
MODELING TECHNIQUES AND ALGORITHMS FOR

PROBABILISTIC MODEL-BASED DIAGNOSIS AND

REPAIR

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Sampath Srinivas
July 1995



c
 Copyright 1995 by Sampath Srinivas

All Rights Reserved

ii



I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Richard Fikes
(Principal Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a
dissertation for the degree of Doctor of Philosophy.

Eric Horvitz
(Microsoft Research)

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Ross Shachter

I certify that I have read this dissertation and that in my
opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Yoav Shoham

Approved for the University Committee on Graduate

Studies:

iii



Abstract

Model-based diagnosis centers on the use of a behavioral model of a system to infer

diagnoses of anomalous behavior. For model-based diagnosis techniques to become
practical, some serious problems in the modeling of uncertainty and in the tractability
of uncertainty management have to be addressed. These questions include: How can
we tractably generate diagnoses in large systems? Where do the prior probabilities of

component failure come from when modeling a system? How do we tractably compute
low-cost repair strategies? How can we do diagnosis even if only partial descriptions of
device operation are available? This dissertation seeks to bring model-based diagnosis
closer to being a viable technology by addressing these problems.

We address the tractability of model-based diagnosis in two complementary ways.

We show how the structure of a hierarchical system speci�cation can be exploited to
yield an e�cient diagnosis algorithm. We also develop polynomial-time algorithms to
generate candidate diagnoses in decreasing order of likelihood both when component
failures are independent and when they are dependent. These candidates are then
tested for consistency with observations. In e�ect, this gives us a generate-and-test

scheme for enumerating diagnoses in decreasing order of plausibility. To help with
modeling, we relate the prior probability of failure of a component to a temporal
model of the failure process of the component. This allows the prior probability to

be computed from an empirical reliability measure, the Mean Time Between Failure,
and the uptime of the component. In addition, this work gives us a principled way
of modeling possible state changes in the system when performing diagnosis with

multiple observations where each observation occurs at a di�erent time. Turning to

the repair problem, we develop a general-purpose algorithm for computing optimal
repair plans. The algorithm makes no assumptions about the structure of the system

model and hence has to exhaustively search through all possible plans. We go on to
demonstrate an interesting and useful restriction on the system model which allows

the optimal repair plan to be computed in polynomial time. To perform diagnosis

when only partial device descriptions are available, we develop a way of \completing"
the model such that repair cost estimates computed from the completed model are

conservative upper bounds of the actual repair cost. We conclude with a discussion
about promising extensions of this work.
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Chapter 1

Introduction

One of the most salient aspects of modern life is the pervasiveness of complex human-
engineered systems. Malfunctions of the systems we depend on are commonplace

while the problem of maintaining these systems becomes ever more complicated. As
a result, it has become increasingly important to provide intelligent support to the
tasks of diagnosis of system malfunctions and repair planning. This dissertation
addresses key problems encountered in constructing computer-based tools that assist
with diagnosis and repair.

1.1 Automated diagnosis: Early approaches

Intelligent support for diagnosis has been an active area of research in Arti�cial Intel-
ligence since its early years. Early approaches to the problem concentrated on prob-
lems encountered in medical diagnosis. During the 1960s, several e�orts were made
to develop automated programs to perform medical diagnosis [Warner et al., 1961;

Gorry and Barnett, 1968; de Dombal et al., 1972]. The approach was probabilistic|
posterior probabilities of diseases were computed based on observations of symptoms.

A very simple causal model was employed|the various possible diseases were assumed

to be mutually exclusive, i.e., exactly one disease could occur. Given the existence
of a disease it was assumed that the occurrence of any one symptom was condition-
ally independent of the existence of any other symptom. These early systems had

surprisingly good performance, sometimes outperforming human experts. However, a

variety of other reasons such as poor interfaces and distrust of the very simple model
led to their not being accepted.

The 1970s saw the creation of rule-based expert systems [Buchanan and Shortli�e,
1984]. A diagnostic rule-based expert system consists of a set of rules elicited from an

expert who is versed with the particular system or domain which is being modeled.

The rules can be used to encode either causal knowledge or diagnostic knowledge.

1



2 CHAPTER 1. INTRODUCTION

Causal rules encode observations of system behavior that result from the occurrence of

underlying faults. Diagnostic rules encode what causes are possible given observations

of system behavior.

As the applications of rule-based expert systems proliferated in the late seventies,

some serious problems came to light. First, the systems are hard to maintain. It is

easy to write rules that con
ict, especially as a knowledge base is re�ned over time.

If some change in the modeled system occurs, it is hard to localize the corresponding

changes which must be made to the knowledge base. Secondly, knowledge bases are

often not resuable. A knowledge base developed for a particular system is not easily

modi�ed to suit another similar system. Finally, the knowledge bases are hard to

validate. They cover the experiential knowledge of a particular expert and it is not
easy to check the soundness of the rules against the actual operation of the system or

the completeness of the rules in describing all possible aspects of system behavior. The
reader is referred to [Horvitz et al., 1988] for a detailed discussion of the development
and limitations of the early probabilistic approaches and rule-based systems. The
key problem in the use of rule-based expert systems is that rules do not match the
way people think about the domains in which they perform diagnosis. As a result,

eliciting rules to model a domain is a di�cult task.

1.2 Current approaches to diagnosis

1.2.1 Model-based diagnosis

The notion of model-based diagnosis arose when trying to address the problems en-
countered in the early approaches to diagnosis [Davis and Hamscher, 1988]. In this
approach, diagnoses are computed from a causal model that describes how the sys-
tem works. The model of the system is built by the composition of causal models of

system components. The representation of the system can be viewed as a simulation

model. The diagnosis process takes observations of system behavior as input and
reasons backwards with the model to infer what component failures could explain the
observations.

The underlying rationale behind the approach is that causal models of systems are

built when the systems are being designed and analyzed. Hence, such causal infor-

mation would be easier to specify than diagnostic rules. The model-based approach

addresses the main drawbacks of the rule-based approach. Since information about
components is localized within component models, maintenance of the model becomes

easier. A change to a component model can be incorporated as a local change. If a
component is used in two di�erent systems, the same component model can be used

in both systems. If the diagnosis algorithm is sound and complete, then the validation

problem reduces to verifying the accuracy of the model of the system in modeling its
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behavior.

In a purely deterministic setting, model-based diagnosis consists of computing all

possible combinations of failures of the components that explain the observations.

Each such combination of component failures is a possible cause of the observations.

A purely deterministic approach has no notion of likelihood.

A notion of likelihood, however, is crucial for practical applications. When doing

diagnosis, our ultimate goal is to compute some low cost repair action in response

to our beliefs about the cause of the system anomaly. The choice of the appropriate

action depends crucially on the relative likelihoods of the various possible causes of

the system anomaly. Furthermore, in large systems, the space of possible causes of

an observation are very large. When performing diagnosis, examination of the entire
space is not practical. We need to be able to focus on more likely causes [de Kleer,

1991].
The notion of likelihood is introduced in model-based diagnosis by introducing a

prior probability of failure for each component[de Kleer and Williams, 1987]. This
prior probability models the component's reliability. In this framework, diagnosis
is the computation of the posterior probability distribution over the set of possible

causes conditioned on the available observations. We would also like to compute
optimal actions based on some cost model of the repair actions available [Sun and
Weld, 1993].

A large number of model-based diagnosis implementations are based on the ar-
chitecture of the General Diagnostic Engine (GDE) [de Kleer and Williams, 1987].

GDE uses an Assumption-Based Truth maintenance system (ATMS) [de Kleer, 1986]

to record predictions of system behavior inferred from the system model. The ATMS
is also used to record actual observed behavior of the system and con
icts between
predicted behavior and observed behavior. The inference mechanism of the ATMS
computes a minimal description of all possible diagnoses which are consistent with
the current state of information.

1.2.2 Bayesian networks

In parallel to the development of model-based diagnosis, the formalism of Bayesian
networks [Pearl, 1988] has developed as a technique for modeling probabilistic reason-

ing and building diagnosis systems. Bayesian networks have been applied to building
diagnostic expert systems in domains where a coherent handling of uncertainty about

the diagnosis is crucial. A major motivating factor for this application is that ex-
tensions to rule-based systems for handling uncertainty, such as certainty factors,

cannot be given a clear semantics unless very strong limitations on the structure of

the knowledge base are imposed[Horvitz and Heckerman, 1986].
A Bayesian network consists of a set of discrete valued variables X1, X2, : : : ,
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Xn. The Bayesian network is a structured representation of the joint distribution

P (X1;X2; : : : ;Xn) of these variables. Any joint distribution P (X1;X2; : : : ;Xn) can

always be factorized as:

P (X1;X2;X3; : : : ;Xn) = P (X1jX2; : : : ;Xn)�

P (X2jX3; : : : ;Xn)�

: : :� P (Xj jXj+1; : : : ;Xn)�

: : :� P (Xn)

Say we know that the probability distribution of Xj is independent of the variables

Xj+3, Xj+4, : : : , Xn given the values of the variables Xj+1 and Xj+2. We can uti-
lize this knowledge of independence in the above equation by simplifying the factor
P (Xj jXj+1; : : : ;Xn) to merely be P (Xj jXj+1;Xj+2). We can do this for every vari-
able Xj . This gives a simpli�ed structured representation of the joint distribution.

The structure comes from explicit recognition of conditional independences.
A Bayesian network is a directed acyclic graph that provides a representation

for such conditional independence information. Each variable Xj corresponds to a
node in the graph. The parents of the node correspond to the variables that Xj

is conditioned on after independencies have been recognized in the above equation.

The conditional distribution of a node given its parents is stored within the node.
The independence semantics of a Bayesian network provide a sound scheme to com-
pute inferred conditional independencies from the ones declared explicitly (i.e., by
the structure of the network). When constructing a Bayesian network of a domain,
the ordering of the variables Xj is typically chosen to be in the \causal" direction.

Roughly speaking, the ancestors of a node are its \causes" and its descendants are
its e�ects. Choosing this order is usually the most natural scheme for modeling the
domain.

A Bayesian network inference algorithm allows e�cient computation of any condi-

tional probability P (XijXj = xj;Xk = xk; : : :) of interest from the joint distribution.

Here, e�ciency means that the independencies are exploited to improve the compu-

tational performance. On one extreme, if the Bayesian network is a fully connected

graph, there are no independencies to exploit and the computation is exponential in
the number of nodes. This is because we have no structure in the distribution. On

the other extreme, if the Bayesian network is tree structured, the computation can
be done in linear time. For more detail on Bayesian networks the reader is referred

to [Pearl, 1988], [Charniak, 1991] and [Heckerman et al., 1995b].
Like rule-based expert systems, most Bayesian network diagnostic systems are

hand constructed by an expert. Many signi�cant applications have been in the �eld

of medical diagnosis (for example, [Heckerman et al., 1990]). Currently, there is a
growing realization of the synergy between the techniques of Bayesian networks and
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Figure 1.1: Introducing problems facing probabilistic model-based diagnosis: an il-

lustrative example.

the methods used in probabilistic model-based diagnosis (for example, [Poole, 1993;
Srinivas, 1994; Darwiche, 1995]).

In this dissertation, we address some crucial problems encountered in the practical
application of probabilistic model-based diagnosis. Our solutions to some of these

problems will apply techniques from Bayesian networks. A secondary goal of the
dissertation is to provide some useful synthesis of probabilistic model-based diagnosis
and Bayesian networks.

1.3 Making probabilistic model-based diagnosis

practical

The practical application of probabilistic model-based diagnosis is hampered by some

serious problems. We introduce them by means of an example.

Consider the system shown in Fig 1.1. The system is a simple digital circuit.
The component model for each gate speci�es a function that relates the input to the

output. Each gate is assumed to be in one of two operating modes. The ok mode is
the normal operating mode. When a gate is in the ok mode, the input determines

the output according to the normal function of the gate. The broken mode models

an anomalous state for the gate. The description of the input-output relation for
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an anomalous state is called a fault model. Fault models are often not available.

However, in this case, let us assume that a stuck-at-zero fault model is appropriate

for all the gates{i.e., when a gate is in the broken mode, the output is 0 irrespective

of the inputs.

We also need a prior probability of failure for each gate. This is the a priori

probability that the gate is in the broken state. This prior is often hard to spec-

ify. However, for the purposes of this example, assume we are able to assess the

probabilities shown in the �gure.

Diagnosis can now proceed. An observation consists of the reading of some input

and output variables in the system. Consider the observation shown in the �gure. Our

goal is to compute posterior probabilities of failure for each gate given the observation
(the posteriors are shown in the �gure). The computation procedure needs to be one

which will scale well from simple examples such as this to large systems with thousands
of components.

Finally, say we have assessed a cost of replacement for each gate. Given the
observation shown in the �gure, say we want to compute some good repair strategy
to correct the system anomaly. The actions available to us are replacements of gates.

A repair strategy is some sequence in which the gates are to be replaced. After
each gate replacement, we check whether the system anomaly is �xed. Each possible
repair strategy has an associated expected cost. A good strategy has low expected
cost. Thus, our goal is to compute a repair strategy that has a low (ideally, lowest)
expected cost in the current context (the optimal sequence is marked on the �gure).

Once again, the computation procedure needs to be one that scales to large systems.
The modeling process and the computation goals sketched in the example brings

up some important questions. These questions need to be answered before proba-
bilistic model-based diagnosis and repair can be practical. In summary, the questions
are:

� How do we do diagnosis tractably in large systems?

� How do we assess the prior probability of failure of components?

� How do we tractably compute inexpensive repair actions using the results of

our diagnoses?

� How do we do diagnosis in a reasonable way if fault models are not available?

In this dissertation, we address these questions. In the following sections of this

chapter, we describe these problems and our techniques for addressing them.
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1.3.1 Tractable diagnosis

Computing a posterior probability distribution over the space of all assignments of

modes to the components of a system is inherently intractable. We develop two com-

plementary approaches to improve tractability|exploitation of hierarchy and focused

generation of diagnoses.

Hierarchy

Hierarchical compositional models are widespread in engineering practice. The use

of a hierarchy in system design has two interrelated advantages. Firstly, speci�cation
of the model becomes easier, and secondly, reasoning about the model becomes more
tractable. We introduce a notion of hierarchy in the speci�cation of models and

develop an algorithm that exploits this hierarchy to give inferential gains during the
diagnosis process.

We �rst develop a simple translation scheme that translates a system model into
a Bayesian network. Computation of diagnoses now reduces to diagnostic inference
within the Bayesian network. We then exploit the Bayesian network to develop

a scheme that compiles a higher-level abstract model for a component from more
detailed models of subcomponents by hiding internal detail. This is a pre-processing
step that is performed o�-line.

At run time, this compilation allows a tradeo� between time for inference and the
level of granularity of the analysis. In other words, we can quickly get diagnoses at

coarse levels of granularity (i.e., diagnoses involving higher level components only).
If more inference time is available, we can also compute diagnoses over lower level
components.

Other approaches to hierarchy in the model-based literature assume that the basic
language for describing input-output speci�cations of components is propositional or

�rst-order logic. Thus, speci�cations can either be deterministic or unspeci�ed|they

cannot be probabilistic. This causes problems when handling hierarchical models,
since the higher level model cannot be compiled out of the lower level model. Hence,
the hierarchy cannot be truly exploited to give inferential gains.

As an example, consider a component in which the higher level model has a non-

normal mode called broken which subsumes two lower level mode assignments to the

subcomponents of the component. Call these lower level mode assignments �1 and �2.

Given an input i, say the output of the subcomponent system is o1 if the mode
assignment is �1 and the output is o2 if the mode assignment is �2. In this example,

we see that the fault model of the higher level broken mode is not deterministic.
However, it is not unspeci�ed either. In actuality, it has to be describable by a

probability distribution of the output given the input. Our technique computes this

probability distribution.
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Focused generation of diagnosis

For tractable diagnosis in large systems, we would like the diagnosis algorithm to be

focused. That is, diagnoses which are more probable should be generated without

examining the whole space of possible diagnoses.

We address this problem by developing a simple generate-and-test procedure. The

generator is an e�cient algorithm that successively generates candidates in decreasing

order of prior probability. A candidate is an assignment of mode to each component

in the system. The tester simply tests whether the candidate is consistent with the

observations. This test can be performed by a simple forward simulation of the system

model.
The �rst consistent candidate found is provably the diagnosis with the highest

posterior probability. The practicality of this generate-and-test procedure hinges

on the generator. The generator has to be e�cient and has to provably generate
candidates in decreasing order of probability.

When the component failures are independent, we �rst describe a generator al-
gorithm that computes each successive candidate (in decreasing order of probability)
in O(n) where n is the number of components. We then develop a second algorithm

that improves on the �rst algorithm by using information from previous consistency
checks to rule out some of the candidates that have not yet been generated.

We then turn to the case where component failures are not independent. The
dependencies between component failures are modeled as a Bayesian network. We
develop an algorithm that generates the k-th most probable candidate in O(Bk),

where B is the size of the Bayesian network description.
The current approaches to focused generation of diagnoses cache inferences (for

example, in ATMS labels) and prune the space of diagnoses based on the cached
inferences. The amount of cached information grows very quickly with the size of the
diagnosis problem and this causes tractability problems. An additional problem with

the current state of the art is that there are no clear implementation independent

speci�cations of the underlying algorithms or analyses of complexity. Our candidate

generation algorithms cache no inferences and have clearly analyzed computational
properties.

1.3.2 Eliciting the prior probabilities

Doing probabilistic model-based diagnosis requires speci�cation of prior probabilities

of failure of the components. This is often di�cult. One of the main reasons for
this is that the value of the failure priors depends on the time at which diagnosis is

performed. This dependence has to be recognized and accounted for. For example,

say we are asked to assess the prior probability that a car's timing chain is broken.

The assessment clearly depends on the age of the timing chain. If the car has 10,000
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miles on it, the prior is low. However, if the car has been driven for 90,000 miles the

prior rises to a higher value.

To address this temporal dependence, we develop a model for the dependence of

priors on time using techniques employed in Reliability Theory. As a consequence, we

can calculate the prior probability of failure of a device from a better known empirical

estimate of reliability, viz, the Mean Time Between Failures.

This work also provides a principled way to address the persistence problem when

doing diagnosis with multiple observations. Say we get an observation 
1 at time t1
and an observation 
2 at time t2. What can we assume about the persistence of the

mode of each component from the time of the �rst observation (t1) to the time of

the second observation (t2)? Some model of persistence is necessary before we can
compute a diagnosis which accounts for both observations.

This work provides a scheme for computing transition probabilities of the mode
of each component from one state to another based on the time interval t2 � t1.

1.3.3 Computation of repair strategies

The goal of diagnosis is to repair a malfunctioning system. The posterior probabilities

from the diagnosis process have to be used to choose an optimal sequence of actions
that will bring the system back to working order.

Say each component in the system being diagnosed has an associated cost of
repair. When the system is faulty, we need to determine a strategy for �xing the
system. A strategy is an order in which to successively �x components until the

system starts working. Ideally, the strategy we pick would have the least expected
cost of all possible strategies that would �x the system.

We �rst develop an exhaustive technique that examines all possible repair strate-

gies and computes the one with least expected cost. In the general case (i.e., without
any restrictions on the nature of the systemmodel), we cannot do better than examine
all repair strategies.

We then demonstrate a special case of the general repair scheme that is often

reasonable in practice and develop a polynomial time algorithm for computing the
optimal repair strategy. In this special case, all components are assumed to fail

independently. A system is assumed to fail if any of its components fail. Lastly, it is
assumed that an observation of the system status is available after every step in the

repair strategy. That is, after every component replacement, we can check whether

the system is now working.
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1.3.4 Incomplete fault models

A fault model speci�es how the device behaves when it is in a non-normal mode.

Fault models are often not available. However, fault models are necessary for doing

probabilistic model-based diagnosis. We see why this is so in the following discussion.

Say we want to compute the posterior probability of a candidate m given an

observation 
. This is the basic goal of probabilistic diagnosis. All methods to

compute this posterior implicitly or explicitly have to compute P (�;
) = P (�)P (
j�).
The quantity P (�;
) can then be normalized over all possible candidates � to give

P (
j�). The quantity P (�) can be calculated by simply multiplying the appropriate

priors of the components. The quantity P (
j�) is 1 if the mode assignment proves
the observation. It is 0 if the mode assignment is inconsistent with the observation.

Consider the case where the mode assignment � contains an \unknown" mode

for a component C. That is, the mode of C contained in � does not have a speci�ed
fault model. In this case, we cannot compute P (
j�) and hence we cannot compute
the posterior. Current methods approach this problem by assuming that when a
mode assignment � contains some \unknown modes", then all system outputs are
equally likely. We �rst demonstrate that this approach can yield incorrect results.

Speci�cally, it can be the case that no assignment of fault models to the individual
components can result in all system outputs being equally likely for mode assignment
�.

A deeper problem with existing approaches is that they are ad hoc|there is
no semantic understanding of what exactly the \equally likely outputs" assumption

means. Since the ultimate goal of diagnosis is to do repair, we consider choosing a
fault model such that the expected repair cost is as high as possible. Choosing a fault
model in this way amounts to a conservative approach to estimating repair costs. We
show that, with this approach, the problem of choosing the fault model reduces to
a maximum entropy completion of a probability distribution applied locally at each
component.

1.4 Organization of this dissertation

The organization of the rest of this dissertation follows the structure of the overview

provided in this chapter. In Chapter 2, we introduce our notion of hierarchy and de-
velop the hierarchical diagnosis algorithm. Chapter 3 discusses candidate generation

and develops algorithms for candidate generation. Chapter 4 develops a model for

the temporal dependence of the prior probability of failure on time. Chapter 5 intro-
duces the problem of repair and develops an exhaustive strategy to compute optimal

repair strategies. An interesting and useful special case which allows a polynomial
time computation of the optimal repair strategy is developed and analyzed. Chapter
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6 analyzes the problem of doing diagnosis with missing fault models. The drawbacks

of current practice are �rst analyzed. A new method for choosing fault models based

on maximizing expected repair costs is developed. Conclusions and future work are

discussed in Chapter 7.



Chapter 2

Hierarchical Probabilistic

Diagnosis

The use of hierarchical structure is ubiquitous in engineering models. A hierarchical
model allows an engineer to manage the complexity of the modeling process. Each
component is modeled as consisting of a set of interconnected subcomponents. The
internal details of the subcomponents are independent of each other. Each subcompo-
nent can, in turn, be modeled hierarchically. In addition to the modeling advantages,

hierarchical models also make inference more tractable. This gain in tractability is
achieved by exploiting the structure of the hierarchy.

In this chapter we develop a diagnosis algorithm that exploits a hierarchical model
speci�cation to give inferential gains. When reasoning with components at a high level
of abstraction, diagnosis can be performed quickly. More computation can be per-

formed to take the diagnosis to lower levels of abstraction. The hierarchical diagnosis
algorithm allows a tradeo� between the complexity of inference and the granularity
of the diagnosis.

Our approach is as follows. We �rst describe a method by which a non-hierarchical

system model is translated into a Bayesian network. The process of diagnosis trans-

lates into inference in the Bayesian network. We then introduce hierarchy and describe
how hierarchical models are de�ned. The translation scheme is extended to translate

hierarchical models into a hierarchical Bayesian network.
Next, we develop a method by which the Bayesian network fragments obtained

from the subcomponents of any component can be compiled into a Bayesian net-

work fragment that represents the component at the next higher level of abstraction.
This compilation process summarizes out details about internal variables in the sub-
components that are not relevant at the higher level of abstraction. This compilation

process is performed o�-line before the hierarchical model is used for diagnosis.

Finally, we adapt a Bayesian network inference algorithm to exploit the results

12
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of the compilation. Diagnostic inference at more abstract levels of the hierarchy is

performed using pre-compiled network fragments of the abstract components. This

results in a simpler Bayesian network and hence, less complexity when performing

diagnostic inference.

2.1 From a system model to a Bayesian network

We now describe how the Bayesian network is created from a systemmodel. A system

model consists of a set of components. Each component has a set of discrete valued

inputs I1; I2; : : : ; In and a discrete valued output O. Each component also has a
discrete valued mode variable M . Each state (i.e., value) of M is associated with
a speci�c input-output behavior of the component. The components are connected

according to the signal 
ow paths in the device to form the system model|we do not
allow feedback paths.

The component speci�cation requires two pieces of information|a function F :
I1 � I2 : : : In � M ! O and a prior distribution over M . The prior distribution
quanti�es the a priori probability that the device functions normally. As an example,

a component might have only two possible mode states broken and ok. If it is very
reliable, a very low probability may be assigned to P (M = broken).

A Bayesian network fragment is created for a component as follows. A node is
created for each of the input variables, the mode variable and the output variable.
Arcs are added from each of the input variables and the mode to the output variable.

The distribution P (OjI1; I2; : : : ; In;M) is speci�ed by the component function F .
That is, P (O = ojI1 = i1; I2 = i2; : : : ; In = in;M = m) = 1 i� F (i1; i2; : : : ; in;m) = o.
Otherwise, the probability is 0. The variable M is assigned the prior distribution
given as part of the component speci�cation.

The network fragments are now interconnected as follows: Whenever the output

variable O1 of a component C1 is connected to the input I2j of a component C2, an

arc is added from the output node O1 of C1 to the input node I2j of C2. This arc
needs to enforce an equality constraint and so we enter the following distribution

into node I2j : P (I
2

j = pjO1 = q) = 1 i� p = q, otherwise the probability is 0. After
interconnecting the Bayesian network fragments created for each component, we have

a nearly complete Bayesian network.

We now make some observations. The network created is indeed a DAG, and
hence ful�lls one of the necessary conditions for us to claim it is a Bayesian network.

This condition is true because we did not allow any feedback in the original system
model.

The probability distribution for every non-root node in the Bayesian network

has been speci�ed. This is because every non-root node is either (a) an output
node or (b) an input node which is connected to a preceding output node. The
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probability distribution for every output node has been speci�ed when creating the

Bayesian network fragments. The probability distribution for every input node which

has an output node as a predecessor has been speci�ed when the fragments were

interconnected.

The root nodes in the network fall into two classes. The �rst class consists of nodes

corresponding to mode variables and the second class consists of nodes corresponding

to some of the input variables. We note that the marginal probability distributions

of all nodes in the �rst class (i.e., mode variables) have been speci�ed.

The set of variables associated with this second class of nodes are those variables

which are inputs to the entire system, i.e., these variables are inputs of components

which are not downstream of other components. We will call this set of variables
system input variables. Let us assume that the inputs coming from the environment

to the system are all independently distributed. Further, let us assume for now that
we have access to a marginal distribution for each system input variable1. We enter
the marginal distribution for each system input variable into its corresponding node.
We now have a fully speci�ed Bayesian network.

Consider the original system model. We can interpret every component function

and interconnection in the original system model as a constraint on the values that
variables in the model can take (in the constraint satisfaction sense). We note that
the Bayesian network that we have constructed enforces exactly those constraints
that are present in the original model and no others. Further, it explicitly includes
all the information we have about marginal distributions over the mode variables and

the system input variables. The Bayesian network is therefore a representation of the
joint distribution of the variables in the system model and the mode variables.

We now proceed to use the Bayesian network for diagnosis in the standard manner.
Say we make an observation. An observation consists of observing the states of some of
the observable variables in the system. As an example, we might have a observation
which consists of the values (i.e., states) of all the system input variables and the

output values of some of the components. We declare the observation in the Bayesian

network. That is, we enter the states of every observed variable into the Bayesian
network and then do a belief update with any standard Bayesian network inference
algorithm (for example, see [Lauritzen and Spiegelhalter, 1988],[Jensen et al., 1990]).

Say an observation 
 = hY1 = y1; Y2 = y2; : : : ; Yk = yki has been made. After a

Bayesian network algorithm performs a belief update, we have the posterior distri-
bution P (Xj
) available at every node X in the Bayesian network. The posterior

distribution on each of the mode variables gives the updated probability of the cor-
responding component being in each of its modes. This constitutes the diagnosis

1If every observation of the system is guaranteed to contain a full speci�cation of the state of the

input, then the actual choice of priors is irrelevant.
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Figure 2.1: An example of (a) a system model and (b) the corresponding Bayesian

network.

process.
We illustrate our scheme on the example introduced in Chapter 1. The system

is a digital circuit (Fig 2.1(a)). We treat this circuit as our input system model. A
particular observation (i.e., input and output values) is marked on the �gure. We
note that if the circuit was functioning correctly, the output for the marked inputs

should be 0. Instead the output is a 1.
We assume, for this example, that each gate has two possible states for the mode

variable, ok and broken. The modeler provides a prior on the mode of each gate|
for each gate the prior probability of it being in the ok state is shown next to it in
Fig 2.1(a). We also need a fault model. In other words, for each gate we need to have

a function relating inputs to the output even if the mode of the gate is broken. We

assume a stuck-at-zero fault model, i.e., if the gate is in state broken the output is 0
irrespective of what the input is. When the gate is in state ok, the function relating
the inputs to the output is the usual Boolean function for the gate.

The Bayesian network corresponding to this system model is shown in Fig 2.1(b).

We assume that the inputs are independently distributed, i.e., the value of any par-

ticular input is not dependent on the value of any other input. We also assume a

uniform distribution as the prior for each of the inputs I1, I2 and I3. Note that in
this example, any (strictly positive) prior could be assumed without a�ecting the

results of the diagnosis. This is because the state of the input is fully known when
the diagnosis is performed. The observation is entered into the network and inference

is performed. The posterior probability of being in the ok state for each gate is as

shown in Fig 2.1(a).
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2.2 Hierarchical system models

We now consider a situation where the modeler has conceptually broken up a system

into a set of component subsystems. Say that each of the component systems has

to be modeled (hierarchically) at a lower level of detail. We extend our modeling

language to support such a feature.

The modeler must �rst fully specify the inputs, output and the mode variable of

the component. By full speci�cation we mean that the modeler speci�es the number

of inputs, the possible states of each input variable, the possible states of the output

variable and the possible states of the mode variable.
If the modeler would now like to model the component at a lower level of abstrac-

tion, she can specify a new model as a detailed description of the component. This

new model would have new components (we will call them subcomponents) which are
interconnected. This lower level model is constrained in the following way: The sys-
tem input variables of the lower level model should be the same as the input variables
to the component speci�ed at the higher level. Similarly, the system output variable
of the lower level model should be the same as the component output variable at the

higher level.
The modeler has to provide a �nal piece of information to complete the hierarchy|

she has to relate the modes of the subcomponents to the modes of the component.
To make this more concrete, consider a component which has two states for its mode
variable|ok and broken. Say that it is modeled at a lower level of detail with 4

subcomponents, each of which has two possible states. If we consider the possible
combinations of mode states at the lower level of abstraction there are 24 = 16 pos-
sibilities. However, at the higher level of abstraction, there are only two possibilities
to be considered, i.e., the granularity is not �ne enough to distinguish individually
between the 16 di�erent possibilities at the lower level.

To relate the lower level to the higher level, the modeler has to provide a function

describing how the lower level combinations of mode states relate to the higher level
mode state. In other words, the modeler has to provide a categorization which sep-
arates the lower level state combinations into a set of bins. Each bin corresponds to

one of the states of the mode variable at the higher level of abstraction. This function

could be a simple rule. One possibility, for example, is the rule, \If anything is bro-

ken at the lower level, then consider the component broken at the higher level." This

means, in our example, that 15 possibilities at the lower level fall into the broken
bin at the higher level while only 1 possibility (i.e., no subcomponents broken) falls

into the ok bin at the higher level.
Once this function is speci�ed, the hierarchical model is complete. We will call this

function the abstraction function. Note that we can have multiple levels of hierarchy.

We also note two salient points. First, the modeler does not need to provide a
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component function at higher levels of the hierarchy. Second, the modeler does not

need to provide a prior on the mode variable at higher levels of the hierarchy. In

other words, if a component is modeled at a lower level of detail, then only the lower

level model and the abstraction function are required. The component function and

prior are required only for a component which is being modeled \atomically", i.e., it

is not being modeled at any �ner level of detail.

As an example of hierarchical modeling, consider an exclusive-OR (XOR) gate.

We might represent the XOR gate at a lower level of detail and show that it is

synthesized using AND gates, OR gates and inverters (Fig 2.2(a)). We use the

following rule as the abstraction function: \If anything is broken at the lower level,

then the XOR gate is broken".

2.2.1 Incorporating hierarchy into the translation scheme

When a component is modeled at a lower level of abstraction, the translation proceeds
as follows: Assume that the higher level abstraction does not exist and just plug in
the lower level system model between the system inputs and outputs and do the

translation. In the resulting Bayesian network, introduce a new variable for the
higher level mode. Call this Mh. Add an arc from the mode variable of each of the
subcomponents to the higher level mode variable. Call the lower level mode variables
M l1;M l2; : : : ;M ln. Fill out the conditional probability distribution of the higher level
mode variable as follows: P (mhjml1;ml2; : : :mln) = 1 i� mh = Ab(ml1;ml2; : : : ;mln),

0 otherwise.
Here Ab is the abstraction function relating combinations of mode states of the

subcomponents to the mode of the higher level component. Fig 2.2(b) shows the
Bayesian network for the XOR gate example.

As a �rst cut, diagnosis with a hierarchical functional model can proceed exactly

as described with non-hierarchical models. If we want a �ne grain diagnosis, we look

at the updated posterior probabilities of the subcomponent modes. If we want a
coarse grained diagnosis, we look at the updated posterior of the mode variable of
the component at the higher level of abstraction. However, this simplistic solution

does not exploit the hierarchy to deliver computational gains.

To get computational gains, we need to be able to reason with the higher level

model in a way such that the detail of the lower level model has been \compiled

away" into a more succinct higher level model. We now describe a scheme for doing
so. Consider a component Ch which is modeled at a lower level of abstraction with

a model consisting of subcomponents Cl1; Cl2; : : : ; Cln. The mode variable of Ch is
Mh and the mode variable of subcomponent Cli is M li. Let the inputs of Ch be

Ih
1
; Ih

2
; : : : ; Ihm. Let the output of C

h be Oh. Let all the internal variables of the lower

level model (i.e., the input and output variables of the subcomponents excluding the



18 CHAPTER 2. HIERARCHICAL PROBABILISTIC DIAGNOSIS

I1

I2

Xor
O

And1

Or

And2

I1

I2 O
X2

X3

X1

X4

X5

X6

X7

(a)

Inv1

Inv2

I1

I2

O

M_Xor

(c)

T
op

ol
og

ic
al

 T
ra

n
sf

or
m

at
io

n
s

I1

I2

O

M_And1

M_And2

M_Or

M_Xor

(b)

X7

X5

X6

X4

X3

X1

X2

M_Inv1

M_Inv2

Figure 2.2: (a) A hierarchical system model (b) Corresponding Bayesian network

fragment (c) The fragment after \compilation".



2.2. HIERARCHICAL SYSTEM MODELS 19

system inputs and outputs) be X1;X2; : : : ;Xk.

For simplicity, let us assume that all the inputs of Ch are system inputs, i.e., there

are no components upstream of Ch. We also assume, as described before, that we have

a prior on each system input. Now consider the Bayesian network fragment created

by the translation scheme for Ch. We note that this fragment happens to be a fully

speci�ed Bayesian network.

A Bayesian network is a structured representation of the joint distribution of all

the variables in the network. In this case, the network is a representation of the

distribution P (Ih
1
; Ih

2
; : : : ; Ihm; O

h;Mh;M l1;M l2; : : : ;M ln;X1;X2; : : : ;Xk). Call this

the lower level distribution.

If now, we wanted to have a Bayesian network representation at the higher level
of abstraction, we would not want to explicitly represent the detail about internal

variables of the lower level model or the mode variables of the subcomponents. In
other words we would like to have a Bayesian network which represents the joint
distribution of only the input, mode and output variables of Ch, i.e., the distribution
P (Ih

1
; Ih

2
; : : : ; Ihm; O

h;Mh). Call this the higher level distribution.
We can generate the higher level distribution from the lower level distribution

by simply marginalizing out all the irrelevant variables, viz, M l1, M l2,: : : , M ln, X1,
X2,: : : , Xk. Ideally, we should do this marginalization in some e�cient way. Such
e�cient marginalization is possible using topological transformations of Bayesian net-
works [Shachter, 1986]. Speci�cally, we can use the arc reversal and node absorption
operations as follows:

1. Successively reverse the arcs M l1 ! Mh, M l2 ! Mh,: : : , M ln ! Mh. At the

end of this step Mh is a root node.

2. Let X be the set of internal variables of the lower level model, i.e., X =

fM l1;M l2; : : : ;M ln;X1;X2; : : : ;Xkg. Sort X into a sequence Xseq in inverse
topological order (descendants �rst). Absorb the nodes in Xseq in order into

Oh.

This completes the process and leaves us with the topology shown in Fig 2.2(c).

The successive absorption in the last step is always possible since there is no node
N in the Bayesian network such that (a) N is not in Xseq and (b) the position of

N has to necessarily be between two nodes contained in Xseq in a global topological
order [Shachter, 1986]. Note that the topology which results from the marginalization

process described above is the same as the one we would get if we had directly modeled
Ch as an atomic component.

For simplicity of exposition, the description above assumes that the inputs of Ch

are system inputs. However, this assumption is unnecessary. The identical marginal-

ization process is possible for any hierarchically modeled component. We can consider
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Figure 2.3: Exploiting hierarchy during diagnostic inference: (a) A hierarchical sys-

tem model and (b) corresponding Bayesian network Bc.

the marginalization process that gives us the higher level distribution as a compilation
process which is carried out after the model is created.

2.2.2 Exploiting hierarchy during diagnostic inference

The hierarchy in the system model can be exploited to improve diagnostic perfor-
mance. We now describe a method of tailoring the clustering algorithm [Lauritzen
and Spiegelhalter, 1988; Pearl, 1988; Jensen et al., 1990] for Bayesian network infer-

ence to take advantage of the hierarchy. This is the most widely used algorithm in
practice.

The clustering algorithm operates by constructing a tree of cliques from the
Bayesian network as a pre-processing step. This construction is by a process called
triangulation [Tarjan and Yannakakis, 1984]. The resulting tree is called the join tree.

Each clique has some of the Bayesian network nodes as its members. As evidence
arrives, a distributed update algorithm is applied to the join tree and the results of

the update are translated back into updated probabilities for the Bayesian network

nodes. The update process mentioned above can be carried out on any join tree that
is legal for the Bayesian network.

We will now describe a method of constructing a legal join tree that is tailored to

exploit the hierarchy. We explain by means of an example. Consider the hierarchical

system model shown in Fig 2.3(a). This results in the hierarchical Bayesian network
Bc shown in Fig 2.3(b).

After the lower level detail is compiled out we get the network in Fig 2.4(a). We

add a dummy node Dh to this Bayesian network such thatM3, I3 and O3 are parents

of Dh. Call this Bayesian network Bh. If we run a triangulation algorithm on this

network we get a join tree (Fig 2.5(a)). Call this higher level join tree JT h. We note
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Figure 2.4: Expoliting hierarchy during diagnostic inference: (a) The compiled net-

work Bh. (b) Lower level Bayesian network fragment Bl.

there exists a clique �h in JT h such that I3, M3 and O3 belong to �
h. This is because

I3, M3 and O3 are parents of D
h. Triangulation guarantees that a Bayesian network

node and its parents will occur together in at least one clique in the join tree.
Now consider the lower level network fragment by itself (Fig 2.4(b)). Call this Bl.

Say we create a dummy node Dl and add arcs into it from I3,M3 and O3 as shown in

the �gure. If we triangulate the graph we get a join tree (Fig 2.5(b)). Call this join
tree JT l. Once again, we are guaranteed that there is a clique �l in JT l such that I3,
M3 and O3 belong to �

l.
Now we construct a composite join tree JT c from JT h and JT l. This is done by

adding an link from �h to �l (shown as a dotted line in Fig 2.5). This composite join

tree is a valid join tree for the network Fig 2.3(b) (Proof in a following section).
The composite join tree JT c has the following interesting property. If the user

is not interested in details about the lower level nodes, then the update operation
can be con�ned purely to the JT h segment of the join tree since only JT h has any
variables of interest. More precisely, if there is no evidence available regarding the

states of the lower level nodes, and in addition, the user is not interested in the
posterior distributions of the lower level nodes, then the update can be con�ned to

the JT h.

Say the user has �nished an update in JT h and then wants to view more detail by
\opening the window" corresponding to the \iconi�ed" component. In that case, the
update process can proceed locally only though JT l and give updated information.

That is, the update process through the whole of JT h need not be repeated|the

information coming from the rest of JT h is summarized in the message that �h sends

�l when the incremental update process begins.
Along similar lines, if the user discovers evidence pertaining to a subcomponent,

then she can \de-iconify" the containing component and assert the evidence. In this

case, the update process begins in JT l and proceeds through JT h to make a global

update. If one has multiple levels of hierarchy, the composite join tree has multiple
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Figure 2.5: (a) JT h (b) JT l. Adding the link shown as a dotted line creates the

composite tree JT c.

levels of hierarchy too. At any time, the update process only a�ects that segment

of the join tree that the user is interested in. This yields substantial savings in
computation.

Quantifying the savings

Consider a hierarchical system speci�cation that has k levels of branching. Say each
component has at most b subcomponents. Further, assume that any variable in the

system (i.e., input, output or mode) can take at most s states.
Consider computing the posterior of a leaf level component Cleaf while ignoring the

hierarchy. To compute the posterior, we create the Bayesian network Bleaf of all the
leaf level components and perform the posterior computation within this network. Let
the number of nodes in Bleaf be Nleaf . We note that Nleaf = O(bk). The computation

required to compute the posterior of a node in a Bayesian network with N nodes, each

of which can take at most s states, is bounded by O(N s). Hence the computation of
the posterior of Bleaf while ignoring hierarchy is O(b

(k�s)).
Now consider computing the posterior of Cleaf while utilizing the hierarchy. Con-

sider a path in the hierarchy tree from the root component Croot to the target leaf

node Cleaf . Let the components in this path be (in order): hCroot; C1; C2; : : : ; Cn; Cleaf i.
Note that C1 is a subcomponent of Croot, C2 is a subcomponent of C1 and so onwards.

Utilizing the hierarchy tree, we can compute the posterior probability of C leaf as
follows: We begin the update at the root component of the hierarchy tree and then

extend the update process to its subcomponents. Of these subcomponents, we choose
C1 and extend the update process to C1's subcomponents. We proceed by extending

the update process to C2's subcomponents and so onwards, following the path from

Croot to Cleaf . At the end of this process, we have the posterior probability of Cleaf .
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Each extension of the update process takes O(bs). This is because there are O(b)

nodes in the lower level network in which the update is taking place. Since there are

k levels of branching, the complexity of the entire process is O(k � bs).

De�ne p = bs. The complexity of inference without the hierarchy is then O(pk).

The complexity of inference with the hierarchy is O(k � p). Thus, taking advantage

of the hierarchy transforms an exponential computation to a linear computation.

2.2.3 JT
c is a valid join tree

The clustering algorithm constructs a valid join tree for a Bayesian network B as

follows [Pearl, 1988]:

1. The Bayesian network B is converted into a Markov network G by connecting

the parents of each node in the network and dropping the directions of the
arrows in the DAG. G is an undirected graph.

2. A chordal supergraph G
0

is created from G by a process called triangulation.

A chordal graph is one where any loop of length 4 or more has a chord (an arc
connecting two non-consecutive edges in the loop). Basically, the triangulation
process adds arcs to G until it becomes chordal.

3. The maximal cliques of the chordal graph G
0

are assembled into a tree JT .
Each maximal clique is a vertex in the tree. The tree has the following join tree
property: For every node n of B, the sub-tree of JT consisting purely of vertices
which contain node n is a connected tree.

We now prove that JT c is a valid join tree for the Bayesian network Bc. We do

so by �rst describing the construction of a particular chordal supergraph Gc0 of the
Markov network of Bc. We then show how JT c is a valid join tree constructed from

Gc0 .
Consider a graph Gc0 constructed as follows: Bh is converted into a Markov net-

work Gh. Similarly,Bl is converted into a Markov networkGl. Each of these networks

are triangulated giving the chordal graphs Gh0

and Gl0 .
Gh0

and Gl0 are merged to form a graph Gc0 . This \merging" of the graphs is done

as follows: The nodes M3, I3 and O3 in G
h0

are merged with the corresponding nodes
in Gl0. That is, Gc0 has only one copy of each of these nodes. Any link between any

one of these nodes and a node in Gh0

is also present in Gc0 . Similarly any link between
any of these nodes and a node in Gl0 is also present in Gc0 .

Lemma 1: Gc0 is a chordal supergraph of the Markov network Gc created from

Bc.

Proof:
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1. Consider a graph Gm obtained by merging the Markov networks Gh and Gl of

Bh and Bl. We note that Gm is a supergraph of the Markov network Gc of Bc.

Gh0

is a supergraph of Gh and Gl0 is a supergraph of Gl. Hence the graph Gc0

obtained by merging Gh0

and Gl0 is a supergraph of Gm.

Since Gc0 is a supergraph of Gm and Gm is a supergraph of Gc, by transitivity

we have: Gc0 is a supergraph of Gc.

2. We now consider loops in the graph Gc0 . Any loop of length 4 or more which

stays completely within the nodes of the subgraph Gh0

or the nodes of subgraph

Gl0 has a chord. This is because the two sub-graphs are triangulated.

Now consider a loop L which lies partially in Gh0

and partly in Gl0 . We see
that L has to pass through one of the M3, I3 and O3 as it goes from Gh0

to Gl0.
Further, L has to pass through one of these nodes as it passes back from Gl0

to Gh0

. This is because these are the only common \boundary" nodes between

the two subgraphs.

We are guaranteed by the triangulation process that there are links between any
pair of the nodes in the set fM3; I3; O3g in both G

h0

and Gl0. Hence, these links
are also present in Gc0 . Thus, the two \boundary" nodes in L are connected
by a chord. This chord breaks L into two sub-loops, each of which lies either

entirely within Gh0

or Gl0. Each of these sub-loops is guaranteed to have a chord
if it has length greater than 4. This implies that L in Gl0 is also guaranteed to
have a chord if it has length greater than 4. Thus Gc0 is a chordal graph.

We see from (1) and (2) that Gc0 is a chordal supergraph of the Markov network
created from Bc. QED.

Lemma 2: JT c is a valid join tree created from Gc0 .
Proof:

1. Consider a maximal clique C l in Gl0 which contains a node n such that n does
not occur in Gh0

. We note that no new links to n are added in the merger of Gh0

and Gl0 . It follows that C l is a maximal clique containing n in Gc0 . A similar

argument applies to any clique Ch in Gh0

which contains a node n which does
not occur in Gl0 . In sum, we conclude that any maximal clique in Gl0 (similarly,

Gh0

) which contains at least one node which occurs solely in Gl0 (similarly, Gh0

)
is also a maximal clique in Gc0 .

Say there exists a maximal clique C in Gl0 such that all its nodes are common
to both Gl0 and Gh0

. We see that C must contain a strict subset of the nodes in

the set fM3; I3; O3g. We note that there necessarily is a clique C
0

in Gl0 which

containsM3, I3, O3 and D
l. Since no subset of fM3; I3; O3g is a maximal clique,
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we conclude, by contradiction, that C cannot exist. Thus every maximal clique

in Gl0 has at least one node which occurs only in Gl0 .

As a result, every maximal clique of Gl0 is necessarily a maximal clique in Gc0 .

By a similar argument, every maximal clique in Gh0

is necessarily a maximal

clique in Gc0 . We also observe that no new maximal cliques are created when

Gl0 and Gh0

are merged.

In sum, we see that the following is true: The set of maximal cliques of Gc0 is

the union of two disjoint sets, namely, the set of maximal cliques of Gh0

and the

set of maximal cliques of Gl0 .

JT c was constructed by linking a vertex of JT h to a vertex of JT l. The vertices
of JT h and JT l are the maximal cliques of Gh0

and Gl0 respectively. Hence, it
follows from the previous para that the vertices of JT c are the maximal cliques

of Gc0 .

2. We now prove that JT c has the running intersection property (r.i.p). We note

that the r.i.p holds for any node n of Bc which appears solely in Bh or solely
in Bl. This is because the r.i.p certainly is true in JT h and JT l and node n
appears solely in vertices of one of these trees.

The only nodes which appear in both Bh and Bl are M3, I3 and O3. Consider
the node M3. Say we consider the subgraph J 0 of JT c such that every vertex
has M3 as a member. Part of this subgraph lies in JT h and part lies in JT l.
We know that the section which lies in JT h is connected and the part which
lies in JT l is connected. This is because JT h and JT l are valid join trees.

JT c was constructed by linking vertex �h of JT h to vertex �l of JT l. We see
that �h and �l both necessarily contain M3. This means the subgraph J 0 is
actually a tree. Hence the r.i.p is satis�ed for M3 in JT c. A similar argument
proves that the r.i.p holds for O3 and I3 too.

Since the r.i.p holds for every node of Bc in JT c, we conclude that JT c satis�es

the running intersection property. QED.

Theorem: JT c is a valid join tree for the Bayesian network Bc.

Proof: This follows directly from Lemma 1, Lemma 2 and the construction pro-
cedure for join trees. QED.

The dummy nodes Dh and Dl are present solely to force a particular topology on

the join trees JT h and JT l. After the triangulation process, they can be dropped
from the cliques which contain them. This might sometime result in a simpli�cation

of the composite join tree. Consider the case where �l is reduced to fM3; I3; O3g after
Dl is dropped. In this situation, �l can be merged with �h since it is a subset of �h.
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Similarly �h can be merged with �l if �l reduces to fM3; I3; O3g after �
h is dropped.

JT c continues to be a valid join tree after such mergers.

2.3 Discussion

Ge�ner and Pearl [Ge�ner and Pearl, 1987] describe a scheme for doing distributed

diagnosis of systems with multiple faults. They devise a message passing scheme by

which, given an observation, a most likely explanation is devised. An explanation is

an assignment of a mode state to every component in the model. The translation
scheme we describe can be used to achieve an isomorphic result. That is, instead
of using a Bayesian network update algorithm to compute updated probabilities of

individual faults, we could use a dual algorithm for computing composite belief [Pearl,
1987] and compute exactly the same result.

From the perspective of our work, [Ge�ner and Pearl, 1987] have integrated the in-
ference in the Bayesian network into the system model as a message passing scheme.
Separating out the network translation explicitly allows features such as hierarchi-

cal diagnosis and computation of updated probabilities in individual components as
opposed to composite beliefs.

Mozeti�c [Mozeti�c, 1991] lays out a formal basis for diagnostic hierarchies and
demonstrates a diagnostic algorithm which takes advantage of the hierarchy. The
approach is not probabilistic. However, he includes a notion of non-determinism in

the following sense: Given the mode of a component, he allows the input-output
mapping of a component to be a relation instead of a function, i.e., there can be
multiple possible outputs for a given input. The notion of hierarchy we have described
here corresponds to one of three possible schemes of hierarchical modeling that he
describes. Our scheme can be expanded to support a probabilistic generalization of

the other two schemes of modeling and his notion of non-determinism.
Genesereth [Genesereth, 1984] describes a general approach to diagnosis including

hierarchies. He distinguishes between structural abstraction and behavioral abstrac-

tion. In structural abstraction, a component's function is modeled as the composition
of the functions of subcomponents whose detail is suppressed at the higher level. This
is similar to what we have described. Behavioral abstraction corresponds to a di�er-

ence in how the function of a device is viewed. For example, a low level description of

a logic gate might model input and output voltages as real numbers while a high level
description might model them as \high" and \low". Behavioral abstraction often

corresponds to clustering sets of input values at the low level into single values at the
higher level. Our method extends to support such abstractions in a straightforward

manner.

Yuan [Yuan, 1993] describes a framework for constructing decision models for
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hierarchical diagnosis. The decision model is comprised of the current state of knowl-

edge, decisions to test or replace devices and a utility function that is constructed

on the 
y. A two-step cycle comprising model evaluation and progressive re�nement

is proposed. The cycle ends when the fault is located. It is assumed that only a

single fault exists. Model re�nement is in accordance with the structural hierarchy

of the device. The goal is to provide decision theoretic control of search in the space

of candidate diagnoses. Such a framework needs a scheme for computing the relative

plausibility of candidate diagnoses. Our work provides such a scheme in a general

multiple fault setting.

The results described in this chapter have also been presented in [Srinivas, 1994].



Chapter 3

Focused Generation of Diagnoses

In a large system, there are usually a large number of possible diagnoses that can
account for an anomalous observation. In the worst case, the number of possible

diagnoses is exponentially large. As a result, a mechanism to focus the diagnosis
process on more likely explanations has been an area of considerable interest in model-
based diagnosis. This focusing mechanism has to be able to compute more probable
diagnoses without examining the entire space of possible diagnoses.

Most published implementations of model-based diagnosis, e.g., [de Kleer and

Williams, 1987; de Kleer and Williams, 1989; Struss and Dressler, 1989; de Kleer,
1991; Hamscher, 1991], are based on some variation of an ATMS [de Kleer, 1986].
ATMS-based implementations are well suited to situations in which all possible diag-
noses need to be characterized, since the ATMS is optimized for reasoning simultane-
ously in all contexts. However, with the trend towards �nding just a small number of
leading diagnoses, the need for reasoning simultaneously in all contexts diminishes,

and the bene�ts of using the basic ATMS are questionable.

In response to this trend, various focusing strategies have been developed that
attempt to harness the combinatorial explosion inherent in ATMS algorithms, e.g.,
[Collins and DeCoste, 1991; Dressler and Farquhar, 1990; Forbus and de Kleer, 1988],
with the most recent being the development of the HTMS [de Kleer, 1994], a hybrid

TMS that combines properties of an ATMS with those of an LTMS [McAllester,

1980]. Intuitively, the basic ATMS caches all inferences in all contexts using node
labels, while the focusing strategies use node labels to cache only some inferences
in some contexts, potentially yielding dramatic speedups, e.g., see [de Kleer, 1991].

However, a drawback of ATMS-based methods, and of these focusing strategies, is

that they are very complicated, and much of their bene�t can be lost unless great
care is taken in programming, e.g., by using sophisticated data structures. This is a

signi�cant hurdle for researchers and practitioners attempting to reimplement these
methods in their own model-based diagnosis systems. Furthermore, even the best

28
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focusing strategy (the HTMS strategy) still caches enough information in node labels

so that, on very large examples, the working set of the algorithm can signi�cantly

exceed real memory, leading to poor performance [de Kleer, 1991].

In this chapter, we address the above drawbacks by developing a set of simple, easy

to implement, generate-and-test diagnosis algorithms. These algorithms enumerate

diagnoses in decreasing order of posterior probability. Each algorithm has a generator

that systematically generates candidates (potential diagnoses) in decreasing order of

prior probability. The tester checks to see if a generated candidate is a diagnosis, i.e.,

whether the candidate is consistent with the observations. Unlike the ATMS-based

algorithms, our algorithms cache almost no inferences. This e�ectively addresses the

working set problem alluded to above.
An e�cient candidate generation scheme is the key component of our algorithms.

Testing of a candidate is simply a consistency check that determines whether a given
diagnosis is consistent with the observations. As we shall see below, this can be ac-
complished through a simple forward simulation of the system. The description of
our algorithm thus reduces to the description of the candidate generation. In the
following sections, we �rst develop an algorithm which makes the standard assump-

tion that component failures are independent. We then improve this algorithm by
incorporating information from previous tests to focus future generation. This leads
to a substantial improvement in performance. Finally, we develop a algorithm for
the situation where the component failures may be dependent. The dependence of
component failures is speci�ed using a Bayesian network.

The results in this chapter are joint work with Pandurang Nayak. To the extent
that our contributions can be separated, I am the primary contributor to the �rst al-
gorithm for candidate generation with independent component failures (initial part of
Section 3.2) and the algorithm for candidate generation when component failures are
dependent (Section 3.3). Pandu is the primary contributor to the focused diagnosis
algorithm developed in Section 3.2.1.

3.1 A generate-and-test approach

We now de�ne the generate-and-test scheme more precisely. Say we are given a
system model S with fully speci�ed component fault models, a candidate diagnosis �

and an observation 
 = fI = i;O = og. A candidate is an assignment of a mode to
each component in the system. An observation 
 consists of the values of the vector

of system input variables (designated by I) and the values of the output variables
of some of the components (designated by O). Given a number k, our goal is to

e�ciently compute a set of candidates of cardinality k such that each candidate �

in the set has a higher posterior probability P (�j
) than any candidate outside the
set. In other words, we want to compute the k most probable candidates given the
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observation.

We can easily verify whether an observation is consistent with a candidate by

simply simulating the system forward with the input i while assuming the components

are in the states speci�ed by �. We compare the simulation output osim with the

observed output o. If osim = o, 
 is consistent with S and �. Furthermore, we note

that i; �; S j= o, or equivalently, P (oji; �; S) = 1. If osim 6= o , 
 is inconsistent with

S and �. Furthermore, we note that i; �; S j= :o or equivalently, P (oji; �; S) = 0.

We note that given a candidate � with prior probability P (�), we have:

P (�jS;
) = P (�jS; i;o)

=
P (oji; �; S)P (�)

P (oji; S)

/ P (oji; �; S)P (�) (3.1)

The above equations account for the fact that the choice of the system description

S, the distribution over the system input I and the distribution over the candidates
� are all mutually independent.

From Equation 3.1 and the preceding discussion about P (oji; �; S), we note that
if the observation is consistent with the candidate and system description, the pos-
terior probability of the candidate is proportional to its prior. If the observation is

inconsistent with the candidate and system description, the posterior probability is
zero.

Say we have a e�cient generator which generates candidates in decreasing order
of prior probability. As we noted above, we can easily test whether the observation
is consistent with each of these candidates as they are generated. The �rst candidate
found consistent by the tester is hence the candidate with the highest posterior prob-

ability. In general, the n-th candidate found consistent by the tester is the candidate
with the n-th highest posterior probability. Though we cannot compute the probabil-

ity of any consistent candidate (since we do not have the normalizing constant), we

note that the ratio of the probabilities of any two consistent candidates is the ratio
of their priors. This prior is available.

We now describe an e�cient generator with the property described above, viz, that
candidates are generated in decreasing order of prior probability. We �rst examine

the case where the faults are independent. Later, we examine the case where the
faults are not independent.

3.2 Independent Faults

Consider a system with n components, C1; C2; : : : ; Cn. In this section we assume

that the components fail independently, i.e., the random variables Mi are mutually
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Process Gen(hCn; Cn�1; : : : ; C1i)
If hCn; Cn�1; : : : ; C1i is empty then

Sleep; Output(��);

Sleep; Output(EOL); STOP.

Pn�1 = Gen(hCn�1; : : : ; C1i)
Ln�1 = [TBC]

Set ptrok and ptrbroken to head of Ln�1.

begin loop

Sleep

If ptrok and ptrbroken both point to EOL:

Output(EOL); STOP.
If either ptrok or ptrbroken points to TBC:
�subnext = Request(Pn�1)

Replace TBC with �subnext in Ln�1.
Add a new list element containing TBC
at the end of Ln�1.

Output(GetNext(Cn; ptrok;ok; ptrbroken;broken))
end loop

End Gen

Procedure GetNext(Cx; ptr1; s1; ptr2; s2)
Let �sub

1
be the element of Ln�1 pointed to by ptr1.

Similarly, for ptr2 we have �
sub
2

.
If �sub

1
= EOL then

winner = 2
else if �sub

2
= EOL then

winner = 1
else if (P (Mx = s1)� P (�sub

1
) >

P (Mx = s2)� P (�sub
2

)) then

winner = 1
else

winner = 2
Move ptrwinner to point to the next element

( i.e., the element following �subwinner in Ln�1).

Create �next by splicing \Mx = swinner" onto �
sub
winner.

Return(�next)
end GetNext

Figure 3.1: Algorithm for generating all candidates in order.
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independent. Hence, the prior probability distribution is speci�ed by specifying the

prior distribution over the mode variable Mi of each component Ci. In other words,

we specify P (Mi = m) for each mode m of component Ci. Given a candidate � =

fM1 = m1;M2 = m2; : : : ;Mn = mng, the prior probability of � is simply P (�) =

�iP (Mi = mi). We now develop an e�cient recursive algorithm that successively

computes the candidates in decreasing order of prior probability.

Let us assume for now that each Ci has exactly two states, ok (the normal state)

and broken (a \broken" abnormal state). Let Sn = hCn; Cn�1; : : : ; C1i be some (ar-

bitrary) sequence of components. Let Ln be the list of candidates generated from the

variables in Sn ordered in decreasing order of prior probability. Consider the subse-

quence Sn�1 = hCn�1; Cn�2; : : : ; C1i. Let a subcandidate be a mode assignment to all
the components in Sn�1, and let Ln�1 be the subcandidates generated in decreasing

order of prior probability. Given Ln�1, we can generate Ln easily, as follows. Tack
Mn = ok onto every element of Ln�1. This gives a list Lok of candidates in decreasing
order of probability. Component Cn is in the ok mode in each of these candidates.
The probability of each candidate is computed by multiplying P (Mn = ok) with
the probability of the subcandidate. Similarly, for the mode broken of Cn, we have
the list Lbroken. We then need only merge Lok and Lbroken to construct the list Ln.
The above procedure generates the entire list of candidates in order and is therefore
inherently exponential.

Our goal, however, is to develop a generator which will generate only the next
most probable candidate on every call. We can achieve this goal by simply making

the procedure described above evaluate lazily. The procedure can be viewed as a
sleeping process. When this process is awakened, it does just enough computation to
compute and output the next most probable candidate (i.e., the next element of Ln)
and then goes back to sleep.

The algorithm Gen of Fig 3.1 implements exactly this observation. The call
Gen(hhCn; Cn�1; : : : ; C1i) returns a process object Pn, which behaves as follows: right

after initialization it goes to sleep; when we request the �rst candidate from Pn,

it wakes up, outputs the �rst element of Ln and goes to sleep. The next request
generates the next element of Ln, the third request generates the third element of Ln

and so onwards. Finally, Pn outputs EOL to signify the end of Ln and stops. Pn

thus computes Ln lazily.

We now examine the algorithm Gen. In the base case, when Gen is called with an
empty sequence, the �rst request to the resulting process returns the empty candidate

��. The empty candidate has no modes and has probability 1. The next request
returns the end of list marker EOL. When we make the call Gen(hCn; Cn�1; : : : ; C1i)
the resulting process Pn �rst initializes a subprocess Pn�1 = Gen(hCn�1; : : : ; C1i)
which, on request, will successively give it the elements of Ln�1. Pn then initializes
the list Ln�1 to contain just a single element TBC. TBC is a \to be computed"
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marker which signi�es that the element in that location of Ln�1 has not yet been

computed by Pn�1.

In its main loop, Pn simply merges Lok and Lbroken as described above. However,

it does this lazily. The current position in Lok is maintained by maintaining a pointer

ptrok to the corresponding subcandidate in Ln�1. Similarly, ptrbroken into Ln�1 main-

tains the current position in Lbroken. On each request, Pn goes once through its main

loop before going back to sleep. On each pass, it computes the next candidate in

Lok and Lbroken from their corresponding subcandidates in Ln�1. The candidate with

higher probability is selected by the procedure GetNext and output.

When creating the candidates to compare, Pn may �nd that the subcandidate

that is required is yet to be computed; this happens when one or both of ptrok and
ptrbroken point to the TBC element in Ln�1. When this happens, Pn simply requests

Pn�1 for the next subcandidate (call it �
sub
next) and replaces TBC by �subnext in Ln�1. It

then adds a new list element at the end of Ln�1 containing TBC. This is to signify
that now the subcandidate after �subnext is yet to be computed. This algorithm can be
easily generalized to the case where each Ci has ki modes. In that situation, we will
be merging ki lists in the process Pi.

We see that every time we request Pn for the next candidate, it (a) performs
(kn � 1) comparisons (in GetNext) and (b) makes at most one request to Pn�1. If
the total number of comparisons made by Pn in one pass through the loop is R(n),
we see that R(n) � (kn � 1) +R(n � 1). Hence R(n) = O(kn + kn�1 + : : :+ k1). Pn

thus computes the next candidate with O(N) comparisons where N = �iki, the total

number of component modes, which is linear in n.
We note that the process oriented description of Gen is for ease of presentation

only. The processes P i are really coroutines since exactly one of them can be running
at any given instant, i.e., there is no parallelism. We can simply summarize the local
state of each process P i by the variable Li and the pointers into it. Call this state Sti.
When using Pn, the global state can be summarized by hStn; Stn�1; : : : ; St1i. Thus
the \request" to the Pn \process" can be implemented as a simple manipulation of a

global state data structure. Our implementation of Gen uses precisely this idea (see
Section 3.2.2).

The above algorithm runs very fast in practice, and is quite adequate for small to

medium sized examples (see Section 3.2.2). However, for large examples, the number

of candidates that need to be generated and checked for consistency becomes very
large, and the above algorithm is impractical. We now describe an algorithm that

focuses candidate generation by incorporating information from candidates which
have been examined earlier and found to be inconsistent.
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3.2.1 Focused candidate generation

In focused candidate generation, the basic idea is to use information from previous

consistency tests to rule out some future candidates. The candidates which are ruled

out need not be generated and tested. For example, consider a system with four

components C1, C2, C3 and C4. Say the candidate �a = fM1 = ok;M2 = ok;M3 =

ok;M4 = brokeng has been found to be inconsistent with the observation. Further-

more, say that in the process of checking the consistency of �a, the tester discovers

that the sub-assignment �sub = fM1 = ok;M2 = okg is, in itself, inconsistent with

the observation. Note that the candidate �a is a superset of this sub-assignment and

hence also has to be inconsistent. Now we can conclude that any other superset
of the sub-assignment �sub is also inconsistent. So, for example, say the candidate
�b = fM1 = ok;M2 = ok;M3 = broken;M4 = okg has not yet been generated. At
this point, we already have enough information to rule it out and need not generate
it.

An inconsistent sub-assignment such as �sub is called a con
ict. Con
icts can be
discovered during the simulation that checks the consistency of a candidate. Say the
output of some component Ci is part of the observation. During the simulation, if the
simulation output of Ci does not match the observed value, then the mode assignment
of Ci together with the mode assignments to all its ancestors in the system model

form a con
ict.
The focused diagnosis algorithm operates as a best �rst search (see Fig 3.2).

A typical best �rst search has three major components: (a) an agenda that holds
unprocessed nodes in decreasing priority order; (b) a goal test that determineswhether
a node is a solution; and (c) a procedure to generate the successors of a node. The

main loop in a best �rst search removes the best node from the agenda, checks whether
its a solution, and adds the node's successors to the agenda. In our case, each node is
a candidate, the priority order is the prior probability of the candidate, and the goal

test is the consistency check against the observations.
We now turn to the de�nition of the \successors" of a candidate. In the following,

assume that the ok mode is the most likely mode of each component, and assume
that the remaining modes of each component are fault modes1. If � is a candidate,

let faulty(�) be the subset of � denoting just the faulty component modes in �. Note

that given faulty(�), one can construct � by assigning the ok mode to components
not assigned modes in faulty(�).

Let �1 and �2 be any two candidates. If faulty(�1) � faulty(�2), then P (�1) � P (�2).

Hence, candidate generation can generate �1 before �2, i.e., candidates with a subset

of faults can be generated earlier. Since �2 need not be considered until after �1 has

1This assumption is for ease of presentation only. The algorithm we develop can be applied

irrespective of which mode is most likely.
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function Diagnose(
)

Initialize the set of diagnoses to be empty.

Initialize the con
ict database to be empty.

Initialize the agenda to contain the most a priori probable

candidate (usually, all components ok).

while more diagnoses are needed do

� = First candidate in agenda.

if � is consistent with the observations 
 then

Add � to the set of diagnoses of 
.

else

Update con
ict database with new con
ict resulting from

consistency check of �.

endif

Remove � from agenda.

Generate successors of � and add to the agenda.

endwhile

return the set of diagnoses.

end Diagnose

Figure 3.2: Focused diagnosis algorithm (Independent faults).

been processed, �2 can be thought of as an eventual successor of �1. This means that
the immediate successors of �1 are those candidates which add exactly one fault mode
to the fault modes of �1, i.e., let �2 be an immediate successor of �1 if and only if

faulty(�1) � faulty(�2) and jfaulty(�1)j = jfaulty(�2)j � 1. The immediate successors
of �1 can be generated by replacing an ok mode in �1 by a corresponding fault mode.
In particular, let new-faults(�1) be de�ned as follows:

new-faults(�1) = fmi : mi is a fault mode of Ci and [Mi = ok] 2 �1g

One can see that �2 is an immediate successor of �1 if and only if faulty(�2) =
faulty(�1) [ fMi = mig for some mi 2 new-faults(�1). While this provides the basic

successor function for the best �rst search, two additional e�ciencies dramatically

speed up the search.

First, when �1 is a diagnosis (i.e., �1 is consistent with the observations), each of

its immediate successors is a potential diagnosis. However, when �1 is not a diagnosis
(i.e., �1 is inconsistent with the observation), some of its immediate successors are not

potential diagnoses, and hence need not be considered (i.e., need not be added to the
agenda). To see this, consider the following. If �1 has been shown to be inconsistent,

then the algorithm of Fig 3.2 ensures that there is at least one con
ict in the con
ict

database that is a subset of �1. Let N be any one such con
ict. Now, if �2 is an
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immediate successor of �1 such that N � �2, then �2 is not a diagnosis. Furthermore,

say �0
2
is a successor of �2, such that �0

2
is a diagnosis (and hence N 6� �0

2
). In that

case, there must be some immediate successor �0
1
of �1 such that N 6� �0

1
and �0

2
is

a successor of �0
1
. This means that there is no need to consider �2 in generating the

immediate successors of �1.

Given the con
ict N as above, the successors of �1 that are not supersets of N

are easy to generate. In particular, let modes-that-negate(N) be the set of faulty

component modes whose corresponding ok modes appear in N , i.e.:

modes-that-negate(N) = fmi : mi is a fault mode of Ci and [Mi = ok] 2 Ng

One can see that �2 is an immediate successor of �1 that is not a superset of N if
and only if faulty(�2) = faulty(�1)[fMi = mig, for some mi 2 modes-that-negate(N).
The number of such immediate successors are usually signi�cantly less than the total
number of immediate successors. This pruning of the search space dramatically speeds
up candidate generation.

Second, consider the successors of �1 constructed from the fault modes in the set
modes-that-negate(N) (or from the fault modes in the set new-faults(�1) if �1 is a
diagnosis). Let �2 be a successor of �1 constructed by adding fault mode Mi = mi

and removing Mi = ok from �1. The probability of �2 is less than the probability
of �1 by the fraction P (Mi = mi)=P (Mi = ok). Hence, the most likely successor

of �1 is the one resulting from adding the fault mode mi with the largest value of
P (Mi = mi)=P (Mi = ok). Furthermore, the remaining successors of �1 need not be
considered until after the most likely successor has been processed. This leads to the
following procedure.

With each con
ict N , we sort the fault modes mi in modes-that-negate(N) in

decreasing order of P (Mi = mi)=P (Mi = ok). When generating the successors of �1
using N , we only generate the most likely successor, �2, using the �rst fault mode

in modes-that-negate(N), and leave a pointer to the rest of modes-that-negate(N).

When �2 is �nally processed during the best �rst search, we not only generate its
most likely successor (and leave a pointer to the rest), but we also generate the next
most likely successor of �1 and move further down the rest of modes-that-negate(N).

The net e�ect of this strategy is that whenever the current best candidate is popped

o� the agenda, at most two new candidates are added to the agenda, i.e., at any
time the size of the agenda is bounded by the total number of candidates checked for

consistency thus far.
Analyzing the worst-case running time to generate an additional candidate is

straightforward. On each call, the algorithm has only two major parts. The �rst part

is to sort the list modes-that-negate(N) (or new-faults(�), as the case may be). The
length of this list is bounded by M , the total number of component modes (though

this list is often much smaller than M). If n is the number of components in the
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system, we note that M = O(n). This sorting operation can thus be carried out in

O(n log n).

The second major operation on each call of the algorithm is to insert two items

into the agenda. As we noted above, the length of the agenda is bounded by the

number of candidates generated thus far. Say k candidates have been generated so

far. The agenda can be implemented as a balanced binary tree, so that insertion

takes O(log k). Hence, the next candidate can be found in time O(n log n + log k).

3.2.2 Evaluation

We implemented the diagnostic algorithms described above in Common Lisp. We
evaluated their performance on ten benchmark digital circuits from a standard test

suite [Brglez and Fujiwara, 1985]. Each component in these circuits was assumed to
be in one of four modes: the ok mode representing the normal functioning of the
component, the sa1 and sa0 modes representing fault modes in which the compo-
nent output is stuck at one or stuck at zero, respectively, and the unknown mode
with an empty model. Models of component modes were encoded as propositional

clauses. Hence, rather than using forward simulation, the Davis-Putnam procedure
for checking satis�ability of proprositional databases was used for consistency check-
ing. Component faults were assumed to be independent, with the prior probabilities
being: ok 0:8, sa1 and sa0 0:099 each, and unknown :002.

We ran two sets of experiments. The �rst set used the unfocused candidate gen-

eration algorithm, while the second used the focused candidate generation algorithm.
Each set of experiments consisted of 20 experiments per circuit. Each experiment
was set up as follows. A random fault was introduced into the device, and an input
vector sensitive to this fault was randomly generated. The output was generated
by applying the input vector to the faulty circuit. Diagnosis terminated when the

leading ten diagnoses were uncovered, or when the next candidate was 100 times

more unlikely than the leading diagnosis. Furthermore, diagnosis with the unfocused

candidate generator was terminated after about 300 seconds.2

Table 3.1 shows the results of our experiments. The �rst column shows the names

of the circuits, the second shows the number of components in each circuit. The third,

fourth and �fth columns relate to the unfocused candidate generator, while the sixth

and seventh columns relate to the focused candidate generator. The numbers in these

columns are averages over the 20 experiments.
The third column shows the number of consistency checks made by the unfocused

algorithm. For this algorithm, note that the number of consistency checks is the same
as the number of candidates generated. The fourth column shows the average number

2Our implementation is unable to cut o� search at exactly 300 seconds.
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Unfocused generator Focused generator

Numb. of Consistency Numb. of Time Consistency Time

Device components Checks Diagnoses (secs) Checks (secs)

c17 6 52 10.0 0.4 18 0.1

c432 160 1550 9.0 95.4 58 4.7

c499 202 2119 7.6 168.5 43 4.5

c880 383 716 9.0 166.2 36 4.0

c1355 546 320 8.2 165.8 52 12.3

c1908 880 298 3.8 280.5 64 22.8

c2670 1193 210 5.0 307.0 93 28.8

c3540 1669 150 0.9 364.4 140 113.3

c5315 2307 92 0.6 376.2 84 61.2

c7552 3512 408 3.0 377.6 71 61.5

Table 3.1: Evaluation of algorithms (independent component failures).

of diagnoses before the 300 second limit expired. The �fth column shows the average
run time in seconds on a Sun Sparc 2 workstation.

For the focused generator, the sixth column shows the number of consistency
checks made. This algorithm was always able to terminate within the 300 second

limit. The seventh column shows the average run time in seconds on a Sparc 2.
The results show that the unfocused candidate generator works well for small

devices like c17, and works reasonably well for medium sized devices like c432 through
c1355. However, for larger devices, the number of candidates that need to be checked
becomes very large, and the top ten diagnoses cannot be generated within 5 minutes.

In fact, in examples like c5315, generating even one diagnosis is di�cult. On the

other hand, the focused candidate generator is very e�cient, being able to complete
the task on all the devices in an average of under 2 minutes. This shows that the
judicious use of con
icts can dramatically speed up model-based diagnosis. It also

shows that caching of inference (as node labels) does not appear to be important. In

particular, these results are comparable to the results from the very best ATMS-based

implementations. Note that, the performance on the largest examples shows that no

performance penalty is incurred due to memory limitations.
In summary, generate-and-test using the focused candidate generation algorithm

is a fast and simple model-based diagnosis algorithm. The unfocused candidate gen-
eration algorithm can be used e�ectively for small to medium sized examples, and

is particularly useful in cases where �nding con
icts is di�cult (so that the focused

algorithm provides no bene�t).
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3.3 Dependent faults

We now turn our attention to the situation where the faults are not independent. Our

goal is to construct a algorithm with properties similar to the one described above.

We will assume that when faults are not independent, the dependencies between the

set of mode variables of the system are speci�ed to us in the form of a Bayesian

network. We begin by assuming that the Bayesian network speci�ed for the fault

interactions has a particular topology, viz., that it is singly connected. A singly

connected Bayesian network has at most one path from any node to any other node.

Say there are k arcs going out of a node n. Say we delete every arc. This separates

the Bayesian network into at least k + 1 mutually disconnected segments. A singly

connected Bayesian network has the following important property: If we observe the
value of node n in a singly connected Bayesian network, the variables in each of these
segments is rendered independent of variables in any other segment. This property
can be exploited to develop a simple algorithm to compute a list of instantiations
of the Bayesian network in decreasing order of probability. An instantiation of the

Bayesian network is an assignment of state to every node. It thus corresponds exactly
to our notion of candidate.

3.3.1 Message Passing

We now develop an algorithm to generate candidates in decreasing order of probabil-

ity. The algorithm is developed in the same spirit as [Pearl, 1987]. [Pearl, 1987] de-
scribes a message passing algorithm for computing the most likely instance of a singly
connected Bayesian network. Our algorithm can be considered as a generalization of
this algorithm. In addition to computing the most likely instance, it successively
computes (on request) the next most likely instance, the third most likely instance,

and so on.

Our message passing algorithm will operate in the following fashion: An arbitrary
node is chosen in the Bayesian network as the starting node. The starting node re-
quests all its neighbors for messages pertaining to computing the list of most probable

instances in decreasing order. These messages pertain to instantiations of part of the

network reachable through the neighbor. When the starting node has received the

messages, it combines them in some way and returns the list of full instantiations of

the Bayesian network. When a neighbor is requested to give a message, it recursively
requests each of its neighbors (except for the original requesting node) for a message.

It then combines these messages in some way and passes them on to the request-
ing node. As we will see later, the independence properties of the singly connected

network make such a message passing algorithm possible.

The singly connected network can be viewed as a tree if one ignores the direction
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Figure 3.3: Message passing: the two possible cases.

of the arcs. We note that the algorithm we develop makes a single traversal through
this tree. That is, messages are sent from leaf nodes to parents and from the parents
to the ancestors until they all converge in some (arbitrarily chosen) root node.

The description of the message passing algorithm thus reduces to the description of
the operations at a single node. The description needs to explain what the messages

are and how the messages coming from neighbors are combined and sent to the
requesting node.

Initially, we will describe how we can compute the entire list of candidates in
decreasing order of probability. Later we will show how to modify this algorithm to
make it compute one candidate at a time (on demand).

3.3.2 What are the messages?

We now de�ne the messages sent between the nodes. We will describe how the
message are actually computed later. We �rst de�ne some terminology. Consider two

nodes A and B that are connected by an arc in the Bayesian network. We will use
RAkB to refer to the set of all the nodes in the subnetwork containing A when the arc
connecting A and B is disconnected. Note that the arc between A and B could be in

either direction.

Say node X requests node Y for a message. Say Y is a parent of X in the Bayesian
network. We will refer to the message that Y sends X as �lY!X .

3 The direction of
the arrow in the subscript refers to the direction of the message (from Y to X) and
not the direction of the arc in the Bayesian network. The superscript l (for \list")

reminds us that the message is being used to compute the ordered list of all instances

of the Bayesian network.
�lY!X is a vector indexed by the states y of Y . The location �lY!X [Y = y] contains

3We follow Pearl in choosing � and � as the message names.
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a list of all instantiations i of the nodes in RY kX such that Y has state y in i. The list

elements are arranged in decreasing order of probability. The probability is stored

with each list element. Note that the elements of RY kX form a full Bayesian network

in themselves. Hence, it is possible to compute the probability of each instantiation

of RY kX without regard to X or any node reachable through X.

Now consider the case where Y is a child of the requesting node X in the Bayesian

network. We will refer to the message that Y sends X as �lY!X . The �
l
Y!X message

is indexed by the states x of X. �lY!X [X = x] contains a list of instantiations r

of RY kX sorted by decreasing order of the probability P (RY kX = rjX = x). This

is the conditional probability of the instance r given that X is in the state x. The

probability is stored with each list element.
We note that observing the value of X makes the nodes in RY kX independent of

all the other nodes reachable through X ! Y . Hence, given a state x of X and an
instantiation r of RY kX , it is possible to compute the probability P (RY kX = rjX = x)
locally within the subnetwork formed by the nodes in RY kX .

3.3.3 Computing the messages

Say node X has requested node Y for a message. We describe the computations that

Y performs in computing the message.
Y �rst recursively asks for messages from all its neighbors (except for X). After

they are available, it computes the message meant for X. We note that there are two
cases that need to be described. In the �rst case, Y is a parent of X. In the second
case, Y is a child of X.

Y is a parent of X

We consider an example of the �rst case (Fig 3.3(a)). Consider an instance rP1kY of

the set RP1kY . Suppose that P1 = p1 in rP1kY . Similarly, consider an instance rP2kY

of RP2kY . Suppose that P2 = p2 in rP2kY . Further, let rC1kY and rC2kY be any two
instances of RC1kY and RC2kY .

We note that if we append all these instances together and add in a choice of state

for Y , we get a full instance rY kX of RY kX . Say we choose the state y of Y as the

state added in to get rY kX . We note from the independence properties of a singly

connected Bayesian network that the following is true:

P (rY kX) = P (Y = yjP1 = p1; P2 = p2)� (3.2)

P (rP1kY )P (rP2kY )�

P (rC1kY jY = y)P (rC2kY jY = y)

Note that rY kX is an element of �lY!X [Y = y]. Similarly rP1kY is an element of



42 CHAPTER 3. FOCUSED GENERATION OF DIAGNOSES

�lP1!Y [P1 = p1], and rP2kY is an element of �lP2!Y [P2 = p2]. In addition, rC1kY is an

element of �lC1!Y [Y = y] and rC2kY is an element of �lC2!Y [Y = y]. The probabilities

required in Equation 3.2 are exactly those stored with these elements (see previous

section).

We now de�ne some terminology. Given two ordered lists of instances L1 and L2

ordered in decreasing order of probability, let L1
L2 be the ordered list composed of

all possible combinations of the instances where one element is chosen from L1 and

one element is chosen from L2. The probability of the combination is the product of

the stored probabilities of the components. For now, assume that 
 is realized by a

naive algorithm which forms all combinations and then sorts them.

Given an ordered list of instances L and a number k, let k�L be the list where the
probability of every instance in L is multiplied by k. Finally, given a list of ordered

instance lists LL, let Merge(LL) be the list formed by merging the constituent lists
of LL into a single ordered list. Each of the constituent lists of LL is assumed to
contain instances of the same set of variables.

The discussion above leads directly to the algorithm shown in Fig 3.4 for comput-
ing �lY!X . This algorithm computes �lY!X from the messages coming to it from P1,

P2, C1 and C2. In essence, for each state y of Y , the algorithm is generating every
element of �lY!X [Y = y] and ensuring that the elements are put together into a list
in decreasing order of probability. We note that the algorithm is adapted easily to
the case where Y has an arbitrary number of parents and an arbitrary number of
children.

Y is a child of X

We now consider the case where Y is a child of X and describe the message compu-
tations in Y . The situation is shown in Fig 3.3(b). The same argument used in the
�rst case leads to the algorithm shown in Fig 3.5. 4

3.3.4 Putting it all together

The algorithm Compute-ordered-instances for computing the ordered list of in-

stances of the entire Bayesian network (Fig 3.6) follows directly fromCompute-�lY!X

and Compute-�lY!X .

We choose an arbitrary node R of the Bayesian network as the root node. We add
a dummy node D as a parent of R. D has only one state d̂. Hence automatically,

P (D = d̂) = 1. Say the parents of R were the set SR before adding D. Let sR
be a joint state of SR. Say the conditional probability was de�ned by the table

4At the expense of clarity, this algorithm can be improved by computing and saving L�
y for all y

before entering the main loop.
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begin Compute-�lY!X(Y, X)

For all states y of Y :

1. L�y = �lC1!Y [Y = y]
 �lC2!Y [Y = y]

2. Initialize LL to the empty list. LL is a list of lists.

3. For all combinations < p1; p2 > of the states of P1 and P2:

(a) Let k = P (Y = yjP1 = p1; P2 = p2).

(b) L = k � �lP1!Y [P1 = p1]
 �lP2!Y [P2 = p2]
 L�y

(c) Cons L onto LL.

4. �lY!X [Y = y] =Merge(LL)

end Compute-�lY!X

Figure 3.4: Algorithm for the case where Y is a parent of X.

begin Compute-�lY!X(Y;X)

For all states x of X :

1. Initialize LL to the empty list. LL is a list of lists.

2. For all states y of Y :

(a) L�y = �lC1!Y [Y = y]
 �lC2!Y [Y = y]

(b) For all combinations < p1; p2 > of the states of P1 and

P2:

i. Let k = P (Y = yjP1 = p1; P2 = p2; X = x).

ii. L = k � �lP1!Y [P1 = p1]
 �lP2!Y [P2 = p2]
 L�y

iii. Cons L onto LL.

3. �lY!X [X = x] =Merge(LL)

end Compute-�lY!X

Figure 3.5: Algorithm for the case where Y is a child of X.
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begin Compute-ordered-instances(B)

1. Choose an arbitrary node R of the Bayesian network B and

add a dummy node D as parent.

2. Compute-message(R;D)

3. Return �lR!D[D = d̂].

end Compute-ordered-instances

begin Compute-message(Y , X)

1. For all neighbors N of requested node Y except the request-

ing node X do:

Compute-message(N; Y )

2. If Y is a parent of X then:

Compute-�lY!X(Y;X)

else

Compute-�lY!X(Y;X)

end Compute-message

Figure 3.6: Algorithm for computing ordered instance list.

Pold(RjSR). The conditional probability distribution of R after D's addition is set to

be Pnew(R = rjSR = sR;D = d̂) = Pold(R = rjSR = sR). We see that, e�ectively, R
is independent of D. We see that if D requests R for a message, then �lR!D[D = d̂]

contains exactly the list of ordered instances of the entire network.

We reiterate once again that the algorithm computes the full list of ordered in-

stances. Hence, though it takes full advantage of the independence properties of the

network to decompose the problem, it's run time is inherently exponential since the
number of instances is exponential.

3.3.5 Computing one instance at a time

We now modify the algorithm to return one instance at a time from the ordered list.

The next instance is computed only when demanded. The idea is very similar to the
idea in the case of independent faults, i.e., we make the computation lazy.
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Speci�cally, all that is required is to make the computation of the list operations


, � and Merge lazy. The modi�ed Compute-ordered-instances returns a lazy

list. Initially, a lazy list contains only the �rst element of the list. The rest of the

elements are stored as a delayed computation in the list's data structure. Each time

we demand the next element, the delayed computation is called. It performs only the

necessary computations to compute the next element. This element is added to the

end of the list. The computation then delays itself again.

Note that we do not make the evaluation of the loop that creates list LL in

Compute-�lY!X(Y;X) and Compute-�lY!X(Y;X) lazy . Hence, all the list elements

of the call to Merge are computed initially. However, each element is a lazy list.

This observation implies that the delayed computations will perform only the list
operations 
, � and Merge. The call graph of the message passing algorithm is

stored implicitly in the delayed computation.
Making the computation of � and Merge lazy is straightforward. We will refer

to the lazy version of � as �z. Given a constant factor k and a lazy list Lz as
arguments, �z multiplies k into the probability of the �rst element of Lz and returns
it. It then wakes up the delayed computation in Lz. This results in the second

element of Lz being generated. It then goes to sleep. On the next call, it multiplies
the constant factor into the second element and returns it. It then generates the
third element of Lz and goes to sleep and so on. On each call, it performs O(1)
computations (not counting the computation performed due to the awakening of Lz's
delayed computation).

Let the lazy version of Merge be Mergez. On each call, Mergez goes through
its argument LL looking at the probability of the current element of every delayed
list in LL. It returns the element Cmax with maximum probability. Let Lmax be
the list from which Cmax came. Cmax is popped o� Lmax. Mergez now wakes up
the computation of Lmax till the next element of Lmax is generated and this is made
the current element of Lmax. It then goes to sleep. On each call, Mergez performs

O(Length(LL)) comparisons (not counting the computation performed due to the

awakening of Lmax's delayed computation).

An e�cient way of making 
 lazy

The operation 
 takes two ordered lists LI and LJ as arguments and returns an

ordered list where each element is a compound element composed of one element

from LI and one element of LJ . The numerical value associated with the compound

element is the product of the numerical values associated with the constituents. The
list which is returned is ordered by this numerical value.

Consider the example shown in Fig 3.7. In this example, the elements of the list

are the numerical values themselves. Each location in the matrix is the product of

the appropriate elements of LI and LJ .
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Figure 3.7: Making the 
 operation lazy: The fringe in 
z.

An element a(i2; j2) in the matrix is dominated by an element a(i1; j1) if it is
necessarily less than or equal to a(i1; j1) regardless of the actual values in the ordered
lists LI and LJ . We see directly that a(i2; j2) is dominated by a(i1; j1) i� i1 � i2 and

j1 � j2. We will call the element a(i+1; j) the dominated neighbor along dimension i

of a(i; j). That is, an element's dominated neighbor along a dimension is the element
immediately \below" it along that dimension.

We will now describe a delayed version of 
 which we will call
z. Say 
z has been
called a few times. Every time it was called, it returned the next largest element out

of the matrix. The remaining elements are those elements of the matrix that have

not yet been returned during previous calls to 
z. Say 
z maintains a set in its
internal state. The set F consists only of those of the remaining elements that are
not dominated by any of the other remaining elements. We will call the set F the

fringe (See Fig 3.7).

We see that each time 
z is called, it only has to return the maximum element

Cmax of the fringe F and then update the fringe. The fringe update is easily ac-

complished by the procedure shown in Fig 3.8. The procedure computes and returns
Cmax and updates the fringe. Note that this procedure does not explicitly generate

the matrix. It simply retains the matrix indices with each element of F to perform
domination tests.

We have assumed in the above discussion that 
z takes only two arguments.

However, we see that the identical discussion applies if there are n lists given as
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begin Update-fringe

1. Choose the max element Cmax of the fringe F and delete it

from F .

2. Along each dimension K do:

Let CK be the dominated neighbor of Cmax along K. If CK

is not dominated by any element in F then:

(a) Compute CK (i.e., actually multiple the probabilities

and create the compound element). This computa-

tion might require the computation of the next yet

uncomputed element of the list LK . If so, awaken the

computation of LK so that this element is available.

(b) Add CK to the set F .

3. Return Cmax.

end Update-fringe

Figure 3.8: Updating the fringe in 
z.

arguments. Instead of a two dimensional matrix, we have an n dimensional matrix.

The Update-fringe procedure applies even when there are n arguments. A general
implementation that can handle any number of argument lists can be used to compute
(L1
z L2
z : : :
zLn) as 
z(L1; L2; : : : ; Ln). Such an implementation is immediately
applicable in Compute-�lY!X(Y;X) and Compute-�lY!X(Y;X).

Let Lresult be the entire ordered list which would result if all the elements returned

successively by 
z(L1; L2; : : : ; Ln) were computed (by repeated calls to the delayed

computation). Consider the situation where the �rst k elements of Lresult have been
computed and the rest are yet uncomputed. We see that every time we update the
fringe, we add at most n elements to it. At the start of the computation, the fringe

consists of exactly 1 element (viz, the �rst element of Lresult). Hence after k elements

of Lresult have been computed, the size of the fringe is at most nk. Examining

Update-fringe, we see that when computing the k + 1st element, we need O(nk)

comparisons to determineCmax. In addition, we need to makeO(nk) domination tests
along each of the n dimensions in Step 2. Each domination test can be implemented

as a single comparison. Hence the the k + 1st element of Lresult can be computed
with O(n2k) comparisons (not counting any operations resulting from waking up

computations in any argument list). We note that this is a loose bound. In practice,

as we shall see later, 
z does much better.
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3.3.6 Complexity of the full lazy algorithm

We now compute an upper bound on the complexity of the full lazy algorithm, i.e.,

the complexity of generating the kth most probable instance of the Bayesian network.

Consider a node Y which is computing a message to be sent to node X using

Compute-message(Y;X). Let Size(Y ) be the size of the conditional probability

table of Y . That is, Y is the product of the cardinalities of Y and each of its parents.

Let Degree(Y ) be the number of neighbors of Y , i.e., the sum of the number of

parents and number of children.

We examine the complexity of computing the message where each message element

is a lazy list. Speci�cally, we look at the total complexity of computing the next

element in each of these lazy lists. We consider only the computations performed
within Y , i.e., we exclude the comparisons performed in recursive calls to Compute-
message.

Examining Compute-�lY!X(Y;X) and Compute-�lY!X(Y;X), we note that the
Mergez and �z operations together perform O(Size(Y )) comparisons5.

We now examine the number of comparisons performed by the 
z operation. Say
we have generated the �rst k elements of every message element list and are looking
to generate the k + 1st element of each of these lists. We see that the number of
comparisons performed by 
z is bounded by O(Size(Y )Degree(Y )2k).

Given a Bayesian network B, let Size(B) = �Y 2BSize(Y ). We see that Size(B)

measures the amount of information required to specify the network. In addition,
de�ne MaxDegree(B) = maxY 2BDegree(Y ).

Say we have generated the k most probable instances of the Bayesian network and
are now computing the k +1th most probable instance. We see that �z and Mergez
together perform O(Size(B)) comparisons. 
z performs O(Size(B)MaxDegree(B)2

k) comparisons.

Thus, the overall complexity of generating the k + 1st most probable instance is

O(Size(B)MaxDegree(B)2k). We note that this is a loose upper bound. There are
two reasons. The �rst is that the bound that we computed earlier on 
z is loose.
The second is that we are assuming that every delayed list will be forced to compute

its next element in the process of computing the next most probable instance of the

entire network. This need not be true. In practice, the algorithm runs much faster
(as described later).

We note that when k = 1 the algorithm computes the most probable instance of
the network. This is exactly what is computed by [Pearl, 1987].

5Actually, the operation performed by the �z operation is a multiplication. We count one mul-

tiplication as equivalent to one comparison in this analysis.
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3.3.7 Multiply-connected networks

The algorithm we have presented so far can handle only singly connected Bayesian

networks. When Bayesian networks are not singly connected, there is a general scheme

called conditioning which can be used to adapt the singly connected algorithms to

handle multiply connected networks [Pearl, 1988].

Conditioning chooses a set of nodes in the Bayesian network such that observing

the values of those nodes leaves the resulting network singly connected. This is

in accordance with the independence semantics of Bayesian networks. The set of

conditioning variables is called the cutset. A computation is performed for every

possible joint instance of the cutset using the singly connected algorithm and these
computations are then combined. A joint instance consists of a choice of state for each
node in the cutset. In general, domains suitable for modeling with Bayesian networks

have a large number of independences and so typically, the size of the cutset is small.
Our algorithm can be adapted directly to handle multiply connected networks

using conditioning. For every joint instance c of the cutset, we compute an ordered
list of instances Lc of the network. Each element ec of Lc will be a full network
instance. Each element ec will necessarily have each of the conditioning variables in

the state speci�ed by c. The probability stored with ec will be P (ecjc). Lc can be
computed with the algorithm we have developed above. For each list Lc, we then
compute L

0

c = P (c)� Lc. Here P (c) is the prior probability of the cutset instance c.
The lists L

0

c (one for each cutset instance c) are then merged to give the list of all
instances in decreasing order of probability.

Let the cutset of Bayesian network B be CB. Let Size(CB) be the size of the joint
state space of the variables in the cutset. From the discussion above and in the previ-
ous subsection, we see that a loose upper bound for generating the k+1st most prob-
able instance of the Bayesian network is O(Size(CB)Size(B)MaxDegree(B)2k).

3.3.8 Evaluation

The algorithm Compute-ordered-messages was implemented in Common Lisp.
The algorithm is implemented on top of IDEAL, a software package for Bayesian net-

work inference [Srinivas and Breese, 1990]. Since there are no standard example suites

of systems with dependent faults, we report just the running time of the candidate

generator rather than using the structure of the experiments of Section 3.2.2.

Run times for Compute-ordered-instances are shown in Table 3.2. The times
shown are for two randomly generated singly connected belief networks. Given the

number of nodes n, we generated a singly connected Bayesian network with n nodes.
The maximumnumber of neighbors for any node in the network (i.e., theMaxDegree

of the network) and the maximum number of states for each node are also speci�ed

before the random Bayesian network is generated. The distribution for the belief
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Time to generate next candidate

Number of components 300 600

Max. numb. of modes per comp. 5 6

MaxDegree 5 6

Number of cands. generated 600 600

Setup time 11 secs 2 mins

Max. time 34 msec 50 msec

Min. time 0 msec 0 msec

Avg. time 7.8 msec 11.0 msec

Run times for Compute-ordered-instances

Table 3.2: Evaluation of algorithm (dependent component failures).

network is set randomly.
We see that we can compute each candidate in the order of tens of milliseconds on

the average for medium sized systems (when the number of components is in the order
of hundreds). The variability of the distribution is also quite small. We have also

noted that the time to compute candidates varies fairly uniformly as the candidates
are generated. In other words, there is no trend towards increase or decrease in the
average time as the number of candidates generated increases. We note here that if
the algorithm performed in accordance with its worst case analysis, there should be
a linear increase in run time. In practice, the algorithm does much better.

We note that the time to initialize the algorithm data structures is substantial
relative to the time to generate candidates. The initialization, of course, is a one time
cost and need not be repeated for each diagnosis run.

3.4 Discussion

In this chapter, we have approached the problem of computing most probable diag-
noses tractably from a generate-and-test view point. The crucial component of our

diagnosis method is an e�cient candidate generator. We have demonstrated how to
perform candidate generation e�ciently both when faults are independent and when

they are dependent.

Focusing of diagnosis systems has been a subject of considerable interest in model-
based diagnosis [Collins and DeCoste, 1991; Dressler and Farquhar, 1990; Forbus and

de Kleer, 1988]. The HTMS [de Kleer, 1994], which is the current state of the art,
achieves impressive performance results. Our results are in the same spirit but di�er
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in an important respect. Our generate-and-test approach leads to extremely simple

algorithm speci�cations that are not tied to a particular implementation method of

the diagnosis system (such as an ATMS). As a result, our algorithms are general

purpose algorithms. They come with provable properties, both in complexity and

correctness.

One can view our unfocused candidate generation algorithm as performing a best

�rst search in the space of all candidates. In e�ect, we have taken advantage of

properties of the domain to reduce best �rst search to a direct algorithm. As dis-

cussed before, our work in generating candidates in the case of dependent faults is

a direct generalization of Pearl's method for computing the most probable instance

of a Bayesian network [Pearl, 1988]. The algorithm Compute-ordered-instances

should also be of interest to those applying Bayesian networks in settings other than

model-based diagnosis.



Chapter 4

Specifying component failure

probabilities

Probabilistic model-based diagnosis requires failure probabilities for each component
in the systemmodel. Speci�cation of these probabilities is di�cult|an expert cannot
often reliably give such numerical estimates. A primary reason for this problem is
that there is an implicit notion of time in these prior probabilities.

Consider a component A which has been up and running for a week. Say the prior

probability of failure assessed at this time is pweek . Now consider the same component
when it has been running for a month. Say the failure prior assessed at this time is
pmonth. Intuitively, we should have pmonth > pweek , i.e., the longer the component has
been up, the higher the chance that some event that caused it to fail has occurred.
For example, consider the prior probability that the timing chain in a car has failed.

The prior probability of timing chain failure typically depends on the age of the car.
If the car has low mileage (say 10K miles) the prior probability that the timing chain
has broken is very low. However if the car has high mileage (say 90K miles), the prior
probability of the timing chain being broken rises to a high value.

A related problem occurs when doing diagnosis with multiple observations, where

each observation occurs at a di�erent time. When performing diagnosis with multiple
observations, we need some model of the persistence of the state of the system between

the observations. LetMi[t] be a state variable representing the state of the component
Ci at time t. Let �[t] be a compound variable which represents the joint state of all

the components in the system. That is, �[t] is the vector hM1[t];M2[t]; : : : ;Mn[t]i.
We will use �[t] to denote a state of �[t]. Note that each state of �[t] is simply a
candidate (see Section 3.1). We will refer to �[t] as the candidate state variable at
time t.

Consider a situation where we have an observation 
[t1] at time t1 and an obser-

vation 
[t2] at time t2. Say we want to perform diagnosis at time t2. The goal of

52
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diagnosis is to compute the distribution P (�[t2] j 
[t1];
[t2]). This distribution can

be computed as:

P (�[t2] = �[t2] j 
[t1];
[t2]) /

P (�[t2] = �[t2];
[t1];
[t2])

/ P (
[t2] j �[t2] = �[t2];
[t1])� P (�[t2] = �[t2] j 
[t1])

= P (
[t2] j �[t2] = �[t2])� P (�[t2] = �[t2] j 
[t1]) (4.1)

The last step follows because knowing the state �[t2] of the system renders the obser-

vation 
[t2] independent of the history. The probability P (
[t2] j �[t2] = �[t2]) can

be calculated from the diagnostic Bayesian network. In the above equation, we also
need the distribution P (�[t2] j 
[t1]), i.e., an estimate of the state at time t2 given
the observation at time t1. This can be computed as follows:

P (�[t2] = �[t2] j 
[t1]) =

��[t1]P (�[t2] = �[t2] j �[t1] = �[t1];
[t1])� P (�[t1] = �[t1] j 
[t1])

= ��[t1]P (�[t2] = �[t2] j �[t1] = �[t1])� P (�[t1] = �[t1] j 
[t1]) (4.2)

The last step follows from a Markov assumption that the system state �[t2] is rendered
independent of all history up to time t1 when the state �[t1] at time t1 is known. In
the above equation, P (�[t1] j 
[t1]) is the posterior over the state of the system at
time t1. This can be computed easily as:

P (�[t1] = �[t1] j 
[t1]) / P (
[t1] j �[t1] = �[t1])� P (�[t1] = �[t1]) (4:3)

The �rst term in the right hand side of the above equation can be computed from
the diagnostic Bayesian network. The second term is the prior probability of the

candidate. This can be computed as a product from the prior distribution over the

mode of the individual components.
We see that the distribution P (�[t2] j �[t1]) in Equation 4.2 is still unspeci�ed.

This distribution quanti�es the persistence of the state of the system. For example,

if the system never changed state spontaneously, then we would have:

P (�[t2] = �[t2] j �[t1] = �[t1]) =

(
1 if �[t1] = �[t2]
0 if �[t1] 6= �[t2]

However, in the real world, components do fail on-line. If we had a model of how
the components failed when they were on-line, this could be used to compute the

distribution P (�[t2] j �[t1]).
We address the problems of specifying failure priors and modeling persistence

using techniques from Reliability Theory. Reliability Theory gives us a model that
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relates the probability of component failure and the age of the component. We use

this model to compute a component's prior probability of failure from its uptime and

its Mean Time Between Failure (MTBF). The MTBF is a summary measure of the

reliability of a device and is often available with manufacturer speci�cations. We

also use the component failure model to compute the conditional distribution over

the states of a component at time t2 given the state at time t1. This conditional

distribution is used to model persistence.

4.1 Reliability models

ReliabilityTheory o�ers empiricallyvalidated models for the failure process of devices.
The failure process of a device relates the probability of failure of the device to time
(for example, see [Tsokos and Shimi, 1977]). We now describe one standard model of
the failure process.

Consider a device A. It has two states|ok and broken. It is initially in the ok
state when it is brought on-line. At some point in time, it transitions into the broken
state. Once it is broken, it stays broken. It is assumed that the failure of A, i.e., the
transition of A from the ok to broken state, occurs due to random unmodeled events
which occur with a probability that is constant over time. For example, an electronic

component may fail due to surges in the power supply, and these surges may occur
randomly with a uniform probability.

The modeling assumption is interpreted as follows: Given that the device has not
failed at time t, the conditional probability that it will fail in the interval [t; t+ dt] is
proportional to the length of the interval. The probability is thus given by �dt where

� is a proportionality constant. Say we model the failure of A with a continuous real
variable X. That is, \X < t" denotes the event that A fails in the interval [0; t]. Say
F (t) is the cumulative distribution of X, i.e., F (t) = P (0 � X < t). F (t) is the
probability that A fails in the time interval [0; t].

From the modeling assumption, we have:

P (t � X � t+ dt j X � t) = �dt (4.4)

F (t+ dt)� F (t)

1� F (t)
= �dt

dF (t)

dt
= � (1� F (t))

F (t) = 1� e��t

(Since F(0) = 0)

We see that the probability of A failing before time t is small when t is small and
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Figure 4.1: Di�erent choices for the hazard function.

converges to 1 as t tends to in�nity.
In general, instead of assuming a constant � in the equation above, we might have

a time varying conditional density c(t), called the hazard function. This allows us
to model various di�erent degradation phenomena in the device. For example, if we
want to model a situation where a component has high probability of failure early in
its life (called \wear in"), we might choose c(t) to be high for small values of t. If we
want to model wear out (and hence, increased chance of failure) of the device as it

grows older, we might choose c(t) to be high as t becomes large (See Fig 4.1). The
di�erential equation Equation 4.4 can be solved for the appropriate choice of hazard
function to give the corresponding density function.

The expectation of the variable X is called the Mean Time between Failures. In
the case of c(t) = �, the MTBF can be shown to be 1

�
.

4.1.1 Computing prior probabilities of failure

Using the above model, we can specify more precisely what we mean by the prior
distribution over the mode of a component A. The probability that A is broken is a

function of time. We will denote this probability at time t by P (MA[t] = broken).
Say that the last time we knew that A was certainly not broken was tok. Usually, tok
is the time that A �rst went on-line.

We see that P (MA[t] = broken) is the probability that A failed in the interval

[tok; t]. Say we assume a constant hazard function. We see that:

P (MA = broken) = P (tok � X � t j X > tok)

=
F (t)� F (tok)

1 � F (tok)

= 1 � e��(t�tok) (4.5)
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P (Mi[t2] j Mi[t1]) Mi[t1] = ok Mi[t1] = broken

Mi[t2] = ok e��i(t2�t1) 0

Mi[t2] = broken 1 � e��i(t2�t1) 1

Table 4.1: Quantifying the persistence of Mi from t1 to t2.

The above equation allows us to directly relate MTBFs to the prior probabilities that

we need.

Note that when we assume c(t) = �, P (MA = broken) is only a function of t�tok.
That is, all we need to know is the length of the interval from the last time at which
we were sure that A was not broken. However, if we assume more complicated hazard
functions c(t), we would also need to know when A �rst went on-line. This is because

we will measure t and tok using that as the start time. Hence, in general, we will �nd
that P (MA = broken) = f(t; tok) where f is some function whose form depends on
the choice we make for the hazard function c(t).

4.1.2 Modeling persistence

Earlier, we saw that some persistence model was necessary to compute the distribution
P (�[t2] j �[t1]). The reliability model described above gives us a method to compute
this distribution.

Say the system has n components, C1, C2, : : : , Cn. The mode variable correspond-
ing to component C i is Mi. We assume that the failure processes of the individual

components are independent. Thus, given the state of Ci at time t1, we can compute
a conditional probability distribution over the state at time t2 without regard to any
of the other components. If we assume a constant hazard function �i for Ci, this
distribution is given by Table 4.1.

The state �[t] of the variable �[t] consists of a state assignment to each of the

mode variables Mi. Denoting the state of Mi[t] by mi[t], we have �[t] = hM1[t] =

m1[t];M2[t] = m2[t]; : : : ;Mn[t] = mn[t]i. From the independence assumption of the

failure processes, we have:

P (�[t2] = �[t2] j �[t1] = �[t1]) =

P (M1[t2] = m1[t2];M2[t2] = m2[t2]; : : : ;Mn[t2] = mn[t2] j

M1[t1] = m1[t1];M2[t1] = m2[t1]; : : : ;Mn[t1] = mn[t1])

= �1�i�nP (Mi[t2] = mi[t2] j Mi[t1] = mi[t1])

Each of P (Mi[t2] = mi[t2] j Mi[t1] = mi[t1]) can be computed as shown in Table 4.1.
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Thus, the failure processes of the individual components and an assumption about

their independence gives us a model for the persistence of the system state. The

distribution P (�[t2] j �[t1]) can be computed using t2, t1 and the MTBFs of the

individual components Mi.

4.2 Using reliability models in diagnosis

We illustrate the use of reliability models in probabilistic model-based diagnosis with

some examples. We will �rst describe a system and a decision theoretic repair model

for the system. We will then describe two di�erent scenarios with this system.
The �rst scenario demonstrates how diagnosis/repair depends crucially on when an

observation is made. The time of observation a�ects the priors used for the diagnosis
and this a�ects the posterior probabilities and the repair decision. The observation
in the �rst scenario is a \nothing wrong" observation. That is, the observation does
not indicate any discrepancy. We show that if this observation was made when the
system was new, then the probability of everything being ok is very large (as we
would expect) and the optimal decision is to do nothing (again, as we would expect).

However, if the same observation is made instead when the system is older, the
posterior probability that everything is ok decreases substantially. In this case, the
optimal decision is to actually replace two of the components. This decision can be
seen as an example of preventive maintenance.

The second scenario demonstrates the need for persistence models in the presence

of multiple observations and actions. We �rst make an observation at time t1. The
corresponding best action is computed and executed and is found to �x the anomaly
exhibited by the system. Now, at a later time t2, the same anomalous observation
occurs. A persistence model for the component states is required to compute the
posterior probabilities and the optimal decision after the second observation. Though

the observation at time t2 and time t1 are the same, the posterior distribution and
the optimal decision are very di�erent.

4.2.1 The example system

The example we consider is similar in structure to the example introduced in Chap-

ter 1. However, we do not have prior probability estimates for the failure of the
gates. Instead, we have MTBF reliability estimates. In addition, we add a simple

cost model to the system to demonstrate how repair decisions are a�ected by the time
of the observation.

Consider the digital circuit shown in Fig 4.2. A is an And gate, O is an Or gate

and X is an Xor gate. Each of the gates can be ok or broken. When a gate is ok,
it works as it is supposed to. When it is broken we need a fault model. Speci�cally,
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Figure 4.2: Using reliability models: An example.

we will assume stuck-at-0 fault models for A and O. For gate X, we will depart from
the example of Chapter 1 and choose a stuck-at-1 fault model. The fault model is
interpreted as follows: when A (or O) is in the broken state, the output of the gate is
0 irrespective of the input. Similarly, when X is broken, its output is 1 irrespective

of the input. Say the MTBF of the And gate A is 100 hours, that of the Or gate O
is 250 hours and that of the Xor gate X is 350 hours.

We also have a cost model that describes the repair costs of the system. We
associate a repair decision with each component. The decision alternatives are �x
and dont-�x. We describe the repair cost for each component with a cost function

whose arguments are its mode state and the repair alternative. The cost functions
for each of the gates is shown in Table 4.2. The system repair cost is assumed to be
the sum of the repair costs of the components. That is, given a state for each mode
variable of the system and a repair decision alternative for each component, we can
sum the cost of the repair decision alternative for each component to get the repair

cost function LS for the entire system. The arguments to this cost function are a
candidate (i.e., state assignment to each component of the system) and a composite

decision. A composite decision consists of a choice of a repair alternative for each

component in the system.
The cost function L for each component is quite intuitively assessed. Consider

the case where the component A is ok and the decision is dont-�x. We use this

as the reference situation and assign it a cost of $0. Hence LA(ok;dont-�x) = $0.

When we do decide to �x, say that we throw the old component away and replace it
with a new one irrespective of what its actual state is. The cost of implementing the

�x decision summarizes the temporary downtime cost required to bring the system
down to change the component and the cost of the new component. Say we determine

this cost to be $2. Hence LA(broken;�x) = LA(ok;�x) = $2. Finally, we assign

a cost to the case where the gate is broken, but we choose dont-�x. This cost
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LA(m; d)

broken �x $2

broken dont-�x $8

ok �x $2

ok dont-�x $0

LO(m; d)

broken �x $3

broken dont-�x $12

ok �x $3

ok dont-�x $0

LX(m; d)

broken �x $4

broken dont-�x $14

ok �x $4

ok dont-�x $0

Table 4.2: Repair cost functions for the example system.

basically summarizes the cost of system downtime as a result of this non-operational

component. Say we determine the cost to be $10. Hence LA(broken;dont-�x) = $10.
There is an implicit time horizon over which these costs are being measured|say it is 1
hour in this example. In this framework, diagnosis involves computing the posterior
distribution over the candidate state variable given observations. Repair involves
choosing the optimal composite decision for the entire system given the posterior

distribution over the candidates. The optimal decision dopt is the one which results
in the least expected cost. That is:

dopt = mind(�cP (C = cj
)LS(D = d;C = c))

In this equation, d ranges over all possible composite decisions and c ranges over all
possible candidates.

4.2.2 Scenario 1: E�ect of time on diagnosis/repair

Consider the system of Fig 4.2. Say that it has been been up for 10 hours and the
observation 
 = hI1 = 1, I2 = 1, I3 = 0, I6 = 0i is recorded. Note that 
 seems

to suggest that there is no problem with the system since the inputs generate the

expected output. We assume that the time is counted from the time the system was
new. We will further assume that when the system was new every component was
certainly ok.

The system model can be translated into a Bayesian network as shown in Fig 4.3

(see Section 2.1). The node � has 8 states, one corresponding to each combination

of states of MA, MO and MX . Let mA be a state of MA. We de�ne mO and mX

similarly. The conditional distribution of � given its parents is just a deterministic
distribution which maps each state combination of its parents to the corresponding

state of C. That is, we have P (� = hmA;mO;mXi j MA = mA, MO = mO, MX =
mX) = 1.

We now perform diagnosis using the observation 
 and the time of observation

(viz, 10 hours). The prior probability of failure for each component is calculated on
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Figure 4.3: Bayesian network for Scenario 1.

the basis of it being up for 10 hours. The evidence 
 is declared in the network
(shown as grayed nodes) and then network inference is performed. We then look up
the posterior distribution of � and compute the expected costs of the decisions. These
are shown in Table 4.3(a). The results con�rm our intuitions, viz, the most probable
diagnosis is that nothing is wrong. The optimal decision is to not �x anything.

Consider now a situation where, instead of 10 hours, the system was running for

90 hours when observation 
 was made. In this case, the prior probability of failure
of each component is computed on the basis of it being up for 90 hours. We then
do the diagnosis and compute the expected value of decisions for this situation. The
posterior distributions and expected decision costs are shown in Table 4.3(b). In this
situation, the most probable diagnosis is again that everything is ok, the same as

when 
 was observed after 10 hours. However, the most probable diagnosis is much

less probable. The optimal decision in this situation is to replace the And gate and Or
gate. This is an example of preventive maintenance. The expected costs of replacing
now is lower than deferring the replacement. This is because the probability of failure

is rising to a critical value.

4.2.3 Scenario 2: Modeling persistence

Say the system of Fig 4.2 has been been up for time t1 = 20 hours and the observation

[t1] = hI1 = 0, I2 = 0, I3 = 0, I6 = 1i is recorded. Note that 
[t1] indicates some

problem with the system|if everything was working correctly, the output I6 would
have value 0. Say we compute the posterior probabilities and the optimal decision.

This computation is similar to that of the previous section. The posterior probabilities

and optimal decision are shown in Table 4.4(a). The optimal decision is to �x the
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Failure priors

Comp. Uptime MTBF P (M = broken)

A 10 100 0.0952

O 10 250 0.0392

X 10 350 0.0282

Posterior P (�j
)

A O X

ok ok ok 0:9957

b b ok 0:0043

ok ok b 0:0000

ok b ok 0:0000

ok b b 0:0000

b ok ok 0:0000

b ok b 0:0000

b b b 0:0000

Expected cost

DA DO DX $

dont dont dont 0:0855

�x dont dont 2:0513

dont �x dont 3:0342

dont dont �x 4:0855

�x �x dont 5:0000

�x dont �x 6:0513

dont �x �x 7:0342

�x �x �x 9:0000

(a)

Failure priors

Comp. Uptime MTBF P (M = broken)

A 90 100 0.5934

O 90 250 0.3023

X 90 350 0.2267

Posterior P (�j
)

A O X

ok ok ok 0:6126

b b ok 0:3874

ok ok b 0:0000

ok b ok 0:0000

ok b b 0:0000

b ok ok 0:0000

b ok b 0:0000

b b b 0:0000

Expected cost

DA DO DX $

�x �x dont 5:0000

dont �x dont 6:0995

�x dont dont 6:6493

dont dont dont 7:7488

�x �x �x 9:0000

dont �x �x 10:0995

�x dont �x 10:6493

dont dont �x 11:7488

(b)

Table 4.3: Posterior probabilities and expected costs in Scenario 1: (a) System up 10
hours, 
 observed. (b) System up 90 hours, 
 observed.
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Figure 4.4: Bayesian network for Scenario 2.

XOR gate alone. Say we carry out this decision and then observe (immediately) that
the output I6 changes to 0. Thus, the observed discrepancy is �xed. Now say 20
hours more elapse and at time t2 = 40 hours, we observe 
[t2] = hI1 = 0, I2 = 0,

I3 = 0, I6 = 1i. Note that 
[t1] and 
[t2] have the same values for the input and
output variables.

The situation is represented by the dynamic Bayesian network of Fig 4.4. The
section of the �gure within the boundary marked t1 represents the situation at time
t1. The variable M

0

X [t1] represents the state of the XOR gate immediately after it

is replaced. Note that immediately after replacement, we know that the gate is in
the ok state. This is represented in the Bayesian network as evidence (grayed node).
The variable I

0

6
[t1] represents the output immediately after the replacement action.

As per our scenario, this variable is observed to have value 0.
The section of Fig 4.4 within the boundary marked t2 represents the situation at

time t2. The link between MA[t1] and MA[t2] represents the persistence of the state

of the AND gate. We compute the distribution P (MA[t2]jMA[t1]) using Table 4.1.
When using the table, we set �A = 1

MTBFA
= 1

100
and t2 � t1 = 20. The conditional

distributions P (MO[t2]jMO[t1]) and P (MX [t2]jM
0

X[t1]) are computed similarly. The

anomalous observation at time t2 is also entered as evidence in the Bayesian network

(shown as grayed nodes).
The node �[t2] has 8 states, each of which corresponds to one joint state ofMA[t2],

MX [t2] and MO[t2]. The conditional distribution of �[t2] is quanti�ed as described in

the previous section. The posterior distribution over the states of the system at time

t2 can be computed simply by doing inference in the Bayesian network and looking

up the posterior distribution of �[t2]. The posterior distribution at time t2 and the
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corresponding decision costs are shown in Table 4.4(b). The optimal decision now is

to replace both the XOR and the AND gate.

Super�cially, the situation at time t1 and t2 seem to be quite similar, viz, that (a)

the system has been working for 20 hours since \things were ok" (b) the observation

hI1 = 0, I2 = 0, I3 = 0, I6 = 1i is made. However, the situations are actually quite

di�erent. At time t2 we have to account for the (a) the observations and actions at

time t1 and (b) possible failures of components between time t1 and t2.

The persistence model for the system allows us to incorporate this information

when computing the posterior distribution at time t2. Note that the Bayesian network

inference is implicitly carrying out the computation of P (�[t2] j �[t1]).

4.3 Discussion

Modeling persistence in diagnosis has been of interest both in the model-based diag-
nosis community and in the Bayesian network community. Early work in the model-
based diagnosis community has handled persistence only to the extent of assuming
that in the case of multiple observations, the state of each component stays the same

across all observations. This corresponds, in our framework, to the situation where
multiple observations are made very close in time.

Portinale [Portinale, 1992] addresses the problem of temporal evolution of state
in model-based diagnosis. The evolution is modeled as a discrete time Markov chain.
The state transition matrix is assumed to come from reliability measures of compo-

nents. A uniform initial prior on all possible world states is used. A de�nition of
a temporal diagnosis is proposed that generalizes the de�nition of a diagnosis in a
static system. A method of eliminating very unlikely diagnoses is proposed. Our
approach has a similar motivation, viz, to use models of component failure processes
to model change of system state. However, our approach is signi�cantly more gen-

eral. We show that the problem of speci�cation of priors can be addressed within the
same framework. The priors are computed directly from the time at which diagnosis

takes place and the MTBFs of the components. Our approach also allows modeling

of e�ects of repair actions (as in the example of Section 4.2.3). Time is considered to
be continuous. Finally, rather than eliminating unlikely diagnoses, we compute pos-
terior probabilities over candidates. This is necessary if a decision theoretic scheme

for choosing actions is to be used.

The model of persistence developed in this chapter is closely related to work in
modeling persistence in Bayesian networks. Dean and Kanazawa [Dean and Kanazawa,

1989] propose a modeling framework for persistence and change using temporal prob-
abilistic networks. A Markov assumption is employed. The temporal probabilistic

network is quanti�ed by specifying the conditional probability of each proposition in

the network given the state of the same proposition at the immediately preceding
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Posterior P (�j
)

A O X

ok ok b 0:7558

b ok b 0:1673

ok b b 0:0629

b b b 0:0139

b b ok 0:0000

b ok ok 0:0000

ok b ok 0:0000

ok ok ok 0:0000

Expected cost

DA DO DX $

dont dont �x 6:3728

�x dont �x 6:9226

dont �x �x 8:4502

�x �x �x 9:0000

dont dont dont 16:3728

�x dont dont 16:9226

dont �x dont 18:4502

�x �x dont 19:0000

(a)

Posterior P (�j
)

A O X

ok ok b 0:5712

b ok b 0:2809

ok b b 0:0991

b b b 0:0487

b b ok 0:0000

b ok ok 0:0000

ok b ok 0:0000

ok ok ok 0:0000

Expected cost

DA DO DX $

�x dont �x 7:7743

dont dont �x 8:4117

�x �x �x 9:0000

dont �x �x 9:6374

�x dont dont 17:7743

dont dont dont 18:4117

�x �x dont 19:0000

dont �x dont 19:6374

(b)

Table 4.4: Posterior probabilites and Expected costs for Scenario 2: (a) at time t1
(before repair) (b) at time t2.
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time point and the states of the causes of the proposition at the previous time point.

An exponentially decaying survivor function is proposed to model the probability of

a proposition being true if it was true at the previous time and none of the causes

that make it untrue are active. The survivor function accounts for unmodeled causes

that might change the state of the proposition.

Our model can be viewed as a speci�c instantiation of this general framework.

We assume that the only system state that persists across time is the mode of the

variables and that the failure processes of the components are independent. This

allows us to model persistence of system state by simply modeling the persistence

of each component individually. The persistence model for each component falls

directly out of the physical process of failure postulated by the reliability model.
This persistence model is an exponential decay function.

Dagum et. al.[Dagum et al., 1992] develop a forecasting approach using dynamic
network models. Either an additive or a multiplicative model is used to combine
predictions from current observations and the predictions from historical observations.
The modeling of action (and hence of persistence) in causal probabilistic networks has
been a �eld of active interest [Balke and Pearl, 1994; Darwiche and Goldszmidt, 1994;

Heckerman and Shachter, 1994; Pearl, 1994]. When reasoning about actions which
occur over separated points in time, one also has to account for possible changes
in system state occurring due to unmodeled events. Our work advances a speci�c
method for doing so in the domain of diagnosis of physical systems.

Our method for modeling persistence has been developed assuming that the be-

havior of each component is deterministic, both when it is in the ok state and when
it is in the broken state. This allows us to consider only the mode variables of the
components as the persisting state of the system. This is because the joint state of the
mode variables completely determines the behavior of the system. In the situation
where components are not deterministic1, as a �rst approximation, one might use the
same modeling scheme as the one presented in this chapter. This would mean, in

e�ect, that we assume that each component \resamples" to compute its output in

each observation. Thus, the same component with the same input could possibly have
two di�erent outputs in two observations (if the component were in the broken state).
If this approximation is inaccurate, modeling extensions along the lines suggested by

Darwiche and Goldszmidt can be incorporated.

The work described in this chapter has appeared in [Srinivas, 1995a].

1For example, we might assume that all outputs are equally likely if the component is broken

in the case that no fault model is available.



Chapter 5

Computing Repair Strategies

The goal of doing diagnosis is to recommend cost e�ective repair and maintenance
actions in response to inferences about the state of the system. A repair strategy can be

considered to be a set of situation-action rules. The situations are the various possible
observations and the actions are repair actions in response to these observations. In
this chapter, we investigate methods for computing optimal (i.e., lowest expected
cost) repair strategies.

We �rst extend the diagnosis framework developed thus far to include a formaliza-

tion of the repair problem. In the initial formalization, the only repair actions allowed
are replacement of components. Using this formalization, we develop a general algo-
rithm for computing an optimal repair strategy. However, this general algorithm is
not tractable for large systems. Without any further structure in the problem, we are
forced to consider each possible strategy in a combinatorial space of repair strategies
to compute the optimal strategy.

To address this tractability problem, we introduce a restricted but interesting

formulation of the repair problem. The restriction is on the behavior of the system
modeled|it is assumed that the system will certainly exhibit an anomalous observa-
tion if any component fails. In this restricted formulation, we develop a polynomial

time algorithm to compute the optimal repair strategy when component failures are

independent.
We then extend the formulation to include component inspection (testing). We

also extend the formulation to include hierarchical systems. Using the extended for-
mulation, we develop a linear time algorithm to compute the optimal repair strategy

for a hierarchical system where the possible repair actions include both component

replacement and component inspection.
This chapter is structured as follows. In the next section we describe our for-

malization of the general repair problem. We then develop the general algorithm for
computing the optimal repair strategy. As noted earlier, this algorithm is practical

66
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only for small systems.

In the following section, we introduce our restricted formulation of the repair

problem. We �rst derive a condition for a repair strategy to be optimal in this

formulation. This condition is derived for the general situation where component

failures may be dependent. In the case where component failures are independent,

we show that this optimality condition has a simple form. This simple form allows the

optimal strategy to be computed in polynomial time with a simple sorting procedure.

We then go on to introduce a new class of repair actions, viz, component in-

spections. A component inspection tests whether a component is working or not.

Following this, we introduce a system hierarchy and de�ne the notion of a hierarchi-

cal repair strategy.
The optimality condition mentioned above is then used to develop a linear time

algorithm for computing the optimal hierarchical repair strategy for a hierarchical
system. A hierarchical repair strategy includes both inspection and component re-
placement actions.

In the �nal section of the chapter, we discuss related work and possible extensions
of the results of the chapter to systems with dependent faults.

5.1 A general formulation

Consider a system with n components, any of which may fail. Say we have a system
model (see Section 2.1) for this system. As we have seen earlier, the system model

speci�es a set of discrete-valued inputs I1i , I
2

i , : : : I
k
i and one discrete-valued output

Oi for each component C i. We refer to the vector of variables hI1i , I
2

i , : : : , I
k
i i as

Ii. We will refer to the normal mode of operation of C i as ok and the mode variable
associated with Ci as Mi. We assume that component failures are independent.

The system model speci�es a prior distribution P (Mi) over the possible modes

of each component. The model of operation of the component speci�es the value
of the output of the component given the state of the component and the values

of the inputs. When the component Ci is in the ok state, we will assume that a

deterministic model of operation is available. In other words, given an input state,
exactly one output state is possible. However, for the other states, we will leave open
the possibility that the behavior is non-deterministic. For each of these states, the

user can specify a probability distribution over the output for every possible input

state. Specifying the model of operation of the component amounts to specifying
the distribution P (OijMi; Ii) (with the restriction that P (Oi = oijMi = ok; Ii = ii)

always takes the value 0 or 1 for any oi and ii).
Finally, we assume that the system has a single designated output variable. Hence,

when viewed as a black box, the system has a set of input variables which we will

call the system input variables and one output variable which we will call the system
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Figure 5.1: An example illustrating the general formulation of the repair problem:
(a) the system model (b) the corresponding Bayesian network.

output variable.
Say we are observing the artifact modeled by our system model and that we

observe some anomaly. That is, the system is given some input vector (which we can
observe), and we observe that the value of the system output variable is inconsistent

with the correct operation of the system.
We wish to take actions to repair the system. We will de�ne repairing the system

as correcting the perceived anomalous observation. The actions available to us are
replacement of components. A repair strategy is a sequence in which the components
are replaced. After each successive replacement, we check the output of the system.

We assume the input remains �xed at what it was when the anomaly �rst appeared.
If the output is still anomalous, we continue onwards to replace the next compo-
nent recommended by the strategy. If the output is no longer anomalous, we stop.

Executing each possible repair strategy (i.e., each possible repair sequence) has an
expected cost. The optimal repair strategy is the one with the least expected cost for
a particular system input.

If we compute the optimal strategy for each possible system input value, we de-

termine the optimal repair plan for the system. The optimal repair plan is a set of
situation{action rules. If a system has anomalous behavior, the optimal repair plan

gives us a repair strategy to use as a function of the input. We will now develop an
algorithm to compute optimal strategies and the overall optimal repair plan.

5.1.1 Computing the optimal repair plan

Consider a system which has a vector of input variables I. Let the system output

variable be X. Let us assume that the system has been given an input i. Further,
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we assume that the correct system output for this input is x(i) and we have observed

that the output X has some value other than the correct output1.

Consider a repair strategy T = hC1; C2; : : : ; Cni. T is a sequence describing the

order in which components will be replaced. We now develop an expression for the

expected cost of T . We will refer to the action of replacing Ci as fixi. In addition,

we will refer to the system output X after replacement of the i-th component in the

sequence as Xi. Note in particular that the variable X0 denotes the value of X before

replacement of any component. Let Sj be the sequence of observations and actions

up to and including the replacement of Cj . That is: Sj = hI = i, X0 = :x(i), fix1,
X1 = :x(i), fix2, X2 = :x(i), : : : , fixj�1, Xj�1 = :x(i), fixji. The expected cost

of T is given by:

EC(T jI = i;X = :x(i)) = (5.1)

(c1 +

P (X1 = :x(i)jS1)(c2 +

P (X2 = :x(i)jS2)(c3 +

: : :

P (Xj = :x(i)jSj)(cj+1

: : :

P (Xn�1 = :x(i)jSn�1)cn : : :) : : :)))

To determine the expected cost as described in Equation 5.1, we need to compute the

conditional probabilities P (Xj = :x(i)jSj), 1 � j < n.
We explain how these probabilities can be computed using the example introduced

in Chapter 1. Consider the electronic circuit displayed in Fig 5.1(a). This system

model for this circuit can be translated into a Bayesian network as in Fig 5.1(b) (see
Chapter 2).

Consider the repair sequence T = hAND;XOR;ORi. The network of Fig 5.2
represents the situation after the AND gate has been replaced. The modes of the

XOR and OR gates are una�ected by this replacement and have the same value both
before and after the repair action. The arcs between the copies of the static network

in Fig 5.2 model this persistence.
The probability P (X1 = :x(i)jS1) can be computed by declaring the evidence S1

in the network, propagating it and then looking up the posterior belief of the event

X1 = :x(i) in node X1. The evidence S1 consists of: (a) The known state of the

1Note that we can determine the correct system output by simply simulating the system forward

from the input i while assuming that each of the components Ci are in the ok state.
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Figure 5.2: Representation of the situation after replacing the AND gate. Arcs
between copies of the static network represent persistence of state.

input both before and after the repair action. (b) The output X0 (which has the
value :x(i)) and (c) the state of the AND gate after repair (M

0

AND = ok). The
corresponding nodes are shown shaded gray in the �gure.

We will now describe a method for making this computation without explicitly

constructing a dynamic Bayesian network. We note that there are active paths [Pearl,
1988] to node X1 from node X0 through the nodes MXOR and MOR. Hence, the
computation of the posterior of X1 will necessarily have to consider cases for every
possible joint state2 of the variablesMXOR andMOR. The computation can be written
as follows:

P (X1 = :x(i)jS1) = (5.2)

�mXOR;mOR
P (X1 = :x(i)jI = i;M

0

AND = ok;MXOR = mXOR;MOR = mOR)

P (MXOR = mXOR;MOR = mORjI = i;X0 = :x(i))

In the above equation, mXOR and mOR represent generic states of MXOR and MOR

respectively. Hence, the summation in the equation iterates over all possible joint

states of MXOR and MOR. The equation also accounts for the fact that knowing the

state of MXOR and MOR makes X1 conditionally independent of X0.
Assume that we have access to the probability distribution P (MXOR;MORjI =

i;X0 = :x(i)) (i.e., the second term of Equation 5.2). We will see how this distribu-
tion is computed with an iterative scheme later.

We note that the probabilities needed for the �rst term of the equation, P (X1 =
:x(i)jI = i;M

0

AND = ok;MXOR = mXOR;MOR = mOR), can be computed directly

2A joint state of a set of discrete random variables assigns a value to each of the variables in the

set.
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Figure 5.3: Situation after replacing the XOR gate.

from the static Bayesian network of Fig 5.1(b). This is so because knowing the states
ofMXOR andMOR makes the post-repair network fragment (shown within the dotted
lines in Fig 5.2) independent of the rest of the network. The post-repair network
fragment is identical to the static Bayesian network. Thus, the required probability

can be computed by (a) declaring the evidenceMAND = ok,MXOR = mXOR,MOR =
mOR, I = i in the static network, and (b) propagating the evidence and looking up
the posterior of the event X = :x(i) in node X.

Now, let us consider the replacement of the next component speci�ed by the repair
strategy, i.e., the XOR gate. The situation is shown in Fig 5.3. By analogy with the

previous situation, we can compute P (X2 = :x(i)jS2) as:

P (X2 = :x(i)jS2) = (5.3)

�mOR
P (X2 = :x(i)jI = i;M

0

XOR = ok;M
0

AND = ok;MOR = mOR)

P (MOR = mORjI = i;X0 = :x(i);M
0

AND = ok;X1 = :x(i))

Here, again, the probabilities for the �rst term in the equation can be directly com-

puted from the system model. We will now see how the probabilities for the second
term can be computed from the computations of the previous repair step (i.e., Equa-
tion 5.2). Note that the product within the summation of Equation 5.2 is equal

to:

P (X1 = :x(i);MXOR = mXOR;MOR = mORjI = i;X0 = :x(i);M
0

AND = ok)

If we normalize the above quantity over all joint states of MXOR and MOR, we obtain

the distribution:

P (MXOR = mXOR;MOR = mORjI = i;X0 = :x(i);M
0

AND = ok;X1 = :x(i)) (5:4)
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Now, we consider the action of replacing the XOR gate. This does not a�ect our esti-

mate of what state the OR gate is in, i.e., it has no a�ect on the posterior probability

distribution ofMOR given the current state of information. This posterior probability

is:

P (MOR = mORjI = i;X0 = :x(i);M
0

AND = ok;X1 = :x(i))

This posterior distribution can be computed by simply summing the distribution of

Equation 5.4 over all states of MXOR. Note that this distribution is the second term

of Equation 5.3. Hence we can now compute P (X2 = :x(i)jS2) using Equation 5.3.

This example can be generalized to yield a simple iterative scheme for computing

P (Xj = :x(i)jSj) for 1 � j < n, given a repair sequence T . The basic idea is the
following: All the information coming from the �rst j � 1 observations and repair
actions is summarized by the posterior probability distribution over the joint states

of the components which have not yet been �xed (i.e., Cj through Cn). This posterior
probability is used iteratively to perform the following calculations:

For j = 1 to n:

1. Compute the probability of an anomaly after the j-th �x action (i.e.,

P (Xj = :x(i)jSj)).

2. Compute the new updated posterior, accounting for the j-th action.
Note that this posterior is over the joint states of Cj+1 through Cn.

To begin the iteration, we need to have the posterior over all joint states of all the
components given that no observation and repair actions have been performed. Note
that this posterior probability is just the prior probability over the joint states of the
components. Since components fail independently, this distribution is the product of
the marginal distributions over the modes of each component.

In general, when computing P (Xj = :x(i)jSj) we note that there is an active path
in the corresponding dynamic Bayesian network from the observed node Xj�1 to the
target node Xj through the mode variable of each un�xed component (i.e., there are
active paths through Mj+1, Mj+2, : : : , Mn). As a result, a cutset for the network

necessarily includes each of these variables. This implies that an inference algorithm

computing P (Xj = :x(i)jSj) will necessarily have to condition on each joint state of
the modes of the un�xed components. Thus, our iterative scheme can be considered

as carrying forward the posterior over the cutset nodes. In this sense, the scheme is
optimal for computing the probabilities P (Xj = :x(i)jSj).

Computing the best strategy

We now have the probabilities required in the right hand side of Equation 5.1, enabling
us to compute the expected cost EC(T jI = i;X = :x(i)), given a strategy T and
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a system input I = i. Identifying the best strategy can be done by checking the

expected cost of all strategies. Computing the best strategy can be done in O(n!SM )

where n is the number of components and SM is the joint space size of the mode

variables of all the components. SM is exponential in n.

If we wish to go on to compute the optimal repair plan, we must compute the

best possible strategy for every possible input value to the system. Let the joint

space size of the inputs to the system be SI . The overall complexity of computing

the optimal strategy for every possible input to the system is then O(n!� SM � SI).

Computing the optimal repair plan with the algorithm described above is impractical

for large systems. We now introduce a restricted formulation of the repair problem

which allows the optimal repair plan to be computed tractably.

5.2 The restricted formulation

Consider a system with n components Ci, 1 � i � n, for which we want to develop
good repair strategies. Say each component can be either be in an ok state (ok) or

broken state (b). The state of C i is represented by a mode variable Mi. Component
failures may be dependent. The prior over component failures is speci�ed by some
joint distribution P (M1;M2; : : : ;Mn) of the mode variables. In addition, we are given
a repair cost ci for each component Ci. After a component is repaired, we assume
that it is in the ok state. The cost ci can also be interpreted as the cost of replacing

Ci.
The restriction on the system behavior is as follows: We assume that the system

works normally only if all the components are in the ok state. If any of the components
are in the b state, the system exhibits a fault. In terms of the general formulation,
this means that for every possible input, the system exhibits an anomalous output

if any of the components is faulty. The output is not anomalous if and only if all

the components are working normally. We assume that the system status (denoted
by X) is observable. If X = ok, then it means the system is working normally. If
X = b, it means the system is broken (i.e., exhibiting a fault).

The repair protocol is as follows|we will observe the system status X0 before we

choose any �x action. If X0 = ok we stop. If X0 = b, then we choose to �x some

component C1 and then observe the system status X1. IfX1 = ok we stop. If X1 = b,

we continue, choosing some other component C2 to �x and so on. As before, we will
refer to the action of �xing Cj as fixj. A repair strategy is a sequence in which to

replace components in the repair protocol described above.
Consider a strategy T = hC1; C2; C3; : : : ; Cni. Say that the �rst k components have

been repaired according to strategy T . We will refer to the sequence of observations

and actions up to this point as Sk. Hence, Sk = hX0 = b; fix1;X1 = b; fix2;X2 =
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b; : : : ; fixk�1;Xk�1 = b; fixki
3.

After performing fixk, say we �nd that the system is still faulty, i.e., Xk = b.

This event occurs with probability P (Xk = bjSk). When this event occurs, we go on

to perform the action fixk+1 incurring cost ck+1.

We can thus compute the expected cost EC(T ) of the strategy T as:

EC(T ) = P (X0 = b)[c1 + (5.5)

P (X1 = bjS1)[c2 +

P (X2 = bjS2)[c3 +

: : :

P (Xm�1 = bjSm�1)[cm

P (Xm = bjSm)[cm+1

: : :

+P (Xn�1 = bjSn�1)cn : : :] : : :]]]

We will now simplify the above equation. We note that the following identity is
true:

P (Xk = bjSk)P (Xk�1 = bjSk�1)

= P (Xk = bjfixk;Xk�1 = b; Sk�1)P (Xk�1 = bjSk�1)

= P (Xk = bjfixk;Xk�1 = b; Sk�1)P (Xk�1 = bjSk�1; fixk)

= P (Xk = b;Xk�1 = bjfixk; Sk�1) (5.6)

The second step of the derivation above follows because fixk occurs in the future,

after Xk�1 is observed. Thus, the distribution of Xk�1 is not dependent on the action

fixk. By the same argument, we derive:

P (Xk = bjSk)P (Xk�1 = bjSk�1)P (Xk�2 = bjSk�2)

= P (Xk = b;Xk�1 = b;Xk�2 = bjfixk; fixk�1; Sk�2) (5.7)

We de�ne the notation fix[i;j] to refer to the sequence hfixi; fixi+1; : : : ; fixji. Sim-

ilarly, X[i;j] = b refers to the event hXi = b;Xi+1 = b; : : : ;Xj = bi. Using the
argument described above repeatedly, we derive:

f�0�i�k P (Xi = bjSi)g = P (X[0;k] = bjfix[1;k]) (5:8)

3Note that S0 refers to the empty sequence of observations and actions (i.e., no observations and

no �x actions).
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The above equation allows us to simplify Equation 5.5 to:

EC(T ) = �0�k�n�1 ck+1 � P (X[0;k] = bjfix[1;k]) (5:9)

We now derive an expression for P (X[0;k] = bjfix[1;k]) from �rst principles. Let

a world be a state assignment to all the mode variables of the system. Given that

fix[1;k] have been performed, consider the worlds that are inconsistent with X[0;k] = b

being observed. A world w is inconsistent withX[0;k] = b i� the observation X[0;k] = b

could not have occurred if the true state of the system was w.

We see that the worlds inconsistent with X[0;k] = b are exactly those worlds ŵ

in which all the components which have not yet been �xed (i.e., Ck+1 through Cn)
are in the ok state. The reason is as follows. If any of the worlds ŵ had been
the true situation, then we know that the broken components are some subset of

fCij1 � i � kg. Hence, the repair sequence fix[1;k] would necessarily have resulted in
Xj = ok for some j � k (when all the broken components were �xed). Since such an
observation is inconsistent with X[0;k] = b, we conclude that ŵ is inconsistent with
X[0;k] = b.

By a similar line of argument, we can conclude that any world in which at least

one of the remaining un�xed components is broken is consistent with X[0;k] = b. The
total probability mass of the worlds in which all of Ck+1, Ck+2, : : : , Cn are in the ok
state is P (Mk+1 = ok;Mk+2 = ok; : : : ;Mn = ok). Hence P (X[0;k] = bjfix[1;k]) =
1�P (Mk+1 = ok;Mk+2 = ok; : : : ;Mn = ok). We will use the notationM[i;j] = ok as
a short form for hMi = ok;Mi+1 = ok; : : : ;Mj = oki. Hence, Equation 5.9 simpli�es

to:

EC(T ) = �0�k�n�1 ck+1 � [1� P (M[k+1;n] = ok)]

= �1�k�n ck � [1� P (M[k;n] = ok)] (5.10)

5.3 The optimality condition

We will now derive a condition under which a strategy is optimal (i.e., has the lowest
possible expected cost).

Consider a strategy T j = hC1, C2, : : : , Cj, Cj+1, : : : , Cni. Let T
j+1 be identical to

T j except that the positions of the Cj and Cj+1 are transposed in the sequence. We

compare the expected costs of T j and T j+1. We have:

EC(T j)� EC(T j+1) = (5.11)

(cj[1� P (M[j;n] = ok)] +

cj+1[1� P (M[j+1;n] = ok)])

�(cj+1[1� P (M[j;n] = ok)] +
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cj[1� P (Mj = ok;M[j+2;n] = ok)])

Strategy T j is less expensive that T j+1 if EC(T j) � EC(T j+1) � 0. Let us use the

notation Rok for the event M[j+2;n] = ok. Simplifying Equation 5.11, the condition

EC(T j)� EC(T j+1) � 0 simpli�es to:

cj [P (Mj = ok; Rok)� P (Mj = ok;Mj+1 = ok; Rok)]

� cj+1[P (Mj+1 = ok; Rok)� P (Mj+1 = ok;Mj = ok; Rok)] (5.12)

Thus, given a distribution P (M1;M2; : : : ;Mn) and a strategy T , we can check whether
the strategy is a (local) optimumby checking whether Equation 5.12 holds for adjacent
components in the strategy. If the condition does hold for every pair of adjacent

components, the strategy is a local optimum. That is, exchanging the order of any
two adjacent components in the strategy will always lead to a strategy with increased
cost. Note that computation of the probabilities needed in Equation 5.12 from the
joint distribution P (M1;M2; : : : ;Mn) can be expensive. We will see, however, that
the optimality condition takes a simple form when the failures of the components are

independent.

5.3.1 A sanity check: The single fault case

We have derived the above condition assuming a general distribution P (M1, M2, : : : ,
Mn). We now show that if we enforce a single fault assumption, Equation 5.12 reduces
to the optimality condition of [Kalagnanam and Henrion, 1990] (see Section 5.7).
They prove that in the case of a single fault, the optimal strategy replaces components

in increasing order of the ratio ci
pi
where ci is the cost of replacement of Ci and pi is

the prior probability that Ci is faulty.
Consider a single fault distribution. There are only n possible worlds. Let these

worlds be w1, w2, : : :wn. wi is the world in which Mi is in the b state and all the

other Mj (i.e., j 6= i) are in the ok state. Let the probability of world wi be pi. That

is, the probability that Ci is the (only) faulty component is pi.

Consider the probability P (Mj = ok; Rok) in Equation 5.12. The worlds consis-

tent with hMj = ok; Roki are w1; w2; : : : ; wj�1 and wj+1. Hence P (Mj = ok; Rok) =
(�[1�i�j�1]pi) + pj+1. Let us refer to the quantity (�[1�i�j�1]pi) as pprev. We have:

P (Mj = ok; Rok) = pprev + pj+1

Using a similar line of reasoning:
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P (Mj = ok;Mj+1 = ok; Rok) = pprev

Hence the left hand side of Equation 5.12 reduces to cj [(pprev+pj+1)�pprev] = cjpj+1.

Symmetrically, the right hand side reduces to cj+1pj. This simpli�es Equation 5.12

to the result in [Kalagnanam and Henrion, 1990]:

cj

pj
�

cj+1

pj+1

In this special case, a strategy which satis�es the condition for every pair of adjacent

components is globally optimal.

5.4 Independent faults

Say that each component Ci can fail independently with probability pi. That is,
P (Mi = b) = pi. We derive a simpli�cation of the optimality condition (Equa-
tion 5.12) for this case.

Consider the �rst term of Equation 5.12. In this special case of multiple inde-
pendent faults we have P (Mj = ok; Rok) = P (Mj = ok)P (Rok) = (1 � pj)P (Rok).
Similarly P (Mj = ok;Mj+1 = ok; Rok) = (1�pj )(1�pj+1)P (Rok). The �rst term of
Equation 5.12 hence becomes P (Rok)cj[(1�pj)pj+1]. Symmetrically, the second term
of Equation 5.12 becomes P (Rok)cj+1[(1� pj+1)pj ]. Hence Equation 5.12 reduces to:

cj
1� pj

pj
� cj+1

1 � pj+1

pj+1

(5:13)

From this result we note that we can compute the globally optimal strategy by sorting
the components Ci by the quantity (ci

1�pi
pi

). For an n component system, this can be

done in O(n log n).
We get an expression for the expected cost of any strategy (including the optimal

strategy) by simplifying Equation 5.10 for the case of multiple independent faults.

This gives:

EC(T ) = �1�k�n ck � [1��k�i�n(1 � pi)] (5:14)

5.5 Introducing component inspection

In the discussion thus far, we have assumed that the only kind of action that is allowed

is the replacement of a component. We now introduce the notion of inspecting a

component. Inspection of a component Ci determines what state it is in. Hence, if

we inspect Ci and �nd that it is in the ok state, we do not have to take any further
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action to �x the component. Carrying out the inspection of Ci costs di. This cost is
speci�ed by the user. We note that di � ci. If this was not the case, there would be

no incentive to inspect the component|we could always replace it at less cost.

Now say that Ci has been inspected and found to be broken. In that case, we

will assume the component can be refurbished and restored to normal operation by

incurring cost Hi. Note that refurbishment is a new kind of action and is di�erent

from outright replacement of the component. The costHi of refurbishment is speci�ed

by the user. Note that Hi � ci. If this was not the case, we would always replace the

component rather than refurbish it.

As an example, say a particular component Ci of a system is a motor. Say the

cost of a new motor is $10. Thus we have ci = $10. Say we can inspect the motor
(perhaps by disconnecting it and applying voltage to it directly). Say the cost of this

procedure is $4. Thus di = $4. If the motor is indeed found to be not working after
inspection, say it can be refurbished by replacing the winding for a cost of $8. In this
case, Hi = $8. Note that the actual choice of repair action for the motor depends on
our estimate of the posterior probability of failure of the motor at the point at which
we decide to take action. If the probability of failure of the motor is high, then it

may be cheaper to simply replace it without inspection. However, if the probability is
small, inspection followed by possible refurbishment may be cheaper since inspection
may often reveal that the motor is working normally, in which case no refurbishment
cost needs to be incurred.

In this extended formulation of the repair problem, a repair strategy speci�es an

order in which to repair the components (as before). In addition, for each component
it also speci�es whether the component is to be inspected and then refurbished or
simply replaced. An optimal strategy is the strategy with least expected cost. Later,
when we introduce hierarchy, we will see that the \refurbishment" of a component is
realized by an optimal repair strategy applied to its subcomponents.

We now turn to the problem of computing an optimal repair strategy in this ex-

tended formulation. Consider a strategy Tm
ins = h [C1; rep], [C2; rep], : : : , [Cm; ins], : : : ,

[Cn; rep] i. The notation ins says that the associated component is to be inspected.
The notation rep says that the associated component is to be simply replaced with-
out inspection. Note that Tm

ins speci�es that all components except Cm be replaced

without inspection. Cm alone is inspected before it is repaired. We now compute the

expected cost of strategy Tm
ins.

The cost of Tm
ins can be computed by simply replacing cm in Equation 5.5 by

dm +HmP (Mm = bj
). That is, instead of the replacement cost cm, we have to pay
the inspection cost dm. In addition, if component Cm is indeed broken, we have to

pay cost Hm. The probability that we will �nd that m is broken after inspection is

P (Mm = bj
) where 
 is the current state of information. 
 includes all actions and
observations up to the replacement of Cm�1 and the subsequent observation that the
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system is still not functioning (i.e., Xm�1 = b). Hence 
 = hSm�1;Xm�1 = bi.
Simplifying Equation 5.5 using the same technique that was used to derive Equa-

tion 5.9 gives us:

EC(Tm
ins) =

h
�0�j<m�1 cj+1 � P (X[0;j] = bjfix[1;j])

i
(5.15)

+dmP (X[0;m�1] = bjfix[1;m�1])

+
h
�m�j�n�1 cj+1 � P (X[0;j] = bjfix[1;j]))

i
+HmP (Mm = bjSm�1;Xm�1 = b)P (X[0;m�1] = bjfix[1;m�1])

We now simplify the last term in the above equation. By the de�nition of Sm�1, we
have 
 = hSm�1;Xm�1 = bi = hX[0;m�1] = b; fix[1;m�1]i. Hence, the last term in the
above equation simpli�es to HmP (Mm = b;X[0;m�1] = bjfix[1;m�1]).

Consider the probability P (Mm = b;X[0;m�1] = bjfix[1;m�1]). We saw before
that when the actions fix[1;j] have been carried out, the worlds inconsistent with

X[0;m�1] = b are those worlds in which the remaining unrepaired components, Cm,
Cm+1, : : : , Cn are all in the ok state. Note that Mm = b (i.e., Cm is in the broken (b)
state) is inconsistent with all of these worlds. Hence, the set of worlds consistent with
Mm = b (call the set W1) is a subset of the set of worlds consistent with X[0;m�1] = b

(call this set W2). As a result, we have:

P (Mm = b;X[0;m] = bjfix[1;j]) = P (W1 \W2)

= P (W1)

= P (Mm = b)

Hence, the trailing term in Equation 5.15 reduces to HmP (Mm = b). Note that this

term is not dependent on the position of Cm in the repair sequence.

In general, if we are given a strategy TP where some subset P of the components
are inspected, we can come up with an expression for the cost as follows. Start with

the expression for the case where every element in the strategy TP is assumed to be
replaced without inspection (i.e., start with Equation 5.9). In this expression, replace

cj by dj for each component j which is in P . For each such component j, also add a

trailing constant term HjP (Mj = b).
We now consider how we might compute an optimal strategy given a subset of

components P to be inspected. We will assume that the component failures are in-

dependent. We note that given any strategy TP which inspects just the components

in P , the expression for the cost consists of two parts. One part is similar to Equa-

tion 5.9. The other part consists of constant terms of the type HjP (Mj = b) where
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j 2 P . The latter part is una�ected by the order in which the components appear in

strategy TP .

Therefore, to �nd the optimal strategy Tmin
P , we have to only minimize the �rst

part of the cost expression. Since the component failures are independent, we can

directly apply Equation 5.13 to �nd the optimal sequence in which to repair the

components. The optimal sequence satis�es:

cdj
1� pj

pj
� cdj+1

1� pj+1

pj+1

(5:16)

where:

cdj =

(
dj if j 2 P

cj if j 62 P

Given the optimal strategy Tmin
P , the optimal repair cost can be computed as:

EC(Tmin
P ) = (5.17)

�1�k�n cdk � [1��k�i�n(1 � pi)]

+�C i2P HiP (Mi = b)

Thus, given a subset P of components which are to be inspected, we can compute an
optimal strategy and its cost in O(n log n).

5.5.1 The globally optimal strategy

Say we consider every possible subset P of the set of components and compute Tmin
P .

The cheapest of all these strategies is necessarily the globally optimal strategy T opt.
Thus, if there are n components, we can compute T opt in O((n log n)2n). This, of
course, is practical only when n is small. However, our intent is to use this result for

computing optimal strategies for hierarchical systems. As we shall see below, in that

context, n is indeed small.

5.5.2 The conditional expected cost of repair

Note that the expected cost EC in Equation 5.17 is the overall expected cost. This

cost is computed assuming that no observations have been made of the system as yet.

In particular, it is not yet known whether the system is faulty.
Consider instead the expected cost given that we know the system is faulty when

we begin repair. This expected cost estimate will be needed later when computing
optimal hierarchical repair strategies. For any strategy T , let ECf(T ) denote the

expected cost of repair given that we know the system is faulty. Note that the

observation \System is faulty" is exactly hX0 = bi. We see that EC(T ) and ECf(T )
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Figure 5.4: Computing hierarchical repair plans: An example of a hierarchical system
model.

are related as follows:

EC(T ) = P (X0 = b)� ECf(T ) + P (X0 = ok)� 0

Hence:

ECf(T ) =
EC(T )

P (X0 = b)
(5.18)

=
EC(T )

1 � P (M[1;n] = ok)

Note that for any strategy T , ECf (T ) and EC(T ) are related by the constant
1

1�P (M[1;n]=ok)
. Thus, the strategy T opt with the lowest possible value of EC is also

the strategy with the lowest value of ECf .

5.6 Hierarchical repair

We now extend the restricted formulation of the repair problem to include hierarchi-
cal systems. As we have seen in Chapter 2, hierarchies are ubiquitous in engineering

practice. Chapter 2 developed a method to exploit hierarchy when performing diag-

nosis. In this section, we examine how hierarchy is exploited when computing optimal

repair strategies.
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A hierarchical component model consists either of an atomic model or a subcom-

ponent model. If the component C is modeled atomically, we specify a probability of

failure of the component p, a cost of replacement c and a cost of inspection d. If the

component C is modeled as consisting of subcomponents, we do the following:

1. Specify hierarchical models (recursively) for each of the subcomponents Csi of
C.

2. Specify a cost of replacement c of C and an inspection cost d.

We assume that a component works normally i� all its subcomponents are working
normally4. In other words, a component is in the ok state i� all its subcomponents

are in the ok state. If any of the subcomponents are in the broken state, the compo-
nent is assumed to be in the broken state. Note that the probability of failure of the
component can easily be computed from the subcomponent probabilities. Also, note
that the top level component in the hierarchy represents the entire system. A hier-
archical system model is simply the hierarchical component model for this top level

component. Figure 5.4 is an example of a hierarchical system model. The tree in the
�gure represents the hierarchy tree of the system. Each node represents a component.
The replacement cost and inspection cost of each component are marked next to it.
In addition, the prior probability of failure for each of the leaf level components is
also speci�ed. Note that the prior probability of failure of the non-leaf components

in the hierarchy tree can be computed from the probabilities at the leaves.
We now de�ne a hierarchical repair plan. A hierarchical repair plan for a com-

ponent speci�es an action that will repair a component if it has been observed and
found to be broken. The action speci�ed is either:

� Replacement of the entire component.

or

� A strategy for repair of the subcomponents. As we saw before, a strategy

speci�es an order in which to repair the subcomponents. In addition, it speci�es
whether each subcomponent is to be inspected before repair or not.

If a strategy speci�es that a subcomponent is not to be inspected before repair, it is

simply replaced. If a strategy speci�es that the subcomponent is to be inspected, then
the inspection procedure of the subcomponent is carried out before it is repaired. If

the result of the inspection is that the subcomponent is ok, then the subcomponent

needs no further attention.

4This corresponds to a speci�c choice of the abstraction function de�ned in Chapter 2.
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Figure 5.5: An (optimal) hierarchical system repair plan.

If the result of the inspection is that the subcomponent is broken, then the sub-
component is repaired according to a hierarchical repair plan speci�ed for the sub-
component. A hierarchical repair plan for a component thus includes the speci�cation
of a hierarchical repair plan for each of the subcomponents that are inspected by the
plan.

Figure 5.5 is a possible hierarchical repair plan for the system. This plan speci�es
that if the system A is known to be faulty we �rst repair E after inspection and then,
if A is still faulty, replace B without inspection.

The repair of E proceeds as follows: If E is found to be faulty after inspection we
�rst repair F after inspection and then, if E is still faulty, replace I without inspection.

If F is found to be faulty after inspection, we �rst repair H after inspection and then,

if F is still faulty, replace G without inspection. If H is found to be faulty after
inspection, it is replaced.

An optimal hierarchical repair plan for a component is the hierarchical repair

plan with least expected cost. An optimal hierarchical system repair plan is simply

the optimal hierarchical component repair plan for the top level component in the

hierarchy tree. The repair plan shown in Figure 5.5 is also the optimal repair plan

for the system.

5.6.1 Computing the optimal hierarchical plan

We will now describe a way of computing the optimal hierarchical repair plan for

a component from the optimal hierarchical repair plans of its subcomponents. This
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procedure can then be used in a bottom-up traversal of the hierarchy tree to compute

the optimal hierarchical system repair plan.

Say component C has k subcomponents Cs
1
, Cs

2
, : : : , Csk. The replacement cost of

the component is c. Say the optimal hierarchical plan for each subcomponent Csi has
already been computed and the cost of the plan is Hs

i .

We �rst compute an optimal strategy T opt in which to �x the subcomponents

Csi . As we saw in Section 5.5.1, the optimal strategy T opt and its cost EC(T opt)

can be computed in O((k log k)2k). The computation takes into account the optimal

hierarchical repair cost Hs
i , the inspection cost dsi and the replacement cost csi for

each of the subcomponents Csi .
The cost estimate EC(T opt) is the cost estimate for repairing C given no evidence.

Consider the situation where C has been inspected and found to be broken. In this

case, the cost estimate needs to be conditioned on this knowledge. As we saw in
Section 5.5.2, the conditional cost estimate ECf(T opt) is given by:

ECf(T opt) =
EC(T opt)

1� P (M[1;n] = ok)

=
EC(T opt)

1��1�i�n(1� psi )

The optimal hierarchical plan speci�es the optimal repair action (and accompa-
nying cost) for a component given that it is broken. The two possible actions are:
(a) replacement of the component and (b) repair of subcomponents. We can choose

the better of the two options by simply comparing the replacement cost c and the
optimal cost ECf (T opt) of repairing subcomponents.

If c � ECf(T opt), then the optimal hierarchical repair plan for the component C
is to simply replace it if it has been found to be broken. The cost of the optimal
hierarchical component repair plan in this case is c. If we �nd that ECf(T opt) > c,

then the optimal hierarchical repair plan is to follow strategy T opt. The cost of the

hierarchical component repair plan for component C in this case is ECf(T opt).
We note that we can compute the optimal hierarchical system repair plan by work-

ing up from the leaves of the hierarchy tree while computing the optimal component

repair plan for each component. Say each component in the system can have at most

k subcomponents. Let us suppose the system has n leaf level components in all. A
tree with a branching factor of k with n leaf nodes has O(n) nodes in the tree (in-

cluding leaf nodes). So the complexity of computing the optimal hierarchical repair
plan is O(n(k log k)2k). Hence, for a �xed k, the optimal hierarchical repair plan can

be computed in O(n).

We have implemented the algorithm in Common Lisp. For testing purposes, we

have also implemented a random system generator that creates a system hierarchy
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d

k 3 4 5

3 17 50 117

4 83 233 833

5 167 934 4750

k : Branching Factor, d : Tree Depth

Run time in milliseconds on a Sun 10/40.

Table 5.1: Running time of optimal hierarchical repair plan algorithm.

with a user speci�ed branching factor and a user speci�ed tree depth. The repair costs,
inspection costs and failure probabilities are chosen randomly from user speci�ed
intervals. The times taken to compute optimal repair strategies for systems of various

sizes are shown in Table 5.1. The optimal policy for a system with a branching factor
of 5 and a tree depth of 5 (i.e., with 3125 leaf level components) can be computed
in about 5 seconds. Thus, the algorithm scales well to systems with thousands of
components.

5.7 Discussion

In a general formulation of the repair problem, the pre-computation of an optimal
repair strategy is intractable. The reason is that in a general formulation, there are
no restrictions on the kind of system modeled. Since there is no special structure that
we can take advantage of, we are reduced to considering each possible strategy in a

combinatorial space of repair strategies to compute the optimal strategy.

There are two classes of approaches used to address this tractability problem.
The �rst is to make some restricted formulation of the repair problem which is still
applicable in some domain of interest. The properties of the restricted formulation can

then be exploited to develop tractable algorithms to compute repair strategies with

provable properties. Our work falls into this class. In the second class of approaches,

the diagnosis/repair problem is formulated as an interactive process. At each stage of

the process, an action that is to be carried out immediately is chosen with a greedy
heuristic or limited lookahead. The chosen action is then carried out, and this leads

to new information being obtained. This information is used to compute the next
action to be carried out.

In [Kalagnanam and Henrion, 1990], the authors derive an optimality condition

for the optimal repair strategy in a multi-component system which is assumed to
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have a single fault. The repair protocol is similar to ours with the exception that only

component replacements are allowed. There is no notion of inspection of components.

Our work generalizes their result to the case of multiple independent failures. It

also introduces a formulation of component inspection and extends the scope of the

algorithm to hierarchical systems.

Repair is formulated as an interactive process in [Heckerman et al., 1995a]. The

system is modeled with a Bayesian network and both component replacement and

information gathering actions are possible. An action is chosen at each step of the

process with a myopic heuristic. The heuristic computes the least cost action to take

next assuming that the current fault in the system is a single fault. The restricted

system behavior we have proposed corresponds to a restriction on the form of the
Bayesian network in their framework. When no component inspections are allowed,

we have developed a polynomial time algorithm for computing the optimal strategy.
This algorithm is thus a tractable solution to a special case of the problem attacked
by [Heckerman et al., 1995a].

The optimality result of Equation 5.13 is potentially applicable within their frame-
work as an improved heuristic for choosing actions myopically. Instead of assuming

a single fault, the improved heuristic would allow for multiple faults.
The work in the model-based diagnosis community has also addressed the repair

problem as an interactive process. [de Kleer and Williams, 1987] introduce an en-
tropy based method for observation planning. [Friedrich and Nejdl, 1992] develop
a set of greedy algorithms for choosing observation and repair actions in interactive

model-based diagnosis. Their approach explicitly considers downtime costs in case
of unanticipated failure. Hence, their repair scheme implicitly includes a notion of
preventive maintenance. [Poole and Provan, 1991] use repair actions to partition the
world into a set of classes. All the worlds in a class result in the same action response.
The diagnosis problem now becomes one of determining which class the current state
of the system falls into. The action response can then be looked up. [Sun and Weld,

1993] develop a system that uses partial order planning to generate repair plans. Re-

pair plans include both component replacement and information gathering tests. The
cost of each repair action is computed with a n-step lookahead. [Yuan, 1993] proposes
a decision theoretic framework for modeling interactive model-based diagnosis. At

each step of the diagnosis, a decision model in the form of an in
uence diagram is

synthesized and solved to compute the next action. The model is successively re�ned
along the system hierarchy using a single fault assumption until the fault is located.

The results of this chapter appear in [Srinivas, 1995b]. This work has been gener-
alized in [Srinivas and Horvitz, 1995]. The latter paper directly extends the general

formulation of repair introduced in Section 5.1 to hierarchical systems. A linear time

algorithm for pre-computation of an optimal repair strategy is developed. A particu-
lar repair protocol is assumed: Repair begins when the system exhibits an anomalous
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output for some input. The repair process consists of successively repairing com-

ponents of the system until the output is no longer anomalous for the same input.

The hierarchy is exploited to gain tractability when computing the optimal repair

strategy. The algorithm is tractable if the branching factor of the system hierarchy

is small. The hierarchical algorithm we have developed in this chapter addresses a

special case of this general formulation. The constant in the linear time algorithm for

this special case is far smaller than the constant in the general formulation.

5.7.1 Dependent faults

In this chapter, we have concentrated on the situation where component failures are
independent. Note however that the optimality condition (Equation 5.12) applies in

the general case where the component failures may be dependent.
Consider the situation where a model for the dependencies between the failures of

the components is available in the form of a Bayesian network B. Thus, B is a model
for P (M1,M2, : : : , Mn). The optimality condition of Equation 5.12 can be simpli�ed
to:

cj[P (Mj = ok j Rok)� P (Mj = ok;Mj+1 = ok j Rok)]

� cj+1[P (Mj+1 = ok j Rok)� P (Mj+1 = ok;Mj = ok j Rok)] (5.19)

Given a repair sequence T , we can check whether the condition holds at the posi-
tion j as follows. Declare evidence Rok (i.e., M[j+2;n] = ok) in the network B. Do
a network inference and look up the probabilities P (Mj = okjRok) and P (Mj+1 =

okjRok). Subsequently declare additional evidence Mj = ok and do another net-
work inference to compute P (Mj+1 = okjMj = ok; Rok). Note that the probability
P (Mj = ok;Mj+1 = okjRok) can now be computed as:

P (Mj = ok;Mj+1 = okjRok) = P (Mj+1 = okjMj = ok; Rok)P (Mj = okjRok)

We now have the quantities required to check whether the condition holds. Thus,

the veri�cation of the optimality condition at any point in the sequence T can be
accomplished with 2 network inferences.

If the optimality condition does not hold at position j, 
ipping the position of Cj
and Cj+1 will lead to a better repair sequence. If we consider doing this repeatedly till

quiescence is reached, then the resulting sequence will be a local optimum. A good
starting sequence might the sequence T ind computed assuming that the component
failures are independent. This can be done by initially doing network inference with

no evidence in the network. That gives us the priors pi = P (Mi = b) for every node

in the network and thus the sequence sorted by increasing order of ci
1�pi
pi

can be

computed.
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However, certain questions still need to be addressed. Firstly, it is not clear that

the sequence produced at quiescence is necessarily the global optimum. The second

question is whether the number of network propagations required is tractable in the

worst case.

With regard to the second question: the �rst naive estimate is that the number

of propagations is O(n!) since there are only n! sequences. However, we can observe

from the structure of Equation 5.10 that if k components have been �xed, then the

optimal repair sequence of the remaining n � k components does not depend on the

order in which the �rst k components were �xed. This allows dynamic programming

to be used to construct a scheme which will compute the optimal strategy withO(n2n)

network propagations. This is still exponential.
Our speculation is that we cannot do better without more structure (for example,

speci�c network topologies) in the problem. A promising direction seems to be to
adapt an exact algorithm for computation of the optimal strategy in the case of
dependent faults to have limited lookahead and anytime characteristics.



Chapter 6

Handling unspeci�ed fault models

In model-based diagnosis, a component model speci�es the behavior of the compo-
nent both when it is working normally and when it is in an abnormal mode. The

speci�cation of component behavior in an abnormal mode is called a fault model. For
example, a gate in a digital circuit might have an abnormal mode where the output
is always 0 regardless of the input (such a mode is usually called stuck-at-zero).

Fault models are often not available|the modeler might not know enough about
the device physics to describe how a component behaves when it is broken. Alterna-

tively, the modeler might list some known modes of failure but want to leave open the
possibility that the component fails in some unforeseen way. It is thus very important
that unspeci�ed fault models be handled in some coherent way during diagnosis.

Current practice in model-based diagnosis approaches this problem by assuming
that all possible system outputs are equally likely when a component is in an abnormal
mode. This, in e�ect, corresponds to a choice of a particular (non-deterministic) fault

model for the component. In this chapter, we �rst examine current practice and show

that it can lead to incoherent results. We then suggest a change in modeling practice
to solve this problem.

A larger problem with the current approach is that it is ad hoc. There is no

semantic justi�cation for choosing \equally probable outputs" when the fault model

is not known. To address this problem, we go on to develop an alternative method of
handling unspeci�ed fault models. The goal of diagnosis is to compute inexpensive

repair and maintenance plans. In the presence of unspeci�ed fault models, one can
at best compute bounds on repair costs. Our method assumes that unspeci�ed fault

models behave such that the repair cost is maximized. Thus, our method takes a

conservative approach to cost estimation in the presence of incomplete information.
We now examine the problem of diagnosis in the presence of unspeci�ed fault

models in more detail. As we have seen in Chapter 3, diagnosis involves computing a
posterior probability distribution over the states of the system given an observation.

89
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Say we make an observation 
 = hI = i;O = oi of a system S. 
 consists of readings

of the set of system input variables I and the corresponding readings of some set of

component outputs O. Given a candidate �, we compute the posterior probability

P (� j 
; S) (to within a constant factor K) as follows:

P (� j S;
) = P (� j S; i;o) (6.1)

=
P (o j i; �; S)P (�)

P (o j i; S)

= K � P (o j i; �; S)P (�)

The above equations account for the fact that the choice of the system model S, the
distribution over the system input I and the distribution over the candidates � are
all mutually independent. The prior probability of a candidate � is computed simply
by multiplying the priors of the component modes in the candidate. When there are
n observations, 
1, 
2, : : : , 
n, the posterior probability can be calculated with:

P (� j S;
1;
2; : : : ;
n) = K � P (�)�

P (o1 j i1; �; S)�

P (o2 j i2; �; S)�

: : :

P (on j in; �; S)

The above equation accounts for the fact that knowing the system state renders the
observations independent.

Consider the case where all fault models are fully speci�ed. Given � and i, we

can simulate the system forward and see whether the simulated output osim and
the observed output o are the same. If they are the same, we have, i; �; S j= o, or

equivalently, P (o j i; �; S) = 1. If they are not the same, we have i; �; S 6j= o, or

equivalently, P (o j i; �; S) = 0.
Now consider the situation where all fault models are not fully speci�ed, i.e., some

component Cj has a mode uj for which the fault model is not speci�ed. Such a mode

is referred to as an unknown mode in model-based diagnosis. Let �u be a candidate in

which some component is in an unknown mode. Say we simulate the input forward
assuming the state of the system is �u. When we encounter a component which is

in the unknown mode we note that we cannot compute its output since the fault
model is not known. In that case, we set the output to be the value \unknown". In

addition, we set the output to be \unknown" for any component which has at least

one input having the value \unknown". When we are done with the simulation, we
see that variables in O can be split into two subsets. The subset Op consists of those

variables for which the simulation predicts a value. The subset Ou consists of those
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variables for which the output is \unknown".

Let us refer to the subset of readings corresponding to Op in the observed output

o as op. Let the subset of readings corresponding to Ou be ou. Similarly, for the

simulated output osim we have osimp and osimu . We note that if op 6= osimp , we have

i; �u; S 6j= o, or equivalently, P (o j i; �u; S) = 0.

Now consider the case where op = osimp . In this case, we see that we have no

way of predicting P (o j i; �u; S) in Equation 3.1. In this situation, any technique for

doing model-based diagnosis with unspeci�ed fault models has to choose a value for

P (o j i; �u; S) in some explicit or implicit way.

6.1 Current practice

The technique that is most widely used currently for handling unspeci�ed models was

�rst suggested by [de Kleer and Williams, 1989]. Say we have a candidate �u that
contains an unknown mode and an observation 
 = hI = i;O = oi such that we
cannot compute P (o j i; �u; S). Say the subset Ou of the output variables O has Mu

possible joint states. If Ou consists of only one output variable, then Mu = m where
m is the number of states of this output variable. If Ou consists of more than one
output variable, Mu = �imi where i ranges over the output variables in Ou. The

technique suggested by DeKleer and Williams chooses P (o j i; �u; S) in Equation 6.1
as:

P (o j i; �u; S) =
1

Mu

(6:2)

In other words, the technique assumes that all possible outputs are equally probable.
We will call this the equiprobable output (EPO) assumption.

6.1.1 How this technique can go wrong

Applying the EPO assumption can yield incoherent results. Speci�cally, there can be
situations where there is no way to choose fault models for the components such that
the probabilities postulated by the EPO assumption are attained.

We explain by means of an example. Consider the digital circuit shown in Fig 6.1.

B1 and B2 are bu�ers that feed into an AND gate. Each of the bu�ers has two

modes. When a bu�er is ok, its output is equal to its input. The other mode is an

unknown mode u. We see from the observation shown in the �gure that something
is wrong|if both bu�ers were ok, the output should be 1. We will assume that the

AND gate always works perfectly, i.e., it has only one mode and that is the ok mode.
A candidate in this system consists of a mode for B1 and a mode for B2. The mode

of B1 is described by a state variable M1. Similarly,M2 describes the mode of B2.

We now examine what the EPO assumption entails. Say we make the EPO
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Figure 6.1: Incoherence of EPO assumption: An example.

assumption for the candidate �(ok;u) = hB1 = ok; B2 = ui. The EPO assumption tells
us that P (X = 0 j I1 = 1; I2 = 1; �(ok;u)) =

1

2
. When B1 = ok and B2 = u, the only

way we can have X = 0 is if X2 = 0. This implies that the local fault model for B2

behaves as P (X2 = 0 j I2 = 1;M2 = u) = 1

2
. This implies P (X2 = 1 j I2 = 1;M2 =

u) = 1 � 1

2
= 1

2
.

Similarly, examining the EPO assumption for �(u;ok) gives us P (X1 = 0 j I1 =
1;M1 = u) = P (X1 = 1 j I1 = 1;M1 = u) = 1

2
.

We note that the fault model for the unknown mode of B1 is now fully speci�ed

when the input to B1 is 1. The fault model is not deterministic|it gives a probability
distribution over the output of B1 given the input is 1 and that B1 is in the unknown
mode. Similarly, the fault model for B2 is fully speci�ed when the input for B2 is 1.

Now consider the candidate �(u;u). We can compute the probability P (X =
0 j I1 = 1; I2 = 1; �(u;u)) from the fault models for B1 and B2 that were implied

by the application of the EPO assumption to �(ok;u) and �(u;ok). We do this as follows:

P (X = 0 j I1 = 1; I2 = 1; �(u;u)) =

P (X1 = 1;X2 = 0 j I1 = 1; I2 = 1; �(u;u)) +

P (X1 = 0;X2 = 1 j I1 = 1; I2 = 1; �(u;u)) +

P (X1 = 0;X2 = 0 j I1 = 1; I2 = 1; �(u;u))

= P (X1 = 0 j I1 = 1;M1 = u)P (X2 = 1 j I2 = 1;M2 = u) +

P (X1 = 1 j I1 = 1;M1 = u)P (X2 = 0 j I2 = 1;M2 = u) +

P (X1 = 0 j I1 = 1;M1 = u)P (X2 = 0 j I2 = 1;M2 = u)

= (
1

2
�

1

2
) + (

1

2
�

1

2
) + (

1

2
�

1

2
)
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=
3

4

The above equation sums over mutually exclusive cases and takes advantage of the

fact that the fault models of B1 and B2 behave independently.

Say that instead of computing P (X = 0 j I1 = 1; I2 = 1; �(u;u)) as described

above, we computed it by applying the EPO assumption directly to �(u;u). This would

give us P (X = 0 j I1 = 1; I2 = 1; �(u;u)) =
1

2
. Note that we have a contradiction. Our

application of the EPO assumption to �(u;ok) and �(ok;u) implies that P (X = 0 j I1 =
1; I2 = 1; �(u;u)) =

3

4
. However, applying the EPO assumption directly to �(u;u) tells us

that P (X = 0 j I1 = 1; I2 = 1; �(u;u)) =
1

2
.

In summary, it is impossible to apply the EPO assumption to all the candidates
�u for which we cannot compute P (o j i; �u; S) while assuming that the fault models
for each component are independent of each other. The only way we can make the
EPO assumption be coherent is to assume that the fault model of one component

and the fault model of some other component are not independent.
An example of a fault model correlation that would �x the problem in this example

would be to set P (X1 = x1;X2 = x2 j I1 = 1; I2 = 1; �(u;u)) =
1

6
for any values x1 and

x2. However, this violates the modularity of components. Component modularity is
one of the basic assumptions we make in model-based diagnosis (and in compositional

modeling in general).

6.1.2 A �x for the problem

The EPO assumption's basic intuition is to assume all outputs are equally likely if
a fault model is not available. Instead of applying it globally for the entire system,
consider applying it locally to components instead.

Consider a component C whose mode variable is M . The component's inputs

are the set of variables I and the output is X. We use x to refer to a state of

X. We denote a (joint) state of the input variables as i. Let m be the number
of states of X. Applying the EPO assumption locally amounts to specifying that
P (X = x j I = i;M = u) = 1

m
for any x and any i.

Basically, we are specifying a particular non-deterministic fault model for the

mode u. This introduces a problem. Most model-based diagnosis systems can handle

fully or partially speci�ed deterministic fault models but cannot handle a probabilistic
speci�cation. We would like to make a �x which does not need a fundamental change

in an existing logic-based model based diagnosis system.
One way around the problem is to transform the component description as follows.

We split the mode u into m modes, one for each state of the output variable x. Let ux
denote the new mode corresponding to state x. The fault model of ux is stuck-at-x.
That is, if the component is in mode ux the output is x regardless of the input. We
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set the prior of ux to be P (M = u) � 1

m
. The transformed description is basically

equivalent to applying the EPO assumption locally. The only di�erence is that we

do not have a single unknown mode|we have m \unknown" modes instead, each of

which is deterministic. We now can apply any logic-based diagnosis method.

Applying the EPO assumption locally gives us coherence but comes at a compu-

tational cost. When we have a candidate with fully speci�ed fault models we have

seen before that we can compute the posterior probability with a simple forward

simulation of the system (see Equation 6.1 and preceding discussion). If the candi-

date and observation are consistent, the posterior is simply the prior multiplied by a

constant factor. If the candidate is inconsistent with the observations, the posterior

is 0. The EPO assumption, as currently practiced, extends this desirable property
to candidates which contain unknown modes. That is, we can compute the poste-

rior probability with a single forward simulation. However, when applying the EPO
assumption locally, we lose this property.

We demonstrate this with an example. Consider the digital circuit shown in
Fig 6.1. Say we want to apply the EPO assumption locally and then compute the
posterior probability (to within a constant factor) of �(u;u). Either explicitly or implic-

itly, we have to do this by summing over the posterior probabilities of �(u0;u0), �(u0;u1),
�(u1;u0) and �(u1;u1). Each of these \subcandidates" have fully speci�ed fault models
and we can use the single forward simulation for each of these. Say that a candidate
contains n components in the unknown state. Say each of these components has k
outputs. In this situation, we will have to examine kn \subcandidates" to compute

the posterior probability of the candidate.
This problem can be solved by rede�ning our modeling approach to avoid this.

Say that, instead of having a single unknown mode for a component, we model the
component directly as havingm \unknown" modes (wherem is the number of possible
values of the output of the component). In other words, we go directly with the results

of the transformation approach as the original model. This would mean, for example,

that we will consider �(u0;u0) and �(u0;u1) as distinct candidates of interest (this would
not be the case if we had only one unknown mode u for each of these components).

Such a change in modeling approach may be permissible in some domains. For

example, if one wants to be able to use a non-intermittency assumption (see [Raiman
et al., 1991], for example), it is necessary that all fault models be deterministic. This

is to ensure that the output of the unknown mode for a given input is the same
across multiple observations. In such a case, one might use this rede�ned modeling

approach.
Though the local application of EPO assumption �xes the problem of incoherence,

we still have a basic problem. The problem is that the EPO assumption is ad hoc.

We do not understand what its semantics and rami�cations are when doing diagnosis
and repair.
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6.2 A cost based approach to model completion

The goal of diagnosis is to compute cost e�ective repair and maintenance strategies

for the system under diagnosis. A repair algorithm takes observations of the system

as input and computes a decision tree of actions to be carried out. These actions

may replace a component or perform testing (see Section 5.6). Given an observation,

the corresponding decision tree has an expected cost of execution. This is the cost of

repair conditioned on that observation.

In addition, a repair algorithm has an expected cost|the expected cost of the

algorithm is the cost averaged over the long run of the system, i.e., the sum over

all possible observations of the product of the expected cost of the decision tree for
the observation multiplied by the probability of the observation. Say some of the
components in a system have \unknown" modes. As we have seen before, we may
not be able to compute posterior probabilities on candidates or on the component
modes. As a result, we will not be able to compute the expected cost of a repair

algorithm R. Hence, we have to make some choice for the behavior of the unknown
modes if we want to estimate repair costs (as part of a search for a good repair
strategy, for example).

Say we are able to make a choice Uh which will guarantee that the expected
repair cost of any repair algorithm R is as high as possible. In other words, given

a repair algorithm R, any other choice for the behavior of the unknown modes will
result in a lower estimate for the expected repair cost of R than the choice Uh. We
note that expected repair cost estimated after making the choice Uh for the unknown
modes is a conservative bound. In other words, irrespective of the actual behavior of
the unknown modes, the actual expected repair cost will be less than the estimated

expected repair cost.

6.2.1 Fixing components

We now consider the �x actions which are part of the repair decision tree. A �x action

operates on a component and guarantees that the component is in the ok state after
completion. We will develop a particular model for how the �x actions are performed.
We will then examine the contribution of �x actions to the cost of a repair algorithm.

Consider, for now, the situation where there are no unknown fault models. Say a

component has a set of inputs I1 and an output O. We �x the component as follows:

1. We observe the component's input and output. Say the component's mode
variable is M . Observing the input (vector) I = i and output O = o gives us a

1To aid readability, henceforth we will use I (without bold font) to refer to the input variables

of the component and i to refer to a generic joint state of these variables.
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distribution P (M jI = i; O = o).

2. Using the posterior P (M jI = i; O = o) as a starting estimate of the mode, we

perform tests of the component to discover which mode it actually is in. Say

the mode is k.

3. We then repair the component at cost Cost(k). So, for example, if k is an

abnormal mode, then Cost(k) is the actual cost taken to repair the component

given it is in the mode. If k is the ok mode, then Cost(k) = 0.

We now consider the cost of �xing the component given that a particular input i

and a particular output o have been observed. Say each of the tests we perform in Step
2 above are all of equal cost. Let this cost be Costt. Given a probability distribution
P (Xj�), the entropy of the distribution H(Xj�) = ��xP (X = xj�) log(P (X = xj�))
is a lower bound on the number of tests required to determine the actual state of X
(see [Cover and Thomas, 1991]). Hence, a lower bound on the test cost in Step 2 is
Costt�H(M jI = I;O = o). The total cost of �xing the component is then bounded

below by:

LbCostfix(I = I;O = o) = Costt �H(M jI = I;O = o) +

�kCost(k)P (M = kjI = I;O = o)

Now consider the cost of �xing the component in the long run using the repair algo-

rithm R. We compute the amount contributed to the expected cost of algorithm R

by the action of �xing the component. When using the repair algorithm R, we will
encounter some joint distribution of the inputs of the component and the output of
the component P (I;O). The long run cost of �xing the component is bounded below
by:

LbCostavgfix = �i�oLbCostfix(I = I;O = o)P (I = I;O = o) (6.3)

= Costt � �i�oH(M jI = I;O = o)P (I = I;O = o) +

�i�o�kCost(k)P (M = kjI = I;O = o)P (I = I;O = o)

We de�ne H(M jIO) = �i�oH(M jI = I;O = o)P (I = I;O = o). The quantity
H(M jIO) is called the conditional entropy of M given I and O (see [Cover and

Thomas, 1991]). Simplifying Equation 6.3, we have:

LbCost
avg
fix = Costt �H(M jIO) + �kCost(k)P (M = k) (6:4)

Now say a component has an unknown mode u. We de�ne the behavior of u as the

speci�cation of P (OjI;M = u). P (OjI;M = u) is the conditional distribution over
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the output given each input, assuming the component mode is u. Note that we leave

open the possibility that u behaves intermittently. The user has speci�ed a marginal

distribution over the modes of the component. However, he or she has not speci�ed

how the component behaves when it is in mode u.

For each component with an unknown mode, say we choose P (OjI;M = u) such

that LbCostavgfix of the component is maximized. This corresponds to making the

expected repair cost of strategy R as high as possible.

Looking at Equation 6.4, we see that the second term in the right hand side is

just the decision theoretic minimum repair cost of the component and is a constant

una�ected by the choice of P (OjI;M = u). The �rst term, however, is a�ected by

the choice of P (OjI;M = u). In fact, it can be computed only if we make a choice
P (OjI;M = u). Say we choose P (OjI;M = u) such that H(M jI;O) is maximized.

This would also maximize LbCostavgfix.

6.2.2 The maximum cost fault model

As we shall prove in Section 6.2.4, the following choice of P (O = ojI = i;M = u)
maximizes H(M jI;O):

P (O = ojI = i;M = u) =
1

1� P (M = u)
�k 6=uP (O = ojI = i;M = k)P (M = k)

(6:5)
Thus, we can compute a description of the fault model for u from the descriptions
of the behavior of the component in the other modes (i.e., P (O = ojI = i;M = k)

where k 6= u) and the prior distribution over the modes. If we use this choice of fault

model when we do diagnosis, the expected cost estimates we make will be conservative
estimates. We note that the fault model chosen by this method can be intermittent.
That is, the probabilities P (O = ojI = i;M = u) need not be 0 or 1.

One way of interpreting this result is as follows. Since P (I) and P (M) are inde-

pendent a priori, we note the following:

P (O = ojI = i) = �kP (O = ojI = i;M = k)P (M = k)

= (�k 6=uP (O = ojI = i;M = k)P (M = k)) +

P (O = ojI = i;M = u)P (M = u)

= [1� P (M = u)]P (O = ojI = i;M = u) + (Using Eqn 6.5)

P (M = u)P (O = ojI = i;M = u)

= P (O = ojI = i;M = u)
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Let us examine the probability P (M = ujI = i; O = o). We have:

P (M = ujI = i; O = o) =
P (O = ojI = i;M = u)P (M = u)

P (O = ojI = i)

= P (M = u)

Thus, observing an input and output has no a�ect on our estimate on the probability

of the unknown mode, i.e., the posterior is equal to the prior. In e�ect, this choice

for the behavior of u allows us to conclude nothing about the unknown mode based

on observations. The observations only a�ect the posterior probabilities of the other

modes.
Another way of looking at this is as follows|the right hand side of Equation 6.5

is exactly the probability P (O = ojI = i;M = :u). The unknown mode thus
behaves exactly like the component would (on the average) if the component was not
in the unknown mode. Thus, we see that observations cannot distinguish between the
situations \Component is in the unknown mode" and \Component is in some other
mode". However, observations do help us distinguish between the known modes.

6.2.3 A special case

Consider the situation where the component has one ok mode, one unknown mode

and no other modes. In this situation if we apply Equation 6.5 we �nd that:

P (O = ojI = i;M = u) =
1

1 � P (M = u)
�k 6=uP (O = ojI = i;M = k)P (M = k)

=
1

P (M = ok)
P (O = ojI = i;M = ok)P (M = ok)

= P (O = ojI = i;M = ok)

That is, the unknown mode behaves exactly like the ok mode. As a result, no
anomalous observation is possible (since the unknown mode is identical to the ok
mode). If a diagnostic system using this model for the unknown mode was presented

with an anomalous observation for the component, a contradiction would result since

the model does not allow for such an observation.

In general, given a particular input i, we see from Equation 6.5 that the model for

the unknown mode has non-zero probabilities for only those outputs which occur for
at least one of the known modes. Since the intent of the unknown mode is to catch

unforeseen situations, we would like the unknown mode to have a non-zero probability
(however small) for every possible output regardless of what the input is.

We can achieve this result by using the following modeling practice: For every

output x, introduce a stuck-at-x mode (if one does not already exist) in the component
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model with a very small prior probability. The probability can be vanishingly small.

The perturbation of the original component model is hence very small. The behavior

of the unknown mode P (O = ojI = i;M = u) is calculated after these additional

modes have been introduced.

In fact, the diagnostic system need not explicitly introduce these modes. We

can achieve the same end result with the following procedure: A stuck-at-x mode is

introduced only when an observation with output x has occurred such that none of

the non-unknown modes is consistent with the observation. If this situation occurs,

the posterior probability of the unknown mode is still P (M = u). The posterior

probabilities of all other modes are zero except for the newly introduced stuck-at-x

mode whose posterior probability is 1� P (M = u).

6.2.4 Deriving the maximum cost fault model

We will now prove that maximizing H(M jI;O) leads to Equation 6.5 as the choice
for the fault model for the unknown mode u.

Conditional entropy satis�es the following identities:

H(Y jX) +H(X) = H(XjY ) +H(Y )

H(Y jX) = H(Y ) when Y and X are independent

These identities can be veri�ed directly from the de�nition of conditional entropy
[Cover and Thomas, 1991]. In this section, we will use the notation P (x) to denote
P (X = x). The variable being referred to will be obvious from context.

Applying the �rst identity in two di�erent sequences for the variablesM , we have:

H(M jI;O) +H(OjI) +H(I) = H(OjI;M) +H(M jI) +H(I) (6:6)

We note that the input distribution P (I) over the component is marginally inde-

pendent of the distribution over the mode P (M). Hence H(M jI) = H(M). From
Equation 6.6 we therefore have:

H(M jI;O) = H(M) +H(OjI;M)�H(OjI) (6:7)

We see from Equation 6.7 that when we have a choice for P (OjI;M = u), we can

maximize H(M jI;O) by simply maximizing H(OjI;M) �H(OjI). This is because
H(M) is independent of the choice of P (OjI;M = u). H(M) is determined solely by

the prior distribution over the component modes.
Consider the term H(OjI;M). We have:

H(OjI;M) = �k�iH(OjI = i;M = k)P (i)P (k)
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= �kH(OjI;M = k)P (k)

= H(OjI;M = u)P (u) + �k 6=uH(OjI;M = k)P (k)

Note that �k 6=uH(OjI;M = k)P (k) is a constant which is independent of the choice

of P (OjI;M = u). Hence, the maximization of H(OjI;M) �H(OjI) reduces to the
maximization of F = [H(OjI;M = u)P (u)�H(OjI)]. We simplify the expression

for F :

F = f�i [�o � P (oji; u) log(P (oji; u))]P (i)P (u)g �

f�i [�o � P (oji) log(P (oji))]P (i)g

= �i�o [P (oji) log(P (oji))� P (oji; u) log(P (oji; u))P (u)]P (i)

We have to choose the value of P (oji; u) for every combination of i and o such that
F is maximized. Consider the derivative of F with respect to P (oji; u). We have:

dF

dP (oji; u)
= P (i)[1 + log(P (oji))]

dP (oji)

dP (oji; u)

�P (i)[1 + log(P (oji; u))]P (u)

P (oji) can be calculated as:

P (oji) = �M=kP (oji; k)P (k) (6:8)

Hence:

dP (oji)

dP (oji; u)
= P (u)

Hence, we have:

dF

dP (oji; u)
= P (i)[1 + log(P (oji))]P (u)� P (i)[1 + log(P (oji; u))]P (u)

= P (i)P (u) log(
P (oji)

P (oji; u)
)

Setting the derivative of F with respect to P (oji; u) to zero for each combination of

o and i, we get:
P (oji; u) = P (oji)

Using Equation 6.8 for the right hand side of the above equation gives us:

P (oji; u) = �M=kP (oji; k)P (k)
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Hence, we have the answer discussed earlier in Equation 6.5 of Section 6.2.2:

P (oji; u) =
1

1 � P (u)
�k 6=uP (oji; k)P (k)

It can be veri�ed that this is a maximum point for the function F .

6.3 Discussion

When performing model-based diagnosis in a deterministic framework (i.e., without
probabilities), the diagnosis process consists of computing candidates consistent with
the observations. When unknown modes are present, the consistency check can still

be carried out without a model of the behavior of the unknown mode. However, since
the unknown modes are unconstrained in their behavior, there are a large number of
candidates consistent with any observation. Introducing fault models improves the
predictive power of the system model. Hence, the discriminatory power of the diag-
nosis process is increased and the number of candidates consistent with observations

becomes smaller.
As a result, there has been research on how deterministic fault models can be

modeled and exploited during the diagnosis process. [Struss and Dressler, 1989]

describe how one can integrate predictive fault models of a component into diagnosis.
A predictive fault model speci�es the input-output behavior for a component for a

mode k which is neither the ok mode or the unknown mode. [Freidrich et al., 1990]

introduce the notion of physical impossibility to constrain the faulty behavior of a
component. The idea here is that even though we might not have full knowledge of
the behavior of a component when it is broken, we can rule out certain behaviors as
impossible when it is broken. They show that this can be considered as equivalent to

partially specifying fault models.
In [Raiman et al., 1991], the authors take a di�erent approach to the problem.

They assume that no fault model is available, but employ a non-intermittency as-

sumption to reduce the number of possible diagnoses when working with devices
which have unknown modes. The basic assumption is that though the mode's behav-
ior is not known, it is deterministic and so can be expected to give the same output

for the same input across di�erent observations.

When moving to probabilistic diagnosis, we need to compute posterior probabili-
ties on the candidates. As we have seen, to compute the posterior we need to assume

some model of behavior of the unknown mode. This problem was �rst recognized
in [de Kleer and Williams, 1989] and the EPO assumption was introduced to handle

it. This is the technique most widely used today. As we have seen, this technique

can be incoherent. We provide a simple �x where we apply the same underlying
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intuition locally at the components instead of globally over the system. However,

there still remains the problem that the rami�cations of the EPO assumption are not

well understood. To address this problem, we propose choosing the behavior of the

unknown mode such that the costs estimated by a repair strategy are conservative,

i.e., irrespective of the actual behavior of the unknown mode, the actual cost we will

encounter are smaller than our estimated cost.



Chapter 7

Conclusions

In this thesis, we have addressed some crucial problems that are encountered in
the practical application of probabilistic model-based diagnosis. We now present a

summary of the contributions of this thesis. We then move on to discuss future work.

7.1 Summary and Contributions

As we saw in Chapter 1, some major problems facing model-based diagnosis are:

� How do we do diagnosis tractably in large systems?

� How do we assess the prior probability of failure of components?

� How do we tractably compute inexpensive repair actions using the results of
our diagnoses?

� How do we do diagnosis in a reasonable way if fault models are not available?

This thesis addresses each of the above questions. To address the tractability
issue, we have developed two techniques. The �rst technique introduces a notion of

hierarchy in the system speci�cation. Hierarchies are widely prevalent in engineering
practice and hence, the notion of a hierarchical system speci�cation is a very natural

one. We have developed a method of translating a hierarchical system speci�cation

into a hierarchical Bayesian network. Using the hierarchical Bayesian network, we

have developed a method of compiling \atomic" descriptions of components from the

descriptions of subcomponents. The compiled descriptions are utilized to develop
a hierarchical diagnosis algorithm. The hierarchical diagnosis algorithm allows us

to focus the computation on the parts of the system we are interested in, and this

focusing gives signi�cant computational gains. For example, the computation of the

posterior probability of a leaf level component can be done in time linear in the depth

103
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of the hierarchy tree. If the hierarchy is not utilized during the computation, the

complexity is exponential in the depth of the hierarchy tree.

Our second technique for tractable diagnosis improves on search-based diagnosis

algorithms. We have developed a suite of generate-and-test diagnosis algorithms that

are extremely simple to implement. The algorithms are speci�ed independently of

any particular implementation scheme for model-based diagnosis (such as an ATMS).

They come with provable guarantees on complexity and run extremely fast in practice.

The �rst algorithm in the suite makes the usual assumption that component fail-

ures are independent. The algorithm successively generates all possible candidates in

decreasing order of prior probability. Each candidate is tested for consistency with

the observation. Consistent candidates are valid diagnoses. The complexity of gener-
ating each successive candidate is linear in the number of components in the system.

The second algorithm improves on the �rst algorithm by using the information from
previous consistency checks to rule out some of the candidates which have not yet
been generated. This algorithm has performance which compares with (and in some
cases, is better than) the best systems �elded today. We then develop a third algo-
rithmwhich extends the generate-and-test idea to systems with dependent component

failures. Component dependencies are speci�ed as a Bayesian network. The candi-
date generator that we have developed computes the k-th most probable candidate in
O(Bk) time where B quanti�es the size of the Bayesian network describing the fault
dependencies.

The speci�cation of prior probabilities of failure is a crucial step in probabilistic

model-based diagnosis. These probabilities are often very di�cult to assess. One
of the main reasons for this di�culty is an implicit notion of a time interval under-
lying the probability speci�cation. We have used concepts from Reliability Theory
to make this time interval explicit in the speci�cation of the prior. The model we
have developed automatically computes the failure prior from an empirical measure
of reliability of a component (the Mean Time Between Failures) and the up-time of

the component. Thus, when empirical reliability data is available, it can be directly

plugged into the diagnosis system speci�cation.
We go on to use the same framework to also quantify persistence of system state

over time. This allows us to develop a method for computing diagnoses with multiple

observations, each of which occurs at a di�erent time. Our method explicitly allows

for possible component failures in between observations.
The ultimate goal of model-based diagnosis is to recommend cost e�ective actions

to repair or maintain the system. To address this objective, we have developed a
general algorithm for computing the least cost repair strategy. However, this algo-

rithm is not practical for large systems since it examines all possible strategies to

determine the best possible strategy. To gain tractability, we make a reasonable as-
sumption about the behavior of the system|we assume that if any component has
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failed there will be some observed anomaly in the system. That is, the system works

correctly if and only if all the components are normal. Given this assumption, we

have developed a polynomial algorithm to compute the optimal repair strategy. We

have also extended this algorithm to hierarchical systems. This extension explicitly

considers the choice between replacing entire subsystems as against dis-assembling

them and replacing subcomponents. The implemented algorithm is able to compute

repair strategies for systems with thousands of components in a few seconds.

When modeling a system, fault models for components are often not available.

However, these fault models are necessary for the diagnosis computation. Currently,

the wide spread practice in model-based diagnosis is to assume that all system outputs

are equally likely when any component is in a mode which does not have a fault model.
In this thesis, we have shown how this assumption can lead to incoherent results. A

more serious problem is that this assumption is ad hoc|its rami�cations are not well
understood. We have developed an alternative method of assinging a behavior to
unspeci�ed fault models. In our method, we choose the behavior of fault models in
a way that guarantees that estimates of system repair costs are conservative upper
bounds of the actual repair costs.

7.2 Future work

There are a number of directions in which the work described in this thesis can be
extended.

An immediate extension that is of interest is a tight integration of the two com-
plementary methods of addressing the tractability problem that are developed in this
thesis. Thus, ideas from the candidate generation schemes of Chapter 3 may be ap-
plicable to improve the performance of the hierarchical Bayesian network inference
algorithm developed in Chapter 2. Such an extension would be in the spirit of [Poole,

1993]. Poole's work discusses how con
icts can be used to develop a search-based
algorithm to compute posterior probabilities in Bayesian networks.

The work in this thesis, and in model-based diagnosis in general, has mostly been

con�ned to discrete valued variables. An extension of the techniques in this thesis
to system models which have continuous valued variables would be of great inter-
est. However, allowing arbitrary continuous valued functions as component models

may preclude development of general purpose diagnosis algorithms. The reason is

as follows: The computation of posterior probabilities during the diagnosis process
involves the application of Bayes' rule. During the application of Bayes' rule, one has

to perform marginalization. With continuous variables, marginalization corresponds
to integrating the product of two or more functions. If arbitrary forms are allowed

for the continuous functions in the model, then closed form solutions of the inte-

grals may not be possible. Hence, some restrictions on the class of functions allowed



106 CHAPTER 7. CONCLUSIONS

(for example, linear combinations of inputs) may be necessary. In this regard, exten-

sions to Bayesian networks that handle continuous values [Shachter and Kenley, 1989;

Driver and Morrell, 1995] would be of great interest.

All the results in this thesis are con�ned to systems which are essentially static.

Our work on handling multiple observations does introduce a very restricted notion of

dynamics|components may fail (i.e., change state) on-line. It would be very useful

to include a full notion of dynamic systems, i.e., systems in which components can

have internal state (other than the mode). The component model would describe

how the internal state evolves as a function of the component input and the previous

state. It may be possible to represent the evolution of a dynamic system as a dynamic

network (as in Section 4.2.3). Diagnosis would then reduce to inference within this
dynamic network.

As we have seen earlier, prior probabilities of failure are often hard to assess. We
have suggested one solution in this thesis|instead of specifying the priors directly,
we provide estimates of reliability like the MTBF. In extremely reliable systems, even
such estimates may not be available. However, it is possible that an expert would
be able to compare the reliability of di�erent components and group them by their

\class" of reliability (e.g., \very reliable", \very very reliable").
A plausible interpretation for the reliability \class" is provided by the qualitative

probability calculus of [Goldszmidt, 1992]. This calculus assumes that all probabil-
ities are extremal (i.e., approach 0 or 1). In terms of our intended application, the
qualitative probability calculus sets the probability of a component being broken to

P (broken = �n) where � ! 0. Thus, the probability that a component is broken is
very small. The exponent n signi�es an order of magnitude of how small it is. Thus,
one could plausibly think of n = 1 being equivalent to \very reliable" and n = 2 being
equivalent to \very very reliable" and so on.

The qualitative probability calculus has exact analogs of operations like Bayesian
conditioning. Thus, a diagnosis algorithm developed originally for numerical prob-

abilities can often be directly adapted to work with the order of magnitudes that

characterize qualitative probabilities. In fact, the adapted algorithm is potentially
more e�cient than the original algorithm. Adapting the diagnosis algorithms from
this thesis to work with qualitative probabilities is thus a topic of great interest.

The polynomial time repair algorithm we have developed in this thesis makes a

strong assumption about how the system behaves, viz, that if a component fails,
the system will certainly display an anomaly. If we do not want to make any such

restrictions on the system model, we are forced to search a large space to �nd an
optimal strategy. It would be useful to �nd a search method which has an anytime

property such that the search can be interrupted at any time to yield a current best

strategy. Further, the more time the search is given the better the result.
We sketch one possible way of organizing such a search. Consider a particular
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search method which only considers the various possible sequences in which the �rst

k components of an n component system are replaced. After the �rst k components

are replaced, say that it is assumed that the remaining (n� k) are replaced in some

predetermined order (for example, least cost �rst). If we are able to successively

search for the best strategy with k = 1 initially, followed by k = 2 and so onwards, we

will eventually �nd the best strategy (when k = n). A nice property of such a search

would be that if it is interrupted at any time (say when k = m where m < n), there

would still be a current best answer (i.e., the current best strategy with k = m).

In this regard, [Srinivas and Horvitz, 1995] suggests a di�erent technique for

achieving the goal of computing optimal repair strategies tractably without restrict-

ing the system model. They develop a means of exploiting the system hierarchy to
achieve tractability. In addition, the resulting algorithm is modi�ed to have anytime

characteristics.
Repair algorithms with anytime characteristics could be further extended to reason

about computing more versus acting immediately [Horvitz, 1988]. The tradeo� here
would be between the savings which would come from computing more and coming
up with a better strategy and the cost of the time it takes to compute the better

strategy (i.e., downtime cost of the system).
Finally, it would be interesting from the perspective of the work in this thesis, and

model-based diagnosis in general, to �nd new domains in which model-based diagnosis
may be applicable and provide impact. In this regard, the domain of discrete-event
systems seems to be very promising.
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