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Abstract

Knowledge plays an important role in an agent’s ability to perform well in
its environment. Teaching can be used to improve an agent’s performance by
enhancing its knowledge. We propose a specific model of teaching, which we
call embedded teaching. An embedded teacher is an agent situated with a less
knowledgeable “student” in a common environment. The teacher’s goal is to
lead the student to adopt a particular desired behavior. The teacher’s ability
to teach is affected by the dynamics of the common environment and may be
limited by a restricted repertoire of actions or uncertainty about the outcome
of actions; we explicitly represent these limitations as part of our model. In this
paper, we address a number of theoretical issues including the characterization
of a challenging embedded teaching domain and the computation of optimal
teaching policies. We then incorporate these ideas in a series of experiments
designed to evaluate our ability to teach two types of reinforcement learners.

1 Introduction

An agent’s ability to function in an environment is greatly affected by its
knowledge of the environment. In some special cases, we can design agents
with sufficient knowledge for performing a task [Gol93], but, in general, agents
must acquire information on-line in order to optimize their performance, i.e.,
they must learn.

One possible approach to improving the performance of learning algorithms
is employing a teacher. For example, Lin [Lin92] uses teaching by example to
improve the performance of agents, supplying them with examples that show
how the task can be achieved. Tan’s work [Tan93] can also be viewed as a
form of teaching in which agents share experiences. In both methods some
non-trivial form of communication or perception is required. We strive to
model a broader notion of teaching that encompasses any behavior that can



improve another agent’s performance. At the same time, we want our model
to clearly delineate the limits of the teacher’s ability to influence the student.

In this paper, we propose a teaching approach that maintains a situated
“spirit” much like that of reinforcement learning [Sut88, Wat89, Kae90], which
we call embedded teaching. An embedded teacher is simply a “knowledgeable”
agent situated with the student in a shared environment. Her! goal is to lead
the student to adopt some specific behavior. However, the teacher’s ability to
teach is restricted by the nature of the environment they share: not only is
her repertoire of actions limited, but she may also lack full control over the
outcome of these actions. As an example, consider two mobile robots without
any means of direct communication. Robot 1 is familiar with the surroundings,
while Robot 2 is not. In this situation, Robot 1 can help Robot 2 find a goal
through certain actions, such as blocking Robot 2 when it is headed in the
wrong direction. However, Robot 1 may have only limited control over the
outcome of such an interaction because of uncertainty about the behavior of
Robot 2.

Our goal is to understand how an embedded teacher can help a student
adopt a particular behavior. This paper addresses a number of theoretical
questions relating to this problem, and then experimentally explores the abil-
ity to teach two types of reinforcement learners. First, we propose two-person
games as a framework for studying embedded teaching, and identify one class
of games, the iterated prisoner’s dilemma, in which teaching is particularly
challenging. Then we show how, under certain assumptions, an optimal teach-
ing policy can be derived. Such an optimal teaching policy is valuable not only
for its own sake, but also because it supplies us with an upper-bound on any
method’s ability to influence the behavior of a student. This gives us insight
into the properties of the student’s learning algorithm.

In the experimental part of this paper we try to teach agents using two
versions of the Q-learning algorithm [Wat89]. “Normal” Q-learners (QL) use
the full Q-learning algorithm while “blind” Q-learners (BQL) model the world
as having only one state. Our choice of Q-learners as the subjects of these ex-
periments is motivated both by our view that reinforcement-learning is one of
the most natural learning methods for situated learning and by the popularity
of Q-learning within the reinforcement-learning community. Our experiments
explore the challenging teaching context mentioned above and use the insight
on optimal teaching methods gained in the earlier theoretical discussion. We
examine a number of possible teaching strategies that make different assump-
tions about the teacher’s knowledge and compare their success rates. In the
case of BQL we observe an interesting phase-transition in the teacher’s suc-
cess rate as the student’s inclination to explore is varied. In the case of QL

ITo differentiate between teacher and student, we use female pronouns for the former
and male pronouns for the latter.
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Figure 1: Matrices A, B, C, D and E

we show that a simple teaching strategy based on the concepts of punishment
and reward often provides an excellent teaching method. We then analyze the
conditions under which this strategy is likely to succeed.

2 The basic setting

In the introduction we suggested viewing teaching as a special form of inter-
action between two agents. In this paper we will focus on a particular type of
two-agent interaction, in which the teacher and student are repeatedly engaged
in some joint activity. While the student has no prior knowledge pertaining to
this activity, the teacher understands its dynamics. In our model, the teacher’s
goal is to lead the student to adopt a particular behavior in such interactions.
For example, teacher and student meet occasionally at the road and the teacher
wants to teach the student to drive on the right side. Or perhaps, the teacher
and the student share some resource, such as CPU time, and the goal is to
teach him judicious use of this resource.

A natural model for two-agent interactions is a two-agent game [Owe82].
A two-agent game consists of two players; associated with player z is a set of
possible actions A;. Each play of the game involves a choice of an action by
each player. A joint action is a tuple of the form (a1, as), where a; € A, is
player ¢’s action. For each joint action the game specifies a payoff (or reward)
vector (p1,ps), where p; is the payoff received by agent ¢ following this joint
action. Since the teacher and the student are repeatedly interacting, we model
them as players of a two-agent iterated game, which is simply a sequence of
plays of a two player game. To capture the idea that the teacher is more
knowledgeable than the student, we assume that she knows the structure of
the game, i.e., she knows the payoff function, and that she recognizes the
actions taken at each play. On the other hand, the student does not know the
payoff function, although he can perceive the payoff he receives.

In this paper, we make the simplifying assumption that both teacher and
student have only two actions from which to choose. Furthermore, we do not
care about the cost of teaching and thus will ignore the teacher’s payoff in
our description. This provides a basic setting in which to take this first step
towards understanding the teaching problem.

The teaching model can be concisely modeled by a 2 x 2 matrix. The



teacher’s actions are designated by the letters A and B, while the student’s
actions are designated by the numbers 1 and 2. Each entry corresponds to a
joint action and represents the student’s payoff when this joint action is played.
We will suppose that we have matrix A in Figure 1 and that we wish to teach
the student to use action 1. At this stage all we assume about the student
is that if he always receives a better payoft following action 1 he will learn to
play it.

We can see that in some situations teaching is trivial. Assume that the first
row dominates the second row, i.e., a > ¢ and b > d. In that case, the student
will naturally prefer to take action 1, and teaching is not very challenging,
although it might be a useful way to speed the learning process. For example,
if a—c > b—d, as in matrix B in Figure 1, the teacher can make the advantage
of action 1 more noticeable to the student by always playing action A.

Now suppose that only one of @ > ¢ or b > d holds. In this case, teaching
is still easy. We use a basic teaching strategy, which we call preemption. In
preemption the teacher chooses an action that makes action 1 look better than
action 2. For example, when the situation is described by matrix C in Figure 1,
the teacher will always choose action A.

Next, assume that both ¢ and d are greater than both a or b, as in matrix
D in Figure 1. Regardless of which action the teacher chooses, the student
receives a higher payoff by playing action 2 (since min{5,6} > max{3, —2}).
Therefore, no matter what the teacher does, the student will learn to prefer
action 2. Teaching is hopeless in this situation.

All other types of interactions are isomorphic to the case where ¢ > a >
d > b, as in matrix E in Figure 1. This is still a challenging situation for the
teacher, because action 2 dominates action 1 (because 10 > 5 and —5 > —10).
Therefore, preemption cannot work. If teaching is possible it will be more
complex than always choosing the same action. Since this seems to the most
challenging teaching situation, we will devote our attention in Sections 5 and
6 to teaching a reinforcement learner to choose action 1 in this class of games.

It turns out that the above situation is quite important in game-theory and
multi-agent interaction. It is a projection of a very famous game, the prisoner’s
dilemma, which can be represented as:

teacher teacher
student H Coop ‘ Defect H | student H Coop ‘ Defect H
Coop [l (aa) [ (bio) |7 00 Y TCoop [ (ana) | (o)

Defect || (¢,b) | (d,d) Defect | (c,-¢) | (d,d)

where ¢ > a > d > b. The actions in the prisoner’s dilemma are called Cooper-
ate (Coop) and Defect; we identify Coop with actions 1 and A, and Defect with
actions 2 and B. The prisoner’s dilemma captures the essence of many impor-
tant social and economic situations; in particular, it encapsulates the notion of
cooperation. It has thus motivated enormous discussion among game-theorists
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and mathematical economists [EMNS89]. In the prisoner’s dilemma, whatever
the choice of one player, the second player can maximize its payoff by playing
Defect. It thus seems “rational” for each player to defect. However, when both
players defect, their payoffs are much worse than if they both cooperate.

As an example, suppose two agents will be given $10 each for moving some
object. Each agent can perform the task alone, but it will take an amount
of time and energy which they value at $20. However, together, the effort
each will make is valued at $5. We get the following instance of the prisoner’s
dilemma:

Agent 1
Agent 2 H Move ‘ Rest H
Move (5,5) | (-10,10)
Rest (10,-10) | (0,0)

In the experimental part of this paper the teacher’s task will be to teach the
student to cooperate in the prisoner’s dilemma. We will measure the success
of a teaching strategy by looking at the cooperation rate it induces in students
over some period of time, i.e., the percentage of the student’s actions which
are Coop. All results shown in this paper are with respect to the following
matrix:

Teacher

Student H Coop ‘ Defect H
Coop (10,10) | (-13,13)

Defect | (13,-13) | (-6,-6)

We have observed qualitatively similar results in other instantiations of the
prisoner’s dilemma, although the precise cooperation rate varies.

3 Optimal teaching policies

In the previous section we concentrated on modeling the teaching context and
determining which particular problems are interesting. In this section we start
exploring the question of how a teacher should teach. First we will define
what an optimal policy is. Then we will define Markov decision processes
(MDP) [Bel62], and show that under certain assumptions teaching can be
viewed as an MDP. This will allow us to tap into all the vast knowledge that
has accumulated on solving these problems. In particular, we can use well
known methods, such as value iteration [Bel62], to find the optimal teaching
policy.

We start by defining an optimal teaching policy. A teaching policy is a
function that returns an action at each iteration; possibly, it may depend on
a complete history of the past joint actions. There is no “right” definition
for an optimal policy, as the teacher’s motivation may vary. However, in this
paper, the teacher’s objective is to maximize the number of games in which



the student’s action are “good”, e.g., Coop in the prisoner’s dilemma. The
teacher does not know the precise number of iterations she will be playing,
so she slightly prefers earlier success to later success. Formally, we assume
that each teaching policy induces a probability distribution u(-) over S, the
student’s space of possible action sequences, and define the following: Let
{o,} = (01, stgmas,...) be an infinite sequence of actions and let u(a) be the
value the teacher places on a student’s action, a. Then

o({ou}) 3 (2 u(on)

k=0
The coefficient 7 is called the discount factor; it captures the idea of caring

less about events that are further in the future. The value of a teaching policy
7 is defined to be

val(ﬂ'):/sv(s)d,u(s)

Thus, an optimal policy maximizes val, the expected value of v.2

Next, we define MDPs. In an MDP a decision maker is continually moving
between different states. At each point in time she observes her current state,
receives some payoff (which depends on this state), and chooses an action. Her
action and her current state determine (perhaps stochastically) her next state.
The goal is to maximize some function of the payoffs. Formally, an MDP is
a four-tuple (S, A, P,r), where S is the state-space, A is the decision-maker’s
set of possible actions, P : S xS x A — [0,1] is the probability of a transition
between states given the decision-maker’s action, and r : S — R is the reward
function.

Now suppose that the student can be in a set ¥ of possible states, that
his set of actions is A, and that the teacher’s set of actions is A;. Moreover,
suppose that the following properties are satisfied
(1) The student’s new state is a function of his old state and the current joint-
action, denoted by 7: ¥ x Ay, x A, — ¥;

(2) The student’s action is a stochastic function of his current state, where the
probability of choosing a at state s is p(s, a);

(3) the teacher knows the student’s state. (The most natural way for this to
happen is that the teacher knows the student’s initial state and the function
7 and uses them to simulate the agent.)

Notice that under these assumptions a teaching policy should be a a func-
tion of Y. The only information relevant to the agent’s future actions are his
future states. The only information relevant to his future states are his cur-
rent state (which also determines his current action) and the teacher’s action.

?Formally defining u over S requires defining an appropriate cs-algebra. However, we
note that because the set of actions is finite, S can be treated much like R and the o-algebra
of Borel sets can be used. In particular, u is a continuous function on this space, and the
integral is well defined.



Therefore, the only knowledge relevant to the teacher’s choice is the student’s
current state. It is easy to see that we have the makings of the following MDP.
Define the teacher’s MDP to be TMDP= (3, A;, P,U), where

P(S,S/,at) oo Z p(s,as) '55’,T(S,as,at)

as€EAs
(6;; is defined as 1 when ¢ = j, and 0 otherwise). That is, the probability of a
transition from s to s’ under a; is the sum of probabilities of a student action
that will induce this transition. The reward function is the expected value of
u, 1.e.,

Us) € 3 pls.a,) - ulay)

as€A

Theorem 1 The optimal teaching policy is given by the ~o optimal policy in
TMDP.

The ~g-optimal policy in an MDP is the policy that maximizes at each
state the expected value of Y07, [d(,) - 79 ~'], where @(n) is the payoff received
at the n'" future state. There are well-known ways of finding this policy. In
the experiments below we use a method based on value-iteration [Bel62].

The optimal policy can be used for teaching, when the teacher possess
sufficient information to determine the current state of the student. But even
when that is not the case, it allows us to calculate an upper bound on the
success val(m) of any teaching policy 7. This number is a property of the
learning algorithm, and measures the degree of influence any agent can have
over the given student.

4 The learning algorithm

We experiment with two types of students. One uses a reinforcement learning
algorithm which can be viewed as )-learning with one state, and the other
uses Q-learning. In choosing parameters for these students we tried to emulate
choices made in the reinforcement learning literature.

The first student, which we call a Blind Q-learner (BQL), can perceive
rewards, but cannot see how the teacher has acted or remember his own past
actions. He only keeps two values, one value for each action: q(Coop) and
q(Defect). His update rule is the following: if he performed action ¢ and
received a reward of R then

Qnew(a) = (1 - 05) : QOld(a) +a-R
The parameter «, the learning-rate, is fixed to 0.1 in our experiments.

The second student is a “real” Q-learner (QL). He can observe the teacher’s
actions and has a number of possible states. The QL maintains a Q-values for
each state-action pair. His states encode his recent experiences, i.e., the past
joint actions. The update rule is:

qnew(37 Cl) = (1 - Oé) : QOld(Sv Cl) +a- (R + ’}/V(S/))

7



Here R is the reward received upon performing a at state s; s’ is the state of
the student following the performance of a at s; 7 is called the discount factor,
and will be 0.9, unless otherwise noted; and V(s’) is the current estimate of
the value of the best policy on &', defined as max,ea, ¢(s',a). All Q-values are
initially set to zero.

The student’s update rule tells us how his Q-values change as a result of new
experiences. We must also specify how these Q-values determine his behavior.
Both types of students choose their actions based on the Boltzmann distribu-
tion. This distribution associates a probability Ps(a) with the performance of
an action a at a state s (P(a) for the BQL).

def  exp(q(s,a)/T) ot expla(a)/T)
Pla) = e et ) (O P = ety (POl

Here T is called the temperature. Usually, one starts with a high value for

T, which makes the action choice more random, inducing more exploration
on the part of the student. T is slowly reduced, making the Q-values play a
greater role in the student’s choice of action. We use the following schedule:
T(0)="T75and T'(n+1) = T(n)*0.940.05. This schedule has the characteristic
properties of fast initial decay and slow later decay. We also experiment with
fixed temperature.

5 Blind Q-Learners

This section describes our experimental results with BQL. We examined a
policy that approximates the optimal policy, and two teaching methods that
do not rely on a student model.

Optimal policy. First we show that BQLs fit the student model of Section 3.
For their state space, we use the set of all possible assignment for their Q-
values. This is a continuous subspace of R? and we discretize it (in order to be
able to compute a policy), obtaining a state space with approximately 40,000
states. Next, notice that transitions are a stochastic function of the current
state (current Q-values) and the teacher’s action. To see this notice that Q-
value updates are a function of the current Q-value and the payoff; the payoff
is a function of the teacher’s and student’s actions; and the student’s actions
are a stochastic function of the current Q-value. In the left side of Figure 2
we see the success of teaching using the policy generated by using dynamic
programming to solve this optimization problem. Each curve represents the
fraction of Coops as a function of the temperature for some fixed number of
iterations. The values are means over 100 experiments.

Two Q-Learners. We also ran experiments with two identical BQLs. This
can be viewed as “teaching” using another Q-learner. The results are shown in
the right side of Figure 2. At all temperatures the optimal strategy performs
better than Q-learning as a “teaching” strategy. The fact that at temperatures
of 1.0 or less the success rate approaches 1 will be beneficial when we later
add temperature decay. However, we also see that there is an inherent limit
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Figure 2: Fraction of Coops as a function of temperature for the approximately
optimal policy (left) and for “teaching” using an identical Q-learner (right).
Each curve corresponds to Coop rate over some fixed number of iterations. In
the approx. optimal policy the curves for 1000, 5000 and 10000 iterations are
nearly identical.

to our ability to affect the behavior at higher temperatures. An interesting
phenomenon is the phase transition observed around T' = 2.5. A qualitative
explanation of this phenomenon is that high temperature adds randomness to
the student’s choice of action, because it makes the probabilities P(a) less ex-
treme. Consequently, the ability to predict the student’s behavior lessens, and
with it the probability of choosing a good action. However, while randomness
serves to lower the success rate initially, it also guarantees a level of effective
cooperation, which should approach 0.5 as the temperature increases. Finally,
notice that although (Coop,Coop) seems like the best joint-action for a pair
of agents, two interacting Q-learners never learn to play this joint strategy
consistently, although they approach 80% Coops at low temperatures.

Teaching without a model. When the teacher does not have a precise
model of the student, we cannot use the techniques of Section 3 to derive
an optimal policy, because it is assumed that the teacher can “observe” the
student’s current state (i.e. that it knows the student’s Q-values). We therefore
explore two teaching methods that only exploit knowledge of the game and the
fact that the student is a BQL.

Both methods are motivated by a basic strategy of countering the student’s
move. The basic idea is to try and counter good actions by the student with
an action that will lead to a high payoff, and to counter bad actions with an
action that will give him a low payoff. Ideally, we would like to play Coop
when the student plays Coop, and Defect when the student plays Defect. Of
course, we don’t know what action the student will choose, so we try to predict
from his past actions.

If we assume that the Q-values change very little from one iteration to the
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Figure 3: Fraction of Coops as a function of temperature for the teaching

strategy based on TFT (left) and 2TFT (right).

other, the student’s most likely action in the next game is the same action
that he took in the most recent game. Therefore, if we saw the student play
Coop in the previous turn, we will play Coop now. Similarly, the teacher will
follow a Defect by the student with a Defect on her part. This strategy, called

Tit-Tor-Tat (TFT for short), is well known [EMN89]. Our experiments show
that it is not very successful in teaching a BQL (see Figure 3).

We also experimented with a variant of TF'T, which we call 2TFT. In this
strategy the teacher plays Defect only after observing two consecutive Defects
on the part of the student. It is motivated by our observation that in certain
situations it is better to let the student enjoy a free lunch (i.e., match his
Defect with a Coop) than to make Coop look bad to him, because that may
cause his Q-value for Coop to be so low that he is unlikely to try it again.
Two consecutive Defects indicate that the probability of the student playing
a Defect as his next action is quite high. The results, shown in Figure 3,
indicate that this strategy worked better than TFT, and in some ranges of
temperature, better than Q-learning. However, in general, both TFT and
2TFT gave disappointing results.?

Finally, Figure 4 shows the performance of all four teaching strategies dis-
cussed so far when we incorporate temperature decay. We can see that the op-
timal policy is very successful. As we explained before, teaching is easier when
the student is more predictable, which is the case when temperature is lower.
With temperature decay the student spends most of his time in relatively low
temperature and behaves similarly to the case of fixed, low temperature. While
an initial high-temperature phase could have altered this behavior, we did not
observe such effects.

3However, in some sense an identical Q-learner embodies a model of the student.
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6 Teaching Q-learners

Unlike BQL, Q-learners (QL) have a number of possible states which encode
the joint actions of previous games played. A QL with memory one has four
possible states, corresponding to the four possible joint actions in the prisoner’s
dilemma; a QL with more memory will have more states, encoding a sequence
of joint actions.

More complex learning architectures have more structure, which brings
with it certain problems. One possible problem may be that this structure is
more “teaching-resistant.” A more real threat is added computational com-
plexity. As we mentioned, to approximate the optimal teaching policy for
BQL we had to compute over a space of approximately 40,000 discretized
states. While representing the state of a BQL requires only two numbers, one
for each QQ-value, representing the state of a QL with m states requires 2m + 1
numbers: one for the Q-value of each state/action pair, and one encoding the
current state. The size of the corresponding discretized state-space for the
teacher’s Markov decision process grows exponentially in m. For the simplest
case of memory one (a student with four states) this would be about 10'®
states. Since solving the problem with 40,000 states took 12 hours on a Sun
SPARCstation-10, we were not able to approximate optimal teaching policies
for even the simplest QL.

But all is not lost. More structure may mean more complexity, but it
also means more properties to exploit. We can reach surprisingly good results
by exploiting the structure of Q-learners. Moreover, we can do this using
a teaching method introduced in the previous section. However, in QL this
method takes on a new meaning that suggests the familiar notions of reward
and punishment.

In choosing their actions, QLs “care” not only about immediate rewards,
but also about the current action’s effect on future rewards. This makes them
suitable for a reward and punishment scheme. The idea is the following: sup-
pose the QL did something “bad” (Defect in our case). Although we cannot
reliably counter such a move with a move that will lower his reward, we can
punish him later by choosing an action that always gives a negative payoft,

11
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Figure 5: Each curve shows the fraction of Coops as a function of temperature
for a fixed number of iterations when TFT was used to teach (left) and when
QQ-learning was used to teach (right). Values are means over 100 experiments.

no matter what the student plays. We achieve this by following a student’s
Defect with a Defect by the teacher. While the immediate reward obtained by
a QL playing Defect may be high, he will also learn to associate a subsequent
punishment with the Defect action. Thus, while it may be locally beneficial to
perform Defect, we may be able to make the long-term rewards of Defect less
desirable. Similarly, we can follow a student’s Coop with a reward in the form
of a Coop by the teacher, since it guarantees a positive payoff to the student.

This suggests using Tit-Tor-Tat again. Notice that for BQLs, TFT cannot
be understood as a reward /punishment strategy because BQLs care only about
the immediate outcome of an action; the value they associate with each action
is a weighted average of the immediate payoffs generated by playing this action.

In Figure 5 we see the success rates of TF'T as a function of temperature,
as well as the rates for Q-learning as a teaching strategy, and Figure 6 shows
the results when we introduce temperature decay. It is apparent that TFT
is extremely successful, especially in higher temperatures. Interestingly, the
behavior is quite different than that of two QLs. The phase-change noticed in
BQL still exists (to a lesser extent) when we look at two QLs. However, TFT
exhibits completely different behavior: Coop levels increase with temperature,
reaching almost 100% above 3.0. It seems that TFT works better when the
QL exhibits a certain level of experimentation.

In these experiments the QL remembers only the last joint action. We
experimented with QL with more memory and performance was worse. This
can be explained as follows. For a QL with memory one or more, the problem
is a fully observable Markov decision process once the teacher plays TFT,
because TFT is a deterministic function of the previous joint action. We know
that Q-learning converges to the optimal policy under such conditions [WD92].
Adding more memory effectively adds irrelevant attributes, which, in turn,

12
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causes a slower learning rate. We have also examined whether 2TFT would be
successful when agents have a memory of two. The results are not shown here,
but the success rate was considerably lower than for TFT, although better
than for two QLs.

TFT performed well as a teaching strategy, and we explained the motiva-
tion for using it. We now want to produce a more quantitative explanation,
one that can be used to predict its success when we vary various parameters,
such as the payoff matrix.

Let the student’s payoff matrix be as in matrix A of Figure 1; let p be
the probability that the student plays Coop, and let ¢ = 1 — p be the prob-
ability that the student plays Defect. These probabilities are a function of
the student’s Q-values (see the description in Section 4). Let us assume that
the probabilities p and ¢ do not change considerably from one iteration to the
next. This seems especially justified when the learning rate, «, is small.

Given this information, what is the student’s expected reward for playing
Coop? In TFT, the teacher’s current action is the student’s previous action, so
we can also assume that the teacher will play Coop with probability p. Thus,
the student’s expected payoff for playing Coop is (p-a+g¢-b). Since Q-learners
care about their discounted future reward (not just their current reward), what
happens next is also important. Since we assumed that the student cooperated,
the teacher will cooperate in the next iteration, and if we still assume p to be
the probability that the student will cooperate next, the student’s expected
payoff in the next step is (p-a + ¢ - ¢). If we ignore higher order v terms the
expected reward of playing Coop becomes: p-a+¢-b+~v(p-a+ ¢-c). The
expected reward of Defect is thus: p-c+¢-d+v(p-b+ ¢ - d). Therefore, TFT

should succeed as a teaching strategy when:

pratqbtypratqc)>p-ctq-d+y(p b+q-d).
Since initially p = ¢ = 0.5, and it is the behavior at the stage where p and

¢ are approximately equal that will determine whether TFT succeeds, we can
attempt to predict the success of TF'T based on whether:

DIF=a+b+~v(a+e¢)—[(c+d+~(b+d)] >0
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Coop rates as a function of DIF
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To test this hypothesis we ran TFT on a number of matrices using QQ-learners
with different discount factors. The results in Figure 7 show the fraction of
Coops over 10000 iterations as a function of DIF for a teacher using TFT, and
with temperature decay. We see that DIF is a reasonable predictor of success.
When it is below 0, almost all rates are below 20%, and above 8 most rates
are above 65%. However, between 0 and 8 it is not successful.

7 Summary and related work

A number of authors have discussed reinforcement learning in multi-agent
systems. Yanco and Stein [YS93] examine the evolution of communication
among cooperative reinforcement learners. Sen et al. [SSH94| use Q-learning
to induce cooperation between two block pushing robots. Shoham and Tennen-
holtz [ST92] examine the evolution of conventions in a society of reinforcement
learners. Kittock [Kit94] investigates the effects of societal structure on multi-
agent learning. Littman [Lit94] develops reinforcement learning techniques for
agents whose goals are opposed, and Tan [Tan93] examines the benefit of shar-
ing information among reinforcement learners. Finally, Whitehead [Whi91] has
shown that n reinforcement learners that can observe everything about each
other can decrease learning time by a factor of n. However, the above work is
not concerned with teaching, or with the question of how much influence one
agent can have over another.

Lin [Lin92] is explicitly concerned with teaching as a way of accelerating
learning of enhanced Q)-learners. He uses experience replay and supplies stu-
dents with examples of how the task can be achieved. As we remarked earlier,
this teaching approach is different from ours, since the teachers are not em-
bedded in the student’s domain.

Within game theory there is an extensive body of work that tries to un-
derstand the evolution of cooperation in the iterated prisoner’s dilemma and
to find good playing strategies for it{fEMN®89]. In that work both players have
the same knowledge, and teaching is not an issue.

Finally, our work has important links to work on conditioning and especially
operant conditioning in psychology [Mac83]. In conditioning experiments an
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experimenter tries to induce changes in its subjects by arranging that certain
relationships will hold in their environment, or by explicitly (in operant con-
ditioning) reinforcing the subjects’ actions. In our framework the embedded
teacher plays a similar role to that of the experimenter. However, there are a
number of important differences. We assume that we have a (possibly partial)
model of the student, e.g., we know that it is a QL. and we may even know
the parameters it is using. Most importantly, we are investigating artificial
computational entities and we are interested in the efficiency of the teaching
process. However, since the student model adopted in this paper is known
to capture human behavior in recurrent situations (e.g., [Thr98, Bla, RE93]),
computational techniques may actually have relevance to our understanding
of biological systems.

Summary. We proposed embedded teaching as a situated teaching paradigm,
suitable for modeling a wide range of teaching instances. We modeled the
teacher and the student as players in a particular iterated two-player game,
which we showed to be the most challenging game of its type. In our model,
the dynamics of the teacher-student interaction is made explicit, and it clearly
delineated the limits placed on the teacher’s ability to influence the student.
We then showed that with a detailed model of the student, optimal teaching
policies can be theoretically generated by viewing the teaching problem as
a Markov decision process. The performance of the optimal teaching policy
serves as a bound on any agent’s ability to influence this student. Finally,
we examined our ability to teach two types of reinforcement learners. In par-
ticular, we showed that when an optimal policy cannot be used, we can use
TFT as a teaching method. In the case of Q-learners this policy was very
successful. Consequently, we proposed a model that explains this success. In
the future we hope to examine other learning architectures and see whether
the lessons learned in this domain can be generalized, and whether we can use
these methods to accelerate learning in other domains.
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