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Abstract

In this dissertation, I develop an approach to high-stakes, model-based decision making 

under scarce computation resources, bringing together concepts and techniques from the 

disciplines of decision analysis, statistics, artificial intelligence, and simulation. I develop 

and implement a method to solve a time-critical decision problem in the domain of critical-

care medicine. This method selects models that balance the prediction accuracy and the 

need for rapid action. 

Under a computation-time constraint, the optimal model for a model-based control 

application is the model that maximizes the tradeoff of model benefit (a measure of how 

accurately the model predicts the effects of alternative control settings) and model cost (a 

measure of the length of the model-induced computation delay). This dissertation describes 

a real-time algorithm that selects, from a graph of models (GoM), a model that is accurate 

and that is computable within a time constraint. The dynamic-selection-of-models (DSM) 

algorithm is a metalevel reasoning strategy that relies on a DSM metric to guide the search 

through a GoM that is organized according to the simplifying assumptions of the models. 

The DSM metric balances an estimate of the probability that a model will achieve the 

required prediction accuracy and the cost of the expected model-induced computation 
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delay. The DSM algorithm provides an approach to automated reasoning about complex 

systems that applies at any level of computation-resource or computation-time constraint. 

The DSM algorithm solves the model-selection problem for a ventilator-management 

advisor (VMA). A VMA is a computer program that applies patient-specific models of 

physiology to interpret intensive-care unit (ICU) data and to predict the effects of 

alternative proposed treatments. VentPlan is a prototype VMA that implements a simplified 

model of physiology to monitor postoperative ICU patients; however, VentPlan's model is 

unable to make accurate predictions for patients with complex physiologic abnormalities, 

such as the abnormalities that occur in patients with asthma or pulmonary embolus. 

VentSim is a more detailed and more accurate model of cardiopulmonary physiology that 

represents a wider range of physiologic abnormalities, but VentSim is too computationally 

complex for use in a real-time VMA. Simplifications of VentSim may make accurate 

predictions for specific patients; alternative simplifications of VentSim represent a range of 

tradeoffs of prediction accuracy and computation complexity. 

I implement the DSM algorithm in Konan, a program that selects patient-specific models 

from a GoM of alternative simplifications of the VentSim model. Konan demonstrates that 

the DSM algorithm selects models that balance the competing requirements for high 

prediction accuracy and for low computation complexity; these model selections allow a 

VMA to make real-time decisions for the control settings of a mechanical ventilator. 
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Chapter 1

Introduction

In this dissertation, I develop automated methods to reason about complex systems under 

time constraints. I bring together concepts and techniques from the disciplines of decision 

analysis, statistics, artificial intelligence (AI), and simulation to develop an approach to 

high-stakes, model-based decision making under scarce computation resources. My 

hypothesis is that an algorithm for the dynamic selection of models under time 

constraints—a metalevel reasoning strategy—can select, from a set of models that vary in 

their complexity and accuracy, a model that is accurate and that is computable within a time 

constraint. 

I demonstrate that this hypothesis is valid by developing the dynamic-selection-of-models 

algorithm to automate model selection for model-based controllers; I implement this 

algorithm in Konan, a program that makes time-critical decisions for the settings of a 

mechanical ventilator for patients in the intensive-care unit (ICU). 
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1.1  The Ventilator-Management Problem 

Critically ill patients who are in the ICU frequently require artificial breathing support from 

a mechanical ventilator. Ventilators have multiple control settings that allow a clinician to 

adjust the rate of ventilation, the volume and pressure of gas delivered during each cycle, 

the positive end-expiratory pressure (PEEP)1and the fraction of oxygen (FIO2) in the 

inspired air.2 As a patient’s condition changes, the clinician must adjust the settings of the 

ventilator to maintain the benefit of adequate ventilation and to reduce the risk of injury or 

toxicity from the ventilator treatment.3 To decide how to adjust the ventilator, a clinician 

examines the patient, observes the ventilator settings and the resulting airflows and 

pressures of ventilation, and considers the results of radiographic studies and blood tests. 

The clinician must reassess the ventilator settings with a frequency that depends on how 

stable the patient’s condition is; typically, she reassesses at least every few hours. Whenever 

a sudden deterioration in a patient’s physiologic state occurs, however, the clinician must 

reevaluate the ventilator settings within 1 to 2 minutes, or risk a further decline of the 

patient’s state. 

I use the term ventilator-management advisor (VMA) to refer to an automated model-

based controller that monitors patients in the ICU and continuously reassesses the settings 

of a ventilator. A distinguishing feature of a VMA is that a VMA incorporates a prediction 

model to reason about the expected effects of alternative settings. VentPlan is a prototype 

VMA that incorporates a single, simplified model of patient physiology to predict the 

effects of the ventilator on a patient’s physiologic state. 

1.2  VentPlan 

VentPlan monitors patients in the ICU who are receiving treatment with a ventilator, and 

recommends appropriate settings for the controls of the ventilator. VentPlan incorporates a 

mathematical model of physiology in a model-based control architecture, in which a 

quantitative model predicts the effects of proposed changes in the control settings of the 

1. PEEP is the ventilator setting for the pressure in the mouth during expiration. 
2. In addition, many ventilators have an adjustable pressure waveform or pattern of airflow during each ven-

tilatory cycle [Kirby, 1984]. 
3. Side effects of ventilator therapy include collapse of a lung, chronic lung damage, and oxygen toxicity. 
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ventilator. A decision-theoretic preference model interprets the predicted effects of changes 

in the ventilator settings. The preference model ranks alternative settings, and VentPlan 

recommends those control setting that the preference model predicts will be optimal. 

VentPlan demonstrates that, for a restricted range of patients, a simplified quantitative 

prediction model of the ventilator–patient interaction allows VentPlan to make appropriate 

recommendations for the settings of a ventilator. A preliminary evaluation of VentPlan’s 

control-setting recommendations showed that they were in good agreement with the 

settings actually implemented by the ICU clinicians, for a set of patients whose physiologic 

problems were well described by the VentPlan model (see Chapter 3 and [Thomsen, 1989; 

Farr, 1989; Rutledge, 1993a]). 

Although VentPlan’s physiologic model predicts accurately the response of patients with a 

restricted range of physiologic abnormalities,4 we would not expect this simplified model 

to provide accurate predictions for other patients. For patients with more complex 

abnormalities, an improved VMA would need a model that includes a representation of a 

wider variety of physiologic abnormalities. 

I expanded the VentPlan model in three areas to create VentSim, a model that represents a 

wider variety of physiologic abnormalities than does VentPlan (see Chapter 4 for a 

description of VentSim). The computation complexity of the VentSim model is, 

unfortunately, much greater than that of VentPlan’s model. If we implemented VentSim in 

place of the VentPlan model, the resulting VMA would generate treatment 

recommendations after a computation delay of over 1 hour.5 Even longer computation 

delays would occur if we implemented models that are more detailed than is VentSim. 

I reasoned that, by applying various simplifying assumptions to the VentSim model, I could 

create a set of models that varied in their areas of simplification, and that were intermediate 

in complexity between VentSim and VentPlan. An improved VMA would select a model, 

for each patient, that balances the need for model detail to explain complex abnormalities, 

4. The clinical problems for which VentPlan’s model applies include conditions that involve abnormalities in 
the shunt fraction, the rate of oxygen consumption or of carbon-dioxide formation, the cardiac output, and 
the oxygen-carrying capacity of the blood. 

5. For the purpose of comparison with VentPlan, this delay is based on an implementation of a VMA on the 
same hardware on which VentPlan was developed—a Macintosh IIci. 
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and the need for model simplicity (reduced computation complexity) to compute the 

predictions within the time constraint for decision making. 

1.3  VMA Scenario: Postoperative ICU Patient 

Consider the following decision-making scenario that illustrates how a VMA would reason 

about the selection of appropriate physiologic models of a patient. A previously well patient 

is transferred to the ICU after an operation to remove a cancerous prostate gland. In the 

ICU, a VMA monitors the patient’s condition, and makes recommendations for the 

ventilator treatment. In Figure 1.1, I show a possible interface to such a VMA. 

Several hours after the patient arrives in the ICU, the pulse oximeter records a dangerously 

low level of arterial-oxygen saturation (63%). The sensor is attached correctly, and a recent 

measurement of the cardiac output (a thermodilution cardiac output from a Swan–Ganz 

catheter in the pulmonary artery) reports a low-normal cardiac output (4.5 liters per 

minute). 

The VMA notes the change in oxygenation status, and recognizes that the situation is 

urgent. There is no time to consider in detail the possible abnormalities that might be the 

cause of the low oxygen level. The VMA applies a simple, three-compartment model6 that 

allows it to state that the patient has changed, and allows it to make, within a few seconds, 

a recommendation to increase the level of inspired oxygen. The patient’s nurse notes the 

alert from the VMA, requests an arterial blood gas (abg) analysis,7 and increases the FIO2 

setting on the ventilator (see Figure 1.2). He calls the surgeon to inform her of the change 

in the patient’s condition. She agrees with the action taken to increase the inspired oxygen 

concentration, and asks him to repeat the abg in 20 minutes to verify that the patient is 

improved. By the time the abg results are available, the pulse oximeter shows an increase 

in the oxygen saturation. The nurse obtains a second abg measurement to confirm the 

patient’s improved oxygenation status. 

The VMA recognizes that the dangerous situation has improved, and the time urgency for 

further adjustments of the ventilator is lessened. It turns its attention to explaining the 

6. I refer here to the three-compartment model of Riley and Cournand, as implemented in VentPlan. 
7. An abg analysis measures the pH, and the partial pressures of oxygen (PaO2) and carbon dioxide (PaCO2) 

in arterial blood. 
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Figure 1.1  VMA scenario. The interface to the VMA shows current patient data
in the upper-left panel, and the ventilator settings in the lower-left panel. The cen-
ter panel shows the current model that the VMA is using, and the estimates of the
model parameters, and includes an input for the clinician to assert a probable
physiologic diagnosis. A text window in the lower-right corner shows the VMA
interpretation of the data. The window in the upper-right corner shows the predict-
ed effects of the recommended ventilator settings, based on the current model.
The user has clicked on the button labeled “Accept recommended plan,” which
causes the VMA to transfer the recommended settings to the ventilator. The but-
ton labeled “Simulate” in the lower-left panel allows the user to simulate the effect
of alternative settings by adjusting the ventilator controls and observing the ef-
fects in the “Predicted patient data” panel. 
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Figure 1.2  VMA scenario after a sudden deterioration in oxygenation status. The
VMA notes a sudden fall in the level of oxygenation (the Patient-data panel shows
PaO2 of 45 mm Hg), and reassesses the model. Because of the urgency of the sit-
uation, the VMA selects a simplified model (the VentPlan (cav) model, as shown
in the far-right section of middle panel), and interprets the change in physiologic
state as an increase in the shunt fraction. The VMA recommends an immediate
increase in the FIO2 to 1.0, and issues an alert, which appears in the lower right-
hand window. 
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measurements of the partial pressure of oxygen (PaO2) from the abg’s. The VMA notes that 

the simple model predicted a small rise in the PaO2, whereas a much larger rise actually 

occurred. The VMA considers alternative, more complex models to explain the 

observations of the PaO2. The VMA notes that a model with a more detailed representation 

of the ventilation–perfusion ( ) distribution8 would explain the observations exactly. 

The VMA selects that model and predicts the effects of alternative levels of FIO2. Based 

on the predictions for this patient, it recommends a lower level for the FIO2 (0.60), which 

reduces the potential toxicity of oxygen and maintains the patient’s oxygenation status at 

an acceptable level (see Figure 1.3). Although the VMA takes over 10 minutes to estimate 

the parameters of its model and to search for the recommended ventilator setting, the result 

becomes available while the surgeon is reexamining her patient. 

The VMA generates a notice that, according to its analysis, the patient has an abnormal 

 distribution (see lower-right panel in Figure 1.3). The surgeon uses this information 

to confirm her clinical diagnosis that the patient has suffered a pulmonary embolus, and 

starts the patient on appropriate treatment for pulmonary embolus. She is concerned that 

the recommendation for the FIO2 may be too low, however, so she asks the VMA to 

simulate alternative FIO2 settings. She agrees that the predictions of the patient simulation 

are reasonable, but chooses a somewhat higher FIO2 than the VMA recommends. She 

makes a note to herself to ask the ICU director when her preference model for setting the 

ventilator will be incorporated in the VMA. 

1.4  Dynamic Selection of Models for a VMA

The scenario in Section 1.3 demonstrates some of the tradeoffs with which a successful 

VMA would have to reason to make appropriate modeling decisions. The less complex 

physiologic models allow the VMA to interpret new observations rapidly, and allow the 

VMA to explain the observations with reference to a simplified structural model. When the 

patient’s state is suddenly critical, the VMA may have no choice but to make an immediate 

recommendation based on the predictions of a simplified model. 

8. The  distribution is a description of the different proportions of ventilation (flow of air into each re-
gion of lung) and perfusion (flow of blood through each region) that occur in different regions of the lung. 

V̇A / Q̇

V̇A / Q̇

V̇A / Q̇
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Figure 1.3  VMA scenario after an increase in FIO2. The patient responded to an
increase in the FIO2 to 1.0, and the PaO2 is now 305 mm Hg. The time-criticality
of immediate action is now reduced, and the VMA considers other, more complex
models. The VMA determines that the CAv model, which has expanded circula-
tion and airways components, is the least complex model that explains the obser-
vations. The VMA fits this model to the data, and applies the model to generate
new recommended ventilator settings. The VMA also notes that the model pre-
dicts a markedly abnormal distribution of ventilation to perfusion in this patient
(this analysis of the model parameters is available to the user through the Summa-
ries: VA/Q button in the upper left panel). The VMA issues a notice to the clini-
cian, as seen in the lower-right panel. 



9

As the patient’s condition stabilizes, the time-criticality of further treatment 

recommendation is reduced, and the VMA can reconsider which model to select. If the 

simple model continues to explain the observations, then the VMA retains the simple 

model. However, if the simple model is inaccurate, the VMA searches for a minimally 

complex model that explains the observations. This minimally complex model should be a 

model that is detailed only in the areas corresponding to the physiologic abnormality that 

led to the observations that were not explained by the simple model. For example, in the 

scenario presented, the VMA prefers the least complex model that includes sufficient detail 

to represent an abnormal  distribution. 

The VMA scenario highlights the need for an automated method to find mathematical 

models that are at the right level of complexity for a time-critical task. 

1.5  Mathematical Models 

Modeling is at the heart of science and engineering. A review of the value of additional 

research to develop modeling methodologies noted that “mathematical models codify facts 

and help to confirm or reject hypotheses about complex systems. They reveal contradictions 

or incompleteness of data and hypotheses. They can often allow prediction of system 

performance under untested or presently untestable conditions. They may predict and 

supply the values of experimentally inaccessible variables” [NIH, 1989]. 

Scientists acquire insight by representing knowledge of physical and biological phenomena 

as a model. For example, James Clerk Maxwell developed a theory of electromagnetic 

phenomena that provides insight into the interactions between electric and magnetic fields. 

Maxwell described his electromagnetic theory in a series of equations that form a compact 

and powerful model of electromagnetic phenomena [Purcell, 1963]. Engineers develop 

models during the process of design—they use models to simulate the effects of alternative 

design options, and to test the performance of a design. For example, an engineer designing 

a bridge might first apply mathematical models of stress and mechanical performance to 

predict the strength of a specific design. He might then build a scale model (a physical 

replica) to verify the strength of the structure. 

V̇A / Q̇
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Studying the behavior of models of a system may be more useful than is studying the 

system itself. For example, the Navy teaches the diagnosis and maintenance of boiler plants 

by allowing trainees to interact with a numerical simulation of such plants [Hollan, 1984], 

and professors of anesthesiology teach the management of intraoperative crises by allowing 

anesthesiology residents to interact with a detailed mathematical and physical simulation 

of a patient in the operating room [Gaba, 1988]. 

1.6  Automated Model Selection

The problem of automating the selection of a model for a specific task has attracted 

considerable attention in the fields of AI and statistics (see Chapter 2 for a more detailed 

discussion of prior research in automated modeling). 

Users of models of complex systems may avoid conceptual confusion if the model includes 

only the details needed to achieve acceptable accuracy. For example, a model used by 

physicians to assist them in understanding blood electrolyte abnormalities should be only 

sufficiently complex to include the causal pathways that explain the abnormality [Kuipers, 

1984]. In other cases, a more detailed model is required to achieve greater accuracy. To 

predict the airflow over an airfoil at transonic speeds, for example, aerodynamicists require 

a highly detailed, computationally complex, finite-element model. 

Greater accuracy (and complexity) may be essential in certain model-based applications; in 

others, accuracy may be sacrificed to increase simplicity, or to decrease the time taken to 

evaluate the model. The most important task of the model builder is to develop models that 

fulfil the complexity and tractability requirements of an application [Neelankavil, 1987]. 

Traditionally, model-building experts have hand crafted simulation models of complex 

domains to meet the required accuracy of a specified task with a minimum of complexity. 

The general problem of finding the appropriate assumptions and simplifications that will 

lead to a tractable yet accurate model has traditionally been a task for human experts, 

because developing such models requires knowledge of statistical and numerical methods, 

experience in model building, and expertise in the domain of the application. 

Over the past decade, AI researchers have developed methods to automate the modeling of 

complex systems. These methods either select models from a set of candidates, or compose 
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models from submodel components. In each case, these automated methods choose models 

based on qualitative information about the system, and on expert knowledge of model 

behavior. The AI methods rely on rule-based descriptions of expected model behavior to 

select models that match known features of the system to be modeled. We shall review these 

AI methods in greater detail in Section 2.6. 

Researchers in statistics also have developed methods that select models based not on prior 

information, but rather on quantitative observations of a system. The statistical model-

selection methods rely on quantitative assessments of how well alternative models are able 

to explain all observations. We shall review the statistical methods in greater detail in 

Section 2.7. 

The methods of AI and statistical model builders are complementary. The AI methods 

assume that the only information needed to construct a model is prior information; then, 

they perform limited validation of their models against observations of the system. 

Statistical model builders assume that the information needed to build a model is available 

in the set of observations alone, and have few methods for incorporating prior information 

in the model-building process. Naturally, AI researchers apply their methods to domains 

where prior knowledge of the system is available—such as mechanics models of physical 

systems [Forbus, 1984; Falkenhainer, 1991; Gruber, 1993]. Similarly, statistical researchers 

apply statistical methods to build models from large observational data sets [Box, 1985]. 

For some problems, both prior knowledge of the domain and observations of the domain 

constrain the structure of the model. For these problems, combined methods that take 

advantage of both AI and statistical methods are needed. For example, models of human 

physiology must be consistent with a large body of knowledge about physiologic structure 

and behavior, and must explain specific quantitative observations. The problem of 

identifying a model that predicts accurately the physiologic behavior of a specific 

individual is particularly difficult when the observations are sparce and the choice of 

appropriate model must be based largely on prior information and qualitative observations. 

A model-selection method for an automated ICU-monitoring program should select a 

model that explains a set of quantitative observations of a patient in the ICU, but should also 

take into consideration the qualitative information that is available. For example, qualitative 
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information about a critically ill patient in the ICU might include that she is receiving 

treatment with a ventilator, has the clinical appearance of a patient with pneumonia, and has 

had a chest X-ray examination that confirms the presence of pneumonia. In addition, 

quantitative observations might include measurements of arterial partial pressure of oxygen 

and carbon dioxide, cardiac output, blood pressure, pulse rate, and mean airway pressure, 

all of which were obtained both before and after a change in the control settings of the 

mechanical ventilator. 

Whenever model selection must take into account both prior information (such as “the 

patient has severe pneumonia”), and available quantitative observations, (such as “on the 

current ventilator settings, the partial pressure of oxygen is 78 mm Hg”), a combined AI 

and statistical method for model selection is needed. In Chapter 5, I shall develop a metric 

of model benefit that is based on a combination of AI and statistical approaches. This metric 

of model benefit will allow an automated model-selection algorithm to select models that 

are consistent both with prior information and with the quantitative observations of a 

system. 

The Time Constraint for Model-Based Recommendations in the ICU 

The large number of model evaluations that VentPlan performs during each cycle of data 

analysis9 limits the computation complexity of any model that an improved version of 

VentPlan might implement. VentPlan’s simplified model leads to computation delays of 1 

to 2 minutes, whereas highly detailed models of physiology could increase that delay to 

from 10 minutes to many hours.10

VentPlan shows that, for some patients, a simplified model, which leads to recommended 

actions within a short time, is ideal. For other patients, whose physiologic abnormalities are 

not well characterized by the VentPlan model, we do not expect VentPlan to make the best 

possible recommendations for the ventilator settings. For such patients, we would rather 

9. VentPlan evaluates the model repeatedly during parameter estimation (this procedure finds patient-specific 
parameter values that cause the model to predict, as closely as possible, the patient data), then does so again 
during the control-setting optimization (this optimization searches the space of possible ventilator settings 
to find the settings for which the model predictions optimize the preference model). The total number of 
model evaluations is greater than 1000 during a single cycle of data interpretation and treatment recom-
mendation. 

10. The time delay induced by computationally complex models depends on many factors, which I discuss in 
greater detail in Section 6.2. 
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incur some additional computation delay, if the result were accurate patient predictions 

within time to be useful. In other words, we prefer models that lead to accurate patient 

predictions, but we also prefer models that cause only short computation delays. How 

should we determine which model is optimal for a given set of patient data? 

1.7  The Optimal Model Under a Time Constraint 

In a time-critical control application, we may prefer models that compute, in a short time, 

suboptimal control actions over models that compute, after a long delay, the action that 

would have been optimal had the delayed action been available at the time computation 

began. For a model-based controller that must compute control settings within a time 

constraint, the optimal model is a model that maximizes the tradeoff of model benefit (a 

measure of how accurately the model predicts the effects of alternative control settings) and 

model cost (due to the length of the computation delay). 

We also shall develop, in Chapter 5, two criteria to identify models that are likely to be 

optimal under a time constraint. These criteria will assist an automated method for the 

dynamic selection of models. The first criterion, called the prior dynamic-selection-of-

models metric (DSMprior), provides an easy to compute measure of the probability that a 

model will make accurate predictions, given only the prior information about the system, 

and given knowledge of the level of model detail and of computation complexity. This 

measure identifies models that are unlikely to provide accurate predictions for a specific 

patient, or that would lead to excessive computation delays. The second criterion, called the 

dynamic-selection-of-models metric (DSM metric), updates the DSMprior with a statistical 

measure of the quality of the fit of the model to the quantitative observations, to determine 

the final model selection. 

1.8  The Dynamic-Selection-of-Models Algorithm 

Finding the optimal model under a time constraint is a difficult problem because, under that 

time constraint, there is no time to compare more accurate and less accurate models. In 

Chapter 5, I shall describe a heuristic algorithm, called the dynamic-selection-of-models 

algorithm, that selects, within a time constraint and from a set of alternative models, a 

model that optimizes the heuristic measures of the tradeoff of model accuracy and model 

computation complexity. This algorithm provides a method to allow a real-time VMA to 
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perform model selections that will lead to model-based treatment recommendations within 

the time constraint of ICU decision making. 

The dynamic-selection-of-models algorithm requires that the alternative models be 

organized as nodes in a graph, in which the edges are labeled with the simplifying 

assumptions that distinguish adjacent models (see Figure 2.1). To demonstrate the 

application of the algorithm to the time-constrained model selection for a VMA, we must 

have a graph of alternative models of cardiopulmonary physiology. In Chapter 6, I describe 

such a graph of models (GoM), in which the models vary in their level of detail. Each model 

makes simplifying assumptions that define the level of detail that the model must 

incorporate in each of its components. The least complex model in this set, the VentPlan 

model, has simplified versions of all three of VentSim’s components. The most detailed 

model in this GoM, the VentSim model, includes the highest level of detail—among all the 

models in the GoM—in all of its components. VentSim is too computationally complex to 

be useful to a real-time VMA, but is a reference model against which we can compare the 

performance of other, less detailed and less computationally complex models. 

Finally, we shall investigate the performance of the dynamic-selection-of-models algorithm 

by applying the algorithm to select models of cardiopulmonary physiology for a VMA, 

using data sets that correspond to simulated patients with various physiologic abnormalities 

(see Section 6.5). The results demonstrate that the dynamic-selection-of-models algorithm 

makes appropriate model selections in the high-stakes, time-critical decision-making 

environment of the ICU. 

1.9  Guide for the Reader 

In Chapter 2, I present a review of prior work on model selection and automated modeling. 

I begin with a review of recent work in AI to automate the model-building process, and 

compare that with the statistical view of model selection from data. This material is not 

essential to an understanding of the method for dynamic selection of models, and may be 

skipped without loss of continuity. 

In Chapter 3, I present a discussion of the use of mathematical models in automated ICU 

applications, and then I present the results of the VentPlan project, which provided a 
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starting point for this research. VentPlan is a prototype VMA that implements an 

architecture for combining differing models of physiology in a model-based control 

application. 

In Chapter 4, I describe VentSim, an expanded model of cardiopulmonary physiology, and 

its implementation with a graphical user interface. 

In Chapter 5, I develop a theory of model selection under computation-time constraints. I 

define optimal model selection under a time constraint, and present an heuristic approach 

to model selection under time constraints. I describe the dynamic-selection-of-models 

algorithm for performing model selections under time constraints. 

In Chapter 6, I implement the DSM algorithm to select models for a VMA. First, I describe 

a set of physiologic models for use with a VMA, and show an organization of the models 

as a graph of models. I demonstrate the behavior of the model-selection algorithm on this 

graph of physiologic models. 

In Chapter 7, I review the work presented in this dissertation, and then discuss my 

perspective on the significance and the contributions of this work. Finally, I point to future 

research directions. 
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Chapter 2

Automated Modeling

In this chapter, we review the terminology that we shall use to describe models, then we 

review prior work in AI on automated modeling. We then discuss prior work on the 

development of statistical model-selection criteria that researchers in statistics developed 

to evaluate how well alternative models explain sets of observations. We shall see that the 

differences among these criteria are equivalent to different assumptions about the prior 

probabilities of alternative models. In the last section, we consider a problem—modeling 

the cardiopulmonary status of patients in the ICU—that requires a combination of methods 

from AI and statistics to solve. 

In this chapter, we discuss model selection as if there were no cost to the use of any model. 

In Chapter 5, we shall extend this discussion to consider the effect that a computation-time 

delay has on the benefit of a model in time-critical situations. 

2.1  Terminology

Models are abstractions of systems. A system is some real or imagined part of the universe 

that we consider for the purpose of study and analysis. The largest and most complete 
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system is the universe. We can consider any part of that universe as a system, and we can 

subdivide any system—no matter how small—into smaller components, each of which also 

constitutes a system. For example, an automobile is a system, an automobile engine is a 

system, and each cylinder of an automobile engine is a system. The smallest subatomic 

particle is a system that we can subdivide into smaller systems by proposing the existence 

of even smaller, sub-subatomic particles. 

The defining feature of systems is that they are sources of data—systems allow 

observations that generate data. In other words, we can define a system as anything that 

allows observations of system variables. Variables correspond to features of a system: “we 

should pick out and study the facts that are relevant to some main interest that is already 

given.... The system now means, not a thing, but a list of variables.” [Ashby, 1963, p. 54]

A model is an abstraction of a system; a model also generates data. If a model perfectly 

reproduces the data that are observed from a system, we say that, under the experimental 

conditions investigated, the model is accurate. The set of conditions under which we study 

the system is called the experimental frame [Zeigler, 1976]. 

An important principle of modeling is that each model has an associated experimental 

frame within which the model is useful. For example, consider a model of spacecraft 

motion for interplanetary travel. A model that is based on Newtonian principles has an 

associated experimental frame that restricts the speed of the spacecraft to a small fraction 

of the speed of light, c. For predictions of the position of a spacecraft that travels at a 

relative velocity greater than 0.1 c, we should not apply a Newtonian-motion model, since 

velocities greater than a small fraction of c are outside the model’s experimental frame, and 

the model would make inaccurate predictions. A kinematic model that includes relativistic 

effects has an experimental frame that includes spacecraft velocities that approach c [Sears, 

1964]. 

We cannot expect a model to be accurate outside the experimental frame for which it was 

designed. The description of the experimental frame for a model is as important to specify 

as is the structure of the model itself [Zeigler, 1984]. 
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Types of Models

There are at least three types of models [Cellier, 1991]: 

• Conceptual models. These models are cognitive constructs—they are not instantiated 
in a physical form or enumerated in a mathematical form. They are also called mental 
models. 

• Physical models. These models are physical abstractions of a system. Examples in-
clude a balsa-wood miniature scale version of an airplane, a full-scale plywood 
mock-up of the U.S. space shuttle, a ball-and-stick representation of a molecule, and 
a set of branching glass tubes that match the shape and size of the human tracheo-
bronchial tree. 

• Mathematical models. As the name implies, these models are expressed as mathemat-
ical relationships. For example, Maxwell’s equations form a mathematical model of 
electromagnetic fields [Purcell, 1963]. 

The term mathematical model includes discrete-event and continuous-event models, in 

addition to continuous-state and discrete-state models. That is, the state variables and the 

independent variable (typically, time) may be represented either discretely or continuously. 

In this dissertation, I emphasize continuous-state, continuous-time models, as these models 

offer the most powerful method to represent the behavior of physical and biological 

systems. Nevertheless, the issues of model simplification, model complexity, and 

automated design apply to all types of models. 

2.2  Conceptual Models Versus Mathematical Models

We are unable to create mathematical models of systems that include all know interactions 

of all components, because there are innumerable subdivisions of every system. For 

example, a complete conceptual model of the human body would have to represent the 

physical, chemical, electromagnetic, and quantum interactions of all atoms, molecules, 

tissues, organs, and organ systems in the body. We cannot construct such a model, but we 

can generate a conceptual model by thinking about the complete conceptual model. 

A mathematical model of a complex system is a description of certain aspects of a more 

complete conceptual model. Any realizable mathematical model must simplify a 

conceptual model to retain only those components and interactions that have meaningful 
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effects on the model’s predictions. Whether or not parts of a conceptual model will have 

meaningful effects on the predictions of a model depends on the purpose of the model. For 

example, consider the full conceptual model of an automobile. This model includes all 

functional components of the vehicle, such as the engine, drivetrain, suspension, and body. 

Each component has subcomponents that are also modeled at a level of detail that includes 

all known interactions of each part and subpart. 

The conceptual model is arbitrarily complex, since it contains all interactions that we 

understand to occur from the macroscopic level down to the quantum level. Insignificant 

interactions, or inappropriately detailed interactions, are part of the conceptual model. We 

may choose to think about the conditions under which they have a noteworthy effect, but 

we would not include such interactions in any model that we implemented. 

Now consider just the engine component of the conceptual model of an automobile. This 

component includes interactions that lead to no significant effects—for example, the 

interaction of the earth’s magnetic field with ferrous engine parts. Other interactions are 

present at an atomic level of detail, but are more conveniently described at the macroscopic 

level. For example, the effects of temperature on path motions of each iron atom within the 

engine block are present in the conceptual model, but the temperature-dependent properties 

of the iron alloy in the engine block are described more usefully at a macroscopic level. 

The most complex mathematical model of a system that can be implemented is called the 

base model of that system [Zeigler, 1976]. We apply simplifying assumptions to the base 

model to remove unnecessary complexity from the conceptual model. For example, we 

assume that the automobile is to be used in a terrestrial environment that does not include 

intense magnetic fields, so that we can safely ignore the interactions of metal parts with the 

ambient magnetic field. 

A model builder chooses simplifying assumptions that reduce the complexity of the full 

conceptual model to create a less complex base model. For most applications, the base 

model is still unnecessarily complex, and the model builder will choose additional 

assumptions that simplify the base model to create less complex models that are suitable 

for specific tasks. Zeigler refers to these simplified models as lumped models, because these 

models often lump together model variables and parameters in parts of the model that are 
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less relevant to the task at hand [Zeigler, 1976]. For example, in a model of an automobile 

that simulates the effects of motor-vehicle collisions, the detailed internal interactions of 

the engine might be lumped into a single variable that describes the engine mass. 

2.3  Mathematical Models

Mathematical models represent the state variables and a time variable as either discrete or 

continuous quantities. Qualitative mathematical models use a discrete-time, discrete-state 

(or finite-state) representation [Forbus, 1984; Kuipers, 1986]. Models of periodic systems 

often implement a discrete-time variable, so that the periodic behavior is represented once 

per cycle. For example, a biological model of population growth of a species would 

naturally select a discrete time interval equal to the length of the reproductive cycle. Such 

a model would predict the population at the beginning of each cycle as a function of the 

state variables of the previpreviousous cycle [Stewart, 1988]. 

This dissertation addresses the problem of building and selecting mathematical models that 

include continuous-time, continuous-state representations. These dynamic state-space 

models are the most complete, and potentially the most accurate models for the simulation 

of complex systems [Cellier, 1991; Press, 1988]. 

Models that apply arbitrary mathematical descriptions to sets of data, and that are not based 

on the structure of the system, are called empiric models. For example, Draper examined 

several models of the relationship of temperature to the probability of primary O-ring 

erosion for the space shuttle. The only knowledge of the relationship of probability of O-

ring failure to temperature was that the failure probability increased monotonically with 

decreasing temperature. The alternative models were varying combinations of logit, probit, 

and complementary log-log functions of temperature and the second power of temperature 

[Draper, 1993]. As Draper points out, the lack of knowledge of the mechanisms that were 

modeled led to substantial uncertainty about which prediction model would be most 

accurate.1 

1. Draper suggests that the predictions should be integrated across all reasonable models to assess the true 
prediction variance due to uncertainty in model structure. 
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Models that represent abstractions of some or all of the structure of the system are called 

structural models. One advantage of structural models is that knowledge of mechanisms of 

system behavior allows parsimonious models to predict complex behavior [Cellier, 1991; 

Zeigler, 1976]. A more powerful reason to prefer structural over empiric models is that 

inferred values for model parameters that are unmeasured may provide insight into the 

mechanisms of a system.

For example, the multicompartment model of iron metabolism represents an abstraction 

based on knowledge of the metabolic pathways of iron absorption from the intestines, 

incorporation into hemoglobin, and elimination through the reticuloendothelial system 

[Franzone, 1982]. Inferred values for the model parameters that specify the rate of 

elimination of iron are a direct measure of the activity of the reticuloendothelial system. 

These inferred features of iron metabolism allow accurate classification of alternative types 

of disorders of hemoglobin metabolism [Barosi, 1985]. 

2.4  Space of Models

The space of possible models has multiple dimensions: scope, domain, granularity, and 

accuracy [Weld, 1992]. The scope of a system refers to the size of the list of observable 

variables. An automobile is a system with a scope that is larger than that of an internal 

combustion engine. We should not choose to develop a model that has a larger scope than 

does the system under consideration. The domain of a model is the set of variables from 

the system that the model includes. The terminologies of Weld and Zeigler are related, in 

that the scope plus the domain together define the experimental frame for a model. 

Granularity , or resolution, refers to the number of levels that the variables in the model 

can have. At one extreme, model variables can be continuous numbers; for example, the 

speed of a spacecraft is often modeled as a real number. At the other extreme, variables may 

be restricted to a small number of values; for example, qualitative models of fluid dynamics 

typically restrict the values for the rates of flow to be either negative, zero, or positive 

[Forbus, 1984]. In between these extremes, semiquantitative approaches offer an 

intermediate granularity [Widman, 1989].
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2.5  Reasoning About Models 

Reasoning about models is a difficult task, because the number of possible models is large. 

Greater accuracy (and complexity) may be essential in certain applications; in others, 

accuracy may be sacrificed to increase simplicity, or to decrease the time taken to evaluate 

the model. As Simon said [Simon, 1990], “Intelligent approximation, not brute-force 

computation, is still the key to effective modeling.” Traditionally, model-building experts 

have hand-crafted simulation models of complex domains to meet the required accuracy of 

a specified task with a minimum of complexity. Expert model builders reduce the 

complexity of the modeling problem by applying assumptions that simplify the modeling 

task. The simplifying assumptions are constraints that reduce the size of the space of 

possible models. Weld points out that the technique of applying simplifying assumptions is 

analogous to the abstraction methods implemented in the fields of planning and search 

[Weld, 1992]. 

A model represents a hypothesis about the behavior of the corresponding system. If the 

hypothesis is true, then the model will predict accurately the system behavior within the 

model’s experimental frame. For example, Meyer and other researchers constructed the 

FERRARI model of lunar gravitation to predict the effects of nonspherical lunar shape on 

stationary orbits of lunar satellites. If the FERRARI-model hypothesis were true, then 

FERRARI would predict the locations of lunar-orbiting satellites, within the accuracy of 

tracking radar observations, during orbits that last greater than 1 year [Meyer, 1994]. We 

can test the validity of the FERRARI-model hypothesis by applying statistical methods to 

observations of lunar satellites. 

Researchers have developed both artificial intelligence (AI) and statistical approaches to 

the selection of models. Statisticians often require models to explain large sets of 

observations when little knowledge of an appropriate model structure is available. Lacking 

prior knowledge of the system structure, statistical model builders apply purely descriptive 

mathematical models to explain the observations. Researchers in the field of AI address the 

opposite problem: They apply only their knowledge of a domain to construct a model; few 

quantitative observations constrain the model. Researchers have not yet combined 

statistical and AI methods to solve model-building problems that are constrained both by 

quantitative observations and by domain knowledge. 
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2.6  The AI Perspective: Automated Modeling

AI researchers have described two approaches to reasoning about model building: selection 

of a model from a predetermined candidate set of models, and composition of a model by 

automated selection of the individual model components. Both AI methods for automated 

modeling perform model selection. These methods perform a search through the space of 

possible models to select a model that has no violated constraints. The constraints are based 

on prior domain knowledge, which the AI methods represent symbolically. The methods 

modify an initial model selection if subsequent observations show that the model makes 

inaccurate predictions. The process of moving from an initial model to a more accurate 

model is called model refinement. 

2.6.1  Model Selection in the Graph of Models 

A logical first step in developing a model-selection method is to organize the models in a 

manner that helps the model search. The graph of models (GoM) is a formalism for 

organizing models that represents graphically the assumptions of each model (see Figure 

2.1). The GoM contains the set of all models, which must be enumerated in advance. The 

nodes of a GoM represent models, and the edges represent the changes in assumptions 

between adjacent models. The GoM was first implemented in PROMPT, a system that 

reasoned about structural design problems [Murthy, 1987]. In PROMPT, modeling 

assumptions were represented explicitly in the form of consistency rules and parameter-

change rules.

2.6.1.1  Consistency Rules

The consistency rules represented the assumptions of the model; they were a set of 

constraints on the system state that had to be satisfied for a model to be accurate. For 

example, a model of fluid dynamics that made the laminar-flow assumption had a 

consistency rule stating that the Reynolds number of all flows under consideration had to 

be less than 2300.2 Consistency rules were specified for each model in the GoM by the 

model builder; they were based on her modeling expertise and domain knowledge.

2. The flow of a fluid is laminar if the Reynolds number is greater than 2300; otherwise, the flow may become 
turbulent. 
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The GoM formulation enabled PROMPT to select models that had valid consistency rules 

(simplifying assumptions), and that were therefore internally consistent—that is, the 

structure of the model was consistent with the observations. If subsequent observations 

invalidated a modeling assumption, then the model was internally inconsistent, and the 

GoM guided a search for an alternative model. For example, if a flow was observed to have 

a Reynold’s number of greater than 2300, then the consistency rule indicated that the 

laminar-flow assumption was invalid. The edge leading from the currently selected model 

that was labeled with the laminar-flow assumption led directly to a model that retracted the 

laminar-flow assumption. 

Figure 2.1  Graph of models. The base model (M0) is the most complex, and is ex-
pected to be accurate in all experimental frames of interest. When simplifying as-
sumptions are valid, one or more less complex lumped models (M1 through M7) also
may be accurate. Arrows are labeled with the names of the simplifying assumptions
that distinguish adjacent models. This GoM is a generalized version of the GoM for
a ventilator-management advisor that is shown in Figure 6.3.
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2.6.1.2  Parameter-Change Rules

Parameter-change rules are a method to implement model refinement in the GoM. In 

Addanki’s formulation, parameters included variables of a model that took numerical 

values.3 Parameter-change rules represented the expected changes in model predictions 

that would occur if a switch were made to an adjacent model in the GoM. For example, a 

GoM for the design of an automobile transmission included two models that differed in 

their representation of the effects of friction. An edge connected the model that included no 

representation of friction to the model that included a characterization of coulomb friction; 

this edge was labeled with a parameter-change rule that concluded what would be the 

effects of switching from the no friction to the coulomb-friction model. The rule stated, “If 

two solid objects are in contact, then moving from the no friction model to the coulomb-

friction model will lead to the prediction of an increased force parallel to the surfaces of 

contact.” 

An internally consistent model was externally consistent if there were no discrepancies4 

between observations and model predictions. If a discrepancy occurred, a model was 

externally inconsistent, and PROMPT attempted model refinement. The parameter-change 

rules suggested an alternative model, for which the rules indicated that the expected effect 

of moving to the alternative would reduce the discrepancy.

Unfortunately, there was no guarantee that the changes encoded in the rules would occur as 

predicted by the model builder. For complex models, the effects of switching models might 

be complex, and might be difficult to describe as a set of simple parameter-change rules. 

Nevertheless, parameter-change rules did perform model refinement for problems in 

various physical domains, including thermodynamics, hydrodynamics, and mechanics 

[Addanki, 1989]. 

3. Note that Addanki’s use of the term parameter conflicts with the definition that I presented in Section 2.2.
4. A common approach is to define an arbitrary minimum discrepancy that must be exceeded before the pro-

gram declares an external inconsistency. The problem of defining the minimal acceptable prediction accu-
racy for an application was not solved by Addanki. 
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2.6.2  Compositional Modeling

The GoM approach searched a set of fully enumerated models. The compositional-

modeling approach overcame the requirement of the GoM to enumerate all models in 

advance, and allowed a search through a much larger space of possible models. 

Compositional modeling applied explicit modeling assumptions to decompose domain 

knowledge into partially independent model fragments, then composed a scenario model 

by collecting combinations of model fragments. Falkenhainer defined each model 

component, or elementary domain model, with a set of assumptions, operating conditions, 

and relationships (either qualitative or quantitative) that the fragment specified when it was 

applied. Each model fragment had an ontological assumption: the ontologies considered 

were contained-stuff, energy-flow, molecular-collection, and mechanics. Falkenhainer gave 

an example of a quantitative scenario model that his method composed to simulate the time-

varying flow of oil among three connected tanks [Falkenhainer, 1991]. 

Compositional modeling assumes that we can build models from a set of elementary 

domain model fragments that are created at different granularities, with different ontologies 

and with different operating regions. More significantly, compositional modeling assumes 

that the interactions among model fragments are well defined and declarable in the form of 

explicit assumptions. For physical systems, this decomposition of component models is 

possible. 

For biologic systems that have a high degree of interdependence among components, and 

that contain many homeostatic mechanisms, this decomposition may be more difficult. For 

example, a compositional-modeling approach to construct a scenario model for the 

cardiopulmonary system might reason about components for the circulatory system and for 

the lungs. These two components are tightly linked, however, as the circulatory system 

passes through the lungs, and a circulatory-model fragment must match the specific 

structural detail of the circulation of blood in the lung-model fragment. It would make no 

sense to compose a model by selecting both a lung component and a circulatory component, 

without a detailed consideration of how the two would work together. In effect, the 

granularity for the components of this scenario model should be the entire cardiopulmonary 

system. 
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2.6.3  Model-Sensitivity Analysis

Both the GoM approach (as implemented in PROMPT) and compositional modeling 

reasoned symbolically with sets of rules that defined circumstances under which models or 

model fragments were accurate to perform model selection. Another approach is to reason 

about alternative models based on only an analysis of model behavior. The task of 

analyzing the effects of switching models is called model-sensitivity analysis (MSA). 

MSA enables a principled resolution of conflicts between observations and model 

predictions. That is, MSA analyzes or evaluates the models under consideration directly, 

and does not rely on a representation of an expert’s knowledge of expected model behavior 

[Weld, 1992]. 

MSA may be accomplished by any of a number of techniques, including symbolic 

reasoning about model structure, numerical analysis of model predictions, and a 

combination of symbolic and numeric techniques. The most direct and conceptually simple 

method to accomplish MSA is to compare symbolically the closed-form solutions of each 

model. Unfortunately, we are unable to find closed-form solutions for many models whose 

structure is defined by complex dynamic constraints. Whenever closed-form solutions are 

not available, numerical simulation will give results for MSA. The numerical solutions for 

MSA apply to only the initial model conditions that were solved, and the solutions may not 

generalize to other initial conditions. However, if the task for model refinement involves 

finding a model to use under a known set of conditions, the numeric solution to MSA may 

be acceptable. 

In general, MSA is difficult, and there is no universal method to perform MSA without 

evaluating the models under all possible initial conditions [Weld, 1992]. 

Fitting Approximations

An intriguing method that makes MSA practical involves restricting the relationships 

among models, so that each pair of models under consideration has a fitting-

approximation relationship. An approximate model is a fitting approximation of a detailed 

model if, as one detailed-model parameter approaches a limiting value, the detailed model 

has behavior that approaches the behavior of the approximate model. For a less complex 
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model Mk and a more complex model Ml, the fitting approximation relationship is true if 

there exists an approximation limit, and a parameter pk+j, such that 

, (2.1)

in which x1, …, xn are the control variables, p1, …, pn are the model parameters, pk+j is the 

fitting-approximation parameter, and k + j ≤ l. 

The concept of fitting approximations is general, and many simplifying assumptions that 

are applied to models can be expressed in the form of fitting approximations. Table 2.1 lists 

several simplifying assumptions and their corresponding fitting approximations for models 

in the domains of physics, hydrodynamics, thermodynamics, electronic circuits, and 

economics. For example, consider a model that describes Hooke’s law 

 , (2.2)

a. Adapted from [Weld, 1992]. 

Table 2.1  Examples of fitting approximationsa. 

Domain
Simplifying 
assumption 

Fitting-
approximation 

parameter

Approximati
on

limit

Physics Inelastic string Hooke’s constant ∞
Physics Massless object Mass 0

Physics Nonrelativistic 
motion

Speed of light ∞

Electronic circuits Constant resistivity Temperature-coeffi-
cient of resistivity

0

Thermodynamics Perfect thermal 
conductivity

Coefficient of ther-
mal conductivity

0

Hydrodynamics Momentumless flow Fluid density 0

Economics Perfect macroeco-
nomic competition

Number of firms in 
Cournot-theory model

∞

Ml x1 … xn p1 … pk … pk j+ … pl, , , , , , , , ,( )
pk j+ limit→

lim Mk x1 … xn p1 … pk, , , , ,( )=

y Ml F kH,( ) F
kh

= =
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in which Ml is a model that predicts the string elongation, y, as a function of force applied, 

F, and Hooke’s constant for the string, kH. 

In the limit, as Hooke’s constant, kH, approaches infinity, the elongation approaches zero, 

and this relatively more detailed model is approximated by the simpler model 

. (2.3)

To discover the effect of switching between models, we perform MSA by taking the partial 

derivative of the detailed-model with respect to the fitting parameter: 

. (2.4)

The partial derivative of the model prediction (y) with respect to the fitting-approximation 

parameter (kH) is negative, so the prediction for y will decrease as kH increases. MSA 

predicts that y will decrease in models that assert the inelastic-string assumption. 

Not all simplifying assumptions can be expressed as fitting approximations. For example, 

for a model of string length as a function of applied force, the simplifying assumption of an 

unbreakable string cannot be expressed as a fitting approximation. A more detailed model 

that has tensile strength as a fitting parameter predicts discontinuous behavior whenever the 

applied force exceeds the minimum breaking tension. As the breaking tension approaches 

infinity, the detailed model predicts discontinuous behavior for forces that approach 

infinity, whereas the simplified model that asserts unbreakable string predicts continuous 

behavior.

Other simplifications that involve approximate computation methods may not be 

represented as fitting approximations. For example, a piecewise-linear approximation of a 

dynamic system cannot be expressed as a fitting approximation, because the number of 

linear-approximating segments is not a parameter of the more detailed model [Sacks, 1988; 

Sacks, 1991]. 

Weld demonstrated the feasibility and the difficulty of MSA by implementing a program, 

called SAM, that performed discrepancy-driven model refinement in a GoM. SAM selected 

y Mk F( ) 0= =

y∂
kh∂

Ml F kH,( )∂
kH∂ 0<=
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models from a GoM of ordinary differential equation (ODE) models, but required that the 

GoM include a corresponding qualitative differential equation (QDE) model for each ODE 

model. Whenever a discrepancy between an ODE model and an observation occurred, 

SAM attempted MSA by simulating each QDE model before and after moving the fitting-

approximation parameters toward their approximation limits. SAM suffered from three 

problems. First, SAM required that the QDE models have unique qualitative behaviors, yet 

most complex QDE models do not meet this criterion. Second, the MSA algorithm was 

incomplete, because SAM applied DQ analysis to the results of qualitative simulations 

[Weld, 1988]. Finally, as Weld described, the tedium of creating linked ODE–QDE models 

precluded an implementation of more than two nodes in the GoM. 

The AI approaches to modeling complex systems involve methods that reason about model 

structure and behavior; these methods combine knowledge of the system with some 

measure of model behavior (or of model-component behavior) to infer the structure of 

models that are accurate within the experimental frame under consideration. By contrast, 

the statistical approach to modeling typically considers only the quantitative behavior of 

alternative models, without considering the effect of model structure on model behavior. 

Statistical methods focus on model selection. 

2.7  The Statistical Perspective: Model Selection 

The classical statistical paradigm assumes that observations are generated by stochastic 

sampling of a known model. That is, the classical paradigm assumes that noisy observations 

of a system under study are the result of stochastic sampling from some model that is 

observably identical to the system. The goal of statistical methods is to discover the 

structure and the parameters of the correct model of a system. This paradigm suggests that 

a correct model exists, even though, “All models are wrong, therefore we cannot proclaim 

a correct one” [Box, 1985]. 

Box goes on to note that, because all models represent abstractions that approximate the 

observed behavior of a system, the issue becomes whether or not a model approximates the 

system well enough to be useful. A model does not have to be correct to be useful. 
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2.7.1  Statistical Model Terminology

A model M has a corresponding state vector Z that includes vectors of parameters, Θ, 

control variables, X, and observable variables, Y. For models that have a steady-state 

solution, model predictions are a function of Θ and X: 

, (2.5)

in which  is the vector of model predictions, and  is the estimate of the vector of 

adjustable model parameters. The subscript i is an index that refers to one model in a set of 

models 

M  ={M0, M1,..., Mk}. 

The difference between an observation of Y and the model prediction  is the error vector 

εi: 

. (2.6)

The vector Θi is a set of free parameters whose values may be adjusted to cause a model to 

predict values for  that correspond as closely as possible to the observations of Y. For 

statistical models, the dimension of a model is the length of Θ. A major challenge in 

modeling a system is to determine the appropriate model dimension from a set of 

observations. 

2.7.2  Model-Selection Criteria: Maximum Likelihood

Builders of statistical models first define a set of alternative models, then apply various 

model-selection criteria to choose a model that most closely reproduces the observations. 

A common method is to evaluate exhaustively a selection criterion for all the alternative 

models, then to select that model with the most favorable criterion. 

Model-selection criteria are related to the concept of model likelihood. The likelihood of 

a model, p(Y | M, Θ), is the probability density that a set of observations, Y, would occur if 

the model, M, and its associated parameters, Θ, were a true representation of the system that 

Ŷi Mi X Θ̂i,( )=

Ŷi Θ̂i

Ŷi

Y Ŷi εi+=

Ŷi
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generated the data. For the case of independent, normally distributed observation errors, the 

likelihood for the ith model is 

, (2.7)

in which  is the ith-model estimate for yj,  is an observation of yj, and σj is the standard 

deviation of the observation errors for yj. The term ∆σ is a small interval that converts the 

normal density function to a point probability; it is often ignored, because it is an arbitrary 

constant. 

This definition of Li assumes that the errors in the observations are independent and are 

normally distributed, and have a known variance. The definition also assumes that the 

observations used to compute the probability of each model are not first used to compute 

the parameters of each model. 

If we take twice the negative logarithm of the likelihood, and rearrange, we obtain 

, (2.8)

which reduces to 

. (2.9)

Ri is the weighted sum of squared residuals for the ith model. The maximum likelihood of 

the ith model, , is the model likelihood evaluated at the maximum-likelihood values of 

its parameters, which occurs when Ri is a minimum. 

Models with a higher dimension are able to explain more features in a set of data than are 

models with a lower dimension. If the dimension of a model exceeds the dimension of the 

system that generated the data, then the additional dimensions of the model will cause the 
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ŷi j
−

σj
 
 

2

j 1=

N

∑=

Lilog
1
2

Ri−=

Li
max



33

model to overfit the data. For example, Figure 2.2 shows the results of fitting a seventh-

order polynomial model to observations of a first-order polynomial system. The seventh-

order polynomial model overfits the data, and makes poor predictions for the behavior of 

the linear system outside the range of observations. 

In general, models will have a greater likelihood ( ) as their dimension increases, as 

long as the dimension of the model is less than the dimension of the data. Models that have 

a dimension that is higher than the dimension of the system that generated the data will 

reproduce the noise in the observations. A model-selection method based on  alone 

leads to selection of models that have an inappropriately high dimension. We would like to 

choose the model with a dimension that matches the dimension of the system that generated 

the data, rather than one that matches the dimension of the data. 

The problem of finding a model that is at the right level of detail to explain fully a set of 

observations without explaining random observation errors has received considerable 

attention in the statistical model-selection literature. A model-selection method that simply 

minimizes –  is unsuitable. Numerous model-selection criteria attempt to modify  

to create a criterion that leads to selection of models that are at the right level of detail. 

An estimate of the maximum likelihood forms the basis of all model-selection criteria, 

because  is an essential measure of the goodness of fit of a model to the observations. 

Measures of goodness of fit of a model to the observations do not necessarily demonstrate 

that a model has good predictive power, but a model that is unable to explain the 

observations is unlikely to make reliable predictions for subsequent observations [Box, 

1985]. 

2.7.3  Statistical Model–Selection Criteria

Numerous statistical model-selection criteria adjust measures of the likelihood to 

compensate for the tendency of higher-dimension models to overfit the data. These 

adjustments are penalty terms that increase in magnitude as the number of free parameters 

increases.

Li
max

Li
max

Li
max Li

max

Li
max
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Many criteria match the pattern of the penalized likelihood criteria (PLC) 

, (2.10)

in which  is the likelihood of the ith model evaluated at the maximum-likelihood 

values of the parameters, mi is the number of fitted parameters in the ith model, N is the 

number of observations, and the penalty terms vary among the various criteria [Sclove, 

1994].
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Figure 2.2  Maximum-likelihood fit of a polynomial model (M7) to observations of
a linear system (S). Data are sampled from the system S = y = 1 + x (shown as dashed
line) with an unbiased Gaussian sampling error of standard deviation σ = 10. Error
bars on the observations show ± 1σ. M7 is a seventh-order polynomial model of
form Mi = y = a0 x0 + a1 x1 + a2 x2 +...+ ai xi, i = 0, 1,..., N – 1. The best fit of M7 to
the observations is plotted as a solid line. Although M7 predicts all observations ac-
curately, M7 does not make accurate predictions of the behavior of S beyond the
range of observations (x < 0, x > 9). The minimum sum of squared residuals, Ri, for
fits of the polynomial models Mi to these data decrease progressively as i increases,
until Ri = 0 at Mi = MN. (For i = 0,..., 9, the Ris are 9.76, 7.43, 5.86, 4.6, 3.26, 3.11,
1.15, 0.219, 0.077, 0.000). MN fits the data exactly—and reproduces the random
noise in the observations. 
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Akaike derived the first PLC by applying a maximum-entropy principle that involved 

minimizing the Kullback information measure [Akaike, 1973; Rissanen 1978]. Akaike 

named his selection criterion the Akaike information criterion  (AIC); other researchers 

now apply the term information criterion to model-selection criteria that are derived from 

other, non–information-theoretic approaches. 

The AIC, BIC, MBIC and KIC all have interpretations as measures of the posterior 

probability of a model given the observations (see Table 2.2). An expansion of this posterior 

probability shows the relationships among these criteria. 

2.7.3.1  Expansion of the Posterior Model Probability

Consider the set of mutually exclusive and collectively exhaustive models M  ={M0, M1,..., 

Mk} . Each model Mi predicts a set of observable variables Y. Let the hypothesis that a model 

Mi is correct be denoted Mi
c, 0 ≤ i ≤ k. Then, Mi

c is true if Mi predicts behavior 

indistinguishable from that of the system being modeled. That is, Mi
c is true if and only if 

there exist a set of parameters, Θi such that 

, for all X, (2.11)

a.  All criteria are of the form –2 logLi
max +penalty terms. Li

max is the likelihood of the ith 
model evaluated at the maximum-likelihood estimates of the parameters. | | is the ob-
served information matrix, evaluated at the maximum-likelihood estimates of the param-
eters [Sclove, 1994]. Log is the natural logarithm. 
The criteria are discussed in more detail in Sections 2.7.3.2 – 2.7.3.5, and the penalty 
terms are compared in Figure 2.3. 

Table 2.2  Summary of information criteria.a

Criterion: –2 logLi
max + penalty terms penalty terms

Akaike information criterion (AIC) 2 mi

Bayesian information criterion (BIC) mi log N

Modified Bayesian information criterion (MBIC) mi (log N – log 2π)

Kashyap information criterion (KIC) mi log N + log  

Î

Î

Yc Ŷi Mi Θi X,( ) Y ε−= ==
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where  is the set of the true values of the l observable variables , X is 

the set of u control variables {x1, x2,..., xu}, Y is the vector of steady-state observations 

 that correspond to X, and ε is a vector of random variables. The symbol Y 

represents a vector of observations that correspond to a single setting of the vector of the 

control variables, X. The boldface symbols Y and X represent sets of values of the vectors 

Y and X. 

The idea behind a Bayesian analysis of the model-selection problem is that the ideal model 

to select is the maximum a posteriori (MAP) model—the model that has the highest 

posterior probability of being a correct model. We can compute the a posteriori probability 

that the ith model is correct by applying Bayes’ rule to derive 

, (2.12)

in which C is a scaling constant, equal to . 

The posterior probability is proportional to the product of the prior probability of a model, 

p(Mi
c), and the conditional probability of the data given that the model is correct, p(Y | Mi

c). 

This formula assumes that the models are mutually exclusive and collectively exhaustive, 

so we can determine the value of the scaling constant, C, by setting the sum of posterior 

probabilities to 1. If the models are not collectively exhaustive, the sum of posterior 

probabilities of all models in the set M may be set to (1– r), where r is the probability that 

no model in M  is correct. 

The calculation of p(Y | Mi
c) requires the evaluation of the integral 

, (2.13)

because the parameters of each model are not specified at the time of model selection. 

Laplace’s method leads to an approximate analytic solution of Equation 2.13:

, (2.14)

Yc yc1
yc2

… yc l
, , ,{ }

y1 y2 … yl, , ,{ }

p Mi
c |Y( ) Cp Mi

c( )p Y|Mi
c( )=

1
p Y( )

p Y|Mi
c( ) p Θi |Mi

c( )p Y|Θi Mi
c,( ) Θid∫=

p Y|Mi
c( ) 2π( ) mi /2≅ | Î i |

1/2p Y|Θ̂i Mi
c,( )p Θ̂i |Mi
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in which | | is the determinant of the observed information matrix,5 and  is the vector of 

maximum-likelihood estimates of the parameters [Draper, 1993]. The Laplace method 

assumes only that the likelihood is peaked in the region of the maximum-likelihood value, 

which is true when N is at least of moderate size. The approximation has an error of order 

O(N–1) [Kass, 1993; Draper, 1993]. 

Taking –2 times the natural logarithm of the left- and right-hand sides of Equation 2.14 

gives 

. (2.15)

Rearranging, and substituting  for  gives 

. (2.16)

For large N, , and the effect of the prior parameter distributions is 

overshadowed by the data, so 

. (2.17)

Comparison of Equations 2.16 and 2.17 with the information criteria in Table 2.1 shows 

that different information criteria include different elements of the expansion of the 

posterior probability of a model given the observations. All criteria include the first term 

, but the alternative criteria differ in which terms of Equation 2.16 and 2.17 they 

include in the likelihood penalty. 

2.7.3.2  Akaike Information Criterion

The AIC is – 2logLi
max + 2mi —it sets the likelihood-penalty term to 2mi. The AIC 

approximates the terms logN – log2π (from Equation 2.17) as 2, which is true for sample 

sizes that have N≈50 (see Figure 2.3). The AIC penalty does not increase as N increases; 

5.   is the inverse of the negative Hessian matrix of second partial derivatives of the log likelihood, evalu-
ated at the maximum likelihood estimates of the parameters. 

Î i Θ̂i

Î i

2 p Y|Mi
c( )log− 2 p Y|Θ̂i Mi

c,( )log− | Î i |log− mi 2πlog− 2 p Θ̂i |Mi
c( )log−≅

Li
max p Y|Θ̂i Mi

c,( )

2 p Y|Mi
c( )log− 2− Li

maxlog |Î i |log mi 2πlog− 2 p Θ̂i |Mi
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| Î i |log mi Nlog≅

2 p Y|Mi
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maxlog mi Nlog mi 2πlog−+≅
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so, for larger sample sizes, the AIC tends to overestimate the dimension of a model 

[Hannan, 1981; Shibata, 1976]. To counteract this weakness of the AIC, Bhansali proposed 

to increase the constant 2 in the AIC to 3 or 4 [Bhansali, 1977]. 

2.7.3.3  Bayesian Information Criterion

As pointed out elsewhere, the optimal value for the likelihood-penalty term cannot be 

expressed as a constant [Atkinson, 1980]. Schwarz noted that, under the assumption of 

nowhere-vanishing priors, the log posterior probability of a model asymptotically 

approaches logLi
max – 1/2 mi log N. He ignored terms that were independent of N in the 

expansion of the log posterior probability , noting that, in the large sample limit, 

the effect of these terms vanishes. He suggested using a likelihood-penalty term of mi log 

N for selecting the MAP model. The information criterion based on this penalty term is the 

Bayesian information criterion (BIC). Compared to the AIC, the BIC imposes a larger 

penalty on higher-dimensional models whenever logN > 2 (that is, whenever N ≥ 8). The 

BIC is asymptotically optimal, because, as the number of observations becomes large, the 

dimension of the model selected by minimization of the BIC converges to the dimension of 

the system that generated the data [Schwarz, 1978].

2.7.3.4  Modified Bayesian Information Criterion

The expansion of negative twice the log posterior probability includes a penalty term that 

varies with sample size (mi log N), and a penalty term that is independent of sample size (– 

mi log 2π). Although this second term is asymptotically unimportant, it will have a 

noteworthy effect on the magnitude of the log posterior probability for small and moderate 

sample sizes. Draper suggest that this term should be included in a Bayesian model-

selection criterion, and that its inclusion improves model-selection performance for real 

problems [Draper, 1993]. I call the information criterion with likelihood-penalty terms +mi 

logN –mi log2π the modified Bayesian information criterion (MBIC).

2.7.3.5  Kashyap Information Criterion

Kashyap also considered the expansion of posterior model probability to suggest the 

Kashyap information criterion (KIC). He included in the penalty the logarithm of the 

determinant of the observed information matrix, log |I |, in an effort to improve the small-

p Y|Mi
c( )
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sample performance of the KIC. Unfortunately, in the setting of small sample sizes, the 

estimate |I | is unreliable, which makes the benefit of this penalty term questionable 

[Kashyap, 1982; Sclove, 1994]. 

2.7.3.6  Minimum Description Length Criterion

In the original derivation of the AIC, Akaike evaluated the cross-entropy of the candidate 

models and of the correct model by minimizing the expectation of the differences in the 

Kullback information between the candidate models and the correct model. Rissanen 

pointed out that this approach is biased (that is, the approach is not asymptotically optimal 

as N increases), and proposed an alternative method based on the minimum description 

length (MDL) principle. This information-theoretic approach leads to expressions that 

describe the minimum model dimension that is required to explain the information content 

in a set of observations. 

The MDL principle leads to model-selection criteria that are similar to the criteria derived 

from the Bayesian analysis. For example, for linear autoregressive moving-average 

(ARMA) models, the MDL principle leads to a model-selection criterion of the form 
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Figure 2.3  Comparison of likelihood penalties. I plot the rate of increase of the like-
lihood penalty (as the number of free parameters increases) as a function of the num-
ber of observations, for the BIC, MBIC and the AIC (see Table 2.1). Likelihood
penalty = mi f(N); mi: number of free parameters; N: number of observations; AIC:
Akaike information criterion, for which f(N) = 2; BIC: Bayesian information criteri-
on, for which f(N) = logN; MBIC: modified BIC, for which f(N) = log N – log 2π. 
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, (2.18)

in which the subscript j is the index of the {1,...,mi} parameters Θi. 

2.7.4  Comparison of Information Criteria

The AIC, BIC, and MBIC all set likelihood penalties that increase linearly as the model 

dimension increases. The rate of increase in penalty as the number of fitted parameters 

increases depends on the sample size (N), and varies among the criteria. Figure 2.3 plots 

the rates of increase in penalty for these three information criteria for values of N between 

1 and 200. 

The likelihood penalties of both Bayesian criteria become progressively larger as N 

increases; for very large N, the small fixed difference between them (which is equal to mi 

log 2π) is unimportant, and . Both the BIC and MBIC select a model of 

the correct dimension in the limit, for large N. 

The AIC favors higher-dimensional models than does the BIC for all values of N > 8. 

Simulation studies of the AIC suggest that, for model-selection problems with moderate 

sample sizes, the AIC works well. Figure 2.3 shows that, for N ≈ 50, the AIC and MBIC 

have approximately the same magnitude of penalty terms. These results suggest that the 

BIC favors models with fewer dimensions than are present in the system that generates the 

observations (under the assumption that the prior distribution on the set of alternative 

models is uniform). 

Comparison of Equation 2.18 with Equation 2.16 shows that the selection criterion based 

on MDL principles has a striking similarity to the criterion based on the posterior model 

probability. Under the assumption that the term in the second derivative of the log 

likelihood is ignored, the MDL criterion is identical to the BIC. 
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2.7.5  Prior Probability of a Model 

The information criteria are derived from the posterior model probability, but they ignore 

the prior probability of the models. For large N, the priors are in fact unimportant, and the 

criteria converge on the correct model dimension, as long as the priors are nowhere 

vanishing [Schwarz, 1978]. For smaller sample sizes, the priors may be more important. 

The posterior-probability analysis (as summarized in Equations 2.16 and 2.17) ignores the 

prior distribution; the use of the MBIC for model selection with moderate sample sizes 

should be valid as long as the prior distributions are uniform. 

The use of an information criterion other than the MBIC makes an implicit assumption that 

the prior distribution on the alternative models is not uniform. The following derivation 

shows what the implied assumptions are. 

Taking the natural logarithm of the expression for the posterior probability of a model 

(Equation 2.12) gives 

. (2.19)

If the prior distribution on the models is uniform (the priors are uninformative), then  

is a constant, and 

, (2.20)

in which logCo = logC + logp(Mi
c). 

The information criterion (IC) is an estimate of , so 

. (2.21)

The information criterion is at a minimum for the MAP model if the prior distribution on 

the models is uniform. 

p Mi
c |Y( )log p Mi

c( )log p Y|Mi
c( )log Clog+ +=

p Mi
c( )

p Mi
c |Y( )log C°log p Y|Mi

c( )log+=

2 p Y|Mi
c( )log−

p Mi
c |Y( )log C°log

1
2

IC−=



42

The information criteria described in the previous section delete or add terms in the 

expansion of the log posterior probability of the models: 

 . (2.22)

If the priors on the models are uniform, then the information criterion is not at a minimum 

for the MAP model. Furthermore, if

, (2.23)

then 

. (2.24)

That is, deleting a term from the expression for the information criterion has the effect of 

making the assumption that the log prior is equal to a constant plus the missing term. For 

example, consider the missing terms in the BIC estimate of . The BIC ignores 

the penalty term –mi log2π (see Equation 2.17), which is equivalent to the addition of –mi 

log2π to the log of uniform priors. The use of the BIC to select the MAP model implies that 

the prior probabilities of the models are proportional to . 

Akaike points out that changing the AIC likelihood penalty from 2mi to 4mi has the same 

effect on the log posterior probability as does adding 2mi to the log prior. This change in 

the AIC is equivalent to asserting that the prior distribution is proportional to  [Akaike, 

1979]. The differences among alternative model-selection criteria imply different prior 

distributions for the models. For large sample sizes, these differences in prior distributions 

are unimportant. 

2.8  Effect of Prior Distribution on the MAP Model 

The model-selection criteria presented in Section 2.7 are approximations of a measure of 

the log conditional probability of a model given the observations. As such, these criteria are 
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MAP model-selection criteria only under specific prior distributions for the set of 

alternative models. 

Information criteria that are based on the expansion of log  ignore the contribution 

of the prior distribution ( ) to the posterior probability of a model (see Table 2.1). For 

example, the MBIC includes three terms in the expansion of : 

, (2.25)

but includes no term for the effect of the prior distribution  on the posterior 

probability of a model. 

The contribution of the prior probability to the posterior probability of a model is 

unimportant under two conditions. First, in the case of a uniform prior distribution, the prior 

probabilities of all models are the same, and the prior distribution has no effect on which 

model has the highest posterior probability. Second, if the number of observations is large, 

and if the prior distribution is nowhere vanishing, then the prior has a negligible 

contribution to the posterior probability. That is, as the number of observations becomes 

large, the likelihoods of the incorrect models become small, and the data overwhelm the 

priors [Schwarz, 1978; Akaike, 1979]. The reason the prior must be nowhere vanishing is 

that, whenever the prior for a model vanishes (  = 0), the posterior probability of the 

model vanishes also (  = 0), no matter how large the likelihood is for that model. 

For smaller sample sizes, the prior distribution may have a noteworthy effect on the 

posterior probability distribution for the models, and the model-selection criteria that 

assume large sample sizes do not apply. The prior distribution of the models should be an 

important component of a model-selection criterion when N is small; the addition of prior 

information may allow confident MAP model selection when the likelihoods of the 

alternative models are similar. 
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2.9  Summary and Conclusions 

In this chapter, we discussed two widely differing methods for reasoning about models. The 

AI approach to automated modeling allows for the selection (or the composition) of models 

when no, or few, observations of the system behavior are available. The AI approach 

applies qualitative knowledge of the domain to assess which alternative model is most 

likely to provide an accurate representation of the system. AI methods may consider sparse 

quantitative observations in a model verification step, but provide no method to incorporate 

a large set of quantitative observations in the assessment of the most probable model. 

In the statistical approach to automated modeling, model-selection criteria estimate the 

distribution of probable models from a set of quantitative observations, under the 

assumption that prior knowledge about which model to select is unimportant. That is, a 

major assumption of the statistical perspective is that a sufficient number of quantitative 

observations will specify which model is most likely to represent the system that generated 

the observations. From a Bayesian perspective, the model-selection criteria are 

approximations of the log posterior probability of a model, under the assumption that the 

prior distributions on the models are uninformative. The differences among the criteria are 

equivalent to varied assumptions for the prior distribution on the set of alternative models. 

However, the statistical model-selection criteria provide no method to incorporate explicit 

prior distributions on the set of alternative models in situations where we know what those 

distributions are. 

For modeling complex systems about which we have prior knowledge, and for which we 

have quantitative observations, neither an AI nor a statistical method alone is adequate. For 

example, to find an appropriate model of cardiopulmonary physiology for a patient who is 

in the ICU, we require a method that combines knowledge of the probable underlying 

physiologic abnormalities6 with numerous quantitative observations of the patient state.7 

We should apply AI methods to reason with knowledge of such a complex system and to 

create an explicit prior distribution on the probability that each model will be an accurate 

6. An example of knowledge of underlying abnormalities is a clinician’s bedside assessment that a patient has 
asthma (narrowing of the airways)—which indicates that a model of that patient should include a detailed 
description of the airways. 

7. Examples of quantitative observations of patients in the ICU include the partial pressures of oxygen and 
carbon dioxide in the arterial and venous blood, and the cardiac output. 
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predictor of system behavior. We can then combine this prior distribution with the 

quantitative assessment of model performance, as provided by the statistical model-

selection criteria. In Chapter 5, I present a method that combines AI and statistics 

approaches to define a measure of the benefit of a model (see Section 5.6). 

In the next chapter, I present background work on the VentPlan project that establishes the 

need to apply more detailed and computationally complex models of physiology to 

critically ill patients in the ICU. I then describe a set of such models in Chapter 4, before 

returning to describe a method to select a model that balances the benefit of model accuracy 

with the cost of model-induced computation delay. 
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Chapter 3

Model-Based Ventilator Management

Researchers have implemented numerous approaches to automate the interpretation of 

ICU-patient data and the generation of treatment advice. In this chapter, I review these 

approaches, present background on the use of mathematical models of physiologic systems, 

and then describe an automated ventilator-management advisor (VMA), called VentPlan, 

that assists the monitoring and care of patients who are treated with a ventilator in the 

intensive-care unit (ICU). The VentPlan prototype demonstrates the need to incorporate 

more detailed physiologic models in a real-time ICU program. The need to incorporate 

computationally complex physiologic models in an improved VMA led me to develop the 

method for the dynamic selection of models under time constraints that I shall present in 

Chapters 5 and 6. 

3.1  Quantitative and Qualitative Methods for Interpretation of ICU Data 

Numerous techniques have been developed to interpret the data collected in ICU 

[Gravenstein, 1983]. These techniques are derived from different problem-solving 

approaches that have been applied to medical decision-making problems [Shortliffe, 1979]. 
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Numeric methods interpret quantitative observations, such as the arterial partial pressure of 

oxygen, but cannot easily incorporate qualitative observations, such as “the patient has 

pneumonia.” For example, Coleman and colleagues applied a purely numeric method to 

abstract, from 11 cardiovascular and metabolic measurements, a state-space vector that 

classified a patient’s physiology. Although this classification led to estimates of the 

probability of survival, the classification was unable to incorporate other qualitative 

observations [Coleman, 1990]. 

To take advantage of qualitative information, ICU-data interpretation programs require 

some form of symbolic or qualitative representation. Several programs included qualitative 

information in the interpretation of patient data by applying rule-based symbolic models. 

For example, VM interpreted cardiovascular and ventilator measurements to make 

recommendations for changing the settings of the ventilator [Fagan, 1984], and VQ-

Attending provided critiques of suggested changes in settings of a ventilator [Miller, 1985]. 

These programs recognized specific situations in which they could make recommendations 

for incremental changes to the ventilator settings. These changes were incremental because 

the programs were unable to predict quantitatively the effects of ventilator settings. The 

models implicit in these programs were not able to resolve situations in which conflicting 

evidence suggested opposite courses of action. 

Models to Support Ventilator Management

Automated methods that monitor the physiologic status of patients in the ICU must reason 

about, and respond to, changes in numerous observable patient variables—such as cardiac 

output, airway pressure, systolic and diastolic blood pressures, heart rate, and arterial and 

venous partial pressures of oxygen and carbon dioxide. Alternative approaches to 

physiologic modeling may represent these entities either as discrete variables or as 

continuous variables. 

Discrete Versus Continuous Model Variables

Rule-based, protocol-based, and qualitative-model–based approaches to reasoning are 

discrete methods, because they represent the physiologic state of patients with a discrete 

representation for each variable. Discrete methods interpret the values for each variable as 

one of a small number of discrete states, such as “high,” “normal,” and “low.” Discrete 
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methods also recommend actions as discrete changes in the values of one or more of the 

control settings (control variables) of the ventilator. For example, a discrete method might 

recommend the actions “increase the fraction of inspired oxygen” and “decrease the 

volume of each breath.” 

Researchers developed qualitative models of physiology to predict future changes in 

physiologic state, but found that the qualitative-modeling methodology was not suitable for 

the prediction of changes in state of a physiologic system [Kuipers, 1985; Uckun, 1993]. 

The problem that a discrete representation of the physiologic state of ICU patients causes 

is that the number of possible combinations of discrete states of the observable patient 

variables is large.1 This combinatoric problem is made worse because the categories for 

each variable depend on the context in which we interpret the observed variables. For 

example, an elderly patient who has atherosclerosis may have higher-than-average systolic 

blood pressures, which value we should consider “normal” for her. If the same patient were 

to develop a cerebral infarction (stroke), then we would expect her to have an even higher 

blood pressure, and that high value would be normal in that situation. In practice, the 

circumstances of the patient define a context that sets the range of values for the discrete 

categories of each variable. 

Protocols for ventilator management provide recommendations for discrete changes in 

ventilator settings based on discrete variables that describe a patient’s physiology. For 

example, a protocol might indicate that, in a stated context, “If PaO2 < 55 mm Hg, then 

increase FIO2 by 0.05”). The large number of possible discrete patient contexts makes the 

number of combinations of discrete physiologic variables enormous. Nevertheless, Morris 

and colleagues developed computer-based protocols for adjusting the ventilator for patients 

who have adult respiratory distress syndrome (ARDS); these protocols appears to provide 

improved care for such patients [Thomsen, 1989; Sittig, 1989; Morris, 1994]. The success 

of the protocol-based approach to ventilator management demonstrates the problem of the 

combinatorics of multiple contexts—a protocol applies to the management of only a single 

observed variable for a narrowly defined group of patients who suffer from one 

pathophysiologic problem [Henderson, 1991; East, 1992]. 

1. For n variables that may take on one of m states, there are  possible combinations of states. Nine ob-
servable variables plus four control variables, with three states per variable, results in 2197 combinations. 

nm
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A fundamental difficulty with protocol-based management of ventilator settings is that 

protocols hide the underlying knowledge on which they base their recommended 

treatments. Protocols that guide medical treatments suffer from additional disadvantages: 

They are labor intensive to create, they may contain internal inconsistencies, and they may 

become obsolete as soon as new information or new modalities of therapy become 

available. 

To reason about the effect of changes in ventilator settings, a VMA should implement 

models that make accurate, quantitative, patient-specific predictions of the effects of 

alternative settings of the ventilator. Only mathematical models that include a continuous 

representation of their variables can make such predictions. In the remainder of this chapter, 

I describe VentPlan, an ICU application that is based on a quantitative mathematical model 

of cardiopulmonary physiology. 

3.2  VentPlan: A Prototype Ventilator-Management Advisor2

VentPlan is a prototype VMA that interprets physiologic measurements of patients in an 

ICU who are being treated with a ventilator, and recommends settings for four controls of 

the ventilator: fraction of inspired oxygen (FIO2), tidal volume (VT), ventilator rate (RR), 

and positive end-expiratory pressure (PEEP). VentPlan calculates recommended settings 

for the controls of the ventilator by evaluating the predicted effects of alternative ventilator 

settings. 

VentPlan relies on a physiologic model to interpret clinical observations and monitored 

data, and to predict the effects of alternative treatments. VentPlan implements a model that 

is simplified, to minimize the computation-time delay resulting from repeated model 

evaluation. The real-time requirements of ICU-patient care impose a limit on the 

computation time that is available for a VMA’s physiologic model to make predictions. 

During a single cycle of data analysis, VentPlan evaluates its mathematical model over 

1000 times. If a single evaluation of VentPlan’s model were to take 1 second of computation 

2. VentPlan was developed by numerous researchers at Stanford University’s Section on Medical Informat-
ics: Geoffrey Rutledge, George Thomsen, and Brad Farr, with the assistance of Lawrence Fagan, Lewis 
Sheiner, Jeanette Polaschek, Maria Tovar, Richard Peverini, Michael Kahn, and Ingo Beinlich. Much of 
the work described in this chapter has been presented elsewhere [Rutledge, 1989; Rutledge, 1990; Rut-
ledge, 1991; Rutledge, 1993a; Thomsen, 1989; Farr, 1989; Tovar, 1991]. 
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time, VentPlan would require 10 minutes to complete a cycle of data interpretation and 

ventilator-setting recommendation. In order to achieve a response time of less than 2 

minutes, we implemented a simplified model—one that represents only fundamental 

physiologic principles—as a first step.3 

VentPlan demonstrates that a quantitative physiologic model can form the basis of an 

intelligent ventilator monitor, and, in so doing, highlights the need for accurate, patient-

specific models that are computable within the time constraints of ICU-patient problems. 

VentPlan motivates us to ask: How can an automated system find a model that contains 

sufficient detail to explain a patient’s physiologic abnormalities accurately, and that also is 

simple enough to make predictions within the time available? The performance of 

VentPlan’s physiologic model gives us a reference against which we can evaluate more 

detailed models that impose longer computation delays to calculate treatment 

recommendations. 

3.3  VentPlan Architecture

VentPlan has four components (see Figure 3.1): 

1. A belief network calculates probability distributions of shared physiologic model pa-
rameters from qualitative inputs (such as “pulmonary edema is TRUE”) and from 
semiquantitative inputs (such as “the central venous pressure is high {10 to 25 cen-
timeters of water}”).

2. A mathematical-modeling module implements a quantitative model of the circulation 
of oxygen and carbon dioxide. This physiologic model predicts the effects of alter-
native ventilator-control settings, and allows VentPlan to search for the settings that 
optimize the patient’s predicted respiratory status. The mathematical-modeling mod-
ule combines quantitative patient observations with probability distributions calcu-
lated by the belief network to estimate the patient's physiologic parameters, which 
makes the model predictions patient specific.

3. A plan evaluator ranks therapy plans (proposed ventilator settings) and their predict-
ed effects, based on a multiattribute value model. 

3. The real-time constraint for computation of a new recommended action varies as a function of the patient’s 
rate of change in physiologic state. VentPlan makes the assumption that a response within 2 minutes of the 
occurrence of new observations will satisfy this constraint. 
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4. A graphical interface displays the monitored data from which the patient-specific 
physiologic parameters are estimated, shows the current and recommended ventila-
tor settings, and allows the user to interact with the mathematical model to simulate 
alternative ventilator settings.

Continuous
data

Discrete
data

Message to
user

Recommended settings

Unmeasured-
parameter prior

distributions

Belief network

Value
model

Mathematical-modeling
module

Empirical
Bayes’

estimator

Mathematical
model Values

Predictions

Figure 3.1  VentPlan architecture. Shadowed rectangles show the relationships of the
belief network, plan evaluator, and mathematical-modeling module. Arrows show the
flow of information among these components during each cycle of data interpretation.
Initially, discrete data (such as the diagnosis) and numeric data not included in the
mathematical model are given to the belief network for evaluation. The belief network
converts the numeric data to categorical values, then evaluates the network to calcu-
late probability distributions for the unmeasured parameters of the mathematical
model. The empirical Bayes’ estimator combines these prior distributions with other
numeric data, such as the arterial blood-gas report, to estimate the physiological mod-
el parameters. The mathematical model simulates the effects of possible ventilator
settings and the plan evaluator ranks the settings. Adapted from [Rutledge, 1990, p.
785].

VentPlan
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3.3.1  Belief Network

Other researchers have demonstrated the usefulness of belief networks to solve medical 

problems, including hematopathologic disease diagnosis [Heckerman, 1989], 

electromyogram interpretation [Andersen, 1989], and anesthesia monitoring [Beinlich, 

1989]. We use a belief network, called VPnet, to calculate probability distributions for the 

set of shared physiologic model parameters.4 VPnet represents knowledge of 

pathophysiologic disease states in a causal probabilistic framework. The assumptions of the 

belief network—the assertions of conditional independence—are represented explicitly in 

a graphical structure. The network structure resolves conflicts in the inputs by combining 

evidence in internal nodes to assess the distributions on the parameter nodes. These 

parameter-node distributions are then used by VentPlan’s mathematical-modeling module 

during the parameter-estimation procedure. 

 

Figure 3.2  VPnet. The belief network represents causal relationships with diagnosis
nodes, model-parameter nodes (intermediate nodes) and observation nodes (mea-
sured-variable nodes). CVP: central venous pressure; LVEDV: left-ventricular end-
diastolic volume; PCWP: pulmonary capillary wedge pressure; HR: heart rate; SV:
stroke volume; CO: cardiac output; TPR: total peripheral resistance; : oxygen
consumption; MAP: mean arterial pressure; COPD: chronic obstructive pulmonary
disease. Adapted from [Rutledge, 1990, p. 786]. 

4. The shared physiologic parameters are cardiac output ( ), shunt ( ), deadspace (Vds), oxygen con-
sumption( ), and respiratory quotient (RQ).
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VPnet Structure

VPnet includes seven diagnosis nodes, five monitored data nodes, and seven intermediate 

nodes (Figure 3.2). The diagnoses represented are conditions that commonly affect patients 

who receive ventilator therapy in the ICU. The diagnoses are represented as TRUE–FALSE 

nodes, with prior probabilities based on the distribution of pathophysiologic disease states 

of ICU patients. The intermediate nodes combine the diagnosis with the data from 

hemodynamic monitoring. Four intermediate nodes correspond to parameters of the 

quantitative physiological model; these parameters are the cardiac output ( ), the shunt 

( ), the oxygen consumption ( ), and the deadspace (Vds). Three intermediate nodes 

correspond to physiologic concepts necessary for the interpretation of the hemodynamic 

data, but are not included directly in the mathematical model: these parameters are the left-

ventricular end-diastolic volume, the stroke volume, and the total peripheral resistance. The 

measured-variable nodes correspond to clinical variables that are monitored in the ICU; we 

include in VPnet only those measured variables that are not included in the mathematical 

model. 

For example, inputs to VPnet might be “congestive heart failure TRUE,” “ VT 800 milliliters,” 

and “temperature 35.5° C.” VPnet classifies this tidal volume as “normal,” and this 

temperature as “low.” The corresponding output would be the probability distribution for 

each of the parameters shared with the mathematical model—for example,  4.4 ± 2.3 

liters per minute (mean ± variance), and  180 ± 120 milliliters per minute. 

3.3.2  Communication of VPnet Results to the Mathematical-Modeling Module

VPnet calculates prior probability distributions on the physiologic parameters by 

converting the network's discrete parameter-node distributions to equivalent normal 

distributions. The means and variances of these distributions are passed to the 

mathematical-modeling module for use during the estimation of patient-specific parameter 

values.

3.3.3  Mathematical-Modeling Module

VentPlan’s mathematical-modeling module implements a mathematical model of 

cardiopulmonary physiology. A set of linked first-order differential equations describes a 

Q̇T

Q̇s V̇O2

Q̇T

V̇O2
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parameterized compartment model of exchanges of oxygen and carbon dioxide in the lungs 

and tissues, and of transport of these gases through the body. We derived this model from 

the classic three-compartment model of pulmonary gas exchange [Riley, 1949].

VentPlan calls on the mathematical-modeling module for three tasks:

1. Parameter estimation: We apply the technique of empirical Bayes’ estimation 
[Sheiner, 1982] to adjust the population prior distribution5 of each model parameter 
to obtain an approximate posterior distribution in light of the measured data. The pri-
or parameter distributions are calculated by the belief network. Thus, the estimate for 
a parameter is strongly influenced by the clinical context when the observations do 
not restrict the parameter to a single value. 

2. Prediction: Based on the updated parameter distributions and on the control variables 
(the settings of the ventilator), the patient-specific model predicts the distribution of 
values for each dependent variable of the model for any specified future time. The 
dependent variables are the oxygen and carbon-dioxide partial pressures in each 
compartment. 

3. Optimization: The mathematical-modeling module works with the plan evaluator to 
optimize the control variables. Using the separation principle, and assuming the pa-
rameters are equal to the mode of their posterior distributions, we search for the set-
tings of the ventilator that result in the patient state with the highest expected value, 
as determined by the plan evaluator.6 

3.3.4  Plan Evaluator

The plan evaluator is based on a multiattribute value model that provides a relative ranking 

of plans and of their predicted consequences [Farr, 1989]. The attributes of the value model 

are the proposed FIO2 and PEEP settings of the ventilator, and selected predictions of the 

model. The model predictions used are the arterial partial pressure of carbon dioxide 

(PaCO2) and the O2 delivery. We calculate O2 delivery as the product of  and arterial O2 

saturation (SaO2). We determine a value for each of the attributes using a value function that 

we derived by direct assessment from physicians experienced in ventilator therapy. We 

5. The population prior distribution of each parameter describes the unconditional probability distribution of 
the parameter in the population to which the patient belongs; VPnet calculates this distribution.

6. We set the model parameters to the mode of their posterior distributions to calculate the mode of the de-
pendent-variable distributions. We estimate the variance of the dependent-variable distributions as a func-
tion of the variance of the posterior parameter distributions and of the variance due to unwarranted 
assumptions and model error [Sheiner, 1982]

Q̇T
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weight these values, and then sum them to obtain an overall value for the plan. This value 

assumes that the predictions for an alternative plan are certain. To take into account the 

uncertainty of the model predictions, the plan evaluator calculates the expected value of 

each plan from the distributions for the predictions of each attribute, by making the 

assumption that these distributions are independent. The mathematical-modeling module 

calls on the plan evaluator during the optimization task to give the calculated value of each 

proposed setting of the ventilator. 

3.3.5  Control Algorithm

A control algorithm reads in new data, checks for inconsistent or redundant data, directs the 

belief network and mathematical-modeling module to perform their functions as needed, 

compares the current ventilator settings with the calculated optimal settings, and generates 

text messages for the user based on this comparison. The portion of the control algorithm 

shown in Figure 3.2 describes how patient data are provided to the belief network and to 

the mathematical-modeling module. New data for input nodes in the belief network are first 

compared to their previous values. If any input to the network has a new discrete value, the 

network recalculates the probability distributions of the shared physiologic parameters. 

Note that, because network node values are categorical, a patient observation must change 

substantially to be classified to an alternate discrete value. For example, a measurement for 

the central venous pressure of 5 mm Hg would be classified as “normal,” and would have 

to fall to less than 0 to be classified as “low,” or to rise to greater than 10 to be classified as 

“high.”

A new observation corresponding to a parameter or dependent variable in the 

mathematical-modeling module—such as a new value for the arterial partial pressure of 

oxygen (PaO2)—triggers a call to the mathematical-modeling module to update the patient-

specific model. After each refinement of the patient-specific model, the algorithm calls the 

mathematical-modeling module again to search for the optimal setting. This setting is 

presented to the user as the recommended ventilator setting. The control algorithm 

compares the calculated value of the recommended setting to that of the current setting. If 

the difference exceeds a predefined threshold, a message to the user indicates that VentPlan 

has found a setting that may have significant advantages over the current setting; otherwise, 

a message indicates that the current and recommended settings are similar. VentPlan 
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continuously monitors the stream of patient data, reapplying this control sequence to refine 

the model and to recalculate the recommended settings as new data become available. 

When a change in the ventilator settings occurs, the mathematical-modeling module 

predicts the effect of the new settings. The plan evaluator then calculates the expected value 

of the new settings, and the algorithm compares this value with the values of the previously 

recommended and current settings. A warning is issued if the new settings have a predicted 

value lower than that of the settings in effect; otherwise, the new settings are compared with 

the recommended settings, and a message is posted indicating whether the new settings are 

predicted to be as good as the recommended setting. 

3.3.5.1  Inconsistent Observations

We assume that the underlying physiologic entities represented by the model parameters 

are constant. VentPlan compares each new measurement for a variable or parameter of the 

mathematical model with the calculated prediction interval. If a new measurement is 

outside the model-prediction interval, then VentPlan analyzes the discrepancy as follows. 

If the datum falls outside the physiologic range for that measurement, then it is spurious, 

and VentPlan discards it. If the datum is within the physiologic range, and if no change in 

the ventilator settings has occurred, then either the measurement is in error, or the 

underlying physiologic state has changed over time. Evaluating an unusual observation to 

determine whether or not it is in error is beyond the scope of VentPlan, since multiple 

clinical factors that are not inputs to the system would have to be considered. For example, 

a patient with a sudden, unexpected drop in PaO2 should be evaluated at the bedside for 

clinical evidence that might suggest a pulmonary embolus. 

When an observation is inconsistent, VentPlan posts a notice that the new measurement is 

incompatible with the previous observations, and allows the user to assert that the datum is 

in error or that the patient’s state has changed. In the absence of user input, VentPlan 

proceeds on the assumption that the datum reflects a true change in patient state; it refits the 

model to the recent data, using the prior parameter distributions previously computed. 

Thus, VentPlan discards the previous quantitative observations (at least one of which is 

inconsistent), but maintains the prior clinical context, as computed by the belief network. 
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3.3.5.2  Prediction Errors

The occurrence of a prediction error after a change in ventilator setting indicates that the 

physiologic model is in error. Ideally, a VMA would reason with such prediction errors to 

find a model that more accurately explains the observations. Since we have not yet 

implemented a model-selection mechanism, VentPlan alerts the user to any prediction 

errors, then refits the model to the new observations. Because VentPlan’s model is refit to 

the measurements taken after the change in ventilator settings, it continues to match the 

observed behavior. The model predicts accurately the effect of small changes in ventilator 

settings, however, so it should continue to predict the correct direction— if not the correct 

magnitude—of the optimal ventilator-setting change. 

3.4  The VentPlan Interface 

The VentPlan interface is a monitor panel that displays pulse-oximeter data, arterial-blood 

gas (abg) analysis, and measurements of the , along with the current and recommended 

ventilator settings and a text message interpreting the difference between these settings. A 

graphical display presents the time-ordered patient data on which are based the estimates 

of the physiologic-model parameters, and allows the user to superimpose the model 

predictions on graphs of the data. The user may inspect the model parameters and 

predictions for the model variables in a separate panel. The interface allows users to modify 

the data display, to begin a simulation, or to enter a new diagnosis. The interface mimics 

the control panel of the Puritan-Bennet model 7200 ventilator, and includes the controls for 

adjusting the settings on the ventilator, although we do not allow the user to adjust the 

physical ventilator through the VentPlan interface. 

The user asserts or retracts diagnoses by clicking on buttons corresponding to the diagnoses 

recognized by the belief network. Adding a new diagnosis or retracting a previous 

diagnosis causes a reevaluation of the belief network and a reinterpretation of the patient 

observations. The user can access a patient simulator to explore the effect of adjusting the 

controls of the simulated ventilator: VentPlan will invoke the patient-specific model to 

predict the effects of the ventilator settings on the patient's physiology [Tovar, 1991]. 

Q̇T
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3.5  Implementation

VPnet uses the Lauritzen–Spiegelhalter algorithm for network evaluation [Lauritzen, 

1988]; each evaluation takes less than 2 seconds on the Macintosh IIci. The parameter-

estimation and model-simulation procedures of the mathematical-modeling module are 

implemented with standard numerical techniques [Press, 1988]. The computation time 

required to complete one cycle of belief-network evaluation, parameter estimation, and 

search for optimal ventilator settings varies according to the number of patient-data 

observations and according to the goodness of fit of the mathematical model to the data. We 

limit the maximum duration of this cycle to approximately 2 minutes, by restricting the 

number of steps that can be taken during the parameter-estimation procedure. For the ICU-

patient data that we have evaluated, the cycle duration has been less than 1 minute. 

3.6  Evaluation

The evaluation of VentPlan requires several steps. The first step is to validate each of the 

system components. The second step is to evaluate the architecture for combining the 

components. The third step is to compare the overall program to alternative approaches for 

accomplishing the same task. We have so far performed initial validation of each of the 

VentPlan components, and have examined retrospectively the recommendations that the 

prototype made for postoperative patients in a surgical ICU. 

3.6.1  Validation of the Belief Network

The belief network represents a probabilistic model of how pathophysiologic disease states 

(input nodes) influence physiologic parameters (intermediate nodes). There is no gold 

standard for interpreting the calculated distributions for the intermediate nodes of our 

network. Instead, we rely on subjective assessments of the calculated distributions, as 

determined by our clinical experts. A systematic evaluation of our belief network's 

performance is not feasible, since VPnet has over 400 million possible combinations of the 

states of diagnosis and report nodes. The approach that we took was to identify and evaluate 

smaller regions of the network that are sparsely connected to other regions. We also 

evaluated the network's performance on sets of data corresponding to probable clinical 

scenarios, and on sets of data from real clinical cases. We have presented the results of this 

evaluation elsewhere [Rutledge, 1990]. 
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3.6.2  Validation of the Preference Model

The preference model provides a relative ranking of proposed ventilator settings. The 

model is a valid representation of the expert’s preferences if, for any patient, the ventilator 

setting ranked highest by the model is also the ventilator setting selected as optimal by the 

expert from whom the model was elicited. To test this validity, then, we require a method 

to determine the expert’s optimal setting for a given patient. Since we cannot arbitrarily 

adjust the ventilator while it is supporting a real patient, we instead ask the expert to interact 

with a model of the patient. The model dictates how the simulated patient would respond 

to the ventilator, and the expert adjusts the settings until she is satisfied that they are 

optimal. Note that, if we were to compare the setting ranked highest according to the model 

with that ranked highest by a different expert, or with that ranked highest by a panel of 

experts, then we would be evaluating the interexpert variability in preferences for setting 

the ventilator. 

Farr presented an evaluation of the preference model [Farr, 1989]. He showed that the 

preference model was able to predict the ventilator settings that were considered optimal 

by different assessors, and that different experts preferred the settings that were optimal 

according to their own preference models over the settings that were predicted to be optimal 

by the models that were derived from other experts. 

3.6.3  Validation of the Mathematical Model

We studied the ability of VentPlan’s mathematical model to predict the effects of ventilator-

setting changes that were made routinely during the care of postoperative patients in the 

surgical ICU. We examined retrospectively the records for 10 patients chosen randomly 

from those patients who were admitted to the Palo Alto Veterans Administration Medical 

Center (PAVAMC) surgical ICU over a 2-month period. The procedures that these patients 

underwent were coronary-artery bypass grafting (5), cardiac valve replacement (2), sternal 

rewiring (1), exploratory laparotomy (1), and subdural hematoma evacuation (1). One 

patient recovering from coronary-artery bypass grafting was transferred to the surgical ICU 

after suffering a cardiac arrest on the ward. 

We analyzed data from the online ICU-data system from the time of admission until the 

ventilator rate was reduced below 4 breaths per minute (nine patients), or the patient 
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expired (one patient). These records include minute-to-minute observations from the 

bedside monitors and from the ventilator. We constructed data files for input to VentPlan 

that included observations of O2 saturation (pulse oximeter), heart rate (electrocardiogram 

monitor), mean arterial pressure (indwelling arterial catheter), central-venous and 

pulmonary-artery pressure (central-venous or Swan–Ganz catheter), and temperature 

(rectal probe). We manually added the observations of the abg analysis and of the cardiac 

output obtained by thermodilution (Swan–Ganz catheter). We supplied the mathematical 

model with a standard set of prior parameter distributions for all cases, and did not 

reevaluate these distributions based on inputs to the belief network. We isolated the 

mathematical model to test its ability to make predictions without benefit of the parameter 

distributions computed by the belief network. The VentPlan predictions had no effect on the 

frequency or magnitude of changes to the ventilator controls, since we analyzed the online 

data record retrospectively. 

We compared the model predictions for PaCO2 and PaO2 with the abg measurements that 

were taken after each ventilator-setting change. We included an observation in the 

evaluation if the time from the ventilator-setting change to the second abg was at least 20 

minutes, and if the time from the abg before the change to the abg after the change was less 

than 3 hours (34 instances). 

The correlation coefficients for predictions of PaO2 and PaCO2 were 0.77 and 0.61, 

respectively. The average prediction errors for PaO2 and PaCO2 were 17.6 and 4.8 mm Hg, 

respectively, and the standard errors for PaO2 and PaCO2 were 23.5 and 6.3 mm Hg, 

respectively. We show a a graph of the predictions of the PaO2 versus the measured PaO2 in 

Figure 3.3.

3.6.4  Evaluation of VentPlan’s Recommended Settings 

We studied 10 patient-data records to compare, each time that the ICU team adjusted the 

ventilator, the recommendation made by VentPlan with the ventilator-setting change that 

was implemented by the ICU team. This set of patient-data records was distinct from the 

set that we used for the validation of the mathematical-model predictions. We found 55 

ventilator adjustments during 355 hours of monitoring of these 10 patients. The ventilator 

changes were made to the FIO2 in 42 cases and to the minute ventilation ( )—either the V̇
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RR or the VT—in 20 cases.7 The average change in FIO2 was 0.10, and the average change 

in  was 24 deciliters per minute. Figure 3.4 shows the distribution of the magnitude of the 

observed ventilator-setting changes. For all patients, the PEEP remained at 5 cms. of water 

at all times.

Of 55 adjustments to the FIO2 that were observed, VentPlan disagreed with the direction of 

the change in only two cases.8 Of 29 adjustments to the minute ventilation (either the VT or 

the RR), VentPlan disagreed with the setting changes made in seven cases. In each case of 

7. The number of setting changes is less than the total of the FIO2 plus  changes, because both the FIO2 
and the  were adjusted at the same time in seven cases.

Figure 3.3  Model predictions versus patient observations. Predictions for PaO2 and
PaCO2 after changes in the ventilator settings are plotted against the subsequent
measurements of PaO2 and PaCO2. The correlation coefficients are for PaO2, 0.77,
and for PaCO2, 0.61. 
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disagreement, VentPlan’s recommendation was to change the minute ventilation so as to 

normalize the PaCO2, whereas the actual change implemented induced an increased 

hypocapnea or hypercapnea. Figure 3.5 shows the relationship of actual changes in FIO2 to 

the changes in FIO2 recommended by VentPlan. 

We have not yet performed a prospective study to evaluate the effects on patient care or 

patient outcomes of having Ventplan recommendations available to the ICU team during 

the ventilator-setting decision-making process. 

3.7  Discussion

VentPlan extends design principles introduced in several system architectures. Like VM 

[Fagan, 1980; Fagan, 1984], VentPlan establishes a patient context that it updates 

8. In one case, for a patient with an elevated PaO2 (492 mm Hg), the ventilator was increased from an FIO2 
of 0.7 to 0.8, whereas VentPlan recommended a decrease in the FIO2 to 0.40. In the other case, for a patient 
with a PaO2 of 93, the ventilator was reduced from an FIO2 of 0.40 to 0.35, whereas VentPlan recommend-
ed an increase in FIO2 to 0.45. 
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Figure 3.4  Distribution of magnitude of ventilator-setting changes. The observa-
tions of 55 ventilator-setting changes are shown.
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continually, using new data as they become available. Current findings are compared with 

explicit expectations generated from this patient context. Abnormal findings trigger an 

error analysis and, if they are not withdrawn, a change of context. A related combination of 

techniques was presented in the planning architecture of ONYX [Langlotz, 1985].

VentPlan exploits the advantages of both quantitative and qualitative techniques: Time and 

nonlinear relationships are handled by the numerical routines of the mathematical model, 

whereas qualitative data are processed by the probabilistic routines of the causal model. 

The mathematical model is, by itself, unable to interpret categorical information about the 

clinical context, and is unable to interpret data measurements for variables that are not 
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Figure 3.5  Proposed versus actual ventilator-setting changes. The recommendations
for the change in FIO2 calculated by VentPlan are plotted against the actual changes
in FIO2 implemented by the ICU team. The outlying point—indicated by an arrow—
corresponds to a patient with an elevated PaO2 and an FIO2 of 0.7, for whom VentPlan
recommended a decrease in FIO2, whereas the ICU team increased the FIO2. Linear
regression equation for these data is 
Proposed change in FIO 2 = –0.08 + 1.48 Actual change in FIO 2. The correlation
coefficient, r, is 0.73. For these data without the one outlying point, r = 0.80. 
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included in it. The belief network solves this problem by converting the diagnosis, and other 

measured variables, into a form that the mathematical-modeling module can use directly. 

We have presented the qualitative and quantitative components of our architecture as 

separate modules communicating through a probabilistic representation of shared model 

parameters. An equivalent perspective is to consider that the belief network and 

mathematical models are complementary views of the same set of physiological processes. 

According to this perspective, the two models are independent, but we can evaluate them 

sequentially to take advantage of the strengths of each (Figure 3.1).

3.7.1  Changes in Patient State Over Time

We assume that the physiologic parameters do not change over time. We do not represent 

or attempt to model changes in physiologic state that occur slowly, so VentPlan’s 

recommended ventilator plan consists of a single recommendation for the setting of the 

ventilator. Until there is a change in the assessment of the physiologic state, the calculated 

optimal setting will remain the same. VentPlan does adjust its recommendation, however, 

as soon as a change is signaled by the monitored data or is suggested by a new diagnosis 

provided to the belief network. If the physiologic state changes slowly, the parameter 

estimates follow these changes, lagging behind the actual values. 

3.7.2  Mathematical-Model Predictions

The model that we have implemented in VentPlan is highly simplified, yet provides 

reasonable prediction accuracy for postoperative ICU patients. The magnitude of the 

recommended changes in ventilator settings is greater than that of the changes that were 

implemented by the ICU team (see Figure 3.5). 

For patients with more complex pathophysiologic abnormalities, we do not expect 

VentPlan’s model to make accurate predictions. Nevertheless, the predictions of VentPlan’s 

model may be sufficiently accurate for small changes in ventilator settings to allow 

VentPlan to make recommendations for smaller changes in settings.9 The effect of adding 

9. Rudowski showed that, given less powerful models and less accurate predictions, a VMA can arrive at the 
optimal settings after making a series of smaller ventilator-setting changes [Rudowski, 1990]. 
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more accurate models to VentPlan would be to allow VentPlan to make recommendations 

for larger changes in ventilator settings, for patients with a wider variety of abnormalities. 

3.7.3  Evaluation of VMA Recommendations

Evaluation of VMA ventilator-setting recommendations is difficult, since there is often 

disagreement among experts as to the optimal course of action for a given patient. As 

Figure 3.5 shows, we demonstrated that the changes in ventilator settings that VentPlan 

recommended correlated well with the changes that were actually implemented by the 

patient-care team. 

3.7.4  Pragmatic Concerns

Quantitative observations in the ICU are subject to multiple sources of observation error. 

For example, pulse oximeter observations of arterial oxygen saturation may be falsely low 

[Gillies, 1993; Oniki, 1993], and charted ventilator settings may differ from the actual 

setting of the ventilator [Gardner, 1991; Young, 1995]. A practical VMA will require a 

more robust mechanism for assessing whether a change in an observation of a physiologic 

variable is explained by a change in the underlying physiology, or represents noise in the 

observation. 

There are numerous obstacles to the successful implementation in the ICU of a VMA such 

as VentPlan. More complex mathematical models would be needed to explain the 

pathophysiologic abnormalities of certain ICU patients. To apply a more detailed model to 

a specific patient, we must specify values for the greater number of parameters of the more 

complex model, even when there are few observations that restrict the parameter values. As 

in VentPlan, a VMA could apply a belief network to provide prior parameter estimates to 

specify parameter values when quantitative observations are unavailable. 

3.8  Summary

Quantitative physiologic models provide automated methods for the interpretation of ICU 

data with a powerful method to integrate multiple observations of ICU patients and provide 

the only method to make quantitative patient-specific predictions of the effects of 

alternative ventilator settings. A ventilator-management advisor (VMA) is a computer 

program that interprets observations of patients in the ICU and makes recommendations for 
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adjustments to the settings of a mechanical ventilator, based on the predictions of a 

quantitative physiologic model. 

VentPlan is a prototype VMA that interprets patient physiologic measurements, ventilator 

settings, and clinical diagnoses by incorporating these quantitative and qualitative data in a 

patient-specific physiologic model. A belief network converts clinical diagnoses to 

distributions on physiologic parameters, a mathematical-modeling module applies a 

patient-specific mathematical model of cardiopulmonary physiology to predict the effects 

of alternative ventilator settings, and a decision-theoretic plan evaluator ranks the predicted 

effects of alternative ventilator settings according to a multiattribute-value model that 

specifies physician preferences for ventilator treatments. VentPlan applies its preference 

model to the current settings and to the calculated optimal settings, and issues a 

recommendation for adjusting the ventilator. 

Although the prototype demonstrates the feasibility of the VentPlan architecture, a VMA 

that is to be applied to the wide variety of ICU patients would have to incorporate 

physiologic models that are more detailed than is VentPlan’s model. In Chapter 4, we shall 

discuss a more detailed physiologic model, called VentSim, that would be suitable for use 

in an advanced VMA, if its computation complexity were not limiting. In Chapters 5 and 

6, we shall see how a dynamic-selection-of-models method allows a VMA to minimize the 

problem of increased computation complexity despite the severe time constraint for 

decision making. 
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Chapter 4

Mathematical Models

of Cardiopulmonary Physiology

Automated methods that provide treatment advice require a model of physiology to assist 

them in the interpretation of ICU-patient data, and to guide them in the selection of 

treatments. VentPlan implements a highly simplified model to make recommendations for 

the ventilator setting for post-operative ICU patients, but VentPlan’s model does not include 

enough detail to predict accurately the responses of many patients to changes in the 

ventilator settings. VentSim is an interactive ICU-patient simulator that incorporates a 

physiologic model to predict the effects of ventilator settings for critically ill patients in the 

ICU. The VentSim model is too complex computationally for use at the inner loop of a 

VMA; however, it provides a reference model against which we can compare the prediction 

accuracy of other, more simplified models. 
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In this chapter, I review research on the development of mathematical models of 

cardiopulmonary physiology (Section 4.1), then review the VentPlan model (Section 4.2), 

and describe the structure and implementation of the VentSim model (Section 4.3). 

4.1  Mathematical Models of Physiology 

Mathematical models are powerful tools for simulating the quantitative time-dependent 

behavior of complex, dynamic systems, such as the human cardiopulmonary system 

[Cellier, 1991]. One of the first mathematical models of cardiopulmonary physiology (the 

physiology of the respiratory and the circulatory systems) was the three-compartment 

model of Riley and Cournand [Riley, 1949]. The conceptual simplicity of this model, and 

its explanatory power, make it a classic model that educators continue to teach to students 

of physiology. Before the advent of digital computers, there was no method to implement 

and test complex mathematical models other than symbolic analysis or graphical analysis. 

Mechanical and electrical analog computer implementations led to qualitative descriptions 

of model behavior, but were limited by their inability to provide quantitative predictions 

[Snyder, 1969; Hill, 1973]. 

With the advent of digital computing devices, numeric simulation of more complex models 

became possible. As the capabilities of digital computing devices increased, larger and 

more detailed research models of physiology were developed [Guyton, 1984]. An ever-

increasing number of researchers have worked to develop new and more detailed models of 

physiologic systems. For example, the size of the research community that is dedicated to 

the subject of physiologic modeling of the respiratory system is reflected by the rate of 

publication of research articles. Figure 4.1 presents observations of the rate of addition of 

articles to the MEDLINE database, from 1966, when the National Library of Medicine 

began indexing articles in biomedicine, to 1993. During this period, the number of research 

articles on the subject of simulation of the respiratory system increased exponentially, 

whereas the rate of addition of articles on all subjects increased only linearly. The data show 

that the rate of addition of articles on this subject has an exponential doubling time of 

approximately 5.0 years. 
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Researchers are now so confident of the faithfulness of their models that they look for 

explanations to unexpected clinical observations through model simulations. For example, 

physiologists had thought that no one could climb to the top of Mount Everest without 

supplemental oxygen. When two climbers reached the summit without supplemental 

oxygen in 1978, West applied a mathematical model to demonstrate how that feat was 

possible [West, 1980].

1970 1975 1980 1985 1990

50

100

150

200

250

300

N
um

be
r 

of
 r

ef
er

en
ce

s

Year

Pulmonary simulation
references per 5 years

All references per hour

Figure 4.1  Rate of addition of new references to MEDLINE. The average rates of ad-
dition to the MEDLINE database of references on the subjects of simulation of the
respiratory system are plotted as points on the solid line. The solid line is the expo-
nential function b + e (Year – 1964)/kt, in which b=2.563 and kt=7.205, which corresponds
to a doubling time of 4.99 years. The rate of addition of all articles to the MEDLINE
database is plotted as a dashed line; note that the scales for the two plots differ by a
factor of 43,800 (total articles per hour versus articles per 5 years). Simulation-related
MEDLINE articles were counted with search statements that found all articles with a
major subject-heading match to the term SIMULATION, and with a subject heading
match to one of the following terms: LUNG, RESPIRAT#, PULMON#. Each point
represents an average of data for the preceding 5 years (for the points plotted at 1974,
1979, 1984, and 1989) or for the preceding 4 years (for the points plotted at 1969 and
1993). 
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Researcher have studied most of the physiologic mechanisms that can be studied directly. 

Physiologists now turn to models to help elucidate the interactions among mechanisms that 

are not amenable to direct observation. To quote Guyton, “probably the most important role 

that can be played by the use of complex mathematical models is to analyze and to 

understand mechanisms that are beyond the attack of presently available direct 

experimental methods” [Guyton, 1984].

Physiologic models fit into one of two classes: (1) comprehensive models that simulate 

interactions and regulatory mechanisms among a set of physiologic organ systems, and (2) 

models that explore, in detail, a restricted set of physiologic concepts. 

4.1.1  Comprehensive Models

Comprehensive models include a wide coverage of physiologic concepts and feedback 

mechanisms from two or more organ systems. An important use of these models is to study 

interactions among physiologic systems [Sun, 1992; Barnea, 1993]. An early and 

influential project in this area was Guyton's study of the behavior of a comprehensive model 

of renal and cardiovascular physiology. His work led to the understanding that long-term 

blood-pressure control is mediated almost entirely by the kidneys [Guyton, 1983; Guyton, 

1991]. 

Physiologists use comprehensive models to teach physiologic concepts to students of 

medicine and physiology. Since the advent of inexpensive desktop computers in the 1980s, 

many teaching models have been developed; examples include models in the areas of 

cardiovascular and respiratory physiology [Dickinson, 1977; Lefevre, 1988], of anesthesia 

treatments [Heffels, 1990; Gaba, 1988; Schwid, 1987], and of ventilator management 

[Petrini, 1986; Boyle, 1991; Gaar, 1991; Rutledge, 1994b].

HUMAN is a remarkably complete microcomputer-based model that allows students to 

perform a variety of physiologic experiments without the concern for the risks and expense 

of animal or human experimentation. In contrast to the research-model goal of absolute 

accuracy and faithful model response, teaching models require a less accurate response. 

The authors of HUMAN state that, in certain areas, they sacrifice model fidelity for 

robustness, at a cost of the loss of faithful transient responses. They suggest that the strong 
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homeostatic mechanisms in the biologic system that they model lead to the appearance of 

reasonable behavior in the simulations [Coleman, 1983]. 

Comprehensive models of physiology contain far more parameters than could be measured 

in any single individual. Model builders attempt to find sets of parameters that cause the 

model to generate realistic or reasonable behavior for a characteristic patient or set of 

patients. The models are tolerant of variations in individual parameter values because they 

represent strong homeostatic mechanisms that the models represent. In effect, the models 

mimic the tolerance to variability that biologic systems demonstrate. An example of this 

biologic tolerance to variability is the fact that an 80-year-old man may have one-half of the 

cardiac output of a 20-year-old man, but not be in heart failure [Guyton, 1984]. 

4.1.2  Detailed Models 

The second class of models explores a restricted area of physiology in detail to study a 

single physiologic mechanism. For example, detailed models of the human airways led 

researchers to insights regarding distribution of airway resistance in normal and diseased 

lungs [Weibel, 1989; Wiggs, 1990], and to a more complete understanding of gas exchange 

in the respiratory system [Tomlinson, 1993]. Researchers have answered a variety of 

questions about the human cardiovascular system by building detailed models of specific 

aspects of cardiovascular physiology.1 

4.1.2.1  Detailed Models of Respiratory Physiology 

Weibel described a reference model for the branching of the airways from the bronchus to 

the terminal bronchioles. This structural lung model predicted the distribution of 

pulmonary ventilation by simulating the behavior of a hierarchical branching structure of 

the airways. Weibel estimated the airway-model parameters by studying postmortem 

human lung specimens. He derived values for the airway-model parameters that are typical 

for human lungs, then answered questions of the form, “If the airways were structured as 

defined by these parameter values, what would be the distribution of airflow?” 

1. Other examples of detailed models of specific aspects of cardiovascular physiology include models of di-
astolic cardiac dynamics [Summers, 1992], counterpulsation [Bai, 1992], arterial-graft effect on cardiovas-
cular function [Helal, 1994], coronary-sinus–blood flow [Schreiner, 1992], increased gravity [Moore, 
1992] and microgravity [Li, 1993]. 
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Wagner described a second example of a detailed research model of the distribution of 

ventilation ( ) and perfusion ( ) in the lungs [Wagner, 1974]. This model, which 

addressed a narrow area of physiology, enabled him to explain the causes of abnormal gas 

exchange in diseases such as asthma, emphysema, hepatic cirrhosis, and others [Wagner, 

1987; Dantzker, 1987; Lee, 1987; Ringsted, 1989; Roca, 1988; Roisin, 1990; Torres, 1989; 

Ballester, 1990; Castaing, 1989].

The method that Wagner implemented—called the multiple inert-gas–elimination 

technique (MIGET)—is based on the fact that inert gases are eliminated from the lungs at 

rates that vary according to two factors: (1) the gas solubility in blood, and (2) the ratio of 

ventilation-to-perfusion in each region of the lungs [Wagner, 1974]. Wagner injected 

patients intravenously with inert gases that vary in their solubilities, then measured the rates 

of elimination of each gas in the expired air. He derived directly, from the MIGET data, 

values for the ventilation to perfusion ratios ( ) for 50 discrete compartments in his 

model of the lungs. He found a discrete distribution of  that caused the model to 

reproduce the MIGET data, although many such distributions existed for any set of data. 

The parameters of Wagner’s 50-compartment model are dramatically underconstrained by 

the MIGET data, because the model has 49 fitted parameters, and only seven observations. 

That is, an infinite number of parameter combinations within a 42-dimensional space would 

explain these data. Wagner implemented conventional least-squares estimation with 

enforced smoothing to compute representative patient-specific parameter estimates. He and 

his colleagues demonstrated that the fitting technique computed a  distribution that 

had similar structure to the average distribution among all possible solutions [Kapitan, 

1987]. 

Lim demonstrated that a statistical model with six lung compartments offered a complete 

description of MIGET data, but he left unanswered the question of whether a smaller 

number of compartments would also explain the inert-gas data [Lim, 1990]. Kaufman, Lee, 

and Patterson demonstrated that, often, thy could reproduce the MIGET data by using a 

three-compartment model that included a shunt compartment plus two lung compartments 

(this structure is similar to that of the VentPlan model). In all cases, they reproduced the 

data by using a four-compartment model that included shunt plus three lung compartments. 

These authors demonstrated that the many-compartment models predicted the same 
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MIGET data for unimodal, bimodal, and trimodal distributions of . For a single set of 

MIGET data, multiple qualitatively different distributions of  for Wagner’s 50-

compartment model were possible, because the parameters of Wagner’s model were 

underconstrained. Lee and colleagues concluded that a four-compartment model offers the 

advantage of a greatly reduced number of parameters whose values are determined 

uniquely by available data [Kaufman, 1987]. 

4.1.2.2  Application of Ventilation–Perfusion Models in Clinical Practice

Physicians do not routinely perform MIGET studies on patients in the ICU, so 

measurement of  distributions are not readily available for patients who receive 

ventilator treatment. Measurements of the partial pressure of arterial oxygen and carbon 

dioxide (PaO2 and PaCO2) are available as a matter of routine for ICU patients, and are 

usually obtained after a change in the ventilator settings. Lee and colleagues demonstrated 

that the observations of PaO2 alone at varying FIO2 are sufficient to determine the values 

for the parameters of the four-compartment model [Lee, 1987]. 

Research on models of ventilation and perfusion suggest that an automated method could 

assess the type of gas-exchange abnormality in a patient by fitting the set of observations 

of PaO2 at varying FIO2 to the four-compartment model, to compute a discrete  

distribution that explains the observations. This distribution (a shunt fraction, and blood-

flow fractions to a low  region and a normal  region) provides a quantitative 

estimate of the magnitude of the  abnormality, and allows a the four-compartment 

model to predict the response of the patient to other levels of FIO2. 

4.1.3  Models for a VMA

The architecture for a VMA, as I described in Chapter 3, requires that the VMA fit the 

parameters of a physiologic model to observations from an ICU patient, then simulate the 

effects of alternative ventilator settings during a search for optimal settings. This cycle must 

occur within 1 to 2 minutes in the real-time setting of ICU-patient care. 

A major impediment to the application of more detailed—and more realistic—physiologic 

models in a VMA is the computation-resource limitation imposed by the real-time nature 

of patient-management decisions in the ICU. Highly detailed cardiopulmonary models are 
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too computation intensive for a VMA. For example, Weibel’s model of the airways required 

a lengthy computation to simulate the effects of a single set of model parameters. Another 

difficulty with highly detailed models is that they include parameters that cannot be 

measured, or that are not typically observed in ICU patients. 

A cardiopulmonary model suitable for a VMA must balance the need to include 

physiologic interactions that affect observable variables against the computation-resource 

limitations that are imposed by the time-critical need for treatment recommendations. If 

more complex models are needed to represent a specific patient’s physiologic abnormality 

accurately, then whether that more accurate model will be useful depends on the degree of 

inaccuracy of the less detailed model, and on the computation-time delay that the more 

detailed model would impose on a treatment recommendation. 

Fortunately, to build a VMA, we do not need to implement a model that includes all known 

aspects of physiology. The experiments of the VentPlan project demonstrated that a VMA 

can apply a relatively simple model to interpret observations of ICU patients. An alternative 

approach to controlling the settings of the ventilator demonstrates that a VMA can be 

constructed with models that are even less accurate than is the VentPlan model. In a 

program called KUSIVAR, Rudowski and colleagues implemented linear-regression 

models to predict the changes in oxygen and carbon-dioxide concentrations that occur after 

adjustments in ventilator settings [Rudowski, 1989; Rudowski, 1990]. The authors 

implemented these models within a rule-based expert system that interpreted the 

physiologic context of the patient observations. An evaluation of the ability of these linear 

regression models to predict the PaO2 and PaCO2 revealed a weak correlation of the model 

predictions to the observations. The regression models were unable to find any correlations 

for six of 20 patients studied, and the overall correlation coefficient, r, was 0.28. To apply 

these models, Rudowski and colleagues assumed that there would be feedback observations 

after each small change in settings, so KUSIVAR would track continuously the observed 

physiologic behavior.

The reason for the failure of statistical models seems clear: If a model contains no 

information about the structure of the system, the data must specify the structure of the 

system. In the ICU domain, the data are often incomplete and noisy, so they are not 
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sufficient to define an accurate prediction model. A similar problem plagues recent work to 

define a dynamic state–space model from ICU-data alone [Dagum, 1994].

In the ICU domain, we should include knowledge of cardiopulmonary physiology in a 

prediction model to improve the model’s accuracy. VentPlan represents an initial attempt to 

incorporate this knowledge in a physiologic model. VentSim adds, to the VentPlan model, 

a greater level of detail of physiologic knowledge. 

4.2  VentPlan: A Simplified Physiologic Model

The VentPlan model is a three-compartment model of physiology that describes the 

transportation of oxygen and carbon dioxide through the body, as described in Chapter 3. 

The VentPlan model represents the flow of oxygen and carbon dioxide in a simplified 

circulation, with a single compartment in which gas–blood interactions occur. The model 

makes the rather extreme simplifying assumption that the airways are normal, so all 

imbalances in  distribution are explained with single compartments for gas exchange, 

deadspace, and shunt. 

VentPlan recalibrates its model for each new set of patient observations; therefore, the 

model always predicts the observed patient state, and makes highly confident predictions 

for the effects of small changes in control settings. For patients who have abnormalities that 

the model cannot represent, the prediction accuracy falls as the magnitude of the changes 

in ventilator settings increases.VentPlan provides ventilator-management decision support 

by interpreting a relatively simple patient model. A VMA would be more powerful if it 

were able to make more accurate predictions of the effects of changes in ventilator settings. 

4.3  VentSim: An Expanded Physiologic Model

VentSim is a detailed model of cardiopulmonary physiology that simulates the effect of 

changing the control setting of a mechanical ventilator for ICU patients. Like VentPlan, 

VentSim is a continuous-time, continuous-state model that consists of a set of linked first-

order differential equations that describes the circulation of oxygen and carbon dioxide 

through compartments of the body. 

V̇A/ Q̇
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VentSim incorporates more detailed versions of the ventilator, airways, and circulation 

components of the VentPlan model (see Figure 4.2). As a result of the greater detail in the 

VentSim model, VentSim predicts the effects of a wider variety of physiologic 

abnormalities than does VentPlan. In this section, I describe each of these components in 

detail. In Chapter 6, I show how models that incorporate components from both VentPlan 

and from VentSim are intermediate in their ability to explain diverse physiologic 

abnormalities, and also intermediate in their computation complexity.

4.3.1  Ventilator Component

VentPlan computes the effect of ventilation directly from the ventilator settings, and 

contains no explicit representation of a ventilator. VentPlan computes the continuous 

alveolar ventilation as the ventilator rate times the set tidal volume reduced by the total 

deadspace volume [ ]. By contrast, the ventilator component in 

Figure 4.2  Comparison of VentPlan and VentSim models. Blood carries oxygen and car-
bon dioxide in a circuit, as shown by arrows. VentPlan computes the total alveolar ven-
tilation from the ventilator settings, then divides the ventilation between the deadspace
and a single alveolar compartment (A1) that exchanges gas with a single pulmonary
blood-flow compartment (p1). VentSim contains a simulation model of a volume-con-
trolled positive pressure ventilator that interacts through a series anatomic deadspace
(ad), with three ventilated alveolar compartments: a nonperfused region (physiologic
deadspace, pd), and two perfused alveolar compartments (A1, A2). The distribution of
ventilation among the pd, A1, and A2 compartments depends on the resistance and com-
pliance of each compartment, and varies with the frequency of ventilation. Each venti-
lated alveolar compartment (A1, A2) exchanges gases with a corresponding perfusion
compartment (p1, p2). 
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VentSim explicitly simulates a volume-cycled, constant-flow ventilator. The mechanical 

analog of the ventilator simulation is a rigid bellows with adjustable movement of a 

plunger. In VentSim’s default configuration, the plunger moves at constant velocity, and 

compresses the desired tidal volume during the first part of the inspiration cycle. The 

simulator leaves a short inspiratory hold time after the plunger stops, to allow remaining 

bellows pressure to equilibrate with the airways component.

 

During expiration, the ventilator pressure drops to the value set for positive end-expiratory 

pressure (PEEP), and outflow of air from the patient is limited by a variable outflow 

resistance (retard setting). Sample pressures and airflows during one cycle of ventilation of 

a simulated patient are shown in Figure 4.3. 

Adjustable parameters of the VentSim ventilator allow it to simulate many volume-cycled 

constant-flow ventilators.2 The default configuration for VentSim is for the constant 

mandated volume (CMV) mode of simulation. Differential-equation modeling makes it 

straightforward to adapt the VentSim ventilator component to simulate other mechanical 

ventilators for which a complete description is available.

2. The ventilator-specific parameters include maximum positive pressure, inspiratory hold time, and expira-
tory retard. 
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4.3.2  Airway Component

VentSim’s airway component has four compartments: a series anatomic deadspace, a 

parallel physiologic deadspace, and two alveolar compartments (see Figure 4.2). Each 

compartment has an associated airway resistance and a lung compliance. The airway 

component interacts with the ventilator component to predict the pressures, airflows, and 

volumes of ventilation at each point in the ventilator cycle. VentSim computes the tidal 

volumes for each airway compartment during the simulation, and, when all tidal volumes 

are unchanged during successive ventilator cycles, VentSim detects that the simulator has 

reached a cycling steady state. 

If the two alveolar compartments have different resistance or compliance values, then the 

distribution of ventilation is asymmetric. If the products of resistance and compliance (the 

RC time constants3) of the two compartments differ, then the distribution of ventilation 

varies as a function of frequency of ventilation. 

3. The resonant frequency of a compartment is defined by the compartment’s resistance and compliance. The 
RC time constant is the inverse of the resonant frequency (the period). A driving force at a frequency great-
er than the resonant frequency will be cause less cyclic flow than a similar force at the resonant frequency. 

Figure 4.4  Effect of asymmetric resistance-compliance (RC) relationship on distribu-
tion of ventilation. The continuous line shows the ratio of ventilation in two alveolar
compartments for a simulated patient with asymmetric RC values. The dashed line
shows the constant, symmetric ventilation of the single alveolar compartment of the
VentPlan model. VA1, VA2, ventilation of the A1 and A2 alveolar compartments shown
in Figure 4.2; RR, frequency of ventilation. 
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Figure 4.4 shows an example of the effect of frequency on the distribution of ventilation in 

a simulated patient who has regions of the lungs with asymmetric RC characteristics. As 

the frequency of ventilation changes from 6 to 16 per minute, the ratio of ventilation in the 

two alveolar compartments changes from 1 to 1.4. This effect can be important in 

explaining the response of certain patients to changes in ventilation frequency 

[Weibel,1989]. 

4.3.3  Circulation Component

The circulation component of VentSim has two perfusion compartments (p1, p2) that 

correspond to the two ventilation compartments (A1, A2), in addition to a shunt and a tissue 

compartment (see Figure 4.2). The presence of a second perfused compartment that 

participates in gas exchange allows VentSim to represent asymmetric ventilation–perfusion 

distributions ( ).

The ability to represent asymmetric  is essential if a model is to describe accurately 

the effect of changes in inspired oxygen on the oxygen saturation. For example, for a 

simulated patient with severe asthma, a three-compartment model (such as VentPlan’s) 

underestimates the fall in oxygen saturation as the fraction of inspired oxygen is reduced 

(see Figure 4.5). 

There is a ventilation–perfusion ratio for each of the approximately 3 × 108 alveoli in the 

lungs. Taken together, the ventilation–perfusion ratios form a nearly continuous 

distribution for . The VentSim model provides a first-order approximation to 

asymmetric  by representing the distribution as { , }. 

4.3.4  Oxygen-Content Relationship

The relationship of partial pressure of oxygen (PO2) to oxygen concentration (CO2) is 

nonlinear due to the presence of hemoglobin (Hb) in the blood. Hb binds oxygen avidly, so 

the content of oxygen in the blood is determined by the amount of Hb in the blood. Each 

gram of Hb can bind up to 1.34 ml of O2 at standard temperature and pressure4 (STP). The 

amount of oxygen bound to Hb is modeled in VentSim with the Hill equation [Hill, 1973]. 

4. Standard temperature is 20 degrees Celsius; standard pressure is 760 mm Hg. 
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In addition to the oxygen bound to Hb, there is an amount of oxygen in solution that 

increases linearly as the partial pressure of oxygen increases. 

VentSim models the relationship as total O2 content = Hill O2 content + dissolved O2, in 

which 

,and (4.1) 

. (4.2)

That is, 

, (4.3)
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Figure 4.5  Effect of additional circulation compartments. The dashed line shows the
VentSim model with parameters set to simulate a patient with a ventilation–perfusion
mismatch (a moderate asymmetry in distribution of ventilation to the A1, A2 compart-
ments, and of perfusion to the p1, p2 compartments shown in Figure 4.2). The contin-
uous lines show the VentPlan model as the shunt fraction, fs, varies. Sampled data are
shown as crosses on the dashed line. No value of fs allows the VentPlan model to predict
the observations for PaO2 at all values of FIO2. 
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in which P50 is the partial pressure at which 50 percent of the Hb capacity is bound to 

oxygen, n is the Hill constant (typically, 2.54), Hb is the concentration of Hb in the blood 

(in gm/dl), O2 per Hb is the capacity of hemoglobin to bind oxygen (1.34 ml O2 per gm Hb, 

and O2 per Torr is the amount of oxygen dissolved in blood per unit of partial pressure of 

oxygen (0.003 ml O2 per mm Hg). The relationship of O2 content to PO2 is shown 

graphically in Figure 4.6. 

VentSim models patient-to-patient variations in this relationship with different values of P50 

and n. VentSim does not include explicit models of several factors that influence the 

oxygen-content relationship (such as temperature, pH, 2-3-DPG concentration, and carbon-

dioxide concentration).

To solve the oxygen-content relationship for a PO2 value that corresponds to a given CO2 

value, we invert Equation 4.3. VentSim inverts this relationship numerically by applying the 

Brent method5 to search for the value of PO2 that satisfies Equation 4.3 for a given CO2. 

5. The Brent method (more fully, the Van Wijngaarden–Dekker–Brent method) combines root bracketing, bi-
section, and inverse quadratic interpolation; it is guaranteed to converge if a root exists within the interval, 
and if the function can be evaluated within the interval [Press, 1988] 
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Figure 4.6  Oxygen-content relationship. The oxygen content, in ml O2 per dl of
blood is plotted against the partial pressure of oxygen (in mm Hg). Blood Hb is set
to 13.5 gm/dl. P50 = 37 mm Hg; n = 2.54. The maximum amount of oxygen that can
be carried by hemoglobin is shown as a dashed line (13.5 gm Hb multiplied by 1.34
ml/gm = 18.09 ml O2). At oxygen tensions above 155 mm Hg, the oxygen content
exceeds the total oxygen-carrying capacity of hemoglobin, due to the increasing
content of dissolved oxygen at higher partial pressures of oxygen. 
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4.3.5  VentSim Implementation 

The VentSim implementation is a C program that integrates the difference equations that 

correspond to the differential equations. The full VentSim model has a total of 143 

variables. The key model parameters, control variables, and prediction variables are shown 

in Table 4.1. 

A graphical interface6 allows users to study the behavior of the model by observing the 

effects of adjusting the ventilator under various assumptions about the physiology of a 

patient (Figure 4.7). The user inspects and adjusts model parameters and ventilator settings, 

and then observes the time-varying model predictions. The interface also allows a user to 

enter patient-specific model parameters, or to select a diagnosis from a list to set the model 

parameters to values that are typical for a diagnosis. 

4.3.5.1  VentSim Solution Method

The VentSim model has no steady-state solution, because the ventilator component has a 

periodic, nonlinear driving function. As a result of this cyclic influence of the ventilator 

6. I created the graphical interface for VentSim in NeXTStep, using Interface Builder. 

a. Variables: V, volume; , dV/dt; P, pressure; R, resistance; C, compliance; Q, blood flow; f: fraction; 
, alveolar compartment ventilation; , metabolic rate; RQ, respiratory quotient; QT, cardiac out-

put; fs, shunt fraction; HCO2, serum bicarbonate; Hb, hemoglobin concentration; Vtidal, delivered tidal 
volume; VTset, set tidal volume; RR, set rate of ventilation; FIO2, set fraction of inspired oxygen; PEEP, 
set positive end-expiratory pressure; Pmax, set maximum positive pressure; IEratio, set inspiratory–ex-
piratory ratio. Subscripts: s, shunt; a, arterial; v, mixed venous; ds, total deadspace;, ad, anatomic dead-
space; pd, physiologic deadspace; aw, airway; A1 and A2, ventilated alveolar compartments; p1 and 
p2, perfused pulmonary compartments. 

Table 4.1  VentSim and VentPlan variables.a

Model Model parameters Prediction variables Control variables

VentPlan
, RQ, QT , fs , Vds 

HCO2 , Hb
PaO2 , PaCO2 , pHa

PvO2 , PvCO2 , pHv , 
VTset , RR , FIO2 , 
PEEP

VentSim
, RQ, QT , fs , fp1 , 

Vad , Vpd , Rad , Rpd , 
RA1 , RA2 , CA1 CA2 , 
Cpd , HCO2 , Hb

PaO2 , PaCO2 , pHa , 
PvO2 Pv CO2 , pHv , 
Paw , Vtidal , , 
Qp1 , Qp2 , Qs

VTset , RR , FIO2 , 
PEEP Pmax , IEratio

V̇
V̇A1 V̇O2

V̇O2

V̇A1

V̇O2

V̇A1 V̇A2
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component, VentSim reaches a steady state that is periodic, and there is no single steady-

state solution.To find the model solution, we must integrate the model equations 

numerically. Unfortunately, the VentSim model equations are stiff— an airway component 

with extremely short time constants (due to low resistance and low compliance of the 

anatomic deadspace) interacts with a circulation component that has much longer time 

constants. As a result, numeric integration of the full model requires that we iterate small 

step sizes for long time periods; evaluation of the VentSim model is computation intensive. 

VentSim computes approximate solutions by separating the slow and fast time-constant 

components of the VentSim model. That is, VentSim performs a breath-to-breath 

simulation of the ventilator–airway interaction by integrating the airway and ventilator 

components numerically, using a time step that matches the RC time constant of the 

airways,7 until these components achieve a cycling steady state. At the cycling steady state, 

the observed tidal volumes allow VentSim to calculate an equivalent continuous ventilation. 

VentSim then makes the assumption that the alveolar ventilation is continuous and 

unchanging, to integrate the circulatory component with a longer time step,8 until the 

circulatory component reaches a steady state. This technique is an approximation similar 

to the method described by Widman [Widman, 1989]. 

The VentSim implementation allows users to observe the time course of change in oxygen 

and carbon-dioxide concentrations. If we wish to compute only the steady state of the 

model, then direct solution of the equations that describe the steady state is a much faster 

method. To compute the steady-state solution of VentSim, we find the ventilator 

component’s cycling steady state, derive the equivalent continuous ventilation for each 

alveolar compartment, then solve for the steady state of the circulation component by 

searching for the roots of the equilibrium equations.9 Because of the nonlinearity in the 

relationship of oxygen pressure to concentration, VentSim implements numeric root 

finding to search for the roots of the equilibrium equations, using the Brent method.10

7.  The time step that VentSim applies for numeric integration of the airway and ventilator components is 
1 msec. 

8. The time step that VentSim applies for numeric integration of the circulatory component is 200 msec. 
9. At steady state, for each gas (oxygen and carbon dioxide), the flows into and out of each pulmonary-circu-

lation compartment must be equal, and the sum of the flows must be equal to an amount that is set by the 
metabolic rate and the respiratory quotient. 

10. VentSim also applies the Brent method to solve the inverse of the oxygen-content relationship. 
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Figure 4.7  VentSim interface. The center three windows show (from left to right) the
ventilator controls, the simulator controls, and the simulator results. The button la-
beled “Model” on the center window brings up the top window, in which the user
may adjust the numeric values of model parameters. Buttons on the “Simulator re-
sults” window bring up other windows in the lower part of the screen that provide
additional details or summaries of model predictions. The VentSim model is imple-
mented in the C programming language; the interface is a NeXTSTEP program. 
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Because the ventilator provides a cycling input to the airway component, the full model 

predicts that, as time increases, the variables of the model will not approach a single value, 

but rather will oscillate around average steady-state values. If we assert the assumption of 

continuous ventilation, the model predicts that all variables of the model will reach constant 

steady state values—the average values for these variables during the cycling steady state. 

Table 4.2 compares the computation times for the VentPlan and the VentSim models. For 

the implementation of these models in the C programming language, evaluated on a 

NeXTstation, VentPlan computes steady state predictions in 0.05 seconds, and takes 

approximately 1 minute to fit a set of 10 clinical data points. VentSim computes steady-state 

solutions in approximately 2 seconds, and requires approximately 116 minutes to fit the 

same set of 10 data points. The greater than 100-fold increase in computation time for 

VentSim to fit a set of data, compared to the time required by VentPlan, is due to a 40-fold 

increase in the time per model evaluation, and a three- to four-fold increase in the number 

a. The model evaluation times are the times for the models to compute the effects of a change in ventilator 
settings when the values of all model parameters are known. VentPlan and VentSim perform model 
evaluation by solving for the roots of the steady-state equations (analytic solution); VentSim evaluates 
certain models by doing numeric simulation for 20 minutes of simulated time. The data-set interpre-
tation times are the times that are required to fit each model’s parameters to a set of 10 quantitative 
observations. VentPlan requires approximately 1200 model evaluations to perform this fitting for four 
parameters. The data-set interpretation times for VentSim are based on the assumption that 3600 mod-
el evaluations are required to fit nine model parameters to the set of 10 observations. All times are 
measured with the Unix function getrusage(), running under the NextSTEP-3.2, on a NeXTstation 
(Motorola68040 processor with a clock rate of 25 MHz).

Table 4.2  Model-computation time (seconds).a

Task
VentPlan
(analytic 
solution)

VentSim 
(analytic 
solution)

VentSim 
(numeric 

simulation)

Model evaluation 0.05 1.96 53

Data-set interpretation 60 7,100 190,800
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of model evaluations that are needed to fit the additional parameters of the more complex 

model.11 

4.4  Patient Simulations

The VentSim model is able to represent cardiopulmonary physiologic abnormalities that 

correspond to many common clinical conditions. Table 5.3 lists sets of typical parameter 

values for the VentSim-oxygenation model that correspond to diagnoses that are common 

among patients in the ICU. For example, the diagnosis normal corresponds to VentSim 

parameters that specify a low shunt fraction (fs = 0.05), a nearly equal fraction of blood flow 

in each pulmonary perfusion compartment (fp1 = 0.42, fp2 = 1 – fs – fp1 = 0.43), and nearly 

symmetric values for the resistances and compliances of the two alveolar compartments. 

For the diagnosis asthma, the cardiac output is increased (QT = 75 dl/min), the shunt 

a. QT: cardiac output, in dl/min; fs: shunt fraction; fp1: first pulmonary-compartment fraction; RA1, RA2: 
resistance of first and second alveolar compartments, in cm H2O min/dl; CA1, CA2: compliance of first 
and second alveolar compartments, in dl/cm H2O. The metabolic rate ( ) was set to 2.5 dl/min in all 
cases. 

b. ARDS: adult respiratory distress syndrome 

11. VentPlan fits four parameters to the data (QT, fs, , RQ), whereas VentSim fits nine parameters (QT, 
fs, fp1, , RQ, Rtotal, Rratio, RCratio, Ctotal). See the footnote to Table 5.1 for parameter abbreviations. 

Table 4.3  Characteristic parameter values for the VentSim oxygenation model.a 

Diagnosis QT
(dl/min)

fs fp1 
RA1

(cm H2O 

min/dl)

RA2
(cm H2O 

min/dl)

CA1
(dl/ 

cm H2O)

CA2
(dl/ 

cm H2O)

Normal 50 0.05 0.42 0.075 0.08 0.95 1.0

ARDSb 100 0.4 0.25 0.075 0.08 0.2 0.5 

Pulmonary 
edema

25 0.20 0.35 0.075 0.08 0.95 1.0

Asthma 75 0.10 0.10 0.15 0.5 1.0 1.0

Pulmonary 
embolus

44 0.18 0.24 0.11 0.06 0.8 1.0

V̇O2

V̇O2
V̇O2
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fraction is minimally increased (fs = 0.1), and there is marked asymmetry of blood flow in 

the perfusion compartments and of airflow in the alveolar compartments. 

Figure 4.8 shows the model predictions for the simulation of a normal patient and for the 

simulation of an asthma patient. For these simulations, the FIO2 gradually increased, and, 

at the same time, the RR increased and the VTset decreased, so the minute ventilation 

(product of RR and VTset) remained constant. The figure shows that the arterial oxygen 

pressure is lower and the mean airway pressure is higher for the patient with severe asthma. 

The simulation also shows that, as the frequency of ventilation increases, the rate of 

increase of oxygen concentration falls. This reduced responsiveness to increases in inspired 
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Figure 4.8  VentSim simulation for model parameters that correspond to the diagnosis nor-
mal (left-hand plots) and to the diagnosis asthma (right-hand plots), as specified in Table
4.3. Upper plots show the oxygenation results; lower plots show the mean airway pres-
sures. Ventilator settings that correspond to the crosses are as follows: 
{ FIO2, VTset, RR}={0.6, 12, 6}, {0.7, 8, 9}, {0.8, 6, 12}, {0.9, 4.8, 15}, {1, 4, 18}. 
Abbreviations: see footnote for Table 4.1. 
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oxygen is due to asymmetric VA/Q distribution that occurs at higher frequencies of 

ventilation in this simulated patient who has asymmetric distribution of resistance in the 

airways. 

4.5  Summary

Models of physiology enable us to perform experiments on simulations of physiologic 

systems. From such experiments, physiologists have derived many insights into the 

physiologic mechanisms that underlie homeostatic regulation. Physiologic models can help 

us to interpret the physiologic implications of observations of patients who have abnormal 

physiology, and can allow us to answer what if? questions regarding the response of 

patients to experimental manipulations. 

The VentPlan program—a prototype VMA—demonstrates that a simplified physiologic 

model provides a basis for evaluating the effects, on patients in an ICU, of changes to the 

settings of a mechanical ventilator. The VentSim patient simulator demonstrates that a 

detailed physiologic model can represent a wider range of physiologic abnormalities than 

can the less detailed VentPlan model. Although the model in VentSim is too 

computationally complex for use at the inner loop of a VMA, this model forms a reference 

against which we can compare the performance of models that make simplifying 

assumptions to reduce their complexity. 
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Chapter 5

Model Selection Under Time Constraints

In this chapter, I consider the requirements of a real-time control application, as a 

background for the discussion of model selection under time constraints. I discuss a 

formalism for describing model-based control applications, and then derive the relative 

value of alternative models as a function of their time complexity and of the quality of their 

recommended control actions. 

5.1  Computation-Resource Constraints 

All computer-based applications must compute their results within the computation-

resource constraints of computer memory, rate of computation, and time. In many 

applications, the computation-resource constraints allow the implementation of a solution 

method that provides an exact answer. In other applications, the computation task 

approaches or exceeds the available computation time that the computation machinery 

requires. 
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A model-based application computes a model prediction after some computation delay. 

The length of the computation delay depends on the maximum rate of computation and on 

the complexity of a model’s solution method. For some applications, the tolerable 

computation delay is measured in hours to days, and the computation-resource constraints 

do not limit the solution method. For some problems, the finite resources that are available 

limit the complexity of the solution methods that an application can implement. 

For example, Agogino and colleagues developed a model-based application, called IDES, 

that controlled a robotic manipulator arm for a milling machine. In IDES, a robust auxiliary 

controller implemented a detailed mathematical model that predicted the behavior of the 

manipulator arm. Under certain time-critical conditions, the auxiliary controller was unable 

to compute its recommended control actions within the time available. To maintain real-

time response under all conditions, IDES also implemented an adaptive controller that was 

less complex and less accurate, but that computed a control recommendation in a shorter 

time. In the presence of unexpected destabilizing disturbances, IDES switched from the 

more accurate auxiliary controller to the less accurate adaptive controller, so that IDES 

always computed control inputs before the arm destabilized [Ramamurthi, 1993; Agogino, 

1992]. 

In the setting of limited computer resources, the optimal solution method for a control 

problem reflects a tradeoff of the cost of computing a control action and the benefit of the 

computed action. IDES demonstrated that, under differing conditions, this tradeoff led to 

the selection of differing models for computing the control response. In the IDES system, 

the benefit of the precise control actions that were computed by the auxiliary controller 

were balanced by the cost of the computation delay imposed by the auxiliary controller’s 

model of the robotic arm. Under time-critical conditions, the cost of the computation delay 

imposed by the more accurate auxiliary controller exceeded the additional benefit, and 

IDES preferred the less accurate adaptive controller. 

As another example, consider the problem of the model needed by a VMA such as VentPlan 

(see Chapter 3 for a description of VentPlan). The VMA implements a physiologic model 

to explain a patient’s clinical observations and to predict the effects of alternative ventilator 

settings. When a patient’s condition is relatively stable, the VMA can devote a relatively 

longer computation time to solving a more detailed—and more accurate—physiologic 
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model. On the other hand, if the patient’s condition deteriorates suddenly, then the VMA 

must reassess which model and which model parameters most accurately predict the 

patient’s response to alternative control settings. A highly accurate model will lead to an 

improved ventilator-setting recommendation, whereas a less accurate model will lead to a 

lower-valued recommendation. For patients with complex physiologic abnormalities, only 

detailed models that have a higher computation complexity will explain the abnormalities 

and will make accurate predictions. The value of an improved ventilator-setting 

recommendation from a highly detailed model is offset by the risk of an adverse event—

such as the patient’s death—during a longer computation interval.1 The optimal model to 

select should reflect a balance of the cost of the computation delay and the expected value 

of the ventilator-setting recommendation. 

In the remaining sections of this chapter, I present a formalism for describing model-based 

control problems, then I describe of the effects of computation-time delay on the value of 

the computer-recommended control settings. 

5.2  Prediction Models for Model-Based Control 

A model-based control program applies a model to compute the effects of alternative 

control settings, then searches for settings that maximize a value model. The control 

program compares alternative settings by comparing the value—as determined by a value 

model—of the predicted effects of the settings. For example, VentPlan is a model-based 

control program that evaluates the steady-state effects of alternative settings of a ventilator. 

VentPlan recommends ventilator settings that maximize the value of the predicted state of 

the patient. 

5.2.1  A Mathematical Formulation for Model-Based Control

The vector of prediction variables at steady state is 

, (5.1) 

1. Patients with complex physiological abnormalities are not necessarily unstable (their risk of adverse events 
may be small), whereas patients with easily modeled physiologic abnormalities may be highly unstable. 
The tradeoff of model complexity and model accuracy is critical only for unstable patients with complex 
abnormalities that require highly detailed and computationally complex models for accurate predictions. 

Ŷi Mi X Θi,( )=



92

in which the subscript i refers to the ith model, X is the vector of control variables, and Θi 

is the vector of parameters of the ith-model. 

The model-based control recommendation is 

Xi = , (5.2)

in which  is a value function that provides a measure of the instantaneous 

value of the steady state that occurs with control settings X, as defined by model Mi and 

model parameters Θi. This value function assumes that the model predictions are accurate, 

and that the model parameters are known with certainty. 

If the model is known, but the model parameters are uncertain, then the value function u 

may be replaced with the expected-value function 

. (5.3)

That is,

. (5.4)

Here the integral represents integration over the multidimensional distribution of the 

parameter estimates . 

5.2.2  Assumptions of Model-Based Control

This formulation of a control problem makes several assumptions: 

• There is a model available that provides predictions of alternative control settings with 
no computation delay. 

• The value of a control setting is dependent on only the control setting and the true val-
ue of the current system parameters, . 

• The optimal control setting is the setting that maximizes the expected value of the con-
trol settings, given the current system parameters. 

arg max
X

u X Mi Θi, ,( )

u X Mi Θi, ,( )

Xi arg max
X

E u X Mi Θi, ,( )[ ]=

Xi arg max
X

u X Mi X θ,( ) θ, ,( ) p θ( ) θd
Θ
∫=

Θi

Θs
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Dynamic models predict the trajectory that a system follows after a change in control 

variables (inputs). Physiologic systems (which are homeostatic) reach a steady state for any 

constant input, as long as the system parameters remain fixed. For homeostatic systems, the 

trajectory is less important than the final steady state, and so a control application may 

optimize the predicted steady state without explicitly considering the trajectory. This 

approximation simplifies the computation of the value of alternative control settings. 

System parameters change over time, even though these parameters are modeled as system-

specific constants. Changes in system parameters may occur gradually or suddenly, due to 

influences that are not modeled. This formulation of the control problem asserts that the 

optimal control settings for a system change as the system parameters change. A control 

application can compute the optimal settings by repeatedly updating the system parameters 

and recomputing the control settings. 

The assumption that there is no computation delay for model predictions allows an 

application to compare alternative control settings using an instantaneous value function. 

In the VentPlan prototype, the physiologic model that predicts the effects of alternative 

settings of the ventilator causes a delay of less than 1 minute in the computation of 

recommended control settings [Rutledge, 1993a]. Because no alternative strategies that 

involve longer or shorter delays are available, VentPlan ignores this delay, and compares 

alternative control settings by considering the expected value of the predicted system state 

induced by each control setting, . The function  is the 

value function that describes physicians’ instantaneous preferences for setting the 

ventilator [Farr, 1991]. 

5.3  Control-Setting Strategies 

If a control system has available multiple models that vary in their computation complexity, 

then the choice of alternative models leads to varying delays before the model-based 

recommendations are available, and leads to varying quality of control-setting 

recommendations. Each model computes a different strategy for setting the ventilator. 

A strategy, s, is a sequence of control actions over time; s(t) denotes the control setting that 

is in effect at time t. The strategy that results from the selection of model Mi is 

E ûi X( )[ ] ûi X( ) u X Mi Θi, ,( )=
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, (5.5)

in which ti is the computation delay (the time taken by model Mi to compute Xi), and tperiod 

is the length of time after which the control settings may be adjusted again. That is, the 

strategy si(t) has an initial interval of length ti, during which the control settings remain at 

their previous settings (Xo), then an interval of length tperiod – ti, after a change to new control 

settings at time t = ti. The new settings remain in effect at least until time t = tperiod. 

Alternative models lead to different strategies because each model leads to a different 

recommendation after a different computation time. 

5.4  Value of Control Settings Over Time

We defined u(X) = u(X, Ms, Θs) as the instantaneous value of a control setting. This function 

may reflect an objective value that is based on observable outcomes, or it may represent the 

preferences of experts for the setting of the control variables. For example, the authors of 

the VentPlan prototype assessed the value function by eliciting the subjective preferences 

of physicians for setting the controls of the ventilator for patients in varying clinical states. 

In an application to control assembly-line production, the value function might be an 

observable measure of productivity, such as the number of correctly assembled units per 

time period. 

The instantaneous value function allows the comparison of alternative control settings, but 

does not allow the comparison of alternative strategies. Applications that compute multiple 

alternative control-setting strategies require a method to compare strategies that implement 

higher-value control settings after a longer computation delay with strategies that 

implement lower-value control settings after shorter computation delays. 

One method to compute the value of a sequence of control settings over time is to evaluate 

the probability that the system will make a transition to a lower-valued state during an 

interval of interest. For example, a control application may attempt to avoid a given event 

or combination of events—catastrophes—by taking actions that minimize the cumulative 

probability that one of these events will occur. If an application minimizes the probability 

si t( )
Xo 0 t ti<≤,
Xi, ti t tperiod<≤

=
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of adverse events, the probability that the system will remain in the current state or will 

move to a higher-valued state is maximal. 

Ventilator settings are suboptimal if the settings cause an increased chance that an adverse 

event will occur, compared to some other ventilator setting. For example, ventilator settings 

that allow a patient to have a very low level of oxygen in the arterial blood are suboptimal, 

because low levels of oxygen increase the risk of ventricular fibrillation.2 The risk returns 

to a lower—usually negligible—magnitude for alternative settings that increase the oxygen 

level to normal. Similarly, settings are suboptimal if they cause a high mean airway 

pressure, which increases the risk of developing a tension pneumothorax.3 Optimal 

ventilator settings minimize the risk of adverse events. 

A value function to assess alternative strategies can be based on the probability that an 

adverse event will occur during a time interval of interest. During any short interval, the risk 

per unit time of an adverse event is constant, and depends on the state of the system (as 

defined by Θs),
4 and the settings of the control variables. Let A represent the initial state and 

2.  Ventricular fibrillation (VF) is a chaotic cardiac rhythm in which the heart’s pumping action ceases. 
3. A tension pneumothorax is a collapse of a lung that is accompanied by a buildup of air pressure around the 

lung, which leads to compromise of the blood flow to the heart. 
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Figure 5.1  Value of a control setting over time. The value of a control setting Xo, is
shown as a function of the length of time that the control setting is in effect, for various
instantaneous values, u(Xo). The value decreases exponentially with time. For a u(Xo)
that is close to 1, the decay in value with increasing time is approximately linear. 
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all higher-valued states, and let  represent all lower-valued states of the system. The 

probability that the system will still be in one of the states in A after time t, , is a 

measure of the value of a strategy. That is, the value of the ith-model strategy for the interval 

(0, tperiod) is 

. (5.6)

We can interpret the instantaneous value function, u(X), as a measure of the probability per 

unit time that the system remains in one of the states in A, and then k(X) = 1 – u(X) is the 

rate that a transition occurs from a state in A to a state in . Where convenient, we set our 

unit of time to length tperiod, which calibrates k(X) in units of probability per tperiod. 

The first derivative of  with respect to time is 

. (5.7)

Integrating both sides with respect to time gives

. (5.8)

The solution for p(A, t), when k(X) is a constant, is

, (5.9)

and setting the value of p(A, t) to 1 at time 0 sets the constant term to 0. The value of the 

strategy that sets the control variables to X for time t is 

. (5.10)

Figure 5.1 shows the relationship of the value of a strategy to the computation delay. This 

figure shows graphically that, as u(X) approaches 1, the exponential decay in value is 

approximately linear. Figure 5.2 illustrates the value over time for strategies that have very 

short, intermediate, and very long computation delays. 

4. For the purpose of assigning a value to the state of the system, Θs may include additional parameters that 
would not otherwise be needed in a model that predicts Y. 

A

p A t,( )

v si( ) p A tperiod,( )=

A

p A t,( )

p' A t,( ) k X( )p A t,( )=

p A t,( ) k− X( )p A t,( ) td∫=

p A t,( ) e k X( )t− C+=

v s( ) e k X( )t−=



97

5.4.1  Linear-Value Assumption

The linear-value assumption asserts that changes in value with time are linear. That is, 

under this assumption, the value of a delayed control setting decreases linearly with 

increasing computation time. For control systems in which the objective is to avoid adverse 

events, the decrease in value with time is an exponential decay, as described by Equation 

5.10. However, for small values of k(X) t, the linear function 1 – k(X) t is a close 

approximation of the exponential decay function . In other words, as long as the rate 

of adverse events is small, the linear value assumption holds. Table 5.1 compares e–k to 1 – 

k for values of k from 10–1 to 10–5. For values of k as large as 0.1, the exponential decay 

differs from the linear expression by less than 0.5 percent.
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Figure 5.2  Value over time for strategies with a computation delay. After a computation
delay, ti, the control settings change from the initial values, Xo, to the values that are
computed by the ith model, Xi. The dashed line shows the value over time for a compu-
tation delay of ti=0.2. The upper solid line represents no computation delay (ti=0); the
lower solid line represents a long computation delay (ti>1). The instantaneous values of
the control settings are u(Xo) = 0.2 and u(Xi) = 0.95. 
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The linear-value assumption also applies in other control applications for which the decay 

of value over time is linear for all decay rates. For example, a model-based controller that 

maximizes the rate of a mechanized assembly process has an instantaneous value of a 

control setting that is proportional to the rate of production. In this case, the value of a 

strategy is linear in both time and instantaneous value, because the benefit of a control 

setting is the integral of the rate of production with respect to time. 

When u(X) changes during a time period of interest, the probability of A is the product of 

the probabilities of A for each subinterval during which u(X) is constant. That is, we 

compute the value of a strategy as the product of the values of each interval during which 

the control settings are constant. For a strategy, si, that has a single change in control 

settings from Xo to Xi that occurs at time ti, 

, (5.11)

. (5.12)

5.4.2  Maximum Value of a Control Setting

The maximal value of a control setting, , is the value that the control setting would 

have if there were no computation delay (that is, if ti = 0). From Equation 5.10, 

. (5.13)

For values of u(Xo) that approach 1, k(Xo) approaches 0, and the linear-value assumption 

applies

Table 5.1  Approximation of e-k by 1–k. 

k e–k 1 – k (1 – k)/e–k

0.1 0.905 0.9 0.005 0.995

0.001 0.9990005 0.999 5.0 × 10–7 0.9999995

0.00001 0.99999000005 0.99999 5.0 × 10–11 1.0

e k− 1 k−( )−

v si( ) e
k Xo( )ti−

e
k Xi( ) tperiod ti−[ ]−

=

v si( ) e
k Xo( )ti− k Xi( ) tperiod t

i
−[ ]−

=

vmax Xi( )

vmax Xi( ) e
k Xi( )− tperiod=
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. (5.14)

If we calibrate the k(Xi) in units of time equal to tperiod, then 

. (5.15)

The maximum change in value due to a control setting is 

. (5.16)

For a model Mi that computes a recommended control action Xi, the greatest possible 

benefit of the model is b(Mi), which is the value of the model when the computation delay 

is negligible. 

5.4.3  Cost of Computation Delay

A cost function provides a measure of the decrease in value of the strategy si that results 

from the need to compute the model-based optimal control setting Xi. The full cost of 

computing a model recommendation includes the direct monetary cost associated with the 

computing device and the cost resulting from the model-imposed delay for the computation 

of Xi. I assume that the monetary cost of the computing device is a sunk cost [Keeney, 

1976]. I set the cost of the computation delay to the decrease in value that occurs due to the 

fact that an adverse event might occur during the delay. During the computation delay, the 

control settings remain at Xo, so the value of the strategy decays at a rate k(Xo). The cost of 

the computation delay is the difference between the decay in value that occurs, during the 

computation interval from t = 0 to t = ti, due to the settings Xo, and the decay in value, during 

the same interval, that would occur if the settings Xi were implemented at t = 0: 

. (5.17)

Figure 5.3 plots the cost of computation delay for various values of k(Xi) and k(Xo). This 

figure shows that the cost increases linearly from 0 to 0.05 for a wide range of values of 

k(Xi) and k(Xo). The maximum cost plotted in this figure corresponds to a 5-percent risk of 

vmax Xi( ) 1 k Xi( )tperiod−≅

vmax Xi( ) u Xi( )≅

vmax Xi( )∆ vmax Xi Xo,( )∆ u Xi( ) u Xo( )−[ ] tperiod= =

c ti Xi,( ) e
k Xo( )ti−

e
k Xi( )ti−

−=
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an adverse event during the time interval, which is a large risk to incur for a single interval 

between control-setting adjustments. That is, the linear-value assumption applies even in 

situations where the cumulative risk of adverse events is very high, because the risk per 

interval during which the control settings remain constant is not high enough for the 

exponential decay in value to deviate substantially from a linear decay. 

By the linear-value assumption, 

, (5.18)

and, for a model Mi that computes recommendations Xi after time ti,

 . (5.19)

The cost of delay, c(ti, Xi), increases linearly with the length of the delay, and also with the 

magnitude of increase in instantaneous value of the new control setting. If the current 

setting is close to optimal, the cost of a delay is small. On the other hand, the farther the 

current setting is from the optimal setting, the larger is the cost of a delay. 
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Figure 5.3  Cost of a computation delay. The cost of delay is the difference of two ex-
ponential decays, as defined in Equation 5.17, for a change from an initial decay rate
k(Xo), to a smaller decay rate k(Xi) after the computation delay. Each plot is labeled with
the pair of decay rates as [k(Xo), k(Xi)]. The delay is calibrated in units of tperiod. 
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c ti Xi,( ) k Xo( ) k− Xi( )[ ] ti≅ u Xi( ) u Xo( )−[ ] ti=

c Mi( ) c ti Xi,( )=
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5.4.4  Value Of A Control Strategy

The value of a strategy is (from Equation 5.12) 

, (5.20)

which is closely approximated by 

. (5.21)

For tperiod equal to 1, 

. (5.22)

The first term in the right-hand side of Equation 5.22 is the maximal value of a control 

setting (Equation 5.15); the second term is the cost of the computation delay (Equation 

5.18). Combining Equations 5.22, 5.15, and 5.18 gives: 

. (5.23)

The value of an alternative, model-based strategy is the maximum value of the model’s 

computed control setting reduced by the cost of the computation time that the model 

requires to compute the setting.

A consequence of the linear-value assumption is that the value of a strategy is the integral 

over time of the instantaneous values of the control settings. That is, the value of a model 

selection is 

 , (5.24)

assuming that we select model Mi at t = 0, and the model leads to the strategy si. 

If the strategy si adjusts the control settings once during the interval (0, tperiod), at time ti, and 

if ti ≤ tperiod, then the value of the strategy is 

v si( ) e
k Xo( ) k Xi( )−[ ] ti− k Xi( )tperiod−

=

v si( ) 1 k Xi( )tperiod− k Xo( ) k− Xi( )[ ] ti−=

v si( ) u Xi( ) u Xi( ) u− Xo( )[ ] ti−=

v si( ) vmax Xi( ) c ti Xi,( )−=

v si( ) u si τ( ) Ms, Θs,( ) τd
0

tperiod

∫=
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(5.25)

For u(X) constant, Equation 5.25 gives 

, (5.26)

which is equivalent to Equation 5.22.

Equation 5.24 suggests that a graphical representation of v(si) is the area under the plot of 

instantaneous value versus time. Figure 5.4 shows the graph of instantaneous value versus 

time for strategies that result from the selection of three alternative models. Mideal is a 

hypothetical model that computes the globally optimal control settings, Xs, with no 

computation delay. Mi and Mj are alternative models that require different computation 

times to compute their recommended control settings. The area under the plot of each 

strategy represents the value of the strategy for the interval (0, tperiod). 

v si( ) u Xo( ) τd
0

ti

∫ u Xi( ) τd
ti

tperiod

∫+=

v si( ) u Xo( )ti u Xi( ) tperiod ti−( )+=
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Figure 5.4  Instantaneous value of control settings versus time. The values of the strat-
egies that are computed by Mi and Mj correspond to the areas under the plots of in-
stantaneous value versus time. At t = 0, new observations indicate that the control
settings Xo are not optimal. Model Mi requires time ti to compute its recommended
control settings Xi. A more complex model Mj requires a greater time, tj, to compute
control settings Xj. Mideal is an hypothetical model that computes the optimal control
setting, Xs, with no computation delay. u(X) is the instantaneous value of the control
setting X. tperiod is the length of time after which the control settings will be reassessed. 
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Figure 5.5 shows how the value of a strategies changes as a function of the computation 

delay, for two control settings. The maximum value of each strategy, vmax(s), corresponds 

to the value that the strategy would have if there were no computation delay. As the 

computation delay increases, the controls remain at the original settings for a greater 

proportion of the interval, and the value of the strategy approaches the value of the strategy 

that makes no changes to the control settings. The points labeled Mi and Mj correspond to 

the strategies of Figure 5.4, for which v(si) > v(sj). 

5.4.5  Comparison of Alternative Models 

The value of a model is the value of the strategy that the model computes, v(Mi) = v(si).

From inspection of Figure 5.4, and from Equation 5.22, the difference in value between any 

two alternative models is 

 , (5.27)

. (5.28)

0.2 0.4 0.6 0.8 1

0.92

0.94

0.96

0.98

Figure 5.5  Value of a strategy versus computation delay. The plot shows the effect of in-
creasing computation delay on the change in value of two control settings, Xi and Xj, for
the interval (0, tperiod). vmax(X) is the maximum value of the control setting X, which occurs
when there is no computation delay. The points labeled Mi and Mj correspond to the com-
putation delays of the models in Figure 5.4. 

Computation delay 

Value

Mj
Mi

vmax(Xi)

vmax(Xj)

vmax(Xo)
tperiod0

∆v Mi Mj,( ) ∆v si sj,( ) v si( ) v sj( )−= =

∆v Mi Mj,( ) u Xi( ) u Xo( )−[ ] tperiod ti−( ) u Xj( ) u Xo( )−[ ]− tperiod tj−( )=
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Setting  and rearranging, we obtain

. (5.29)

Now let us consider the strategy si that improves the current settings after time ti, and the 

strategy ssi that, after the same time, sets the control settings to their optimal value Xs. The 

difference in value between these strategies is

. (5.30)

If we believe that the optimal control settings reduce the risk of adverse events to zero, then 

, and

. (5.31)

Similarly, the difference in value between the strategy that is computed by Mi and the 

strategy that is computed by the current model Mo is 

(5.32)

Substituting back , and rearranging, we obtain 

. (5.33)

Finally, we note that the first term in this equation is the difference between the maximum 

values of the computed control setting and of the current control setting, and the second 

term is the cost of the model computation delay. If we define the benefit of a model selection 

to be 

, (5.34)

then the change in value that occurs after selection of a model is the benefit of the model 

selection reduced by the cost of the model:

. (5.35)

ti tperiod ti−=

∆v Mi Mj,( ) u Xo( ) ti tj−( ) u Xi( )ti u Xj( )tj−+=

∆v ssi si,( ) u Xs( ) u Xi( )−[ ] ti=

u Xs( ) 1=

∆v ssi si,( ) 1 u Xi( )−[ ] ti k Xi( )ti= =

∆v Mi( ) ∆v Mi Mo,( ) u Xi( ) u Xo( )−[ ] ti= =

ti tperiod ti−=

∆v Mi( ) u Xi( ) u Xo( )−[ ] tperiod u Xi( ) u Xo( )−[ ] ti−=

b Mi( ) vmax Xi( ) vmax Xo( )−=

∆v Mi( ) b Mi( ) c Mi( )−=
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With this analysis of the value of a model selection, we now consider the problem of how 

to select models for a real-time control application in which the time constraint limits the 

complexity of the optimal model. 

5.5  The Optimal Model Under a Time Constraint 

A model-based control application requires a model to predict the effects of control settings 

during a search for the optimal settings. If there is time to compute the base model5 and all 

less complex models, an application can compare the value of the recommendations made 

by each model to find the optimal model Mopt:

. (5.36)

Equivalently, 

. (5.37)

That is, to calculate the model that represents the optimal tradeoff of computation-time 

delay and value of recommended action, we must first compute the recommended actions 

of all models. The optimal model is the model that we would have selected initially, if we 

had known the computation delays and the relative values of model-based 

recommendations for all alternative models. 

Under a time constraint, we might attempt to search among the models until we found a 

model with a high value. Unfortunately, to compute a value for a single model, we must 

apply the reference model, Ms, to predict the effects of Xi. If we were able to evaluate the 

reference model in real time, we would apply the reference model to compute the optimal 

settings, and would not need to search for a simplified, approximate model. 

The definition of the optimal model in Equation 5.37 is not directly helpful if we wish to 

determine dynamically the optimal model for a real-time control application. However, we 

can apply the definition to compute the optimal model after the fact to assess the 

5. As defined in Section 2.2, the base model is the most detailed and accurate model available— the base mod-
el is a reference against which we would like to compare other models. 

∆v Mopt( ) arg max
i

∆v Mi( ) arg max
i

u Xi |Mi( )ti= =

∆v Mopt( ) arg min
i

k Xi |Mi( )ti=
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performance of other methods for selecting models dynamically. The definition of the 

optimal model provides a standard against which to test an heuristic or approximate model-

selection algorithm. 

5.6  Approximate Dynamic Selection of Models 

The optimal model leads to a change in value that is a tradeoff of the value of a higher-

valued computed control setting and a cost of a model computation delay. A dynamic-

selection algorithm that selects models for a real-time application is unable to compute this 

tradeoff exactly. 

A dynamic-selection method may be able to approximate this tradeoff to select a model that 

is likely to be the optimal model. The change in value due to the selection of model Mi is

.  (5.35)

This analysis suggests that a heuristic for dynamic model selection might approximate the 

optimal model by comparing a measure of the benefit of a model with a measure of the cost 

of the model. 

5.6.1  Benefit of a Model 

The difference in benefit between a simple model and a more complex model is due to the 

difference in the models’ computed optimal control settings. As a model’s prediction 

accuracy decreases, the inaccurate model’s computed optimal control settings differ from 

the reference model’s computed optimal control settings. That is, because both models 

attempt to optimize the same value function, u(X), differences in the predictions of the 

effects of X are likely to lead to different values of X that maximize u(X). If we believe that 

the reference model is accurate, then any model that computes different control settings 

must be inaccurate. 

The relationship of accuracy and value of computed optimal control settings suggests that 

a measure of model accuracy also would be a measure of the maximum value of a model’s 

computed optimal control settings. 

v∆ Mi( ) b Mi( ) c Mi( )−=
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5.6.1.1  Model Adequacy

I asserted in Section 2.7 that there is no such entity as a correct model, and that all models 

are inaccurate to some degree, in some experimental frame. Nevertheless, we can consider 

a hypothetical correct model, and ask questions of the form: “If a given model were correct, 

what is the probability that the observed data would occur?” For practical purpose, I define 

any model whose behavior in a specific experimental frame is indistinguishable from the 

system behavior to be a correct model in that experimental frame, and I refer to such a 

model as a correct model. However, what matters is not whether a model is correct, but 

whether a particular model under consideration is accurate enough to be useful. 

The concept of accurate enough to be useful suggests a definition for model adequacy. I 

define the event that the ith model is adequate as the intersection of the events that all of the 

ith model’s predictions are adequate: 

, (5.38)

where  is the event that predictions for the jth variable are adequate. The ith model’s 

predictions for the jth variable are adequate if the probability that the prediction errors are 

within the bounds for adequacy (±εjσj) is greater than a decision-threshold probability. That 

is, 

, (5.39)

in which  is the ith model’s prediction for the jth observation,  is the jth observation, 

σj is the standard deviation of the observation error for the jth observation, εj is a scaling 

factor that specifies the relative accuracy that the jth prediction variable must satisfy for the 

model to be adequate, and 1 – δA is the decision threshold. The decision threshold is less 

than 1 because the distribution of observation errors includes a nonzero probability that the 

magnitude of an error will exceed the ± εjσj. bound for adequate prediction accuracy. 

The relationship of εj and δA follows from the requirement that a correct model is an 

adequate model. From Equations 5.38 and 5.39, the probability that a correct model is 

adequate is 

M i
A Y i j

A

j
∩=

Y i j

A

Y i j

A p | ŷi j
yobsj

− | εjσj<( ) 1 δA−>=

ŷi j
yobsj
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. (5.40)

To evaluate the probability that a correct model will be adequate, we must evaluate 

. (5.41)

Assuming that the observation errors are normally distributed, unbiased, and independent, 

we have 

. (5.42)

Defining the error function, erf(z), as 

, (5.43)

gives

. (5.44)

Substituting Equation 5.44 into Equation 5.39 gives 

, (5.45)

which is true for 

. (5.46)
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This restriction on the minimum value for εj guarantees that correct models are adequate, 

and that . For example, if we set δA to 0.05, Equation 5.46 specifies εj > 

1.96, and all scaling factors for adequate prediction accuracy must be at least 1.96. 

The observation errors reduce our ability to distinguish accurate models from inaccurate 

models, and set a lower limit on the size of prediction errors that we must allow for a model 

to be adequate. 

5.6.1.2  A Measure of Benefit

The probability that a model is adequate is a computable measure of the accuracy of a 

model. The probability of adequacy provides a measure of how probable it is that a model 

under consideration would have generated the observations within the limits of adequate 

prediction accuracy. We can consider the natural logarithm of the posterior probability of 

model adequacy, given both the set of observations Y and the prior information , to be a 

measure of the benefit of a model, , 

. (5.47)

Application of Bayes’ rule to expand  gives 

, (5.48)

in which C is a constant equal to . The first term, , is the probability that the 

model is adequate, given only the prior information . The second term, , is the 

conditional probability that the errors would occur, given that the model is adequate, and 

under the assumption that the parameters of the model are the maximum-likelihood 

estimates for the observations Y. 

The prior information, , represents all quantitative and nonquantitative data, other than Y, 

that have any information about whether or not a model is likely to make accurate 

predictions. For example, for the decision of which model to select for a VMA, the 

information that a patient suffers from asthma has an important effect on which models are 

likely to provide adequate prediction accuracy, and which will be inadequate. I shall assume 

p M i
A | Mi

c( ) 1=

ξ

b̂ Mi( )

b̂ Mi( ) plog Mi
A |Y ξ,( )=

p M i
A |Y ξ,( )

b̂ Mi( ) plog Mi
A |ξ( ) plog Y| Mi

A ξ,( ) Clog+ +=

1/p Y( ) p M i
A|ξ( )

ξ p Y| Mi
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that all probabilities are assessed in light of the prior information, , and will drop this term 

from my notation. 

One approach to computing  is to note that the likelihood of the data, , is 

a lower bound on . That is, 

. (5.49)

This relationship is true because a correct model is, by definition, an adequate model. We 

can use the probability that a model is correct—that is, indistinguishable from the source 

of observations—as a conservative estimate of the probability that a model is adequate. As 

described in Section 2.7, we can assess  as a penalized likelihood from the value 

of , the sum of squared residuals of the ith model, evaluated at the maximum likelihood 

estimates of the mi model parameters.  is the probability that the observed value 

of Ri would occur. We may prefer to consider the probability that errors as large as those 

observed would occur when the model is, in fact, the source of the observations. 

This related concept—the probability that a set of observations differs from the predictions 

by as much as does Y—is an alternative measure of the probability of the data, given that 

the model is adequate. If the model is indistinguishable from the system—that is, if the data 

could have been generated by independent observations of the model—Ri is distributed as 

a χ2 random variable with N – mi degrees of freedom. I replace  with the 

probability that Ri would be as large as the observed value, given that the model is adequate: 

. (5.50)

This probability is a measure of the goodness of fit of the model to the data, and model 

builders use this measure to assess the ability of a model to explain a set of observations. 

We can find values for this integral in standard statistical tables, or we can compute the 

values from the incomplete gamma function, Γ(a, x) [Press, 1988; Ott, 1988]: 

, (5.51)
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, (5.52)

and 

. (5.53)

Replacing  in Equation 5.48 with the expression in Equation 5.53 gives an 

alternative metric for the benefit of the control settings that are computed by a model: 

. (5.54)

If the prior probability of the model is 1, and as the model-prediction errors approach 0 (that 

is,  approaches 1), then  approaches . For a correct model, as N 

increases, the expected value of Ri is N, and the expected value of  is 

log(1/2), so the expected value of  for a correct model is bmax + log(1/2). 

The scale for this metric of benefit is arbitrary, because the probability of accurate 

predictions is not a direct measure of the value of the improved control recommendations 

that occur with improved predictions. A more intuitive scale for our metric of benefit sets 

models that are not useful to have a benefit less than or equal to 0, and models that may be 

considered to have a benefit that is positive. We can adjust the scale of benefit by setting the 

value of the constant bmax in Equation 5.54. A value of bmax = log(x) sets the expected value 

of a correct model to log(x/2), and sets the benefit of models that have a posterior 

probability greater than 1/x to a positive value. For example, setting x = e5 gives bmax = 5, 

and models with a posterior probability that is greater than e–5 ≅ 0.0067 have a positive 

benefit. 

5.6.2  Cost of a Model

The cost of a computation delay increases linearly with time, so we can measure the cost 

by assessing the value of the linear rate constant. The cost of a delay depends on the value 

(risk of adverse event) due to the current settings, and also on the change in value that would 

occur with improved settings. We can apply the value function to compute the current value 

from the current state of the system, but we are unable to assess the change in value that 

P a x,( ) 1
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will occur with a more accurate model’s recommendation before the model computes the 

recommendation. 

That is, if a model under consideration is unable to compute control settings of higher value 

than the current settings, the cost of a delay is zero. The maximum cost of a delay occurs 

whenever a model under consideration computes settings with maximal value, and the 

model has the maximum benefit. The upper bound on the cost of a delay is 

. (5.55)

Co reflects the time criticality of the cost function. The assessment of Co is based on the risk 

that we are willing to accept per time interval to compute an accurate model, and on the 

benefit of the correct model. The assessment of Co depends on the answer to the question, 

“For a given rate of adverse events, how much computation time should we expend to 

obtain accurate predictions?” Let this time be tmax, (and tmax < tperiod). Setting the cost of tmax 

to the maximum benefit gives 

. (5.56)

For example, we could assess the time that we are willing to delay implementing a new 

setting recommendation, tmax, in the presence of a risk per tperiod of . If we are 

willing to wait one-half of the time between setting adjustments (tmax = 0.8 tperiod) to find a 

model that has a bmax of 5, then Co = 625. 

5.6.3  A Metric for Dynamic Selection of Models

The estimates for cost and benefit of a model selection allow us to estimate the increase in 

value that an improved model may bring:

. (5.57)

I call this estimate the dynamic-selection-of-models metric, which I refer to as the DSM, or 

the DSM metric. The DSM is the sum of measures of cost and of benefit of a model 

selection. The cost is a function of the expected time that the model will take to compute 

its recommendations, ti. The benefit is the log prior probability that the model is adequate, 

ĉ Mi( ) Cok Xo( )ti=

Co

bmax

tmaxk Xo( )=

k Xo( ) 0.01=

v̂∆ Mi( ) b̂ Mi( ) ĉ Mi( )−=
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plus the log probability that the fit of the model to the data would be as poor as observed if 

the model were correct. We can compute the DSM metric for the ith model as 

, (5.58)

which follows from substitution of Equations 5.54 and 5.55 into Equation 5.57. 

We can compute an upper bound on DSMi without fitting Mi to the observations, by 

assuming that the model fits the observations perfectly. In the case of a perfect fit, Ri = 0, 

and the DSM reduces to the : 

. (5.59)

Adding log  to the prior DSM ( ) gives the posterior DSM (DSMi). 

Because the logarithm of a probability is a negative number, the  sets an upper 

bound on the DSMi for a model under consideration. 

5.7  An Algorithm for Dynamic Selection of Models 

The algorithm that I propose for the dynamic selection of models under time constraints is 

based on a search metric—the DSM—and on an organization of the models—the GoM (as 

described in Chapter 2). 

5.7.1  Graph of Models

The algorithm assumes that the models are arranged as a GoM, in which a single, most 

detailed model—the base model—is at the top of the graph, and the least detailed, most 

simplified model is at the bottom. Directed arcs from each model are labeled with the 

additional simplifying assumptions that the adjacent models assert. The set of simplifying 

assumptions that each model asserts is the sum of the assumptions on any directed path 

from the base model to the model of interest. We saw the structure of a generic GoM in 

Figure 2.1, and, in Chapter 6, we shall instantiate that generic GoM for a set of models of 

cardiopulmonary physiology (see Figure 6.3). 

DSM i bmax p M i
A( )log p χ2 Ri≤ | Mi

c( )log+ + Cok Xo( )ti−=

DSM i
prior

DSM i
prior bmax p M i

A( )log Cok Xo( )ti−+=
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DSM i
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5.7.2  Search Metric

The DSM is a search metric that defines the optimal model to select under a time constraint. 

The search algorithm cannot apply this metric exhaustively, however, because the 

computation time required to perform the model fitting that is needed to compute DSMi 

accounts for the majority of the model-computation time ti. The  suggests an 

initial model for testing—the model with the greatest . In addition, the  

assists the search for models with a higher posterior DSM; the search algorithm can reject 

models for which the  is less than the current posterior DSM. 

5.7.3  Search Algorithm

The algorithm has three steps, as shown in Figure 5.6:

1. Initial model guess: Search for the model that maximizes the prior search metric, 

DSMi
prior. 

2. Model selection: Search, within the time available, for the model that represents the 

best tradeoff of prediction accuracy and computation complexity. 

a. Fit the initial model guess to the observations to compute the model-selection cri-

terion (DSMi). If DSMi is greater than zero, select the model and make a control-

setting recommendation. 

i. If DSMi is negative, search for an alternative model. Consider only models 

for which DSMi
prior is greater than the cost of the computation time expended 

so far, Cok(Xo) ts. 

ii. If the cost of the computation time expended exceeds DSMi
prior for all re-

maining models, then declare failure and go to step 3. 

3. Model refinement: Continue the search to refine the model selection. 

5.7.3.1  Step 1: Initial Model Guess

The first step—making an initial model guess—assumes that we have available a 

computationally inexpensive method to compute the prior search metric, DSMi
prior, in a 

time much less than that required to compute DSMi. In other words, the first step assumes 

that we have a method to compute the prior probability of model adequacy that takes far 

DSM i
prior

DSM i
prior DSM i

prior

DSM i
prior



115

Figure 5.6  Dynamic-selection-of-models algorithm. Rectangles represent 
actions; the rectangle in heavy outline represents an action that terminates the 
algorithm. Figure 5.7 shows the final step (model refinement) in greater detail.
DSMi: dynamic-selection-of-models criterion (Equation 5.58); DSMi

prior: prior
estimate of DSMi (Equation 5.59); Ck(Xo): cost per unit of time; ts: computation
time expended during the model search. 

No

Yes

Yes

No

Yes

Search for the model that has
greatest DSMi

prior

Initial model guess

Model selection

Fit model to data

Select  model i,
make initial control-setting

recommendation

Search for alternative model

DSMi
prior >0?

DSMi >0?

DSMi
prior >

Ck(Xo) ts ?

Refine model selection,
update control-setting

recommendation

Declare failure

Model refinement

Dynamic-selection-of-models
algorithm

No



116

less time than does the method to compute the best fit of a model to the data. If the total 

computation time to compute the DSMprior of all models is a small fraction of the time 

available to search for an optimal model, then the search algorithm should perform an 

exhaustive search to find the model with the global maximum DSMprior. Alternatively, if the 

total time to compute all DSMpriors is large, the search algorithm can perform a local greedy 

search for the model with the greatest DSMprior (starting the search at the least complex 

model). 

5.7.3.2  Step 2: Model Selection 

The model-selection step attempts to verify that the initial model guess has a DSMi that is 

greater than 0. If the initial guess meets this criterion, then the algorithm applies this model 

for a control-setting recommendation, and then moves to the model-refinement step. If the 

initial model guess has a negative posterior DSMi, then the algorithm performs a breadth-

first search in the GoM for a model that has a positive DSMi. The algorithm compares the 

DSMi
priors of alternative models to the cost of the time spent searching so far. As the 

computation time increases, this cost eventually exceeds the maximum possible benefit of 

any alternative model. If the algorithm fails to find a model for which the DSMi is positive 

within the time available, the algorithm declares that it cannot find an acceptable model to 

select. 

The maximum length of time that the algorithm has to find a model that has a positive DSMi 

is the computation time of a model that has  of 1, Ri of 0, and DSMi of 0. This 

maximum possible search time, tmax, is 

. (5.60)

In practice, we set the maximum possible search time to a fraction of the time between 

changes in control settings, and then derive the value of the time constant, Co, from that 

time (see Section 5.6.2).
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5.7.3.3  Step 3: Model Refinement

After the algorithm selects a model and completes the model-based control-setting 

recommendation, or after the algorithm declares failure in the model-selection step, the 

algorithm moves to the model-refinement step. During the model-refinement step, the 

algorithm continues a local search for the model that has the maximum DSMi, considering 

all models for which DSMprior is positive. 

The algorithm backtracks to consider all models for which the DSMi
prior is positive, but that 

were not fitted to the data initially (because the DSMprior did not exceed the cost of the 

computation time expended at the moment the model was visited during the search). The 

Figure 5.7  Model refinement in the dynamic-selection-of-models algorithm. Rect-
angles represent actions; rectangles with a heavy outline represent actions that ter-
minate the algorithm. Diamonds represent decisions. DSMi: dynamic-selection-of-
models criterion (Equation 5.58); DSMi

prior: prior estimate of DSMi (Equation
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algorithm terminates after evaluation of all models in the GoM that have a DSMi
prior that is 

greater than 0. 

5.7.3.4  Response to New Observations

When new observations of model variables become available, the algorithm repeats the 

model selection (step 2) using the current model as the initial model guess. If the current 

model has a positive DSM, then the algorithm retains this model selection and generates an 

updated control-setting recommendation. The algorithm then proceeds to model refinement 

(step 3). 

5.7.3.5  Algorithm Characteristics

The model-selection algorithm depends critically on the assessment of prior probabilities 

of model adequacy. A low prior probability of adequacy for a model causes the algorithm 

to reject that model, even if the model explains all observations exactly. Rejection of 

models with a low prior probability of adequacy is the correct action if the knowledge on 

which the prior probability assessment relies is accurate, because the model may not 

explain new observations. If the prior probability is inappropriately low, then the algorithm 

may reject adequate models. 

Similarly, if the prior probability of adequacy is inappropriately high for one or more 

models, then the algorithm may spend valuable computation time discovering that such 

models do not explain the observations. If many models that have incorrectly high 

s lie between the initial model guess and any model that is acceptable (that has a 

positive DSM), then the algorithm may fail to find an acceptable model within the available 

time. In the case of failure due to the time constraint, the algorithm moves to the model 

refinement step and continues to search for a model that has a positive DSM. 

Whenever the prior probabilities of model adequacy are well defined, the dynamic-

selection-of-models algorithm verifies that a model that we expect to be accurate is at least 

adequate. 

DSM i
prior
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5.8  Related Research 

None of the prior research on AI and on statistical methods of model selection addressed 

the issue of the tradeoff of cost and benefit of computation (see the discussion in Sections 

2.6 and 2.7). We discussed earlier, in Section 5.1, the manner in which the IDES system 

considered this tradeoff indirectly within a model-switching controller. 

Guardian is a project that aims to develop a “comprehensive intelligent agent, having broad 

range of capabilities, to cooperate on the ICU team” [Hayes-Roth, 1992]. The Guardian 

system consists of a series of modules that are controlled within a blackboard architecture. 

This architecture supports multiple alternative modes of reasoning; Each module 

implements a different reasoning mechanism; these mechanisms include causal 

probabilistic models, qualitative models, simple quantitative models, and empiric 

situation–action rules. Guardian addresses the real-time constraint of decision making by 

establishing deadlines, and by attempting to compute a satisficing action before the 

deadline occurs. The blackboard architecture is opportunistic: As soon as any module has 

computed a satisficing action, Guardian implements that action. If no module has computed 

an action when the deadline occurs, Guardian executes the best action available at that time. 

Before initiating the computation, Guardian makes no effort to evaluate the length of time 

that each module will take to compute a response, and thus does not reapportion the 

available computation resources to hasten the computation of an action from any one 

module. This approach makes sense if the high-level reasoner is unable to combine the 

computation resources of several modules to reduce the computation delay of the module 

or modules that are most likely to succeed before the deadline. In other words, additional 

high-level reasoning about the probability that a given module will compute a response 

before the deadline could avoid wasting computation resources during the critical period 

before the deadline and before any satisficing action is found [Hayes-Roth, 1994]. 

One of the modules in Guardian, called ReAct, implements an action-based hierarchy to 

respond to unanticipated critical events that may occur during a lengthy computation of 

earlier observations. Once a critical-event monitor identifies a critical event, the ReAct 

module guarantees that some response will be available before the real-time deadline [Ash, 

1993]. The Guardian system implements multiple facets of behavior that an intelligent 
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agent should have. Although Guardian is not designed to be a practical ICU monitoring 

tool, its authors expect that it will “... perform and coordinate a range of intelligent 

reasoning tasks of use in ICU monitoring” [Hayes-Roth, 1992]. 

Horvitz considered a problem that is similar to that of dynamic selection of models under 

time constraints—he addressed the problem of how to decide between computation and 

action for high-stakes, time-constrained decisions. He described a model of rational action 

that was based on decision-theoretic metalevel reasoning. These techniques guided an 

automated assessment of the value of additional computation, in comparison with the cost 

of additional delay in taking an action [Horvitz, 1989; Horvitz, 1990]. 

In Horvitz’s formalism, the decision maker understood the structure of a decision problem, 

but the best action to take depended on an exact solution of the probabilities in a decision 

model. In certain time-constrained problems, the exact solution might not be computable 

within a short enough time to be useful, however, so Horvitz applied an approximate, 

anytime algorithm to solve the probabilities in the decision model. This algorithm had the 

property that, at any point in the computation, the solution was a set of bounds on the 

probabilities of the decision model. After halting the computation to inspect the results, a 

metalevel reasoner could decide to perform additional computation to provide a 

progressively more refined solution. 

The benefit of additional computation was an increase in the expected value of the action 

that was recommended (recommended actions were based on the probabilities in the 

decision model). The cost of any additional computation was the risk that an adverse event 

(such as death) would occur during the additional computation delay. Horvitz’s 

demonstrated his metalevel reasoning techniques in a program called Protos. In Protos, a 

criterion called the expected value of computation (EVC) guided an automated decision to 

stop computing and to recommend an action based on the approximate solution. Horvitz 

studied the behavior of Protos on hypothetical decision problems in medicine [Horvitz, 

1989]. 

There is a strong similarity between the metalevel reasoning in Horvitz’s model of rational 

action and the metalevel reasoning of the dynamic-selection-of-models approach. Both 

approaches implement approximate criteria (the EVC and the DSM) to direct reasoning 
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about the tradeoff of cost and benefit of additional computation. In Protos, the metalevel 

actions are a series of decisions to perform additional increments of computation or to stop 

and to make a recommendation for a discrete action. The dynamic-selection-of-models 

approach does not assume that continuous refinement of the decision model is possible. 

Each alternative model represents a different computation cost and benefit (expected value 

of the corresponding model-based decision). Whereas the EVC assumes that additional 

computation will always refine the bounds on the probabilities in the decision model (and 

thus improve the decision), the dynamic-selection-of-models approach recognizes that 

certain computationally complex models may not provide any additional benefit. 

This research and that of Horvitz describe the need for rational metalevel reasoning about 

the value of computation in model-based time-critical decision making. My approach (the 

dynamic-selection-of-models algorithm) makes discrete decisions regarding how much 

computation time to expend to compute a set of real-valued decisions (control settings); 

whereas Horvitz’s approach (the model of rational action) makes continuous decisions 

regarding how much computation time to expend to compute a discrete-valued decision. 

5.9  Summary

In this chapter, we have considered the application of model-based control methods to 

monitor and adjust the settings of a control system in the presence of computation-resource 

constraints. For automated methods that apply model predictions to compute optimal 

control settings, accurate models lead to better control settings; that is, more accurate 

models have a higher value than do less accurate models. 

The value of a model results from an improvement in the system state that occurs after the 

model-based recommendation for the control settings are implemented. Under some 

conditions, computation-resource constraints limit the use of highly detailed prediction 

models. For time-critical decisions, the cost of computation delay may cause us to prefer 

less complex models that we expect to provide less accurate predictions of a system’s 

behavior. The optimal model to select balances the cost of model-induced delay and the 

expected increase in value that the model’s recommendation provides. 
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The cost of a delay is a linear function of time whenever the risk per unit of time that a 

system will make a transition to a less desirable state is constant and small. To compute the 

benefit of a model, we must incur the cost of the computation delay to fit the model to the 

observations and to measure how well the model explains the observations. 

An algorithm for dynamic selection of models applies prior knowledge of the expected 

accuracy of each model (under the observed conditions) to make an initial estimate of the 

benefit of each model. The starting point for search for the optimal model is the model that 

has the highest net value (benefit minus cost). The algorithm fits the initial model to the 

data, then considers the possible increase in benefit and the expected cost of alternative 

models (1) to select the current model, (2) to fit an alternative model to the data, or (3) to 

declare that no model that can be computed within the time constraint has adequate 

prediction accuracy. 

In Chapter 6, we shall discuss the implementation of the dynamic-selection-of-models 

algorithm to select, from a set of models of cardiopulmonary physiology, a patient-specific 

model that is suitable for use by a real-time VMA. 
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Chapter 6

Konan: Model Selection for a

Ventilator-Management Advisor

The VentPlan prototype demonstrates that a VMA can apply a simplified quantitative 

prediction model of cardiopulmonary physiology to interpret ICU-patient observations, to 

monitor the ventilator treatments, and to make reasonable recommendations for 

adjustments to the ventilator (see Chapter 3). VentSim demonstrates that an expanded 

model of physiology represents a range of pathophysiologic states wider than that of the 

simplified VentPlan model; however, the computation complexity of VentSim is too great 

for the latter to be useful in a real-time ICU application. 

In this chapter, I describe Konan1, a program that applies the dynamic-selection-of-models 

algorithm that I described in Chapter 5 to search for patient-specific models that are suitable 

for use by a VMA. Konan implements a set of physiologic models that vary in computation 

complexity from that of VentPlan to that of VentSim. Konan searches for a model that 

1. The name Konan is derived from the Greek parakonan (to sharpen), which is the root of the English word 
paragon (a model of excellence or perfection) [Mish, 1988]. The name has nothing to do with Arnold. 
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maximizes the tradeoff of model benefit (which derives from the model’s prediction 

accuracy), and model cost (which is due to the model-induced computation delay). 

In Sections 6.1 through 6.4, I describe the set of physiologic models from which Konan 

makes model selections, then the algorithm that Konan applies. Finally, in Section 6.5, I 

illustrate the behavior of Konan on data sets that correspond to common ICU-patient 

physiologic abnormalities. 

6.1  From VentPlan to VentSim: Intermediate Models 

Both the VentSim and the VentPlan models have components that represent the circulation, 

the airways, and the ventilator. VentSim represents all three components at a higher level of 

detail higher than that of VentPlan. As a result, the computation complexity of the VentSim 

model would impose a much greater computation-time delay, compared to VentPlan, before 

the treatment recommendations were available. If the VentSim model were implemented in 

a VMA, the model would impose a delay of greater than 100 times the delay that VentPlan’s 

model causes. 

VentPlan predicts the effects of changes in ventilator settings for certain ICU patients, but 

we do not expect that VentPlan would make accurate predictions for patients whose 

abnormality cannot be expressed by the structure of the VentPlan model. For example, 

VentPlan cannot represent the asymmetry of airway resistance that occurs in patients with 

unilateral partial obstruction of a mainstem bronchus.2 The VentSim model can represent 

these patients more accurately, because the more complex model includes a 

multicompartment representation of the airways. In addition to the expanded airways 

component, the VentSim model includes a higher level of detail in the circulation 

component, which is not required to represent an airway abnormality. If we simplify the 

VentSim model by reducing the complexity of the circulation component, the resulting 

model is less computationally complex than is the VentSim model, but is nevertheless able 

to represent the airway abnormality. This intermediate model remains accurate for the 

predictions of airway pressures, of airflows, and of the distribution of airflows in the lung 

compartments. 

2. A unilateral partial obstruction of a mainstem bronchus may occur due to inhalation of a foreign object, 
such as a peanut, or due to a growth in the lining of the bronchus (an endobronchial tumor). 
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For a patient with a specific physiologic abnormality, an intermediate model may make 

accurate predictions after a computation delay shorter than that caused by the VentSim 

model. We can build a set of intermediate models by simplifying each of the three major 

VentSim components, and then composing models that include varying combinations of the 

more and less detailed versions of each component. In Sections 6.1.1 through 6.1.3, I 

describe the simplifying assumptions that I applied to create the less detailed versions of 

each component of the VentSim model. 

6.1.1  Simplified Circulation Component

The simplified airways component eliminates one of the two pulmonary-perfusion 

compartments of the detailed circulation component, and thus models gas exchange as a 

process that occurs between the airways component and a single pulmonary-circulation 

compartment (p1). This representation of gas exchange corresponds to the simplifying 

assumption that the distribution of  within regions of the lung is uniform. Both the 

detailed and the simplified circulation components also include a shunt compartment (s) 

and a tissue compartment (t), as shown in Figure 4.1. 

6.1.2  Simplified Airways Component

The simplified airways component includes a single, series deadspace compartment (ds), 

and a single alveolar compartment (A1), and thus models ventilation as a uniform process 

throughout the portions of the lung that participate in gas exchange. This representation of 

ventilation corresponds to the simplifying assumption that the distribution of resistance and 

compliance within the perfused regions of the lungs is symmetric. The structure of this 

component is the same as that of VentPlan, as shown in Figure 4.1. 

6.1.3  Simplified Ventilator Component 

The simplified ventilator component computes the airway pressures, airflows and tidal 

volumes from the airway model directly, by assuming that the ventilation is sinusoidal, and 

that the airways respond in a manner similar to the behavior of an analogous electrical 

circuit. Figure 6.4 shows an electrical circuit that corresponds to the VentSim airways 

component. Each compartment of the airways is represented by a series resistor and 

capacitor. In the electrical circuit, electromotive force3 is analogous to pressure, whereas 

V̇A/ Q̇
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current is analogous to airflow. The capacitance (C) of a capacitor is analogous to the 

compliance (C) of the airways component, because the accumulation of electrical charge 

(q) in proportion to electromotive force (E) is similar to storage of volume (V) in proportion 

to airway pressure (P). For the airways (lung) model, ; for the electrical circuit, 

. Similarly, the flow of charge—the current—in the electrical circuit is 

analogous to the flow of air in the airways component. 

This analogy to electrical-circuit theory allows the simplified ventilator component to apply 

alternating-current circuit theory to compute the effects of changes in frequency of 

ventilation on distribution of ventilation [Sears, 1964]. For example, under the assumption 

of sinusoidal driving pressures, the minute ventilation of the first alveolar compartment in 

the detailed airway component is 

3.  Electromotive force (emf) is the electric potential, which is measured in Volts. 

V C P×=

q C E×=

Figure 6.1  RC-circuit analogs of the airways components. The circuit on the left is
analogous to the detailed airways component (as implemented in VentSim). The cir-
cuit on the right is analogous to the simplified airways component, which is similar
to the airways model in VentPlan. Each compartment of the airways component is
analogous to a resistor and capacitor that are connected in a series circuit. Abbrevi-
ations: R, resistance; C, capacitance; ad, anatomic deadspace; pd, physiologic dead-
space; ds, total deadspace; A1, A2, alveolar airway compartments.
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. (6.1) 

The variable names in Equation 6.1 are described in the legend to Table 5.1. 

6.2  A Set of Physiologic Models 

There are eight models that have one of two possible versions for each of the three model 

components, circulation, airways, and ventilator: {CAV, CaV, cAV, caV, CAv, Cav, cAv, and 

cav}. The upper- and lower-case letters in each model name indicate the level of detail of 

representation of the corresponding component. A capital letter indicates that the model 

incorporates the more detailed version; a lower-case letter indicates that the model 

incorporates the less detailed version. Thus, CAV (or MCAV) is the model with the detailed 

version of all three components—the VentSim model; cav (or Mcav) is the model with the 

simplified version of all three components—the VentPlan model. The remaining models are 

intermediate in computation complexity and in size. 

The set provides alternative models that vary in the expected accuracy and in the 

computation delay that they would cause if they were implemented in a VMA; it thus 

allows us to investigate the effects of model structure on model accuracy and on 

computation complexity. 

6.2.1  Computation Complexity of Intermediate Models

A VMA that incorporates a model that is more complex than the VentPlan model would 

make treatment recommendations after a longer computation delay. The amount of the 

a. Times for a single model evaluation are reported by getrusage( ) under NextSTEP-3.2, running on a 
NeXTstation (Motorola 68040 processor with a clock rate of 25 MHz). Times are normalized to the time 
for a single evaluation of cav (0.05 seconds). 

Table 6.1  Model complexity for the set of physiologic models. 

CAV cAV CaV caV CAv Cav cAv cav

Relative time per 
evaluationa

40 36 27 21 7.2 5.2 1.1 1

Number of fitted 
parameters

8 7 6 5 8 6 7 5 

V̇A1 VTsetRR( ) k

Rad RA1+( )
CA1

RR
( )

2
=
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increase in computation that occurs with when a model-based control application 

implements a more complex model depends on two factors: the computation time for a 

single model evaluation, and the number of model evaluations that the application performs 

to compute the model-based control action. 

Table 6.1 and Figure 6.2 show the computation times of each physiologic model, relative 

to the computation time of the least complex model, cav. The numbers in this table are the 

relative times that the models require to predict the steady-state effects of a change in the 

control settings of the ventilator, when all patient-specific model parameters are specified. 

A single evaluation of the most complex model, CAV, requires 40 times as much 

computation time than does an evaluation of the least complex model, cav. 

The models in this set vary in their computation complexity by a factor of 40 (from 0.05 to 

1.96 seconds per model evaluation, for cav and CAV, respectively). To improve the model-

solution times, we can find the steady-state solutions of all models by separating the 

solution of the slow time-constant components (the airways and ventilator) from the 

solution of the circulation component. The solution methods that each model allows are 

shown in Table 6.2. 

The models that have a detailed ventilator component (– – V)4 solve for the steady state of 

the ventilator and airway components by numeric simulation, and models that have the less 

detailed ventilator component (– – v) solve the ventilator and airway components 

analytically. That is, closed-form solutions for the ventilator–airway interaction reduce the 

computation complexity for the solutions of the models that include the simplified 

ventilator component. 

Models that incorporate the less detailed circulatory component (c – –) find the solution to 

the steady-state circulation equations by a numeric method that searches for the roots of the 

steady-state equations. For oxygen transport, the steady state occurs when the oxygen 

uptake is equal to the oxygen consumption (O2uptake – O2consumption = 0). The models 

(c – –) search for a value of the oxygen concentration of the mixed venous blood that 

4. The dashes in the model notation indicate any of the components in the corresponding position of the model 
name. That is, – – V represents all models that include the component V (models CAV, cAV, CaV, caV). 
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satisfies this equation for the single pulmonary-circulation compartment that receives 

ventilation. 

The models that have the more detailed circulatory component (C – – ) are more difficult 

to solve. At steady state, the sum of the oxygen uptakes in each of two compartments must 

be equal to the total oxygen consumption, but the proportion of the oxygen uptake (f) that 

occurs in each compartment is unknown. To find the steady-state solution for the oxygen 

model, these models nest a search for the oxygen concentrations that would occur for a 

specific value of f inside a search for the value of f. That is, the nested search finds the value 

of f that causes the solution for oxygen concentration in both ventilated pulmonary-

circulation compartments to predict the same mixed venous oxygen concentration. The 

Model name
CAV cAV CaV caV CAv Cav cAv cav
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Figure 6.2  Model complexity for the Konan models. The time for a model to
compute the effects of a change in ventilator settings when the model parame-
ters are given is shown relative to the time required by the least complex model,
cav. On a NeXT workstation, (Motorola 68040 processor/ 25 MHz), the time for
each evaluation varies from 0.05 seconds for cav to 1.96 seconds for CAV. The
model names show the level of detail for each of three model components; cap-
ital letters indicate greater detail, and lower-case letters indicate lesser detail. c,
C: circulation; a, A: airway; v, V: ventilator. See also Table 6.2.
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need to perform this nested search accounts for the increase in computation complexity of 

the models that have the more detailed circulation component.

Because the more complex models have a greater number of fitted parameters (see Table 

6.1), the parameter-estimation procedure may require a greater number of model 

evaluations to find the patient-specific parameter values than it requires for the less complex 

models. The relative increases in computation complexity that are shown in Table 6.1 are 

lower limits on the relative increases in model-based computation delay that the more 

complex models would cause if they were implemented in a VMA5.

6.3  Konan

Konan is a program that I designed and implemented to investigate the application of the 

dynamic-selection-of-models algorithm (see Section 4.7) to the problem of model selection 

for a VMA. Konan organizes the set of cardiopulmonary physiologic models as a GoM; 

Konan applies the dynamic-selection-of-models algorithm to search the GoM for patient-

specific models that would be suitable for use by a VMA.

The ideal model for a VMA is the model that results in a strategy that has maximal value. 

A model-based control application cannot compute the value of a strategy in time to be 

useful, because the value of a strategy depends on the results of computing the base model. 

However, a control application can approximate the value of a strategy from measures of 

the model benefit and the model cost. Konan estimates the benefit from the probability that 

a model has adequate prediction accuracy, and it estimates the cost of a model from the 

5. For the Levenberg-Marquardt fitting algorithm, I estimate the number of model evaluations per iteration 
of the algorithm as the number of data points plus twice the number of fitted model parameters. 

Table 6.2  Solution methods for models in the Konan GoM. 

Models
Ventilator / airway 

components
Circulation 
component 

CAV , CaV numeric simulation nested search

cAV , caV numeric simulation search

CAv , Cav analytic solution nested search

cAv , cav analytic solution search
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computation delay that the model causes (see Section 4.6). Konan searches the GoM for a 

model that maximizes the tradeoff of model benefit and model cost. 

6.4  The Konan Graph of Models 

The set of intermediate models in Section 6.2 includes models that assert all possible 

combinations of three simplifying assumptions. Konan organizes this set of models as a 

graph, as shown in Figure 6.3. In the Konan GoM, nodes correspond to the models, and 
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Figure 6.3  The Konan GoM. Nodes represent models that have circulation, airway,
and ventilator components. The nodes are labeled with the names of the correspond-
ing models, which have varying combinations of either expanded components
(which are indicated by the upper-case letters C, A, and V) or simplified compo-
nents (which are indicated by the lower-case letters c, a, and v). The arcs are labeled
with the names of the simplifying assumptions that distinguish adjacent models.
The diameter of each node is shown in proportion to the logarithm of the computa-
tion time of the corresponding model. 



132

adjacent models differ in a single assumption. Each arc between pairs of nodes is labeled 

with the simplifying assumption that distinguishes the corresponding pair of models. The 

GoM provides an organization of the models that makes explicit the assumptions that 

separate alternative models.

6.5  Dynamic Selection of Models in the Konan GoM

Konan implements the dynamic-selection-of-models algorithm to search for optimal 

models within the GoM, as described in Section 5.7 and in Figure 5.6. In this section, I 

describe how Konan implements each step of the algorithm. 

The dynamic-selection-of-models algorithm searches for the model that maximizes the 

DSM search metric. The algorithm has three steps: initial model guess, model selection, 

and model refinement. 

6.5.1  Initial Model Guess 

• 1. Search for the model that maximizes the prior search metric, DSMi
prior. 

The initial model guess is crucial to the success of the heuristic search for an optimal model. 

The smaller the number of modeling assumptions that distinguish the initial model guess 

from the optimal model, the shorter the minimum path in the GoM from the initial selection 

to the optimal selection, and the shorter the computation time that Konan will expend to 

select a model. Under a time constraint, if the minimum path in the GoM from the initial 

model guess to an acceptable model is too long, then the algorithm will not discover the 

optimal model before the time constraint causes the search algorithm to halt. 

The initial model to select is the model that has the highest estimate of prior value, 

. The estimate of prior value is based on the prior probability that a model is 

adequate and on the cost of the expected computation delay: 

. (5.54)

In this equation, bmax is a constant, and Co k(Xo) is constant for all models, given Xo, 

assuming that the patient state does not change during the interval of interest. 

∆v̂prior Mj( )

∆v̂prior Mj( ) bmax p M j
A( )log Cok Xo( )tj−+=
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6.5.1.1  Model-Induced Computation Delay

In a model-based control application, the delay that is caused by the model depends on the 

computation time that the model requires per evaluation, and on the total number of 

evaluations that the model performs during parameter estimation and control-setting 

optimization.

The parameter-estimation procedure must search a continuous multidimensional 

hyperspace of dimension equal to the number of fitted parameters. By contrast, the control-

setting optimization procedure searches the discrete space of alternative control settings, 

and the optimal setting is likely to be near the starting point for the search (the current 

setting). That is, the number of evaluations that are required for parameter estimation 

usually is much larger than the number of evaluations that are required for control-setting 

optimization. 

Konan fits a model to the data by performing parameter estimation with the Levenberg-

Marquardt method [Press, 1988], modified according to the method of Sheiner and 

colleagues [Sheiner, 1982]. The starting point for the fitting procedure is the vector of 

modes of the parameter prior distributions, which has length equal to the number of fitted 

parameters, p. The fitting procedure iteratively refines the parameter estimates to minimize 

a loss function—the weighted sum of squared model-prediction errors, plus the weighted 

sum of the differences between the parameter estimates and the modes of the parameter 

prior distributions. The loss function, evaluated at the parameter estimates, is a measure of 

the goodness of fit of the model to the set of observations and to the prior distributions. The 

shape of the loss function is a nonlinear p-dimensional surface that varies for each model 

and for each set of observations. 

The exact number of model evaluations that the parameter-estimation procedure will 

require is fixed for each iteration of the procedure, but the number of iterations is difficult 

to compute in advance, because the models are nonlinear, and because the p-dimensional 

surface of the loss function is unpredictable. An application can set a maximum number of 

model evaluations, however, by setting a maximum number of iterations for the parameter-

estimation procedure. This limit on the number of iterations for the parameter-estimation 

procedure sets an upper bound on the model-induced computation delay, but removes the 
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guarantee that the parameter estimates will correspond to the maximum-likelihood 

estimates. 

Konan cannot compute, in advance, the number of iterations that the search procedures will 

take during the estimation of system-specific parameters and during the search for 

recommended control settings. Konan sets the model-induced computation delay to the 

delay that corresponds to the maximum number of iterations of the search procedures. This 

maximum possible delay leads to an estimate of the cost of the model-induced delay that is 

an upper limit of the cost. 

6.5.1.2  Prior Probability of Model Adequacy 

The prior probability of model adequacy represents prior information regarding which 

models are likely to predict the behavior of the system from which the observations are 

taken. The models in the GoM are hierarchical; therefore, the models are not mutually 

exclusive, and the sum of the prior probabilities exceeds 1. 

Several methods for computing p(Mi
A) are possible:

1. Assume the prior probability of adequacy is fixed for each model. From an expert in 

physiology and in modeling, assess the p(Mi
A) for each model, for the population of 

ICU patients who are treated with a ventilator. 

2. Index the prior probabilities by the clinical diagnosis. That is, assess the p(Mi
A) for 

each model, for the population of ICU patients who are treated with a ventilator and 

who have a specific clinical diagnosis. 

3. Apply a rule-based expert system that evaluates multiple features of a patient’s clin-

ical state to compute p(Mi
A). For example, a rule-based expert system might consider 

such features as the clinical diagnosis, the presence of diffuse infiltrates on a chest X-

ray film, the value of the cardiac output, and the current setting of the FIO2. The rule-

based approach is analogous to the constraint-satisfaction methods implemented pre-

viously for model selection [Penberthy, 1987; Addanki, 1991; Weld, 1992; Falken-

hainer, 1991; Nayak, 1992]. 

4. Apply a belief-network model to compute p(Mi
A) from features of a patient’s clinical 

state. 



135

Konan implements methods 1 and 2. Konan applies a fixed distribution for the p(Mi
A) that 

applies to the population of all ICU patients who are treated with a ventilator, and other 

distributions for the p(Mi
A) that apply to subsets of the ICU population (subsets are defined 

by a clinical diagnosis). I combined knowledge of the pathophysiologic abnormalities that 

occur in various disease states with knowledge of the structure of the alternative models in 

the GoM, to assess subjective prior distributions for the probabilities of model adequacy. 

Table 6.3 shows these subjective estimates of the prior distributions on model adequacy for 

several clinical diagnoses.  

6.5.2  Model Selection 

• 2. Model Selection: Search, within the time available, for the model that represents 
the best tradeoff of prediction accuracy and computation complexity. 

Konan fits the initial model guess, Mi, to the observations to compute DSMi, as defined in 

Equation 5.58. If DSMi is positive, then Konan selects the model, makes an initial control-

setting recommendation, and then performs model refinement (step 3). 

If DSMi is negative, then the model has an unacceptable fit to the data, and Konan initiates 

a search in the GoM for an alternative model. Konan performs a search in two phases. In 

the first phase, Konan ranks candidate models according to their DSMi
prior, then considers 

the models for which the DSMiprior is greater than the cost of the computation time 

expended so far. In the second phase, Konan fits each candidate model in turn, until Konan 

a. The model parameters that correspond to the diagnoses are shown in Table4.3. ARDS: adult respiratory dis-
tress syndrome

Table 6.3  Distributions for the prior probability of adequacy for models in the Konan 

GoM.

Diagnosisa

Normal 1 1 1 1 1 1 1 1

Pulmonary
 edema

1 0.3 0.75 0.3 0.95 0.5 0.3 0.3

Asthma 
(severe)

1 0.75 0.7 0.25 0.9 0.5 0.6 0.2

Pulmonary
 embolus 

0.9 0.8 0.25 0.1 0.8 0.2 0.15 0.1

p MCAV
A( ) p McAV

A( ) p MCaV
A( ) p McaV

A( ) p MCAv
A( ) p MCav

A( ) p McAv
A( ) p Mcav

A( )
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finds a model that has a positive DSMi, or until no additional models have. a DSMi
prior that 

is greater than the current cost of time. The cost of time increases after each model fitting. 

Konan considers all models that retract one assumption (these models are one edge up in 

the GoM) before considering models that retract more than one assumption. That is, Konan 

performs a breadth-first search of the GoM. 

6.5.3  Model refinement

• 3. Model refinement: Continue the search to refine the model selection. 

The initial model selection is the first model for which DSMi is greater than 0. This model 

may not represent the best possible tradeoff of prediction accuracy and computation 

complexity, because the computation-time constraint prevents a full search of the GoM 

during the model-selection step. In addition, the models incur an ever-increasing cost-of-

time penalty, which causes the algorithm to favor less complex and less accurate models as 

the search proceeds. Once Konan makes the initial model-based recommendations, Konan 

resumes the search of the GoM for the model that has the highest DSMi. 

Konan backtracks to reconsider all models that were not fitted to the data during the initial 

search.6 Konan continues an exhaustive breadth-first search, fitting models for which the 

DSMprior is positive, looking for the model whose DSM is maximal. 

Figure 5.7 shows a diagram of the model-refinement step. The search continues until all 

models are examined, or until new observations warrant reevaluation of the current model 

and reassessment of the current recommendations for the control settings. 

6.5.4  Analysis of Konan Algorithm 

To test the dynamic-selection-of-models algorithm, I examined the performance of the 

algorithm on simulated-patient data. I generated the data as noisy observations of VentSim 

simulations, for which the VentSim parameters were set to values that correspond to 

patients with various physiologic abnormalities (the parameter values are described in 

Table 4.3). For each simulated patient, VentSim predicted the steady-state effect of five 

ventilator settings. The ventilator settings had varying FIO2 (from 0.6 – 1.0), and varying 

6. Some models that have a DSMprior > 0 were not evaluated during the initial search, because the cost of 
computation time that was expended at the moment they were considered was greater than the DSMprior. 
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RR (from 6 to 18). The VTset varied to maintain a constant minute ventilation of 72 dl/min.7 

The data set for each diagnosis contained observations of PaO2 and of mean Paw at each 

ventilator setting. Figure 4.7 shows the predictions for the normal-patient and asthma-

patient simulations. 

To simulate noisy observations of the data, I added random errors to the VentSim 

predictions. The error terms, ε, were unbiased, normally distributed random variables, as 

computed by the formula

, (6.2)

in which σ is the standard deviation, µ is the mean (bias) of the error term, and the variables 

u1 and u2 are independent uniform random numbers8 between 0 and 1 [Ross, 1984]. For the 

experiments reported here, µ was 0, and σ was 2 percent. 

6.5.4.1  Fitting of Models to the Simulated-Patient Data

The results of fitting the models in the GoM to the simulated patient data for the diagnoses 

normal, pulmonary edema, pulmonary embolus, and asthma are shown in Figure 6.4. This 

figure displays the information required to assess, after the fact, the model that would have 

been optimal to select at t = 0 (the optimal model is the model that represents the best 

tradeoff of cost of computation and of benefit). The diagonal line in each graph is the cost-

of-time line. The linear constant for the cost of time, , sets the cost of a delay to 

bmax for a computation time of 16 minutes.9 As discussed in Chapter 4, the measure of 

benefit is 

. (4.54)

To compute the benefits that are shown in Figure 6.4, I set the prior probabilities of all 

models ( ) to 1, so that differences in benefit among the models are due entirely to 

the sum-of-squared residuals of the fits. 

7. Ventilator settings were: {FIO2, VTset, RR}={0.6,12,6}, {0.7,8,9}, {0.8,6,12}, {0.9,4.8,15}, {1,4,18}.
8. I applied the Mathematica function Random[] to generate these uniform random numbers. 
9. As described in Section 5.6.2, bmax = 5, Co = 625, k(Xo) = 0.01, tperiod = 20 minutes. 

ε µ σ 2− u1( )log( ) 2πu2( )cos+=

Cok Xo( )

b̂ Mi( ) p M i
A( )log p χ2 Ri≤ | Mi

c( )log bmax+ +=

p M i
A( )
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The plots shows that there is wide variation in benefit and in computation times for the 

models in this GoM, and that models that represent the best combination of computation 

cost and benefit for one simulated-patient data set are not optimal for other data sets.  

Models that have a positive DSM—models that have a benefit greater than their cost—

appear as points above the cost-of-time line. Models that are in the upper left corner of each 

graph represent the most favorable tradeoff of accuracy and cost. For the normal data and 

the pulmonary-edema data, all models fit the data well (all models have a positive benefit). 

For the asthma data, only the models Cav, CAv, CaV and CAV fit the data well. For the 

pulmonary-embolus case, only the most complex models (CAv and CAV) fit the data well 

enough to have a positive benefit. 
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Figure 6.4  Model benefit versus model computation time. The benefit of each model in
the GoM is plotted against the computation time that each model required to fit sample
data sets, for data sets that correspond to each of four diagnoses. The diagonal line shows
the cost of computation time. VentSim generated the data sets corresponding to each di-
agnosis using the parameter values that are listed in Table 4.3. bmax = 5, .
The benefit is computed with the prior probability of model adequacy, p(Mi

A), set to 1.
Model names are defined in Figure 6.3. Models that are plotted with downward-pointing
arrows have a benefit of less than –4. 
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Table 6.4  Dynamic-selection-of-models test results for normal data. 

CAV cAV CaV caV CAv Cav cAv cav

DSMprior –4.90 –0.1 0.02 3.4 0.3 1.9 4.0 4.5

ti (minutes) 19.7 6.8 10.0 1.4 5.3 4.5 0.8 0.6

5.1 4.8 5.3 5.0 4.6 5.1 4.8 5.0

DSM metric –1.3 2.8 1.7 4.5 3.2 3.5 4.7 4.7

Table 6.5  Dynamic-selection-of-models test results for pulmonary-edema data.

CAV cAV CaV caV CAv Cav cAv cav

DSMprior –4.9 –1.3 –0.2 2.2 0.2 1.2 2.8 3.3

ti (minutes) 28.0 10.1 11.0 3.6 5.0 3.9 0.9 0.6

13.2 13.2 13.6 14.9 9.8 8.9 10.7 10.4

DSM metric –5.3 –0.9 –0.4 0.7 2.6 2.4 2.5 2.7

Table 6.6  Dynamic-selection-of-models test results for asthma data.

CAV cAV CaV caV CAv Cav cAv cav

DSMprior –4.9 –0.4 –0.3 2.0 0.21 1.2 3.5 2.9 

ti (minutes) 10.7 11.1 7.4 1.5 4.3 3.9 1.2 0.8

9.3 42.4 8.1 55.5 4.2 7.1 48.3 50.2

DSM metric 1.0 –10.7 1.9 –14.4 3.5 2.7 –10.3 –12.1

Table 6.7  Dynamic-selection-of-models test results for pulmonary-embolus data.

CAV cAV CaV caV CAv Cav cAv cav

DSMprior –5.0 –0.4 –1.4 1.1 0.1 0.3 2.14 2.2

ti (minutes) 19.1 11.2 6.5 2.4 16.0 4.4 1.1 0.7

 10.8 154.6 768.7 163.0 13.6 891.7 158.2 159.0

DSM metric –8.2 –62.5 –360.7 –62.7 –1.6 –420.7 –60.1 –60.3

Ri

Ri

Ri

Ri
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Details of the evaluation of each model on the four simulated-patient cases are shown in 

Tables 6.4 through 6.7. In this table, the  are based on the prior probabilities of 

model adequacy (as shown in Table 6.3), and on the expected computation times for the 

models (as shown in Table 6.8). The expected computation times are estimates of the 

maximum computation times that the models may require to fit the observations. These 

estimates assume that the parameter-estimation algorithm will require the maximum of 15 

iterations. In practice, the Levenberg-Marquardt parameter-estimation algorithm usually 

finds parameter estimates after fewer than the maximum number of iterations—which 

explains why the computation times are, in all but one case, less than the expected 

computation times in Table 6.8.10

 

6.5.4.2  Selection of Models

I applied the dynamic-selection-of-models algorithm to the four simulated-patient data sets 

to demonstrate the performance of the algorithm. Table 6.9 summarizes the results of the 

algorithm’s performance.

For the normal and the pulmonary-edema data, cav was the initial model selection, because 

cav had the maximum DSMprior and had a positive DSM. For the normal-patient data, 

Konan fit five models during model refinement (which required 21.3 minutes of 

10. Termination criteria for nonlinear parameter-estimation algorithms are something of a black art. See 
[Press, 1988] for a discussion. In Konan, the termination criteria for the Levenberg-Marquardt algorithm 
are (1) after 15 iterations, (2) after a minimum of two iterations, if  is less than one half the expected  
for a correct model, (3) after at least seven iterations, if  improves by a minimal amount (less than 0.1%), 
(4) if there is no change in  for seven consecutive iterations. 

a. I estimate the number of evaluations required by a model per iteration of the Levenberg-Marquardt
fitting algorithm as number of data points × twice the number of fitted parameters, and I assume a
worst-case of 15 iterations of the fitting algorithm. See also discussion in Section 6.2. 

Table 6.8  Expected computation times for the set of physiologic models. 

CAV cAV CaV caV CAv Cav cAv cav

Time to fit 
10 data 
points 
(minutes)a

31.7 16.5 15.9 5.1 15.0 10.0 3.1 1.6

DSM i
prior

Ri Ri
Ri

Ri
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computation) to determine that cav had the most favorable DSM. Similarly, for the 

pulmonary-edema data, Konan fit four models during model refinement (which required 

13.4 minutes) to determine that cav had the most favorable DSM. For these two cases, the 

model refinement did not change the initial model selection. Although other models fit the 

data with a lower sum-of-squared residuals than did cav, no alternative model offered a 

better tradeoff of benefit and computation cost than did the least complex model, cav. 

For the asthma data, the model that had the highest DSMprior (cAv) had a poor fit to the data, 

and thus had a negative DSM. Konan fit a total of three models (which required 6.6 

minutes), to find a model that had a positive DSM (Cav). During model refinement, Konan 

fitted two additional models (which required 5.1 minutes) to find the model that had the 

most favorable DSM (CAv, see Table 6.9). 

For the pulmonary embolus data, Konan was unable to make an initial model selection. 

Konan required 4.2 minutes to fit the initial model guess and one additional model. After 

fitting two models, the cost of the computation time exceeded the DSMprior of all remaining 

models, and so Konan declared that it was unable to make an initial model selection due to 

running out of time during the search. During model refinement, Konan considered two 

remaining models for which DSMprior > 0. Konan required an additional 20.4 minutes to fit 

Table 6.9  Summary of performance of the Konan algorithm. 

Simulated-
patient 

diagnosis 

Models 
fitted 

(initial)

Time to 
initial 

selection 
(minutes)

First 
model 

selected 

Models 
fitted 

(refinement)

Time for 
model 

refinement
 (minutes)

Final 
model 

selection

Normal cav 0.6 cav cAv, Cav, 
caV, CAv, 
CaV

21.3 cav

Pulmonary
 edema 

cav 0.6 cav cAv, caV, 
Cav, CAv

13.4 cav

Asthma cAv, caV, 
Cav

6.6 Cav CAv, cav 5.1 CAv

Pulmonary 
embolus

cav, cAv, 
caV 

4.2 none Cav, CAv 20.4 none 
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these two models, but neither model had a positive DSM. Konan then declared that the most 

favorable model was CAv, but that CAv had a negative DSM. Although CAv had a 

reasonable fit to these data, the cost of CAv’s computation-time delay was so high that CAv 

was rejected.11 For these data, if the time-criticality factor, Cok(Xo), were smaller, then the 

cost of CAv’s computation-time delay would be lower, and DSMCAv would be positive.12 

For high values of the time-criticality factor, complex models—such as CAv and CAV—

have a negative DSM, even when they fit the data well, because the cost of their 

computation time is so high. For example, in all cases shown in Figure 6.4, model CAV has 

a negative DSM, despite having a positive benefit (that is, low sum-of-squared residuals for 

the fits). Under severe time constraints, the rejection of this accurate but complex model is 

appropriate, because CAV would not allow a model-based controller to recommend actions 

within the time available. 

The computation times for each model vary from data set to data set. These variations in 

computation time are due to two factors: (1) the varying number of iterations of the 

parameter-estimation procedure that the models require for different data sets, and (2) the 

varying number of iterations of the numeric simulation of the ventilator in models that have 

the detailed ventilator component. The lack of predictability of the computation-time 

requirement of fitting each model to the data means that, for certain models, the DSM, 

which is based on the observed computation time, may be greater than the DSMprior, which 

is based on the expected computation time. For example, for the normal data set, model 

CAv has a  of 0.32, whereas  is 3.24 (see Table 6.4). The small positive 

value for  indicates that the expected computation time has a cost that is 

comparable to the maximum benefit.13 The relatively higher value of  indicates 

that model CAv has a larger benefit than cost. In this case, the complex model found a good 

fit to the data after a computation time that was shorter than expected.14 

11.  = 13.6,  = 0.19). 
12. For the pulmonary embolus data set, DSMCVa is positive for values of Cok(Xo) < 3.9. 
13. Expected computation time 15.0 minutes (actual 5.3 minutes), expected cost 4.6 (actual cost. 
14.  χ2 = 4.63, ti = 5.34 minutes. 

RCAv p χ2 RCAv≤ |MCAv
c( )

DSMCAv
prior DSMCAv

DSMCAv
prior

DSMCAv
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6.6  Discussion

The results of applying the Konan algorithm to simulated-patient data demonstrate that the 

algorithm is able to select models according to the DSM criterion, and that the algorithm 

performs a time-sensitive search for an initial model, followed by a more intensive search 

for the globally optimal model (as defined by the posterior DSM). In each case tested, the 

algorithm found the model that had a maximal DSM. 

Konan attempts to find the optimal model to select under a time constraint, but makes an 

initial model selection as soon as it finds a model that satisfices—Konan selects the first 

model for which the DSM is positive. The number of models that Konan examines before 

it finds a model that satisfices depends on the starting point for the search within the GoM. 

Konan combines a knowledge-based method that provides an assessment of the prior 

probability of model adequacy for the alternative models with a statistical method that 

checks the ability of a proposed model to explain the observations. Konan performs time-

constrained validation of models that are suggested by knowledge-based model-selection 

methods. 

6.6.1  Estimate of a Model’s Benefit

The estimate of a model’s benefit that Konan implements, , is a measure of the log 

posterior probability that a model could have generated the known quantitative 

observations. This measure is an heuristic estimate of how accurately a model will make 

predictions; this estimate is a surrogate measure for the benefit of a model (the 

improvement in value of the control settings that a more accurate model computes). 

In the absence of time constraints, the most complex model in the GoM is the model that 

has the highest benefit, because all other models are less accurate approximations of the 

most complex model. For the estimate of benefit of the most complex model to be highest, 

however, the model must have parameter values that correspond to the values of the system 

for which the model makes predictions. Unfortunately, the nondeterministic, nonlinear 

parameter-estimation procedure may not find the set of parameter values that cause the 

model to match most closely the observations. For example, in Table 6.8, compare the sum-

of-squared residuals (Ri values) for Cav (RCav = 8.9) and for CAV (RCAV = 13.2). Cav fit the 

observations more accurately than did CAV, even though CAV was the model that generated 

b̂
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the observations. The parameter-estimation procedure was not able to find exactly the same 

values for CAV’s parameters that generated the observations. 

6.6.2  Estimate of a Model’s-Computation Complexity

The time delay that the fitting of a model to a specific data set will cause is 

nondeterministic, and so the DSMprior is uncertain—and the initial model guess may not be 

the optimal model, even if the initial guess fits the observations closely. There are at least 

two reasons why the model-induced time delay is uncertain. 

The first reason is that the number of iterations that the parameter-estimation algorithm 

performs is uncertain. The exact number of iterations that the Levenberg-Marquardt 

parameter-estimation algorithm requires depends in a complex manner on the model, the 

observations, the starting values of the parameters, and the exact form of the algorithm’s 

termination criteria (see also Section 6.5.4.1). The second reason is that the time per model 

evaluation may be uncertain. That is, the time that a model takes to simulate the steady-state 

effect of a single set of control settings and parameter values may vary. For example, in the 

Konan GoM, models that have the detailed ventilator component run a numeric simulation 

of the interaction of a ventilator with the airway component, which takes a variable number 

of cycles of the ventilator. The length of computation that this takes varies according to the 

values for the resistance and compliance of each compartment of the airways model 

component.15 

Although the estimates of model-computation complexity are uncertain, Konan sets the 

estimates of the model computation times to worst-case values—to the values that 

correspond to the maximum number of iterations of the parameter-estimation procedure 

during model fitting. This conservative estimate of the possible computation delay prevents 

the model-search algorithm from becoming stuck in a lengthy computation that exceeds the 

time constraint for model selection. Unfortunately, the conservative estimate of 

computation delay may also cause the globally optimal model to be overlooked during the 

initial time-constrained search for a model that satisfices. 

15. The ventilator-airways simulation continues until the cyclic change in airway volumes reaches a steady 
state; the number of cycles of the ventilator increases as the resistance increases and as the compliance of 
the airways increases, and as the longest RC-time constant increases. 
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6.7  Summary

Konan demonstrates the heuristic metalevel reasoning strategy described in Chapter 5, to 

select, from a set of alternative physiologic models, a model that represents the best tradeoff 

of quality of recommended ventilator control settings and cost of model computation. The 

set of models is organized as a graph (GoM), in which the alternative models vary from the 

least complex at the bottom (VentPlan model) to the most complex at the top (VentSim 

model). Intermediate models have varying combinations of VentPlan and VentSim 

components. Edges in the GoM are directed from the more complex models to the less 

complex models. Each edge is labeled with the simplifying assumption that allows the less 

complex model to incorporate a simplified version of one model component. 

Konan implements the dynamic-selection-of-models algorithm; this algorithm performs a 

breadth-first search of the GoM, using a prior search metric (DSMprior) to define an initial 

model guess, and then using the posterior search metric (DSM) to guide the search for a 

satisficing model (a model for which the estimate of the model benefit is greater than the 

cost of the observed computation time). After finding a satisficing model within the initial 

time constraint, Konan extends the search to identify the optimal model (the model that has 

the maximal DSM) within the GoM. 

The DSMprior is a criterion that is based on subjective disease-specific prior distributions 

and on estimates of the computation time for each model, whereas the DSM is based on the 

quality of the fit of the model to the observations, the observed computation time, and the 

prior distribution on model adequacy. 

Konan demonstrates that the ability of the dynamic-selection-of-models algorithm to make 

an initial model selection is limited if the prior distributions on model adequacy suggest a 

starting model that is far from any satisficing model in the GoM. In this case, Konan may 

not find a satisficing model within the initial time constraint, but will find the optimal model 

during the model-refinement step. In the next chapter, we shall discuss future research to 

develop improved methods of computing the prior distributions on model adequacy. 

Protos implemented a metalevel reasoning method to select the amount of a continuously 

variable computation resource to refine a decision-theoretic model that estimated the 

probability of alternative discrete system states [Horvitz, 1990]. In contrast, Konan 
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implements a metalevel reasoning method to select among a set of models that predict a set 

of real-valued system variables. The results of both methods suggest that, in high-stakes, 

time-constrained decision environments, rational decisions for action should include a 

consideration of the tradeoff of the benefit of improved action that may result from 

additional deliberation, and the cost of that deliberation. 
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Chapter 7

Conclusions and Significance

In this dissertation, I have explored approaches to the automation of high-stakes decision 

making under time constraints, by considering the problem of how to compute appropriate 

adjustments for the settings of a mechanical ventilator, within the real-time constraints of 

ICU-patient care. In this chapter, I shall review the highlights of the dissertation, then 

discuss the significance of this work. Finally, I shall consider directions for future research.

7.1  Summary of Work Presented 

In Chapter 3, we saw that the VentPlan prototype implemented a simplified, 

computationally efficient numeric model of cardiopulmonary physiology as the basis of a 

ventilator-monitoring and treatment-advice program. VentPlan predicted the effect of 

changes in ventilator settings on postoperative patients surprisingly well, but the simplified 

model in VentPlan was an appropriate match for these patients, who were selected for 

elective surgical procedures, and so did not have complex heart or lung abnormalities. 

For some patients with complex physiologic abnormalities, simplified models do not 

provide accurate predictions, and only more detailed—and thus more complex—models 
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are accurate. In Chapter 4, I  developed a more detailed and more accurate model, called 

VentSim, that describes the interaction of the mechanical ventilator with patients who 

suffer from a wide range of abnormalities of cardiopulmonary physiology. Models, such as 

VentSim, that have greater complexity also have longer computation times, and cause a 

VMA to compute treatment recommendations after a longer computation delay. Models 

that make treatment recommendations after a long delay are not as valuable as models that 

make treatment recommendations immediately, because adverse events may occur during 

the computation delay. In other words, ICU-patient monitoring applications, such as a 

VMA, are time-critical applications that require models to make accurate predictions in the 

shortest possible computation time. 

In Chapter 5, I discussed a formalism for describing time-constrained model-based control 

problems (such as the problem of controlling the settings of a ventilator in response to 

changes in a patient’s physiology), and the assumptions that this formulation makes. Within 

the context of a model-based controller, I developed an analysis of the benefit of a model 

as a function of the state of the system (patient), the current control settings (ventilator 

treatment), and the model-based recommended control settings. In this formalism, the cost 

is a linearly increasing function of time, and the net value of a model selection is the benefit 

less the cost. I then noted that it is impossible to compute, in advance, the value of a model 

selection, because this value depends on the model-based control settings, and on the effect 

that those control settings will have. 

To compute the value of a model selection, we must have information that invalidates any 

need for a model selection! Because we cannot predict the benefit of a model, I use an 

approximate measure for benefit—a measure that is based on the expected prediction 

accuracy of a model. Accurate models will have the highest benefit, so I use a measure of 

model-prediction accuracy as our measure of model benefit. I combine measures of 

prediction accuracy and measures of cost to create two metrics that guide a heuristic 

dynamic-selection-of-models search algorithm. This algorithm applies the prior search 

metric (the DSMprior) to make initial model selections, then confirms a selection by fitting 

the model to the data to compute the posterior search metric (DSM). 

In Chapter 6, I discussed an application of the dynamic-selection-of-models algorithm to 

the problem of model selection for a VMA. The implementation, called Konan, is based on 
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a set of models that vary in their level of detail and their computation complexity, from the 

VentPlan model, which is too simplified for use in patients with severe or complex 

abnormalities, to the VentSim model, which is too computation intensive for use in the real-

time ICU environment. The models in the set are composed from all combinations of lesser- 

and greater-detailed versions of three model components.

Konan organizes the set of models as a GoM, in which adjacent models differ by a single 

simplifying assumption, and applies the dynamic-selection-of-models algorithm to search 

for the model that maximizes the DSM metric. Konan begins a local search at the model 

that has the maximal DSMprior, then selects the first model that satisfices. A model is 

satisficing if it has a benefit that is greater than 0 (which implies an adequate prediction 

accuracy) and a cost that does not exceed the benefit. After making an initial model-based 

recommendation for the control settings, Konan refines the model selection by searching 

for the model that has the maximal DSM. The Konan implementation demonstrates my 

hypothesis that an automated model-selection method can reason with a graph of 

hierarchically organized, structural models to find minimally complex models suitable for 

use in a control application, as I postulated in Chapter 1. 

7.2  Contributions

The research described in this dissertation makes contributions in the fields of critical-care 

medicine, AI, statistics, and medical informatics. 

7.2.1  Critical-Care Medicine

This dissertation demonstrates new methods for the application of physiologic models to 

support critical-care medicine. The implementation of VentPlan demonstrates the success 

of an ICU decision-support architecture that combines quantitative physiology models, 

semiquantitative belief-network models, and decision-theoretic multiattribute-utility 

models. In addition, VentPlan shows that (1) prior information about a patient’s probable 

physiologic abnormalities is helpful to make a simulation model patient specific, (2) a 

patient-specific simulation model can provide what-if? simulations to the critical-care 

team, (3) a physiologic model provides a useful framework within which to interpret 

monitored physiologic variables, and (4) the combination of a preference model for 
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treatments and a patient-specific simulation model allows for the automated generation of 

treatment advice for ICU patients who receive respiratory support. 

The application of detailed simulation models to assist the care of patients in the ICU is 

hampered by two major factors. First, the many parameters of detailed physiologic models 

are underdetermined. That is, the quantitative observations that are available for patients in 

the ICU do not constrain the values of all parameters. VentPlan’s architecture addresses this 

limitation by combining prior distributions on probable model parameters with the 

quantitative observations to compute patient-specific model parameters. The second factor 

is the requirement for real-time decision making for ICU patients. The dynamic-selection-

of-models algorithm provides a method to implement more complex physiologic models 

that meet this real-time constraint. Rather than considering the time-constraint as an 

absolute time limit, the dynamic-selection-of-models method evaluates the tradeoff of the 

level of expected model-prediction accuracy and the magnitude of the computation-

resource expense of each model. 

7.2.2  Artificial Intelligence

Previous work by researchers in AI on automated modeling has focused on engineering 

models of physical systems. My work extends previous methods of automated modeling in 

several ways.

The traditional AI approach to model selection is based primarily on prior knowledge of 

the system that is to be modeled. My work demonstrates a method to combine prior 

information about model accuracy with the information in quantitative observations to 

select models that take into account all available information about model-prediction 

accuracy. 

Konan selects appropriate models of a complex system (the ICU patient) for use in a high-

stakes, time-critical control application, and thereby shows that automated selection of a 

model that balances computation-resource constraints and model-prediction accuracy is 

possible. 

The time constraint on decision making is compelling in the domain of ICU care, yet some 

form of computation-resource constraint is present in all computer-based decision-support 
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methods. The dynamic-selection-of-models algorithm, and the DSM metric, provide a 

rational basis on which to assess the tradeoff of computation-resource constraints and 

model-prediction accuracy in high-stakes, time-critical control applications. 

Whereas prior work on automated selection of models developed methods to select 

qualitative models of minimally complex physical systems, Konan applies the GoM 

organization to a set of computation-intensive differential-equation models of a highly 

complex, nonlinear “real-world” biological system. 

Previously, AI programs attempted to automate model selection by searching for models 

that met absolute, or categorical, constraints on model accuracy and on computation 

complexity. The dynamic-selection-of-models algorithm, and the DSM, provide a method 

to assess the balance of computation-resource expense and model accuracy as a continuous 

tradeoff. The DSM metric should be useful whenever a computation-resource constraint 

limits the complexity and the prediction accuracy of a model that is used in a model-based 

control application. 

7.2.3  Statistics

The traditional statistical view of model selection is based purely on model performance 

(model-prediction accuracy). The problem of model selection for a VMA points out that 

prior information regarding which models are likely to make accurate predictions may 

provide important distinctions among models.Whenever the observations of a system 

underdetermine the parameters of system models, the prior information about the system 

allows simpler and less accurate models to be rejected, even before quantitative 

observations prove, in a statistical sense, that a more complex model is required to predict 

the system’s behavior. The DSM metric demonstrates the usefulness of combining an 

assessment of the prior probability of model accuracy with a measure of goodness of fit, as 

a basis for assessing the prediction accuracy of alternative models. 

7.2.4  Medical Informatics

Medical informatics is a broadly interdisciplinary field. The need to develop 

interdisciplinary approaches to solving difficult problems is the reason that medical 

informatics exists as a separate field of study. In this dissertation, we have seen that 
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VentPlan brings together model-based control theory with quantitative physiologic model, 

a belief-network model, and a decision-theoretic model, to create a real-time model-based 

controller of a complex nonlinear system. Similarly, Konan builds on techniques from AI, 

statistics, decision theory, simulation modeling, and control theory to solve part of the 

modeling problem for an automated ICU program that performs model-based monitoring. 

Both VentPlan and Konan demonstrate the value of applying interdisciplinary approaches 

to solve difficult problems. 

7.3  Future Research

In this section, I shall discuss possible directions for future research to develop improved 

methods of model selection under computation-resource constraints. Then, I shall consider 

how researchers could apply the results of this dissertation to create programs to assist 

clinicians to care for ICU patients. 

7.3.1  Automated Model Selection 

The limitations of the dynamic-selection-of-models method suggest directions for future 

research. 

7.3.1.1  Parameter-Estimation Procedure 

The parameter-estimation procedure is a multidimensional nonlinear optimization that is 

not guaranteed to find the globally optimal values for the set of fitted parameters. For 

example, in Table 6.6, compare the fit of the detailed model, MCAV, with the fit of the less-

detailed model, MCAv, to the simulated asthma-patient data. These data were generated by 

the MCAV model, so the  should be the lowest for this model. However, the parameter-

estimation procedure found a local minimum for the set of fitted parameters, and, although 

the fitted parameters corresponded to an acceptable fit of the model to the data, the 

parameter-estimation procedure did not find the optimal set of parameter values that 

corresponded to the parameters that generated the data. 

The performance of the parameter-estimation procedure depends—among several 

factors—on the starting point for the search. In VentPlan and in Konan, the set of prior 

parameter distributions varies according to the diagnosis. If the diagnosis is in error, then 

the starting point for the parameter estimation may be far from the globally optimal values, 

Ri
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and the search may fail to find an acceptable fit of the model to the data. One possible 

approach to alleviating this problem is to consider multiple starting points for the search, if 

the initial parameter estimation fails to find acceptable parameter values. For example, the 

starting point for the search could be the modes of the prior parameter distributions that 

correspond to alternative diagnoses. 

7.3.1.2  Prior Probability of Model Adequacy

As I discussed in Section 6.5, the search for an initial model to select depends strongly on 

the starting point for the search in the GoM. The starting point for the search is based on 

the prior probability of model adequacy for the set of models. In the implementation of 

Konan, these prior distributions were based on a table lookup for each diagnosis. A more 

general method to compute prior distributions on model adequacy would include an explicit 

model of how knowledge of a system affects the prior probability of adequacy for each 

model. 

For example, Figure 7.1 shows a proposed structure for a belief-network model to compute 

the distribution of prior probabilities for the Konan GoM. This belief network takes as 

inputs the clinical assessment of the physiologic diagnosis and computes a prior probability 

of model adequacy for the set of alternative models. 

7.3.1.3  Metalevel Control of Computation

The dynamic-selection-of-models algorithm is a heuristic metalevel strategy to control the 

computation resources that a VMA applies to solve the problem of time-constrained data 

interpretation and optimization of control inputs. The algorithm does not consider the 

possibility that further search will consume additional computation resources but lead to no 

improvement in model accuracy. For example, the delay caused by the model-selection 

algorithm leads to a less desirable outcome whenever the algorithm fails to find an 

acceptable model. 
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We might wish to supervise the metalevel strategy by implementing a method to analyze 

each decision to evaluate a model, before committing the computation resources to the 

evaluation. For example, we could implement the fitting approximation method to ensure 

Figure 7.1  Proposed design for a belief network that computes the prior proba-
bility of adequacy for models in the Konan GoM. The eight circular nodes at the
bottom of the network are TRUE–FALSE nodes that correspond to the models in
the Konan GoM. The probability that a model node is TRUE is the probability
that the corresponding model in the GoM is adequate. The top-level nodes are
TRUE–FALSE nodes that correspond to diagnoses; these nodes are used as inputs
to the network when one or more diagnoses are known. Middle nodes are mul-
tivalued nodes that correspond to parameters of the physiologic state. CHF: con-
gestive heart failure; ARDS: adult respiratory distress syndrome; VA/Q: ratio of
lung ventilation to perfusion; Raw: mean airway resistance; CL: mean static lung
compliance; RCasym: degree of asymmetry of the resistance-time constants of
the lung. Labels for the model nodes correspond to the models in Figure 6.3. 
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that the differences in model structure that are present in an alternative model are likely to 

improve the fit of the model to the data [Weld, 1992]. 

We could develop higher and higher levels of supervision of the metalevel strategy, but this 

process of “thinking about thinking,” or analytic regress, rapidly reaches the point of no 

additional benefit. Previous researchers considered the problem of analytic regress to 

decide when to stop reformulating the structure of an inference model [Breese, 1990]. 

7.3.2  VentSim

The VentSim simulator, and the VentSim interface for what-if? simulations, may be useful 

to clinicians who care for ICU patients. In the current prototype, the clinician must set the 

physiologic parameters of the model to values that correspond to a patient, before VentSim 

simulates the effect of alternative control settings. 

A simple improvement to this interface would lead to a patient simulator that would be of 

greater direct use. An extension to VentSim would apply the Konan parameter-estimation 

procedure to assess automatically the model parameters for a specific patient. The clinician 

would be able to simulate the effects of alternative control settings of the ventilator that 

were based on patient-specific parameter values. The interface also would allow the 

clinician to modify the model parameters to investigate the effect of alternative 

interpretations of the patient’s physiology on the model predictions. 

Additional improvements to the VentSim model are possible. For example, we could 

expand VentSim to include a model of the effect of hypoxic pulmonary vasoconstriction, 

and to include a more realistic (nonlinear) pulmonary-compliance relationship. 

7.3.3  Ventilator-Management Advisor 

VentPlan is a prototype ventilator-management assistant (VMA). A next-generation VMA 

would incorporate the models of the Konan GoM and the dynamic-selection-of-models 

algorithm, to create a VMA that modified its model in response to the time criticality of a 

patient’s treatment decision. In Chapter 1, I showed an example of what an interface to such 

a VMA might look like. 
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Given a working VMA, we could compare the relative performance of model-based control 

systems and protocol-based approaches. For example, the protocol for ventilator care of 

ARDS patients provides instructions for adjustments to the ventilator. Differences between 

the VMA recommendations and the protocol recommendations either would reveal flaws 

in the decision model that the VMA implements, or would indicate inconsistencies in the 

definition of the protocol. 

The architecture of a VMA guarantees that the VMA-based treatment recommendations are 

consistent with the predictions of the physiologic model and with the preferences of the 

decision model. If we adjust the decision model to reflect the preferences that are expressed 

in a protocol, then the VMA provides a method to verify the consistency of the protocol. 

That is, we can compare the recommendations of a protocol with the recommendations of 

the VMA, for a wide variety of simulated or observed patient behavior. This ability to test 

a protocol would be helpful to ensure that a protocol leads to intended actions under a wider 

variety of extreme, or infrequently encountered, physiologic circumstances. 

7.4  Conclusions

 I developed a method to implement mathematical models of complex systems within an 

automated, model-based control program to demonstrate that my hypothesis is valid: An 

automated model-selection method can reason with a graph of hierarchically organized, 

structural models to find minimally complex models suitable for use in a control 

application. I assumed that the complexity of highly detailed models that might be 

considered would exceed the computation-time available for computing model predictions. 

I developed the dynamic-selection-of-models method for use in model-based control 

applications, in which the consequences of model-generated control actions provided a 

framework for evaluating the adequacy of the model selections. The method also should be 

useful in other modeling tasks for which a goal is to find a minimally complex model. 
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 Appendix

Abbreviations and Symbols

ad: anatomic-deadspace compartment
AI: artificial intelligence
AIC: Akaike information criterion
ARDS: adult respiratory distress syndrome 
ARMA: autoregressive moving-average
A1, A2: alveolar-ventilation compartments 
b(Mi): benefit of ith model
BIC: Bayesian information criterion 
CAV, CAv, CaV, cAV, Cav, cAv, caV, cav: Model names for the Konan GoM. The letters 

correspond to model components: c,C: circulation; a,A: airway; v,V: ventilator. Capital 
letters indicate that a model includes a more detailed version of the corresponding com-
ponent. 

cm, cms: centimeters 
c(Mi): cost of ith model
CMV: constant mandated volume 
C: compliance (of an airway compartment)

: concentration of oxygen

: concentration of carbon dioxide

CO2: carbon dioxide
dl: deciliters
ds: deadspace

CO2

CCO2
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DSM: dynamic-selection-of-models
DSMi: DSM metric for the ith model 

:prior DSM metric for the ith model
EVC: expected value of computation
f: fraction
FIO2: fraction of inspired oxygen
GoM: graph of models 
Hb: hemoglobin 
Hg: mercury
IC: information criterion
ICU: intensive-care unit 
KIC: Kashyap information criterion 

: maximum likelihood
MAP: maximum a posteriori probability
Mi: ith model
Mo: base model 
MBIC: modified Bayesian information criterion
MDL: minimum description-length criterion
MIGET: multiple inert-gas-elimination technique 
mm Hg: static pressure, in millimeters of mercury
N: sample size 

: oxygen 
ODE: ordinary differential equation 
Paw: ventilator pressure at the mouth 
pd: physiologic-deadspace compartment 
PEEP: positive end-expiratory pressure 
PLC: penalized likelihood criterion

: probability that the ith-model is correct

: probability that the ith-model is adequate 

: partial pressure of oxygen

: partial pressure of carbon dioxide 

p1, p2: pulmonary-perfusion compartments

: blood flow (perfusion)

: total blood flow (cardiac output) 

: shunt
Θi: vector of ith-model parameters
R: resistance 

: sum of squared residuals for fit of ith model 
RR: respiratory rate (setting of ventilator in CMV or IMV mode)
RQ: respiratory quotient 
STP: standard temperature and pressure 

DSM i
prior

Li
max

O2

p Mi
c( )

p Mi
A( )

PO2

PCO2

Q̇

Q̇T

Q̇s

Ri
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: ventilation

: ventilation to perfusion ratio 
Vds: deadspace volume
VMA: ventilator-management advisor 
VF: ventricular fibrillation 

: metabolic rate (oxygen consumption)

VPnet: VentPlan belief network
VT: tidal volume 
VTset: tidal volume, as set on the ventilator controls
Xo: vector of ventilator-control settings 
y: model prediction
Y: vector of model predictions

V̇A

V̇A / Q̇

V̇O2
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