is not in the randomized rounding but in the

gap between the original problem and its relaxation. We investigate the following question:

given a vector k-colorable graph G, how large can its chromatic number be in terms of k

and n? We will show that a graph with chromatic number n
(1) can have bounded vector

chromatic number. This implies that our technique is tight in that it is not possible to

7.10. THE GAP BETWEENVECTOR COLORINGS ANDCHROMATIC NUMBERS131

guarantee a coloring with no(1) colors on all vector 3-colorable graphs. Lov�asz [143] pointed

out that for a random graph � = n= logn while # =
p
n, and that a graph constructed

by Koniagin has � � n=2 and # = n1=3. However, such large gaps are not known for the

case of bounded #. Our \bad" graphs are the so-called Kneser graphs [125]. (Independent

of our results, Szegedy [179] has also shown that a similar construction yields graphs with

vector chromatic number at most 3 that are not n0:05-colorable. Notice that the exponent

obtained from his result is better than the one shown below.)

De�nition 7.10.1 The Kneser graph K(m; r; t) is de�ned as follows: the vertices are all

possible r-sets from a universe of size m; and, the vertices vi and vj are adjacent if and

only if the corresponding r-sets satisfy jSi \ Sj j < t.

We will need following theorem of Milner [149] regarding intersecting hypergraphs. Re-

call that a collection of sets is called an antichain if no set in the collection contains another.

Theorem 7.10.2 (Milner) Let S1, : : :, S� be an antichain of sets from a universe of size

m such that, for all i and j,

jSi \ Sjj � t:

Then, it must be the case that

� �

m
m+t+1

2

!
:

Notice that using all q-sets, for q = (m+ t + 1)=2, gives a tight example for this theorem.

The following theorem establishes that the Kneser graphs have a large gap between their

vector chromatic number and chromatic numbers.

Theorem 7.10.3 Let n =
�
m

r

�
denote the number of vertices of the graph K(m; r; t). For

r = m=2 and t = m=8, this graph is 3-vector colorable but has chromatic number n0:0113.

Proof: We prove a lower bound on the Kneser graph's chromatic number � by establishing

an upper bound on its independence number �. It is easy to verify that the � in Milner's

theorem is exactly the independence number of the Kneser graph. We can bound � as

follows, using the standard equality that

a

b

!
= �

 �
a

b

�b� a

a � b

�a�b!

132 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

for b linearly related to a. For the purposes of determining the exponent in the chromatic

number, the constant factor hidden in the �-notation can and will be ignored. We now

observe that

� � n

�

�
�
m

r

�
�

m

(m+t)=2

�
=

"
(2)1=2(2)1=2

(16=9)9=16(16=7)7=16

#m

= (1:007864)m

Again using the approximation,

n =

m

r

!
=
h
(2)1=2(2)1=2

im
� 2m:

Since n � lgm, it follows that

� � (1:007864)lgn = nlg 1:007864 � n0:0113:

Finally, it remains to show that the vector chromatic number of this graph is 3. This

follows by associating with each vertex vi an m-dimensional vector obtained from the char-

acteristic vector of the set Si. In the characteristic vector, +1 represents an element present

in Si and �1 represents elements absent from Si. The vector associated with a vertex is

the characteristic vector of Si scaled down by a factor of
p
m to obtain a unit vector. It is

easy to see that the dot product of adjacent vertices, or sets with intersection at most t, is

bounded from above by

�4r � 4t�m

m
= �1=2:

This implies that the vector chromatic number is 3.

More re�ned calculations can be used to improve this bound somewhat.

Theorem 7.10.4 There exists a Kneser graph K(m; r; t) that is 3-vector colorable but has

chromatic number exceeding n0:016101, where n =
�
m

r

�
denotes the number of vertices in the

graph. Further, for large k, there exists a Kneser graph K(m; r; t) that is k-vector colorable

but has chromatic number exceeding n0:0717845.

7.11. CONCLUSIONS 133

Proof: The basic idea is to improve the bound on the vector chromatic number of the

Kneser graph using an appropriately weighted version of the characteristic vectors. We

use weights a and �1 to represent presence and absence, respectively, of an element in the

set corresponding to a vertex in the Kneser graph, with appropriate scaling to obtain a

unit vector. The value of a that minimizes the vector chromatic number can be found by

di�erentiation and is

A = �1 + mr

r2 � rt
� mt

r2 � rt

Setting a = A proves that the vector chromatic number is at most

m(r � t)

r2 �mt
:

At the same time, using Milner's Theorem proves that the exponent of the chromatic number

is at least

1� (m� t) log 2m
m�t + (m+ t) log 2m

m+t

2
�
(m� r) log m

m�r + r log m

r

� :

By plotting these functions, we have shown that there is a set of values with vector chro-

matic number 3 and chromatic number at least n0:016101. For vector chromatic number

approaching in�nity, the limiting value of the exponent of the chromatic number is roughly

0:0717845.

7.11 Conclusions

The Lov�asz number of a graph has been a subject of active study due to the close connections

between this parameter and the clique and chromatic numbers. In particular, the following

\sandwich theorem" was proved by Lov�asz [142] (see Knuth [129] for a survey).

!(G) � #(G) � �(G): (7.1)

This has led to the hope that the following extended version may be true.

Conjecture 7.11.1 There exist �, �0 > 0 such that, for any graph G on n vertices

#(G)

n1��
� !(G) � #(G) � �(G) � #(G)� n1��

0

: (7.2)

134 CHAPTER 7. RANDOMIZED ROUNDING FOR GRAPH COLORING

Our work provides reinforcement for this hope by giving an upper bound on the the chro-

matic number of G in terms of #(G). However, this is far from achieving the bound conjec-

tured above and it remains to be seen if this conjecture is true. In related work, Szegedy [179]

studies various aspects of the parameter # and, with respect to this conjecture, shows that

there is such an � bounded away from zero if and only if there is an �0 bounded away from

zero. Alon, Kahale and Szegedy [160] have also been able to use the semide�nite pro-

gramming technique in conjunction with our techniques to obtain algorithms for computing

bounds on the clique number of a graph with linear-sized cliques, improving upon some

results due to Boppana and Halldorsson [20].

In terms of disproving such a conjecture (or, proving upper bounds on � and �0), relevant

results include the following: Lov�asz [143] points out that for a random graph G, �(G) =

n= logn while #(G) =
p
n; Koniagin has demonstrated the existence of a graph that has

�(G) � n=2 and #(G) = O(n2=3 logn); Alon [6] has explicit constructions matching or

slightly improving both these bounds. Our constructions from Section 7.10 are of a similar

avor and provide graphs with vector chromatic number at most 3 but with �(G) � n�.

In fact, by using a similar construction and applying a result of Frankl and Rodl [61],

we can also construct graphs with #(G) � 3 and �(G) � n�. Independent of our results,

Szegedy [178] has also shown that a similar construction yields graphs with vector chromatic

number at most 3 but which are not colorable using n0:05 colors. Notice that the exponent

obtained from his result is better than the one in Section 7.10. Alon [6] has obtained a

slight improvement over Szegedy's bound by using an interesting variant of the Kneser

graph construction.

The connection between the vector chromatic number and the clique/chromatic numbers

is far from being completely understood and it is our hope that this work will motivate

further study of this relationship.

A preliminary version of this chapter appeared in [108].

Chapter 8

Conclusion

This work has discussed several di�erent approaches to random sampling for graph opti-

mization problems. In all of them, the unifying idea has been that a random sample is

\typical." Information about the entire problem can be gleaned from a small random sam-

ple at little cost. A very general approach is to generate a small random representative

subproblem, solve it quickly, and use the information gained to home in on the solution to

the entire problem. In particular, an optimal solution to the subproblem may be a good so-

lution to the original problem which can quickly be improved to an optimal solution. While

this paradigm has been applied frequently in the realm of computational geometry [34], it

seems to have been less prevalent in general combinatorial optimization. There are therefore

many problems which could potentially bene�t from the approach. One broad category that

we have not addressed is that of problems on directed graphs. None of the techniques we

developed here appear to apply, but we also have no proofs that random sampling cannot

work in such a case.

Another general question is to what extent randomization is truly necessary. This can

be asked in a variety of ways. The purely theoretical is to ask whether it is possible to

derandomize the algorithm. We have shown that this is the case for the minimum cut

problem, giving a deterministic parallel algorithm. On the other hand, for the problem

of constructing graph skeletons deterministically, we do not yet have even a deterministic

polynomial time algorithm, much less a deterministic parallel one. From a more practical

perspective, derandomization is questionable when it causes tremendous increases in the

running times or processor bounds (as was the case for our minimum cut algorithm). The

goal instead is to �nd practical derandomizations which do not increase time bounds. One

135

136 CHAPTER 8. CONCLUSION

question which arises here is whether there is a deterministic linear time minimum spanning

tree algorithm. Another is whether our graph coloring algorithm can be derandomized.

Part II

Extensions

137

Chapter 9

Extensions of the Contraction

Algorithm

We now discuss extensions to Contraction Algorithm algorithm. Our algorithm can be used

to compute (and enumerate) minimum multi-way cuts. The minimum r-way cut problem

is to �nd a minimum weight set of edges whose removal partitions a given graph into r

separate components. Previously, the best known sequential bound, due to Goldschmidt and

Hochbaum [80], was O(nr
2=2�r+11=2), and no parallel algorithm was known. Our algorithm

runs in ~O(n2(r�1)) time, and in RNC using n2(r�1) processors. This shows that the minimum
r-way cut problem is in RNC for any constant r. In contrast, it is shown in [42] that the

multiway cut problem in which r speci�ed vertices are required to be separated (i.e., a

generalization of the s-t minimum cut problem) is NP-complete for any r > 2. The

algorithm can be derandomized in the same way as for minimum cuts, which as a side

e�ect lets us enumerate all minimum cuts within an arbitrary constant factor multiple of

the optimum.

A minor modi�cation of Recursive-Contract lets us use it to construct the cactus

representation of minimum cuts introduced in [44]. We improve the sequential time bound

of this construction to ~O(n2) from ~O(mn). We give the �rst RNC algorithm for weighted

graphs, improving the previous (unweighted graph) processor bound from mn4:5 to n4.

A more complex modi�cation lets us us make the contraction algorithm more e�cient if

we are willing to accept an approximately minimum cut as the answer. We give an algorithm

that uses m+ c2n2=� processors to �nd a cut of value at most � times the minimum cut c.

The dependence on c can be eliminated using p-skeleton techniques from Chapter 6.

139

140 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHM

We �nish this chapter with two complexity-theoretic results. In Section 9.5 we discuss

trading time for space, showing that we can still match the ~O(mn) time bounds of pre-

vious minimum cut algorithms, even if our computational space is restricted to O(n). In

Section 9.6, we show that the minimum cut lies near the bottom of the parallel complexity

hierarchy, since it can be solved in O(logn) time in the EREW model of computation.

9.1 Multiway Cuts

With a small change, the Contraction Algorithm can be used to �nd a minimum weight

r-way cut that partitions the graph into r pieces rather than 2. As before, the key to the

analysis is to apply Lemma 3.4.1 by bounding the probability p that a randomly selected

graph edge is from a particular minimum r-cut. Throughout, to simplify our asymptotic

notation, we assume r is as constant.

Lemma 9.1.1 The number of edges in the minimum r-way cut of a graph with m edges

and n vertices is at most

[1� (1� r � 1

n
)(1� r � 1

n � 1
)]m

Proof: We use the probabilistic method. Suppose we choose r � 1 vertices uniformly at

random, and consider the r-way cut de�ned by taking each of the chosen vertices alone as

of the r � 1 vertex sets of the cut and all the other vertices as the last set. An edge is in

an r-way cut if its endpoints are in di�erent partitions. The probability that a particular

edge is in the cut is thus the probability that either of its endpoints is one of the r � 1

single-vertex components of the cut, which is just

1� (1� r � 1

n
)(1� r � 1

n� 1
):

Let f be the number of edges cut by this random partition, and m the number of graph

edges. The number of edges we expect to cut is m times the probability that any one edge

is cut, i.e.

E[f] = [1� (1� r � 1

n
)(1� r � 1

n� 1
)]m;

Since f can be no less than the value of the minimum r-way cut, E[f] must also be no less

than the minimum r-way cut.

The quantity in brackets is thus an upper bound on the probability that a randomly

selected edge is an r-way minimum cut edge.

9.1. MULTIWAY CUTS 141

Theorem 9.1.2 Stopping the Contraction Algorithm when r vertices remain yields a par-

ticular minimum r-way cut with probability at least

r

n

r � 1

!�1
n� 1

r � 1

!�1
=
(n�2(r�1)):

Proof: By the previous lemma, arguing as in Lemma 4.2.1, the probability that a particular

minimum r-cut survives the reduction process until there are r vertices remaining is at least

nY
u=r+1

(1� r � 1

u
)(1� r � 1

u� 1
)

=
nY

u=r+1

(1� r� 1

u
)

nY
u=r+1

(1� r � 1

u� 1
)

= r

n

r � 1

!�1
n � 1

r � 1

!�1
:

Corollary 9.1.3 The probability that a particular minimum r-way cut survives contraction

to k � r vertices is
((k=n)2(r�1)).

Corollary 9.1.4 There are O(n2(r�1)) minimum multiway cuts in a graph.

Proof: Use the same argument as for counting approximately minimum cuts.

Theorem 9.1.5 All minimum r-way cuts in a graph can be found with high probability in

O(n2(r�1) log2 n) time, or in RNC using n2(r�1) processors.

Proof: Apply the Recursive Contraction Algorithm, but contract at each level by a factor

of 2(r�1)
p
2 and stop when r vertices remain. The recurrence for the probability of success is

unchanged. The running time recurrence becomes

T (n) = n2 + 2T (n=21=2(r�1))

and solves to T (n) = O(n2(r�1)). The fact that all cuts are found follows as in the approxi-

mately minimal cuts case.

Remark: The disappearance of an O(logn) factor that was present in the 2-way cut case

was brought to our attention by Jan Hvid Sorensen.

142 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHM

This is a signi�cant improvement over the previously best known sequential time bound

of O(nr
2�r+11=2) reported in [80]. This also provides the �rst proof that the multiway

cut problem is in RNC for constant r. The extension of these techniques to approximately

minimum multiway cuts is an easy exercise that we omit due to rather complicated notation

needed.

9.2 Derandomization Extensions

In this section, we show how our derandomization techniques can be extended to �nding

minimum multiway cuts and approximately minimum cuts in NC.

9.2.1 Multiway Cuts

We can derandomize the multiway cut problem as we did the minimum cut problem. For

constant r, we can use the safe sets technique to solve the r-way cut problem in NC. The
following lemma is the natural extension of the cut counting lemma to multiway cuts, and

is proved in the same way as Theorem 4.7.6 and Corollary 9.1.4.

Lemma 9.2.1 The number of r-way cuts with value within a multiplicative factor of � of

the r-way min-cut is O(n2�(r�1)).

The next lemma reduces to Lemma 5.3.1 when r = 2.

Lemma 9.2.2 In an r-way min-cut (X1; : : : ; Xr) of value c, each Xi has minimum cut at

least 2c=(r� 1)(r+ 2).

Proof: Assume that set X1 has a cut (A;B) of w edges. We prove the lemma by lower

bounding w.

Suppose that two sets Xi and Xj are connected by more than w edges. Then merging

Xi and Xj and splitting X1 into A and B would yield an r-way cut of smaller value, a

contradiction. It follows that the total number of cut edges not incident on X1 can be at

most
�
r�1
2

�
w.

Now suppose that more than 2w edges connect X1 and some Xj. Then more than w

edges lead from Xj to either A or B, say A. Thus splitting X1 into A and B and merging

A with Xj would produce a smaller r-way cut, a contradiction. It follows that the number

of edges incident on X1 can be at most 2(r� 1).

9.2. DERANDOMIZATION EXTENSIONS 143

Combining the previous two arguments, we see that the r-way cut value c must satisfy

c �

r � 1

2

!
w + 2w(r� 1);

implying the desired result.

Combining the two previous lemmas shows that there is a polynomial-sized set of ap-

proximately minimum cuts that we can eliminate with the safe sets technique to isolate the

minimum r-way cut.

Theorem 9.2.3 On unweighted graphs, the r-way min-cut problem can be solved in NC
for any constant r.

Proof: We proceed exactly as in the two-way min-cut case. Consider the minimum r-way

cut (X1; : : : ; Xr) of value c. By the previous lemma, the minimum cut in each component

is large; thus by Lemma 5.3.2 the number of cuts whose size is less than 2c is polynomial

in n. It follows that we can �nd a universal isolating family contains an isolator for the

minimum r-way cut. Contracting the edges in this isolator yields a graph in which each

component of the r-way minimum cut has no small cut. Then the (2-way) minimum cut

in this contracted graph must be a \part of" the r-way minimum cut. More precisely, it

cannot cut any one of the Xi, so each Xi is entirely on one or the other side of the cut. We

can now �nd minimum cuts in each of the sides of the minimum cut; again they must be

part of the r-way minimum cut. If we repeat this process r times, we will �nd the r-way

minimum cut.

9.2.2 Approximate Cuts

We can similarly extend our algorithm to enumerate all cuts with value within any constant

factor multiple of the minimum cut. This plays an important role in our extension to

weighted graphs.

Lemma 9.2.4 Let c be the minimum cut in a graph. If (A;B) is a cut with value �c, then

the minimum r-way cut in A has value at least (r � �)c=2.

Proof: Let fXigri=1 be the optimum r-way cut of A, with value �. This means there are �

edges with both endpoints in A. There are also �c edges with exactly one endpoint in A.

144 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHM

Thus the sum of the degrees of the Xi is 2� + �c. We also know that each Xi has degree

at least c. Thus 2� + �c � rc, and the result follows.

Theorem 9.2.5 For constant �, all cuts with value at most � times the minimum cut's

can be found in NC.

Proof: For simplicity, assume without loss of generality that � is an integer. Fix a particular

cut (A;B) of value �c. Let r = �+ 2. By Lemma 9.2.4, the minimum r-way cut in A (and

in B) has value at least c. Lemma 9.2.1 says that as a consequence there are nO(1) r-way

cuts in A (or B) with value less than 3r�c. De�ne a safe sets instance whose target sets are

all such multiway cuts and whose safe set is the cut (A;B). By �nding an isolator for the

instance and contracting the edges in it, we ensure that the minimum r-way cut in each of

A and B exceeds 3r�c.

Suppose that after isolating the cut we want, we run our parallelization of Matula's

Algorithm, constructing k-jungles with k = �c. Since the r-way cut is at least 3r�c in each

of A and B, at most (r � 1) vertices in each set have degree less than 6�c. It follows that

so long as the number of vertices exceeds 4r, the number of edges will reduce by a constant

factor in each iteration of the algorithm. In other words, in O(logm) steps, the number of

vertices will be reduced to 4r in such a way that the cut of value �c is preserved. We can

�nd it by examining all possible partitions of the 4r remaining vertices, since there are only

a constant number.

There is an obvious extension to approximate multiway cuts; however we omit the

notationally complicated exposition.

9.3 Cut Data Structures

Researchers have investigated several representations of the minimum cuts of a graph. Desir-

able properties of such representations include small space requirements and, perhaps more

importantly, the ability to quickly answer queries about the minimum cuts in the graph.

Several representations are known [44, 66]. We concentrate on the cactus representation [44]

and show how that Contraction Algorithm can be used to construct it.

9.3. CUT DATA STRUCTURES 145

9.3.1 The Cactus Representation

This data structure represents all
�
n

2

�
minimum cuts via an n-node, O(n)-edge graph. It

can be used to quickly identify, for example, all minimum cuts separating a particular pair

of vertices. A cactus is a graph such that every edge is contained in at most one cycle. It

therefore looks like a tree, except that each of the \nodes" in the cactus can be a vertex or

a simple cycle. In a c-weighted cactus, each non-cycle edge of the cactus gets weight c and

each cycle edge gets weight c=2. The minimum cuts in this cactus are therefore produced

by cutting either a single non-cycle edge or two cycle edges on the same cycle. A cactus

representation for a graph G with minimum cut c is a c-weighted cactus C and a (not

necessarily injective) mapping � from the vertices of G to those of C, such that there is a

one to one correspondence between the minimum cuts of G and those in the cactus. More

precisely, for vertex set X , let �(X) = f�(v) j v 2 Xg. Then X should be one side of a

minimum cut in G if and only if �(X) is one side of a minimum cut in C.

Karzanov and Timofeev [116] give an algorithm for constructing the cactus sequentially;

their algorithm is parallelized by Naor and Vazirani [156]. We describe the general frame-

work of both algorithms below. The reader is referred to [156] for a much more detailed

description.

1. Number the vertices so that for each vertex (except vertex 1) is connected to at least

one lower numbered vertex.

2. For each i � 2, compute the set Si of minimum cuts that separate vertices f1; : : : ; i�1g
from vertex i.

3. Form a cactus out of [iSi.

Step 2 turns out to be the crux of the algorithm. The sets Si form what we call the

chain representation of minimum cuts, for reasons we now explain. For our explanation, it

is convenient to slightly change our de�nition of cuts. Given a cut (A;B), we can identify

the cut with either set A or set B since one is a complement of the other. To make the

identi�cation unique we take the set containing vertex 1. Thus a cut is simply a set A of

vertices containing vertex 1, and its value is weight of edges with exactly one endpoint in

A. We will say that the vertices in A are inside the cut, and those not in A are outside the

cut. We let the size of a cut be the number of vertices in its representative set.

146 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHM

Given the numbering of Step 1 and our rede�nition of cuts, each Si has a particularly

nice structure. Namely, given any two cuts A and A0 in Si, either A � A0 or A0 � A.

This property is typically referred to the non-crossing cut property. It follows that the cuts

in Si form a chain, i.e. the cuts can be numbered as Ai such that A1 � A2 � � � � � Ak.

Therefore, it is easy to represent each set Si in O(n) space, meaning that the sets Si form

an O(n2)-size chain representation of the minimum cuts of G.

We now consider the implementations of the cactus construction. Step 1 of the algorithm

can be implemented easily: �nd a spanning tree of G and then number the vertices according

to a preorder traversal. This can be done in O(m) time sequentially and also in O(logn)

time using m= logn processors in parallel [114]. Step 3 can also be implemented relatively

e�ciently. Karzanov and Timofeev [116] describe a sequential implementation that, given

the set of chains for each Si, takes O(n
2) time. Naor and Vazirani [156] do not explicitly

bound their implementation of Step 3, but it can be shown to run in O(log2 n) time using n4

processors. For both the sequential and parallel algorithms, the bottleneck in performance

turned out to be Step 2, constructing the chain representation fSig.
Each Si can be found via a maximum
ow computation and a strongly connected com-

ponents computation and thus Step 2 can be done by n such computations. This led to

a sequential algorithm that took ~O(n2m) time [116] and an O(log2 n) time randomized al-

gorithm that used n4:5m processors on unweighted graphs [156]. We will explain how to

implement Step 2 to run with the same bounds as the Recursive Contraction Algorithm

(up to constant factors), thus leading to improved sequential time and parallel processor

bounds.

9.3.2 The Chain Representation

Suppose that for each vertex number j, we know the size of the smallest cut in Si containing

j (that is, with j on the same side as vertex 1). Then it is straightforward to construct Si

in O(n) time. Bucket-sort the vertices according to the smallest Si-cut containing them.

Those inside the smallest cut form A1; those inside the next smallest form A2 � A1, and

so on. Therefore, we have reduced the problem of constructing the Si to the following: for

each i and j, identify the smallest Si-cut containing j. We now show how to modify the

Recursive Contraction Algorithm to recursively compute this information. For simplicity,

assume that we have already run the Recursive Contraction Algorithm once so that the

value of the minimum cut is known.

9.3. CUT DATA STRUCTURES 147

We begin by adding two information �elds to each metavertex v that arises during

the Recursive Contraction Algorithm's execution. Let size(v) be the number of vertices

contained in v, and let min(v) be the smallest label of a vertex in v. Note that these two

quantities are easy to update as the algorithm executes; when we merge two metavertices,

the updated values are determined by a sum and a minimum operation. Now consider a

leaf in the computation tree of the Recursive Contraction Algorithm. One metavertex v in

this leaf will have min(v) = 1 while the other metavertex w will have min(w) = i for some

i. If this leaf corresponds to a minimum cut of G, then we call it an i-leaf. Each i-leaf

must correspond to a cut in Si, since by the labeling vertices 1; : : : ; i� 1 must be in v while

vertex i must be in w. Furthermore, size(v), which we also call the size of the i-leaf, is just

the number of vertices inside the corresponding minimum cut. We have therefore reduced

our chain construction problem to the following: for each pair of labels i and j, �nd the

minimum size i-leaf containing j (where we identify an i-leaf with the cut (set of vertices)

it represents).

We solve this problem by generalizing it while running the Recursive Contraction Algo-

rithm. Consider some graph G that arises at some point in the computation tree. We solve

the following problem: for each pair of labels i and j of vertices in G, consider all i-leaves

that are descendants of G, and �nd �iG(j), the smallest i-leaf descendant of G containing j.

Recalling that in the computation tree G has two contracted graphs G0 and G00 as children,

we show that it is easy to compute �iG from �iG0 and �iG00 . Note that each i-leaf descended

from G is descended from either G0 or G00. Consider graph G0. The metavertices with labels

i and j in G are merged into metavertices with labels i0 and j0 in G0. Suppose i 6= i0. Then

there is no vertex labeled i in G0, and it follows by induction that there is no i-leaf descended

from G0. If i = i0, then the smallest i-leaf descendent of G0 containing j is just the smallest

i0-leaf descendant of G0 containing j0, namely �i
0

G0(j0). Applying the same argument to G00,

it follows that

�iG(j) = min(�iG0(j0); �iG00(j0));

where �iG() is de�ned to be in�nite if there is no vertex labeled i in G.

We have therefore shown that, after the recursive calls to G0 and G00 which return �G0

and �G00 , the new �iG(j) can be computed in constant time for each pair of labels i and j

in G. Therefore, if G has n vertices and thus n labels, the time to compute all �iG(j) is

O(n2). Since the original contraction algorithm already performs O(n2) work at each size

n graph in the computation, the additional O(n2) work does not a�ect the running time

148 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHM

bound. This procedure is easy to parallelize, as computing �iG(j) for all pairs i and j can

be done simultaneously, and the sorting can also be done e�ciently in NC.
Finally, recall that we run the Recursive Contraction Algorithm �(log

2
n) times in order

to get a high probability of �nding every minimum cut. It is trivial to combine the resulting

� values from these �(log
2
n) computations in O(n2 log

2
n) time or with n2 processors in

RNC time. We have therefore shown:

Theorem 9.3.1 The chain representation of minimum cuts in a weighted labeled graph can

be computed with high probability in O(n2 log3 n) time, or in RNC using n2 processors.

Corollary 9.3.2 The cactus representation of minimum cuts in a graph can be computed

in O(n2 log3 n) time or in RNC using n4 processors.

9.4 Parallel (1 + �)-Approximation

There are two reasons Recursive-Contract requires n2 processors. One derives from the

Contraction Algorithm: since its success probability is �(n�2), it is necessary to perform

(n2) trials to get a high success probability. This forces us to do
(n2) work even after

Recursive-Contract reduces the amount of work per trial to nearly a constant. The

second reason derives from dense subproblems. As the algorithm performs recursive calls,

it is impossible to bound the number of edges in the graphs that are its arguments|thus

the best bound that can be put on the number of edges in an r vertex graph is r2, and this

forces us to allocate r2 processors even to examine the input.

In this section, we show how both these problems can be circumvented, though at a

cost. We develop a (1 + �)-approximation algorithm for the case where the minimum cut

is small. The small minimum cut lets us keep the recursive subproblems small by using

sparse certi�cates. The willingness to approximate reduces the number of trials we need

to perform. Our develop a sequential algorithm that �nds a cut of value at most �c in

~O(m + cn2�) time and a parallel algorithms that uses m + c2n2=� processors. We then

strengthen it by applying the skeleton construction to eliminate the dependence it, leaving

an algorithm which requires only m+ n2=� processors.

We proceed to modify the Recursive Contraction Algorithm (Recursive-Contract) to

take advantage of the combination of small minimum cuts and a willingness to approximate.

Recall that Recursive-Contract uses the more primitive Contraction Algorithm. The

9.4. PARALLEL (1 + �)-APPROXIMATION 149

Contraction Algorithm, denoted Contract(G; k), takes a graph G of n vertices and m

edges, and using m processors in RNC returns a contraction of G to k vertices such that

with probability
((k=n)2), the contracted graph has the same minimum cut as the original.

9.4.1 Modifying the Contraction Algorithm

The original analysis of the Contraction Algorithm Contract (Section 4.2) showed that with

probability
(n�2), it produced a minimum cut. However, a willingness to approximate

increases the success probability of the Contraction Algorithm. Since we are willing to

settle for an approximation, we can halt the Contraction Algorithm as soon as we �nd a

nearly optimum cut. In particular, we can stop as soon as a vertex of degree less than �c

is created by contractions, because such a vertex corresponds to a cut of value less than �c

in the original graph. This observation allows us to improve the analysis by making the

assumption that no such small cut has yet been found.

Lemma 9.4.1 If an n vertex graph is contracted to k vertices, then with probability
((k=n)2=�),

the contractions will either preserve the minimum cut or create a metavertex of degree less

than �c (corresponding to an �-minimal cut).

Proof: If the average degree falls bellow �c, it means that some vertex has degree less

than �c. This vertex in turn de�nes a cut of value less than �c. If this does not occur,

then we can assume at all times that the average degree exceeds �c. We now modify the

analysis of Theorem 4.2.1, using the fact that the average degree always exceeds �c. More

precisely, when r vertices remain, the assumption that the average degree exceeds �c means

that there are at least n�c=2 edges in the graph. Thus with probability (1 � 2=(n�)), we

will pick a non-min-cut edge to contract. Therefore, as r decreases to k, the probability

that we never pick a minimum cut edge is

(1� 2=�

n
)(1� 2=�

n� 1
) � � �(1� 2=�

k + 1
) =
((k=n)2=�)

To use Lemma 9.4.1, we modify Contract in order to keep track of the average degree

during contractions. Afterwards, we compare the output of the algorithm to this minimum

degree, and use the minimum degree if it is smaller. However, we defer the discussion of

this change to Section 9.4.3 and �rst discuss the use of the modi�ed algorithm in the �nal

approximation algorithm.

150 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHM

9.4.2 Modifying the Recursive Algorithm

Having modi�ed the Contraction Algorithm Contract to increase its success probability,

we proceed to modify Recursive-Contract to reduce the amount of work it does. Recall

that the algorithm Contract(G; k), given a graph on n vertices, will either encounter a cut

of value at most �c or ensure that the minimum cut survives the contraction to k vertices

with probability
((k=n)2=�).

Figure 9.1 gives the modi�ed algorithm Recursive-Contract� for �nding an �-minimal

cut in a graph with minimum cut k. We assume that the algorithm is given an upper bound

C on the value of the minimum cut; later we will show this assumption is unnecessary. The

algorithm uses sparse certi�cates (Section 3.3) to keep the number of edges in the graph

small as we contract it. Recall that a sparse �C-connectivity certi�cate preserves all cuts

of value exceeding �C. Since the minimum cut c � C, any cut of value exceeding �c in G

corresponds to a cut of value exceeding �c in the certi�cate.

Algorithm Recursive-Contract�(G)

input A graph G with n vertices.

if n = 2

then examine the implied cut of the original graph

else �nd an (�C)-connectivity certi�cate G' of G

repeat twice

G00 Contract(G0; n=2�=2)

Recursive-Contract�(G00)

Figure 9.1: The Modi�ed Algorithm

As a consequence of Lemma 9.4.1, if we are looking for an �-minimal cut and contract

an n-vertex graph to n=2�=2 vertices, we have a 50% chance of either �nding an �-minimal

cut or preserving the minimum cut of the original graph. Since in the algorithm we perform

this experiment twice, we expect that one of the experiments will succeed. The remainder

of the proof of correctness follows Section 4.4. In particular, a recurrence P (n) for the

9.4. PARALLEL (1 + �)-APPROXIMATION 151

probability of success is

P (n) = 1� (1� (
1

2
P (n=2�=2)))2:

Thus P (n) =
(logn). The only necessary addition here is to observe that the sparse

certi�cate algorithm used here does not a�ect the minimum cut.

Now consider a sequential implementation of this algorithm. We can use Nagamochi

and Ibaraki's Scan-First-Search to construct a sparse certi�cate in linear time. Since

we run the sparse certi�cate algorithm before calling Recursive-Contract� recursively, we

can be sure by induction that at all levels of the recursion, whenever Recursive-Contract�

is called with a graph of n vertices, that graph has O(Cn) edges (the one exception is the

top level, where the number of edges is m). This gives a recurrence for the running time:

T (n) = ~O(Cn) + 2T (n=2�=2);

which solves to T (n) = ~O(m+ Cn2=�).

We can also consider a parallel algorithm for the problem. If we use the m-processor,

~O(C)-time sparse certi�cate algorithm of [29], we deduce a processor recurrence identical

to the sequential running time recurrence, for a processor cost of m + Cn2=�. Since the

depth of the recursion tree is logarithmic, and since the running time at each level is ~O(c)

(dominated by the sparse certi�cate algorithm), the overall running time is ~O(c).

In Section 5.2, we will give a new parallel sparse certi�cate algorithm that runs in

polylogm time using Cm processors (it therefore does the same amount of work as the al-

gorithm of [29], but with a higher degree of parallelism). This gives the following recurrence

for the processor cost:

T (n) = 2(C2n+ T (n=2�=2)):

This recurrence solves to T (n) = O(C2n2=�). The recursion depth is O(logn), and the time

spent at each level of the recursion is polylogarithmic (dominated by the sparse certi�cate

construction).

Now observe that the estimate C is not actually necessary. We begin with a guess C = 1,

and repeatedly double it. We call Recursive-Contract� until the guess is con�rmed by

the return of a cut of value less than our current guess C. It requires O(log c) doubling

phases to increase our guess above c, and so long as C = O(c), the number of processors

used is O(m+ c2n2=�). We therefore have the following result:

Lemma 9.4.2 An �-minimal cut can be found with high probability in ~O(m+ cn2=�) time

or in RNC using m+ c2n2=� processors.

152 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHM

Remark: Neither a sparse graph nor the willingness to approximate can in itself give

a faster algorithm. Even if the graph is sparse, using Recursive-Contract to �nd the

minimum cut exactly requires
(n2) processors. On the other hand, if we are willing to

approximate but fail to sparsify, the fact that we are recursively calling CA� on dense graphs

means that it may require
(n2) processors for details).

Corollary 9.4.3 Let 1= logn < � < 1. In a weighted, undirected graph, a (1 + �)-minimal

cut can be found in RNC using ~O(m=�2+n2=(1+�)) processors. In particular, a linear number

of processor can �nd a twice-minimal cut in RNC.

Proof: Apply the skeleton construction of Section 6.3 to ensure the graph whose minimum

cut we estimate has a small minimum cut.

9.4.3 Tracking the Degree

An m-processor parallel implementation of the Contraction Algorithm is given in Sec-

tion 4.5. We modify this implementation to keep track of the average degree; this mod-

i�cation in turn lets us implement the approximation algorithm of the previous section.

We describe only the parallel implementation, the sequential implementation is then a spe-

cial case. Recall that we simulate the sequence of contractions by generating a random

permutation of the edges and then contracting edges in order of the permutation. As we

consider the sequence of contractions induced by the permutation, let epoch i denote the

period when n� i vertices remain in the graph. Our goal is to determine the average degree
at each epoch, which is equivalent to determining the number of edges that exist at each

epoch. This is easy if we determine, for each edge, the epoch until which it survives.

As a �rst step towards making this determination, we identify the contracted edges.

These are the at most n � 2 edges that are actually chosen for contraction, distinguished

from the edges that disappear when their endpoints are merged by some other contraction.

Given the edge permutation, a particular edge is contracted if and only if all the edges

preceding it fail to connect its endpoints. If we rank the edges by their order in the permu-

tation, and construct a minimum spanning tree (MST) based on the ranks, then the MST

edges are precisely the edges satisfying this property. The MST can be found in NC using
m processors [12, 95, 31]. Furthermore, the order of the MST edges in the permutation

determines the order of contractions: the �rst (smallest rank) MST edge causes the �rst

9.5. OPTIMIZING SPACE 153

contraction, and therefore initiates the �rst epoch. The second MST edge initiates the

second epoch, and so on. Label each MST edge based on this order.

This labeling gives us the information we need to determine until which epoch each edge

survives. An edge e survives until epoch i if and only if the edges contracted before epoch

i, namely the MST edges with labels less than i, fail to connect e's endpoints. Thus, the

epoch in which e disappears is simply the label of the largest labeled edge on the MST path

between the endpoints of e. We have thus reduced our problem to the following: given the

minimum spanning tree, compute for each edge the largest edge label on the path between

its endpoints. This problem (essentially that of minimum spanning tree veri�cation) can

be solved in NC using m processors [8].

If we determine that in some epoch the average degree fell below �c, it is simple to per-

form the contraction up to that epoch using Compact (Section 4.5) and then �nd the mini-

mum degree vertex in the partially contracted graph; this vertex corresponds to a cut of the

desired value. We have therefore shown how to implement Algorithm Recursive-Contract�

of Figure 9.1.

9.5 Optimizing Space

In this section, we show how the Contraction Algorithm can be implemented to run in

O(n) space, though with an increase in running time. We �rst consider unweighted graphs.

The Union-Find data structure of [181, page 23] provides for an implementation of the

Contraction Algorithm. We use the Union-Find data structure to identify sets of vertices

that have been merged by the contractions. This data structure has sets of vertices as its

objects and supports operation union (combining two sets) and �nd (identifying the set

containing a given vertex) in O(log� n) amortized time per operation. Initially, each vertex

is in its own set. We repeatedly choose an edge at random, and apply a union operation to

its endpoints' sets if they do not already belong to the same set. We continue until only two

sets remain. Each choice of an edge requires one �nd operation, and we will also perform

a total of n � 2 union operations. Furthermore, after O(m logm) random selections, the

probability is high that we will have selected each edge at least once. Thus, if the graph is

connected, we will have contracted to two vertices by this time. Therefore the total running

time of the Contraction Algorithm will be O(m logm) with high probability. The use of

path compression in the union-�nd data structure provides no improvement in this running

154 CHAPTER 9. EXTENSIONS OF THE CONTRACTION ALGORITHM

time, which is dominated by the requirement that every edge be sampled at least once.

This result can be summarized as follows:

Theorem 9.5.1 On unweighted graphs, the Contraction Algorithm can be implemented to

run in O(m logm) time and O(n) space with high probability.

We can �nd a minimum cut by running this algorithm O(n2 log n) times and taking the

best result. An improved approach is the following. First, use the contraction algorithm to

reduce the graph to
p
n vertices. Afterwards, since the resulting graph has O(

p
n) vertices

and thus O(n) edges, we can build the contracted graph in memory and run the Recursive

Contraction Algorithm in ~O(n) time. The minimum cut survives the contraction to
p
n

vertices with probability
(1=n), so we need to run the space-saving algorithm ~O(n) times

in order to have a high probability of �nding the minimum cut. This means the overall

running time is ~O(mn). More generally, we have the following:

Lemma 9.5.2 Using s � n space, it is possible to �nd the minimum cut in an unweighted

graph in ~O(ms=n2) time with high probability.

We can extend this unweighted-graph approach to weighted graphs, although the time

bound becomes worse. As before, we use the union-�nd data structure of [181] to contract

edges as we select them. As with the parallel implementation of the algorithm, we use a

minimum spanning tree computation to estimate the minimum cut to within a factor of n2,

and start by contracting all edges of greater weight. Afterwards, we sample and contract

from among the remaining edges (since the array of cumulative weights is too large to store,

we simply compute the total weight of uncontracted edges and then use linear search rather

than binary search to select an edge.

Since the maximum edge weight is at most n2c, the probability is high that after only a

polynomial number of samples we will have selected every edge with weight exceeding c=n2,

by which time we must have �nished contracting the graph.

Lemma 9.5.3 In weighted graphs, a minimum cut can be found with high probability in

O(n) space in polynomial time.

9.6 Optimizing Parallel Complexity

If speed is of the utmost importance, we can decrease the parallel running time of the Con-

traction Algorithm toO(logn) on unweighted graphs, even on an EREWPRAM. We modify

9.7. CONCLUSION 155

the original implementation of a single trial of the Contraction Algorithm. Recall that in the

case of an unweighted graph, a permutation of the edges can be generated in O(logn) time

by assigning a random score to each edge and sorting. After generating the permutation,

instead of using Compact to identify the correct permutation pre�x, we examine all pre�xes

in parallel. Each pre�x requires a single connected components computation, which can be

performed in O(logn) time, even on an EREW PRAM, using m= logn processors [88]. We

can therefore perform a single trial of the Contraction Algorithm in O(logn) time using

m2 processors. As was mentioned in the overview, running this algorithm n2 logn times in

parallel yields the minimum cut with high probability. All of this takes O(logn) time using

m2n2 logn processors. This matches the
(logn) EREW lower bound of [39], and closely

approaches the
(logn= log logn) CRCW lower bound of [90].

9.7 Conclusion

Our analysis of multi-way minimum cuts has given new information about the structure

of these cuts. Indeed, the \trace"" of the execution of our algorithm as it �nds these cuts

provides a size ~O(n2(r�1)) data structure representing these cuts. We might hope to �nd a

more compact data structure reminiscent of the cactus representation for minimum cuts.

Benczur [15] developed an alternative technique for using the Contraction Algorithm

to construct the cactus representation. He gives matching sequential bounds and a better

parallel bound. He has also tightened our counting bounds to show there are only O(n2)

6=5-minimal cuts.

Chapter 10

More Cut-Sampling Algorithms

In this chapter, we discuss several additional sampling-based algorithms for cut problems.

In Section 10.1, we give a fully polynomial time approximation scheme for estimating the

reliability of a network under random edge failures. We extend our cut approximation

algorithms to s-t minimum cut and maximum
ow problems, devising fast approximation

algorithms. We also give more careful proofs than those that were sketched in Chapter 6,

including in particular a formal analysis of the randomized ~O(m
p
c)-time algorithm for

minimum cuts. We also improve the time to compute a maximum
ow of value v from

O(mv) to ~O(mv=
p
c). Our methods also improve the total work done by some parallel cut

and
ow algorithms.

In Section 10.4, we show how our sampling algorithms for
ows can be extended to

weighted graphs. In Section 10.5, we give an evolutionary model of sampling that can

be used to give better dynamic minimum cut algorithms. One somewhat odd result is a

dynamic algorithm that maintains a
p
1 + 2=�-approximation to the minimum cut value

in O(n�)-time per update without giving any indication as to where the approximately

minimum cut might be found. In Section 10.7, we discuss several other applications to cut

problems, including parallel
ow algorithms, balanced graph cut, multicommodity
ows,

and graph orientation.

10.1 Applications to Network Reliability

Bounding the number of approximately minimum cuts has useful applications in network

reliability theory. This �eld considers a network whose edges (links) fail independently with

156

10.1. APPLICATIONS TO NETWORK RELIABILITY 157

some probability, and aims to determine the probabilities of certain connectivity-related

events in this network. The most basic question is to determine the the probability that the

network remains connected. Others include determining the probability that two particular

nodes become disconnected, and so on. The practical applications of these questions to

communication networks are obvious, and the problem has therefore been the subject of a

great deal of study. Most of these problems are]P-complete, so the emphasis has been on

heauristics and special cases. A comprehensive survey can be found in [36]. In this section,

we give an algorithm for approximating the probability the network becomes disconnected,

a long standing open problem.

More formally, a network is modeled as a a graph G, each of whose edges e is presumed to

fail (disappear) with some probability pe, and thus to survive with probability qe = 1� pe

(a simpli�ed version that we will focus on assumes each pe = p). Network reliability

is concerned with determining the probabilities of certain connectivity-related events in

this network. The most basic question of all-terminal network reliability is determining

the probability that the network becomes disconnected. Others include determining the

probability that two particular nodes become disconnected (two terminal reliability), and

so on.

Most such problems, including the two just mentioned, are]P-complete [182, 166]. That
is to say, they are in a complexity class at least as intractable as NP and therefore seem

unlikely to have polynomial time solutions. Attention therefore turned to approximation

algorithms. Provan and Ball [166] proved that it is]P-complete even to approximate the

reliability of a network to within a relative error of �. However, they made the currently

unfashionable assumption that the approximation parameter � is part of the input, and used

an exponentially small � to prove their claim. They note at the end of their article that \a

seemingly more di�cult unsolved problem involves the case where � is constant, i.e. is not

allowed to vary as part of the input list."

Since that time, their idea was formalized by the idea of a polynomial time approxi-

mation scheme (PTAS). In this model, the interesting question is the running time of the

approximation algorithm as a function of n and 1=� separately, and the goal is for a running

time that is polynomial in n, but might not be in � (e.g., O(21=�n)). If the running time is

also polynomial in 1=�, the algorithm is said to be a fully polynomial time approximation

scheme (FPTAS). An alternative interpretation of these algorithms is that they have run-

ning time polynomial in the input size when � is constrainted to be input in unary rather

158 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

than binary notation.

FPTASs have been given for several]P-complete problems such as counting maximum

matchings in dense graph [94], measuring the volume of a convex polytope [46], and disjunc-

tive normal form (DNF) counting|estimating the probability that a given DNF formula

evaluates to true of the variables are made true or false at random [113]. In his plenary

talk at FOCS [99], Kannan raised the problem of network reliability as one of the main

remaining open problems needing an approximation scheme.

Here, we provide a fully polynomial approximation scheme for the all-terminal network

reliability problem. Given a failure probability p for the edges, our algorithm, in time

polynomial in n and 1=�, returns a number P that estimates the probability FAIL(p) that

the graph becomes disconnected. With high probability, P is in the range (1� �)FAIL(p).

The algorithm is Monte Carlo, meaning that it is not possible to verify the correctness of the

approximation. It generalizes to the case where the edge failure probabilities are di�erent.

Our algorithm is in fact a (derandomizable) reduction to the problem of DNF counting.

At present, the only FPTASs for DNF counting are randomized [113, 112]. Should a deter-

ministic algorithm for that problem be developed, it will immediately give a deterministic

FPTAS for the network reliability problem discussed here.

Some care must be taken with the notion of approximation. We can ask either to approx-

imate the failure probability FAIL(p) or the reliability (probability of remaining connected)

REL(p) = 1�FAIL(p). Consider a graph with a very low failure probability, say 1��. Then
approximation REL(p) by 1 gives a (1 + �)-approximation to the reliability, but approxi-

mating the failure probability by 0 gives a very (in�nite) poor approximation ratio. Thus,

the failure probability is the harder (and more important) quantity to approximate well.

On the other hand, in a very unreliable graph, the FAIL(p) becomes easy to approximate

(by 1) while REL(p) becomes the challenging quantity. Our algorithm is an FPTAS for

FAIL(p). This means that in extremely unreliable graphs, it does not achieve the more

desirable goal of approximating REL(p). However, it does solve the harder approximation

problem on reliable graphs, which are clearly the ones likely to be encountered in practice.

Our algorithm is easy to implement and appears likely to have satisfactory time bounds in

practice.

Karp and Luby [113] developed an FPTAS for a restricted class of planar graphs; our

algorithm applies to all graphs.

10.1. APPLICATIONS TO NETWORK RELIABILITY 159

10.1.1 A Reliability Theorem

Using our cut counting lemmas, we �rst prove a variant of the k-cycle bound proven by

Lomonosov and Polesskii [140].

Theorem 10.1.1 ([140]) Of all graphs with minimum cut c, the least reliable graph (i.e.,

the one most likely to become disconnected if each edge fails with probability p) is the cycle

on n nodes with c=2 edges between adjacent nodes.

Corollary 10.1.2 If each edge of a graph with minimum cut c is removed with probability

p, then the probability that the graph becomes disconnected is at least pc and at most n2pc.

Proof: Consider any graph with minimum cut c and consider the c edges in some minimum

cut. They all fail with probability pc; and the graph certainly becomes disconnected in this

case. For the upper bound, by the previous theorem, it su�ces to prove the result for

the n node cycle with c=2 edge between adjacent vertices. But for this cycle to become

disconnected, two pairs of adjacent vertices must both have their connecting set of c=2

edges all fail. The probability any two particular groups of c=2 edges fail is pc, and there

are only
�
n

2

�
< n2 pairs of groups.

We prove a variant of the above corollary. It gives a slightly weaker bound, but also

gives information about s-t connectivity.

Lemma 10.1.3 Suppose a graph has minimum cut c and s-t minimum cut v, and suppose

each edge of the graph fails independently with probability p, where pc < n�(2+�) for some

�. Then the probability that the network becomes disconnected is O(n��(1+ 1=�)), while the

probability that s and t become disconnected is O(n��v=c(1 + 1=�)).

Proof: For the graph to become disconnected, all the edges in some cut must fail. We

therefore bound the failure probability by summing the probabilities that each cut fails. Let

r = 2n� 2 be the number of cuts in the graph, and let c1; : : : ; cr be the values of the r cuts.

Without loss of generality, assume the ci are in increasing order so that c = c1 � c2; � � � � cr.

Let pk = pck be the probability that all edges in the kth cut fail. Then the probability that

the graph disconnects is at most
P
pk, which we proceed to bound from above.

We now proceed in two steps. First, consider the n2 smallest cuts. Each of them has

ck � c and thus pk � n��, so thatX
k�n2

pk � (n2)(n��) = n��:

160 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

Next, consider the remaining larger cuts. According to Theorem 4.7.6, there are at most

n2� cuts of value less than �c. Since we have numbered the cuts in increasing order, this

means that cn2� � �c. In other words, writing k = n2�,

ck �
ln k

2 ln 2n
� c;

and thus

pk � (pc)
ln k

2 ln 2n = k�(1+�=2):

It follows that

X
k>n2

pk �
X
k>n2

k�(1+�=2)

�
Z r

n2
k�(1+�=2) dk

= O(n��=�)

The proof of s-t connectivity is the same, except that we sum only over those cuts of

value at least v.

Remark: In Chapter 6 we consider a variant of this approach that estimates the value of

the random graph's connectivity, rather than deciding whether or not the value is 0.

10.1.2 An Approximation Algorithm

We now consider the problem of estimating the probability that a graph remains connected

if each edge fails independently with probability p.

Theorem 10.1.4 Assuming the probability of remaining connected exceeds 1=n, there is

a (Monte Carlo) fully polynomial time approximation scheme for estimating all-terminal

reliability.

Proof: Note �rst that if the failure probability is between, say, n�3 and 1� 1=n, a trivial

Monte Carlo algorithm can be used to estimate the failure probability accurately. Just

perform a polynomial number of trials (killing edges with probability p and checking if the

resulting graph is connected) and determine the fraction of them that yield a connected

graph. A Cherno� bound argument shows that (w.h.p.) this fraction gives an estimate

accurate to within (1 + �) after (n=�)O(1) trials.

10.1. APPLICATIONS TO NETWORK RELIABILITY 161

So we can restrict to the case where the probability of disconnection is less than n�3. In

this case, our previous reliability theorem can be used to show that the probability that a cut

of value much larger than c fails is negligible, so that we need only determine the probability

that a cut of value near c fails. Since the cuts of value near c can be enumerated, we can

generate a polynomial size boolean expression (with a variable for each edge) which is true

if one such cut has failed. We then need to determine the probability that this boolean

expression is true, which can be done using techniques of Karp, Luby, and Madras [112].

More formally, suppose we wish to estimate the failure probability P to within 1 � �

times its correct value. The probability that a particular minimum cut fails is pc � n�3.

We show there is a constant � such that the probability that any cut of value greater than

�c fails is at most �pc, i.e. at most a � fraction of the failure probability. Therefore, we

need only determine the probability that some cut of value less than �c fails. It remains to

determine �. We want the probability that a cut of value exceeding �c fails to be at most

�pc. Write pc = n�(2+�); by hypothesis � � 1. Thus by the previous lemma, this probability

is at most n���. Solving, we �nd that � = 1 + 2=� + (ln �)= lnn � 3 + (ln �)= lnn su�ces

and that we must therefore examine the smallest O(n2�) = O(n6=�4) cuts.

Since there are only n2� of these small cuts, we can enumerate them in polynomial time

using the Contraction Algorithm. Let Ei be the set of edges in the ith small cut. Suppose

we assign a boolean variable xe to each edge e; xe is true if edge e fails and false otherwise.

Therefore, xe is true independently of the other xe and false otherwise. Since the ith cut

fails if and only if all edges in it fail, the event of the ith small cut failing can be written as

Fi = ^e�Eixe. Therefore, the event of some small cut failing can be written as F = [iFi. We

wish to know the probability that F is true. Note that F is a formula in disjunctive normal

form. Karp, Luby, and Madras [112] gave a (randomized) fully polynomial approximation

scheme for this problem; with high probability it estimates the correct probability of F

being true to within (1� �) in (n=�)O(1) time.

We are therefore able to estimate to within (1 � �) the value of a probability (the

probability of a small cut failing) that is within (1 � �) of the probability of the event we

really care about (the probability of some cut failing). This gives us an overall estimate

accurate to within (1� �)2 � (1� 2�).

162 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

10.2 s-t Minimum Cuts and Maximum Flows

We show how the skeleton approach can be applied to minimum cuts and maximum
ows.

In unweighted graphs, the s-t maximum
ow problem is to �nd a maximum set, or packing,

of edge disjoint s-t paths. It is known [60] that the value of this
ow is equal to that value

of the minimum s-t cut. We have the following immediate extension of Corollary 6.2.2:

Theorem 10.2.1 Let G be any graph with minimum cut c and let p = �((lnn)=�2c).

Suppose the s-t minimum cut for G has value v. Then with high probability, the s-t minimum

cut in G(p) has value between (1��)pv and (1+�)pv, and the minimum cut has value between

(1� �)pc and (1 + �)pc.

Recall the classic augmenting path algorithm for maximum
ows (cf. [181]). Given an

uncapacitated graph and an s-t
ow of value f , a linear time depth �rst search of the so

called residual graph will either show how to augment the
ow to one of value f + 1 or

will prove that f is the value of the maximum
ow. This algorithm can be used to �nd a

maximum
ow of value v in O(mv) time by �nding v augmenting paths.

In this section we will assume that the minimum cut is known approximately because the

algorithms of Chapter 6 can approximate it accurately in time bounds that are dominated

by those of the algorithms given here.

All the unweighted graph algorithms presented here can use Nagamochi and Ibaraki's

sparse certi�cate algorithm Scan-First-Search (Section 3.3) as a preprocessing step. If

we care only about cuts of value at most v, this preprocessing lets us replace a time bound

of the form mt by one of the form m + nvt. However, for clarity we leave m in the time

bounds and leave the reduction to the reader, except in a few critical places.

10.2.1 Approximate Minimum Cuts

The most obvious application of Theorem 10.2.1 is to approximate s-t minimum cuts. We

can �nd an approximate s-t minimum cut by �nding an s-t minimum cut in a skeleton.

Lemma 10.2.2 In a graph with minimum cut c, a (1+�)-approximation to the s-t minimum

cut of value v can be computed in ~O(mv=�4c2) time (MC).

Proof: Given �, determine the corresponding p = O((logn)=�2c) from Theorem 10.2.1. If

p � 1 because c = O((logn)=�2), run the standard max-
ow algorithm (we shall ignore

10.2. S-T MINIMUM CUTS AND MAXIMUM FLOWS 163

this case from now on). Otherwise, construct a p-skeleton G(p) in O(m) time. Suppose

we compute an s-t maximum
ow in G(p). By Theorem 10.2.1, 1=p times the value of the

computed maximum
ow gives a (1+ �)-approximation to the s-t min-cut value (with high

probability). Furthermore, any
ow-saturated cut in G(p) will be a (1 + �)-minimal s-t cut

in G.

By the Cherno� bound, the skeleton has O(pm) edges with high probability. Also,

by Theorem 10.2.1, the s-t minimum cut in the skeleton has value O(pv). Therefore, the

standard augmenting path algorithm can �nd a skeletal s-tmaximum
ow in O((pm)(pv)) =

O(mv log
2
n=�4c2) time.

This bound will soon be improved by the introduction of a faster exact maximum
ow

algorithm.

10.2.2 Approximate Maximum Flows

A slight variation on the previous algorithm will compute approximate maximum
ows.

This result, too, is improved later.

Lemma 10.2.3 In a graph with minimum cut c and s-t maximum
ow v, a (1��)-maximal
s-t
ow can be found in ~O(mv=�2c) time (MC).

Proof: Given p as determined by �, randomly partition the edges into 1=p groups, creating

1=p graphs (this partitioning takes O(m) time (w.h.p.) using Random-Select). Each graph

looks like a p-skeleton, and thus has a maximum
ow of value at least pv(1 � �) that

can be computed in O((pm)(pv)) time as in the previous section (the skeletons are not

independent, but we simply add the probabilities that any one of them violates the sampling

theorem). Adding the 1=p
ows that result gives a
ow of value v(1� �). The running time
is O((1=p)(pm)(pv)).

10.2.3 Exact Maximum Flows

We next use sampling ideas to speed up the familiar augmenting paths algorithm for max-

imum
ows. Our approach is a randomized divide-and-conquer algorithm that we analyze

by treating each subproblem as a (non-independent) random sample. We use the following

algorithm which we call DAUG (Divide-and-conquer AUGmentation).

164 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

1. Randomly split the edges of G into two groups (each edge goes to one or the other

group with probability 1=2), yielding graphs G1 and G2.

2. Recursively compute s-t maximum
ows in G1 and G2.

3. Add the two
ows, yielding an s-t
ow f in G.

4. Use augmenting paths (or blocking
ows) to increase f to a maximum
ow.

Note that we cannot apply sampling in the cleanup phase (Step 4), because the graph

we are manipulating in the cleanup phase is directed, while our sampling theorems apply

only to undirected graphs. Note also that unlike our approximation algorithms, this exact

algorithm requires no prior guess as to the value of c. We have left out a condition for

terminating the recursion; when the graph is su�ciently \small" (say with one edge) we use

the basic augmenting path algorithm.

The outcome of Steps 1{3 is a
ow. Regardless of its value, Step 4 will transform this

ow into a maximum
ow. Thus, our algorithm is clearly correct; the only question is how

fast it runs. Suppose the s-t maximum
ow is v. Consider G1. Since each edge of G is in

G1 with probability 1=2, we can apply Theorem 10.2.1 to deduce that with high probability

the s-t maximum
ow in G1 is (v=2)(1� ~O(
p
1=c)) and the global minimum cut is �(c=2).

The same holds for G2 (the two graphs are not independent, but this is irrelevant). It

follows that the
ow f has value v(1� ~O(1=
p
c)) = v � ~O(v=

p
c). Therefore the number of

augmentations that must be performed in G to make f a maximum
ow is ~O(v=
p
c). By

deleting isolated vertices as they arise, we can ensure that every problem instance has more

edges than vertices. Thus each augmentation takes O(m0) time on an m0-edge graph, and

we have the following sort of recurrence for the running time of the algorithm in terms of

m, v, and c:

T (m; v; c) = 2T (m=2; v=2; c=2)+ ~O(mv=
p
c):

(where we use the fact that each of the two subproblems expects to contain m=2 edges). If

we solve this recurrence, it evaluates to T (m; v; c) = ~O(mv=
p
c).

Unfortunately, this argument does not constitute a proof because the actual running

time recurrence is in fact a probabilistic recurrence: the sizes of and values of cuts in the

subproblems are random variable not guaranteed to equal their expectations. Actually

proving the result requires some additional work.

10.2. S-T MINIMUM CUTS AND MAXIMUM FLOWS 165

We perform an analysis of the entire tree of recursive calls made by our algorithm,

just as we did to analyze the minimum spanning tree algorithm of Chapter 2. Each node

of the computation tree corresponds to an invocation of the recursive algorithm. We can

then bound the total running time by summing the work performed at all the nodes in the

recursion tree.

Lemma 10.2.4 The depth of the computation tree is O(logm).

Proof: The number of computation nodes at depth d is 2d. Each edge of the graph ends up

in exactly one of these nodes chosen uniformly and independently at random from among

them all. Thus, the probability that two di�erent edges both end up in the same node at

depth 3 logm is negligible.

Lemma 10.2.5 DAUG runs in O(m logm+mv
q

logn

c
) time.

Proof: First we bound the non-augmenting-path work in Steps 1{3 of DAUG. Note that at

each node in the computation tree, the amount of work needed to execute these steps is

linear in the size of the node. At each level of the recursion tree, each edge of the original

graph is located in exactly one node. Therefore, the total size of nodes at a given level is

O(m). Since there are O(logm) levels in the recursion, the total work is O(m logm).

It remains to bound the work of the augmenting paths computations. Note �rst that

each node performs one \useless" augmenting path computation in order to discover that it

has found a maximum
ow. Since the work of this augmenting path computation is linear

in the size of the node, it can be absorbed in the O(m logm) time-bound of the previous

paragraph.

We now bound the work of the \successful" augmentations which add a unit of
ow at a

node. The number of such augmentations is equal to the di�erence between the maximum

ow at the node and the sum of the children's maximum
ows. Consider a node N at

depth d. Each edge of the original graph ends up at N independently with probability

1=2d. Thus, the graph at N looks like a (2�d)-skeleton. Applying the sampling theorem,

we deduce that the maximum
ow at N is 2�dv(1 � O(
q

2d logn

c
)) w.h.p.. Now consider

the two children of node N . By the same argument, each has a maximum
ow of value

2�(d+1)v(1� O(
q

2d+1 logn
c

)). It follows that the total number of augmentations that must

be performed at N is

v

2d
(1�O(

s
2d logn

c
))� 2 � v

2d+1
(1� O(

s
2d+1 logn

c
)) = O(v

s
logn

2dc
):

166 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

By the Cherno� bound, each node at depth d has O(m=2d) edges with high probability.

Thus the total amount of augmentation work done at the node is O(m=2d) times the above

bound. Summing over the 2d nodes at depth d gives an overall bound for the work at level

d of

O(mv

s
log n

2dc
):

We now sum the work over all O(logm) depths to get an overall bound of O(mv
q

logn

c
).

On apparent
aw in the above lemma is that it suggests our algorithm is slower than

augmenting paths when c = O(logm). This is not the case:

Lemma 10.2.6 The divide and conquer algorithm runs in O(m logm+mv) time.

Proof: The previous lemma bounded the overhead and unsuccessful augmentation work

by O(m logm). Therefore, we need only bound the time spent on successful augmentations

that increase the
ow at their node by one. We claim that the number of successful aug-

mentations, taken over the entire tree, is v. To see this, telescope the argument that the

number of successful augmentations at a node in the computation tree is equal to the value

of the maximum
ow at that node minus the sum of the maximum
ows at the two children

of that node. Since each successful augmentation takes O(m) time, the total time spent on

successful augmentations is O(mv).

The above time bounds are still not quite satisfactory, because the extra O(m logm)

term means the algorithm is slower than standard augmenting paths when v is less than

logm. This problem is easy to �x. Before running DAUG, perform O(logm) augmenting path

computations on the original graph, stopping if a maximum
ow is found. This guarantees

that when v = O(logm), the running time is O(mv). This brings us to our �nal theorem:

Theorem 10.2.7 In a graph with minimum cut value c, a maximum
ow of value v can

be found in O(mvmin(1;
p
(logn)=c)) time.

We can use our faster maximum
ow algorithm instead of the standard one in our

approximation algorithms.

Corollary 10.2.8 A (1+�)-minimal s-t cut can be found with high probability in ~O(mv=�3c2)

time (MC).

10.3. GLOBAL MINIMUM CUTS 167

Proof: Apply the cut approximation algorithm of Lemma 10.2.2. Instead of using the

standard augmenting path max-
ow algorithm, use the faster one just presented. Since the

skeleton has minimum cut �(pc), the running time of the skeletal max-
ow computation is

improved from O((pm)(pv)) to O((pm)(pv)
p
(logn)=pc) = O(mv(log2 n)=�3c2).

Corollary 10.2.9 A (1��)-maximal s-t
ow can be found with high probability in ~O(mv=�c)

time (MC).

10.2.4 Las Vegas Algorithms

Our max-
ow and min-cut approximation algorithms are both Monte Carlo, since they

are not guaranteed to give the correct output (though the error probability can be made

arbitrarily small). However, by combining the two approximation algorithms, we can certify

the correctness of our results and obtain a Las Vegas algorithm for both problems|one that

is guaranteed to �nd the right answer, but has a small probability of taking a long time to

do so.

Corollary 10.2.10 In a graph with minimum cut c and s-t maximum
ow v, a (1 � �)-

maximal s-t
ow and a (1 + �)-minimal s-t cut can be found in ~O(mv=�c) time (LV).

Proof: Run both the approximate min-cut and approximate max-
ow algorithms, obtain-

ing a (1� �=2)-maximal
ow of value v0 and a (1� �=2)-minimal cut of value v1. We know

that v0 � v � v1, so to verify the correctness of the results all we need do is check that

(1+ �=2)v0 � (1� �=2)v1, which happens with high probability. To make the algorithm Las

Vegas, we repeat the two algorithms until each demonstrates the other's correctness.

An intriguing open question is whether this combination of an approximate cut and

ow together can be used to identify an actual maximum
ow more quickly than the exact

algorithm previously described.

10.3 Global Minimum Cuts

10.3.1 Analysis of the Exact Algorithm

We can improve Gabow's minimum cut algorithm as we did the maximum
ow algorithm.

Use DAUG, but replace the augmenting path steps with calls to Round-Robin. We could

168 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

simply apply the max-
ow analysis, replacing v by c, except that the time for a single

augmentation is no longer linear.

Lemma 10.3.1 A minimum cut of value c can be found in O(m log2m+m
p
c logm log(n2=m))

time (LV).

Proof: As with the maximum
ow analysis, the depth of the recursion tree for DAUG is

O(logm). The overhead in setting up the subproblems is O(m logm). Since the time per

augmentation is no longer linear, we must change the analysis of work performed during

augmentations. Consider �rst the \unsuccessful" augmentations which identify maximal

complete intersections. Each node in the recursion tree performs one, and the total work

over all nodes is thus

O(logn)X
d=1

2d(m=2d) log(2dn2=m) = O(m log2m)

(note we weaken log(2dn2=m) to logm).

We analyze the successful Round-Robin calls as in the maximum
ow case. Comparing

the minimum cuts of a parent node and its children, we see that at depth d, each of

the 2d nodes has m=2d edges and requires O(
p
c(logn)=2d) Round-Robin calls for total of

O(m
p
c(logn)=2d log(2dn2=m)) work at depth d. Summing over all depths gives a total

work bound of O(m
p
c logn log(n2=m)).

As with maximum
ows, Gabow's algorithm is better than DAUG for small minimum

cut values. The problem is the extra m log2m work caused by the unsuccessful calls to

Round-Robin. To �x this problem, before running the algorithm, approximate the minimum

cut c to within some constant factor in linear time (using Matula's Algorithm or skeletons).

Then, modify the divide and conquer algorithm: at depth log(c= logn) in the recursion,

abandon DAUG and use Gabow's original algorithm. Thus, if the minimum cut is less than

logn, the running time matches Gabow's since we do not call DAUG. If the minimum cut

exceeds logn, we modify the proof of the previous lemma by showing a better bound on

the work of unsuccessful augmentations. Since we stop the recursion at depth log(c= logn),

that time is bounded by

log(c= logn)X
d=1

m log(2dn2=m) = O(m(log2(c= logn) + log(c= logn) log(n2=m))):

10.3. GLOBAL MINIMUM CUTS 169

We also consider the work in the calls to Gabow's algorithm. At depth d = log(c= logn),

there will be 2d such calls on graphs with minimum cut O(logn), each takingO((m=2d)(logn)(log(n2c=m log

time. Since by assumption c > logn, simple calculations show that these time bounds are

dominated by the time bound for successful augmentations. We therefore have:

Theorem 10.3.2 The minimum cut can be found in O(mmin(c;
p
c logn) log(n2=m)) time

(LV).

The improved time for computing a complete c-intersection has other rami�cations in

Gabow's work [66]. He presents other algorithms for which computing a maximum complete

intersection is the computational bottleneck. He presents an algorithm for computing a

compact m-tree representation of all minimum cuts, and shows that this representation can

be converted to the older O(n)-space cactus representation [44] in linear time. He also gives

an algorithm for �nding a minimum set of edges to add to augment the connectivity of a

graph from c to c+ �. In both of these algorithms, computing the minimum cut forms the

bottleneck in the running time.

Corollary 10.3.3 The cactus and m-tree representations of all minimum cuts in an undi-

rected graph can be constructed in ~O(m
p
c) time (LV).

Corollary 10.3.4 A minimum set of edges augmenting the connectivity of a graph from c

to c+ � can be computed in ~O(m+ n(c3=2 + �c+ �2)) time (LV).

10.3.2 Approximation Algorithms

Just as with maximum
ows, we can combine a minimum cut algorithm with random sam-

pling to develop Monte Carlo and Las Vegas algorithms for �nding approximate minimum

cuts.

Corollary 10.3.5 A (1+ �)-minimal cut can be found in O(m+n((logn)=�)3) time (MC).

Proof: Replace Gabow's algorithm with our new, faster minimum cut algorithm in Lemma 6.3.3.

Corollary 10.3.6 A (1+ �)-minimal cut and (1� �)-maximal complete intersection can be

found in O(m(log2 n)=�) time (LV).

170 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

Proof: Given � and its corresponding p, divide the graph in 1=p pieces, �nd a maximum

complete intersection in each of the pieces independently, and add the intersections. The

analysis proceeds exactly as in the approximate max-
ow algorithm of Section 10.2.2. As

in Corollary 10.2.10, the combination of a cut of value (1+ �=2)c and a complete (1� �=2)c-
intersection brackets the minimum cut between these two bounds.

10.4 Weighted Graphs

We now investigate the changes that occur when we apply our cut and
ow algorithms to

weighted graphs. Our cut approximation time bounds are essentially unchanged, but the

time for approximate and exact
ows increases. The only change for s-t our cut approxi-

mation is that we use the O(pm logn)-time weighted-graph skeleton construction.

Corollary 10.4.1 In a weighted graph, a (1 + �)-minimal s-t cut can be found in ~O(m +

n(v=c)2��3) time (MC).

Proof: Use Scan-First-Search (Section 3.3) to construct a sparse 3nv-connectivity cer-

ti�cate of total weight O(nv) (use repeated doubling to estimate the value of v). Assuming

� < 1, approximate cuts in the certi�cate correspond to those in the original graph. Con-

struct a p-skeleton of the certi�cate using weighted selection in O(pnv logm) time. Now

proceed as in the unweighted graph case.

We can also adapt our sampling-based maximum
ow and complete intersection algo-

rithms to weighted graphs. If we directly simulated the unweighted graph algorithm, we

would simulate the random partitioning of the edges into two groups by generating a bino-

mial distribution for each weighted edge in order to determine how much of its weight went

to each of the two subgraphs. To avoid having to generate such complicated distributions,

we return to Theorem 6.2.1 and use the following approach. If w is even, assign weight w=2

to each group. If w is odd, then assign weight bw=2c to each group, and
ip a coin to decide
which group gets the remaining single unit of weight. Since the minimum expected cut (ĉ

of Theorem 6.2.1) which results in each half is still c=2, we can deduce as in unweighted

case that little augmentation need be done after the recursive calls.

We have described the change in implementation, and correctness is clear, but we have

to change the time bound analysis. It is no longer true that each new graph has half the

edges of the old. Indeed, if all edge weights are large, then each new graph will have just

10.5. AN EVOLUTIONARY GRAPH MODEL FOR DYNAMIC ALGORITHMS 171

as many edges as the old. We therefore add a new parameter and analyze the algorithm

in terms of the number of edges m, the minimum cut c, the desired
ow value v, and the

total weight W of edges in the graph. Note the two subgraphs that we recurse on have total

weight roughly W=2. In order to contrast with scaling techniques, we also use the average

edge weight U = W=m which is no more than the maximum edge weight. The unweighted

analysis suggests a time bound for minimum cuts of ~O(W
p
c) = ~O(mU

p
c), but we can

show a better one:

Lemma 10.4.2 The minimum cut of value c can be found in ~O(m
p
cU) time (LV).

Proof: We divide the recursion tree into two parts. At depths d � log(W=m), we bound

the number of edges in a node by m. As in the unweighted analysis, we know each node at

depth d has to perform ~O(
p
c=2d) augmentations, each taking ~O(m) time, so the total work

at depth d is ~O(2dm
p
c=2d) = ~O(m

p
2dc). Summing over d � log(W=m) gives a total work

bound of ~O(m
p
Wc=m) = ~O(m

p
cU). At depth log(W=m), we have W=m computation

nodes, each with minimum cut ~O(mc=W) (by the sampling theorem) and O(m) edges (by

the Cherno� bound). Our unweighted graph analysis shows that the time taken by each

such node together with its children is ~O(m
p
mc=W). Thus the total work below depth

log(W=m) is ~O((W=m)(m
p
mc=W)) = ~O(m

p
cU).

Corollary 10.4.3 In a weighted graph, a (1+ �)-minimal cut and (1� �)-maximal
ow can

be found in ~O(m
p
U=�) time (LV).

A similar result can be derived if we use the same algorithm to �nd
ows, replacing

Gabow's Round Robin Algorithm with standard augmenting paths.

Corollary 10.4.4 A maximum
ow of value v can be found in ~O(mv
p
U=c) time (LV).

Corollary 10.4.5 A (1� �)-maximal
ow of value v can be found in ~O(mv
p
U=�c) time.

10.5 An Evolutionary Graph Model for Dynamic Algorithms

We now consider an alternative approach to sparsi�cation. Rather than �xing a probability

p and using the sparse graph G(p) to estimate the minimum cut in G, we estimate the

minimum cut in G by determining the value of p for which G(p) is sparse. This approach

yields algorithms which dynamically maintain a (
p
1 + 2=�)-approximation to the minimum

172 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

cut value as edges are inserted in and deleted from a graph; the cost per update is O(n�)

if only insertions are allowed, and O(n�+1=2) if both insertions and deletions are permitted.

This algorithm gives the approximate value but does not exhibit a cut of the given value;

it is not clear that the technique generalizes to �nding a cut.

10.5.1 Motivation

We recall the following result from Section 10.1:

Corollary 10.1.2 If each edge of a graph with minimum cut c is removed with probability

p, then the probability that the graph becomes disconnected is at least pc and at most n2pc.

The corollary suggests the following idea for approximating minimum cuts using only

connectivity tests. The corollary gives the disconnection probability as a function of c and

can therefore be inverted to give c as a function of the disconnection probability. This lets

us estimate c by causing random edge failures and observing the resulting disconnection

probability.

More precisely, given the graphG, �x some � < 1 and identify the value p such that killing

each edge with probability p causes the graph to become disconnected with probability n��.

Then use Corollary 10.1.2 to estimate the minimum cut as follows. The corollary says that

pc < n�� < n2pc:

Since we know all other quantities, we can solve for c to deduce

� ln1=p n < c < (2 + �) ln1=p n

Thus if we take c to be the geometric mean of its two bounds, the error in approximation

can be at most
p
1 + 2=�.

The di�culty in this approach is in determining the correct value of p to cause discon-

nection at the appropriate probability. Note that it is insu�cient to simply try a small

number of di�erent possible values of p, since the fact that p is exponentiated by c means

that a small variation in p can cause a tremendous change in the disconnection probabil-

ity. The same problem makes binary search among p-values infeasible: c bits of accuracy

would be needed. The problem becomes particularly challenging when we need to solve it

in a dynamic fashion. Therefore we de�ne a new sampling model which lets us reformulate

Corollary 10.1.2 more usefully.

10.5. AN EVOLUTIONARY GRAPH MODEL FOR DYNAMIC ALGORITHMS 173

10.5.2 Evolutionary Connectivity

We consider an evolutionary graph model. Each edge e of G is given a random arrival time

te chosen uniformly from the interval [0; 1]. We can now consider the graph G(t) consisting

of those edge which arrived at or before time t. We study the connectivity time tconn(G), a

random variable equal to the minimum t such that G(t) is connected. Note that given the

arrival times, tconn(G) is the maximum value of an edge in the minimum spanning tree of

G if we use the arrival times as edge weights. We can rephrase corollary 10.1.2 in terms of

connectivity times:

Corollary 10.5.1 If G has minimum cut c and the edge arrival times are independent

uniform [0; 1] variables, then

(1� t)c < Pr[tconn(G) > t] < n2(1� t)c:

Proof: The value tconn(G) is just the smallest time t such that if all edges of arrival time

greater than t are removed from G then G remains connected. Thus Pr[tconn(G) > t] is just

the probability that G becomes disconnected if we remove all edges with arrival times t or

more. However, assigning uniform arrival times and then deleting all edges of time at least

t is equivalent to deleting each edge with probability 1� t, so Corollary 10.1.2 applies with
p = 1� q.

We have therefore reduced our problem to the following: identify the time t� such that

Pr[tconn(G) > t�] = n��. Computing t� exactly is hard, so we settle for an approximation.

We perform N experiments. In each, we assign random arrival times to edges and compute

the resulting tconn(G). The gives us N di�erent values; we take the (n��N)th largest value

t as an estimate for t�. The following claim is easy to verify using Cherno� bounds: if N =

O(n�(logn)=�2), then with high probability t will be such that Pr[tconn(G) > t] 2 (1��)n��.
It follows from Corollary 10.5.1 that (1� t)c < (1+ �)n�� and that (1� �)n�� < n2(1� t)c.
Rearranging, we have

�� lnn + ln(1 + �)

ln(1� t)
� c � �(2 + �) lnn+ ln(1� �)

ln(1� t)

and thus the geometric mean of the bounds estimates the minimum cut to within a
p
1 + 2=�+

O(�= logn) bound.

Theorem 10.5.2 A (
p
1 + 2=�+o(1))-approximation to the value of the minimum cut can

be computed through O(n� logn) minimum spanning tree computations.

174 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

One might hypothesize that the cut produced by removing the heaviest minimum span-

ning tree edge (i.e. the last edge to arrive) would by an approximately minimum cut, but

we have not yet been able to prove this fact. All we can prove is a approximation to the

minimum cut value, while the actual approximate cut eludes us. Note, though, that our

evolutionary graph is in e�ect implementing the contraction algorithm: the two connected

components existing just before time tconn(G) are the two sides of the cut the contraction

algorithm would produce. Thus the probability does exceed n2 that we will output the

actual minimum cut.

10.5.3 Weighted Graphs

We now discuss the changes needed to extend this approach to weighted graphs. In a

weighted graph, the natural approach is to treat an edge of weight w as a set of w parallel

unweighted edges. We can then immediately apply the approach of the previous section.

Unfortunately, this would suggest that we must generate w random arrival times for an edge

of weight w. To solve this problem, observe that the arrival times are used to construct

a minimum spanning tree. Thus, the only value the matters is the smallest among the

arrival times on the parallel edges. Thus, for an edge of weight w, it su�ces to generate one

random arrival time distributed as the minimum of w uniform distributions. This problem

was already addressed in Section 4.5.2, where we showed that the solution was to assign

each edge a score drawn at random from the exponential distribution. More precisely, we

consider replacing each edge of weight w by kw unweighted edges, each with an arrival time

uniformly distributed in the interval [0; k]. Now the probability that no edge arrives before

time t is (1� t=k)wk, which approaches e�wt as k grows large. The techniques needed for

generating these exponential variates using only unbiased random bits can be found in the

appendix.

Corollary 10.5.3 In a weighted graph, O(n� logn) minimum spanning tree computations

can be used to estimate the minimum cut to within a factor of
p
1 + 2=� (Monte Carlo).

10.5.4 Dynamic Approximation

We now use \inverse sparsi�cation" in dynamic approximation algorithms. Eppstein et

al [51] give an algorithm for dynamically maintaining a minimum spanning tree of a graph

in ~O(
p
n) time per edge insertion or deletion (coincidentally, their algorithm is also based on

10.5. AN EVOLUTIONARY GRAPH MODEL FOR DYNAMIC ALGORITHMS 175

a graph sparsi�cation technique). They give another algorithm which maintains a minimum

spanning tree under insertions only in ~O(1) time per insertion. We use this as follows. Given

an unweighted graph G, we maintain ~O(n�) copies Gi of G, each with randomly assigned

edge weights, and dynamically maintain the minimum spanning trees of the Gi. When an

edge is added to our graph G, we add the edge to each Gi, assigning it an independently

chosen random weight in each. When an edge is deleted, we delete it from each of the Gi.

It is easy to modify the dynamic minimum-spanning tree algorithms to maintain the values

w(Gi) with no additional overhead. Thus after each update, we simply inspect the values

w(Gi) in order to estimate the minimum cut. By choosing constants appropriately, we can

ensure a polynomially small probability that our analysis will fail at any particular step in

the update sequence. It follows that over any polynomial length sequence of updates, we

have a high probability of the analysis being correct at all points in the sequence. If we now

plug in the time bounds for the dynamic minimum spanning tree algorithms, we deduce

time bounds for dynamically approximating the minimum cut.

Theorem 10.5.4 The minimum cut of an unweighted graph can be dynamically approxi-

mated with high probability to within a
p
1 + 2=� factor in ~O(n�+1=2) time.

Remark: We must be careful with the precise meaning of high probability. Our analy-

sis shows that the ~O(n�) minimum spanning tree existing at one particular point in the

insertion/deletion sequence has only a polynomially small probability of giving the wrong

answer about the minimum cut at that point in the sequence. Unfortunately, this means

that if the length of the insertion/deletion sequence is superpolynomial, we cannot claim

that that we will be right all the time. Therefore, we restrict our discussion to the case of

polynomial-length update sequences.

Theorem 10.5.5 The minimum cut of an unweighted graph can be dynamically approxi-

mated to within a
p
1 + 2=� factor over any polynomial length sequence of edge insertions

in ~O(n�) time per insertion (Monte Carlo).

Remark: It should be noted that in these dynamic algorithms an important but natural

assumption is that the adversary determining the update sequence is not aware of any of

the random bits used by the algorithm.

176 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

10.6 Evolutionary k-Connectivity

Since the Recursive Contraction Algorithm can compute minimum cuts from scratch in

~O(n2) time, the previous dynamic scheme is useful only when � < 2, implying that the best

approximation it gives is
p
2. In Section 6.3.4, we gave a graph which used ~O(n=�3) time

per update to approximate minimum cuts to within �. However, that algorithm maintained

and updated O(log c) skeletons of the graph in question and was therefore slow for graphs

with very large minimum cuts. Here, we use the evolutionary sampling model to get similar

bounds for weighted graphs. Indeed, even for unweighted graphs, we improve the algorithm

by maintaining only a single skeleton instead of O(logn) of them.

We start with unweighted graphs. As before, we can assign a uniformly distributed

arrival time to each edge and watch the evolving graph G(t). Eventually, at a certain time

tk�conn = tk�conn(G), the evolving graph will have minimum cut k > log n. We argue that

at this point in time G(tk�conn) approximates the minimum cut of G very accurately.

Lemma 10.6.1 There is a k = O((logn)=�2) such that the minimum cut of G(tk�conn)

corresponds to a (1 + �)-minimal cut of G with high probability.

Proof: Since each edge has probability t of arriving before time t, examining G(t) is the

same as building a t-skeleton. Let G have minimum cut c and let t = O((logn)=�2c) from

the sampling theorem. Finally, let k = (1 + �)tc.

The sampling theorem says that at time t, (1 � �)tv edges have arrived from any cut

of value v. In particular, the minimum cut of G(t) is at most (1 + �)tc = k. Furthermore,

more than k edges have arrived from every cut of value exceeding k=(1� �). On the other

hand, at time t(1+ �)=(1� �), the sampling theorem says that at least k edges have arrived

in every cut. In other words, the minimum cut of G(t(1+ �)=(1� �)) exceeds k. Therefore,
t � tconn � t(1 + �)=(1� �) � t(1 + 2�) with high probability.

Since at time t at least (1 � �)tv edges have arrived from every cut of value v in G,

any cut of G(t) containing at most k edges can correspond to a cut of value at most

k=t(1� �) = (1+ �)c=(1� �) � (1+ 2�)c in G. This clearly continues to be true at any time

after time t. Therefore, any cut of value k in G(tk�conn) corresponds to a cut of value at

most (1 + 2�)c in G.

Corollary 10.6.2 There is a k = O((logn)=�2) such that with high probability, c = (1 �
�)k=tk�conn, and any minimum cut of G(tk�conn) corresponds to a (1+ �)-minimal cut of G.

10.6. EVOLUTIONARY K-CONNECTIVITY 177

The edge corresponding to tk�conn(G) is such that if it is removed, there will be a single

cut of value k � 1 in the graph. The lemma which we have just proved says that with high

probability, this cut corresponds to a (1 + �)-minimal cut in the graph. We have therefore

reduced the problem of (1+ �) approximation to the problem of performing an evolutionary

experiment until we get a k-connected graph, k = O((logn)=�2).

10.6.1 Dynamic Maintenance

To do so, we return to sparse certi�cates and the dynamic minimum spanning trees of [51].

Suppose that we have already assigned random arrival times to the edges. We show how

to �nd tk�conn in a specially constructed sparse certi�cate of G. Let F1 be the minimum

spanning forest of G (according to arrival times). Let F2 be the minimum spanning forest

of G� F1, F3 the minimum spanning forest of G� (F1 [F2), and so on through Fk. Let S

be [ki=1Fk. S is clearly a sparse k-connectivity certi�cate of G, since it was constructed by

a particular implementation of the greedy sparse certi�cate algorithm of Section 3.3. We

show that in addition, tk�conn(G) = tk�conn(S).

Lemma 10.6.3 The k earliest arriving edges of every cut of G are in S.

Lemma 10.6.4 tk�conn(S) = tk�conn(G):

Proof: Clearly tk�conn(S) � tk�conn(G) since every k-connected subgraph of S is a k-

connected subgraph of G; we show the converse. Let us consider the edge e whose arrival

makes S k-connected, so te = tk�conn(S). Since S is k-connected before e arrives but not

after, e must cross a cut C of value k. By the previous lemma, the k smallest edges crossing

C in G are all in S. Therefore, the only way S can fail to have k edges crossing before time

te is if e is one of the k earliest-arriving edges crossing C in G. But in this case, G(t) will

also not be k-connected before the arrival of edge e. Thus, tk�conn(S) = te � tk�conn(G), as

desired.

It therefore su�ces to identify tk�conn(S) and the minimum cut of S at that time. To

do so, order the edges of S by arrival time and perform a binary search to identify the index

i such that the i smallest edges are necessary and su�cient to k-connect the graph. The

ith edge determines tk�conn(S) = tk�conn(G), and removing it creates a single cut of value

k � 1. If we use the randomized complete intersection algorithm of Section 10.3, this takes

~O(m
p
k) time in a graph with m edges.

178 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

Now note that all this information can be maintained dynamically. To maintain the

greedy weighted sparse certi�cate S of G, we use the dynamic minimum spanning tree

algorithm of Eppstein et al to maintain the �rst forest F1, maintain G� F1, maintain F2,

the minimum spanning forest of G� F1, and so on. Inserting a weighted edge requires at

most k updates, one for each minimum spanning tree (the argument is the same as in [51]

for maintaining standard sparse connectivity certi�cates) and therefore takes ~O(k
p
n) time.

Now, however, we can perform our identi�cation of tk�conn(G) in the sparse certi�cate S.

Since S has O(kn) edges, this takes ~O(nk3=2) time. This proves the following:

Lemma 10.6.5 A (1 + �)-approximation to the minimum cut in an unweighted graph can

be maintained ~O(n=�3) time per insertion or deletion.

10.6.2 Weighted Graphs

We can again extend this approach to weighted graphs using exponential variates. Sup-

pose we replace an edge of weight w with rw multiple edges and assign each of them an

arrival time uniformly distributed in the interval [0; r]. Since we are interested only in k-

connectivity, we can stop looking at a particular pair of endpoints as soon as k edges with

those endpoints have arrived, since at this point the two endpoints are clearly k-connected.

Therefore, we are asking for the k smallest values among rw uniform selections from the

interval [0; r]. In the limit as r grows, these values converge to a Poisson Distribution.

That is, if the kth smallest arrival time is ti, then the values ti+1 � ti are independent and

exponentially distributed with parameter w. We can therefore determine t1 through tk as

the cumulative sums of k exponential variables whose generation is described in the ap-

pendix. As is discussed there, generating k exponential variables takes ~O(k) time with high

probability. We have therefore shown:

Lemma 10.6.6 A (1 + �)-approximation to the minimum cut in a weighted graph can be

maintained ~O(n=�3) time per insertion or deletion.

10.7 Other Cut Problems

10.7.1 Parallel Flow Algorithms

In the s-t min-cut problem the need for the �nal \cleanup" augmentations interferes with

the development of e�cient RNC algorithms for the problems, because there are no good

10.7. OTHER CUT PROBLEMS 179

parallel reachability algorithms for directed graphs. However, we can still take advantage

of the randomized divide-and-conquer technique in a partially parallel algorithm for the

problem. Khuller and Schieber [118] give an algorithm for �nding disjoint s-t paths in

undirected graphs. It uses a subroutine which augments a set of k disjoint s-t paths to k+1

if possible, using ~O(k) time and kn processors. This lets them �nd a
ow of value v in in

~O(v2) time using vn processors. We can speed up this algorithm by applying the randomized

divide and conquer technique we used for maximum
ows. Finding the �nal augmentations

after merging the results of the recursive calls is the dominant step in the computation, and

requires ~O(v2=
p
c) time using vn processors. Thus we decrease the running time of their

algorithm by an ~O(
p
c) factor, without changing the processor cost.

10.7.2 Balanced and Quotient Cuts

The balanced cut problem is to �nd a cut with a minimum number of edges such that

n=2 vertices are on each side. The quotient cut problem is to �nd a cut (A;B) of value

v minimizing the value of the quotient v=(kAkkBk). These problems are NP-complete
and the best known approximation ratio is O(logn). One algorithm which achieves this

approximation for quotient cuts is due to Leighton and Rao [137].

Klein, Stein, and Tardos [123] give a fast concurrent
ow algorithm which they use

to improve the running time of Leighton and Rao's algorithm. Their algorithm runs in

O(m2 logm) time, and �nds a cut with quotient within an O(logn) factor of the optimum.

Consider a skeleton of the graph which approximates cuts to within a (1��) factor. Since the
denominator of a cut's quotient is unchanged in the skeleton, the quotients in the skeleton

also approximate their original values to within a (1� �) factor. It follows that we can take
p = O(logn=c) and introduce only a constant factor additional error in the approximation.

By the same argument, it su�ces to look for balanced cuts in a skeleton rather than the

original graph.

Theorem 10.7.1 An O(logn)-approximation to the minimum quotient cut can be com-

puted in O((m=c)2 logm) time (MC).

10.7.3 Orienting a Graph

Given an undirected graph, the graph orientation problem is to �nd an assignment of direc-

tions to the edges such that the resulting directed graph has the largest possible (directed)

180 CHAPTER 10. MORE CUT-SAMPLING ALGORITHMS

connectivity. Gabow [68] cites a theorem of Nash-Williams [157] showing that a solution

of connectivity k exists if and only if the input graph is 2k-connected, and also gives a

submodular-
ow-based algorithm for �nding the orientation in O(kn2(
p
kn+ k2 log(n=k)))

time. We have the following result:

Lemma 10.7.2 A (k�O(pk logn))-connected orientation of a 2k-connected graph can be

found in linear time.

Proof: Orient each edge randomly with probability 1=2 in each direction. A minor adap-

tation of Theorem 6.2.1 shows that with high probability, for each cut, there will be at least

k � O(
p
k logn) edges oriented in each direction. In other words, every directed cut will

have a value exceeding the desired one.

Using this randomly oriented graph as a starting point in Gabow's algorithm also allows

us to speed up that algorithm by a factor of ~O(
p
k).

10.7.4 Integral Multicommodity Flows

Suppose we are given an unweighted graph G and a multicommodity
ow problem with

k source-sink pairs (si; ti) and demands di. Let ci be the value of the si-ti minimum cut

and suppose that
P
di=ci � 1. Then it is obvious that there is a fractional solution to the

problem: divide the graph into k new graphs Gi, giving a di=ci fraction of the capacity

of each edge to graph Gi. Then the si-ti minimum cut of Gi has value exceeding di, so

commodity i can be routed in graph Gi. There has been some interest in the question of

when an integral multicommodity
ow can be found [60, 153]. Sampling lets us �nd an

integral solution, and �nd it faster, if we have some slack. Rather than assigning a fraction

of each edge to each graph, assign each edge to a graph Gi with probability proportional

to di=ci. We now argue as for the
ow algorithms, that given the right conditions on c,

each graph Gi will be able to integrally satisfy the demands for commodity i. Thus k

max-
ow computations will su�ce to route all the commodities. In fact, in an unweighted

graph, if mi is the number of edges in Gi, we have that
P
mi = m, so that the max-
ow

computations will take a time of O(
P
min) = O(mn) time. Various results follow; we give

one as an example:

Lemma 10.7.3 Suppose that each di � log n, and that
P
di=c � 1=2. Then an integral

multicommodity
ow satisfying the demands can be found in O(mn) time.

10.8. CONCLUSIONS 181

Proof: Assign each each to group i with probability proportional to di=c. Since
P
di=c �

1=2, this means the probability an edge goes to i is at least 2di=c. This the minimum

expected cut in Gi is at least 2di, so the minimum cut exceeds di with high probability and

that graph can satisfy the ith demand.

10.8 Conclusions

We have given further applications of random sampling in problems involving cuts. Clearly,

there are many more potential applications. We might wish to reexamine some problems

to see if they can be reformulated in terms of cuts so that random sampling can be applied.

One result of this approach has been to reduce large maximum
ow and min-cut prob-

lems on undirected graphs to small maximum
ow and minimum cut problems on directed

graphs. Our techniques are in a sense \meta-algorithms" in that improved cut or
ow

algorithms that are subsequently developed may well be accelerated by application of our

technique. In particular, our exact algorithms running times are dominated by the time

needed to perform \cleaning up" augmenting path computations; any improvement in the

time to compute a sequence of augmenting paths would translate immediately into an im-

provement in our algorithm's running time. One way to get such an improvement might be

to generalize our sampling theorems to the case of directed graphs.

We have considered dynamic sampling at two \points in time:" when the graph becomes

connected, and when the graph becomes O(logn)-connected. The larger connectivity in-

duces a greater accuracy in our approximations. There is in fact a smooth improvement in

accuracy over time: the graph's biconnectivity time gives more accurate information than

its connectivity time; its triconnectivity time gives yet more accuracy, and so on. We can

use fast dynamic biconnectivity and triconnectivity algorithms [51] to estimate these higher

connectivity times. Unfortunately, the tradeo� of connectivity for accuracy means that

biconnectivity and triconnectivity times give only o(1) improvements in the accuracy com-

pared to the connectivity time. The best dynamic algorithm for higher connectivities than 4

is the same one we used for O(logn)-connectivity. It might therefore be worth investigating

dynamic algorithms for k-connectivity when k is a very slowly growing function.

Portions of this chapter appeared in [105] and [104].

Chapter 11

Random Sampling in Matroids

11.1 Introduction

In this chapter, we put our results on random sampling into a more general framework. We

extend our sampling theorems to matroid optimization (a generalization of the minimum

spanning tree problem) and to basis packing (a generalization and variation on our minimum

cut/maximum
ow results).

11.1.1 Matroids and the Greedy Algorithm

We give a brief discussion of matroids and the rami�cations of our approach to them. An

extensive discussion of matroids can be found in [186].

The matroid is a powerful abstraction that generalizes both graphs and vector spaces. A

matroidM consists of a ground setM of which some subsets are declared to be independent.

The independent sets must satisfy three properties:

� The empty set is independent.

� All subsets of an independent set are independent.

� If U and V are independent, and jU j > jV j, then some element of U can be added to

V to yield an independent set.

This de�nition clearly generalizes the notion of linear independence in vector spaces; indeed

this was the �rst use of matroids. However, it was quickly noted [187, 183] that matroids

also generalize graphs: in the graphic matroid the edges of the graph form the ground set,

182

11.1. INTRODUCTION 183

and the independent sets are the acyclic sets of edges (forests). Maximal independent sets

of a matroid are called bases; bases in a vector space are the standard ones while bases in a

graph are the spanning forests (spanning trees, if the graph is connected). In the matching

matroid of a graph [134], bases correspond to maximum matchings.

Matroids have rich structure and are the subject of much study in their own right [186].

Matroid theory is used to solve problems in electrical circuit analysis and structural rigid-

ity [171]. A discussion of many optimization problems that turn out to be special cases of

matroid problems can be found in [136]. In computer science, perhaps the most natural

problem involving matroids is matroid optimization. If a weight is assigned to each ele-

ment of a matroid, and the weight of a set is de�ned as the sum of its elements' weights,

the optimization problem is to �nd a basis of minimum weight. The MST problem is the

matroid optimization problem on the graphic matroid. Several other problems can also be

formulated as instances of matroid optimization [41, 134, 136].

11.1.2 Matroid Optimization

Edmonds [48] was the �rst to observe that the matroid optimization problem can be solved

by the following natural greedy algorithm. Begin with an empty independent set I , and

consider the matroid elements in order of increasing weight. Add each element to I if doing

so will keep I independent. Applying the greedy algorithm to the graphic matroid yields

Kruskal's algorithm [133] for minimum spanning trees: grow a forest by repeatedly adding

to the forest the minimum weight edge that does not form a cycle with edges already in the

forest. A converse result [186] is that if a family of sets does not form a matroid, then there

is an assignment of weights to the elements for which the greedy algorithm will fail to �nd

an optimum set in the family.

The greedy algorithm has two drawbacks. First, the elements of the matroid must

be examined in order of weight. Thus the matroid elements must be sorted, forcing an

(m logm) lower bound on the running time of the greedy algorithm on an m-element

matroid. Second, the independent set under construction is constantly changing, so that

the problem of determining independence of elements is a dynamic one.

Contrast the optimization problem with that of verifying the optimality of a given

basis. For matroids, all that is necessary is to verify that no single element of the matroid

M \improves" the basis. Thus in veri�cation the elements of M can be examined in any

order. Furthermore, the basis that must be veri�ed is static. Extensive study of dynamic

184 CHAPTER 11. RANDOM SAMPLING IN MATROIDS

algorithms has demonstrated that they tend to be signi�cantly more complicated than their

static counterparts|in particular, algorithms on a static input can preprocess the input so

as to accelerate queries against it.

Extending our minimum spanning tree result, we show how an algorithm for verifying

basis optimality can be used to construct an optimum basis. The reduction is very simple

and suggests that the best way to develop a good optimization algorithm for a matroid

is to focus attention on developing a good veri�cation algorithm. To demonstrate this

approach, we give a new algorithm for the problem of scheduling unit time tasks with

deadlines and penalties, a classic problem that can be found in many discussions of matroid

optimization [134, 136, 41].

11.1.3 Matroid Basis Packing

We also investigate the problem of packing matroid bases, i.e. �nding a maximum set of

disjoint bases in a matroid.1 This problem arises in the analysis of electrical networks and

also in the analysis of the structural rigidity of physical structures (see [136] for details).

Edmonds [47] gave an early algorithm for the problem. A simpler algorithm was given by

Knuth [127]. Faster algorithms exist for the special case of the graphic matroid [72] where

the problem is to �nd a maximum collection of disjoint spanning trees (this particular

problem is important in network reliability|see for example Colbourn's book [36]).

We apply random sampling to the basis packing problem. Let the packing number of a

matroid be the maximum number of disjoint bases in it. We show that a random sample of

a 1=k fraction of the elements from a matroid with packing number n has a packing number

tightly distributed around n=k. This provides the approximation results needed to apply

our sampling-based approaches.

11.1.4 Related work

There has been relatively little study of applications of randomization to matroids. Reif

and Spirakis [172] studied random matroids; however, they used a more general notion

of matroids and focused on other problems; their results generalized existence proofs and

algorithms for Hamiltonian paths and perfect matchings in random graphs. Their approach

1Unlike the problem of counting disjoint bases, the problem of counting the total number of bases in a

matroid is hard. This]P-complete generalization of the problem of counting perfect matchings in a graph

has been the focus of much recent work; see for example [54].

11.2. SAMPLING FOR OPTIMIZATION 185

was to analyze the average case behavior of matroid algorithms on random inputs, while

our goal is to develop randomized algorithms that work well on all inputs. Polesskii [165],

generalizing his earlier work with Lomonosov (Theorem 10.1.1, proven in [140]) studied

the probability that a random sample from a matroid contains one basis; he derived an

equivalent to our Theorem 11.3.3.

11.2 Sampling for Optimization

We now observe that our minimum spanning tree results extend almost without change to

matroid optimization.

11.2.1 A Sampling Theorem

We begin with a de�nition of random sampling.

De�nition 11.2.1 For a �xed universe S, S(p) is a set generated from S by including each

element independently with probability p. For A � S, A(p) = A \ S(p).

De�nition 11.2.2 An independent set X spans an element e if X[feg is not independent.

Note that X spans e in a graph if it contains a path between the endpoints of e.

De�nition 11.2.3 Given an independent set F , element e is F -heavy if the elements of F

lighter than e span e, and F -light otherwise.

Consider now Lemma 2.2.1 about minimum spanning trees. We claim that this lemma

applies unchanged to more general matroids.

Theorem 11.2.4 Let M have rank r. and let F be the optimum basis of M(p). The

expected number of F -light elements of M is less than r=p. For any constant � > 0, the

probability that more than (1 + �)r=p elements of M are F -light is O(e�
(r)).

Proof: This follows immediately from the fact that Kruskal's algorithm is simply the greedy

algorithm for matroid optimization. So just replace the word \edge" with \matroid element"

and the word \forest" with \independent set" everywhere in the proof of Lemma 2.2.1.

186 CHAPTER 11. RANDOM SAMPLING IN MATROIDS

11.2.2 Optimizing by Verifying

It follows that we can apply the minimum spanning tree's sampling techniques to matroid

optimization, reducing the problem of constructing the optimum basis to the problem of

verifying a basis F to determine which matroid elements are F -light. To begin with, suppose

that we have two algorithms available: a construction algorithm that takes a matroid of

size m and rank r and �nds its optimum basis in time C(m; r); and a veri�cation algorithm

that takes a size m, rank r matroid M and an independent set F and determines which

elements of M violate F in time V (m; r). We show how to combine these two algorithms

to yield a more e�cient construction algorithm when V is faster than C.

At this point, we must diverge slightly from the minimum spanning tree approach be-

cause there is no analogue of Bor�uvka's algorithm for reducing the rank of a general matroid.

We apply the algorithm Recursive-Refinement of Figure 11.1.

Procedure Recursive-Refinement(M)

if m < 3r then

return C(M)

else

F recursive-refinement(M(1=2))

U F -light elements of M (using veri�er)

return C(U)

Figure 11.1: Recursive-Refinement

Algorithm Recursive-Refinement is clearly correct; we analyze its running time. By

a standard Cherno� bound, M(1=2) will have size at most m=1:9 with high probability.

Furthermore, by Theorem 11.2.4, U will have size at most 3n with high probability. This

leads to a recurrence for the running time C0 of the new construction algorithm.

C0(3n; n) = C(3n; n)

C0(m;n) � C0(m=1:9; n) + V (m;n) + C(3n; n):

Given the assumption that V (m;n) =
(m) (since every element must be examined), this

11.2. SAMPLING FOR OPTIMIZATION 187

recurrence solves to

C0(m;n) = O(V (m;n) + C(3n; n) log(m=n)):

we have therefore proved the following:

Lemma 11.2.5 Suppose an m element, rank r matroid has algorithms for constructing

an optimum basis in C(m; r) time and for determining the elements that violate a given

independent set in V (m; r) time. Then with high probability, an optimum basis for the

matroid can be found in O(V (m; r) + C(r; r) log(m=r)) time.

11.2.3 Application: Scheduling with Deadlines

In their survey paper [136], Lee and Ryan discuss several applications of matroid optimiza-

tion. These include job sequencing and �nding a minimum cycle basis of a graph. In the

applications they discuss, attention has apparently been focused on the construction rather

than the veri�cation of the optimum basis. Sampling indicates a potential avenue toward

improved algorithms for them.

We apply this idea to the problem of scheduling unit-time tasks with deadlines and

penalties for a single processor. This problem is a favorite pedagogical example of matroid

optimization, appearing among others in [134] and [41]. We follow the treatment of [41,

Section 17.5]. We are given a set ofm unit time tasks, each with a deadline by which it must

be performed and a penalty we pay if the deadline is missed. The tasks must be linearly

ordered so that each task is assigned to one unit-time slot and each slot receives only one

task. A penalty is paid for each task whose deadline precedes the time slot to which it is

assigned. The goal is to schedule the problems so as to minimize the total penalty. Given a

schedule of tasks, call a task early if it is scheduled to be done before its deadline. We call

a set of tasks independent if there is a schedule in which they are all early. It is shown that

this de�nes a matroid on the universe of tasks. The rank r of this matroid is simply the

maximum number of tasks that can be simultaneously early, and may be much less than

m. In particular, it is no more than then the largest deadline. An algorithm to solve the

problem is given, but it runs in
(m logm) time because the tasks must be sorted in order

of decreasing penalty. By applying the sampling method, we can make the running time

O(m + r log r log(m=r)); this output sensitive algorithm will run faster when the output

solution is small.

188 CHAPTER 11. RANDOM SAMPLING IN MATROIDS

To achieve this time bound, we apply sampling through an O(r log r)-time veri�cation

algorithm which we now present. It is based on the O(r log r)-time construction algorithm

given in [41, Problem 17-3]. This algorithm will schedule a set of tasks legally or will

determine that they are not independent. Sort the tasks in order of decreasing penalty. We

consider them in this order, and add each task to the latest free slot remaining before its

deadline. If no such free slot exists, we stop because the set of tasks is not independent.

After sorting, it is easy to implement this algorithm using disjoint set union over the universe

of slots: the roots of the sets are the remaining free slots and each slot is in the set of the

�rst free slot preceding it.

We now modify this algorithm so that on a given independent set of tasks T it prepro-

cesses them so as to allow any other task t to be veri�ed against T (checking if it is spanned

by the tasks of larger penalty than its own in T) in unit time. Suppose task t has deadline d

and penalty p and consider running the algorithm on T [fpg. Let P � T be the set of tasks

in T with penalties larger than p. Then from the correctness of the construction algorithm

we know that t is spanned by P if and only if there is no free slot preceding d after the

tasks in P have been added. We therefore modify the scheduling algorithm to assign to

each slot the penalty associated with the job that �lled it (this does not change the running

time). Then t is spanned by P if and only if every slot preceding d has a penalty exceeding

p, i.e. the minimum penalty preceding d is larger than p. Therefore, after performing the

schedule, in time O(kTk) we compute for each slot the minimum of the penalties preceding

it. Then, to verify that t is not spanned by P we simply check whether the value in slot

d is less than p or not. Since we run the veri�er only on independent sets, kTk � r and it

follows that the time to verify a candidate early task set against the m tasks is O(r log r)

to preprocess plus O(m) to verify for a total of O(m+ r log r). Applying random sampling

(Lemma 11.2.5) immediately gives the desired result:

Theorem 11.2.6 Scheduling unit-time tasks with deadlines and penalties for a single pro-

cessor can be solved in O(m+ r log r log(m=r)) time (Las Vegas).

11.3 Sampling for Packing

We now turn to the basis packing problem. The basis packing problem is to �nd a maximum

disjoint collection of bases in a matroidM. The �rst algorithm for this problem was given

by Edmonds [47], and there have been several improvements. It is closely related to the

11.3. SAMPLING FOR PACKING 189

problem of �nding a basis in a k-fold matroid sum for M, whose independent sets are the

sets that can be partitioned into k independent sets ofM. Recall that Gabow's minimum

cut algorithm used just such a concept.

Many matroid packing algorithms use a concept of augmentation: the algorithms re-

peatedly augment a collection of independent sets by a single element until they form the

desired number of bases. These augmentation steps generally have running times depen-

dent on the matroid size m, the matroid rank r, and k, the number of bases already found.

For example Knuth's algorithm [127] �nds an augmenting path in O(mrk) time and can

therefore �nd a set of k disjoint bases of total size rk (if they exist) in time O(mr2k2) (Time

here is measured as the number of calls that must be made to an independence oracle that

determines whether a given set is independent). We can use such augmentation algorithms

in the same ways as we used augmenting paths and Round-Robin in sampling for maximum

ows and minimum cuts.

As the proofs needed for this section are quite technical, we have left them for a later

section and will focus here on how the sampling theorems can be used. After discussing the

sampling theorems, we show how they lead to e�cient algorithms for packing problems.

11.3.1 Packing Theorems

We generalize and extend a well known fact sue to Erd�os and Renyi [52, 18] that if a random

graph on n vertices is generated by including each edge independently with probability

exceeding (ln n)=n, then the graph is likely to be connected. Rephrased in the language

of graphic matroids, if the edges of a complete graph on n vertices are sampled with the

given probability, then the sampled edges are likely to contain a spanning tree, i.e. a basis.

We generalize this result to arbitrary matroids. Similarly, we generalize our cut-sampling

theorem to analyze the number of bases in a random sample from a matroid. As before, we

consider constructing a matroid sample M(p) from matroidM by including each element

of the matroid's ground set M in the sample with probability p.

De�nition 11.3.1 The packing number P (M) for a matroid M is the maximum number

of disjoint bases in it.

If we sample matroid elements with probability p, the most obvious guess as to the

expected number of bases in the sample is that it should scale by a factor of p. This turns

out to be true. The main theorem we shall apply is the following:

190 CHAPTER 11. RANDOM SAMPLING IN MATROIDS

Theorem 11.3.2 Given a matroidM of rank r and packing number n, and given p, let n0

be the number of disjoint bases ofM inM(p). Then

Pr[jn0 � npj > �np] < re��
2np=2:

Proof: Section 11.4

A special case of this theorem was proven by Polesskii [165]:

Theorem 11.3.3 Suppose M contains a+2+k ln r disjoint bases. Then M(1=k) contains

a basis forM with probability 1�O(e�a=k).

Proof: Section 11.4

Remark: The second theorem is in a sense orthogonal to Theorem 11.2.4. That theorem

shows that regardless of the number of bases, few elements are likely to be independent of

the sample. However, it does not prove that the sample contains a basis. This corollary

shows that if the number of bases is large enough, no elements will be independent of the

sample (because the sample will contain a basis).

Consider the graphic matroid on G. The bases of the graphic matroid are the spanning

trees of the graph.

Corollary 11.3.4 If a graph G contains k disjoint spanning trees, then with high probability

G(p) contains between kp� 2
p
kp logn and kp+ 2

p
kp logn disjoint spanning trees.

Remark: It is interesting to contrast this corollary with Corollary 6.2.2 on the connec-

tivity of a skeleton. A theorem of Polesskii [36] shows that a graph with minimum cut c

contains between c=2 and c disjoint spanning trees. However, both these boundary value

can be obtained (one with a cycle, the other with a tree). Thus, though one might ex-

pect one corollary to follow from or be equivalent to the other, they in fact appear to be

independent.

11.3.2 Packing Algorithms

Having developed approximation theorems for basis packing, we now use sampling to de-

velop algorithms for exact and approximate basis packing.

We begin by estimating the packing number of a matroid.

11.3. SAMPLING FOR PACKING 191

Theorem 11.3.5 The packing number k of an m-element matroid of rank r can be esti-

mated to within any constant factor using O(mr2=k) independence tests.

Proof: If we �nd p such that M(p) has packing number z = �(logn), then from Theo-

rem 11.3.2 we can be sure thatM has packing number k roughly equal to z=p. By starting

with a very small p and repeatedly doubling it until the proper number of bases is observed

in the sample, we can ensure that p = O((logn)=k). Thus all the samples we examine

have ~O(m=k) elements and ~O(1) disjoint independent sets. Furthermore, in a matroid with

packing number k, the sample we examine will have O(m=k) elements.

We can extend this approach in a randomized divide and conquer algorithm to �nd a

maximum packing of bases, exactly as we used augmentation to �nd maximum
ows and

complete intersections.

Theorem 11.3.6 A maximum packing of k matroid bases in an m element, rank r matroid

can be found with high probability in O(mr2k3=2) time.

This result \accelerates" Knuth's algorithm by a factor of
p
k.

Proof: Suppose that the matroid contains k bases. We can randomly partition the matroid

elements into 2 groups by
ipping a coin to decide which group each element goes in.

This means each group looks like a random sample with p = 1=2, though the groups are

not independent. We can apply the sampling theorem with p = 1=2 to each group to

deduce that with high probability each group contains k=2�O(pk log n) disjoint bases. We

recursively run the packing algorithm on each group to �nd each subcollection of bases, and

join them to yield a set of k�O(pk log n) bases. The bene�t is that this packing was found
by examining smaller matroids. We now augment the packing to k bases using Knuth's

algorithm; this takes O(mr2k3=2) time and is the dominant term in the running time of our

algorithm.

Gabow and Westermann [72] study the problem of packing spanning trees in the graphic

matroid, and give algorithms that are faster than the one just presented (they use special

properties of graphs, and are based on an analogue to blocking
ows rather than augmenting

paths). Combining their algorithm with our sampling techniques, we can estimate the

number of disjoint spanning trees in a graph to within any constant factor in ~O(m3=2)

time. It is an open problem to combine our sampling approach with their algorithm to �nd

optimum packings faster than they already do.

192 CHAPTER 11. RANDOM SAMPLING IN MATROIDS

11.4 Proofs

In the section we proved the theorems about sampling matroid bases. To introduce our

techniques intuitively, we begin by proving a theorem on the existence of a basis in the

sample, and we then generalize this theorem by estimating the number of disjoint bases we

will �nd in the sample.

11.4.1 Finding a Basis

We begin with some de�nitions needed in the proof.

De�nition 11.4.1 The rank of A �M , denoted �A, is the size of the largest independent

subset of A.

De�nition 11.4.2 A set A spans an element x if �A = �(A[fxg). The span of a set A,

denoted �A, is the set of elements spanned by A. A spans B if B � �A.

If A � B then �A � �B. If A spans B and B spans C then A spans C.

The concept of a contracted matroid is well known in matroid theory; however, we use

slightly di�erent terminology. For the following de�nitions, �x some independent set T in

M.

De�nition 11.4.3 A set A is T -independent or independent of T if A [T is independent

inM.

De�nition 11.4.4 The contraction ofM by T , denotedM=T , is the matroid on M whose

independent sets are all the T -independent sets ofM.

De�nition 11.4.5 A=T is any maximal T -independent subset of A.

Lemma 11.4.6 If A is a basis of M, then A=T is a basis for M=T .

Lemma 11.4.7 If B is a a basis of M=T , then B [T is a basis of M.

Recall the binomial distribution B(n; p) (see the appendix for details). To avoid de�n-

ing a dummy variable, we also use B(n; p) to denote a single sample from the binomial

distribution.

11.4. PROOFS 193

Theorem 11.4.8 Suppose M contains a+2+k ln r disjoint bases. Then M(1=k) contains

a basis forM with probability 1�O(e�a=k).

Proof: Let p = 1=k. Let fBiga+2+k ln ri=1 be disjoint bases of M. We construct the basis

in M(p) by examining the sets Bi(p) one at a time and adding some of their elements to

an independent set I (initially empty) until I is large enough to be a basis. We invert the

problem by asking how many bases must be examined before I becomes a basis. Suppose

we determine U = B1(p), the set of elements of B1 contained in M(p). Note that the

size u of U is distributed as B(r; p); thus E[u] = rp. Consider the contractionM=U . By

Lemma 11.4.6, this matroid contains disjoint bases B2=U;B3=U; : : :, and has rank r � u.

We ask recursively how many of these bases we need to examine to construct a basis B for

the contracted matroid. Once we have done so, we know from Lemma 11.4.7 that U [B
is a basis forM. This gives a probabilistic recurrence for the number of bases we need to

examine:

T (r) = 1 + T (r � u); u = B(r; p):

If we replaced random variables by their expected values, we would get a recurrence of the

form S(r) = 1+S((1�p)r), which solves to S(r) = logb r, where b = 1=(1�p). Probabilistic
recurrences are studied by Karp in [111]. His �rst theorem exactly describes our recurrence,

and proves that for any a,

Pr[T (r) � blogb rc+ a + 2] � (1� 1=k)a:

In our case, logb r � k ln r.

11.4.2 Counting Bases

We devote this section to the proof of the following theorem:

Theorem 11.4.9 If P (M) = n then the probability that M(p) fails to contain k disjoint

bases of M is at most r � Pr[B(n; p) � k].

To prove it, we generalize the technique of the previous section. We line up the bases

fBig and pass through them one by one, adding some of the sampled elements from each

basis to an independent set I that grows until it is itself a basis. For each Bi, we set aside

some of the elements because they are dependent on elements already added to I ; we then

194 CHAPTER 11. RANDOM SAMPLING IN MATROIDS

examine the remaining elements of Bi to �nd out which ones were actually sampled and

add those sampled elements to I . The change in the procedure is that we do this more than

once: to construct the next basis, we examine those elements set aside the �rst time.

Consider a series of phases; in each phase we will construct one basis. At the beginning

of phase k, there will be a remaining portion Rk
n of Bn; the elements of R

k
n are those elements

of Bn that were not examined in any of the previous phases. We construct an independent

set Ik by processing each of the Rk
n in order. Let Ikn�1 be the portion of Ik that we have

constructed before processing Rk
n. To process R

k
n, we split it into two sets: R

k+1
n are those

elements that are set aside until the next phase, while Ek
n = Rk

n�Rk+1
n is the set of elements

we examine in this phase. The elements of Ek
n will be independent of I

k
n�1. Thus as in the

single-basis case, we simply check which elements of Ek
n are in the sampled set, identifying

the set Uk
n = Ek

n(p) of elements we use, and add them to our growing basis. Formally, we

let Ikn = Ikn�1 [Uk
n ; by construction Ikn will be independent.

Ikn Independent set so far.

Rk
n Remainder of nth basis.

Ek
n Elements examined for use.

Uk
n Elements actually used from Ek

n, namely Ek
n(p).

Figure 11.2: Variables describing nth basis in kth phase

We now explain precisely how we determine the split of Rk
n into Rk+1

n and Ek
n. Let r

k
n,

ikn, e
k
n, and ukn be the size of Rk

n, I
k
n, E

k
n, and Uk

n respectively. Suppose that we have Ikn�1
in hand, and wish to extend it by examining elements of Rk

n. We assume by induction that

ikn�1 � rkn. It follows from the de�nition of matroids that there must exist a set Ek
n � Rk

n

such that Ikn�1 [Ek
n is independent and has size rkn. De�ning Ek

n this way determines

Rk+1
n = Rk

n � Ek
n. We then set Uk

n = Ek
n(p), and Ikn = Ikn�1 [Uk

n .

To justify our inductive assumption we use induction on k. To prove it for k + 1, note

that our construction makes rk+1n = ikn�1. Thus the fact that ikn�2 � ikn�1 implies that

rk+1n�1 � rk+1n . Our construction forces ik+1n�1 � rk+1n�1; thus i
k+1
n�1 � rk+1n as desired.

We now use the just noted invariant rk+1n = ikn�1 to derive recurrences for the sizes of

the various sets. Note that when we reach a value n such that Ikn = r, we have constructed

the kth basis. As before, the recurrences will be probabilistic in nature. Let fkn = E[ekn].

11.4. PROOFS 195

Lemma 11.4.10 fkn =
�
n

k

�
pk(1� p)n�k

Proof: Recall that ukn is the size of Uk
n , so u

k
n = B(ekn; p). Thus

rk+1n = ikn�1

= ikn�2 + ukn�1

= rk+1n�1+ B(ekn�1; p):

It follows that

ekn = rkn � rk+1n

= [rkn�1 +B(ek�1n�1; p)]� [rk+1n�1+ B(ekn�1; p)]

= ekn�1 �B(ekn�1; p) +B(ek�1n�1; p):

Now let fkn = E[ekn]. Linearity of expectation applied the recurrence shows that

fkn = (1� p)fkn�1 + pfk�1n�1 :

Since we examine the entire �rst basis in the �rst phase, e00 = r and ek0 = 0 for k > 0.

Therefore this recurrence is solved by

fkn =

n

k

!
pk(1� p)n�kr:

We now ask how big n needs to be to give us a basis in the kth phase. As in Section 11.3,

it simpli�es matters to assume that we begin with an in�nite set of disjoint bases, and ask

for the value of n such that in the kth phase, we �nish constructing the kth sampled basis

Ik before we reach the nth original basis Bn. Recall the variable u
k
n denoting the number of

items from Bn used in Ik. Suppose that in the kth phase we use no elements from any basis

after Bn. One way this might happen is if we never �nish constructing Ik. However, this

is a probability 0 event. The only other possibility is that we have �nished constructing Ik

by the time we reach Bn so that we examine no more bases.

It follows that if ukj = 0 for every j � n, then we must have �nished constructing Ik

before we examined Bn. Since the ukj are non-negative, this is equivalent to saying thatP
j�n u

k
j = 0. It follows that our problem can be solved by determining the value n such

that
P

j�n u
k
j = 0 with high probability.

196 CHAPTER 11. RANDOM SAMPLING IN MATROIDS

From the Markov inequality, which says that for positive integer random variables

Pr[X > 0] � E[X], and from the fact that E[ukj] = pE[ekj] = pfkj , we deduce that the

probability that we fail to construct Ik before reaching Bn is at most

skn = E

2
4X
j�n

ukj

3
5 = p

X
j�n

fkj :

To bound skn, we can sum by parts to prove (c.f. [84, Chapter 2]) that

skn = p
X
j�n

j

k

!
pk(1� p)j�kr

=
pr

k!

�
p

1� p

�kX
j�n

jk(1� p)j

=
pr

k!

�
p

1� p

�k0@ jk
(1� p)j

�p
����
1

n

�
X
j�n

kjk�1(1� p)j+1

1
A

<
pr

k!

�
p

1� p

�k �
nk
(1� p)n

p

�

=

n

k

!
pk(1� p)n�kr

= rPr[B(n; p) = k]

(Note jk = k(k � 1) � � �(k � j + 1)). This proves the theorem.

The probability of �nding no bases is thus at most s0n � re�np; this is exactly the result

proven in the previous section.

We also consider the converse problem, namely to upper bound the number of bases

that survive. This analysis is relatively easy thanks to the following packing theorem due

to Edmonds [47]. Let A denote M �A.

Theorem 11.4.11 (Edmonds) A matroid M on M with rank r has n disjoint bases if

and only if

n�(A) + jAj � nr

for every A �M .

Corollary 11.4.12 If P (M) � n, and k > np, then the probability that M(p) contains

more than k disjoint bases of M is at most Pr[B(n; p) � k].

11.5. CONCLUSION 197

Proof: By Edmonds' theorem, there must exist some A �M such that

(n+ 1)�(A) + jAj < (n+ 1)r:

If �(A) = r, the above statement cannot be true. Thus �(A) � r� 1. It follows that in fact

(n+ 1)�(A) + max(jAj; n) < (n+ 1)r:

Now consider what happens in M(p). If M(p) contains no basis of M, then certainly it

contains fewer than k bases. On the other hand, if M(p) does contain a basis then M(p)

has rank r. The rank of A(p) is certainly at most �(A). To bound jA(p)j, consider two
cases. If jAj � n, then Pr[jA(p)j > (k=n)jAj] < Pr[B(n; p) > k]. On the other hand, if

jAj < n, then Pr[jAj > k] < Pr[B(n; p) > k]. In other words, with the desired probability

jA(p)j < (1 + �)pmax(jAj; n). It follows that with the desired probability,

(k + 1)�(A(p)) + jA(p)j < (k + 1)�(A) +
k + 1

n + 1
max(jAj; n)

=
k + 1

n + 1
[(n+ 1)�(A) + max(jAj; n)]

<
k + 1

n + 1
(n+ 1)r

= (k + 1)r

In other words, A(p) demonstrates through Edmonds' Theorem thatM(p) contains at most

k bases.

Applying the Cherno� bound [30] to the previous two theorems yields Theorem 11.3.2.

11.5 Conclusion

This chapter has suggested extended our random sampling approach from graphs to more

general matroids, and given results that apply to matroids as models for greedy algorithms

and as packing problems. A natural question is whether the paradigms we presented can

be extended further. In one direction, Korte, Lov�asz and Schrader [132] de�ne greedoids,

structures that capture more general greedy algorithms than those of matroids. Does our

optimization approach generalize as well? In the other direction, is it possible to de�ne

some sort of \packoid" that would capture the properties needed for our sampling and

randomized divide-and-conquer algorithms to work?

198 CHAPTER 11. RANDOM SAMPLING IN MATROIDS

Lomonosov [138] also examined the probability that a random sample from a matroid

would contain a basis. He derived formula's based on parameters very di�erent from,

and apparently more complicated than, the number of disjoint bases. He did not address

counting the number of bases in the sample. His work and this one should probably be

uni�ed.

The true power of matroids is shown when we consider the matroid intersection problem,

which captures problems such as maximum matching. The goal is to �nd a set that is si-

multaneously a basis in two di�erent matroids. Can any of our random sampling techniques

be applied there?

In the realm of combinatorics, how much of the theory of random graphs can be extended

to the more general matroid model? There is a well de�ned notion of connectivity in

matroids [186]; is this relevant to the basis packing results presented here? What further

insight into random graphs can be gained by examining them from a matroid perspective?

Erd�os and Renyi showed a tight threshold of p = (lnn)=n for connectivity in random graphs,

whereas our result gives a looser result of p =
((logn)=n) for matroid bases. Is there a

0-1 law for bases in a matroid?

Chapter 12

Network Design without Repeated

Edges

In this chapter, we address additional variants of the network design problem, the most

important variant being that which allows edges to be used only once. Recall that in

order to use randomized rounding, we scaled up each edge weight in order to make up for

the loss in cut value caused by randomized rounding. In the single edge-use case, we are

constrained not to let scaling increase the value of a fractional variable above 1. In order

to solve this problem, we �rst consider general covering problems. We present a modi�ed

Cherno� bound argument that goes some way towards solving the problem. We then discuss

the approximation ratio we can achieve by using this Cherno� bound.

We also consider a generalization of network design. In the �xed charge version [75], the

edges have not only arbitrary costs but also arbitrary capacities; one can buy all or none of

the capacity but not a fraction of it.

12.1 Oversampling for Covering Problems

Here, we give a variant of the Cherno� bound which we can use if we are not allowed to

scale weights above 1.

De�nition 12.1.1 Consider a random sum S =
Pn

i=1Xi in which Xi = 1 with probability

pi and 0 otherwise. De�ne the oversampling of S by � as S(�) =
Pn

i=1 Yi, where Yi = 1

with probability min(1; �pi) and 0 otherwise.

199

200 CHAPTER 12. NETWORK DESIGN WITHOUT REPEATED EDGES

Note that S(1) = S.

Theorem 12.1.2 Let E[S] = �. Then Pr[S(1+ �) < (1� �)�] < e����=2.

Proof: Suppose S =
P
Xi. Write S = S1+S2, where S1 is the sum ofXi with pi � 1=(1+�)

and S2 is the sum of the remaining Xi. Let �1 = E[S1] and �2 = E[S2]. We see that

� = �1 + �2, and also that S(1 + �) = S1(1 + �) + S2(1 + �).

Since the variables in S1 have pi � 1=(1 + �), S1(1 + �) is not random: it is simply the

number of variables in S1, since each is 1 with probability one. In particular, S1(1 + �) is

certainly at least �1. It follows that that S(1 + �) < (1� �)� only if S2 < (1� �)� � �1 =

�2 � ��.

The variables in S2 have pi < 1=(1 + �) so that the corresponding oversamplings have

probabilities (1 + �)pi. It follows that E[S2(1 + �)] = (1 + �)�2. By the standard Cherno�

bound, the probability that S2 < �2 � �� is at most

exp(�((1 + �)�2 � (u2 � ��))2

2(1 + �)�2
) = exp(�(��2 + ��)2

2(1 + �)�2
)

Our weakest bound arises when the above quantity is maximized with respect to �2. It

is straightforward to show that the quantity is a concave function of �2 with its global

maximum at �2 = ��=�. However, �2 is constrained to be at least �� (since otherwise

�1 � (1� �)�, immediately giving S(1 + �) � �1). We thus have two cases to consider. If

� < 1, then ��=� is a valid value for �2. and the corresponding bound is exp(2���=(1+ �)).

If � > 1, then the bound is maximized at the smallest possible �2, namely �2 = ��, in which

case the bound is ��(1 + �)=2. Over the given ranges of �, each of these bounds is less than

the bound given in the theorem.

The theorem easily extends to the case where the Xi take on arbitrary values between

0 and w. In this case, e���� bounds the probability that the deviation exceeds �w� rather

than ��.

Consider applying oversampling to a covering problem of minimizing cx subject to Ax �
b. Suppose there are m constraints in the problem, and that for simplicity the all bi have

the same value, say �. Given the fractional solution, suppose we oversample with rate

(1 + �). The cost of the resulting solution will have value at most about (1 + �) times

optimum with high probability, but we must also consider its feasibility. Let ai be the rows

of matrix A. Theorem 12.1.2 proves that with probability 1� 1=m2, aix � (1� �)�, where

12.2. NETWORK DESIGN 201

� = 6(lnm)=(��). This is thus true for all ai with probability 1�1=m. In other words, with

high probability we have that for each i, aix � b� 6(lnm)=�.

We can apply this result in several di�erent ways. One approach is to take � = 7 lnm.

It follows that aix � b � 6=7 (w.h.p.). Since a and b are integers, it follows that in fact

aix � b. This means that we can always achieve an O(logm) factor approximation to the

set cover problem. This was already known [96, 141].

More interestingly, consider the bounded degree set multicover problem in which each

element is contained in at most d sets. It follows that the size of the optimum solution

must exceed m�=d. After oversampling by (1 + �), we can certainly cover the remaining

O(m(logm)=�) remaining units of demand with O(m(logm)=�) additional elements (though

of course in practice we would use a better scheme). The cost of the resulting solution

relative to the optimum value v is at most

(1 + �)v +m(logm)=� = v(1 +m(logm)=(�v))

� v(1 + � +m(logm)=(�(m�=d)))

� v(1 + � +O(d(logm)=(��)))

If we minimize with respect to choice of �, we achieve an approximation ratio of 1 +

O(
p
d(logm)=�). This ratio is useful when the degree is much less than the demand.

12.2 Network Design

We now consider the network design version in which it is only permissible to use an edge

a single time. This means that we cannot arbitrarily scale up the weights in the fractional

solution as we did in the multiple use case. We can still use oversampling, but we are now

forced to truncate weights at 1 and apply Theorem 12.1.2. In particular, combining that

theorem with the proof of Theorem 6.2.1 yields the following:

Corollary 12.2.1 Given a fractional solution to f to a network design problem, if each

edge weight we is increased to min(1; (1 + �)we), and randomized rounding is performed,

than high probability no cut in the rounded graph will have value less than (1� �) time its

value in the original weighted graph, where � = O(logn=(�fmin)).

202 CHAPTER 12. NETWORK DESIGN WITHOUT REPEATED EDGES

This theorem does not guarantee our rounded values will meet the desired demands, but

it does guarantee we will get close. We therefore investigate ways to augment the nearly

feasible solution to a feasible on at little cost. We therefore make the following de�nition:

De�nition 12.2.2 Given a tentative solution, the de�cit of a cut is the di�erence between

the demand across that cut and the number of tentative solution edges crossing it.

The unit-cost network design problem is relatively easy to deal with because we have

good bounds on the value of the optimum. First observe that any k-connected graph must

contain at least kn=2 edges. This follows from the fact that the minimum degree at each

vertex must be at least k.

For the speci�c case of the minimum k-connected subgraph problem, it is easy to achieve

an approximation ratio of two (a di�erent 2-approximation algorithm extending to weighted

graphs is given in [119]). Simply construct a sparse k-connectivity certi�cate. This graph

will contain at most kn edges, while the optimum graph must have at least kn=2.

We improve this result with randomized rounding:

Theorem 12.2.3 For k > log n, a (1 + O(
p
(logn)=k)-approximation to the minimum

k-connected subgraph can be found in polynomial time (LV).

Proof: Begin with the fractional solution F as found by the ellipsoid algorithm [71]. By

de�nition, F has minimum cut k. Suppose the solution has total weight W (which must

exceed kn=2 to give minimum degree k). Clearly W is a lower bound on the number of

edges in the integral solution. Treating the weights pe as probabilities, we build a subgraph

H by including edge e with probability pe. Since F has minimum cut k, Theorem 6.2.1 says

that H has minimum cut k � O(
p
k logn) with high probability. By the Cherno� bound,

the number of edges in H is W +O(
p
W logn) with high probability.

After deleting all the edges in H , build a sparse O(
p
k logn)-connectivity certi�cate C

in the remaining graph. Clearly, C [H is k-connected. C has O(n
p
k log n) edges. Since

W � kn=2, n
p
k logn = O(W

p
(logn)=k) and

p
W logn = O(W

p
(logn)=kn). Thus the

total number of edges in H [C is W + O(
p
W logn) + O(

p
k logn), which is O(W (1 +p

(logn)=k)).

We can use much the same approach to the generalized Steiner problem. The only

change is in how we augment the rounded solution to a feasible one. Since we can no longer

bound the optimum directly, we instead use the Forest Algorithm of [75]. This algorithm

12.3. FIXED CHARGE NETWORKS 203

augments a graph to meet the demands f at a total cost of log� times the optimum, where

� is the maximum de�cit.

We use Corollary 12.2.1. Set � = 2, so that at cost twice the optimum we get a graph in

which the maximum de�cit is O(logn). Then use the Forest Algorithm of [75] to augment

it to optimum. This yields the following:

Lemma 12.2.4 An O(log log n) approximation to the minimum cost k-connected subgraph

can be found in polynomial time.

This result is not useful, since there is already a simple 2-approximation algorithm for

the minimum cost k-connected subgraph problem [119]. However, the generalization is new:

Lemma 12.2.5 There is an O(log fmax logn

fmin

)) approximation algorithm for the network de-

sign problem.

This compares favorably with the Forest Algorithm'sO(log fmax) bound whenever fmin >

logn.

12.3 Fixed Charge Networks

Our algorithms also apply to the �xed charge problem in which edges have capacities. In

this problem, the best currently known approximation ratio is a factor of fmax [75]. The

introduction of large capacities increases the variances in our random sampling theorems.

In particular, if we let U denote the maximum edge capacity, we have the following result

based on a modi�cation of Theorem 6.2.1:

Corollary 12.3.1 Given a fractional solution to f , if each edge weight we is increased

to (1 + �)we), and randomized rounding is performed, than high probability no cut in the

rounded graph will have value less than its value in the original fractionally weighted graph,

where � = O(U logn=(�fmin)).

Corollary 12.3.2 There is a (1 + O(
q

Ufmax logn
fmin

))-approximation algorithm for the �xed-

charge generalized Steiner problem.

Note that without loss of generality we can assume U � fmax, since we can always

decrease the capacities of larger edges without changing the optimum solution.

204 CHAPTER 12. NETWORK DESIGN WITHOUT REPEATED EDGES

Corollary 12.3.3 There is an O(fmax

q
logn

fmin

)-approximation algorithms for the �xed charge

generalized Steiner problem.

Corollary 12.3.4 There is an O(
p
k logn)-approximation algorithm for the �xed-charge

k-connected subgraph problem.

12.4 General Distributions

The random graph model can be generalized: instead of the simple version in which an edge

e is either present or not present with probability pe, we can give the edge a weight which

is a random variable we chosen from some arbitrary distribution. We de�ne an \expected

graph" Ĝ and its associated minimum expected cut ĉ and expected s-t cut ĉst by assigning

edge weights E[we] to Ĝ.

To analyze this more general model, note that the only time the proof of Theorem 6.2.1

used knowledge of the distribution was in the application of the Cherno� bound. We there-

fore use the following easy generalization of the Cherno� bound to arbitrary distributions:

Lemma 12.4.1 Let S =
P
Xi be a sum of independent random variables arbitrarily dis-

tributed on the interval [0; 1], and let �E[S]. Then

Pr[jS � �j > ��] < e��
2�=2:

The proof follows from a perturbation argument that shows that binomial random variables

have the \worst" tails.

Using this lemma immediately lets us generalize our sampling theorem:

Theorem 12.4.2 Let G be a random graph with edge weights independently chosen from

various distributions on the [0; 1] interval. Then with high probability, every cut S in G

satis�es j�(S)� �̂(S)j < ��̂(S)], where � =
q

6 logn

ĉ
and ĉ is the minimum expected cut of G.

Distributions on larger intervals can be handled simply by scaling the distributions

so that the maximum value in a distribution becomes 1. Corollaries for minimum cuts

and s-t minimum cuts follow as before. What we have essentially shown is that so long as

ĉ =
(W logn), whereW is the maximum possible weight of an edge, the cuts in the random

graph have predictable values. This bound simply says that if the failure of one edge can

cause catastrophic changes in the value of a cut, then the outcome becomes unpredictable.

12.4. GENERAL DISTRIBUTIONS 205

Notes

Goemans, Tardos, and Williamson [76] have observed that for the case of weakly super-

modular functions, it is possible to \uncross" the fractional solution into a laminar system

so that only O(n) edges have fractional values. This gives a (1 + O(1=k))-approximation

algorithm for the k-connected subgraph problem.

Chapter 13

EREW Minimum Spanning Tree

Algorithms

We now show how sampling can be used to improve the e�ciency of parallel algorithms for

minimum spanning trees. We concentrate on the restrictive exclusive-write PRAM model

of computation, in which each location in shared memory can be written to by at most one

processor in each time step. We consider both exclusive-read and concurrent read models.

The problem of �nding a minimum spanning forest is a generalization of �nding a

spanning forest, which is equivalent to �nding connected components in a graph. It is

known [39] that there is an
(logn) time bound for �nding connected components on a

CREW PRAM; this bound clearly applies to minimum spanning trees as well. There is also

an obvious
(m) time bound on the total work (time-processor product) required to solve

either problem.

Until recently, the best time bound for connected components or minimum spanning

trees was O(log2 n). Johnson and Metaxas [95] broke this barrier with an O(log1:5 n)

time, m + n processor CREW algorithm for connected components, and soon achieved

the same time bound for minimum spanning trees. Their minimum spanning tree algo-

rithm was improved by Chong and Lam [31] to a running time of O(logn log logn) in the

EREW model with the same processor cost. The Chong and Lam algorithm is thus within

a factor of O(log logn) of the optimum time bound. However, its total work bound of

O(m logn log logn) is further from the optimum O(m) bound.

Randomization gave a di�erent approach to the connected components problem. Karger,

Nisan and Parnas [109] used random walks to �nd connected components in O(logn) time

206

13.1. REDUCING WORK 207

using (m+ n1+�)= logn processors for any constant �. The algorithm is therefore optimum

on dense graphs. Halperin and Zwick [88] used this technique in an optimum algorithm

which runs in O(logn) time using (m+ n)= logn processors.

A remaining open question is to �nd a minimum spanning tree algorithm with the same

time and total work bounds. Cole and Vishkin [38] give an algorithm running on a CRCW

PRAM that requires O(logn) time on O((n+m) log logn= logn) processors. Cole, Klein,

and Tarjan [37], have adapted the randomized minimum spanning tree algorithm presented

above to run in parallel. The parallel algorithm does linear expected work and runs in

O(logn 2log
� n) expected time on a CRCW PRAM. Here, we give sampling algorithms for

exclusive-write models.

As a �rst step, we reduce the amount of work performed by the algorithm of Chong and

Lam from O(m logn log logn) to O(m+n(log n log logn)2) without a�ecting the time bound

in the CREW model, thus producing an algorithm which is work-optimum on su�ciently

dense graphs. Then we show how the same approach can be applied to an algorithm which

has an optimum time bound but is very ine�cient in terms of work, producing an EREW

algorithm which is optimum in terms of both work and time bounds on dense graphs.

Use of the sampling paradigm requires a veri�cation algorithm. Alon and Schieber [8]

give a CREW algorithm for verifying minimum spanning trees. Using n log� n= logn pro-

cessors and O(logn) time, they build a data structure which can a single processors can use

to verify a single edge in O(1) time.

13.1 Reducing Work

We begin with the O(logn log logn) time algorithm of Chong and Lam, which is ine�cient

because it performs
(m logn log log n) work. We improve the e�ciency of the algorithm

by applying our sampling techniques. Assume we have p � n log� n processors. Choose

each graph edge with probability p=m. We will select O(p) edges w.h.p. We can therefore

use p processors to compute their minimum spanning tree F in O(logn log log n) time using

the Chong-Lam algorithm. We now preprocess F using the veri�cation algorithm of [8].

By assigning each processor to do the work of log log n \virtual" processors, we can use

n log� n= logn log log n processors and run in O(logn log log n) time to get a structure that

lets us verify a single graph edge against F in O(1) time. We now assign m=p edges to

each of our p processors and let each processor verify its edges against the data structure.

208 CHAPTER 13. EREW MINIMUM SPANNING TREE ALGORITHMS

This takes O(m=p) time. Theorem 11.2.4 now proves that the expected number of F -light

edges is O(nm=p). The minimum spanning tree of this set of edges can be computed in

O(logn log logn) time using O(nm=p) processors. If we set p = m= logn log logn, the four

steps of our approach require O(logn log log n) time and, respectively, O(m= logn log logn),

O(n log� n= logn log logn), O(m= logn log logn), and O(n logn log logn) processors. We de-

duce the following:

Lemma 13.1.1 The minimum spanning tree of a graph can be computed in O(logn log logn)

time with high probability using m= logn log logn + n logn log log n CREW processors.

This algorithm therefore performs optimum work on all graphs with
(n(logn log logn)2)

edges, and still has the same time bound as before.

13.2 Reducing Work and Time

We can apply the same approach as above to a fast but workaholic minimum spanning tree

algorithm. In the next section, we give an m1+�-processor O(logn)-time EREW algorithm

for constructing minimum spanning trees and an m= logn + n1+�-processor O(logn)-time

EREW algorithm for verifying them. Combining these two algorithms with sampling yields

an algorithm which is optimum on dense graphs.

Lemma 13.2.1 Using m= logn + n1+� processors, where � is any constant, a minimum

spanning tree can be computed with high probability in O(logn) time.

Proof: We set � = �=3. If m < n1+�, apply the m1+� processor algorithm (to follow) us-

ing only n(1+�)
2 � n1+� processors. Otherwise, sample each edge with probability n1+�=m,

producing a subgraph which has O(n1+�) edges with high probability. Apply the m1+�

processor algorithm to this subgraph (using less than n1+� processors) and perform veri�-

cation against the result forest F using m= logn processors as in the previous section. By

Lemma 2.2.1, O(n(m=n1+�)) = O(m=n�) edges are F -light (w.h.p.); since m < n2 this is in

fact O(m1��=2) edges. Therefore m= logn processors su�ce to �nd the minimum spanning

tree of these edges (and thus of the original graph) in O(logn) time using the following

algorithm.

13.3. FAST ALGORITHMS FOR DENSE GRAPHS 209

13.3 Fast Algorithms for Dense Graphs

We now �ll in the details of the previous section by presenting an m1+�-processor O(logn)-

time EREW algorithm for construction minimum spanning trees and an m+n1+�-processor

O(logn)-time EREW algorithm for verifying them. This section is of technical interest only

and can be skipped with no loss of continuity.

13.3.1 Construction

We now present the ine�cient minimum spanning tree algorithm which is used as the basis

of the above lemma. Our algorithm is a variant of a simple m2 reduction from minimum

spanning trees to connected components. This simple algorithm is based on the cycle and

cut properties from Section 2.1.3, which show that an edge is in the minimum spanning

tree if and only if its endpoints are not connected by the set of all edges smaller than itself.

Once we sort all the edges (which can be done in O(logn) time using any optimum sorting

algorithm) we can for each edge e apply the connected components algorithm of [88] to the

set of edges smaller than e. This will immediately tell us whether e is in the minimum

spanning tree. Doing this simultaneously for each edge requires O(logn) time and O(m2)

processors.

We now show how the processor cost can be reduced to m1+�. Assume we have sorted

the edges and numbered them e1; : : : ; em in increasing order. Partition the edges into k

contiguous blocks of m=k edges. Edge ei belongs to the block numbered dik=me. Let Gr be

the graph induced by the edges in blocks 1 through r. If ei is in block r+1 and Gr connects

the endpoints of ei, then ei Gr-heavy and thus is not in the minimum spanning tree. If

(using [88]) we compute connected components for each of the k graphs Gr in parallel, using

km processors and O(logn) time, then we can discard all these non-minimum spanning tree

edges.

We next construct a family of graphs G0
r for each r. The vertices of G

0
r are the connected

components of Gr�1, which have just been computed. The edges of G0
r correspond to the

edges in block r which were not deleted in the previous step. Each such edge e will by

construction have its endpoints in two di�erent connected components of Gr�1; we use a

corresponding edge in G0
r to connect the two components containing the endpoints of e. To

ensure that there are fewer vertices than edges, we also delete from G0
r any vertex with no

incident edge.

210 CHAPTER 13. EREW MINIMUM SPANNING TREE ALGORITHMS

We now come to the point of this construction: the edges in the minimum spanning

tree of G are simply the edges in the minimum spanning trees of all the graphs G0
r. To see

this, note that an edge e is in the minimum spanning tree of G0
r whenever it is not spanned

by the edges smaller than itself in G0
r. Since we already know that any edge in G0

r is not

spanned by the edges in preceding blocks, this is equivalent to saying that e is not spanned

by all the edges smaller than itself in the original graph G, so e is in the minimum spanning

tree of G. We can therefore �nd the minimum spanning tree of G by recursively �nding the

minimum spanning trees of all the graphs G0
r. However, each graph G0

r has at most m=k

edges, namely those from block r. We have also ensured that the graphs we are considering

have fewer vertices than edges. This gives a recurrence for the time T and processor bounds

P on the recursive algorithm:

T (m) = O(logn) + T (m=k)

P (m) = max(km; kP (m=k))

These recurrences easily solve to T (m) = O(logn logkm) and P (m) = O(km). In particular,

if we �x k = m�, we deduce that an minimum spanning tree can be constructed in O(logn)

time with high probability using O(m1+�) processors for any constant �.

13.3.2 Veri�cation

Here we give the (m+n1+�)-processor O(logn)-time veri�cation algorithm used previously.

We �rst de�ne a data structure for veri�cation. This data structure was previously devel-

oped by both Chazelle [27] and Alon and Schieber [8]. Both these papers actually used a

more complex version of this structure to solve a more general problem.

De�nition 13.3.1 The Cartesian tree B(F) for a forest F is a tree whose nodes are the

edges and vertices of the original forest. It is de�ned as follows:

� The Cartesian tree of a vertex is that vertex.

� Given a tree T , let e be the edge of greatest weight in it. Removing e from T produces

two trees T1 and T2. Then B(T) has root e, and subtrees B(T1) and B(T2).

� The Cartesian tree of a forest has root ?, which for simplicity we shall treat as an

edge of in�nite weight, and its children are the Cartesian trees of its trees.

13.3. FAST ALGORITHMS FOR DENSE GRAPHS 211

The leaves of B(F) are the vertices of F , and its internal nodes are the edges of F (and ?).

De�nition 13.3.2 For vertices u and v of F , B(F; u; v) is the least common ancestor of u

and v in B(F).

Fact 13.3.3 B(F; u; v) is the heaviest edge on the (unique) path in F from u to v if a path

exists, and ? otherwise.

It follows that once the Cartesian tree for a forest F is built, we can verify an edge against

it by performing a single least common ancestors computation. Schieber and Vishkin [174]

present an algorithm that uses n EREW processors to preprocess a tree in O(logn) time

such that m EREW processors can process m least common ancestor queries in O(logn)

time. Therefore, all we need for our veri�cation algorithm is build the Cartesian tree. It is

easy to modify the algorithm of Section 13.2 to construct the Cartesian tree of a minimum

spanning tree while it is constructing the minimum spanning tree. Recall that we partitioned

the sorted list of edges into blocks and then recursively solved a minimum spanning tree

problem in each block. Assuming the we also found the Cartesian trees in each block, we

can combine them into the full Cartesian tree. Simply note that a leaf in the Cartesian tree

of block r corresponds to a vertex in Gr, which in turn corresponds to a single connected

component in block r� 1, which has a Cartesian tree associated with it. Thus we point the

root of a Cartesian tree of a connected component in block r � 1 at the parent of the leaf

corresponding to it in block r.

Appendix A

Probability Distributions and

Sampling Theorems

Here, we discuss the various probability distributions and tools used in this work.

A.1 Probability Distributions

In this work we have used several standard probability distributions. We summarize their

properties here; they can be found in any standard probability text such as [57].

The binomial distribution B(n; p) counts the number of successes X in n independent

trials with success probability p. Pr[X = k] =
�
n

k

�
pk(1� p)n�k and E[X] = np.

The negative binomial distribution B�(k; p) counts the number of independent trials

X with success probability p must be performed to encounter k successes. Pr[X = n] =�
n

k�1
�
pk(1� p)n�k+1 and E[X] = k=p.

The geometric distribution with parameter p is B�(1; p), thus Pr[X = k] = p(1 � p)k

and E[X] = 1=p.

The exponential distribution with rate w is a continuous distribution corresponding to

the discrete geometric distribution. Pr[X > t] = e�wt and E[X] = 1=w.

The Poisson distribution P (u; k) with parameter u counts the number of events X

occurring in a Poisson process: Pr[X = k] = e�uuk=k! and E[X] = u. The time between

events of a Poisson process with rate w is an exponential variable with rate w.

The Gaussian distribution has probability density function e�x
2=2=
p
2�. It has mean 0

and variance 1.

212

A.2. THE CHERNOFF BOUND 213

A.2 The Cherno� Bound

Proofs of this lemma can be found in [9, Page 232], [30], [151], and [167, Page 54].

Lemma A.2.1 (Cherno� [30]) Let X be a sum of Bernoulli random variables on n inde-

pendent trials with success probabilities p1; : : : ; pn and expected number of successes � = np.

Then, for � � 1,

Pr[jX � �j > ��] � e��
2�=2:

The lemma also applies to sums
P
Xi of arbitrarily distributed independent random

variables Xi so long as the maximum value attained by any Xi is one.

A.3 Nonuniform Random Selection

In this section, we describe a strongly polynomial implementation of procedure Random-Select.

The input to Random-Select is an array W of length n. This cumulative weight array is

constructed from n weights wi by setting Wk =
P

i�kwi. Procedure Random-Select imple-

ments the goal of choosing an index i at random with probability proportional to weight wi.

This problem of nonuniform selection is not new. It has been known for some time [130]

that the fastest possible algorithm for random selection has expected running time propor-

tional to the entropy; this section essentially uses similar techniques to get high probability

amortized bounds.

Let M = Wn be the sum of all weights. If the edge weights wi (and thus the total

weight M) are polynomial in n, then it is simple to implement Procedure Random-Select

in O(logn) time: simply generate a uniformly distributed (logM)-bit number k in the range

[0;M] (all logs are base 2), and return the value i such that Wi�1 � k < Wi. This can be

done even in the model where only a single random bit, rather than an O(logn)-bit random

number, can be generated in unit time.

When the weights are arbitrary integers that sum to M , the time needed for an exact

implementation is
(logM). However, we can modify the algorithm to introduce a negligible

error and run in O(logn) time. Suppose we know that only t calls to random-select will

be made during the running of our algorithm. To select an edge from the cumulative

distribution, even if the sum of the edge weights is superpolynomial in n, we let N = tn4,

generate s uniformly at random from [0; N], and choose the edge i such that Wi�1 <

Wms=N < Wi. The edge that we choose di�ers from the one that we would have chosen

214 APPENDIX A. PROBABILITY DISTRIBUTIONS AND SAMPLING THEOREMS

using exact arithmetic only if Wms=N and Wm(s+1)=N specify di�erent indices. But there

can only be at most n such values in the \boundaries" of di�erent indices, so there are at

most n values that we could chose for s that would cause an error. Thus the probability that

we make an error with one selection is less than n=N = O(1=tn3) and the probability that

we make any errors is O(1=n3). This approach re
ects what is typically done in practice|

we simply use the random number generator available in a system call, perform rounding,

and ignore the possible loss of precision that results.

A drawback of this approach in theory is that even if a particular input to Random-Select

has only two choices, we still need to use
(log t) bits to generate a selection. Using this

approach adds an extra log n factor to the running time of Random-Select on constant size

inputs (which arise at the leaves of the recursion tree of our algorithm) and thus increases

the running time of Recursive-Contract.

A better approach is the following. Intuitively, we generate the logM random bits

needed to select uniformly from the range [0;M], but stop generating bits when all possible

outcomes of the remaining bits yield the same selection. Given the length n input, partition

the range [0;M] into 2n equal sized intervals of length M=2n. Use 1+ log n random bits to

select one of the intervals uniformly at random|this requires O(logn) time spent in binary

search among the cumulative weights. If this interval does not contain any of the cumulative

weight values Wi (which happens with probability 1=2, since at most n of the 2n intervals

can contain one of the cumulative weight values), then we have unambiguously selected a

particular index because the values of the remaining bits in the (logM)-bit random number

are irrelevant. If the interval contains one or more of the cumulative values, then divide

this one interval into 2n equal sized subintervals and again use 1 + log n bits to select

one subinterval. If the subinterval contains a cumulative weight value, then we subdivide

again. Repeat this process until an index is unambiguously selected. Each subdivision

requires O(logn) time and O(logn) random bits, and successfully identi�es an index with

probability 1=2.

Lemma A.3.1 On an input of size n, the expected time taken by Random-Select is O(logn).

The probability the Random-Select takes more than t logn time to �nish is O(2�t).

Proof: Each binary search to select a subinterval requires O(logn) time. Call an interval

search a success if it selects a unique index, and a failure if it must further subdivide an

interval. The probability of a success is then 1=2. The total number of interval searches is

A.3. NONUNIFORM RANDOM SELECTION 215

therefore determined by how many failures occur before a success. Since each search fails

with probability 1=2, the probability that t failures occur before a success is O(2�t) and the

expected number of failures preceding the �rst success is 2.

Lemma A.3.2 Suppose that t calls are made to Random-Select on inputs of size n. Then

with probability 1� e�
(t), the amortized time for each call is O(logn).

Proof: Each interval search in a call requires O(logn) time. It therefore su�ces to prove

that the amortized number of interval searches used is O(1), i.e. that the total number is

O(t). We use the de�nitions of success and failure from the previous lemma. We know the

number of successes over the t calls to Random-Select is t, since each success results in the

termination of one call. The total number of searches is therefore determined how many

trials occur before the tth success. This number is simply the negative binomial distribution

(Section A.1) for the tth success with probability 1=2. Since the chances of success and

failure are equal, we expect to see roughly the same number of successes as failures, namely

t, for a total of 2t trials. The Cherno� bound (cf. [151, page 427]) proves the probability

that the number of trials exceeds 3t is exponentially small in t.

Lemma A.3.3 If n calls are made to Random-Select and each input is of size nO(1), then

with high probability in n the amortized time for Random-Select on an input of size s is

O(log s).

Proof: Let the ith input have size ni and let ti = dlognie. From above, we know that the

expected time to run Random-Select on input i is O(ti). We need to show that the total

time to run Random-Select on all the problems is O(
P
ti) with high probability. Note that

the largest value of ti is O(logn).

Call the ith call to Random-Select typical if there are more than 5 logn calls with the

same value ti, and atypical otherwise. Since the largest value of ti is O(logn), there can be

only O(log2 n) atypical calls. For atypical call i, by Lemma A.3.1 and since ti = O(logn),

we know that the time for call i is O(log2 n) with high probability. Thus the time spent in

all the atypical calls is O(log4 n) with high probability. By Lemma A.3.2, if i is a typical

call then its amortized cost is O(ti) with high probability in n. Therefore, the total time

spent on all calls is O(log4 n +
P
ti), which is O(n +

P
ti). Since there are n calls made,

the amortized cost for call i is then 1 + ti = O(logni).

216 APPENDIX A. PROBABILITY DISTRIBUTIONS AND SAMPLING THEOREMS

Now suppose that instead of using 2t intervals per phase on a problem of size t, we use

t2 intervals. This still requires O(log t) random bits, but now that probability that we fail

to isolate a particular element drops to 1=t. Thus on problems of size greater than nO(1),

with high probability in n only one phase of the algorithm will be required. Combining this

with lemma proves the following:

Theorem A.3.4 Given n calls to random select, with high probability in n each call of size

t will take O(log t) amortized time.

We have therefore shown how to implement random-select in O(log t) amortized time

on size t inputs, assuming a simple condition on the inputs. To see that this condition is met

in the Recursive Contraction Algorithm, note that we perform
(n) calls to Random-Select

(for example, the ones in the two calls to Contract at the top level of the recursion). This

concludes the proof of the time bound of the Recursive Contraction Algorithm.

Note that while the analysis of this section is necessary to prove the desired time bound

of Recursive-Contract, it is unlikely that it would be necessary to actually implement the

procedure Random-Select in practice. The system supplied random number generator and

rounding will probably su�ce.

A.4 Generating Exponential Variates

At certain points we made use of the exponential distribution with parameter w which has

probability distribution Pr[X > t] = e�wt. Perhaps the simplest way to generate a variable

X with probability density function e�wt is to generate a variable U uniformly distributed

in the [0; 1] interval, and then to set X = �(lnU)=w [128, Page 128]. Two obstacles arise

in practice. One is that we cannot sample uniformly from [0; 1]. Another is that we cannot

compute logarithms exactly, but must instead rely on some form of approximation.

Note, however, that our use of the exponential distribution has been limited. Speci�cally,

the only thing we ever did with the exponential variables as compare them. We show

that using O(logn) random bits and polylogarithmic time per variate, we can generate

approximately exponential variables such that all comparisons turn out the same with high

probability. Suppose �rst that we can compute logarithms exactly, but can only generate

random bits.

We begin with the following model. Suppose that we could generate exponential variates

exactly, but that an adversary changed them by a factor of (1��) before we looked at them.

A.4. GENERATING EXPONENTIAL VARIATES 217

We show that with probability O(�), this does not a�ect the results of any comparisons. This

will show that we need determine only the O(logn) most-signi�cant bits of our exponential

variates, since the error introduced by rounding to this many bits will be O(1=nd). To prove

our claim, we instead show that with probability 1�O(�), no two exponential variates have
a ratio of values in the range (1� 4�). It follows that changing the two variates' values by a
factor of (1� �) does not make the larger of the two become the smaller, so all comparisons
between the variates yield the same result as before they were changed.

To prove the theorem, we consider two exponential variates: X distributed with param-

eter w, and Y distributed with parameter v. The probability density function for X is then

Pr[t � X � dt] = we�wt dt, while the cumulative distribution for Y is Pr[Y � s] = e�vs.

Therefore,

Pr[Y 2 (1� �)X] =

Z 1

0

(we�wt dt) Pr[Y 2 (1� �)t]

=

Z 1

0

(we�wt dt)(e�(1��)vt� e(1+�)vt)

= w

Z 1

0

(e�(w+(1��v))t� e(w+(1+�)v)t) dt

=
w

w+ (1 + �)v
� w

w + (1 + �)v

=
1

1+ (1 + �)r
� 1

1 + (1 + �)r
(r = v=w)

=
2�

r(1� �2) + 2 + 1=r

� �

We have therefore shown that it su�ces to generate (1 � �)-approximations to expo-

nentially distributed variates. This in turn reduces to generating (1� �)-approximations to
exponential variables with parameter 1, since an exponential variate with parameter w can

be produced by generating a sample X from the exponential distribution with parameter

1 and then using X=w as the values; scaling by w does not change the relative error in the

approximation.

We sketch two schemes for generating an exponential variate (see also [128]). One is to

generate a variate U uniformly distributed in the range [0; 1] and then to set X = � lnU .
This introduces the new problem of approximating the logarithm. However, since we need

only the O(logn) most signi�cant bits of the result, we can compute them using the �rst

O(logn) bits in the Taylor expansion of the logarithm function (furthermore, it su�ces to

use only the O(logn) most signi�cant bits of U , so we need only O(logn) random bits).

218 APPENDIX A. PROBABILITY DISTRIBUTIONS AND SAMPLING THEOREMS

Another approach due to Von Neumann [158] avoids all use of logarithms. Generate

numbers Yi from the uniform distribution until for some n we have Yn � Yn+1. If n is

even, we count the whole attempt as a failure and try again. Eventually, after X failures,

we will have a success (n will be odd). At this point, we return the value X + Y1. It

is perhaps surprising that this results in an exponentially distributed value. It is more

straightforward to show that the number of draws from the uniform distribution before we

�nish is geometrically distributed with mean roughly 6; thus if a large number of exponential

variates is called for, the probability is high that the amortized number of uniform draws

per exponential variate is less than 7. Finally, we note that it is su�cient to generate

only O(logn) bits for each sample from the uniform distribution; this approximates the

actual uniform distribution to within (1 + �) and therefore approximates the exponential

distribution to the same degree of accuracy.

Lemma A.4.1 In O(logm) time per variate, with high probability it is possible to generate

approximately exponentially distributed variates such that all comparisons are the same as

for exact exponential distributions.

Bibliography

[1] Aggarwal, A., and Anderson, R. J. A random NC algorithm for depth �rst

search. In Proceedings of the 19th Annual ACM Symposium on Theory of Computing

(1987), ACM Press, pp. 325{334.

[2] Aggarwal, A., Klein, P., and Ravi, R. When trees collide: An approximation

algorithm for the generalized steiner network problem. In Proceedings of the 23rd ACM

Symposium on Theory of Computing (May 1991), ACM, ACM Press, pp. 134{144.

[3] Ahuja, R. K., Magnanti, T. L., and Orlin, J. B. Network Flows: Theory,

Algorithms, and Applications. Prentice Hall, 1993.

[4] Ajtai, M., Koml�os, J., and Szemer�edi, E. Deterministic simulation in logspace.

In Proceedings of the 19th ACM Symposium on Theory of Computing (1987), ACM,

ACM Press, pp. 132{140.

[5] Alizadeh, F. Interior point methods in semide�nite programming with applications

to combinatorial optimization. In Proceedings of the 2nd MPS Conference on Integer

Programming and Combinatorial Optimization (Carnegie-Mellon University, 1992).

To appear in SIAM Journal on Optimization.

[6] Alon, N. Personal communication, Aug. 1994.

[7] Alon, N., and Kahale, N. A spectral technique for coloring random 3-colorable

graphs. In Proceedings of the 26th ACM Symposium on Theory of Computing (May

1994), ACM, ACM Press, pp. 346{355.

[8] Alon, N., and Schieber, B. Optimal preprocessing for answering online product

queries. Tech. rep., Tel Aviv University, 1987.

219

220 BIBLIOGRAPHY

[9] Alon, N., and Spencer, J. H. The Probabilistic Method. John Wiley & Sons, Inc.,

New York, NY, 1992.

[10] Applegate, D. AT&T Bell Labs, 1992. Personal Communication.

[11] Arora, S., Lund, C., Motwani, R., Sudan, M., and Szegedy, M. Proof veri-

�cation and hardness of approximation problems. In Proceedings of the 33rd Annual

Symposium on the Foundations of Computer Science (Oct. 1992), IEEE, IEEE Com-

puter Society Press, pp. 14{23.

[12] Awerbuch, B., and Shiloach, Y. New connectivity and MSF algorithms for

shu�e-exchange network and PRAM. IEEE Transactions on Computers 36, 10 (Oct.

1987), 1258{1263.

[13] Bellare, M., Goldreich, O., and Goldwasser, S. Randomness in interactive

proofs. Computational Complexity 3 (1993), 319{354. Abstract in FOCS 1990.

[14] Bellare, M., and Sudan, M. Improved non-approximability results. In Proceedings

of the 26th ACM Symposium on Theory of Computing (May 1994), ACM, ACM Press,

pp. 184{193.

[15] Bencz�ur, A. A. Augmenting undirected connectivity in RNC and in randomized

~O(n3) time. In Proceedings of the 26th ACM Symposium on Theory of Computing

(May 1994), ACM, ACM Press, pp. 658{667.

[16] Berge, C. Graphs and Hypergraphs. North-Holland, Amsterdam, 1973.

[17] Blum, A. New approximation algorithms for graph coloring. Journal of the ACM

41, 3 (May 1994), 470{516.

[18] Bollob�as, B. Random Graphs. Harcourt Brace Janovich, 1985.

[19] Bollob�as, B., and Thomason, A. G. Random graphs of small order. In Random

Graphs, M. Karnoski and Z. Palka, Eds., no. 33 in Annals of Discrete Mathematics.

Elsevier Science Publishing Company, 1987, pp. 47{97.

[20] Boppana, R. B., and Halldorsson, M. M. Approximating maximum independent

sets by excluding subgraphs. BIT 32 (1992), 180{196.

BIBLIOGRAPHY 221

[21] Bor�uvka, O. O jist�em probl�emu minim�aln�im. Pr�aca Moravsk�e P�r�irodov�edeck�e

Spol�cnosti 3 (1926), 37{58.

[22] Botafogo, R. A. Cluster analysis for hypertext systems. In Proceedings of the

16th Annual International ACM SIGIR Conference on Research and Development in

Information Retrieval (June 1993), pp. 116{125.

[23] Briggs, P., Cooper, K. D., Kennedy, K., and Torczon, L. Coloring heuristics

for register allocation. In Proceedings of the SIGPLAN 89 Conference on Programming

Language Design and Implementation (1989), pp. 275{274.

[24] Chaitin, G. J. Register allocation and spilling via graph coloring. In Proceedings of

the SIGPLAN 89 Conference on Programming Language Design and Implementation

(1982), pp. 98{101.

[25] Chaitin, G. J., Auslander, M. A., Chandra, A. K., Cocke, J., Hopkins,

M. E., and Markstein, P. W. Register allocation via coloring. Computer Lan-

guages 6 (1981), 47{57.

[26] Chaterjee, S., Apr. 1994. Personal communication.

[27] Chazelle, B. Computing on a free tree via complexity preserving mappings. Algo-

rithmica 2 (1987), 337{361.

[28] Cheriyan, J., and Hagerup, T. A randomized maximum-
ow algorithm. In

Proceedings of the 30th Annual Symposium on the Foundations of Computer Science

(1989), IEEE, IEEE Computer Society Press, pp. 118{123.

[29] Cheriyan, J., Kao, M. Y., and Thurimella, R. Scan-�rst search and sparse

certi�cates: An improved parallel algorithm for k-vertex connectivity. SIAM Journal

on Computing 22, 1 (Feb. 1993), 157{174.

[30] Chernoff, H. A measure of the asymptotic e�ciency for tests of a hypothesis based

on the sum of observations. Annals of Mathematical Statistics 23 (1952), 493{509.

[31] Chong, K. W., and Lam, T. W. Connected components in O(logn log logn) time

on the EREW PRAM. In Proceedings of the 4th Annual ACM-SIAM Symposium on

Discrete Algorithms (Jan. 1993), ACM-SIAM, pp. 11{20.

222 BIBLIOGRAPHY

[32] Chor, B., and Goldreich, O. On the power of two-point sampling. Journal of

Complexity 5 (1989), 96{106.

[33] Chow, F. C., and Hennessy, J. L. The priority based coloring approach to register

allocation. Transactions on Programming Languages and Systems 12, 4 (Oct. 1990),

501{536.

[34] Clarkson, K. L., and Shor, P. W. Applications of random sampling in compu-

tational geometry, II. Discrete and Computational Geometry 4, 5 (1987), 387{421.

[35] Cohen, A., and Wigderson, A. Dispersers, deterministic ampli�cation, and weak

random sources. In Proceedings of the 30th Annual Symposium on the Foundations of

Computer Science (1989), IEEE, IEEE Computer Society Press, pp. 14{19.

[36] Colbourn, C. J. The Combinatorics of Network Reliability, vol. 4 of The Interna-

tional Series of Monographs on Computer Science. Oxford University Press, 1987.

[37] Cole, R., Klein, P. N., and Tarjan, R. E. A linear-work parallel algorithm

for �nding minimum spanning trees. In Proceedings of the 6th Annual ACM-SIAM

Symposium on Parallel Algorithms and Architectures (1994), pp. 11{16.

[38] Cole, R., and Vishkin, U. Approximate and exact parallel scheduling with appli-

cations to list, tree and graph problems. In Proceedings of the 27th Annual Symposium

on Foundations of Computer Science (1986), IEEE Computer Society Press.

[39] Cook, S., Dwork, C., and Reischuk, R. Upper and lower bounds for parallel

random access machines without simultaneous writes. SIAM Journal on Computing

(Feb. 1986).

[40] Coppersmith, D. IBM T. J. Watson Laboratories, Mar. 1994. Personal Communi-

cation.

[41] Cormen, T. H., Leiserson, C. E., and Rivest, R. L. Introduction to Algorithms.

MIT Press, Cambridge, MA, 1990.

[42] Dahlhaus, E., Johnson, D. S., Papadimitriou, C. H., Seymour, P. D., and

Yannakakis, M. The complexity of multiway cuts. In Proceedings of the 24th ACM

Symposium on Theory of Computing (May 1992), ACM, ACM Press, pp. 241{251.

BIBLIOGRAPHY 223

[43] Dantzig, G. B., Fulkerson, D. R., and Johnson, S. M. Solution of a large-scale

traveling salesman problem. Operations Research 2 (1954), 393{410.

[44] Dinitz, E. A., Karzanov, A. V., and Lomonosov, M. V. On the structure of

a family of minimal weighted cuts in a graph. In Studies in Discrete Optimization,

A. A. Fridman, Ed. Nauka Publ., 1976, pp. 290{306.

[45] Dixon, B., Rauch, M., and Tarjan, R. E. Veri�cation and sensitivity analysis of

minimum spanning trees in linear time. SIAM Journal on Computing 21, 6 (1992),

1184{1192.

[46] Dyer, M. E., Frieze, A. M., and Kannan, R. A random polynomial time

algorithm for approximating the volume of convex bodies. Journal of the ACM 38

(1991), 1{17.

[47] Edmonds, J. Minimum partition of a matroid into independents subsets. Journal of

Research of the National Bureau of Standards 69 (1965), 67{72.

[48] Edmonds, J. Matroids and the greedy algorithm. Mathematical Programming 1

(1971), 126{136.

[49] Edmonds, J., and Karp, R. M. Theoretical improvements in algorithmic e�ciency

for network
ow problems. Journal of the ACM 19 (1972), 248{264.

[50] Elias, P., Feinstein, A., and Shannon, C. E. Note on maximum
ow through a

network. IRE Transactions on Information Theory IT-2 (1956), 117{199.

[51] Eppstein, D., Galil, Z., Italiano, G. F., and Nissenzweig, A. Sparsi�cation|

a technique for speeding up dynamic graph algorithms. In Proceedings of the 33rd

Annual Symposium on the Foundations of Computer Science (Oct. 1992), IEEE, IEEE

Computer Society Press, pp. 60{69.

[52] Erd�os, P., and R�enyi, A. On random graphs I. Publ. Math. Debrecen 6 (1959),

290{297.

[53] Eswaran, K. P., and Tarjan, R. E. Augmentation problems. SIAM Journal on

Computing 5 (1976), 653{665.

224 BIBLIOGRAPHY

[54] Feder, T., and Mihail, M. Balanced matroids. In Proceedings of the 24th ACM

Symposium on Theory of Computing (May 1992), ACM, ACM Press, pp. 26{38.

[55] Feder, T., and Motwani, R. Clique partitions, graph compression and speeding-

up algorithms. In Proceedings of the 23rd ACM Symposium on Theory of Computing

(May 1991), ACM, ACM Press, pp. 123{133. To appear in Journal of Computer and

System Sciences.

[56] Feige, U., Goldwasser, S., Lov�asz, L., Safra, S., and Szegedy, M. Approx-

imating clique is almost NP-complete. In Proceedings of the 32nd Annual Symposium

on the Foundations of Computer Science (Oct. 1991), IEEE, IEEE Computer Society

Press, pp. 2{12.

[57] Feller, W. An Introduction to Probability Theory and its Applications, 3 ed., vol. 1.

John Wiley & Sons, 1968.

[58] Floyd, R. W., and Rivest, R. L. Expected time bounds for selection. Communi-

cations of the ACM 18, 3 (1975), 165{172.

[59] Ford, Jr., L. R., and Fulkerson, D. R. Maximal
ow through a network.

Canadian Journal of Mathematics 8 (1956), 399{404.

[60] Ford, Jr., L. R., and Fulkerson, D. R. Flows in Networks. Princeton University

Press, Princeton, New Jersey, 1962.

[61] Frankl, P., and Rodl, V. Forbidden intersections. Transactions of the American

Mathematical Society 300 (1994), 259{286.

[62] Fredman, M., and Willard, D. E. Trans-dichotomous algorithms for minimum

spanning trees and shortest paths. In Proceedings of the 31st Annual Symposium on

the Foundations of Computer Science (Oct. 1990), IEEE, IEEE Computer Society

Press, pp. 719{725.

[63] Frieze, A., and Jerrum, M. Improved approximation algorithms for MAX k-CUT

and MAX BISECTION. Manuscript., June 1994.

[64] F�urer, M. Improved hardness results for approximating the chromatic number.

Private Communication, 1994.

BIBLIOGRAPHY 225

[65] Gabber, O., and Galil, Z. Explicit construction of linear-sized superconcentrators.

Journal of Computer and System Sciences 22 (1981), 407{420.

[66] Gabow, H. N. Applications of a poset representation to edge connectivity and

graph rigidity. In Proceedings of the 32nd Annual Symposium on the Foundations of

Computer Science (Oct. 1991), IEEE Computer Society Press, pp. 812{821.

[67] Gabow, H. N. A matroid approach to �nding edge connectivity and packing ar-

borescences. In Proceedings of the 23rd ACM Symposium on Theory of Computing

(May 1991), ACM, ACM Press, pp. 112{122. To appear in Journal of Computer and

System Sciences.

[68] Gabow, H. N. A framework for cost-scaling algorithms for submodular
ow prob-

lems. In Proceedings of the 34th Annual Symposium on the Foundations of Computer

Science (Nov. 1993), IEEE, IEEE Computer Society Press, pp. 449{458.

[69] Gabow, H. N., Galil, Z., and Spencer, T. H. E�cient implementation of graph

algorithms using contraction. In Proceedings of the 25th Annual Symposium on the

Foundations of Computer Science (Los Alamitos, CA, 1984), IEEE, IEEE Computer

Society Press, pp. 347{357.

[70] Gabow, H. N., Galil, Z., Spencer, T. H., and Tarjan, R. E. E�cient algo-

rithms for �nding minimum spanning tree in undirected and directed graphs. Com-

binatorica 6 (1986), 109{122.

[71] Gabow, H. N., Goemans, M. X., and Williamson, D. P. An e�cient ap-

proximation algorithm for the survivable network design problem. In Proceedings of

the Third MPS Conference on Integer Programming and Combinatorial Optimization

(1993), pp. 57{74.

[72] Gabow, H. N., and Westermann, H. H. Forests, frames, and games: Algorithms

for matroid sums and applications. Algorithmica 7 (1992), 465{497.

[73] Galil, Z., and Pan, V. Improved processor bounds for combinatorial problems in

RNC. Combinatorica 8 (1988), 189{200.

[74] Garey, M. R., and Johnson, D. S. Computers and Intractability: A Guide to the

Theory of NP-Completeness. W. H. Freeman and Company, San Francisco, 1979.

226 BIBLIOGRAPHY

[75] Goemans, M. X., Goldberg, A., Plotkin, S., Shmoys, D., Tardos, �E., and

Williamson, D. Improved approximation algorithms for network design problems.

In Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms

(Jan. 1994), ACM-SIAM, pp. 223{232.

[76] Goemans, M. X., Tardos, �E., and Williamson, D. P., 1994. Personal Commu-

nication.

[77] Goemans, M. X., and Williamson, D. P. :878-approximation algorithms for

MAX CUT and MAX 2SAT. In Proceedings of the 26th ACM Symposium on Theory

of Computing (May 1994), ACM, ACM Press, pp. 422{431.

[78] Goldberg, A. V., and Tarjan, R. E. A new approach to the maximum
ow

problem. Journal of the ACM 35 (1988), 921{940.

[79] Goldschlager, L. M., Shaw, R. A., and Staples, J. The maximum
ow problem

is logspace complete for P. Theoretical Computer Science 21 (1982), 105{111.

[80] Goldschmidt, O., and Hochbaum, D. Polynomial algorithm for the k-cut prob-

lem. In Proceedings of the 29th Annual Symposium on the Foundations of Computer

Science (1988), IEEE Computer Society Press, pp. 444{451.

[81] Golub, G. H., and Loan, C. F. V. Matrix Computations. Johns Hopkins Univer-

sity Press, Baltimore, MD, 1983.

[82] Gomory, R. E., and Hu, T. C. Multi-terminal network
ows. Journal of the

Society of Industrial and Applied Mathematics 9, 4 (Dec. 1961), 551{570.

[83] Graham, R. L., and Hell, P. On the history of the minimum spanning tree

problem. Annals of the History of Computing 7 (1985), 43{57.

[84] Graham, R. L., Knuth, D. E., and Patashnik, O. Concrete Mathematics.

Addison-Wesley, 1989.

[85] Gr�otschel, M., Lov�asz, L., and Schrijver, A. The ellipsoid method and its

consequences in combinatorial optimization. Combinatorica 1 (1981), 169{197.

[86] Gr�otschel, M., Lov�asz, L., and Schrijver, A. Geometric Algorithms and Com-

binatorial Optimization, vol. 2 of Algorithms and Combinatorics. Springer-Verlag,

1988.

BIBLIOGRAPHY 227

[87] Halld�orsson, M. M. A still better performance guarantee for approximate graph

coloring. Information Processing Letters 45 (1993), 19{23.

[88] Halperin, S., and Zwick, U. An optimal randomized logarithmic time connectiv-

ity algorithm for the EREW PRAM. In Proceedings of the 6th Annual ACM-SIAM

Symposium on Parallel Algorithms and Architectures (1994), pp. 1{10.

[89] Hao, J., and Orlin, J. B. A faster algorithm for �nding the minimum cut in a

graph. In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete Algo-

rithms (Jan. 1992), ACM-SIAM, pp. 165{174.

[90] Hastad, J. Improved lower bounds for small depth circuits. In Proceedings of the

18th Annual ACM Symposium on Theory of Computing (1986), ACM Press, pp. 6{20.

[91] Hoare, C. A. R. Quicksort. Computer Journal 5, 1 (1962), 10{15.

[92] Impagliazzo, R., and Zuckerman, D. How to recycle random bits. In Proceed-

ings of the 30th Annual Symposium on the Foundations of Computer Science (1989),

pp. 222{227.

[93] Israeli, A., and Shiloach, Y. An improved parallel algorithm for maximal match-

ing. Information Processing Letters 22 (1986), 57{60.

[94] Jerrum, M., and Sinclair, A. Approximating the permanent. SIAM J. Comput.

18, 6 (1989).

[95] Johnson, D. B., and Metaxas, P. A parallel algorithm for computing minimum

spanning trees. In Proceedings of the 4th Annual ACM-SIAM Symposium on Parallel

Algorithms and Architectures (June 1992), pp. 363{372.

[96] Johnson, D. S. Approximation algorithms for combinatorial problems. Journal of

Computer and System Sciences 9 (1974), 256{278.

[97] Johnson, D. S. Worst case behavior of graph coloring algorithms. In Proceedings

of the 5th Southeastern Conference on Combinatorics, Graph Theory and Computing,

no. X in Congressus Numerantium. 1974, pp. 513{527.

[98] Johnson, D. S. The NP-completeness column: An ongoing guide. Journal of Algo-

rithms 8, 2 (1987), 285{303.

228 BIBLIOGRAPHY

[99] Kannan, R. Markov chains and polynomial time algorithms. In Proceedings of the

35th Annual Symposium on the Foundations of Computer Science (Nov. 1994), IEEE,

IEEE Computer Society Press, pp. 656{671.

[100] Kao, M.-Y., and Klein, P. N. Towards overcoming the transitive-closure bottle-

neck: E�cient parallel algorithms for planar digraphs. In Proceedings of the 22nd ACM

Symposium on Theory of Computing (May 1990), ACM, ACM Press, pp. 181{192.

[101] Karger, D. R. Approximating, verifying, and constructing minimum spanning

forests. Manuscript., 1992.

[102] Karger, D. R. Global min-cuts in RNC and other rami�cations of a simple mincut
algorithm. In Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete

Algorithms (Jan. 1993), ACM-SIAM, pp. 21{30.

[103] Karger, D. R. Random sampling in matroids, with applications to graph connec-

tivity and minimum spanning trees. In Proceedings of the 34th Annual Symposium on

the Foundations of Computer Science (Nov. 1993), IEEE, IEEE Computer Society

Press, pp. 84{93.

[104] Karger, D. R. Random sampling in cut,
ow, and network design problems. In

Proceedings of the 26th ACM Symposium on Theory of Computing (May 1994), ACM,

ACM Press, pp. 648{657.

[105] Karger, D. R. Using randomized sparsi�cation to approximate minimum cuts. In

Proceedings of the 5th Annual ACM-SIAM Symposium on Discrete Algorithms (Jan.

1994), ACM-SIAM, pp. 424{432.

[106] Karger, D. R., Klein, P. N., and Tarjan, R. E. A randomized linear-time

algorithm to �nd minimum spanning trees. Journal of the ACM (1994). To appear.

[107] Karger, D. R., and Motwani, R. Derandomization through approximation: An

NC algorithm for minimum cuts. In Proceedings of the 25th ACM Symposium on

Theory of Computing (May 1993), ACM, ACM Press, pp. 497{506. Also appeared as

Stanford Univeristy technical report STAN-CS-93-1471.

[108] Karger, D. R., Motwani, R., and Sudan, M. Approximate graph coloring

by semide�nite programming. In Proceedings of the 35th Annual Symposium on the

BIBLIOGRAPHY 229

Foundations of Computer Science (Nov. 1994), IEEE, IEEE Computer Society Press,

pp. 2{13.

[109] Karger, D. R., Nisan, N., and Parnas, M. Fast connected components algo-

rithms for the EREW PRAM. In Proceedings of the 4th Annual ACM-SIAM Sympo-

sium on Parallel Algorithms and Architectures (June 1992), pp. 562{572.

[110] Karger, D. R., and Stein, C. An ~O(n2) algorithm for minimum cuts. In Proceed-

ings of the 25th ACM Symposium on Theory of Computing (May 1993), ACM, ACM

Press, pp. 757{765.

[111] Karp, R. M. Probabilistic recurrence relations. In Proceedings of the 23rd ACM

Symposium on Theory of Computing (May 1991), ACM, ACM Press, pp. 190{197.

[112] Karp, R. M., Luby, M., and Madras, N. Monte-carlo approximation algorithms

for enumeration problems. Journal of Algorithms 10, 3 (Sept. 1989), 429{448.

[113] Karp, R. M., and Luby, M. G. Monte carlo algorithms for planar multiterminal

network reliability problems. Journal of Complexity 1 (1985), 45{64.

[114] Karp, R. M., and Ramachandran, V. Parallel algorithms for shared memory

machines. In Handbook of Theoretical Computer Science, J. van Leeuwen, Ed., vol. A.

MIT Press, Cambridge, MA, 1990, pp. 869{932.

[115] Karp, R. M., Upfal, E., and Wigderson, A. Constructing a perfect matching

is in random NC. Combinatorica 6, 1 (1986), 35{48.

[116] Karzanov, A. V., and Timofeev, E. A. E�cient algorithm for �nding all minimal

edge cuts of a non-oriented graph. Cybernetics 22 (1986), 156{162.

[117] Khanna, S., Linial, N., and Safra, S. On the hardness of approximating the

chromatic number. In Proceedings 2nd Israeli Symposium on Theory and Computing

Systems (1992), pp. 250{260.

[118] Khuller, S., and Schieber, B. E�cient parallel algorithms for testing connectivity

and �nding disjoint s-t paths in graphs. SIAM Journal on Computing 20, 2 (Apr.

1991), 352{375.

230 BIBLIOGRAPHY

[119] Khuller, S., and Vishkin, U. Biconnectivity approximations and graph carvings.

Journal of the ACM 41, 2 (Mar. 1994), 214{235. A preliminary version appeared in

STOC 92.

[120] King, V. A simpler algorithm for verifying minimum spanning trees. Manuscript.,

1993.

[121] King, V., Rao, S., and Tarjan, R. E. A faster deterministic maximum
ow

algorithm. In Proceedings of the 3rd Annual ACM-SIAM Symposium on Discrete

Algorithms (Jan. 1992), ACM-SIAM, pp. 157{164.

[122] Klein, P., Plotkin, S. A., Stein, C., and Tardos, �E. Faster approximation

algorithms for the unit capacity concurrent
ow problem with applications to routing

and �nding sparse cuts. SIAM Journal on Computing 23, 3 (1994), 466{487. A

preliminary version appeared in STOC 90.

[123] Klein, P. N., Stein, C., and Tardos, �E. Leighton-Rao might be practical: Faster

approximation algorithms for concurrent
ow with uniform capacities. In Proceedings

of the 22nd ACM Symposium on Theory of Computing (May 1990), ACM, ACM Press,

pp. 310{321.

[124] Klein, P. N., and Tarjan, R. E. A randomized linear-time algorithm for �nding

minimum spanning trees. In Proceedings of the 26th ACM Symposium on Theory of

Computing (May 1994), ACM, ACM Press, pp. 9{15.

[125] Kneser, M. Aufgabe 300. Jber. Deutsch. Math.-Verein. 58 (1955).

[126] Knuth, D. E. Fundamental Algorithms, 2nd ed., vol. 1 of The Art of Computer

Programming. Addison-Wesley Publishing Company, 1973.

[127] Knuth, D. E. Matroid partitioning. Tech. Rep. STAN-CS-73-342, Stanford Univer-

sity, 1973.

[128] Knuth, D. E. Seminumerical Algorithms, 2nd ed., vol. 2 of The Art of Computer

Programming. Addison-Wesley Publishing Company, 1981.

[129] Knuth, D. E. The sandwich theorem. The Electronic Journal of Combinatorics 1

(1994), 1{48.

BIBLIOGRAPHY 231

[130] Knuth, D. E., and Yao, A. C. The complexity of nonuniform random number

generation. In Algorithms and Complexity: New Directions and Recent Results, J. F.

Traub, Ed. Academic Press, 1976, pp. 357{428.

[131] Komlos, J. Linear veri�cation for spanning trees. Combinatorica 5, 1 (1985), 57{65.

[132] Korte, B. H., Lov�asz, L., and Schrader, R. Greedoids. Springer-Verlag, Berlin,

1991.

[133] Kruskal, Jr., J. B. On the shortest spanning subtree of a graph and the traveling

salesman problem. Proceedings of the American Mathematical Society 7, 1 (1956),

48{50.

[134] Lawler, E. L. Combinatorial Optimization: Networks and Matroids. Holt, Rein-

hardt and Winston, 1976.

[135] Lawler, E. L., Lenstra, J. K., Kan, A. H. G. R., and Shmoys, D. B., Eds.

The Traveling Salesman Problem. John Wiley & Sons, 1985.

[136] Lee, J., and Ryan, J. Matroid applications and algorithms. ORSA Journal on

Computing 4, 1 (1992), 70{96.

[137] Leighton, T., and Rao, S. An approximate max-
ow min-cut theorem for uniform

multicommodity
ow problems with applications to approximation algorithms. In

Proceedings of the 29th Annual Symposium on the Foundations of Computer Science

(Oct. 1988), IEEE, IEEE Computer Society Press, pp. 422{431.

[138] Lomonosov, M. V. Bernoulli scheme with closure. Problems of Information Trans-

mission 10 (1974), 73{81.

[139] Lomonosov, M. V. On monte carlo estimates in network reliability. Probability in

the Engineering and Informational Sciences (1994). To appear.

[140] Lomonosov, M. V., and Polesskii, V. P. Lower bound of network reliability.

Problems of Information Transmission 7 (1971), 118{123.

[141] Lov�asz, L. On the ratio of optimal integral and fractional covers. Discrete Mathe-

matics 13 (1975), 383{390.

232 BIBLIOGRAPHY

[142] Lov�asz, L. On the shannon capacity of a graph. IEEE Transactions on Information

Theory IT-25 (1979), 1{7.

[143] Lov�asz, L., Mar. 1994. Personal Communication.

[144] Luby, M. G. A simple parallel algorithm for the maximal independent set problem.

SIAM Journal on Computing 15 (1986), 1036{1053.

[145] Luby, M. G., Naor, J., and Naor, M. On removing randomness from a parallel

algorithm for minimum cuts. Tech. Rep. TR-093-007, International Computer Science

Institute, Feb. 1993.

[146] Lund, C., and Yannakakis, M. On the hardness of approximating minimization

problems. In Proceedings of the 25th ACM Symposium on Theory of Computing (May

1993), ACM, ACM Press, pp. 286{293.

[147] Matula, D. W. Determining edge connectivity in O(nm). In Proceedings of the 28th

Annual Symposium on the Foundations of Computer Science (1987), IEEE, IEEE

Computer Society Press, pp. 249{251.

[148] Matula, D. W. A linear time 2+� approximation algorithm for edge connectivity. In

Proceedings of the 4th Annual ACM-SIAM Symposium on Discrete Algorithms (Jan.

1993), ACM-SIAM, pp. 500{504.

[149] Milner, E. C. A combinatorial theorem on systems of sets. Journal of the London

Mathematical Society 43 (1968), 204{206.

[150] Motwani, R., and Naor, J. On exact and approximate cut covers of graphs.

Manuscript., 1993.

[151] Mulmuley, K. Computational Geometry. Prentice Hall, 1994.

[152] Mulmuley, K., Vazirani, U. V., and Vazirani, V. V. Matching is as easy as

matrix inversion. Combinatorica 7, 1 (1987), 105{113.

[153] Nagamochi, H., and Ibaraki, T. On max-
ow min-cut and integral
ow properties

for multicommodity
ows in directed networks. Information Processing Letters 31

(1989), 279{285.

BIBLIOGRAPHY 233

[154] Nagamochi, H., and Ibaraki, T. Computing edge connectivity in multigraphs and

capacitated graphs. SIAM Journal of Discrete Mathematics 5, 1 (Feb. 1992), 54{66.

[155] Nagamochi, H., and Ibaraki, T. Linear time algorithms for �nding k-edge con-

nected and k-node connected spanning subgraphs. Algorithmica 7 (1992), 583{596.

[156] Naor, D., and Vazirani, V. V. Representing and enumerating edge connectivity

cuts in RNC. In Proceedings of the 2nd Workshop on Algorithms and Data Structures

(Aug. 1991), F. Dehne, J. R. Sack, and N. Santoro, Eds., vol. 519 of Lecture Notes in

Computer Science, Springer-Verlag, pp. 273{285.

[157] Nash-Williams, C. S. J. A. Well-balanced orientations of �nite graphs and unob-

trusive odd-vertex-pairings. In Recent Progress in Combinatorics, W. T. Tutte, Ed.

Academic Press, 1969, pp. 133{149.

[158] Neumann, J. V. Various techniques used in connection with random digits. National

Bureau of Standards, Applied Math Series 12 (1951), 36{38.

[159] Nisan, N., Szemeredi, E., and Wigderson, A. Undirected connectivity in

O(log1:5 n) space. In Proceedings of the 33rd Annual Symposium on the Foundations

of Computer Science (Oct. 1992), IEEE, IEEE Computer Society Press, pp. 24{29.

[160] Noga Alon, N. K., and Szegedy, M. Personal communication, Aug. 1994.

[161] Padberg, M., and Rinaldi, G. An e�cient algorithm for the minimum capacity

cut problem. Mathematical Programming 47 (1990), 19{39.

[162] Phillips, S., and Westbrook, J. Online load balancing and network
ow. In

Proceedings of the 24th ACM Symposium on Theory of Computing (May 1992), ACM,

ACM Press, pp. 402{411.

[163] Picard, J., and Queyranne, M. Selected applications of minimum cuts in net-

works. I.N.F.O.R: Canadian Journal of Operations Research and Information Pro-

cessing 20 (Nov. 1982), 394{422.

[164] Podderyugin, V. D. An algorithm for �nding the edge connectivity of graphs. Vopr.

Kibern. 2, 136 (1973).

234 BIBLIOGRAPHY

[165] Polesskii, V. P. Bounds on the connectedness probability of a random graph.

Information Processing Letters 26 (1990), 90{98.

[166] Provan, J. S., and Ball, M. O. The complexity of counting cuts and of computing

the probability that a network remains connected. SIAM Journal on Computing 12,

4 (1983), 777{788.

[167] Raghavan, P. Lecture notes on randomized algorithms. Research Report RC 15340

(#68237), Computer Science/Mathematics IBM Research Division, T. J. Watson Re-

search Center, Yorktown Heights, NY, 1990.

[168] Raghavan, P., and Thompson, C. Probabilistic construction of deterministic

algorithms: Approximate packing integer programs. Journal of Computer and System

Sciences 37, 2 (Oct. 1988), 130{43.

[169] Ramachandran, V. Flow value, minimum cuts and maximum
ows. Manuscript.,

1987.

[170] Ramanathan, A., and Colbourn, C. Counting almost minimum cutsets with

reliability applications. Mathematical Programming 39, 3 (Dec. 1987), 253{61.

[171] Recski, A. Matroid Theory and its Applications In Electric Network Theory and in

Statics. No. 6 in Algorithms and Combinatorics. Springer-Verlag, 1989.

[172] Reif, J. H., and Spirakis, P. Random matroids. In Proceedings of the 12th ACM

Symposium on Theory of Computing (1980), pp. 385{397.

[173] R�enyi, A. Probability Theory. Elsevier, New York, 1970.

[174] Schieber, B., and Vishkin, U. On �nding lowest common ancestors: Simpli�cation

and parallelization. SIAM Journal on Computing 17 (Dec. 1988), 1253{1262.

[175] Shiloach, Y., and Vishkin, U. An O(logn) parallel connectivity algorithm. Jour-

nal of Algorithms 3 (1982), 57{67.

[176] Shrijver, A. Theory of Linear and Integer Programming. Wiley-Interscience Series

in Discrete Mathematics. John Wiley & Sons, 1986.

[177] Sleator, D. D., and Tarjan, R. E. A data structure for dynamic trees. Journal

of Computer and System Sciences 26 (1983), 362{391.

BIBLIOGRAPHY 235

[178] Szegedy, M. AT&T Bell Laboratories, Mar. 1994. Personal Communication.

[179] Szegedy, M. A note on the � number of lov�asz and the generalized delsarte bound. In

Proceedings of the 35th Annual Symposium on the Foundations of Computer Science

(Nov. 1994), IEEE, IEEE Computer Society Press, pp. 36{39.

[180] Tarjan, R. E. Applications of path compression on balanced trees. Journal of the

ACM 26, 4 (Oct. 1979), 690{715.

[181] Tarjan, R. E. Data Structures and Network Algorithms, vol. 44 of CBMS-NSF Re-

gional Conference Series in Applied Mathematics. Society for Industrial and Applied

Mathematics, 1983.

[182] Valiant, L. The complexity of enumeration and reliability problems. SIAM Journal

on Computing 8 (1979), 410{421.

[183] Van Der Waerden, B. L. Moderne Algebra. Springer, 1937.

[184] van Emde Boas, P. Machine models and simulations. In Handbook of Theoretical

Computer Science, J. van Leeuwen, Ed., vol. A. MIT Press, Cambridge, MA, 1990,

ch. 2, pp. 3{66.

[185] Vazirani, V. V., and Yannakakis, M. Suboptimal cuts: Their enumeration,

weight, and number. In Automata, Languages and Programming. 19th International

Colloquim Proceedings (July 1992), vol. 623 of Lecture Notes in Computer Science,

Springer-Verlag, pp. 366{377.

[186] Welsh, D. J. A. Matroid Theory. London Mathematical Society Monographs.

Academic Press, 1976.

[187] Whitney, H. On the abstract properties of linear independence. American Journal

of Mathematics 57 (1935), 509{533.

[188] Wigderson, A. Improving the performance guarantee for approximate graph color-

ing. Journal of the ACM 30 (1983), 729{735.

[189] Williamson, D., Goemans, M. X., Mihail, M., and Vazirani, V. V. A primal-

dual approximation algorithm for generalized steiner problems. In Proceedings of

236 BIBLIOGRAPHY

the 25th ACM Symposium on Theory of Computing (May 1993), ACM, ACM Press,

pp. 708{717.

[190] Winter, P. Generalized steiner problem in outerplanar networks. Networks (1987),

129{167.

[191] Wood, D. C. A technique for coloring a graph applicable to large-scale optimization

problems. Computer Journal 12 (1969), 317.

