
THEORY AND DESIGN OF A HYBRID PATTERN

RECOGNITION SYSTEM

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

John A. Drakopoulos

May 1995



c
 Copyright 1995 by John A. Drakopoulos

All Rights Reserved

ii



I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Barbara Hayes-Roth
(Principal Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

David E. Rumelhart

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Nils J. Nilsson

Approved for the University Committee on Graduate Studies:

iii



Abstract

Pattern recognition methods can be divided into four di�erent categories: statistical or

probabilistic, structural, possibilistic or fuzzy, and neural methods. A formal analysis shows

that there is a computational complexity versus representational power trade-o� between

probabilistic and possibilistic or fuzzy set measures, in general. Furthermore, sigmoidal the-

ory shows that fuzzy set membership can be represented e�ectively by sigmoidal functions.

Those results and the formalization of sigmoidal functions and subsequently multi-sigmoidal

functions and neural networks led to the development of a hybrid pattern recognition system

called tFPR.

tFPR is a hybrid fuzzy, neural, and structural pattern recognition system that uses

fuzzy sets to represent multi-variate pattern classes that can be either static or dynamic

depending on time or some other parameter space. Given a set of input data and a pattern

class speci�cation, tFPR estimates the degree of membership of the data in the fuzzy set

that corresponds to the current pattern class. The input data may be a number of time-

dependent signals whose past values may in
uence the evaluation of the pattern class.

The membership functions of the fuzzy sets that represent pattern classes are modeled

in three di�erent ways. In case of relatively simple pattern classes or pattern classes that

can be described concisely by a fuzzy set expression, the membership functions of the

corresponding fuzzy sets would be modeled by a collection of sigmoidal functions. The

choice of sigmoidal functions was motivated by their ability to represent e�ciently and

concisely di�erent multi-variate pattern classes via fuzzy set membership. However, when

the pattern class under question would depend on some parameter space (such as time)

a structural pattern recognition method (that may involve fuzzy components) would be

employed in order to match curves (rather than points) in the input domain. Finally,

whenever it would be di�cult to obtain a formal de�nition of the membership function of

a fuzzy set representation for a pattern class, tFPR would model the membership function

iv



via multi-sigmoidal neural networks. Thus, tFPR should be able to learn a de�nition of the

membership function by input-output relationships given to the system as training data.

Although e�ciency is a very important consideration in tFPR, the main issues are

knowledge acquisition and knowledge representation (in terms of pattern class descriptions).

The fuzzy and structural components of tFPR have been implemented in Lisp, while the

neural component has been implemented in C using the SNNS simulator. tFPR has been

embedded in the BB1 blackboard architecture but it can also run as a stand-alone system.

It is currently being applied in a system for medical monitoring.

v



Acknowledgements

I would like to thank my advisor, Barbara Hayes-Roth, for her continuing support and

guidance over the years I have spent in her research group. Her trust and support on me

even during my most di�cult years at Stanford made this research a reality.

I would also like to thank my other committee members, David Rumelhart and Nils Nils-

son as well as the additional members of my defense committee, David Gaba and Ousama

Khatib for their time and interest.

Special thanks are due to the rest of the BB1 and AIS research group members which

over the years have listened to my talks and have o�ered me valuable advice.

I would also like to pay special tribute to the administrative sta� at KSL for their

excellent service, help, and support.

This research was supported by NASA grant NAG2-581 (ARPA Order #8607) and

Teknowledge Federal Systems, Inc. contract 71715-1 (ARPA contract DAAA21-92-C-0028).

vi



Contents

Abstract iv

Acknowledgements vi

1 Introduction 1

1.1 Contributions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.2 A guide to the thesis : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 2

1.3 Overview of Basic Pattern Recognition Paradigms : : : : : : : : : : : : : : 3

2 A Comparison of Some Measure Classes 7

2.1 Mathematical Measures, Systems, and System Classes : : : : : : : : : : : : 9

2.2 System Relationships : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 12

2.3 Discussion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 16

3 Sigmoidal Theory 19

3.1 Sigmoidal Theory : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 20

3.2 Sigmoidal Class Generation Algorithm : : : : : : : : : : : : : : : : : : : : : 25

3.3 Multi-Sigmoidal Functions : : : : : : : : : : : : : : : : : : : : : : : : : : : : 28

3.4 Application of Sigmoidal Functions : : : : : : : : : : : : : : : : : : : : : : : 31

4 Multi-Sigmoidal Neural Networks 35

4.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 36

4.2 Multi-Sigmoidal Units and Neural Networks : : : : : : : : : : : : : : : : : : 37

4.3 Back-Propagation and Self-Con�guring Neural Networks : : : : : : : : : : : 45

4.4 MSNNs and MSBP : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 47

4.5 Experimental Results : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 49

vii



4.5.1 Convergence Rates and Solution Quality of MSBP : : : : : : : : : : 49

4.5.2 Generalization Performance of MSBP : : : : : : : : : : : : : : : : : 52

4.6 Future Extensions and Conclusion : : : : : : : : : : : : : : : : : : : : : : : 58

5 tFPR: A Hybrid Pattern Recognition System 59

5.1 Introduction : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 60

5.2 The Underlying Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 61

5.3 The Extended Model : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 68

5.4 Segmentation Algorithms : : : : : : : : : : : : : : : : : : : : : : : : : : : : 70

5.5 Implementation : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 74

5.6 Illustrative Application : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 80

5.7 Speci�cations of a Graphical Interface : : : : : : : : : : : : : : : : : : : : : 83

5.8 Extensions : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 84

5.9 Conclusion : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 85

Bibliography 87

viii



List of Figures

2.1 Expressiveness relations among probabilities, possibilities, and fuzzy sets. : 15

3.1 A typical sigmoidal function. : : : : : : : : : : : : : : : : : : : : : : : : : : 21

3.2 Example of generation of an asymmetric sigmoidal function. : : : : : : : : 23

3.3 Basic unit sigmoidal functions and their generators. : : : : : : : : : : : : : 27

3.4 A typical multi-sigmoidal function. : : : : : : : : : : : : : : : : : : : : : : : 29

3.5 A multi-sigmoidal function and its fuzzy set approximation. : : : : : : : : : 32

4.1 A typical MS unit. netj is the net input to node j, oj is its output, and fj is

its activation function. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 37

4.2 Multi-sigmoidal units for the step and logistic function with (a1; a2; a3; a4) =

(3;�3; 3;�3) and (c1; c2; c3; c4) = (0;�6; 15;�21). The graphs show the

output oj over x; y. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 38

4.3 Approximation of f(u) by g(W � u). : : : : : : : : : : : : : : : : : : : : : : 41

4.4 Two sets of points in 2-D space separated by arbitrary and parallel hyper-

planes. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 42

4.5 Multi-sigmoidal functions for f(x; y; z) = (x ^ y) _ (x ^ �z). : : : : : : : : : : 44

4.6 Plot of ratio s
smin

over number of epochs required to converge to a solution for

the classi�cation problems par2, par3, par4, par5, par6, add2, add3, sym6,

and sym8. : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 53

4.7 Generalization results for sonar and thyroid data sets. The graphs on the left

show generalization error over number of hidden units while the graphs on

the right show generalization error over number of degrees of freedom. The

gray curves correspond to BP and the black ones to MSBP. : : : : : : : : : 55

ix



4.8 Graphs of generalization error over window width (w). The three curves for

sonar correspond to networks of 0, 2, and 4 hidden units while the three curves

for thyroid correspond to networks of 4, 8, and 16 hidden units respectively.

The darker the curve the more the hidden units. : : : : : : : : : : : : : : : 57

5.1 Basic structure of tFPR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 62

5.2 Sigmoidal functions for various values of a; c. : : : : : : : : : : : : : : : : : 65

5.3 Fuzzy set operations on sigmoidal functions. : : : : : : : : : : : : : : : : : : 66

5.4 A pattern class and its sigmoidal approximation. : : : : : : : : : : : : : : : 67

5.5 Search graph for the optimal algorithm. : : : : : : : : : : : : : : : : : : : : 72

5.6 Architecture of tFPR : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : : 79

x



Chapter 1

Introduction

Notions of quantity are possible only when there already exists a general concept

which admits particular instances.

On the hypotheses which lie at the foundations of Geometry

Georg F.B. Riemann 1826{1866

For the man who should loose me is dead,

Fighting with the Duke in Flanders,

In a pattern called a war.

Christ! What are patterns for?

Patterns

Amy Lowell 1856{1943

Pattern recognition is de�ned in [Uhr, 1973] as \the many-to-one mapping from a very

large set of possible pattern instances to a much smaller set of pattern names." It is a form

of information reduction that provides us with a concise description of a state or situation

that is represented by a large amount of input data that are often only partially available.

That description, in turn, may signal the satisfaction of some conditions or the existence of

some features in the current state that require a change in the system's behavior. Hence,

pattern recognition is an essential ingredient of tasks such as perception, decision making,

reaction, design, and planning.

1



CHAPTER 1. INTRODUCTION 2

1.1 Contributions

This thesis describes the theoretical foundations that led to the design of a hybrid fuzzy,

neural, and structural pattern recognition system called tFPR as well as the functional

structure of the system itself. The theoretical results consist of the following:

� An analytic comparison of some measure classes (namely probabilities, possibilities,

and fuzzy sets).

� The development of sigmoidal theory which formalizes and studies sigmoidal functions

and de�nes multi-sigmoidal functions and neural networks. Sigmoidal theory also

shows that sigmoidal functions can be coupled very e�ectively with possibilities and

fuzzy sets.

� Some results regarding the representational capabilities of two-layer multi-sigmoidal

neural networks and a learning algorithm for multilayer multi-sigmoidal neural net-

works.

Practical contributions and empirical studies include the following:

� An empirical evaluation of multi-sigmoidal neural networks.

� The development of a greedy heuristic algorithm for a form of structural pattern

matching.

� The development of a small data base containing descriptions of more than one hun-

dred medical pattern classes.

1.2 A guide to the thesis

In this chapter, an overview of the basic pattern recognition paradigms is presented. In

chapter 2, a formal analysis and comparison of the most common measures (namely proba-

bilities, possibilities, and fuzzy sets) used in pattern recognition systems today is presented.

In chapter 3, the sigmoidal theory is introduced which formally de�nes and analyzes sig-

moidal and multi-sigmoidal functions and shows that those functions can represent fuzzy

set membership very e�ectively.

In chapter 4 multi-sigmoidal neural networks are presented. Those networks are a

straightforward generalization of ordinary sigmoidal neural networks by sigmoidal theory.



CHAPTER 1. INTRODUCTION 3

A preliminary analytic study of two-layer multi-sigmoidal neural networks and an empirical

evaluation of multi-layer multi-sigmoidal neural networks are presented in that chapter, too.

Chapters 2 through 4 de�ne the theoretical foundations of tFPR which is the subject of

chapter 5. A de�nition of the system is given along with a description of its greedy heuristic

used for structural pattern matching. Finally, current and future applications of tFPR are

discussed.

1.3 Overview of Basic Pattern Recognition Paradigms

Currently there are so many pattern recognition approaches and methods that their com-

plete taxonomy is a di�cult and arduous task. In most of those approaches, the input

can be described or be transformed into a number n of computable properties (often called

features) and as such can be represented as a point in an n-dimensional space (which is

often called feature space). Subsequently, pattern classes correspond to sets of input data

and can be described by the boundaries of their corresponding regions in feature space.

Those boundaries are usually called decision boundaries. Hence, pattern recognition can

be regarded as the process of establishing the decision boundaries of a number of pattern

classes.

Following the above interpretation, a classi�cation of pattern recognition methods and

techniques appears in [Lippmann, 1989] based on the way decision regions are formed (e.g.

probabilistic, receptive �elds, exemplars, etc.) and the form of the decision boundaries (i.e.

hyperplanes, hyper-spheres, quadratic surfaces, etc.).

On the other hand, a number of other properties of classi�ers which could be taken

into account in classifying pattern recognition methods are mentioned in [Jain, 1987]. For

example, a classi�er can be statistical or structural, parametric or non-parametric, and

supervised or unsupervised. Finally, a more appealing taxonomy of pattern recognition

methods appears in [Schalko�, 1992] where classi�ers are divided into categories based on

their computational nature. That taxonomy consists of three di�erent classes of pattern

recognition methods: statistical, structural and neural pattern recognition methods.

Here, we describe a taxonomy that is based on the form of the measures used internally

by the classi�er and the nature of their elementary computations, more or less along the

lines of the taxonomy presented in [Schalko�, 1992]. Subsequently, within each category,

classi�ers can be partitioned into classes based on other properties such as the form of their



CHAPTER 1. INTRODUCTION 4

decision regions, their parametric or non-parametric formalization, and their supervised or

unsupervised learning characteristics.

Our taxonomy consists of four categories:

1. Statistical pattern recognition methods (also known as stochastic, decision-theoretic,

or probabilistic)

2. Structural or syntactic pattern recognition methods

3. Fuzzy or possibilistic pattern recognition methods

4. Neural network or connectionist pattern recognition methods

The �rst category contains the most conventional classi�ers that are based on some sta-

tistical or decision-theoretic measures to classify their input data. A good description

and introduction to most of those techniques appear in early classic textbooks on pattern

recognition [Duda and Hart, 1973, Fukunaga, 1972]. A more recent textbook with a good

description of many statistical pattern recognition methods is [Schalko�, 1992].

Structural pattern recognition methods di�er from all other pattern recognition methods

for they do not directly form decision regions in some feature space. Instead, they try to

decompose their input data into a number of smaller pieces that match some primitive

pattern elements or subpatterns. Those subpatterns are then combined hierarchically to

form other higher level subpatterns of the overall pattern class. Most of structural pattern

recognition methods are presented in [Fu, 1982, Schalko�, 1992]. Despite the conceptual

di�erences of statistical and structural pattern recognition methods, a unifying view is given

in [Fu, 1980].

Fuzzy or possibilistic pattern recognition methods are based on possibilistic measures

to de�ne pattern classes. Fuzzy sets were invented in 1965 by Zadeh [Zadeh, 1965]. Since

then, fuzzy set theory has received increasing attention which has resulted in a number

of applications in many di�erent domains and disciplines. Fuzzy sets naturally �t pattern

recognition problems. In the most general case, those problems involve the computation

of the degree to which a data object x matches a pattern class description p. In the fuzzy

set interpretation of those problems, p is usually represented by a fuzzy set Ap which, in

general, models a cluster, class, or pattern object. The grade of membership of x in Ap

represents the degree to which x matches pattern class p. An original study of fuzzy sets

in the context of pattern recognition problems appeared in [Bellman et al., 1966]. An early



CHAPTER 1. INTRODUCTION 5

and inspiring application of fuzzy sets to pattern recognition problems and clustering in

particular, has been presented in [Ruspini, 1969, Ruspini, 1970]. A subsequent and very

in
uential method was the fuzzy ISODATA (or fuzzy c-means) algorithm [Dunn, 1973,

Bezdek, 1973]. Since then a number of other methods and techniques have been developed

and used in applications. A good description of most of those techniques appears in [Bezdek,

1981, ch.3-5], [Kandel, 1982, ch.3-5], [Pal and Dutta-Mazamder, 1986, ch.3, 5-8]. More

recent collections of fuzzy pattern recognition methods appear in [Dubois et al., 1993, ch.6],

and [Bezdek and Pal, 1992].

Although the �rst and very in
uential works on neural network research appeared about

�fty years ago [McCulloch and Pitts, 1943, Hebb, 1949] and some early and very important

developments took place in late 1950s and early 1960s [Rosenblatt, 1958, Rosenblatt, 1961,

Widrow, 1962, Nilsson, 1965] the �eld of neural networks as a computational paradigm

has grown rapidly only in the last few years (see [Hecht-Nielsen, 1990, chapter 1] for an

overview of the history of neurocomputing). Neural network pattern recognition methods,

which are based on neural networks to de�ne and describe pattern classes in the input

data, also have received a proportional amount of interest in the last few years. The

measures used are usually (classi�cation error) metrics sometimes coupled with measures of

generalization or network size (such as Rissanen's minimum descriptive length) [Rumelhart

et al., 1986a, Hinton, 1989, Hanson and Pratt, 1989, Mozer and Smolensky, 1989]. The

basic computational element is a unit or node that performs a relatively simple function

and communicates with other units through connections of variable strength (or weights).

Usually, each unit maps an n-dimensional input vector into a real value x using a projection

operator (such as dot product,
P
, sup, Euclidean distance, etc.) and then computes its

output by applying a simple non-linear function to x. Knowledge is usually stored in the

weights while the overall computation emerges through the interactions of the units.

For classi�cation problems, the weights specify the boundaries of regions in feature

space. Depending on the form of the projection operators used, neural network classi�ers

may use hyperplanes, hyperspheres, or combinations of them with other multi-dimensional

isopotential surfaces in order to form regions in feature space.

Early neural network approaches were focused in linear discriminating functions and,

in particular perceptrons ([Duda and Hart, 1973, Nilsson, 1965, ch. 5]). Now there is a

wide range of neural network architectures and learning algorithms that �nd applications

in many di�erent domains and disciplines. Most of those algorithms are described in neural



CHAPTER 1. INTRODUCTION 6

network textbooks [Haykin, 1994, Hecht-Nielsen, 1990, Hertz et al., 1991, Rumelhart et al.,

1986b].

A good introduction to pattern recognition techniques and algorithms of all of the

above categories, except fuzzy methods, is given in [Schalko�, 1992]. Of course there

are hybrid methods that could belong to more than one of those categories. For ex-

ample, concepts originated in fuzzy set theory have been incorporated into neural net-

work methods and neural networks have been used in fuzzy set implementation and fuzzy

reasoning [Cohen and Hudson, 1992, Keller et al., 1992, Takagi and Hayashi, 1991, Tak-

agi, 1990]. Furthermore, fuzzy neural networks and hybrid fuzzy and neural classi�ca-

tion systems have been developed. Those include the nested generalized exemplar (NGE)

algorithm [Salzberg, 1990], the fuzzy min-max classi�er (FMMC) [Simpson, 1992], the

fuzzy ARTMAP neural network architecture [Carpenter et al., 1992], and fuzzy multi-

layer perceptrons and neurons [Pal and Mitra, 1992, Yamakawa and Furukawa, 1992].

Furthermore, hybrid probabilistic and neural network methods exist such as neural im-

plementations of the k-nearest neighbor classi�er and perceptron trees [Lippmann, 1989,

Utgo�, 1988]. In addition, a pattern recognition system or architecture may use many

di�erent pattern recognition methods and so be a hybrid system.



Chapter 2

A Comparison of Some Measure

Classes

Probable impossibilities are to be preferred to improbable possibilities.

24.1460a. Aristotle 384{322 B.C.

How often have I said to you that when you have eliminated the impossible,

whatever remains, however improbable, must be the truth?

Sir Arthur Conan Doyle 1859{1930.

Probabilities, possibilities, and fuzzy sets are all measures that �nd applications in

pattern recognition problems and have been used to formalize and quantify uncertainty.

There is an on-going debate regarding the usefulness of each measure. Arguments in favor

of probabilities can be found in [Lindley, 1987, Cheeseman, 1986] while arguments more in

favor of possibilities and fuzzy sets are presented in [Kosko, 1990, Klir, 1989].

A brief presentation and qualitative comparison of the above measures as well as

MYCIN's certainty factors ([Shortli�e, 1976]) and Dempster-Shafer theory ([Dempster,

1968, Shafer, 1976]) appear in [Henkind and Harrison, 1988]. However, a quantitative

comparison of those measures in terms of both e�ciency and expressiveness is not given.

Such a comparison is necessary in order to evaluate and characterize those measures. Some

attempts in this direction regard a notion of consistency between probabilities and pos-

sibilities [Dubois and Prade, 1983, Delgado and Moral, 1987] and transformations from

7



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 8

probabilities and possibilities to Dempster-Shafer theory [Klir and Parviz, 1992]. However,

those transformations cannot tell us about the exact relationship of probabilities and pos-

sibilities. Furthermore, the transformations from possibilities to Dempster-Shafer theory as

appear in [Klir and Parviz, 1992] require the elements of the universal set to be ordered in

descending possibility values. However, such an ordering does not always exist when the

universal set is in�nite. This limits the applicability of the transformation to �nite universal

sets. Finally, there has been no study so far of the extensions of the universal sets that are

necessary in order to create mappings among probabilities, possibilities, and fuzzy sets.

Here, we present a number of theorems that specify some important relationships be-

tween probabilities, possibilities, and fuzzy sets and as such provide some answers to

the issues mentioned above. The theorems use some formal de�nitions of the above

measures. However, since there is a wide variability in the fuzzy set theory litera-

ture in terms of de�nitions, the results presented here should be construed as appli-

cable only in cases where the de�nitions used elsewhere are either equivalent or im-

ply ours. On the other hand, it has been proved in [Bellman and Giertz, 1973,

Hamacher, 1976] that, under very reasonable assumptions, the only truth functional con-

nectives for fuzzy sets that are possible are the usual max�min (or equivalently sup� inf

which are used here). Thus our de�nitions correspond to the most conventional case which

is (most probably) most widely used.

The rest of this chapter is organized along the general scheme of some preliminary de�-

nitions followed by a number of theorems and a discussion of their implications to systems,

architectures, and applications. In the next section, basic de�nitions are introduced. These

set up the context under which our theorems are presented and consist the foundations of

probability, possibility, and fuzzy set theory. In section 2.2, we present a number of theorems

that relate those theories and compare them from the viewpoint of relative expressiveness

i.e. the ability of one to simulate the others. For in�nite domains, it is proved that all

measures have the same expressiveness and as such can be considered to be equivalent in

terms of representational power. However, for �nite domains, probabilities are proved to be

more expressive than both possibilities and fuzzy sets but they have higher computational

demands. Possibilities and fuzzy sets can actually simulate probabilities but, in that case,

their space requirements are exponential when compared to those of probabilities.

The increased complexity of probabilities gives rise to a trade-o� which is the subject of

section 2.3. This is a trade-o� of complexity and representational power versus e�ciency.



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 9

Experimental systems and approaches as well as di�erent applications are discussed.

2.1 Mathematical Measures, Systems, and System Classes

A formal de�nition of probability, possibility, and fuzzy set theory is given below. We begin

with the de�nition of a sigma-algebra1 and its base:

De�nition 1 A sigma-algebra B on a set 
 is a set of subsets of 
 satisfying the following

properties:

(a) 
 2 B

(b) 8A (if A 2 B then �A 2 B); �A stands for the complement of A

(c) if A1; A2; . . . is any sequence of sets in B then [i Ai 2 B

De�nition 2 A set � is a base of a sigma-algebra B i� the closure of � under set union

and set complementation (wrt the universal set 
 of B) is equal to B (written as c(�) = B)

and no proper subset of � has this property.

Now, we de�ne de�ne a probability system and a probability measure2 as follows:

De�nition 3 A probability system is a triple, (
;B; P ), where 
 is an arbitrary set (the

set of all possible outcomes), B is a sigma-algebra on 
 (the set of the events of interest)

and P is a real valued function de�ned for each A 2 B such that:

(a) 8A 2 B 0 � P (A) � 1

(b) P (
) = 1

(c) if A1; A2; . . . is any sequence of pairwise disjoint sets in B then

P (
S1
i=1Ai) =

P1
i=1 P (Ai)

A function P that satis�es the three conditions above is called a probability measure. The

third property is called countable additivity. For a discussion of sigma-algebras and proba-

bility measures see [Papoulis, 1991].

Similarly, we de�ne a possibility system, and a possibility measure ([Dubois and Prade,

1987]):

1A sigma-algebra is also called event class, or sigma-�eld.
2Originally de�ned by A.N.Kolmogorov [Kolmogorov, 1950].



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 10

De�nition 4 A possibility system is a triple, (
;B;�), where 
 is an arbitrary set (the set

of all possible outcomes), B is a sigma-algebra on 
 (the set of the events of interest) and

� is a real valued function de�ned for each A 2 B such that:

(a) �(;) = 0

(b) �(
) = 1

(c) 8I if fAi = i 2 Ig is a set of sets in B then

�(
S
i2I Ai) = supi2I �(Ai)

Now the function � is a possibility measure.

Fuzzy sets were de�ned in 1965 by L.A.Zadeh [Zadeh, 1965]. The basic idea in fuzzy

set theory is the notion of a fuzzy set which is the mathematical concept of set that allows

partial membership for elements in its domain. Thus, an element x may partially belong

to a fuzzy set A. Each fuzzy set is characterized by its membership function fA(x) that

states, for any given x in the domain of A, \in what degree, x belongs to A".3

A formal de�nition of a fuzzy set system is as follows:

De�nition 5 A fuzzy set system is a triple, (�;D; f), where � is a set of all fuzzy sets of

interest, D is the domain of the fuzzy sets in �, and f is a real valued function de�ned for

each A 2 � and each x 2 D such that:

(a) 8x 2 D f;(x) = 0; ; is the empty set in �

(b) 8x 2 D f
(x) = 1; 
 is the universal set in �

(c) 8I if fAi = i 2 Ig is a set of fuzzy sets in � then

8x 2 D fS
i2I

Ai
(x) = supi2I fAi(x)

8x 2 D fT
i2I

Ai
(x) = inf i2I fAi(x)

(d) 8A 2 � 8x 2 D f �A(x) = 1� fA(x)

3In addition, Zadeh de�ned fuzzy set subset-hood based on membership functions:

8A;B (A � B , fA � fB)

where fA � fB means that 8x (fA(x) � fB(x)). However, it should be noted that the above de�nition of

fuzzy set subsethood is not universally accepted within the fuzzy set community and is often against the

meaning of \if A then B".



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 11

Now observe that parts (c); (d) in the above de�nition should not be seen as requirements

on the function f but rather as de�nitions of fuzzy set union, intersection and complemen-

tation. For example, the union of a sequence of fuzzy sets A1; A2; . . . is de�ned to be a fuzzy

set whose membership function is equal to sup1i=1 fAi .

Furthermore, we can de�ne the closure c(�) of � recursively as follows

8A 2 � A 2 c(�)

8I if fAi = i 2 Ig is a set of fuzzy sets in c(�) thenS
i2I Ai 2 c(�)

Intuitively, c(�) is the fuzzy analog of sigma-algebras as de�ned for ordinary sets. Pushing

this analogy further, if � has the property that for no proper subset �0 of � would be

c(�0) = c(�) then � will be called a base of c(�). Alternatively, we could have de�ned

fuzzy sigma-algebras to be closures of sets of fuzzy sets such as � above. A more detailed

discussion of possibilities and fuzzy sets appears in [Drakopoulos, 1994a].

Furthermore, we de�ne system classes to be classes of di�erent systems. Hence, we

de�ne:

De�nition 6 A probability system class P
 is the class of all probability systems (
; 2
; P ).

A possibility system class �
 is the class of all possibility systems (
; 2
;�). A fuzzy set

system class F�;D is the class of all fuzzy set systems (�;D; f).

A �nal issue regards the extensionality or intensionality of a measure. Formally, a

measure F is called extensional i� for any A1; A2; . . . the value of F (
S1
i=1Ai) can be

computed from the values of F (A1); F (A2); . . . without any direct reference to A1; A2; . . ..

Otherwise, F would be called intensional. For example, probability measures are inten-

sional for P (
S1
i=1Ai) depends not only on P (A1); P (A2); . . . but also on whether the sets

A1; A2; . . . are disjoint or not. On the other hand, possibility measures are extensional for

�(
S1
i=1Ai) = sup1i=1�(Ai). Similarly, fuzzy sets membership is an extensional measure.

The above de�nition can be generalized to extensional and intensional systems [Pearl, 1990].

The actual trade-o� has been claimed to be between computational e�ciency and semantic

clarity or content [Pearl, 1990]. In the extreme case, one can de�ne an extensional measure

that is trivial to compute but carries little or no information. On the other hand, one can

de�ne an intensional measure that carries a lot of information but is di�cult to compute.

However, this is mostly an empirical observation and no mathematical proofs have been



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 12

given in the literature to establish it. Nevertheless, in this thesis, we present theorems that

show that for the particular intensional and extensional measures studied (i.e. probabili-

ties, possibilities, and fuzzy sets) there is a trade-o� between computational e�ciency and

representational power, when the domains of the measures are �nite. For in�nite domains,

possibilities and fuzzy sets have an advantage in terms of computational complexity while

no measure has an advantage over the others in terms of representational power as de�ned

in section 2.2.

However, it should be noted that, in addition to the classical sup� inf pair, several

algebraic structures on the interval [0; 1] have been de�ned and studied in the literature

and consequently have been used to de�ne fuzzy set connectives (see [Alsina et al., 1983,

Alsina and Trillas, 1983, Hamacher, 1976, Yager, 1980]). Those alternative de�nitions relax

some of the requirements on the connectives (mainly distributivity) so that the de�nitions

are consistent.

On the other hand, as proved in [Bellman and Giertz, 1973, Hamacher, 1976], under

very reasonable assumptions (mainly distributivity and monotonicity) the classical sup� inf

pair is not only natural but also the only one possible. Thus, our de�nition here, which is

based on the sup� inf connectives and is equivalent to Zadeh's original de�nition ([Zadeh,

1965]), corresponds to the most natural and most widespread de�nition used in the fuzzy

set research community. Nevertheless, it is worth noting that our theorems are intended for

the classical connectives for fuzzy sets and do not necessarily apply for other connectives.

2.2 System Relationships

An important question is whether probability and possibility measures or systems (fuzzy

or not) are actually di�erent. A number of theorems presented below prove that they have

some strong similarities as well as di�erences. To study them formally, we need to de�ne

the notion of relative expressiveness of one system with respect to another. In the following,

we write (
;B;M) to indicate a system where 
 is an arbitrary set, B is a sigma-algebra

on 
, and M is a real valued function de�ned for each A 2 B. Furthermore, we write 2A to

indicate the power set of A, for any set A.

Now, we de�ne:

De�nition 7 A system S = (
;B;M) is at most as expressive as a system S0 = (
0;B0;M 0)



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 13

(written as S � S0) i�

8A 2 B 9A0 2 B0 M(A) =M 0(A0):

The intuition behind this de�nition is that if S � S0 then the system S0 can simulate S

by using M 0(A0) whenever S uses M(A). Of course, this raises the question about the

existence of a deterministic algorithm or method that could derive A0 given A;M , and the

system class to which M 0 belongs. Our de�nition above requires only the establishment

of the existence of a set A0. However, in [Drakopoulos, 1994a], constructive proofs of the

theorems presented here are given that determine how to construct not only A0 but also 
0

and M 0 given A;M
, and the system class of M 0.

Now, similarly as before, we de�ne:

De�nition 8 A system class C
 is at most as expressive as the system class C0
0 (written

as C
 � C
0

0) i�

8M (
; 2
;M) 2 C
 ) 9M 0
0
@ (
0; 2


0

;M 0) 2 C
0

0

(
; 2
;M) � (
0; 2

0

;M 0)
and

1
A

Therefore, C
 � C
0

0 i� each system in C
 can be simulated by a system in C0
0 .

Similarly, for fuzzy set systems we de�ne:

De�nition 9 A system S = (
; 2
;M) is at most as expressive as a fuzzy set system

S0 = (�;D; f) (written as S � S0) i�

8A 2 2
 9A0 2 c(�) 9x 2 D M(A) = fA0(x):

Furthermore, S0 � S i�

8A0 2 c(�) 8x 2 D 9A 2 2
 M(A) = fA0(x):

In the case S � S0, the fuzzy set system S0 can simulate the system S while in the case

S0 � S the system S can simulate the fuzzy set system S0. Now, we de�ne:

De�nition 10 A system class C
 is at most as expressive as the system class F�;D (written

as C
 � F�;D) i�

8M (
; 2
;M) 2 C
 ) 9f

0
@ (�;D; f) 2 F�;D

(
; 2
;M) � (�;D; f)
and

1
A



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 14

Similarly, F�;D � C
 i�

8f (�;D; f) 2 F�;D ) 9M

0
@ (
; 2
;M) 2 C


(�;D; f)� (
; 2
;M)
and

1
A

In the following, we denote the cardinal of a set A as card(A) and the cardinal of the

set N of natural numbers as @0 (see [Stoll, 1963] for more details on cardinal numbers).

Now, we can present a few second order logic theorems that relate probability, possibility,

and fuzzy set systems. Their proofs have been given in [Drakopoulos, 1994a].

Theorem 1 If 
 is �nite then �
 � P


Theorem 2 8
 P
 � �2


Theorem 3 If 
0 is �nite and card(
) + 1 < card(2

0

) then not(P
0 � �
)

Theorem 4 If 
 is in�nite then P
 = �
, (i.e. �
 � P
 and P
 � �
 ).

Furthermore, if � is in�nite or D is uncountably in�nite then P
 = F�;D (i.e. P
 � F�;D

and F�;D � P
 ).

Theorem 5 8
; � P
 � F�;2
 (assuming card(�) � 3).

8
; D �
 � F�;D (assuming D is non-empty and

card(�) � card(
) ).

Theorem 6 If card(
) � card(�) � card(D) and card(�) < @0 then F�;D � P


Theorem 7 If 
; �;D are �nite and both card(�) and card(D) are polynomially related to

card(
) then not(P
 � F�;D)

The previous few theorems show that probabilities are more expressive (or equivalently

have more representational power) than both possibilities and fuzzy sets, for �nite domains


. However, as theorem 4 shows, their di�erences in expressiveness disappear when the

domain is in�nite. Nevertheless, it should be noted that the case of �nite domains is of

particular interest in computer science where only a �nite subset of the rational numbers

is representable in our �nite machines. Furthermore, the case of �nite domains does not

cause an \over
ow" of the range of the above measures allowing for interesting relationships

among them to be formed. It is those relationships that reveal the di�erences between the



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 15

Π Ω PΩ 2ΩΠ

β,DF
,2ΩFβ

β .D <= Ω

β >= Ω

β >= 2
D >= 1

Figure 2.1: Expressiveness relations among probabilities, possibilities, and fuzzy sets.

two mathematical operators (
P

and sup) that de�ne the fundamental operations in each

system class examined in this study.

Figure 2.1 represents our results graphically. The nodes in the graph represent system

classes and the links represent \at most as expressive as" relations. The labels on some of

the arcs indicate special conditions under which the corresponding \�" relations hold. The

meanings of the labels are as follows:

Label Meaning

� >= 3 card(�) � 3

D >= 1 card(D) � 1,

� >= 
 card(�) � card(
)

�:D <= 
 card(�) � card(D) � card(
)

We assume that the sets 
; �;D are �nite. The dashed line is a link that has not been proved

explicitly in any of the previous theorems but can be derived easily from the following:

card(
) � card(
0)) C
 � C
0



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 16

2.3 Discussion

Theorems 1 and 3 of the previous section showed that, for �nite domains, possibilities are

less expressive than probabilities. Another way to express that is that probabilities can

simulate possibilities without any extra space requirements while the opposite is not true,

in general.4 Theorem 2 reveals that when extra space requirements can be greatly tolerated

then probabilities can be simulated by possibilities, too. However, as theorems 1 and 3

showed, for any given �nite space, probabilities have strictly greater representational power

than possibilities. Thus, probabilities, when compared to possibilities, can represent more

mappings from any given �nite domain to the interval [0; 1] and as such can be regarded as

being \denser" than possibilities in terms of representable mappings.

Unfortunately, the space requirements to simulate probabilities by possibilities are ex-

cessive since the size of 2
 is exponentially larger than the size of 
. Therefore, in practice,

we may regard that probabilities cannot be simulated by possibilities when the domain is

�nite.

Theorems 5, 6, and 7 reveal that a similar relation exists between probabilities and

fuzzy sets, in �nite spaces. Probabilties can simualte fuzzy sets without any extra space

requirements: they both require O(card(�) � card(D)) space. However, fuzzy serts cannot

simulate probabilities without exponentially greater requirements (theorem 7). The second

part of theorem 5 shows that fuzzy sets can simulate possibilities without extra space

requirements. This comes at no surprise for fuzzy sets have been de�ned in a possibilistic

way.

It must be stressed, however, that those relationships hold for �nite domains. As theorem

4 shows, when domains become in�nite, all measures studied here are capable of covering

the whole [0; 1] interval and as such are representationally equivalent to each other (i.e. any

measure representable in one of them is representable in the other without any extension or

extra requirements on the domain). Of course, this can be seen as an \over
owing" e�ect,

in the sense that the above measures over
ow (i.e. cover) their range when their domains

become appropriately large. Furthermore, studying them in such an \over
owing" state

would not give us insight on their intrinsic representational capabilities. Thus, it is the

4For example, consider the case of a domain 
 of n elements. Let 
 = f!1; . . . ; !ng and the probability

distribution P be de�ned so that P (f!ig) = m 1

2i
; i = 1; 2; . . . ; n, where m is a constant chosen so that

the probabilities above sum up to one (i.e. m = 2
n

2n�1
). Then, as it was shown in [Drakopoulos, 1994a], no

possibility measure in a domain of less than 2n elements can simulate the above probability distribution.



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 17

author's view that �nite domains are more appropriate for comparing the corresponding

system classes in term of the mappings they can represent.

The 
ip side of the representational advantage of probabilities, in �nite domains, is their

e�ciency disadvantage. Possibilistic measures such as possibilities and fuzzy sets are easier

to compute than probabilities since the former are extensional while the later are intensional

measures. This theoretical advantage of possibilities is very noticeable in practice where one

can easily compute the possibility value of a compound logical expression or relation among

events or entities by simply applying the de�nition. On the other hand, using probabilities,

such a task is either very di�cult or impossible. For example, evaluating a Bayesian Network

[Charniak, 1991, Pearl, 1988], is computationally an NP-hard problem ([Cooper, 1987]).

Although there are simple and e�cient algorithms for the restricted class of singly connected

networks ([Neapolitan, 1990]), in general, exact algorithms are very complicated and often

very ine�cient. This led to approximate evaluations of the conditional probabilities in

a Bayesian network ([Charniak, 1991, Pearl, 1990]), a solution which introduces an error

which in turn reduces the information probabilities carry. Furthermore, the structure of

the network implies independence assumptions which do not always capture all the possible

situations and as such act as a new source of error and information loss. Therefore, it appears

that probabilities often carry too much information imposing approximate or ine�cient

solutions.

Probabilistic approaches are not limited to Bayesian networks. Probabilistic logic

[Nilsson, 1986] is another example. In general, Bayesian statistics have been used as a

statistical theory of evidence, uncertainty, and inference ([Genesereth and Nilsson, 1987,

Lukasiewicz, 1970]). Furthermore, a number of probabilistic techniques have been applied

for pattern recognition and classi�cation. These include (but are not limited to) Bayes

classi�er and learning, Parzen windows, hidden Markov models, k-nearest neighbor, and

stochastic approximation methods. A good overview of them appers in [Duda and Hart,

1973].

Possibilistic measures, have a computational advantage over probabilities at the cost

of reduced representational power when domains are �nite. However, for in�nite domains,

possibilistic measures maintain their computational advantage at no apparent cost for their

representational power is then equal to that of probabilities.

Applications of possibilities are mainly within the spectrum of fuzzy set applications.

Fuzzy sets and logic have been used in representation and approximate reasoning [Yager



CHAPTER 2. A COMPARISON OF SOME MEASURE CLASSES 18

et al., 1987], pattern recognition [Dubois et al., 1993, Pal and Majumder, 1986], opera-

tions research [Dubois et al., 1993], and modeling uncertainty and control [Dubois et al.,

1993]. Applications include decision support systems, expert systems, natural language

processing ([Yager et al., 1987]), database management, linear programming, robotics, vi-

sion ([Dubois et al., 1993]), clustering, classi�cation, image analysis ([Dubois et al., 1993,

Pal and Majumder, 1986]), and speech recognition ([Pal and Majumder, 1986]).

In addition to the measures studied here, other measure systems have been used to model

uncertainty [Shortli�e, 1976, Dempster, 1968, Shafer, 1976]. However, those measures have

not been used in pattern recognition problems and are not studied here. For a discussion

of their relationship to probabilistic and possibilistic measures see [Drakopoulos, 1994a,

Klir, 1989, Klir and Parviz, 1992].

The results presented in this chapter establish a computational complexity versus rep-

resentational power trade-o� between probabilistic and possibilistic measures. Although

further studies seem to be required in order to completely resolve this trade-o� in each do-

main, some results in the next section stress some of the advantages of possibilistic measures

(such as fuzzy sets) which are �nally used in our hybrid pattern recognition system.



Chapter 3

Sigmoidal Theory

Eureka! (I've got it!)

Archimedes 287{212 B.C.

With a name like yours, you might be any shape, almost.

Lewis Carroll 1832{1898

In this chapter, we formally de�ne and analyze a family of functions which we call

sigmoidal functions for their shape resembles the Greek letter sigma (&)1. The resulting

theory, called sigmoidal theory, generates an in�nite number of classes of sigmoidal functions

(called sigmoidal classes). Currently, only few of those functions are known or used in appli-

cations. In addition, sigmoidal theory speci�es an algorithm to construct sigmoidal classes

and establishes that those classes form a partition of the sigmoidal family. Using sigmoidal

functions belonging to a class, we can construct general functions of arbitrary complexity

that are piecewise sigmoidal functions. Those are called multi-sigmoidal functions.

Sigmoidal functions and sigmoids in particular are in widespread use in neural networks

[Hinton, 1989, Rumelhart et al., 1986a]. In this chapter, we show that sigmoidal functions

are very appropriate for representing fuzzy set membership, too. In fact, it was the study

of fuzzy sets and pattern recognition problems that led to the formalization of sigmoidal

1We chose the name sigmoidal functions instead of sigmoids in order to distinguish our functions from
those that have been called sigmoids in the literature. In general, all sigmoids are sigmoidal functions but

the opposite is not true.

19



CHAPTER 3. SIGMOIDAL THEORY 20

functions (see [Drakopoulos, 1991, Drakopoulos and Hayes-Roth, 1994] for our earliest ap-

proach).

In the next section, we formally introduce sigmoidal functions and state a number of

theorems that constitute sigmoidal theory. In section 3.2, we specify an algorithm for

generating a�ne sigmoidal classes and discuss why a�ne classes are preferable than general

classes. That algorithm is a straightforward application of sigmoidal theory. In section

3.3, we describe multi-sigmoidal functions, which have been used in multi-sigmoidal neural

networks [Drakopoulos, 1995]. Those functions are shown to be closely related to fuzzy set

membership functions. Finally, in section 3.4, we discuss various applications of sigmoidal

functions in fuzzy sets, pattern recognition, and neural networks.

3.1 Sigmoidal Theory

In the following we assume that R is the set of real numbers.

De�nition 11 A function f : R ! R is a symmetric sigmoidal function (or simply a

sigmoidal function) i�

(a) f is monotonic

(b) infR f = L; supR f = U

(c) 9m 2 R 8x 2 R f(m� x) + f(m+ x) = L+ U

In that case, we write f 2 sigm(L; U;m).

Therefore, a real valued function over R is a symmetric sigmoidal function if and only if it

is monotonic, bounded, and symmetric around a point (= (m; L+U
2

)). A typical example

of a sigmoidal function appears in �gure 3.1. We can furthermore de�ne a function f to be

a unit sigmoidal function i� f 2 sigm(0; 1; m). If, in addition, m = 0 and f is increasing

then f is called basic unit sigmoidal function.

Now de�ne

De�nition 12 A function � : D ! R is called an index function from D to R i� � is

strictly monotonic in D and �(D) = R.

and



CHAPTER 3. SIGMOIDAL THEORY 21

f(m-x)

U

f(m+x)

(L+U)/2

L

m-x m m+x

Figure 3.1: A typical sigmoidal function.



CHAPTER 3. SIGMOIDAL THEORY 22

De�nition 13 The class Cf of a function f : D! R is the set of all functions that can be

expressed as a composition of f with an index function from D to D i.e.

Cf = ff � � = � is an index function from D to Dg

If, furthermore, the index function � is restricted to be an a�ne function the resulting class

Af is called the a�ne class of f .

Notice the the class of a symmetric sigmoidal functions contains functions that are S-

shaped but not symmetric around a point. For example, if f is a symmetric sigmoidal

function and � is an index de�ned as follows

�(x) =

8<
:

4x If x < 0

x If x � 0

9=
;

then f � � does not have a center of symmetry (see �gure 3.2). We call those functions

asymmetric sigmoidal functions.

In the following, we write f " to indicate that the function f is increasing and f # to

indicate that f is decreasing. We can now present the theorems of sigmoidal theory. Proofs

of those theorems are given in [Drakopoulos, 1994b].

Theorem 8 (Sigmoidal Reduction Theorem). Every sigmoidal function can be ex-

pressed as an a�ne transformation of a unit sigmoidal function or as the a�ne transfor-

mation of the composition of a basic unit sigmoidal function and a translation.

The above theorem simply states that it is always possible to to transform a sigmoidal

function (by an a�ne transformation) so that its range is within the interval [0; 1]. Fur-

thermore, any sigmoidal function can always be translated so that its center of symmetry

is the point (0; 0:5) and then be transformed (by an a�ne transformation) so that it would

be an increasing function in [0; 1]. Now, those transformations show that sigmoidal, unit

sigmoidal, and basic unit sigmoidal functions are all equivalent under a�ne transforma-

tions and compositions. Furthermore, a similar theorem holds for asymmetric sigmoidal

functions. If f is such a function then there exists an index function � such that f � � is a

symmetric sigmoidal function. Thus, the above theorem applies.

Sigmoidal theory is stated in terms of sigmoidal functions and not simply in terms of

basic unit sigmoidal functions despite the transformational equivalence of those functions.



CHAPTER 3. SIGMOIDAL THEORY 23

�(x)

-1 1 2 3 4

-4

-2

2

4

s(x) s(�(x))

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

Figure 3.2: Example of generation of an asymmetric sigmoidal function.



CHAPTER 3. SIGMOIDAL THEORY 24

Furthermore, sigmoidal theory focuses on functions that are almost everywhere di�eren-

tiable (i.e. on functions whose derivative is not de�ned only over a subset of R that is of

zero length). For example, consider a function that is di�erentiable everywhere except in

a set of points that is at most countably in�nite. Then that function is almost everywhere

di�erentiable. Hence, all functions of practical interest are almost everywhere di�erentiable.

Theorem 9 (Sigmoidal Derivative Theorem). If f is almost everywhere di�erentiable

then

f 2 sigm(L; U;m),

8>>><
>>>:

f 0 does not change sign

j
R+1
�1 f 0(x) dxj = U � L

8x 2 R f 0(m� x) = f 0(m+ x)

We call the function f 0 a sigmoidal generator.

Corollary 1 Every even probability density function is a basic unit sigmoidal generator.

Theorem 10 (Sigmoidal Generation Theorem). If f is almost everywhere di�eren-

tiable then

f 2 sigm(L; U;m), 9g 8x 2 R

8<
:
g(x) � 0

f(x) = �
R x
�1 g(t) dt+ A

9=
;

where (�; A) =

8<
:

(+1; L) if f "

(�1; U) if f #

9=
;.

Lemma 1

8f1 2 sigm(L; U;m1)

8f2 2 sigm(L; U;m2)

Cf1 \ Cf2 6= ; , 9�1; �2; 8x f1(�1(x)) = f2(�2(x))

, 9�1; �2; 8x �1�
0
1(x)g1(�1(x)) = �2�

0
2(x)g2(�2(x))

, Cf1 = Cf2

where �1; �2 are index functions from R to R, and �1; g1; �2; g2 result by applying the sig-

moidal generation theorem to f1; f2, respectively.



CHAPTER 3. SIGMOIDAL THEORY 25

Theorem 11 (Sigmoidal Partitioning Theorem). If f1; f2 are almost everywhere dif-

ferentiable then

8f1 2 sigm(L; U;m1)

8f2 2 sigm(L; U;m2)

Cf1 \ Cf2 6= ; , Cf1 = Cf2

Corollary 2 All strictly monotonic sigmoidal functions (that are almost everywhere di�er-

entiable) belong to a single sigmoidal class.

The above corollary states that if we do not restrict ourselves in choosing the index

functions then sigmoidal functions tend to merge into large classes. For the same reason,

it is di�cult to test whether two sigmoidal functions belong to the same class or not. An

appropriate constraint to impose on the choice of the index functions in order to overcome

the drawbacks just mentioned, is to require index functions to be a�ne. This results in

a�ne sigmoidal classes and is discussed in more detail in the next section as well as in

[Drakopoulos and Hayes-Roth, 1994].

We present now the last theorem of the sigmoidal theory:

Theorem 12 (Sigmoidal Bubble Theorem). If s is a basic unit sigmoidal function

then

8s1; s2 2 Cs 9�1; �2 8x1; x2 2 R2
6664
sup(s1(x1); s2(x2)) = s(sup(�1(x1); �2(x2)))

inf(s1(x1); s2(x2)) = s(inf(�1(x1); �2(x2)))

1� s1(x1) = s(��1(x1))

3
7775

where �1; �2 indicate index functions from R to R.

The importance of the above theorem is explained in section 3.4,

3.2 Sigmoidal Class Generation Algorithm

The sigmoidal generation and partitioning theorems of section 3.1 provide a way to generate

sigmoidal classes given a set of index functions A. The algorithm is as follows:



CHAPTER 3. SIGMOIDAL THEORY 26

1. Choose an even non-negative function g such that

Z +1

�1
g(t) dt = U � L

2. De�ne s(x) = �
R x
�1 g(t) dt+A, where �; A are as de�ned in the sigmoidal generation

theorem.

3. De�ne a new sigmoidal class Cs = fs � � = � 2 Ag

Now, if we choose A to be the set of a�ne indices i.e. indices of the form ax� c, where

a 6= 0, then the above algorithm produces the following a�ne classes:

As = ff = 9a; c a 6= 0 and 8x f(x) = s(ax� c)g

The choice of a�ne indices is motivated not only by their simplicity and low computational

cost but also by their clarity in de�ning sigmoidal classes. To see the later, observe that,

by lemma 1, two sigmoidal classes Cf1 ; Cf2 would intersect each other and as such would

be identical i�

9a1; c1; a2; c2 2 R 8x 2 R �1a1g1(a1x� c1) = �2a2g2(a2x� c2)

where a1 6= 0 and a2 6= 0. Therefore, two a�ne sigmoidal classes are disjoint if and only

if their generators are not a�nely related. Since the later condition is easy to test, a�ne

sigmoidal classes are easily discernible. Finally, a�ne indices result in sigmoidal classes that

do not contain asymmetric sigmoidal functions2.

Figure 3.3 depicts a number of basic unit sigmoidal functions and their generators. As

it can be easily veri�ed, the generators are not a�nely related and as such the underlying

a�ne sigmoidal classes are all disjoint.

Finally, each sigmoidal function that belongs to a particular a�ne class can now be

represented by a pair of numbers (a; c). This reduces the storage requirements of sigmoidal

functions to a level comparable to that of linear segments and makes them very attractive

as representation functions.

2This is due to the fact that if s 2 sigm(L; U;m) and f(x) = s(ax� c) then f 2 sigm(L;U; m+c

a
)



CHAPTER 3. SIGMOIDAL THEORY 27

Generating Sigmoidal Generating Sigmoidal
Function Function Function Function

�(x) step(x) box(x) ramp(x)

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

4(x) quadratic(x) 1p
�
e�x

2 1p
�

R x
�1 e�t

2

dt

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

2
�(ex+e�x)

2
�
arctan(ex) 1

ex+2+e�x
1

1+e�x

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

-4 -3 -2 -1 0 1 2 3 4

1

Figure 3.3: Basic unit sigmoidal functions and their generators.



CHAPTER 3. SIGMOIDAL THEORY 28

3.3 Multi-Sigmoidal Functions

Multi-sigmoidal functions are composed of many sigmoidal functions so that their mono-

tonicity can change at many points. Assuming that S is a basic unit sigmoidal function

and Sa;c denotes a member of the a�ne class AS of S (e.g. Sa;c(x) = S(ax� c)), a formal

de�nition of multi-sigmoidal functions is as follows:

De�nition 14 A function f is called a multi-sigmoidal function (written as ms(f)) i�

9k; a1; c1; . . .ak; ck

(a) 8i 2 f2; . . . ; kg ai�1ai < 0

(b) 8x 2 R f(x) =
Pk

i=1 Sai;ci(x)[bi�1 < x � bi]

where

[�] =

8<
:

1 if � is true

0 if � is false

9=
;

bi =
ci+1 � ci

ai+1 � ai
; i = 1; 2; . . . ; k � 1

b0 = �1; bk = +1

In that case, we write

f = (Sa1;c1 ; b1; Sa2;c2 ; b2; . . . ; bk�1; Sak;ck)

The constants ai; ci are called a�ne coe�cients while the points bi are called barrier

locations, for i = 1; . . . ; k. Intuitively, a�ne coe�cients determine the positioning and

steepness of the sigmoidal functions while barrier locations indicate where the sigmoidal

functions intersect and thus where the monotonicity of the overall multi-sigmoidal function

changes.

Condition (a) in de�nition 14 is required so that successive sigmoidal functions have

di�erent monotonicity while condition (b) creates a piece-wise sigmoidal shape. Barrier

locations are de�ned in terms of a�ne coe�cients so that the function f is continuous at

b1; b2; . . . ; bk�1. Furthermore, if S is strictly monotonic then the above de�nition of barrier

locations is not only a su�cient but also a necessary condition for continuity of the function

f at those locations. Figure 3.4 shows a typical multi-sigmoidal function.



CHAPTER 3. SIGMOIDAL THEORY 29

-6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

1

Figure 3.4: A typical multi-sigmoidal function.

Multi-sigmoidal functions have been used successfully in multi-sigmoidal neural networks

as non-monotonic unit activation functions [Drakopoulos, 1995]. Their 
exible shape and

their ability to undergo local shape transformations (within two barrier locations) without

a�ecting the shape of distant sigmoidal segments of the curve make multi-sigmoidal func-

tions very powerful functional representation devices. Multi-sigmoidal neural networks are

described in more detail in the next chapter.

There is a strong relationship between multi-sigmoidal functions and fuzzy set mem-

bership functions. If f is a multi-sigmoidal function (as above) then we can de�ne a new

function g that approximates f as follows:

g(x) =

8>>>>><
>>>>>:

gD(x) if a1 > 0 and k is even

sup fgD(x); Sak;ck(x)g if a1 > 0 and k is odd

gC(x) if a1 < 0 and k is even

inf fgC(x); Sak;ck(x)g if a1 < 0 and k is odd

9>>>>>=
>>>>>;



CHAPTER 3. SIGMOIDAL THEORY 30

where

gC(x) =
bk=2c
sup
i=1

�
inf(Sa2i�1;c2i�1(x); Sa2i;c2i(x))

	

gD(x) =
bk=2c
inf
i=1

�
sup(Sa2i�1;c2i�1(x); Sa2i;c2i(x))

	

Furthermore, if Sai;ci is the membership function of a fuzzy set Ai then g is the membership

function of the fuzzy set G de�ned by

G =

8>>>>><
>>>>>:

GD if a1 > 0 and k is even

GD [Ak if a1 > 0 and k is odd

GC if a1 < 0 and k is even

GC \ Ak if a1 < 0 and k is odd

9>>>>>=
>>>>>;

where GD and GC are the fuzzy sets with membership functions gD and gC , respectively.

Thus

GD = [
bk=2c
i=1 (A2i�1 \A2i)

GC = \
bk=2c
i=1 (A2i�1 [A2i)

As a result, multi-sigmoidal functions can be seen as arbitrary fuzzy set membership func-

tions de�ned in terms of sigmoidal functions. Intuitively, GD is in disjunctive normal

form while GC is in conjunctive normal form in terms of their constituent fuzzy sets,

Ai; i = 1; 2; . . . ; k. Depending on whether its leftmost sigmoidal component is increas-

ing or decreasing (i.e. a1 > 0 or a1 < 0), a multi-sigmoidal function can be seen as a

sequence of \hills" or a sequence of \valleys", respectively. Then the i-th \hill" or \valley"

can be approximated by the membership function of the fuzzy set A2i�1\A2i or A2i�1[A2i,

respectively. Finally, the overall function emerges as the disjunction of the \hills" or the

conjunction of the \valleys" resulting in disjunctive or conjunctive normal forms.3

The only di�erence between the above de�nition of multi-sigmoidal functions and their

original one is that the new one has the undesirable property that the value of the function

g at a point x may depend not only on the sigmoidal functions surrounding x but also on

3The case where the number of sigmoidal components k is odd, is treated separately for it results in a
\hill" or \valley" than has only one \side".



CHAPTER 3. SIGMOIDAL THEORY 31

sigmoidal functions that are distant to x. This situation is depicted in �gure 3.5 where one

of the constituent sigmoidal functions of the multi-sigmoidal function f a�ects the value

of f only within a closed interval between 3 and 14. However, in the fuzzy set theoretic

approximation g of f the area of in
uence of that same sigmoidal function is extended all

the way to �1 suppressing most of the �rst (from left to right) sigmoidal function. It is

now obvious that local shape modi�cations are not guaranteed to be local. This drawback

led to the adoption of the original de�nition that uses barrier locations to achieve local

modi�ability.

3.4 Application of Sigmoidal Functions

Fuzzy sets and pattern recognition are areas where sigmoidal functions �nd immediate

application.

Regarding fuzzy sets, sigmoidal functions are very useful in modeling fuzzy membership

due to the sigmoidal bubble theorem. That theorem showed that one can always interchange

sigmoidal functions with sup, inf, and complementation operations. As a result, if all

the constituent subexpressions of a fuzzy set theoretic expression are evaluated through

sigmoidal functions of a single class, only a single sigmoidal computation is required to

evaluate the overall expression no matter how complicated the expression is. For example,

assume that s is a basic unit sigmoidal function and Cs be its sigmoidal class. Furthermore,

assume that fi is the membership function of the fuzzy set Ai and that fi 2 Cs i.e.

fi = s � �i

for some index function �i. Then if D is a new fuzzy set de�ned as

D = A1 [ (A2 \ �A3) [ (A3 \ �A4)

where �A indicates the complement of the fuzzy set A, then, due to sigmoidal bubble theorem,

it would be

fD = sup ffA1 ; inf(fA2 ; 1�fA3); inf(fA3 ; 1�fA4)g

= s(sup f�1; inf(�2; ��3); inf(�3; ��4)g)



CHAPTER 3. SIGMOIDAL THEORY 32

f(x)

-6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

1

g(x)

-6 -4 -2 0 2 4 6 8 10 12 14 16 18 20

1

Figure 3.5: A multi-sigmoidal function and its fuzzy set approximation.



CHAPTER 3. SIGMOIDAL THEORY 33

i.e. the membership function of the new set can be computed by evaluating s only once.

This is true irrespectively of the length or complexity of the expression that de�nes the new

set. Furthermore, if the new set D is used in another expression that de�nes another fuzzy

set then the same transformations would apply and only one sigmoidal computation would

be required to compute the membership function of the new set. Finally, since we always

need to compute only a single sigmoidal function s, we can tabulate its values to further

speed up the computations.

Sigmoidal functions, like bubbles in water, move toward the \surface" of a fuzzy set

theoretic expression and as such need only be computed once, per expression. Furthermore,

if all sigmoidal functions belong to the same class then they would form a big \bubble" that

corresponds to a single basic sigmoidal function like s above. This analogy of computations

with sigmoidal functions and \bubbles" is responsible for the name of theorem 12.

The approach of representing fuzzy set membership with sigmoidal functions has been

taken in the tFPR system which is described in chapter 5 as well as in [Drakopoulos and

Hayes-Roth, 1994, Drakopoulos, 1991].

A number of functions have been used so far to model fuzzy set membership ([Yager

et al., 1987], [Kaufmann, 1975], ch.III, section 29, [Gupta et al., 1975]). Often low order

polynomials (mainly, linear segments, segments of parabolas, and splines) are used for they

are very simple, 
exible, and e�cient to use. We have showed that sigmoidal functions have

similar properties and, in particular, result in very e�cient computations. Furthermore,

some preliminary experiments done with the tFPR system showed that sigmoidal functions,

in general, outperform low order polynomials both in terms of accuracy and time or space

e�ciency. It is likely that the use of sigmoidal functions as fuzzy set membership functions

would grow after their formalization, here.

Another application area of sigmoidal functions is neural networks. Here, sigmoids are

in widespread use as neuron activation functions [Hinton, 1989, Rumelhart et al., 1986a].

The two sigmoids most commonly used are the logistic function and tanh(x). A good

discussion and some experimental results regarding the trade o� between sigmoid and radial

basis functions as neuron activation functions appear in [Weigend et al., 1990, Moody and

Darken, 1989, Lapedes and Farber, 1987] . Further comparisons of sigmoids with other unit

activation functions appear in [Moody and Yarvin, 1992, DasGupta and Schnitger, 1993,

Drakopoulos, 1995],

We believe that detailed studies are required in order to determine which sigmoidal



CHAPTER 3. SIGMOIDAL THEORY 34

functions are the best for a set of di�erent applications and to determine their most e�ective

organization in each unit. The internal functional richness of the sigmoidal family and its

close ties with the paradigms of neural networks and fuzzy sets make the sigmoidal family

not only an important source of representational elements but also a potential link between

the two paradigms that could allow their mutual interpretation.



Chapter 4

Multi-Sigmoidal Neural Networks

Since two distinct �nite subsets of pattern vectors can always be nonredundantly

partitioned by a set of parallel hyperplanes, . . .

Learning Machines

Nils J. Nilsson 1933{

Multi-sigmoidal units, which are a generalization of ordinary sigmoidal units used in

neural networks, are discussed in this chapter. Multi-sigmoidal neural networks (i.e. neural

networks with multi-sigmoidal units) inherit all function representation and approximation

capabilities of ordinary sigmoidal neural networks. In addition, as proved here, if X is a

�nite and discrete subset of real numbers then any function f : Xn ! f0; . . . ; C�1g� can be

represented by a two-layer network (i.e. no hidden units) that has �dlog2 Cemulti-sigmoidal

output units. The above result indicates that there is a trade-o� in capturing interactions

among inputs and representing or approximating functions either via hidden units or via

non-monotonic unit activation functions.

Multi-layer multi-sigmoidal neural networks combine the above two mechanisms i.e. hid-

den units and non-monotonic activation functions. Those networks consist of a new neural

network architecture based on dynamically created non-monotonic activation functions that

are modeled by a set of sigmoidal functions. A modi�cation of the back-propagation algo-

rithm is presented in this chapter that is capable of learning both the weights and the unit

activation functions themselves. A number of classi�cation problems are used to evaluate

that algorithm in terms of convergence rates, solution quality, and generalization accuracy.

35



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 36

4.1 Introduction

Perceptrons have been severely criticized for their inability to represent simple boolean

functions (such as exclusive-OR) [Minsky and Papert, 1988]. As it has been shown in the

literature [Rumelhart et al., 1986a], the above limitation is mainly due to the fact that

perceptrons are two-layer networks (i.e. they have no hidden layers). Three-layer neural

networks with arbitrary activation functions (especially in the upper layer) can represent any

continuous function [Kolmogorov, 1957, Sprecher, 1965, Hecht-Nielsen, 1987]. On the other

hand, given a particular activation function  , three-layer neural networks can uniformly

approximate any continuous function, if and only if  is non-polynomial [Leshno et al., 1993,

Hornik, 1993]. Furthermore, if  is a squashing function then three-layer neural networks

can uniformly approximate any Borel measurable function [Hornik et al., 1989]. Justi�ed by

the later results, simple monotonic activation function (such as sigmoidal functions) have

been used in many neural network applications [Rumelhart et al., 1986a, Hinton, 1989,

Sejnowski and Rosenberg, 1987].

Here, it is shown that some of the computational limitations of two-layer networks with

monotonic activation functions are due to the monotonicity of their activation functions.

In our study, units, which are called multi-sigmoidal units, use multi-sigmoidal functions as

unit activation functions.

In the next section, it is proved that if X is a discrete and �nite subset of real

numbers then any function f : Xn ! f0; 1g can be represented by a single multi-

sigmoidal unit. As a consequence, any function f : Xn ! f0; . . . ; C � 1g� can be

represented by a two-layer network (i.e. no hidden units) that has �dlog2 Ce multi-

sigmoidal output units. Unfortunately, a similar statement cannot be made about

two-layer neural networks with monotonic activation functions. Those networks can

only represent or approximate linearly separable functions [Minsky and Papert, 1988,

Nilsson, 1965]. Thus, the above results indicate that there is a trade-o� in capturing

interactions among inputs and representing or approximating functions using either hidden

units or non-monotonic unit activation functions.

Non-monotonic activation functions are not uncommon in neural network litera-

ture [Lippmann, 1989, Poggio and Girosi, 1989, Moody and Yarvin, 1992, Dawson and

Schop
ocher, 1992]. Empirical comparisons of sigmoids and radial basis functions appear



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 37

fj

netj

Oi

Wij
. . . . . .

Oj

oj = fj(netj)

fj = (Saj1;cj1 ; bj1; . . . ; bj;k�1; Sajk;cjk );
for some k 2 N

netj =
P

i oiwij

Figure 4.1: A typical MS unit. netj is the net input to node j, oj is its output, and fj is
its activation function.

in [Weigend et al., 1990, Moody and Darken, 1989, Lapedes and Farber, 1987] while em-

pirical comparisons of sigmoids, polynomials, rational functions, and 
exible Fourier series

appear in [Moody and Yarvin, 1992]. All those studies provide some empirical evidence

that non-monotonic unit activation functions could aid representation and approximation

of functions by neural networks.

4.2 Multi-Sigmoidal Units and Neural Networks

Multi-sigmoidal units (MS units) are units with multi-sigmoidal unit activation functions

while multi-sigmoidal neural networks (MSNNs) are neural networks whose units are MS

units. A typical MS unit and its functionality are shown in �gure 4.1. In this chapter we

will focus in cases where S is a unit sigmoidal function.

Obviously, if we choose the sigmoidal function S to be the step function (see �gure 3.3

for a de�nition of the step function) then a corresponding MS unit with k instances of S

would implement k parallel hyperplanes. Figure 4.2 shows a graph of the output of an MS

unit with two inputs and k = 4 sigmoidal functions. In the �rst case, S is chosen to be

the step function which, in turn, results in regions in input space having boundaries that

are de�ned by a number of parallel hyperplanes. However, in the second case, S is chosen

to be the logistic function. In that case, regions have \smooth" boundaries which can be

considered as parallel \hyper-bands". The steepness of S as well as the magnitudes of the

weights determine the width of those hyper-bands. Alternatively, the step function can be



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 38

netj

Oj

fj

x y

11

-4

-2

0

2

4

x

-4

-2

0

2

4

y

0

1

oj 

-4

-2

0

2

4

x

netj

Oj

fj

x y

1 1

-4

-2

0

2

4

x

-4

-2

0

2

4

y

0

oj 

-4

-2

0

2

4

x

Figure 4.2: Multi-sigmoidal units for the step and logistic function with (a1; a2; a3; a4) =
(3;�3; 3;�3) and (c1; c2; c3; c4) = (0;�6; 15;�21). The graphs show the output oj over x; y.



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 39

considered as a special case of a sigmoidal function with in�nite steepness that results in

hyper-bands or zero width (i.e. hyperplanes).

The de�nition of MS units motivates us in extending the de�nition of linear separability

[Nilsson, 1965] to p-linear separability (p stands for parallel):

De�nition 15 Two subsets Y0;Y1 of Rd (d 2 N ) are said to be p-linearly separable i�

there exists a threshold � 2 [0; 0:5), a unit sigmoidal function S, and an MS unit that uses

S to implement a (discriminant) function g : Rd ! [0; 1] such that

8y 2 Y0 g(y) � �

8y 2 Y1 g(y) � 1� �

Intuitively, if we can separate Y0;Y1 by a set of parallel hyperplanes (or hyper-bands) then

Y0;Y1 would be p-linearly separable.

The importance of p-linear separability lies in the fact that it can be implemented by

a single MS unit as well as the fact that Y0;Y1 can always be separated by at most N � 1

parallel hyperplanes provided that they are disjoint and the number N of points in Y0 [Y1

is �nite. Formally, we can state and prove the following theorem:

Theorem 13 Let X � R be a �nite and discrete set and S be a unit sigmoidal function

with range RS (i.e. (0; 1)� RS � [0; 1]). Then

8n � 1 8f : Xn ! f0; 1g 9W 2 Rn 8� > 0

9k; a1; . . . ; ak; c1; . . . ; ck; b1; . . . ; bk�1 8u 2 Xn jf(u)� g(W � u)j � �

where g = (Sa1;c1 ; b1; Sa2;c2 ; b2; . . . ; bk�1; Sak;ck). Furthermore, if RS = [0; 1] then � could be

chosen to be zero (i.e. f = g) in the above inequality.

Proof

Let m = minfjx� yj = x; y 2 X; x 6= yg, M = maxfjx � yj = x; y 2 Xg, B = M
m
+ 1, and

W t = [B0; B1; . . . ; Bn�1]. We shall now prove that the function h(u) = W � u; u 2 Xn is

1 � 1 in Xn. To this purpose, let u = [u0; . . . ; un�1]; u0 = [u00; . . . ; u
0
n�1]; and u; u

0 2 Xn.

We shall �rst prove that

8k 2 f0; 1; . . . ; n� 1g uk < u0k !
kX
i=0

Bi(ui � u0i) < 0 (4.1)



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 40

Indeed,
Pk

i=0B
i(ui � u0i) � �Bkm+

Pk�1
i=0 B

iM = �Bkm+ (Bk � 1)m < 0.

Now, if u 6= u0 then j 4= maxfi = ui 6= u0i; 0 � i � n � 1g is well de�ned and

h(u)� h(u0) =
jX

i=0

Bi(ui � u0i) 6= 0

For the last inequality simply observe that if uj < u0j then by (4.1) the above sum is negative.

Similarly if uj > u0j then the sum has to be positive. This proves that h is 1� 1 in Xn. As

a result, we can write Xn as fu1; u2; . . . ; uNg so that h(ui) < h(ui+1) (i = 1; 2; . . . ; N � 1),

where N is the �nite cardinal of Xn.

Now, we can construct g. To this purpose, let ui1 ; ui2 ; . . . ; uik denote the elements of

Xn where it is f(uij ) 6= f(uij+1) (j = 1; 2; . . . ; k� 1). Then de�ne

g = (Sa1;c1 ; b1; Sa2;c2 ; b2; . . . ; bk�1; Sak;ck)

where

jf(uij)� Saj;cj(h(uij))j = jf(uij+1)� Saj;cj(h(uij+1))j = �

Obviously, since ff(uij); f(uij+1)g = f0; 1g, � could be chosen to be zero in the above

equations, if RS = [0; 1]. In either case, those equations can de�ne solution sets for

aj ; cj (j = 1; 2; . . . ; k). Any element in those solution sets will be an acceptable assign-

ment of values to the a�ne coe�cients aj ; cj (j = 1; 2; . . . ; k). The barrier locations are

now de�ned as bj =
cj+1�cj
aj+1�aj ; j = 1; 2; . . . ; k � 1. This completely de�nes the function

g(W �u); u 2 Xn as shown in �gure 4.3 (the dashed lines represents the polygonal extension

of the discrete function f(u) and the solid curve represents the function g(h(u)) = g(W �u)).

Now, 8u 2 fui1 ; ui2 ; . . . ; uikg it would be u = uij ; for some j 2 1; . . . ; k and so it

would be jf(u)� g(W � u)j = jf(uij) � Saj;cj(h(uij))j = �. On the other hand, 8u 2 Xn �

fui1 ; ui2 ; . . . ; uikg it would be true that 9j 2 f0; 1; . . .k + 1g h(uij) < h(u) < h(uij+1);

where we de�ne ui0 = u1 and uik+1 = uN to cover boundary cases.

Now, f(u) is constant (equal to f(uij+1)), for u 2 fuij+1; . . . ; uij+1g. Furthermore,

there are two possible cases, as shown in �gure 4.3, depending on whether f(uij+1) would

be equal to 1 or 0. In either case, however, the functions Saj;cj ; Saj+1;cj+1 approximate f(u)

in the interval [h(uij+1); h(uij+1)] closer than they do at points h(uij+1); h(uij+1). Therefore,



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 41

ij
h(u  )

i +1j
h(u    ) iij+1

h(u   )

g(Wu)

f(u)

ε

ε

ε

ε

i +1j
h(u    ) iij+1

h(u   )

ij
h(u  )

g(Wu)

f(u)

ε

ε

ε

ε

Figure 4.3: Approximation of f(u) by g(W � u).

it is

jf(u)� g(W � u)j � jf(uij)� Saj;cj (h(uij))j = jf(uij+1)� Saj+1;cj+1(h(uij+1))j = �

As a result, the required inequality jf(u)� g(W � u)j � � holds for all u 2 Xn. Q.E.D.

The above theorem states that one multi-sigmoidal unit is necessary in order to represent

(or approximate) any function f : Xn ! f0; 1g. As a direct consequence, � multi-sigmoidal

units are necessary to represent any function f : Xn ! f0; 1g�. Furthermore, since dlog2Ce

bits are necessary to represent any number in f0; 1; . . . ; C�1gwe have the following theorem:

Theorem 14 If X � R is discrete and �nite then any function f : Xn ! f0; 1; . . . ; C�1g�

can be represented by a two-layer multi-sigmoidal network having �dlog2Ce multi-sigmoidal

units.

On the other hand, given that a single MS unit cannot represent or uniformly approximate

a function f such as

f(x; y) = [xy > 0]

the use of multi-layer (multi-sigmoidal) neural networks becomes an issue. In general, there

is a trade-o� between parallel and arbitrary hyperplanes. Since the number of adjustable

parameters de�nes the dimensionality of the search space in a learning problem, it is impor-

tant to maintain this number small or even to minimize it. However, in order to represent

n parallel hyperplanes of a d-dimensional space d+n parameters are required (d+1 param-

eters to represent one hyperplane plus n � 1 parameters to represent the signed distances



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 42

Figure 4.4: Two sets of points in 2-D space separated by arbitrary and parallel hyperplanes.

of this hyperplane from the rest). On the other hand, in order to represent m arbitrary

hyperplanes of a d-dimensional space m(d+ 1) parameters are required (d+ 1 parameters

for each hyperplane). In all applications, it would be m � n. Yet, it is the ratio n+d
m(d+1)

that

should be used to measure the utility and e�ectiveness of parallel hyperplanes (the smaller

the ratio the more appropriate parallel hyperplanes would be for the problem at hand). The

threshold is equal to 1.

As a concrete example, consider the case shown in �gure 4.4 where n = 6; m = 4; d = 2,

and n+d
m(d+1)

= 8
12
. Parallel hyperplanes resulted in fewer free parameters on this problem

despite the low dimensionality of the space (d = 2) and the choice of this example which is

a discrete and �nite instance of a problem that is not amenable to solution by a single set

of parallel hyperplanes. Indeed as the number of samples would increase so would do the

number of parallel hyperplanes that are required to separate the two classes. However, for

this problem, we can always separate the two classes by four arbitrary hyperplanes. Yet,

a typical neural network must have four layers in order to represent an exact solution to

this problem. On the other hand, a three-layer MSNN can represent the same solution. In

short, parallel hyperplanes can be very useful but not in all situations or networks.

However, if a function is de�ned over a discrete and �nite set then a two-layer MSNN



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 43

can represent that function. The same is true for ordinary three-layer (but not for two-

layer) sigmoidal neural networks. Thus MSNNs seem to be more appropriate for discrete

and �nite problems than ordinary neural networks.

On the other hand, all the above discussion is valid only for classi�cation problems

or for functions that constant over �nite sets of regions. In that case, we can use sets of

hyperplanes (parallel or not) to approximate the boundaries of those regions. However,

for all other problems and functions the concept of regions and their boundaries does not

apply and so does the concept of parallel hyperplanes. In that case, as pointed out earlier

in this chapter, the use of MS units provides non-monotonicity in unit activation functions.

The remaining questions regard the utility of this feature and the existence of an e�ective

learning algorithm under its presence.

To answer the �rst question, one can simply observe that non-monotonicity allows for

e�cient representation of any discrete relationships that may be present in the problem

under consideration. Yet, there is a more fundamental justi�cation of non-monotonicity. A

simple inspection of the construction used in Kolmogorov's superposition mapping theorem

(see [Kolmogorov, 1957, Sprecher, 1965]) reveals that upper layer unit activation functions

must be non-monotonic in most cases. Adding to this the fact that for problems of n

inputs only 2n + 1 hidden units are required in the construction of that theorem, the

trade-o� between hidden units and non-monotonicity in unit activation functions becomes

apparent in its most general form. It is that trade-o� that justi�es the use of non-monotonic

activation functions. The choice of MS functions to model non-monotonicity is motivated

by the study of sigmoidal functions in chapter 3 that demonstrated the e�ectiveness of

sigmoidal functions in capturing non-linearity in some function spaces.

A �nal issue is the number of sigmoidal functions used in an MS unit. A direct ap-

plication of the construction given in the proof of theorem 13 would not always result

in the minimum number of sigmoidal functions. Consider the following example. Let,

f(x; y; z) = (x^y)_(x^ �z). Now, it is X = f0; 1g. Thus (see proof of theorem 13), it would

be M = m = 1, B = 2, and so it would be h(x; y; z) = x+ 2y + 4z. This results to a multi-

sigmoidal function g as shown in �gure 4.5. However, if we de�ne h(x; y; z) = 4x+2y+z we

get the multi-sigmoidal function g0 that has fewer sigmoidal functions than g. In addition,

for the n-parity problem, it can be proved by induction that a weight vector as the one

constructed in theorem 13 will require b2
n+1�1
3

c sigmoidal functions. On the other hand,

setting all weights equal to a constant (say 1) will result in a multi-sigmoidal unit that can



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 44

g g0

-1 0 1 2 3 4 5 6 7 8

1

-1 0 1 2 3 4 5 6 7 8

1

Figure 4.5: Multi-sigmoidal functions for f(x; y; z) = (x ^ y) _ (x ^ �z).

represent n-parity using only n sigmoidal components.

In general, for any given problem, the weight vector W may a�ect the number of sig-

moidal components of g. Finding a weight vector that would minimize the number of

sigmoidal functions of an MS unit is an open problem and should be a subject of further

research.

However, two-layer MSNNs cannot represent or (uniformly) approximate arbitrary func-

tions by arbitrary precision � > 0. For example, a function as simple as f(x; y) = [xy > 0]

or the two-spiral problem cannot be modeled by a single multi-sigmoidal unit. On the

other hand, multi-sigmoidal units are generalizations of ordinary sigmoidal units since ev-

ery sigmoidal unit is a multi-sigmoidal unit with only one sigmoidal component. Thus, the

functions that are representable by ordinary sigmoidal neural networks are representable by

MSNNs, too. As a consequence, three-layer MSNNs can uniformly approximate any (Borel)

measurable function [Hornik et al., 1989].

Unfortunately, there has not been discovered a theorem such as theorem 13 that would

provide weight vectors and multi-sigmoidal functions for multi-layer MSNNs. However,

a heuristic and greedy algorithm (steepest descent) that trains multi-layer MSNNs and

dynamically adapts the sigmoidal components on each unit is the multi-sigmoidal back

propagation algorithm that is discussed in section 4.4.



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 45

4.3 Back-Propagation and Self-Con�guring Neural Net-

works

The previous section left us with the problem of training multi-layer MSNNs. Common

multi-layer feed-forward neural networks have been trained with the back-propagation al-

gorithm (BP) [Rumelhart et al., 1986a]. Although, BP has been very successful in producing

good pattern classi�ers, it has some notable drawbacks. First, it requires many training

epochs to converge (see [Lippmann, 1989] [Mooney et al., 1990]). Second, though BP adapts

dynamically the weights in the network, the topology and connectivity of the network is

static and predetermined. This may result in networks that are too large or too dense and

so do not generalize well or to networks that are too small to learn the intended task.

Finally, BP does not adapt the activation function of the units and so it requires all

interactions of the inputs that are signi�cant to the classi�er to be captured by the hidden

units. Furthermore, in feed-forward neural networks, there is no direct communication

between the hidden units in each hidden layer and so problems like the moving target

problem appear [Fahlman and Lebiere, 1990].

It is remarkable that BP has been so much a successful learning algorithm despite all

those problems. This is due, to some extent, to the fact that most of the above problems act

as sources of ine�ciency rather than as factors of solution quality degradation. As a result,

BP produces good classi�ers but is very slow when compared to other related algorithms

(see [Mooney et al., 1990] for a comparison of BP, ID3, and perceptron learning).

Di�erent approaches have been taken so far to speed up BP and deal with the prob-

lems mentioned above. Among the most successful weight update algorithms is Quickprop

[Fahlman, 1988] that assumes quadratic error surfaces in order to update weights more

aggressively.

Algorithms that change the topology and/or connectivity of the networks are often

termed self-con�guring or ontogenic neural network learning algorithms. Ontogenic algo-

rithms that mainly change the connections include Optimal Brain Damage [LeCun et al.,

1990], Optimal Brain Surgeon [Hassibi and Stork, 1993], and Occam's Razor [Thodberg,

1991]. On the other hand, ontogenic algorithms that update the topology of the network in-

clude Cascade-Correlation and Recurrent Cascade-Correlation [Fahlman and Lebiere, 1990,

Fahlman, 1991], dynamic node creation (DNC) [Ash, 1989], node splitting [Wynne-Jones,

1992], meiosis networks [Hanson, 1990], and second order methods like skeletonization



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 46

[Mozer and Smolensky, 1989].

All the above ontogenic algorithms address some of the problems mentioned earlier

and result in faster learning convergence and smaller networks which should generalize

better according to Occam's Razor. However, all these methods change a network by either

pruning or growing connections and/or nodes as needed. None of them changes the internal

complexity of a unit itself.

Multi-sigmoidal neural networks, on the other hand, contain adjustable unit activation

functions. Their learning algorithm {a modi�cation of BP{ is called MSBP. It dynami-

cally creates or removes sigmoidal functions on each unit in order to build complicated

non-monotonic activation functions. Hence, the local shape, monotonicity, and overall com-

plexity of a unit activation function is dynamically controlled and changes radically during

training and in di�erent ways across di�erent problems.

Static, non-monotonic activation functions have been used in value unit networks ([Daw-

son and Schop
ocher, 1992]) and Radial Basis Function (RBF) networks [Poggio and Girosi,

1989]. A good discussion and some experimental results regarding the trade o� between

sigmoid and radial basis functions as neuron activation functions appear in [Weigend et

al., 1990, Moody and Darken, 1989, Lapedes and Farber, 1987]. An analytic comparisons

of di�erent static activation function appear in [DasGupta and Schnitger, 1993], while an

empirical comparisons of di�erent activation functions appear in [Moody and Yarvin, 1992].

Although some of the functions examined in [Moody and Yarvin, 1992] are parameterized

by learnable parameters their overall complexity is static.

It is worth noting that multi-sigmoidal networks resemble more than traditional sig-

moidal neural networks do the function mappings used to prove Kolmogorov's superposition

mapping theorem [Kolmogorov, 1957, Sprecher, 1965]. Seeing those mappings as networks,

one can notice that units do not have simple, static, and monotonic activation functions

but rather complicated non-monotonic activation functions which are dynamically deter-

mined through an iterative procedure that is proved to converge exponentially fast to a

solution. That result may provide a partial explanation of the claim that neural networks

with non-monotonic and dynamic activation functions (such as multi-sigmoidal networks)

should converge quickly to a solution.

Some speed-ups resulted from using non-monotonic activation functions, as reported

in [Dawson and Schop
ocher, 1992, Moody and Yarvin, 1992], are a �rst indication that

interactions in the inputs can be captured by non-monotonicity in unit activation functions.



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 47

However, the use of a static Gaussian function in both value unit and RBF networks and

the use of functions of static complexity in the experiments of [Moody and Yarvin, 1992] do

not allow for very large speed-ups and, more importantly, do not completely describe the

underlying trade-o� between hidden units and non-monotonicity in unit activation func-

tions.

In the next section, an adaptation of BP to train MSNNs is presented. The algorithm

is called MSBP.

4.4 MSNNs and MSBP

Assuming a given error function E one can compute its derivative wrt each parameter in a

neural network and derive a gradient descent learning algorithm in a way similar to that in

[Rumelhart et al., 1986a]. In the following formulae, we should have indexed each variable

by the current training epoch t and the current input pattern p i.e. we should written Ept

to indicate the value of the error function on pattern p at the t-th epoch. However, in order

to make the formulae easier to read, we dropped both of these indexes for they apply to all

involved symbols. Now, if we de�ne

�wj = �
@E

@netj
; �ajl = �

@E

@ajl
; �cjl = �

@E

@cjl

where l is the sigmoid that is currently active on unit j (e.g. bj;l�1 < netj � bj;l) then we

get the following update rules:

�wij = �woi�wj ; �ajl = �a�ajl; �cjl = �c�cjl

where �w; �a; and �c are three di�erent learning rates. We can compute deltas using the

following recurrent equations:

�wj = ajl
jS
0(ajlnetj � cjl)

�ajl = netj
jS
0(ajlnetj � cjl)

�cjl = �
jS
0(ajlnetj � cjl)



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 48

where


j = �
@E

@oj
= (�

@E

@oj
)[j : OU ] + (

X
k

wjk�wk)[j : IU ]

and j : OU; j : IU are true whenever j is an output or intermediate unit respectively.

The above algorithm will learn all parameters in a gradient descent fashion. Its learning

of the a�ne coe�cients (and subsequently of the barrier locations) would cause a local

modi�cation of the shape of the activation function but it would not change the number of

the existing sigmoidal functions. Therefore, a policy is needed for creating new and deleting

old sigmoidal functions. To this purpose, dx is de�ned to be the minimal distance of two

successive barrier locations. If they come closer than dx one of them has to be removed

(e.g. if bi + dx > bi+1 remove either bi or bi+1). In addition, if a barrier or a sequence of

leftmost or rightmost sigmoidal functions have not been active in the last RE epochs they

are removed. RE is an input parameter to the algorithm.

In order to add new sigmoidal functions, the error function is monitored. A criterion

similar to that used in DNC to add new nodes [Ash, 1989] is used here in order to add new

sigmoidal functions. The only di�erence is that a smoothed version of the error function is

used instead of error itself. Assuming that Et denotes the total error at the end of the t-th

epoch, de�ne

FEt = �Et + (1� �)FEt�1; t > t0

FEt0 = Et0

where � is a constant such that 0 < � � 1. The algorithm monitors this new smoothed error.

It uses a threshold �T called trigger slope. Whenever it detects a reduction of the slope

of the function FEt beyond the trigger slope at proportionally high values, new sigmoidal

functions are added. The mathematical description of this condition is the following:

jFEt � FEt�w j
FEt0

< �T and t � w � t0

where w is the width of a window over which the current slope is determined.

The policy adopted in adding new sigmoidal functions requires that only a single barrier

(or a single sigmoidal function) would be added on each selected unit each time the triggering

criterion is activated. To this purpose, the values of 
j or �gammaj (depending on whether

ajl > 0 or ajl < 0) are accumulated at the corresponding active sigmoidal functions on each

pass. The sigmoidal function with the maximum accumulated value that exceeds some



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 49

predetermined threshold �
 is then chosen and the unit is selected.

A single sigmoidal function or a barrier is added in the middle of the chosen sigmoidal

function depending on whether that sigmoidal function was extreme (e.g. leftmost or right-

most) or not.

The above policy for adding sigmoidal functions can be considered as a form of gradient

descent in a functional space de�ned by all possible sigmoidal con�gurations of an MS unit.

More speci�cally, recall that adding new sigmoidal functions in an MS unit j would result

in a change in the output oj of j in a region X of its domain where the new sigmoidal

function would be active. Thus, in a gradient descent fashion, such a change would be

justi�ed only if, over region X , @E
@oj

would be negative or positive and oj would be close

to 0 or 1, respectively. In those cases, we should be able to reduce the error by increasing

or decreasing oj over X by adding a new sigmoidal function that would be active over X .

Given that 
j = � @E
@oj

the choice of a sigmoidal function that maximizes the accumulated

value of 
j is again compatible with a gradient descent view that prefers the direction of

highest descent.

MSBP, as described above, has been implemented and tested on some classi�cation

problems. Its performance is documented in the next section.

4.5 Experimental Results

The next subsection discusses convergence rates and solution quality for MSBP. Since so-

lution quality is hard to estimate for problems where an optimal solution is not known,

simple classi�cation tasks with obvious optimal solutions are used here. On the other hand,

more di�cult and less arti�cial problems are used in section 4.5.2 to measure generalization

performance of MSBP.

4.5.1 Convergence Rates and Solution Quality of MSBP

The MSBP algorithm described in the previous section requires a number of input parame-

ters. Namely, learning rates (�w; �a; �c), and adaptation thresholds (dx;RE;�T ; w;�
; �).

Finding their optimal settings for each problem is a laborious task. However, the algorithm

performs very well for a wide range of settings. Hence, the solution adopted was to choose

constant values for almost all the above parameters. In all the test cases reported below, it

is �w = �a = �c = �; dx = 0:1; RE = 10; �T = 0:05; �
 = 0:03; and � = 0:25). The only



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 50

Network Units
Name I. H. O. d #DOF min #DOF smin

parN -bp N N 1 3 (N + 1)2 (N + 1)2 -
parN -ms N - 1 2 N + 2s 3N N

addN -M -bp N M 1 M + 2 O(3N(M + 1) + M2

2
) 9N -

addN -ms N - 1 2 N2 + 3N + 2(N + 1)s N2 + 9N 3N
N+1

symN -bp N 2 1 3 2N + 5 2N + 5 -
symN -ms N - 1 2 N + 2s N + 4 2

Table 4.1: Network speci�cations

parameters varied are � and w.

The problems tested are parity, binary addition, and symmetry (see [Rumelhart et al.,

1986a] for a de�nition of those problems). Table 4.1 reports the structure of the networks

as well as the number of degrees of freedom (or free parameters) in a general as well as the

smallest known solution. The extensions \-bp" and \-ms" are used to indicate feed forward

BP or MS neural networks, respectively. parN stands for parity with N input bits (par2

is the famous XOR problem), addN stands for binary addition of two N digit numbers,

and symN stands for the symmetry problem with N inputs. I., H., and O. stand for input,

hidden and output units. d is the depth of the network and #DOF is the total number of

degrees of freedom in the network. For MSNNs, s indicates the average number of sigmoidal

functions over all non-input units. smin is the minimum value of s over all MSNN solutions

of the corresponding classi�cation problem.

Table 4.2 reports the best performance of BP and MSBP on the above problems. Each

problem was tested 20 times and averages were taken. Epochs were counted in the way

suggested in [Fahlman, 1988] i.e. restarts were allowed and the epochs spent in them were

accumulated. \MAX" indicates the maximum number of epochs before restart. \fail" is the

ratio of trials in which failure to converge within MAX epochs occurred. Finally, \Cross." is

a quantity used to compare performance. It is based on the concept of connection crossing

which appears to be a credible performance measure (see [Fahlman and Lebiere, 1990] for

more details on this issue). In our measurements, a connection or BP unit crossing counts

for one while an MS unit crossing counts for two crossings. This later assumption has

been based on preliminary measurements of CPU time on random MS and BP units.

Interestingly, the number of epochs for MSNNs in the case of parity grew similarly to an



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 51

Network � w MAX Epochs fail s Cross. #DOF
Name

par2-bp 3.8 - 3000 716.37 0.05 - 25789.26 9
par2-ms 1.9 1 100 22.90 0.00 2.95 366.40 7.9
par3-bp 0.3 - 12000 3101.89 0.05 - 397042.53 16
par3-ms 1.0 1 300 40.00 0.00 4.65 1600.00 12.3
par4-bp 3.7 - 45000 18919.11 0.10 - 7567644.89 25
par4-ms 0.8 1 1500 53.50 0.00 5.50 5136.00 15
par5-bp 1.3 - 150000 113293.60 0.25 - 130514272.73 36
par5-ms 0.6 1 4000 80.65 0.00 6.85 18065.64 18.7
par6-bp 0.2 - 500000 473492.81 0.25 - 185370484.62 49
par6-ms 0.3 3 15000 106.50 0.00 7.15 54528.00 20.3

add2-bp 3.9 - 8000 2103.88 0.15 - 605918.11 18
add2-3-bp 0.3 - 8000 2757.21 0.05 - 1588153.22 36
add2-4-bp 1.8 - 8000 546.80 0.00 - 411193.60 47
add2-5-bp 3.9 - 8000 393.40 0.00 - 371369.60 59
add2-ms 0.4 7 1000 150.10 0.00 4.30 38425.60 35.8
add3-4-bp 0.1 - 8000 13811.75 0.60 - 54805027.14 62
add3-5-bp 0.3 - 8000 3922.27 0.25 - 19328925.60 77
add3-6-bp 0.4 - 8000 856.60 0.00 - 5098483.00 93
add3-ms 0.2 11 1000 295.45 0.00 5.04 491628.80 58.32

sym6-bp 6.7 - 4000 618.83 0.10 - 673290.70 17
sym6-ms 1.0 26 1000 159.00 0.00 3.15 81408.00 12.3
sym8-bp 6.8 - 4000 4388.80 0.50 - 23594188.19 21
sym8-ms 1.1 58 1000 271.80 0.00 3.05 695808.00 13.1

Table 4.2: Performance of BP and MSBP



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 52

arithmetic progression (22:90; 40:00; 53:50; 80:65; 106:50) with an average increment or 20.9

epochs. This extremely fast convergence for parity can be attributed to the fact that parallel

hyperplanes are ideal devices for problems such as parity.

An important issue regarding MSNNs is the quality of the learned solution and the e�ect

of the adaptation thresholds on that solution. Of course a measure of solution quality is

generalization i.e. the ability of the learned solution to predict the values of a function on

instances that are not in the training set. This is the subject of section 4.5.2. However,

the value of s can provide some information regarding solution quality, too. In particular,

in cases where smin is known the ratio s
smin

can give a quite accurate picture of solution

quality. Whenever that ratio is much larger than 1 over�tting occurs. If it is much less

than 1 the under-�tting occurs. Finally, if it close or equal to 1 then the solution, with high

probability, is of high quality.

To measure the ratio s
smin

, each problem was tested 20 times and averages were taken

as before. Many di�erent values of learning rate � and window width w were used and the

solutions were ordered according to the value of the above ratio. In �gure 4.6, the ratio
s

smin

is plotted over the number of epochs required to converge to a solution. Note that in

6 out of 9 cases the optimal solution (i.e. s
smin

= 1) was reached and that in most cases the

plotted ratio was less than two. The worst case is add2 which started with a ratio of 2.15

and converged to 1.46.

4.5.2 Generalization Performance of MSBP

Two classi�cation problems that are more realistic than those used in the previous section

were used in order to evaluate generalization capabilities of MSBP and compare MSBP

with BP. The �rst problem regards classi�cation of sonar signals using a neural network.

The task is to train a network to discriminate between sonar signals bounced o� a metal

cylinder and those bounced o� a roughly cylindrical rock. The sonar data set consists of a

training set of 104 samples and a test set of equal size (see [Gorman and Sejnowski, 1988],

for more details).

The second problem regards classi�cation of patients based on thyroid data. The prob-

lem is to determine whether a patient referred to the clinic is hypothyroid, normal, or

hyperthyroid. The thyroid data set is relatively large consisting of 3772 training examples

and 3428 test examples; a total of 7200 examples (see [Schi�man et al., 1993] for more

details).



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 53

par2, par3 par4, par5, par6

20 40 60 80 100
1.

1.2

1.4

1.6

1.8

2.

2.2

2.4

2000 4000 6000
1.

1.2

1.4

1.6

1.8

2.

2.2

2.4

add2, add3 sym6, sym8

200 400 600 800 1000 1200
1.

1.2

1.4

1.6

1.8

2.

2.2

2.4

0 200 400 600 800 1000 1200

1.2

1.4

1.6

1.8

2.

2.2

2.4

Figure 4.6: Plot of ratio s
smin

over number of epochs required to converge to a solution for
the classi�cation problems par2, par3, par4, par5, par6, add2, add3, sym6, and sym8.



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 54

Sonar data set

Learning Hidden #DOF Generalization STD
Algorithm Units error

BP 0 122.00 0.274 0.046
2 128.00 0.158 0.054
4 254.00 0.131 0.027
8 506.00 0.112 0.021
16 1010.00 0.114 0.017

MSBP 0 125.72 0.217 0.052
2 133.92 0.141 0.056
4 261.20 0.123 0.032
8 516.00 0.109 0.028
16 1028.00 0.111 0.020

Thyroid data set

Learning Hidden #DOF Generalization STD
Algorithm Units error

BP 4 103.00 0.044 0.011
8 203.00 0.040 0.009
16 403.00 0.046 0.006

MSBP 4 117.98 0.034 0.010
8 218.40 0.040 0.012
16 422.00 0.041 0.008

Table 4.3: Generalization error of BP and MSBP for sonar and thyroid data sets

For the sonar classi�cation problem, one two-layer and four three-layer networks (with

2,4,8, and 16 hidden units respectively) were used. The number of epochs was �xed to 300

(as in [Gorman and Sejnowski, 1988]) for both BP and MSBP. Also most of the adaptation

thresholds for MSBP were �xed (�w = �a = �c = �; dx = 0:05; RE = 50; �T = 0:05; �
 =

0:5; and � = 0:25). The learning rate � for BP and MSBP as well as window width w for

MSBP were determined through 10-fold cross validation on the training set. An estimation

of generalization error was obtained by training the networks 10 times on the training set

and computing the average of the classi�cation error on the test set over all runs that

converged to a relatively small classi�cation error on the training set. Classi�cation error

was de�ned as the ratio of misclassi�ed examples in a (training or test) set. Table 4.3 shows

generalization error for the �ve networks used in our experiments. Figure 4.7 shows graphs

of generalization error over number of hidden units and number of degrees of freedom (i.e.



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 55

Sonar data set

0 2 4 8 16

0.05

0.1

0.15

0.2

0.25

0.3

0.35

100 200 300 400 500 600 700 800 900 1000

0.05

0.1

0.15

0.2

0.25

0.3

0.35

Thyroid data set

4 8 16

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

100 200 300 400

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 4.7: Generalization results for sonar and thyroid data sets. The graphs on the left
show generalization error over number of hidden units while the graphs on the right show
generalization error over number of degrees of freedom. The gray curves correspond to BP
and the black ones to MSBP.



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 56

adjustable parameters) in the networks.

For the thyroid classi�cation problem, three three-layer networks (with 4,8, and 16

hidden units respectively) were used. The number of epochs was �xed to 5000 (as in

[Schi�man et al., 1993]) for both BP and MSBP. Also most of the adaptation thresholds

for MSBP were �xed (�w = �a = �c = �; dx = 0:05; RE = 50; �T = 0:05; �
 = 5:0; and

� = 0:25). Four di�erent learning rates (� = 0:01; 0:05; 0:1; 0:5) and �ve di�erent window

widths (w = 1000; 2000; 3000; 4000; 500) were used. An estimation of generalization error

was obtained by training the networks 4 times on the training set and computing the

average of the classi�cation error on the test set over all runs that converged to a relatively

small classi�cation error on the training set. The learning rates and window widths that

resulted in the lowest classi�cation error on the training set were selected. Classi�cation

error for those settings is reported in table 4.3. Again, classi�cation error was de�ned as

the ratio of misclassi�ed examples in a (training or test) set. Figure 4.7 shows graphs of

generalization error over number of hidden units and number of degrees of freedom (i.e.

adjustable parameters) in the networks.

Manipulation and maintenance (i.e. addition or removal) of sigmoidal functions in

each unit depends on the adaptation thresholds. However, the most important adaptation

threshold turned out to be the window width w that determines the length of the window

that is used to monitor the smoothed version of the error function (see section 4.4 for more

details). Apparently, for a given value w of the window width and a bound M on the

number of training epochs at most bM
w
c extra sigmoidal functions can be added in any MS

unit.

In order to experimentally determine the e�ect of window width on generalization error,

di�erent window widths were used and experiments as those described above were per-

formed. Generalization error was estimated for each window width. Figure 4.8 shows

graphs of generalization error over window width for the sonar and thyroid data sets. For

the sonar, three networks of 0, 2, and 4 hidden units were used while window widths that

were integer multiples of 30 epochs were used. For the thyroid data set, three networks

of 4, 8, and 16 hidden units were used while window widths that were integer multiples of

1000 epochs were used. As is apparent from those graphs, there is usually a set of optimal

window width values that is dependent on the size of the network.

A general comment is that MSBP can improve generalization when there are not enough

hidden units in the network by employing non-monotonic activation functions which are



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 57

Sonar data set Thyroid data set

30 60 90 120 150 180 210 240 270 300 330

0.05

0.1

0.15

0.2

0.25

0.3

0.35

1000 2000 3000 4000 5000 6000

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Figure 4.8: Graphs of generalization error over window width (w). The three curves for
sonar correspond to networks of 0, 2, and 4 hidden units while the three curves for thyroid
correspond to networks of 4, 8, and 16 hidden units respectively. The darker the curve the
more the hidden units.

interpreted as parallel hyperplanes in classi�cation problems. Of course when the number

of hidden units was large enough for BP to (approximately) capture the complexity of the

underlying problem, MSBP was not able to provide an improvement by employing non-

monotonicity (or parallel hyperplanes). In most of those cases, MSBP did not use any

parallel hyperplanes at all.

Of course, it should be noted that the above is not a statement about MSNNs or non-

monotonic activation functions but rather a statement about the limitations of MSBP. It

is conceivable that another learning algorithm or a di�erent policy in adding and removing

sigmoidal components may result in a more e�ective use of non-monotonicity (or parallel

hyperplanes) even in cases where the number of hidden units is relatively large. The above

experiments provide only a brief empirical evaluation of MSBP. Further studies and maybe

development of new learning algorithms or policies are required in order to understand in

more detail the trade-o� between functional representations that are based on units with

monotonic and non-monotonic activation functions.



CHAPTER 4. MULTI-SIGMOIDAL NEURAL NETWORKS 58

4.6 Future Extensions and Conclusion

As shown in the previous section, MSBP is e�ective in training MSNNs to obtain solutions

that are either nearly optimal or generalize well. Of course, many more experiments need

to be performed in order to determine accurately the power and maybe the limitations of

those networks and their learning algorithm. Their current performance only underlines

their importance. Yet, the MSBP algorithm can be extended and improved in many ways.

For example, more aggressive weight schemes like Quick-prop can be employed, ontogenic

methods may be used to create new MS units, and more e�cient policies in adding and

deleting sigmoidal functions can be found. Furthermore, it is possible to extend the al-

gorithm so that it would dynamically set the threshold values for its input parameters by

monitoring the error function. It is conceivable that the above extensions may further

improve performance and generalization.

The introduction and formalization of MSNNs here revealed the existence of a trade-o�

in capturing dependencies and functionality through hidden-units or through non-monotonic

activation functions. The interaction of those two mechanisms is co-operative rather than

antagonistic for either mechanism does not exclude the other. They are, in some sense,

\orthogonal". Furthermore, it is possible that optimal networks may have many layers

consisting of a combination of MS and simple sigmoidal units. Detailed studies are required

in order to get more accurate knowledge of this kind of interaction. The results reported

here show clearly that such knowledge can help us build smaller and more e�cient networks

and improve our understanding of functional representations.



Chapter 5

tFPR: A Hybrid Pattern

Recognition System

I must Create a System, . . .

Jerusalem, pl.10, l.20

William Blake 1757{1827

The theoretical results and functional formalisms developed and presented in the previ-

ous chapters allow for the de�nition and speci�cation of a hybrid pattern recognition sys-

tem and architecture such as tFPR. tFPR is a hybrid fuzzy, structural, and neural pattern

recognition system that uses fuzzy sets to represent multi-variate pattern classes that can

be either static or dynamic depending on time or some other parameter space. The mem-

bership functions of the fuzzy sets that represent pattern classes are modeled by sigmoidal

functions. The choice of sigmoidal functions was motivated by their ability to represent ef-

�ciently and concisely di�erent multi-variate pattern classes. Given a set of input data and

a pattern class speci�cation, tFPR evaluates the pattern class speci�cation for the input

data by computing the grade of membership of the data in the fuzzy set that corresponds

to the current pattern class. The result of this evaluation is an estimate of the degree to

which the data match the pattern class speci�cation. The input data may be a number

of time-dependent signals whose past values may in
uence the evaluation of the pattern

class. In that case, structural pattern recognition methods, in addition to fuzzy ones, are

employed in order to match curves of arbitrary dimensionality (rather than points) in the

59



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 60

input domain. Two di�erent structural (segmentation) methods are presented. The �rst

method is a very e�cient greedy algorithm that is linear to the number of input data points

while the second method is an algorithm that is optimal under some conditions but is slower

than the �rst method. Although e�ciency is a very important consideration in tFPR, the

main issues are knowledge acquisition and knowledge representation (in terms of pattern

class descriptions). tFPR has been implemented in the BB1 blackboard architecture. It is

currently being applied in a system for medical monitoring. Potential applications in other

domains are under investigation.

5.1 Introduction

The pattern recognition methods used in tFPR are fuzzy for they use fuzzy sets to represent

pattern classes. However, some of them are neural pattern recognition methods for they

use multi-sigmoidal neural networks to model the membership function of the corresponding

fuzzy sets. Finally, the pattern recognition methods used in tFPR for parameter-dependent

pattern classes are structural for they decompose a non-static parameter-dependent pattern

class description into a number of primitive pattern elements or segments and compute the

evaluation of the overall pattern class on the current input by evaluating the segments and

combining their evaluations into a single evaluation.

In our approach, a pattern class evaluation is an assessment of the degree to which the

available input data match a pattern class of interest. The input data correspond to a

set of values of a number of variables which are called input features or pattern measures.

A pattern class evaluation may use the values of the corresponding pattern measures at

some point in time (usually the current time) or may require the examination of curves

or surfaces of the proper dimensionality that represent the behavior of pattern measures

through time or some other parameter space. Furthermore, arbitrary combinations of such

multi-dimensional objects with points or other objects of di�erent dimensionality are also

allowed.

In our system, the above computations are based on fuzzy membership functions. A

method for generating those functions is, thus, necessary. Although a wide range of mem-

bership functions have been used in the literature ([Yager et al., 1987], [Kaufmann, 1975,

ch.III, section 29], [Gupta et al., 1975]) we choose to use a particular class of functions de-

rived from the sigmoidal family of functions (see chapter 3). Arguments for the suitability



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 61

of sigmoidal functions in modeling fuzzy set membership have been given in [Drakopoulos,

1994b] as well as in chapter 3. A brief presentation of those arguments as well as the basic

model used in tFPR and its class of sigmoidal functions are given in the next section. In

section 5.3, an extension to the basic model to include time or any parameter-space depen-

dent signals and pattern classes is presented. Algorithms that can support this model are

presented in section 5.4. In section 5.5, a further extension of the method to include a wide

range of operators as well as its particular implementation (tFPR) in the BB1 blackboard

architecture is presented. In section 5.6, example applications are presented, and in section

5.7 speci�cations of a graphical interface for de�ning pattern classes are given. Finally, in

section 5.8, future extensions and enhancements of the system are discussed.

5.2 The Underlying Model

Figure 5.1 depicts the basic idea behind the architecture of our system. The basic building

block of our system and essential ingredient of its methods is the pattern object, i.e. an

object that describes a pattern class of interest. Having a collection of such pattern objects

stored in a pattern base, we can build a pattern manager that evaluates a pattern object on

the current input whenever input related to that pattern object is presented to the system.

Each such evaluation results in a continuous valued signal in [0; 1] that is the value of the

membership function of the fuzzy set that describes the pattern class. Thus, we have to

de�ne a model for pattern objects and, in particular, for the membership functions of the

corresponding fuzzy sets.

In the most general case, a pattern object would be associated with many pattern

measures that have di�erent and maybe non-numeric ranges. A series of transformations

may be required to transform the pattern measure values into a domain which would be the

domain of a fuzzy set. Let as call this the x-domain. Then an application of the membership

function of the fuzzy set would result in the desired membership value in the interval [0; 1].

Let as call this interval the y-domain

Now, in order to de�ne formally pattern objects assume the following:

p is a pattern class

Mp is the set of pattern measures associated with p

R[Mp] is the Cartesian product of the ranges of the measures in Mp

R is the set of real numbers



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 62

Signal
Input Fuzzy Set 

Membership

Input
Signals

Pattern Objects

tFPR

Membership
Fuzzy Set 

Values

A Pattern Object

Figure 5.1: Basic structure of tFPR



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 63

Then, a pattern object can be de�ned as follows:

De�nition 16 A pattern object corresponding to a pattern class p is a tuple

(Mp; Ap; vp; np; ap; dp; Cp)

where

Mp is the set of pattern measures associated with p

ap; dp are integers

Ap is a function from R[Mp] to R
ap

vp is a function from Rap to Rdp

np is a function from Rdp to [0; 1]

Cp is a set of conditions

Cp is a set of conditions that determine the applicability of pattern class p and can be

used to enforce or inhibit an evaluation of the corresponding pattern object at some point

in time. There is not anything special about the number of mapping functions used in a

pattern object. If one would replace Ap, vp, and np by a function fp that is the composition

of those three functions he should get a functionally equivalent pattern class de�nition

that would involve only a single mapping function. Our dividing the mapping function

process into three parts was primarily motivated by the di�erence in functionality of the

tasks these three functions perform but is not otherwise required. Furthermore, putting the

whole mapping into a single function would result in complicated and hard-to-understand

functions. In short, the most general solution would allow the user to de�ne an arbitrary

sequence of functions to be applied to the input data and the most restrictive one would

allow only one such function. Our choice stands in the middle.

The transformations Ap and vp are arbitrary. As a concrete example, consider the case

where the input is a non-stationary signal x(t), such as the sound of a bird, that is stored in

database of input data with a symbolic name such as bird sound 3. Furthermore, assume

that the pattern class under consideration is de�ned in terms of a number of conditions

upon the peak energy values of the second and third harmonic of x(t). In that case, Mp

should contain as its sole element the symbolic name bird sound 3 to identify the source of

the input signal for its pattern object. Ap would compute the spectrogram of x(t) over some

time window W . Since the spectrogram is a function of energy over time and frequency,

the output of Ap should be triplets of the form (time, frequency, energy). Thus, Ap should



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 64

map the set fx(t) = t 2 Wg to R3 and so ap must be equal to 3. Subsequently, for each

frequency present in the output of Ap, vp would produce its peak energy value over time.

Thus, vp would be a function from R3 to R2 and so it must be dp = 2. Finally, np would

be a con�guration of sigmoidal functions as complicated as a multi-sigmoidal network. Its

function would be to test the values vp assigns to the second and third harmonic in order

to determine to what degree they satisfy a given set of conditions which de�ne the current

pattern class.

In tFPR, the speci�cation of membership functions np that map from Rdp to [0; 1] is

always based on sigmoidal functions. The choice of sigmoidal functions was motivated by

the sigmoidal bubble theorem (see chapter 3 for more details). To illustrate the issue more

clearly, we present here a modi�ed version of the theorem that makes direct references to

fuzzy sets. To this purpose, let S indicate a basic unit sigmoidal function and AS indicate

the a�ne sigmoidal class of S i.e.

AS = fSa;c = a; c 2 R; a 6= 0g

where 8x Sa;c(x) = S(ax� c). Now observe that if fBi
is the membership function of the

fuzzy set Bi and fBi
2 AS (i.e. fBi

= Sai;ci , for some ai; ci 2 R) then

fBi[Bj
(x) = supffBi

(x); fBj
(x)g = S(supfaix� ci; ajx� cjg)

fBi\Bj
(x) = infffBi

(x); fBj
(x)g = S(inffaix� ci; ajx� cjg)

f �Bi
(x) = 1� fBi

(x) = S(�aix+ ci)

Therefore, we can always interchange sigmoidal functions with sup, inf, and complementa-

tion operations. As a result, if all the constituent subexpressions of a fuzzy set theoretic

expression are evaluated through sigmoidal functions of a single class then only a single

sigmoidal computation is required to evaluate the overall expression no matter how com-

plicated the expression is!

Furthermore, each sigmoidal function that belongs to a particular a�ne class can now

be represented by a pair of numbers (a; c). This reduces the storage requirements of sig-

moidal functions to a level comparable to that of linear segments and makes them very

attractive as representation functions. As reported in [Drakopoulos, 1994b], some prelimi-

nary experimentation with the tFPR system showed that sigmoidal functions outperformed

linear segments and lower order polynomials.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 65

a = 16; 8; 4; 2; 1; c = 0 a = 2; c = �2;�1; 0; 1; 2

-3 -2 -1 0 1 2 3

1

-3 -2 -1 0 1 2 3

1

Figure 5.2: Sigmoidal functions for various values of a; c.

Finally, it has been shown in ([Drakopoulos, 1994b]) that sigmoidal functions are the

only functions that posses the above properties.

Figure 5.2 shows the functions Sa;c for various values of a; c and �gure 5.3 shows fuzzy

set operations on sigmoidal functions.

Now, sigmoidal functions can be used to approximate arbitrary membership functions.

As an example of membership function approximation, consider the situation depicted in

�gure 5.4 where the membership function y(x) is de�ned in the following way :

y(x) =

8>>>>>>>><
>>>>>>>>:

0 if x < x1
x�x1
x2�x1 if x1 � x < x2

1 if x2 � x < x3
x4�x
x4�x3 if x3 � x < x4

0 if x4 � x

9>>>>>>>>=
>>>>>>>>;

Now, let S be the sigmoidal function that passes through the points (x1; �) and (x2; 1� �)

and S0 be the sigmoidal that passes through (x3; 1 � �) and (x4; �), where � is a small

positive constant. Then the combination min(S; S0) is a good approximation of y as shown

in �gure 5.4.

Now, let us call set operations the traditional fuzzy set operations (e.g. fuzzy set union,

intersection, and complementation). We have shown that sigmoidal functions combine very

nicely with set operations. However, it is not possible to approximate any arbitrary function



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 66

fB1
(x) fB2

(x) 1� fB1
(x)

-3 -2 -1 0 1 2 3

1

-3 -2 -1 0 1 2 3

1

-3 -2 -1 0 1 2 3

1

1� fB2
(x) infffB1

(x); fB2
(x)g supffB1

(x); fB2
(x)g

-3 -2 -1 0 1 2 3

1

-3 -2 -1 0 1 2 3

1

-3 -2 -1 0 1 2 3

1

Figure 5.3: Fuzzy set operations on sigmoidal functions.

using only set operations on sigmoidal functions. To solve this problem, the domain of the

fuzzy sets (x-domain) was divided into appropriate intervals and set operations were applied

within each interval to approximate a given function. The extra conditions that de�ne the

set of intervals of a pattern class are called interval conditions. The resulting functions

are piece-wise sigmoidal functions. Using an appropriately large number of intervals, a

sigmoidal approximation of an arbitrary function (similar to its polygonal approximation)

can be found.

The use of interval conditions extends the representational spectrum of set operations

to include new functions. Furthermore, since only set operations are performed within each

interval, only a single sigmoidal computation per pattern class is required.

However, the emphasis in tFPR is on knowledge acquisition and knowledge repre-

sentation. An extended set of tFPR operators would conform to that principle. Fur-

thermore, even in cases where new tFPR operators would require more than one sig-

moidal computation per pattern class, e�ciency would not be sacri�ced or compromised

in any way. On the contrary, sometimes it would be nearly intractable to approxi-

mate a given function using only set operations and interval conditions for the num-

ber of intervals may grow enormously high. In those cases, extra tFPR operators (such

as summations or weighted summations) become not only useful but also resourceful.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 67

-1 0 1 2 3 4 5 6 7 8 9

1

-1 0 1 2 3 4 5 6 7 8 9

1

Figure 5.4: A pattern class and its sigmoidal approximation.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 68

In short, an extended tFPR operator set not only would provide an agent with higher


exibility in de�ning pattern classes and reduce the overall knowledge acquisition ef-

fort but also should result in more e�ective pattern class speci�cations. The set of

operators currently used in tFPR is described in [Drakopoulos and Hayes-Roth, 1994,

Drakopoulos, 1994c] and is brie
y presented in section 5.5.

In the next section, we present an extension of the basic model presented above that

would deal with dynamic pattern classes that depend on time or any other parameter space.

5.3 The Extended Model

An extension of the basic model allows pattern measures to be arbitrary functions instead

of arbitrary values in a domain. This extension requires the system to deal with multi-

dimensional curves (e.g. parametric functions) instead of points (e.g. vectors). To this

purpose, pattern classes and objects are de�ned over some parameter space. The extension

to parameter-space-dependent pattern objects is very useful in cases where, as an example,

the de�nition of a pattern class requires access not only to current, but also to past values

of pattern measures. In that case, the paramenter space is time and pattern measures are

time-dependent functions.

In the model below, we use a single one-dimensional parameter space not only because

this simpli�es our presentation but also because the extension of our model to other multi-

dimensional parameter spaces is straightforward.

In tFPR, curves and surfaces are broken into segments, transforming the problem of

representing arbitrary shapes into a problem of segmentation and segment speci�cation.

Each segment consists of a basic ideal curve |we call it the ridge of the segment| that

can be described by a small amount of information in terms of conditions upon the literal

values of the curve and the values of its k-order derivatives with respect to the parameter

space (for k = 1; 2; . . .). A number of sigmoidal functions are used to evaluate the degree of

similarity between a portion of a curve in the input data and a segment's ridge by matching

the values and the derivatives of the curve against those of the ridge. Those functions pro-

duce an evaluation (y-value) for each segment. All the evaluations are eventually combined

to produce an overall evaluation of the whole curve. This way, both description (represen-

tation) and recognition (matching) of arbitrary curves can be accomplished using exactly

the same primitives and formalism. In tFPR, we use only two primitives for describing



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 69

segments and a single one for combining them.

Uniformity in the representation and evaluation of functions has not been our primary

motive in choosing to segment curves. In fact, our choice was initially based on a very

basic observation. When people try to describe a trajectory, a curve, or a surface, most of

the time, they describe it as a collection of segments over a set of regions in which some

very basic properties of the curve or the surface (such as curvature, rate of growth/decline,

range, etc.) are, more or less, within some speci�able range. Thus, segmentation seems to

be the natural approach to the problem.

In tFPR, in addition to segmentation functions, we use some basic functions to extract

some features of the actual values of a segment (such as maximal or minimal value, du-

ration, etc.) whenever the pattern object evaluation depends on those features, too. The

subsequent evaluations of those features are used in the overall evaluation of the pattern

object and often help in determining the segments themselves. For example, consider a

pattern class that requires its input to stay at zero for some time then start increasing with

a bounded range of rates up to a value M3, then stay constant for a while, and then fall

back to zero (again with bounded rate) and stay there. The corresponding pattern object

could consist of 5 segments :

segment 1: constant at 0 (with some tolerance T1)

segment 2: going from 0 to M3 with rate bounded by r2l and r2h

segment 3: constant at M3 (with tolerance T3)

segment 4: going from M3 to 0 with rate bounded by r4l and r4h

segment 5: constant at 0 (with tolerance T5)

We can also add another kind of constraint that would relate properties of di�erent

segments. For example, we may require the duration of segment 3 to be greater than the

duration of each of segments 2 and 4 but less than 10 minutes. In addition, we may require

the maximum value of the input in segment 1 to be less than the corresponding maximum

value in segment 5.

In the next section we present algorithms (segmentation algorithms) that combine seg-

ments together in order to match (evaluate) arbitrary curves.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 70

5.4 Segmentation Algorithms

Our e�orts to build tFPR led to the development of a number of segmentation algorithms.

Each of then has its own characteristics, precision, and noise tolerance as well as complexity

and performance. Here, we present two of those algorithms which we consider to be the

most important ones. The �rst one is a greedy non-optimal algorithm that is linear with

the input data set size. That algorithm is of practical interest due to the apparently high

requirements for speed in a system that deals with a large number of pattern objects. The

second algorithm is polynomial yet optimal when the cost function is additive and there

are no constraints among features of di�erent segments similar to those described in the

previous section. The above requirements as well as the higher time complexity of the second

algorithm severely limit its practicality and applicability in any system that contains a large

number of pattern objects. We attribute to it only theoretical importance for it shows that

the segmentation problem is polynomial in cases where the algorithm applies. Both of these

algorithms scan the input in reverse temporal order (right to left) and dynamically collect

new data as needed to match the pattern object. The implicit assumption is that the last

(i.e. rightmost) segment of the corresponding pattern object ends at a given point in time

which is used as the starting point for a right-to-left trip.

The choice of right to left evaluation was initially motivated by the fact that the most

recent data are most probably the most important ones. In addition, the opposite (i.e.

left to right) evaluation would require some state bookkeeping in order to have the same

computational complexity as the right to left evaluation. This state information can grow

linearly with the input data set size, a fact that forbids its use on systems with large input

data sets. Furthermore, that state, even in cases where it would not grow prohibitively

large, would degrade the actual run-time performance of the pattern evaluation functions

for it enlarges the active data set of the running code (see [Peterson and Silberschatz, 1985,

section 6.8]).

The greedy algorithm developed is called the RL-algorithm and is very simple. Given a

pattern object consisting of P segments (S1; . . . ; SP ), their weights (w1; . . . ; wP ), a number

of input signals (d1; . . . ; dI) and the current time t (ending point), it computes a sequence

of times (T0; . . . ; TP ) that de�ne the segments (segment i lasts from Ti�1 to Ti) as well as an

evaluation of that segmentation. It works from present to past, keeping track of the number

of sampled data-points ni and the current evaluation, for each segment Si. Initially, the



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 71

last point belongs to the last segment SP which is the current segment. At each step, the

algorithm decides whether the next point (previous in time) should belong to the current

segment (Si) or to the next one (Si�1). The criterion used to make that decision is the

local maximization of the evaluation function. The algorithm also computes the earliest

and latest end (Li and Ri, respectively) of each segment in order to compute durations

and other segment features that may be required in order to evaluate constraints among

segments during the segmentation process.

Termination occurs whenever the algorithm has matched all the segments or when the

matching process is at an intermediate segment and the evaluations of the remaining seg-

ments to be matched cannot change signi�cantly the matching process outcome either by

perfect match or mismatch. Eventually, for some p (1 � p � P ), it would be

8i 2 fp; p+ 1; . . . ; Pg

8<
:
Li = Ti�1
Ri = Ti

9=
;

where Sp is the segment where the matching process was terminated. These times are

also used to compute durations and can help in constraint evaluation during the process

of segmentation. This algorithm runs in O(n) time (where n is the number of data points

used) since it spends O(1) time at each point to compare two evaluations of two competing

(e.g. neighboring) segments and choose the greater one. It is not optimal in the sense

that the evaluation it returns may be a�ected by the presence of noise or by neighboring

segments whose de�nitions overlap.

The second algorithm is optimal in cases where there are no special constraints among

features of segments and the segmentation cost function is additive. This algorithm essen-

tially is a modi�cation of Dijkstra's shortest path algorithm ([Papadimitriou and Steiglitz,

1982]) applied to a graph of nP nodes. Each node in that graph is associated with a pair

of numbers (i; j) (for i = 1; . . . ; P; and j = 1; . . . ; n) and is connected to the nodes of the

graph that correspond to pairs (i; j � 1) and (i� 1; j � 1) (�gure 5.5). Intuitively, going

from (i; j) to (i; j � 1) means that data D collected at time tj�1 belong to segment Si. On

the other hand, going from (i; j) to (i� 1; j � 1) means that the matching of segment Si

ends and the matching of segment Si�1 starts at tj�1 (i.e. Ti�1 = tj�1). In short, matching

consequent data to the same segment corresponds to horizontal transitions while switching

segments corresponds to diagonal transitions in the graph of �gure 5.5.

Now, if we associate costs with the graph's links to re
ect changes in the evaluation



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 72

.

.

.

1, 1

. . .

. . .

sgm no.

P-1

P

1

. . .

n-1 n1 . . .
time

i-1,
j-1

i, j-1

i-1, j

i, j

P-1, 1

P, 1

. . .

1, n-1 1, n

P-1,
n-1

P-1, n

P, n-1 P, n

Figure 5.5: Search graph for the optimal algorithm.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 73

of a pattern object as we follow paths in this graph, we can solve the input segmentation

problem by �nding a maximum cost path that goes from (P; t) to (1; t0), for some t0 < t.

Obviously a path denotes a particular segmentation of the data while its cost measures the

degree in which this segmentation matches the current pattern object.

We can further simplify this optimal algorithm by observing that each node in the graph

has exactly two immediate successors. Assuming thatMC(i; j) indicates the maximum cost

path to node (i; j) we can solve the maximum cost path problem by traversing the graph

from right to left (i.e from j = n down to j = 1) and solving the following recurrent

equation:

MC (i� 1; j � 1) = max fMC (i� 1; j); MC (i; j)g + v(Si�1; tj�1)

with initial conditions :

MC (i; n) = v(Si; tn) 8i 2 f1; . . . ; Pg

where v(S; t) denotes the evaluation of segment S at time t. The complexity of this algorithm

is O(n2P 2).

The optimal algorithm presented above has two major limitations. First, the cost func-

tion v must be additive along paths in order for the algorithm to apply. Unfortunately, this

is not true in the current formulation of the problem where we take into account the number

of sampled points in order to normalize each segment's evaluation and its contribution to

the overall evaluation of the pattern object. Second, the algorithm cannot be extended to

deal with constraints among di�erent segments without sacri�cing its optimality.

The above two limitations and the higher time complexity of the optimal algorithm

render it inappropriate for applications where some strict time limitations apply. Yet, the

algorithm is of theoretical importance for it proves that the segmentation problem has

polynomial time complexity when the cost function is additive and there are no constraints

among di�erent segments.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 74

5.5 Implementation

tFPR has been implemented as a software library that provides users with functions that

create and evaluate pattern objects. In addition, it has been embedded in the BB1 black-

board architecture [Hayes-Roth, 1985], where it acts as a front-end signal interpretation

module. For our own purposes, we have implemented the tFPR pattern manager as a

knowledge source in BB1. However, the organization of pattern manager is architecturally

independent. We describe it here in very general terms. It can be reimplemented easily

in other software architectures. The pattern manager is triggered by satisfaction of its

trigger-condition which is the addition of a new interval of data to a temporal database,

which in BB1 is called the timeline. Triggering binds the pattern manager's local variables

to particular attributes of the triggering data. These values indicate which measure was

updated, and the time at which it occurred. Next, pattern objects from the blackboard

database that are related to the triggering data are retrieved using the context mechanism

of BB1 knowledge sources. Finally, the pattern manager creates a unique instance of its

\action," which re
ects the established bindings of its local variables and a unique binding

for its context variables that correspond to pattern objects. Thus, each new interval of data

added to the timeline can trigger one or more instances of the pattern manager's action,

each one prepared to evaluate a particular relevant pattern object in a right-to-left fashion,

starting with the new data interval. We refer to each such instance as an executable pattern

matching action.

Any executable pattern matching action may or may not actually be executed. In

BB1, this is determined by the larger application system's current strategy. A strategy

might di�erentially weight pattern recognition versus other reasoning tasks. And it might

di�erentially weight pattern recognition activities for di�erent data measures or di�erent

pattern objects. For example, the Guardian application for monitoring medical patients

dynamically adopts context-dependent strategies that di�erentially weight pattern matching

actions versus actions involved in diagnosis, prediction, planning, and explanation. And it

dynamically adjusts its pattern matching activities to favor the most important patient data

and the most important pattern objects in the current context. Any non-trivial application

system (in terms of number of observed data measures, rate of adding new data intervals

to the timeline, and number of pattern objects in the knowledge base) will need to control

its pattern recognition activities with some such mechanism for selective attention.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 75

Executing a pattern matching action involves calling an evaluation function with the

instantiated variable bindings. Then, this function enters a cycle in which iteratively collects

timeline data for the related pattern measures and updates its current pattern evaluation

based on the values of the collected data. Termination occurs whenever the process reaches

a state where no signi�cant changes can occur to the �nal outcome either by perfect match

or mismatch of the remaining data and segments. In the abnormal case where there would

be missing data values at some point in time, the process is terminated and its current

evaluation is returned. Eventually, the returned evaluation would appear as a new episode

on the timeline.

tFPR contains many operators that are used to represent and evaluate np functions.

Those operators are described in detail in [Drakopoulos and Hayes-Roth, 1994, Drakopoulos,

1994c]. A summary of them appears in table 5.1. The syntactic de�nition of np functions

appears in table 5.2. In that table, np-list denotes a non-null list of nps and wp-list, bp-list

denote lists of real numbers used as weights or bounds, respectively. Square brackets ([ ])

are used to denote optional expressions. The pair (a c) denotes the sigmoidal function Sa;c.

The number argument in rate is used to denote the degree of the derivative. Finally, Cp-list

is a list of constraints each of which has the following format :

(op arg arg weight)

where

op 2 f S-GT, S-GE, S-LT, S-LE, S-EQ, S-NE g

arg 2 f (S-DT segment), (S-MAX segment measure),

number, (S-MIN segment measure) g

where S-GT stands for greater than, S-GE for greater equal and so on. Also (S-DT segment)

is used to refer to the duration of segment segment while (S-MAX segment measure) is used

to refer to the maximum value of measure in segment segment.

The di�erence between an operator � (say or) and m� (e.g. mor) is that the former

uses all of its measures to all of its arguments while the later distributes its measures

across its arguments. To illustrate the above, let E be the function that would be used to

evaluate an np function on some input data x = [x1; . . . ; xk]. Then E(np; x) should return

the membership grade of x in the fuzzy set associated with np. Now, E can be de�ned

recursively as follows:

E(nil; x) = x



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 76

fa;c(x) = S(ax� c)

fAND(z1; . . . ; zk) = min(z1; . . . ; zk)

fOR(z1; . . . ; zk) = max(z1; . . . ; zk)

fNOT (x) = �x

fNOT (y) = 1� y

fONE(x) = 1

fZERO(x) = 0

fWS(y1; . . . ; yk; w1; . . . ; wk) =

Pk
j=1 ykwkPk
j=1 wj

fAV G(y1; . . . ; yk) =
1

k

kX
j=1

yj

fGRP (z1; . . . ; zk) = [z1; . . . ; zk]

fBND(x; b1; . . . ; bk�1; y1; . . . ; yk) =

8>>>>>><
>>>>>>:

y1 if x < b1
y2 if b1 � x < b2

...
yk�1 if bk�2 � x < bk�1
yk if bk�1 � x

9>>>>>>=
>>>>>>;

fVALUE(z1(t); . . . ; zk(t)) = [z1(t); . . . ; zk(t)]

fRATE(z(t)) =
z(t+ dt)� z(t)

dt
fRATE;1(z) = frate(z)

fRATE;i(z) = frate;i�1(frate(z))

fSGM (np; t) = RL-algorithm(np; t)

fMSNN(np; t) = evaluate-MSNN(np; t)

Table 5.1: Operator evaluation functions in tFPR. x is used to denote x-domain values, y
is used to denote y-domain values and, z is used to denote values in either domain. [ ] are
used to denote lists.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 77

np : (a c)

| (and np-list)

| (mand np-list)

| (or np-list)

| (mor np-list)

| (not np)

| (one )

| (zero )

| (ws np-list wp-list)

| (mws np-list wp-list)

| (avg np-list)

| (mavg np-list)

| (grp np-list)

| (mgrp np-list)

| (bnd np-list bp-list)

| (mbnd np-list bp-list)

| (value np)

| (rate [number] np)

| (sgm np-list wp-list cp-list)

| (msnn ms-unit-list)

;

Table 5.2: Syntactic de�nition of np functions in tFPR.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 78

E((�; [np1; . . . ; npk]; �); x) = f�(E(np1; x); . . . ; E(npk; x); �)

E((m�; [np1; . . . ; npk]; �); [x1; . . . ; xk]) = f�(E(np1; x1); . . . ; E(npk; xk); �)

where
� denotes a tFPR operator

[np1; . . . ; npk] is a list of np functions

nil denotes the empty list

� is a list of arguments used by the function f�.
Special attention should be given to operators SGM and MSNN . The �rst is used to

evaluate time-dependent pattern objects and involves an invocation of the RL-algorithm.

The second is used to evaluate pattern objects that are de�ned by multi-sigmoidal neural

networks. Note that tFPR would only evaluate MSNNs without training or re-training

them. It assumes that all MSNNs in its pattern base have already been trained to com-

pute the membership functions of their pattern objects. Figure 5.6 shows a block diagram

describing the architecture of tFPR.

Training of MSNNs occurs during their de�nition process by the MSNN component of

tFPR. At that time, the user has to provide the system with training data and network

speci�cation parameters (such as number of layers, number of units, connectivity, learning

rates, window width etc.) that would be used to create and train a multi-sigmoidal neural

network which, in turn, would be the np function of the corresponding pattern object.

Thus, pattern objects which are de�ned in terms of MSNNs have to be trained during their

de�nition process. On the other hand, all other pattern objects would be explicitly de�ned

and need not be trained. Those pattern objects are expected to be supplied to the system

by a user or an expert through the tFPR user interface (see �gure 5.6). In either case, all

pattern objects stored in the pattern base remain static during evaluation. The only way

to modify them is to rede�ne them either through the MSNN component or through the

tFPR user interface.

As described above, tFPR has two pattern object de�nition modes. The �rst uses the

MSNN component and learning. The second requires an expert to provide the system with

a pattern object de�nition. The �rst mode allows for di�cult or imprecise pattern classes

which cannot be described by a simple expression to be represented into the system by

MSNNs which are trained to learn the appropriate membership functions. On the other

hand, the second mode allows for easy pattern classes that can be described by a short

and concise expression to be encoded directly into the system by an expert using the tFPR



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 79

Pattern Base

tFPR User Interface

user/expert

tFPR I/O

tFPR kernel tFPR I/OtFPR I/Oinput
data

training
data

MSNN

network specification

membership
values

tFPR

Figure 5.6: Architecture of tFPR



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 80

user interface. Thus, tFPR would be able to learn a pattern object de�nition whenever an

expert is not available or cannot provide a precise de�nition.

It is certain that tFPR is a hybrid system for it uses fuzzy, neural, and structural

pattern recognition methods. However, there is an additional reason for calling tFPR

hybrid. tFPR is an extensional programming device in addition to being an intensional one

whose programmability is dependent on fuzzy sets. We follow here the de�nitions in [Cottrell

et al., 1987] and call extensional programming the programming of complex relationships

into a computing machine by showing it examples or instances of the relationships under

consideration. In contrast, we call intensional programming the traditional programming

where we directly write rules or speci�c algorithms into a computing machine without

reference to any particular examples. As it was indicated above, there are good reasons for

having both of those modes of programming in a system like tFPR. In general, we would like

tFPR to be extensional so that the knowledge acquisition bottleneck ([Feigenbaum, 1977]),

which in tFPR is instantiated as the de�nition of the pattern objects, can be avoided or

reduced. On the other hand, we would like it to be intensionally programmable so that we

can easily program into it an amount of (medical) knowledge that is readily available (in

textbooks or elsewhere).

5.6 Illustrative Application

We are applying tFPR in a system called Guardian for monitoring intensive care patients

[Hayes-Roth et al., 1992]. Guardian performs several real-time reasoning tasks, including

diagnosis, prediction, planning, and explanation of the patient's dynamic condition. All of

these reasoning activities are based on the recognition of instances of important pattern

classes in observed patient data.

Before we present some examples of tFPR pattern objects, let us de�ne some auxiliary

functions that could be used to create sigmoidal functions. Assuming an a�ne sigmoidal

class AS , where S is a basic unit sigmoidal function, de�ne the following functions:

produce sigmoidal(x1; y1; x2; y2): It creates the unique sigmoidal function in AS that passes

through the points (x1; y1) and (x2; y2).

produce le(a; da) = produce sigmoidal(a; 1� �; a+ da; �). It creates a sigmoidal function

that is nearly equal to 1 in the interval (�1; a].



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 81

produce ge(a; da) = produce sigmoidal(a � da; �; a; 1 � �) It creates a sigmoidal function

that is nearly equal to 1 in the interval [a;+1).

produce gt(a; da) = produce sigmoidal(a; �; a + da; 1 � �) It creates a sigmoidal function

that is nearly equal to 1 in the interval (a;+1).

produce ccint(a; b; da; db) = min(produce ge(a; da); produce le(b; db)) It creates a sigmoidal

function that is nearly equal to 1 in the interval [a; b].

produce eq(a; da) = produce ccint(a; a; da; da). It creates a sigmoidal function that is nearly

equal to 1 only at point a.

�; da; db are assumed to be small positive constants.

Table 5.3 illustrates the tFPR pattern objects for three conditions of interest to

Guardian.

Hypoxia, on top of table 5.3, exhibits a pattern class that is described as a set of

constraints upon its measures as well as a constraint between two of its measures. The

latter is a linear constraint and is eliminated in the vp function which replaces its third

argument which is FiO2 by PaO2�5�FiO2. Finally the np function requires this new value

to be less or equal to 0. Post bypass myocardial depression with adequate volume, in table

5.3, is a pattern class speci�cation based on many measures and constraints which have

been assigned relative importance with respect to the pattern evaluation. This example

illustrates the di�culty in using only set operations to describe patterns depending on

many conditions/measures. In this pattern, we used a weighted sum to express the vague

interelationship of pattern measures regarding the evaluation of the pattern. Trying to put

this pattern into a form of set operations (probably by using some interval conditions) not

only would result in a much larger and more complicated de�nition but would also require

an immensely greater e�ort for the pattern to be described at the �rst place. Finally, sudden

increases in chest tube output are recognized by the pattern object at the bottom of table

5.3. That pattern object is a time-dependent pattern object consisting of two segments.

The �rst segment requires the rate of chest tube output to be zero (e.g. chest tube output

to be constant) while the second segment requires the rate of increment of chest tube output

to be greater than 10=3600. In addition, the pattern objects imposes a constraint on the

�rst segment requiring its duration to be less than 200 seconds. The relative importance of

the two segments and the constraint is 1 : 3 : 1.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 82

Pattern class speci�cation tFPR pattern object

HYPOXIA:
whenever
PaO2 � 60mmHg or
O2SAT � 90% (da = 7) or
PaO2 � 5 � FiO2

( Mp = [PaO2; O2SAT; FiO2];
Ap = identity function;
vp(p; o; f) = [p; o; p� 5 � f ];
np = [mOR; produce le(60);

produce le(90, 7);
produce le(0)]

ap = 3;
dp = 3;
Cp = True)

POST BYPASS MYOCARDIAL
DEPRESSION WITH ADQ.
VOLUME:
whenever
CO � 3:4l=min (da = 0:1) and
SVR > 1600 (da = 400) and
PAD > 18mmHg (da = 2) and
CV P > 12mmHg (da = 2) and
PCWP > 15mmHg (da = 2)
where the relative importance
of the above measurements
is 2:1:1:1:1.

( Mp = [CO; SVR; PAD;
CV P; PCWP ];

Ap = identity function;
vp = identity function;
np = [mWS;

produce le(34, 0.1), 2,
produce gt(1600, 400), 1,
produce gt(18, 2), 1,
produce gt(12, 2), 1,
produce gt(15, 2), 1]

ap = 5;
dp = 5;
Cp = True)

SUDDEN INCREASE OF
CHEST TUBE OUTPUT:
whenever
a short period of
constant chest tube
output is followed
by a sudden increase
in chest tube output

( Mp = [PULMONARY.CT-output]
Ap = identity function;
vp = identity function;
np = [SGM;

produce RATE(
produce eq(0, 0.1)), 1,

produce RATE(
produce gt(10/3600)), 3,

;;duration of 
at area < 200
(S LT (S DT 1) 200 1)]

ap = 1;
dp = 1;
Cp = True)

Table 5.3: Three pattern class de�nitions and their corresponding pattern objects in tFPR.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 83

Guardian currently has a knowledge base of about 100 pattern objects. We expect it

to grow to a larger database especially after we would develop user-friendly or automatic

tools for pattern acquisition.

5.7 Speci�cations of a Graphical Interface

The knowledge acquisition bottleneck ([Feigenbaum, 1977]) is manifested in tFPR as the

pattern object speci�cation process. This may be a major obstacle in the development of

a useful system based on tFPR when the number of pattern objects would grow large. Of

course the learning component (i.e. the MSNN component) can help alleviate this problem.

However, a graphical interface that would facilitate the pattern object speci�cation process

would be very useful. We present here the speci�cations of such an interface.

Our solution requires that the user provide the system with n points (x1; y1); . . . ; (xn; yn)

that specify a pattern class. Then the system tries to �nd a minimum combination in terms

of sigmoidal functions that would interpolate the pattern at the n given points with a given

tolerance.

Though it is very hard to �nd an optimal algorithm, an approximate but fast solution

is the following :

1. Specify the tolerance (�) in the approximation.

2. Sort the n given points so that x1 < x2 < . . . < xn.

3. For i = 1; 2; . . . ; n� 1

let Si be the sigmoidal function that passes through

the i-th and (i+ 1)-th point.

let LSi = i, RSi = i+ 1.

4. While two successive sigmoidal functions Sa0;c0 and Sa00;c00 can be merged

(or equivalently when jSa;c(xj)� yj j < �; 8j 2 LSa0;c0 ; . . . ; RSa00;c00
,

where a = (a0 + a00)=2; c = (c0 + c00)=2 )

merge them (i.e replace them by Sa;c and

let LSa;c = LSa0 ;c0 ; RSa;c = RSa00;c00
)

5. Return the current collection of sigmoidal functions.

The algorithm above can run (if implemented carefully) in O(n2). Its average time

depends on the distribution of the number of sigmoidal mergings; the larger the number of

mergings the slower the algorithm. However, for a uniform distribution, the average time



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 84

is O(nlogn). However, the worst case occurs when all the sigmoidal functions merge into a

single one. In that case, we need 
(n2) sigmoidal computations.

In the case of time-dependent pattern classes, the user has to de�ne the ridge of the

segments in pattern objects, i.e. the ideal variation of the input to match the pattern object

segments perfectly. This corresponds to the locus of points where the membership function

of the fuzzy set that describes the pattern class in question is maximal. Then the user can

proceed by de�ning other set of points where the pattern object evaluation is constant i.e.

he can use isopotential curves to de�ne his pattern objects. For example, the user may

de�ne the set of points where the pattern object evaluates to 0.5. After having de�ned

at least two such sets the system can use the original algorithm to interpolate sigmoidal

functions across the sets (with a given tolerance of approximation). Of course, the numerical

nature of our computations require the set of points to be selected so that they correspond

to values that are not very close to each other and not too close to either 0 or 1.

Finally, the set of interpolating sigmoidal functions would be used to form an np function.

The construction of the rest of the elements of the pattern object for the current pattern is

straightforward.

5.8 Extensions

There are two important extensions or enhancements of tFPR that are worth mentioning

The �rst extension or enhancement of the system results from a basic observation made

in section 5.5. Any non-trivial application must control and limit its pattern recognition

activities with a mechanism for selective attention. Although such a mechanism was outlined

in that section and is partially implemented in the Guardian system [Hayes-Roth et al., 1992]

alternative solutions should be studied as well. One such solution could be to create control

patterns i.e. patterns that control the applicability of other patterns based on observations

on the input data. These patterns serve no purpose but to control the matching process in

order to make it more e�cient. Alternatively, one can allow the Cp conditions in pattern

objects to be learnable and based on experience. These extensions should result in a more

e�cient pattern recognition system.

The second extension of tFPR regards missing data In its current state, tFPR does

not deal at all with that problem. It aborts the current pattern (by returning the current

partial evaluation) as soon as it �nds that some related data are missing. A better solution



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 85

would be to include in the pattern object information regarding the behavior of the pattern

in cases where information is missing. For example, in order to deal with missing data,

the pattern matching process may choose to abort, use default values to anticipate the

lack of some information, use expected values, assign some prede�ned UNKNOWN value to

anything that is missing, or use a combination of these policies depending on the de�nition

of the pattern object that is under evaluation.

Currently, there are no control patterns in tFPR and pattern evaluations with missing

data are discarded.

5.9 Conclusion

tFPR is a hybrid pattern recognition system that has been founded on a number of new

theoretical results as well as a number of practical considerations. Because of an existing

trade-o� between probabilistic and possibilistic measures, tFPR represents pattern classes

by possibilistic measures such as fuzzy sets. Because of the sigmoidal bubble theorem, tFPR

uses sigmoidal functions to approximate arbitrary fuzzy set membership. In order to deal

with time-dependent pattern classes, tFPR follows a segmentation approach and uses an

e�cient segmentation algorithm to compute and evaluate segmentations. Finally, in order

to deal with pattern classes that cannot be described explicitly in any apparent way and

to reduce the knowledge acquisition e�ort, tFPR employs a learning mechanism, namely

multi-sigmoidal neural networks, that are able to learn complex pattern class de�nitions

and encode complicated relationships when trained by examples.1

In general, tFPR can represent and recognize patterns that are static or dynamic de-

pending on time or any other parameter-space. The direct evaluation of static patterns and

the linear time complexity of its segmentation method provide the groundwork of a system

that may be appropriate for real-time applications.

However, it must be noted that the emphasis on tFPR is not on run-time performance

but rather on knowledge acquisition e�ciency. Due to its hybrid nature, tFPR provides

alternative and resourceful solutions to pattern class speci�cation problems. In addition,

it de�nes a modular pattern recognition architecture that can be e�ectively and easily

1Currently, there are no patterns in our database that are described through multi-sigmoidal neural

networks. The physicians that developed our database found it adequate the use of simple fuzzy sets to
describe their pattern classes of interest.



CHAPTER 5. TFPR: A HYBRID PATTERN RECOGNITION SYSTEM 86

extended through its set of operators.

The overall goal of this research has been a modular system or architecture developed

on solid mathematical foundations and equipped with a wide set of tools and methods for

pattern recognition and speci�cation. tFPR seems to have met fully that goal.



Bibliography

[Alsina and Trillas, 1983] C. Alsina and E. Trillas. On almost distributive Lukasiewicz

triplets. Fuzzy Sets and Systems, 92:175{178, 1983.

[Alsina et al., 1983] C. Alsina, E. Trillas, and L. Valverde. On some logical connectives for

fuzzy set theory. Journal of Mathematical Analysis and Applications, 93(1):15{26, 1983.

[Ash, 1989] T. Ash. Dynamic node creation in backpropagation networks. Connection

Science, 1(4):365{375, 1989.

[Bellman and Giertz, 1973] R. Bellman and M. Giertz. On the analytic formalization of

the theory of fuzzy sets. Information Sciences, 5:149{156, 1973.

[Bellman et al., 1966] R.E. Bellman, R. Kalaba, and L.A.Zadeh. Abstraction and pattern

classi�cation. Journal of Mathematical Analysis and Applications, 13:1{7, 1966.

[Bezdek and Pal, 1992] J.C. Bezdek and S.K. Pal. Fuzzy Models for Pattern Recognition.

IEEE Press, New York, 1992.

[Bezdek, 1973] J.C. Bezdek. Cluster validity with fuzzy sets. Journal of Cybernetics, 3:58{

73, 1973.

[Bezdek, 1981] J.C. Bezdek. Pattern Recognition with Fuzzy Objective Function Algorithms.

Plenum Press, New York, 1981.

[Carpenter et al., 1992] G.A. Carpenter, S. Grossberg, N. Markuzon, J.H. Reynolds, and

D.B. Rosen. Fuzzy ARTMAP: A neural network architecture for incremental super-

vised learning of analog multidimensional maps. IEEE Transactions on Neural Networks,

3(5):698{713, September, 1992.

87



BIBLIOGRAPHY 88

[Charniak, 1991] E. Charniak. Bayesian networks without tears. AI Magazine, 12(4):50{63,

1991.

[Cheeseman, 1986] P. Cheeseman. Probabilistic versus fuzzy reasoning. In L.N. Kanal and

J.F. Lemmer, editors, Uncertainty in Arti�cial Intelligence, pages 85{102. North Holland,

Amsterdam and New York., 1986.

[Cohen and Hudson, 1992] M.E. Cohen and D.L. Hudson. Integration of neural network

techniques with approximate reasoning in knowledge based systems. In A. Kandel and

G. Langholz, editors, Hybrid Architectures for Intelligent Systems, pages 72{85. CRC

Press, Boca Raton, FL, 1992.

[Cooper, 1987] G.F. Cooper. Probabilistic inference using belief networks is NP-hard. Tech-

nical Report KSL{87{27, Medical Computer Science Group, Stanford University, 1987.

[Cottrell et al., 1987] G.W. Cottrell, P. Munro, and D. Zipser. Learning internal represen-

tations from gray-scale images: An example of extensional programming. In Proceeding

of the Ninth Annual Conference of the Cognitive Science Society, 1987.

[DasGupta and Schnitger, 1993] B. DasGupta and G. Schnitger. The power of approximat-

ing: A comparison of activation functions. In S.J. Hanson, J.D. Cowan, and C. Lee Giles,

editors, Advances in Neural Information Processing Systems 5, pages 615{622. Morgan

Kaufmann, San Mateo, CA, 1993.

[Dawson and Schop
ocher, 1992] M.R.W. Dawson and D.P. Schop
ocher. Modifying the

generalized delta rule to train networks of non-monotonic processors for pattern classi�-

cation. Connection Science, 4(1):19{31, 1992.

[Delgado and Moral, 1987] M. Delgado and S. Moral. On the concept of possibility-

probability consistency. Fuzzy Sets and Systems, 21:311{318, 1987.

[Dempster, 1968] A.P. Dempster. A generalization of Bayesian inference. Journal of the

Royal Statistical Society, Series B, 30:205{247, 1968.

[Drakopoulos and Hayes-Roth, 1994] J.A. Drakopoulos and B. Hayes-Roth. tFPR: A fuzzy

and structural pattern recognition system of multi-variate time-dependent patterns based

on sigmoidal functions. Technical Report KSL{94{42, Knowledge Systems laboratory,



BIBLIOGRAPHY 89

Stanford University, 1994. Submitted for publication to International Journal of Fuzzy

Sets and Systems,.

[Drakopoulos, 1991] J.A. Drakopoulos. FPR: A fuzzy pattern recognizer based on sig-

moidals. Technical Report KSL{91{75, Knowledge Systems laboratory, Stanford Univer-

sity, 1991.

[Drakopoulos, 1994a] J.A. Drakopoulos. Probabilities, possibilities, and fuzzy sets. Tech-

nical Report KSL{94{40, Knowledge Systems Laboratory, Stanford University, 1994. To

appear in the International Journal of Fuzzy Sets and Systems.

[Drakopoulos, 1994b] J.A. Drakopoulos. Sigmoidal theory. Technical Report KSL{94{41,

Knowledge Systems Laboratory, Stanford University, 1994. To appear in the International

Journal of Fuzzy Sets and Systems.

[Drakopoulos, 1994c] J.A. Drakopoulos. tFPR user's manual. The manual is available from

the author, 1994.

[Drakopoulos, 1995] J.A. Drakopoulos. Multi-sigmoidal neural networks and back-

propagation. In To appear in Fourth International Conference on Arti�cial Neural Net-

works, 1995.

[Dubois and Prade, 1983] D. Dubois and H. Prade. Unfair coins and necessity measures:

towards a possibilistic interpretation of histograms. Fuzzy Sets and Systems, 10:15{20,

1983.

[Dubois and Prade, 1987] D. Dubois and H. Prade. Fuzzy numbers: An overview. In J.C.

Bezdek, editor, Analysis of Fuzzy Information, pages 3{39. CRC Press, Boca Raton, Fla.,

1987.

[Dubois et al., 1993] D. Dubois, H. Prade, and R. Yager. Readings in Fuzzy Sets for Intel-

ligent Systems. Morgan Kaufman, San Mateo, CA, 1993.

[Duda and Hart, 1973] R.O. Duda and P.E. Hart. Pattern Classi�cation and Scene Anal-

ysis. Wiley, New York, 1973.

[Dunn, 1973] J.C. Dunn. A fuzzy relative of the ISODATA process and its use in detecting

compact well-separated clusters. Journal of Cybernetics, 3:32{57, 1973.



BIBLIOGRAPHY 90

[Fahlman and Lebiere, 1990] S.E. Fahlman and C. Lebiere. The cascade-correlation learn-

ing architecture. In D.S. Touretzky, editor, Advances in Neural Information Processing

Systems 2, pages 524{532, San Mateo, CA, 1990. Morgan Kaufmann.

[Fahlman, 1988] S.E. Fahlman. Faster-learning variations on back-propagation: An empir-

ical study. In D.S. Touretzky, G.E. Hinton, and T.J. Sejnowski, editors, Proceedings,

1988 Connectionist Models Summer School, pages 38{51, Los Altos, CA, 1988. Morgan

Kaufmann.

[Fahlman, 1991] S.E. Fahlman. The recurrent cascade-correlation architecture. In R.P.

Lippmann, J.E. Moody, and D.S. Touretzky, editors, Advances in Neural Information

Processing Systems 3, pages 190{196. Morgan Kaufmann, San Mateo, CA, 1991.

[Feigenbaum, 1977] E.A. Feigenbaum. The art of arti�cial intelligence: Themes and case

studies in knowledge engineering. In IJCAI 5, pages 1014{1029, 1977.

[Fu, 1980] K.S. Fu. Recent developments in pattern recognition. IEEE Transactions on

Computers, C-29(10):845{857, 1980.

[Fu, 1982] K.S. Fu. Syntactic Pattern Recognition and Applications. Prentice-Hall, Engle-

wood Cli�s, NJ, 1982.

[Fukunaga, 1972] K. Fukunaga. Introduction to Statistical Pattern Recognition. Academic

Press, New York, 1972.

[Genesereth and Nilsson, 1987] M. Genesereth and N. Nilsson. Logical Foundations of Ar-

ti�cial Intelligence. Morgan Kau�mann, Los Altos, CA, 1987.

[Gorman and Sejnowski, 1988] R.P. Gorman and T.J. Sejnowski. Analysis of hidden units

in a layered network rained to classify sonar targets. Neural Networks, 1:75{89, 1988.

[Gupta et al., 1975] M.M. Gupta, G.K.Knopf, and P.N. Nikiforuk. Sinusoidal-based cog-

nitive mapping functions. In M.M. Gupta and T. Yamakawa, editors, Fuzzy Logic in

Knowledge-Based Systems, Decision and Control, pages 69{89. Academic Press, New

York, 1975.

[Hamacher, 1976] H. Hamacher. On the logical connectives of fuzzy statements and their

a�liated truth function. In Proceedings of the Third European Meeting on Cybernetics

and Systems Research, Vienna, Austria, 1976.



BIBLIOGRAPHY 91

[Hanson and Pratt, 1989] S.J. Hanson and L.Y. Pratt. Some comparisons of constraints for

minimum network construction with back-propagation. In D.S. Touretzky, editor, Ad-

vances in Neural Information Processing Systems 1, pages 177{185. Morgan Kaufmann,

San Mateo, CA, 1989.

[Hanson, 1990] S.J. Hanson. Meiosis networks. In D.S. Touretzky, editor, Advances in

Neural Information Processing Systems 2, pages 533{541, San Mateo, CA, 1990. Morgan

Kaufmann.

[Hassibi and Stork, 1993] B. Hassibi and D.G. Stork. Second order derivatives for network

prunning: Optimal brain surgeon. In Advances in Neural Information Processing Systems

5, 1993.

[Hayes-Roth et al., 1992] B. Hayes-Roth, R. Washington, D. Ash, A. Collinot, R. Hewett,

A. Vina, and A. Seiver. Guardian: A prototype intelligent agent for intensive care

monitoring. Arti�cial Intelligence in Medicine, 4:165{185, 1992.

[Hayes-Roth, 1985] B. Hayes-Roth. A blackboard architecture for control. Arti�cial Intel-

ligence, 26:251{321, 1985.

[Haykin, 1994] S. Haykin. Neural Networks. Macmillan, New York, 1994.

[Hebb, 1949] D. Hebb. The Organization of Behavior. Wiley, New York, 1949.

[Hecht-Nielsen, 1987] R. Hecht-Nielsen. Kolmogorov's mapping neural network existence

theorem. In Proceedings of the International Conference on Neural Networks, III, pages

11{13, New York, 1987. IEEE Press.

[Hecht-Nielsen, 1990] R. Hecht-Nielsen. Neurocomputing. Addison-Wesley, Reading, MA,

1990.

[Henkind and Harrison, 1988] S.J. Henkind and M.C. Harrison. Analysis of four uncertainty

calculi. IEEE Trans. on Man Systems and Cybernetics, 18(5):700{714, 1988.

[Hertz et al., 1991] J.A. Hertz, R.G. Palmer, and A.S. Krogh. Introduction to the Theory

of Neural Computation. Addison-Wesley, Redwood City, CA, 1991.

[Hinton, 1989] G.E. Hinton. Connectionist learning procedures. Arti�cial Intelligence,

40:185{234, 1989.



BIBLIOGRAPHY 92

[Hornik et al., 1989] K. Hornik, M. Stinchcombe, and H. White. Multilayer feedforward

networks are universal approximators. Neural Networks, 2:359{366, 1989.

[Hornik, 1993] K. Hornik. Some new results on neural network approximation. Neural

Networks, 6:1069{1072, 1993.

[Jain, 1987] A.K Jain. Advances in statistical pattern recognition. In P.A. Devijver and

J. Kittler, editors, Pattern Recognition Theory and Applications, pages 1{19. Springer-

Verlag, Berlin; New York, 1987.

[Kandel, 1982] A. Kandel. Fuzzy Techniques in Pattern Recognition. Wiley, New York,

1982.

[Kaufmann, 1975] A. Kaufmann. Introduction to the Theory of Fuzzy Subsets. Academic

Press, New York, 1975.

[Keller et al., 1992] J.M. Keller, R.R. Yager, and H. Tahani. Neural network implementa-

tion of fuzzy logic. Fuzzy Sets and Systems, 45:1{12, 1992.

[Klir and Parviz, 1992] G. Klir and B. Parviz. Probability-possibility transformations: A

comparison. Int. Journal of General Systems, 21(1):291{310, 1992.

[Klir, 1989] G. Klir. Is there more to uncertainty than some probability theorists would

have us believe? Int. Journal of General Systems, 15(4):347{378, 1989.

[Kolmogorov, 1950] A.N. Kolmogorov. Foundations of the Theory of Probability. Chelsea,

New York, 1950.

[Kolmogorov, 1957] A.N. Kolmogorov. On the representation of continuous functions of

many variables by superposition of continuous functions of one variable and addition.

Doclady Academy Nauk SSSR, 114:953{956, 1957.

[Kosko, 1990] B. Kosko. Fuzziness vs. probability. Int. Journal of General Systems, 17(2{

3):211{240, 1990.

[Lapedes and Farber, 1987] A.S. Lapedes and R.M. Farber. Nonlinear signal processing

using neural networks: prediction and system modeling. Technical Report LA-UR{87{

2662, Los Alamos National Laboratory, 1987.



BIBLIOGRAPHY 93

[LeCun et al., 1990] Y. LeCun, J.S. Denker, and S.A. Solla. Optimal brain damage. In D.S.

Touretzky, editor, Advances in Neural Information Processing Systems 2, pages 598{605,

San Mateo, CA, 1990. Morgan Kaufmann.

[Leshno et al., 1993] M. Leshno, V.Y. Lin, A. Pinkus, and S. Schocken. Multilayer feedfor-

ward networks with a nonpolynomial activation function can approximate any function.

Neural Networks, 6:861{867, 1993.

[Lindley, 1987] D.V. Lindley. The probability approach to the treatment of uncertainty in

arti�cial intelligence and expert systems. Statistical Science, 2(1):17{24, 1987.

[Lippmann, 1989] R.P. Lippmann. Pattern classi�cation using neural networks. IEEE Com-

munications Magazine, November, 27(11):47{64, 1989.

[Lukasiewicz, 1970] J. Lukasiewicz. Logical foundations of probability theory. In L. Be-

rkowski, editor, Jan Lukasiewicz, Selected Works, pages 16{43. North-Holland, Amster-

dam, 1970.

[McCulloch and Pitts, 1943] W.S. McCulloch and W. Pitts. A logical calculus of the ideas

immanent in nervous activity. Bulletin of Mathematical Biophysics, 5:115{133, 1943.

[Minsky and Papert, 1988] M.L. Minsky and S. Papert. Perceptrons: An Introduction to

Computational Geometry. MIT Press, Cambridge, MA, expanded edition, 1988.

[Moody and Darken, 1989] J. Moody and C.J. Darken. Fast learning in networks of locally

tuned processing units. Neural Computation, 1:281{294, 1989.

[Moody and Yarvin, 1992] J. Moody and N. Yarvin. Networks with learned unit response

functions. In J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors, Advances in Neural

Information Processing Systems 4, pages 1048{1055. Morgan Kaufmann, San Mateo, CA,

1992.

[Mooney et al., 1990] R. Mooney, J. Shavlik, G. Towell, and A. Gove. An experimental

comparison of symbolic and connectionist learning algorithms. In J. Shavlik and T. G.

Dietterichs, editors, Readings in Machine Learning, pages 171{176. Morgan Kaufmann,

San Mateo, CA, 1990.

[Mozer and Smolensky, 1989] M.C. Mozer and P. Smolensky. Skeletonization: A technique

for trimming the fat from a network via relevance assessment. In D.S. Touretzky, editor,



BIBLIOGRAPHY 94

Advances in Neural Information Processing Systems 1, pages 107{115, San Mateo, CA,

1989. Morgan Kaufmann.

[Neapolitan, 1990] E. Neapolitan. Probabilistic Reasoning in Expert Systems: Theory and

Algorithms. Wiley, New York, 1990.

[Nilsson, 1965] N.J. Nilsson. Learning Machines. McGraw-Hill, New York, 1965.

[Nilsson, 1986] N.J. Nilsson. Probabilistic logic. Arti�cial Intelligence, 28(1):71{87, 1986.

[Pal and Dutta-Mazamder, 1986] S.K. Pal and D. Dutta-Mazamder. Fuzzy Mathematical

Approach in Pattern Recognition Problems. Wiley, New York, 1986.

[Pal and Majumder, 1986] S.K. Pal and D.K. Dutta Majumder. Fuzzy mathematical ap-

proach in pattern recognition problems. Wiley, New York, 1986.

[Pal and Mitra, 1992] S.K. Pal and S. Mitra. Multilayer perceptron, fuzzy sets, and classi-

�cation. IEEE Transactions on Neural Networks, 3(5):683{697, September, 1992.

[Papadimitriou and Steiglitz, 1982] C.H. Papadimitriou and K.S. Steiglitz. Combinatorial

Optimization: Algorithms and Complexity. Prentice-Hall, Englewood Cli�s, NJ, 1982.

[Papoulis, 1991] A. Papoulis. Probability, random variables, and stochastic processes.

McGraw-Hill, New York, 1991.

[Pearl, 1988] J. Pearl. Probabilistic Reasoning in Intelligent Systems: Networks of Plausible

Inference. Morgan Kau�man, Palo Alto, 1988.

[Pearl, 1990] J. Pearl. Reasoning under uncertainty. Annual Review of Computer Science,

4:37{72, 1990.

[Peterson and Silberschatz, 1985] J.L. Peterson and A. Silberschatz. Operating System

Concepts. Addison-Wesley, second edition, 1985.

[Poggio and Girosi, 1989] T. Poggio and F. Girosi. A theory of networks for approximation

and learning. Technical Report No. 1140, MIT AI Memo Lab, 1989.

[Rosenblatt, 1958] F. Rosenblatt. The perceptron: A probabilistic model for information

storage and organization in the brain. Psychological Review, 65:386{408, 1958.



BIBLIOGRAPHY 95

[Rosenblatt, 1961] F. Rosenblatt. Principles of Neurodynamics. Spartan Books, Washing-

ton, DC, 1961.

[Rumelhart et al., 1986a] D.E. Rumelhart, G.E. Hinton, and R.J.Williams. Learning in-

ternal representations by error propagation. In D.E. Rumelhart, J.L. McClelland, and

the PDP Research Group, editors, Parallel Distributed Processing: Explorations in the

Microstructure of Cognition, I: Foundations, pages 318{363. MIT Press, Cambridge, MA,

1986.

[Rumelhart et al., 1986b] D.E. Rumelhart, J.L. McClelland, and the PDP Research Group.

Parallel Distributed Processing: Explorations in the Microstructure of Cognition, I: Foun-

dations. MIT Press, Cambridge, MA, 1986.

[Ruspini, 1969] E. Ruspini. A new approach to clustering. Information Control, 15:22{52,

1969.

[Ruspini, 1970] E. Ruspini. Numerical methods for fuzzy clustering. Information Sciences,

2:319{350, 1970.

[Salzberg, 1990] S.L. Salzberg. Learning with Nested Generalized Exemplars. Kluwer Aca-

demic, Hingham, MA, 1990.

[Schalko�, 1992] R.J. Schalko�. Pattern Recognition: Statistical, Structural, and Neural

Approaches. Wiley, New York, 1992.

[Schi�man et al., 1993] W. Schi�man, M. Joost, and R. Werner. Comparizon of optimized

backpropagation algorithms. In Proceedings of the European Symposium on Arti�cial

Neural Networks, pages 97{104, Brussels, 1993.

[Sejnowski and Rosenberg, 1987] T.J. Sejnowski and C.R. Rosenberg. Parallel networks

that learn to pronounce english text. Complex Systems, 1:145{168, 1987.

[Shafer, 1976] G. Shafer. A Mathematical Theory of Evidence. Princeton University Press,

Princeton, NJ, 1976.

[Shortli�e, 1976] E.H. Shortli�e. Computer-Based Medical Consultations: MYCIN. Else-

vier, New York, 1976.



BIBLIOGRAPHY 96

[Simpson, 1992] P.K. Simpson. Fuzzy min-max neural networks{part1: Classi�cation.

IEEE Transactions on Neural Networks, 3(5):776{786, September, 1992.

[Sprecher, 1965] D.A. Sprecher. On the structure of continuous functions of several vari-

ables. Transactions American Mathematical Society, 115(3):340{355, 1965.

[Stoll, 1963] R.R. Stoll. Set Theory and Logic. W.H. Freeman and Company, San Fransisco

and London, 1963.

[Takagi and Hayashi, 1991] H. Takagi and I. Hayashi. Arti�cial neural network driven fuzzy

reasoning. International Journal of Approximate Reasoning, 5:191{212, 1991.

[Takagi, 1990] H. Takagi. Fusion technology of fuzzy theory and neural network: Survey

and future directions. In Proceedings of the International Conference on Fuzzy Logic and

Neural Networks, pages 13{26, Iizuka, 1990.

[Thodberg, 1991] H.H. Thodberg. Improving generalization of neural networks through

prunning. International Journal of Neural Systems, 1(4):317{326, 1991.

[Uhr, 1973] L. Uhr. Pattern Recognition, Learning, and Thought. Prentice-Hall, Englewood

Cli�s, NJ, 1973.

[Utgo�, 1988] P.E. Utgo�. Perceptron trees: a case study in hybrid concept representation.

In AAAI-88: Proceedings of the Seventh National Conference on Arti�cial Intelligence,

pages 601{606, San Mateo, CA, 1988. Morgan-Kaufmann.

[Weigend et al., 1990] S.A. Weigend, B.A. Hubermann, and D.E. Rumelhart. Predicting

the future: A connectionist approach. International Journal of Neural Systems, 1:193{

209, 1990.

[Widrow, 1962] B. Widrow. Generalization and information storage in networks of adaline

neurons. In G.T. Yovitts, editor, Self-Organizing Systems. Spartan Books, Washington,

DC, 1962.

[Wynne-Jones, 1992] M. Wynne-Jones. Node splitting: A constructive algorithm for feed-

forward neural networks. In J.E. Moody, S.J. Hanson, and R.P. Lippmann, editors,

Advances in Neural Information Processing Systems 4, pages 1072{1079. Morgan Kauf-

mann, San Mateo, CA, 1992.



BIBLIOGRAPHY 97

[Yager et al., 1987] R.R. Yager, S. Ovchinnikov, R.M. Tong, and H.T.Nguyen, editors.

Fuzzy Sets and Applications: Selected Papers by L.A. Zadeh. Wiley, New York, 1987.

[Yager, 1980] R.R. Yager. Generalized \and/or" operators for multivalued and fuzzy logic.

In Proceedings of the Tenth Symposium of Multiple-Valued Logic, pages 214{218, Evaston,

Illinois, 1980.

[Yamakawa and Furukawa, 1992] T. Yamakawa and M. Furukawa. A design algorithm of

membership functions for a fuzzy neuron using example-based learning. In Proceedings

of IEEE 1st International Conference on Fuzzy Systems, pages 75{82, San Diego, CA,

1992.

[Zadeh, 1965] L.A. Zadeh. Fuzzy sets. Inf. Control, 8(338), 1965.


