
SHARP, RELIABLE PREDICTIONS USING

SUPERVISED MIXTURE

MODELS

A DISSERTATION

SUBMITTED TO THE DEPARTMENT OF COMPUTER SCIENCE

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Howard Scott Roy

March 1995

c
 Copyright by Howard Scott Roy 1995

All Rights Reserved

ii

I certify that I have read this dissertation and that in my opinion it is fully adequate

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Michael Genesereth (Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is fully adequate

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

David Rumelhart

I certify that I have read this dissertation and that in my opinion it is fully adequate

in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Peter Cheeseman

Approved for the University Committee on Graduate Studies:

iii

iv

Abstract

This doctoral dissertation develops a new way to make probabilistic predictions from a database

of examples. The method looks for regions in the data where different predictions are appro-

priate, and it naturally extends clustering algorithms that have been used with great success in

exploratory data analysis. In probabilistic terms, the new method looks at the same models as

before, but it only evaluates them for the conditional probability they assign to a single feature

rather than the joint probability they assign to all features. A good models is therefore forced

to classify the data in a way that is useful for a single, desired prediction, rather than just

identifying the strongest overall pattern in the data.

The results of this dissertation extend the clean, Bayesian approach of the unsupervised

AutoClass system to the supervised learning problems common in everyday practice. High-

lights include:

� clear probabilistic semantics

� prediction and use of discrete, categorical, and continuous data

v

Abstract vi

� priors that avoid the over®tting problem

� an explicit noise model to identify unreliable predictions

� the ability to handle missing data

A computer implementation, MultiClass, validates the ideas with performance that exceeds

neural nets, decision trees, and other current supervised machine learning systems.

The dissertation is written for a general audience with many, many examples to motivate

the new ideas. The scope of potential applications is very large, including problems like eval-

uating student admissions applications, assessing credit risk, and identifying customers likely

to order from Tiffany's latest Christmas gift catalog.

Acknowledgements

ªHey AdamÐit's done!º

: : : and what a ride it's been. I never would have made it without the love, encouragement,

and ever so gentle prodding of all my wonderful family and friends. Few people seem as

fortunate as I am with the people I'm surrounded with in my life. Mom and dad: I'll be home

soon! Marc and Jodi, ®nd some Bulls tickets somewhere so we can watch His Airness lead the

Bulls past the Knicks yet again. And Sheryl, make sure that Josh remembers his uncle! I can't

wait to get back to Chicago and see you all again, along with the entire ªholiday gangº of aunts,

uncles, and family friends. I've missed you all very much.

A special thanks to Adam and Becky, and to David and Laurel. Maybe now I'll actually get

to spend some time with you, though I can't help but wish that we were all in the same city

instead of scattered between Chicago and San Francisco as we are. And thanks to all my other

close friends who have been just great when I needed them: Steve and Jennifer, Jon, Bobby

(both of you), Jason, Maia, Wray, Linda, and LeAnn. Don and Narinder, I'll miss our daily lunch

pilgrimage up to Tressider and the always entertaining lunchtime conversation. Oh, and Don:

vii

Acknowledgements viii

I should be back in mid-April. Is Great America open then? :-) Seriously, ®nish the damn proof

and graduate already. (Ha! It feels great to be on the other side of that fence.)

In a more serious vein, on the academic front I'd like to sincerely thank all my teachers

through the years. This moment is the pinnacle of my life as a student, and every one of you

has helped me at least a little bit along the way. A big thanks to Peter Cheeseman, who started

me on the road to this dissertation with his memorable lecture ®ve years ago. And another big

thanks to my advisor, Mike Genesereth, for being helpful and patient despite all the bumps.

And a third big thanks to David Rumelhart for taking the time and trouble to be on my reading

committee. The members of the Logic Group have been the toughest sounding board I could

possibly imagine, but I've enjoyed knowing every one of you. And thanks also to the Bots crowd

and the PDP group. I've felt like a schizophrenic yo-yo caught between such different groups,

but it's time to unwind at last and go relax in the bleachers at Wrigley.

Hey, you think they'll be playing baseball?

H. Scott Roy

March 17th, 1995

Contents

Chapter 1 The Problem and the Approach 1

The Problem 1

The Approach 3

Organization and Contributions 6

Chapter 2 Example Databases 9

Understanding the Ideas 9

Iris Database 10

Day Camp Database 12

United Nations Database 12

Thyroid Database 14

Student Database 15

Prescription Database 16

Movie Database 18

Sharp, Reliable Predictions 19

Chapter 3 Mathematical Preliminaries 21

Formulation 21

Density Estimation 22

ix

Contents x

Database Queries 26

Sharpness and Reliability 27

Conditional Estimation 29

Chapter 4 Mixture Models 33

AutoClass 33

General Mixture Models 37

Class Description Functions 39

Belief Nets 41

Prior Probabilities 45

Noise and Reliability 51

Chapter 5 Multiple Hidden Features 57

Warning 57

Limitations of AutoClass 57

Improving the Class Description Function 60

Multiple Hidden Features 61

Z��� 67

Logical Rules 68

Chapter 6 Supervised Mixture Models 73

MultiClass 73

Examples 74

Missing Data and Reliability 79

Smoothing the Conditional Density 80

Supervised Mixtures vs. Multiple Hidden Features 84

Density vs. Conditional Estimation 87

Generalizing MultiClass 90

Chapter 7 Experimental Results and Future Work 91

Hyperparameters 91

Optimization 92

Evaluating Learning Programs 93

MLC++ Data Sets 96

Over®tting 101

Programming with Probabilities 104

References 109

List of Figures

The Student Database 2

The Iris Database 11

The Prescription Database 17

Petal Lengths in the Iris Data 23

Increasingly Sharp Continuous Distributions 28

Increasingly Sharp Discrete Distributions 28

Model of the Iris Data 35

Model of the Day Camp Data 36

Model of the Iris Data with no Correlations 40

The Meteorite Database 42

Wet Grass 43

Gas Turbine Diagnosis 44

The AutoClass Belief Nets 44

Prior In¯uence on Estimated GRE Scores 46

Dirichlet Shapes 50

Posterior Distribution for Class Weights 51

xi

List of Figures xii

Noise Claims the Valleys 53

Noise Class in the Prescription Database 53

Predicted Drug Dosage 54

A Non-Trivial Outlier 54

Multiple Cause Belief Net 63

Noisy-Or Ladder Model 63

Multiple Cause Undirected Belief Net 64

Reversing the Arcs 65

Harmonium 68

Two Class Iris Regression 75

One Class Iris Regression 76

Hypothyroid Predictions 78

Reliability in a Supervised Mixture Model 81

An Overparameterized Model 82

Two Approaches to Learning 88

Optimization Pitfalls 93

Failures of Mean Squared Error 95

Experimental Results 97

Accuracy Comparison to C4.5-AP 99

Statlog Performance 99

Limitations of MAP Induction 101

Iris Model 105

Bank Model 106

School and Student Model 107

1

The Problem and the Approach

I. The Problem

This dissertation describes how to make sharp, reliable inferences from a database of exam-

ples. Figure 1 presents a typical application, a ®ctitious database containing information about

students and schools. The data is laid out in multiple tables in the standard format common

to relational and object oriented databases. Given such a database, there are two problems this

thesis looks to solve:

1) Predicting missing observations.

2) Validating recorded observations to identify those that are dubious, or un-

usual.

An observation is the information at a row and column intersection in one of the tables. For

example: ªThe student with the name Woo scored 780 on his GRE,º or ªIt's unknown how

1

The Problem and the Approach 2

Undergraduate

School

Harvard

Chicago

Iowa

Stanford

Harvard

?

GPA

3.8

3.5

3.2

4.0

3.6

3.1

GRE

780

800

?

780

670

610

References

Excellent

Good

Fair

Excellent

Poor

Good

Years

6.5

4.0

5.5

?

?

?

¼

Papers

1

3

5

0

?

?

¼

Interest

AI

Theory

Theory

OS

Graphics

AI

STUDENTS

¼

¼

Name

Harvard

Chicago

Iowa

Stanford

Columbia

¼

Enrollment (k)

6.4

5

25

7

10

¼

Public?

-

-

X

-

-

¼

SCHOOLS

Average

GPA

2.8

2.7

2.1

3.5

3.0

¼

Name

Woo

Pippen

Jones

Geddis

Roy

Smith

Figure 1. The Student Database

long Roy took to earn his graduate degree.º Observations can be missing for any number of

reasons, like lost forms, forgotten test scores, or deliberate censorship. Quite often they simply

indicate future, unknown events. Mr. Roy, for example, is likely still a student in the Stanford

Ph.D. program, or else he is an aspiring applicant for whom the admissions committee is keenly

interested in predicting how long he would take to ®nish if he were admitted.

The inference problem presented here includes the most familiar case of supervised ma-

chine learning: predicting a single column in a table from the other columns in that table. An

admissions committee looking at the database of Figure 1, for example, might like to predict

how long students like Mr. Roy will take to graduate on the basis of their admissions informa-

tion. But the committee might like to answer any number of questions:

Do AI students take longer to graduate than theory students?

The Problem and the Approach 3

Is Stanford losing top students to MIT?

Are students that want to study software engineering avoiding Stanford?

: : : and so forth. All of these questions fall within the scope of the methods set forth in this

dissertation.

II. The Approach

Probability theory formalizes the problem in an elegant way. Suppose we want to predict a

particular observation in the student database, like Mr. Roy's time to graduate from Stanford.

Then the mathematical question we seek to answer is,

Given all the observations in the database, together with all our prior infor-

mation regarding students and schools, what probability should we assign to

the proposition, ªMr. Roy will graduate in n years or less?º

In symbols, our goal is to assess Pr�x � n j DI�, where x is the number of years Mr. Roy will

take to graduate, D is the evidence of the database, and I is our prior information. Predic-

tion, validation, and all the other questions presented in the ®rst section ultimately reduce to

calculating one or more probabilities of this form, where the proposition `'x � nº is replaced

by one appropriate to the question. To validate that Mr. Woo's GRE score is reasonable, for

example, we would imagine that it were missing and compute the probability distribution over

the different GRE scores he might have obtained. We can then decide whether the actual score

of 780 has an acceptably high probability.

Probabilities come from models. Just as a scientist builds a model to explain empirical facts

about the world, so too one analyzes a database by building a model that explains the systematic

patterns in the recorded observations. One then uses that model to make predictions. In the

probabilistic framework the de®nition of a model is simple and precise: a model is any function

that assigns a de®nite, computable probability to every possible database one might observe.

We write this function using the conditional probability notation, Pr�D j MI�.

The Problem and the Approach 4

In Bayesian induction, one computes the probability of a propositionQ by taking a weighted

sum over as many different models M as one cares to consider, each of which makes its own

predictions:

Pr�Q j DI��
Z

Pr�Q jMDI� Pr�M j DI�dM �1�

Throughout this dissertation, the reader should understand that all integrals implicitly collapse

to sums when the domain is discrete. The second factor in the integral of Equation 1, the

posterior distribution Pr�M j DI�, is the weighting factor that indicates how strongly we believe

each model after having seen the database. We evaluate it using Bayes' theorem:

Pr�M j DI�� Pr�D j MI� Pr�M j I�
Pr�D j I� �2�

Bayes' theorem shows how to update the prior distribution Pr�M j I� to the posterior one by

incorporating the new information contained in the database. The factor in the denomina-

tor, Pr�D j I�, is often called the evidence for the models, or the Bayes factor. It plays an

important role when one allows the prior information I to vary, as occurs when considering

different model space alternatives [38, 33], but for the purpose of this dissertation it is a ®xed

normalizing constant.

Together, Equations 1 and 2 completely specify Bayesian probabilistic induction. Jaynes's

Probability: the Logic of Science is an exceptional introduction [28], as is the new book by

Bernardo and Smith [2].

The posterior distribution, Pr�M j DI�, indicates which models provide the best descrip-

tion of the database. More generally, as Equation 1 shows, we ideally make predictions by

averaging the predictions of all the models we consider, weighted according to their poste-

rior probabilities. In practice this approach is a pipe dream. The models considered in this

dissertation are suf®ciently complex that Equation 1 has no analytic solution, and we shall be

forced to approximate it by making predictions using the model of maximum posterior prob-

ability, a process known as MAP induction. This approach works well as long as the posterior

distribution is dominated by a single sharp peak, indicating that the combination of data and

The Problem and the Approach 5

prior information overwhelmingly favors one model over the others. It is easy to replace MAP

induction with more accurate but time consuming approximations to Equation 1, like Laplace's

normal approximation [1] or Gibb's sampling [15], but this dissertation leaves such extensions

to future work.

The complete MAP algorithm for the database modeling problem is as follows:

1) Choose a model space.

2) Assign a prior probability to every model in the space.

3) Find the model of maximum posterior probability.

4) Answer all questions using that model.

MAP induction ®ts nicely with a fundamental lesson of machine learning:

Lesson #1

Learning is search.

This search takes the form of graph search over the discrete parts of the model space, and

continuous function optimization over the continuous parts. We have at our disposal all the

tools of arti®cial intelligence on the one hand, and all those of operations research on the other.

Equation 1 tells us that Lesson #1 is wrong. Learning is not search at all, but rather summa-

tion. It is only when we reach the limit of our ability to do exact calculations that we fall back

on approximations like MAP induction, in which we are simply ®nding the largest summand

in Equation 1. Only when the posterior distribution is sharply peaked are the two approaches

effectively equivalent.

Mitchell wrote down Lesson #1 for the machine learning community in 1977, in his work

on version space learning [42]. It no doubt has a considerably longer history in the ®eld of

philosophy. But it is worth continually reemphasizing, since it seems so easy to con¯ate a

model space with the algorithms that search it. It took years, for example, to ®rmly disentan-

gle the BackProp algorithm from the idea of a feedforward neural network, and only recently

have people begun to look at alternative optimization algorithms, such as conjugate gradient

methods and quasi-Newton optimizers. The decision tree literature, similarly, seems to only

periodically rediscover that one can search the space of decision trees using anything other

The Problem and the Approach 6

than a greedy hill climbing algorithm. A 2-ply lookahead gives much better performance [5],

and the problem seems natural for a general graph search algorithm like A�.

Some search algorithms are designed to work with particular model spaces, but for the

most part the separation between model spaces and algorithms is clean, so that one has two

orthogonal ways to improve the quality of data analysis: use a better search algorithm, or use

a better model space. Improving the search algorithm is almost always much less important

than improving the model space, since even the best model in the wrong space is likely to

be much worse than a mediocre model in the right one. In describing the transition between

successive versions of AutoClass, the program out of which this dissertation arises, Hanson

and his coworkers relate that improving the model space brought orders of magnitude more

improvement than tinkering with the search algorithm [19]. Chapter 2 will cement this lesson by

showing numerous examples where an inadequate model renders sharp predictions impossible.

The wise practitioner never forgets:

Lesson #2

You ®nd what you look for.

So you had better make certain you look for the right thing.

In Bayesian probability, Lesson #2 is re¯ected in the role of prior probabilities, which

receive equal weight to the likelihood in Bayes' theorem. This dissertation focuses on setting

up a good model space and prior with which to ask questions about large, poorly understood

databases.

III. Organization and Contributions

The remainder of this thesis is as direct as possible, while attempting to remain accessible to

the general reader who is not an expert in machine learning. Chapter 2 gives a progression of

example databases to illustrate the major ideas and the shortcomings of the AutoClass system

that motivate the dissertation. Chapters 3±6 develop model spaces and priors to address these

shortcomings, and the last chapter wraps up with experimental results and future directions.

The Problem and the Approach 7

The major contributions of the dissertation are,

1) A new version of AutoClass, MultiClass, that corrects its limitations on super-

vised prediction problems while retaining its clear probabilistic semantics.

2) A mapping between hidden features and logical rules that provides insight

into mixture models and delineates their expressive power.

3) A multiple hidden feature model space that generalizes unsupervised mixture

models to account for all the useful ways to classify objects in a database.

4) A way to explicitly model noise and errors in a database to automatically

recognize and eliminate unreliable predictions.

8

2

Example Databases

I. Understanding the Ideas

This chapter presents a series of example databases to illustrate the major ideas that motivate

the dissertation. There is no math. The informal style is intended to convey the intuition

and simplicity of the ideas without obscuring them behind formulas, or tying them to any one

mathematical framework. The general themes that run through the chapterÐhidden features,

supervised vs. unsupervised analysis, and reliabilityÐare easily understood without any greek

magic.

This chapter is not a critique of existing methods. It is, instead, a map of the potentially

treacherous terrain that all data analysis systems must navigate. Existing programs deal with

many of the problems in this chapter just ®ne, but no current program handles all of them.

The one system this chapter does frequently mention is AutoClass [9], since it is the limitations

of AutoClass that this dissertation primarily looks to understand and overcome.

9

Example Databases 10

II. Iris Database

Chapter 1 described the ideal input to a machine learning algorithm, namely an existing object

oriented or relational database laid out in multiple tables. The remainder of this dissertation

focuses on the simpler, special case in which the data are stored in only a single table, the

format universal to current machine learning research. The ®nal chapter returns to the issue

of multiple tables, showing both their importance and the ease with which the ideas in this

dissertation can be extended to include them.

This dissertation begins with the idea of using hidden features to describe clusters and

correlations in observable data. Figure 1 illustrates the intuition with a slice from the well

known Iris data set of R. A. Fisher. The plot shows clear evidence for at least two kinds of

¯owers. There are actually three: the smaller Iris Setosa, and the larger Iris Virginica and

Versicolor. Keep in mind that a computer, lacking eyes, sees only a table of numbers:

Sepal Length Petal Length

5.1 1.4

5.4 1.7

7.7 6.9

6.7 4.7

4.8 1.6

� � � � � �

As our eyes reveal from looking at the plot, it is natural to partition the ¯owers into two groups,

one for the cluster in the lower left corner, and one for the cluster in the upper right. We record

this classi®cation by augmenting the original database with a new feature column indicating

the cluster into which each ¯ower falls:

Sepal Length Petal Length Cluster

5.1 1.4 Bottom

5.4 1.7 Bottom

7.7 6.9 Top

6.7 4.7 Top

4.8 1.6 Bottom

� � � � � � � � �

Example Databases 11

4 5 6 7 8

Sepal Length

0

1

2

3

4

5

6

7

8

P
e
ta
l
L
e
n
g
th

Figure 1. The Iris Database

We call the ªClusterº column a hidden feature, since although it is purely hypothetical and

cannot be measured, one can imagine it as a real feature missing from the original database. In

this case it indicates the species of ¯ower: all the ¯owers in the lower left cluster are Iris Setosa,

while those in the upper right are Virginica and Versicolor. If we apply the same analysis to

the complete iris database, which includes width measurements in addition to the length ones,

three distinct clusters emerge that let us recover all three kinds of ¯owers.

In general, a hidden feature indicates a causal effect inducing a pattern in the observable

data. In a medical database, hidden features that describe clusters of symptoms may corre-

spond to new syndromes or diseases, previously unknown to doctors. A famous example of

machine discovery involved an analogous problem, in which the AutoClass program, perform-

ing an analysis much like the one suggested by the iris example, discovered new types of stars

by spotting patterns in their spectral emissions [9].

Example Databases 12

III. Day Camp Database

Clusters can appear in discrete and categorical data as well as in real data. Here is an example,

a database that shows the daily record of activities at a children's day camp:

Swimming Whif¯e Coloring Singing Painting

� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � �
� � � � � � � � � � � � � � �

Each row is a day, and each observation indicates whether the children undertook a particular

activity. For example, on the ®rst day there was swimming and whif¯e ball, but no coloring or

singing or painting. There is a clear pattern. The two outdoor activities, swimming and whif¯e

ball, occur together, as do the three indoor activities. The weather doubtless has a signi®cant

impact on the daily schedule, so we can improve our picture of the data by imagining the

weather as an additional, hidden feature,

Swimming Whif¯e Coloring Singing Painting Weather

� � � � � sunshine

� � � � � rain

� � � � � sunshine

� � � � � sunshine

� � � � � rain

� � � � � rain

� � � � � � � � � � � � � � � � � �

When a computer ®nds such clusters, of course, it still takes a human to assign a meaningful

label like ªWeatherº to the patterns that it ®nds.

IV. United Nations Database

Example Databases 13

Many existing learning frameworks, including decision trees and mixture models, effectively

model data using a single hidden feature, as in the iris and day camp examples. This approach

is powerful, but one must be careful when applying such models to predictions and validations.

There may be many equally good ways to classify the objects in a database, but not all of them

are necessarily relevant to the questions one cares about.

Suppose, for example, that one were to collect the physical characteristics of delegates to

a United Nations conference on world population. A small portion of the resulting database

might look like this:

Height Weight Skin Eyes Hair

5'11º 180 white brown brown

4'10º 105 white blue blonde

5'4º 130 black brown black

5'3º 120 brown brown brown

6'2º 195 white blue red

� � � � � � � � � � � � � � �

There are at least two different ways to classify the people in this table. The height and weight

measurements fall into two distinct, overlapping clusters, since men are both taller and heavier

than women, so one way to classify people is according to sex. There are also strong correlations

among skin color, eye color, and hair color, so a second way is according to ethnicity. It is

therefore useful to imagine the database with two hidden features:

Height Weight Skin Eyes Hair Sex Ethnicity

5'11º 180 white brown brown M European

4'10º 105 white blue blonde F Scandinavian

5'4º 130 black brown black F African

5'3º 120 brown brown brown F African

6'2º 195 white blue red M Irish

� �

The presence of two hidden features portends serious trouble for a program, like AutoClass,

that hopes to describe all the effects in the database using only a single one. This database

requires two hidden features, and a program that looks for only one will inevitably miss a large

part of the structure in the data.

Example Databases 14

If one does use a program that looks for only a single hidden feature, it is imperative that

it work in a supervised fashion where it knows which predictions are important, so that it

can tell which of the many possible hidden features it should choose for its model. Lacking

such detailed instructions, an unsupervised program will always describe the most dominant

structure it can ®nd. Only blind luck will decide whether that structure is relevant to the

predictions one cares about. In the United Nations data, for example, an unsupervised program

might easily decide to focus on sex when the goal is to predict eye color, or on ethnicity when the

goal is to predict height. Either way, making predictions from the ®nal model will be no better

than throwing darts, since the structure it reveals will be irrelevant to the desired predictions.

It is possible, in principle, to combine multiple features like ªSexº and ªEthnicityº into

a single hidden feature that embodies their crossproduct. But this solution quickly arrives

at a severe overpartitioning problem as the number of useful classi®cations grows. A single

crossproduct feature must enumerate an exponentially increasing number of classes, and there

is almost never enough data to go around. Chapter 5 gives a full quantitative account of this

phenomenon.

V. Thyroid Database

The original developers of AutoClass encountered the problem of multiple useful classi®cations

on many data sets [8]. Quinlan's thyroid disease database is a good example. The goal with

this database is to diagnose various thyroid diseases and prescribe treatment therapies. A very

small portion of the data looks like this:

Sex Pregnant? � � �

M �
F �
F �
M � � � �
F �
F �
� � � � � �

Example Databases 15

There is a very strong connection between sex and pregnancy, since only women can be preg-

nant. AutoClass ®nds this pattern of great interest and settles on the rather dull hidden feature,

Sex Pregnant? � � � Pregnant Woman?

M � �
F � �
F � �
M � � � � �
F � �
F � �
� � � � � � � � �

Whatever one hopes to learn from this data set, this clearly is not it.

Unfortunately, all the classes that AutoClass ®nds in the thyroid data are of little impor-

tance or already known, like the pregnant women class, so that the ®nal model performs no

better than guesswork on the desired diagnoses. Cheeseman often tells a similar anecdote, in

which AutoClass ®nds many fascinating social classes in a medical database, but ignores the

much more interestingÐalbeit weakerÐcorrelations among symptoms and diseases.

VI. Student Database

The thyroid database suggests that hidden features often have a natural interpretation as log-

ical rules. Chapter 5 explores the connection and shows that this perception is correct. One

common way for such rules to appear is when one ¯attens multiple tables into a single table

by expanding functional relations. Unfortunately, one is often forced to follow this approach

because of the inability of current machine learning systems to deal with multiple database

tables.

Logical rules appear in the student data when one folds the information about schools

Example Databases 16

directly into the student table like this:

School Public? Enrollment � � � GRE Years Papers

Harvard � 6.4 780 6.5 1

Chicago � 5.0 800 4.0 3

Iowa � 25.0 � � � ? 5.3 5

Stanford � 7.0 780 ? 0

Harvard � 6.4 670 ? ?

� � � � � � � � � � � � � � � � � �

This approach is less than perfect, since it fails to convey that some columns in the ¯attened

database, like ªPublic?º and ªEnrollment,º are functionally dependent on others, in this case

ªSchool.º Enrollment is always 6400, for instance, for every student from Harvard. The result-

ing perfect correlations can lead to trouble for an unsupervised system that becomes enamored

rediscovering them.

VII. Prescription Database

Although a database can exhibit many, many patterns that are irrelevant to the predictions one

cares about, even silly patterns, like the fact that only women can be pregnant, can be crucially

important in spotting database errors that might lead to unreliable predictions.

Unreliability is an aspect of the traditional expert system problem known as brittleness, a

sharp degradation of skill outside the limited range of expertise for which a system is designed.

Brittleness can be either an annoyance, when a system cannot make use of common sense

information, or a danger, when a system fails to recognize its own limitations, and users are

either too naive or incautious to reject its conclusions. Lenat and Feigenbaum cite disturbing

examples: a medical system issuing absurd prescriptions to a patient whose weight and age

are accidentally interchanged, a loan authorization program approving an enterprising teenager

claiming to have worked for over 20 years, and others [37].

Problems like these arise when an expert system fails to validate the things it is told.

Fortunately, an expert system induced directly from a database of examples has access to all

Example Databases 17

25 50 75 100 125 150 175

Age

0

50

100

150

200

250

300

W
e
ig
h
t

100 150 200 250 300 350

Weight

100

200

300

400

500

600

700

800

D
o
s
a
g
e

Figure 2. The Prescription Database

the information it needs to avoid such mistakes. The medical expert system described above,

for example, might be created from a database that includes a fragment like the following:

Age Weight Dosage (mg)

20 180 400

34 210 460

55 130 300

28 150 340

170 30 ?

� � � � � � � � �

The task is to assess the dosage for the last patient. Figure 2 plots this data so that one can

see what is happening. Weight and dosage have a tight linear relation, while age and weight

form a visible cluster centered around 45 years and 150 pounds. A traditional expert system,

or a supervised learning system that only cares about patterns useful for predicting dosage,

will assess a dosage for the ®nal patient somewhere around 100mg, without any warning bells

or whistles.

But the database obviously contains all the information needed to recognize the unreliabil-

ity of this prescription, since the ®nal row is so different from all the others. In the joint plot

Example Databases 18

of age and weight, the ®nal entry falls far outside the envelope of the others. A system trained

to look for all the patterns in the data will notice this fact and sound an alarm, or at the very

least refuse to make a sharp prediction.

Reliability is complimentary to accuracy, robustness, sensitivity, and other usual ways of

measuring the quality of a prediction. It looks at how similar conditioning information is to the

data from which a model was constructed. A model is unreliable whenever it has the potential

to make sharp predictions in situations that are highly unlike any it has seen.

VIII. Movie Database

In many real world problems missing data is the norm rather than the exception. A doctor,

for example, will typically only run a tiny fraction of the lab tests he has at his disposal when

diagnosing a patient, so his medical records will be ®lled with missing observations. As a more

fun example, a video rental store might try to recommend new movies based on questionaires

in which customers list movies they like and dislike.

Singing in the Sound of

Star Wars ET Alien Rain Music

9 8 10 ? 3

? 7 9 ? ?

? ? 2 ? ?

2 ? ? 9 10

? 3 4 8 9

� � � � � � � � � � � � � � �

Each row gives a person's ratings for movies he has seen. The ®rst person, for example, enjoys

science ®ction but is less excited by musicals. The goal is to predict whether or not Singing in

the Rain is something he would like. There is no hope of acquiring complete data in this domain,

even for customers that are dedicated moviegoers. Applications like this one are impossible

unless a machine learning program can handle missing data.

Example Databases 19

IX. Sharp, Reliable Predictions

The example databases reveal the challenges that confront a system hoping to make sharp,

reliable predictions from the evidence contained in a database. To summarize:

� Hidden features classify data in ways that explain clusters and correlations.

� There are often many interesting classi®cations.

� Supervised learning can focus a system on the relevant ones.

� All patterns become important when trying to identify unreliable predictions.

� Missing data is a reality.

This dissertation grows out of the AutoClass system, which performs an unsupervised analysis

using a single hidden feature, as suggested by the iris and day camp examples. The United

Nations database and those following it reveal why this simple approach falls. A single hidden

feature model is too weak to account for all the interesting classi®cations, and an unsupervised

approach gives a system no way to decide which classi®cations will be useful. The intent of

this dissertation is to correct these problems in a clear probabilistic way.

20

3

Mathematical Preliminaries

I. Formulation

This chapter ¯eshes out the principles of Bayesian induction, sets up the database analysis

problem as one of density estimation, and precisely de®nes the terms ªsharpnessº and ªrelia-

bility.º At this stage the formulas are all universal, independent of any speci®c model. Later

chapters specialize them to the hidden feature models that are the focus of this dissertation.

The presentation skips any pedantic discussion along the lines of, ªWhat is a database?º,

trusting that the reader's understanding is suf®cient to reconstruct the obvious formalization.

There are only two details that are worth emphasizing. First, features come in all types: con-

tinuous, like the width of a ¯ower petal; discrete, like the number of years a student takes to

graduate; and categorical, like a person's eye color. One of the main design goals of the models

21

Mathematical Preliminaries 22

in this dissertation is to treat every feature for what it is, without being forced to lump them

all together into a single universal type.

Second, there is no restriction that the rows of a table are unique. Although each row

corresponds to a distinct entity in the world, two entities can easily be indistinguishable based

only on the observations in a database. Two students, for example, might coincidentally submit

applications that are identical when reduced to the few features recorded in the student table.

II. Density Estimation

The rows of a database table are naturally viewed as points in an n dimensional space, with

the ith component drawn from the possible observations for the ith feature together with the

symbol `?'. We will always use the small letter z for points in this space, and the letters x and

y for points in subspaces and projections. D, the totality of observations in a database, is

equivalent to the set f z1; : : : ; zN g, where N is the number of rows in the database.

The models in this dissertation all treat the rows of a table as independent samples from

a ®xed distribution. This independence lets one write the likelihood of a database as a product

of individual factors, one for each row:

Pr�D jMI��
Y

i�1:::N

Pr�zi jMI� �1�

Treated as a function of z, Pr�z j MI� gives the density with which each possible row of obser-

vations appears.

In the student database, the likelihood of seeing the observed table is the product of sep-

arate likelihoods for Woo, Roy, Geddis, and the others. The order is irrelevant. Under the

hypothesis of any particular model, each student is independent from all the others, so that

the likelihood of student 1000 is unaffected by the previous 999. Learning is possible because

we do not assume a ®xed model, but instead maintain a distribution over a set of models. This

distribution adjusts as we consider each new student so that it favors models that give a good

description of the data. As the distribution becomes more and more sharply peaked, we learn

less and less from each new student we see.

Mathematical Preliminaries 23

0.2 1.8 3.4 5. 6.6

Figure 1. Petal Lengths in the Iris Data

For instance, we might decide to model GRE scores using a normal distribution with a ¯at,

uninformative prior over the mean �. After seeing 1000 students, the posterior distribution

will be tightly centered on models for which � agrees with the sample mean GRE measured from

the data. Although the data picks out a very precise model in the space of normal distributions,

that model may be a terrible ®t to the actual data. Figure 1 plots the histogram of petal lengths

in the iris data, for which one gets a sharp posterior in the space of normal distributions, but

a very poor model.

In the general case we search a model space parameterized by�, a multidimensional quan-

tity that can contain any number of continuous, discrete, and categorical parameters, so that

every choice of � denotes a distinct model. It is perfectly acceptable for two different values

of �, denoting different models, to nevertheless generate identical probability distributions. If

a row in a database table contains no `?', then its joint probability conditioned on a model M�

is,

Pr�z jM�I��
1

Z���
k�z j ��

Z����
Z
k�z j ��dz

�2�

The kernel function k�zj�� gives the probability distribution its shape, while the partition

Mathematical Preliminaries 24

function Z��� normalizes everything to one.

A normal distribution over GRE scores has the form,

N�GRE j �;��� 1p
2��

e�
1

2
�
GRE��

� �
2

Mapping onto the symbols of Equation 2,

� � f�;� g

k�z j ��� e�
1

2
�
GRE��

� �
2

Z����
p

2��

For a larger section of the student database, we might decide to model observations using a

separate point mass distribution for each discrete component, and a single multivariate normal

for all the continuous ones. The likelihood function for the observations in a single row is,

Pr�recommendations;GRE;GPA; years; school j M�I��

M�recommendations jw1��

M�school j w2��

N�GRE;GPA; years j m;Ö�
The function M denotes a point mass distribution parameterized by the weight vector w, while

N is a multivariate normal with mean vector m and covariance matrix Ö.

Linking Equation 2 to the current example, z is the vector of a student's recommendations,

GRE score, GPA, years to graduate, and undergraduate school, � is the union of the parameters

w1, w2, m, and Ö, and the partition function Z is absorbed into the component distributions

so that it does not appear explicitly. In this particular case all the parameters are continu-

ous, though the wi must be nonnegative and Ö must be positive de®nite to ensure the overall

distribution is well de®ned. The components of each wi must also sum to 1.

One of the elegant aspects of density estimation is that it explains how to handle missing

data. If a row in a database table contains a `?', we can marginalize to obtain the joint probability

of all the observations that are not missing. Letting x be the part of z that is known, and y the

Mathematical Preliminaries 25

part that is unknown, the joint probability is,

Pr�z jMI��
Z

Pr�yx j MI�dy �3�

A ¯aw in this method is that it does not account for the possibility of censorship. If students

deliberately withhold low test scores, for example, the fact that a score is missing is cogent

information. It is easy to account for this possibility by adding features to the database that

make missing observations explicit. With the student data, for example,

GRE Missing GRE? � � �

780 �
800 �

? � � � �
780 �
670 �
� � � � � �

Now we can marginalize away missing GRE scores and still notice if a missing score is signi®cant.

Equations 2 and 3 specify Pr�z j M�I� regardless of whether z contains missing values.

Plugging Equation 2 into Equation 1 gives the likelihood of a database table with no missing

values in parameterized form:

Pr�D jM�I��
1

Z���N

Y
i�1:::N

k�zi j�� �4�

The partition function Z��� factors out of the product since it is the same for each row of the

database.

When the MAP model cannot be found by an exact analytic calculation, the search inevitably

reduces to repeatedly evaluating trial models using Equation 4 and Bayes' theorem. The time

complexity of calculating Z��� almost always dominates the computations, as it is a complex

multidimensional integral for all but the simplest of kernel functions. It is only a slight exag-

geration to say that all the dif®culty of density estimation is tied to the dif®culty of computing

the partition function.

Mathematical Preliminaries 26

III. Database Queries

Chapter 1 presented the two chief formulas of Bayesian induction, the weighted sum rule that

combines different predictions, and Bayes' rule that lets one evaluate models:

Pr�Q j DI��
Z

Pr�Q jMDI� Pr�M j DI�dM

Pr�M j DI�� Pr�D j MI� Pr�M j I�
Pr�D j I�

A minor detail that Chapter 1 omitted was how to evaluate Pr�Q j MDI�, the probability of a

query given a speci®c model and the recorded observations in the database.

A query is any statement whose truth could be determined from a complete database with

no missing entries. For example, ªMr. Roy graduated in less than 5 years,º or ªMr. Woo scored

780 on his GRE.º Given a model M, the probability of a query Q is found by summing over all

possible ways to ®ll in the missing entries in the database to yield a complete database D0 in

which Q is true:

Pr�Q j MDI��
Z

Pr�D0 jMI�dD0 �5�

Equation 5 is general and covers any possible model. In the case of density estimation, if the

query Q refers to just a single row, as do the examples above, then all the other rows in the

database are irrelevant and one obtains a simpler formula. The integral now spans z0, all the

completions of the query row z for which Q is true:

Pr�Q j MDI� � Pr�Q j zMI�

�
Z

Pr�z0 j MI�dz0

The dimensionality of this integral is equal to the number of missing values in z. It presents

no computational dif®culties in the most common case where z contains only a single missing

value, the feature we are trying to predict.

Mathematical Preliminaries 27

IV. Sharpness and Reliability

In supervised machine learning, the joint feature vector z breaks up into two parts: the known

features x, and the unknown features y that one is trying to predict. When evaluating student

applications, for example, x is the information on the application and y is the unknown number

of years the student will take to graduate and the unknown number of papers he will publish.

The joint density factors in a meaningful way to re¯ect this breakdown:

Pr�z j MI� � Pr�yx jMI�

� Pr�y j xMI� Pr�x j MI�
�6�

The factor on the left, Pr�y j xMI�, is the only part relevant to making predictions. Its un-

certainty is a measure of how precise of a prediction the model can make, so it gives a crisp

de®nition to the term ªsharpnessº:

Sharpness � 1

H �Pr�y j xMI��

H is the entropy function. The sharpness of a model's predictions depends on the conditioning

information x. A model may make sharp predictions in one part of the input space and noncom-

mittal predictions in another. Figure 2 plots examples of continuous probability distributions

in the direction of increasing sharpness. Figure 3 does the same for discrete distributions.

The term ªreliabilityº has two senses: one refers to the reliability of conditioning infor-

mation, and one refers to the reliability of a model's predictions. The factor on the right of

Equation 6, Pr�x j MI�, assesses the reliability of the conditioning information. It is most mean-

ingful on a relative scale. When Pr�x j MI� is large, it means that x closely resembles rows in

the database, and one can have con®dence when the model makes sharp predictions because

they are backed up by recorded data. When Pr�x jMI� is small the model is extrapolating and

one should worry, since x is likely to be very different from the data from which the model was

constructed. We therefore de®ne,

Raw Reliability � Pr�x jMI�

Mathematical Preliminaries 28

1

2

3

4

5

6

Figure 2. Increasingly Sharp Continuous Distributions

6

5

4

3

2

1

Figure 3. Increasingly Sharp Discrete Distributions

Mathematical Preliminaries 29

The appropriate relative scale resembles the P -value scale in classical statistics. We are after

the probability of seeing conditioning information at least as improbable as x, so we sum the

probabilities of all the points that are less probable. We also need to account for the fact that as

the amount of data increases, we expect to see more and more improbable events. The formula

is,

Reliability � N

Z
S

Pr�x0 j MI�dx0 S � fx0 j Pr�x0 jMI�� Pr�x jMI� g

This function varies on a scale between 0 and N. It has a natural interpretation as the expected

number of points in the database with conditioning information less probable than x. A relia-

bility of 3, for instance, indicates that one should expect to ®nd 3 rows in the database rarer

than x. The models in this dissertation explicitly account for noise to ensure that sharp predic-

tions do not arise from unreliable conditioning information. There is no quantitative law, but

as reliability decreases, sharpness also decreases to generate more conservative predictions.

V. Conditional Estimation

Density estimation is dif®cult because it considers both sharpness and reliability. Often, practi-

cal considerations make it possible to dispense with reliability and model Pr�y j xMI� directly.

Chapter 6 justi®es this approach and points out its limitations. Where justi®ed, it saves tremen-

dous time and trouble by ignoring all the complex structure that may appear in Pr�x j MI�.

In the student data, when trying to predict years to graduate we can factor the joint density,

Pr�recommendations;GRE;GPA; years; school j I��

Pr�years j recommendations;GRE;GPA; school I� �

Pr�recommendations;GRE;GPA; school j I�

The application information may be useless for making predictions, but a density model must

painstakingly describe all the correlations among a student's recommendations, GRE scores,

GPA, and undergraduate school. All the elaborate structure it ®nds will simply disappear when

making predictions.

Mathematical Preliminaries 30

The parameterized form of the conditional distribution Pr�y j xM�I� is almost identical

to the joint distribution in Equation 2. The kernel that gives the distribution its shape is the

same, but the partition function now depends on the conditioning information x:

Pr�y j xM�I��
1

Z�x; ��
k�y j x��

Z�x; ���
Z
k�y j x��dy

�7�

The function k�y j x�� is identical to k�z j ��. We write it differently, with z separated into

x and y, simply as a notational convenience to indicate that some of the variables are known.

Equation 7 is more general than Equation 2, since it reduces to it when we let y contain all the

features and x none of them. Equation 7 expresses how to seamlessly shift observations from

one side of the conditioning bar to the other.

In the admissions data, the sum needed to compute Z�x; �� is taken over the different

lengths of time a student might take to graduate, conditioned on the known data x in his

application and the model parameters �. In the previous case where we modeled each row

using point mass distributions for the discrete components and a multivariate normal for the

continuous ones, all the discrete components vanish, since they are independent of years to

graduate. The conditional probability of years to graduate given all the admissions information

is,

Pr�years j recommendations;GRE;GPA; school;papers M�I��

N�years j GRE;GPA;m;Ö�

The kernel of the multivariate normal is computed using the same mean and covariance matrix

as before, but now it is treated as a function of only one variable, years, rather than of the

three variables years, GRE, and GPA. The normalizing factor changes to re¯ect the GRE and

GPA scores. The model used in this example is obviously too weak for serious data analysis,

since it fails to account for correlations between the discrete observations and time to graduate,

but it forms the building block for the mixture and product models that arise in models with

hidden features.

Mathematical Preliminaries 31

The conditional likelihood of a database table is,

Pr�D jM�I��
Y

i�1:::N

1

Z�xi; ��
k�yi j xi�� �8�

Comparing to Equation 4, which gave the analogous formula for the joint likelihood, in this

case the partition function Z�x; �� does not factor out of the product, because it is different

for each row of the database. Nevertheless, Equation 8 may be much easier to evaluate than

Equation 4, since Z�x; �� integrates over fewer dimensions than Z���. In the most common

case where y is only a single feature, Z�x; �� is a one dimensional sum or integral, which in the

worst case we can numerically evaluate in time proportional to that needed for k�y j x��. This

speedup over density estimation, where the time complexity of Z��� can grow exponentially

in the number of features, is one of the primary lures of conditional estimation.

As a caveat, the exposition has been a little too slick in moving from the joint likelihood

function to the conditional one. As Jaynes points out, conditioning on continuous quantities

like GRE and GPA is really a limit operation, and in general the kernel function may change

depending on how the limit is approached [28]. However, the models in this dissertation are

all members of the well behaved exponential family, and the limiting processes are the natural

ones that lead to Equation 7. Interested readers are encouraged to read Jaynes' entertaining

discussion on paradoxes in probability theory.

32

4

Mixture Models

I. AutoClass

The goal of this dissertation is to improve AutoClass, a Bayesian database analysis system de-

veloped over the last six years at NASA's Ames Research Center [9, 10, 19]. AutoClass traces

its ancestry to the long history of ®nite mixture distributions in statistics [53] and to an ear-

lier program, SNOB, developed by Wallace in the early 1970's [3]. It is unsupervised, working

without any prediction or validation tasks in mind. Its goal is to ®nd a good model of all the

effects in a database, thereby providing insight into large, poorly understood domains. It has

been successfully applied to many problems, including the IRAS astronomical data [9], protein

amino acid sequences [23], and raw English text[51].

AutoClass operates within the density estimation framework of Chapter 3, treating each

row in the database as an independent sample from a ®xed distribution. Its goal is to recon-

struct that distribution. Conceptually, AutoClass partitions the rows into K disjoint classes,

33

Mixture Models 34

models each class independently of the others, and then puts the classes together in a mixture

model that combines them all.

The iris database from Chapter 1 provides a good illustration. The model that AutoClass

®nds splits the data of Figure 2-1 into two classes like this:

Sepal Length Petal Length Cluster

5.1 1.4 Bottom

5.4 1.7 Bottom

7.7 6.9 Top

6.7 4.7 Top

4.8 1.6 Bottom

� � � � � � � � �

Each class is described using a bivariate normal distribution over petal length and sepal length.

Figure 1 plots the ®nal model using ellipses to indicate each class. Each ellipse is two standard

deviations in radius and centered at the mean of the class distribution. The numbers indicate

a class's weight in the mixture. The numerical parameters are,

Classes

#1 #2

0.33 0.67

sepal length 5:01� 0:36 6:26� 0:66

petal length 1:46� 0:17 4:91� 0:82

� 0.28 0.83

Conceptually, AutoClass ®nds this model by doing continuous function optimization over pa-

rameterized mixtures of two bivariate normals:

Pr�z jM�I�� w1N�z j m1Ö1��w2N�z j m2Ö2�

AutoClass uses the EM optimization algorithm [11, 45], but any good optimization algorithm

will work, and it is easy to visualize the dynamics of a general gradient search. Changing m

causes an ellipse to move while keeping its shape and orientation; changing Ö causes it to

Mixture Models 35

4 5 6 7 8

Sepal Length

0

1

2

3

4

5

6

7

8

P
e
ta
l
L
e
n
g
th

0.67

0.33

Figure 1. Model of the Iris Data

stretch or shrink or rotate; changing w gives one class more weight, and the other less. Finding

the optimal model amounts to adjusting the ellipses until they ®t the data well. The ®nal

distribution is not quite the maximum likelihood solution, since AutoClass incorporates priors

that in¯uence the values slightly.

AutoClass works much the same way in the day camp database, where it classi®es the days

according to weather:

Swimming Whif¯e Coloring Singing Painting Weather

� � � � � sunshine

� � � � � rain

� � � � � sunshine

� � � � � sunshine

� � � � � rain

� � � � � rain

� � � � � � � � � � � � � � � � � �

Mixture Models 36

0

0.2

0.4

0.6

0.8

1

swimming whiffle coloring singing painting

P
ro
b
a
b
il
it
y

sunshine

rain

Figure 2. Model of the Day Camp Data

Its model uses a Bernoulli distribution to describe the probability of each activity given rain or

sun. Figure 2 plots the ®nal model with a bar graph showing the probability of each activity in

the two kinds of weather. The probability values are,

Classes

sun rain

0.62 0.38

swimming 0.87 0.11

whif¯e ball 0.66 0.07

coloring 0.34 0.78

singing 0.29 0.42

painting 0.23 0.77

Notice that under the hypothesis of this model, once the weather is known the probability of

any activity happening is independent of whether or not any other occurs. A search for the

optimal model proceeds much as it did for the iris data. In this case, the search algorithm

adjusts the heights of the bars in Figure 2 and the weight of each class until it gets a good ®t.

Mixture Models 37

The parameterized function it is trying to optimize is,

Pr�z jM�I�� w1f�z j p1��w2f�z j p2�

f �z j p��
Y
i

vi vi �

8<
:
pi if zi ��

1� pi if zi ��

II. General Mixture Models

In the general case, AutoClass follows the MAP algorithm detailed in Chapter 1, searching the

space of mixture models to ®nd the optimal number of classes, the optimal description of

each class, and the optimal frequency with which each class appears. The general likelihood

function for its mixture models is,

Pr�z jw�KI��
X

i�1:::K

wi f�z j �i� �1�

where the parameters satisfy the constraints,

X
wi � 1Z
f�z j �i� dz � 1

The function f , called the class description function, controls what each class can look like.

The next section goes through the range of possibilities that AutoClass allows. Each term

in Equation 1 corresponds to the probability of a class, and the conditional probability of

observing different values of z given that class:

Pr�class � i j w�KI�� wi

Pr�z j class � i;w�KI�� f�z j �i�

Equation 1 is just the marginal probability of z summed over all the classes.

An important point about the way AutoClass works is that it never categorically assigns

objects to classes; Equation 1 computes probabilities taking all the classes into account. The

Mixture Models 38

®rst day of the day camp data, for example, is clearly sunny, whereas the third day might be

either sunny or rainy. Using the ®nal model and Bayes' theorem we can compute exact numbers:

Pr�3rd day j sunMI� � �0:87��0:66��1 � 0:34��1� 0:29��1� 0:23�� 0:0225

Pr�3rd day j rain MI� � �0:11��0:07��1 � 0:78��1� 0:42��1� 0:77�� 0:0077

Odds�sun� � 0:62 � 0:0225

0:38 � 0:0077
� 4:77

Pr�sun j 3rd day MI� � 4:77

1� 4:77
� 0:83

We can draw the augmented day camp table to explicitly show the probability of each kind of

weather:

Swimming Whif¯e Coloring Singing Painting Pr�sun� Pr�rain�

� � � � � 1.00 0.00

� � � � � 0.01 0.99

� � � � � 0.83 0.17

� � � � � 1.00 0.00

� � � � � 0.02 0.98

� � � � � 0.01 0.99

� �

The extension to non-binary hidden features is obvious. The examples in this dissertation all

show only the most probable class assignments, rather than the individual class probabilities.

For problems like the iris data where the classes are well separated, the two displays are roughly

equivalent, but writing out the class probabilities always exposes the entries for which no single

class is clearly indicated.

The K-means clustering algorithm [12, 53] is closely related to AutoClass. It differs in

that it uses hard classi®cations where every object is assigned to its most probable class. This

approach works ®ne for problems like the iris data, but leads to known biases when the classes

are not well separated. The trouble is that K-means optimizes the wrong quantity. It ®nds a

peak in the joint likelihood of the model parameters and hidden class feature, instead of the

desired peak in the posterior distribution of the model parameters alone.

Mixture Models 39

III. Class Description Functions

AutoClass lets the user choose many different possible class description functions, and the

selection has grown with each new version of the program. AutoClass II and III use the simplest

possible function, one that treats each observation independently from the others. Continuous,

real valued features are modeled using a normal distribution; discrete and categorical features

are modeled using a point mass distribution. Within a class, every feature is independent of

all the others.

Letting � denote all the parameters in the class description function, for the iris data

AutoClass II uses,

f�petal length; sepal length j ���

N�petal length j �1�1��

N�sepal length j �2�2�

This function differs from the one in Figure 1, since it does not allow a correlation between

petal length and sepal length within a class. Figure 3 shows the optimal mixture model using

this f . The means and variances of the two classes are identical to those in Figure 1, but the

correlation within each class is zero. The contrast between Figures 1 and 3 emphasizes the

importance of choosing a good f . With equal prior probabilities, the model in Figure 1 is 1026

times more probable than the model in Figure 3. The odds ratio more than doubles with every

new data point.

A more complete example including categorical features is the United Nations data from

Chapter 1:

f�height;weight; eyes;hair; skin j ���

N�height j �1; �1��

N�weight j �2; �2��

M�eyes j p1��

M�hair j p2��

M�skin j p3�

Mixture Models 40

4 5 6 7 8

Sepal Length

0

1

2

3

4

5

6

7

8

P
e
ta
l
L
e
n
g
th

0.67

0.33

Figure 3. Model of the Iris Data with no Correlations

Although features are all independent within a single class, they are likely to be correlated in

the overall mixture. In the model of Figure 3, if we know that a ¯ower belongs to the bottom

class, then learning its petal length tells us nothing about its sepal length. But if we have no

idea which class a ¯ower is in, then any estimate of its sepal length depends very strongly on

its petal length.

AutoClass IV extends the model space of AutoClass II and III to a multivariate normal

distribution over continuous components. We have already seen this model for the iris data.

Chapter 2 presented another example with the student data:

f�recommendations;GRE;GPA; years; school j �I��

M�recommendations j p1��

M�school j p2��

N�GRE;GPA; years j m;Ö�

Mixture Models 41

The user has the option of breaking the continuous features into disjoint sets, creating a block

diagonal covariance structure in which the different sets are independent. In the limiting case

where all the continuous features are treated separately, this model space reduces to the one in

AutoClass II and III. AutoClass IV incorporates a number of additional possibilities for the class

description function. For instance, it provides a way to specify bound constraints on continuous

variables by modeling them with a truncated normal or an exponential distribution, and it lets

the user use a Poisson distribution to treat discrete data distinctly from categorical.

All the versions of AutoClass require the user to choose a class description function by

hand, but in principle the system could easily conduct an automated search across all the

possibilities.

The results of this dissertation apply using any f that is simple to compute and normalize,

like those presented here. Functions in the exponential family are particularly advantageous,

since the presence of suf®cient statistics lets one use the fast EM optimization algorithm em-

ployed by AutoClass. Where there is signi®cant domain expertise, one should choose an f

that meshes with the domain knowledge. Figure 4 shows a hypothetical database listing the

recovery locations of meteorite fragments. For this database, one would choose a ring shaped

class description function:

f�x;y j x0; y0; �; ��/ N�

q
�x � x0�2��y � y0�2 j �;��

For poorly understood data, one should use a general f like those in AutoClass. MultiClass,

which implements the ideas in this dissertation, currently uses point mass, normal, and multi-

variate normal distributions. Its design lets one easily extend the model space by adding new

ones.

IV. Belief Nets

Bayesian belief nets are a good language for understanding AutoClass, and for describing hid-

den feature models in general. A complete account of belief nets can be found in many places,

Mixture Models 42

Figure 4. The Meteorite Database

most notably Pearl's book [47]. For the reader that needs a refresher, here is a simple directed

belief net over the propositional observations A±E:

A

 C

 B

 ED

The graph structure encodes independence relations that let one express a joint probability

distribution over the ®ve propositions compactly:

Pr�ABCDE�� Pr�A� Pr�B j A� Pr�C j A� Pr�D j BC� Pr�E j D�

This factorization requires only 22 parameters to characterize the joint probability, rather than

the 25 � 32 that would be needed without any independence assumptions. The savings grow

Mixture Models 43

Wet Grass

RainingSprinkler

On

Wet

Sidewalk

Figure 5. Wet Grass

exponentially as the number of variables increases.

A great attraction of belief nets is that the arcs in the graph often have a natural inter-

pretation as causal in¯uences. This property makes them easy for people to write down and

understand. Figure 5 shows a popular example involving wet grass and lawn sprinklers, while

Figure 6 illustrates a small fragment of a real belief net used to diagnose gas turbine trouble [20].

Although the engine domain contains an impressive number of variables, the independence re-

lationships let one express the joint probability of all of them using relatively few numbers.

AutoClass implements the simple belief net in the left half of Figure 7. The single condi-

tional arc corresponds to the joint probability factorization,

Pr�z class j I�� Pr�z j class I� Pr�class j I�

Summing over the unknown class variable generates the mixture models used in AutoClass:

Pr�z j I��
X

Pr�z j class � i; I� Pr�class � i j I�

This belief net can be further re®ned if the class description function includes additional in-

dependence assumptions. In AutoClass, independence within each class results in what Heck-

erman calls an ªidiot Bayesº model, which is shown in the right half of Figure 7 for the United

Nations Data.

Mixture Models 44

SV Fault

N1 Compressor

Blades Fail

Surge

Valve

N1 Turbine Blade

Clearance

Gas Path

Leak

EGT & Trends

Turbine

Shutdown

Low

Compressor

Problem

Reverse Flow

Reverse Flow

Reading

Duct

Pressure

Bleed

Valve
N1 Compressor

Blades Bent

Figure 6. Gas Turbine Diagnosis

class

height

weight

hair
skin

eyes

class

z

Figure 7. The AutoClass Belief Nets

Mixture Models 45

The obvious difference in complexity between the expert system in Figure 6 and the be-

lief nets in Figure 7 lets one appreciate why AutoClass might not capture all the systematic

effects in a database. Nevertheless, ®elded expert systems, like the medical diagnosis system

PathFinder [20], have demonstrated success using models close to the idiot Bayes one. The

complexity of Figure 6 should leave one skeptical that AutoClass will ®nd all the effects in a

database, but there is no doubt that whatever structure it does ®nd is very real.

Belief nets like those in Figure 7 have a much wider scope than the way that AutoClass

uses them. A naive Bayesian classi®er, for example, is nothing more than an idiot Bayes model

applied to data where the class variable is known rather than hidden [36, 13].

V. Prior Probabilities

Priors are important to avoid over®tting and ensure that one arrives at sensible, conserva-

tive answers when data is scarce. Bayesian philosophy emphasizes that no prior is universally

correct, but the mixture prior developed here bene®ts from a sound rationale and excellent em-

pirical results. It breaks up the complete prior for a mixture model, Pr�� j I�, into independent

parts, one for each set of class parameters �i, and one for the class weights w:

Pr�� j I�� Pr�w j I�
Y

i�1:::K

Pr��i j I�

Since the order of the classes is interchangeable, all the Pr��i j I� are given by a single function

Pr�� j I�. This function quanti®es what one expects a class to look like before seeing any

observations that fall into it.

The insight behind Pr�� j I� is that when a class contains little data, it most plausibly

resembles the database as a whole. Figure 8 illustrates this effect using the GRE scores from

the student database. The observed mean and standard deviation for all students is 680� 50,

and these values act as a magnet tugging on the estimated distribution for any subset, like

those attending a particular school. The top panel shows the Harvard students, who have an

empirical mean GRE of 748; the middle panel shows Berkeley, at 609; the bottom panel shows

the lone student from Swarthmore, at 800. In all three cases, the estimated distribution of GRE

Mixture Models 46

400 500 600 700 800

5

10

15

20

25

30

35

400 500 600 700 800

5

10

15

20

25

30

35

400 500 600 700 800

5

10

15

20

25

30

35

GRE Score

N
u
m
b
e
r
o
f
S
tu
d
e
n
ts
 i
n
 D
a
ta
a
n
d
 E
s
ti
m
a
te
d

R
e
la
ti
v
e
 F
re
q
u
e
n
c
ie
s

723

748

627

609

682

Figure 8. Prior In¯uence on Estimated GRE Scores

Mixture Models 47

scores is shifted towards 680 � 50, the distribution one expects before seeing any students

from a school. The estimate for Swarthmore has hardly budged despite the magni®cent score

of 800, because a single student is far too few to have a serious impact on prior expectations.

The net effect of this prior is to avoid sharp spikes in the ®nal joint density that are supported

by only one or two observations.

The categorical case is no different. If we know that children go swimming on 80% of

the days at the day camp, then our prior should pull classes towards that value until there is

enough data to justify a different conclusion. Quinlan has noted the importance of a prior like

this for decision trees, and he suggests that the leaf predictor nodes should relax towards the

base prediction rate in the data, rather than the 50-50 guess that is common.

One achieves the effect of these examples by using an informative, data driven prior that

takes the original database, reduces it to an effective size of P entries, and feeds it as an

additional input to each class estimate:

Pr�� j PI�/ Pr�D j �I�
P
N

�

0
@ Y
i�1:::N

f�zi j ��

1
A

P
N �2�

P is a hyperparameter that controls the weight of the prior. The normalizing constant is of no

importance in MAP induction, since it is the same for all � and cancels out in the search for the

optimal model. When the amount of data in a class is small, so that the prior dominates the

likelihood, Equation 2 forces � towards noncommittal values that ®t the database as a whole.

In cases where the class description function is in the exponential family, the presence of

suf®cient statistics lets one eliminate the product and obtain a simple, conjugate prior. With

the student GRE scores, one ends up with the following prior over � and � :

Pr��; � j PI�/
�

1

�
e
�

1

2�2
����680�2�502�

�P

This prior corresponds to the probability of observing P additional GRE scores with the same

mean and variance, 680�50, as the original N. In practice, one would normalize the GRE scores

Mixture Models 48

to mean zero and variance one before doing any analysis leaving an even simpler equation:

Pr��; � j PI�/
�

1

�
e
�

1

2�2
��

2
�1�

�P

In the discrete day camp data where children go swimming on 80% of the days, the parameter

q that gives the probability of going swimming in a subclass of days has the prior,

Pr�q j PI�/
�
q0:8�1� q�0:2

�P

which corresponds to the probability of observing P additional days in which the children go

swimming 80% of the time.

It is straightforward to derive a conjugate prior for any probability distribution in the

exponential family. The formulas for normal, multivariate normal, and point mass distributions

are given here for completeness. For a normal distribution with an empirical mean x and

variance s2:

Pr��� j xs2 PI�/
�

1

�
e
�

1

2�2
����x�2�s2�

�P

x � 1

N

X
xi

s2 � 1

N

X�
xi � x2

�
�3�

For a multivariate normal distribution with an empirical mean x and covariance matrix S2:

Pr�mÖ j xS2 PI�/
0
@ 1

jÖj1=2 e
�

P
1

2��1
ij

�
��i�xi���j�xj��s

2

ij

�1
A
P

xi �
1

N

X
xi

s2
ij
� 1

N

X
�xi � xi��xj � xj�

�4�

For a point mass distribution with an empirical frequency vector f:

Pr�p j f PI�/
�Y

p
fi

i

�P
fi �

1

N

X
j

��xj � i�
�5�

Mixture Models 49

In all these priors, one must either give P a de®nite numerical value, or else step back and

introduce a new prior, Pr�P j I�, to re¯ect a range of possibilities. Setting P to a small value,

around 3 or 4, is reasonable and gives a broad, weakly informative prior. AutoClass uses the

conjugate priors shown here, although the AutoClass papers do not tie the parameters to the

data as in Equation 2 and give no rationale for how to set them. The complete prior Pr�� j PI�

is the product of one instance of Equation 3, 4, or 5 for each of the independent components

in the class description function.

Turning to the class weights, it is natural to treat the hidden class feature just like any

other categorical feature and use the Dirichlet prior of Equation 5 for the prior Pr�w j I�. In

this case we are ignorant of how often each class might appear, so we use the symmetric prior,

Pr�w j kI�/
Y

i�1:::n

wk�1

i

The constant k is another hyperparameter and can take on any positive value. Figure 9 plots

the symmetric Dirichlet distribution for three different values of k when n � 2. The plot

shows there are three distinct shapes: when k < 1 the distribution is a horseshoe favoring the

extremes; when k � 1 the distribution is uniform; when k > 1 the distribution is a bell favoring

the middle. The same pattern holds in higher dimensions:

Dirichlet shape �

8>>><
>>>:

horseshoe; k < 1

uniform; k � 1

bell; k > 1

Uninformative priors can be logically deduced in many ways, including group invariance [25],

marginalization [26], and arguments that seek to maximize the information content of the

data [2]. In this instance one can use a marginalization argument, which this dissertation omits,

to conclude that k should depend on a deeper hyperparameter � according to the relation

nk � �. The overall prior is therefore,

Pr�w j �I��
Y

i�1:::n

w
��=n��1

i

Mixture Models 50

0.2 0.4 0.6 0.8 1

0.5

1

1.5

2

2.5

3

k = 0.5

k = 1.5

k = 1.0

P
r(
x
)

Figure 9. Dirichlet Shapes

The idea is for� to remain ®xed as we vary the number of classes, so that we gradually shift from

a horseshoe prior through a uniform prior to a bell prior as the number of classes increases. We

can naturally interpret � as the number of classes known to be in the data. If we set � � 4, for

example, and look for a two class model so that n � 2, then the prior has a bell shape, disallows

classes with zero weight, and forces us towards models that use both classes rather that just

one. If we look for a six class model the situation is reversed. Now the prior has a horseshoe

shape and pushes us towards models in which some classes disappear. Only when we look for

a four class model, so that n � � � 4, are the weights free to follow the likelihood function.

AutoClass makes the logical choice � � 1, so that even two classes are not guaranteed apriori.

It may seem that a horseshoe prior would always eliminate all but one class by forcing

weights to zero, but it is not so. Figure 10 shows a possible marginal posterior Pr�w j �DI�

for a two class model, where n � 2 and � � 1. Although the poles have in®nite density,

all the volume is concentrated in the middle near w � 0:5. The bizarre shape of Figure 10

unfortunately portends pragmatic dif®culties for gradient based optimization algorithms that

look for peaks in the posterior density. Chapter 7 contains more details.

Note that we set out to ®nd an unconditional prior Pr�� j I�, and instead ended up with

Pr�� j �PI�, which depends on two hyperparameters. At present, there does not seem to be

either a good way or a compelling reason to get rid of them. The combined effect of the class

Mixture Models 51

0.2 0.4 0.6 0.8 1

1

2

3

4

5

P
r(
x
)

Figure 10. Posterior Distribution for Class Weights

prior, Pr�� j PI�, and the weight prior, Pr�w j �I�, is to favor models with fewer classes and

to eliminate unjusti®ed sharp spikes in the ®nal density estimate. This bias is the Bayesian

solution to the well known over®tting problem of Ockham's razor.

VI. Noise and Reliability

Using a mixture model, one can extend any joint density to account explicitly for noise and

errors. If M is a density model, then a model M0 allowing for noise is,

Pr�z jM0I�� �1� �� Pr�z jMI�� � Pr�z j SI�

S models the density of noisy observations. The constant �, the noise probability, controls how

often they occur. If the original joint density is itself a mixture model, as in AutoClass, then

one can envision the complete model, including noise, as either a hierarchical mixture, or else

as a ¯at mixture in which S is just one additional class.

The noise class S can potentially encode detailed knowledge about the possible sources of

noise and errors. A common mistake when entering data, for example, is to exchange adjacent

Mixture Models 52

features, as in the prescription database from Chapter 2. M0 can describe such occurrences by

letting S be identical to the normal joint density modelM, but with age and weight interchanged.

The extension to other features is obvious, and in general S can be a mixture model that gives a

case by case account of how questionable observations arise. Such a detailed noise model lets

a system not only recognize discrepant entries, but also automatically diagnose and correct

them.

In practice, a simple, uniform background noise model is suf®cient to recognize unreliable

observations and avoid overly sharp, unjusti®ed predictions. It is easy to construct such an S.

If we normalize the student data, for example, we can use,

Pr�z j SI��

M�recommendations j p1 � uniform��

M�school j p2 � uniform��

N�GRE;GPA; years j m � 0;Ö � �I�

This density function is ¯at and assigns no pattern to the noise. The constant � controls how

spread out the continuous observations are. The generalization to an arbitrary, normalized

database is clear: we use a uniform point mass distribution for each discrete and categorical

feature, and a very wide normal distribution for each continuous one.

Figure 11 shows how such a noise class claims points in the valleys of a univariate mixture

of two normal densities. Points in the shaded region fall into the noise class. The odds that

any point z will be considered noise can be computed from Bayes' theorem:

Pr�S j zI�
Pr�M j zI� �

� Pr�z j SI�
�1� �� Pr�z jMI�

Pr�z j SI� is essentially constant, so whenever Pr�z j MI� is suf®ciently small, as shown in the

Figure, the noise class provides the best description and dominates predictions.

In the prescription database, the noise class explains the outlier in the lower right corner

of Figure 12, with the result that the dosage prediction for this patient is a very broad ªI don't

know.º The left half of Figure 13 plots how predicted dosage varies as a function of weight; the

right half plots it as a function of age for a patient whose weight is ®xed at 150 pounds. The

Mixture Models 53

Noise Threshold

Figure 11. Noise Claims the Valleys

Noise Class

0 25 50 75 100 125 150 175

Age

0

100

200

300

400

W
e
ig
h
t

Figure 12. Noise Class in the Prescription Database

Mixture Models 54

Weight = 150 lbs.

0 100 200 300 400 500

Weight

-250

0

250

500

750

1000

1250

D
o
s
a
g
e

-25 0 25 50 75 100 125

Age

-250

0

250

500

750

1000

1250

D
o
s
a
g
e

Figure 13. Predicted Drug Dosage

Outlier

Figure 14. A Non-Trivial Outlier

Mixture Models 55

solid line is the mean prediction, and the dashed lines give the two standard deviation span.

The model makes sharp dosage predictions whenever weight and age are reasonable, but very

noncommittal predictions otherwise.

The right half of Figure 13 is interesting, since it reveals how the model refuses to make

sharp predictions even when it is only an irrelevant feature, in this case age, that is doubtful.

One can debate whether this behavior is correct, but it errs on the side of caution and lets one

spot all discrepancies in the data. The conditional models of Chapter 6 go to the other extreme:

irrelevant features are always ignored, no matter how crazy their values may seem.

It is important to realize that a diffuse noise class does much more than just check each

feature individually for problems. In Figure 14, for example, both the x and y coordinates

of the outlier point are reasonable alone, but the combination is highly suspect. Proper reli-

ability checking requires us to look at the complete joint density, and not just at marginal or

conditional projections.

56

5

Multiple Hidden Features

I. Warning

This chapter develops density estimation models that use multiple hidden features, easily ca-

pable of describing all the example databases to this point. The reader should be warned,

however, that they are little more than an intellectual diversion. They have not been imple-

mented. Computational feasibility limits their utility, though there is always hope that future

generations will unravel the mathematical knots that remain. The most important section is

the last, which describes a strong correspondence between hidden features and logical rules,

and which demonstrates that a multiple hidden feature model naturally generalizes a set of

logical rules in DNF form.

II. Limitations of AutoClass

57

Multiple Hidden Features 58

AutoClass breaks on problems like the United Nations database, where it must guess which of

several interesting classi®cations to use. The problem is that a mixture model makes too strong

an assumption about the world when it assumes that all patterns in the data can be traced to

a single root cause. An unsupervised mixture model is ®ne for exploratory data analysis, but

inappropriate when the ®nal goal is an accurate joint density that allows targeted predictions.

With enough data, AutoClass will start combining multiple classi®cations into a single

hidden feature that represents their crossproduct. In the United Nations data, for example,

AutoClass will ®nd classes like African men, Irish women, and so forth. Eventually, with enough

data, it can include all the classi®cations that are useful. Combining classi®cations like this

requires exponentially more data for each new one that is added. Here is an abstract example

that strips the problem to its essentials:

x1 y1 x2 y2 � � � xn yn

0 0 1 1 1 1

1 1 0 0 � � � 1 1

1 1 1 1 0 0

0 0 0 0 0 0

1 1 0 0 � � � 0 0

1 1 0 0 1 1

� � � � � � � � � � � � � � � � � �

This database is constructed so that the columns xi and yi are identical, but all other pairs of

columns are independent. One can imagine that the individual bits are generated by coin ¯ips.

The actual proportion of ones and zeros is unimportant.

With a class description function like the ones used in AutoClass, a two class mixture model

can capture the constraint between one pair of columns:

x1 y1 Class

0 0 1

1 1 2

1 1 2

0 0 1

1 1 2

1 1 2

� � � � � � � � �

Multiple Hidden Features 59

The classes are equally weighted and have the parameters,

Classes

#1 #2

0.50 0.50

x1 0.00 1.00

y1 0.00 1.00

To capture the same structure with two pairs of columns requires a four class model:

x1 y1 x2 y2 Class

0 0 1 1 2

1 1 0 0 3

1 1 1 1 4

0 0 0 0 1

1 1 0 0 3

1 1 0 0 3

� � � � � � � � � � � � � � �

The classes are again equiprobable and have the parameters,

Classes

#1 #2 #3 #4

0.25 0.25 0.25 0.25

x1 0.00 0.00 1.00 1.00

y1 0.00 0.00 1.00 1.00

x2 0.00 1.00 0.00 1.00

y2 0.00 1.00 0.00 1.00

The pattern is clear. With 2n columns the single hidden feature must allow 2n possibilities.

Justifying such a model requires enough data so that each class appears in the data, at least

O�2n� rows. One actually needs even more. It is a standard combinatorics problem to show

that if all classes are equiprobable, one needsO�n2n� entries before one can expect to see them

all. A simple computer program con®rms that when n � 10, one needs about 7700 data points

before all 1024 classes appear.

Multiple Hidden Features 60

A far better model uses n hidden features. With four columns, for example,

x1 y1 x2 y2 Class1 Class2

0 0 1 1 1 2

1 1 0 0 2 1

1 1 1 1 2 2

0 0 0 0 1 1

1 1 0 0 2 1

1 1 0 0 2 1

� � � � � � � � � � � � � � � � � �

With this model the pattern is perfectly clear after only six rows. The model will have over-

whelmingly probability after ®fteen or sixteenÐirrespective of the number of columns. The

important point is that each classi®cation is justi®ed independently of the others, so the expo-

nential blowup never materializes. One can readily construct similar examples with continuous

data.

III. Improving the Class Description Function

The goal of this dissertation is to correct this situation so that one can use a Bayesian system

like AutoClass for supervised learning tasks. We wish to stay within the framework of density

estimation, since it provides intuitive semantics, the ability to make reliability estimates, and

a coherent way to deal with missing data. There are two approaches this chapter considers:

1) Improving the class description function.

2) Using a more powerful, multiple hidden feature model space that can capture

all the systematic effects in the data.

With a suf®ciently powerful class description function one can dispense with hidden features

altogether. A class description function that allows direct correlations among discrete features,

for example, can describe the identical columns database using a single class. Here is such a

class description function:

f�z j��� 1

Z���
e�
P

wijzizj�

P
wizi �1�

Multiple Hidden Features 61

This function ®ts the identical columns database when z2i � xi, z2i�1 � y , and the weights

depend on a large positive constant C,

wij �

8<
:
�2C; ifj � i� 1

0; ifj � i� 1
wi � �C

With these parameters, the exponent in Equation 1 receives a factor of �C every time xi � yi; it

is identically zero only if equality holds for all thexi. The above parameter values therefore lead

to a uniform distribution over the possible database rows in which adjacent pairs of columns

are identical.

Equation 1 is how a Hop®eld net models data [22]. It is also how a Boltzmann machine

works [21], with the additional complication that some of the zi can be hidden. Unfortunately,

there is a reason why AutoClass uses the class description functions it does: they are already

about as complicated as they can be while remaining computationally feasible. The dif®culty is

that nobody knows how to calculate the partition function Z���, which is needed to compare

different possible values for the parameters wij and wi. The Boltzmann machine resorts to nu-

meric integration by stochastic simulation to estimate Z���, although Peterson has developed

a much improved algorithm that uses a different technique, the mean ®eld approximation of

statistical mechanics [48].

Equation 1 is easy to normalize when all the zi are continuous, in which case f�zj�� is

just an unusual way to parameterize a multivariate normal distribution. In this case continuous

integration is considerably easier than discrete summation. In view of the dif®culty evaluating

Z��� in the discrete case, we shift direction and abandon the idea of using more complicated

class description functions than those in AutoClass.

IV. Multiple Hidden Features

The natural way to overcome the limitations of AutoClass is to use a model space that permits

multiple hidden features, each of which gives a different, useful way of classifying the data.

Such models readily describe all the example databases to this point. In the United Nations

Multiple Hidden Features 62

database, for example, a multiple hidden feature model could include two hidden features, one

for sex and one for ethnicity, rather than being forced to choose one or the other.

The belief net in Figure 1 is one way to turn the idea of multiple hidden features into a

de®nite, mathematical expression for the joint likelihood Pr�z j MI�. It is the obvious extension

to the belief nets from the previous chapter, where there are now multiple hidden causes that

impact our expectation of the observable features z. The belief net corresponds to the joint

probability factorization,

Pr�z; class1 : : : classn j I�� Pr�z j class1 : : : classn I�
Y

Pr�classi j I�

Unfortunately, this factorization leaves the problematic term Pr�z j class1 : : : classn I�. In the

case of a single hidden feature we introduced a class description function parameterized by

the different values the hidden feature could adopt:

Pr�z j class � i;MI�� f�z j �i�

In the case of multiple hidden features we might try to do the same:

Pr�z j class1 � h1; : : : ; classn � hn;MI�� f�z j �h�

where h � h1 � � � � � hn indexes all the possible combinations of the classes. We see at

once, though, that this equation is no different than using a single hidden feature that is a

crossproduct of all the distinct ones, so clearly we want something different. One possibility

is a noisy-or model [47], which unfolds the belief net of Figure 1 into the more manageable

model of Figure 2 using auxiliary propositional variables. Ghahramani has proposed an additive

model for the case in which z consists of only continuous features [16], and Musick has written

his thesis about using a general purpose conditional estimation model, like a neural net, to

represent the troublesome probability [44].

This dissertation takes a different approach. It keeps the graph structure of Figure 1, but

drops the directionality of the arrows to give the undirected belief net of Figure 3, known as a

Multiple Hidden Features 63

z

¼ class
n-1

class
n

class
1

class
2

Figure 1. Multiple Cause Belief Net

z

¼ class
n

class
1

class
2

P
1

¼P
2

P
n

Figure 2. Noisy-Or Ladder Model

Multiple Hidden Features 64

z

¼ class
n-1

class
n

class
1

class
2

Figure 3. Multiple Cause Undirected Belief Net

Markov random ®eld. This model is a maximum entropy model that takes into account corre-

lations among the hidden features and the observables. Pearl's book gives a good introductory

description of undirected belief nets [47].

The directed and undirected graphs encode different independence relations. In the di-

rected belief net, the hidden classes are all marginally independent, but conditionally depen-

dent given z. This type of graph is typi®ed by the wet grass example of Chapter 4. The chance

of rain is independent of the chance the lawn sprinkler is on, but as soon as we see wet grass

the two possible causes become negatively correlated. In the undirected graph the situation

is reversed: the hidden classes may be marginally dependent, but they are conditionally inde-

pendent given z. This situation resembles the directed net of Figure 4, in which the arrows are

reversed from Figure 1. We cannot, however, use Figure 4 directly, since it corresponds to the

factorization,

Pr�z; class1 : : : classn j MI�� Pr�z j MI�
Y

Pr�classi j zMI�

This equation takes us in a circle. It requires us to specify the very quantity we hope to model,

Pr�z j MI�, before any calculation can take place. Martin works from this equation in his OLOC

system [40], but he only avoids circularity by abducting the most probable class assignments

Multiple Hidden Features 65

z

¼ class
n-1

class
n

class
1

class
2

Figure 4. Reversing the Arcs

for each z, rather than summing over all of them.

The joint probability distribution for an undirected belief net is given by a product of

individual factors, one for each maximal clique in the graph. In Figure 3 the maximal cliques

correspond to the arcs, so the density function is,

Pr�z; class1 : : : classn j MI��
1

Zg

Y
gi�z; classi� �2�

Zg is a normalizing constant that depends on the functions gi, which can in general be distinct.

In our case we have no reason to treat the hidden features non-uniformly, and also no reason

to treat different possible values of a hidden feature non-uniformly. We therefore make the

inspired choice,

gi�z; classi � j�� wij f�z j �ij�

The function f is our familiar class description function. Equation 2 now factors nicely to give

Multiple Hidden Features 66

the marginal probability of z:

Pr�z jMI� �
X
h

Pr�z; class1 � h1; : : : ; classn � hn jMI�

� 1

Z���

X
h

0
@Y

i

wihi f�z j �ihi�

1
A

� 1

Z���

Y
i

0
@X

j

wij f�z j �ij�

1
A �3�

Equation 3 is a product of individual AutoClass mixture models. There is one term in the

product for each hidden feature, and one term in each interior sum for every value a hidden

feature can adopt. The sums can be of different lengths, since each hidden feature can partition

the data into a different number of classes. Equation 3 collapses to a simple mixture when

there is only one hidden feature, and it is therefore a natural way to extend AutoClass to

simultaneously allow multiple, independent ways of classifying the data.

Comparing with our original attempt to use the directed belief net in Figure 1, Equation 3

gives the conditional probability,

Pr�z j class1 � h1; : : : ; classn � hn;MI��
1

Z��;h�

Y
wihi f�z j �ihi�

This expression is, loosely speaking, what one might expect from trying to combine the effects

of different, independent predictions, one for each separate classi®cation, by multiplying their

individual predictions together.

The multiple hidden feature model is exactly right for problems like the United Nations

data, where the ®nal model is a product of two mixtures, one for sex and one for ethnicity:

Pr�z j MI��
�
1=Z���

�
�
�
0:6f�z j �men��0:4f�z j�women�

�
�
�
0:2f�z j �African��� � �� 0:05f�z j �Irish�

�

The weights represent the proportion with which each class appears in the data. The sex

classes make strong predictions about height and weight, but are uniform over eye, hair, and

Multiple Hidden Features 67

skin color. The ethnicity classes are the opposite. When these two mixtures are multiplied

together, the peaks combine to predict that there will be African men, Irish women, and all the

other possible combinations. This example is far too primitive to illustrate the full expressive

power of multiple hidden feature models, since sex and ethnicity are marginally independent.

Equation 3 requires no such thing, and in general it will not happen.

V. Z���

Unfortunately, the only known way to evaluate the partition function Z��� exactly is to mul-

tiply out the product in Equation 3 at exponential cost. If we cannot evaluate the partition

function, we cannot normalize models to compare them and see which is best. The dif®culty

in computing the partition function was mentioned in Chapter 3. Z��� is a multidimensional

integral that has no convenient simpli®cation. We shall presently see a three line proof that it

is, in general, NP-hard to evaluate.

There are, of course, many practical problems that are NP-hard, and one dives in with the

best methods available. Multidimensional integration is of keen interest to many ®elds, and

there is currently a great deal of research directed towards ®nding better techniques. Physicists

have been attacking partition function problems for over a century, and they have developed

many ingenious methods, like the mean ®eld approximation mentioned earlier. Ghahramani

reports good results using the mean ®eld approximation in his directed graph system [16], so

there is a chance it applies to Equation 3. Finally, multiplying out the product in Equation 3 is

feasible if there are few enough terms in the resulting sum. If there are many, a form of beam

search that multiplies one factor at a time and discards all but the W most signi®cant classes

may give a practical approximation.

Freund and Haussler have explored a special case of Equation 3 they call the harmo-

nium [14]. This model arises when all inputs and hidden features are binary, in which case

it reduces to the Boltzmann machine shown in Figure 5. They have no silver bullet to evaluate

the partition function, but instead approximate it with the O�nk� algorithm that sums over the

states in which no more than k out of the n hidden features are active. They obtain promising

results in a handwritten digit recognition problem, where each hidden feature identi®es a line or

Multiple Hidden Features 68

 h
1 ¼ h

n-1
 h
n

 h
2

 z
2 ¼ z

m-1
 z

1
 z
m

Figure 5. Harmonium

stroke, as opposed to a complete digit. Saund has looked at similar letter recognition problem

using a different multiple cause model [50]. His model is less ®rmly grounded in probability

theory, but against that he obtains good results and has no partition function to evaluate.

VI. Logical Rules

This section shows how hidden feature models naturally extend logical rules. The end result

is a simple, mechanical translation from DNF rules to mixture models, and from sets of DNF

rules to multiple hidden feature models. The translation preserves truth and helps clarify

what hidden features are doing. Throughout this section, all propositional symbols should be

understood as predicates that apply to the objects in a database. The explicit dependence on

z is usually dropped to avoid cluttering the notation.

As a simple example, the thyroid data obeys the rule,

Pregnant �) Woman

If 75% of the people are women, and a third of them are pregnant, then the joint distribution

Multiple Hidden Features 69

of sex and pregnancy is,

man woman

pregnant 0.00 0.25

:pregnant 0.25 0.50

A mixture model that describes this distribution using two equiprobable classes is,

Classes

#1 #2

0.50 0.50

woman 0.50 1.00

pregnant 0.00 0.50

A natural parallel emerges when we compare the density function of this model to the logical

rule written as a disjunction,

Pr�z jMI�� 0:25�1� pregnant��0:25 woman

R () :Pregnant_Woman

The two disjuncts mirror the two classes. A woman that is not pregnant satis®es both halves

of the disjunction, just as she can be placed in either class of the mixture model.

In the day camp data, there may not be enough hours in the day for children to play whif¯e

ball, go swimming, and still have time to do any of the other activities. If not, then the data will

obey the logical rule,

Swimming^Whif¯e-Ball �) :Coloring ^ :Painting^:Singing

This rule expands into a DNF formula with three disjuncts. It maps onto the three class the

Multiple Hidden Features 70

mixture model,

Classes

#1 #2 #3

0.33 0.33 0.33

swimming 0.00 0.50 0.50

whif¯e ball 0.50 0.00 0.50

coloring 0.50 0.50 0.00

singing 0.50 0.50 0.00

painting 0.50 0.50 0.00

The model satis®es the logical constraint for any class weights. In fact, only the zero probabil-

ities are signi®cant, and all the others and can be freely set to any values between 0 and 1. The

correspondence with the logical rule is again most apparent when we write out the probability

density next to the expanded rule:

Pr�z j MI� � 1=31=24 �1� swimming�

� 1=31=24 �1� whif¯e ball�

� 1=31=22 �1� coloring��1� singing��1� painting�

R () :Swimming _:Whif¯e-Ball_ �:Coloring ^ :Painting^:Singing�

In general, one can convert any DNF formula into a mixture model by reinterpreting all the

logical elements as arithmetic elements.

Logical Rule 7�! Mixture Model

T 1

F 0

_ �
^ �
: 1� x

Each disjunct then becomes a class in which every proposition is either true, false, or unknown,

in which case it is equally likely to be either true or false. The mapping preserves the algebraic

Multiple Hidden Features 71

structure, so the zeros of each class in the mixture model coincide with the zeros of the disjunct

from which it arises. Each class assigns a uniform density over the states that satisfy the

disjunct. The coef®cients on the classes can be chosen arbitrarily to give a properly normalized

mixture. The two examples to this point use the coef®cients,

ci �
1

K

1

2n�mi

where K is the number of disjuncts in the logical rule, n is the number of feature columns

in the database, and mi is the number of propositions that appear in the ith disjunct. These

coef®cients give equiprobable classes.

Letting R be a DNF rule and MR the model that results from the above mapping, a point z

has probability zero if and only if it fails to satisfy any of the disjuncts in R:

Pr�z jMRI�� 0 () :R�z�

One can create a multiple hidden feature model for a set of rules Ñ by multiplying the models

that arise from each individual rule. The identical columns database satis®es the rules Ñ �

fXi () Yi g, so the corresponding multiple hidden feature model is,

Pr�z jMI�� 1

Z

Y�
xiyi � �1� xi��1�yi�

�

A zero probability in a multiple hidden feature model MÑ indicates that at least one of the

rules in Ñ is not satis®ed. If C represents the conjunction of all the rules in Ñ,

Pr�z jMÑI�� 0 () :C�z� �4�

The partition function ZÑ sums the unnormalized probabilities ofMÑ over all possible z. Equa-

tion 4 implies that C is satis®able if and only if this value is non-zero. ZÑ must therefore be

NP-hard to evaluate, since we could otherwise answer 3-SAT questions by converting logical

Multiple Hidden Features 72

formulae into multiple hidden feature models and calculating partition function values. Equa-

tion 4 also shows that MÑ preserves logical truth and is a consistent probabilistic extension of

Ñ. For any query Q,

Pr�Q j DMÑI�� 1 () D [Ñ î Q

MÑ assigns a probability between 0 and 1 if neither Q nor :Q follows from the ground facts

in D and the rules in Ñ. These probabilities are simple to interpret, but only the person writing

down the rules can decide whether they are meaningful. They exhibit some strange, at ®rst

counterintuitive properties. Rules are no longer idempotent, for example. The joint density of

the model for A _ B is,

A :A

B 0.50 0.25

:B 0.25 0.00

While the density for �A _ B�^�A _ B� is,

A :A

B 0.66 0.17

:B 0.17 0.00

So the probabilities preserve logical truth, but the exact numbers are sensitive to the syntactic

form of the rules.

The mapping in this section may be a good way to incorporate domain knowledge into

a probabilistic model. One can imagine a human expert writing down logical rules that are

approximately correct, and then having a modeling system use them as a starting point in its

search for the optimal model. The search will automatically adjust probabilities away from

zero for rules like ªbirds ¯yº that are not absolute. The result would be much like Towell's

KBANN system [54], but with the potential for considerably greater ¯exibility, since a multiple

hidden feature model can so naturally incorporate a complete set of DNF rules.

6

Supervised Mixture Models

I. MultiClass

This Chapter describes a new modeling system, MultiClass, that acts as a supervised version

of AutoClass. MultiClass circumvents the impracticalities of density estimation by performing

conditional estimation instead. In this way it focuses on ®nding the most useful classi®cation

for a desired prediction, rather than simply the strongest overall pattern in the data. MultiClass

and AutoClass use identical models, class description functions, priors, and noise terms. Only

the evaluation criterion used to compare models is different. Whereas AutoClass looks at the

joint probability of all the features, MultiClass only considers the conditional probability of

features one wants to predict:

Pr�y j xM�I��
1

Z�x; ��

X
i�1:::K

wi f�y j x�i�

Z�x; ���
X

i�1:::K

Z
wi f�y j x�i� dy

�1�

73

Supervised Mixture Models 74

The output y ordinarily consists of a single feature, but it can contain any number of them.

MultiClass reduces to AutoClass in the limiting case where it contains them all. Equation 1 im-

plicitly assumes the same joint density whether MultiClass is predicting continuous, discrete,

or categorical features. Regression problems and classi®cation problems are treated uniformly.

Only the normalizing function Z�x; �� changes to re¯ect the conditional probability one wants

to optimize. Notice that this function normalizes the entire mixture as a whole, rather than

each component individually. If it were to normalize each class individually, the condition-

ing information x would cancel out of the equations, and one would compute the marginal

probability Pr�y j M�I� instead of the conditional probability Pr�y j xM�I�.

MultiClass resembles the hierarchical mixture of experts model of Jordan and Jacobs [31,

30] and the earlier mixture of experts model on which it is based [24], but it is distinguished by

its Bayesian methodology and roots in density estimation. It is unique in its priors, noise class,

ability to handle missing data, and ability to deal with categorical, discrete, and continuous

features.

This chapter is the heart of the dissertation, though it builds on everything that has come

before. The ®rst part uses examples to show how MultiClass works. The second discusses how

the prior and noise class smooth out irregularities in the conditional likelihood function, which

is very ill behaved. The last part explains the rationale for MultiClass and the assumptions that

underlie conditional estimation.

II. Examples

When predicting sepal length from petal length in the iris data, Equation 1 reduces to a weighted

mixture of linear regressions. The left half of Figure 1 shows the optimal two class model, and

the right half does the same for the simpler case that ignores intraclass correlations between

the two measurements. The weight of each regression is determined by a ¯ower's petal length,

so the predicted sepal length follows a smooth transition from one class to the other as petal

length increases. The predicted distribution in the transition region is a bimodal mixture of

Supervised Mixture Models 75

1 2 3 4 5 6 7 8

Petal Length

4

5

6

7

8

S
e
p
a
l
L
e
n
g
th

1 2 3 4 5 6 7 8

Petal Length

4

5

6

7

8

S
e
p
a
l
L
e
n
g
th

Figure 1. Two Class Iris Regression

two gaussians. The numerical parameters of the model without correlations are,

Classes

#1 #2

0.44 0.56

sepal length 5:11� 0:40 6:41� 0:58

petal length 2:57� 0:86 5:59� 1:10

Like AutoClass, MultiClass ®nds this model by doing continuous function optimization over

parameterized mixtures of two uncorrelated bivariate normals. But instead of evaluating the

joint probability of both measurements, it only calculates the conditional probability of sepal

length given petal length:

Pr�y j xM�I�� w1N�y j xm1Ö1��w2N�y j xm2Ö2�

The normalizing function is easy to evaluate in the case where the class description function

is a product of independent distributions. It is also easy in the more general case that takes

Supervised Mixture Models 76

1 2 3 4 5 6 7 8

Petal Length

4

5

6

7

8

S
e
p
a
l
L
e
n
g
th

Figure 2. One Class Iris Regression

into account correlations among continuous features, since the conditional projection of a

multivariate normal distribution is itself a multivariate normal distribution.

Figure 2 demonstrates that a one class model ®ts the iris data well as long as correlations

are considered, and it helps emphasize how easy it is for a database to contain patterns that are

unimportant to the predictions one cares about. In this case, although the two visible clusters

affect the marginal distribution of both petal length and sepal length, they have only a minor

impact on the conditional probability of one given the other.

MultiClass ®nds the following two class model in the day camp data to predict whether

children will go swimming:

Classes

sun rain

0.61 0.39

swimming 0.88 0.12

whif¯e ball 0.67 0.08

coloring 0.33 0.79

singing 0.31 0.39

painting 0.22 0.76

Supervised Mixture Models 77

The day camp data is generated from a two class mixture, so it is not surprising that this model

is virtually indistinguishable from the one that AutoClass ®nds, presented in Chapter 4. If the

children paint and play whif¯e ball, but do not color or sing, then the probability that they will

also go swimming is,

Pr�day j sunMI� � �0:67��1� 0:33��1� 0:31��0:22�� 0:0681

Pr�day j rainMI� � �0:08��1� 0:79��1� 0:39��0:76�� 0:0078

Odds�sun� � 0:61 � 0:0681

0:39 � 0:0078
� 13:68

Pr�sun j dayMI� � 13:68

1� 13:68
� 0:93

Pr�swimming j dayMI� � �0:93��0:88���0:07��0:12�� 0:83

Each observation is as an independent test that divides its vote among the two classes. Whif¯e

ball is a strong test, because it has a very different probability in each class; singing is a weak

test, because its probability is almost the same in each class. Picturing each observation as an

independent test is a good way to understand how a supervised mixture model works. In the

general case of K classes, each test splits up its vote among them all.

AutoClass is designed for problems like the iris and day camp data, and the advantage of

MultiClass only materializes when there are multiple useful classi®cations, like in the United

Nations data or the thyroid data. Here is a hypothetical completion of the thyroid data that

lets one predict which patients suffer from hypothyroidism:

Sex Pregnant? Lab Test Hypothyroid?

M � 98:6 �
F � 30:1 �
F � 56:4 �
M � 90:2 �
F � 21:1 �
F � 23:9 �
� � � � � � � � � � � �

Sex and pregnancy are independent from the lab test and hypothyroid features. A normal

thyroid usually gives a low lab test result, a de®cient thyroid usually a high one. MultiClass

Supervised Mixture Models 78

-50 0 50 100 150

Lab Test Result

0

0.2

0.4

0.6

0.8

1

P
ro
b
a
b
il
it
y
 o
f
H
y
p
o
th
y
ro
id
is
m

Figure 3. Hypothyroid Predictions

classi®es people according to either sex or their lab test result depending on whether it is asked

to predict pregnancy or hypothyroidism. The model it ®nds to predict hypothyroidism is,

Classes

#1 #2

0.47 0.53

male 0.51 0.53

pregnant 0.27 0.26

lab test 54:2� 20:4 81:6� 14:1

hypothyroid 0.21 0.89

This model ignores the logical rule connecting sex and pregnancy, and neither feature in¯u-

ences a patient's classi®cation. Figure 3 shows how hypothyroid predictions vary smoothly

between a probability of 0:21 and 0:89 as the lab test result increases. The noise class leads

to a conservative prediction when the lab value is unreliable. The model MultiClass ®nds to

Supervised Mixture Models 79

predict pregnancy is,

Classes

#1 #2

0.62 0.38

male 0.84 0.02

pregnant 0.01 0.66

lab test 69:7� 21:2 71:1� 22:4

hypothyroid 0.59 0.52

Now the lab test and hypothyroid features are irrelevant. Ignoring them, one can calculate the

probability of pregnancy using a computation like the one shown in full for the day camp data.

The result is,

Pr�pregnant j sex � male;MI� � 0:02

Pr�pregnant j sex � female;MI� � 0:51

The empirical frequencies are 0% and 51%. The probability of seeing a pregnant man differs

from zero due to the priors. In general, although a database may contain many interesting

classi®cations, MultiClass focuses on the one that is most useful for making a given prediction.

III. Missing Data and Reliability

One can interpret a supervised mixture model as a density model that ignores unimportant

patterns. This interpretation allows it to handle missing data and avoid unreliable predictions

in a way that an entirely conditional model, like a decision tree or a feed forward neural network,

cannot.

MultiClass marginalizes missing data as described in Chapter 3. For the class description

functions that it uses the result is elegant: missing features are simply erased from the model

before making predictions. In the day camp data, if there is a day for which the coloring and

Supervised Mixture Models 80

singing features are missing, MultiClass will eliminate them and use the model,

Classes

sun rain

0.61 0.39

swimming 0.88 0.12

whif¯e ball 0.67 0.08

painting 0.22 0.76

If one views each feature as an independent test, the tests for missing features are simply not

included. This approach is very different from assigning a missing feature its most probable

value, or even its expected value.

Purely conditional models cannot assess the reliability of conditioning information, leaving

them susceptible to making unreliable predictions. MultiClass uses the noise class described

in Chapter 4 to alleviate this problem. In the iris data, an imaginary ¯ower with a petal length

of 30 cm is caught by the noise class, resulting in a diffuse prediction of its sepal length. Since

MultiClass ignores parts of the joint structure, its reliability estimates are less conservative

than those that arise from a complete joint density. MultiClass will only notice an unreliable

observation that impacts its predictions. When predicting which patients suffer from hypothy-

roidism, for instance, it will not even blink at a pregnant man.Figure 4 indicates what to expect.

In the data on the left, x is irrelevant to y , and MultiClass ®nds a one class model that catches

unreliable x values at the extremes, but misses the dead region in the center. In the data on

the right, MultiClass ®nds a two class model that notices all the places where x is unreliable.

A true density model would describe both data sets using two classes and spot all the unreli-

able observations. MultiClass derives its strength from dismissing parts of the joint structure

that are irrelevant to its predictions. This focus results in sharper predictions, but only at the

expense of decreased reliability.

IV. Smoothing the Conditional Density

Supervised Mixture Models 81

Figure 4. Reliability in a Supervised Mixture Model

The greatest challenge that MultiClass faces are the irregularities in the conditional likelihood

function of Equation 1. There are many joint models that give rise to the same conditional

probability distribution, so a joint model is badly overparameterized when optimized for a

conditional probability. Figure 5 illustrates using a bivariate normal density in two dimensions.

The model can be shifted along the regression line of y from x, or appropriately stretched and

rotated, without affecting Pr�y j xMI�. The conditional distribution has only three degrees of

freedom, whereas the joint distribution has ®ve, so optimizing the conditional likelihood leads

to a family of solutions lying along a two dimensional manifold. This ridge confuses second

order optimization algorithms, which wander along it afraid to terminate. Much worse, the

lack of determinate parameter values casts doubt on our ability to interpret the ®nal model as

a legitimate joint density, which is necessary to handle missing data and reliability correctly.

The hypothyroid model characterizes a common way that unwanted parameters arise.

There is no reason why sex must be 50-50 within each class, since it will cancel from the con-

ditional likelihood as long as it has the same distribution in both of them. The ratio could just

as easily be 70-30 or 20-80. Any irrelevant feature follows this same pattern: the conditional

distribution is unaffected as long as the feature has the same distribution in each class.

Supervised Mixture Models 82

Figure 5. An Overparameterized Model

The noise class and priors in MultiClass are essential to overcome underdetermined pa-

rameters. They give shape to regions where the conditional likelihood is ¯at and force unused

parameters to take on meaningful values. The location of the noise class is ®xed by the empir-

ical data, so it establishes an absolute coordinate system for models that could otherwise be

shifted arbitrarily. A mixture class becomes useless if it wanders too far away from the points

it is intended to describe. In Figure 5, for example, the noise class governs the predictions if the

normal density is shifted too far in either direction, so the optimal solution is the one shown,

centered over the data, minimizing the effect of the noise class. The noise class also ful®lls its

usual role of capturing outliers, which are particularly nasty in conditional estimation and lead

to singularities in the conditional likelihood function when Z�x; �� goes to zero.

The prior has an even stronger effect. The prior presented in Chapter 4 for the class

parameters � is,

Pr�� j PI�/ Pr�D j �I�
P
N

This function still treats each class as a density model. So while MultiClass optimizes condi-

Supervised Mixture Models 83

tional probabilities, its prior optimizes joint probabilities and forces extraneous parameters

towards sensible values. In the normal density of Figure 5, the prior alone is enough to guide

MultiClass to the natural solution centered on the empirical mean and variance of x. In the

thyroid model, the prior leads to a distribution of sex within each class that matches the 50-50

ratio of men to women in the database.

The prior works well for the class parameters, but it is ineffective for the class weights. In

AutoClass the weights naturally settle on the proportion with which each class appears in the

data. In MultiClass they are underdetermined and may converge to strange values, particularly

if the classes are well separated. When predicting the ®rst column of the identical columns

database, for example, MultiClass ®nds the obvious model:

Classes

#1 #2

? ?

x1 0.00 1.00

y1 0.00 1.00

The class weights are irrelevant, because the x measurement is always perfectly informative.

The likelihood function for the weights is therefore ¯at, and one needs either an informative

prior or some other technique to set the weights to appropriate values. In the iris data, the

version of MultiClass described to this point ®nds the following model:

Classes

#1 #2

0.76 0.24

sepal length 5:12� 0:40 6:42� 0:58

petal length 2:35� 0:81 5:21� 1:16

Notice the strange class weights. They do not re¯ect the proportion with which each class

occurs, so this model generates an inaccurate marginal distribution of sepal length that does

not correctly handle a missing petal length. MultiClass corrects the problem of ill-determined

Supervised Mixture Models 84

class weights by running a two pass optimization algorithm:

1) Find the optimal model.

2) Calculate how often each class appears in the data.

3) Fix the weights to the observed proportions, and reoptimize the remaining

parameters.

In the iris data, the ®rst step ®nds the above model with class weightsw1 � 0:76 andw2 � 0:24;

the second step applies this model to the data and computes the frequency with which each

class appears, f1 � 0:44 and f2 � 0:56; the third step ®xes the weights to these frequencies

and reruns the optimizer, ®nding the model at the beginning of the chapter. The effect of this

algorithm is to choose the model along the optimal ridge where the weights re¯ect the empirical

frequency with which each class occurs.

V. Supervised Mixtures vs. Multiple Hidden Features

Accurate density estimation requires multiple hidden features, so it is natural to wonder if a

supervised mixture model, which uses only a single hidden feature, is powerful enough to make

good predictions. The correspondence between logical rules and hidden features, presented in

Chapter 5, reveals that MultiClass captures an impressive scope of predictions. Suppose one

is analyzing a propositional database with the goal of predicting a boolean feature P roughly

described by the logical rule,

P () R

where R is a conjunction of n observable features. This rule expands into the DNF formula,

�P^ R�_�:P^:R� �2�

The strategy is to express Equation 2 as a two class supervised mixture model. One class will

act as a default capturing the situations where P is false, and the other will describe the cases

Supervised Mixture Models 85

where both R and P are true. The desired probabilistic model MR is,

Classes

#1 #2

0.50 0.50

R 1.00 0.50

P 1.00 0.00

In the day camp data, if it were the case that children paint if and only if they color and sing,

then a model to predict painting would be,

Classes

#1 #2

0.50 0.50

swimming 0.50 0.50

whif¯e ball 0.50 0.50

coloring 1.00 0.50

singing 1.00 0.50

painting 1.00 0.00

A day on which the children do not color and sing can only fall into the second class, so

they will not paint either. This model only imperfectly describes the logical rule in the other

direction, and the generic probabilistic model does not encode Equation 2, but rather its close

approximation,

�P^ R�_:P �3�

The advantage of dropping :R is that it is a disjunction, and therefore hard to express using

the conjunctive class description functions in MultiClass. The conjunction R is easy. The model

MR always predicts :P if R is false, since class #1 then has zero probability, and it assigns a

Supervised Mixture Models 86

high probability to P if R is true:

Pr�P j :RMRI�� 0

Pr�P j RMRI��
1

1� 2�n

This model always predicts P correctly, and its predictions become increasingly sharp as n

increases. Moreover, we can make the predictions arbitrarily sharp by allowing non-uniform

class weights, where class #2 has a very low one. In the day camp example with equal weights,

n � 2 and the model predicts there is an 80% chance that children will paint if they color and

sing. This probability increases to 99% if the weight of class #2 is decreased from 0:50 to 0:04.

More generally, if R expands into a DNF formula with k disjuncts, then Equation 3 expands

into a disjunction with k � 1 terms that maps onto a supervised mixture model with k � 1

classes. The ®rst k classes cover the cases where R and P are both true, and the last class acts

as a default that catches the remaining situations where P is false. By lowering the weight on

the default class, the model can approximate Equation 2 as closely as one desires.

We can use an equivalent construction if R is a disjunction of n observable features rather

than a conjunction. In this case :R is a conjunction, so one drops R from Equation 2 rather

than :R and follows the same steps as before, only with P and R negated. The resulting model

always correctly predicts P is true if R is true, and it assigns a low probability to P if R is false:

Pr�P j RMRI�� 1

Pr�P j :RMRI��
2�n

1� 2�n

If R expands into a CNF formula with k disjuncts, then it maps onto a k � 1 class supervised

mixture model in which the default case is for P to be true. By lowering the weight on the

default class, this model too can approximate Equation 2 as closely as one desires.

The conclusion is that a supervised mixture model can compactly express any predictive

rule that has either a simple DNF or CNF representation. It is very hard to construct natural

examples that do not have this form. Compressing the notation a bit, any such example will

have a form like,

P () AB_ CD_ EF _ �G_ H��I _ J��K_ L�

Supervised Mixture Models 87

The reader is invited to imagine a real application where such a rule would arise.

A decision tree has trouble with disjunctive rules, because it must replicate each disjunct

down multiple paths in the tree [46]. MultiClass is closer to a feed forward sigmoid neural

net with two hidden layers, where each node in the second layer corresponds to a class in the

mixture model.

VI. Density vs. Conditional Estimation

This section derives the implicit assumption of conditional estimation. A little new notation is

required. For any density model M over xy, Mhyjxi will denote the projected model that makes

conditional predictions of y from x. Similarly, Mhxi will denote the model that makes marginal

predictions of x alone. The three models are linked by the de®ning equation,

Pr�D jMI�� Pr�D j MhyjxiI� Pr�D j MhxiI� �4�

The ®rst factor on the right gives the probability of the y values in the data. The second gives

the probability of the x values.

With this notation in hand, Figure 6 contrasts the two alternatives of density estimation

and conditional estimation. Both start in the upper left corner with joint models over x and y

and work towards a model in the lower right corner that predicts y from x. Density estimation

follows the top path. It ®rst ®nds the optimal joint model M�, and then it conditions on

x to make predictions using M�
hyjxi. Conditional estimation follows the bottom path. It ®rst

conditions on x so that it can make predictions in the space Mhyjxi, and then it ®nds the optimal

conditional model Mhyjxi
� from the data. Exchanging the induction and conditioning steps like

this strips away unimportant details at the beginning of the problem, before doing any analysis.

Both paths in Figure 6 are valid, but conditional estimation discards information, so the two

paths generally arrive at different ®nal answers. Symbolically, M�
hyjxi � Mhyjxi

�. Conditional

estimation neglects the value of learning about the structure of x. Depending on one's prior

information, that knowledge may help reveal details about y and about how x and y are related.

Supervised Mixture Models 88

Joint Models

Conditional Models

induce optimal joint

model

project to make conditional

predictions

project to a conditional

model

induce optimal conditional

model

Figure 6. Two Approaches to Learning

Suppose, for instance, one looks at the daily record of a major league baseball team for

the ®rst few weeks of the season�,

Game Time Result

1:20 W

1:20 W

1:20 L

7:30 W

1:20 W

� � � � � �

The team is unknown. The goal is to predict how many games it will win and how likely it is to

win the World Series.

Although the data show no connection between a game's starting time and its outcome,

the preponderance of day games is a valuable clue. Most baseball games are at night. Only

�12 March 1995: 213 days into the strike and counting.

Supervised Mixture Models 89

the Chicago Cubs regularly play in the afternoon, so they are therefore the unknown team the

database describes. Pity the poor Cub fans! The Cubs have not won a World Series in 90 years,

and one can safely predict that they will not win it again this year, despite their promising start.

So while a game's starting time is irrelevant to its outcome, the structure in the starting time

data has a noticeable impact on predictions.

Density estimation catches the structure in the baseball data. Conditional estimation

misses it. In general, the two approaches give identical predictions as long as the posterior

distribution in the joint model space factors along the lines of x and y:

Pr�M j DI�� Pr�Mhyjxi j DI� Pr�Mhxi j DI� �5�

Equation 5 states that Pr�M j DI� is the product of two independent functions. If it holds,

then one can ®nd the optimal joint model M�by optimizing each of these functions separately.

Equality holds:

M�
hyjxi � Mhyjxi

�

M�
hxi � Mhxi

�

Equation 5 is a suf®cient condition for conditional estimation and density estimation to give

identical answers. Graphically, the two paths in Figure 6 reach the same ®nal model when-

ever the overall problem of ®nding M� breaks up into two independent halves: ®nding the

conditional model Mhyjxi
�, and ®nding the density model Mhxi

�. The condition under which

Equation 5 holds can be found by applying Bayes' theorem to each part of Equation 4 and

simplifying. The result is,

Pr�M j DI�
Pr�M j I� � Pr�Mhyjxi j DI�

Pr�Mhyjxi j I�
Pr�Mhxi j DI�
Pr�Mhxi j I�

Equation 5 implies equality in the numerators, which occurs if and only if there is also equality

in the denominators,

Pr�M j I�� Pr�Mhyjxi j I� Pr�Mhxi j I� �6�

Supervised Mixture Models 90

Equation 6 is the general assumption of conditional estimation. The baseball data is one exam-

ple where it does not hold. The two halves of the problem are not independent, since learning

about the starting times gives information about the team, which in turn in¯uences how many

games one expects the team to win. Equation 3 is an ignorance condition, and it seems reason-

able to assume that it is roughly true in any database that is not perfectly understood. For a

poorly understood database, the direct evidence of the data should always quickly overwhelm

the indirect evidence of the prior and any effect of learning Mhxi .

VII. Generalizing MultiClass

Supervised mixture models are simple, powerful, and easy to use and understand. They have a

coherent probabilistic semantics, and they naturally generalize existing, well understood ideas

related to mixture models. But Figure 6 suggests that MultiClass is only an instance of a much

more complete algorithm for data analysis. Namely,

1) Write down a parameterized joint probability model for a domain.

2) Write down priors for the parameters.

3) Optimize just the parts of the model that are needed to make predictions.

This algorithm follows the bottom path in Figure 6 rather than the top path, so that one con-

ditions and marginalizes before doing any work. As long as the quantity to be predicted is

one dimensional, the resulting conditional estimation is straightforward, as described in Chap-

ter 3, and it eliminates all the practical problems of density estimation while retaining its clear

semantics.

7

Experimental Results and Future Work

I. Hyperparameters

Chapter 4 ®nessed the question of how to set the four hyperparameters that appear in Multi-

Class's prior and noise class. The user must pick values. The defaults are,

P � 1 ± an effective prior size of one data point

� � K ± a uniform prior over the K classes

� � 0:001 ± probability of noise

� � 3:0 ± standard deviation of continuous features in the noise class

These values give good performance. In principle, one could provide priors for the hyperpa-

rameters and optimize them as part of the search. In practice, one can use a wrapper algorithm

like C4.5-AP [34] to automatically ®nd their optimal values using cross validation. [4].

91

Experimental Results and Future Work 92

The user must tell MultiClass how many classes to look for. The program often eliminates

unwanted classes by reducing them to zero weight, but this procedure is unreliable. The current

priors are much too weak, and MultiClass often settles on a model with too many classes.

A horseshoe shaped prior with � < K would help reduce this problem, but it has proven

impractical in practice due to the in®nite poles that occur at extreme weights. A complete look

at over®tting appears at the end of this chapter. MultiClass should be able to ®nd the optimal

number of classes with improved priors, but at present it is best to determine the right number

through cross validation.

II. Optimization

MultiClass uses a general purpose quasi-Newton optimization package, NPSOL, developed by

the Stanford Systems Optimization Lab [17]. This algorithm improves upon gradient descent

by incrementally building a Hessian approximation [18] from the gradient information, and its

only real disadvantage is that it requires O�n2� memory, where n is the number of parameters

in the model. This restriction limits MultiClass to no more than a few hundred parameters,

though the program is written to allow alternative optimization algorithms, like conjugate

gradient, that do not have this problem. Jordan and Jacobs have developed an EM algorithm

for their HME architecture [31, 32] which it would also be desirable to implement.

Rumelhart ®nds that second order optimization algorithms, like NPSOL, are sometimes

ironically hindered by their far sighted view of the local topology [49]. They can descend into

local minima that a less powerful algorithm, like gradient descent, would never see. Priors

smooth the terrain and eliminate most of this effect, but one must still be careful. Figure 1

illustrates a common danger. A quasi-Newton optimizer starting from this model will immedi-

ately shrink the top left class to zero weight. That class describes none of the data, so getting

rid of it is the quickest way to improve the likelihood function.

Multiclass avoids this pitfall by running its optimizer twice. The ®rst pass uses � > n,

giving a bell shaped prior on the class weights that forces MultiClass to use all of its classes.

After the search converges, the second pass continues with � � n, giving a uniform prior that

lets MultiClass eliminate unnecessary classes. In situations like Figure 1, this optimization

Experimental Results and Future Work 93

1 2 3 4 5 6 7 8

Petal Length

4

5

6

7

8

S
e
p
a
l
L
e
n
g
th

Figure 1. Optimization Pitfalls

strategy forces the program to ®rst move all its classes to useful locations before deciding

which ones to keep.

III. Evaluating Learning Programs

Programs that make categorical predictions are currently compared based on classi®cation ac-

curacy. This measure has the advantage of being a single number that is easy to understand:

ªHey Ronny! I just got 84% on the Pima diabetes database!º Unfortunately, it can fail to distin-

guish guesswork from con®dent predictions. Imagine a doctor diagnosing the dreaded purple

polka-dot syndrome. Half the time he is sure his patients are healthy. The other half he frankly

Experimental Results and Future Work 94

has no idea and ¯ips a coin. The joint distribution of his predictions and results is,

sick healthy

de®nitely healthy 0.00 0.50

unknown 0.25 0.25

The doctor is never wrong if he says a patient is de®nitely healthy, and he is right half the time

when he ¯ips a coin. His overall success rate is 75%. A charlatan across the street charges half

the price but always tells his patients they are healthy. Amazingly, he too is right 75% of the

time, since as the joint distribution above shows, 75% of the patients are healthy. Who should

get more business?

Accuracy cannot distinguish the doctor from the charlatan, but a probability measure easily

tells them apart. In a typical test set of 100 patients, the doctor will diagnose 50 of them as

de®nitely healthy and guess on the remaining 50. The charlatan, who says all patients are 75%

likely to be healthy, will be right on 75 of them and wrong on the other 25. The probability that

each assigns to the test set is,

log Pr�T j Doctor I� � 50 log 1:00� 50 log 0:50 � �34:7

log Pr�T j Charlatan I� � 75 log 0:75� 25 log 0:25 � �56:2

The doctor's predictions are much sharper. By this measure he clearly understands much more

than the charlatan.

The log probability of a test set is a natural metric with which to compare machine learning

programs, but there is an even better one. The charlatan that always guesses provides a natural

baseline against which to compare different programs. Taking the ratio of the charlatan's score

to a program's score factors out both the size of the test set and the logarithm base, and it gives

an indication of how much useful information a program provides. We call this number the

ªcompression ratio,º since it roughly measures the factor by which a program's model could

compress the predicted feature relative to a naive program that always guesses. For the doctor,

compression ratio � �56:2

�34:7
� 1:62

Experimental Results and Future Work 95

-7.5 -5 -2.5 0 2.5 5 7.5 10
-10

-7.5

-5

-2.5

0

2.5

5

7.5

10

Figure 2. Failures of Mean Squared Error

Higher numbers are better. A compression ratio less than one indicates a program is performing

worse than random chance.

Programs that make continuous predictions suffer from a similar reporting problem. The

usual comparison metric is mean squared error, but Figure 2 shows a simple example where

any reasonable program will guessy � 0 for all x, but some are really much better than others

because they dynamically adjust the variance of their predictions. Like accuracy, mean squared

error fails to consider how sharp of a prediction a model is willing to make. The compression

ratio corrects this problem just as it does for classi®cation. For continuous predictions, the

baseline model is a normal distribution with the empirical mean and variance of the feature to

be predicted. MultiClass achieves a compression ratio of 1:78 for the data in Figure 2, despite

generating the same mean squared error as the baseline program.

The distinction that currently prevails between classi®cation problems and continuous

Experimental Results and Future Work 96

prediction problems seems arti®cial. For probabilistic models there is no difference, and Mul-

tiClass works identically no matter what feature in the data it is trying to predict. One of the nice

properties of the compression ratio is that it provides a single, common, easy to understand

number that uni®es all types of prediction problems.

IV. MLC++ Data Sets

The experiments tested MultiClass on the collection of databases distributed with MLC++, a

machine learning toolbox being developed at Stanford University [35]. The data sets include

most of those from the UC Irvine repository [43], the Statlog project [41], and Thrun's monk data

sets [52]. They are all classi®cation problems. There are no experiments involving continuous

predictions due to a lack of well established benchmarks. No features were added to explicitly

indicate missing features, as described in Chapter 3, so none of these experiments account

for the possibility that `?' is itself an informative value. This omission may be signi®cant in

problems like the diabetes and horse-colic databases where a sizable fraction of the entries are

missing.

Three changes were made to the data distributed with MLC++. The pima database clearly

contains missing values that have been replaced by zeros, and MultiClass was given the undoc-

tored data where the zeros were changed back to `?'. The new-thyroid database was randomly

split into a training and a test set, since none were provided, and the lenses database was resplit.

This database is tiny, and the original training and test sets in MLC++ are highly dissimilar.

Figure 3 summarizes the results across two pages. The number of classes was increased

for each data set until the compression ratio on the test set began to rise, indicating that

performance was growing worse. The reported results are for the optimal number of classes.

Cross validation on the training set is suf®ciently bullet proof that it could ®nd this number

automatically. On data sets with few features, like glass, MultiClass automatically eliminates

unwanted classes and converges to the optimal number.

The monk1 and corral data sets are arti®cial and correspond to simple DNF rules. Mul-

tiClass ®nds the exact models given by the construction in Chapter 6, so the observed com-

pression ratios are artifacts of the prior and can be made arbitrarily large by lowering P and �.

Experimental Results and Future Work 97

% Accuracy Compression Ratio

Database C4.5-AP MultiClass Train Test

australian 85:1 86:5 2:52 1:83

balance-scale Ð 97:6 7:99 7:18

breast-cancer 73:9 73:7 1:24 1:10

breast 96:3 95:7 10:03 5:25

chess 99:6 99:6 31:11 22:89

cleve 75:6 81:1 3:66 1:50

corral 100:0 100:0 4:05 4:00

diabetes 75:3 74:2 1:55 1:27

¯are Ð 84:0 1:30 1:09

german 72:7 77:5 1:62 1:21

glass 68:2 68:1 1:92 1:56

glass2 74:9 80:0 1:97 1:35

hayes-roth Ð 85:7 5:00 4:43

heart 82:2 87:8 2:94 1:80

hepatitis 84:5 80:8 8:84 0:66

horse-colic 84:2 83:8 3:16 1:21

iris 95:3 96:0 14:41 10:38

labor-neg 80:1 94:1 10:16 2:45

lenses Ð 75:0 2:08 1:67

lymphography 74:1 84:0 6:77 2:03

monk1 100:0 100:0 9:71 8:10

monk2 62:5 93:5 2:93 2:25

monk3 97:2 97:2 5:77 5:57

new-thyroid Ð 98:6 9:45 10:10

segment 96:8 95:7 18:38 12:60

shuttle-small Ð 99:4 31:05 14:42

soybean-small 100:0 100:0 11:44 9:88

tic-tac-toe 93:7 97:9 6:47 5:37

tutorial Ð 91:7 2:59 1:98

vehicle 72:4 77:7 4:24 2:76

vote-irvine 95:4 95:2 18:01 6:49

vote Ð 99:3 13:07 15:87

vote1-irvine 87:6 91:0 5:93 2:78

vote1 Ð 95:6 4:98 4:05

xd6 Ð 100:0 22:5 22:69

zoo Ð 70:6 3:24 1:99

Figure 3. Experimental Results

Experimental Results and Future Work 98

Objects in Database Classes Range of

Database Train Test Found Output

australian 460 230 2 2

balance-scale 416 209 3 3

breast-cancer 191 95 2 2

breast 466 233 2 2

chess 2130 1066 4 2

cleve 202 101 3 2

corral 32 128 3 2

diabetes 512 256 2 2

¯are 710 356 3 2

german 666 334 3 2

glass 142 72 4 6

glass2 108 55 3 2

hayes-roth 132 28 3 3

heart 180 90 3 2

hepatitis 103 52 3 2

horse-colic 300 68 2 2

iris 100 50 3 3

labor-neg 40 17 2 2

lenses 16 8 3 3

lymphography 98 50 3 4

monk1 124 432 4 2

monk2 169 432 3 2

monk3 122 432 3 2

new-thyroid 143 72 3 3

segment 1540 770 7 7

shuttle-small 3866 1934 5 6

soybean-small 31 16 4 4

tic-tac-toe 638 958 7 2

tutorial 9 24 2 2

vehicle 564 282 4 4

vote-irvine 300 135 2 2

vote 290 145 2 2

vote1-irvine 300 135 2 2

vote1 290 145 2 2

xd6 461 512 4 2

zoo 67 34 4 7

Figure 3. Experimental Results (cont.)

Experimental Results and Future Work 99

5 10 15 20 25

Databases

60

70

80

90

100

%
 A
c
c
u
ra
c
y

MultiClass

C4.5-AP

Figure 4. Accuracy Comparison to C4.5-AP

Australian GermanVehicle Segment HeartDiabetes

Lowest

Score

Highest

Score

25%

Median Score

75%

MultiClass Performance

Figure 5. Statlog Performance

Experimental Results and Future Work 100

All of the problems, with the exception of balance-scale, were run without taking into account

correlations among the continuous features within a class. The balance-scale model with cor-

relations is almost twice as good as the model without. The tic-tac-toe and segment models

were still improving when the experiments concluded at 7 classes.

Figure 4 presents a graphical comparison to the C4.5-AP results of Kohavi and John [34].

C4.5-AP improves upon C4.5 by ®nding the optimal combination of input parameters to the

program. It therefore represents the best that one can expect C4.5 to do and is an ideal bench-

mark against which to compare. The graph in Figure 4 plots the accuracy scores of the two

programs for the common data sets on which they were run. The scores have been sorted

to make the graph easier to read. One thing to note is that these scores are generated using

different methodologies. The MultiClass results come from a train/test experiment using the

training and test set divisions in MLC++. The C4.5-AP numbers are averaged from a 10-fold

cross validation combining all the data. The numbers should be roughly comparable despite

this difference.

The graph shows a clear performance edge for MultiClass, though there are many data

sets for which the two programs are indistinguishable. On the other hand, a simple decision

tree program like C4.5 ®nds its models at least an order of magnitude faster than MultiClass.

MultiClass runs in minutes on small data sets and hours on large data sets. Here is a sampling

of how long it needs to ®nd the models in Figure 3 on a relatively slow 16:3 SPECmark machine:

iris 1 minute

breast-cancer 7 minutes

vote 18 minutes

australian 1.5 hours

german 2.5 hours

chess 18 hours

These times could be improved by using a stochastic gradient approximation [39], by giving

MultiClass successively larger portions of a database until its model stabilizes, or even by

simply easing the optimality tolerance of NPSOL. The time cost seems relatively unimportant in

most applications, where training time is not a signi®cant issue, but it does make it more painful

Experimental Results and Future Work 101

E���

MAP estimate Ã�

Figure 6. Limitations of MAP Induction

to run experiments. Both C4.5-AP and MultiClass make virtually instantaneous predictions from

their ®nal models.

Figure 5 graphs MultiClass's performance on the Statlog data sets against the results ob-

tained in the Statlog experiment. Each entry shows the median, quartiles, and extremes of the

Statlog entries. MultiClass does well, though the same methodology difference exists as with

the C4.5-AP results.

V. Over®tting

Many of the compression ratios in Figure 3 indicate that MultiClass is over®tting. A model

should generate equal ratios for the training and test sets, and the table shows many problems

for which the training score is substantially higher. Over®tting occurs for two reasons. One

is that MAP induction is inadequate, but the much more important reason is that the priors in

MultiClass are too weak and do not accurately re¯ect the likelihood of irrelevant features.

Figure 6 illustrates why MAP induction breaks. It shows an imaginary distribution on the

mean � of a normal distribution. The MAP estimate Ã� would lead to terrible predictions, since

the vast majority of the probability is skewed to one side. A much better estimate of � would be

its expected value, and the best way to make predictions is to average over all possible values

as described in Chapter 1. This example suggests that MultiClass might do better looking for

the mean parameter values rather than the MAP values. Unfortunately, this solution is dif®cult

Experimental Results and Future Work 102

to implement, ill-de®ned in the presence of linear constraints, and not terribly meaningful

unless the posterior distribution is unimodal, but it does provide another way to think about

summarizing the posterior distribution in a single model. The literature contains many ways

to improve on MAP induction, like Laplace's approximation [1] or Gibb's sampling [15], that

could potentially increase MultiClass's performance at the expense of computation time.

The most severe ¯aw in MultiClass is that its priors do not allow for the possibility that a

feature is irrelevant. Here is a random database with 500 rows of coin ¯ips to demonstrate the

problem:

x1 x2 x3 � � � x9 x10

H T H H H

T H T H H

T T T T T

T T H � � � T H

H H H T T

H T H H H

H T T T T

� � � � � � � � � � � � � � �

There is no pattern, except any produced by blind luck, but MultiClass nevertheless ®nds the

following two class model to predict the ®rst ¯ip from the others:

Classes

#1 #2

0.49 0.51

x1 0.67 0.36

x2 0.53 0.46

x3 0.51 0.49

x4 0.49 0.57

x5 0.45 0.56

x6 0.55 0.41

x7 0.55 0.43

x8 0.48 0.46

x9 0.58 0.41

x10 0.52 0.55

Each feature in the model is only weakly informative, but many weak tests can equal one very

Experimental Results and Future Work 103

strong one. If all the coin ¯ips align with the ®rst class, for instance, MultiClass will make

an extreme prediction that heads should occur with probability 0:67. The trouble is that even

though the columns in the database are independent, the correlation between any two is never

exactly zero, so MultiClass ®nds that every column is slightly informative in predicting the ®rst

coin ¯ip. The pairwise count in the data between the ®rst column and the ninth column, which

is the most informative, is,

x9

H T

H 134 123x1

T 113 130

MultiClass does not consider the possibility that these numbers arise from random chance, so

it naturally concludes that the ninth coin ¯ip contains a fair amount of useful information. The

problem of extraneous correlations grows worse as the number of columns increases, since the

probability of observing a lucky high correlation increases.

The horse-colic data provides a real example of how irrelevant features hurt MultiClass.

The program's performance is much better when all but the four most relevant features are

eliminated:

Compression Ratio

Train Test Test Accuracy

All Features 3.16 1.21 57=68

Relevant Features 1.66 1.72 58=68

Now there is no evidence of over®tting, and the compression ratio on the test set is greatly

improved. Notice that the testing accuracy cannot distinguish these two models.

A feature becomes irrelevant when it has the same distribution across multiple classes.

MultiClass needs to be modi®ed so that it assigns a prior to this possibility and explicitly

searches for it. The strength of the prior should grow with the number of features to offset the

increased likelihood of random high correlations. When predicting pregnancy in the thyroid

data of Chapter 6, this change would let MultiClass conclude that the lab test and hypothyroid

Experimental Results and Future Work 104

features are truly irrelevant. The model it would ®nd is,

Classes

#1 #2

0.62 0.38

male 0.85 0.01

pregnant 0.00 0.66

lab test 70:2� 21:7 70:2� 21:7

hypothyroid 0.56 0.56

This model improves on the one in Chapter 6, in which the lab test and hypothyroid features

are slightly informative. A feature may be relevant part of the time, in which case it will vary

in some classes and not in others. If there were nine classes, for example, hypothyroid might

occur 20% of the time in seven of them and 67% in the other two.

The process of looking for completely irrelevant features is feature subset selection [29],

while partial irrelevance is akin to weight sharing in neural networks. In either case, MultiClass

must use graph search to decide which parts of its model to prune. A hill climbing algorithm

that iteratively chooses a single feature and checks to see whether it should be the same in two

classes seems logical, but this area is de®nitely one for future work.

VI. Programming with Probabilities

Implementing MultiClass was much harder than expected. There is currently a gaping chasm

between the model level at which one naturally describes a data analysis problem, and the

coding level at which one programs. Wray Buntine and I are developing a general purpose

scienti®c modeling system to bridge this gap [7]. When ®nished, it will allow researchers to

create programs like MultiClass in an afternoon.

The research effort, Programming with Probabilities, combines Buntine's graphical model-

ing language [6] with data ¯ow and object oriented modeling lessons learned from the Multi-

Class implementation. The goal is to let one specify a mathematical model by drawing graphs,

linking together components from a palette, and writing down equations. A symbolic pack-

age like Mathematica then analyzes the model, performs any required integral and derivative

Experimental Results and Future Work 105

Iris

Petal, Sepal

Length & Width

Class

Species

Normal

Point Mass

Point Mass

m�i�;Ö�i�
Normal-Gamma

p�i�

Dirichlet

w

Dirichlet

Figure 7. Iris Model

calculations, and compiles the result into ef®cient code using a data ¯ow analysis to optimize

function evaluations.

Figure 7 shows a mixture model for the iris data in this system. The picture generalizes

the belief net structure from Chapter 4 by explicitly including the model parameters. Shaded

variables are observable; unshaded ones are hidden. The stacked boxes, called plates, indicate

structure that is replicated for each ¯ower in the database. Each plate represents a ¯ower,

and the complete stack represents the entire table. Using this system, one would implement

MultiClass by drawing the graph, asking the system to compile a module that calculates the

conditional probability of petal length and its gradient with respect to the model parameters,

and linking the ®nal module to an optimizer like NPSOL that searches for the MAP parameter

estimates. The system would symbolically evaluate the partition function integral and partial

derivatives during the compilation.

Programming with Probabilities lets one move past the simplistic view that a database is

a single, homogenous table. Figure 8 shows a model for $/DM exchange rates, in which every

bank is associated with a variable number of bid and ask price quotes. This model classi®es

banks according to their geographic location and how they behave in the market. Figure 9

shows a model for the student data, in which a program assessing student applications will

Experimental Results and Future Work 106

Banks

Location

Class

Normal

Poisson

Point Mass

Prices
%

Change

Exp-average

Spread

Normal

Point Mass

Normal-Gamma

��i�; ��i�

p�i�

Dirichlet

w

Dirichlet

Quote

Volume ��i�

Dirichlet

Normal-Gamma

��i�; ��i�;

��i�

Figure 8. Bank Model

Experimental Results and Future Work 107

Recommen-

dations

Class

m�i�;Ö�i�

p�i�

Students

Normal

Point Mass

Point Mass
w

Dirichlet

Dirichlet

Normal-Gamma

Schools

Tuition,

Enrollment

Class

Public?

Undergraduate

School

Years, GPA,

GRE

Normal

Point Mass

m
0�i�;Ö0�i�

p0�i�

w0

Dirichlet

Dirichlet

Normal-Gamma

Point Mass

Figure 9. School and Student Model

Experimental Results and Future Work 108

simultaneously divide both students and schools into useful categories. It may discover, for

instance, that private schools do a much better job than public schools of preparing students to

earn Ph.D. degrees quickly. In these examples, the graphical language lets one express a proba-

bility distribution across multiple tables, each of which can contain both observed and hidden

features. Using the general purpose algorithm described at the end of Chapter 6, one could

optimize the parameters to make any desired joint or conditional prediction. The graphical

language is exceptionally powerful, and the ®nal system promises to be a great advance that

overcomes the current engineering bottleneck in data analysis and opens the door to future

research.

References

[1] A. Azevedo-Filho and R. Shachter. Laplace's method: Approximations for probabilistic

inference in belief networks with continuous variables. In R. L. de Mantaras and D. Poole,

editors, Uncertainty in Arti®cial Intelligence: Proceedings of the Tenth Conference, pages

28±36, Seattle, WA, 1994.

[2] J. M. Bernardo and A. F. M. Smith. Bayesian Theory. John Wiley & Sons, Chichester, 1994.

[3] D. M. Boulton and C. S. Wallace. A program for numerical classi®cation. The Computer

Journal, 13(1):63±69, 1970.

[4] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classi®cation and Regression Trees. Chap-

man & Hall, New York, 1984.

[5] W. L. Buntine. Learning classi®cation trees. In D. J. Hand, editor, Arti®cial Intelligence

Frontiers in Statistics, pages 182±201. Chapman & Hall, London, 1991.

109

References 110

[6] W. L. Buntine. Operations for learning with graphical models. Journal of Arti®cial Intelli-

gence Research, 2:159±225, 1994.

[7] W. L. Buntine and H. S. Roy. Software for data analysis with graphical models. To appear

in the proceedings of the International Workshop on Arti®cial Intelligence and Statistics,

1995.

[8] P. Cheeseman. Personal communications.

[9] P. Cheeseman et al. AutoClass: A Bayesian classi®cation system. In Proceedings of the Fifth

International Conference on Machine Learning, pages 54±64, 1988.

[10] P. Cheeseman et al. Bayesian classi®cation. In Seventh National Conference on Arti®cial

Intelligence, pages 607±611, 1988.

[11] A. P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood from incomplete data

via the EM algorithm. Journal of the Royal Statistical Society, Series B, 39(1):1±38, 1977.

[12] W. Dillon and M. Goldstein. Multivariate Analysis: Methods and Applications. John Wiley &

Sons, 1984.

[13] R. O. Duda and P. E. Hart. Pattern Classi®cation and Scene Analysis. John Wiley & Sons,

New York, 1973.

[14] Y. Freund and D. Haussler. Unsupervised learning of distributions on binary vectors us-

ing two layer networks. In Proceedings of the 1991 Conference on Neural Information

Processing Systems. Morgan Kaufmann, 1992.

[15] S. Geman and D. Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian

restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence,

6:721±741, 1984.

[16] Z. Ghahramani. Factorial learning and the EM algorithm. In G. Tesauro, D. Touretzky, and

T. Leen, editors, Advances in Neural Information Processing Systems 7 (NIPS*93). Morgan

Kaufmann, 1994. ftp://psyche.mit.edu/pub/zoubin/factorial.ps.Z.

References 111

[17] P. E. Gill, W. Murray, M. A. Saunders, and M. H. Wright. User's guide for NPSOL (version

4:0): A Fortran package for nonlinear programming. Technical Report SOL 86-2, Stanford

Systems Optimization Lab, Stanford, CA, 1986.

[18] P. E. Gill, W. Murray, and M. H. Wright. Practical Optimization. Academic Press ltd., London,

1981.

[19] R. Hanson, J. Stutz, and P. Cheeseman. Bayesian classi®cation with correlation and inheri-

tance. In Proceedings of the Twelfth International Joint Conference on Arti®cial Intelligence,

1991.

[20] M. Henrion, J. S. Breese, and E. J. Horvitz. Decision analysis and expert systems. AI Maga-

zine, 12(4):64±91, Winter 1991.

[21] G. E. Hinton and T. J. Sejnowski. Learning and relearning in Boltzmann machines. In D. E.

Rumelhart and J. L. McClelland, editors, Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, volume 1, chapter 7, pages 282±317. MIT Press, 1986.

[22] J. J. Hop®eld. Neural networks and physical systems with emergent collective computa-

tional abilities. In Proceedings of the National Academy of Sciences, USA, volume 79, pages

2554±2558, 1982.

[23] L. Hunter and D. States. Applying Bayesian classi®cation to protein structure. In IEEE

Conference on Applications of AI, 1991.

[24] R. A. Jacobs, M. I. Jordan, S. J. Nowlan, and G. E. Hinton. Adaptive mixtures of local experts.

Neural Computation, 3(1), 1991.

[25] E. T. Jaynes. Prior probabilities. In IEEE Transactions on Systems Science and Cybernetics,

pages 227±241. IEEE, 1968. Also appears in Jaynes [27], chapter 7.

[26] E. T. Jaynes. Marginalization and prior probabilities. In A. Zellner, editor, Bayesian Analysis

in Econometrics and Statistics. North-Holland Publishing Company, Amsterdam, Holland,

1980. Also appears in Jaynes [27], chapter 12.

[27] E. T. Jaynes. Papers on Probability, Statistics, and Statistical Physics. D. Reidel Publishing

Co., Dordrecht, Holland, 1989.

References 112

[28] E. T. Jaynes. Probability Theory: The Logic of Science. Fragmentary version of June, 1994.

http://omega.albany.edu:8008/JaynesBook.html.

[29] G. John, R. Kohavi, and K. P¯eger. Irrelevant features and the subset selection problem.

In Machine Learning: Proceedings of the Eleventh International Conference. Morgan Kauf-

mann, 1994. ftp://starry.Stanford.EDU:pub/ronnyk/ml94.ps.

[30] M. Jordan and R. Jacobs. Supervised learning and divide-and-conquer: A statistical ap-

proach. In P. Utgoff, editor, Proceedings of the Tenth International Conference on Machine

Learning, pages 159±166. Morgan Kaufmann, 1993.

[31] M. I. Jordan and R. A. Jacobs. Hierarchical mixtures of experts and the EM algorithm.

Neural Computation, 6:181±214, 1994.

[32] M. I. Jordan and L. Xu. Convergence properties of the EM approach to learning in mixtures-

of-experts architectures. Technical Report 9301, MIT Computational Cognitive Science,

Cambridge, MA, 1993.

[33] R. E. Kass and A. E. Raftery. Bayes factors and model uncertainty. Technical Report #571,

Department of Statistics, Carnegie Mellon University, PA, 1993. To appear in Journal of

the American Statistical Association.

[34] R. Kohavi and G. John. Automatic parameter selection by minimizing estimated error.

ftp://starry.Stanford.EDU:pub/ronnyk/c45ap.ps, 1995.

[35] R. Kohavi, G. John, R. Long, D. Manley, and K. P¯eger. MLC++: A machine learning library

in C++. In Tools with Arti®cial Intelligence, pages 740±743. IEEE Computer Society Press,

1994. ftp://starry.Stanford.EDU:pub/ronnyk/mlc/toolsmlc.ps.

[36] P. Langley, W. Iba, and K. Thompson. An analysis of Bayesian classi®ers. In Tenth National

Conference on Arti®cial Intelligence, 1992.

[37] D. B. Lenat and E. A. Feigenbaum. On the thresholds of knowledge. Arti®cial Intelligence,

47:185±250, 1991.

[38] D. J. C. MacKay. Bayesian interpolation. Neural Computation, 4(3):415±447, 1992.

ftp://131.111.48.8/pub/mackay/README.html.

References 113

[39] O. L. Mangasarian and M. V. Solodov. Backpropagation convergence via deterministic non-

monotone perturbed minimization. In J. D. Cowan, G. Tesauro, and J. Alspector, editors,

Advances in Neural Information Processing Systems, volume 6. Morgan Kaufmann, 1994.

[40] J. D. Martin and D. O. Billman. Acquiring and combining overlapping concepts. Machine

Learning, 16:1±37, 1994. ftp://ai.iit.nrc.ca/pub/joel/nov.dvi.ps.

[41] D. Mitche, D. J. Spiegelhalter, and C. C. Taylor. Machine Learning, Neural and Statistical

Classi®cation. Prentice Hall, 1994.

[42] T. M. Mitchell. Version spaces: A candidate elimination approach to rule learning. In

Proceedings of the Third International Joint Conference on Arti®cial Intelligence, pages 305±

310, 1977.

[43] P. M. Murphy and D. W. Aha. UCI repository of machine learning databases, 1995.

ftp://ics.uci.edu:pub/machine-learning-databases.

[44] C. R. Musick Jr. Belief Network Induction. PhD thesis, University of California at Berkeley,

1994.

[45] R. M. Neal and G. E. Hinton. A new view of the EM algorithm that justi®es incremental and

other variants. Submitted to Biometrika.

ftp://cs.toronto.edu/pub/radford/www/publications.html, 1993.

[46] G. Pagallo and D. Haussler. Boolean feature discovery in empirical learning. Machine

Learning Journal, 5:71±99, 1990.

[47] J. Pearl. Probabilistic Reasoning in Intelligent Systems. Morgan Kaufmann, 1988.

[48] C. Peterson and J. R. Anderson. A mean ®eld theory learing algorithm for neural networks.

Complex Systems, 1:995±1019, 1987.

[49] D. Rumelhart. Personal communications.

[50] E. Saund. A multiple cause mixture model for unsupervised learning. Neural Computation,

7:51±71, 1995.

[51] H. SchÈutze. Dimensions of meaning. In Proceedings of Supercomputing '92, 1992.

ftp://csli.stanford.edu/pub/prosit/papers.

References 114

[52] S. B. Thrun et al. The monk's problemsÐa performance comparison of different learning

algorithms. Technical Report CMU-CS-91-197, CMU School of Computer Science, 1991.

[53] D. M. Titterington, A. F. M. Smith, and U. E. Makov. Statistical Analysis of Finite Mixture

Distributions. John Wiley & Sons, Chichester, 1985.

[54] G. G. Towell, J. W. Shavlik, and M. O. Noordewier. Re®nement of approximately correct do-

main theories by knowledge-based neural networks. In Proceedings of the Eighth National

Conference on Arti®cial Intelligence, pages 861±866, 1990.

