
Real-time Database Experiences

in Network Management Application

Yoshiaki Kiriha �

NEC Corporation
C&C Research Laboratories
4-1-1 Miyazaki, Miyamae-ku,

Kawasaki, Kanagawa 216, JAPAN

Stanford University
Computer Science Department

Stanford, CA 94305
E-mail: kiriha@db.stanford.edu

August 30, 1995

Abstract This report discusses on our experiences with real-time

databases in the context of a network management system, in particular

a MIB (Management Information Base) implementation. We propose an

active and real-time MIB (ART-MIB) architecture that utilizes a real-time

database system. The ART-MIB contains a variety of modules, such as

transactionmanager, task manager, and resource manager. Among the func-

tionalities provided by ART-MIB, we focus on transaction scheduling within

a memory based real-time database system. For the developed ART-MIB

prototype, we have evaluated two typical real-time transaction scheduling

algorithms: earliest deadline �rst (EDF) and highest value �rst (HVF). The

main results of our performance comparison show that EDF outperforms

HVF under a low load; however, HVF outperforms EDF in an overload sit-

uation. Furthermore, the fact that the performance crossover point closely

depends on the magnitude of the scheduler queue, has been validated.

�This work has been done under direction of Prof. Hector Garcia-Molina, during the author's stay as a visiting

scholar in Stanford University (1994-1995).

Contents

1 Introduction 1

2 Previous Work 5

2.1 Real-Time Database Systems : 5

2.1.1 Transaction Scheduling : 6

2.1.2 Priority Assignment : 7

2.1.3 Concurrency Control : 7

2.2 Network Management Systems : 9

3 Active and Real-time MIB Architecture 12

3.1 ART-MIB Architecture : 12

3.2 Transaction Mapping : 15

4 Implementation of Evaluation System 17

4.1 System Con�guration : 17

4.2 Managed Network Con�guration : 18

4.3 Management Operations : 22

5 Evaluation Results 27

5.1 Result Overview : 27

5.2 Characteristics of Real-Time Scheduling : : : : : : : : : : : : : : : : : : 30

5.3 Impact of Communication Delay : 38

5.4 Impact of Concurrency Control : 43

5.5 Crossover Points : 46

6 Conclusion 52

Y.Kiriha: Real-time Database Experiences 1

1 Introduction

In almost all current network management systems, a relational database or an object

oriented database has been utilized for implementing a MIB (Management Information

Base). By using such conventional database systems, network management systems can

bene�t from e�cient query processing and reliable transaction processing. The major

trends in telecommunication network and service evolution, such as broadband capabil-

ities based on ATM and IN based service facilities, increase the management di�culty

of both networks and services due to their complex structure and various timing con-

straints. Therefore, the advantages of conventional database systems are not su�cient

for managing evolving telecommunication networks and services.

In particular, even though there exist various kinds of management operations (e.g.,

call statistics query, fault occurrence noti�cation, transmission bandwidth update), ev-

ery operation cannot have its own execution priority in a conventional database system.

The priority might be derived from a deadline on the completion time and the impor-

tance to the application of meeting the deadline. As a result of this, it may be di�cult

to execute management operations by their expected completion time. Although ITU's

TMN (Telecommunication Management Network[ITU-TMN]) provides an architectural

framework for managing heterogeneous networks and services, an actual design and im-

plementation that can deal with the above mentioned problem have not been discussed in

detail so far. In order to deal with this problem and to sustain timely user response and

quality of network services under any circumstances, it is important for the conventional

MIB to add real-time capabilities that take into account the priority of each management

operation.

Generally, real-time systems can be grouped into two categories: hard real-time sys-

tem and soft real-time system. For a hard real-time system, missing a deadline is equiv-

Y.Kiriha: Real-time Database Experiences 2

alent to a catastrophe. In order to estimate an accurate running time, all tasks are

pre-analyzed and guaranteed to complete on time. Therefore, a hard real-time system

is only applicable for periodic and relatively simple tasks. For a soft real-time system,

however, missing deadlines leads to degraded performance but does not entail catas-

trophic results. Therefore, completing a task after a deadline has expired is allowed for a

soft real-time system. Actually, since a soft real-time systems includes asynchronous and

complex tasks, it is very di�cult to guarantee that all deadlines will be met. Hence, a soft

real-time system tries to minimize the number of deadlines that are missed. A network

management system is a soft real-time system, since it includes not only periodic opera-

tions but also many aperiodic operations whose response time is di�cult to estimate in

advance. Unfortunately, previous work on soft real-time systems and databases has been

mainly focused on theoretical or simulation studies. Therefore, we believe that an evalu-

ation of an actual implementation of soft real-time capabilities for network management

systems could be very important.

For the new MIB with soft real-time capabilities, the concepts of timeliness and

activeness should be introduced. In this context, timeliness is an abstraction of di�er-

ent requirements such as importance and response time. Activeness is an abstraction of

event driven functionalities of the system. What can support these concepts is a real-time

database system[Kao93]. A real-time database system (RTDBS) is a database system

that has real-time capabilities. The main objective of an RTDBS is to complete transac-

tions before their deadlines expire. Furthermore, realtime databases are closely related to

active databases that provide an event driven data processing function[Ramamritham93].

Therefore, an RTDBS is believed to be useful for applications with complex structure

and timing constraints. In order to intuitively see that an RTDBS may provide network

management systems with signi�cant services, we brie
y show a real-time scheduling

example.

Y.Kiriha: Real-time Database Experiences 3

T1 T2

T3

dl(T3) dl(T2) dl(T1)
Time

T1T2

T3

Transaction Arrival Order: T1->T2->T3

dl(Ti) : Deadline of Task Ti

Real-Time Scheduling (Earliest Deadline First)

First Come Fist Serve Scheduling

T1: Management Information Retrieval
T2: Managed Object Record Creation
T3: Management Attribute Value Update

Figure 1: Scheduling Example for Management Operations

Figure 1 illustrates the di�erence between non real-time scheduling and real-time

scheduling. A FCFS (First Come First Serve) algorithm, a non real-time scheduler, as-

signs a higher priority to a transaction that arrived earlier. A EDF (Earliest Deadline

First) algorithm, a typical real-time scheduler, assigns a higher priority to a transaction

that has an earlier deadline. In this example, three transactions arrive in the following

order: T1! T2! T3, and the order of their deadlines is dl(T3)! dl(T2)! dl(T1). As

illustrated, the T2 and T3 transactions scheduled by the non real-time scheduler cannot

meet their deadlines. This causes a degradation of the user response and the quality of

network services. However, all transactions that are scheduled by the real-time scheduler

can meet their deadlines, even though the total processing time is the same in both sce-

narios. Through this scheduling example, the e�ect of the real-time scheduler is clearly

recognized.

Y.Kiriha: Real-time Database Experiences 4

Taking into account the above discussion, this report proposes an active and real-time

MIB architecture for a new MIB implementation by utilizing an RTDBS. The remainder

of this report is organized as follows. Section 2 discusses previous work and research

issues in both RTDBS and network management. Section 3 describes the new MIB

architecture that provides management operations with active and real-time function-

ality. Section 4 describes our prototype system that has been developed based on the

proposed architecture and which was used to evaluate the system behavior. Section 5

presents evaluation results showing the impact of real-time scheduling, communication

delay, and concurrency control. Finally, this report concludes with some directions for

further studies.

Y.Kiriha: Real-time Database Experiences 5

2 Previous Work

In this section we discuss previous studies in both real-time database systems and

network management systems.

2.1 Real-Time Database Systems

Some of the key functional modules of a real-time database system (RTDBS) are

transaction scheduling and concurrency control as illustrated in Figure 2. The transac-

tion scheduling module stores received transactions in a queue, and schedules transaction

execution by priority. The concurrency control module maintains data consistency tak-

ing into account the priority. A disk based RTDBS that stores data on disk, requires

additional modules such as a bu�er manager and a disk scheduler. They should also take

into account the priority of transactions.

Memory based RTDBS

Main Memory

Disk based RTDBS

Transaction Scheduling

Concurrency Control

Buffer Management

Disk

Transaction Scheduling

Concurrency Control

RTDBS: Real-Time DataBase System

Disk Scheduling

Figure 2: General RTDBS Con�guration

In a network management system, the high-speed data access capability of the memory

based RTDBS is more critical than the persistent data access capability of the disk based

Y.Kiriha: Real-time Database Experiences 6

RTDBS. Because of this, we focus on a memory based RTDBS in our study. The rest of

this section, we discuss current technologies related to a memory based RTDBS as well

as research issues that arise in a network management system.

2.1.1 Transaction Scheduling

When an RTDBS is used in a network management system, each management opera-

tion is executed as a transaction in order to maintain a database integrity. A transaction

scheduler executes transactions based on their priority. Several scheduling algorithms

based on di�erent priority assignment policies have been proposed and evaluated[Huang90].

As an example two typical scheduling algorithms are brie
y discussed. One is the

EDF algorithm that has already been explained. The other one is HVF (Highest Value

First) algorithm. For HVF, each transaction has a value that represents the importance

to the application that the transaction completes before its deadline. HVF assigns a

higher priority to a transaction that has a higher value. According to previous simulation

studies, EDF minimizes the number of missed-deadline transactions in a system operating

under low level of resource and data contention. However, it does not perform well when

the system becomes over-loaded. This is because, under heavy loading, transactions gain

high priority only when they are close to their deadlines. Gaining high priority at this

stage may not leave su�cient time for completing transactions before their deadlines.

In order to improve the performance of the real-time scheduling, especially under an

overload situation, the HVF algorithm was designed. Since transactions under HVF gain

high priority at earlier stage than under EDF, more transactions can have su�cient time

to complete.

Which algorithm can provide the best performance depends on the application's prop-

erties such as the variety of transactions types, data contention, system load, and treat-

Y.Kiriha: Real-time Database Experiences 7

ment of missed-deadline transactions (discarded or continued). Because of this, we should

carefully choose the proper scheduling algorithm in an implementation phase. Further-

more, it is also important to design backup and recovery transactions to guarantee the

database reliability.

2.1.2 Priority Assignment

Closely related to transaction scheduling, a priority assignment for each transac-

tion is one of the most important issues in an RTDBS. Conventionally, a deadline is

used as a static value of transaction priority. Priority can also be viewed as a value

function[Jensen85] that is dynamically assigned considering the status of a transaction.

The value function of a transaction measures how valuable it is to complete the transac-

tion at some point in time after the transaction arrives. This function must be carefully

selected to yield good performance.

Another problem is that of subtask priority assignment in case that a transaction

requires distributed processing. Since network management tasks might be deployed

in a distributed environment, it is a serious problem. E�cient algorithms have been

studied for cases where the transaction structure is known in advance[Kao94], or for

cases where a transaction is discarded if it misses its deadline[Purimetla94]. However,

these assumptions may not be always applicable for management operations, so we believe

better algorithms are required.

2.1.3 Concurrency Control

In case that multiple transactions are executed concurrently, a concurrency control

mechanism maintains data consistency by scheduling shared data access. In conventional

database products, a 2PL (two phase locking) algorithm is generally utilized. However,

some extensions are needed for an RTDBS in order to deal with the priority inversion

Y.Kiriha: Real-time Database Experiences 8

problem[Abbott92]. This is a phenomenon where a high priority lock requester waits on

a low priority lock holder to �nish. In order to avoid such situation, a 2PL-HP (high

priority) algorithm, for example, chooses to abort the low priority lock holder and lets

the high priority lock requester proceed.

Although lock-based concurrency control algorithms can provide correctness, their

overhead may be signi�cant in some real-time application environments. So several opti-

mistic concurrency control algorithms have been studied[Haritsa90]. Optimistic concur-

rency control algorithms have the advantages of being non-blocking and deadlock free.

According to simulation studies, the optimistic approach can outperform the lock-based

approach when data contention is low and transactions that missed their deadline are

discarded.

The choice of a good concurrency control algorithm is important. We note that

locking-based algorithms can easily extend to a distributed version, however, optimistic

algorithms should be required complex compensating procedures for aborted transactions

in distributed environments.

Y.Kiriha: Real-time Database Experiences 9

(Common ManagementManager

- Workstation

- Workstation
- Embedded in Network Element

Network
Elements

CMIP

Agent

(Management Information Base)
MIB

MO
(Managed Object)

Information Protocol)

(Switch, Multiplexer,...)

Figure 3: OSI Network Management Model

2.2 Network Management Systems

In standardized TMN architecture, a network management system consists of a man-

ager and an agent, as depicted in Fig. 3.

The manager provides network administrators with various management functionality

by cooperating with multiple agents. This cooperation is achieved by using operations

that are transmitted by a standardized communication protocol called CMIP (Common

Management Information Protocol). The agent controls a managed network element ac-

cording to the manager's operation requests. The managed network element is modeled

by using object-oriented techniques, and is represented as a group of managed objects.

Each management datum corresponds to an attribute value of a managed object. The

collection of managed objects is referred to a MIB. According to the OSI network man-

agement model, the MIB function is provided by an agent. However, in almost all actual

management systems, static data for the managed networks and services are stored in

a manager's databases for performance reason. On the other hand, dynamic data, such

as the current status of each network element, is stored in an agent. When the manager

Y.Kiriha: Real-time Database Experiences 10

requests dynamic data, the manager collects it from the corresponding agents, and tem-

porarily stores it. Conventional database systems have been utilized as components of

both managers and agents.

With regard to an MIB implementation, previous research e�orts have focused on

e�cient utilization of commercial database systems such as relational database systems

[Wasson90] [Kiriha91] and object-oriented database systems[Bapat91][Kiriha94]. The

main goal of such MIB is to provide various types of queries with a fast average response

time.

The standardized manager and agent model is a useful concept for increasing in-

teroperability of management operations in heterogeneous (i.e., multi-vendor) networks.

However, current MIB implementations (utilizing conventional database systems) based

on this model do not always meet requirements to manage evolving networks and ser-

vices. One problem is that an expected response time cannot be ensured. Even though an

operation is important and urgent, the operation may have to wait until the completion

of the one currently being executed. In order to deal with this problem, it is obvious that

each operation has to be assigned a priority, and the execution order of such operations

should be e�ciently scheduled according to their priority. This is a main motivation of

our study.

Another problem is that a manager's load may become very heavy. This is because,

in the current management architecture, only one manager controls distributed multiple

agents in a centralized manner as illustrated in Figure 4(a). To cope with this prob-

lem, distributing the manager's heavy load into multiple agents could be an e�ective

solution. In order to distribute the system load, current passive(i.e., controlled by a

manager) agents have to be delegated some parts of the Manager's role[Yemini91], and

Y.Kiriha: Real-time Database Experiences 11

have to become active (i.e., controlled on their own). To realize such agents, communi-

cation between agents should be supported, as depicted in Figure 4(b). For example, a

virtual path creation operation that requires cooperation of path-related agents can be ef-

�ciently implemented by using the communication between agents. This distrusted data

management allows management systems to improve performance as well as to reduce

the manager's load.

Standardized Protocol

Non-Standardized Protocol

Agent
(NE)

Manager
(WS)

Agent
(NE)

Agent
(NE)

Manager
(WS)

Agent
(NE)

Agent
(NE)

Agent
(NE)

(a) Centralized Control (b) Distributed Control

Figure 4: Management Interactions: Centralized and Distributed

Y.Kiriha: Real-time Database Experiences 12

3 Active and Real-time MIB Architecture

As described in Section 2, a conventional MIB should support active and real-time

capabilities. As a solution, we propose to employ an RTDBS that can provide such

functionality, as a new MIB module. In this section, we introduce an active and real-

time MIB (ART-MIB) architecture, and discuss a mapping scheme between management

operations and transactions in the new MIB.

3.1 ART-MIB Architecture

In order to provide network management systems with real-time capability, we pro-

pose a new MIB architecture that utilize functionalities of an RTDBS. Figure 5 illustrates

the software components of the proposed ART-MIB architecture. In the following, we

assume that the ART-MIB will be installed on every manager and agent as depicted in

Figure 3.

Management Task
Operation

Maintenance
Task

Transaction Mgr.
Realtime Database Kernel

Task Mgr.

Resource Mgr.

Memory Resident Database Conventional
Database Systems

Communication
Task

Management Task
Operation

Management Task
Operation

User

Figure 5: Active and Real-time MIB Architecture

Y.Kiriha: Real-time Database Experiences 13

The main component of this architecture comprises a memory resident database, man-

agement tasks, and a real-time database kernel. The memory resident database[Garcia92]

stores management data in memory, and provides atomic data access methods such as

data read and write. By using this, a management system based on our data management

architecture can realize faster and more predictable data access functions. The manage-

ment tasks provide high-level data processing functionality (i.e., management operations)

such as connection set-up and bandwidth allocation. These functions are allowed to trig-

ger other functions or to be executed periodically. Furthermore, multiple management

tasks in the ART-MIB share the management data, and these are executed concurrently

in order to improve performance.

The real-time database kernel is one of the most important modules of the proposed

architecture. As illustrated in Figure 5, the kernel consists of three modules: a trans-

action manager, a task manager, and a resource manger. The three modules provide

transaction scheduling, priority assignment, and concurrency control (as described in

Section 2.1) respectively. The transaction manager schedules requested operations in a

timely and event driven manner. The task manager tracks the status of tasks, and has

responsibility for assigning deadlines or values to management operations. The resource

manager provides a concurrency control mechanism for ensuring data consistency.

In addition to these components, a communication task and a maintenance task are

also supported. The communication task receives an operation, passes the operation

to the real-time database kernel, and provides the result of the operation. Since the

real-time database kernel needs to know the real-time properties of the requested opera-

tion, the communication task provides the user application with an extended application

program interface (i.e., API) that can specify some of these properties, such as timing

constraints, periodicity, and triggering event conditions. The maintenance task is con-

Y.Kiriha: Real-time Database Experiences 14

trolled by the real-time database kernel, and coordinates the memory resident database

and conventional databases in order to provide backup and recovery functions.

As described in Section 2.1, further studies are required before deploying this archi-

tecture in an actual network management system. Because of this, we cannot determine

the implementation alternatives for each functional module. However, our expectations

are brie
y discussed. First, for the transaction manager, we expect a dynamic scheduling

algorithm that can utilize the various conventional algorithms according to the actual

system status that is derived from system load, data contention, and required dead-

line strictness. Second, for the task manager, we also expect a dynamic deadline and

value assignment algorithm. As described in Section 2.1, an end-to-end deadline guar-

antee is strongly desired for the network management applications that are inherently

distributed. Last, for the resource manager, we expect a concurrency control algorithm

that can resolve data contention in an optimistic way.

Ideally, we would study the characteristics of all functional modules. However, total

system behavior might be quite complex. Hence in this report, we focus on transaction

scheduling of the real-time database kernel. Furthermore, in the kernel that is a memory

based RTDBS, we believe that the concurrency control overhead is not so serious. This

is because transaction execution time is very small in a memory based system, and thus

data-contention is generally low. In our study we focus on a memory based RTDBS, and

hence do not seriously consider concurrency control alternatives.

Y.Kiriha: Real-time Database Experiences 15

3.2 Transaction Mapping

In order to make the ART-MIB architecture compatible with the OSI network manage-

ment model, one management operation should basically correspond to one transaction

shown in Figure 6(a). The previous discussion assumes this type of transaction mapping.

We refer to this type of transaction as a CSV (conservative) implementation in the rest

of this report. A CSV implementation can ensure strict data consistency. If a CSV

transaction includes many data access operations, it tends to require a long completion

time. Due to this, for a network management system that includes a large number of

shared data access operations, a long CSV transaction may frequently block execution

of other transactions.

Agent

Manager

Agent Agent

Manager

Agent Agent Agent

(a) Conservative Transaction (b) Optimistic Transaction

Data Access
Operation

Management
Data Access

Transaction 1
Transaction 2a

Transaction 2b Transaction 2c

Transaction 2d

Figure 6: Two types of Operation Implementation: Conservative and Optimistic

On the other hand, Figure 6(b) illustrates the other alternative for management op-

erations mapping. In this �gure, one management operation corresponds to four transac-

tions (Transaction 2a - 2d). We refer to this type of transaction as an OPT (optimistic)

implementation in the rest of this report. Compared to a CSV implementation, an OPT

implementation does not guarantee strict data consistency, and requires a compensat-

ing procedures in case of a transaction abortion. However, since OPT can execute each

Y.Kiriha: Real-time Database Experiences 16

transaction in short time, data contention becomes less. This results in an improved

degree of concurrency for transaction execution.

In this report we will study which implementation (CSV or OPT) is suitable for net-

work managements, especially for our proposed ART-MIB. In particular, we study the

impact of communication delay and transaction triggering overhead in both implemen-

tations. As observed in Figure 6, the communication delay for CSV is more serious than

that for OPT. And the transaction triggering overhead for OPT is more serious than that

for CSV. Furthermore, we note that if an OPT implementation is utilized to realize our

ART-MIB, then the non-standardized communication protocol described in Section 2.2

needs to be developed.

Y.Kiriha: Real-time Database Experiences 17

4 Implementation of Evaluation System

In order to deploy the active and real-time MIB (ART-MIB) architecture in an actual

network management system, it is important to develop a prototype system and to eval-

uate it. In this section, implementation issues such the prototype system con�guration,

managed network, and management operation speci�cation are discussed.

4.1 System Con�guration

In order to understand which scheduling algorithm (i.e., EDF or HVF) is better

for network management systems, we have developed and evaluated a prototype system.

Our evaluation system consists of a generator of management operations and a prototype

MIB, as illustrated in Figure 7. The management operation generator sends randomly

selected operations to the prototype MIB and periodically collects statistical information

such as missed deadline percentage, execution time, queuing time, CPU utilization, and

queue length. This con�guration is compatible with the OSI network management model

described in Section 2.2.

The prototype MIB consists of a memory based RTDB engine and management tasks.

As the RTDB engine, we have utilized the STRIP (STanford Realtime Information Pro-

cessor) Engine[Adelberg94] that is a memory based RTDBS, running on an HP work-

station (HP Apollo 9000/735, HP-UX 9.03). The RTDB engine supports two scheduling

algorithms: EDF and HVF (also, FCFS for comparison). However, one algorithm has

to be selected before the engine starts. Furthermore, functions as transaction triggering

and concurrency control (two phase lock with highest priority) are supported. In our

evaluation, we assumed that neither deadlock nor preemption occur during transaction

execution. We believe that this assumption is reasonable because the e�ect of deadlock

and preemption are very small in a memory based RTDBS.

Y.Kiriha: Real-time Database Experiences 18

Network Management
Operation Generator

Operations

Statistics
Log

RTDB
Engine

Management
Tasks

Triggered Operations

Prototype MIB

Manager

Agent

Figure 7: Evaluation System Con�guration

The management tasks support not only basic network management operations (e.g.,

link status monitor and alarm report) but also provide management operations for ATM

transmission networks (e.g., create, delete trace, and bandwidth update of virtual paths).

Section 4.3 discusses the supported operations in more detail.

4.2 Managed Network Con�guration

The evaluation system is assumed to manage an ATM transmission network. Be-

fore describing the management information, we brie
y introduce several ATM network

term. Figure 8 illustrates an example of an ATM transmission network. A virtual path

connection (VP connection) is a multiplexed logical link between two network elements

(e.g., ATM cross connect equipment) connected by a physical link. The VP connection is

terminated in both network elements, and these terminations are uniquely identi�ed as

connection termination points (CTP). A virtual path trail (VP trail) is a logical link for

a certain network service and consists of several virtual path connections. In Figure 8,

Y.Kiriha: Real-time Database Experiences 19

NE#A NE#B NE#C

NE#D

Physical Link 1 Physical Link 2

VP Connection

CTP

VP Trail(End-to-End Path) 1

TTP

Physical Link 3

VP Trail(End-to-End Path) 2

a1

a2

b1 b1

b2 b2

d1

c1

(Trail Termination Point)
(Connection Termination Point)

Figure 8: ATM Transmission Network

both VP trail 1 and 2 consist of two VP connections. The VP trail is also terminated in

service-end network elements, and these terminations are identi�ed as trail termination

points (TTP).

We have designed a relational database schema that represents such an ATM trans-

mission network, because the STRIP engine supports a relational data model. Figure 9

shows the database schema. Information concerning VP trails and physical links is stored

in a TRAIL table and a PLINK table respectively. The TRAIL table includes such data

elements as unique identi�er, both TTPs, allocated bandwidth, and routing informa-

tion. The PLINK table includes such data as unique identi�er, available bandwidth, and

connecting network element pair.

We note that VP connections are not explicitly represented. VP connections are

managed through corresponding CTPs whose information is stored in each NE table.

For example, the management information concerning the two VP connections in VP

trail 1 appears in the �rst row (CTP='a1') of the NE#A table, the �rst row (CTP='b1')

of the NE#B table, and the �rst row (CTP='c1') of the NE#C table.

Y.Kiriha: Real-time Database Experiences 20

TRAIL

Trailid S-TTP D-TTP BW ROUTE

1 a1 c1 #A#B#C100M

2 #A#B#Da2 d1 100M

PLINK

PLINKID Available-BW NE#

1 #A#B500M

2 #B#C300M
3 #B#D200M

1

NE#A

a2 b2

1a1 b1 1

2

CTP D-CTP PLINKID TRAILID

3

NE#B

b2 d1

2b1 c1 1

2

CTP D-CTP PLINKID TRAILID

(termination)

NE#C

--c1 -- 1

CTP D-CTP PLINKID TRAILID

NE#D

--d1 -- d

CTP D-CTP PLINKID TRAILID

(termination)

Figure 9: Relational Data Schema in Evaluation System

We assume that the TRAIL and PLINK tables are stored in a manager system, and each

NE table is stored in an agent corresponding to each network element.

Although the managed network has already been speci�ed by using a relational data

model, we brie
y discuss the mapping between the relational data schema and the OSI

management information structure. In order to provide compatibility with the OSI en-

vironment, our data schema can be visualized as illustrated in Figure 10. In this �gure,

each row data in each table corresponds to a managed object that has several attributes

to be managed. This �gure also shows a containment relationship (e.g., Connection

objects belong to a Link object) and a pointer relationship (e.g., a Trail object has a

pointer attribute that indicates constituent Connection objects) among all managed ob-

jects. Considering data location, Link objects and Connection objects are assumed to be

stored in an agent that corresponds to a NE. Other management data is assumed to be

stored in a manager.

Y.Kiriha: Real-time Database Experiences 21

Trail

Bandwidth Reservation
Information

Alarm Log

root

ConnectionLink

NE#1

NE#2

NE#3

Inheritance Relation

Pointer Relation

Figure 10: Management Information Tree (MIT) in Evaluation System

pl-1

pl-2

pl-3

pl-4

pl-5

pl-6
pl-7

pl-8 pl-9

pl-10

pl-11

pl-12

pl-13

pl-14

A

B

C

D

E

F

G

7 Nodes

14 x 2(Bidirection) = 28 Links

Figure 11: Evaluated Network Con�guration

Y.Kiriha: Real-time Database Experiences 22

In our evaluation, we assume the network con�guration depicted in Figure 11. As

shown, we consider an ATM transmission network that consists of 7 network elements,

and 28 physical links (i.e., each link is bidirectional). In our evaluation system, we have

randomly generated management data for VP trails and VP connections that uses these

network elements and physical links.

4.3 Management Operations

By using the management data described in the previous section, the evaluation system

supports the following management operations:

� Create, Delete, and Trace for a Trail and constituent Connections

(i.e., Create Trail, Delete Trail, Trace Trail, Create Connection, Delete Connection,

and Trace Connection,)

� Bandwidth Allocation for a trail and constituent connections

(i.e., Trail Bandwidth Update and Connection Bandwidth Update)

� Reservation based Bandwidth Control

(i.e., Bandwidth Update Reservation and Reservation Execution)

� Status Monitor, Alarm Report, and Scanning Alarm for a Physical Link

(i.e., Link Monitor, Alarm Report, and Scanning Alarm)

� Reroute of a VP Trail

(i.e., Reroute)

A detailed speci�cation of these operations appears in Attachment A of this report.

We only note that such operations as reservation execution, link monitor, and scanning

alarm are periodically executed. The rest of the operations are executed in an aperi-

odic fashion. In the following, we discuss such implementation issues of management

operations such as utilizing a trigger mechanism, assigning deadlines and values, and the

Y.Kiriha: Real-time Database Experiences 23

NE#A NE#B NE#C

NE#D

Physical Link 1 Physical Link 2

Physical Link 3

VPC1
VPT1

VPC2

VPC3
VPT2

VPT: Virtual Path Trail
VPC: Virtual Path Connection

VPC4

Trigger

Condition

VP Trail Create

Update Trail
 Information

VP Connection Create

Update Connection
 Information
Update Physical Link
 Information

Implementation of Operations

Relationship between VP Trail and VP connection

Figure 12: Management Operation Example

relationship among operations.

As an example, we discuss the create operation for an ATM virtual trail as depicted in

Figure 12. This �gure shows that the VP trail VPT1 consists of two virtual path connec-

tions: VPC1 and VPC2. Therefore, a create operation for a VP trail should invoke one or

more create operations for the constituent VP connections (e.g., VPT1 creation requires

VPC1 and VPC2 creation). Furthermore, the create operation must check whether the

corresponding physical links have su�cient bandwidth for the corresponding VP connec-

tions before invoking their creation. We have implemented such a check by using the

trigger mechanism. As a consequence, the VP trail create operation adds a new entry

to the TRAIL table in Figure 9, and triggers the VP connection create operation as a

new transaction if the above condition is true. The triggered create operations add some

entries to corresponding NE table in Figure 9, and update the available bandwidth data

in the PLINK table.

Y.Kiriha: Real-time Database Experiences 24

Deadline: TG1 -> TG2 -> TG3 -> TG4 (Longer)

Value : TG4 -> TG3 -> TG2 -> TG1 (Lower)

- Minor Alarm
 Report

- Bandwidth Update
 Reservation

- Link Status
 Monitor

- Alarm Information
 Scanning

- Create Trail
- Delete Trail
- Trace Trail
- Trail Bandwidth
 Update

- Create Conn.
- Delete Conn.
- Trace Conn.

- Conn. Bandwidth
 Update

TG1 TG2 TG3 TG4

Trigger

Figure 13: Transaction Groups: Their Deadline and Value

In order to assign a deadline and a value to each operation, we grouped supported

operations into four transaction groups: TG1, TG2, TG3, and TG4, as illustrated in

Figure 13.

As illustrated in the �gure, TG1 includes light weight operations. Both examples in the

�gure require only adding one record to a table. TG2 includes such periodic operations

as a link status monitor and scanning alarm information. Since TG2 operations require

reading all information from a table, they take longer to complete than TG1 operations.

TG3 includes such aperiodic operations as create, delete, trace and bandwidth update

for virtual path trails. Compared to TG2 operations, TG3 operations require longer

completion time, and it is more important to meet their deadlines. TG4 includes oper-

ations for virtual path connections that are triggered from TG3 operations. Due to this

relationship, TG4 operations have to be given the highest value to complete before their

deadline expires. Furthermore, TG4 operations are more complex than TG3 operations,

since TG4 operations have to update information concerning one or more connections.

Y.Kiriha: Real-time Database Experiences 25

Taking this into account, we have assigned each task group a deadline and a value.

For deadlines, operations in TG1 are assigned relatively short deadlines, TG2 operations

are given deadlines further in the future, and so on. For the value, TG4 operations have

the highest value, TG3 the next highest, and so on. Table 1 shows the actual value for

their deadlines and values.

Table 1: Deadlines and Values for each Transaction Group

Task Group Slack Time (msec) Value

TG1 10 3
TG2 50 5
TG3 80 8
TG4 100 10

As described in the operation example, each operation is related to other operations.

Figure 14 shows the relationships between all supported operations.

Create Trail Create Connection (Conservative or Optimistic)

Delete Trail Delete Connection (Conservative or Optimistic)

Trace Trail Trace Connection (Conservative or Optimistic)

Trail Bandwidth Update Connection Bandwidth Update
(Conservative or Optimistic)

Link Monitor Alarm Report

Scanning Alarm Reroute Create / Delete Trail(*)

Reservation

Rsv. Execution Trail Bandwidth Update (*)

Direct Relation (Trigger)

Indirect Relation

Figure 14: Supported Management Operations and their Relationships

Y.Kiriha: Real-time Database Experiences 26

In this �gure, the direct relation means that one operation triggers another operation.

And the indirect relation means that the number of previously executed operations af-

fects the processing amount of another operation. For example, a reservation execution

operation has to deal with the number of reservations registered by reservation operations

executed before its execution.

In closing this section, we note that we have developed both CSV and OPT imple-

mentations (described in Section 3.2) for TG4 operations. In our evaluation study, the

CSV implementation simulates a centrally controlled management system, and the OPT

implementation simulates one controlled in a distributed manner.

Y.Kiriha: Real-time Database Experiences 27

5 Evaluation Results

We will discuss our evaluation results in this section. An overview of real-time schedul-

ing characteristics is shown �rst, then the characteristics of two scheduling algorithms

are discussed in more detail. In addition, we will show the impact of communication

delay and concurrency control. Finally, we will study the crossover points where HVF

outperforms EDF and vice versa.

5.1 Result Overview

First, we discuss three �gures that describe RTDBS performance characteristics in a

network management environment. In this evaluation, management information includes

data for 100 trails, and the statistics shown have been collected after executing 300

operations (excluding the number of triggered operations).

Figure 15 shows the average execution time of three scheduling algorithms: FCFS

(non real-time scheduler), EDF, and HVF. We note that the average execution time is

almost all same even if the scheduling algorithm is di�erent. The reason why the average

execution time increases as the mean inter-arrival time decreases is that the queuing

delay increases under the overload situation.

Figure 16 shows the missed deadline percentage (MDP) for the three scheduling al-

gorithms. We note that both real-time scheduling algorithms outperform FCFS in any

case. EDF outperforms HVF when the mean inter-arrival is longer than 0.5 msec. On

the other hand, when the mean inter-arrival time becomes shorter than 0.5 msec, HVF

outperforms EDF. The following describes why this occurred in the overload situation.

For EDF scheduling, since TG4 operations are scheduled later than the other operations,

TG4 operations take longer time to complete under an overload situation than in a low

load situation. This phenomenon seriously a�ects the completion time of the other op-

Y.Kiriha: Real-time Database Experiences 28

erations whose deadlines are shorter than TG4 operations. On the other hand, for HVF

scheduling, since TG4 operations are scheduled earlier, the impact of the completion

time of TG4 operations on the other operations is smaller than that for EDF, even if the

system becomes over-loaded.

We believe that these evaluation results validate that an RTDBS, especially with

real-time scheduling, is useful for a network management system. In order to deploy a

new MIB utilizing the RTDBS we should understand the precise conditions where HVF

outperforms EDF.

In order to more precisely know when HVF outperforms the EDF scheduler, we have

studied the maximum queue length. We believe that the maximum queue length (MQL)

precisely represents the system load. This is because, since the evaluated system includes

triggered transactions, the mean inter-arrival time is not always representative of the

system load.

In Figure 17, two curves, MDP-EDF and MDP-HVF, show the missed deadline per-

centage versus the number of transactions to be processed during a constant time (10

sec). The other two dotted curves, MQL-EDF and MQL-HVF, show the maximum

queue length. As this �gure shows, the trend of the MDP curve is as same as the one

for the MQL curve, for both EDF and HVF. From this �gure, we can observe the precise

conditions where HVF outperforms EDF. We note the following evaluation results.

� The number of transaction when HVF begins to outperform EDF is about 540.

� If the queue length under EDF becomes larger than 40, the system would better o�

switching the scheduling algorithm from EDF to HVF.

� If the queue length under HVF becomes less than 20, the system would better o�

switching the scheduling algorithm from HVF to EDF.

Y.Kiriha: Real-time Database Experiences 29

0

100

200

300

400

500

600

A
ve

ra
ge

 E
xe

cu
tio

n
T

im
e

(m
se

c)

Mean Inter-arrival Time (msec)
100 10 1 0.1 0.01 0.001 0.0001

FCFS

EDF

HVF

Figure 15: Average Execution Time Comparison

0

20

40

60

80

100

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

Mean Inter-arrival Time (msec)
100 10 1 0.1 0.01 0.001 0.0001

FCFS

EDF

HVF

Figure 16: Missed Deadline Percentage Comparison

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)
M

ax
im

um
 Q

ue
ue

 L
en

gt
h

Number of Transactions

0

20

40

60

80

100

450 500 550 600 650 700

MDP-EDF

MQL-EDF

MDP-HVF

MQL-HVF

Figure 17: Characteristics of Maximum Queue Length

Y.Kiriha: Real-time Database Experiences 30

5.2 Characteristics of Real-Time Scheduling

As described in Section 4, the evaluation system has implemented TG4 operations by

using two transaction types: CSV (conservative) and OPT (optimistic). In this section,

we discuss the characteristics of four implementations: EDF (CSV), EDF (OPT), HVF

(CSV), and HVF (OPT). In this evaluation, management information includes data for

100 trails.

First of all, Figures 18 - 20 show the total execution time of the four implementations.

The three �gures show results after execution of 100 operations, 200 operations, and 300

operations respectively. We note that there is no di�erence among the four curves in all

of three �gures. Because of this fact, following two assumptions will be veri�ed that they

are true. First, we can determine which scheduling algorithm is better, from the MDP

criteria that will be shown in the following �gures (i.e., Figures 21 - 27). In the following

of this section, we will present MDP results. Second, the overhead time of triggering

transactions in OPT implementations is quite small compared to the total execution

time due.

Y.Kiriha: Real-time Database Experiences 31

EDF(CSV)

EDF(OPT)

HVF(CSV)

HVF(OPT)

0

20

40

60

80

100

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

Figure 18: Total Execution Time after 100 Operations Execution

0

50

100

150

200

250

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

EDF(CSV)

EDF(OPT)

HVF(CSV)

HVF(OPT)

Figure 19: Total Execution Time after 200 Operations Execution

0

50

100

150

200

250

300

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

EDF(CSV)

EDF(OPT)

HVF(CSV)

HVF(OPT)

Figure 20: Total Execution Time after 300 Operations Execution

Y.Kiriha: Real-time Database Experiences 32

Figures 21 - 23 show the MDP of four implementations: EDF (CSV), EDF (OPT),

HVF (CSV), and HVF (OPT). The three �gures show the results after execution of 100

operations, 200 operations, and 300 operations respectively.

As observed from the three �gures, MDP increases when the number of executed

operations increases for all implementations. This is because, increasing the number of

triggered transactions makes the system (i.e., the prototype MIB) be over-loaded. In our

evaluation scenario, alarm report operations on a certain physical link stores their results

in a database. And if the number of alarm report records goes over a threshold value

(detected by a scanning alarm operation), then the system triggered delete and create

operations for several VP trails that uses the physical link (i.e.,a reroute operations). As

the number of executed operations increases over time, such triggered operations increase

due to the stored alarm report records. Actually for EDF, the performance is better than

HVF in almost all cases in Figure 21. However, EDF performance degrades in Figure 22,

and it is outperformed by HVF (OPT) in all cases, in Figure 23.

We note that EDF performance degrades not only with short mean inter-arrival times

but also with long ones. In Figure 22, both EDF implementations increase their MDP

when the mean inter-arrival time is 1000 msec (1 sec). This is also because that increasing

the number of triggered transactions makes the system be over-loaded temporarily. In our

operation scenario, a link status monitor operation triggers an alarm report operation,

and a scanning alarm operation triggers a reroute operation. As described in the previous

paragraph, the scanning alarm operation determines whether a reroute operation should

be triggered or not, from the number of alarm report records. Since a scanning alarm

operation has a longer slack time than that of an alarm report operation, a larger number

of triggered alarm report operations might be executed before executing a scanning alarm

operation, in case that the mean inter-arrival time is long. As a result of this, a scanning

Y.Kiriha: Real-time Database Experiences 33

alarm operation needs to read many alarm report records, and triggers many reroute

operations.

As previous simulation studies, this result shows that the real-time scheduling per-

formance depends on the system (i.e., management system) load. Of course, if the mean

inter-arrival time becomes shorter, then the system becomes over-loaded. Furthermore,

the number of triggered transactions also a�ect the system load. For example, in our

operation scenario, such operations as alarm report, bandwidth update reservation, band-

width update execution , and reroute a�ect the number of triggered transactions. If such

operations increase, the performance of real-time scheduling is similar to, or becomes

worse than that in Figure 23. On the other hand, if such operations are not frequent,

the performance of real-time scheduling is similar to that in Figure 21.

Y.Kiriha: Real-time Database Experiences 34

EDF(CSV)

EDF(OPT)

HVF(CSV)

HVF(OPT)

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)
0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

Figure 21: Missed Deadline Percentage after 100 Operations Execution

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

EDF(CSV)

EDF(OPT)

HVF(CSV)

HVF(OPT)

Figure 22: Missed Deadline Percentage after 200 Operations Execution

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

EDF(CSV)

EDF(OPT)

HVF(CSV)

HVF(OPT)

Figure 23: Missed Deadline Percentage after 300 Operations Execution

Y.Kiriha: Real-time Database Experiences 35

In order to better understand the di�erences between the scheduling algorithms, the

next four �gures (i.e., Figures 24 - 27) show the MDP in a di�erent way.

Figure 24 and 25 show the MDP of three snapshots (i.e., after 100, 200, 300 opera-

tions execution) for EDF (CSV) and EDF (OPT) respectively. For EDF, TG3 and T4

operations that account for a large number of total executed operations, begin to miss

their deadlines in an overload situation. Because of this, when the system load increases,

a rate of MDP degradation becomes large, as observed in the two �gures. The trends

for CSV and OPT curves are similar. However, we note that EDF (CSV) shows a little

better MDP under a low load (e.g., 100 msec - 0.01 msec) in two cases after executing

100 and 200 operations.

Figures 26 and 27 show the MDP of three snapshots for HVF (CSV) and HVF (OPT)

respectively. For HVF, TG1 and T2 operations that account only for a small number of

total executed operations, begin to miss their deadline in an overload situation. Because

of this, even though the system load increases, a rate of MDP degradation is not so

large as in the earlier �gures. Furthermore, we note that the performance degradation of

HVF (OPT) is smaller than that for HVF (CSV). Compared to CSV, a larger number of

TG4 operations is triggered in OPT. Therefore, for HVF (OPT), the ratio of the number

transactions that can meet their deadlines, to the total number of executed operations,

becomes larger than that for HVF (CSV). Because of this, the MDP of HVF (OPT)

becomes relatively smaller than that of HVF (CSV).

From the results in this section, we conclude that a MIB would better o� utilizing

EDF (CSV) in a low load scenario, and would better o� utilizing HVF (OPT) in an

overload situation.

Y.Kiriha: Real-time Database Experiences 36

100 Operations

200 Operations

300 Operations
M

is
se

d
D

ea
dl

in
e

Pe
rc

en
ta

ge
 (

%
)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Figure 24: MDP Characteristics of EDF (Conservative)

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

100 Operations

200 Operations

300 Operations

Figure 25: MDP Characteristics of EDF (Optimistic)

Y.Kiriha: Real-time Database Experiences 37

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

100 Operations

200 Operations

300 Operations

Figure 26: MDP Characteristics of HVF (Conservative)

100 Operations

200 Operations

300 Operations

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Figure 27: MDP Characteristics of HVF (Optimistic)

Y.Kiriha: Real-time Database Experiences 38

5.3 Impact of Communication Delay

Although the evaluation has been done in one workstation, TG4 operations assumes

a distributed transaction. In order to simulate such a distributed environment, each

operation in TG4 includes a communication delay parameter. The communication delay

in the previous results was 10 msec, which is an average performance for a simple RPC

(Remote Procedure Call). In this section, we discuss the impact of communication delay.

In this evaluation, management information includes data for 100 trails, and the statistics

have been collected after executing 200 operations.

Figures 28 - 30 show the MDP of four implementations: EDF (CSV), EDF (OPT),

HVF (CSV), HVF (OPT). The three �gures correspond to communication delays of 0

msec, 10 msec, and 50 msec respectively.

The trends when communication delay is 0 msec and 10 msec are not that di�erent.

This is because the slack time of TG4 operations is substantially larger than the commu-

nication delay in our evaluation environment. However, when the communication delay

is 50 msec, we note that both EDF (CSV) and HVF (CSV), which require larger number

of remote calls than the OPT implementation, signi�cantly degrade their performance.

Because of this, if a management system faces heavy communication tra�c, it is better

to utilize the OPT implementation that requires fewer number of calls.

Y.Kiriha: Real-time Database Experiences 39

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)
0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

EDF(CSV)

EDF(OPT)

HVF(CSV)

HVF(OPT)

Figure 28: MDP for 0msec Communication Delay

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

EDF(CSV)

EDF(OPT)

HVF(CSV)

HVF(OPT)

Figure 29: MDP for 10msec Communication Delay

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

EDF(CSV)

EDF(OPT)

HVF(CSV)

HVF(OPT)

Figure 30: MDP for 50msec Communication Delay

Y.Kiriha: Real-time Database Experiences 40

In order to better understand the di�erences between the scheduling algorithms, next

four �gures (i.e., Figures 31 - 34) show the MDP in a di�erent way.

Figures 31 and 32 show the MDP for three communication delays for EDF (CSV) and

EDF (OPT) respectively. From the two �gures, the signi�cant performance degradation

of EDF (CSV) with high communication delay clearly recognized. This is because that

the large communication delay makes the completion time of TG4 operations longer,

which overloads the system.

Figures 33 and 34 show the MDP for the three delay cases for HVF (CSV) and HVF

(OPT) respectively. For HVF (OPT), the performance degradation is small even if the

communication delay is larger. However, if the communication delay approaches the slack

time of TG4 operations, then the performance will degrade even in the HVF (OPT). We

note that the performance degradation of HVF (CSV) is smaller than that of EDF(CSV).

The reason is that HVF tries to meet deadlines of TG4 operations that are signi�cantly

delayed by the remote calls.

We believe that communication delay is also the constituent of the system load. If the

communication delay becomes larger, then the processing time for each transaction also

becomes longer. This situation is similar to a situation when the system load becomes

heavy. Take this into account, these results also show that EDF (CSV) is better at low

load, while HVF (OPT) is better in an overload situation.

Y.Kiriha: Real-time Database Experiences 41

Delay = 0ms

Delay = 10ms

Delay = 50ms
M

is
se

d
D

ea
dl

in
e

Pe
rc

en
ta

ge
 (

%
)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Figure 31: Impact of Communication Delay on EDF (Conservative)

Delay = 0ms

Delay = 10ms

Delay = 50ms

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Figure 32: Impact of Communication Delay on EDF (Optimistic)

Y.Kiriha: Real-time Database Experiences 42

Delay = 0ms

Delay = 10ms

Delay = 50ms
M

is
se

d
D

ea
dl

in
e

Pe
rc

en
ta

ge
 (

%
)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Figure 33: Impact of Communication Delay on HVF (Conservative)

Delay = 0ms

Delay = 10ms

Delay = 50ms

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Figure 34: Impact of Communication Delay on HVF (Optimistic)

Y.Kiriha: Real-time Database Experiences 43

5.4 Impact of Concurrency Control

As described in Section 4, our evaluation system implements two phase locking (pes-

simistic) as concurrency control. In this section, we will discuss the impact of concurrency

control on the scheduling algorithms.

Figure 35 and 36 show the MDP versus the number of trails for four implementa-

tions: EDF with CC (Concurrency Control), EDF without CC, HVF with CC, and HVF

without CC. In this section, considering the previous discussions, EDF represents EDF

(CSV), and HVF represents HVF (OPT). In this evaluation, statistics were collected

after executing 200 operations.

The two graphs correspond to cases where the mean inter-arrival time is 100 msec

and 10 msec respectively. We note that MDP for EDF in Figure 36 is smaller than that

in Figure 35 even if the the mean inter-arrival time in Figure 36 smaller than that in

Figure 35. This is because, as described in Section 5.2, increasing the number of triggered

transactions make the system over-loaded in Figure 36.

In a memory based RTDBS, the di�erence in the number of trails (i.e., data size) is

not so serious for the database access speed. However, in our evaluation scenario, the

di�erence in the number of trails a�ects the number of triggered transaction. For example,

reroute operations trigger delete and create operations of trails that are allocated in a

certain link. Since the number of trails in a certain link becomes larger when data size

becomes larger, the number of triggered transaction also becomes larger. Because of this,

increasing the data size over-loads the system.

The two �gures show that the impact of concurrency control is relatively small in an

overload situation. In such a situation, almost all transactions might miss their deadlines

anyway. We note that the e�ect of concurrency control for EDF is clearer under a low

Y.Kiriha: Real-time Database Experiences 44

load. With a light load, TG3 and TG4 operations will have a chance to meet their

deadlines with an e�cient concurrency control algorithms (e.g., optimistic way) under

EDF scheduling. For HVF, the impact of concurrency control is small. This is because

that the ratio of TG1 and TG2 operations that miss their deadlines under HVF is small

relative to the total number of executed transactions in our evaluation environment .

Y.Kiriha: Real-time Database Experiences 45

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

Number of Trails

0

10

20

30

40

50

60

70

80

100 300 500 1000 2000

EDF

EDF(CC-OFF)

HVF

HVF(CC-OFF)

Figure 35: Impact of Concurrency Control when Mean Inter-Arrival time is 100 msec

0

10

20

30

40

50

60

70

EDF

EDF(CC-OFF)

HVF

HVF(CC-OFF)

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

Number of Trails
100 300 500 1000 2000

Figure 36: Impact of Concurrency Control when Mean Inter-Arrival time is 10 msec

Y.Kiriha: Real-time Database Experiences 46

5.5 Crossover Points

As discussed in the previous sections, the two real-time scheduling algorithm: EDF

and HVF, have crossover points where one outperforms the other. In this section, we

discuss the crossover points for EDF (CSV) and HVF (OPT) more precisely.

Figures 37 - 39 show the MDP of three scheduling algorithms : FCFS, EDF(CSV),

and HVF(OPT). For EDF(CSV) and HVF(OPT), same data shown in Figures 21 - 23 is

utilized. The three graphs re
ect results after executing 100 operations, 200 operations,

and 300 operations respectively. These �gures show the same trends seen in Figure 16.

As described earlier, both real-time scheduling algorithms outperform FCFS in any case.

There are crossover points between EDF (CSV) and HVF (OPT). However, since the

performance of HVF (OPT) is better than that of HVF (CSV) depicted in Figure 16,

the region where HVF (OPT) outperforms EDF(CSV) becomes wider.

Figures 40 - 43 show the crossover points where HVF (OPT) outperforms EDF (CSV).

The four �gures correspond to a number of trails of 100, 300, 500, and 1000 respectively.

In this evaluation, the statistics are collected after executing 200 operations. As described

before, increasing of the number of trails means increasing of the system load. Because

of this, the region where HVF (OPT) outperforms EDF (CSV) becomes wide when the

number of trails becomes large. Especially in case of Figure 43, EDF (CSV) cannot

outperform HVF in any cases. As discussed in Section 5.2, due to the increase in the

number of triggered transaction, it is also observed that EDF degrades even if the mean

inter-arrival time is still long.

Y.Kiriha: Real-time Database Experiences 47

FCFS

EDF(CSV)

HVF(OPT)

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)
0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

Figure 37: Missed Deadline Percentage after 100 Operations Execution

FCFS

EDF(CSV)

HVF(OPT)

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

Figure 38: Missed Deadline Percentage after 200 Operations Execution

FCFS

EDF(CSV)

HVF(OPT)

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

Figure 39: Missed Deadline Percentage after 300 Operations Execution

Y.Kiriha: Real-time Database Experiences 48

EDF(CSV)

HVF(OPT)
M

is
se

d
D

ea
dl

in
e

Pe
rc

en
ta

ge
 (

%
)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Figure 40: MDP Comparison between EDF and HVF for 100 Trails

EDF(CSV)

HVF(OPT)

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

Figure 41: MDP Comparison between EDF and HVF for 300 Trails

Y.Kiriha: Real-time Database Experiences 49

EDF(CSV)

HVF(OPT)

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)
1000 10 1 0.1 0.01 0.001 0.0001100

Figure 42: MDP Comparison between EDF and HVF for 500 Trails

EDF(CSV)

HVF(OPT)

M
is

se
d

D
ea

dl
in

e
Pe

rc
en

ta
ge

 (
%

)

0

20

40

60

80

100

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Figure 43: MDP Comparison between EDF and HVF for 1000 Trails

Y.Kiriha: Real-time Database Experiences 50

In order to analyze the precise crossover conditions, Figures 44 and 45 show the MQL

for four cases of 100, 300, 500, and 1000 trails. The two graphs show EDF (CSV) and

HVF (OPT) respectively. The trends for the MQL curves are similar to the trends for

MDP curves shown in Figure 40 - 43. As discussed in Section 5.1, we believe that MQL

precisely represents the system load. Therefore, we can observe the precise conditions

where EDF (OPT) outperforms HVF (OPT) from the two �gures:

� If the queue length under EDF (CSV) becomes larger than 20, the system would

better o� switching the scheduling algorithm from EDF (CSV) to HVF (OPT).

� If the queue length under HVF (OPT) becomes less than 20, the system would

better o� switching the scheduling algorithm from HVF (OPT) to EDF(CSV).

Y.Kiriha: Real-time Database Experiences 51

0

50

100

150

M
ax

im
um

 Q
ue

ue
 L

en
gt

h

Trail 100

Trail 300

Trail 500

Trail 1000

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Figure 44: Characteristics of Maximum Queue Length in EDF

0

50

100

150

M
ax

im
um

 Q
ue

ue
 L

en
gt

h

Mean Inter-arrival Time (msec)

1000 10 1 0.1 0.01 0.001 0.0001100

Trail 100

Trail 300

Trail 500

Trail 1000

Figure 45: Characteristics of Maximum Queue Length in HVF

Y.Kiriha: Real-time Database Experiences 52

6 Conclusion

This report proposed an active and real-time MIB (ART-MIB) architecture for a

network management system. The architecture consists of the memory resident database,

management tasks, and real-time database kernel. Among these components, the real-

time database kernel is the most important for providing real-time capabilities such as

transaction scheduling and concurrency control.

We believe that the ART-MIB architecture can provide more
exible data manage-

ment functions with higher performance. However, as described in Section 2.1, some

research issues arise in a network management environment. We note that the policies

for transaction scheduling, priority assignment, and concurrency control have a great

impact on system performance and timeliness. In order to analyze an actual system and

to evaluate its implementation alternatives, we have developed a prototype system that

supports real-time database capabilities (i.e., STRIP) and several network management

operations for managing an ATM transmission network.

Through our studies we have veri�ed the e�ectiveness of an RTDB in network man-

agement systems, especially in a MIB implementation. The evaluation results showed

that real-time scheduling algorithms (both EDF and HVF) outperform non real-time

scheduling algorithm (FCFS) in almost all cases. Concerning the real-time scheduling

algorithms, we studied their performance characteristics taking into account two types

of transaction implementation: conservative and optimistic. In summary, the EDF con-

servative implementation outperforms the others when the system load is low, and the

HVF optimistic implementation outperforms the others in an overload situation. We

examined the crossover points where an HVF optimistic implementation starts outper-

forming an EDF conservative implementation. The crossover points closely depend on

the magnitude of the scheduler queue. Furthermore, we showed that EDF conservative

Y.Kiriha: Real-time Database Experiences 53

was very sensitive to the communication delay and concurrency control. On the other

hand, the impact of these is not so signi�cant in HVF optimistic implementation.

As a future work, we plan to develop mechanisms to switch the scheduling algorithm

without stopping the running MIB. In order to widely deploy the new MIB utilizing an

RTDBS, further study is expected in the following �elds.

� Evaluation of the other types of Value Functions (i.e., not a step function)

� Optimistic Concurrency Control Algorithms in the context of Network Management

� End-to-end Deadline Guarantee in the context of Network Management

� Implementation and Evaluation of Recovery Mechanism for Memory based RTDBS

� Implementation and Evaluation of Cooperation Mechanism with Conventional Database

Systems

� Implementation and Evaluation of Bu�er Management and Disk Scheduling in con-

text of Network Management

Acknowledgments

We wish to thank Hector Garcia-Molina, Ben Kao, and Brad Adelberg of Stanford

University, for their technical support and useful discussions. Furthermore, we would like

to give special thanks to Masahiro Yamamoto, Satoshi Hasegawa, and Shoichiro Nakai

of C&C Research Laboratories, NEC.

Y.Kiriha: Real-time Database Experiences 54

References
[Abbott92] R. K. Abbott and H. Garcia-Molina, "Scheduling Real-Time Transactions: A Per-

formance Evaluation," ACM Transactions on Database Systems, Vol. 17, No. 3, pp.

513-560, 1992.9.

[Adelberg94] B. Adelberg, H. Garcia-Molina and B. Kao, "A Real-Time Database System for

Telecommunication Applications," Proceedings of Second International Conference

on Telecommunication Systems, 1994.3.

[Adelberg95] B. Adelberg, H. Garcia-Molina and B. Kao, "Applying Update Streams in a Soft

Real-Time Database System," to be appeared in Proceedings of ACM SIGMOD95,

1995.5.

[Bapat91] S. Bapat, "OSI Management Information Base Implementation," Proceedings of

IFIP International Symposium on Integrated Network Management (ISINM) II, pp.

817-831, 1991.4.

[Garcia92] H. Garcia-Molina and K. Salem, "Main Memory Database Systems: An Overview,"

IEEE Transactions on Knowledge and Data Engineering, Vol. 4, No. 6., pp. 509-516,

1992.12.

[Haritsa90] J. R. Haritsa at el., "Dynamic Real-Time Optimistic Concurrency Control," Pro-

ceedings of IEEE Real-Time System Symposium, pp. 94-103, 1990.12.

[Huang90] J. Huang, J. Stankovic et al., "Real-Time Transaction Processing: Design, Imple-

mentation and Performance Evaluation," University of Massachusetts COINS TR

90-65, 1990.6.

[ITU-TMN] ITU-T Recommendation M.3010, "Principles for a Telecommunication Manage-

ment Network(TMN)," 1991.

[Jensen85] E. D. Jensen, "A Time-Driven Scheduling Model for Realtime Operations System,"

Proceedings of IEEE Real-Time System Symposium, pp. 112-122, 1985.

[Kao93] B. Kao and H. Garcia-Molina, "An Overview of Real-Time Database Systems," Pro-

ceedings of NATO Advanced Study Institute on Real-Time Computing, Springer-

Verlag , 1993.10.

[Kao94] B.Kao and H.Garcia-Molina, "Subtask Deadline Assignment for Complex Distributed

Soft Real-Time Tasks," Proceedings of 14th International Conference on Distributed

Computing System, 1994.6.

[Kiriha91] Y. Kiriha et al., "An Automatic Generation of Management Information Base (MIB)

for OSI based Network Management System," Proceedings of IEEE GLOBECOM

91, pp. 649-653, 1991.12.

[Kiriha94] Y. Kiriha, "MIB Design and Implementation using Object Oriented Database Tech-

nologies," Proceedings of IFIP/IEEE International Workshop on Distributed Sys-

tems: Operations & Management (DSOM) 94, 1994.10.

Y.Kiriha: Real-time Database Experiences 55

[Purimetla94] B. Purimetla at el., "Priority Assignment in Real-Time Active Databases," Pro-

ceedings of IEEE Parallel and Distributed Information Systems, pp. 176-184, 1994.

[Ramamritham93] K. Ramamritham, "Real-Time Databases," Distributed and Parallel

Database I, Kluwer Academic Publishers, pp. 199-226, 1993.

[Wasson90] J. Wasson at et., "Database Management for an Integrated Network Management

System," Proceedings of Network Management and Control Workshop, 1990.

[Yemini91] Y. Yemini at el., "Network Management by Delegation," Proceedings of IFIP 2nd

International Symposium on Integrated Network Management, 1991.4.

Y.Kiriha: Real-time Database Experiences 56

Attachment A: Speci�cation of Management Operations
/**/

/* Network Management Application for STRIP */

/* - Yoshi */

/**/

/* Aperiodic Task */

do_CreateTrail(bw, route, altpath)

"trailid" = increase "lastid";

add record to "TRAIL" with "trailid" "bw" "route" "altpath";

->>> CreateConn(route, bw, trailid, count=0);

or

->>> CreateConnTri(route, bw, trailid, dctp, pointer, count);

--

do_DeleteTrail(trailid, flag=0:required by operator)

--

read "bw" "route" record from "TRAIL" identified by "trailid";

delete record from "TRAIL" identified by "trailid";

->>> DeleteConn(trailid, route, bw, flag);

or

->>> DeleteConnTri(trailid, route, bw, flag);

do_TraceTrail(trailid, minabw=MAX:If the result is required)

read "route" from "TRAIL" indentified by "traidid";

->>> ReadConn(trailid, route);

or

->>> ReadConnTri(trailid, route, minabw);

do_BWUpdate(trailid, diff)

read "route" from "TRAIL" indentified by "traidid";

update "bw" += "diff" on "TRAIL" identified by "trailid"

->>> UpdateConn(trailid, route, diff);

or

->>> UpdateConnTri(trailid, route, diff, pointer);

do_Reservation(trailid, diff, start)

increase "lastid";

Y.Kiriha: Real-time Database Experiences 57

"end"="start"+1 (if end > 3 then decrease 3);

"status"="W" (means Wait);

add the above records on "BWRSV"

do_AlarmReport(plinkid, NE#)

Add record which identified by plinkid and NE#;

(contents is always same value (1==QoS inferior)

do_Reroute(trailid)

oldtrailid = trailid

read "bw" "route" "altpath" from "TRAIL" idendentified by "oldtrailid";

->>> DeleteTrail(oldplinkid, flag=1:required by do_Reroute);

/* invoke concurrently */

/* another solution is invoked by DeleteConn(Tri) */

->>> CreateTrail(bw, altpath, route);

/* Triggered Transactions invoked by task_interface */

/* Internal API */

updatettp(trailid, sttp, dttp)

update "sttp" "dttp" on record identified "trailid" on "TRAIL";

CompensateCreateTrail(trailid, pointer, bw)

for (each NE#x in "pointer"){

read "plinkid" identified by "trailid" on "NE#x";

delete record identified by "trailid" on "NE#x";

update "abw" += "bw" identified by "plinkid" on "PLINK"

}

delete recored identified by "trailid" on "TRAIL";

--

CompensateBWUpdate(trailid, pointer, diff)

--

for (each NE#x in "pointer"){

read "plinkid" identified by "trailid" on "NE#x";

update "abw"+="diff" on recored identified "plinkid" on "PLINK";

}

update "bw" -= diff on record identified "trailid" on "TRAIL";

Y.Kiriha: Real-time Database Experiences 58

CreateConn(route, bw, trailid, count)

dctp = NULL;

pointer = NULL;

for (reverse order of each NE#x in "route"){

"ctpid" = increase "lastid"

"dctp" = dctp;

read "plinkid" "abw" from "PLINK" identified by "NES#";"

if ("abw" > "bw") then {

add record on "NE#x" with "ctpid" "dctp" ... "plinkid";

update "abw"-=bw on "PLINK" identified by "plinkid";

pointer <- lisp_car("route");

"route" = list_cdr("route");

count ++;

"dctp" = ctpid;

if ("route" == NULL) then

"sttp"= ctpid (only last loop);

if (count == 1) then

"dttp" = ctpid (only first loop);

} else {

/* CreateConn Fail */

->>> CompensateCreateTrail(trailid, pointer, bw);

}

}

->>> updatettp(trailid, sttp, dttp);

--

CreateConnTri(route, bw, trailtid, dctp, count, pointer)

--

"ctpid" = increase "lastid"

"dctp" = dctp;

read "plinkid" "abw" from "PLINK" identified by "NES#";"

if ("abw" > "bw") then {

add record on "NE#x" with "ctpid" "dctp" ... "plinkid";

update "abw"-=bw on "PLINK" identified by "plinkid";

pointer <- lisp_car("route");

"route" = list_cdr("route");

count ++;

"dctp" = ctpid;

if (count == 1) then

"dttp" = ctpid (only first loop);

if ("route" == NULL) then {

"sttp"= ctpid (only last loop);

->>> updatettp(trailid, sttp, dttp);

Y.Kiriha: Real-time Database Experiences 59

}

} else {

/* CreateConn Fail */

->>> CompensateCreateTrail(trailid, pointer, bw);

}

/* Triggerd Transaction */

->>> CreateConnTri(route, bw, trailid, dctp, count, pointer);

DeleteConn(trailid, route, bw, flag)

for (each NE#x on "route"){

read "plinkid" on "NE#x" identified by "trailid";

delete record identified by "trailid";

update "abw"+="bw" on "PLINK" identified "plinkid";

if flag == 1 (required by Reroute) then {

update "pfm" = 1.0 on "PLINK" identified "plinkid";

}

}

DeleteConnTri(trailid, route, bw, flag)

read "plinkid" on "NE#x" identified by "trailid";

delete record identified by "trailid" on "NE#x";

update "abw"+="bw" on "PLINK" identified "plinkid";

if flag == 1 (required by Reroute) then {

update "pfm" = 1.0 on "PLINK" identified "plinkid";

}

if ("route"!=NULL) then

->>> DeleteConnTri(trailid, route, bw, flag);

ReadConn(trailid, route)

minabw=MAX;

for (each NE#x on "route"){

read "plinkid" from "NE#x" identified by "trailid";

read "abw" from "PLINK" identified by "plinkid";

if minabw > "abw" then minabw="abw";

}

ReadConnTri(trailid, route, minabw)

#x = lisp-car(route);

Y.Kiriha: Real-time Database Experiences 60

"route" = lisp-cdr(route);

read "plinkid" from "NE#x" identified by "trailid";

read "abw" from "PLINK" identified by "plinkid";

if minabw > "abw" then minabw="abw";

if ("route"!=NULL) then

->>> ReadConnTri(trailid, route, abw)

UpdateConn(trailid, route, diff)

for (each NE#x on "route"){

read "plinkid" from "NE#x" identified by "trailid";

read "abw" from "PLINK" identified by "plinkid";

if ("abw" > "diff") then {

update "abw"-=diff on "PLINK" identified by "plinkid";

} else {

->>> CompensateBWUpdate(trailid, pointer, diff)

}

pointer <- "NE#x";

}

--

UpdateConnTri(trailid, route, diff, pointer)

--

read "plinkid" from "NE#x" identified by "trailid";

read "abw" from "PLINK" identified by "plinkid";

if ("abw" > "bw") then {

update "abw"-=diff on "PLINK" identified by "plinkid";

} else {

->>> CompensateBWUpdate(trailid, pointer, diff)

}

pointer <- "NE#x";

if ("route"!=NULL) then

->>> UpdateConnTri(trailid, route, diff, pointer)

/* Periodic Task */

do_ExecReservation(time)

read all records "BWRSV";

store records which "start" or "end" == "localtime";

for (each record identified by "trailid"){

if "status" == "s" then

delete the recod from "RSV";

"diff"=-1*"diff";

Y.Kiriha: Real-time Database Experiences 61

update "status" on "RSV";

/* triggerd trasaction */

->>> do_BWUpdate (trailid, diff);

}

do_QosReport(plinkid)

read "NE#" value on the record identified by "plinkid";

update "pfm" value on the same recored (means monitoring of QoS);

if "pfm" < "Threshold" then (means QoS inferior of the Line){

/* triggerd trasaction */

->>> do_AlarmReport(plinkid, NE#);

}

do_ScanAlarm()

read all records from "ALARM" and count alarms on each plinkid

if "alarmcount(plinkid)" > "MAXALARM" then (means failure prediction){

read "trailid" form "NE#x" identified by "NE#" in "ALARM"

/* triggerd trasaction */

->>> do_Reroute(trailid);

}

