
On Diameter Veri�cation and Boolean Matrix Multiplication

Julien Basch

Department of Computer Science

Stanford University

Sanjeev Khanna
�

Department of Computer Science

Stanford University

Rajeev Motwani
y

Department of Computer Science

Stanford University

Abstract

We present a practical algorithm that veri�es whether a graph has diameter 2 in time

O
�
n3= log2 n

�
. A slight adaptation of this algorithm yields a boolean matrix multiplication

algorithm which runs in the same time bound; thereby allowing us to compute transitive

closure and verify that the diameter of a graph is d, for any constant d, in O
�
n3= log2 n

�

time.

Keywords : Algorithms, analysis of algorithms, boolean matrix multiplication, data struc-

tures, design of algorithms, graph diameter.

1 Introduction

We are given a graph G = (V;E) and we would like to verify if the diameter of G is 2. It

is easy to see that the complexity of this problem is no more than O(M (n)), where M (n)

is the complexity of boolean matrix multiplication which at present stands at O(n2:376) [4].

However, in almost all o(n3) matrix multiplication algorithms, the constants hidden in the

O-notation are very high. Thus for moderate values of n, it might not be practical to use

fast matrix multiplication techniques to perform this veri�cation. Two notable exceptions

are Kronrod's algorithm [2] (also known as Four Russians' Algorithm) which runs in time

O(n3=logn), and a more recent algorithm due to Atkinson and Santoro [3] which runs in

O(n= log1:5 n) time; in both algorithms, the hidden constants are relatively small.

In this work we present a practical O(n3=log2 n) time algorithm for verifying that a

given graph has diameter 2. An interesting extension of our approach is a boolean matrix

multiplication algorithm of the same time complexity. The diameter veri�cation algorithm

can be also be extended to computing witnesses (length 2 paths) for the diameter 2 property

without altering the asymptotics. We brie
y indicate further extensions to verifying diameter

d for any constant d, and to the dynamic maintenance of the diameter 2 property. We

�Supported by an OTL grant, NSF NYI Award CCR-9357849, and a Schlumberger Foundation Fellowship.
ySupported by Alfred P. Sloan Research Fellowship, an IBM Faculty Development Award, an OTL grant, and

NSF Young Investigator Award CCR-9357849, with matching funds from IBM, Schlumberger Foundation, Shell

Foundation, and Xerox Corporation.

1

assume the standard RAM model (see e.g. [1]), where operations on logn bit numbers can

be performed in O(1) time.

2 Diameter Two Veri�cation for Undirected Graphs

Consider the following naive algorithm: start with a n � n matrix Z initialized to the

adjacency matrix A of the given undirected graph G; scan the adjacency list of each vertex

and for each pair of vertices u and v in the list, set entry Z[u; v] = 1. The graph G has

diameter 2 if and only if, at the end of this process, there are no 0 entries in the matrix Z.

The problem with this algorithm is that in the worst case it will perform O(n2) work for

each adjacency list, and thus result in an O(n3) algorithm. Since only O(n2) entries need

to be �lled in Z, clearly it must be performing redundant work. Our algorithm constructs

a data structure which identi�es some redundancy patterns and thus leads to an O(log2 n)

factor improvement in the running time over the naive algorithm.

Let A be the adjacency matrix of the graph G, and f(n) be a function to be determined

later (of the order of logn); further, de�ne N = 2f(n) and m = n=f(n). We adopt the

convention that the row and column numbering starts at 0.

We partition the columns of A into m blocks consisting of f(n) columns each; let Vi

denote the set of vertices corresponding to the ith block of G. Each row in a given block

consists of f(n) bits and we can view these bits as the binary representation of an integer

between 0 and N � 1. We construct a rectangular integer matrix B with n rows and m

columns, where the entry br;i is the integer represented by the rth row of the ith block of

columns of A; br;i is an encoding of the set of vertices of Vi that are directly connected to

vertex r.

Let us now focus on the connections between two given sets Vi and Vj. Given a row r,

the pair (p; q) = (br;i; br;j) encodes the set of pairs in Vi � Vj that are at distance 2 from

each other, having a path of length 2 through vertex r. It can be decoded in time O(f(n)2)

as follows:

Decode(i; j; p; q)

f for all (s; t) 2 f0; : : : ; f(n)g2 do

if (ps = 1) and (qt = 1) then

Z[i � f(n) + s; j � f(n) + t] 1;

g

Here ps is the sth bit of the binary representation of integer p, and the matrix Z holds the

desired result.

Consider the set X = f(br;i; br;j) j r = 0 : : :n � 1g. This set encodes the pairs in Vi � Vj

that have a path of length 2 between them through some vertex r. The key fact is that

this set has at most N2 elements. Thus, if this quantity is less then n, we will save time by

computing this set �rst and then deciding each of its elements, instead of decoding each pair

(br;i; br;j) separately.

We represent X as a boolean matrix, whose entry X[p; q] is 1 if and only if (p; q) 2 X.

It can be constructed in time O(n+ N2) as follows:

2

Construct X(i; j)

f for all (p; q) 2 f0; : : : ; N � 1g2 do X[p; q] 0 /*Initialize X to 0*/

for r 1 to n do /*r is the index over the rows of A*/

X[br;i; br;j] 1

g

The contents of X can be decoded in time O(N2f(n)2), as follows:

Decode X(i; j)

f for all (p; q) 2 f0; : : : ; N � 1g2 do

if X[p; q] = 1 then

Decode(i; j; p; q)

g

We complete the description of the algorithm by indicating how it repeats the above steps

for all pairs of blocks of A:

Diameter 2(A)

f for all (i; j) 2 f0; : : : ;m� 1g2 do

Construct X(i; j);

Decode X(i; j)

g

The graph G has diameter 2 if and only if there are no 0 entries in the matrix Z con-

structed by this algorithm. This can be checked in O(n2) time. Each of the m2 steps of this

procedure is done in time O(n + N2f(n)2). Choosing f(n) = 0:25 logn, we have N = n1=4

and m = 4n= logn, which yields the claimed running time of O
�
n3= log2 n

�
. The auxiliary

space complexity is N2 =
p
n; it can be reduced to O(n�) by choosing f(n) = (� logn)=2, for

any � > 0.

2.1 Witnesses

It is desirable to be able to compute the paths of length 2 between all possible pairs of

vertices, rather than merely verifying the existence of such paths as is the case for our

diameter 2 veri�cation algorithm. We refer to these length 2 paths as witnesses for the

diameter 2 property. Obtaining a witness to the existence of a path of length 2 between a

pair of vertices is easy in our setup. We need to make the following simple changes:

1. In Construct X(), we replace the assignmentX[br;i; br;j] 1 by X[br;i; br;j] r. This

simply keeps track of the highest number vertex which results in this particular entry

being set to true.

2. The procedure Decode() is invoked with an additional parameter r and the statement

Z[i �f(n)+s; j �f(n)+ t] = 1 is replaced by Z[i �f(n)+s; j �f(n)+ t] = r. This indicates

that r is a witness to a path of length 2 >From the vertex i � f(n) + s to j � f(n) + t.

3. Finally, we replace the if-statement in Decode X() by the following:

3

if (X[p; q] 6= 0) then

Decode(i; j; p; q;X[p; q])

Thus, the matrix Z now contains witnesses to all pairs of vertices between which a path

of length 2 exists.

2.2 Dynamic Variants

The above algorithms can easily be converted into partially dynamic algorithms which can

be used to maintain the property of diameter equal 2 in amortized time O(n=log2 n) per edge

insertion.

3 Boolean Matrix Multiplication

We now sketch how the above algorithm can in fact be used to perform boolean matrix

multiplication in time O(n3=log2 n).

Let A and B be the two given n�n matrices. We consider the columns of A and rows of

B to be partitioned into blocks of size f(n) each. Let ar;i denote the integer represented by

the ith block of the rth column in A, and let br;j denote the integer represented by the jth

block of the rth row in B.

We now need a simple modi�cation in the algorithm described in Section 2. In procedure

Construct X(), the statement X[br;i; br;j] 1 is to be replaced by X[ar;i; br;j] 1. With

this change, the algorithm of Section 2 computes matrix Z as the boolean product of A and

B. The index r in procedure Construct X() moves over the columns of matrix A and rows

of matrix B. The array X is a compact representation for the set Si;j de�ned below:

f(x; y) 2 Ai �Bj j Z[x; y] = 1g,
where Ai and Bj denote the set of indices forming the ith and jth blocks of A and B,

respectively. It is easy to verify that the matrix Z indeed gives the boolean product of A

and B.

In fact, our algorithm can easily be adapted to multiplying two matrices whose entries

are bounded by some constant. In this case, we simply maintain a count at each location

X[ar;i; br;j] in the procedure Construct X() and use this count to suitably update the entries

in Z. The modi�cation is straightforward and we omit further details.

3.1 Applications

Using the above boolean matrix multiplication procedure, we can verify whether a given

directed or undirected graph has diameter d for any constant d in O(n3=log2 n) and compute

the transitive closure of a graph in O(n3=log2 n) time (for example, see [5]).

Acknowledgements

We would like to thank Je�rey Oldham and Pierre Demerliac for useful discussions.

4

References

[1] A.V. Aho, J.E. Hopcroft, and J.D. Ullman. The Design and Analysis of Computer

Algorithms. Addison-Wesley, 1975.

[2] V.L. Arlazarov, E.A. Dinic, M.A. Kronrod, and L.A. Faradzev. On economical construc-

tion of the transitive closure of a directed graph. Dokl. Akad. Nauk SSSR, 194:487{488

(1970, in Russian).

[3] M.D. Atkinson and N. Santoro. A practical algorithm for Boolean matrixmultiplication.

Information Processing Letters, 29(1):37{38 (1988).

[4] D. Coppersmith and S. Winograd. Matrix multiplication via arithmetic progressions.

Journal of Symbolic Computation, 9(3):251{280 (1990).

[5] T. H. Cormen, C. E. Leiserson, and R. L. Rivest. Introduction to Algorithms. The MIT

Press, 1990.

5

