
SOLVING UNWEIGHTED AND WEIGHTED

BIPARTITE MATCHING PROBLEMS

IN THEORY AND PRACTICE

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

J. Robert Kennedy, Jr.

August 1995

c
 Copyright 1995 by J. Robert Kennedy, Jr.

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Andrew V. Goldberg

(Principal Advisor)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Rajeev Motwani

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a

dissertation for the degree of Doctor of Philosophy.

Serge Plotkin

Approved for the University Committee on Graduate

Studies:

iii

Abstract

The push-relabel method has been shown to be e�cient for solving maximum
ow

and minimum cost
ow problems in practice, and periodic global updates of dual

variables have played an important role in the best implementations. Nevertheless,

global updates had not been known to yield any theoretical improvement in running

time. In this work, we study techniques for implementing push-relabel algorithms

to solve bipartite matching and assignment problems. We show that global updates

yield a theoretical improvement in the bipartite matching and assignment contexts,

and we develop a suite of e�cient cost-scaling push-relabel implementations to solve

assignment problems.

For bipartite matching, we show that a push-relabel algorithm using global up-

dates runs in O
�p

nm log(n2=m)

logn

�
time (matching the best bound known) and performs

worse by a factor of
p
n without the updates. We present a similar result for the

assignment problem, for which an algorithm that assumes integer costs in the range

[�C; : : : ; C] runs in time O(
p
nm log(nC)) (matching the best cost-scaling bound

known).

We develop cost-scaling push-relabel implementations that take advantage of the

assignment problem's special structure, and compare our codes against the best codes

from the literature. The results show that the push-relabel method is very promising

for practical use.

iv

Preface

As a visible product of my time spent in graduate school, this thesis is an opportunity

for me to thank a few of the great many people who have shaped my experience over

the last several years. Many have contributed directly to my academic progress, and

arguably some have detracted from it. But academic progress is not everything, and

each of the people I will name (as well as each who merits a place in these pages but

whom I inadvertently omit) has in
uenced me for the better, and has made me a

fuller, happier person.

First, I thank my principal advisor Andrew Goldberg, to whom this work owes

a great debt of natures both technical and inspirational. Without Andrew's work

on push-relabel algorithms, the questions this thesis answers could not have been

asked. During the development of the results herein, too, Andrew has played a major

technical role as my collaborator in most of the work. Also of great importance

have been the contributions he has made by suggesting directions for research, his

understanding of the research community, and his constructive suggestions at times

when I wasn't sure how to proceed. Many of my student colleagues have given me

the impression that with or without an advisor, they would �nish the Ph.D. program

having done excellent work. I am not such a student, though, and the completion of

this work says a great deal about Andrew's capacity to advise a student who really

needs an advisor.

Other faculty members and students have made invaluable contributions to my

understanding of computer science during my years at Stanford. Worthy of special

mention are my other two readers, Serge Plotkin and Rajeev Motwani; Donald Knuth;

Vaughan Pratt; Leo Guibas; Steven Phillips; Tomek Radzik, and David Karger.

v

Though they probably don't realize what an impression they made, Sanjeev

Khanna and Liz Wolf reminded me at pivotal times that I could complete the Ph.D.

program, and I owe them special gratitude for this as well as for their friendship. My

Hoang and Ashish Gupta never hesitated to welcome me into conversation when I

needed to talk.

For their vital parts in my life outside of computer science, I thank Bill Bell, Jim

Nadel, Cathy Haas, Lon Kuntze, Steven Phillips, Nella Stoltz-Phillips, Roland Cony-

beare, Rita Battaglin, Arul Menezes, Patrick Lincoln, Alan Hu, Eric Torng, Susan

Kropf, Jim Franklin, Russ Haines, Tracy Schmidt, Karen Pieper, Laure Humbert,

Scott Burson, the members (past and present) of the cycles and tuesday mailing

lists, and all those others whose names I have forgotten to include.

For their constant support and encouragement beginning the day I was born and

continuing steadfastly through the present, I owe an inexpressible debt to my parents

Liz and Jim Kennedy. Their contribution to making me a whole person has consis-

tently been greater than anyone could expect and is certainly deeper than anyone

knows; they are models for me as people and, should I father a child someday, as

parents.

A brother's in
uence is harder to express clearly, but anyone who knows me knows

that my brother William has molded me and a�ected me profoundly. Part of him

goes with me always, and contributes to everything I do. I am particularly grateful

to him for introducing me to Stanford | a place I have loved all my time here |

and to many of Stanford's people.

As my partner in life through the years during which I did the work represented

here, Lois Steinberg has supported me in ways I'm sure I don't even realize, as well

as the numerous and giant ways I'm aware of. She has encouraged me, advised me,

buoyed my spirits, taught me valuable lessons, listened to me intently, and given of

herself constantly. Her generosity with her smile and her love keeps me going through

challenging times, and makes possible a great many worthwhile things I could not

otherwise do.

Finally on a more technical note, this work owes speci�c debts to a few colleagues

whom I acknowledge here. I would like to thank David Casta~non for supplying

vi

and assisting with the sfr10 code, Anil Kamath and K. G. Ramakrishnan for their

assistance in interpreting results reported in [48], Jianxiu Hao for supplying and

assisting with the sjv and djv implementations, Serge Plotkin for his help producing

the digital pictures, and Scott Burson for sharing his home and providing computing

facilities during the development of the codes.

My apologies and my request for forgiveness go to those deserving people whom

I've left out. If, upon reading these words you wonder whether perhaps you belong

among them, you probably do.

vii

Contents

Abstract iv

Preface v

1 Introduction 1

1.1 Bipartite Matching : 4

1.1.1 History and Related Work : 4

1.1.2 Our Contributions : 4

1.2 The Assignment Problem : 5

1.2.1 History and Related Work : 5

1.2.2 Our Contributions : 5

2 Background on Network Flow Problems 7

2.1 Problems and Notation : 7

2.1.1 Bipartite Matching and Maximum Flow : : : : : : : : : : : : 7

2.1.2 Assignment and Minimum Cost Circulation Problems : : : : : 9

2.2 The Generic Push-Relabel Framework : : : : : : : : : : : : : : : : : : 11

2.2.1 Maximum Flow in Unit-Capacity Networks : : : : : : : : : : : 12

2.2.2 The Push-Relabel Method for the Assignment Problem : : : : 13

3 Global Updates: Theoretical Development 18

3.1 Bipartite Matching Algorithm with Global Updates : : : : : : : : : : 19

3.2 Improved Performance through Graph Compression : : : : : : : : : : 25

3.3 Unweighted Bad Example : 27

viii

3.4 Unweighted Global Updates in Practice : : : : : : : : : : : : : : : : : 28

3.4.1 Problem Classes and Experiment Outline : : : : : : : : : : : : 30

3.4.2 Running Times and Discussion : : : : : : : : : : : : : : : : : 31

3.5 Assignment Algorithm with Global Updates : : : : : : : : : : : : : : 33

3.6 Weighted Global Updates: a Variant of Dial's Algorithm : : : : : : : 40

3.6.1 The Global Update Algorithm: Approximate Shortest Paths : 41

3.6.2 Properties of the Global Update Algorithm : : : : : : : : : : : 43

3.7 Weighted Bad Example : 45

3.8 The First Scaling Iteration : 47

3.9 Weighted Global Updates in Practice : : : : : : : : : : : : : : : : : : 49

3.9.1 Running Times and Discussion : : : : : : : : : : : : : : : : : 50

3.10 Chapter Summary : 52

4 E�cient Assignment Code 53

4.1 Implementation Fundamentals : 55

4.2 Push-Relabel Heuristics for Assignment : : : : : : : : : : : : : : : : : 56

4.2.1 The Double-Push Operation : : : : : : : : : : : : : : : : : : : 57

4.2.2 The kth-best Heuristic : 60

4.2.3 Arc Fixing : 61

4.2.4 Global Price Updates : 62

4.2.5 Price Re�nement : 63

4.3 The CSA Codes : 63

4.4 Experimental Setup : 64

4.4.1 The High-Cost Class : 66

4.4.2 The Low-Cost Class : 66

4.4.3 The Two-Cost Class : 66

4.4.4 The Fixed-Cost Class : 66

4.4.5 The Geometric Class : 66

4.4.6 The Dense Class : 67

4.4.7 Picture Problems : 67

4.5 Experimental Observations and Discussion : : : : : : : : : : : : : : : 67

ix

4.5.1 The High-Cost Class : 68

4.5.2 The Low-Cost Class : 68

4.5.3 The Two-Cost Class : 68

4.5.4 The Fixed-Cost Class : 73

4.5.5 The Geometric Class : 73

4.5.6 The Dense Class : 73

4.5.7 Picture Problems : 76

4.6 Concluding Remarks : 80

5 Conclusions 81

A Generator Inputs 83

A.1 The High-Cost Class : 83

A.2 The Low-Cost Class : 84

A.3 The Two-Cost Class : 84

A.4 The Fixed-Cost Class : 84

A.5 The Geometric Class : 85

A.6 The Dense Class : 85

B Obtaining the CSA Codes 86

Bibliography 87

x

List of Figures

2.1 Reduction from Bipartite Matching to Maximum Flow : : : : : : : : 9

2.2 Reduction from Assignment to Minimum Cost Circulation : : : : : : 11

2.3 The push and relabel operations : 12

2.4 The cost-scaling algorithm. : 16

2.5 The generic re�ne subroutine. : 16

2.6 The push and relabel operations : 17

3.1 Accounting for work when 0 � �max � n : : : : : : : : : : : : : : : : 21

3.2 The Minimum Distance Discharge execution on bad examples. : : : : 29

3.3 Running time comparison on the Worst-Case class : : : : : : : : : : : 31

3.4 Running time comparison on the Long Path class : : : : : : : : : : : 32

3.5 Running time comparison on the Very Sparse class : : : : : : : : : : 32

3.6 Running time comparison on the Unique-Dense class : : : : : : : : : 33

3.7 Accounting for work in the Minimum Change Discharge algorithm : : 35

3.8 The Global Update Algorithm for Assignment : : : : : : : : : : : : : 42

3.9 The Minimum Change Discharge execution on bad examples. : : : : : 46

3.10 Running time comparison on the Low-Cost class : : : : : : : : : : : : 50

3.11 Running time comparison on the Fixed-Cost class : : : : : : : : : : : 51

3.12 Running time comparison on the Geometric class : : : : : : : : : : : 51

3.13 Running time comparison on the Dense class : : : : : : : : : : : : : : 51

4.1 Worst-case bounds for the assignment codes : : : : : : : : : : : : : : 54

4.2 E�cient implementation of double-push : : : : : : : : : : : : : : : : 59

4.3 DIMACS benchmark times : 65

xi

4.4 Running Times for the High-Cost Class : : : : : : : : : : : : : : : : : 69

4.5 Running Times for the Low-Cost Class : : : : : : : : : : : : : : : : : 70

4.6 Running Times (3-instance samples) for the Two-Cost Class : : : : : 71

4.7 Running Times (15-instance samples) for the Two-Cost Class : : : : : 72

4.8 Running Times for the Fixed-Cost Class : : : : : : : : : : : : : : : : 74

4.9 Running Times (3-instance samples) for the Geometric Class : : : : : 75

4.10 Running Times (15-instance samples) for the Geometric Class : : : : 76

4.11 Running Times for the Dense Class : : : : : : : : : : : : : : : : : : : 77

4.12 Running Times for Problems from Andrew's Picture : : : : : : : : : : 78

4.13 Running Times for Problems from Robert's Picture : : : : : : : : : : 79

xii

Chapter 1

Introduction

Problems of network
ow and their close relatives fall in the surprisingly small class

of graph problems for which e�cient algorithms are known, but that seem to require

more than linear time. Their position on this middle ground of tractability and

their aesthetic appeal account for a great deal of the theoretical interest in them in

the past decades. Further, network
ow problems are of practical interest because

they abstract important characteristics of many problems that arise in other, less

theoretical, domains.

Algorithms to solve network
ow problems fall roughly into three main categories.

The �rst two classes of algorithms take advantage of the fact that network
ow prob-

lems are special cases of linear programming. The simplex method and closely al-

lied techniques for general linear programming and linear programming on networks

(see [12] or [10] for an introduction) form the �rst group. The second group is another

class of algorithms capable of solving general linear programs, namely interior point

methods (see [49] for an overview). In the �nal group are algorithms that exploit

speci�c aspects of the combinatorial structure of network
ow problems, that run in

polynomial time, and that are not designed as specializations of techniques for general

linear programming.

A great deal of e�ort has been devoted to the task of making simplex methods

run fast, both in theory and in practice, on various special types of combinatorial

problems, including
ow problems ([3, 11, 33, 26, 34, 44, 51] is a small sampling of

1

CHAPTER 1. INTRODUCTION 2

the literature in this area).

Although simplex and interior-point methods remain attractive to practitioners

who solve general linear programming problems, they are theoretically inferior in

the network
ow context to combinatorial algorithms. Relatively recent research has

shown that for many broad classes of network
ow problem instances the general

techniques, even specialized to particular network
ow problem formulations, are

inferior to polynomial-time combinatorial algorithms in practice as well [2, 6, 8, 14,

25, 39, 45]. Our work widens the gap by which combinatorial algorithms win out over

general linear programming algorithms in practice, and provides theoretical analysis

of a heuristic that has been shown to improve the performance of polynomial-time

combinatorial codes.

In this work we focus on a family of combinatorial algorithms for network
ow and

their application to a speci�c class of network optimization problems. Speci�cally,

we study theoretical and practical properties of particular combinatorial algorithms

for assignment and closely related problems, and we evaluate several heuristics for

implementing these algorithms. We develop a suite of implementations and compare

their performance against other codes from the literature. Throughout, we stress

the interplay between theory and practice: we prove useful theoretical properties of

practical heuristics and we develop codes that perform well in practice and that obey

good theoretical time bounds.

The bipartite matching problem is a classical object of study in graph algorithms,

and has been investigated for several decades (an early reference is [35]). Informally,

the problem models the situation in which there are two types of objects, say college

students and available slots in dormitory rooms, and each student provides a list of

those slots that s/he would �nd acceptable. Solving the bipartite matching problem

consists of determining as large a set as possible of pairings of students to slots that

meet the students' acceptability constraints. The assignment problem (or weighted

bipartite matching) has also been studied for several decades, and incorporates the

consideration of costs on the edges of the problem graph. It has applications in

resource allocation, image processing, handwriting recognition, and many other ar-

eas; moreover, it arises as a subproblem in algorithms to solve much more di�cult

CHAPTER 1. INTRODUCTION 3

optimization problems such as the Traveling Salesman Problem [17]. Like many com-

binatorial optimization problems, bipartite matching and assignment can be viewed

as special types of network
ow problems.

Of major importance in recent algorithms for network
ow is the push-relabel

framework of Goldberg and Tarjan [31, 32]. A push-relabel algorithm for a network

ow problem works by maintaining tentative primal and dual solutions (to use the

terminology of linear programming). The tentative solutions are updated locally via

the elementary operations push and relabel, and after polynomial time the algorithm

terminates with an optimum primal solution.

The push-relabel method is the best currently known way for solving the maximum

ow problem in practice [2, 14, 45]. This method extends to the minimum cost
ow

problem using cost-scaling [24, 32], and an implementation of this technique has

proven very competitive on a wide class of problems [25] (see also [29]). In both

contexts, the heuristic of periodic global updates of node distances or prices has been

critical to obtaining the best running times in practice.

In this thesis, we investigate a variety of heuristics that can be applied to push-

relabel algorithms to solve bipartite matching and assignment problems in practice.

Some of these techniques have been used in the literature to solve minimum cost
ow

problems, some are similar to known methods for assignment problems, and some are

new.

One of the main contributions of this work is a theoretical analysis of the global

update heuristic that has proven so bene�cial in implementations. Our analysis shows

that the heuristic can improve the theoretical e�ciency of push-relabel algorithms as

well as their practical performance, and thus represents a step toward formal justi-

�cation of the heuristic. The literature contains other instances in which heuristics

developed for practical implementations have proven theoretically valuable. For ex-

ample, Hao and Orlin [36] showed that a heuristic for push-relabel maximum
ow

algorithms gave a substantial improvement in an algorithm to compute the overall

minimum cut in a capacitated graph.

We continue with a brief overview of past research on the problems we study, as

well as an outline of our contributions. Most of the research in this thesis is joint

CHAPTER 1. INTRODUCTION 4

work with Andrew V. Goldberg; portions of the work have been published in [27]

and [28].

1.1 Bipartite Matching

1.1.1 History and Related Work

Several algorithms for bipartite matching run in O(
p
nm) time.1 Hopcroft and

Karp [37] �rst proposed an algorithm that achieves this bound.

Karzanov [41, 40] and Even and Tarjan [18] proved that the blocking
ow algo-

rithm of Dinitz [16] runs in O(
p
nm) time when applied to the bipartite matching

problem.

Two-phase algorithms based on a combination of the push-relabel method [31]

and the augmenting path method [20] were proposed in [30, 46].

Feder and Motwani [19] gave a graph compression technique that combines as a

preprocessing step with the algorithm of Dinitz or with that of Hopcroft and Karp

to yield an O
�p

nm log(n2=m)

logn

�
algorithm for bipartite matching. This is the best time

bound known for the problem.

1.1.2 Our Contributions

Our treatment begins by showing that in the appropriate algorithmic circumstances,

a heuristic that periodically updates the dual solution in a global way provides a

substantial gain in theoretical performance. We analyze the theoretical properties

of such global updates in detail, and demonstrate that they lead to a provable gain

in asymptotic performance. Our bipartite matching algorithm using global updates

runs in time O
�p

nm
log(n2=m)

logn

�
, equaling the best sequential time bound known. This

theoretical result uses a new selection strategy for push-relabel algorithms; we call

our scheme the minimum distance strategy. We prove that without global updates,

our bipartite matching algorithm performs signi�cantly worse.

1Throughout this thesis, n and m denote the number of nodes and edges, respectively, in the
input problem.

CHAPTER 1. INTRODUCTION 5

Results similar to those we obtain for bipartite matching can be derived for max-

imum
ows in networks with unit capacities.

1.2 The Assignment Problem

1.2.1 History and Related Work

The �rst algorithm developed speci�cally for solving the assignment problem was the

classical \Hungarian Method" proposed by Kuhn [43]. Kuhn's algorithm has played

an important part in the study of linear optimization problems, having been general-

ized to the Primal-Dual method for Linear Programming [13]. The Hungarian Method

has the best currently known strongly polynomial time bound2 of O(n(m+ n log n)).

Under the assumption that the input costs are integers in the range [�C; : : : ; C],

Gabow and Tarjan [23] use cost-scaling and blocking
ow techniques to obtain an

O(
p
nm log(nC)) time algorithm. An algorithm using an idea similar to global up-

dates with the same running time appeared in [22]. Two-phase algorithms with the

same running time appeared in [30, 46]. The �rst phase of these algorithms is based

on the push-relabel method and the second phase is based on the successive augmen-

tation approach.

1.2.2 Our Contributions

We present an algorithm for the assignment problem that makes use of global up-

dates in a weighted context. Our algorithm runs in O(
p
nm log(nC)) time, and like

the other algorithms with this time bound, it is based on cost-scaling, assumes the

input costs are integers, and is not strongly polynomial. This bound is the best cost-

scaling bound known, and under the similarity assumption (i.e., the assumption that

C = O(nk) for some constant k) is the best bound known for the problem. Ours is

the �rst algorithm to achieve this time bound with \single-phase" push-relabel scaling

2All the algorithms we discuss run in time polynomial in n, m, and logC, where C is a bound on
the largest magnitude of an edge weight; for an algorithm on weighted graphs to qualify as strongly
polynomial, its running time must be polynomially bounded in only n and m, independent of the
arc costs.

CHAPTER 1. INTRODUCTION 6

iterations; the single-phase structure allows us to avoid building parameters from the

analysis into the algorithm itself. Global updates are crucial in obtaining our per-

formance bounds; we prove that the same algorithms without the heuristic perform

asymptotically worse. These results represent a step toward a theoretical understand-

ing of the global update heuristic's contribution to push-relabel implementations.

Our selection scheme for our theoretical work on the assignment problem is the

minimum price change strategy. Like the minimum distance strategy for bipartite

matching, this scheme is new to the development of push-relabel algorithms.

Similar results can be obtained for minimum cost
ows in networks with unit

capacities.

After the theoretical development, we brie
y investigate the e�ects of global up-

dates on practical performance when we apply a push-relabel implementation for

minimum cost
ow to a battery of assignment problems.

Following our discussion of global updates, we outline several additional techniques

that can be applied to improve the performance of implementations that solve the

assignment problem, and we brie
y discuss the characteristics of each. Although

the heuristics other than global updates are not known to change the algorithms'

asymptotic running times, they allow various improvements in practical e�ciency

which we describe.

In the �nal part of the thesis, we develop a suite of three implementations special-

ized to the assignment problem. The codes use several of the ideas we have discussed

and perform well on a broad class of assignment problems. We investigate the per-

formance of these codes in detail by supplying them with problem instances from

a variety of generators and timing them in a standardized computing environment;

we compare them on the basis of running time with with the best codes from the

literature, and observe that our best implementation is robust and usually runs faster

than its competitors.

Chapter 2

Background on Network Flow

Problems

This chapter describes the four combinatorial optimization problems we will en-

counter, and develops some basic notation for dealing with them. We will also brie
y

survey algorithmic background information before describing the generic push-relabel

framework as it applies to these problems.

2.1 Problems and Notation

2.1.1 Bipartite Matching and Maximum Flow

Let G = (V = X [Y;E) be an undirected bipartite graph, let n = jV j, and let

m = jEj. A matching in G is a subset of edges M � E that have no node in common.

The cardinality of the matching is jM j. The bipartite matching problem is to �nd a

matching of maximum cardinality.

Several algorithms have been proposed for solving the bipartite matching problem

that work directly with the matching formulation. In particular, Hopcroft and Karp's

algorithm [37] has historically been expressed from a matching point of view, and was

the �rst algorithm to achieve a running time of O(
p
nm).

Unlike Hopcroft and Karp's classic result, a great many algorithms for bipartite

7

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 8

matching are best understood through a reduction to the maximum
ow problem.

First we introduce the maximum
ow problem and its notation, and then we proceed

with a description of the standard reduction from bipartite matching to maximum

ow.

The conventions we assume for the maximum
ow problem are as follows: Let

G = (fs; tg[V;E) be a digraph with an integer-valued capacity u(a) associated with

each arc1 a 2 E. We assume that a 2 E =) aR 2 E (where aR denotes the reverse

of arc a).

A pseudo
ow is a function f : E ! R satisfying the following for each a 2 E:

� f(a) = �f(aR) (
ow antisymmetry constraints);

� f(a) � u(a) (capacity constraints).

The antisymmetry constraints are for notational convenience only, and we will often

take advantage of this fact by mentioning only those arcs with nonnegative
ow; in

every case, the antisymmetry constraints are satis�ed simply by setting each reverse

arc's
ow to the appropriate value. For a pseudo
ow f and a node v, the excess

ow into v, denoted ef(v); is de�ned by ef(v) =
P

(u;v)2E f(u; v). A pre
ow is a

pseudo
ow with the property that the excess of every node except s is nonnegative.

A node v 6= t with ef(v) > 0 is called active.

A
ow is a pseudo
ow f such that, for each node v 2 V , ef(v) = 0. Observe

that a pre
ow f is a
ow if and only if there are no active nodes. The maximum
ow

problem is to �nd a
ow maximizing ef(t).

We reduce the bipartite matching problem to the maximum
ow problem in a

standard way. For brevity, we mention only the \forward" arcs in the
ow network;

to each such arc we give unit capacity. The \reverse" arcs have capacity zero. Given

an instance G = (V = X [Y;E) of the bipartite matching problem, we construct an

instance (G = (fs; tg [V;E); u) of the maximum
ow problem by

� setting V = V ;

1Sometimes we refer to an arc a by its endpoints, e.g., (v; w). This is ambiguous if there are
multiple arcs from v to w. An alternative is to refer to v as the tail of a and to w as the head of a,
which is precise but inconvenient.

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 9

s t

Given Matching Instance

Bipartite Matching Instance Corresponding Maximum Flow Instance

(Reverse arcs not shown)

Figure 2.1: Reduction from Bipartite Matching to Maximum Flow

� for each node v 2 X placing arc (s; v) in E;

� for each node v 2 Y placing arc (v; t) in E;

� for each edge fv;wg 2 E with v 2 X and w 2 Y placing arc (v;w) in E.

A graph obtained by this reduction is called a matching network. Note that if G

is a matching network, then for any integral pseudo
ow f and for any arc a 2 E,

u(a); f(a) 2 f0; 1g. Indeed, any integral
ow in G can be interpreted conveniently

as a matching in G: the matching is exactly the edges corresponding to those arcs

a 2 X � Y with f(a) = 1. It is a well-known fact [20] that a maximum
ow in G

corresponds to a maximum matching in G.

2.1.2 Assignment and MinimumCost Circulation Problems

Given a weight function c : E ! R and a set of edges M , we de�ne the weight of

M to be the sum of weights of edges in M . The assignment problem is to �nd a

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 10

maximum cardinality matching of minimum weight in a bipartite graph. We assume

that the costs are integers in the range [0; : : : ; C] where C � 1. (Note that we can

always make the costs nonnegative by adding an appropriate number to all arc costs,

and without a�ecting the asymptotic time bounds we claim.)

For the minimum cost circulation problem, we adopt the following framework. We

are given a graph G = (V;E), with an integer-valued capacity function as in the case

of maximum
ow. In addition to the capacity function, we are given an integer-valued

cost c(a) for each arc a 2 E.

We assume c(a) = �c(aR) for every arc a. A circulation is a pseudo
ow f with

the property that ef(v) = 0 for every node v 2 V . (The absence of a distinguished

source and sink accounts for the di�erence in nomenclature between a circulation and

a
ow.) We will say that a node v with ef(v) < 0 has a de�cit.

The cost of a pseudo
ow f is given by c(f) =
P

f(a)>0 c(a)f(a). The minimum

cost circulation problem is to �nd a circulation of minimum cost.

We reduce the assignment problem to the minimum cost circulation problem as

follows. As in the unweighted case, we mention only \forward" arcs, each of which we

give unit capacity. The \reverse" arcs have zero capacity and obey cost antisymmetry.

Given an instance (G = (V = X [Y;E); c) of the assignment problem, we construct

an instance (G = (fs; tg [V;E); u; c) of the minimum cost circulation problem by

� creating special nodes s and t, and setting V = V [fs; tg;
� for each node v 2 X placing arc (s; v) in E and de�ning c(s; v) = �nC;
� for each node v 2 Y placing arc (v; t) in E and de�ning c(v; t) = 0;

� for each edge fv;wg 2 E with v 2 X placing arc (v;w) in E and de�ning

c(v;w) = c(v;w);

� placing n=2 arcs (t; s) in E and de�ning c(t; s) = 0.

If G is obtained by this reduction, we can interpret an integral circulation in G as a

matching in G just as we did in the bipartite matching case. Further, it is easy to

verify that a minimum cost circulation in G corresponds to a maximum matching of

minimum weight in G. No confusion will arise from the fact that a graph obtained

through this reduction, although slightly di�erent in structure from the graphs of

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 11

Given Assignment Instance

t s

Assignment Problem Instance Corresponding Minimum Cost Circulation Instance

Given Costs

Large Negative Costs

Zero Costs

Figure 2.2: Reduction from Assignment to Minimum Cost Circulation

Section 2.1.1, is also called a matching network.

2.2 The Generic Push-Relabel Framework

Push-relabel algorithms solve both unweighted [24, 31] and weighted [24, 32] network

ow problems. In this chapter, we acquaint the reader with unit-capacity versions

of these algorithms, since all of our results pertain to networks with unit capacities.

See [31, 32] for details of the algorithms with general capacities.

For a given pseudo
ow f , the residual capacity of an arc a 2 E is uf (a) =

u(a)� f(a). The set Ef of residual arcs contains the arcs a 2 E with f(a) < u(a).

The residual graph Gf = (V;Ef) is the graph induced by the residual arcs. Those

arcs not in the residual graph are said to be saturated.

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 12

relabel(v).

replace d(v) by min(v;w)2Ef
fd(w) + 1g

end.

push(v; w).

send a unit of
ow from v to w.

end.

Figure 2.3: The push and relabel operations

2.2.1 Maximum Flow in Unit-Capacity Networks

A distance labeling is a function d : V ! Z+. We say a distance labeling d is valid

with respect to a pseudo
ow f if d(t) = 0, d(s) = n, and for every arc (v;w) 2 Ef ,

d(v) � d(w)+1. Those residual arcs (v;w) with the property that d(v) = d(w)+1 are

called admissible arcs, and the admissible graph GA = (V;EA) is the graph induced

by the admissible arcs. It is straightforward to see that GA is acyclic for any valid

distance labeling.

We begin with a high-level description of the generic push-relabel algorithm for

maximum
ow specialized to the case of networks in which all arc capacities are zero

or one. The algorithm starts with the zero
ow, then sets f(a) = 1 for every arc

a of the form (s; v). For an initial distance labeling, the algorithm sets d(s) = n

and d(t) = 0, and for every v 2 V , sets d(v) = 0. Then the algorithm applies

push and relabel operations in any order until the current pseudo
ow is a
ow. The

push and relabel operations, described below, preserve the properties that the current

pseudo
ow f is a pre
ow and that the current distance labeling d is valid with respect

to f .

The push operation applies to an admissible arc (v;w) whose tail node v is active.

It consists of \pushing" a unit of
ow along the arc, i.e., increasing f(v;w) by one,

increasing ef(w) by one, and decreasing ef(v) by one. The relabel operation applies

to an active node v that is not the tail of any admissible arc. It consists of changing

v's distance label so that v is the tail of at least one admissible arc, i.e., setting d(v)

to the largest value that preserves the validity of the distance labeling. See Figure 2.3.

Our analysis of the push-relabel method is based on the following facts. See [31]

for details; note that the operations maintain integrality of the current pre
ow, so

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 13

every push operation saturates an arc.

� For all nodes v, we have 0 � d(v) � 2n.

� Distance labels do not decrease during the computation.

� relabel(v) increases d(v).

� The number of relabel operations during the computation is O(n) per node.

� The work involved in relabel operations is O(nm).

� If a node v is relabeled t times during a computation segment, then the number

of pushes from v is at most (t+ 1)� degree(v).

� The number of push operations during the computation is O(nm).

The above facts imply that any push-relabel algorithm runs in O(nm) time given

that the work involved in selecting the next operation to apply does not exceed the

work involved in applying these operations. This can be easily achieved using the

following simple data structure (see [31] for details). We maintain a current arc for

every node. Initially the �rst arc in the node's arc list is current. When pushing

ow excess out of a node v, we push it on v's current arc if the arc is admissible, or

advance the current arc to the next arc on the arc list. When there are no more arcs

on the list, we relabel v and set v's current arc to the �rst arc on v's arc list.

2.2.2 The Push-Relabel Method for the Assignment Prob-

lem

A price function is a function p : V ! R. For a given price function p, the reduced

cost of an arc (v;w) is cp(v;w) = p(v) + c(v;w)� p(w) and the partial reduced cost is

c0p(v;w) = c(v;w)� p(w).

Let U = X[ftg. Note that all arcs in E have one endpoint in U and one endpoint

in its complement. De�ne EU to be the set of arcs whose tail node is in U .

It is common to view the set of node prices as variables in the linear programming

dual of the minimum cost
ow problem (for more information on linear programming

and duality, see [10] or [47]). Linear programming theory provides a set of conditions

called complementary slackness that are necessary and su�cient for a primal (
ow)

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 14

and dual solution (price function) to be optimum for their respective problems. In the

case of minimum cost circulation, the complementary slackness conditions say that

if an arc a 2 Ef , then cp(a) � 0, i.e., that there are no residual arcs with negative

reduced cost.

A cost-scaling push-relabel algorithm uses the notion of approximate optimality.

The algorithm generates a sequence of (
ow, price function) pairs, corresponding to

smaller and smaller values of an error parameter, usually denoted by �. The error

parameter for a pair is a bound on the negativity of the reduced cost of any resid-

ual arc in the network; the
ow and price function are guaranteed to violate the

complementary slackness conditions by only a limited amount.

In push-relabel algorithms that solve the minimum cost
ow problem in its full

generality, the notion of approximate optimality typically takes the following form:

We say that a pseudo
ow f is �-optimal with respect to a price function p if every

residual arc a 2 Ef obeys cp(a) � ��.
In algorithms specialized to the assignment problem we will �nd it useful to de�ne

approximate optimality slightly di�erently. We will sometimes refer to the following

as an asymmetric de�nition of approximate optimality. For a constant � � 0, a

pseudo
ow f is said to be �-optimal with respect to a price function p if, for every

residual arc a 2 Ef , we have8<
: a 2 EU =) cp(a) � 0;

a =2 EU =) cp(a) � �2�:
A pseudo
ow f is �-optimal if f is �-optimal with respect to some price function p.

Under either de�nition of �-optimality, if the arc costs are integers and � < 1=n, any

�-optimal circulation is optimal [4, 32].2

We have already seen in the case of maximum
ow that as a push-relabel algorithm

works to improve the current primal and dual solutions, it uses a notion of which arcs

are eligible to carry an increased amount of
ow. As with approximate optimality,

2A minor technicality arises because we have assumed n to be the number of nodes in the given
assignment problem, rather than the number in the minimum cost
ow instance resulting from our
reduction. Since the reduction adds two nodes to the graph, we may either substitute n + 2 for n
in the foregoing statement or we may make the technical assumptions that n � 2 and nC � 4. For
the remainder of the thesis, we will neglect these inconsequential details.

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 15

various de�nitions of arc eligibility are possible when the arcs have costs. Push-relabel

algorithms for general minimum cost
ow typically use the following: An arc a 2 Ef

is said to be admissible if cp(a) < 0.

In algorithms for the assignment problemwe will use the following more specialized

de�nition, and call it an asymmetric de�nition of admissibility: For a given f and p,

an arc a 2 Ef is admissible if

8<
: a 2 EU and cp(a) < � or

a =2 EU and cp(a) < ��:

The admissible graph GA = (V;EA) is the graph induced by the admissible arcs.

These asymmetric de�nitions of �-optimality and admissibility are natural in the

context of the assignment problem. They have the bene�t that any pseudo
ow vio-

lates the complementary slackness conditions on O(n) arcs (corresponding essentially

to the matched arcs). For the symmetric de�nition, complementary slackness can

be violated on
(m) arcs. This property turns out to be important for technical

reasons underlying the proof of Lemma 3.5.5. Throughout this thesis, our algorithms

will use the asymmetric de�nitions of �-optimality and admissibility except where we

explicitly state otherwise.

Now we give a high-level description of the successive approximation algorithm

(see Figure 2.4). The algorithm starts with � = C, f(a) = 0 for all a 2 E, and

p(v) = 0 for all v 2 V . At the beginning of every iteration, the algorithm divides �

by a constant factor � and saturates all arcs a with cp(a) < 0. The iteration modi�es

f and p so that f is a circulation that is (�=�)-optimal with respect to p. When

� < 1=n, f is optimal and the algorithm terminates. The number of iterations of the

algorithm is 1 + blog�(nC)c.
Reducing � is the task of the subroutine re�ne. The input to re�ne is �, f , and p

such that (except in the �rst iteration) circulation f is �-optimal with respect to p.

The output from re�ne is �0 = �=�, a circulation f , and a price function p such that

f is �0-optimal with respect to p. At the �rst iteration, the zero
ow is not C-optimal

with respect to the zero price function, but because every simple path in the residual

graph has length of at least �nC, standard results about re�ne remain true.

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 16

procedure min-cost(V;E; u; c);

[initialization]
� C ; 8v, p(v) 0; 8a, f(a) 0;

[loop]
while � � 1=n do

(�; f; p) re�ne(�; f; p);

return(f);

end.

Figure 2.4: The cost-scaling algorithm.

procedure refine(�; f; p);

[initialization]

� �=�;

8a 2 E with cp(a) < 0, f(a) u(a);

[loop]
while f is not a circulation

apply a push or a relabel operation;

return(�; f; p);

end.

Figure 2.5: The generic re�ne subroutine.

The generic re�ne subroutine (described in Figure 2.5) begins by decreasing the

value of �, and setting f to saturate all residual arcs with negative reduced cost.

This converts f into an �-optimal pseudo
ow (indeed, into a 0-optimal pseudo-

ow). Then the subroutine converts f into an �-optimal circulation by applying a

sequence of push and relabel operations, each of which preserves �-optimality. The

generic algorithm does not specify the order in which these operations are applied.

Next, we describe the push and relabel operations for the unit-capacity case.

As in the maximum
ow case, a push operation applies to an admissible arc (v;w)

whose tail node v is active, and consists of pushing one unit of
ow from v to w. A

relabel operation applies to an active node v that is not the tail of any admissible arc.

The operation sets p(v) to the smallest value allowed by the �-optimality constraints,

namely max(v;w)2Ef
fp(w) � c(v;w)g if v 2 U , or max(v;w)2Ef

fp(w) � c(v;w) � �g

CHAPTER 2. BACKGROUND ON NETWORK FLOW PROBLEMS 17

relabel(v).

if v 2 U

then replace p(v) by max(v;w)2Ef
fp(w)� c(v; w)g

else replace p(v) by max(v;w)2Ef
fp(w)� c(v; w)� 2�g

end.

push(v; w).

send a unit of
ow from v to w.

end.

Figure 2.6: The push and relabel operations

otherwise.

The analysis of cost-scaling push-relabel algorithms is based on the following

facts [30, 32]. During a scaling iteration

� no node price increases;

� every relabeling decreases a node price by at least �;

� for any v 2 V , p(v) decreases by O(n�).

Chapter 3

Global Updates: Theoretical

Development

As we have seen in Chapter 2, push-relabel algorithms work by maintaining for each

node an estimate of the distance (or cost) that must be traversed to arrive at a

\destination" from that node. Global updates are a technique for periodically making

that estimate exact. The motivation behind global updates as an implementation

heuristic is that by ensuring that the admissible graph contains a path from every

excess to a sink, they tend to reduce the number of push and relabel operations

performed by the algorithm. Intuitively it is plausible that the more directly the

admissible graph \guides" excesses to their destination(s), the better the performance

we ought to expect. One way of specifying this directness is to say that after a global

update, every step taken by a unit of excess in the admissible graph must make some

\irrevocable progress" toward a de�cit. To ensure such a condition, we will establish

that global updates do not introduce admissible cycles, nor do they leave \dead-

ends" in the parts of the admissible graph that might be encountered by an excess.

Lastly, to be useful global updates must run e�ciently and will have to preserve the

basic analysis of the push-relabel method as well. These properties make sense from

a practical perspective, and would be desirable in an implementation regardless of

their theoretical consequences.

In this chapter, we will show that the above properties of global updates lead

18

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 19

to positive theoretical results as well. We will formalize each of the properties and

show that they lead to improved bounds on the running times of some push-relabel

algorithms. In the bipartite matching case, global updates and the structure of the

admissible graph are simple enough that the required properties will obviously hold;

for the assignment problem we formalize them in Theorems 3.6.7, 3.6.8, and 3.6.9.

This chapter is organized as follows. In Section 3.1, we present an O(
p
nm) time

bound for the bipartite matching algorithm with global updates, and in Section 3.2

we show how to apply Feder and Motwani's techniques to improve the algorithm's

performance to O
�p

nm
log(n2=m)

logn

�
. Section 3.3 shows that without global updates,

the bipartite matching algorithm performs poorly. In Section 3.4, we brie
y study

the practical e�ects of global updates in solving bipartite matching problems. Sec-

tions 3.5 and 3.7 generalize the bipartite matching results of Sections 3.1 and 3.3 to

the assignment problem. Section 3.9 sketches the practical e�ects of global updates

on a generic push-implementation that solves Assignment problems.

3.1 Bipartite Matching:

Global Updates and the Minimum Distance

Discharge Algorithm

In this section, we specify an ordering of the push and relabel operations that yields

certain desirable properties. We also introduce the idea of a global distance update

and show that the algorithm resulting from our operation ordering and global update

strategy runs in O(
p
nm) time.

For any nodes v;w, let dw(v) denote the breadth-�rst-search distance from v to w

in the (directed) residual graph of the current pre
ow. If w is unreachable from v in

the residual graph, dw(v) is in�nite. Setting d(v) = minfdt(v); n+ ds(v)g for every

node v 2 V is called a global update operation. This operation also sets the current

arc of every node to the node's �rst arc. Such an operation can be accomplished

with O(m) work that amounts to two breadth-�rst-search computations. Validity

of the resulting distance labeling is a straightforward consequence of the de�nition.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 20

Note that a global update cannot decrease any node's distance label, so the standard

bounds on the push and relabel operations hold in the presence of global updates.

The ordering of operations we use is called Minimum Distance Discharge; it con-

sists of repeatedly choosing an active node whose distance label is minimum among

all active nodes and, if there is an admissible arc leaving that node, pushing a unit of

ow along the admissible arc, otherwise relabeling the node. For the sake of e�cient

implementation and easy generalization to the weighted case, we formulate this se-

lection strategy in a slightly di�erent (but equivalent) way and use this formulation

to guide the implementation and analysis. The intuition is that we select a unit of

excess at an active node with minimumdistance label, and process that unit of excess

until a relabeling occurs or the excess reaches s or t. In the event of a relabeling, the

new distance label may be small enough to guarantee that the same excess still has

the minimum label; if so, we avoid the work associated with �nding the next excess to

process. This scheme's important properties generalize to the weighted case, and it

allows us to show easily that the work done in active node selection is not too great.

We implement this selection rule by maintaining a collection of buckets, b0; : : : ; b2n;

each bi contains the active nodes with distance label i, except possibly one which is

currently being processed. During the execution, we maintain �, the index of the

bucket from which we selected the most recent unit of excess. When we relabel

a node, if the new distance label is no more than �, we know that node still has

minimum distance label among the active nodes, so we continue processing the same

unit of excess.

In addition, we perform periodic global updates. The �rst global update is per-

formed immediately after the pre
ow is initialized. After each push and relabel oper-

ation, the algorithm checks the following two conditions and performs a global update

if both conditions hold:

� Since the most recent update, at least one unit of excess has reached s or t; and

� Since the most recent update, the algorithm has done at least m work in push

and relabel operations.

Immediately after each global update, we rebuild the buckets in O(n) time and set

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 21

-
�max

6d

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

�
�
���

��

small d processing;

O(km) time

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@
@
@@@

@@
large �max processing;
O(nm=k) time

-d = k

6

�max = k

Figure 3.1: Accounting for work when 0 � �max � n

� to zero. The following lemma shows that the algorithm does little extra work in

selecting nodes to process.

Lemma 3.1.1 Between two consecutive global updates, the algorithm does O(n) work

in examining empty buckets.

Proof: Immediate, because � decreases only when it is set to zero after an update,

and there are 2n+ 1 = O(n) buckets.

We will denote by �(f; d) (or simply �) the minimum distance label of an active

node with respect to the pseudo
ow f and the distance labeling d. We let �max denote

the maximum value reached by � during the algorithm so far. Note that �max is often

equal to �; we use the separate names mainly to emphasize that � is maintained by

the implementation, while �max is an abstract quantity with relevance to the analysis

regardless of the implementation details.

Figure 3.1 represents the structure underlying our analysis of the Minimum Dis-

tance Discharge algorithm. (Strictly speaking, the �gure shows only half of the anal-

ysis; the part when �max > n is essentially similar.) The horizontal axis corresponds

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 22

to the value of �max which increases as the algorithm proceeds, and the vertical axis

corresponds to the distance label of the node currently being processed. Our analysis

hinges on a parameter k in the range 2 � k � n, to be chosen later. We divide the

execution of the algorithm into four stages: In the �rst two stages, excesses are moved

to t; in the �nal two stages, excesses that cannot reach t return to s. We analyze the

�rst stage of each pair using the following lemma.

Lemma 3.1.2 The Minimum Distance Discharge algorithm expends O(km) work

during the periods when �max 2 [0; k] and �max 2 [n; n+ k].

Proof: First, note that if �max falls in the �rst interval of interest, � must lie in that

interval as well. This relationship also holds for the second interval after a global

update is performed. Since the work from the beginning of the second interval until

the price update is performed is O(m), it is enough to show that the time spent by

the algorithm during periods when � 2 [0; k] and � 2 [n; n + k] is in O(km). Note

that the periods de�ned in terms of � may not represent contiguous intervals during

the execution of the algorithm.

Each node can be relabeled at most k + 1 times when � 2 [0; k], and similarly

for � 2 [n; n + k]. Hence the relabelings and pushes require O(km) work. The

observations that a global update requires O(m) work and during each period there

are O(k) global updates complete the proof.

To study the behavior of the algorithm during the remainder of its execution, we

exploit the structure of matching networks by appealing to a combinatorial lemma.

The following lemma is a special case of a well-known decomposition theorem [20]

(see also [18]). The proof depends mainly on the fact that for a matching network

G, the in-degree of v 2 X in Gf is 1 � ef(v) and the out-degree of w 2 Y in Gf is

1 + ef (w) for any integral pseudo
ow f .

Lemma 3.1.3 Any integral pseudo
ow f in the residual graph of an integral
ow

g in a matching network can be decomposed into cycles and simple paths that are

pairwise node-disjoint except at the endpoints of the paths, such that each element in

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 23

the decomposition carries one unit of
ow. Each path is from a node v with ef (v) < 0

(v can be t) to a node w with ef(w) > 0 (w can be s).

Lemma 3.1.3 allows us to show that when �max is outside the intervals covered by

Lemma 3.1.2, the amount of excess the algorithm must process is small.

Given a pre
ow f , we de�ne the residual
ow value to be the total excess that

can reach t in Gf .

Lemma 3.1.4 If �max � k > 2, the residual
ow value is at most n=(k � 1) if G is

a matching network.

Proof: Note that the residual
ow value never increases during an execution of the

algorithm, and consider the pair (f; d) such that �(f; d) � k for the �rst time during

the execution. Let f� be a maximum
ow in G, and let f 0 = f� � f . Now �f 0 is
a pseudo
ow in Gf� , and therefore can be decomposed into cycles and paths as in

Lemma 3.1.3. Such a decomposition of �f 0 induces the obvious decomposition on f 0

with all the paths and cycles reversed and excesses negated. Because � � k and d

is a valid distance labeling with respect to f , any path in Gf from an active node

to t must contain at least k + 1 nodes. In particular, the excess-to-t paths in the

decomposition of f 0 contain at least k + 1 nodes each, and are node-disjoint except

for their endpoints. Since G contains only n + 2 nodes, there can be no more than

n=(k � 1) such paths. Since f� is a maximum
ow, the amount of excess that can

reach t in Gf is no more than n=(k � 1).

The proof of the next lemma is similar.

Lemma 3.1.5 If �max � n+k > n+2 during an execution of the Minimum Distance

Discharge algorithm with global updates on a matching network, the total excess at

nodes in V is at most n=(k � 1).

The following lemma shows an important property of the rules we use to trigger

global update operations, namely that during a period when the algorithm does �(m)

work at least one unit of excess is guaranteed to reach s or t.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 24

Lemma 3.1.6 Between any two consecutive global update operations, the algorithm

does �(m) work.

Proof: According to the two conditions that trigger a global update, it su�ces to

show that immediately after an update, the work done in moving a unit of excess

to s or t is O(m). For every node v, at least one of ds(v), dt(v) is �nite. Therefore,

immediately after a global update, at least one admissible arc leaves every node except

s and t, by de�nition of the global update operation. Recall that the admissible

graph is acyclic, so the �rst unit of excess processed by the algorithm immediately

after a global update arrives at t or at s before any relabeling occurs, and does so

along a simple path. Consider the path taken by the
ow unit to s or t. The work

performed while moving the unit along the path is proportional to the length of the

path plus the number of times current arcs of nodes on the path are advanced. This

O(n+m) = O(m) work is performed before the the �rst condition for a global update

is met.

Following an amount of additional work bounded above by m+ O(n), plus work

proportional to that for a push or relabel operation, another global update operation

will be triggered. Clearly a push or relabel takes O(m) work and the lemma follows.

We are ready to prove the main result of this section.

Theorem 3.1.7 The Minimum Distance Discharge algorithm with global updates

computes a maximum
ow in a matching network (and hence a maximum cardinality

bipartite matching) in O(
p
nm) time.

Proof: By Lemma 3.1.2, the total work done by the algorithm when �max 2 [0; k] and

�max 2 [n; n+k] isO(km). By Lemmas 3.1.4 and 3.1.5, the amount of excess processed

when �max falls outside these bounds is at most 2n=(k � 1). From Lemma 3.1.6 we

conclude that the work done in processing this excess is O(nm=k). Hence the time

bound for the Minimum Distance Discharge algorithm is O(km+ nm=k). Choosing

k = �(
p
n) to balance the two terms, we see that the Minimum Distance Discharge

algorithm with global updates runs in O(
p
nm) time.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 25

3.2 Improved Performance through Graph Com-

pression

Feder and Motwani [19] give an algorithm that runs in o(
p
nm) time and produces

a compressed representation G
�
= (V [W;E

�
) of a bipartite graph in which all

adjacency information is preserved, but that has asymptotically fewer edges if the

original graph G = (V ;E) is dense. This graph consists of all the original nodes of

X and Y , as well as a set of additional nodes W . An edge fx; yg appears in E if and

only if either fx; yg 2 E
�
or G

�
contains a length-two path from x to y through some

node of W .

The following theorem is slightly specialized from Feder and Motwani's Theo-

rem 3.1 [19], which details the performance of their algorithm Compress:

Theorem 3.2.1 Let � 2 (0; 1) and let G = (V = X [Y;E) be an undirected bipartite

graph with jXj = jY j = n and jEj = m � n2��. Then algorithm Compress computes a

compressed representation G
�
= (V [W;E

�
) of G with m� = jE�j = O

�
m��1

log(n2=m)

logn

�
in time O(mn� log2 n). The number of nodes in W is O(mn��1).

In particular, we choose a constant � < 1=2; then the compressed representation

is computed in time o(
p
nm) and has m� = O

�
m log(n2=m)

logn

�
edges.

Given a compressed representation G
�
of G, we can compute a
ow network G� in

which there is a correspondence between
ows in G� and matchings in G. The only

di�erences from the reduction of Section 2.1.1 are that each edge fx;wg with x 2 X

and w 2 W gives an arc (x;w), and each edge fw; yg with w 2 W and y 2 Y gives

an arc (w; y). As in Section 2.1.1, we have a relationship between matchings in the

original graph G and
ows in G�, but now the correspondence is not one-to-one as it

was before. Nevertheless, it remains true here that given a
ow f with ef(t) = c in G�,

we can �nd a matching of cardinality c in G using only O(n) time in a straightforward

way.

The performance improvement we gain comes by using the graph compression step

as preprocessing: we will show that the MinimumDistance Discharge algorithm with

global updates runs in time O(
p
nm�) on the
ow network G� corresponding to the

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 26

compressed representation G
�
of a bipartite graph G. In other words, the speedup

results only from the reduced number of edges, not from changes within the Minimum

Distance Discharge algorithm.

To prove the performance bound, we must generalize certain lemmas from Sec-

tion 3.1 to networks with the structure of compressed representations. Lemma 3.1.2 is

independent of the input network's structure, as are Lemma 3.1.6 and Lemma 3.1.1.

An analogue to Lemma 3.1.3 holds in a
ow network derived from a compressed

representation; this will extend Lemmas 3.1.4 and 3.1.5, allowing us to conclude the

improved time bound.

Lemma 3.2.2 Any integral pseudo
ow f in the residual graph of an integral
ow

g in the
ow graph of a compressed representation can be decomposed into cycles

and simple paths that are pairwise node-disjoint at nodes of X and Y except at the

endpoints of the paths, such that each element of the decomposition carries one unit

of
ow. Each path is from a node v with ef(v) < 0 (v can be t) to a node w with

ef(w) > 0 (w can be s).

Proof: As with matching networks, the in-degree of v 2 X is 1 � ef(v) and the

out-degree of y 2 Y is 1 + ef(y), so the standard proof of Lemma 3.1.3 extends to

this case.

The following lemma is analogous to Lemma 3.1.4.

Lemma 3.2.3 If �max � k > 2, the residual
ow value is at most 2n=(k � 2) if G�

is a compressed representation.

Proof: As in the case of Lemma 3.1.4, except that here an excess-to-t path in the

decomposition of f 0 must contain at least k=2 nodes of V . Since V contains only

n nodes, there can be no more than 2n=(k � 2) such paths, and so because f� is a

maximum
ow, the amount of excess that can reach t inG�
f is no more than 2n=(k�2).

The following lemma is analogous to Lemma 3.1.5, and its proof is similar to the

proof of Lemma 3.2.3.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 27

Lemma 3.2.4 If �max � n+k > n+2 during an execution of the Minimum Distance

Discharge algorithm with global updates on a compressed representation, the total

excess at nodes in V [W is at most 2n=(k � 2).

Using the same reasoning as in Theorem 3.1.7, we have:

Theorem 3.2.5 The Minimum Distance Discharge algorithm with global updates

computes a maximum
ow in the network corresponding to a compressed representa-

tion with m� edges in O(
p
nm�) time.

To complete our time bound for the bipartite matching problem we must dispense

with some technical restrictions in Theorem 3.2.1, namely the requirements that jXj =
jY j = n and that m � n2��. The former condition is easily met by adding nodes to

whichever of X, Y is the smaller set, so their cardinalities are equal. These \dummy"

nodes are incident to no edges. As for the remaining condition, observe that our time

bound does not su�er if we simply forego the compression step and apply the result

of Section 3.1 in the case where m < n2��. To see this, recall that we chose � < 1=2,

and note that 1 � m < n2�� implies log(n2=m)

logn
= �(1). So we have:

Theorem 3.2.6 The Minimum Distance Discharge algorithm with graph compres-

sion and global updates computes a maximum cardinality bipartite matching in time

O
�p

nm log(n2=m)

logn

�
.

This bound matches that of Feder and Motwani for Dinitz's algorithm.

3.3 Unweighted Bad Example:

Minimum Distance Discharge Algorithm

without Global Updates

In this section we describe a family of graphs on which the Minimum Distance Dis-

charge algorithm without global updates requires
(nm) time (for values ofm between

�(n) and �(n2)). This shows that the updates improve the worst-case running time

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 28

of the algorithm. The goal of our construction is to exhibit an execution of the algo-

rithm in which each relabeling changes a node's distance label by O(1). Under this

condition the execution will have to perform
(n2) relabelings, and these relabelings

will require
(nm) time.

Given ~n 2 Z and ~m 2 [1; ~n2=4], we construct a graph G as follows: G is the

complete bipartite graph with V = X [Y , where

X =

(
1; 2; : : : ;

&
~n+

p
~n2 � 4 ~m

2

')
and Y =

(
1; 2; : : : ;

$
~n�p

~n2 � 4 ~m

2

%)
:

It is straightforward to check that this graph has n = ~n + O(1) nodes and m =

~m+O(~n) edges. Note that jXj > jY j.
Figure 3.2 describes a particular execution of the Minimum Distance Discharge

algorithm on G, the matching network derived from G, that requires
(nm) time.

With more complicated but unilluminating analysis, it is possible to show that every

execution of the Minimum Distance Discharge algorithm on G requires
(nm) time.

It is straightforward to verify that in the execution outlined, all processing takes

place at active nodes whose distance labels are minimum among the active nodes.

The algorithm performs poorly because during the execution, no relabeling changes a

distance label by more than two. Hence the execution uses �(nm) work in the course

of its �(n2) relabelings, and we have the following theorem:

Theorem 3.3.1 For any function m(n) in the range n � m(n) < n2=4, there exists

an in�nite family of instances of the bipartite matching problem having �(n) nodes

and �(m(n)) edges on which the Minimum Distance Discharge algorithm without

global updates runs in
(nm(n)) time.

3.4 Unweighted Global Updates in Practice:

E�ects on a Generic Implementation

Bipartite matching is a relatively easy subclass of maximum
ow problems, and im-

plementation studies have traditionally not investigated codes' performance on this

subclass. Nevertheless, it is interesting for us to study the e�ects of the the global

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 29

1. Initialization establishes jX j units of excess, one at each node of X ;

2. Nodes of X are relabeled one-by-one, so all v 2 X have d(v) = 1;

3. While ef(t) < jY j,

3.1. a unit of excess moves from some node v 2 X to some node w 2 Y with d(w) = 0;

3.2. w is relabeled so that d(w) = 1;

3.3. The unit of excess moves from w to t, increasing ef (t) by one.

4. A single node, x1 with ef (x1) = 1, is relabeled so that d(x1) = 2.

5. ` 1.

6. While ` � n,

Remark: All nodes v 2 V now have d(v) = ` with the exception of the one node

x` 2 X , which has d(x`) = `+ 1 and ef (x`) = 1; all excesses are at nodes of X ;

6.1. All nodes with excess, except the single node x`, are relabeled one-by-one so

that all v 2 X with ef (v) = 1 have d(v) = `+ 1;

6.2. While some node y 2 Y has d(y) = `,

6.2.1. A unit of excess is pushed from a node in X to y;

6.2.2. y is relabeled so d(y) = `+ 1;

6.2.3. The unit of excess at y is pushed to a node x 2 X with d(x) = `;

6.2.4. x is relabeled so that if some node in Y still has distance label `,

d(x) = `+ 1;

otherwise

d(x) = `+ 2 and x`+1 x;

6.3. ` `+ 1;

7. Excesses are pushed one-by-one from nodes in X (labeled n+ 1) to s.

Figure 3.2: The Minimum Distance Discharge execution on bad examples.

update heuristic in the context where the theoretical results of Section 3.1 apply.

Therefore, we describe a brief series of experiments we conducted to examine the

e�ects of global updates on a modi�ed version of an implementation developed in [9].

The implementation that served as our starting point is called m prf [9]; it uses

periodic global updates and a maximum-distance node selection strategy. See [9] for

a detailed description of m prf.

We began our study by modifying the m prf implementation in the following

ways:

� Minimumdistance active node selection was substituted for maximumdistance;

and

� The global update heuristic was made switchable, so the code's performance

with and without global updates could be compared.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 30

We used minimum distance selection for consistency with the theoretical analysis;

spot-checks on several instances suggest that the selection strategies of [9] perform

about the same as minimum distance selection on bipartite matching problems. To

keep the code's bookkeeping simple, we kept the default frequency of global updates:

the implementation that used global updates performed one global update operation

after every n relabelings. This number of relabelings will generally require �(m)

work; an implementation that strictly enforced the condition that �(m) work is done

between global updates would perform very similarly to the one we used.

3.4.1 Problem Classes and Experiment Outline

We compared minimum distance selection with and without global updates on the

problem classes described below. The codes' running times may be sensitive to the

order in which the graph edges are listed in the input and so to suppress such artifacts

in the running time, we applied a pseudorandom permutation to the edges of each

graph before supplying it to the max-
ow codes.

Worst-Case problems

Matching problems in this class are the ones described in Section 3.3, with jXj =
jY j + 1. These problems are called worst-case problems because they elicit worst-

case running time for the code without global updates. The only di�erence between

instances of the same size is the permutation applied to the edges.

Long Path problems

The edges in long path problems form a single long path. Let X = f1; : : : ; n=2g and
Y = fn=2 + 1; : : : ; ng. For 1 < i � n=2, node i has edges to nodes n=2 + i and

n=2 + i� 1. Node 1 has an edge to node n=2 + 1. The graph structure is completely

determined by the problem size in this class; only the edge permutation varies.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 31

Very Sparse problems

Problems in this class have m = n=2 edges, each between a pair of nodes chosen

uniformly at random from the set X � Y . As problem size grows, instances that

admit a perfect matching become exceedingly rare in this class. The graph structure

varies between di�erent instances of the same size in this problem class.

Unique-Dense problems

Problems in this class are dense (i.e., m = �(n2)), but admit only one perfect match-

ing. Let X = f1; : : : ; n=2g and Y = fn=2+1; : : : ; ng. Then node i has edges to nodes
n=2+ j for all 1 � j � i. Instances of a particular size in this class di�er only in their

edge permutations.

3.4.2 Running Times and Discussion

The maximum
ow codes were compiled using gcc version 2.6.3 with the -O2 op-

timization switch, and were run on a 40-MHz SUN Sparc-10 processor with 160

megabytes of main memory under SunOS version 4.1.3. We report average running

times and standard deviations computed over three problem instances for each size

and class. All times are given in seconds.

Worst-Case problems

We experimented on this class to give concrete reinforcement to the analysis of Sec-

tion 3.1. In accordance with the analysis, one would expect the code without global

No GU With GU
n time s time s speedup

201 0.9 1e-8 0.02 3e-10 47

1001 179 0.2 0.6 0.01 301

2001 1591 0.46 2.6 0.01 613

Figure 3.3: Running time comparison on the Worst-Case class

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 32

updates to perform poorly on this problem class, and indeed it does. Problems in

this class are trivial for the code that uses global updates, and so in this somewhat

contrived context global updates improve performance by a factor of several hundred

even for small instances. The factor of improvement increases with problem size.

Long Path problems

No GU With GU

n time s time s speedup

10000 1.7 0.4 0.76 0.12 2.3

100000 69 16 25 2.0 2.8

Figure 3.4: Running time comparison on the Long Path class

Global updates improve performance on this class by a moderate factor that ap-

pears to grow slightly with problem size.

Very Sparse problems

No GU With GU
n time s time s speedup

10000 67.9 4.5 0.22 0.02 309

100000 9965 208 4.1 0.1 2430

Figure 3.5: Running time comparison on the Very Sparse class

The running time of the code without global updates is huge relative to the time

used by the code with global updates, seemingly because the algorithm without global

updates has a di�cult time discovering that some unit(s) of excess must be returned

to the source. This is essentially the same phenomenon as brought out by the worst-

case class.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 33

Unique-Dense problems

No GU With GU
n time s time s speedup

500 0.68 0.1 0.33 0.04 2.0

1000 5.5 0.2 2.4 0.07 2.3

2000 45 4 13.0 0.3 3.4

Figure 3.6: Running time comparison on the Unique-Dense class

On this class as on the long path class, global updates account for an improve-

ment in running time by a factor that appears to be roughly a relatively small but

substantial constant.

To summarize, on every graph family we studied, global updates improved the run-

ning time of the implementation by a signi�cant (sometimes huge) amount. Moreover,

the updates make the code much more robust: without global updates, the running

time variance on some families is huge; with them, the variance is consistently small.

Although this brief study is far from exhaustive, our data show that global updates

can provide a substantial overall performance gain in a maximum
ow implementation

applied to bipartite matching problems.

3.5 Assignment Problem:

Global Updates and the Minimum Change

Discharge Algorithm

In this section, we generalize the ideas of minimum distance discharge and global

updates to the context of the minimum cost circulation problem and analyze the

algorithm that embodies these generalizations.

We analyze a single execution of re�ne, and to simplify our notation, we make

some assumptions that do not a�ect the results. We assume that the price function is

identically zero at the beginning of the iteration. Our analysis goes through without

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 34

this assumption, but the required condition can be achieved at no increased asymp-

totic cost by replacing the arc costs with their reduced costs and setting the node

prices to zero in the �rst step of re�ne.

Under the assumption that each iteration begins with the zero price function,

the price change of a node v during an iteration is �(v) = b�p(v)=�c. By analogy

to the matching case, we de�ne �(f; p) = minef (v)>0f�(v)g, and let �max denote the

maximum value attained by �(f; p) so far in this iteration. The minimum change

discharge strategy consists of repeatedly selecting a unit of excess at an active node

v with �(v) = � and processing that unit until it cancels some de�cit or a relabeling

occurs. We implement this strategy as in the unweighted case. Observe that no active

node's price changes bymore than 2�n� during re�ne, so a collection of 2�n+1 buckets

b0; : : : ; b2�n is su�cient to keep every active node v in b�(v). As before, the algorithm

maintains the index � of the lowest-numbered nonempty bucket and avoids bucket

access except immediately after a de�cit is canceled or a relabeling of a node v sets

�(v) > �.

In the weighted context, a global update takes the form of setting each node price

so that GA is acyclic, there is a path in GA from every excess to some de�cit (a node

v with ef(v) < 0) and every node reachable in GA from a node with excess lies on

such a path. This amounts to a modi�ed shortest-paths computation, and can be

done in O(m) time using ideas from Dial's work [15]. We specify the global update

algorithm in detail and prove the required properties in Section 3.6. At every re�ne,

the �rst global update is performed immediately after saturating all residual arcs with

negative reduced cost. After each push and relabel operation, the algorithm checks

the following two conditions and performs a global update if both conditions hold:

� Since the most recent update, at least one unit of excess has canceled some

de�cit; and

� Since the most recent update, the algorithm has done at least m work in push

and relabel operations.

We developed global updates from an implementation heuristic for the minimum

cost circulation problem [25], but in retrospect they prove similar in the assignment

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 35

-
�max

6�

������������������������
������������������������
������������������������
������������������������
������������������������
������������������������

�
�
���

��

small � processing;

O(km) time

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@@@@@@@@@@@@

@
@
@@@

@@
large �max processing;
O(nm=k) time

other processing;
O(n2=k) time

-� = k

6

�max = k

Figure 3.7: Accounting for work in the Minimum Change Discharge algorithm

context to the one-processor Hungarian Search technique developed in [22].

Immediately after each global update, the algorithm rebuilds the buckets in O(n)

time and sets � to zero. As in the unweighted case, we have the following easy bound

on the extra work done by the algorithm in selecting nodes to process:

Lemma 3.5.1 Between two consecutive global updates, the algorithm does O(n) work

in examining empty buckets.

Figure 3.7 represents the main ideas behind our analysis of an iteration of the

Minimum Change Discharge algorithm. The diagram di�ers from Figure 3.1 because

we must account for pushes and relabelings that occur at nodes with large values of

� when �max is small. Such operations could not arise in the matching algorithm, but

are possible here.

We begin our analysis with a lemma that is essentially similar to Lemma 3.1.2.

Lemma 3.5.2 The algorithm does O(km) work in the course of relabel operations

on nodes v obeying �(v) � k and push operations from those nodes.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 36

Proof: A node v can be relabeled at most k + 1 times while �(v) � k, so the

relabelings of such nodes and the pushes from them require O(km) work.

To analyze our algorithm for the assignment problem, we must overcome two main

di�culties that were not present in the matching case. First, we can do push and

relabel operations at nodes whose price changes are large even when �max is small;

this work is not bounded by Lemma 3.5.2 and we must account for it. Second, our

analysis of the period when �max is large in the unweighted case does not generalize

because it is not true that �(v) gives a bound on the breadth-�rst-search distance

from v to a de�cit in the residual graph.

Lemma 3.5.5 is crucial in resolving both of these issues, and to prove it we use

the following standard result which is analogous to Lemma 3.1.3.

Lemma 3.5.3 Given a matching network G and an integral circulation g, any inte-

gral pseudo
ow f in Gg can be decomposed into

� cycles and

� paths, each from a node u with ef (u) < 0 to a node v with ef(v) > 0,

where all the elements of the decomposition are pairwise node-disjoint except at s, t,

and the endpoints of the paths, and each element carries one unit of
ow.

We denote a path from node u to node v in such a decomposition by (u; v).

The next lemma makes clear how our analysis bene�ts from the asymmetric de�-

nitions of �-optimality and admissibility.

Lemma 3.5.4 For any value of � � 0, there are at most n arcs with negative reduced

cost in the residual graph of any integral �-optimal circulation.

Proof: It is straightforward to verify that for any matching network G and integral

circulation g, the residual graph Gg has exactly n arcs a =2 EU , and so the lemma

follows directly from the asymmetric de�nition of �-optimality.

The following lemma is similar in spirit to those in [22] and [30], although the

single-phase push-relabel framework of our algorithm changes the structure of the

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 37

proof. Let E(f) denote the total excess in pseudo
ow f , i.e.,
P

ef (v)>0
ef(v). When

no confusion will arise, we simply use E to denote the total excess in the current

pseudo
ow. The lemma depends on the (��)-optimality of the circulation produced

by the previous iteration of re�ne, so it holds only in the second and subsequent

scaling iterations. Because the zero circulation is not C-optimal with respect to the

zero price function, we need di�erent phrasing to accomplish the same task in the

�rst iteration. The di�erences are mainly technical, so the �rst-iteration lemmas and

their proofs are postponed to Section 3.8.

Lemma 3.5.5 At any point during an execution of re�ne other than the �rst, E �
�max � 2((5 + �)n � 1).

Proof: Let c denote the (reduced) arc cost function at the beginning of this execution

of re�ne, and let G = (V;E) denote the residual graph at the same instant. For

simplicity in the following analysis, we view a pseudo
ow as an entity in this graph

G. Let f , p be the current pseudo
ow and price function at the most recent point

during the execution of re�ne when �(f; p) = �max. Then we have

E(f) � �max �
X

ef (v)>0

�(v)ef(v):

From the de�nition of �, then,

E(f) � �max � � � �X
ef (v)>0

p(v)ef(v):

We will complete our proof by showing that

�X
ef(v)>0

p(v)ef(v) = cp(f)� c(f)

and then deriving an upper bound on this quantity.

By the de�nition of the reduced costs,

cp(f) � c(f) =
X

f(v;w)>0

(p(v)� p(w))f(v;w):

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 38

Letting P be a decomposition of f into paths and cycles according to Lemma 3.5.3 and

noting that cycles make no contribution to the sum, we can rewrite this expression

as X
(u;v)2P

(p(u)� p(v)):

Since nodes u with ef(u) < 0 are never relabeled, p(u) = 0 for such a node, and we

have

cp(f)� c(f) = �X
(u;v)2P

p(v):

Because the decomposition P must account for all of f 's excesses and de�cits, we can

rewrite

cp(f)� c(f) = �
X

ef(v)>0

p(v)ef(v):

Now we derive an upper bound on cp(f)�c(f). By Lemma 3.5.4, there are at most

n negative-cost arcs in E, and each has cost at least �2�� because re�ne begins with
the residual graph of an (��)-optimal circulation. Therefore we have c(f) � �2�n�
and hence cp(f) � c(f) � cp(f) + 2�n�.

Now consider cp(f). Clearly, f(a) > 0 =) aR 2 Ef , and �-optimality of f with

respect to p says that aR 2 Ef =) cp(a
R) � �2�. Since cp(a

R) = �cp(a), we have
f(a) > 0 =) cp(a) � 2�. Recalling our decomposition P into cycles and paths from

de�cits to excesses, observe that cp(f) =
P

P2P cp(P). Let �(P) denote the interior

of a path P , i.e., the path minus its endpoints and initial and �nal arcs, and let @(P)

denote the set containing the initial and �nal arcs of P . If P is a cycle, �(P) = P

and @(P) = ;. We can write

cp(f) =
X
P2P

cp(�(P)) +
X
P2P

cp(@(P)):

The total number of arcs not incident to s or t in the cycles and path interiors is at

most n by node-disjointness, and the number of arcs incident to s or t is at most 2n�1.
Also, the total excess is never more than n by Lemma 3.5.4, so the initial and �nal

arcs of the paths number no more than 2n. And because each arc carrying positive

ow has reduced cost at most 2�, we have cp(f) � (n+ 2n� 1 + 2n)2� = (5n� 1)2�.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 39

Therefore, cp(f)�c(f) � 2((5+�)n�1)�, and we have E(f)��max � 2((5+�)n�1).

Corollary 3.5.6 �max � k implies E = O(n=k).

We could use the symmetric de�nition of �-optimality for much of the proof of

Lemma 3.5.5 by substituting a slightly di�erent measure of progress for cp(f)� c(f),

but the asymmetric de�nition is crucial in establishing the vital fact that there are

never more than n units of excess.

We use the following lemma to show that when �max is small, we do a limited

amount of work at nodes whose price changes are large.

Lemma 3.5.7 While �max � k, the amount of work done in relabelings at nodes v

with �(v) > k and pushes from those nodes is O(n2=k).

Proof: For convenience, we say a node that gets relabeled under the conditions of

the lemma is a bad node. We process a given node v either because we selected a

unit of excess at v, or because the most recent operation was a push from one of v's

neighbors to v. If a unit of v's excess is selected, we have �(v) � �max (indeed without

global updates, �(v) = �max) which implies �(v) � k, so v cannot be a bad node. In

the second case, the unit of excess just pushed to v will remain at v until �max � �(v)

because the condition �(v) > � will cause excess at a di�erent node to be selected

immediately after v is relabeled. We cannot select v's excess until �max � �(v), and at

such a time, Corollary 3.5.6 shows that the total excess remaining is O(n=k). Since

each relabeling of a bad node leaves a unit of excess that must remain at that node

until �max � k, the number of relabelings of bad nodes is O(n=k). Because every

node has degree at most n, the work done in pushes and relabelings at bad nodes is

O(n2=k).

Recall that the algorithm initiates global update only after a unit of excess has

canceled some de�cit since the last global update. The next lemma, analogous to

Lemma 3.1.6, shows that this rule cannot introduce too great a delay.

Lemma 3.5.8 Between any two consecutive global update operations, the algorithm

does �(m) work.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 40

Proof: As in the unweighted case, it su�ces to show that the algorithm does O(m)

work in canceling a de�cit immediately after a global update operation, and O(m)

work in selecting nodes to process. Theorems 3.6.7 and 3.6.8 (see Section 3.6) su�ce

to ensure that a unit of excess reaches some de�cit immediately after a global update

and before any relabeling occurs, and Lemma 3.5.1 shows that the extra work done

between global updates in selecting nodes to process is O(n).

Lemmas 3.5.2 and 3.5.7, along with Theorem 3.6.9 show that the algorithm takes

O(km+n2=k) time when �max � k. Corollary 3.5.6 says that when �max � k, the total

excess remaining isO(n=k), and Lemma 3.5.8 together with Theorem 3.6.9 shows that

O(m) work su�ces to cancel each unit of excess remaining. Therefore the total work

in an execution of re�ne is O(km + n2=k + nm=k), and choosing k = �(
p
n) gives

a O(
p
nm) time bound on an execution of re�ne. The overall time bound follows

from the O(log(nC)) bound on the number of scaling iterations, giving the following

theorem:

Theorem 3.5.9 The Minimum Change Discharge algorithm with global updates com-

putes a minimum cost circulation in a matching network in O(
p
nm log(nC)) time.

Graph compression methods [19] do not apply to graphs with weights because the

compressed graph preserves only adjacency information and cannot encode arbitrary

edge weights. Hence the Feder-Motwani techniques by themselves cannot improve

performance in the assignment problem context.

3.6 Weighted Global Updates: a Variant of Dial's

Algorithm

Now we develop the structure of global updates in the weighted case, and prove the

properties required for the analysis given in Section 3.5.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 41

3.6.1 The Global Update Algorithm: Approximate Short-

est Paths

A global update operation amounts to a modi�ed form of Dijkstra's algorithm for

shortest paths, implemented using Dial's idea that applies when the range of distances

is small and the arc lengths are integers [15]. For the purposes of global updates, we

de�ne the length ` of arc a as follows:

`(a) =

(bcp(a)=�c if a 2 EU ;

1 + bcp(a)=�c otherwise.

Intuitively `(v;w) is the amount, in units of �, by which the quantity p(v) � p(w)

would have to decrease to make (v;w) an admissible arc.

Let D be the set of nodes with de�cit (i.e., the set of nodes w with ef(w) < 0)

at the time of a global update. De�ne d`(v) to be the distance of node v from the

set D in Gf with respect to the length function `, and imagine for a moment that we

calculate d`(v) for every node v. If we reduce the price of every node v by d`(v)��, we
will preserve �-optimality and acyclicity of the admissible graph, guarantee that there

is an admissible path from every excess to a de�cit, and guarantee that there are no

\dead-ends" in the admissible graph. But we would like our global updates to run in

linear time, and we know of no way to calculate d` for the entire graph so e�ciently

since we cannot bound the size of d`(v) for all nodes v. Nevertheless, we do have a

bound on the price change of any active node during the execution of re�ne, and such

a bound immediately limits the range of values d` can take on a node that is active

at any future time during the present execution of re�ne. In particular, we have the

following lemma (essentially the same as Lemma 5.8 from [32], with a slightly looser

bound because our initial circulation is not C-optimal in the �rst iteration):

Lemma 3.6.1 Let v have ef(v) > 0, and suppose f is �-optimal. Then the amount

by which p(v) has changed during this execution of re�ne is less than 2n��.

The proof of Lemma 3.6.1 holds whether or not global updates are used; it depends

only on the approximate optimality properties of the current pseudo
ow and the

present iteration's initial circulation.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 42

procedure Global-Update(f; p);

Initialize-Priority-Queue(Q);

8v 2 D; �[v] 0;

8v =2 D; �[v] 2�n;

for each v in the network do

Insert(Q; v; �[v]);

last-key 0;

total-d �
P

v2D ef (v);

reached-e 0;

while reached-e < total-d do

v Extract-Min(Q);

Scan(v);

if ef (v) > 0 then

reached-e reached-e + ef (v);

last-key �[v];

while Q 6= ; do

v Extract-Min(Q);

if �[v] = last-key then

Scan(v);

else

�[v] last-key + 1;

for each v in the network do

p(v) p(v)� �[v]� �;

end.

procedure Scan(v);

for each arc (u; v) 2 Ef into v do

if �[v] + `(u; v) < �[u] then

�[u] �[v] + `(u; v);

Decrease-Key(Q; u; �[u]);

end.

Figure 3.8: The Global Update Algorithm for Assignment

A global update operation begins by iteratively applying the node-scanning step

from Dijkstra's algorithm to compute a key �[v] for each node v. Node scanning ends

as soon as the algorithm has scanned all nodes v from which an excess can be reached

in the (original) admissible graph; this criterion is enough to ensure �-optimality

and an admissible path to a de�cit from each excess (in the new admissible graph)

while bounding the range of possible key values. After the node scanning loop, the

operation subtracts the quantity �[v]� � from p(v) for each node v.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 43

3.6.2 Properties of the Global Update Algorithm

We need some basic results that will help us establish important properties of global

updates.

Lemma 3.6.2 Global updates preserve �-optimality of the current pseudo
ow and

price function.

Proof: Consider a residual arc (v;w). If neither v nor w is scanned the update reduces

p(v) and p(w) by the same amount, and so the arc obeys �-optimality after the update

if it did before. If v is scanned and w isn't scanned the algorithm increases cp(v;w)

because the prices of unscanned nodes decrease by more than the prices of scanned

nodes. Finally, if w is scanned the algorithm ensures that �[v] � �[w] + `(v;w), and

so �-optimality follows directly from the de�nition of `.

Lemma 3.6.3 A global update cannot increase the price of any node.

Proof: Immediate from the algorithm.

Lemma 3.6.4 Let (v;w) 2 Ef when a global update is performed. After the global

update, (v;w) is admissible if and only if `(v;w) = �[v]� �[w].

Proof: Straightforward from the de�nitions of ` and �.

We will say a node v was reached along an arc (v;w) if �[v] is changed while w is

being scanned.

Lemma 3.6.5 If a node v is scanned, either ef(v) < 0 or v was reached along some

arc (v;w) when w was scanned, such that the arc obeys �[v] = �[w] + `(v;w).

Proof: This lemma would be trivial if not for the fact that the initial � values given

to all nodes outside D are �nite. To prove the lemma, it will su�ce to show that no

node v with �[v] = 2�n is ever scanned. This amounts to showing that last-key < 2�n

when the condition reached-e = total-d becomes true, ending the while loop. This

fact is a straightforward consequence of Lemma 3.6.1 and the de�nition of `.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 44

Lemma 3.6.6 If a node v is scanned during a global update, then immediately after

the update there exists an admissible path from v to some node in D.

Proof: By induction on the number of scanning steps. The basis step is trivial, since

the empty path from a de�cit node to itself is trivially admissible. The induction

follows because if a node v is scanned, it was reached along some arc (v;w) when w

was scanned (by Lemma 3.6.5), such that the arc obeys �[v] = �[w] + `(v;w). After

the global update (v;w) will be admissible by Lemma 3.6.4, and there is an admissible

path from w to a node of D by the induction hypothesis.

The following three theorems encapsulate properties of the global update algo-

rithm that are required for later analysis.

Theorem 3.6.7 The global update algorithm preserves acyclicity of the admissible

graph GA.

Proof: Suppose that immediately after a global update, GA contains a cycle. By

Lemma 3.6.6, either the cycle lies completely outside the set of scanned nodes, or all

the nodes on the cycle have shortest paths to de�cits that include the entire cycle

(note that no admissible arcs leave the set of scanned nodes). In either case, all arcs

a on the cycle must have `(a) = 0. Therefore, all the cycle's arcs were admissible

before the global update.

Theorem 3.6.8 Let v be some node with ef (v) > 0, and let w be some node reachable

from v in GA immediately after a global update. Then there exists a path in GA from

w to some node x with ef (x) < 0.

Proof: Immediate from Lemma 3.6.6 along with the fact that if a node is not scanned,

it is not reachable from any excess after the update.

Theorem 3.6.9 The global update algorithm runs in O(m) time.

Proof: Clearly the amount of time spent scanning a node is proportional to a constant

plus the degree of the node, since each incident arc is examined once during a scan.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 45

Because each node is scanned only once during an update, the running time is O(n+

m) = O(m) plus the amount of time spent selecting nodes to scan. The total time

for node selection is O(n) if, using the main idea from Dial's work [15], we implement

our priority queue as an array of 2�n doubly-linked lists.

Finally, we observe that global updates preserve the basic analysis of re�ne because

they do not alter the price of any node v with ef(v) < 0 and because they do not

increase node prices.

3.7 Weighted Bad Example:

Minimum Change Discharge Algorithm with-

out Global Updates

We present a family of assignment instances on which we show re�ne without

global updates performs
(nm) work in the �rst scaling iteration, under the minimum

change discharge selection rule. Hence this family of matching networks su�ces to

show that global updates account for an asymptotic di�erence in running time.

The family of assignment instances on which we show re�ne without global up-

dates takes
(nm) time is structurally the same as the family of bad examples we

used in the unweighted case, except that they are have two additional nodes and one

additional edge. The costs of the edges present in the unweighted example are zero,

and there are two extra nodes connected only to each other, sharing an edge with

cost �. These two nodes and the edge between them are present only to establish the

initial value of � and the costs of arcs introduced in the reduction, and are ignored in

our description of the execution.

At the beginning of the �rst scaling iteration, � = �. The iteration starts by

setting � = 1. From this point on the execution is similar to the execution of the

Minimum Distance Discharge algorithm given in Section 3.3, but the details di�er

because of the asymmetric de�nitions of �-optimality and admissibility we use in the

weighted case.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 46

1. Initialization establishes jX j units of excess, one at each node of X .

2. While some node w 2 Y has no excess,

2.1. a unit of excess moves from a node of X to w;

2.2. w is relabeled so that p(w) = �2.

Remark: Now every node of Y has one unit of excess.

3. Active nodes in X are relabeled one-by-one so that each has price �2.

4. A unit of excess moves from the most recently relabeled node of X to a node of Y ,

then to t, and on to cancel a unit of de�cit at s.

5. While more than one node of Y has excess,

5.1. A unit of excess moves to t and thence to s from a node of Y ;

6. The remaining unit of excess at a node of Y moves to a node v 2 X with p(v) = 0,

and v is relabeled so that p(v) = �2.

7. ` 1; While ` � �n=2� 1,

Remark: All excesses are at nodes of X , and these nodes have price �2`; all

other nodes in X have price �2` + 2; all nodes in Y have price �2`.

7.1. A unit of excess is selected, and while some node x 2 X has p(x) = �2`+ 2,

� the selected unit moves from some active node v to w, a neighbor of x in

Gf (for a given x there is a unique such w);

� the unit of excess moves from w to x;

� x is relabeled so p(x) = �2`.

Remark: Now all nodes in X [Y have price �2`; all excesses are at nodes of X .

7.2. While some node w 2 Y has p(w) = �2` and some node v 2 X has ef (v) = 1,

� a unit of excess moves from v to w;

� w is relabeled so p(w) = �2`� 2.

Remark: The following loop is executed only if jX j < 2jY j. All active nodes in

Y have price �2`� 2, and all other nodes in Y have price �2`.

7.3. If a node in Y has price �2`, a unit of excess is selected, and while some node

y 2 Y has p(y) = �2`,

� the selected unit moves from some w 2 Y with ef (w) = 1 to v 2 X with

p(v) = �2`, and then to y;

� y is relabeled so p(y) = �2`� 2.

Remark: The following loop is executed only if jX j > 2jY j.

7.4. For each node v 2 X with ef (v) = 1,

� v is relabeled so p(v) = maxf�2`� 2;��ng.

7.5. For each node w 2 Y with ef(w) = 1,

� a unit of excess moves from w to v 2 X with p(v) = �2`;

� v is relabeled so p(v) = maxf�2`� 2;��ng.

7.6. ` `+ 1.

8. Excesses move one-by-one from active nodes in X (which have price ��n) to s.

Figure 3.9: The Minimum Change Discharge execution on bad examples.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 47

Figure 3.9 details an execution of the MinimumChange Discharge algorithm with-

out global updates. As in the unweighted case, every relabeling changes a node price

by at most two, and the algorithm does
(n2) relabelings. Consequently, the relabel-

ings require
(nm) work, and we have the following theorem:

Theorem 3.7.1 For any function m(n) in the range n � m(n) < n2=4, there exists

an in�nite family of instances of the assignment problem having �(n) nodes and

�(m(n)) edges on which the Minimum Change Discharge implementation of re�ne

without global updates runs in
(nm(n)) time.

3.8 The First Scaling Iteration

Let G be the network produced by reducing an assignment problem instance to the

minimum cost circulation problem as in Section 2.2.2. When re�ne initializes by

saturating all negative arcs in this network, the only de�cit created will be at s by

our assumption that the input costs are nonnegative.

For a pseudo
ow f in G, de�ne Et(f) to be the amount of f 's excess that can

reach s by passing through t. Et(f) corresponds to the residual
ow value in the

unweighted case (see Section 3.1).

The (��)-optimality of the initial
ow and price function played an important role

in the proof of Lemma 3.5.5, speci�cally by lower-bounding the initial cost of any arc

that currently carries a unit of
ow. In contrast, the �rst scaling iteration may have

many arcs that carry
ow and have extremely negative costs relative to �, speci�cally

those arcs of the form (s; v) introduced by the reduction. But to counter this di�culty,

the �rst iteration has an advantage that later iterations lack: an upper bound (in

terms of �) on the initial cost of every residual arc in the network. Speci�cally, recall

that the value of � in the �rst iteration is C=�, where C is the largest cost of an

edge in the given assignment instance. So for any arc a other than the (v; s) arcs

introduced by the reduction, c(a) � �� in the �rst scaling iteration.

Lemma 3.8.1 At any point during the �rst execution of re�ne, Et��max � n(2+�).

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 48

Proof: Let f , p be the pseudo
ow and price function at the most recent point when

�(f; p) = �max. Let f
� be a minimumcost circulation in G, and let f 0 = f��f . Recall

that the costs on the (s; v) arcs are negative enough that f� must correspond to a

matching of maximum cardinality. Therefore, f 0 moves Et(f) units of f 's excess to s
through t, and returns the remainder to s without its passing through t. Now �f 0
is a pseudo
ow in Gf�, and can be decomposed into cycles and paths according to

Lemma 3.5.3; as in the proof of Lemma 3.1.4, let P denote the induced decomposition

of f 0. Let Q � P be the set of paths that pass through t, and note that Et(f) = jQj.
Let etf (v) denote the number of paths of Q beginning at node v. The only de�cit

in f is at s, so etf(v) is precisely the amount of v's excess that reaches s by passing

through t if we imagine augmenting f along the paths of P. Of particular importance

is that no path in Q uses an arc of the form (s; v) or (v; s) for v 6= t.

Observe that

Et(f)� �max �
X

et
f
(v)>0

etf(v)�(v);

so by the de�nition of �,

�� Et(f)� �max � �
X

et
f
(v)>0

etf(v)p(v):

Now note that for any path P from v to s, we have p(v) = cp(P)� c(P) because

p(s) = 0. Every arc used in the decomposition P appears in Gf . By �-optimality of

f and Lemma 3.5.4, each of the n or fewer arcs a in Gf with negative reduced cost

has cp(a) � �2�, so we have PP2Q cp(P) � �2n�. Next, we use the upper bound on

the initial costs to note that
P

P2Q c(P) � �n�, so

�� Et(f)� �max � �
X

et
f
(v)>0

etf(v)p(v) � 2n�+ �n� = n(2 + �)�;

and the lemma follows.

Lemma 3.8.2 At any point during the �rst execution of re�ne, E � (�max � �n) �
n(2 + �).

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 49

Proof: Essentially the same as the proof of Lemma 3.8.1, except that if �max > �n,

each path from an excess to the de�cit at s will include one arc of the form (v; s),

and each such arc has original cost �nC = ��n�.

Lemmas 3.8.1 and 3.8.2 allow us to split the analysis of the �rst scaling iteration

into four stages, much as we did with the Minimum Distance Discharge algorithm

for matching. Speci�cally, the analysis of Section 3.5 holds up until the point where

�max � �n, with Lemma 3.8.1 taking the place of Lemma 3.5.5. Straightforward

extensions of the relevant lemmas show that the algorithm does O(km+ n2=k) work

when �max 2 [�n; �n + k], and when �max > �n + k, Lemma 3.8.2 bounds the al-

gorithm's work by O(nm=k). The balancing works as before: choosing k = �(
p
n)

gives a bound of O(
p
nm) time for the �rst scaling iteration.

3.9 Weighted Global Updates in Practice:

E�ects on a Generic Implementation

In this section, we investigate the practical e�ects of global updates on the perfor-

mance of a push-relabel implementation that solves the minimum cost
ow prob-

lem. The heuristic's bene�ts are known for many classes of minimum cost
ow prob-

lems [25], but it is interesting to verify that the technique helps even when the domain

of discussion is restricted to assignment problems.

The implementation we study is a modi�ed form of a cost-scaling code developed

in [25]; in the code with global updates switched on, an update was performed after

every 1 + b15:4nc relabelings. The minimum cost
ow code uses a slightly di�erent

reduction from assignment to minimum cost
ow from the one outlined in Chapter 2.

We defer a discussion of the di�erent reduction and the reasons for it to Chapter 4,

where we present a detailed performance study of a set of implementations. We also

delay until Chapter 4 details of the various problem classes used for our tests, since

the aim here is simply to show quickly that global updates provide a substantial speed

advantage over an implementation that uses no heuristics. For the same reason, we

limit the number of problem classes discussed here; performance gains are comparable

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 50

on the remaining classes described in Chapter 4.

3.9.1 Running Times and Discussion

The platform on which we conducted these tests is the same as we used for the more

detailed study in Chapter 4. See Section 4.4 for a description of the system and

measurement techniques. For consistency with the presentation there, we identify

problem sizes according to the number of nodes in jXj, i.e., on one side of the graph.

The total number of nodes in each instance is twice this �gure.

The times and sample deviations reported are in seconds, and are computed over

a sample of three instances for each class and problem size.

Low-Cost Problems

No GU With GU
jXj time s time s speedup

1024 26.5 13 4.1 0.2 6.5

2048 77.5 14 11.5 0.6 6.7

4096 205 55 27.9 1.0 7.4

8192 565 105 66.4 3.8 8.5

16384 2196 511 188 19 11.7

32768 5839 2250 501 6.9 11.7

Figure 3.10: Running time comparison on the Low-Cost class

On low-cost problems, the code using global updates has a substantial speed

advantage that grows with problem size. Also, the code without global updates is

less robust in the sense that the running times show high variances.

Fixed-Cost Problems

As in the case of low-cost problems, the use of global updates makes running times

more predictable as well as smaller on �xed-cost problems. The speed advantage of

the implementation using global updates appears to remain roughly constant on this

class as problem size increases.

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 51

No GU With GU
jXj time s time s speedup

128 2.4 1.4 0.58 0.03 4.1

256 4.6 1.6 2.4 0.11 2.0

512 41 18 11 0.48 3.7

1024 122 53 57 3.1 2.2

2048 917 626 278 14.2 3.3

Figure 3.11: Running time comparison on the Fixed-Cost class

Geometric Problems

No GU With GU
jXj time s time s speedup

128 5.6 3.0 3.1 0.06 1.8

256 24.5 15 14.5 1.1 1.7

512 342 380 76.3 5.1 4.5

1024 846 229 361 19 2.3

Figure 3.12: Running time comparison on the Geometric class

Global updates appear to give a small constant factor speedup on geometric prob-

lems, and also greatly reduce the variance in running times.

Dense Problems

No GU With GU

jXj time s time s speedup

128 5.9 2.6 1.9 0.2 3.2

256 48 24 9.0 1.0 5.3

512 278 146 45 3.5 6.2

1024 2097 1160 232 9.7 9.0

Figure 3.13: Running time comparison on the Dense class

The speed advantage of the code using global updates grows with problem size on

CHAPTER 3. GLOBAL UPDATES: THEORETICAL DEVELOPMENT 52

dense instances. Once again, global updates show greater robustness by keeping the

running time variance small.

As in the unweighted case, we observe a substantial speed improvement owing

to the use of global updates in practice, compared against the same implementation

without them. On every problem class we tested, global updates provide an expected

increase in performance over a generic implementation that does not use them.

3.10 Chapter Summary

We have given algorithms that achieve the best time bounds known for bipartite

matching, namely O
�p

nm log(n2=m)

logn

�
, and for the assignment problem in the cost-

scaling context, namely O (
p
nm log(nC)). We have also given examples to show

that without global updates, the algorithms perform worse. Hence we conclude that

global updates can be a useful tool in theoretical development of algorithms.

In conjunction with the theoretical results, we brie
y gave running time data to

show that global updates are of practical value in the context where our analysis per-

tains. This is no surprise given the success of global updates in earlier implementation

studies for maximum
ow and minimum cost
ow, but it is nevertheless interesting

to check because earlier studies using global updates have not focused on bipartite

problems.

We have shown a family of assignment instances on which re�ne without global

updates performs poorly, but the poor performance seems to hinge on details of the

reduction so it happens only in the �rst scaling iteration. An interesting open question

is the existence of a family of instances of the assignment problem on which re�ne

uses
(nm) time in every scaling iteration.

Finally, it is natural to ask whether global updates give an improved worst-case

time bound in the case of general (as opposed to bipartite) networks with general

capacities. This question remains open.

Chapter 4

Implementation Study:

E�cient Cost-Scaling Code for

Assignment

In this chapter we study implementations of the scaling push-relabel method in the

context of the assignment problem. We use ideas from minimum-cost
ow codes [7,

25, 29], ideas from assignment codes [5, 8, 6], and ideas of theoretical work on the

push-relabel method for the assignment problem [30], as well as new techniques aimed

at improving practical performance of the method. We develop several CSA (Cost

Scaling Assignment) codes based on di�erent heuristics which improve the code per-

formance on many problem classes. The \basic" code csa-b uses only the most

straightforward heuristics, the csa-q code uses a \quick-minima" heuristic in addi-

tion, and the csa-s code uses a \speculative arc �xing" heuristic. Another outcome

of our research is a better understanding of cost-scaling algorithm implementations,

which may lead in turn to improved cost-scaling codes for the minimum-cost
ow

problem.

We compare the performance of the CSA codes to four other codes that represent

the previous state of the art in implementations for the assignment problem: sfr10,

an implementation of the auction method for the assignment problem [8]; sjv and

djv, implementations of Jonker and Volgenant's shortest augmenting path method

53

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 54

[39] tuned for sparse and dense graphs respectively; and adp/a, an implementation of

the interior-point method specialized for the assignment problem [48]. We make the

comparison over classes of problems from generators developed for the First DIMACS

Implementation Challenge [38]1 and on problems obtained from digital images as

suggested by Don Knuth [42]. Overall, the best of our codes is csa-q. It outperforms

adp/a on all problem instances in our tests, outperforms sfr10 on all except one

class, and outperforms sjv and djv on large instances in every class. Although our

second-best code, csa-s, is somewhat slower than csa-q on many problem classes,

it is usually not much slower and it outperforms csa-q on three problem classes,

always outperforms adp/a, is worse than sfr10 by only a slight margin on one

problem class and by a noticeable margin on only one problem class, and loses to

the Jonker-Volgenant codes only on one class and on small instances from two other

classes. While we use the csa-b code primarily to gauge the e�ect of heuristics on

performance, it is worth noting that it outperforms adp/a in all our tests, the Jonker-

Volgenant codes on large instances from all but one class, and sfr10 on all but one

class of problems we tested.

adp/a no better than O(mn1:5 log(nC))

JV codes O(n3)

sfr10 O(n2m log(nC))

CSA codes O(nm log(nC))

Figure 4.1: Worst-case bounds for the assignment codes

Figure 4.1 shows the best bounds we know on the worst-case running time of each

of the implementations in our study. Only the Jonker-Volgenant codes compete with

the CSA implementations on the basis of worst-case running time; all the other time

bounds are asymptotically worse.

We begin our exposition in Section 4.1 by discussing the basic ideas behind our

implementations, and move on to a discussion of the heuristics we evaluated during

1The DIMACS benchmark codes, problem generators, and other information we refer to are
available by anonymous ftp from dimacs.rutgers.edu

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 55

the development of the CSA codes in Section 4.2. In subsequent sections, we outline

the experiments we ran to evaluate our codes' performance, and we give the results

of the experiments and our conclusions.

4.1 Implementation Fundamentals

In this section, we discuss some general considerations that must be taken into account

in any push-relabel implementation for the assignment problem. Such a discussion

forms the background for the coming discussion of implementation heuristics and

their role in the practical performance of algorithms.

All the push-relabel implementations we study use some version of the \forward

star" data structure (see [1]) to represent the input graph. The information pertaining

to each node in the graph is collected together in an array entry indexed by the

identi�er for the node, and similarly for the arcs. Arcs directed out of a particular

node are stored contiguously. Such a structure has obvious bene�ts with respect to

locality of reference.

General minimum cost circulation implementations [25] typically store each arc

explicitly, and enforce
ow antisymmetry on symmetric arcs by linking paired arcs

together. Many implementations to solve the assignment problem, even among those

that reduce the problem to minimum cost circulation (or minimum cost
ow), use a

more compact representation. The three implementations we develop and study in

this chapter store only \forward" arcs, although some of the heuristics we evaluated

(e.g., global updates) required reverse arcs as well for e�ciency.

We develop our implementations with the view that they solve a class of minimum

cost
ow problems that arise through a reduction from the assignment problem. We

do not hesitate to take advantage of the special characteristics of assignment, but we

�nd the principles and the details easier to understand and express from the
ow-

oriented point of view. The ideas can be viably interpreted from a matching-oriented

perspective, but we prefer the more general viewpoint since it supports a uni�ed

understanding of related problems.

For our implementations we use a reduction to minimum cost
ow that di�ers

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 56

from the one detailed in Chapter 2. This decision is driven by several considerations:

The theoretical context of our global update study called for as general a reduction

as possible, one that assumed nothing about the structure of the given assignment

problem and that made it straightforward to demonstrate the separation in the algo-

rithms' performance with and without the updates. In an implementation, our needs

are somewhat di�erent since we mean to design appealing code to solve assignment

problems and to compare our code with other implementations from the literature on

the basis of performance. To make a performance comparison as meaningful as we

can, we wish to use the same conventions as our competitors with regard to the given

assignment instances; this uniformity will help ensure that background assumptions

are not responsible for observed di�erences in speed.

For the purposes of our codes, the reduction we use is to the transportation prob-

lem, also known as minimum cost
ow with supplies and demands. Given an assign-

ment instance, we introduce a unit-capacity arc for each edge as before, and retain

the given problem's costs. At each node of X we place a single unit of supply, and

at each node of Y , we place a unit of demand. We seek a
ow of minimum cost that

satis�es these supplies and demands; such a
ow corresponds in the obvious way to a

perfect matching of minimumcost. Note that the transportation problem we get from

this reduction is feasible if and only if the given assignment instance admits a perfect

matching. We assume the existence of a perfect matching; the same assumption is

made by the competing codes in our study.

It would be a straightforward matter to adapt our codes to a more general reduc-

tion such as the one in Chapter 2; this adaptation would dispense with the assumption

of a perfect matching, and we believe the change would a�ect the code's performance

only slightly.

4.2 Push-Relabel Heuristics for Assignment

The literature suggests a variety of techniques that make various contributions to

improving the running time of push-relabel network
ow implementations; many of

these heuristics specialize to the assignment problem in meaningful ways, and we

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 57

explore some of them here. Additionally, the special structure of the assignment

problem suggests a few heuristics that do not owe their origins to those developed in

more general contexts.

We de�ne each heuristic that we implemented and explore the issues surrounding

its implementation in the context of the assignment problem. We do not use all

the heuristics in our �nal CSA implementations because not all of them improve the

assignment codes' performance.

4.2.1 The Double-Push Operation

We describe a heuristic that determines how the push and relabel operations combine

at a low level. The double-push operation is roughly similar to a sequential version of

the match-and-push procedure from [30], and the operation is designed to improve the

implementation's performance in two ways. First, it allows the use of simpli�ed data

structures and can be implemented e�ciently. Second, it relabels nodes \aggressively"

in some sense. We discuss these two advantages in more detail below, after we de�ne

the operation and prove its basic properties.

The double-push operation applies to an active node v 2 X. The operation

assumes that at the beginning of a double-push, all nodes w 2 Y with ef(w) � 0 have

an admissible outgoing arc, and our algorithms that use double-push will maintain

this property as an invariant. The double-push operation begins by processing v: it

relabels v, pushes
ow from v along an admissible arc (v;w), and then relabels v

again. If ef(w) is positive after the push from v, the operation pushes a unit of
ow

along an admissible arc (w; x). Finally, double-push relabels w.

Analysis of Double-Push

The following lemma establishes the correctness of the double-push operation.

Lemma 4.2.1 The double-push operation maintains the invariant that every node

w 2 Y with ef(w) � 0 has an outgoing admissible arc.

Proof: Consider a double-push from v into w. The last action performed by this

double-push is to relabel w, and therefore immediately after the double-push, there

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 58

is an admissible arc leaving w. Now let x be some node (x can be v) such that

(w; x) 2 Ef . Nodes in X never have de�cits by the asymmetric de�nition of �-

optimality, so until another double-push into w occurs, (w; x) is the only residual arc

into x. Therefore, x cannot be active before another double-push into w, and hence

x is not relabeled until such a double-push. This fact immediately implies that the

arc (w; x) remains admissible until the next double-push into w.

The standard analysis of push-relabel algorithms assumes that the relabel opera-

tion is applied only to active nodes. Because double-push relabels nodes that are not

active (i.e., the second relabeling of v in the above description), we give a straight-

forward reanalysis of the push-relabel algorithm to show that double-push leaves the

theoretical performance bounds intact. The analysis will use the following obvious

lemma.

Lemma 4.2.2 The double-push operation maintains the invariant that every node

w 2 Y has ef(w) 2 f�1; 0g, except while the operation is in progress. Equivalently,

double-push maintains the invariant that every node w 2 Y has at most one outgoing

residual arc, except while the operation is in progress.

For each w 2 Y with ef(w) = 0 we de�ne �(w) to be the unique node such that

f(�(w); w) = 1. If ef (w) = 0 for w 2 Y , we say w is matched to �(w). If ef (w) = �1,
we say w is unmatched.

Lemma 4.2.3 A double-push operation decreases the price of a node w 2 Y by at

least 2�.

Proof: Just before the double-push, w is either unmatched or matched.

In the �rst case, the
ow is pushed into w and at this point the only residual

arc out of w is the arc (w; v). Just before that the double-push relabeled v and

cp(v;w) = 0. Next double-push relabels w and p(w) decreases by 2�.

In the second case, the
ow is pushed to w and at this point w has two outgoing

residual arcs, (w; v) and (w;�(w)). As we have seen, cp(v;w) = 0 before v's second

relabeling, and cp(�(w); w) = 2�. After the second relabeling of v, double-push pushes

ow from w to �(w) and relabels w, reducing p(w) by at least 2�.

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 59

double-push(v).

let (v; w) and (v; z) be v's outgoing residual arcs with the smallest and

the second-smallest reduced costs;

push(v; w);

p(v) = �c0p(v; z);

if ef (w) > 0

push(w; �(w));

�(w) = v;

p(w) = p(v) + c(v; w)� 2�;

end.

Figure 4.2: E�cient implementation of double-push

The following corollary is immediate from Lemma 4.2.3 and the fact that the price of

an active node can change by at most O(n�) during an execution of re�ne.

Corollary 4.2.4 There are O(n2) double-pushes per re�ne, and they require O(nm)

time.

E�cient Implementation of Double-Push

Lemma 4.2.2 bene�ts not only the analysis; it allows an important simpli�cation of

the implementation's underlying data structure as well. In particular, it eliminates

the need to store explicitly the value of each node's
ow excess and limits the residual

outdegree of nodes in Y to be at most one. We will reap the bene�t that relabeling an

active node on the right can be very fast, since it requires examining only one residual

arc. Rather than store excesses and de�cits explicitly, it will su�ce to have some way

of determining the number (zero or one) of residual arcs into (for nodes in X) or out

of (for nodes in Y) each node. Speci�cally, for each node w 2 Y with ef(w) = 0, our

implementations will maintain a pointer to �(w); for nodes with de�cit, this pointer

will take a special value to indicate that the corresponding node is unmatched.

Suppose we apply double-push to a node v. Let (v;w) and (v; z) be the arcs out

of v with the smallest and the second-smallest reduced costs, respectively. These arcs

can by found by scanning the adjacency list of v once. The e�ects of double-push

on v are equivalent to pushing
ow along (v;w) and setting p(v) = �c0p(v; z). To

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 60

relabel w, we set p(w) = p(v) + c(v;w)� 2�. This implementation of double-push is

summarized in Figure 4.2.

It is not necessary to maintain the prices of nodes in X explicitly; for v 2 X,

we can de�ne p(v) implicitly by p(v) = �min(v;w)2Efc0p(v;w)g if ef(v) = 1 and

p(v) = c0(v;w) + 2� if ef(v) = 0 and (v;w) is the unique arc with f(v;w) = 1. One

can easily verify that using implicit prices is equivalent to using explicit prices in the

above implementation. The only time we need to know the value of p(v) is when we

relabel w in double-push, and at that time p(v) = �c0p(v; z) which we compute during

the previous relabel of v. Maintaining the prices implicitly saves memory and time.

The implementation of the double-push operation with implicit prices is similar to

the basic step of the auction algorithm of [5].

The main advantage of double-push seems to be that it allows simpli�cation of

the main data structures because units of excess never collide, and that it maintains

an \aggressive" price function by using every node scan to perform, in e�ect, three

relabelings. In our preliminary tests, double-push showed such a decisive advantage

over other low-level ways of combining push and relabel operations that all the CSA

implementations use it.

4.2.2 The kth-best Heuristic

Some implementation studies [5, 8] have suggested that in the case of the assignment

problem, the relabel operation can often be sped up by exploiting the fact that arcs

with low reduced cost are likely to be admissible in the future.

The kth-best heuristic is aimed at reducing the number of scans of arc lists of

nodes in X, and is a generalization of that of the 3rd-best scheme outlined in [5].

Recall that we scan the list of v to �nd the arcs (v;w) and (v; z) with the smallest

and second-smallest values of the partial reduced cost. Let k � 3 be an integer.

When we scan the list of v 2 X, we compute the kth-smallest value K of the partial

reduced costs of the outgoing arcs and store the k � 1 arcs with the k � 1 smallest

partial reduced costs. The node prices monotonically decrease during re�ne, hence

during the subsequent double-push operations we can �rst look for the smallest and

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 61

the second-smallest arcs among the stored arcs whose current partial reduced cost is

at most K. We need to scan the list of v again only when all except possibly one of

the saved arcs have partial reduced costs greater than K.

The kth-best heuristic was usually bene�cial in our tests; the best value for k

seems to be 4.

4.2.3 Arc Fixing

Because the amount by which a node price can change is bounded in each iteration

and this bound on the per-iteration price change per node decreases geometrically

(along with the scaling parameter �), the algorithm can reach a point at which some

arcs have such large reduced costs that they can never be admissible for the remainder

of the algorithm. The algorithm will never alter the
ow on such an arc, so the arc

is said to be �xed. The following theorem is from [32] (see also [50]).

Theorem 4.2.5 Let � > 0; �0 � 0 be constants. Suppose that a circulation f is

�-optimal with respect to a price function p, and that there is an arc (v;w) such that

jcp(v;w)j � n(� + �0). Then for any �0-optimal circulation f 0, we have f(v;w) =

f 0(v;w).

If the
ow on a large number of arcs is �xed according to Theorem 4.2.5, the speed

of an implementation can bene�t from ignoring those arcs. We will say that such an

implementation uses the guaranteed arc �xing heuristic. Recent implementations to

solve minimum cost
ow [21, 25] commonly presume that Theorem 4.2.5 gives quite

a conservative guarantee in practice, and that arcs with moderately large positive

reduced costs are unlikely to become admissible in the future.

The idea of the speculative arc �xing heuristic [21, 25] is to move arcs with reduced

costs whose magnitudes exceed some threshold � to a special list. These arcs are not

examined by the double-push procedure but are examined as follows at a (relatively

large) periodic interval. When the arc (v;w) is examined, if the �-optimality condition

is violated on (v;w), the algorithm modi�es f(v;w) to restore �-optimality and moves

(v;w) back to the adjacency list of v; if �-optimality holds for (v;w) but jcp(v;w)j no

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 62

longer exceeds �, the arc (v;w) is simply moved back to the adjacency list. Recovery

from the situation in which an arc violates �-optimality tends to be very expensive

because large changes to the price function are often required.

Both guaranteed and speculative arc �xing tended to improve running times on the

classes of problems we tested, speculative arc �xing by a signi�cantly larger margin

when � was chosen carefully. A relatively common scenario in our tests seemed to be

that for some v 2 X with ef (v) = 0, all the residual arcs outgoing from v would be

presumed �xed (or known �xed, in the case of guaranteed �xing). Since any feasible

ow in the network must induce a matching, we can consider �xing all arcs incident to

w in this situation as well. In the case of guaranteed arc �xing, this action proved not

to be advantageous because of the time spent maintaining the additional information

required to �nd the arcs incident to w. In the case of speculative arc �xing, this

action greatly increased the risk that some arc would eventually violate �-optimality.

In both cases, the costs of �xing the additional arcs incident to w were too great.

4.2.4 Global Price Updates

Global updates have been studied extensively from a theoretical perspective in Chap-

ter 3, and have been shown to improve the practical performance of codes for minimum

cost
ow, both when applied to a battery of minimum cost
ow problems [25] and

when applied to a suite of assignment problems (see Section 3.9).

In our CSA implementations, the code to perform global updates can take ad-

vantage of the simpli�ed data structures and special properties of the residual graph

that result when the algorithm uses the double-push operation with implicit prices as

detailed in Section 4.2.1. Consequently the version of global updates we implemented

for the assignment problem runs considerably faster than global update implementa-

tions for minimum cost
ow. Even so, the double-push operation seems to maintain

a su�ciently aggressive price function on its own; global price updates cannot reduce

the number of push and relabel operations enough to improve the running time of the

CSA implementations on the problem classes we tested. The CSA codes therefore do

not use global updates.

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 63

4.2.5 Price Re�nement

Price re�nement determines at each iteration whether the current primal solution is

actually �0-optimal for some �0 < �, and hence avoids unnecessary executions of re�ne.

This idea has proven bene�cial in implementations that solve the minimum cost
ow

problem in its full generality.

Price re�nement can be implemented using a modi�ed shortest-paths computation

with primitives similar to those used to implement global updates, and like global

updates, its code can be written to take advantage of the invariants of Lemmas 4.2.1

and 4.2.2. Even taking these properties into account, a typical price re�nement

iteration used more time in our tests than simply executing re�ne with double-push.

Consequently, we do not use price re�nement in the CSA implementations.

4.3 The CSA Codes

The e�ciency of a scaling implementation depends on the choice of scale factor �.

Although an earlier study [8] suggests that the performance of scaling codes for the

assignment problem may be quite sensitive to the choice of scale factor, our obser-

vations are to the contrary. Spot checks on instances from several problem classes

indicated that the running times seem to vary by a factor of no more than 2 for

values of � between 4 and 40. We chose � = 10 for our tests; di�erent values of

� would yield running times that are somewhat worse on some problem classes and

somewhat better on others, but the di�erence is not drastic. We believe the lack of

robustness alluded to in [8] may be due to a characteristic of the implementation of

sfr10 and related codes. In particular, sfr10 contains an \optimization" that seems

to terminate early scaling phases prematurely. Our codes run every scaling phase to

completion as suggested by the theory.

The e�ciency of an implementation of re�ne depends on the number of operations

performed by the method and on the implementation details. All the CSA codes

use the double-push operation with implicit prices and maintain the invariants of

Lemmas 4.2.1 and 4.2.2.

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 64

The performance of the implementation depends on the strategy for selecting

the next active node to process. We experimented with several operation orderings,

including the minimum-distance strategy suggested in Chapter 3 and those suggested

in [32]. Our implementation uses the LIFO ordering, i.e., the set of active nodes is

maintained as a stack. This ordering worked best in our tests; the FIFO and minimum

distance orderings usually worked somewhat worse, although the di�erence was never

drastic.

Our code csa-b implements the scaling push-relabel algorithm using stack or-

dering of active nodes and the implementation of double-push with implicit prices

mentioned above. Our code csa-q is a variation of csa-b that uses the 4th-best

heuristic. Our code csa-s is a variation of csa-b that uses the speculative arc �xing

heuristic with the threshold � = 4�n3=4. This threshold value was chosen empirically

by spot-testing on a variety of problem instances.

4.4 Experimental Setup

All the test runs were executed on a Sun SparcStation 2 with a clock rate of 40 MHz,

96 Megabytes of main memory, and a 64-Kilobyte o�-chip cache. We compiled the

sfr10 code supplied by David Casta~non with the Sun Fortran-77 compiler, release

2.0.1 using the -O4 optimization switch2. We compiled the djv and sjv codes supplied

by Jianxiu Hao with the Sun C compiler release 1.0, using the -O2 optimization

option. We compiled our CSA codes with the Sun C compiler release 1.0, using the

-fast optimization option; each choice seemed to yield the fastest execution times

for the code where we used it. Times reported here are Unix user CPU times, and

were measured using the times() library function. During each run, the programs

collect time usage information after reading the input problem and initializing all

data structures and again after computing the optimum assignment; we take the

di�erence between the two �gures to indicate the CPU time actually spent solving

2Casta~non [8] recommends setting the initial \bidding increment" in sfr10 to a special value for
problems of high density; we found this advice appropriate for the dense problem class, but discovered
that it hurt performance on the geometric class. We followed Casta~non's recommendation only on
the class where it seemed to improve sfr10's performance.

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 65

C benchmarks
user times

Test 1 Test 2

2.7 sec 24.0 sec

FORTRAN benchmarks
user times

Test 1 Test 2

1.2 sec 2.2 sec

Figure 4.3: DIMACS benchmark times

the assignment problem.

To give a baseline for comparison of our machine's speed to others, we ran the

DIMACS benchmarks wmatch (to benchmark C performance) and netflo (to bench-

mark FORTRAN performance) on our machines, with the timing results given in

Figure 4.3. It is interesting (though neither surprising nor critical to our conclusions)

to note that the DIMACS benchmarks do not precisely re
ect the mix of operations

in the codes we developed. Of two C compilers available on our system, the one that

consistently ran our code faster by a few percent also ran the benchmarks more slowly

by a few percent (the C benchmark times in Figure 4.3 are for code generated by the

same compiler we used for our experiments). But even though they should not be

taken as the basis for very precise comparison, the benchmarks provide a useful way

to estimate relative speeds of di�erent machines on the sort of operations typically

performed by combinatorial optimization codes.

We did not run the adp/a code, but because the benchmark times reported in [48]

di�er only slightly from the times we obtained on our machine, we conclude that the

running times reported for adp/a in [48] form a reasonable basis for comparison with

our codes. Therefore, we report running times directly from [48]. As the reader will

see, even if this benchmark comparison introduces a signi�cant amount of error, our

conclusions about the codes' relative performance are justi�ed by the large di�erences

in speed between adp/a and the other codes we tested.

The djv code is designed for dense problems and uses an adjacency-matrix data

structure. The memory requirements for this code would be prohibitive on sparse

problems with many nodes. For this reason, we included it only in experiments on

problem classes that are dense. On these problems, djv is faster than sjv by a factor

of about 1.5. It is likely that our codes and the sfr10 code would enjoy a similar

improvement in performance if they were modi�ed to use the adjacency-matrix data

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 66

structure.

We collected performance data on a variety of problem classes, many of which

we took from the First DIMACS Implementation Challenge. Following is a brief

description of each class; details of the generator inputs that produced each set of

instances are included in Appendix A.

4.4.1 The High-Cost Class

Each v 2 X is connected by an edge to 2 log2 jV j randomly-selected nodes of Y , with

integer edge costs uniformly distributed in the interval [0; 108].

4.4.2 The Low-Cost Class

Each v 2 X is connected by an edge to 2 log2 jV j randomly-selected nodes of Y , with

integer edge costs uniformly distributed in the interval [0; 100].

4.4.3 The Two-Cost Class

Each v 2 X is connected by an edge to 2 log2 jV j randomly-selected nodes of Y , each

edge having cost 100 with probability 1=2, or cost 108 with probability 1=2.

4.4.4 The Fixed-Cost Class

For problems in this class, we view X as a copy of the set f1; 2; : : : ; jV j=2g, and Y as a

copy of f jV j=2+1; jV j=2+2; : : : ; jV j g. Each v 2 X is connected by an edge to jV j=16
randomly-selected nodes of Y , with edge (x; y), if present, having cost 100 � x � y.

4.4.5 The Geometric Class

Geometric problems are generated by placing a collection of integer-coordinate points

uniformly at random in the square [0; 106]� [0; 106], coloring half the points blue and

the other half red, and introducing an edge between every red point r and every blue

point b with cost equal to the
oor of the distance between r and b.

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 67

4.4.6 The Dense Class

Like instances of the geometric class, dense problems are complete, but edge costs

are distributed uniformly at random in the range [0; 107].

4.4.7 Picture Problems

Picture problems, suggested by Don Knuth [42], are generated from photographs

scanned at various resolutions, with 256 greyscale values. The set V is the set of

pixels; the pixel at row r, column c is a member of X if r+ c is odd, and is a member

of Y otherwise. Each pixel has edges to its vertical and horizontal neighbors in the

image, and the cost of each edge is the absolute value of the greyscale di�erence

between its two endpoints. Note that picture problems are extremely sparse, with

an average degree always below four. Although picture problems are an abstract

construct with no practical motivation, the solution to a picture problem can be

viewed as a tiling of the picture with dominos, where we would like each domino to

cover greyscale values that are as di�erent as possible.

For our problems, we used two scanned photographs, one of the author, and one

of Andrew Goldberg, the author's principal advisor.

4.5 Experimental Observations and Discussion

In the following tables and graphs we present performance data for the codes. Note

that problem instances are characterized by the number of nodes on a single side,

i.e., half the number of nodes in the graph.

We report times on the test runs we conducted, along with performance data for

the adp/a code taken from [48]. The instances on which adp/a was timed in [48]

are identical to those we used in our tests. We give mean running times computed

over three instances for each problem size in each class; in the two-cost and geometric

classes we also give mean running times computed over 15 instances and sample

deviations for each sample size. We computed sample deviations for each problem

class and size, and observed that in most cases they were less than ten percent of

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 68

the mean (often much less). The two exceptions were the two-cost and geometric

classes, where we observed larger sample deviations in the running times for some

of the codes. For these two classes we also collected data on 15 instances for each

problem size. The sample statistics taken over 15 instances seem to validate those we

observed for three instances. All statistics are reported in seconds.

4.5.1 The High-Cost Class

Figure 4.4 summarizes the timings on DIMACS high-cost instances. The kth-best

heuristic yields a clear advantage in running time on these instances. csa-q beats

csa-b, its nearest competitor, by a factor of nearly 2 on large instances, and csa-q

seems to have an asymptotic advantage over the other codes as well. The overhead

of speculative arc �xing is too great on high-cost instances; the running times of

csa-s for large graphs are essentially the same as those of sfr10. sjv has the worst

asymptotic behavior.

4.5.2 The Low-Cost Class

The situation here is very similar to the high-cost case: csa-q enjoys a slight asymp-

totic advantage as well as a clear constant-factor advantage over the competing codes.

sjv has worse asymptotic behavior than the other codes on the low-cost class, just

as it does on high-cost instances. See Figure 4.5.

4.5.3 The Two-Cost Class

The two-cost data appear in Figure 4.6 and Figure 4.7. It is di�cult for ro-

bust scaling algorithms to exploit the special structure of two-cost instances; the

assignment problem for most of the graphs in this class amounts to �nding a perfect

matching on the high-cost edges, and none of the scaling codes we tested is able to

take special advantage of this observation. Because sjv does not use scaling, it would

seem a good candidate to perform especially well on this class, and indeed it does

well on small two-cost instances. For large instances, however, sjv uses a great deal

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 69

1

10

100

1000

1024 2048 4096 8192 16384 32768

r
u
n
n
i
n
g

t
i
m
e

(
l
o
g
s
c
a
l
e
)

number of nodes (logscale)

High-Cost Instances

ADP/A
SJV

SFR10
CSA-S
CSA-B
CSA-Q

Nodes ADP/A SFR10 SJV CSA-B CSA-S CSA-Q

(jX j) time time time time time time

1024 17 1.2 0.87 0.7 1.1 0.5

2048 36 2.9 4.40 1.9 2.7 1.3

4096 132 6.4 18.1 4.3 6.2 2.8

8192 202 15.7 65.6 10.8 15.3 6.5

16384 545 37.3 266 25.5 38.3 14.3

32768 1463 85.7 1197 58.7 84.0 32.4

Figure 4.4: Running Times for the High-Cost Class

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 70

1

10

100

1000

1024 2048 4096 8192 16384 32768

r
u
n
n
i
n
g

t
i
m
e

(
l
o
g
s
c
a
l
e
)

number of nodes (logscale)

Low-Cost Instances

ADP/A
SJV

SFR10
CSA-S
CSA-B
CSA-Q

Nodes ADP/A SFR10 SJV CSA-B CSA-S CSA-Q

(jX j) time time time time time time

1024 15 0.75 0.82 0.48 0.64 0.44

2048 29 1.83 3.03 1.21 1.77 0.98

4096 178 4.31 12.6 2.99 4.13 2.43

8192 301 10.7 57.0 7.39 10.3 5.72

16384 803 27.7 229 20.1 27.8 13.4

32768 2464 68.5 1052 46.9 64.6 30.3

Figure 4.5: Running Times for the Low-Cost Class

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 71

1

10

100

1000

1024 2048 4096 8192 16384 32768 65536

r
u
n
n
i
n
g

t
i
m
e

(
l
o
g
s
c
a
l
e
)

number of nodes (logscale)

Two-Cost Instances

SJV
SFR10
CSA-Q
CSA-B
CSA-S

Nodes SFR10 SJV CSA-B CSA-S CSA-Q

(jX j) time s time s time s time s time s

1024 5.13 0.09 0.35 0.00 3.09 0.24 2.58 0.15 5.21 0.33

2048 14.0 1.1 1.16 0.01 7.72 0.28 6.19 0.18 11.1 1.0

4096 37.3 1.1 4.21 0.16 17.7 1.1 14.2 1.6 23.3 2.4

8192 107 12 18.2 0.43 43.4 3.5 36.7 2.1 58.6 3.3

16384 366 81 73.6 0.58 102 2.8 85.4 3.2 133 7.8

32768 894 180 320 1.2 240 6.0 185 6.8 299 6.4

65536 1782 60 1370 5.8 531 15 417 11 628 25

Figure 4.6: Running Times (3-instance samples) for the Two-Cost Class

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 72

Nodes SFR10 SJV CSA-B CSA-S CSA-Q

(jX j) time s time s time s time s time s

1024 5.05 0.32 0.35 0.02 3.07 0.21 2.56 0.10 4.93 0.40

2048 14.1 1.1 1.18 0.04 7.49 0.37 6.18 0.26 10.8 0.73

4096 37.4 2.7 4.22 0.14 17.7 1.0 14.7 0.84 24.1 1.6

8192 109 9.8 18.0 0.37 44.6 2.5 36.5 1.5 57.5 3.2

16384 314 50 73.7 0.57 105 4.2 84.1 2.9 130 8.4

32768 822 194 320 2.1 239 8.5 186 4.8 293 15

65536 2021 342 1376 7.5 524 25 426 16 637 27

Figure 4.7: Running Times (15-instance samples) for the Two-Cost Class

of time in its shortest augmenting path phase, and performs poorly for this reason.

Speculative arc �xing improves signi�cantly upon the performance of the basic CSA

implementation, and the kth-best heuristic hurts performance on this class of prob-

lems. It seems that the kth-best heuristic tends to speed up the last few iterations

of re�ne, but it hurts in the early iterations. Like kth-best, the speculative arc �xing

heuristic is able to capitalize on the fact that later iterations of re�ne can a�ord to

ignore many of the arcs incident to each node, but by keeping all arcs of similar cost

under consideration in the beginning, speculative arc �xing allows early iterations

to run relatively fast. On this class, csa-s is the winner, although for applications

limited to this sort of strongly bimodal cost distribution, an unscaled push-relabel or

blocking
ow algorithm might perform better than any of the codes we tested. No

running times are given in [48] for adp/a on this problem class, but the authors sug-

gest that their program performs very well on two-cost problems. Relative to those

of the other codes, the running times of sfr10 are comparatively scattered at each

problem size in this class; we believe this phenomenon results from the premature

termination of early scaling phases in sfr10 (see Section 4.3).

The relatively large sample deviations shown in Figure 4.6 motivated our experi-

ments with 15 instances of each problem size. The sample means and deviations of

the 15-instance data are shown in Figure 4.7, and they are consistent with and very

similar to the three-instance data shown in Figure 4.6.

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 73

4.5.4 The Fixed-Cost Class

Figure 4.8 gives the data for the �xed-cost problem class. On smaller instances of

this class, csa-b and csa-q have nearly the same performance. On instances with

jXj = 1024 and jXj = 2048, csa-q is faster on �xed-cost problems than csa-b,

or indeed any of the other codes. On smaller instances, speculative arc �xing does

not pay for itself; when jXj = 2048, the overhead is just paid for. Perhaps on

larger instances, speculative arc �xing would pay o�. It is doubtful, though, that

csa-s would beat csa-q on any instances of reasonable size. sjv exhibits the worst

asymptotic behavior among the codes we tested on this problem class.

4.5.5 The Geometric Class

On geometric problems, both heuristics improve performance over the basic csa-b

code. The performance of csa-s and csa-q is similar to and better than that of the

other codes. The Jonker-Volgenant codes seem to have asymptotic behavior similar

to the other codes on this class. See Figure 4.9.

Because the sample deviations shown in Figure 4.9 are somewhat large compared

to those we observed on most other problem classes, we ran experiments on 15 in-

stances as a check on the validity of the data. Statistics calculated over 15-instance

samples are reported in Figure 4.10, and they are very much like the three-instance

data.

4.5.6 The Dense Class

The di�erence between Figures 4.10 and 4.11 shows that the codes' relative per-

formance is signi�cantly a�ected by changes in cost distribution. Except on very

small instances, csa-q is the winner in this class; djv is its closest competitor, with

sjv performing fairly well also. As in the case of geometric problems, sjv and djv

seem to have asymptotic performance similar to the scaling and interior-point codes

on this class.

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 74

0.1

1

10

100

1000

128 256 512 1024 2048

r
u
n
n
i
n
g

t
i
m
e

(
l
o
g
s
c
a
l
e
)

number of nodes (logscale)

Fixed-Cost Instances

ADP/A
SJV

SFR10
CSA-S
CSA-B
CSA-Q

Nodes ADP/A SFR10 SJV CSA-B CSA-S CSA-Q

(jX j) time time time time time time

128 3 0.16 0.18 0.06 0.08 0.07

256 11 0.63 2.14 0.30 0.37 0.32

512 46 3.59 19.4 1.6 1.8 1.7

1024 276 20.5 168 7.8 8.2 6.0

2048 N/A 123 1367 37.8 37.6 27.9

Figure 4.8: Running Times for the Fixed-Cost Class

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 75

1

10

100

1000

128 256 512 1024

r
u
n
n
i
n
g

t
i
m
e

(
l
o
g
s
c
a
l
e
)

number of nodes (logscale)

Geometric Instances

ADP/A
SJV
DJV

SFR10
CSA-B
CSA-Q
CSA-S

Nodes ADP/A SFR10 SJV DJV CSA-B CSA-S CSA-Q
(jXj) time s time s time s time s time s time s time s

128 12 0.5 1.27 0.46 6.64 4.4 4.36 2.9 0.79 0.28 0.62 0.05 0.58 0.19

256 47 1 6.12 0.23 25.3 3.3 16.9 2.0 3.67 0.67 2.56 0.08 2.43 0.34

512 214 42 31.0 4.1 110 2.8 73.2 1.0 27.9 8.1 11.9 0.89 16.7 3.7

1024 1316 288 193 19 424 51 297 32 114 24 54.9 1.42 62.5 2.6

Figure 4.9: Running Times (3-instance samples) for the Geometric Class

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 76

Nodes SFR10 SJV DJV CSA-B CSA-S CSA-Q

(jX j) time s time s time s time s time s time s

128 1.28 0.21 5.96 2.0 3.85 1.3 0.78 0.16 0.61 0.03 0.57 0.11

256 6.21 0.82 26.1 4.7 17.5 2.9 3.72 0.51 2.63 0.09 2.50 0.27

512 35.0 6.0 101 11 68.2 7.4 23.2 4.9 11.8 0.67 15.1 2.4

1024 214 54 416 38 291 25 127 27 54.4 2.2 66.7 9.7

Figure 4.10: Running Times (15-instance samples) for the Geometric Class

4.5.7 Picture Problems

Although the pictures used had very similar characteristics, the tentative conclu-

sions we draw here about the relative performance of the codes seem to apply to a

broader class of images. We performed trials on a variety of images generated and

transformed by various techniques, and found no substantial di�erences in relative

performance, although some pictures seem to yield more di�cult assignment problems

than others. On the picture problems we tried, sfr10 performs better than any of

the CSA implementations; we believe that the \reverse-auction" phases performed by

sfr10 [8] are critical to this performance di�erence. We were unable to obtain times

for sjv and csa-q on the largest problem instance from each picture, nor from sfr10

on the largest problem instance from one of the pictures because the codes required

too muchmemory. On the second-largest instance from each picture, our experiments

suggested that sjv would require more than a day of CPU time, so we did not collect

data for these cases. On picture problems csa-q performs signi�cantly worse than

either of the other two CSA implementations. This situation is no surprise because

csa-q performs an additional pointer dereference almost every time it examines an

arc. In such a sparse graph, the four arcs stored at each node exhaust the list of arcs

incident to that node, so no bene�t is to be had from the kth-best heuristic.

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 77

0.1

1

10

100

128 256 512 1024

r
u
n
n
i
n
g

t
i
m
e

(
l
o
g
s
c
a
l
e
)

number of nodes (logscale)

Dense Instances

CSA-S
SFR10
CSA-B
SJV
DJV

CSA-Q

Nodes SFR10 SJV DJV CSA-B CSA-S CSA-Q

(jX j) time time time time time time

128 0.51 0.14 0.12 0.36 0.52 0.16

256 2.22 1.57 1.07 1.83 2.17 0.84

512 8.50 6.22 4.47 8.12 9.36 4.13

1024 41.2 28.5 19.6 42.0 47.1 18.9

Figure 4.11: Running Times for the Dense Class

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 78

10

100

1000

10000

100000

65536 131072 262144 524288 1.04858e+06

r
u
n
n
i
n
g

t
i
m
e

(
l
o
g
s
c
a
l
e
)

number of nodes (logscale)

Andrew Picture Problems

SJV
CSA-Q
CSA-S
SFR10
CSA-B

Nodes SFR10 SJV CSA-B CSA-Q CSA-S

(jX j) time time time time time

65158 79.20 2656 73.23 103.3 76.70

131370 260.2 11115 173.2 248.0 185.5

261324 705.2 49137 665.1 907.8 844.8

526008 1073 N/A 1375 2146 1432

1046520 N/A N/A 5061 N/A 5204

Figure 4.12: Running Times for Problems from Andrew's Picture

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 79

10

100

1000

10000

100000

65536 131072 262144 524288 1.04858e+06

r
u
n
n
i
n
g

t
i
m
e

(
l
o
g
s
c
a
l
e
)

number of nodes (logscale)

Robert Picture Problems

SJV
CSA-Q
CSA-S
CSA-B
SFR10

Nodes SFR10 SJV CSA-B CSA-Q CSA-S

(jX j) time time time time time

59318 49.17 1580 50.13 68.10 51.82

119132 153.1 6767 154.8 223.6 165.4

237272 351.4 26637 585.0 916.8 611.2

515088 827.8 N/A 2019 3095 3057

950152 1865 N/A 5764 N/A 8215

Figure 4.13: Running Times for Problems from Robert's Picture

CHAPTER 4. EFFICIENT ASSIGNMENT CODE 80

4.6 Concluding Remarks

Casta~non [8] gives running times for an auction code called sf5 in addition to per-

formance data for sfr10; sf5 and sfr10 are the fastest among the robust codes

discussed. The data in [8] show that on several classes of problems, sf5 outperforms

sfr10 by a noticeable margin. Comparing Casta~non's reported running times for

sfr10 with the data we obtained for the same code allows us to estimate roughly

how sf5 performs relative to our codes. The data indicate that csa-s and csa-q

should perform at least as well as sf5 on all classes for which data are available, and

that csa-q should outperform sf5 by a wide margin on some classes. A possible

source of error in this technique of estimation is that Casta~non reports times for test

runs on cost-minimization problems, whereas all the codes we test here (including

sfr10) are con�gured to maximize cost. The di�erence in every case is but a single

line of code, but while on some classes minimization and maximization problems are

similar, on other classes we observed that minimization problems were signi�cantly

easier for all the codes. This di�erence is unlikely to be a large error source, however,

since the relative performance of the codes we tested was very similar for minimization

problems and maximization problems.

It is interesting that sjv is asymptotically worse than all its competitors on every

sparse class, and that sjv and djv are asymptotically very similar to their competitors

on the dense classes. djv performs very well on the uniform dense problem class, but

we feel sjv provides a more genuine reference point, since the other combinatorial

codes could be sped up on dense problems by replacing their central data structures

with an adjacency matrix representation similar to that in djv.

From our tests and data from [48] and [8], we conclude that csa-q is a robust,

competitive implementation that should be considered for use by those who wish to

solve assignment problems in practice.

Chapter 5

Conclusions

The theory and implementation of combinatorial optimization algorithms have tradi-

tionally been viewed as orthogonal concerns. Interest in worst-case time bounds has

often been set aside by practitioners seeking to develop practical codes to solve opti-

mization problems. Even termination proofs have been sacri�ced in some instances to

achieve improvements in observed performance. Conversely, the theory of algorithms

for optimization problems has developed a number of tools and techniques that pro-

vide good asymptotic behavior but that are so complicated to implement that they

yield no practical advantage.

While much prior theoretical work has ignored issues of practical performance and

most earlier implementation studies do not even mention the notion of worst-case per-

formance, we have sought to bring the two approaches together to gain theoretical

insight and improved codes simultaneously. We began our study with the global

update heuristic, a technique known to play an important role in practical implemen-

tations, and we proved that the heuristic has attractive theoretical properties. We

went on to use our theoretical understanding of cost-scaling push-relabel algorithms to

develop an implementation that we feel is the best sequential code currently available

to solve assignment problems.

It would have been most satisfying if the global update heuristic had partici-

pated in the best implementation we could devise. Then, theory and practice would

have been united in a complete and appealing way. Unfortunately (at least from an

81

CHAPTER 5. CONCLUSIONS 82

aesthetic viewpoint), other heuristics gave better practical performance than global

updates even though we could not prove the same bounds on their theoretical behav-

ior. Nevertheless, the techniques that yield the best running times in practice owe

their geneses to important theoretical insights without which they would probably

not have been invented.

And so we close by noting that an important lesson of this work is that theory and

practice in combinatorial optimization are an e�ective team. Theory helps explain

observations made in practice and leads to improved implementations. Practical

studies generate techniques such as global updates that have interesting theoretical

properties and that lead to advances in our understanding of problem structure.

Appendix A

Generator Inputs

The assignment instances on which we ran our tests were generated as follows: Prob-

lems in the high-cost, low-cost, �xed-cost, and dense classes were generated using the

DIMACS generator assign.c. Problems in the two-cost class were generated using

assign.c with output post-processed by the DIMACS awk script twocost.a. Prob-

lems in the geometric class were generated using the DIMACS generator dcube.c

with output post-processed by the DIMACS awk script geomasn.a. Picture problems

were generated from images in the Portable Grey Map format using our program

p5pgmtoasn. To obtain the DIMACS generators, connect to dimacs.rutgers.edu

via anonymous ftp, or obtain the csa package (which includes the generators) as

described below.

In each class except the picture class, we generated instances of various numbers

of nodes N and using various seeds K for the random number generator. For each

problem type and each N , either three or 15 values of K were used; the values were

integers 270001 through 270003 or through 270015. For picture problems, we tested

the codes on a single instance of each size.

A.1 The High-Cost Class

We generated high-cost problems using assign.c from the DIMACS distribution.

The input parameters given to the generator are as follows, with the appropriate

83

APPENDIX A. GENERATOR INPUTS 84

values substituted for N and K:

nodes N

sources N=2

degree 2 log2N

maxcost 100000000

seed K

A.2 The Low-Cost Class

Like high-cost problems, low-cost problems are generated using the DIMACS gener-

ator assign.c. The parameters to the generator are identical to those for high-cost

problems, except for the maximum edge cost:

nodes N

sources N=2

degree 2 log2N

maxcost 100

seed K

A.3 The Two-Cost Class

Two-cost instances are derived from low-cost instances using the Unix awk program

and the DIMACS awk script twocost.a. The instance with N nodes and seed K was

generated using the following Unix command line, with input parameters identical to

those for the low-cost problem class:

assign | awk -f twocost.a

A.4 The Fixed-Cost Class

We generated �xed-cost instances using assign.c, with input parameters as follows:

nodes N

sources N=2

APPENDIX A. GENERATOR INPUTS 85

degree N=16

maxcost 100

multiple

seed K

A.5 The Geometric Class

We generated geometric problems using the DIMACS generator dcube.c and the

DIMACS awk script geomasn.a. We gave input parameters to dcube as shown below,

and used the following Unix command line:

dcube | awk -f geomasn.a

nodes N

dimension 2

maxloc 1000000

seed K

A.6 The Dense Class

We generated dense problems using assign.c, with input parameters as follows:

nodes N

sources N=2

complete

maxcost 1000000

seed K

Appendix B

Obtaining the CSA Codes

To obtain a copy of the CSA codes, DIMACS generators referred to in this thesis,

and documentation �les, send mail to ftp-request@theory.stanford.edu and use

send csas.tar as the subject line; you will automatically be mailed a uuencoded

copy of a tar �le.

86

Bibliography

[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin. Network Flows: Theory, Algo-

rithms, and Applications. Prentice-Hall, Englewood Cli�s, NJ, 1993.

[2] R. J. Anderson and J. C. Setubal. Goldberg's Algorithm for the Maximum

Flow in Perspective: a Computational Study. In D. S. Johnson and C. C. Mc-

Geoch, editors, Network Flows and Matching: First DIMACS Implementation

Challenge, pages 1{18. AMS, 1993.

[3] R. S. Barr, F. Glover, and D. Klingman. An improved version of the out-of-kilter

method and a comparative study of computer codes. Math. Prog., 7:60{86, 1974.

[4] D. P. Bertsekas. Distributed asynchronous relaxation methods for linear network

ow problems. In Proc. 25th IEEE Conference on Decision and Control, Athens,

Greece, 1986.

[5] D. P. Bertsekas. The Auction Algorithm: A Distributed Relaxation Method for

the Assignment Problem. Annals of Oper. Res., 14:105{123, 1988.

[6] D. P. Bertsekas. Linear Network Optimization: Algorithms and Codes. MIT

Press, 1991.

[7] R. G. Bland, J. Cheriyan, D. L. Jensen, and L. Lada�nyi. An Empirical Study

of Min Cost Flow Algorithms. In D. S. Johnson and C. C. McGeoch, editors,

Network Flows and Matching: First DIMACS Implementation Challenge, pages

119{156. AMS, 1993.

87

BIBLIOGRAPHY 88

[8] D. A. Casta~non. Reverse Auction Algorithms for Assignment Problems. In

D. S. Johnson and C. C. McGeoch, editors, Network Flows and Matching: First

DIMACS Implementation Challenge, pages 407{430. AMS, 1993.

[9] B. V. Cherkassky and A. V. Goldberg. On Implementing Push-Relabel Method

for the Maximum Flow Problem. In Proc. 4th Integer Prog. and Combinatorial

Opt. Conf., pages 157{171, 1995.

[10] V. Chv�atal. Linear Programming. W. H. Freeman and Company, New York,

1983.

[11] W. H. Cunningham. A Network Simplex Method. Math. Programming, 11:105{

116, 1976.

[12] G. B. Dantzig. Linear Programming and Extensions. Princeton Univ. Press,

Princeton, NJ, 1962.

[13] G. B. Dantzig, L. R. Ford, and D. R. Fulkerson. A Primal-Dual Algorithm for

Linear Programs. In H. W. Kuhn and A. W. Tucker, editors, Linear Inequalities

and Related Systems. Princeton Univ. Press, Princeton, NJ, 1956.

[14] U. Derigs and W. Meier. Implementing Goldberg's Max-Flow Algorithm |

A Computational Investigation. ZOR | Methods and Models of Operations

Research, 33:383{403, 1989.

[15] R. B. Dial. Algorithm 360: Shortest Path Forest with Topological Ordering.

Comm. ACM, 12:632{633, 1969.

[16] E. A. Dinic. Algorithm for Solution of a Problem of MaximumFlow in Networks

with Power Estimation. Soviet Math. Dokl., 11:1277{1280, 1970.

[17] W. L. Eastman. Linear Programming with Pattern Constraints. PhD thesis, Har-

vard University, 1958. (Also available as Report No. BL. 20, The Computation

Laboratory, Harvard University, 1958).

BIBLIOGRAPHY 89

[18] S. Even and R. E. Tarjan. Network Flow and Testing Graph Connectivity. SIAM

J. Comput., 4:507{518, 1975.

[19] T. Feder and R. Motwani. Clique Partitions, Graph Compression and Speeding-

up Algorithms. In Proc. 23st Annual ACM Symposium on Theory of Computing,

pages 123{133, 1991.

[20] L. R. Ford, Jr. and D. R. Fulkerson. Flows in Networks. Princeton Univ. Press,

Princeton, NJ, 1962.

[21] S. Fujishige, K. Iwano, J. Nakano, and S. Tezuka. A Speculative Contraction

Method for the Minimum Cost Flows: Toward a Practical Algorithm. In D. S.

Johnson and C. C. McGeoch, editors, Network Flows and Matching: First DI-

MACS Implementation Challenge, pages 219{246. AMS, 1993.

[22] H. N. Gabow and R. E. Tarjan. Almost-Optimal Speed-ups of Algorithms for

Matching and Related Problems. In Proc. 20th Annual ACM Symposium on

Theory of Computing, pages 514{527, 1988.

[23] H. N. Gabow and R. E. Tarjan. Faster Scaling Algorithms for Network Problems.

SIAM J. Comput., pages 1013{1036, 1989.

[24] A. V. Goldberg. E�cient Graph Algorithms for Sequential and Parallel Com-

puters. PhD thesis, M.I.T., January 1987. (Also available as Technical Report

TR-374, Lab. for Computer Science, M.I.T., 1987).

[25] A. V. Goldberg. An E�cient Implementation of a Scaling Minimum-Cost Flow

Algorithm. In Proc. 3rd Integer Prog. and Combinatorial Opt. Conf., pages 251{

266, 1993.

[26] A. V. Goldberg, M. D. Grigoriadis, and R. E. Tarjan. The Use of Dynamic Trees

in a Network Simplex Algorithm for the Maximum Flow Problem. Math. Prog.,

50:277{290, 1991.

BIBLIOGRAPHY 90

[27] A. V. Goldberg and R. Kennedy. An E�cient Cost Scaling Algorithm for the

Assignment Problem. Technical Report STAN-CS-93-1481, Department of Com-

puter Science, Stanford University, 1993. Math. Programming, to appear.

[28] A. V. Goldberg and R. Kennedy. Global Price Updates Help. Technical Report

STAN-CS-94-1509, Department of Computer Science, Stanford University, 1994.

[29] A. V. Goldberg and M. Kharitonov. On Implementing Scaling Push-Relabel

Algorithms for the Minimum-Cost Flow Problem. In D. S. Johnson and C. C.

McGeoch, editors, Network Flows and Matching: First DIMACS Implementation

Challenge, pages 157{198. AMS, 1993.

[30] A. V. Goldberg, S. A. Plotkin, and P. M. Vaidya. Sublinear-Time Parallel Algo-

rithms for Matching and Related Problems. J. Algorithms, 14:180{213, 1993.

[31] A. V. Goldberg and R. E. Tarjan. A New Approach to the Maximum Flow

Problem. J. Assoc. Comput. Mach., 35:921{940, 1988.

[32] A. V. Goldberg and R. E. Tarjan. Finding Minimum-Cost Circulations by Suc-

cessive Approximation. Math. of Oper. Res., 15:430{466, 1990.

[33] D. Goldfarb and M. D. Grigoriadis. A Computational Comparison of the Dinic

and Network Simplex Methods for MaximumFlow. Annals of Oper. Res., 13:83{

123, 1988.

[34] M. D. Grigoriadis. An E�cient Implementation of the Network SimplexMethod.

Math. Prog. Study, 26:83{111, 1986.

[35] P. Hall. On Representatives in Subsets. J. Lond. Math. Soc., 10:26{30, 1935.

[36] J. Hao and J. B. Orlin. A Faster Algorithm for Finding the Minimum Cut of

a Graph. In Proc. 3rd ACM-SIAM Symposium on Discrete Algorithms, pages

165{174, 1992.

[37] J. E. Hopcroft and R. M. Karp. An n5=2 Algorithm for Maximum Matching in

Bipartite Graphs. SIAM J. Comput., 2:225{231, 1973.

BIBLIOGRAPHY 91

[38] D. S. Johnson and C. C. McGeoch, editors. Network Flows and Matching: F1rst

DIMACS Implementation Challenge. AMS, 1993.

[39] R. Jonker and A. Volgenant. A Shortest Augmenting Path Algorithm for Dense

and Sparse Linear Assignment Problems. Computing, 38:325{340, 1987.

[40] A. V. Karzanov. O nakhozhdenii maksimal'nogo potoka v setyakh spetsial'nogo

vida i nekotorykh prilozheniyakh. In Matematicheskie Voprosy Upravleniya

Proizvodstvom, volume 5. Moscow State University Press, Moscow, 1973. In

Russian; title translation: On Finding Maximum Flows in Network with Special

Structure and Some Applications.

[41] A. V. Karzanov. Tochnaya otzenka algoritma nakhojdeniya maksimalnogo po-

toka, primenennogo k zadache \o predstavitelyakh". In Problems in Cibernetics,

volume 5, pages 66{70. Nauka, Moscow, 1973. In Russian; title translation: The

exact time bound for a maximum
ow algorithm applied to the set representa-

tives problem.

[42] D. Knuth. Personal communication. 1993.

[43] H. W. Kuhn. The Hungarian Method for the Assignment Problem. Naval Res.

Logist. Quart., 2:83{97, 1955.

[44] J. M. Mulvey. Pivot strategies for primal-simplex network codes. J. Assoc.

Comput. Mach., 25:266{270, 1978.

[45] Q. C. Nguyen and V. Venkateswaran. Implementations of Goldberg-Tarjan Max-

imum Flow Algorithm. In D. S. Johnson and C. C. McGeoch, editors, Network

Flows and Matching: First DIMACS Implementation Challenge, pages 19{42.

AMS, 1993.

[46] J. B. Orlin and R. K. Ahuja. New Scaling Algorithms for the Assignment and

Minimum Cycle Mean Problems. Math. Prog., 54:41{56, 1992.

[47] C. H. Papadimitriou and K. Steiglitz. Combinatorial Optimization: Algorithms

and Complexity. Prentice-Hall, Englewood Cli�s, NJ, 1982.

BIBLIOGRAPHY 92

[48] K. G. Ramakrishnan, N. K. Karmarkar, and A. P. Kamath. An Approximate

Dual Projective Algorithm for Solving Assignment Problems. In D. S. John-

son and C. C. McGeoch, editors, Network Flows and Matching: First DIMACS

Implementation Challenge, pages 431{452. AMS, 1993.

[49] A. Schrijver. Theory of Linear and Integer Programming. J. Wiley & Sons, 1986.

[50] �E. Tardos. A Strongly Polynomial Minimum Cost Circulation Algorithm. Com-

binatorica, 5(3):247{255, 1985.

[51] R. E. Tarjan. E�ciency of the Primal Network Simplex Algorihm for the

Minimum-Cost Circulation Problem. Technical Report CS-TR-187-88, Depart-

ment of Computer Science, Princeton University, 1988.

