
HIERARCHICAL MODELS OF SYNCHRONOUS CIRCUITS

FOR FORMAL VERIFICATION AND SUBSTITUTION

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Elizabeth Susan Wolf

September 1995

c
 Copyright 1995 by Elizabeth Susan Wolf

All Rights Reserved

ii

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation for

the degree of Doctor of Philosophy.

David L. Dill

(Principal Advisor)

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation for

the degree of Doctor of Philosophy.

Carolyn L. Talcott

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation for

the degree of Doctor of Philosophy.

Vaughan R. Pratt

I certify that I have read this dissertation and that in my opinion

it is fully adequate, in scope and in quality, as a dissertation for

the degree of Doctor of Philosophy.

Jerry R. Burch

Approved for the University Committee on Graduate Studies:

iii

Abstract

As industrial circuit designs become larger and more complex, the use of simulation as the sole means

for veri�cation of their correctness no longer su�ces. One of the potential methods to complement

simulation is formal veri�cation, in which mathematical methods are applied to prove that desired

properties hold of circuit models.

In this thesis, we develop a mathematical model of synchronous sequential circuits that supports

both automated formal hierarchical veri�cation and substitution. In order to facilitate hierarchical

veri�cation, we model synchronous circuit speci�cations and implementations uniformly. Each of

these descriptions provides both a behavioral and a structural view of the circuit or speci�cation

being modeled. For formal veri�cation, our framework provides a means for comparison of the be-

havior of a circuit model to a requirements speci�cation in order to determine whether the circuit

is an acceptable implementation of the speci�cation. For substitution, and to support a modular

veri�cation process, it provides a structural view of a circuit and the capability to plug in one compo-

nent in place of another in a circuit model. This allows us to determine whether the new component

constitutes an acceptable substitution in terms of the desired behavior of the full circuit. In addition,

our model supports nondeterministic speci�cations, which capture the minimum requirements of a

circuit without forcing us to overspecify by including irrelevant details.

Hierarchical descriptions of combinational circuits may often contain apparent loops. Previ-

ous existing formalisms have relied on syntactic methods for distinguishing apparent from actual

unlatched feedback loops in hardware designs. However, these methods do not work correctly for

nondeterministic models. Our model of the behavior of a synchronous circuit within a single clock cy-

cle correctly handles such cyclic dependencies even in the presence of nondeterminism, by providing

a semantic method to describe them.

In addition to developing a theoretical framework to support behavioral and structural com-

parison of synchronous circuit models at various levels of detail, we have implemented and proved

the correctness of automatic decision procedures for both formal veri�cation and substitution using

these models. Our main substitution result is the derivation of a closed-form expression for the most

general speci�cation of the allowed substitutions for a component in a circuit, against which can-

didate components may be compared via the behavior comparison algorithms developed for formal

veri�cation. We describe our software implementation of these procedures.

iv

Acknowledgements

I would like to thank my advisor, David Dill, for his careful and critical reading of the dissertation,

and for his advice, collaboration and support throughout this research. I would also like to thank the

other members of my reading committee, Jerry Burch, Carolyn Talcott, and Vaughan Pratt. Jerry

Burch collaborated with me closely, and quali�es as co-advisor. His collaboration was critical to

formulating many of the ideas presented in this thesis. Carolyn Talcott was invaluable in helping to

smooth out the presentation of the formal theorems and proofs, and in drawing connections between

this work and other ideas in computer science. Vaughan Pratt provided the NP-completeness proof

that convinced us of the need to change de�nitions.

Even with all their help, I would not have �nished this dissertation without the support of many

other people. Thanks to Steve Nowick, Alan Hu, Robert Jones, Richard Ho and Jules Bergmann

for technical help and advice. I would also like to thank Lydia Kavraki and Hugh McGuire for

invaluable thesis-writing advice, all of the math library sta�, o�cemates present and past, Janet

Murdock and Marcia Derr, and of course my family.

Finally, I am grateful for external �nancial support from a National Science Foundation Graduate

Fellowship and for support from Xerox Corporation through their fellowship program. The latter

was arranged by Carolyn Tajnai. David Dill supported this work �nancially during summers and

through my �nal year in the Ph.D. program, through a grant from Mitsubishi Electric Research

Laboratories, Inc. and through NSF grant MIP-8858807. This work would not have been completed

without their �nancial support.

v

Contents

Abstract iv

Acknowledgements v

1 Introduction 1

1.1 Introduction : 1

1.2 Formal Hardware Veri�cation and Logic Synthesis : : : : : : : : : : : : : : : : : : : 3

1.2.1 Introduction : 3

1.2.2 Formal hardware veri�cation : 3

1.2.3 Logic synthesis : 5

1.3 Asynchronous Trace Theory : 6

1.4 Zero-Delay Cycles : 7

1.4.1 Introduction : 7

1.4.2 Zero-delay models that ignore the problem : : : : : : : : : : : : : : : : : : : 9

1.4.3 Moore machine models of clocked behavior : : : : : : : : : : : : : : : : : : : 12

1.4.4 Functional-dependency tracking methods : 17

1.4.4.1 Introduction : 17

1.4.4.2 Dependency tracking for combinational circuits : : : : : : : : : : : : 18

1.4.4.3 Detection of zero-delay feedback loops in software : : : : : : : : : : 22

1.4.5 Ternary simulation methods : 25

1.4.5.1 Introduction : 25

1.4.5.2 Traditional ternary simulation : 26

1.4.5.3 Detection and classi�cation of combinational feedback loops : : : : 28

1.4.6 Summary : 29

1.5 Related Substitution Work : 30

1.5.1 Introduction : 30

1.5.2 Combinational logic synthesis and optimization : : : : : : : : : : : : : : : : : 31

1.5.3 Sequential logic synthesis and optimization : : : : : : : : : : : : : : : : : : : 35

vi

1.6 Contributions of the thesis : 38

1.7 Overview of the thesis : 40

2 Circuit Algebra and Other Math 41

2.1 Introduction : 41

2.2 Mathematical Preliminaries : 42

2.2.1 Introduction : 42

2.2.2 Functions, sets and relations : 42

2.2.3 Finite sequences and regular languages : 44

2.3 Circuit Algebra : 46

2.4 Vectors and Sequences to Denote Circuit Behavior : : : : : : : : : : : : : : : : : : : 48

3 Combinational circuit models 51

3.1 Introduction : 51

3.2 The combinational circuit model : 52

3.2.1 Introduction : 52

3.2.2 The ternary domain of wire values : 53

3.2.3 Combinational relation structures : 57

3.2.4 Examples : 60

3.3 The algebraic operations: combining relation structures : : : : : : : : : : : : : : : : 62

3.3.1 Introduction : 62

3.3.2 The algebraic operations : 63

3.3.3 Closure under the algebraic operations : 65

3.3.3.1 Preservation of the input-downward-closure constraint : : : : : : : : 65

3.3.3.2 Preservation of the receptiveness condition : : : : : : : : : : : : : : 66

3.3.4 Combinational relation structures form a circuit algebra : : : : : : : : : : : : 69

3.3.5 Examples : 72

4 Veri�cation and Substitution 76

4.1 Introduction : 76

4.2 Veri�cation for combinational circuit models : 77

4.2.1 Introduction : 77

4.2.2 Correct implementation: the conformance relation : : : : : : : : : : : : : : : 77

4.2.3 Conformance equivalence : 81

4.2.4 The maximal safe environment of a circuit : 87

4.2.5 A decision procedure for conformance : 93

4.2.5.1 Introduction : 93

4.2.5.2 Canonical elements : 93

vii

4.2.5.3 The conformance check : 95

4.2.6 Examples : 98

4.3 Substitution for combinational circuit models : 103

4.3.1 Introduction : 103

4.3.2 The closed-form solution : 104

4.3.3 Supporting lemmas : 107

4.3.4 Applications and Examples : 111

4.3.4.1 Logic Synthesis : 112

4.3.4.2 Recti�cation : 114

5 Synchronous circuit models 120

5.1 Introduction : 120

5.2 The synchronous circuit model : 121

5.2.1 Introduction : 121

5.2.2 Sequential trace structures : 122

5.2.3 Examples : 124

5.3 The algebraic operations for sequential trace structures : : : : : : : : : : : : : : : : 127

5.3.1 De�nitions, closure, and circuit algebra rules : : : : : : : : : : : : : : : : : : 128

5.3.2 Examples : 130

5.4 Veri�cation for synchronous circuit models : 139

5.4.1 Introduction : 139

5.4.2 Correct implementation: the conformance relation : : : : : : : : : : : : : : : 139

5.4.3 Conformance equivalence classes and canonicalization : : : : : : : : : : : : : 140

5.4.4 Deciding conformance : 147

5.4.5 Examples : 150

5.5 Substitution for synchronous circuit models : 155

5.5.1 Conformance with respect to an environment : : : : : : : : : : : : : : : : : : 155

5.5.2 Examples : 158

6 Veri�cation Algorithms 167

6.1 Introduction : 167

6.1.1 Introduction : 167

6.1.2 Representations : 167

6.1.3 New notation : 168

6.2 Is T a sequential trace structure? : 168

6.2.1 Introduction : 168

6.2.2 Checking input-downward-closure : 169

6.2.3 Is P receptive? : 169

viii

6.2.3.1 Introduction : 169

6.2.3.2 Searching for C � lab(�q) : 170

6.2.3.3 Complexity of the receptiveness check : : : : : : : : : : : : : : : : : 172

6.3 Canonicalization : 173

6.3.1 Introduction : 173

6.3.2 Is T failure-forcing? : 174

6.3.2.1 Introduction : 174

6.3.2.2 The algorithm : 175

6.3.2.3 The correctness of the algorithm : 176

6.3.2.4 The complexity of the algorithm : 179

6.4 Veri�cation in Practice (Deciding Conformance) : 180

7 Conclusion 182

7.1 Summary : 182

7.2 Future Work : 183

Bibliography 185

ix

List of Figures

1.1 The composition of C1 and C2 : 8

1.2 Finite-state machine representation of synchronous circuit : : : : : : : : : : : : : : 10

1.3 Finite-state machine representation of combinational circuit : : : : : : : : : : : : : 10

1.4 Mealy machine representation of C1 : 11

1.5 Mealy machine representation of C2 : 11

1.6 Composition of the Mealy machines M1 and M2 : 11

1.7 Moore machine representation of C1 (nand-gate) : 13

1.8 Moore machine representation of C2 (non-inverting bu�er) : : : : : : : : : : : : : : 13

1.9 Composition of the Moore machine representations of C1 and C2 : : : : : : : : : : : 13

1.10 Eight-bit carry look-ahead adder : 19

1.11 False path combinational loop (Figure 2 of [92]) : 20

1.12 Speci�cation: (b = a ^ c = 0) _ (c = a ^ b = 0) : 21

1.13 A combinational logic network (Figure 2:1 of [55]) : : : : : : : : : : : : : : : : : : : 32

1.14 Recti�cation of an existing circuit T0 by the addition of modi�cation circuitry Tnew 34

3.1 Gated ring oscillator : 54

3.2 Ternary-domain relation models for nand-gate, bu�er, and their composition : : : : 56

3.3 Ternary-domain relation models for (A) oscillator and (B) inverter : : : : : : : : : : 56

3.4 Combinational feedback loop (Fig. 6 of [92]) : 73

4.1 One possible implementation of an example nondeterministic speci�cation : : : : : 100

4.2 Selector circuit and relabelled version : 101

4.3 Substitution example : 112

4.4 Substitution and recti�cation example : 114

4.5 Combinational feedback loop (Fig. 6 of [92]) : 116

4.6 Mixed-mode recti�cation : 118

5.1 Automaton representation of the behavior of a D-
ip
op : : : : : : : : : : : : : : : 125

5.2 Automaton representation of the sequential behavior of an inverter : : : : : : : : : 126

x

5.3 Dual-automaton representation of the sequential behaviors of a non-failure-free in-

verter : 127

5.4 Behavioral speci�cation of a clocked SR-
ip
op : 128

5.5 Simple circuit containing a latch : 130

5.6 Automata representations of the sequential behavior of two gates : : : : : : : : : : 131

5.7 Automaton representation of the sequential behavior of T1 of Example 5.5 : : : : : 132

5.8 Automaton representation of the sequential behavior of T2 of Example 5.5 : : : : : 132

5.9 Automaton representation of the sequential behavior of the full circuit of Example 5.5 133

5.10 Automata for the sequential behavior of an AND-gate and a non-inverting bu�er : : 134

5.11 Automata representations of the sequential behavior of a NOR-gate and a MUX : : 134

5.12 The circuit C6 : 135

5.13 The circuit C7 : 136

5.14 Automaton representation of the behavior of T6 and T7 : : : : : : : : : : : : : : : : 136

5.15 The circuit C8 : 137

5.16 The circuit C9 : 138

5.17 Automaton representation of the behavior of T9 : 138

5.18 A circuit given as a speci�cation : 150

5.19 Automaton describing the S and P -sets of the circuit of Figure 5.18 : : : : : : : : : 151

5.20 Automaton describing the S-set S2 of T2 of Example 5.7 : : : : : : : : : : : : : : : 152

5.21 F-intensive behavioral speci�cation of an SR-
ip
op : : : : : : : : : : : : : : : : : : 153

5.22 The original circuit C11 (Figure 4:6 of [55]) : 153

5.23 C0
11; an optimized version of C11 : 154

5.24 Composite speci�cation for Example 5.10 : 154

5.25 Composite implementation for Example 5.10 : 155

5.26 Original circuit as speci�cation (Example 5.11) : 159

5.27 Subcircuit substitution : 159

5.28 S-set of the most general speci�cation for a replacement subcircuit (Example 5.11) 160

5.29 Circuit to be optimized (Example 5.12) : 160

5.30 Speci�cations of two components : 162

5.31 Automaton representation of the behavior of T = del (fbg)(T1 k T2) : : : : : : : : : 162

5.32 Behavioral speci�cation of the allowed substitutions for T1 : : : : : : : : : : : : : : 163

5.33 Recti�cation by addition of hardware : 164

5.34 Behavioral speci�cation SSpec for the recti�ed circuit : : : : : : : : : : : : : : : : : 164

5.35 Recti�cation by modi�cation of existing hardware : : : : : : : : : : : : : : : : : : : 165

5.36 Behavioral speci�cation S03 of the allowed subcircuits T3 : : : : : : : : : : : : : : : : 165

xi

Chapter 1

Introduction

1.1 Introduction

Formal hardware veri�cation is the use of mathematical methods to prove that desired properties

hold of circuit models. It has not yet been fully incorporated into the industrial design process, but

it is beginning to be explored in industry as a complementary validation method to simulation.

In current standard industrial practice, hardware designs are veri�ed by means of extensive

simulation. This method may provide extensive coverage but it is not exhaustive: modern circuit

designs are simply too complex to be exhaustively simulated. Instead, an attempt is made to

determine the critical input sequences for testing, and the circuit design is simulated on these test

vectors. In contrast, formal veri�cation provides assurance that the properties veri�ed hold of the

circuit model no matter what the input combination sequence it is given, and no matter how long

that sequence is.

The goal of this thesis is to provide a mathematical model of synchronous sequential circuits

that supports formal hierarchical veri�cation. Our model must support formal substitution analysis,

and must allow a speci�cation to admit multiple correct implementations. In order to support all

these objectives simultaneously, our framework supports the expression of non-cascade composition,

and both structural and behavioral views of a synchronous circuit. We have also developed a self-

contained model for combinational circuits that meets all these objectives.

In hierarchical veri�cation, we do not distinguish between implementation models and require-

ments speci�cations, but instead allow a model to express a range of behavioral and structural

constraints. At one end of this spectrum lie the models which allow arbitrary behavior and have

no internal structural constraints at all, and at the other are those models so behaviorally and

structurally constrained that they each model a unique gate-level circuit. We de�ne a particular

mathematical relation to hold between two models if the �rst is a correct implementation of the

other (considered as a speci�cation). We may verify that one such speci�cation model meets the

1

CHAPTER 1. INTRODUCTION 2

requirements imposed by another speci�cation, and from this conclude that any circuit model which

correctly implements the �rst speci�cation also correctly implements the second. The process of de-

signing such a sequence of models, each of which is more structurally and behaviorally constrained

than the one before, is called re�nement. In addition, a hierarchical veri�cation framework must

have the following compositionality property: a structurally composite speci�cation is automatically

satis�ed by the composition of any correct implementations of its component speci�cations. Hence

we may determine implementations that satisfy the component speci�cations independently of each

other, a veri�cation process that we call piecewise veri�cation. In this way, hierarchical veri�cation

supports a modular design process.

For both substitution and hierarchical veri�cation, we require the ability to express structural

constraints on a circuit model. In other words, we want to be able to de�ne a piece of a circuit

and to talk about its connections to the rest of the circuit of which it is a part. Therefore our

formal semantics of circuits must allow us to de�ne primitive circuits and operations on them that

correspond to wiring them together (circuit composition) and hiding wires (ignoring wires that

are not primary outputs). This will allow us to construct behavioral models from the behavior of

primitive or previously constructed components according to the structure of a composite circuit.

We utilize the circuit algebra framework of [61] in order to provide this capability.

A central problem in modeling the synchronous behavior of clocked hardware is the question of

how to model the inherently asynchronous behavior exhibited by such hardware during each clock

cycle. In a Moore machine representation of a synchronous circuit or speci�cation, all parts of the

circuitry are assumed to be latched, so that output value combinations are completely determined

by the current state [110]. In a Mealy machine model, the current output value combination is

determined by both the current state and the current input value combination, so that this determi-

nation is assumed to be instantaneous [101]. We choose to use the Mealy machine model, in order

to allow the composition of arbitrary forms of synchronous hardware, including the special case of

pure combinational logic, to form more complex synchronous circuits.

However, manifest in this approach is the question of recognizing combinational feedback loops.

If a model may be nondeterministic, and composition is an algebraic operator, then arbitrary models

meeting given syntactic constraints must be composable. This allows the inadvertent creation of un-

latched (combinational) feedback loops. The traditional approach to this problem has been to detect

such loops by syntactic means. However, these syntactic detection methods are not satisfactory for

models that admit multiple correct responses to the same input values, like our speci�cation models.

Therefore we take a di�erent approach, and require our mathematical framework to incorporate the

ability to express such potentially oscillating loops, and detect them semantically. The means by

which we handle such ostensibly zero-delay cycles is one of the contributions of this thesis.

CHAPTER 1. INTRODUCTION 3

1.2 Formal Hardware Veri�cation and Logic Synthesis

1.2.1 Introduction

The work presented in this thesis falls into two main areas in the domains of hardware design and

validation. The �rst of these areas is formal veri�cation. As mentioned earlier, this is a validation

approach distinct from the traditional method of hardware design validation by simulation. The

second area that provides context for our results falls within the domain of logic synthesis: the

substitution results presented in this thesis are most closely related to the area of logic optimization.

In this section, we present a brief description of how our work �ts into the general picture in

these two areas. We refer the reader to the surveys of others for summaries of the full �eld.

1.2.2 Formal hardware veri�cation

Formal veri�cation is the use of mathematical methods to prove that desired properties hold of

system models. Most approaches to formal hardware veri�cation fall into one of three general

categories: model checking, model comparison methods, and theorem proving.

Our framework supports a model comparison approach to formal veri�cation. In particular, we

concentrate on a form of formal veri�cation in which the requirements speci�cation and the imple-

mentation behavior are modeled uniformly. As described in Section 1.1, this is a necessary condition

for the support of hierarchical veri�cation. Hierarchical veri�cation supports piecewise veri�cation

and re�nement, which requires that speci�cations can be used as implementation descriptions in

larger descriptions. Therefore speci�cations and implementations must be the same kind of models.

Our use of a uniform model comparison method contrasts in particular with model-checking and

non-uniform model comparison methods, which we de�ne below.

A general-purpose theorem prover can be used to prove that particular mathematical properties

are implied by a logical theory. A logical theory is a set of axioms whose intended semantics is a

particular system model or class of models. Alternatively, theorem proving may be used to prove

that one object or class of objects in such a logical theory is in a particular mathematical relation

to another. For example, Bronstein has used the Boyer-Moore theorem prover to show that certain

properties hold of some benchmark circuits [26, 24] and has also used the same theorem prover and

logical theory of synchronous circuit behavior to verify that pipelined and non-pipelined versions

of the same circuit exhibit e�ectively equivalent behavior [25, 24]. Both these approaches have

also been used with the HOL system and with other theorem provers to verify hardware designs

[65, 128, 129].

The use of a general-purpose theorem prover makes this methodology highly expressive. The ex-

act expressiveness depends on the underlying logic of the particular theorem prover, and determines

the range of expressiveness of both speci�cations and system descriptions. However, the veri�cation

process itself requires a great deal of human intervention [65, 128]. For this reason it is often referred

CHAPTER 1. INTRODUCTION 4

to as a mechanized method, rather than an automated one.

Model checking, in contrast, is the use of special-purpose programs to verify that certain prop-

erties hold of a particular model [48, 29]. The system model is manipulated explicitly rather than

being described axiomatically. The requirements speci�cation is given as a list of conditions which

the circuit model is veri�ed to meet.

Once these conditions and the circuit model have been formulated, the model-checking veri�ca-

tion process is fully automatic. A model checker builds or accepts a �nite-automaton model of the

system and checks whether or not the speci�ed property holds of the model. If it does, the model

checker informs the user that the property has been veri�ed to hold of the model. If it does not,

the model checker returns a failure trace. This is a sequence of steps allowed by the model that will

lead to a situation illustrating a violation of the desired property.

Practical model checking was �rst introduced with speci�cations given in a propositional branch-

ing time temporal logic and models given as Kripke structures [48, 29] or a particular form of Petri

net [118]. Highly e�cient automatic methods, that take time asymptotically linear in the size of this

automaton and in the size of the temporal logic formula being veri�ed, have been developed to check

of such a model that a particular property holds. Later developments in symbolic representation

of state sets and the transition relation of the automata models have kept model checking in the

running as a potentially viable approach to formal veri�cation of real systems. Binary Decision

Diagrams (BDDs) are a (potentially) compact and e�ciently manipulable representation of Boolean

functions [33]. An equivalent canonical representation called Typed Decision Graphs (TDGs) was

independently developed [16]. In 1990, several groups independently proposed their use to represent

states and transition relations of sequential systems in model checking [99, 17, 53]. The incorpo-

ration of this technology into model checkers expanded their capability to the modeling of systems

several orders of magnitude larger than had previously been feasible [40, 100].

In the model comparison approach to formal veri�cation, both implementation and speci�cation

are system models. A mathematical \correct implementation" relation is de�ned over pairs of

models. This relation holds between two models if and only if the former is considered an adequate

implementation of the latter. Usually, the implementation and speci�cation models are described in

the same language or formalism, but this need not be the case. An example of a model comparison

method in which speci�cations and implementations are not modeled uniformly is AT&T Bell Lab's

COSPAN [87, 88]. The most common use of the model comparison method is equivalence checking,

in which the \correct implementation" relation is input-output-behavior equivalence [59, 51, 52, 60].

Equivalence checking is particularly useful during the hardware design process, because it can be

used to check equivalence between the input- and output-models of each stage of the hardware

synthesis process (see next section).

In our framework the implementation and speci�cation to be compared are models of the same

kind: ours is a uniform model comparison method. Our \correct implementation" relation, however,

CHAPTER 1. INTRODUCTION 5

is more complex than simple equivalence, in order to provide for speci�cations that allow multiple

correct implementations.

An in-depth discussion of the various approaches to hardware veri�cation is beyond the scope

of this section. The interested reader may consult [65] for an excellent and comprehensive survey

of current approaches to formal hardware veri�cation; a less comprehensive tutorial that contains

many explanatory examples of the basic techniques can be found in [98]. Information on theorem

proving for formal hardware veri�cation appears in [65, 128, 129, 86].

1.2.3 Logic synthesis

In this section, we provide a short overview of hardware synthesis and describe how our substitution

results �t into this area.

Hardware synthesis is the process of re�ning an abstract model of a circuit until it becomes

su�ciently detailed that all the information necessary for its fabrication is present [103]. This

process is in practice broken up into several stages: architectural synthesis (also called high-level

synthesis or structural synthesis), logic synthesis, and geometrical-level synthesis (also called physical

design). Our substitution results are relevant to the logic synthesis stage.

In architectural synthesis, a behavioral description of the circuit is re�ned into a register-transfer

level (RTL) model. In an RTL model, the macroscopic structure of the circuit (functional units,

data paths) is clari�ed and the control unit functionality is described. Architectural synthesis

consists of identifying the hardware resources that can implement the circuit's operations, scheduling

the execution of these operations, and binding the scheduled operations to the resources, while

attempting to minimize the estimated area of the circuit and the time required for the execution of

each operation. Further discussion of architectural synthesis can be found in [103, ch. 4-6].

In logic synthesis, an RTL model is transformed into a fully structural representation of the

circuit, usually a gate-level netlist (a list of logic gates that includes information on the connections

between these gates). Optimization is a signi�cant part of this process: attempts are made to

minimize the area of the circuit, as well as propagation delay (in the case of combinational logic),

and clock-cycle length and latency (the number of clock cycles required for a circuit operation) in

the case of synchronous logic. Our substitution results are relevant to the optimization problem in

logic synthesis.

The physical design stage of hardware synthesis generates the layout of a circuit from the netlist

created during logic synthesis, by determining the placement of the gates and the wiring between

them for the full circuit. The output of this stage provides all the information necessary for fabri-

cation of the physical circuit.

For the interested reader, the book [103] provides an overview of the synthesis process and further

detail on architectural-level synthesis and logic synthesis for both combinational and synchronous

circuits. This book provides additional references for those interested in the physical design stage

CHAPTER 1. INTRODUCTION 6

of hardware synthesis. The book [58] concentrates on combinational logic synthesis alone. This

book emphasizes the interrelation between delay, area, and testability of synthesized combinational

circuits. The reference [5] concentrates on synchronous logic synthesis.

Our substitution results provide a unifying framework for the optimization problem in the logic

synthesis stage of hardware synthesis. They apply equally to combinational and to synchronous

logic synthesis.

1.3 Asynchronous Trace Theory

The work presented in this thesis is based on an approach to formal veri�cation of hierarchical

asynchronous circuits that was presented by Dill [61], called asynchronous trace theory. While Dill

attacked the problem for asynchronous circuits only, his work incorporated some critical insights

that we utilize in a synchronous framework.

Standard gate-level models of hardware make an assumption of \unidirectionality". That is, they

assume a unidirectional
ow of information through the circuit, or at the very least, a unidirectional

electron
ow. The use of Boolean functions to model gates, which constitutes a fundamental use of

this abstraction, appears as a standard model in elementary electrical engineering texts.

The �rst of the insights of asynchronous trace theory is that in order to talk about whether or not

a given speci�cation is implementable, it is necessary to distinguish between the input and output

wires of a circuit. This distinction is about more than just the standard unidirectionality abstraction

employed in gate-level modeling. A circuit enforces constraints on the relation between the values

on its input wires and the values on its output wires; however, it cannot control the values that

appear on its input wires. This point has been ignored in the simple \language inclusion" approach

to veri�cation, in which as long as the possible behaviors of a model are a subset of those of another

model, the �rst is considered to be a correct implementation of the second [1, 126, 127, 46, 47, 73].

Asynchronous trace theory thus requires that a model account for all possible input values at all

times; a model's set of \possible behaviors" must always allow yet another input wire value change to

occur. In our synchronous trace theory, this corresponds to admitting all input value combinations

on each clock cycle. Thus a model may not disallow any input values.

We may wish a speci�cation to guarantee certain behavior of every correct implementation {

but only under certain input conditions. If these input constraints are not met, the speci�cation

makes no guarantees at all. Asynchronous trace theory allows speci�cations this expressiveness by

distinguishing those behaviors of a circuit which are possible but undesirable.

Thus a circuit model incorporates two distinct sets of behaviors: those that are possible behaviors

of the circuit being modeled, and a distinguished subset of these possible behaviors, those that

follow an undesirable input event. Once an undesirable input event has occurred, anything goes: by

de�nition of the input event's having been undesirable, the model makes no guarantees about what

CHAPTER 1. INTRODUCTION 7

may or may not subsequently happen. Under these circumstances we say that the model has gone

into failure mode. The extent of a speci�cation's failure mode is a statement about the environments

in which its implementation circuits will function correctly.

Asynchronous trace theory recognizes this aspect of speci�cation in its de�nition of the mathe-

matical relation between a speci�cation and its correct implementations. First, it assumes that the

set of potential environments of a circuit C is simply a set of circuits with complementary inputs

and outputs to C (i.e., the input wires of each of these environment circuits are precisely the output

wires of C; and the output wires of each environment are precisely the input wires of C): Therefore

an environment is just a circuit, and may also have a failure mode: the relation between a circuit and

its environment is symmetric. Then trace theory de�nes a model A to be a correct implementation

of another model B if and only if A may be safely substituted for B in any environment. A can

correctly implement B only if A and B have the same input wires and output wires (and hence the

same environments). We say that A correctly implements B if and only if for every environment E

of A and B; if we may place B in E without the composition of E and B going into failure-mode,

then we may place A in E without that composition going into failure-mode. Of course, it may be

the case that A can be placed in more environments without activitating its failure-mode than can

B; in this case B is not a correct implementation of A; even though A is a correct implementation

of B:

We incorporate these insights of asynchronous trace theory into our own model of synchronous

sequential circuits and their speci�cations. For its structural view of a circuit model, we also utilize

the circuit algebra framework of [61], which is explained in the following chapter.

1.4 Zero-Delay Cycles

1.4.1 Introduction

In order to model synchronous circuits it is necessary to model their behavior during each clock

cycle. Thus the modeling of combinational circuitry is a necessary step in modeling synchronous

circuits.

The standard assumption in electronic circuit design is that one does not want to create unlatched

combinational feedback loops (except for very speci�c purposes, such as the creation of a precisely

timed oscillator). An exception to this rule was noted by Kautz, who pointed out that use of

such loops may be necessary in order to minimize the number of gates in a circuit designed to

meet a combinational speci�cation [81]. However, standard logic synthesis systems and timing

analyzers are not able to handle combinational loops [130, 92, 131]. For example, a common source

of combinational feedback loops in modern designs is resource sharing algorithms run during the

high-level synthesis of data and control paths. Even combinational loops that are created through

resource sharing that are in fact never exercised (false paths) are considered undesirable, and models

CHAPTER 1. INTRODUCTION 8

have been developed to detect them during high-level synthesis and so avoid their construction [130].

Unfortunately, the property of containing no feedback loops is not automatically preserved when

two combinational circuits are wired together. Any formalismwhich allows the composition of circuit

models into more complex ones must either apply some mechanism in order to ensure that such loops

are not inadvertently created via composition, or must knowingly allow their creation.

a c

e

Figure 1.1: The composition of C1 and C2

Consider the following simple example. Let C1 be a nand-gate with input wires labeled a and

b and output wire labeled c. Let C2 be a non-inverting bu�er whose input wire is labeled d and

whose output wire is labeled e. If C1 and C2 are wired together so that c and d are tied together,

and similarly e and b, the result is a combinational feedback loop (see Figure 1.1). IfM1 models C1

and M2 models C2 in some formalism that allows the composition of models, then that formalism

must either de�ne or disallow the composition of M1 and M2 into a model of the composite circuit

just described.

We identify four classes of solution employed by existing formal models of combinational and

synchronous circuits that include a composition operator.

� Models which ignore the problem, leading to anomalies.

� Moore machine models, in which zero-delay cycles cannot occur.

� Use of functional dependency tracking to disallow the composition of models into combinational

feedback loops.

� Ternary simulation methods.

The �rst approach is not a solution at all, and in fact very few existing formalisms make this

mistake. In Section 1.4.2, we illustrate how indiscriminate use of the standard Mealy machine model

of synchronous circuit behavior may lead to anomalies. Most formalisms that incorporate a Mealy

machine model of synchronous circuit behavior avoid machine compositions that create zero-delay

cycles. We present a Mealy-machine based formalism that has neglected to address the issue of

zero-delay cycles and which consequently exhibits anomalies.

The second approach constrains circuit models to be Moore machines, which are automata in

which the current output is determined solely by the current state (irrespective of the current input

value combination). Moore machines can be used to model purely combinational logic. They can

CHAPTER 1. INTRODUCTION 9

also be used to model synchronous circuits in which every component is latched. However, it is not

clear how a Moore machine could be used to model both latched and unlatched circuitry simulta-

neously. When used to model purely combinational logic, Moore machines do allow combinational

feedback loops to be modeled without the disappearing behavior phenomenon observed in the case

of indiscriminate use of Mealy machines. When used to model synchronous circuits, they do not

allow the creation of combinational feedback loops, because every component must be latched. In

Section 1.4.3, we expand on the brief discussion of Moore machines that appears in Section 1.1. In

particular, we explain why this model is inadequate for our modeling needs. We describe the Moore

machine model of combinational circuitry and explain how it neatly avoids the zero-delay cycle

problem. We also brie
y describe some well-known formalisms that have not addressed the issue

of zero-delay cycles because they utilize an underlying Moore-machine model of causality between

events.

In the third approach, functional dependency tracking methods are employed in an attempt to

identify problematic applications of the composition operator. The intent is that such applications

be identi�ed and subsequently disallowed. The dependencies in question are situations in which

the value on a particular output wire depends on the value on a particular input wire. When this

information is maintained accurately, it is called dynamic dependency information. A useful approxi-

mation to maintaining and computing complete dynamic dependency information is the maintenance

of static dependency information, usually in the form of a graph. This set of dependencies re
ects

the topology of the circuit, and maintains that every output of a primitive circuit component is de-

pendent on every input of that component. In the presence of nondeterministic or black box models,

only static dependency information may be available. However, it may be overly conservative. In

Section 1.4.4, we describe these methods in more detail, and illustrate the problems that arise when

they are used in the presence of nondeterministic models.

Our solution falls into the fourth class, that of ternary simulationmethods. This method consists

of positing a third wire value, in addition to the digital 0 and 1: Such a third value may be used

for various purposes; we focus on its relevance for the detection of combinational feedback loops,

or zero-delay cycles. Our solution utilizes it merely to detect the presence of such a loop; related

research currently in progress attempts to utilize these methods to distinguish problematic (oscilla-

tory) combinational loops from `harmless' ones. In Section 1.4.5, we describe this and other work

using ternary methods, and compare it with our own.

In the following subsections, we describe all four of these approaches in more detail, and categorize

many existing formalisms according to them.

1.4.2 Zero-delay models that ignore the problem

A fairly standard approach to the logical, or functional, modeling of combinational logic is to abstract

away from propagation delays, e�ectively assuming all combinational components to be zero-delay.

CHAPTER 1. INTRODUCTION 10

Mealy-machine models of synchronous hardware behavior fall into this category, as do standard

relational and functional models of combinational logic behavior.

-

�

-

-
I O

D

CL
-

w
I/O

Figure 1.2: Finite-state machine representation of synchronous circuit

Figure 1.2 presents a typical block diagram depiction of a synchronous circuit, and a piece of the

corresponding �nite-state automaton representation of its behavior. The current output value com-

bination and next state of the circuit are determined by the current state and the current input value

combination. Therefore the digital behavior of this circuit can be described by a Mealy machine:

an automaton whose transitions are labeled with input-output value combinations. This abstracts

away from any propagation delay in the combinational logic that determines the current output

values, e�ectively modeling zero delay between [the presentation of] input and output. Note that we

do not assume that Mealy machines must be deterministic in their input value combinations: there

may be two outedges from a single state which are labeled with the same input value combination,

but distinct output value combinations. This is in contrast to the original Mealy machine de�nition,

which allowed for input don't cares, but did not allow nondeterminism of this sort [101].

In synchronous circuit design, it is assumed that no matter what the cumulative delay in the

combinational logic, the clock cycle is made long enough to allow for it. Thus it appears that we

can separate the logical (functionality) analysis and the timing analysis of such circuits. A zero-

delay view of combinational logic is consistent with this separation: these models are intended for

performing logical analysis only.

w

� I/O
--

I O

CL

Figure 1.3: Finite-state machine representation of combinational circuit

Of course, a combinational circuit is a special case of a synchronous one: it just happens to exhibit

the same behavior during each clock cycle. Its behavior can be described by a Mealy machine of the

form shown in Figure 1.3. Equivalently, such a Mealy machine can be represented by the set of its

CHAPTER 1. INTRODUCTION 11

edge-labels: this is a functional or Boolean relation model of purely combinational circuits [44, 22].

w

�
abc

abc

abc

abc

M1

Figure 1.4: Mealy machine representation of C1

w

�

w

�

M2
0 M2

de
de

cb
cb

Figure 1.5: Mealy machine representation of C2

Consider the example described in Section 1.4.1. A simple Mealy machine model of the nand-gate

C1 is M1 of Figure 1.4. M1 is a single-state automaton (all of whose transitions are from this single

state to itself, and) whose edge-label set is precisely the Boolean function c = (a ^ b): Similarly,

the non-inverting bu�er C2 is most simply modeled by the Mealy machineM 0
2 shown in Figure 1.5.

We rename the wires in the model of C2 in order that composition of the models correctly re
ect

how we have wired together C1 and C2 to produce the circuit depicted in Figure 1.1 (page 8). The

modelM2 of the relabeled circuit also appears in Figure 1.5.

w

� abc

Figure 1.6: Composition of the Mealy machines M1 and M2

Standard �nite-state-automaton composition ofM1 and M2 produces the Mealy machine shown

in Figure 1.6. Note that it disallows any situation in which the input wire a is held high, e�ectively

placing demands on the environment of the composite circuit. (Any subsequent composition of this

model with any environment model will preclude that environment's holding a high). Thus it is an

CHAPTER 1. INTRODUCTION 12

inadequate model of the composite circuit, because it precludes some of that circuit's actual behavior.

In Chapter 3 we will discuss how and why this phenomenon occurs; basically, this disappearing

behavior is a result of oscillation that cannot be described as a single digital value.

Mealy machines appear regularly in the CAD literature as speci�cations or descriptions of syn-

chronous circuits. Here we are interested in formalisms that allow the composition of two Mealy

machines to form a model of the composition of the circuits (or requirements speci�cations) repre-

sented by the operand Mealy machines, because this is where the anomalies occur. The problem is

exempli�ed by Lin et al.'s model of synchronous circuits as presented in [91]. This model allows the

composition of arbitrary models of appropriate input/output type, despite the modeling degradation

caused whenever oscillating combinational feedback loops are created.

Lin et al.'s model [91] is based on the principles and algebraic structure of asynchronous trace

theory [61], and is intended to solve the substitution speci�cation problem which our model correctly

handles. However, the authors do not deal with the zero-delay cycle problem.

In order to demonstrate that their model leads to anomalies, we illustrate how it handles the

example of Section 1.4.1. Following their de�nitions, we extend the Mealy machineM1 of Figure 1.4

by a transition labeled by (c = (a ^ b)) from its already-existing state to an \X"-state whose only

out-edge is a self-loop labeled --/- to indicate that this state is a sink state (that is, once control

is in this state, it will stay there no matter what input-output combinations may occur { and all

input/output combinations are allowed). Similarly, we add an \X" sink state to M2 (of Figure 1.5)

and label a transition from the previously existing state to this \X"-state with (b = c): Despite these

cosmetic additions, the composition operation of Lin et al. speci�es that only the traces (abc)� (the

set of all sequences of arbitrary �nite length which repeat the combinational behavior abc in every

clock cycle) are successful behaviors of the composite circuit { which is erroneous. Despite their

claim that it does so, Lin et al.'s model does not correctly handle combinational feedback loops.

1.4.3 Moore machine models of clocked behavior

When modeled as a Moore machine, a system's output values are completely determined by its

current state, irrespective of its current input values [110]. As a model of synchronous circuits,

therefore, Moore machines allow only latched components, for which the response to the current

input values does not occur until the next clock cycle. Moore machines may also model combinational

circuits, but in that case they model propagation delays for every component, and therefore do not

allow latched components at all. It is not clear how one could use Moore machines to model both

latched and unlatched components in the same system. Because we would like to use a single

formalism to model both pure combinational logic and components that contain latches, we choose

to use a Mealy machine model of synchronous circuit behavior.

However, it is the case that Moore machine models of combinational circuits avoid the zero-delay

cycle problem and can successfully model combinational feedback loops. This is because they allow

CHAPTER 1. INTRODUCTION 13

-
�

-
�c = 1 c = 0

ab ab

ab; ab; ab

ab
ab
ab

Figure 1.7: Moore machine representation of C1 (nand-gate)

-
�

-
�

c c c

c
b = 1 b = 0

Figure 1.8: Moore machine representation of C2 (non-inverting bu�er)

no zero-delay paths: some propagation delay is incorporated into this model for every component

of a combinational circuit. We illustrate how the problem is avoided by examining how Moore

machines would be used to model the combinational example of Section 1.4.1. Figure 1.7 contains

a Moore machine model of the nand-gate C1 and Figure 1.8 contains a Moore machine model of

the non-inverting bu�er C2: Their composition appears in Figure 1.9. It correctly re
ects the fact

that the only stable state of the composite circuit of Figure 1.1 is one in which the input wire a is

held low, in which case the wires b and c stabilize to the value 1: In addition, however, it correctly

re
ects the oscillatory behavior of this circuit in the case that a is held high. No zero-delay cycle is

exhibited here, because the model does not admit any component having a zero propagation delay.

-

-

�

6

?R

bc = 01bc = 11

bc = 10 bc = 00

a a; a

a; a

a

a
a

Figure 1.9: Composition of the Moore machine representations of C1 and C2

In the remainder of this section, we discuss some well-known synchronous models of communica-

tion and veri�cation which use a Moore machine model. Although billed as synchronous formalisms,

some of these models are used indiscriminately to model combinational circuits as well, and in that

CHAPTER 1. INTRODUCTION 14

case they model propagation delays. When they model synchronous circuits, they cannot create

combinational feedback loops because all components are assumed to be latched. Hence in both

cases, they avoid the need to concern themselves with the modeling of zero-delay cycles.

Note that by synchronous models we mean clocked models: this is in contrast to an approach to

the modeling of communicating processes in which the word `synchronous' is sometimes used to refer

to synchronization of communication, usually via common variables (wire or action names). In fact

all the formalisms we discuss utilize common or matched-pair names to indicate synchronization or

coordination of communication between subprocesses. This is immediate if we consider such a name

to denote a speci�c wire, as we do in our hardware model.

Two classic approaches to the modeling of synchronization in the context of asynchronous pro-

cesses are Milner's CCS [106, 108] and Hoare's CSP [72]. Both of these process algebras have been

extended to synchronous versions: CCS was de�ned in terms of Synchronous CCS (SCCS) by Milner

in [107]; CSP is extended to Synchronous CSP (SCSP) by Barnes in [8]. The operational semantics

de�ned for CCS and SCCS posit a branching structure of time, in which the decision to choose

one particular course of future action over another is as critical as the possible action sequences

themselves. The denotational semantics de�ned for CSP and SCSP do not take this into account.

Nevertheless, the two synchronous formalisms SCCS and SCSP agree on their choice of a fundamen-

tal underlying Moore discipline. That is, in both cases the action model chosen was Moore machines.

Fundamentally, this is because both SCCS and SCSP assume all synchronous input and output val-

ues of a process (values on distinct wires occuring during the same clock cycle) to be independent of

each other, except for those action names (or action-coaction pairs) common to multiple processes,

which may coordinate communication between them. Thus they cannot support dependency chains

of combinational logic that manifest within a single clock cycle.

In SCCS, a process (essentially, its behavior) is represented by an agent. Agents are created from

actions and agents using �ve basic operators. This model certainly allows the expression of processes

which do not correspond directly to hardware. However, it may be used to describe hardware, if the

actions are appropriately interpreted and their use constrained.

Veri�cation consists of checking that a particular mathematical relation holds between two agents

(where one is presumably considered an implementation and the other a speci�cation). In order

that this relation be appropriately de�ned, it is necessary that the recursion operator not introduce

any ambiguous agents, in the following sense. An algebraic expression created using only the �ve

operators must (modulo choice in determining which disjunct to activate) indicate unique behavior:

recursion may be used only if a unique least �xpoint exists for the resulting expression. For example,

this says we may not de�ne an agent to be equal to itself, with no further quali�cation, because then

the agent could be anything, and the equation would still hold. The conditions Milner chooses as

su�cient to guarantee the existence of such a unique least �xpoint e�ectively constrain the allowed

agents to behave as Moore machines [107, pp. 285{286].

CHAPTER 1. INTRODUCTION 15

The underlying philosophy of CCS and SCCS dictates that the set of actions occuring during

a single clock cycle, except for those action-coaction pairs that are explicitly listed as restricted,

must be independent. In SCCS, we may restrict an agent so as to allow only a certain set of

actions | but then any subset of this set may occur within each clock cycle [over which the agent

is de�ned]. Similarly, SCSP is based on the assumption that \events observed simultaneously occur

independently; the performance of one event at a particular time cannot preempt another event at

the same time" (emphasis mine) [8, p. 9]. That is, \a process cannot o�er its environment the choice

between two events without being able to o�er both together" [8, p. 9]. This automatically enforces

a Moore discipline, in which the performance of events depends only on the current state rather

than on any additional events occuring during the same clock cycle.

In SCSP, a process is again represented by an algebraic expression created from other processes

and events using �ve basic operators. As in SCCS, in order to use this system for veri�cation it is

necessary to prove that use of the recursion operator does not lead to ill-de�ned processes that do

not correspond to speci�c behavior options. The proof given (actually, cited) depends on the fact

that a process name P only appears in its own de�nition in a `guarded' position, that is, following

the �rst clock cycle in which the process is active. This restricts every process P to behave as a

Moore machine.

Thus both SCCS and SCSP have avoided the need to handle the potential creation of zero-delay

cycles via composition, by enforcing a Moore discipline in which such cycles cannot be created. In

general, one of the concerns of this family of algebraic frameworks is that delays of all kinds be

modeled. Positing that only independent events may be simultaneous, and that the model most

explicitly distinguish the occurence times of non-simultaneous events, these synchronous models

constrain the set of events that occur during a single clock cycle to contain only pairwise-independent

events.

CIRCAL is a formalism based on many of the concepts of Milner's CCS, and applicable to

the modeling of hardware [104, 105]. In contrast to SCCS and SCSP, it has been implemented in

software, as a veri�cation tool called the Circal System [7]. In CIRCAL a hardware component

is represented by an agent, which is described by the actions it is expected to perform. Agent

comparison via an operational semantics is the basis for veri�cation using this model [104, 109].

CIRCAL di�ers from CCS primarily in how it handles nondeterminism. It is also su�ciently
exible

that a particular model may be synchronous, asynchronous, or both. As in SCCS, only independent

events may occur during the same clock cycle, and so CIRCAL also utilizes a Moore machine model

for synchronous behavior [104].

Compositional SML (CSML) is an extension to the language SML that allows the modular

description of �nite-state machines and their composition [50]. SML was developed to support the

description of circuit models for model checking. A model written in SML can be automatically

translated into a �nite-state machine which can then be veri�ed using the EMC model checker

CHAPTER 1. INTRODUCTION 16

[27, 29, 28]. CSML is an extension to SML that was developed to support compositional model

checking. In compositional model checking, the user separately speci�es individual components

(modules) of the full model. During subsequent veri�cation, a smaller \interface process" may

be substituted for a module by hiding all wires irrelevant to the property being checked of the

full composite model, in order to avoid the state-explosion problem [49]. Thus CSML allows the

description of component �nite-state machines of the full model and their composition to form

this full model. The semantics of CSML support both asynchronous and synchronous hardware

descriptions { the latter as Moore machines only.

AT&T's COSPAN veri�cation system utilizes a selection/resolution model of communication be-

tween subprocesses [87]. Composition of processes is de�ned via a selection/resolution paradigm for

communication between them. Constraints are placed on the form of the processes to be composed,

that su�ce to avoid the creation of any zero-delay cycles via composition. Two alternate sets of

constraints are available for this purpose. One set e�ectively constrains the component processes to

be Moore machines. The other utilizes the dependency tracking methods that will be described in

the following section (Section 1.4.4).

The selection/resolution framework describes the activity that occurs during a single clock cycle.

First, each component process selects a partial transition label (i.e., values for each of its output

wires) from among those full transition labels appearing on the outedges of its current state. This

restricts its set of candidate next states, but not necessarily to a unique next state. After each

component process has selected its transition label, their conjunction (the current global selection)

is visible to each of the processes, and based on this conjunction each process resolves the global

selection to determine its own next state (from among those remaining available to it since its own

selection) by choosing the target state of one of its outedges whose label is compatible with the

current global selection. The global next state (that is, the next state of the composite process) is

the combination of all the local states so chosen.

E�ectively, the selection/resolution procedure describes the composition of Mealy machines.

However, the zero-delay cycle problem is avoided in COSPAN by placing constraints on the form of

allowed processes.

Kurshan de�nes two sets of conditions su�cient to guarantee that at least one global next state

always be de�ned using the selection/resolution de�nition of composition [87, Chapter 7]. Each of

these sets of constraints su�ces to disallow the creation of zero-delay cycles in the resulting composite

process. The �rst option is to require that all subprocesses be independent (no joint output wires),

lockup-free (all states have at least one outedge) Moore processes (the full outedge label set of every

state allows all input combinations to occur together with any allowed output combination). An

alternative su�cient set of requirements is that all subprocesses be independent and lockup-free and

that the static dependency graph which encodes all potential functional dependencies between the

subprocesses be acyclic. Thus the COSPAN system utilizes both a Moore discipline and a static

CHAPTER 1. INTRODUCTION 17

dependency graph method to ensure that zero-delay cycles will not be created by composition of

processes.

1.4.4 Functional-dependency tracking methods

1.4.4.1 Introduction

Another approach to the modeling of zero-delay cycles is to anticipate potentially problematic ap-

plications of the composition operator and to subsequently disallow those compositions. In this

way, the creation of zero-delay cycles can be avoided altogether. In this section we describe various

methods that have been employed in order to detect these problematic compositions prior to their

actual application. We explore the standard methods used for hardware design, as well as some

related applications in the software domain. We may classify all of these approaches as syntactic

methods for the detection of zero-delay feedback. The method we have in fact employed in the

framework described in this thesis allows the semantic detection of such loops after they have been

created, because we have concluded that none of the methods described in this section are applicable

in the presence of the wide variety of properties we wish our models to incorporate. In addition

to discussing these syntactic detection mechanisms, we discuss why they are inapplicable in our

framework.

CAD tools employ dependency tracking methods to detect combinational feedback paths. Two

basic dependency-tracking methods are known for combinational circuits: static dependency graphs

and Boolean di�erences. Boolean di�erences re
ect dynamic dependency information: they specify

the situations (value combinations on the other input wires) in which the Boolean value on a partic-

ular output wire depends only on the Boolean value on a particular input wire. Static dependencies

re
ect the topology of the circuit. Both of these syntactic tracking methods are overly conserva-

tive in the presence of nondeterministic models [41]. In practice, the use of these methods in our

framework would lead to unacceptable constraints on the allowed compositions.

In this section we also discuss some related work in the software domain. The synchrony hy-

pothesis that forms the basis of the semantics of many synchronous reactive speci�cation languages

corresponds precisely to positing a zero-delay reaction in response to an input event. Hence the

zero-delay cycle problem arises in this context as well. In Section 1.4.4.3, we describe the algorithms

their compilers use to detect { and reject { programs that contain actual \instantaneous" feedback

loops. In their own terminology, such programs are non-causal.

In practice, many formalisms do not incorporate an explicit mechanism for the detection and

hence prevention of combinational feedback loops. Instead, the relevant publications simply state

that the de�nition of a combinational circuit requires it to be acyclic. The mechanism by which this

is to be guaranteed is left implicit. In the case of gate-level formalisms, static dependency tracking

is easily implemented. In other cases, it is not as clear what mechanism is intended to enforce this

constraint, but the formalism in any case is not intended for direct implementation. Much of the

CHAPTER 1. INTRODUCTION 18

logic synthesis work that addresses optimization in multi-level logic networks falls into the �rst class;

the Ruby formalism, for example, falls into the second [79, 123, 80, 78].

1.4.4.2 Dependency tracking for combinational circuits

As stated in the previous subsection, two basic dependency-tracking methods are known for com-

binational circuits. They are static dependency graphs and Boolean di�erences. The former is

su�cient to ensure that composition of circuits not create combinational feedback loops, but it is

overly conservative in the presence of black-box descriptions for which a unique gate-level representa-

tion is not available [41]. The latter is generally assumed to be su�cient to ensure that composition

of circuits not create combinational loops that exhibit anomalous behavior. In fact, it has recently

been pointed out that this is not a reliable assumption [92]. In any case the Boolean di�erences

method is inapplicable in the case of nondeterministic models [41].

In the �rst of these methods, a static dependency graph is maintained for every circuit model.

This graph incorporates the maximal possible set of dependencies between input- and output-wires

of every component. The dependency graph of the result of composing two circuits is the union of

the dependency graphs of the component circuits. We de�ne the dependency graph of a primitive

(black box) component with input wires I and primary output wires O to be the directed graph

hV;Ei whose vertex-set V is the externally-visible wire set of the component (V = I [O) and whose

edge-set E indicates that the value on each output wire is dependent on the values on all the input

wires of the component (E = fhx; yi j x 2 I; y 2 Og): The union of two graphs hV0; E0i and hV1; E1i

is hV2; E2i = h(V0 [V1); (E0 [E1)i: Note that V0 and V1 need not be disjoint.

This dependency graph provides a su�cient condition to determine that composing together

two combinational circuits will not lead to a combinational feedback loop: if the union of their

dependency graphs contains no cycle, then their composition does not contain a loop. Assuming the

primitive circuits for which the dependency graphs were created are gates, this union dependency

graph contains a cycle only if the resulting circuit contains a topological loop. However, as shown

in [41], if all or some of the `primitives' for which dependency graphs are created are high-level

descriptions of complex circuits, a cycle may occur in the union dependency graph without an

actual combinational feedback loop appearing in the corresponding composite circuit. That is, a

cycle in this graph may be an artifact of the high-level description of one or both of the components.

This situation is illustrated by the block diagram in Figure 1.10. The bidirectional communication

between the high-order 4-bit adder and the carry look-ahead generator (CLG) in this carry look-

ahead adder is an example of an \apparent loop" [10] (also called a \pseudo-cycle" [4]). There are

no loops or cycles in the circuit when it is described at the gate level, but this information is lost in

the block diagram of the circuit. In this case, an acyclic block diagram could be formed by splitting

the CLG into two smaller blocks [10]. Thus the cycle in the corresponding static dependency graph

is an artifact of the high-level description of the CLG.

CHAPTER 1. INTRODUCTION 19

b0-b3
a0-a3

c0c
s0-s3

p p0
g g0

b4-b7
a4-a7

c1c
s4-s7

p p1
g g1

c2c2

CLGc0

Figure 1.10: Eight-bit carry look-ahead adder

Static dependency tracking is su�cient but not necessary for feedback detection. It detects

topological loops, but it cannot distinguish those topological loops that actually constitute feedback

situations from those that do not. Dynamic dependencies identify input-value combinations for

which a gate ignores one of its (other) inputs in computing its output value. For example, if one

input to an and-gate is held low, then the output of the gate holds value 0 no matter what the value

on its other input wire. Similarly, if one input to an or-gate is held high, then the output of the gate

holds value 1 no matter what the value on its other input wire. Dynamic dependency information

of this sort can be propagated from gates to full circuits.

It has generally been assumed that this information can be used to distinguish between combi-

national feedback loops and false path loops. A false path is a path through a circuit that is never

exercised. An example of such a path is the loop through the logic blocks F and G in the circuit

illustrated in Figure 1.11. The circuit contains a topological loop, but it computes the feedback-free

function z = if c then G(F (x)) else if not(c) then F (G(x)): If c always holds one of the Boolean

values 0 or 1; then the topological loop is never exercised.

Boolean di�erences formalize dynamic dependencies [121, 96, 45]. They were originally used

in the hardware design community to derive information for fault testing. They are also used in

the computation of observability don't cares (see Section 1.5.2). In acyclic combinational circuits,

the Boolean di�erence provides insight into the conditional functional dependency of a component's

output value on any particular input x:

The Boolean di�erence is de�ned as @F=@x = Fx�Fx;where the component in question computes

the function F (z = F (y0; y1; : : : ; ym; x; ym+1; : : : ; yn)) and � denotes exclusive-or. Fx and Fx

are parts of the Shannon decomposition F = x � Fx + x � Fx; and are de�ned as follows. If z =

F (y0; y1; : : : ; ym; x; ym+1; : : : ; yn) then

CHAPTER 1. INTRODUCTION 20

c

1 001

0 1

F G

z

c c

x x

Figure 1.11: False path combinational loop (Figure 2 of [92])

� Fx = F (y0; y1; : : : ; ym; 1; ym+1; : : : ; yn) and

� Fx = F (y0; y1; : : : ; ym; 0; ym+1; : : : ; yn)

The Boolean di�erence @z=@x for a circuit with input wire x and output wire z is a Boolean

expression describing the Boolean value combinations on the other inputs of the circuit such that

in their presence, the Boolean value on z varies with the Boolean value on x: That is, for a circuit

all of whose wires under all circumstances stabilize to steady 0 or steady 1; the Boolean di�erence

@z=@x describes the conditions under which z is functionally dependent on x: For such a circuit,

@z=@x = 0 if and only if there are no circumstances in which the value on z depends on the Boolean

value on x: If @z=@x = 0 for an acyclic combinational circuit, then the zero-delay path between x

and z is a false path.

Unfortunately, Malik has noted that the Boolean di�erence may incorrectly indicate a lack of

dependence between the values on two wires when in fact subsequent composition forms a loop that

may oscillate [92]. In the case he identi�es, the Boolean di�erence incorrectly indicates a lack of

dependence between the values on two wires (@z=@x = 0); when in fact the value on one (z) is

dependent on whether or not the other (x) is oscillating. Because the possibility of oscillation is

not taken into account by the Boolean di�erence, which represents only Boolean behaviors (i.e.,

stabilization to steady 0 or steady 1); this kind of dependency cannot be represented nor detected

by use of Boolean di�erences. Thus Boolean di�erences cannot be used to detect combinational

feedback, because such detection requires that transient non-Boolean states be taken into account.

In addition, the use of Boolean di�erences is inappropriate in the presence of nondeterministic

CHAPTER 1. INTRODUCTION 21

speci�cations. A nondeterministic component may well lead to an overly conservative dependency

set, relative to the dynamic dependency sets corresponding to each of its potential implementations

[41]. Consider the speci�cation of a circuit with two output wires and one input wire, as shown

a

b

c?

?

Figure 1.12: Speci�cation: (b = a ^ c = 0) _ (c = a ^ b = 0)

in Figure 1.12. This speci�cation may be correctly implemented by the two distinct functions

(b = a and c = 0) and (c = a and b = 0): In the former, @b=@a = 1 and @c=@a = 0; and in the latter,

@b=@a = 0 and @c=@a = 1: To prevent zero-delay cycles, we would be forced to assume that both b

and c depend on a, even though this can never occur. That is, we must conclude for this speci�cation

that @b=@a = 1 and @c=@a = 1: Maximizing the dependency set associated with a speci�cation in

this manner will rapidly lead to a situation in which all compositions involving the speci�cation are

disallowed. Hence we consider the method of Boolean di�erences to be inapplicable in the case of

such nondeterministic speci�cations.

In much of the logic optimization work for multi-level logic networks and for synchronous logic

networks (see Section 1.5), the mechanism by which acyclicity is to be preserved is not made explicit.

In the case of gate-level formalisms, static dependency tracking is easily implemented. In his work

on deriving all the degrees of freedom available for the correct implementation of one �nite-state

machine (FSM) in a set of interacting FSMs (see Section 1.5.3),Watanabe utilizes Boolean di�erences

to determine whether or not a particular deterministic FSM M 0
1 can be implemented so that it does

not form a combinational feedback loop when composed with the other FSMs [136]. Malik's results

imply this is not reliable [92].

Because we require our framework to allow the expression of nondeterministic models (so that we

may describe speci�cations that allow for multiple correct implementations) and of high-level black-

box circuit models and speci�cations (in order to support hierarchical veri�cation), we cannot use

either of these two syntactic methods for tracking \dependencies" to detect and disallow zero-delay

cycles.

CHAPTER 1. INTRODUCTION 22

1.4.4.3 Detection of zero-delay feedback loops in software

Synchronous languages [11, 66] are a class of executable speci�cation languages designed to support

the rigorous speci�cation of synchronous reactive systems [114, 70]. Their semantics are all based on

the synchrony hypothesis, which states that all subprocesses of a system produce their outputs and

internal signals simultaneously with the arrival of the input signals to which they are responding

[11, 66]. Hence the execution of a program divides time up into \instants." During an instant, every

parallel subprocess proceeds as far as possible in its program in response to the signals broadcast by

all the others and by the environment (i.e., in response to its input signals). An instant terminates

when all processes can only await further environmental interaction. Each such instant is assumed to

take no time with respect to the external environment [15]. Thus the synchrony hypothesis is similar

to the zero-delay assumption underlying the Mealy machine approach to modeling synchronous

circuits.

Under the synchrony hypothesis, the communication mechanism between subprocesses is the in-

stantaneous broadcasting of signals, so that \all processes share the same vision of their environment

and of each other"[15, p. 91]. The assumption of instantaneity of response applies to each subprocess.

In all of these synchronous languages, the presence or absence of a signal in an \instant" may be

detected. Therefore an instantaneous reaction chain between subprocesses may lead to inconsistent

information about the presence or absence of various signals. (That is, the same signal may be

required to be both present and absent at the same time). It can also happen that multiple sets

of output signals are consistent with the reactions of the individual subprocesses. If for every set

of input signals from the environment the resulting reaction chains between subprocesses can only

lead to a unique and consistent set of signals being broadcast during that instant, and this holds

for every possible sequence of instants allowed by a program, then the program is called causal. (Of

course, a non-causal program contains a zero-delay cycle). Restrictions on the allowed constructs

of this form are enforced by the compilers for the respective languages; these restrictions su�ce to

disallow all non-causal programs. Because the problem is undecidable in general, they may disal-

low some causal programs as well. In the remainder of this section we describe these synchronous

programming languages and discuss the mechanisms their compilers employ to detect { and reject

{ those programs that are non-causal.

Esterel [15, 18, 14] is an imperative synchronous programming language. It features various

control structures, one of which is a parallel operator for creating subprocesses, and three ways to

stop a subprocess: traps, interrupts, and natural termination. As in all synchronous languages, com-

munication between subprocesses is achieved via the broadcasting of signals: a signal is broadcast

by the subprocess which \emits" it, and is instantaneously perceived to be \present" by all subpro-

cesses. In Esterel, however, a signal may have a value in addition to simply being \present" or

absent. In fact, the same signal may be emitted multiple times in the same \instant" and need not

have the same value every time. In this case, an operator for combining the various values the signal

CHAPTER 1. INTRODUCTION 23

is given (emitted with) is determined at declaration of the signal, and subsequent reads of the signal

will read this combined value. The execution semantics enforced by the v3 compiler guarantee that

no intermediate value of a signal can be read.

Esterel has a behavioral semantics, and requires that its progams all be deterministic (that

is, that a program respond to each sequence of sets of input signals with a unique sequence of sets

of output signals). The behavioral semantics do not provide a full operational de�nition of how

to �nd this unique �xpoint response. In addition, they do not enforce the determinism constraint:

there exist Esterel programs for which the behavioral semantics allow multiple sequences of sets

of output signals in response to the same sequence of sets of input signals. In order to enforce

the determinism constraint, and to provide an operational semantics, an execution semantics has

been de�ned for the language [15]. These semantics enforce determinism by treating each signal as

a shared-memory address, with initial value \unde�ned", and by imposing a discipline in which a

signal cannot be read if it can still be written in the current \instant". Thus, no intermediate values

of a signal can be read, and \one may not conclude that a signal is absent as long as its emission by

some process remains possible" [66, Chapter 5]. If all subprocesses block because each one is waiting

to read or test for the presence of a signal that may yet be written (emitted) in the current instant by

another subprocess, the program is declared non-causal and consequently disallowed. Unfortunately,

the execution semantics are overly conservative, and there are cases in which they disallow programs

that are in fact causal.

Lustre[43, 112, 67, 42] and Signal[12, 64, 13] are declarative synchronous programming lan-

guages based on a data-
ow model [66]. In these languages, a program is a set of recurrence equations

that describes a set of
ows. A
ow is a sequence that denotes the behavior of a particular signal at

each tick of a clock (i.e., its value when it is present). Multiple clocks may be in e�ect, some of them

de�ned in terms of each other. Each
ow X de�nes a clock CX that denotes those instants at which

the signal is present. The variables in a set of recurrence equations represent
ows; the operators

include arithmetic operators and comparison relations that are applied pointwise (per relevant clock

tick) to the
ows, and language-speci�c operators that allow one
ow to be de�ned in terms of an-

other by de�ning a new clock or applying a time shift, etc. Lustre and Signal vary in the speci�cs

of their operators and the de�nitions they allow. In Lustre, each variable may only appear on the

left-hand side of a single equation, and it is completely de�ned by its declaration and this equation.

(This is referred to as the de�nition principle). Thus Lustre is a functional language, in which ev-

ery operator de�nes a function from input sequences to output sequences. In Signal, the equations

impose a set of constraints on the relative speeds of the various clocks. In particular, \the way an

output
ow is used may constrain the input
ows of the operator that produces it" [66, Section 4:3].

In both cases, the compiler enforces the constraint that a unique output sequence be de�ned as the

response to each input sequence. (Every program must be deterministic). In addition, the compilers

must check that the clock de�nitions and constraints contained in a program are not inconsistent.

CHAPTER 1. INTRODUCTION 24

They must ensure, for example, that there exists at least one clock that is an in�nite sequence of

instants at which arbitrary input signals may be received. The clock constraints for each signal that

are speci�ed by a program are encoded in the clock calculus of the relevant language. Lustre allows

the programmer less freedom in manipulating clocks than does Signal. In particular, in Lustre

no information may be inferred from the way a variable (a signal and its associated clock) is used.

Thus a simpler clock calculus su�ces for these checks in Lustre than in Signal.

In order to enforce determinism within an instant, the Lustre compiler employs a single-pass

static dependency check [43, 67]. Thus it is very conservative, and disallows as non-causal even those

feedback loops which are false paths. Data dependency checking and clock consistency checking are

pursued independently. Clock consistency is a simple syntactic check that strictly enforces Lustre's

de�nition principle via rewriting.

The Signal compiler employs a conditional-dependency check for data dependencies. Because

it allows the clock of a variable to be inferred from the use of that variable, checking for data

dependencies and checking for clock consistency are interrelated [12, 64]. Analysis of each program

builds both a conditional dependency graph and an encoding in clock calculus equations of the

constraints the program places on the relation between the clocks of the signals in the program.

This procedure is overly conservative, and may cause rejection of programs that are in fact causal.

For example, Signal cannot reason about non-Boolean data types, and so it may reject a program

as placing constraints on its inputs when in fact the constraints partition the space of possible values.

On the other hand, it may allow programs that are intuitively non-reactive, or non-causal, in that

their outputs may drive the frequency of their inputs [66, Section 4:3][12].

We brie
y mention a formalism called Statecharts that belongs to the class of languages

inspired by the ideas of [70] and the synchrony hypothesis, but which does not utilize syntactic

methods to disallow problematic applications of the composition operator. A simpler language

based on the ideas of Statecharts, called Argos, does successfully utilize an exact syntactic

check in order to disallow compositions that lead to problematic zero-delay cycles.

Statecharts [69] is a graphical speci�cation language whose intended semantics obey the syn-

chrony hypothesis. However, instead of syntactically disallowing those compositions that may create

problematic \instantaneous" reaction chains, the intent is that compilers for this visual language im-

plement some operational semantics for such cases [71, 76, 116], and force a run-time error whenever

such a chain is determined to lead to a contradiction [116]. Earlier versions of the semantics allowed

inconsistencies in the set of signals produced during the instant [71, 75, 76] rather than causing a

run-time error in the case of the operational semantics leading to an inconsistency. (Recall that an

inconsistency is a situation in which some signal s must be both present and absent in the same

instant). Thus those semantics are clearly unacceptable for our framework. The later semantics do

not allow nondeterminism, and we therefore �nd them unacceptable as well.

Argos [94, 95] is a graphical formalismbased on Statecharts that has simpler graphical syntax

CHAPTER 1. INTRODUCTION 25

and hence simpler semantics. As in Statecharts, extensions to the standard graphical notation

for Mealy machines allow the expression of implicit composition (without the attendant explosion

in size of the graphical representation) and of hierarchy. In order to determine whether or not a

particular composition is allowed, the compiler for this language executes an exhaustive search for

feedback loops in \instantaneous" chains of reaction [66, Section 5.2]. This syntactic check is exact,

and allows all and only the applications of the composition operator that do not lead to potentially

nondeterministic or inconsistent behavior. However, it is not applicable to our framework because

it disallows nondeterminism.

The syntactic methods that the compilers for these synchronous speci�cation languages employ

in order to detect and hence reject non-causal programs are overly conservative for our framework.

We require that nondeterministic models be supported even as zero-delay cycles are detected, and

none of the syntactic techniques we have just described allow that. Therefore we cannot utilize

any of these syntactic methods. In the following section, we describe a semantic approach to the

zero-delay cycle problem.

1.4.5 Ternary simulation methods

1.4.5.1 Introduction

In this section we investigate the application of ternary simulation techniques to model circuit behav-

ior in the presence of zero-delay cycles. Ternary simulation is a hardware simulation methodology

in which the circuit model is assumed to recognize three distinct wire values: the usual digital 0 and

1, and a third value commonly called X. This third value has historically been used in various ways.

Depending on the particular context, X may denote confusion on input wires and multiple possible

correct responses on output wires [23]. Recently, its use on input wires to denote multiple potential

input values has been advocated as well [37, 36]. In order that the appearance of X on an output

wire provide meaningful feedback from a simulation run, certain mathematical conditions must hold,

which constrain how the X value may be used by the circuit model that is being simulated. These

constraints require the components of the model to be functions that are monotonic in a particular

partial order over the three-value domain of wire values.

It turns out that use of such a third value in a manner consistent with its use in ternary simulation

(restriction to monotonic functions) su�ces to model the behavior and presence of combinational

feedback loops. If a fully-speci�ed combinational circuit produces X on an output wire in response

to a Boolean input value combination (that is, one that does not contain any X's) then there must

be a loop in the circuit. Thus ternary simulation may be applied to test for the presence of a loop.

If we de�ne the behavioral model of a logic gate to be a monotonic extension of the corresponding

Boolean function, then the composition of models re
ects the wiring together of the logic gates,

and the resulting composite behavioral model correctly re
ects the information we could derive via

ternary simulation. In other words, it provides a semantics for such loops.

CHAPTER 1. INTRODUCTION 26

Our own work uses a third wire value in addition to digital 0 and 1, to denote oscillation and

stabilization to an intermediate voltage. This idea follows the tradition of ternary simulation to some

extent. However, we are the �rst to use a third value to model zero-delay cycles in nondeterministic

models. In addition, we have identi�ed a condition that is weaker than functional monotonicity and

yet su�ces to guarantee the soundness of our formal veri�cation results using these models.

Recently some researchers have addressed the problem of analyzing circuits that contain combina-

tional feedback loops which are \harmless" while still detecting and disallowing those that may cause

anomalies [68, 92, 124]. Some of them are using ternary simulation strategies in their classi�cation

procedures [92, 124].

Their work seeks to clarify distinctions that we have not found to be relevant for our purposes.

Our use of a third wire value guarantees the marking of every combinational feedback loop, so that

the presence of such a loop may be detected from its behavior. Subsequently the user or designer

may choose whether to keep the
agged loop or to remove it from the design. We do not seek to

make judgements as to which loops are harmful and which not, but rather to provide the user with

the tools to make these decisions for him or herself. In particular we are concerned that the behavior

and presence of loops be made explicit in order to ensure the accuracy of our formal veri�cation

methods. Our use of a third wire value su�ces to eliminate the disappearing behavior observed for

example in the formalism of [91], which may lead to invalid results in formal veri�cation.

In this section we describe the traditional uses of a third wire value, and contrast them with our

own. We also examine the recent work classifying combinational feedback loops into those that are

considered harmful and those that are not, and informally describe those situations in which our

formalism does implicitly conclude that a combinational feedback loop is \not harmful."

1.4.5.2 Traditional ternary simulation

In order to contrast our use of a third wire value to denote oscillation or intermediate voltage with

the ways in which this value has been used in the past, we �rst provide a short history and description

of ternary simulation.

Gate-level ternary simulation was introduced in the 60's as a technique for detecting hazards in

combinational logic, and races and oscillations in asynchronous circuits [62, 77]. In [62], Eichelberger

de�ned the following ternary simulation algorithm, that was used to approximate the circuit's re-

sponse to a new input value combination, starting at a stable state for a known previous input value

combination. First, every input wire whose value changes from 0 to 1 or from 1 to 0 in the transition

from the previous input value combination to the new one, is set to the third value X (which he

called
1
2
): The circuit is then simulated using the standard ternary extension to each gate's Boolean

function representation. As many passes as necessary are made until no internal wires change value;

the input wires are held constant through all these passes. (Jephson, McQuarrie and Vogelsberg

CHAPTER 1. INTRODUCTION 27

extend this algorithm to correctly handle explicit delay elements [77]). At stabilization, some in-

ternal wires may hold the value X, and others digital value 0 or 1. Then the new Boolean input

value combination is applied to this intermediate stable state, and again the circuit is simulated

repeatedly until quiescence.

Any remaining X values indicate the possible presence of a critical race, hazard, or oscillation;

modulo the accuracy of the Boolean function model of the gates, any resulting 0 and 1 values are

guaranteed to be the response of the corresponding circuit of gates for any combination of logic gate

propagation delays [62]. It was soon noticed in the hardware community that this technique may

return an overly pessimistic response in some cases, as certain combinations of propagation delays

are highly unlikely. Subsequently this technique was extended to allow the initial steady state to

contain X values on wires as an indication of digital but unknown voltage [23].

Current ternary simulation algorithms initialize all internal nodes of the circuit to value X. They

then compute the steady-state response function of the circuit. The steady-state response on a

wire is the value (0, 1 or X) that wire would attain if the input value combination to the circuit

were held �xed long enough for the wires to stabilize. For this computation, the behavior of each

logic gate is represented by the standard ternary extension of the corresponding Boolean function.

For the purposes of this computation, the behavior of a circuit composed of Boolean logic gates

is adequately represented by the composition of the standard ternary extensions of the Boolean

function representations of those gates.

In [30, 31], Bryant suggested extending these methods to the analysis of MOS circuits. He

developed a mathematical switch-level model which is most recently implemented in the COSMOS

tool [31, 35, 34, 38]. Other work on related switch-level models is referenced in [39, Section 4]. The

basic idea implemented in COSMOS is that various attributes of MOS transistors (such as relative

conductance and capacitance of the transistors in the circuit) can be encoded into Boolean equations

to be evaluated during simulation, just as the standard ternary extensions to the Boolean function

representations of the component gates of a circuit are evaluated in gate-level ternary simulation.

During simulation of MOS circuits using this Boolean equation representation, the value X on a

node denotes \an indeterminate voltage between low and high indicating an uninitialized network

state or an error condition caused by a short circuit or charge sharing" [35, p. 637].

Later Bryant extended these ideas to the formal veri�cation of circuits [32, 36, 37]. He proposed

that such circuits can be formally veri�ed via ternary simulation. More precisely, he noted that if one

can �nd a su�cient set of assertions on a �nite number of bounded-length input-output behaviors

of a circuit, or on a �nite number of bounded-length sequences that incorporate its input-output

behaviors and the values on its latches, such that a circuit that satis�es these assertions must

correctly implement a speci�cation, then one can formally verify the circuit by applying ternary

simulation methods (i.e., running it through a ternary simulator) to verify that the circuit does

indeed satisfy these assertions. In this work, he allows the behavior of circuit components to be

CHAPTER 1. INTRODUCTION 28

represented by arbitrary monotonic extensions of Boolean functions, rather than requiring that

the standard ternary extension be used. The property of monotonicity of these functions (x �

y) f(x) � f(y)) over the information ordering X < 0 and X < 1 on f0; 1; Xg is necessary for the

soundness of the veri�cation results. He introduces the use of the third value X to represent multiple

input sequences at once, a technique which he calls input weakening [32, 37, 36]. Because the value

X on a wire constitutes less information than if it were to hold the value 0 or 1, an input vector

containing X as the value of a particular wire allows the simulation of both possibilities at once. If

an input vector v containing X's leads to an output vector containing 0's and 1's on those wires

we are interested in, then we have e�ectively performed the simulation of multiple input vectors at

once to derive the same result. This trick may signi�cantly enhance the e�ciency of the method.

Thus, the use of a third wire value to represent non-digital behavior is not new. It has been used

in various ways to represent value confusion, ill-de�ned behavior and oscillation in (deterministic)

circuit models. Our particular use of this mechanism to represent stabilization to an intermediate

value (a particular form of ill-de�ned behavior) or oscillation is only unique in that we are using it

for a new purpose, the modeling of zero-delay cycles in the presence of nondeterminism. In addition,

we have adapted the functional monotonicity constraint (used to guarantee the soundness of ternary

simulation) to a partial-monotonicity condition that is more suitable for nondeterministic models.

Our new condition su�ces to guarantee the soundness of our veri�cation results.

1.4.5.3 Detection and classi�cation of combinational feedback loops

As stated earlier, use of a third wire value in a particular consistent manner leads to the
agging

of all combinational feedback loops in a behavioral circuit model. It turns out that identifying

the presence of such loops su�ces for our purpose, which is the development of sound, composable

models for formal veri�cation.

In [24], Bronstein has proposed a third value, which he calls \?" to denote the unknown (unde-

�ned) value. Within his logical theory of synchronous circuit behavior, he proves that if a circuit

contains no unlatched loops, then the circuit responds to all Boolean input vector sequences with

Boolean values on all its wires, including those that are not designated as visible primary output

wires. This is precisely the same claim we make for our own framework, stated contrapositively.

Namely, we claim that if some Boolean input vector sequence (to a deterministic circuit model) leads

to an output sequence that contains the third wire value, we may conclude that the circuit contains

a combinational feedback loop.

Some other researchers have gone in a slightly di�erent direction: their work addresses the

problem of analyzing circuits that contain combinational feedback loops which are \harmless" while

still detecting and disallowing those that may cause anomalies [68, 92, 124]. Some of them use

ternary simulation strategies in their classi�cation procedures [92, 124].

CHAPTER 1. INTRODUCTION 29

Kautz [81], Cerny and Marin [44], and Malik [92] have all identi�ed the same criterion for cir-

cuits that despite containing unlatched feedback loops, nevertheless exhibit acceptable combinational

behavior. Their criterion for this category of harmless loops is the following: a circuit is \combi-

national" if and only if it produces a unique output value combination in response to each input

value combination, and the output value combination produced does not depend on the circuit's

history. Acyclic circuits containing only combinational components are clearly \combinational".

The question that Malik [92] addresses is: which circuits that do contain unlatched feedback loops

are nevertheless \combinational"? He proposes a general solution to this problem that uses ternary

simulation techniques. Halbwachs and Maraninchi address the same question, but without taking

propagation delays into account, and with history encoded as local variables [68]. They do not

employ ternary value techniques for their solution. Shiple et al. [124] have extended the question to

circuits that contain latches, in an attempt to develop a less conservative algorithm for zero-delay

cycle detection in Esterel. They extend Malik's techniques to this case.

We do not intend our models to address this question. However, it is the case that combinational

feedback loops among non-primary output wires of a circuit that do not adversely a�ect the behavior

on the primary output wires of that circuit do become invisible in our framework. Thus although

we do not seek to make explicit the distinction between anomalous and irrelevant combinational

feedback loops, some such distinctions do result automatically from our use of the circuit algebra

framework (which enables us to \hide" non-primary outputs in order to indicate that they do not

participate in the observable input-output behavior of the circuit).

1.4.6 Summary

In order to support a hierarchical approach to formal hardware veri�cation, we require the ability

to model combinational feedback loops that may inadvertently be created via model composition.

The work described in this thesis successfully applies ternary simulation modeling techniques to

correctly model the functional behavior of combinational feedback loops. A feature of our model is

its ability to express the presence of such cycles, without determining any speci�c course of action

for eliminating them from a hardware design. In addition, our framework supports the expression

of nondeterministic models, which the available syntactic methods for combinational feedback loop

detection, for example, do not.

In this section, we contrasted our approach with others based primarily on how they handle

{ or do not handle { the modeling of combinational feedback loops. Various approaches have

been proposed to model the creation of unlatched feedback loops via circuit composition. We have

examined formalisms that handle the problem gracefully as well as some that do not, and have

compared our own approach to all of them.

We have explained why we advocate an approach that models the behavior of these loops as zero-

delay cycles, despite the attendant modeling problems. Moore machine models of circuit behavior

CHAPTER 1. INTRODUCTION 30

can easily express combinational feedback loops. However, they do not easily allow the modeling of

clocked hardware and purely combinational circuitry within the same formalism.

We have discussed syntactic approaches to avoiding the zero-delay cycle problem as well as

approaches closely related to our own semantic approach. Static dependency tracking is a well-known

syntactic method for avoiding the creation of unlatched feedback loops that is sound but overly

conservative. In compilation for programming languages that support zero-delay communication

between subprocesses, control
ow information may be utilized in a sound fashion to determine a

topologically sorted order for signal emissions or value determination. However, this too is overly

conservative in the programs it allows.

Attempts are currently being made to utilize methods from ternary simulation to detect feedback

less conservatively. Our method is a conservative use of ternary simulation that allows the semantic

detection of topological (structural) loops; it does not address the question of distinguishing harmless

(\combinational", or \causal") loops from those exhibiting anomalous behavior. Of course, in many

cases we can in fact identify loops that are quite clearly harmless.

1.5 Related Substitution Work

1.5.1 Introduction

The substitution results presented in this thesis are most closely related to the area of logic optimiza-

tion, which falls in the general area of logic synthesis. Our main substitution result is the derivation

of a closed-form expression that precisely speci�es all and only the allowed substitute circuitry in a

given location in a given circuit or partially structurally-speci�ed model. Logic optimization is the

study of how a partially-structured representation of a circuit may be rearranged so as to optimize

it in terms of some metric such as area or delay. It traditionally focuses on local transformations

of the current representation of the hardware design, a problem to which our results provide the

complete solution space.

In this section, we discuss past and current work in logic optimization, from the perspective of

our own substitution results. We focus primarily on the extent to which the various formalisms

identify degrees of freedom available for optimization.

Our work is particularly relevant to the area of logic optimization in multi-level logic networks,

and to global optimization approaches for sequential logic optimization. The area of redesign, or

resynthesis, is also a relevant application: many of the same techniques used for multi-level logic

optimization have been applied to logic redesign. We describe related work in these areas, and

compare it to our own.

CHAPTER 1. INTRODUCTION 31

1.5.2 Combinational logic synthesis and optimization

In combinational logic optimization, a distinction is made between two-level logic minimization and

multi-level minimization. In two-level minimization, the objective is to minimize the area required

for a two-level (AND-OR, NOR-NOR, or other two-level form) representation of a given set of logic

functions. The correspondence of various easily-measured metrics to the area of the �nal circuit is

well known, and the methods for two-level minimization are well understood. However, better results

may often be obtained via a multi-level approach, which can exploit further degrees of freedom in

implementingmultiple logic functions. In multi-level optimization, a single- or multiple-output logic

function may be implemented by a circuit of arbitrary �nite depth. In practice the depth is bounded

by the objective of optimizing with respect to propagation delay as well as area. Our substitution

approach identi�es all the degrees of freedom available for implementation, and hence applies to the

more general multi-level approach to the optimization of combinational logic.

The standard strategy for multi-level logic synthesis and optimization divides the process into

two stages. The �rst stage is independent of the precise circuit components and technology to be

used in the �nal implementation. It transforms an abstract model of the logic block, called a logic

network, into a �nal form that more closely re
ects the structure of the desired implementation. The

second stage is called technology mapping or library binding. It binds each subsection of the �nal

logic network to an actual circuit component available in a given technology-dependent database,

according to the intended functionality of that section of the network. We concentrate on the

technology-independent �rst stage of this process.

Techniques proposed for the technology-independent stage of multi-level logic optimization in-

clude logic transformations, algebraic approaches, and Boolean don't-care (DC) methods [20, 58,

103]. Our substitution results generalize don't-care methods.

The fundamental idea behind don't-care (DC) techniques for combinational logic optimization

is to exploit the degrees of freedom available in the implementation of a logic function f: For B the

domain of Boolean values f0; 1g; an incompletely speci�ed Boolean function f : Bn * B may be

described by three sets: its on-set fon (these are the input value combinations that f maps to 1);

its o�-set fo� (the input value combinations that f maps to 0); and its don't-care (DC) set fdc (the

input value combinations for which the value of f is not speci�ed). If a function g is completely

speci�ed then gdc = ;: An incompletely speci�ed logic function f may be correctly implemented by

any completely speci�ed function g such that fon � gon � fon [fdc (where � denotes the usual

set inclusion). Di�erent choices among the allowed Boolean functions g lead to di�erent costs (area

and delay) in actual circuit implementation. Combinational synthesis and optimization seek to take

advantage of this by choosing optimal or near-optimal g according to the relevant cost metrics.

Don't-care (DC) information may be provided with the speci�cation for a logic block or it may

be derived from the multi-level representation of a partially optimized version of that logic block.

The former class of DCs are called external DCs; the latter fall into two distinct subclasses, called

CHAPTER 1. INTRODUCTION 32

satis�ability don't cares and observability don't cares. In order to explain these distinctions, it is

necessary to de�ne a logic network.

e

d

b

c

a

w=abu+deu

o2=xz+y

u=bc+ce

y=uw+uw

z=e+w

x=a+u

o1=x+z

Figure 1.13: A combinational logic network (Figure 2:1 of [55])

A logic network [19, 9, 20] is a directed, acyclic graph (DAG) whose vertices (also called nodes)

are annotated with single-output Boolean functions and whose edges represent the wires that must

be present to correctly connect the components that implement these functions. The source nodes

of the network represent the primary input wires of the circuit being synthesized and the sink nodes

represent the circuit's primary output wires. Each internal node represents an intermediate function

in the computation of one or more of the Boolean functions computed by the circuit and appearing

on its output wires. An edge appears between two internal nodes if the function computed by one is

required input for the other. Thus a logic network is a hybrid structural/behavioral representation

of a circuit. In the process of logic optimization the structure is expected to change and the function

for each new node to become less complex or closer to those component functionalities available in

the library.

An internal node represents a single-output Boolean function, which is ostensibly completely

speci�ed. However, its location in the logic network determines some don't-cares in its actual

implementation [9, 20, 55]. The don't cares which may be identi�ed for a single node fall into two

classes. The �rst is the class of satis�ability don't cares (SDCs). SDCs re
ect the correlations we may

assume between distinct inputs to this node based on the functions (associated with other nodes)

that compute the values on these input wires. The second class are the observability don't cares

(ODCs) of the node. They are the result of propagating external don't care information backwards

through the network from its primary outputs. Even if there are no external don't cares speci�ed

for the network, the backward propagation computation itself accumulates information about the

circumstances (on the other wires) under which the output of a particular node has no e�ect and

CHAPTER 1. INTRODUCTION 33

hence is a don't care.

The full don't-care set of a node captures all the degrees of freedom available for its implemen-

tation assuming the other nodes remain stable. Techniques have also been developed for computing

compatible don't-care sets for a set of nodes, that identify some degrees of freedom in the imple-

mentation of each that do not a�ect the identi�ed degrees of freedom available for implementation

of any of the other nodes in the set [111, 57, 120]. However, even such sets of compatible don't

cares cannot express correlation of outputs. It may be the case that in the presence of a particular

input-value combination to the logic network, a pair of nodes in a network can both output 0 or

both output 1; and in either case the network will produce the correct output values. Don't cares

cannot re
ect this information, because they cannot allow these two combinations (00 and 11) as

the outputs of the two nodes without allowing 01 and 10 as well.

Observability relations, or Boolean relations, improve on don't care sets by allowing the expres-

sion of correlation of outputs [44, 22]. A Boolean relation speci�cation of a subcircuit or a set of

nodes is a set of input-output value combinations that describes precisely which output value com-

binations may occur in response to each input value combination. It is considered to be correctly

implemented by any completely speci�ed (multi-output) Boolean function that is compatible with

it, that is, that when considered itself as a set of input-output value combinations is seen to be

a subset of the Boolean relation. The use of Boolean relations to describe the degrees of freedom

available for implementation of a subcircuit within a combinational circuit has been explored by

[44, 22, 120, 134]. Boolean relations (like DCs) are de�ned for logic networks, which by de�nition

can represent only acyclic combinational circuits. Our substitution results provide a speci�cation

of all the degrees of freedom available in implementing an internal node or set of nodes. Thus we

address the same problem as do DC-sets and Boolean relations. However, our substitution results

are more general than Boolean relations (which are in turn more general than DCs), because we

solve the problem in a more general context than logic networks. Our circuit semantics allow the

expression of combinational circuits that contain (unlatched) feedback loops, and therefore among

the degrees of freedom we identify as available for the correct implementation of a logic network

node or set of nodes is the possibility of its containing feedback.

We mention one additional approach to the expression of the degrees of freedom available for

the implementation of a node or set of nodes in a logic network. This approach is called Boolean

uni�cation, and it has been applied by Fujita et al. to both multi-level logic optimization and logic

redesign [63, 84]. It provides a methodology for deriving the most general speci�cation of a node

or set of nodes in a combinational logic circuit, based on E-uni�cation [83, 6] for E the equational

theory of Boolean rings [97]. This method is not applicable to combinational circuits that contain

feedback, because its soundness depends on the Boolean exclusive-or and and operators forming a

Boolean ring. In the presence of combinational feedback, the Boolean ring axioms do not hold for

these operators. Therefore (as for Boolean-relation based methods) our substitution results extend

CHAPTER 1. INTRODUCTION 34

this method because they describe all degrees of freedom in a more general context.

As just indicated, another relevant application of the above techniques is in the area of logic re-

design. Redesign is the problem of rectifying incorrect designs to meet a given speci�cation [135, 85].

This problem may arise in various ways. In some cases a design error has been found which we hope

can be corrected by modifying a restricted part of the existing design (resynthesis). In other cases,

the existing hardware design was correct but the speci�cation has subsequently been modi�ed (engi-

neering changes). The former case obviously allows the application of logic optimization techniques,

while the applicability of these techniques to the latter may require some explanation.

6

6

6

6

...............
......

...............
......

...............
......

...............
......

X

Y

W

Z

Tnew T0

Figure 1.14: Recti�cation of an existing circuit T0 by the addition of modi�cation circuitry Tnew

In the case of an existing hardware design and a recti�ed speci�cation, we may attempt to modify

the existing hardware by adding external circuitry to the design. If possible, the desired correction

is achieved by the addition of such modi�cation circuitry solely on the input wires of the existing

circuit or solely on its outputs. As described above, Boolean uni�cation techniques are applicable

only to these cases [63, 84]. However, in order to achieve the desired correction to the functionality

of the new composite circuit, it may sometimes be necessary to add modi�cation circuitry to both

the inputs and the outputs of the original circuit, as illustrated in Figure 1.14. This case has been

addressed in [135]. In principle, the problem of determining all the degrees of freedom available for

the correct implementation of Tnew in Figure 1.14 is precisely the problem of deriving a Boolean

relation or observability relation for a subcircuit of a circuit or for a set of nodes in a logic network,

as addressed by [44, 22, 120, 134]. However, their work assumes an acyclic structure for the resulting

composite circuit, as re
ected in the acyclicity requirement for a logic network. Therefore, in order

to avoid the inadvertent creation of combinational feedback loops by composition of the existing

circuitry T0 and the newly created modi�cation circuitry Tnew ; Watanabe et al. take a di�erent

CHAPTER 1. INTRODUCTION 35

approach to the derivation of correct Tnew : They present a conservative relational speci�cation for

Tnew which does not identify all the degrees of freedom available for its correct implementation (not

even of those Tnew that would not lead to the creation of a combinational feedback loop), but which

allows the later addition of latches to modify the composite circuit somewhat in order to break any

combinational feedback loops [135]. (Details are provided in Example 4.9 in Chapter 3). In our own

approach to this redesign problem, the creation of combinational feedback loops is not a concern.

Hence our substitution results, which address the same problem as [44, 22, 120, 134], may be applied

directly to this redesign problem without modi�cation in order to correctly identify all the degrees

of freedom available for the correct implementation of Tnew :

1.5.3 Sequential logic synthesis and optimization

In performing logic synthesis for synchronous circuits, the standard strategy is to �rst determine a

binary encoding for each state of the circuit [5]. This is called state encoding. One may then pursue

further optimization and re�nement of the resulting synchronous logic network [103]. Subsequently,

technology mapping is applied in a manner similar to the combinational case. In some cases, op-

timization may be interleaved with state encoding (reencoding), to the extent that state encoding

e�ectively incorporates the technology mapping step [103].

State encoding transforms a RTL model into a synchronous logic network (SLN). We describe

this abstract circuit model for the case in which the circuit is clocked by a single-phase clock (that

is, all rising clock edges are modeled abstractly as equivalent clock ticks) and all state is stored

in edge-triggered synchronous delay elements (edge-triggered D-
ip
ops, also called registers) [102].

Synchronous logic networks are similar to the logic networks described in the previous section, except

that they are intended to model synchronous circuits rather than purely combinational circuitry.

Every vertex is associated with a single-output Boolean (combinational) function, as in the case

of a logic network. The synchronous delay elements are modeled as positive weights on the edges

of the SLN. An edge that corresponds to a wire connecting two combinational logic blocks with

no intervening delay element has weight zero. The underlying graph need not be acyclic; however,

every cycle in the SLN must have a positive total edge weight. Therefore this model does not allow

unlatched feedback loops. In addition, because a vertex of a SLN may be associated with a Boolean

function that depends on the function output value of another vertex at di�erent instances of time, a

SLN may contain multiple edges between the same two vertices, each labeled with a distinct weight.

Various methods may be employed for state encoding [5]. We concentrate on those approaches

that utilize don't-care techniques, as those are most closely related to our own approach.

During state encoding, the RTL model may be decomposed into a set of interacting �nite-state

machines whose states are encoded symbolically (rather than being fully determined at the bit

level). Don't-care methods may then be applied in an attempt to minimize both the number of bits

necessary for binary state encoding and the next-state logic necessary to implement the transition

CHAPTER 1. INTRODUCTION 36

relations of these component machines [5, 21]. Our substitution results provide a methodology for

deriving all the degrees of freedom available for the correct implementation of an arbitrary subcircuit.

Because these don't-care methods address a similar problem for the case of a component �nite-state

machine, we will brie
y discuss these methods and contrast their expressiveness with our own.

For the case of cascaded �nite-state machines (FSMs), in which each FSM drives the next in

series, the behavior of each component machine may determine input don't-care sequences for the

machine that it drives [82, 119]. The derivation of input don't-care sequences has been extended

to the case in which feedback is allowed between the two machines [132]. Similarly, researchers

have addressed the problem of deriving the output don't-care sequences for the driving machine

from examination of the driven machine [119, 133]. This problem is much more di�cult, and a

formalism even more expressive than Boolean relations is needed to fully describe the derived degrees

of freedom available for correct implementation, even in this simple cascade con�guration [133, 21].

A su�ciently expressive formalism has been identi�ed in [122, 21] where it is called multiple Boolean

relations (MBRs). This formalism also su�ces to describe the output don't-care sequences when

feedback is allowed between the two machines [133].

These methods do not combine the computation of input don't-care sequences and output don't-

care sequences in the presence of feedback between machines, and therefore they do not compute

all the degrees of freedom available for correct implementation. It is not known just how much

information is lost, because it is not known how to iterate these methods to correctly derive all

possible degrees of freedom. Methods for deriving an automaton speci�cation that incorporates all

the degrees of freedom available for the correct implementation of one FSM in a set of interacting

FSMs have been identi�ed by [136, 54]. However, in both of these formalisms the combination of the

other interacting FSMs must be presented as a single deterministic FSM { that is, one that allows

only a single input-value combination in response to each output-value combination from each state.

In contrast, our approach allows the derivation of an automaton speci�cation even when the other

interacting FSMs do not form a single deterministic machine.

Multiple Boolean relations, or MBRs, were introduced in [122], where they were de�ned to be

sets of maximal Boolean relations. This formalism allows the expression of two Boolean relations

without implying that their union also describes an allowed solution. For example, if one Boolean

relation part of an MBR allows the output value combinations 010 and 101 in response to the input

value 0; and the output value combination 111 in response to input 1; and another allows 000 in

response to 0 and 110 and 011 in response to 1; that does not imply that an implementation that

produces 101 in response to 0 and 110 in response to 1 is a correct, allowed implementation. Such

a constraint cannot be expressed by a single Boolean relation. In [21] it was noted that MBRs can

be expressed as Mealy machines that allow multiple output-value combinations in response to the

same input-value combination from a given state. We call such machines nondeterministic Mealy

machines. Every nondeterministic Mealy machine describes an MBR. However, multiple distinct

CHAPTER 1. INTRODUCTION 37

minimal nondeterministic Mealy machines can express the same MBR. Therefore MBRs are not as

expressive as nondeterministic Mealy machines, which are the formalism we employ to identify all

the degrees of freedom available for the correct implementation of a subcircuit.

Various methods may be applied to a synchronous logic network in order to re�ne it into an

optimized form to which technology mapping can be applied. One may apply combinational logic

optimization methods to the combinational blocks of logic that do not cross register boundaries. A

method which leads to better optimization results is to alternate such combinational optimization

with retiming [90], in which registers are moved across blocks of logic in order to minimize their

number or to shorten the minimum length of the clock cycle (by minimizing the propagation delay

through any contiguous combinational blocks) [90, 102, 93]. Our substitution results are most

closely related to the more expressive approach to optimization and re�nement of a synchronous

logic network which we describe below.

An approach to the optimization of a synchronous logic network that can express better results

than what can be achieved by retiming and combinational optimization alone is described in [56, 57,

55]. This approach considers the traces (input-output sequences) that constitute the behavior of a

synchronous logic network and utilizes don't care techniques to identify degrees of freedom available

for the implementation of an arbitrary subnetwork. Synchronous recurrence equations describe the

behavior of a synchronous logic network in equational form, using variables that are wire names

indexed by relative time o�sets to indicate the value on a particular wire during a particular clock

cycle. Don't-care information can be derived from these equations.

In the case of a synchronous logic network that is acyclic, all degrees of freedom available for

the correct implementation of an arbitrary subnetwork can be derived by this method. MBRs are

required to express these degrees of freedom [55, Section 5.4]. In the case of a synchronous logic

network that contains feedback, the network is partitioned into an acyclic part and a set of feedback

connections. Synchronous recurrence equations that express input don't cares and output don't

cares of the acyclic part of the network are derived iteratively. It is not known whether or not in all

cases the particular partition chosen is irrelevant, and hence it is not known how much of the total

don't-care information is derived by this method.

We mention one other recent addition to the literature on degrees of freedom in implementing

synchronous logic. This work di�ers from the rest by not assuming that the initial state of the

representation is known and reachable. This corresponds to not assuming full reset capability for

the hardware. Singhal and Pixley et al. have proposed a method for optimizing the implementation

for a traditional (deterministic) Mealy machine by replacing the original Mealy machine with one

having fewer states, when both the original and the replacement may power up in any state [113].

They present a formal de�nition of a \safe replaceability" relation � between two Mealy machines

that takes into account the ability of both machines to power up in any state [125]. They clarify

that the � relation implies safe replaceability with respect to all environments: if D1 � D0; then D1

CHAPTER 1. INTRODUCTION 38

may safely replace D0 in any environment [113, p. 445]. Therefore, no don't-care information may

be extracted from the environment of the intended circuit. Instead, their de�nitions identify degrees

of freedom available for the implementation of the states themselves: if D0 may be safely replaced

by a Mealy machine with an order of magnitude fewer states, then fewer registers are required to

implement these states.

1.6 Contributions of the thesis

We have developed a mathematical model of synchronous sequential circuits that supports both

automated formal hierarchical veri�cation and substitution. In order to facilitate hierarchical veri-

�cation, we model synchronous circuit speci�cations and implementations uniformly. Each of these

descriptions provides both a behavioral and a structural view of the circuit or speci�cation being

modeled. We de�ne primitive behavioral models and operations on them that correspond to wiring

together circuits and to hiding non-primary output wires in order to explicitly state that the values

on these wires do not participate in the observable input-output behavior of the circuit or speci�ca-

tion. We prove that our models and these operations form a circuit algebra [61]. In order to correctly

model the behavior of a synchronous circuit during a single clock cycle, we adopt a modi�cation of

traditional Mealy machines as the basis for our behavioral model of synchronous circuits. In addi-

tion, our model supports nondeterministic speci�cations, which capture the minimum requirements

of a circuit without forcing us to overspecify by including irrelevant implementation details. All

models are �nitely representable and all operations are e�ective.

For formal veri�cation, our framework provides a means for comparison of the behavior of a cir-

cuit model to a requirements speci�cation in order to determine whether the circuit is an acceptable

implementation of the speci�cation. One model correctly implements another in this framework if

it may be safely substituted for it in any environment. The resulting behavior comparison rela-

tion forms a preorder over the class of models with the same input- and output-wires. In order to

determine whether this relation holds in any given case, we have developed algorithms for canoni-

calizing a model to enable its automatic comparison to a candidate implementation. This extends

the framework of asynchronous trace theory to the case of synchronous circuits.

For substitution, and to support a modular veri�cation process, our framework provides a struc-

tural view of a circuit and the capability to plug in one component in place of another in a circuit

model. This allows us to determine whether the new component constitutes an acceptable substi-

tution in terms of the desired behavior of the full circuit. In fact, we have derived a closed-form

expression for the most general speci�cation of the allowed substitutions for a component in a cir-

cuit, against which candidate components may be compared via the behavior comparison algorithms

developed for formal veri�cation. Our solution to this problem provides a more general solution than

CHAPTER 1. INTRODUCTION 39

has previously been available for existing problems in the areas of logic optimization and recti�ca-

tion. We have developed automatic procedures for the computation of this most general speci�cation

and for comparing it to candidate substitute components.

We have developed a similar, fully self-contained model of combinational circuits and their spec-

i�cations. All of the results for the synchronous case have been derived for the combinational model

as well, including fully automatic decision procedures for determining when one model correctly

implements another (considered as a speci�cation), and all the substitution results. The combi-

national framework can be embedded in the synchronous one, because a combinational behavioral

model may be considered to be a synchronous model of a particular form: a synchronous model of

a combinational circuit or speci�cation simply repeats its combinational behavior during each clock

cycle.

Hierarchical descriptions of combinational circuits may often contain apparent loops. This is

because the considerations involved in decomposing a circuit design into its component blocks are

primarily functional considerations rather than structural ones. Therefore apparent loops are ubiq-

uitous in a block diagram. In the presence of black-box behavioral descriptions for which structural

information is not available, apparent loops and actual combinational feedback loops in a hardware

design are not readily distinguishable. Previous existing formalisms have relied on syntactic methods

for distinguishing them. However, these methods are not satisfactory for nondeterministic models.

Our model of the behavior of a synchronous circuit within a single clock cycle correctly handles such

cyclic dependencies even in the presence of nondeterminism, by providing a semantic method to

describe them. As a result, we can also correctly model those actual combinational feedback loops

that may be inadvertently created via circuit model composition.

The semantic method we use to describe combinational feedback is the addition of a third wire

value to denote non-Boolean behavior. Traditionally, in order to ensure that such an addition leads

to sound results, a circuit has been represented by a monotonic function. This approach is not

directly applicable to nondeterministic models. Instead, we have identi�ed a new constraint on

the use of the third wire value, that is su�cient to ensure the soundness of our veri�cation and

substitution results.

In the safe substitution framework, the asymptotic complexity of determining whether or not

one circuit model correctly implements another is dominated by the asymptotic complexity of deter-

mining of another, derived model whether or not this constraint holds of it. Our choice of this new

constraint leads to a conformance check of lesser asymptotic complexity than would be the case if

we were to extend the monotonicity condition to nondeterministic models in various other (obvious)

ways.

In addition to developing a theoretical framework to support behavioral and structural compar-

ison of synchronous circuit models at various levels of detail, we have developed and implemented

automatic decision procedures for both formal veri�cation and substitution using these models.

CHAPTER 1. INTRODUCTION 40

1.7 Overview of the thesis

In this chapter we have provided an overview of work related to our own. Hopefully, we have also

succeeded in communicating an overview of what we have achieved and its signi�cance.

In the following chapter, we explain the circuit algebra framework on which our model is based.

In Chapters 3 and 4, we develop a fully self-contained model of combinational circuits and their

speci�cations, and develop the theoretical underpinnings of the automated veri�cation procedures

and substitution results for these models. In Chapter 5, we develop the full model of synchronous cir-

cuits and their speci�cations and develop the theoretical underpinnings of the automated veri�cation

procedures and substitution results for these models. They are an extension of the combinational

circuit models described in Chapters 3 and 4: the development and many of the proofs are essen-

tially identical to those in the previous two chapters. Chapter 6 describes the algorithms used in our

software implementation of the automatic formal veri�cation procedures for models of synchronous

circuits. Combinational circuit models are a special case of these circuits, with only trivial syntac-

tic extensions, and can be handled by the same veri�cation tool. Finally, Chapter 7 contains our

conclusions.

Finally, in an attempt to clearly delineate that portion of the work presented in this thesis which

is my own, I must clearly attribute the contributions of others. The use of a third wire value to

model feedback e�ects was suggested by Jerry Burch, and further developed in joint work among

myself, Jerry Burch and David Dill. The current de�nitions for the required constraints on its use

arose in the course of this joint work. However, the canonicalization de�nitions, theorems, proofs

and algorithms, and the software implementation and its design, are my own.

Chapter 2

Circuit Algebra and Other Math

2.1 Introduction

Circuit algebra was developed in [61] in order to formalize the notion of circuit structure in a

mathematical model of circuits. It identi�es the properties of circuits that should be re
ected

in a formal system for hierarchically describing their structure. Circuit algebra de�nes a set of

structural operators that may be applied to circuit models, and places constraints on how these

operators may interact with each other. The basic idea is that any reasonable de�nition of circuit

models, and of what these operators do to them, must identify di�erent ways of building the same

structure. The rules of circuit algebra formalize mathematically when two distinct circuit algebra

expressions denote the same circuit. When circuit models are behavioral descriptions, as in our

case, the circuit algebra framework guarantees that every circuit (irrespective of the order of its

construction) corresponds to a unique behavioral model, and that every circuit structure that may

be built using the circuit algebra operators and primitive or previously constructed behavioral models

is a legitimate behavioral circuit model. That is, di�erent behaviors are not assigned to the same

circuit structure, and every circuit may be structurally constructed from its primitive behavioral

components as a circuit algebra expression.

In this chapter, we list the de�nitions of circuit algebra and summarize its results. For a full ex-

position of circuit algebra see [61, Chapter 2]. The rules of circuit algebra axiomatize the framework;

when they hold of a model of circuits and its operators, then the results of circuit algebra follow

for that model. When we present our formal models for combinational and synchronous circuits, we

will prove that they obey the circuit algebra rules and thus form a circuit algebra.

In this chapter we also present mathematical notation and de�nitions that we will use in the

remainder of the thesis.

41

CHAPTER 2. CIRCUIT ALGEBRA AND OTHER MATH 42

2.2 Mathematical Preliminaries

2.2.1 Introduction

In this section we present some of the notational conventions that are used in the remainder of

this and subsequent chapters. Basic notation for functions and sets is used in the presentation of

circuit algebras in the following section. Relations are used in describing our behavioral models

of combinational and synchronous circuits. Sequences may be used to denote behavior over time,

and are therefore relevant for the modeling of sequential circuits. Therefore we are interested in

mathematical notation and background relating to �nite sequences and regular languages. In this

section we present this notation and background, in addition to de�ning our notational conventions

for the presentation of functions, sets, relations and general structures.

2.2.2 Functions, sets and relations

We use the standard notation � for set inclusion: C � A if every element of the set C is also an

element of the set A: The sentence C � A means that C is a proper subset of A; i.e., C � A and

there exists at least one element of A that is not in C: The number of elements in A is jA j:

We say two sets are disjoint if they have no element in common: Y and Z are disjoint if (Y \Z) =

;: The cross-product of two sets is the following set of pairs: H � G = fhh; gi j h 2 H and g 2 Gg:

We may sometimes refer to (H �H) as H2: Note that the order of the elements of a pair matters:

hh; h0i = hh1; h
0
1i if and only if h = h1 and h

0
= h01:

We write f : A �! B to indicate that f is a total function from domain A to codomain B: A

total function assigns an element of its codomain to every element of its domain: 8a 2 A:f(a) is

de�ned. If f is a partial function that is not total we write f : A * B: The set of all total functions

from domain A to codomain B may be written [A �! B]: Equivalently, we may write it as BA: If

A = ;; then BA
contains a single element, which we call the empty function. The identity function

over domain A is denoted by 1A: Functions may be composed: if f2 : A �! B and f1 : C �! D

such that f2(A) � C; then the composition of f1 and f2 is the function (f1 � f2); which is de�ned

by 8a 2 A:(f1 � f2)(a) = f1(f2(a)): Finally, two functions are equal if they map identical elements

to identical elements: (f1 : A �! B) = (f2 : A �! C) if and only if 8a 2 A:f1(a) = f2(a):

For any C � A; f(C) = ff(a) j a 2 Cg: Use of this notation is introduced by saying that \f

is extended naturally to sets." Later we will discuss the natural extension of a function to other

types of objects as well. It follows directly from this de�nition that if C1 � A and C2 � A; then

f(C1) [f(C2) = f(C1 [C2):

For any C � A and f : A �! B; we write fjC to denote the restriction of f to C: This function

is de�ned as follows: fjC : C �! B and 8c 2 C:fjC(c) = f(c): We use the notation f : x 7�! y to

indicate that f(x) = y: If we are only concerned with the e�ect of f on a small number of elements,

we may denote f by its e�ect on those elements, e.g., as [a 7�! b; c 7�! d]:

CHAPTER 2. CIRCUIT ALGEBRA AND OTHER MATH 43

A function is injective if it assigns a distinct value from the codomain to each element in its

domain. Formally, f : A �! B is injective if and only if 8x; y 2 A:[f(x) = f(y) =) x = y]:

We may also state that a function is injective over C; for C � A; and in that case we mean that

8x; y 2 C:[f(x) = f(y) =) x = y]: (Or in other words, fjC is injective).

Given a set B and two disjoint sets Y and Z; and two functions f1 2 B
Y
and f2 2 B

Z ; we de�ne

(f1 [f2) 2 B
(Y [Z)

to be the function f such that for every c 2 (Y [Z);

f(c) =

(
f1(c) if c 2 Y

f2(c) if c 2 Z

Clearly this function union operation is commutative (f1[f2 = f2[f1) and associative ((f1[f2)[f3 =

f1 [(f2 [f3)):

A relation is a way of pairing together elements of two sets: a relation R over two sets A and B

is a set of pairs R � (A � B): We may sometimes write aRb to denote ha; bi 2 R: If A and B are

the same set, that is, R � A2; then we may say that R is a relation over A:

An equivalence relation over a set D is a relation that is transitive, re
exive, and symmetric.

Transitivity is the property that 8a; b; c 2 D:[aRb and bRc =) aRc]: Re
exivity is the property

that 8a 2 D:aRa: Symmetry is the property that 8a; b 2 D:[aRb =) bRa]: An equivalence relation

partitions its underlying set into a set of disjoint classes, the union of which constitutes the full

original set. For d 2 D; we denote by [d]R0
the equivalence class of d induced by the equivalence

relation R0:

We say a relation R � D2
is a preorder if it is transitive and re
exive. We say that a relation

R � D2
is a partial order if it is transitive, re
exive, and anti-symmetric. Anti-symmetry is the

property that 8a; b 2 D:[aRb and bRa =) a = b]: Every preorder over a set D induces a partition

of D into equivalence classes, and a partial order over the set of these equivalence classes. The

preorder R � D2
induces an equivalence relation R0 over D; de�ned as follows: 8a; b 2 D:[aR0b()

(aRb and bRa)]: According to this de�nition, whenever aR0b and aRc then bRc as well. R0 in turn

induces a partial order R0 over f[d]R0
j d 2 Dg; which is de�ned as follows: [a]R0

R0[b]R0
if and only

if 8a 2 [a]R0
; b 2 [b]R0

:aRb: By properties of preorders and equivalence relations, this occurs if and

only if 9a 2 [a]R0
; b 2 [b]R0

:aRb: The relation R0 is a partial order.

For any set Y; the pointwise extension of any partial order R over a set D to a partial order RY

over [Y �! D] is de�ned as follows: 8f; g : Y �! D:[fRY g () 8d 2 D:hf(d); g(d)i 2 R]:

For a partial order R over D; and a subset C � D; we de�ne the least upper bound of C in D;

written lub(C); to be d 2 D such that 8c 2 C:cRd and 8d0 2 D:[[8c 2 C:cRd0] =) dRd0]: There

need not exist a least upper bound in all cases, but if there is one then it is unique. If lub(C) 2 C;

we may omit mention of D:

A monotonic function f : A �! B with respect to particular partial orders RA � A2
and

CHAPTER 2. CIRCUIT ALGEBRA AND OTHER MATH 44

RB � B2
is a function from A to B that has the following monotonicity property:

8a; a0 2 A:[aRAa
0
=) f(a)RBf(a

0
)]

Following [61], we use the notational convention that subscripts and superscripts are inherited by

the components of a composite description. If structures of a particular kind are de�ned to contain

�elds named A; B; and C; then the structure named H0 will have �elds named A0; B0 and C0; and

the structure named H0
will have �elds named A0; B0

and C0; etc.

2.2.3 Finite sequences and regular languages

! is the natural numbers. A �nite sequence w of length n 2 ! on some set C is a function

fi 2 ! j 0 < i � ng �! C: Given a sequence w; we write w[i] to denote the element in the i'th

position of w: (That is, w[i] is w(i)): We denote by len(w) the length of w: We de�ne w[0] = "; the

empty sequence, for all sequences w: " has length 0: If C does not contain sequences, the set of all

�nite-length sequences over C is written C�: The set of all sequences of length n over C is written

Cn: Thus C�
=

S
n2! C

n:

The concatenation of two sequences w and z is the sequence written w � z: It is de�ned as

follows. If len(w) = n and len(z) = m; then y = (w � z) if and only if for every i 2 ! such that

0 < i � n; y[i] = w[i]; and for every j 2 ! such that n < j � (n + m); y[j] = z[j � n]: The

same notation is used if either of w or z is an element of C : in that case we do not distinguish

it from an element of C1: Concatenation may be extended naturally from sequences to sets of

sequences: for Y;W � C�; Y �W = f(y � w) j y 2 Y and w 2 Wg: Concatenation is associative:

(x � y) � z = x � (y � z): Therefore we may omit the parentheses and write simply x � y � z: The natural

extension of a function f : C �! C0
to sequences on C is de�ned recursively: f(") = "; and for

c 2 C and w 2 C�; f(c � w) = f(c) � f(w): It is clear from the de�nition that any function de�ned

as such an extension distributes over sequence concatenation: f(w � z) = f(w) � f(z): The pointwise

extension of any partial order R over a set D to a partial order R0 over D�
is de�ned as follows:

8y; z 2 D�:[yR0z () [len(y) = len(z) and 8i 2 !:[0 < i � len(y) =) hy [i]; z [i]i 2 R]]]:

We de�ne notation to describe the pre�xes of a sequence. A sequence w 2 C�
is a pre�x

of a sequence y 2 C�
if and only if there exists a sequence z 2 C�

such that y = w � z: Thus

pref (y) = fw 2 C � j 9z 2 C �:y = w � zg is the set of all pre�xes of y: The pref function is extended

to sets as follows: for Y � C�; pref (Y) =

S
y2Y pref (y): We say a set Y is pre�x-closed if and only

if pref (Y) � Y :

We de�ne notation to describe the extensions of a sequence in a given set of sequences. A

sequence w 2 C�
is an extension of a sequence y 2 C�

in a set W � C�
if and only if (y � w) 2 W:

Formally, for y 2 C�
and W � C�; ext(y ;W) = fw 2 C � j (y � w) 2 W g: More speci�c notation

allows us to specify the length of the extensions in which we are interested. For each n 2 !;

CHAPTER 2. CIRCUIT ALGEBRA AND OTHER MATH 45

extn (y ;W) = fw 2 C n j (y � w) 2W)g: The ext and extn functions are extended to sets as follows:

for Y;W � C�; ext(Y ;W) =

S
y2Y ext(y ;W) and extn (Y ;W) =

S
y2Y extn (y ;W):

Finally, we present our notation for regular languages and �nite-state automata. Most of the

de�nitions and results that we describe can be found in any introductory automata theory book,

for example [74]. We are especially interested in Mealy machines [101], which are a particular

kind of �nite-state automaton. We de�ne our own variant of Mealy machines, which we use in our

synchronous circuit models.

A �nite-state automaton M is a �ve-tuple h�; Q;Q0; QF ; �i; where � is a �nite set of symbols,

Q is a �nite set of states, Q0 � Q is a set of initial states, QF � Q is a set of �nal states and

� � (Q � � � Q) is a transition relation. M may also be called a �nite-state machine (FSM). M

is a deterministic FSM if and only if � in fact forms a function � : (Q� �) �! Q and Q0 contains

only one element q0 2 Q: If M is not a deterministic FSM we say it is a nondeterministic FSM.

Each �nite-state automaton denotes a particular set of sequences on �; as follows. A run of an

FSM M on a sequence w 2 �
�
is a sequence � on Q such that �[1] 2 Q0 and for every n 2 ! such

that 0 < n < len(�); h�[n]; w[n]; �[n+ 1]i 2 �: If there exists a run � on w 2 �
�; we may write

�[1]
M;w
=) �[len(�)]; or simply �[1]

w
) �[len(�)]: In addition, if there exists a run � of M on some

w 2 �
�; we say that �[len(�)] 2 Q is reachable. We say the run is accepting if �[len(�)] 2 QF : If

there exists an accepting run on w 2 ��; we say thatM accepts w: Note that ifM is a deterministic

FSM, then the de�nition of a run � on w becomes �[1] = q0 and 8n 2 ! such that 0 < n < len(w);

�(�[n]; w[n]) = �[n + 1]: It follows that a deterministic FSM M accepts w if and only if there is a

unique accepting run on w:We de�ne the language L(M) of a FSM M to be the set of all sequences

accepted by M: There exists an e�ective procedure for transforming any nondeterministic FSM M

into a deterministic FSM M 0
such that L(M 0

) = L(M):

It turns out that there exists an alternative characterization of the expressiveness of FSMs. This

characterization is in terms of regular languages. A regular language or regular set L � A� is a set of

sequences described by a regular expression. Regular expressions over a prede�ned alphabet A are

de�ned recursively as follows. Every element of A is a regular expression, the union of two regular

expressions is a regular expression (written �+� for regular expressions � and �); the concatenation

of two regular expressions is a regular expression (written � � � or ��); and the Kleene closure of

a regular expression is a regular expression (written ��): The details of the correspondence of a

regular expression to a regular set can be found in [74]. Regular languages are precisely the sets L of

sequences for which there exist �nite-state automataM such that L(M) = L: Therefore we may say

that a set of sequences is a regular set in order to indicate that it can be expressed by a �nite-state

automaton, without making explicit the automaton itself.

Regular sets are closed under union, concatenation, Kleene closure, intersection, set complement

(withinA�); and substitutions. The Kleene closure of a set L of �nite sequences is de�ned as

S
n2! L

n

where L0
= f"g and L(n+1)

= L �Ln: The Kleene closure of a single �nite sequence w is the Kleene

CHAPTER 2. CIRCUIT ALGEBRA AND OTHER MATH 46

closure of the set fwg: A substitution is a function from an alphabet (set of symbols) A to a set of

regular sets. It maps each symbol a 2 A to a regular set Ra: We extend it naturally to sequences,

and then via union to sets of sequences: for W � A�; s(W) =

S
w2W s(w): Therefore it distributes

over sequence and set concatenation. If X is a regular set, then so are pref (X); ext(w ;X); and

extn (w ;X):

A Mealy machine is a particular form of FSM in which the symbols � have a speci�c kind of

internal structure [101]. Speci�cally, � is B(I[O)
where B is the set of values that a wire may

hold, and I and O are the input- and output-wires, respectively, of a hardware system. Traditional

Mealy machines [101] are deterministic in the following sense: for every state q 2 Q and input-value

combination x 2 BI ; there exist a unique output-value combination y 2 BO
and a unique next-

state q0 2 Q such that hq; (x [y); q0i 2 �: If a Mealy machine is deterministic in this sense, we say

that it is a deterministic Mealy machine. A deterministic Mealy machine must be a deterministic

FSM. However, a Mealy machine can be a deterministic FSM and yet not be a deterministic Mealy

machine. We will work with a variant of traditional Mealy machines, that need not be deterministic

in the sense just described. They are de�ned precisely as are �nite-state automata, except that �

must have the additional structure we have described (� = B(I[O)
for some disjoint sets I and O);

and every input-value combination must be represented on the out-edges of every state:

8q 2 Q; x 2 BI :9y 2 BO ; q0 2 Q:hq; (x[y); q0i 2 �

2.3 Circuit Algebra

Circuit algebra formalizes the notion of circuit structures. It de�nes the constraints we expect to

hold of mathematical operations (on circuit models) that are supposed to re
ect the physical wiring

together or packaging of actual circuits. In this section, we present the mathematical operators for

building hierarchical circuit models, and present the axioms of circuit algebra, also called its rules.

We then summarize the theorems of circuit algebra from [61, Chapter 2].

In this framework, a circuit description must have associated with it two �nite disjoint sets I

and O: I is the set of its input-wire names, and O is the set of its output-wire names. Following our

naming convention, a circuit description C has associated sets I and O; a circuit description C0
has

associated sets I0 and O0; etc. We also say that A = (I [O); A0 = (I0 [O0
); etc.

Three operators are de�ned for circuit descriptions: composition (written k); hiding (del); and

renaming (ren): They are intended to re
ect the operations of wiring two circuits together, hiding

some of the output wires of a circuit in order to indicate that these wires cannot be wired up to

any further wires in other circuits, and making explicit when two circuits share a wire, respectively.

Composition (k) combines two circuit descriptions into a single circuit description by identifying

wires that have the same name. Outputs may not be wired together, so C00
= C k C0

is only

de�ned if (O \ O0
) = ;: The circuit algebra framework also requires that O00

= (O [O0
) and

CHAPTER 2. CIRCUIT ALGEBRA AND OTHER MATH 47

I00 = ((I [I0) � O00
): The renaming operator ren changes wire names. C0

= ren(r)(C) is only

de�ned if r is a function that is injective over A: In that case, I0 = r(I) and O0
= r(O): The hiding

operator del hides output wires of the circuit so that they cannot be connected to other wires (via

composition). C0
= del(D)(C) is only de�ned if D � O: In that case, I0 = I and O0

= (O �D):

For a discussion of these restrictions and their rami�cations, see [61, Section 2:3]. There it is

shown that the requirements that (I \O) = ; and that outputs not be wired together do not place

unrealistic constraints on the circuits that can be modeled.

The following rules constitute the axioms of circuit algebra. Any circuit modeling framework in

which the circuit models include disjoint I and O components and in which the operators obey the

constraints listed above and for which the following equations hold { is a circuit algebra. In this

presentation of the rules of circuit algebra, we assume that T; T1; T2 and T3 are circuit descriptions.

C1: If O1; O2; and O3 are pairwise disjoint, then T1 k (T2 k T3) = (T1 k T2) k T3:

C2: If (O1 \O2) = ;; then T1 k T2 = T2 k T1:

C3: If r0 is injective over A and r is injective over r0(A); then ren(r)(ren(r0)(T)) = ren(r � r0)(T):

C4: If (O1 \O2) = ; and r is injective over (A1 [A2); then

ren(r)(T1 k T2) = ren(r)(T1) k ren(r)(T2)

C5: ren(1A)(T) = T

C6: If (D1 \D2) = ; and (D1 [D2) � O; then del(D1)(del (D2)(T)) = del(D1 [D2)(T):

C7: del(;)(T) = T:

C8: If (O1 \O2) = ;; (D1 \A2) = (D2 \A1) = ;; D1 � O1 and D2 � O2; then

del(D1)(T1) k del (D2)(T2) = del (D1 [D2)(T1 k T2)

C9: If D � O and rj(A�D) = r0j(A�D) and r0 is injective over A; then

ren(r)(del(D)(T)) = del(r0(D))(ren(r0)(T))

In [61, Chapter 2], the following results are derived for circuit algebras. First, a de�nition is

given for the structural equivalence of two circuit structures. Two circuit structures are structurally

equivalent if they have the same input wires and the same output wires, and corresponding basic

components which are connected in the same way. It is then proved that for a minimally informative

model of circuit structures, the equivalence classes of structurally equivalent circuit structures form

a circuit algebra.

CHAPTER 2. CIRCUIT ALGEBRA AND OTHER MATH 48

It is proved that every circuit algebra expression is algebraically equivalent (i.e., equivalent by

the rules of circuit algebra) to a normal-form expression. A normal-form expression contains only a

single application of the hiding operator, which is the outermost operator. This operator is applied

to an expression that is the composition of multiple subexpressions, each of which consists of the

application of a renaming operator to a primitive circuit structure Si: In other words, a normal-form

expression has the following form:

del(D)[ren(r1)(S1) k ren(r2)(S2) k : : : k ren(rn)(Sn)]

This result is key to proving that if two expressions describe structurally equivalent circuits, the

expressions are algebraically equivalent.

As a direct result, any behavioral circuit model that forms a circuit algebra describes all circuits

and assigns the same behavior to structurally equivalent circuits. The axioms of circuit algebra hold

of both our model of combinational circuits and our model of synchronous circuits. Therefore these

models adequately capture the structural view of such circuits.

2.4 Vectors and Sequences to Denote Circuit Behavior

We are concerned in this thesis with the behavior of circuits. Therefore we name their wires and

refer to the values held on each wire during each clock cycle. A vector is an assignment of values

to the elements of a known set of wires. A sequence of vectors, in contrast, refers to the evolution

over time of the values on a known set of wires, i.e., one vector per clock cycle. These mathematical

objects may be de�ned using standard mathematical notation for functions and for regular sets.

B denotes the digital domain of wire values f0; 1g:A single-output Boolean function f : Bn �! B

assigns an element of B to every element in a set of n wires. In our own work, we will always make

explicit the particular set of wires to which assignments are made. Thus assignments of Boolean

values to a particular set of wires will take the form BA; where A is a prede�ned set of wire names.

The elements of BA are Boolean vectors. Recall that BA also denotes the set of functions from

domain A to codomain B: This notation is entirely consistent with the explanation we have just

given.

In general, for any domain V of wire values, and any prede�ned set of wire names A; every

element of VA is a vector. Renaming may be naturally extended to vectors: if r : A0 �! B is

injective over A � A0; then r : VA �! Vr(A) is de�ned by 8w 2 VA:8a 2 A:(r(w))(r(a)) = w(a):

The pointwise extension of any partial order R over a domain of wire values V to vectors of these

values is simply the pointwise extension of R to functions: per set of wires H; 8x; y 2 VH :[xRHy ()

8h 2 H:hx(h); y(h)i 2 R]: If V contains only one element v 2 V; then vA denotes the unique function

in VA:

We have referred to the standard ternary extension of a Boolean function. We will now de�ne this

CHAPTER 2. CIRCUIT ALGEBRA AND OTHER MATH 49

term precisely. Let BX = f0; 1;Xg be the ternary domain of wire values used for ternary simulation

(see Section 1.4.5). We extend the partial order information ordering �; in which X < 0 and X < 1

and in which 0 and 1 are incomparable [37], pointwise to vectors of wire values.

The standard ternary extension of a single-output Boolean function f : BC �! B is the function

g : (BX)
C �! BX such that g = lubfh : (BX)

C �! BX j hjBC = f and h is monotonicg: For

example, the standard ternary extension of the Boolean or-function maps the input vectors 1X and

X1 to 1; but maps the input vectors 0X; X0 and XX to X:

This de�nition extends to multi-output Boolean functions f : BC �! BD via a transformation

of the type of f: We note that f : BC �! BD may be represented by a vector of single-output

Boolean functions fd : BC �! B; one for each element d 2 D: That is, f : BC �! BD contains

information equivalent to that contained by the function f 0 2 [D �! [BC �! B]]; that maps every

d 2 D to fd such that for every x 2 BC ; fd(x) = (f(x))(d): Then the standard ternary extension of

f : BC �! BD is the result of taking the standard ternary extension gd of each fd: In other words,

g : (BX)
C �! (BX)

D
is just g0 2 [D �! [(BX)

C �! BX]] (where g0(d) = gd for each d 2 D);

considered as a multi-output function. With respect to the partial order information ordering �

over BX ; and its extension pointwise to vectors of values in (BX)
C
and (BX)

D; the standard ternary

extension of every Boolean function is a monotonic function.

The transformation between types illustrated in the above discussion is an example of an iso-

morphism. Two sets A and B are isomorphic if their elements are in one-to-one correspondence. In

other words, there exists an injective function h1 : A �! B such that h1(A) = B: We may refer to

h1 as an isomorphism. If the elements of the sets A and B have known internal structure (like f and

f 0 in the above discussion), isomorphism also requires that the functions in which we are interested

{ extended in the standard ways to these elements { map corresponding elements of A and B to

elements that also correspond. In the above discussion, for example, h1 maps f to f 0 and g to g0;

and the function in which we are interested is the one that maps a Boolean function to its standard

ternary extension.

In the remainder of this section, we present our de�nitions in terms of an unspeci�ed domain

V of wire values. We are concerned with vectors of values over this domain (x 2 VC) and with

sequences of such vectors (w 2 (VC)�):

In preparation for de�ning our behavioral circuit models, we de�ne the functions del and del�1

over these domains. For D � A and x 2 VA; del(D)(x) is de�ned to be the unique y 2 V(A�D)

for which there exists z 2 VD such that x = (y [z): This de�nition extends naturally to sets of

vectors, and to sequences of vectors and thence to sets of sequences of vectors. For D disjoint from

A; and y 2 VA; del�1(D)(y) is de�ned to be the set f(y [z) j z 2 VDg: This de�nition may be

naturally extended to sequences of vectors. We extend this de�nition to sets of vectors, and to sets

of sequences of vectors, as follows: for Y � VA or for Y � (VA)�; del�1(D)(Y) =
S
y2Y del�1(D)(y):

These functions have the following useful properties.

CHAPTER 2. CIRCUIT ALGEBRA AND OTHER MATH 50

Property 2.1 If D2 � A and D1 � (A�D2); and W � VA or W � (VA)�; then

del(D1)[del(D2)(W)] = del(D1 [D2)(W)

Property 2.2 If D1 � A and (D2 \A) = ;; and W � VA or W � (VA)�; then

del (D1)[del
�1
(D2)(W)] = del�1(D2)[del(D1)(W)]

Property 2.3 If A and D1 and D2 are pairwise disjoint, and W � VA or W � (VA)�; then

del�1(D1)[del(D2)
�1
(W)] = del�1(D1 [D2)(W)

Property 2.4 If (D \A) = ;; and W;Z � VA or W;Z � (VA)�; then

del�1(D)(W \ Z) = del�1(D)(W) \ del�1(D)(Z)

Chapter 3

Combinational circuit models

3.1 Introduction

In this chapter we develop relational models for combinational circuits. We intend that a behavior

of a synchronous circuit be modeled as a sequence of combinational steps, each of which takes place

within a single clock cycle. In order to better understand the properties of such a sequence, we

�rst explore the internal structure of a combinational step. We proceed from the assumption that

this exploration is best pursued via a full study of the combinational case, considered independently

of the fact that our �nal goal in developing combinational circuit models is to [understand the

combinational case su�ciently well that we can] embed aspects of these models into full sequential

circuit models.

Combinational circuits are a special case of clocked sequential circuits: they just happen to

exhibit the same output values in response to the same input values during every clock cycle.

Therefore even after we expand the combinational circuit model that we develop in this chapter

into a model of clocked sequential circuits and speci�cations, we will still need to be able to model

combinational circuits. In order to enable the expansion of our combinational circuit model to

model clocked sequential models as well as the purely combinational circuitry which we tackle in

this chapter, we adopt a modi�ed Mealy machine model of synchronous circuit behavior. Thus our

model of combinational circuit behavior posits that there is zero delay between the arrival of the

input values and the computation of the resulting output values during the current clock cycle.

In other words, we use a zero-delay model of combinational behavior, rather than a model that

incorporates propagation delay.

Our goal is to develop a model useful for both substitution and formal hierarchical veri�cation of

combinational circuits. In order to meet this goal, our model should support hierarchical construction

and modular description of circuits. We also want to support nondeterminism, in order to enable

the expression of a speci�cation which allows for multiple correct implementations. The circuit

51

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 52

algebra framework presented in the previous chapter provides hierarchical construction and modular

description capabilities. However, as discussed in Chapter 1, we still need to think about how our

model handles the combinational feedback loops that may be created by indiscriminate application of

the composition operator. As discussed in Section 1.4, our desire to support nondeterministic models

and modular `black-box' descriptions and to support both the expression of purely combinational

circuitry and clocked sequential behavior in a single sequential model means that existing known

solutions to this problem are not applicable in our framework.

The organization of this chapter is as follows. In the following section, we describe our solution

to the problem of modeling unlatched feedback loops. We also present the formal de�nition of a

combinational relation structure, which is our representation of a speci�cation or implementation

of a combinational circuit. The model incorporates our solution to the zero-delay cycle modeling

problem. In Section 3.3, we de�ne the circuit algebra operations for these models and prove the

closure of the class of combinational relation structures under these algebraic operations. In each

section, we provide examples to illustrate the theory.

3.2 The combinational circuit model

3.2.1 Introduction

We seek to develop models of combinational circuits that support hierarchical construction and

modular description of such circuits, and that support nondeterminism. The latter enables the ex-

pression of a speci�cation which captures the minimum requirements of a circuit instead of requiring

that we overspecify by including irrelevant implementation details.

The circuit algebra framework provides the �rst two of these desired properties. We utilize a

relational model of combinational behavior in order to provide the third. In the relational model,

combinational behavior is represented by a set of input-output value combinations that the circuit

may produce or that the speci�cation allows.

In modeling synchronous behavior as a sequence of clock cycles, we ignore the passing of time

within a single clock cycle, and only examine the �nal digital values of the wires after stabilization

within the cycle. However, in some cases not all wires need stabilize. Normally, combinational

circuits that are modeled usefully at a digital level of abstraction are assumed to be wired together

only into topologies with unidirectional
ow of information. That is, they are constructed from

well-behaved digital parts using only cascade composition, so that the resulting network forms an

acyclic directed graph. If we restrict ourselves to cascade composition, we avoid all cases in which

wires need not stabilize. Thus in this case the binary digital abstraction for wire values su�ces.

However, as discussed in Section 1:4; the standard syntactic methods for detecting non-cascade

composition do not work in the presence of nondeterministic models and black-box behavioral de-

scriptions for which no gate-level structural description is available. Therefore we are obliged to

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 53

model combinational feedback loops. Our relational model of combinational circuit behavior utilizes

semantic means in order to allow the expression and hence detection of such zero-delay cycles.

In order to meet the goal that our models support hierarchical veri�cation, we require the ability

to model the possible environments of a circuit as circuit models as well. This leads to the need to

distinguish two kinds of possible behaviors of a circuit: those which are desirable and those which are

possible but undesirable. The necessity for a two-language model of combinational circuits and their

speci�cations is elucidated in Section 4.2, where we develop the notion of a circuit's environment as

a tool for determining the correct implementations of a requirements speci�cation.

In the remainder of this section, we �rst show why the binary digital abstraction does not su�ce

for modeling combinational feedback loops. We then present our solution: the addition of a third

digital value which is intended to denote a situation in which a wire does not stabilize to either of

the Boolean values 0 or 1 by the end of the clock cycle. Finally, we present our formal model for

combinational circuits and their speci�cations, and provide examples.

3.2.2 The ternary domain of wire values

If we restrict ourselves to cascade composition, we avoid all cases in which wires need not stabilize

to either of the digital Boolean values 0 or 1: Thus in this case the binary digital abstraction for

wire values su�ces. Boolean relations handle this case, and from them we learn that we must use

relations rather than functions to support nondeterminism [44, 22].

In this section, we explain the additional expressiveness of Boolean relations over Boolean func-

tions, and show why they are nevertheless inadequate to model non-cascade composition. We then

present our solution to modeling wire values in the presence of non-cascade composition.

In modeling synchronous behavior as a sequence of clock cycles, we only examine the �nal digital

values of the nodes after stabilization within a clock cycle. If we restrict the unlatched circuits

we model to those involving only cascade composition, such a circuit may be modeled as a Boolean

function from input-value combinations (values on input wires) to output-value combinations (values

on all other nodes). Thus the simplest formal model of such a piece of combinational logic having

input wire set I and output wire set O is a mapping from input vectors to output vectors, f : BI �!

BO : However, this functional representation is inadequate in the presence of choice.

If we allow nondeterminism in order to handle requirements speci�cations, we can no longer

model everything we want with a function. Consider the following potential extension to the function

model of circuit behavior, which we do not adopt. We might consider modeling a circuit by a set

of mappings fj : B
I �! Boj ; one for each oj 2 O: In order to handle the case in which an output

wire's value in response to some particular set of input-value combinations is arbitrary, we could

allow each fj to be partial. In such a model, for any j and w 2 BI such that fj(w) is unde�ned, we

would understand that the output wire oj may take arbitrary value under input-value combination

w: The proposed formalism, however, does not allow the expression of all the degrees of freedom a

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 54

requirements speci�cation might require.

The above formalismdoes not support correlated outputs: it cannot express the requirement that

(for some given input value combinationw) one output wire, oj1 ;may have the value 1 only if another

output wire, oj2 ; has the value 0: In other words, we may wish to express constrained choice, in which

some input-value combination may result in any of several speci�c output-value combinations, but

not in a completely arbitrary output-value combination. These are the conditioned vertex equivalence

classes of [22], which cannot be expressed by a set of mappings fj : B
I �! Boj :

Thus in order to use our model to express a speci�cation, with all its potential degrees of freedom,

a functional representation is not su�cient. Instead, we model a combinational circuit or circuit

speci�cation as a relation between input-value combinations and output-value combinations. This

allows multiple alternative output vectors as the result of a single input-value combination. Note

that this representation allows the expression of correlated outputs in the presence of choice. It

corresponds to the output characteristic function of Cerny and Marin [44] and the Boolean relation

representation of Brayton and Somenzi [22].

However, Boolean relations are not an adequate representation for combinational circuitry in the

presence of non-cascade composition, as they do not provide appropriate semantics for combinational

feedback loops. The following example demonstrates the inadequacy of the binary digital value

domain B in the presence of non-cascade composition.

a b

c

Figure 3.1: Gated ring oscillator

Consider the circuit illustrated in Figure 3.1. It consists of a nand-gate with inputs labeled a

and c and output wire b composed together with a non-inverting bu�er whose input wire is the wire

labeled b and whose output is the wire labeled c: While both of these components can be modeled

correctly by the obvious Boolean relations (which happen to be functions), their composition yields

the Boolean relation R � Bfa;b;cg that contains only the single vector that assigns 1 to a; 0 to b; and

0 to c: This relation does not admit the possibility that a take the value 1: This is clearly incorrect

since a is an input: its value cannot be controlled by the circuit.

In reality, if this circuit receives as input the value 1; then either b and c will oscillate, or they

will both get stuck at some intermediate voltage which is neither a digital 1 nor a digital 0: Neither

of b or c will stabilize to a recognized digital value. Such non-digital behavior cannot be expressed

by a Boolean relation, and so this behavior simply disappears from the representation. Disappearing

behavior can cause consistency problems, and is clearly inappropriate.

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 55

The following question is often raised: does disappearing loop behavior always manifest itself as

a Boolean relation that does not admit all possible input value combinations? If so, the disappearing

behavior phenomenon is easily detected, and compositions that lead to it disallowed. Unfortunately,

this is not the case in general. In Section 3.3.5 we present an example Boolean circuit that contains a

combinational feedback loop for which the Boolean relation representation admits all possible input

value combinations and yet fails to include all possible behaviors of the circuit.

This particular case also illustrates the type of consistency problems that may arise from disap-

pearing behavior in the model. The Boolean relation for the gated ring oscillator, with b considered a

primary output and c only an internal node, is compatible with the Boolean relation for an inverter,

which is R � Bfa;bg that contains two vectors: one assigns 0 to a and 1 to b; and the other assigns 1

to a and 0 to b: This incorrectly implies that the gated ring oscillator is a correct implementation of

an inverter speci�cation. (Recall from Section 1.5.2 that a Boolean relation speci�cation is correctly

implemented by any Boolean relation circuit model that is compatible with it, which means that

when considered as a set of input-output value combinations, the latter is a subset of the former).

Thus the disappearing behavior of the gated ring oscillator has led to a situation in which veri�ca-

tion is not sound. An unsound formal veri�cation result of this sort, which claims a circuit to be a

correct implementation of a requirements speci�cation when in fact it is not, is called a false positive

result. Models which lead to false positive results are clearly unacceptable for a formal veri�cation

framework.

In order to solve the expressiveness dilemma just illustrated, we work within a ternary framework.

We call our ternary set of digital values T = f0; 1;?g: The value ?; pronounced \bottom," is

intended to represent a lack of convergence to either of the other two values, or an unde�ned value.

It represents oscillation or stabilization to an intermediate voltage. Note that we do not intend ?

to denote the value on a wire that has either the value 0 or the value 1; but for which the correct

value is unknown. That situation is handled in our formalism by including both possibilities in the

nondeterministic relation representing the circuit's possible behaviors. Therefore we distinguish T

from the more general domain BX :

We will demonstrate that the addition and appropriate use of the new third wire value su�ce

to solve the problem illustrated in the example above. The ternary-domain models we use in this

demonstration meet some but not all of the formal constraints we will place on our �nal models.

However, they su�ce to illustrate how the third wire value may be used to
ag the presence of

combinational feedback loops, thereby eliminating the class of false positives in formal veri�cation

that can be caused by the disappearing behavior phenomenon just shown.

We model the non-inverting bu�er and the nand-gate by the standard ternary extensions of

their Boolean relation representations (which happen to be functions). The addition of information

about the behavior of each of these circuits in the presence of a non-Boolean value on an input wire

su�ces to guarantee that some behavior will remain in the composite model, enough to indicate

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 56

a c b

? ? ?

? 0 1

? 1 ?

0 ? 1

0 0 1

0 1 1

1 ? ?

1 0 1

1 1 0

nand(a,c)=b

b c

? ?

0 0

1 1

buf(b)=c

a b c

? ? ?

0 1 1

1 ? ?

gated

ring

oscillator

Figure 3.2: Ternary-domain relation models for nand-gate, bu�er, and their composition

a b

? ?

0 1

1 ?

(A)

a b

? ?

0 1

1 0

(B)

Figure 3.3: Ternary-domain relation models for (A) oscillator and (B) inverter

the presence of a feedback loop. This is illustrated in Figure 3.2, where the ternary-domain models

for the nand-gate and the non-inverting bu�er, and the resulting composite model, all appear in

tabular form. This composite model correctly re
ects the fact that in the composite circuit, when

a is held high, b and c will both oscillate or will settle at an intermediate voltage. Extending this

example further, we illustrate in Figure 3.3 the ternary-domain relation representation of the gated-

ring oscillator with b considered a primary output and c only an internal node. This �gure also

depicts the ternary-domain relation model of an inverter. We see that the former is not compatible

with the latter, which correctly re
ects the fact that the composite circuit depicted in Figure 3.1

does not correctly implement the speci�cation for an inverter.

We have not yet discussed the formal constraints we place on a valid combinational circuit model,

nor given the precise de�nition of ?'s appropriate use. In the remainder of this chapter, we will fully

develop the above example in the new ternary domain of wire values, along with the relevant formal

de�nitions. The development of this illustrative example will occur as we present the relevant parts

of our framework for the formal veri�cation of combinational circuits. Correct use of the ternary

domain of wire values always yields models for combinational logic (whether in cascade or in non-

cascade composition topologies) that explicitly represent the behavior of the circuitry in the presence

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 57

of any input value combination. Proof of this fact appears later in this chapter.

3.2.3 Combinational relation structures

In this section we present our formalmodel of combinational circuits and their speci�cations. We call

these models combinational relation structures. The class of combinational relation structures forms

a circuit algebra under algebraic operations that correspond to renaming of wires, wiring together

of two circuits to form a composite circuit, and packaging of a wire as an internal node rather than

a primary output.

Combinational relation structures are de�ned over the ternary domain of wire values. They

also distinguish between two kinds of possible behaviors of the circuit being modeled: those which

are desirable, or intended, and those which are possible but undesirable. The usefulness of this

distinction will become clear in Section 4.2, in which we develop the notion of a circuit's environment

as a tool for determining correct implementations.

In addition, we place restrictions on the form of these two sets of behaviors that are based on an

underlying partial order � in the set T ; the ternary wire domain: ?< 1 and ?< 0; and 0 and 1 are

incomparable. This is the information ordering of [37]. The de�nedness ordering � on T may be

extended pointwise to a partial order on vectors of wire values.

Intuitively, a realistic circuit model respects this underlying partial order: if an output wire has

a well-de�ned 0 or 1 value despite some input wire's holding an unde�ned value, then this output

wire does not change value nor \become unde�ned" (i.e., stabilize di�erently or not at all) if that

input wire instead stabilizes at a de�ned value. Traditionally this intuition has been re
ected in a

requirement of functional monotonicity: a requirement that the set of possible behaviors of a circuit

model constitute a function that is monotonic in the set of possible input-value combinations to the

circuit. However, it is not clear what the appropriate de�nition of monotonicity should be for a

relation. Among the options available, we have chosen one that su�ces to provide us with sound

veri�cation results. This is the upward-chains property, which we introduce below.

The new value ? may represent oscillation. There are many di�erent wave patterns that oscil-

lation may exhibit, including patterns that may be indistinguishable from a steady 1 or a steady 0

except for intermittent glitches. Therefore we require that the set of possible behaviors of a circuit

and the set of failure behaviors of a circuit each be modeled as an input-downward-closed set. That

is, if an input value combination w admits an output value combination z; then all input value

combinations that are the same as w except for some replacements of 0 and 1 values by ? values

must also admit z: This is because a ? value on one of its input wires may appear to a circuit as a

0 or 1; if the wire happens to hold one of these Boolean values for a su�ciently long time prior to

the clock tick.

The formal de�nition of the input-downward-closure constraint uses the de�nedness ordering �

over vectors of wire values. The set of input wires to a model is I and its set of output wires is O:

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 58

Thus its set of possible behaviors and its set of failure behaviors are subsets of T (I[O): Formally,

the input-downwards-closure (IDC) property holds of the set W � T (I[O)
if and only if

8x; x0 2 T I :8y 2 T O:(x0 � x ^ (x [y) 2W) =) ((x0 [y) 2W)

A realistic circuit model cannot refuse any input value combinations. Mathematically, this con-

straint is formalized as a totality constraint on the set of possible behaviors of a circuit: a set

R � T (I[O)
is total if and only if

8x 2 T I :9y 2 T O:(x [y) 2 R

Unfortunately, as we have already seen in previous sections of this thesis, totality is not preserved

by the composition operator. This is true even when we use the ternary domain of wire values, and

even when the set of possible behaviors of the model obeys the input-downward-closure constraint.

In order to guarantee the preservation of totality under the algebraic operations, we impose an

additional constraint on how the third wire value ? may be used in our models. This constraint is

called the receptiveness condition, and it must hold of the set of possible behaviors of every model.

It is formalized in terms of the upward-chains property, which is de�ned as follows. We say that a

set C � T (I[O)
has the upward-chains property if and only if

8x; x0 2 T I :8y 2 T O:[[(x[y) 2 C ^ x � x0] =) 9y0 2 T O:y � y0 ^ (x0 [y0) 2 C]

Formally, the receptiveness condition is de�ned as follows. A set P � T (I[O)
is receptive if

and only if there exists a subset C of P which is total and which has the upward-chains property.

Intuitively, the reason we do not require that the full set of possible behaviors have this property is

that a speci�cation model may allow input-output value combinations that need not be exhibited by

any correct implementation. As described above, the upward-chains property is a relational analog

of functional monotonicity. It su�ces to preserve totality under the algebraic operations.

Our use of the receptiveness constraint su�ces to guarantee closure of the class of models we

consider under the algebraic operations: it is preserved over the algebraic operations of composition,

renaming, and deletion (as is proved in a subsequent section of this chapter). The totality condition

guarantees the ability of every relation structure to respond no matter what inputs it encounters,

and the upward-chains component of the receptiveness constraint guarantees the preservation of

totality under the algebraic operations.

Combinational relation structures are our model of combinational circuits and their requirements

speci�cations. Formally, we de�ne a combinational relation structure (sometimes referred to as a

relation structure) to be a quadruple T = (I;O; S; F) such that

� I and O are disjoint �nite sets,

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 59

� F � T (I[O)
is a (possibly empty) set of circuit behaviors, known as the failure set of the

relation structure, which obeys the input-downwards-closure constraint,

� S � T (I[O)
is a (possibly empty) set of circuit behaviors, known as the success set of the

relation structure, and

� P = S[F; the set of possible behaviors of T; obeys both the input-downwards-closure constraint

and the receptiveness constraint.

I and O are intended to represent the input- and output-wire sets, respectively, of the circuit

or speci�cation being modeled. As part of our standard notation, we de�ne A = (I [O) to be

the alphabet of the relation structure. Note that P must be non-empty, as otherwise it cannot be

receptive.

In developing the theory of combinational relation structures in the remainder of this chapter,

we may wish to emphasize various aspects of these models at the expense of others. For example,

in discussing the receptiveness constraint we may wish to ignore the precise contents of the S and

F -sets of a relation structure, and only consider its full P -set. In discussing the preservation of

input-downward-closure under the algebraic operations, we may wish to concentrate on the F and

P -sets of a relation structure and to ignore the contents of its S-set. The following de�nition provides

a tool we will use in this spirit in later sections of this chapter.

We de�ne a preorder v on combinational relation structures having the same I and O sets:

(I;O; S; F) v (I;O; S0; F 0
) if and only if [(F � F 0

) and (P � P 0
)]

Later we will extend the relation v to structures (I;O; ;; ;) as well (see page 90 in Chapter 4).

This preorder induces a partial order among its equivalence classes. If F = F 0
and P = P 0

then [T]v = [T 0]v; and we write T �v T 0: Essentially, T and T 0 are in the same v-equivalence

class if they vary only in the amount of overlap between their S and F sets. Hence setting S =

(P�F) de�nes a unique representative of the v-equivalence class (I;O; F; P); and we may sometimes

use the ambiguous notation T = (I;O; F; P) in place of (I;O; S; F): In addition, when discussing

receptiveness alone, we may sometimes use the notation T = (I;O; P); ignoring the F -set of the

relation structure altogether.

In the following section, we present the formal de�nitions of the algebraic operations of compo-

sition, renaming, and deletion. We also prove that the class of combinational relation structures

together with these operations forms a circuit algebra. We conclude the current section with some

examples.

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 60

3.2.4 Examples

In this subsection we present examples of combinational relation structures that illustrate our mod-

eling technique and further explain how to use our two-language model. We also use these examples

to introduce some more notational conventions.

In presenting a combinational relation structure's S; F; and P -sets, we utilize the following no-

tation: the literal a indicates that the value on node a is 1; the literal a indicates that the value

on node a is 0; and the literal ?a indicates that the value on node a is ? : Concatenations of such

literals are called monomials. Monomials represent conjunctions of such statements, as expected,

and sets of monomials represent the disjunction of their member monomials.

Example 3.1 We represent an inverter with input wire labeled a and output wire labeled b as the

following combinational relation structure:

Tinv�ab = (I = fag; O = fbg; Sinv�ab; F = ;)

where

Sinv�ab = fab; ab;?a?b;?ab;?abg

Note that the success set of the inverter is simply the smallest input-downward-closed set that

contains the standard ternary extension of the Boolean function representation of this gate. The

F -set is e�ectively not in use in this example.

Example 3.2 We represent a non-inverting bu�er with input wire labeled b and output wire labeled

c as the following combinational relation structure:

Tbuf�bc = (I = fbg; O = fcg; Sbuf�bc; F = ;)

where

Sbuf�bc = fbc; bc;?b?c;?bc;?bcg

As in the previous example, the set of possible behaviors of the circuit model is simply the standard

ternary extension of the Boolean function representation for the gate, with the addition of those

behaviors required to make the relation input-downward-closed.

Example 3.3 We represent a nand-gate with input wires labeled a and c and output wire labeled b

as the following combinational relation structure:

Tnand�acb = (I = fa; cg; O = fbg; Snand�acb; F = ;)

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 61

where Snand�acb is the relation

facb; acb; acb; a cb;?acb; a?cb;?acb; a?cb;?acb; a?cb; a?c?b;?ac?b;?a?cb;?a?cb;?a?c?bg

In this case the gate being modeled has two inputs. The set of possible behaviors is again the standard

ternary extension of the Boolean function for the gate, with the addition of those behaviors necessary

to make it input-downward-closed.

The following examples illustrate use of the F -set. Although the set of possible behaviors of a

circuit must allow for any input value combination, the set of desirable behaviors need not include

all such combinations. Example 3.4 illustrates use of the F -set to explicitly maintain information

about the environments in which we expect those circuits implementing the speci�cation to function

correctly. Example 3.5 further clari�es the potential of this explicitly-delineated subset of a circuit's

possible behaviors to make a requirements speci�cation more expressive.

In the following example we introduce the notation Xe to indicate that the wire labeled e may

take any of the values 0; 1; or ? : In other words, Xe = fe; e;?eg: For example, the extended

monomial abXe is shorthand for the set of monomials fabe; abe; ab?eg:

Example 3.4 The following combinational relation structure is a speci�cation for an inverter that

we expect to place only in an environment in which its input stabilizes. Its input wire is labeled a

and its output wire labeled b:

T0 = (I = fag; O = fbg; S = fab; abg; F = f?aXbg)

In fact, F -sets allow more degrees of freedom in speci�cation than does a simple statement

of the environments in which we expect those circuits implementing a speci�cation to function

correctly. Example 3.5 illustrates that the F -set of a combinational relation structure may contain a

certain input-output value combination and yet not contain all output-value combinations as possible

responses to that input-value combination.

Example 3.5 In this example we consider a speci�cation that maintains information about expected

environments in its F -set, but which does not allow all output value combinations in response to an

unexpected input value combination.

The following combinational relation structure is a speci�cation for an and-gate with input wires

labeled a and b and output wire c; that we expect to place only in an environment in which the input

value combination ab does not occur.

T1 = (fa; bg; fcg; S1; F1)

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 62

where

S1 = fabc; abc; abc;?abXc; a?bc;?abc; a?bc; a?b?c;?a?bXcg

and

F1 = fabc;?abc; a?bc; a?b?c;?a?bc;?a?b?cg

Note that there is some overlap between S1 and F1: The following input-output value combinations

appear in both: a?b?c;?abc;?a?bc;?a?b?c : A viable modeling alternative would be to eliminate

the two combinations a?b?c and ?a?b?c from F1: Note that the second may not be eliminated

without the �rst being eliminated as well, as F1 must remain input-downward-closed. If a?b?c

is maintained as an element of F1; then it can be eliminated from S1: However, the receptiveness

constraint on P1 = F1 [S1 requires that this input-output value combination appear in at least one

of F1 or S1: In any case, F1 speci�es more than just a set of environments in which we would not

necessarily expect the implementations of T1 to function correctly: it also places constraints on their

behavior even in these unintended environments.

3.3 The algebraic operations: combining relation structures

3.3.1 Introduction

We have de�ned a combinational relation structure to be a tuple (I;O; S; F) such that I and O

are disjoint and such that certain properties hold of the sets S; F and P = (S [F): In general, we

will de�ne some relation structures that correspond to speci�cations or to primitive gates, and build

from them more complex speci�cations or circuits. In order to do that, we need formalmathematical

de�nitions of operations that correspond to combination and manipulation of the actual circuits that

are represented by our already-de�ned relation structures. We also need to know that the resulting

mathematical objects are themselves combinational relation structures, since they are intended to

represent circuits as well.

The following algebraic operations on combinational relation structures correspond to the ma-

nipulation and combination of combinational circuits to produce more complex or further-packaged

circuitry. As required by the circuit algebra framework, these operations are:

� Composition (k); which corresponds to wiring two circuits together.

Formally this operation is de�ned in terms of two others: intersection (\) and inverse deletion

(del�1): Composition uni�es the values on each wire that is common to the two component

circuit representations. Intersection composes two combinational relation structures with pre-

cisely the same wire sets but no joint output wires, and inverse deletion \prepares" a relation

structure for composition via the intersection operation by adding to it input wires whose

values it ignores.

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 63

� Deletion or hiding (del); which makes explicit which output wires of a circuit are its intended

primary outputs. It hides some of the output wires of a circuit in order to indicate that these

wires do not participate in the observable input-output behavior of the newly-packaged circuit,

and therefore cannot be further connected to the wires of any other circuit.

� Renaming (ren); which allows us to rename the wires of a circuit (without wiring together any

previously distinct wires), in order to facilitate composition in any desired topology.

In the following subsection, we present the formal de�nitions of the algebraic operations on

combinational relation structures. In Section 3.3.3, we prove that the results of applying these

operations to combinational relation structures are themselves combinational relation structures. In

Section 3.3.4, we prove that the class of combinational relation structures together with the algebraic

operations forms a circuit algebra. Finally, in Section 3.3.5, we present some examples of composite

circuit models in order to illustrate how the formal operations implement the intended actions on

the circuits being modeled.

3.3.2 The algebraic operations

In this section we present the formal de�nitions of the algebraic operations on combinational relation

structures.

� Composition (k) corresponds to wiring two circuits together:

Circuit composition is de�ned formally in terms of the simpler intersection and inverse deletion

operators:

{ The intersection operator performs the composition of two combinational relation struc-

tures whose alphabets are identical but whose output-wire sets are disjoint.

If (I;O; S; F) and (I0; O0; S0; F 0
) are combinational relation structures such that

(I [O) = (I0 [O0
) and (O \O0

) = ;

then

(I;O; S; F)\ (I0; O0; S0; F 0
) = ((I \ I0); (O [O0

); (S \ S0); ((P \ F 0
) [(F \P 0

)))

Note that the P -set of the result is the set (P \ P 0
):

{ The inverse deletion operator adds new input wires to a combinational relation structure,

and expands the sets of its behaviors to ignore the new input wires' values. This operator

is used to unify the wire sets of two circuits before composition.

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 64

If (I;O; S; F) is a combinational relation structure, andD a set such that (D\(I[O)) = ;;

then

del�1(D)((I;O; S; F)) = (I [D;O; del�1(D)(S); del�1(D)(F))

Recall from Chapter 2 that for Y � T A; del�1(D)(Y) =

S
y2Y del�1(D)(y); and for

y 2 T A; del�1(D)(y) = f(y [z) j z 2 T Dg:

We de�ne circuit composition in terms of the above two operators. The composition operator

�rst adds the appropriate wires to the input wire sets of the two component combinational

relation structures, in order that they both have the same alphabet A00 = (I00 [O00
); and then

takes their intersection. This corresponds to wiring two component circuits together in the

obvious way. Note that we may not wire together outputs.

Let T = (I;O; S; F) and T 0 = (I0; O0; S0; F 0
) be combinational relation structures such that

(O \O0
) = ;: Let A = (I [O) and A0 = (I0 [O0

): Then

T k T 0 = del�1(A0 � A)(T) \ del�1(A �A0)(T 0)

� Deletion or hiding (del) hides the indicated output wires of a circuit so that these wires may

no longer participate in the observable input-output behavior of the newly-packaged circuit:

Let (I;O; S; F) be a combinational relation structure. If D � O; then

del(D)((I;O; S; F)) = (I; (O �D); del (D)(S); del (D)(F))

Recall from Chapter 2 that for Y � T A; del (D)(Y) = fdel(D)(y) j y 2 Y g; and for y 2 T A;

del(D)(y) is the unique x 2 T (A�D)
for which there exists z 2 T D such that y = (x [z):

Therefore, del (D)(Y) = fw 2 T (A�D) j 9z 2 T D:(w [z) 2 Y g:

Note that even if S and F are disjoint, del(D)(S) and del(D)(F) need not be.

� Renaming (ren) allows us to rename the wires of a circuit (without wiring together any pre-

viously distinct wires), in order to facilitate composition in any desired topology. It is used to

\name together" two wires in separate circuits that are to be combined into one by composition.

Let r be an injective function from an alphabet A to a set B: We extend the function r

naturally to sets of elements of A; and to vectors of values on A and to sets of such vectors.

Thus if C � A; we de�ne r(C) = fr(c) j c 2 Cg: If w 2 T A; we de�ne w0 = r(w) to be the

unique element of T r(A) such that for each a 2 A; w0(r(a)) = w(a): Similarly, if W � T A;

then r(W) = fr(w) j w 2Wg:

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 65

Let T = (I;O; S; F) be a combinational relation structure. Let r be an injective function from

A = (I [O) to a set B: Then

ren(r)((I;O; S; F)) = (r(I); r(O); r(S); r(F))

In the following sections we prove that the class of combinational relation structures is closed

under application of these algebraic operators (Section 3.3.3) and that together they form a circuit

algebra (Section 3.3.4).

3.3.3 Closure under the algebraic operations

In this section we prove that the results of applying these operations to combinational relation struc-

tures are themselves combinational relation structures. This is done by proving that the required

property of input-downwards-closure does indeed hold of both the resulting structure's F -set and its

P -set (Section 3.3.3.1), and that the receptiveness constraint is also preserved by all the algebraic

operations (Section 3.3.3.2). These proofs su�ce to prove the closure of the class of combinational

relation structures under the algebraic operations.

3.3.3.1 Preservation of the input-downward-closure constraint

In this section, we prove that the input-downwards-closure constraint (IDC) is preserved under the

algebraic operations.

The proofs are straightforward for all the algebraic operations. It is obvious that IDC is preserved

under renaming. The proofs for the remaining operations are as follows.

� IDC is preserved by the hide operation:

Let T = (I;O; F; P) and D � O: Let T 0 = del(D)(T) = (I;O �D; del(D)(F); del(D)(P)):

We will prove that del(D)(P) is IDC. Let x; x0 2 T I and y 2 T (O�D)
such that (x [y) 2

del(D)(P) and x0 � x: We must prove that (x0 [y) 2 del (D)(P):

By de�nition of T 0; there exists some z 2 T D such that (x[(y [z)) 2 P: But then by IDC of

P; it must be the case that (x0 [(y [z)) 2 P as well.

Therefore (x0 [y) 2 del (D)(P):

The same proof can be used to show that del(D)(F) is IDC.

� IDC is preserved by inverse deletion:

Let T = (I;O; F; P) and (D \ (I [O)) = ;:

Let T 0 = del�1(D)(T) = ((I [D); O; del�1(D)(F); del�1(D)(P)):

We will prove that del�1(D)(P) is IDC. Let x; x0 2 T (I[D)
and y 2 T O such that (x [y) 2

del�1(D)(P) and x0 � x: We must prove that (x0 [y) 2 del�1(D)(P):

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 66

By de�nition of T 0; there must exist some z; z0 2 T I and v; v0 2 T D such that x = (z [v);

x0 = (z0 [v0); and (z [y) 2 P: Since x0 � x; we know z0 � z and v0 � v: But then by IDC of

P; it must be the case that (z0 [y) 2 P as well.

Therefore (x0 [y) 2 del�1(D)(P):

The same proof can be used to show that del�1(D)(F) is IDC.

� IDC is preserved by the intersection operation:

Let T = (I;O; F; P) and T 0 = (I0; O0; F 0; P 0
) be combinational relation structures such that

(I [O) = (I0 [O0
) and (O \ O0

) = ;: Then (T \ T 0) is well-de�ned. Let T 00 = (T \ T 0) =

(I00; O00; F 00
= ((P \F 0

) [(P 0 \ F)); P 00
= (P \ P 0

)):

{ Let x; x0 2 T I
00

; y 2 T O
00

; x0 � x; and (x [y) 2 P 00:

We must prove that (x0 [y) 2 P 00:

We �rst note that y = (y1 [y2) for some y1 2 T
O0

and y2 2 T
O:

We know that (x [y) = ((x [y1) [y2) 2 P and (x [y) = ((x [y2) [y1) 2 P
0:

Because x0 � x; therefore (x0 [y1) � (x [y1) and (x0 [y2) � (x [y2):

Thus by IDC of P and P 0; (x0[y) = ((x0[y1)[y2) 2 P and (x0[y) = ((x0[y2)[y1) 2 P
0:

Therefore (x0 [y) 2 (P \ P 0
) = P 00:

{ Let x; x0 2 T I
00

; y 2 T O
00

; x0 � x; and (x [y) 2 F 00:

We must prove that (x0 [y) 2 F 00:

If (x[y) 2 (F\P 0
) then the argument above may be applied with P replaced by F; to prove

that (x0 [y) 2 (F \P 0
) � F 00: A symmetric argument may be used if (x[y) 2 (F 0 \P):

Thus input-downwards-closure of F and P is preserved by the algebraic operations.

3.3.3.2 Preservation of the receptiveness condition

In this section, we prove that the receptiveness condition of combinational relation structures is

preserved by the algebraic operations. The proof of its preservation under the renaming operator is

trivial and will not be given here. The proofs for the remaining operators appear below.

Because only the P -set of a combinational relation structure need be receptive, we can ignore

the S and F -sets of the combinational relation structures in these proofs. Therefore we refer to a

relation structure as T = (I;O; P) (rather than T = (I;O; S; F)) in the proofs that follow.

� Receptiveness is preserved by the hide operation:

Let T = (I;O; P) and D � O: Let C � P be total in T I and have the upward-chains property.

Let T 0 = del(D)(T) = (I;O �D; del (D)(P)):

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 67

Let C0
= del(D)(C): Clearly, C0 � del(D)(P): Because C is total in T I ; so is C0: We proceed

to prove that C0
has the upward-chains property.

Let x; x0 2 T I such that x � x0: Let y 2 T (O�D)
such that (x [y) 2 C0:

We must prove that there exists y0 2 T (O�D)
such that y � y0 and (x0 [y0) 2 C0:

By de�nition of C0; there exists q 2 T D such that (x [(y [q)) 2 C: But then by the upward-

chains property of C; there exists m0 2 T O such that (y [q) � m0
and (x0 [m0

) 2 C:

Let y0 = del(D)(m0
): Then we have y0 2 T (O�D)

such that y � y0 and (x0[y0) 2 del(D)(C) =

C0; so C0
has the upward-chains property.

� Receptiveness is preserved by inverse deletion:

Let T = (I;O; P) and (D\(I[O)) = ;: Let C � P be total (in T I) and have the upward-chains

property.

Let T 0 = del�1(D)(T) = (I [D;O; del�1(D)(P)): Let C0
= del�1(D)(C): Then C0 �

del�1(D)(P): Clearly C0
is total, because C is total in T I and del�1 preserves totality. We

proceed to prove that C0
has the upward-chains property.

Let x; x0 2 T (I[D)
such that x � x0: Let y 2 T O such that (x [y) 2 C0:

We must prove that there exists y0 2 T O such that y � y0 and (x0 [y0) 2 C0:

By de�nition of T 0; there exist z; z0 2 T I and q; q0 2 T D; such that x = (z[q) and x0 = (z0[q0):

By de�nition of C0; (z[y) 2 C: Because x � x0; so too z � z0: Therefore by the upward-chains

property of C; there exists y0 2 T O such that y � y0 and (z0 [y0) 2 C: But then (x0 [y0) 2 C0:

Thus C0
has the upward-chains property.

� Receptiveness is preserved by intersection:

Let T = (I;O; P) and T 0 = (I0; O0; P 0
) be combinational relation structures such that (I[O) =

(I0 [O0
) and (O \O0

) = ;: Let C � P be total in T I and have the upward-chains property.

Let C0 � P 0
be total in T I

0

and have the upward-chains property.

Let T 00 = T \ T 0 = (I00; O00; P 00
): Let C00

= C \C0: Clearly, C00 � P 00:

We will prove that C00
is total in T I

00

and has the upward-chains property. The proof that

C00
is total is by induction over the de�nedness ordering � on T I

00

: The induction step of this

proof is the proof that C00
has the upward-chains property.

{ Base case: We must prove that there exists y 2 T O
00

such that (?I
00

[y) 2 C00:

By hypothesis, there exist y
(0)
1 2 T O

0

such that (?I
0

[y
(0)
1) 2 C0; and y

(0)
2 2 T O such

that (?I [y
(0)
2) 2 C:

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 68

Rearranging the presentation of each of these elements,

(?I
00

[(?O [y
(0)
1)) 2 C0

and

(?I
00

[(?O
0

[y
(0)
2)) 2 C

Because ?O� y
(0)
2 and ?O

0

� y
(0)
1 ; the upward-chains properties of C and C0

guarantee

that there exist y
(1)
1 � y

(0)
1 and y

(1)
2 � y

(0)
2 such that

(?I
00

[(y
(0)
2 [y

(1)
1)) 2 C0

and

(?I
00

[(y
(0)
1 [y

(1)
2)) 2 C

We can continue inde�nitely in this fashion, incrementing the superscripts of the new

y
(n)
1 and y

(m)
2 : However, their respective domains are �nite, and hence eventually we will

encounter some n 2 ! such that y
(n+1)
1 = y

(n)
1 and some m 2 ! such that y

(m+1)
2 = y

(m)
2 :

Let k = min(n;m): Then (?I
00

[(y
(k+1)
2 [y

(k+1)
1)) 2 (C \C0

) = C00:

Let y = (y
(k+1)
2 [y

(k+1)
1): Then y 2 T O

00

and (?I
00

[y) 2 C00:

{ Induction step: This is simply the proof that C00
has the upward-chains property. It

provides the induction step for the proof that C00
is total.

Let x; x0 2 T I
00

such that x � x0: Let y 2 T O
00

such that (x [y) 2 C00:

We must prove that there exists y0 2 T O
00

such that y � y0 and (x0 [y0) 2 C00:

By de�nition of T 00; there exist y
(0)
1 2 T O

0

and y
(0)
2 2 T O such that y = (y

(0)
1 [y

(0)
2): By

de�nition of C00; ((x [y
(0)
1) [y

(0)
2) 2 C and ((x [y

(0)
2) [y

(0)
1) 2 C0:

Because x � x0; we know that (x[y
(0)
1) � (x0[y

(0)
1) and (x[y

(0)
2) � (x0[y

(0)
2): Therefore,

by the upward-chains properties of C and C0; there exist y
(1)
1 � y

(0)
1 and y

(1)
2 � y

(0)
2 such

that ((x0 [y
(0)
1) [y

(1)
2) 2 C and ((x0 [y

(0)
2) [y

(1)
1) 2 C0:

Ostensibly, we can continue inde�nitely in this fashion, �nding y
(n+1)
1 � y

(n)
1 and y

(n+1)
2 �

y
(n)
2 such that ((x0 [y

(n)
1) [y

(n+1)
2) 2 C and ((x0 [y

(n)
2) [y

(n+1)
1) 2 C0: The domains

T O and T O
0

are �nite, so eventually each of the increasing chains y
(0)
i � y

(1)
i � : : : �

y
(n)
i � : : : must reach a �xpoint. That is, there must exist minimal m0 2 ! such that

y
(m0)
1 = y

(m0+1)
1 and minimal n0 2 ! such that y

(n0)
2 = y

(n0+1)
2 :

Let k = min(m0; n0): Then ((x0 [y
(k+1)
1)[y

(k+1)
2) 2 C and ((x0 [y

(k+1)
2)[y

(k+1)
1) 2 C0:

Let y0 = (y
(k+1)
1 [y

(k+1)
2): Then y � y0 and (x0 [y0) 2 (C \C0

) = C00:

Therefore C00
has the upward-chains property.

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 69

This concludes our proof that the class of combinational relation structures is closed under the

algebraic operations.

3.3.4 Combinational relation structures form a circuit algebra

In this section we prove that the class of combinational relation structures together with the algebraic

operations of composition, renaming, and deletion forms a circuit algebra. We do so by proving that

all nine of the circuit algebra axioms hold for combinational relation structures.

C1 follows from Properties 2.3 and 2.4. C2 follows from commutativity of set union and set

intersection. C3 follows from properties of function composition, because application of r and r0

has been extended naturally from wire names to sets of wire names, vectors of named-wire values,

and sets of such vectors.

The proof of C4 requires the following lemmas:

Lemma 3.1 If x 2 T A1 and y 2 T A2 ; and (A1 \A2) = ;; and r is injective over (A1 [A2); then

r(x [y) = r(x) [r(y)

Proof: Obvious.

Lemma 3.2 If (A \D) = ; and r is injective over (A [D) and W � T A; then

r(del�1(D)(W)) = del�1(r(D))(r(W))

Proof: Both parts of this proof rely on Lemma 3.1.

� r(del�1(D)(W)) � del�1(r(D))(r(W)) :

Let x 2 r(del�1(D)(W)): Then there exists y 2 del�1(D)(W) such that x = r(y); and there

exist v 2W and z 2 T D such that y = (v [z):

But then r(y) = r(v) [r(z); and r(v) 2 r(W) and r(z) 2 T r(D):

Therefore x = r(y) 2 del�1(r(D))(r(W)):

� del�1(r(D))(r(W)) � r(del�1(D)(W)) :

Let x 2 del�1(r(D))(r(W)): Then there exist v 2 r(W) and z 2 T r(D)
such that x = (v [z):

But then there exist v0 2 W and z0 2 T D such that r(v0) = v and r(z0) = z: Clearly

(v0 [z0) 2 del�1(D)(W):

But then x = (v [z) = (r(v0) [r(z0)) = r(v0 [z0) 2 r(del�1(D)(W)):

C4 follows from Lemma 3.2 and the fact that renaming distributes across set di�erence, set

intersection and set union of basic sets, as well as across intersection and union of sets of vectors.

C5 and C7 are obvious. C6 follows from Property 2.1.

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 70

The proof of C8 relies on the following lemmas:

Lemma 3.3 If T is a combinational relation structure, (D \E) = (A \D) = ; and E � O; then

del(E)(del�1(D)(T)) = del�1(D)(del (E)(T))

This follows from Property 2.2.

Lemma 3.4 If W1 � T
A and W2 � T

(A[D) and (A \D) = ;; then

W1 \ del(D)(W2) = del(D)(del�1(D)(W1) \W2)

Proof:

� W1 \ del(D)(W2) � del(D)(del�1(D)(W1) \W2) :

Let x 2 W1 \ del(D)(W2): Then there exists z 2 T D such that (x [z) 2 W2: Clearly

(x [z) 2 del�1(D)(W1) as well. Therefore (x [z) 2 (del�1(D)(W1) \ W2); and so x 2

del(D)(del�1(D)(W1) \W2):

� del(D)(del�1(D)(W1) \W2) � W1 \ del(D)(W2) :

Let x 2 del(D)(del�1(D)(W1) \W2): Then there exists z 2 T D such that

(x [z) 2 (del�1(D)(W1) \W2)

But then x 2 del(D)(W2) and x 2W1: Therefore x 2 (W1 \ del (D)(W2)):

Lemma 3.5 If T1 and T2 are combinational relation structures, and (A1 \ D2) = (A2 \D1) = ;

and D1 � O1 and D2 � O2 and (A1 �D1) = (A2 �D2); then

del(D1)(T1) \ del(D2)(T2) = del(D1 [D2)(T1 k T2)

Proof:

Both sides of this equation have I-set (I1 \ I2) and O-set ((O1 [O2) � (D1 [D2)): We must

prove that their S-sets are identical and that their F -sets are identical. We will �rst prove that the

S-sets are identical:

(del(D1)(S1) \ del(D2)(S2)) = del(D1 [D2)(del
�1
(A2 �A1)(S1) \ del

�1
(A1 � A2)(S2))

This proof may then be applied with S1 replaced by F1 and S2 replaced by P1; and again with S1

replaced by P1 and S2 replaced by F2: Because deletion distributes over the union of sets of vectors,

this su�ces to prove that the F -sets of the two sides of the equation are identical as well.

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 71

We will now prove that the S-sets are indeed identical:

(del (D1)(S1) \ del (D2)(S2)) = del(D2)[del
�1
(D2)(del(D1)(S1)) \ S2] Lemma 3:4

= del(D2)[del(D1)(del
�1
(D2)(S1)) \ S2] Property 2:2

= del(D2)[del(D1)[del
�1
(D2)(S1) \ del

�1
(D1)(S2)]] Lemma 3:4

= del(D1 [D2)(del
�1
(D2)(S1) \ del

�1
(D1)(S2)) Property 2:1

By the assumptions of the lemma, (A2 � A1) = D2 and (A1 � A2) = D1: Therefore this is

equivalent to del(D1 [D2)(del
�1
(A2 �A1)(S1) \ del

�1
(A1 � A2)(S2)):

Using these lemmas, we will now prove C8.

Let T 00 = del(D1)(T1) k del(D2)(T2): By de�nition of composition,

T 00 = del�1((A2 �D2)� (A1 �D1))(del (D1)(T1)) \ del
�1
((A1 �D1)� (A2 �D2))(del(D2)(T2)):

By the assumptions of the theorem, (A1\D2) = ; and (A2\D1) = ;: Thus ((A2�D2)�(A1�D1)) =

(A2 � (A1 [D2)) and ((A1 �D1)� (A2 �D2)) = (A1 � (A2 [D1)); and Lemma 3.3 is applicable.

By Lemma 3.3, T 00 = del(D1)(del
�1
(A2 � (A1 [D1))(T1)) \ del(D2)(del

�1
(A1 � (A2 [D2))(T2)):

By Lemma 3.5, this is equivalent to

del(D1 [D2)[del
�1
(A2 � (A1 [D1))(T1) k del

�1
(A1 � (A2 [D2))(T2)]

which, by de�nition of composition, is equivalent to del(D1 [D2)(T1 k T2):

The proof of C9 relies on the following lemma:

Lemma 3.6 If D � A and r0 is injective over A and rj(A�D) = r0j(A�D) and W � T A; then

r(del(D)(W)) = del(r0(D))(r0(W))

Proof:

� r(del(D)(W)) � del(r0(D))(r0(W)) :

Let x 2 r(del(D)(W)): Then there exists y 2 del(D)(W) such that r(y) = x: But then there

exists z 2 T D such that (y [z) 2W:

Thus r0(y [z) 2 r0(W); and r0(z) 2 T r
0(D): Because r0(y [z) = r0(y) [r0(z); we know that

r0(y) 2 del(r0(D))(r0(W)): We also know that x = r(y) = r0(y):

Therefore x 2 del (r0(D))(r0(W)):

� del(r0(D))(r0(W)) � r(del(D)(W)) :

Let x 2 del(r0(D))(r0(W)): Then there exists z 2 T r
0(D)

such that (x [z) 2 r0(W): Because

r0 is injective over A; there exist unique x0 2 T (A�D)
and z0 2 T D such that r0(x0) = x and

r0(z0) = z; and there exists a unique v0 2 T A such that r0(v0) = (x [z): Because r0(x0 [z0) =

(r0(x0) [r0(z0)) = (x [z); it must be the case that v0 = (x0 [z0):

We know that v0 2W; because r0(v0) = r0(x0 [z0) = (r0(x0)[r0(z0)) 2 r0(W) and v0 is unique.

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 72

Therefore x = r0(x0) 2 del(r0(D))(r0(W)):

C9 follows from Lemma 3.6 and the fact that r(O �D) = r0(O �D) = r0(O)� r0(D):

This concludes our proof that the class of combinational relation structures together with the

algebraic operations of composition, renaming, and deletion forms a circuit algebra.

3.3.5 Examples

In this section we present some examples of composite relation structures, in order to illustrate how

the formal operations on circuit models re
ect the intended actions on the circuits being modeled.

We begin with the gated ring oscillator of Figure 3.1, and then proceed to the promised example

(page 55) of a combinational circuit containing a feedback loop for which the Boolean relation is

total in the set of all input value combinations. This is the circuit of Figure 6 of [92], which appears

here in Figure 3.4. These examples show how the composition operator re
ects the wiring together

of two circuits, and illustrate the use of the deletion operator to indicate that certain nodes are not

intended to be primary outputs. The second example also illustrates the usefulness of the renaming

operator.

In the third example, we present requirements speci�cations with non-empty F -sets and show

how the F -set of their composition re
ects the environments in which those circuits that are imple-

mentations are expected to function correctly.

Example 3.6 Gated ring oscillator:

The circuit depicted in Figure 3.1 (page 54) consists of a nand-gate and a non-inverting bu�er

wired together so that the composite circuit has only a single input wire. Combinational relation

structures representing the two components are presented in Examples 3.2 and 3.3 (Section 3.2.4).

Their composition is the following relation structure:

Tgro = (I = fag; O = fb; cg; S = fabc;?abc; a?b?c;?a?b?c;?a?bcg; F = ;)

In the discussion of the Boolean relation representation of this example circuit, the gated ring os-

cillator was compared to an inverter speci�cation with input wire a and output wire b: In order to

make this comparison using combinational relation structures, we must declare the wire labeled c to

be an internal node rather than a primary output. This operation results in the following relation

structure representation of the newly packaged circuit:

del(fcg)(Tgro) = (fag; fbg; fab;?ab; a?b;?a?bg; ;)

Malik points out that the circuit depicted in Figure 3.4 may stabilize or oscillate depending on

the relative delays of its components, if the input wire a has value 0 [92]. (If the input wire a

has value 1; the output b must take value 1; and the other nodes of the ciruit must stabilize as

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 73

well). The same observation applies if the internal wires of the circuit are initialized to ? : Thus we

expect a combinational relation structure representation of this circuit to admit both possibilities,

and indeed this is what happens. As a result, the combinational relation structure we derive for it as

Example 3.7 admits all possible input-value combinations and in addition represents the oscillatory

behavior that would disappear in the Boolean relation representation.

Recall that on page 55 we claimed that a Boolean relation may fail to represent oscillatory

behavior of a circuit containing a feedback cycle even though the relation is total in the input value

combinations for the circuit. This circuit proves that claim, as the Boolean relation representation

of the circuit is simply the set of those elements of the P -set of the combinational relation structure

(computed in Example 3.7) which contain only Boolean wire values (0 and 1):

a

e
b b

bc

c

c

d

Figure 3.4: Combinational feedback loop (Fig. 6 of [92])

Example 3.7 Another combinational feedback loop (Fig. 6 of [92]):

We consider the circuit of Figure 3.4. As is clear from the structure of this circuit, if b stabilizes

then so must the rest of the output nodes. Hence we would like to concentrate on the circuit's behavior

by considering all the output nodes other than b to be internal nodes rather than primary outputs.

And in order to simplify the representation of the circuit as we construct it from its components, we

will project away (package as internal nodes) each of these nodes as early as possible. (The reader

may be interested to examine the oscillation as it ripples through these internal nodes; in order

to do so, one must compose the circuit representation without projecting away the internal nodes.

The representation quickly becomes overly cumbersome for legible textual presentation, however, and

hence is not presented here).

The standard combinational relation structure representations of our circuit's components follow.

� or-gate with inputs labeled a and e and output labeled b :

Tor�aeb = (fa; eg; fbg; Sor�aeb; ;)

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 74

where Sor�aeb is the relation

fa eb; aeb; aeb; aeb; a?eXb;?aeXb; a?eb;?aeb;?a?eXbg

� inverter with input labeled b and output labeled c :

Tinv�bc = (fbg; fcg; fbc; bc;?bXcg; ;)

� inverter with input labeled c and output labeled d (presented using the ren operator):

Tinv�cd = ren(r)Tinv�bc; where r is a function mapping c to d and b to c:

� and-gate with inputs labeled c and d and output labeled e :

Tand�cde = (fc; dg; feg; Sand�cde; ;)

where Sand�cde is the relation

fcde; cde; cde; cde; c?dXe;?cdXe; c?de;?cde;?c?dXeg

The components may be composed in arbitrary order to obtain the same �nal result, because

composition is associative and commutative. We have randomly chosen the following order of two-

component compositions, each followed by the relevant deletion.

� T1 = del(fdg)(Tinv�cd k Tand�cde) = (fcg; feg; fce; ce;?cXeg; ;)

� T2 = del(fcg)(T1 k Tinv�bc) = (fbg; feg; fbe; be;?bXeg; ;)

� T3 = T2 k Tor�aeb = (fag; fb; eg; S3; ;) where

S3 = fabe;?abe; abe;?abe;?a?be; a?b?e;?a?b?eg

� T4 = del(feg)(T3) = (fag; fbg; fab; ab; a?b;?aXbg; ;)

T4 is our combinational relation structure representation of the circuit of Figure 3.4. It incorpo-

rates both the oscillating and the stabilizing possibilities of the circuit, as discussed above.

In the following example we illustrate the behavior of F -sets under composition of relation

structures.

Example 3.8 Consider the speci�cation of Example 3.4. It describes an inverter that we expect to

place only in an environment in which its input stabilizes. This expectation is indicated by its F -set.

T0 = (fag; fbg; S0 = fab; abg; F0 = f?aXbg)

CHAPTER 3. COMBINATIONAL CIRCUIT MODELS 75

We wish to specify a circuit having input wire labeled a and output wire labeled c; which behaves

like two such inverters in series.

We expect such a speci�cation to be identical to that of a stable-input expecting non-inverting

bu�er. The bu�er speci�cation is represented by the following combinational relation structure:

Tbuf = (fag; fcg; Sbuf = fac; a cg; Fbuf = f?aXcg)

In order to derive our speci�cation, we compose T0 above with T1 = ren(r)(T0); where the function

r maps the wirename b to c and the wirename a to b; and subsequently hide the b wire so as to indicate

it is not to be considered a primary output:

T1 = ren(r)(T0) = (fbg; fcg; S1 = fbc; bcg; F1 = f?bXcg)

TSpec = del(fbg)(T0 k T1) = (fag; fcg; SSpec = fac; a cg; FSpec = f?aXcg)

As we expect, TSpec = Tbuf :

Now consider what happens when we compose T0 with Tbuf ; suitably renamed so that the compo-

sition forms a loop. First we formalize the required renaming:

ren(r00)(Tbuf) = (I = fbg; O = fag; S = fba; bag; F = f?bXag)

The composition described yields the following combinational relation structure:

T0 k ren(r
00
)(Tbuf) = (I = ;; O = fa; bg; S = ;; F = f?a?bg)

This composition forms what would be a simple ungated ring oscillator speci�cation { except for the

fact that the only possible behavior of the circuit, which is to oscillate, is a failure behavior. This

correctly re
ects the fact that neither of the two component speci�cations speci�es a circuit that is

expected to function correctly in an environment in which its input does not stabilize.

Chapter 4

Veri�cation and Substitution

4.1 Introduction

In this chapter we present the theory that underlies our algorithms for formal hierarchical veri�cation

and substitution of combinational circuits. The theoretical framework provides an overview of the

veri�cation procedures, but does not delve into all of the details necessary to implement them. The

missing algorithms are special cases or parts of the corresponding algorithms for formal veri�cation

of synchronous circuits. These algorithms will be presented in Chapter 6.

In this chapter, we de�ne a formal relation between combinational models that corresponds

to one being a correct implementation of the other (considered as a speci�cation). We de�ne a

combinational circuit representation to correctly implement a speci�cation if the implementation

can be safely substituted for the speci�cation. A ? value on an output wire of a speci�cation under

a particular set of input circumstances actually allows the implementation to output any value

on that wire under those circumstances. We provide a decision procedure for the formal relation

that holds between a speci�cation and a correct implementation thereof. We also use this relation

to fully characterize the set of allowed substitutions for a subcircuit in a combinational circuit or

speci�cation, a problem relevant to the logic synthesis domain.

The organization of the chapter is as follows. In section 4.2, we present the full de�nition of when

a combinational relation structure describes an acceptable implementation of a speci�cation, and

outline a decision procedure for this relation. In Section 4.3 we use these semantics to fully char-

acterize the set of allowed substitutions for a subcircuit in a combinational circuit or speci�cation.

Examples are provided at each step of the development.

76

CHAPTER 4. VERIFICATION AND SUBSTITUTION 77

4.2 Veri�cation for combinational circuit models

4.2.1 Introduction

In this section we de�ne what it means for a circuit to correctly implement a speci�cation. A com-

binational relation structure is a correct implementation of another (considered as a speci�cation) if

the formal relation of conformance holds between them: one relation structure conforms to another

if the �rst may be safely substituted for the second in any context. The notion of failure behav-

iors is critical to the concept of safe substitution, and ties together our understanding of correct

implementation and expected environments.

We are interested in hierarchical veri�cation. Thus we require that the conformance relation

meet the following compositionality condition: if two circuit components conform to two require-

ments speci�cations (T1 � T 01 and T2 � T 02); then it must be the case that the composition of the

implementations conforms to the composition of the speci�cations (T1 k T2 � T 01 k T
0
2): Similarly,

it must be the case that the conformance relation is preserved under hiding of output wires. These

properties are called monotonicity of the operations with respect to conformance.

In the following subsections, we de�ne safe substitutability for combinational relation structures

and outline a decision procedure for the conformance relation. We de�ne the maximal safe environ-

ment of a circuit speci�cation, and show that its use in deciding conformance guarantees the correct

interpretation of a ? value on any of the output wires of the speci�cation. The method applies

both to verifying that a circuit (represented by a combinational relation structure) is a correct im-

plementation of a speci�cation relation structure (Section 4.2.5), and to verifying that substituting

a circuit into a given location in a predetermined circuit results in a full circuit that exhibits only

desired behavior (Section 4.3).

4.2.2 Correct implementation: the conformance relation

We say that a combinational relation structure conforms to another if and only if the �rst may be

safely substituted for the second in any legal environment. In order to de�ne this formally, we �rst

de�ne an expression context. An expression context is a circuit algebra expression with a single

free variable � [61]. The (I;O)-type of � must be known, and is referred to as (I�; O�): If we

replace � in this expression by a combinational relation structure (I�; O�; S; F); the result denotes

a combinational relation structure.

If T = (I;O; S; F) and T 0 = (I;O; S0; F 0
); we say that T conforms to T 0 if and only if T may

be safely substituted for T 0 in every expression context such that I� = I and O� = O: The formal

de�nition follows.

We say a combinational relation structure T = (I;O; S; F) is failure-free if F = ;: Safe substitu-

tion is substitution that preserves failure freedom [61]:

Let T = (I;O; S; F) and T 0 = (I;O; S0; F 0
) both be combinational relation structures. Formally,

CHAPTER 4. VERIFICATION AND SUBSTITUTION 78

we say that T conforms to T 0; written T � T 0; if and only if for all expression contexts E[�I;O];

E[T 0] is failure-free =) E[T] is failure-free

As in asynchronous trace theory, we can reduce this de�nition to an equivalent one that uses

only a restricted form of expression context. In order to simplify use of this equivalent de�nition of

conformance, we �rst introduce some further notation.

We say that E = (IE ; OE; SE ; FE) is a legal environment of a combinational relation structure

T = (I;O; S; F) if and only if E is a combinational relation structure and I = OE and O = IE :

Theorem 4.1 Let T = (I;O; S; F) and T 0 = (I;O; S0; F 0
) be combinational relation structures.

Then T � T 0 if and only if for all legal environments E = (O; I; SE ; FE) of T and T 0;

(T 0 \E) is failure-free =) (T \E) is failure-free

Proof: Exactly as for the corresponding theorem in asynchronous trace theory: Lemma 4:2 on

p. 58 of [61]. This proof only uses the circuit algebra axioms and lemmas.

Yet another condition equivalent to conformance uses composition (k) rather than intersection

(\): The statement of this condition's equivalence to the other is Theorem 4.4 below. We �rst state

and prove some supporting lemmas.

Lemma 4.2 Let T1 = (I1; O1; S1; F1) and T2 = (I2; O2; S2; F2) be combinational relation structures,

and let D � O2; such that (I1 [O1) = ((I2 [O2) �D) and (O1 \O2) = ;: Then

del�1(D)(T1) \ T2 is failure-free() T1 \ del(D)(T2) is failure-free

Proof:

In order to prove this lemma, it su�ces to prove that for all sets X � T A and Y � T (A[D);

where A and D are disjoint,

(X \ del(D)(Y)) = ; () (del�1(D)(X) \ Y) = ;

(Just substitute F1 for X and P2 for Y to get half the lemma, and substitute P1 for X and F2

for Y to get the other half). But this follows from Lemma 3.4 and the fact that for W � T A;

del(D)(W) = ; () W = ;: (Recall that if W 6= ; and A = D; then del (D)(W) contains one

element, the empty function).

Lemma 4.3 Let T = (I;O; S; F) and T 0 = (I;O; S0; F 0
) be combinational relation structures. Let

(D \ (I [O)) = ;: Then

T � T 0 () del�1(D)(T) � del�1(D)(T 0)

CHAPTER 4. VERIFICATION AND SUBSTITUTION 79

Proof:

� (=)) : Let T � T 0:

Let E be a combinational relation structure such that IE = O and OE = (I [D) and such

that del�1(D)(T 0) \E is failure-free. We must prove that del�1(D)(T) \E is failure-free.

Let E0 = del(D)(E); which is a legal environment of T 0: By Lemma 4.2, T 0\E0 is failure-free.

By assumption, T � T 0: Therefore, T \E0 is failure-free. By Lemma 4.2, therefore,

del�1(D)(T) \E is failure-free

Therefore, del�1(D)(T) � del�1(D)(T 0):

� ((=) : Let del�1(D)(T) � del�1(D)(T 0):

Let E = (IE ; OE; SE ; FE) be a legal environment of T and T 0 such that T 0 \E is failure-free.

We must prove that T \E is failure-free as well.

Let E1 = (IE ; OE [D; del
�1
(D)(SE); del

�1
(D)(FE)); which is not only a combinational rela-

tion structure, but a legal environment of del�1(D)(T 0) as well. Note that despite its S and

F -set de�nitions, E1 is not identical to del
�1
(D)(E); because its new wires D are output wires

rather than input wires. However, del(D)(E1) = E:

Set manipulations involving the F -set of E1 reveal that del
�1
(D)(T 0) \E1 is failure-free. By

assumption, del�1(D)(T) � del�1(D)(T 0): Therefore, del�1(D)(T) \ E1 is failure-free. By

Lemma 4.2 (because del(D)(E1) = E); del�1(D)(T) \E1 is failure-free if and only if T \E is

failure-free. Therefore, T \E must be failure-free.

Therefore, T � T 0:

Theorem 4.4 Let T = (I;O; S; F) and T 0 = (I;O; S0; F 0
) be combinational relation structures.

Then T � T 0 if and only if for all combinational relation structures E = (IE ; OE ; SE ; FE) such that

(O \OE) = ;;

(T 0 k E) is failure-free=) (T k E) is failure-free

Proof:

� (=)) : Let T � T 0:

Let E be a combinational relation structure such that (OE\O) = ;: Let T
0 k E be failure-free.

We must prove that T k E is failure-free as well.

Let E0 = del�1(A� AE)(E): By de�nition of the composition operator,

(T 0 k E) = del�1(AE � A)(T 0) \E0

CHAPTER 4. VERIFICATION AND SUBSTITUTION 80

By Lemma 4.3, del�1(AE � A)(T) � del�1(AE � A)(T 0): Therefore, del�1(AE � A)(T) \ E0

is failure-free. But del�1(AE � A)(T) \E0 = T k E:

Therefore T k E is failure-free.

� ((=) : Assume that for all combinational relation structures E = (IE ; OE; SE ; FE) such that

(O \OE) = ;; if (T
0 k E) is failure-free then (T k E) is failure-free as well.

Let E be a combinational relation structure such that IE = O and OE = I; and such that

T 0 \E is failure-free. Then T 0 \E = T 0 k E; and so T k E = T \E is failure-free as well.

Therefore T � T 0:

We will use both of these equivalent de�nitions of conformance in the proofs that follow.

The algebraic operators rename, hide and composition are all monotonic with respect to confor-

mance, as required for sound hierarchical veri�cation. Monotonicity is obvious for the case of the

renaming operator. We will prove it for the other two.

Theorem 4.5 Let T = (I;O; S; F) and T 0 = (I;O; S0; F 0
) be combinational relation structures. Let

D � O: Then

T � T 0 =) del(D)(T) � del (D)(T 0)

Proof: Let T � T 0: Then for all legal environments E = (O; I; SE ; FE) of T and T 0; (T 0 \ E)

being failure-free implies that (T \E) is as well.

Let E0
= (O �D; I; SE0 ; FE0) be a combinational relation structure such that (del(D)(T 0) \E0

)

is failure-free. We must prove that (del(D)(T) \E0
) is failure-free.

Let E0 = del�1(D)(E0
): Because E0

is a combinational relation structure, E0 is as well. By

Lemma 4.2, because (del (D)(T 0)\E0
) is failure-free, it must be the case that (T 0\E0) is failure-free

as well. But then by de�nition of T � T 0 it must be the case that (T \E0) is failure-free. Invoking

Lemma 4.2 again, we conclude that (del(D)(T) \E0
) is failure-free.

As E0
was an arbitrary legal environment of del(D)(T) and del (D)(T 0); we have proved by

Theorem 4.1 that del(D)(T) � del(D)(T 0):

Theorem 4.6 Let T = (I;O; S; F) and T 0 = (I;O; S0; F 0
) be combinational relation structures. Let

T 00 be any combinational relation structure such that (O00 \O) = ;: Then

T � T 0 =) T k T 00 � T 0 k T 00

Proof: Let T � T 0: Then for all combinational relation structures E such that (OE \ O) = ;;

(T 0 k E) being failure-free implies that (T k E) is as well.

Let E0
= (OE0 ; IE0 ; SE0 ; FE0) be a combinational relation structure such that ((T 0 k T 00) k E0

) is

failure-free. We must prove that ((T k T 00) k E0
) is failure-free.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 81

Let E0 = T 00 k E0: Because E0
and T 00 are both combinational relation structures, E0 is also a

combinational relation structure. By associativity of composition (a circuit algebra axiom), ((T 0 k

T 00) k E0
) = (T 0 k E0): But then by de�nition of T � T 0 it must be the case that (T k E0) is

failure-free. Invoking associativity of composition again, we conclude that ((T k T 00) k E0
) is failure-

free. As E0
was an arbitrary combinational relation structure, we have proved by Theorem 4.4 that

T k T 00 � T 0 k T 00:

Recall the preorder v over combinational relation structures:

(I;O; F; P) v (I;O; F 0; P 0
) i� ((F � F 0

) ^ (P � P 0
))

This relation is stronger than conformance.

Lemma 4.7 If T and T 0 are both combinational relation structures, then T v T 0 =) T � T 0:

Proof: Follows from Theorem 4.1 by set manipulations.

4.2.3 Conformance equivalence

Conformance is a preorder on combinational relation structures. It is not a partial order. We de�ne

T � T 0 to mean that T � T 0 and T 0 � T: This equivalence (\conformance equivalence") induces a

partial order on equivalence classes of combinational relation structures.

Lemma 4.8 If T and T 0 are both combinational relation structures, then

T �v T 0 =) T � T 0

Proof: Two applications of Lemma 4.7.

We seek a unique representative for each conformance equivalence class. Such a representative

will enable us to treat � as a partial order. More precisely, we seek a procedure that when applied

to any element of any conformance equivalence class will produce that class' unique representative.

The form of such a procedure will aid us in clarifying the extent of each conformance equivalence

class.

Consider the case of a combinational relation structure T that can force every one of its legal

environments into a failure. As far as safe substitution is concerned, we might as well simply mark

all entries of T 's P -set as failures. This is because T will have a non-failure-free composition with

every one of its legal environments whether or not we make this addition to the F -set of T:

Similarly, we note that if a relation structure is going to force every environment into a failure,

its F -set might as well be universal. Again, this is because the relation structure T will have a

non-failure-free composition with every one of its legal environments irrespective of the particular

behaviors that the composite model exhibits. These observations lead to the de�nition of combina-

tional autofailures and the autofailure manifestation process.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 82

We say a relation structure T = (I;O; S; F) is a combinational autofailure if and only if it has no

failure-free composition with any of its legal environments. Formally, for all combinational relation

structures E = (O; I; SE ; FE); E \ T is not failure-free. Because the set of all legal environments

of T includes those with empty F -sets, this condition is equivalent to requiring that for all legal

environments E of T; (F \ PE) is not empty. In contrast to the de�nition of autofailures in asyn-

chronous trace theory, there is an extra complication because the environment of a combinational

relation structure can respond instantaneously. (Note also that a combinational autofailure is a

relation structure, whereas in asynchronous trace theory, an autofailure is an element of the P -set

of a trace structure). There is, however, an e�ective procedure for determining whether or not T is

a combinational autofailure. That procedure is described in Chapter 6.

We de�ne the operation of autofailure manifestation as follows:

afm((I;O; S; F)) =

(
(I;O; S; T (I[O)

) if T is a combinational autofailure

(I;O; S; F) otherwise

The afm operator expands the F -set of its combinational autofailure operand to the maximal set

T (I[O): However, an operand relation structure that is not a combinational autofailure is left un-

changed by the operator.

Lemma 4.9 Let T be a combinational relation structure. Then afm(T) is too.

Proof:

Let T = (I;O; S; F) be a combinational relation structure. If T is not a combinational autofailure,

then afm(T) = T is a combinational relation structure by assumption.

If T is a combinational autofailure, then S; F � T (I[O); and the F and P -sets of afm(T) are

both T (I[O): Clearly T (I[O)
is both input-downward-closed and receptive.

Theorem 4.10 Let T be a combinational relation structure. Then T � afm(T):

Proof:

If T is not a combinational autofailure, then afm(T) = T and so clearly T � afm(T):

We concentrate on the case in which T is a combinational autofailure. For every combinational

relation structure T; T v afm(T): Thus by Lemma 4.7, T � afm(T):

We must prove that afm(T) � T for T a combinational autofailure.

By de�nition of a combinational autofailure, there exists no legal environment E of T such that

T \E is failure-free. By Theorem 4.1, it is thus vacuously true that afm(T) � T:

Thus afm(T) � T and so we have proved that afm(T) � T:

A combinational relation structure may have S and F sets which are not disjoint. An input-

output value combination which appears in both these sets represents a behavior that is nonde-

terministically either a success or a failure. Composition with any other combinational relation

CHAPTER 4. VERIFICATION AND SUBSTITUTION 83

structure admitting this behavior will be non-failure-free irrespective of whether the behavior is also

in S: Hence in attempting to delete extraneous information from T in such a way as to maintain the

soundness of our veri�cation, we require that such an input-output value combination be considered

solely as a failure.

We call the process of setting Snew = (S�F) failure-exclusion, and the resulting relation structure

fe(T):

Lemma 4.11 Let T = (I;O; S; F) be a combinational relation structure. Then fe(T) is too.

Proof:

Neither the F -set nor the P -set of T is a�ected by the fe operator. Therefore the required

properties of these two sets are preserved by application of this operator.

Theorem 4.12 Let T = (I;O; S; F) be a combinational relation structure. Then T � fe(T):

Proof:

Neither the F -set nor the P -set of T is a�ected by the fe operator. Therefore, T v fe(T) and

fe(T) v T: Thus, by Lemma 4.8, T � fe(T):

We de�ne output-upwards-closure in the obvious way by analogy to input-downwards-closure

(IDC). Given predetermined input and outputs sets I and O; respectively, we say that a set W �

T (I[O)
is output-upwards-closed precisely when

8x 2 T I :8y; y0 2 T O:[[(x[y) 2W ^ y � y0] =) (x [y0) 2W]

We say a combinational relation structure T = (I;O; F; P) is output-upwards-closed if and only if

both its F and P sets are.

In addition to the property of output-upward-closure we de�ne an operator OUC on combinational

relation structures. If T = (I;O; S; F) is a combinational relation structure, we de�ne

OUC(T) = (I;O;OUCI;O(S); OUCI;O(F))

where OUCI;O(W) is the set W � T (I[O)
together with the minimal set of additional behaviors

(elements of T (I[O)
) necessary to make the resulting set output-upwards-closed, for W any of S; F;

or P: Clearly, OUCI;O(S) [OUCI;O(F) = OUCI;O(P): We prove that the result of applying this

operator to a combinational relation structure is itself a combinational relation structure, and that

all conformance equivalence classes are closed under this operation.

Lemma 4.13 If T is a combinational relation structure, then OUC(T) is too.

Proof:

Let T = (I;O; S; F) be a combinational relation structure. We prove that OUCI;O(P) is recep-

tive, and that OUCI;O(F) and OUCI;O(P) are input-downward-closed:

CHAPTER 4. VERIFICATION AND SUBSTITUTION 84

� OUCI;O(P) is receptive:

By de�nition of the OUCI;O operator, P � OUCI;O(P): Hence we can simply maintain the

old C; a subset of P with the upward-chains property, as the new C (for OUC(T)): Therefore

OUCI;O(P) is receptive.

� OUCI;O(F) and OUCI;O(P) are input-downward-closed:

We prove that application of the OUCI;O operator to any input-downward-closed set which is

a subset of T (I[O) preserves that set's input-downward-closure property.

Let Q � T (I[O)
be input-downward-closed. Let x; x0 2 T I such that x0 � x: Let y 2 T O such

that (x [y) 2 OUCI;O(Q):

By de�nition of the OUCI;O operator, there exists y0 � y such that (x[y0) 2 Q: But then by

input-downward-closure of Q; (x0 [y0) 2 Q; and therefore (x0 [y) 2 OUCI;O(Q):

Theorem 4.14 Let T be a combinational relation structure. Then T � OUC(T):

Proof:

By de�nition of the OUC operator, T v OUC(T): Thus by Lemma 4.7, T � OUC(T):

We must prove that OUC(T) � T:

Let E = (O; I; FE ; PE) be a legal environment of T such that T \ E is failure-free. We must

prove that OUC(T) \E is also failure-free.

Say it is not. Then there exists w an element of the F -set of OUC(T) \E; that is,

w 2 ((OUCI;O(F) \ PE) [(OUCI;O(P) \ FE))

Assume without loss of generality that w 2 (OUCI;O(F) \ PE):

Let x 2 T I and y 2 T O such that w = (x[y): Then by de�nition of the OUCI;O operator, there

exists y0 � y such that (x [y0) 2 F: By input-downward-closure of PE; (x [y
0
) 2 PE as well. But

then (x[y0) 2 (F \PE) � ((F \PE)[(P \FE)); which is (T \E)'s failure-set, which by assumption

is empty. Therefore there can be no such w 2 (OUCI;O(F) \ PE); and so (OUCI;O(F) \ PE) = ;:

By the same argument, there can be no w 2 (OUCI;O(P)\FE); and so (OUCI;O(P)\FE) = ;:

Therefore ((OUCI;O(F)\PE)[(OUCI;O(P)\FE)) = ;: In other words, OUC(T)\E is failure-free.

Therefore OUC(T) � T; and so T � OUC(T):

We say that a combinational relation structure T = (I;O; S; F) is canonicalized if S \ F = ;; F

and P are output-upward-closed, and either F = T (I[O)
or T is not a combinational autofailure.

In section 4.2.5, we will prove that a canonicalized combinational relation structure is unique in

its conformance equivalence class. For now, we prove only the fairly obvious statement that the

procedures outlined above, if applied in such an order that no operator undoes the desired e�ects

of any other operator previously applied, do indeed result in a canonicalized relation structure. In

CHAPTER 4. VERIFICATION AND SUBSTITUTION 85

addition, we prove that application of these operators to an already canonicalized relation structure

T has no e�ect.

Theorem 4.15 Let T be a combinational relation structure. Then

fe(afm(OUC(T))) and fe(OUC(afm(T)))

are both canonicalized combinational relation structures that are conformance equivalent to T:

Proof:

Let T be a combinational relation structure. Let T1 = OUC(T); T2 = afm(T1); and T3 = fe(T2):

Let T4 = afm(T); T5 = OUC(T4); and T6 = fe(T5):

We must prove

� T3 is a combinational relation structure, T3 � T; and T3 is canonicalized, and

� T6 is a combinational relation structure, T6 � T; and T6 is canonicalized.

The proofs follow.

� By Lemma 4.13, T1 is a combinational relation structure. Hence by Lemma 4.9, T2 is too.

Thus, by Lemma 4.11, T3 is a combinational relation structure.

We utilize the transitivity of � to prove that T3 � T: By Theorem 4.14, T � T1: By Theo-

rem 4.10, T1 � T2: By Theorem 4.12, T2 � T3: Thus by transitivity of the relation �; we have

proved that T � T3:

In order to prove that T3 is canonicalized, we prove that each of the relevant criteria holds:

{ F3 and P3 are output-upwards-closed:

By de�nition, T1 is output-upwards-closed. If T1 is a combinational autofailure, then

F2 = P2 = T
(I[O); which is certainly output-upwards-closed. If T1 is not a combinational

autofailure, then F2 = F1 and P2 = P1; so T2 is output-upwards-closed because T1 is.

Finally, F3 and P3 are output-upward-closed because by de�nition of failure exclusion,

F3 = F2 and P3 = P2:

{ (S3 \F3) = ; :

This follows directly from the de�nition of failure exclusion.

{ Either F3 = T
(I[O)

or T3 is not a combinational autofailure:

By Theorem 4.1, because T � T3 it must be the case that T is a combinational autofailure

if and only if T3 is. Similarly, T is a combinational autofailure if and only if T1 is.

Thus, if T3 is a combinational autofailure, then so is T1: Hence in this case, by de�nition

of autofailure manifestation, F2 = P2 = T
(I[O): Because failure exclusion does not a�ect

the F -set of its operand relation structure, F3 = T
(I[O)

as well.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 86

� By Lemma 4.9, T4 is a combinational relation structure. Hence by Lemma 4.13, T5 is too.

Thus, by Lemma 4.11, T6 is a combinational relation structure.

We utilize the transitivity of � to prove that T6 � T: By Theorem 4.10, T � T4: By Theo-

rem 4.14, T4 � T5: By Theorem 4.12, T5 � T6: Thus by transitivity of the relation �; we have

proved that T � T6:

In order to prove that T6 is canonicalized, we prove that each of the relevant criteria holds:

{ F6 and P6 are output-upwards-closed:

By de�nition, T5 is output-upwards-closed. By de�nition of failure exclusion, F6 = F5

and P6 = P5: Therefore F6 and P6 are output-upward-closed

{ (S6 \F6) = ; :

This follows directly from the de�nition of failure exclusion.

{ Either F6 = T
(I[O)

or T6 is not a combinational autofailure:

By Theorem 4.1, because T � T6 it must be the case that T is a combinational autofailure

if and only if T6 is.

Thus, if T6 is a combinational autofailure, then so is T: Hence in this case, by de�nition

of autofailure manifestation, F4 = P4 = T
(I[O): Because OUC(T (I[O)

) = T (I[O); F5 =

T (I[O)
too. And �nally, because failure exclusion does not a�ect the F -set of its operand

relation structure, F6 = T
(I[O)

as well.

QED Theorem 4.15

In addition to being canonicalized and conformance equivalent to T; these two derived relation

structures are identical to each other and to T if T was already canonicalized.

Lemma 4.16 If T is a canonicalized combinational relation structure, then

fe(afm(OUC(T))) = fe(OUC(afm(T))) = T

Proof: Let T be a canonicalized combinational relation structure. Then F and P are output-

upward-closed (that is, F = OUCI;O(F) and P = OUCI;O(P)): Therefore, T = OUC(T):

Similarly, because T is canonicalized, either F = T (I[O)
or T is not a combinational autofail-

ure. Therefore afm(T) = T: And �nally, because T is canonicalized, its S and F -sets are disjoint.

Therefore fe(T) = T:

Because of these three facts, fe(afm(OUC(T))) = fe(afm(T)) = fe(T) = T and

fe(OUC(afm(T))) = fe(OUC(T)) = fe(T) = T:

CHAPTER 4. VERIFICATION AND SUBSTITUTION 87

4.2.4 The maximal safe environment of a circuit

In order to derive a decision procedure for conformance, we de�ne the maximal environment with

which a circuit (represented by a combinational relation structure) may be safely composed. How-

ever, not all combinational relation structures have maximal environments that are themselves com-

binational relation structures. There exists a particular class of combinational relation structures

whose maximal environment has an empty P -set, and therefore is not receptive. We require an

exception to the conformance decision procedure to handle the case of those combinational relation

structures whose maximal safe environment is not a combinational relation structure.

In this section, we de�ne the maximal safe environment of a combinational relation structure

and begin to clarify how we will decide conformance if one or both of the combinational relation

structures being compared does not have a maximal safe environment which is a combinational

relation structure. In Section 4.2.5, we will present the �nal theorems necessary to support our

conformance decision procedure, and discuss the decision procedure itself.

We de�ne a mirroring operation over the canonicalized combinational relation structures only.

Mirroring a combinational relation structure involves swapping its inputs and outputs, complement-

ing its F and P sets, and then swapping them. The S-set is left intact. Formally, for T = (I;O; S; F)

a canonicalized combinational relation structure, the mirror of T is

mir(T) = (O; I; S; (T (I[O) � P)) = (O; I; S; P)

Note that the P -set ofmir(T) is (S[P) = F : the equality holds because (S\F) = ; for canonicalized

T:

Intuitively, mir(T) is the maximal environment of canonicalized T such that T k mir(T) is

failure-free. However, if S = ; then F = P; so that T must be a combinational autofailure. In this

case mir(T) is not a combinational relation structure, as it has an empty P -set (which is therefore

not receptive). We note that the mirror of a canonicalized combinational relation structure whose

S-set is nonempty is itself a canonicalized combinational relation structure (Lemma 4.17), and that

their composition is failure free (Lemma 4.18).

Lemma 4.17 Let T = (I;O; S; F) be a canonicalized combinational relation structure such that

S 6= ;: Then mir(T) is also a canonicalized combinational relation structure.

Proof: Let T be a canonicalized combinational relation structure. Let T 0 = mir(T): We must

prove that T 0 is a combinational relation structure and that it is canonicalized.

As a preliminary to proving that P 0
= F obeys the receptiveness constraint, we note that for

every combinational relation structure T0 = (I;O; F0; P0) and legal environment E = (O; I; FE; PE)

of T0;

CHAPTER 4. VERIFICATION AND SUBSTITUTION 88

(T0 \E) is failure-free () (P0 \ FE) = ; ^ (F0 \ PE) = ;

() FE � P0 ^ PE � F0

The equations above state that

T \E is failure-free if and only if FE � P and PE � F

We must prove that there exists C � F that is total (in T O) and that has the upward-chains

property (in (O; I)): The proof is by contradiction. Say that there exists no such C � F :Then clearly

no X � F can contain such a C either. Thus, by this containment-upward-closure property of the

receptiveness constraint, there exists no legal environment E of T such that T \ E is failure-free.

This is because T \E is failure-free only if PE � F: Thus there can exist no T O-total C � PE having

the upward-chains property in (O; I): Therefore PE does not obey the receptiveness constraint, and

so E is not a combinational relation structure after all. By this argument, there exists no legal

environment E of T such that T \E is failure-free, and hence T is a combinational autofailure. But

then, since T is canonicalized by assumption, F = T (I[O): Since S \F = ;; it must also be the case

that S = ;: But by assumption, S 6= ;: Therefore there must exist appropriate C � F = P 0:

Finally, the proof that P 0
= F and F 0

= P are input-downward-closed (in (O; I)) follows from

the fact that F and P are output-upwards-closed (in (I;O)) :

Let y; y0 2 T O and x 2 T I such that (y[x) 2 F and y0 � y:We must prove that (y0[x) 2 F : By

assumption, T is canonicalized. Therefore F is output-upwards-closed. Hence, because (y [x) 62 F;

it must be the case that (y0 [x) 62 F as well. But then (y0 [x) 2 F: The same argument may be

repeated with P in place of F:

This concludes our proof that T 0 = mir(T) is a combinational relation structure.

We proceed to prove that T 0 = mir(T) is canonicalized:

� F 0
and P 0

are output-upwards-closed:

F 0
= P is output-upwards-closed in (O; I) because P is input-downward-closed in (I;O); and

P 0
= F is output-upwards-closed in (O; I) because F is input-downward-closed in (I;O) :

Let x; x0 2 T I and y 2 T O such that (y[x) 2 P and x � x0:We must prove that (y[x0) 2 P:

By assumption, P is input-downward-closed. Therefore, because (y [x) 62 P; it must be the

case that (y [x0) 62 P as well. But then (y [x0) 2 P = F 0: The same argument may be

repeated with F in place of P:

� S0 \ F 0
= ; :

S0 = S and F 0
= P = (S [F) � S = S0: Thus w 2 S0 =) w 62 F 0

and w 2 F 0
=) w 62 S0:

� If T 0 is a combinational autofailure then F 0
= T (I[O)

:

T is a legal environment of T 0: Thus if T 0 is a combinational autofailure, then T \ T 0 is not

failure-free.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 89

But the F -set of (T \T 0) is (F 0\P)[(P 0\F) = (P \P)[(F \F) = ;: Therefore it must be

the case that T 0 is not a combinational autofailure. Therefore, the condition holds vacuously.

QED Lemma 4.17

Lemma 4.18 If T is a canonicalized combinational relation structure with nonempty S set, then

T \mir(T) is failure free

Proof: Let T = (I;O; S; F) be a canonicalized combinational relation structure. By Lemma4.17,

if S 6= ;; then mir(T) is a combinational relation structure. Hence we can compose T and mir(T);

and the F -set of their composition is ((P \ P) [(F \ F)); which is empty by de�nition of set

complement. Hence T \mir(T) is failure free.

In order to de�ne the maximal environment with which a combinational relation structure T

may be safely composed, we preprocess T so as to enable application of the mirror operator, and

then take its mirror. Our preprocessing consists of canonicalizing T as described in the previous

section. We arbitrarily pick one (unambiguous) version of this process, which (by Theorem 4.15) is

guaranteed to result in a combinational relation structure conformance equivalent to the original:

by Theorem 4.15, canon(T) = fe(afm(OUC(T))) is a combinational relation structure conformance

equivalent to the original T :

canon((I;O; S; F)) =

(
(I;O; ;; T (I[O)) if T is a combinational autofailure

(I;O;OUCI;O(S) �OUCI;O(F); OUCI;O(F)) otherwise

Note that by Lemma 4.16, the canon operator is idempotent.

If T is a combinational relation structure, then the maximal safe environment of T is

TMaxEnv
= mir(canon(T))

The following theorems assure us that this formal de�nition does indeed yield the v-maximal

environment of T (of those whose S and F sets are disjoint) with which the original combinational

relation structure T can be composed failure-free. This justi�es calling TMaxEnv
the maximal safe

environment of T: We also show that the MaxEnv operator provides a semi-decision procedure for

conformance.

Lemma 4.19 Let T = (I;O; S; F) be a combinational relation structure such that the S-set of

canon(T) is non-empty. Then TMaxEnv is a canonicalized combinational relation structure.

Proof: By Theorem 4.15, canon(T) is a canonicalized combinational relation structure. By

Lemma 4.17, therefore, mir(canon(T)) = TMaxEnv
is a canonicalized combinational relation struc-

ture as long as the S-set of canon(T) is nonempty.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 90

Note that TMaxEnv
need not be a combinational relation structure. This occurs precisely when

canon(T) has an empty S-set: in that case, mir(canon (T)) has an empty P -set and hence does

not obey the receptiveness constraint on P: This is because the S-set of canon(T) is empty if and

only if the F and P -sets of canon(T) are equal: by de�nition of the canonicalization process and

by Theorem 4.15, this in turn occurs exactly when T is a combinational autofailure. Hence a

combinational relation structure T whose maximal safe environment is not a combinational relation

structure is a combinational autofailure. Similarly, every combinational autofailure has a maximal

safe environment that is not a combinational relation structure. This point will be important for

understanding the interaction between the notions of maximal safe environment and conformance.

Lemma 4.20 If T is a combinational relation structure, then T is a combinational autofailure if

and only if TMaxEnv is not a combinational relation structure.

We extend the domain of the relationv to structures of the form (I;O; ;; ;):These structures have

the form of combinational relation structures, but they are not combinational relation structures

because their P -set is empty (and hence not receptive). We maintain the requirement that only

structures of the same (I;O)-type are comparable using this preorder. Clearly, for all combinational

relation structures T = (I;O; S; F);

T 6v (I;O; ;; ;) and (I;O; ;; ;) v T and (I;O; ;; ;) v (I;O; ;; ;)

This extended de�nition is used by the following lemma, which holds for combinational relation

structures T for which TMaxEnv
is not a combinational relation structure as well as for those such

that TMaxEnv
is a combinational relation structure.

Lemma 4.21 Let T = (I;O; S; F) and E = (O; I; SE ; FE) be combinational relation structures.

Then

(T \E) is failure-free if and only if E v TMaxEnv

Proof:

As discussed above, and formalized in Lemma 4.20, TMaxEnv
is not a combinational relation

structure if and only if the F and P -sets of canon (T) are equal, which occurs if and only if T is a

combinational autofailure. By de�nition of autofailures, this occurs precisely when there exists no

legal environment E of T such that T \E is failure-free.

If we extend the relation v to such structures (I;O; ;; ;); as described above, we derive that if

T is a combinational autofailure then there exists no combinational relation structure E such that

E v TMaxEnv
(because there exists no non-empty PE such that PE � ;): Hence if T

MaxEnv
is not a

combinational relation structure, then for all environments E of T; (T \ E) is not failure free and

E 6v TMaxEnv : Hence in this case, T \E is failure-free if and only if E v TMaxEnv :

CHAPTER 4. VERIFICATION AND SUBSTITUTION 91

If TMaxEnv
is a combinational relation structure then by Theorems 4.1 and 4.15,

(T \E) is failure free if and only if (canon (T) \E) is failure free

Let T0 = (I;O; F0; P0) = canon (T): Then

(T \E) is failure free () (T0 \E) is failure free

() (P0 \ FE) = ; ^ (F0 \ PE) = ;

() FE � P0 ^ PE � F0

() E v mir(T0) = TMaxEnv

Therefore TMaxEnv
is the v-maximal safe environment of T having disjoint S and F sets. We

proceed to use this fact to derive a semi-decision procedure for conformance.

Lemma 4.22 Let T be a combinational relation structure that is not a combinational autofailure.

Then

(TMaxEnv
)
MaxEnv

= canon(T)

Proof: Let T = (I;O; F; P) be a combinational relation structure that is not a combinational

autofailure. By Theorem 4.15, canon (T) is a canonicalized combinational relation structure. Because

T is not a combinational autofailure, the S-set of canon(T) is non-empty. Thus (by Lemma 4.17)

mir(canon(T)) = TMaxEnv
is also a canonicalized combinational relation structure.

Hence in this case

(TMaxEnv
)
MaxEnv

= mir(canon (TMaxEnv
))

= mir(TMaxEnv
) by Lemma 4.16

= mir(mir(canon(T)))

= canon(T)

Theorem 4.23 Let T = (I;O; F; P) and T 0 = (I;O; F 0; P 0
) be combinational relation structures

such that the S-set of canon (T 0) is nonempty. Then

T \ (T 0)MaxEnv is failure-free =) T � T 0

Proof: Let T = (I;O; F; P) and T 0 = (I;O; F 0; P 0
) be combinational relation structures such

that the the S-set of canon(T 0) is non-empty. By Lemma 4.21, T \ (T 0)MaxEnv
is failure free if and

only if T v ((T 0)MaxEnv
)
MaxEnv : By Lemma 4.22, ((T 0)MaxEnv

)
MaxEnv

= canon(T 0):

Let T \ (T 0)MaxEnv
be failure free. Then by Lemmas 4.21 and 4.22, T v canon (T 0): Thus by

Lemma 4.7, T � canon(T 0): By Theorem 4.15, T 0 � canon (T 0): Therefore T � T 0:

CHAPTER 4. VERIFICATION AND SUBSTITUTION 92

As discussed previously, although TMaxEnv
is the v-maximal safe canonicalized environment of T

if it is a combinational relation structure, it need not in fact be a combinational relation structure.

This occurs precisely when T is a combinational autofailure (Lemma 4.20).

By a vacuous application of the de�nition of conformance, every combinational relation structure

of the appropriate (I;O)-type conforms to a combinational autofailure. Hence a combinational

relation structure T whose maximal safe environment is not a combinational relation structure is a

valid speci�cation for all combinational relation structures that have the same I and O sets as T:

The proof of these facts follows.

Theorem 4.24 Let T = (I;O; S; F) and T 0 = (I;O; S0; F 0
) be combinational relation structures. If

(T 0)MaxEnv is not a combinational relation structure, then T � T 0:

Proof: Let T 0 = (I;O; S0; F 0
) be a combinational relation structure such that (T 0)MaxEnv

is not

a combinational relation structure. By Lemma 4.20, this is equivalent to the statement that T 0 is a

combinational autofailure.

By de�nition of a combinational autofailure, for all legal environments E = (O; I; SE ; FE) of T
0;

T 0 \E is not failure-free.

But then for all combinational relation structures T = (I;O; S; F) it is trivially the case that for

every legal environment E = (O; I; SE ; FE) of T and T 0; T 0 \E is failure-free implies that T \E is

failure-free.

Hence T � T 0:

Thus all combinational relation structures of the same (I;O)-type whose maximal safe environ-

ments are not combinational relation structures are conformance equivalent.

Lemma 4.25 Let T = (I;O; F; P) and T 0 = (I;O; F 0; P 0
) be combinational relation structures such

that TMaxEnv and (T 0)MaxEnv are not combinational relation structures. Then T � T 0:

Proof: Two applications of Theorem 4.24.

The preceding lemmas and theorems provide an e�ective semi-decision procedure for confor-

mance, assuming one has an algorithm for determining whether or not a combinational relation

structure is a combinational autofailure. As stated earlier, we have developed such an algorithm and

it will be presented in Chapter 6.

If T 0 is a combinational autofailure, then we know that (T 0)MaxEnv
is not a combinational relation

structure, and so by Theorem 4.24, T � T 0: If T 0 is not a combinational autofailure, we may compute

(T 0)MaxEnv ; and we know it will be a combinational relation structure. Then we may check whether

or not T \ (T 0)MaxEnv
is failure-free. If it is failure-free, then by Theorem 4.23 it must be the case

that T � T 0: However, if (T 0)MaxEnv
is a combinational relation structure and T \ (T 0)MaxEnv

is not

failure-free, we do not (yet) know whether or not T � T 0:

In the following section, we present the �nal theorems that describe a full decision procedure for

conformance, by �lling in this �nal case.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 93

4.2.5 A decision procedure for conformance

4.2.5.1 Introduction

In this section, we prove that there is a unique canonicalized combinational relation structure in each

conformance equivalence class. This de�nes a canonical element of each such class, and allows the

possibility of working with a reduced circuit algebra consisting only of canonicalized combinational

relation structures.

Furthermore, we prove that for non-autofailure T 0; T � T 0 () (T \ (T 0)MaxEnv
) is failure-free

(Theorem 4.31, below) and T � T 0 () T v canon (T 0) (Theorem 4.32,below). These results provide

a decision procedure for conformance. In addition, the latter result clari�es how conformance handles

a ? value on an output wire of a speci�cation.

If we work only with canonical relation structures as circuit models and requirements speci�ca-

tions, these results reduce to the following simple statements:

T � T 0 () (T \mir(T 0)) is failure-free () T v T 0

While maintaining only canonical representations complicates the implementation of the algebraic

operators, the above result leads to a conceptually simpler decision procedure for conformance.

4.2.5.2 Canonical elements

In this section, we prove that there is a unique canonicalized combinational relation structure in each

conformance equivalence class. This de�nes a canonical element of each such class, and allows the

possibility of working with a reduced circuit algebra consisting only of canonicalized combinational

relation structures.

Lemma 4.26 Every conformance equivalence class contains a canonicalized combinational relation

structure.

Proof:

By Theorem 4.15, for all combinational relation structures T it is the case that canon(T) is

canonicalized and is in the same conformance equivalence class as T: Therefore every conformance

equivalence class contains at least one canonicalized combinational relation structure.

Theorem 4.27 Every conformance equivalence class contains a unique canonicalized combinational

relation structure.

Proof:

By Lemma 4.26, every conformance equivalence class contains at least one canonicalized combi-

national relation structure.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 94

Let T = (I;O; F; P) and T 0 = (I;O; F 0; P 0
) be distinct canonicalized combinational relation

structures. Say without loss of generality that P 0
contains at least one input-output combination

that is not contained in P (formally, (P 0 � P) 6= ;); or F 0
contains at least one input-output

combination that is not contained in F (formally, (F 0 � F) 6= ;): Then S 6= ;; as F = P = T (I[O)

would not allow P � P 0
or F � F 0: We must prove that T 6� T 0:

We will prove that T 0 6� T; by exhibiting a legal environment E of T and T 0 such that E \ T is

failure-free but E \ T 0 is not failure-free.

Let E = mir(T): By Lemma 4.17 and because S 6= ;; E is a combinational relation structure.

By Lemma 4.18, T \E is failure-free.

But because (P 0�P) 6= ; or (F 0�F) 6= ;; we know that P \P 0 6= ; or F \F 0 6= ;: Hence T 0\E

is not failure-free.

Thus there exists at least one legal environment of T and T 0 violating the de�nition of T 0

conforming to T: Therefore T 0 6� T and so T 0 6� T:

We call this unique canonicalized element in a conformance equivalence class its canonical ele-

ment. The following fact clari�es the relation between the v ordering and these canonical elements.

Lemma 4.28 Every conformance equivalence class contains a unique v-maximal element having

disjoint S and F sets, and that element is its canonical element.

Proof:

By Theorem 4.27, every conformance equivalence class contains a unique canonicalized element.

Therefore it su�ces to prove that every v-maximal element of every conformance equivalence class

whose S and F sets are disjoint is canonicalized.

Let T be a combinational relation structure whose S and F -sets are disjoint. Assume that T is

a maximal element in its conformance equivalence class. By construction, T v canon(T); and by

Theorem 4.15, T � canon(T): Therefore, T = canon(T):

Because each conformance equivalence class contains a unique canonical element, we hope to be

able to work solely with these unique representatives. However, in order to do so we need to rede�ne

our algebraic operators so that the class of canonical combinational relation structures becomes

closed under their application. We do this by rede�ning the operators to �rst apply the operation

as previously de�ned and then canonicalize the result:

� Renaming does not change: if the operand relation structure is canonicalized, the result is as

well.

� Hiding preserves output-upward-closure, but it may convert a non-autofailure combinational

relation structure into a combinational autofailure. Hence after application of the old deletion

operator, we apply autofailure manifestation and failure exclusion to the result.

� Inverse deletion preserves the canonicality of its operand relation structure. Hence it need not

be modi�ed (see next item).

CHAPTER 4. VERIFICATION AND SUBSTITUTION 95

� Composition may destroy output-upward-closure; it may also create a combinational autofail-

ure from non-autofailure component relation structures. Hence after application of the old

composition operator, we apply the full canonicalization sequence to the result.

Note that although composition is de�ned to apply both the inverse deletion and the intersec-

tion operators, we need recanonicalize only after application of intersection, the �nal step of

the previously de�ned composition operator, as inverse deletion preserves canonicality.

We know that canonical relation structures are isomorphic to full conformance equivalence classes:

each conformance equivalence class and its canonical element are in one-to-one correspondence. We

prove that conformance equivalence is a congruence for circuit algebras. This allows us to de�ne

the quotient of the circuit algebra of combinational relation structures with respect to conformance

equivalence, and tells us it is also a circuit algebra.

Theorem 4.29 The class of canonical combinational relation structures, together with the new op-

erator de�nitions, forms a circuit algebra.

Proof:

We �rst prove that conformance equivalence is a congruence for circuit algebras. This proof is

precisely the proof of Lemma 4:25 on p. 69 of [61]:

We must prove that if T1; T
0
1; T2 and T

0
2 are combinational relation structures such that T1 � T 01

and T2 � T 02; then (T1 k T2) � (T 01 k T
0
2); del(D)(T1) � del(D)(T 01); and ren(r)(T1) � ren(r)(T 01):

The �rst follows from four applications of Theorem 4.6, the second follows from two applications

of Theorem 4.5, and the third follows from two applications of their obvious counterpart for the

renaming operator.

By results of algebra, the fact that � is a congruence allows us to de�ne the quotient of the

circuit algebra of combinational relation structures, and guarantees that the result is also a circuit

algebra. More concretely, this proves that we may work solely with canonical combinational relation

structures, while still depending on the truth of the circuit algebra axioms.

4.2.5.3 The conformance check

We now derive two distinct presentations of a decision procedure for conformance. The former will

prove to be most useful for deciding conformance relative to an environment (Section 4.3); the latter

will clarify how conformance handles a ? value on an output wire of a speci�cation.

Lemma 4.30 Let T 0 be a canonical combinational relation structure. Then

T � T 0 =) T v T 0

Proof:

CHAPTER 4. VERIFICATION AND SUBSTITUTION 96

The lemma holds trivially if the S-set of T 0 is empty, because in that case T 0 is a combinational

autofailure and so its F and P -sets are universal (F 0
= P 0

= T (I[O)
):

We now consider the case in which the S-set of T 0 is nonempty:

Let T = (I;O; F; P) and T 0 = (I;O; F 0; P 0
) be combinational relation structures such that

T 0 = canon(T 0) and S0 6= ;: Let T � T 0: Then for all legal environments E = (O; I; FE; PE) of T

and T 0; T 0 \E being failure free implies that T \E is failure-free.

By Lemma 4.17, mir(T 0) is both canonical and a combinational relation structure. Therefore it

is a legal environment of T 0:

By Lemma 4.18, T 0\mir(T 0) is failure-free. Therefore by Theorem 4.1, T \mir(T 0) is failure-free

as well. By Lemma 4.21, it must therefore be the case that T v (mir(T 0))MaxEnv :

(mir(T 0))MaxEnv
= mir(canon(mir(T 0)))

= mir(mir(T 0)) by Lemmas 4.16 and 4.17

= T 0

Thus T v T 0: Therefore T � T 0 =) T v T 0:

Theorem 4.31 If T = (I;O; S; F) and T 0 = (I;O; S0; F 0
) are both combinational relation struc-

tures, and T 0 is not a combinational autofailure, then

T � T 0 () (T \ (T 0)MaxEnv
) is failure-free

Proof: Let T = (I;O; S; F) be a combinational relation structure. Let T 0 = (I;O; S0; F 0
) be a

non-autofailure combinational relation structure.

By Theorem 4.23, if (T \ (T 0)MaxEnv
) is failure-free then T � T 0:

We must prove that if T � T 0; then (T \ (T 0)MaxEnv
) is failure-free.

Let T � T 0: By Theorem 4.15, T 0 � canon(T 0) and canon(T 0) is indeed canonical.

Let T 00 = canon(T 0): By Lemma 4.30, T v T 00:

By Lemma 4.22, T 00 = ((T 0)MaxEnv
)
MaxEnv :

Therefore by Lemma 4.21, T v T 00 implies that T \ (T 0)MaxEnv
is failure-free.

Therefore T � T 0 =) T \ (T 0)MaxEnv
is failure-free.

The preceding theorem provides a decision procedure for checking conformance: it �lls in the

missing piece from the semi-decision procedure described at the end of Section 4.2.4. This decision

procedure requires that we be able to e�ectively determine of a relation structure T 0 whether or not

it is a combinational autofailure. We have not yet presented an e�ective algorithm for doing so;

however, we have developed such an algorithm. It will be presented in Chapter 6.

The decision procedure for checking conformance that has been completed by the preceding

theorem is the following. In order to check whether or not T � T 0; we �rst determine whether or not

T 0 is a combinational autofailure. If T 0 is a combinational autofailure, then T � T 0 by Theorem 4.24.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 97

Otherwise, we compute (T 0)MaxEnv : We then check for emptiness of the F -set of T \ (T 0)MaxEnv
: if

it is empty, T � T 0; and otherwise not.

The following theorem provides an alternate presentation of the same decision procedure. It

clari�es precisely how conformance handles a ? value on an output wire of a speci�cation, as

explained below.

Theorem 4.32 Let T = (I;O; P) and T 0 = (I;O; P 0
) be combinational relation structures. Then

T � T 0 () T v canon(T 0)

Proof:

� (=)) : Let T � T 0: By Theorem 4.15, T 0 � canon(T 0):Hence by Theorem 4.15 and Lemma4.30,

T v canon(T 0):

� ((=) : Let T v canon(T 0): By Lemma 4.7, T � canon(T 0): But by Theorem 4.15, canon(T 0) �

T 0: Therefore T � T 0:

The preceding theorem appears to provide an alternate decision procedure for checking confor-

mance. However, the two procedures are e�ectively equivalent. Computing (T 0)MaxEnv
requires us

to compute T 00 = canon(T 0); and the method by which we check whether T v canon (T 0) = T 00 is to

check whether P \ P 0
0 = ; and F \ F 0

0 = ;; that is to say, whether T \ (T 0)MaxEnv
is failure-free.

Hence the two theorems emphasize distinct views of the same conformance decision procedure.

The second theorem clari�es that the appearance of a ? value on an output wire in a speci�cation

indicates that any of the values 0; 1 or ?may appear in its place in the allowed implementations. Be-

cause canon(T 0) is output-upward-closed, a ?-value on an output wire of T 0 cannot be distinguished

from the availability of all three wire value options on that wire in T 0; when deciding whether or not

T � T 0:

By Theorem 4.29, the class of canonical relation structures together with the adapted algebraic

operators forms a circuit algebra. Thus we may choose to maintain all combinational relation

structures in canonicalized form, in which case the results of Theorems 4.31 and 4.32 reduce to the

following simple statements:

T � T 0 () (T \mir(T 0)) is failure-free () T v T 0

While maintaining only canonical representations complicates the implementation of the algebraic

operators, the above result leads to a conceptually simpler decision procedure for conformance.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 98

4.2.6 Examples

In this section we present some examples which illustrate the conformance relation and its use in

hierarchical veri�cation.

The �rst example (Example 4.1) continues our development of the gated ring oscillator example,

introduced in Section 3.2.2. It substantiates the claimmade there: combinational relation structures

can represent the gated ring oscillator of Figure 3.1 su�ciently accurately to avoid the false positive

veri�cation result we derived using the Boolean relation representation.

In Example 4.2 we illustrate how a nondeterministic speci�cation allows multiple correct imple-

mentations. We provide a nondeterministic speci�cation and enumerate its correct implementations.

In Example 4.4, we sketch a small example of the use of hierarchical veri�cation.

In Example 4.3 we discuss how to most accurately represent a selector that is implemented by

pass transistors. Combinational relation structures are not intended to handle such switch-level

concerns as the bidirectional electron
ow which may occur as two nodes stabilize to a newly-

uni�ed unipotential region. However, that concern arises in considering this circuit. This example

graphically illustrates the fundamental need for F -sets in our models.

Example 4.1 Gated ring oscillator:

Consider again the circuit depicted in Figure 3.1 on page 54. This circuit is a gated ring oscillator

that consists of a nand-gate and a non-inverting bu�er composed together into a loop. In Example 3.6

on page 72, we provided a combinational relation structure representation of this circuit:

Tgro = (I = fag; O = fb; cg; S = fabc;?abc; a?b?c;?a?b?c;?a?bcg; F = ;)

In our discussion of the Boolean relation representation of this circuit, we claimed that the com-

binational relation structure representation can be used to correctly show that this circuit, packaged

so that the wire labeled c is an internal node rather than a primary output, is not a correct imple-

mentation of an inverter speci�cation. However, only now do we have the tools to show that this is

the case.

We retrieve from Example 3.6 the combinational relation structure representation of the newly

packaged circuit that we previously constructed:

TCircuit = del(fcg)(Tgro) = (fag; fbg; fab;?ab; a?b;?a?bg; ;)

A combinational relation structure representation of the inverter speci�cation appears in Exam-

ple 3.1:

TSpec = Tinv�ab = (fag; fbg; fab; ab;?a?b;?ab;?abg; ;)

In order to check whether or not TCircuit � TSpec ; we canonicalize TSpec and then determine

whether TCircuit v canon (TSpec): In this particular case, both the speci�cation and its potential

CHAPTER 4. VERIFICATION AND SUBSTITUTION 99

implementation have empty F -sets. Therefore they cannot be combinational autofailures, and so

(TSpec)
MaxEnv is a combinational relation structure. In addition, T 0 = canon(TSpec) = TSpec ; as

TSpec is already output-upward-closed.

Because the behavior a?b appears in PCircuit but not in P
0; the set of possible behaviors of T 0; we

conclude that TCircuit 6v T 0; and hence TCircuit 6� TSpec : In other words, this circuit is not a correct

implementation of the inverter speci�cation. This result is accurate for precisely the reason implied

by the combinational relation structure representations: in the actual gated loop circuit, on input

value a = 1 the node b oscillates rather than stabilizing to the value 0 as required by the inverter

speci�cation.

In the following examples we utilize a succinct notation for relations between wire values that

is less unwieldy than the explicit lists of extended monomials used in previous examples. In this

notation, we present the relation as an equation or set of equations between wire values. The value

on node e is represented by ve: In these equations, conjunction is implicit, and binds tighter than

disjunction, which is represented by the symbol +: Other standard Boolean logic symbols may also

appear in these equations: � for exclusive-or, � for equivalence (NXOR), etc.

The relation refers only to Boolean values; the intent is to extrapolate to our ternary domain

of wire values by expanding the indicated Boolean relation to its standard ternary extension, and

then expanding the relation further by adding those behaviors necessary to make it input-downward-

closed. By analogy to the OUCI;O operator, we de�ne an IDCI;O operator that adds to its operand

set precisely those elements necessary to make the set input-downward-closed. In the case of a com-

binational relation structure with a non-empty F -set, we independently apply the IDCI;O operator

to the standard ternary extension of the relations given for the F -set and the P -set. Then we assign

to the new S-set all those elements of the newly expanded P -set which do not appear in the newly

expanded F -set. Because subsequent canonicalization would delete the other new elements from S

(via failure exclusion), there is no loss of generality in this approach. Of course, not all combinational

relation structures can be described in this way, as this is not the only option available in creat-

ing combinational relation structure representations of speci�cations and circuits. In Examples 3.4

and 3.5, for example, F -sets are larger than indicated by the above mapping process. However, we

have just outlined one possible systematic way to create combinational relation structure models

from Boolean descriptions.

We may mix and match the new and old notations, representing some portion of a ternary-

domain relation as an explicit set of extended monomials and another part as an equation. Note

that where we mix the equation notation and the monomial notation in a behavioral description,

we intend to denote the input-downward-closure of the standard ternary extension of the relation

described by their union.

In addition, we may sometimes employ a shorthand in presentation of the relations between wire

values, in which wire value indicators are replaced by the relevant wire names. For example, if ve

CHAPTER 4. VERIFICATION AND SUBSTITUTION 100

denotes the value on the node labeled e; the equation e = ab + cd is shorthand for the relation

ve = vavb + vcvd:

Example 4.2 The speci�cation

TSpec = (I = fa; b; c; dg;O = feg; S = ((e = ab+ cd) [fabcdeg); F = ;)

allows the output wire e to stabilize to either 0 or 1 if the input wires all have value 0: However, an

implementation satisfying this speci�cation may be deterministic, and settle to a speci�c predeter-

mined value in this case. A correct implementation TImpl = (I;O; SImpl ; FImpl) � TSpec must have

FImpl = ;; but may take any of the three forms

� SImpl = SSpec

� SImpl = (e = ab+ cd); or

� SImpl = (e = ab+ cd+ abcd):

For example, T � TSpec for the combinational relation structure

T = del(ff; gg)(Tnand�abf k Tnand�cdg k Tnand�fge)

[which represents the circuit] illustrated in Figure 4.1.

a

b

c

d

f

g

e

Figure 4.1: One possible implementation of an example nondeterministic speci�cation

In our next example we consider the case of a selector with two select lines and two input data

lines. Under accepted normal operating conditions, such a circuit should never receive the value 1

on both its select lines simultaneously. If the circuit employs pass transistors, the e�ect of holding

both select lines high may be to unify the data in lines and the data out line into a single node

(so that their values stabilize as a unipotential region). This can have undesirable e�ects on the

logic ostensibly driving the data in lines. Such a situation may cause actual circuit behavior that

is inconsistent with our model, so it is necessary to disallow it in order to preserve the integrity of

the model.

Stating the allowed environments of a circuit can be a critical part of its modeling. At the same

time we realize that a circuit model does not have the authority to control its environment { only

CHAPTER 4. VERIFICATION AND SUBSTITUTION 101

to state explicitly the class of environments over which an acceptable implementation is guaranteed

to behave according to the speci�cation. The F -set expresses this restriction without implying that

a circuit may control its own environment.

Use of the F -set to express the situation described above is akin to its use in the asynchronous

trace theory to express hazards [61]. In both cases, the F -set makes explicit the limits of the level

of abstraction employed by the model. Its use indicates where the model breaks down because of an

inability to describe certain low-level electrical phenomena.

Note also that this use of the F -set clari�es why we have de�ned composition to maximize the

F -set of a composite relation structure. When we compose a relation structure representation of the

selector together with a relation structure representation of any logic driving the select lines, the

F -set of the composite relation structure should and does contain all value combinations in which

both select lines are held high. Thus failure marking is propagated out to the periphery of the

composite circuit.

select_1select_0

data_in0

data_in1
data_out

s1s0
d0

d1

out

s1s0
d0

d1

out

x

y
z

ba

Figure 4.2: Selector circuit and relabelled version

Example 4.3 The following combinational relation structure is a requirements speci�cation for a

selector with two select lines and two input-data lines, as illustrated in Figure 4.2. In order to

slightly compress its presentation, we have labeled the select 0 line as the shorter a; select 1 as

b; data in0 as x; data in1 as y; and data out as z:

Tsel�spec = (fa; b; x; yg; fzg; Ssel�spec; Fsel�spec)

where

Ssel�spec = (z = abx+ aby) [fabXxXyXzg

and

Fsel�spec = fabXxXyXzg

In reading this description, recall that where we mix the equation notation and the extended

monomial notation in a behavioral description, we intend to denote the input-downward-closure of

the standard ternary extension of the relation described by their union. In this case, for example,

fa?bXxXyXz;?abXxXyXzg � Ssel�spec

CHAPTER 4. VERIFICATION AND SUBSTITUTION 102

because these terms are in the input downward closure of fabXxXyXzg � Ssel�spec : Later we will

see examples in which the standard ternary extension of the parts of S denoted via distinct kinds of

notation is a proper superset of the union of the two parts' standard ternary extensions. As explained

earlier, in this case we intend our mixed notation to denote the larger set.

An implementation may make an arbitrary choice about what value to output on the wire z when

both select lines are low. This is because any environment in which such an implementation is placed

should not sample the data output by the selector under those circumstances. This is expressed by

the inclusion of abXxXyXz in Ssel�spec:

A selector should never be asked to handle a situation in which both select lines are held high.

Fundamentally, the speci�cation of a selector function disallows this situation, even though techni-

cally a circuit cannot control its environment. As discussed above, actual selector circuits may not

be physically equipped to handle the consequences of both select lines being held high; despite this

they are considered correct implementations of this speci�cation. Thus all behaviors in which both

select lines are high may be failure behaviors, and so Fsel�spec = fabXxXyXzg:

The selector speci�cation should admit implementations that make arbitrary choices about what

to do when both the select lines are held low. In addition, an implementation may in fact be able

to handle both select lines being high, if the values on the two input data lines are the same. For

example, when both select lines are held low, an implementation may set z = x or z = y or z = 0

or z = 1: When both select lines are held high and x = y; an implementation may set z = x; and

contain abxyz and abxy z in its S-set (or it may contain them in its F -set). All eight of these

possible implementations are allowed by the speci�cation as given.

Finally, we present a small example of hierarchical veri�cation.

Example 4.4 We would like to develop a new kind of selector, one that sets its data out value to

the value on data in0 if the input wires c and d have the same value, and sets its data out value

to the value on data in1 if the input wires c and d have distinct values. We can easily construct

such a circuit by hooking up some simple combinational logic to any correct implementation of the

selector speci�cation described in the previous example. Thus the following combinational relation

structure expresses our new speci�cation:

Tspec = delfa; bg(Txor�cdb k Tinv�ba k Tsel�spec)

where Txor�cdb is a combinational relation structure representing an exclusive-or gate with inputs c

and d and output wire b; and Tinv�ba is a combinational relation structure representing an inverter

with input wire labeled b and output wire labeled a: Recall that

Tsel�spec = (fa; b; x; yg; fzg; Ssel�spec; Fsel�spec)

CHAPTER 4. VERIFICATION AND SUBSTITUTION 103

is the selector speci�cation of Example 4.3, in which the wire names a and b are shorthand for

the pins select 0 and select 1, respectively, the wire names x and y are shorthand for the pins

data in0 and data in1, respectively, and the wire name z is shorthand for the data out pin.

In hierarchical veri�cation, we verify that our implementations of Tinv�ba ; Txor�cdb; and the

selector all conform to their respective speci�cations. We may then conclude that their composition,

with the wires labeled a and b packaged as internal nodes rather than primary outputs, meets the

speci�cation given above. If we later choose to exchange the selector circuit we chose for another,

Tsel�impl�2 ; it su�ces to verify that Tsel�impl�2 � Tsel�spec in order to conclude that the full new

circuit is a correct implementation of the full speci�cation.

4.3 Substitution for combinational circuit models

4.3.1 Introduction

Many hardware design problems require the designer to determine the advisability of replacing one

subcircuit by another. Problems such as optimization of a multi-level logic network during logic

synthesis, or recti�cation of an already-existing circuit to meet an altered speci�cation, fall into this

class.

In this section we address the problem of determining the correctness of replacing one subcircuit

by another (or of designing a particular subcircuit for which there is no predecessor), relative to a

given speci�cation for the behavior of the full circuit. We utilize our previous results to derive a full

general characterization of all allowed substitutions for a subcircuit or subcircuit speci�cation.

The notion of the maximal safe environment of a combinational relation structure can be used to

determine those relation structures that can be safely substituted for a component of a predetermined

circuit. We seek to determine the correctness of a circuit with respect to, or relative to, a given

prede�ned environment.

We de�ne correctness with respect to an environment using expression contexts as de�ned early

in Section 4.2.2. An expression context is a circuit algebra expression with a single free variable

� [61]. The (I;O)-type of � must be known, and is referred to as (I�; O�): If we replace � in this

expression by a combinational relation structure (I�; O�; S; F); the result denotes a combinational

relation structure.

Formally, we de�ne correctness with respect to an environment as follows. For combinational

relation structures T 0 = (I;O; S0; F 0
) and T 00 = (I;O; S00; F 00

);we say that T 0 is a correct substitution

for T 00 with respect to an environment E; written T 0 �E T 00; if and only if E[�] is a legitimate

expression context such that I� = I and O� = O; and E[T 0] � E[T 00]:

If T = E[T 00] is the original circuit, and T 00 the part thereof for which we wish to substitute

something new, we seek a decision procedure that will tell us whether T 0 is a correct substitute for

T 00 with respect to E: The following subsection provides such a decision procedure.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 104

4.3.2 The closed-form solution

In this section we present a closed form solution to a slightly more general problem than that

described above. We require only that the speci�cation have the same (I;O)-type as the surrounding

context of the subcircuit to be replaced. This more general problem de�nition lends itself to a

recursive solution, of which our original problem's solution is a special case.

In order to de�ne this closed-form solution we utilize the following recursive function f: This

function e�ectively peels away the surrounding environment speci�cation from around a subcircuit,

the allowed replacements for which we seek to characterize. It recursively derives a most general

characterization of the allowed substitutions into the designated \location" in the environment that

is its �rst argument, such that the substitution meets the speci�cation which is its second argument.

Theorem 4.33 below states that the function de�ned below does indeed correctly derive the result

just described.

The auxiliary function f is inductively de�ned as follows.

� f(�; T) = T

� f(del(D)(T2 [�]); T) = f(T2[�]; del
�1
O (D)(T))

�

f(T3 k T2[�]; T) =

8>><
>>:

(I�; O�; T
A� ; T A�) if T is a combinational autofailure (CAF)

(I�; O�; ;; ;) if del(A � A2)(T
MaxEnv k T3) is a CAF

f(T2[�]; (del(A� A2)(T
MaxEnv k T3))

MaxEnv
) otherwise

where Ax = Ix [Ox: In the third case, the intent is that the earliest applicable option among

those listed be taken.

The operation del�1
O (D)(T) adds the wires D to T as new output wires taking arbitrary values.

In e�ect, it allows for uncontrolled output values. Note that although we did not previously give

it a name, we have already used this construction: in the proof of Lemma 4.3. Clearly the result

of applying this new operator to a combinational relation structure is also a combinational relation

structure. In fact, it preserves canonicality.

In order to interpret the results of applying f; we extend the domain of the � relation, specifying

that for all combinational relation structures T = (I;O; S; F);

T 6� (I;O; ;; ;)

Note that this is consistent with the extension we made to the domain of the v relation in Sec-

tion 4.2.4.

This extension is necessary to handle the third induction case of the theorem below, in which

it can happen that (del(A � A2)(T
MaxEnv k T3))

MaxEnv
is not a combinational relation structure

CHAPTER 4. VERIFICATION AND SUBSTITUTION 105

because del(A � A2)(T
MaxEnv k T3) is a combinational autofailure. In that case, the inductive

de�nition e�ectively states that there exists no combinational relation structure T 0 meeting the

criterion that T0[T
0
] � T in the original statement of the theorem. The intuitive reason that such

a case might arise is that the global speci�cation T and that part of the full circuit whose form

is already determined (T3) may be mutually incompatible. Given the extension de�ned above, the

induction result can state this cleanly: in such a case, the end result of applying the function f is

the structure (I;O; ;; ;); which indicates unambiguously that there is no possible T 0 that can be

substituted as described.

Theorem 4.33 If T = (I;O; S; F) and T 0 = (I�; O�; S
0; F 0

) are combinational relation structures,

and T0[�] is an expression context of type (I;O); then

T0[T
0
] � T i� T 0 � f(T0[�]; T)

Proof: The proof is by induction on the structure of T0: Some of the lemmas on which it depends

have not yet been presented; their statements and proofs appear in Section 4.3.3.

Base case: Let T0[�] = �: Then the statement of the theorem reduces to

T 0 � T i� T 0 � f(T0[�]; T) = f(�; T) = T

which is self-evident.

Induction cases:

Case: T0[�] = del (A1 �A0)(E1[�])

The induction hypothesis is that

8T 00; T 0:E1[T
0
] � T 00 i� T 0 � f(E1[�]; T

00
)

Now

T0[T
0
] � T () del(A1 � A0)(E1[T

0
]) � T Note that A0 = A

() E1[T
0
] � del�1O (A1 � A)(T) by Lemma 4.40

() T 0 � f(E1[�]; del
�1
O (A1 � A)(T)) by the induction hypothesis

= f(del(A1 �A)(E1[�]); T)

= f(T0[�]; T)

Case: T0[�] = T2 k (E1[�])

The induction hypothesis is that

8T 00; T 0:E1[T
0
] � T 00 i� T 0 � f(E1[�]; T

00
)

If T is a combinational autofailure, then by Lemma 4.20, TMaxEnv
is not a combinational relation

CHAPTER 4. VERIFICATION AND SUBSTITUTION 106

structure. Therefore, by Theorem 4.24, T0[T
0
] � T: In that case

f(T0[�]; T) = f(T2 k (E1[�]); T) = (I�; O�; T
A� ; T A�)

and so (again by Theorem 4.24) T 0 � f(T0[�]; T):

If T is not a combinational autofailure, and (del (A�A1)(T
MaxEnv k T2))

MaxEnv
is a combinational

relation structure, then

T0[T
0
] � T � T2 k (E1[T

0
]) � T

() TMaxEnv \ (T2 k (E1[T
0
])) is failure-free (FF) by Theorem 4.31

() TMaxEnv k (T2 k (E1[T
0
])) is FF Note: A = A2 [A1

() (TMaxEnv k T2) k (E1[T
0
]) is FF composition axioms

() (del(A �A1)(T
MaxEnv k T2)) \ (E1[T

0
]) is FF by Lemma 4.2

() (canon(del (A� A1)(T
MaxEnv k T2))) \ (E1[T

0
]) is FF by Lemma 4.41

() ((del(A �A1)(T
MaxEnv k T2))

MaxEnv
)
MaxEnv \ (E1[T

0
])

is failure free by Lemma 4.22

() E1[T
0
] � (del (A� A1)(T

MaxEnv k T2))
MaxEnv

by Theorem 4.31

() T 0 � f(E1[�]; (del(A� A1)(T
MaxEnv k T2))

MaxEnv
) induction hypothesis

The use of hiding (del) in this case is legal, because (A � A1) � O
(TMaxEnvkT2)

: This follows

from the original statement that T2 k (E1[T
0
]) � T; which implies that A = (A2 [A1) and I =

((I1 \ I2) [(A1 �A2) [(A2 �A1)): The result follows speci�cally because O(TMaxEnvkT2)
= O2 [I

and A�A1 = A2 � A1 = (O2 � I1) [(I2 � A1) : because of these facts, we only need to prove that

I2 �A1 � O2 [I; which is clearly equivalent to I2 �A1 � I; which follows from the expansion of I;

above.

It can happen that (del(A�A1)(T
MaxEnv k T2))

MaxEnv
is not a combinational relation structure

because del (A�A1)(T
MaxEnv k T2) is a combinational autofailure. The proof for that case follows.

If T is a combinational relation structure that is not a combinational autofailure, but

del (A� A1)(T
MaxEnv k T2)

is a combinational autofailure, then

T0[T
0
] � T � T2 k (E1[T

0
]) � T

() TMaxEnv \ (T2 k (E1[T
0
])) is failure-free (FF) by Theorem 4.31

() TMaxEnv k (T2 k (E1[T
0
])) is FF Note that A = A2 [A1

() (TMaxEnv k T2) k (E1[T
0
]) is FF composition axioms

() (del(A �A1)(T
MaxEnv k T2)) \ (E1[T

0
]) is FF by Lemma 4.2

If del(A � A1)(T
MaxEnv k T2) is a combinational autofailure, then there exists no such E1[T

0
];

i.e., no E1[T
0
] such that (del(A�A1)(T

MaxEnv k T2))\(E1[T
0
]) is failure-free. Therefore, T0[T

0
] 6� T:

CHAPTER 4. VERIFICATION AND SUBSTITUTION 107

In addition,

(del(A �A1)(T
MaxEnv k T2)) \ (E1[T

0
]) is failure-free() T 0 � (I�; O�; ;; ;)

because both sides of this \if and only if" statement are false.

But of course in this case

f(T2 k E1[�]; T) = (I�; O�; ;; ;)

Therefore

T0[T
0
] � T () T 0 � f(T2 k E1[�]; T)

and so the theorem is proved for this �nal case as well.

Hence in all cases, T0[T
0
] � T if and only if T 0 � f(T0[�]; T):

We may now use the function f to derive the solution to our original subcircuit substitution

problem. The following theorem states that those T 0 such that T 0 � f(E[�]; E[T 00]) are precisely

the acceptable substitutes for the subcircuit T 00:

Theorem 4.34 If E[�] is an expression context and T 00 = (I�; O�; S
00; F 00

) is a combinational

relation structure, then for all combinational relation structures T 0 = (I�; O�; S
0; F 0

);

T 0 �E T 00 () T 0 � f(E[�]; E[T 00])

Proof: Let T0 = E and T = E[T 00]: The result then follows from Theorem 4.33.

Note that it follows fromTheorem 4.33 that it cannot happen that f(E[�]; E[T 00]) = (I�; O�; ;; ;):

This is because such a case arises only if some component of E[�] is incompatible with the global

speci�cation, which in this case is E[T 00]: But if T 00 is a combinational relation structure of the correct

(I�; O�)-type, and E[�] really is a legitimate expression context, then E[T 00] must be compatible with

the requirements imposed by its own components. Hence, if it does happen that f(E[�]; E[T 00]) =

(I�; O�; ;; ;); then E[T 00] is not a combinational relation structure. In that case, T 0 6�E T 00 for all

relation structures T 0: In particular, in this case T 00 may not be substituted for itself in E; because

either E is not a legal expression context (and so �E is not de�ned), or T 00 is not a combinational

relation structure.

In the remainder of this section, we present and prove the remaining supporting lemmas used in

the proof of Theorem 4.33 (Section 4.3.3), and provide further discussion and examples of relevant

applications of this theorem (Section 4.3.4).

4.3.3 Supporting lemmas

In this section, we present and prove Lemmas 4.40 and 4.41, the remaining supporting lemmas used

in the proof of Theorem 4.33 in Section 4.3.2. Their own supporting lemmas precede them.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 108

Lemma 4.35 Let T = (I;O; S; F) be a combinational relation structure. Let (D \ (I [O)) = ;:

Then there exists a combinational relation structure E = (O; I; SE ; FE) such that T \ E is failure

free if and only if there exists a combinational relation structure E0
= (O [D; I; SE0 ; FE0) such that

del�1O (T) \E0 is failure free.

Proof: Let T = (I;O; S; F) be a combinational relation structure and (D \ (I [O)) = ;:

� (=)) :

Let E = (O; I; SE; FE) be a legal environment of T such that T \E is failure free.

Let E0
= del�1(D)(E): We proceed to prove that del�1O (D)(T) \E0

is failure free.

The F -set of del�1O (D)(T) \E0
is

[(del�1(D)(F) \ del�1(D)(PE)) [(del
�1
(D)(P) \ del�1(D)(FE))]

Say z 2 (del�1(D)(F) \ del�1(D)(PE)): Then z = (w [q) for some w 2 T (I[O)
and q 2 T D:

Thus w 2 (F \ PE): But by assumption, T \ E is failure-free. Therefore there exists no

such w; and hence no such z: Because the identical argument works for z0 2 (del�1(D)(P) \

del�1(D)(FE)); we conclude that

[(del�1(D)(F) \ del�1(D)(PE)) [(del
�1
(D)(P) \ del�1(D)(FE))] = ;

Therefore del�1O (D)(T) \E0
is failure free.

Thus we have proved that there exists a legal environment E0
of del�1O (D)(T) such that

del�1O (D)(T) \E0
is failure free.

� ((=) :

Let E0
= (O[D; I; SE0 ; FE0) be a combinational relation structure such that del�1O (D)(T)\E0

is failure free.

Let E = (O; I; del(D)(SE0); del(D)(FE0)): Note that E 6= del(D)(E0
): However, a simple

calculation, based on the assumption that E0
is a combinational relation structure, shows that

E is a combinational relation structure: it is input-downward-closed and has a receptive P -set.

We proceed to prove that T \E is failure free.

Say not. Then there must exist z 2 ((F \PE)[(P \FE)): Say without loss of generality that

z 2 (F \PE): Because z 2 PE ; there must exist q 2 T
D
such that (z [q) 2 PE0 : Since for any

q0 2 T
D
it is the case that (z [q0) 2 del�1(D)(F); it is true for q0 = q as well. Therefore

(z [q) 2 (del�1(D)(F)\PE0): But then (z [q) is in the F -set of del�1O (D)(T) \E0; which by

assumption is empty. Therefore there can be no such z; and so (F \ PE) = ;: A symmetric

argument shows that (P \ FE) = ; as well, and so T \E is failure free.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 109

Thus we have proved that there exists a legal environment E of T such that T \E is failure

free.

QED Lemma 4.35

Lemma 4.36 Let T = (I;O; S; F) be a combinational relation structure. Let (D \ (I [O)) = ;:

Then T is a combinational autofailure if and only if del�1O (D)(T) is a combinational autofailure.

Proof: This follows directly from Lemma 4.35.

Lemma 4.37 Let T = (I;O; S; F) be a combinational relation structure, and let (D \ (I [O)) = ;:

Then

del�1O (D)(OUC(T)) = OUC(del�1O (D)(T))

Proof:

Let q 2 del�1(D)(OUCI;O(F)): Then q = (x [y) for some x 2 T I and y 2 T (O[D): Let

z = del(D)(y) and w = del (O)(y): Then (x [z) 2 OUCI;O(F): Therefore there must exist z
0 � z

such that (x [z0) 2 F: But then (x [(w [z0)) 2 del�1(D)(F); and

q = (x [y) = (x [(w [z)) 2 OUCI;(O[D)(del
�1
(D)(F))

Therefore del�1(D)(OUCI;O(F)) � OUCI;(O[D)(del
�1
(D)(F)):

Let s 2 OUCI;(O[D)(del
�1
(D)(F)): Then s = (x [y) for some x 2 T I and y 2 T (O[D):

Furthermore, there exists y0 � y such that (x [y0) 2 del�1(D)(F):

Let z0 = del(D)(y0): Then (x [z0) 2 F: Let z = del(D)(y) and w = del (O)(y): Because y0 � y;

it must be the case that z0 � z: Therefore (x [z) 2 OUCI;O(F): But then

s = (x [y) = (x [(z [w)) 2 del�1(D)(OUCI;O(F))

Therefore OUCI;(O[D)(del
�1
(D)(F)) � del�1(D)(OUCI;O(F)):

Therefore del�1(D)(OUCI;O(F)) = OUCI;(O[D)(del
�1
(D)(F)): The same proof holds with F

replaced by S or P:

Hence

OUC(del�1O (D)(T)) = (I;O [D;OUCI;(O[D)(del
�1
(D)(S)); OUCI;(O[D)(del

�1
(D)(F)))

= (I;O [D; del�1(D)(OUCI;O(S)); del
�1
(D)(OUCI;O(F)))

= del�1O (D)(OUC(T))

QED Lemma 4.37

Lemma 4.38 Let T = (I;O; F; P) be a combinational relation structure, and let (D \ (I [O)) = ;:

Then

del�1O (D)(canon (T)) = canon(del�1O (D)(T))

CHAPTER 4. VERIFICATION AND SUBSTITUTION 110

Proof:

We consider two cases. In the �rst, both T and del�1O (D)(T) are combinational autofailures. In

this case,

del�1O (D)(canon (T)) = del�1O (D)((I;O; F = T A; P = T A))

= (I;O [D;F = T (A[D); P = T (A[D)
)

= canon (del�1O (D)(T))

By Lemma 4.36, the sole remaining case is that in which neither T nor del�1O (D)(T) is a combi-

national autofailure. In this case,

del�1O (D)(canon (T)) = (I;O [D; del�1(D)(OUCI;O(F)); del
�1
(D)(OUCI;O(P)))

= del�1O (D)(OUC(T))

= OUC(del�1O (D)(T)) by Lemma 4.37

= (I;O [D;OUCI;(O[D)(del
�1
(D)(F)); OUCI;(O[D)(del

�1
(D)(P)))

= canon(del�1O (D)(T))

Note that the S sets of both del�1O (D)(canon (T)) and canon(del�1O (D)(T)) are equal to their

common P set minus their common F set, and are therefore equal to each other. Thus there was

no need to mention failure-exclusion explicitly in the equations above.

Lemma 4.39 Let T = (I;O; F; P) be a canonical combinational relation structure, and let (D \

(I [O)) = ;: Then

del�1(D)(mir (T)) = mir(del�1O (D)(T)

Proof:

del�1(D)(mir (T)) = del�1(D)((O; I; P ; F))

= (O [D; I; del�1(D)(P); del�1(D)(F)

= (O [D; I; del�1(D)(P); del�1(D)(F))

= mir((I;O [D; del�1(D)(F); del�1(D)(P))

= mir(del�1O (D)(T))

Lemma 4.40 Let T = (I;O; F; P) be a combinational relation structure. Let D � O: Let T 0 =

(I; (O �D); F 0; P 0
) be a combinational relation structure. Then

del(D)(T) � T 0 () T � del�1O (D)(T 0)

Proof:

If (T 0)MaxEnv
is not a combinational relation structure, then by Theorem 4.24, del(D)(T) �

T 0: At the same time, T 0 must be a combinational autofailure. But then by Lemma 4.36, so is

CHAPTER 4. VERIFICATION AND SUBSTITUTION 111

del�1O (D)(T 0): Therefore (del�1O (D)(T 0))MaxEnv
is also not a combinational relation structure, and

so (again by Theorem 4.24), T � del�1O (D)(T 0): Therefore in this case del(D)(T) � T 0 () T �

del�1O (D)(T 0):

If, on the other hand, (T 0)MaxEnv
is a combinational relation structure, our reasoning is as

follows. According to Lemma 4.2, del�1(D)((T 0)MaxEnv
)\T is failure-free if and only if (T 0)MaxEnv\

del(D)(T) is failure-free. By Theorem 4.31, since (T 0)MaxEnv
is a combinational relation structure,

(T 0)MaxEnv \ del(D)(T) is failure-free if and only if del(D)(T) � T 0:

Because (T 0)MaxEnv
is a combinational relation structure, T 0 is not a combinational autofail-

ure. Hence by Lemma 4.36, del�1O (D)(T 0) is also not a combinational autofailure. Therefore

(del�1O (D)(T 0))MaxEnv
is a combinational relation structure too. Therefore, again by Theorem 4.31,

(del�1O (D)(T 0))MaxEnv \ T is failure-free if and only if T � del�1O (D)(T 0):

Therefore in order to prove that del(D)(T) � T 0 () T � del�1O (D)(T 0); it su�ces to prove that

del�1(D)((T 0)MaxEnv
) = (del�1O (D)(T 0))MaxEnv :

del�1(D)((T 0)MaxEnv
) = del�1(D)(mir (canon(T 0)))

= mir(del�1O (D)(canon (T 0))) by Lemma 4.39

= mir(canon (del�1O (D)(T 0))) by Lemma 4.38

= (del�1O (D)(T 0))MaxEnv

Therefore in all cases, del(D)(T) � T 0 () T � del�1O (D)(T 0):

Lemma 4.41 Let T and T 0 be combinational relation structures such that T k T 0 is well-de�ned.

Then

T k T 0 is failure-free () canon(T) k T 0 is failure-free

Proof:

By Theorem 4.15, T � canon(T): Therefore, by two applications of Theorem 4.4, for every

T 0 a combinational relation structure such that O \ O0
= ;; T k T 0 is failure-free if and only if

canon(T) k T 0 is failure-free.

4.3.4 Applications and Examples

In this section, we have addressed the problem of determining the correctness of replacing one

subcircuit by another (or of designing a particular subcircuit for which there is no predecessor),

relative to a given speci�cation for the behavior of the full circuit. Our solution to this problem

provides a more general solution than has previously been available for existing problems in the

areas of logic synthesis and recti�cation.

In this subsection, we provide examples of how our results can be applied to known problems

in hardware design, and how they generalize the known solutions to these problems. The main

result of the previous subsections provides a fully general behavioral characterization of the allowed

CHAPTER 4. VERIFICATION AND SUBSTITUTION 112

substitute circuitry for a subcircuit. We show how this information is useful for logic synthesis

(Section 4.3.4.1) and recti�cation (Section 4.3.4.2).

4.3.4.1 Logic Synthesis

The optimization problem for logic synthesis in which we are interested is that of determining

the precise parameters of an acceptable substitution for a subnetwork. Our formalism turns out

to provide an exact method for the determination of don't cares in multiple-vertex optimization,

that takes into account output correlations. In addition, the same description indicates what the

substitution circuitry must do.

Given a logic network representing a multiple-level combinational circuit, the logic optimization

problem is to optimize one or more nodes of the network according to cost metrics that correspond

approximately to the actual area, delay, testability or power consumption of the subsequent bound

version of the network. Currently, the only general methods for de�ning the parameters of an

acceptable substitution (without taking the cost metrics into account) are don't care sets [20] and

Boolean relations [22]. Both of these have been presented only in the context of acyclic networks

and subnetworks.

Our method allows the expression of the precise parameters of an acceptable substitution for

the most general multiple-vertex case: because we allow cycles in our circuit descriptions, an arbi-

trary collection of nodes of the logic network may comprise the subnetwork under investigation. In

addition, the logic network itself may contain cycles.

Formally, given a logic network and an arbitrary marked set of nodes (a subnetwork) within

it represented as relation structures, we seek to indicate the most general behavioral speci�cation

for acceptable substitute circuitry to replace the indicated subnetwork. But this is precisely the

problem of conformance relative to a speci�c environment. Therefore, we may apply Theorem 4.34

directly to derive this most general speci�cation: If E[T 00] is the original logic network, and T 00 the

subnetwork to be optimized, Theorem 4.34 tells us precisely which relation structures T 0 may be

safely substituted for T 00 in the network.

a

x

y
z

Figure 4.3: Substitution example

Example 4.5 Consider the circuit depicted in Figure 4.3. We wish to determine the full range

of possible substitutions for the and-gate, such that the circuit maintains its current input-output

CHAPTER 4. VERIFICATION AND SUBSTITUTION 113

behavior.

The following combinational relation structure represents the circuit in its current form:

T = Tinv�ax k Tinv�ay k Tand�xyz

Its designated components Tinv�ax ; Tinv�ay; and Tand�xyz take the obvious forms shown in previous

examples.

We seek to �nd the allowed substitutions T 0 for Tand�xyz in T: According to Theorem 4.34, any

T 0 that conforms to T 0max = f((Tinv�ax k Tinv�ay k �fx;yg;fzg); T) may be so substituted.

f((Tinv�ax k Tinv�ay k �fx;yg;fzg); T) = f((Tinv�ay k �fx;yg;fzg); (T
MaxEnv k Tinv�ax)

MaxEnv
)

is equal to

f(�fx;yg;fzg; (del(fag)(((T
MaxEnv k Tinv�ax)

MaxEnv
)
MaxEnv k Tinv�ay))

MaxEnv
)

which is equal to

(del (fag)(((TMaxEnv k Tinv�ax)
MaxEnv

)
MaxEnv k Tinv�ay))

MaxEnv

which (by Lemma 4.22) is equivalent to

(del(fag)(canon(TMaxEnv k Tinv�ax) k Tinv�ay))
MaxEnv

which reduces to the following combinational relation structure:

T 0max = (fx; yg; fzg; S = fxyz; xy zg [(x 6= y); F = ;)

Note that expansion and input-downward-closure of the part of S that is expressed in equational

notation result in the inclusion of the extended monomial ?x?yXz in S:

Thus the set of relation structures T 0 that may be substituted for the and-gate in this circuit

includes all those whose F -set is empty and whose S-set is one of z = x; z = y; or z = x+y; among

other possibilities. These correctly indicate that the and-gate may be replaced by an or-gate, or a

wire from one of the nodes x or y; without a�ecting the input-output behavior of the full circuit.

Example 4.6 Consider the circuit in Figure 4.4. We wish to determine the full range of substitu-

tions for the composite subcircuit consisting of the and- and or-gates in this circuit.

A naive approach to the problem would be to de�ne the following combinational relation structure

CHAPTER 4. VERIFICATION AND SUBSTITUTION 114

a

b x

y
z

Figure 4.4: Substitution and recti�cation example

to represent the full circuit:

Tfull = (fa; bg; fx; y; zg; Sfull = ((z = (x� y) ^ (y = a+ b) ^ (x = ab)); Ffull = ;)

However, if we use this circuit representation we derive that the current implementation is the only

possible substitution for itself. If we are to derive any bene�t from this analysis, we must make

explicit the fact that we are concerned only with the values on the input wires a and b and the output

wire z: We achieve this e�ect by hiding x and y :

T = del(fx; yg)(Tfull) = (fa; bg; fzg; Sfull = (z = (a+ b)� ab); Ffull = ;)

We may now compute a meaningful \upper bound" (in �) for the allowed substitute circuitry for the

indicated subcircuit.

T 0max = f(del (fx; yg)(Txor�xyz k �fa;bg;fx;yg); T)

Expansion as per the de�nition of f leads to the following result:

T 0max = (del (fzg)((del�1O (fx; yg)(T))MaxEnv k Txor�xyz))
MaxEnv

= (fa; bg; fx; yg; S0max; ;)

where

S0max = fabxy; abxy; abx y; abxy; abxy; abxy; abxy; abxy;?aXbXxXy ; Xa?bXxXyg

In other words, any subcircuit which enforces the constraint that a and b have the same Boolean

value if and only if x and y have the same Boolean value may be substituted for the and- and or-gate

combination in the current circuit. For example, an implementation in which x=a and y=b would

be a correct substitute T 0 � T 0max :

4.3.4.2 Recti�cation

Our results also provide a new, fully general solution to the recti�cation problem. As illustrated

clearly by Theorem 4.33, the results of Section 4.3.2 can also be applied when the speci�cation for

CHAPTER 4. VERIFICATION AND SUBSTITUTION 115

the full circuit is not a model of an already-existing circuit. Therefore we can apply this theorem

directly to the logic redesign problem introduced in Section 1.5.2, where it provides a more general

solution than has previously been available.

Example 4.7 Consider again the circuit of Figure 4.4. Assume the speci�cation for this circuit

has been changed. We consider two distinct modi�ed speci�cations. In both cases, we wish to keep

the and- and or-gates in the circuit unchanged, and to resynthesize the xor-gate to meet the new

modi�ed speci�cation.

In our �rst recti�cation example, the speci�cation has been changed to

Tnew = Tand�abz = (fa; bg; fzg; S = (z = ab); F = ;)

As stated above, we are interested in meeting this new speci�cation by modifying only the xor-gate

part of the current circuit. Thus we seek to characterize the circuitry T 0 that may be substituted for

the xor-gate in order to meet the new speci�cation. The most general characterization of T 0 is

T 0max = f(del (fx; yg)(Tand�abx k Tor�aby k �fx;yg;fzg); Tnew)

Expansion of this term according to the de�nition of f leads to the following combinational relation

structure:

T 0max = (del(fa; bg)((del�1O (fx; yg)(Tnew))
MaxEnv k (Tand�abx k Tor�aby)))

MaxEnv

which reduces to

T 0max = (fx; yg; fzg; S0max; ;)

where

S0max = fxyz; xyz; xyXz ; x y z;?xyXz ; x?yXz ;?xyXz; x?yz;?x?yXzg

Thus for example T 0i � T 0max for the relation structures

T 01 = (fx; yg; fzg; (z = xy); ;)

and

T 02 = (fx; yg; fzg; (z = x); ;)

Either of these may be substituted for the xor-gate in the circuit of Figure 4.4 in order to meet the

new speci�cation for the full circuit.

Next we consider the case in which the speci�cation has been changed to

Tnew = (fa; bg; fzg; S = (z = ab); F = ;)

CHAPTER 4. VERIFICATION AND SUBSTITUTION 116

Again,

T 0max = f(del (fx; yg)(Tand�abx k Tor�aby k �fx;yg;fzg); Tnew)

which would expand to

T 0max = (del(fa; bg)((del�1O (fx; yg)(Tnew))
MaxEnv k (Tand�abx k Tor�aby)))

MaxEnv

except that T0 = del(fa; bg)((del�1O (fx; yg)(Tnew))
MaxEnv k (Tand�abx k Tor�aby)) is a combinational

autofailure and hence instead T 0max = (I;O; ;; ;): Speci�cally, T0 has the form (fzg; fx; yg; S0; F0)

where S0 = (fXxXyXzg � F0); and

F0 = fxyz; xy?z; xyXz ; x yz; x y?z;?xyz;?xy?z; x?y z; x?y?zg

Because every legal environment of this relation structure must admit some output value combination

on input value combination xy, there is no legal environment of T0 whose composition with T0 is

failure-free. Hence T0 is a combinational autofailure.

Thus we see that it is possible to modify a speci�cation to such an extent that if we restrict

ourselves to only modifying a certain piece of the existing circuit, without changing any of the wires

of the circuit, there may be no recti�cation solution. Our method does identify such situations, as

we have just shown.

a

e
b b

bc

c

c

d

Figure 4.5: Combinational feedback loop (Fig. 6 of [92])

Example 4.8 Consider the circuit illustrated in Figure 3.4 on page 73, which is repeated here in

Figure 4.5 [92]. We will use this circuit to illustrate the capability of combinational relation structures

to handle multi-vertex optimization even in the case that the vertex-set chosen for resynthesis is part

of a combinational feedback loop.

CHAPTER 4. VERIFICATION AND SUBSTITUTION 117

In Example 3.7 on page 73, we determined that the following combinational relation structure

represents this circuit:

T = (fag; fbg; fab; ab; a?b;?ab;?ab;?a?bg; ;)

We wish to determine the class of all possible substitutions for the subcircuit consisting of both the

inverter with input wire labeled b and output wire labeled c and the and-gate. Thus we seek to

determine the class of combinational relation structures T 0 that conform to

T 0max = f(del (fc; d; eg)(Tor�aec k Tinv�cd k �fb;dg;fc;eg); T)

Expansion of this function application according to the de�nition of f yields the following term:

T 0max = (del(fag)((del�1O (fc; d; eg)(T))MaxEnv k (Tor�aec k Tinv�cd)))
MaxEnv

which reduces to

T 0max = (fb; dg; fc; eg; S0max; F
0
max)

where

S0max = fXbdce;Xbdce;XbXd?ce; bdce; bdce; bXd?ce;Xbdc?e; Xbdc?e; XbXd?c?eg

(which is simply del�1(fb; eg)Sinv�cd \ del
�1
(fc; dg)fXbe; be;Xb?eg); and

F 0
max = S0max = fXbXdXcXeg � S

0
max

Thus appropriate T 0 include, among others, replacement of the inverter with input wire b and output

wire c with a wire (i.e., we may combine the nodes b and c into a single equipotential region without

adversely a�ecting the behavior of the circuit).

We also note that according to T 0max ; it is permissible to substitute an or-gate for the and-gate

in the current circuit. Tracing the consequences of this substitution in the circuit itself, we see

that it allows output value b = 1 on input value a = 0; which is not a possible behavior of the

original circuit. The reason for this apparent counterintuitive result is output-upward-closure of the

speci�cation: when we canonicalized T we added the behavior ab to its S-set via output-upward-

closure of its P -set. This is consistent with our assumption that the appearance of a ? value on an

output wire in a speci�cation indicates that any of the values 0; 1 or ? may appear in its place in

the allowed implementations.

Example 4.9 In their mixed-mode approach to combinational recti�cation, Watanabe and Brayton

present the problem of constructing additional circuitry to be added around already-existing circuitry

CHAPTER 4. VERIFICATION AND SUBSTITUTION 118

6

6

6

6

...............
......

...............
......

...............
......

...............
......

X

Y

W

Z

T 01 T2

Figure 4.6: Mixed-mode recti�cation

in order to meet a modi�ed speci�cation [135]. This approach is illustrated in Figure 4.6. If

T2 = (W;Y; S2; F2) represents the original existing circuitry then T 01 = ((X [Y); (W [Z); S01; F
0
1)

represents the circuitry added in order that the new combined circuit meet the modi�ed speci�cation.

Formalized in terms of combinational relation structures, T = del(Y [W)(T 01 k T2) represents the

recti�ed circuit that meets the modi�ed speci�cation.

In our hierarchical approach to the problem, we consider T2 to be the original speci�cation of the

problem, and T 01 to be the most general characterization of allowed additions to correct implementa-

tions of T2 such that the composition of T 01 and T2 (with communication wires suitably hidden) is a

combinational relation structure representation of the recti�ed speci�cation. That is, if T is the rec-

ti�ed speci�cation, we derive T 01 = f(del (Y [W)(T2 k �(X[W);(Y [Z)); T); which is the most general

characterization of allowed correction circuitry. Then any T 0 � T 01 is a correct implementation for

the recti�cation circuitry, just as any implementation T0 � T2 is a correct implementation of the

original speci�cation. Note that if T2 is a deterministic implementation, the problem we address is

equivalent to that discussed above; in this case as well, however, our solution is more general than

theirs.

The solution T 01 derived in [135] is not the most general possible solution Boolean relation. In-

stead, in order to support the removal of combinational feedback loops from the composition of T2

and T 01 implementations, Watanabe and Brayton present a more conservative estimate of allowed

recti�cation circuitry. In their own notation, if H is the Boolean relation representing the modi�ed

speci�cation and T2 the Boolean relation representing the already-existing circuitry, they de�ne the

CHAPTER 4. VERIFICATION AND SUBSTITUTION 119

Boolean relation corresponding to T 01 to be G such that

(X [Y [W [Z) 2 G() [[(X [Z) 2 H and (Y [W) 2 T2] or 8Y
0:(Y 0 [W) 62 T2]

However, the most general solution in their terms would be G such that

(X [Y [W [Z) 2 G() [(X [Z) 2 H or (Y [W) 62 T2]

which corresponds precisely to our solution

T 01 = f(del (Y [W)(T2 k �(X[W);(Y [Z)); T) = (del�1O (Y [W)(T))MaxEnv k T2)
MaxEnv

Note that our T is their H; and that the k operator corresponds to conjunction of Boolean relations

and the MaxEnv operator corresponds to complementation of Boolean relations. Strip away the

alphabet information (del�1O) and apply De Morgan's Law once, and the correspondence is immediate.

Thus we see that allowing the creation of combinational feedback loops leads to more
exibility

in characterizing allowed recti�cation circuitry than is provided by approaches in which disallowing

such loops must be a concern.

Chapter 5

Synchronous circuit models

5.1 Introduction

In this chapter, we extend the theory we have developed for combinational circuits to full syn-

chronous, sequential designs. Recall that our original purpose was to develop a model of synchronous

circuits that would support both formal veri�cation and substitution of such circuits. We determined

that in order to meet these goals, our model should support nondeterminism, and hierarchical con-

struction and modular description of synchronous circuits. In the previous chapter, we were able to

apply the circuit algebra framework of Chapter 2 to achieve these goals in modeling combinational

circuits. This required incorporating a new ternary domain of wire values into the model, in order to

allow both nondeterminism and an algebraic composition operator. We also identi�ed constraints on

the use of the new wire value, ?; su�cient to guarantee that any combinational model be receptive

to any vector of input values. In this chapter, we incorporate those results into a trace theoretic

model of synchronous circuits.

Our model of the behavior of a synchronous circuit or speci�cation consists of a pre�x-closed set of

sequences of combinational circuit behavioral descriptions, expressed as a possibly nondeterministic

Mealy machine. Latches are primitive models; they cannot be created from combinational circuitry.

As in the combinational theory, we de�ne a formal relation between models that corresponds

to one being a correct implementation of the other (considered as a speci�cation). Because of the

pre�x-closed nature of our models, this relation only deals with safety properties of the speci�cation

and implementation. While the constraints on a model can be modi�ed to allow the expression of

arbitary liveness properties as well, we have not pursued that extension in this thesis.

We de�ne a sequential circuit representation to correctly implement a speci�cation if the im-

plementation can be safely substituted for the speci�cation. In addition, a ? value on an output

wire of a speci�cation under particular circumstances actually allows the implementation to output

any value on that wire under those circumstances. We provide a decision procedure for the formal

120

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 121

relation that holds between a speci�cation and any correct implementation thereof. As in the com-

binational case, we may use this relation to fully characterize the set of allowed substitutions for a

subcircuit.

The organization of this chapter is as follows. In the following section, we present the formal

de�nition of a sequential trace structure, which is our representation of a speci�cation or implemen-

tation of a synchronous circuit. In Section 5.3, we de�ne the algebraic operations for these models

and prove the closure of the class of sequential trace structures under these operations, and show

that this class together with these operators forms a circuit algebra. In section 5.4, we present

the full de�nition of when a sequential trace structure describes an acceptable implementation of a

speci�cation, and outline a decision procedure for this relation. Finally, in Section 5.5 we discuss our

substitution results for synchronous circuits. Examples are provided at each step of the development.

5.2 The synchronous circuit model

5.2.1 Introduction

We seek to develop models of sequential, synchronous circuits that support hierarchical construction

and modular description of such circuits, and that support nondeterminism. The latter enables

the expression of a speci�cation which captures the minimum requirements of a circuit instead of

requiring that we overspecify by including irrelevant implementation details. We saw in Chapter 4

that we can achieve all these goals for combinational circuits using relational models. In this section,

we show how these ideas can be extended to provide a trace theoretic model for synchronous circuits.

We model the set of input-output behaviors of a synchronous circuit or circuit speci�cation as a

regular, pre�x-closed set of �nite sequences of combinational circuit behavioral descriptions. Digital

hardware is inherently �nite-state. Therefore the restriction to regular sets, which are precisely

those sets of �nite sequences that can be expressed by a �nite-state automaton, is reasonable. The

pre�x-closure constraint, and the fact that we allow only �nite-length sequences, mean that our

speci�cations can express only safety properties.

Safety properties state what an implementation may not do, but cannot say anything about

what it must do [89]. In a clocked system, this distinction breaks down somewhat, as a deterministic

Mealy machine certainly speci�es required responses. However, it cannot express unbounded response

properties, which state that a certain reaction must occur some unspeci�ed time in the future.

Liveness properties state what an implementationmust do. For example, the unbounded-response

property `if R then eventually P ' is a liveness property. (This propositional temporal logic sentence

represents a speci�cation requirement such as `if a request is made for a resource then the resource

is eventually granted to the requestor'). The key to the additional expressiveness of this sentence

over safety properties is its use of the word \eventually". Such properties are useful for high-level

system speci�cations, in which the relative speeds of the subprocesses are as yet undetermined.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 122

We can express all safety properties of circuits using �nite traces. Semantically, safety properties

are those properties which hold of an in�nite sequence if and only if every pre�x of it can be

extended to a sequence with the property [2, 3]. In other words, all partial behaviors obey the

constraint. Therefore pre�x-closure is an appropriate syntactic constraint on a set of �nite sequences

representing a safety property.

The state of a sequential circuit is the vector of values currently held on its latches. However,

the value to which a primary output stabilizes within the clock cycle may depend on the current

input values as well as on the values at the state-holding nodes of the circuit. Therefore we model

these circuits using Mealy machines.

5.2.2 Sequential trace structures

In this section we present our formal model of synchronous circuits and their speci�cations. We call

these models sequential trace structures.

Sequential trace structures di�er from combinational relation structures only in that their S; F

and P -sets are sets of traces, or sequences of input-output value combinations. A trace is intended to

model a possible behavior of a synchronous circuit over time. Each input-output value combination

in a trace models the synchronous circuit's behavior during a single clock cycle, and the sequence

of such value combinations denotes its behavior during consecutive clock cycles. Each trace can be

thought of as the circuit's response to a given sequence of input-value combinations.

The constraints we place on the F and P -sets of a sequential trace structure re
ect the same

concerns as in the combinational case. The combinational receptiveness constraint is enforced per

clock cycle (to ensure that the model correctly re
ects receptiveness of a circuit to all input-value

combinations during each clock cycle): following any allowed behavior of arbitrary �nite length the

model is receptive to all of the input vectors of T I : Input-downward closure now allows for the

propagation through time (i.e., during this and subsequent clock cycles) of the result of having

mistaken a ? value on an input wire of a circuit for digital 0 or digital 1 during the current clock

cycle.

Recall that T Y is the set of all possible assignments to elements of Y of values from T : We

de�ne B(Y) = (T Y)� to be the set of all �nite sequences of such assignments. Note that (T Y)� =S
n2!(T

Y
)
n
is isomorphic to

S
n2!(T

n
)
Y ; because (TY)n is isomorphic to (Tn)Y : (The isomorphism

maps w = (w1 �w2 � : : : �wn) 2 (T
Y
)
n
to w0 : Y �! T n such that w0(y) = (w1(y) �w2(y) � : : : �wn(y))):

We will often interchange these two types as the de�nition of B(Y):

The function union operator extends naturally to sequences: the function union of two sequences

b 2 B(B) and c 2 B(C) of equal length n is (b [c) 2 B(B [C) of length n such that (b [c)[i] =

(b[i] [c[i]) for every positive integer i � n:

We extend the de�nedness order � pointwise from vectors of wires to sequences of vectors of

wires. Recall that for w;w0 2 T B; we say that w � w0 if and only if 8b 2 B:w(b) � w0(b); where

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 123

for x; x0 2 T ; x � x0 if and only if x = x0 or x =? : We now de�ne the pointwise extension of the

partial order � to �nite sequences of such vectors. If w;w0 2 B(B) are of equal length n; then we

say that w � w0 if and only if 8i 2 f1; 2; : : : ; ng:w[i]� w0[i]: Note that because w � w0 cannot hold

for w and w0 of unequal length, the statement that w � w0 implies that len(w) = len(w 0):

Using this notation, we now de�ne the input-downwards-closure and receptiveness constraints for

sets of sequential behaviors. As in the combinational case, we assume that I are the input wires

of the circuit or speci�cation and that O are its primary output wires, and we de�ne A = (I [O):

Formally, the input-downwards-closure (IDC) property holds of the set W � B(I [O) (written

IDC(W)) if and only if

8n 2 !:8x; x0 2 (T I)n:8y 2 (T O)n:(x0 � x ^ (x [y) 2W) =) ((x0 [y) 2W)

The receptiveness condition is de�ned as follows. A set P � B(I [O) is receptive if and only if for

every w 2 P; there exists C � ext1 (w ;P) such that

� C is total:

8x 2 T I :9y 2 T O :(x[y) 2 C

� C has the upward-chains property:

8x; x0 2 T I :8y 2 T O:[[(x[y) 2 C ^ x � x0] =) 9y0 2 T O:y � y0 ^ (x0 [y0) 2 C]

Formally, we de�ne a sequential trace structure (sometimes referred to simply as a trace structure)

to be a quadruple T = (I;O; S; F) such that

� I and O are disjoint �nite sets,

� F � B(I [O) is a regular (possibly empty) set of circuit behaviors (\traces"), known as the

failure set of the trace structure, which obeys the input-downwards-closure constraint,

� S � B(I [O) is a pre�x-closed, regular (possibly empty) set of circuit behaviors (\traces"),

known as the success set of the trace structure, and

� P = S [F; the set of possible traces of T; is pre�x-closed, regular, and non-empty, and obeys

both the input-downwards-closure constraint and the receptiveness constraint.

Note that, in contrast to the receptiveness condition for combinational relation structures, the

sequential receptiveness condition does not preclude P 's being the empty set. Hence it is necessary

to maintain the explicit requirement that P be non-empty.

We de�ne a preorder v on sequential trace structures having the same I and O sets:

(I;O; S; F) v (I;O; S0; F 0
) i� ((F � F 0

) ^ (P � P 0
))

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 124

Later we will extend this preorder to structures (I;O; ;; ;) as well (see page 147 in Section 5.4.4).

This preorder induces a partial order among its equivalence classes. If F = F 0
and P = P 0

then

[T]v = [T 0]v; and we write T �v T 0: Essentially, T and T 0 are in the same v-equivalence class if

they vary only in the amount of overlap between their S and F sets.

We may sometimes use the ambiguous notation

T = (I;O; F; P)

in place of (I;O; S; F): In this case it is assumed that S; although not speci�ed, is pre�x-closed.

Note that we cannot simply assume that setting S = (P �F) de�nes a unique representative of the

v-equivalence class (I;O; F; P); as this set need not be pre�x-closed. In addition, when discussing

receptiveness alone, we may sometimes use the notation T = (I;O; P); ignoring the F -set of the

trace structure altogether.

In the following section, we present the formal de�nitions of the algebraic operations of composi-

tion, renaming, and projection. We also prove that the class of sequential trace structures together

with these operations forms a circuit algebra. We conclude the current section with some examples.

5.2.3 Examples

In this subsection we present examples of sequential trace structures that illustrate our modeling

technique and further explain how to use the two-language model. We also use these examples to

introduce some more notational conventions. In addition to the notational conventions introduced

in the previous chapter for presentation of combinational relation structures, we utilize the usual

graphical conventions for representation of �nite-state automata.

Our �rst example presents a basic component which will appear in many of the examples in this

chapter: the edge-triggered D-
ip
op. Following [90], our basic circuit and speci�cation components

are combinational parts and D-
ip
ops, which simply delay by one clock cycle the
ow of their

input signal. Our second example illustrates that a sequential trace structure representation of a

combinational component with an empty F -set has S- (and P -) set consisting of arbitrary �nite

numbers of repetitions of its combinational behavior. Formally, its S-set is the language de�ned

by a single-state automaton with a self-loop labeled with the traces of a combinational relation

structure representation of the component. In our third example, we illustrate how this generalizes

to combinational parts with non-empty F -sets.

Finally, as the fourth example in this subsection, we provide a sequential trace structure repre-

sentation of the speci�cation for a clocked SR
ip-
op. This example illustrates meaningful use of

the F -set to denote the possibility of asynchronous hazard behavior in a known simple sequential

circuit.

We present the S-, F - and P - sets of a sequential trace structure, all of which are regular sets, by

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 125

�
-

K

U

.

�

�

-
�

�

?x=y

x=Xy

?x=y

x=Xy x=y
x=y

Q0 Q1

Q2

?x=Xy
x=y

x=y

Figure 5.1: Automaton representation of the behavior of a D-
ip
op

presenting �nite-state automata which accept them. We utilize the usual graphical conventions in

this presentation: concentric circles indicate �nal states, an arrow-head pointing to a state indicates

it is a start state, and edge labels indicate the \symbols" of the accepted traces (each symbol is

a vector). Note that we add to the notational conventions introduced in the previous chapter, by

separating the input wire values from the output wire values of a single combinational behavior by

the symbol \/" as is usual in the representation of Mealy machines. In addition, we may sometimes

attach a list of distinct labels to a single edge, as shorthand for multiple edges with the same source

and target states. In this case these labels will either appear on separate lines or will be separated

by commas.

We may sometimes represent both the S- and F -sets by a single automaton. In this case, each

�nal state is marked with S or F (or both) to indicate that it is a �nal state in the automaton

representation of S or F; respectively. We call such an automaton representing both the S-set and

the F -set of a sequential trace structure a combined automaton.

Example 5.1 The following sequential trace structure represents a D-
ip
op. Following Bron-

stein [24], we de�ne these single-bit registers according to the value they present on their output wire

in the �rst clock cycle. Rb is the register with output wire labeled b whose �rst output is the value 1:

If its �rst output is the value 0; we call it R
b
: Similarly, R?b

produces as its �rst output the value

? : (Of course, this value may be perceived as a 0 or a 1; depending on the actual oscillation pattern

exhibited). On subsequent cycles, these registers pass through to their output wire b whatever value

was received (after stabilization, if relevant) on the input wire in the previous clock cycle.

The automaton of Figure 5.1 represents the potential P -sets of a one-bit register whose input

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 126

�

...............
......

a=b; a=b;?a=Xb

Figure 5.2: Automaton representation of the sequential behavior of an inverter

wire is labeled x and whose output wire is labeled y: Note that such a circuit has an empty F -set.

The diagram may represent any of Ry; Ry and R?y
; depending on the state chosen as the start

state. Ry has start state Q2 and Ry has start state Q1; while R?y
is de�ned with start state Q0:

Note that the state Q0 represents a state of the circuit in which the previous cycle's input value is

unknown as well as that in which it is unde�ned. Because of the input-downward-closure constraint,

these two states are essentially indistinguishable. Thus if we choose to not identify the �rst output

value of our register R; we may simply set the start state to Q0:

The following example illustrates how the sequential trace structure representation of a com-

binational component may be based on the combinational relation structure representation of its

behavior.

Example 5.2 The following sequential trace structure represents an inverter whose input wire is

labeled a and whose output wire is labeled b:

Tinv�ab = (I = fag; O = fbg; Sinv�ab; F = ;)

where Sinv�ab is the language accepted by the automaton of Figure 5.2.

Because it preserves no state, the sequential behavior of this circuit consists simply of unbounded

repetition of its combinational behavior. Hence the minimal automaton representation of its sequen-

tial behavior contains a single state, which is both its start state and its �nal state, and accepts

arbitrary-length �nite sequences of combinational inverter behaviors.

Example 5.2 illustrated how to produce a sequential trace structure representation of a combi-

national circuit with an empty F -set. We have not yet shown how to handle a circuit speci�cation

with a non-empty F -set. In the following example we show that such combinational speci�cations

are also easily extended to sequential trace structures.

Example 5.3 The following sequential trace structure is a speci�cation for an inverter that we

expect to place only in an environment in which its input stabilizes. Its input wire is labeled a and

its output wire labeled b.

T1 = (fag; fbg; S1; F1)

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 127

...............
......

-
�-S F

a=b

a=b

?a=Xb

a=b

a=b

?a=Xb

Figure 5.3: Dual-automaton representation of the sequential behaviors of a non-failure-free inverter

where S1 and F1 are the languages accepted by the combined automaton of Figure 5.3.

The combinational version of this speci�cation was discussed in Example 3.4 in Chapter 3, where

we provided the following combinational relation structure representation for it:

T0 = (I = fag; O = fbg; S = fab; abg; F = f?aXbg)

From this description it is clear how we have constructed the sequential trace structure T1 from

the combinational relation structure T0: Note that if a run of this deterministic automaton over a

sequence accepts it as a failure trace, the sequence may not be extended to any success trace, because

the S-set must be pre�x-closed.

In the �nal example of this section, we present a sequential trace structure representation of the

speci�cation for a clocked SR-
ip
op. Here the speci�cation's F -set is not a simple extension of any

combinational circuit's F -set. In the following sections we will discuss the construction of possible

implementations for this speci�cation in our model.

Example 5.4 In this example we present a sequential trace structure which represents the speci�-

cation for a clocked SR-
ip
op. The excitation table for this latch speci�es that when the S and R

lines are both held low at the clock tick, the state of the latch, as re
ected in its output line Q, does

not change. If S is held high, the latch is set: Q goes high. If R is held low, the latch is reset: Q

goes low. The situation in which both S and R are held high at the clock tick is disallowed.

This speci�cation can be represented by the sequential trace structure

TSR� = (fs; rg; fqg; SSR� ; FSR�)

where SSR� and FSR� are described by the combined automaton of Figure 5.4.

5.3 The algebraic operations for sequential trace structures

In this section we discuss the circuit algebra operations for sequential trace structures. The results

of applying these operations to sequential trace structures are themselves sequential trace structures.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 128

........
........
..........................

�
-

K

U

�

-
�

�

�

�
+

�
-

F

S

S S
q = 1 q = 0

q =?

sr=q
?s r=q

s r=q
sr=q
s?r =q

?s r=Xq

s r=Xq
s?r =Xq
?sr=Xq

sr=q

sr=q

s?r =Xq

sr=q

sr=q

sr=Xq
?sr=Xq
s?r =Xq
?s?r =Xq

sr=Xq
?s r=Xq
s?r =Xq
?s?r =Xq

sr=Xq
?sr=Xq
s?r =Xq
?s?r =Xq

s r=q

XsXr=Xq

Figure 5.4: Behavioral speci�cation of a clocked SR-
ip
op

The class of sequential trace structures together with the algebraic operations forms a circuit algebra.

In Section 5.3.2, we present some examples of composite circuit models in order to illustrate how

the formal operations implement the intended actions on the circuits being modeled.

5.3.1 De�nitions, closure, and circuit algebra rules

The formal de�nitions of the algebraic operations on sequential trace structures are identical to those

of combinational relation theory (see Section 3.3.2), except that the type of the behavior sets S and

F to which the operators are applied di�ers. In order to de�ne renaming, it is necessary to use the

natural extension of the renaming function r : A �! B from vectors to sequences of vectors and to

sets of such sequences.

We will now prove that the class of sequential trace structures is closed under application of these

algebraic operators and that together they form a circuit algebra. Regularity of each of S; F; and P

is preserved by the algebraic operations, by closure properties of regular languages. Pre�x-closure

of S and P is also preserved by the operations, as is non-emptiness of P (" 2 P is preserved by

all the operations). The proof that following the application of any of the algebraic operations, the

required property of input-downwards-closure holds of both the resulting structure's F -set and its

P -set, duplicates the proof for the combinational case: just replace T Y by B(Y) for every set Y in

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 129

the proof of Section 3.3.3.1.

We present our proof that the receptiveness constraint is preserved by all the algebraic operations.

It is nearly identical to the proof for the combinational case (see Section 3.3.3.2). Because only

the P -set of a sequential trace structure need be receptive, we can ignore the S and F -sets of the

sequential trace structures in these proofs. Therefore we refer to a relation structure as T = (I;O; P):

The proof that receptiveness is preserved under the renaming operator is trivial and will not be given

here. The proofs for the remaining operators appear below.

� Receptiveness is preserved by the hide operation:

Let T = (I;O; P) and D � O: For each w 2 P; let Cw � ext1 (w ;P) be total (in T
I
) and have

the upward-chains property.

Let T 0 = del(D)(T) = (I;O �D; del (D)(P)):

Let w0 2 del(D)(P): We must prove that there exists C0
w0 � ext1 (w

0; del(D)(P)) that is total

in T I and has the upward-chains property.

Pick some w0 2 del�1(D)(fw0g) \ P (by de�nition, there must exist such w0):

Let C0
w0 = del(D)(Cw0

): Clearly, C0
w0 � ext1 (w

0; del(D)(P)):

The proof that C0
w0 is total in T I and that C0

w0 has the upward-chains property may be derived

by replacing C by Cw and C0
by C0

w0 in the proof (for the combinational case) that C0
is total

in T I and has the upward-chains property, which appears in Section 3.3.3.2.

� Receptiveness is preserved by inverse deletion:

Let T = (I;O; P) and (D \ (I [O)) = ;: For each w 2 P; let Cw � ext1 (w ;P) be total (in

T I) and have the upward-chains property.

Let T 0 = del�1(D)(T) = (I [D;O; del�1(D)(P)): For each w0 2 del�1(D)(P); let C0
w0 =

del�1(D)(Cw) where w
0 2 del�1(D)(w): Clearly, C0

w0 � ext1 (w
0; del�1 (D)(P)):

We must prove that these C0
w0 are each total in T (I[D)

and each have the upward-chains

property. Clearly, each C0
w0 is total, because every Cw is total in T I and del�1 preserves

totality. We proceed to prove that each C0
w0 has the upward-chains property.

Let w0 2 del�1(D)(P): By de�nition of T 0; there exists w 2 P such that w0 2 del�1(D)(w):

The rest of the proof is identical to the proof for the combinational case (in Section 3.3.3.2),

with Cw substituted for C and C0
w0 substituted for C0:

� Receptiveness is preserved by intersection:

Let T = (I;O; P) and T 0 = (I0; O0; P 0
) be sequential trace structures such that (I [O) =

(I0 [O0
) and (O \O0

) = ;: For each w 2 P; let Cw � ext1 (w ;P) be total in T
I
and have the

upward-chains property. For each w0 2 P 0; let C0
w0 � ext1 (w

0;P 0) be total in T I
0

and have the

upward-chains property.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 130

Let T 00 = T \ T 0 = (I00; O00; P 00
): For each w00 2 P 00; let C00

w00 = Cw00 \ C0
w00 : Clearly, C00

w00 �

ext1 (w
00;P 00):

We will prove that these C00
w00 are each total in T I

00

and each have the upward-chains property.

Let w00 2 P 00
= (P \P 0

): The proof that C00
w00 is total in T I

00

and that it has the upward-chains

property is identical to the proof for the combinational case (in Section 3.3.3.2), with Cw00

substituted for C; C0
w00 substituted for C0; and C00

w00 substituted for C00:

Because we know that the regularity and input-downwards-closure of F and P; the regularity of

S; the pre�x-closure of S and P; and the non-emptiness of P are also preserved by the algebraic

operations, this concludes our proof that the class of sequential trace structures is closed under the

algebraic operations.

The class of sequential trace structures together with the algebraic operations of composition,

renaming, and projection forms a circuit algebra. The proofs are identical to those for the combina-

tional case, except that the type of the elements in S and F is di�erent. We must extend renaming

functions r to sequences of vectors and to sets of such sequences. However, in contrast to the sit-

uation in asynchronous trace theory, all operations are length-preserving (clock cycles cannot be

collapsed), and so all the operations distribute over sequence concatenation and the concatenation

of sets of sequences. All the lemmas of Section 3.3.4 hold in the sequential case as well.

5.3.2 Examples

In this section we present some examples of composite circuit models in order to illustrate the e�ects

of the circuit algebra operations. We begin by walking through the composition of a simple circuit

consisting of two gates and a latch. We then present models of some candidate implementation

circuits for the SR
ip
op speci�cation given in the previous section. These circuits and their

models illustrate that X-e�ects of gate-level ternary simulation are an accurate re
ection of the

intended semantics of the ? symbol.

y
z

v

x

Figure 5.5: Simple circuit containing a latch

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 131

eb=c

eb=c
eb=c

e b=c
Xeb=c

eXb=c

?eb=Xc
e?b=Xc
?e?b =Xc

...............
......

�

OR-gate

�

...............
......

XOR-gate

yv=z

yv=z

yv=z

y v=z

Xy?v =Xz
?yXv=Xz

Figure 5.6: Automata representations of the sequential behavior of two gates

Example 5.5 Consider the circuit illustrated in Figure 5.5. Its primary output is the wire labeled

z; and its input is labeled x: Note that the wires y and v are hidden; they are not primary outputs

of this circuit.

We model this circuit as

T = del (fy; vg)(INV1 k (L1 k XOR1))

where sequential trace structure representations of the component gates INV1 and XOR1 and the

component latch L1 are as follows:

� INV1 = ren(r)(Tinv�ab) is the inverter model of Example 5.2 (page 126) in Section 5.2.3,

appropriately renamed.

� XOR1 = (fy; vg; fzg; Sxor�yvz ; ;) { see Figure 5.6 for an automaton representation of Sxor�yvz :

� L1 = ren(r0)(TD��xy); is the R?x
model of Example 5.1 in Section 5.2.3, appropriately re-

named.

Automaton representations of the behavior of each of these components or their renaming appear in

Figures 5.2, 5.6, and 5.1, respectively. They all have empty F -sets.

The creation of the composite model for this circuit proceeds in several stages. We present the

intermediate sequential trace structures derived during one possible version of this process. Note that

the composition may be done in any order, as composition is associative and commutative, and that

a wire may be hidden as soon as it is no longer required to participate in any future compositions.

We choose to order our operations as indicated by the de�nition of the full circuit T; above.

T1 = (L1 k XOR1) = (fyg; fv; zg; S1; ;)

where S1 is the language accepted by the automaton of Figure 5.7.

T2 = (INV1 k T1) = (fxg; fy; v; zg; S2; ;)

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 132

..............
.......

-
�

�

U �

K

�
-

�

?y=vXz

y=vz
y=vz
y=?vXz

v = 1

v = 0

y=vz

y=vz

?y=vXz

y=vz
y=v z
y=vz
y=?vXz

?y=XvXz

y=v z

Figure 5.7: Automaton representation of the sequential behavior of T1 of Example 5.5

...............
......

-
�

�

U �

K

�
-

�

?x=?y vXz

x=yvz;?x=yvz
x=yvz;?x=yvz
x=y?vXz;?x=y?vXz

v = 1

v = 0

x=yvz
?x=yvz

x=yvz
?x=yvz

?x=?yvXz

x=yvz
?x=yvzx=y v z

?x=y v z
x=yvz
?x=yvz
x=y?vXz
?x=y?vXz

?x=?yXvXz

x=y v z
?x=y v z

Figure 5.8: Automaton representation of the sequential behavior of T2 of Example 5.5

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 133

...............
......

-
�

�

U �

K

�
-

�

z=Xz

?x=Xz

?x=Xz x=z

x=z

x=zx=z

?x=Xz

x=Xz

Figure 5.9: Automaton representation of the sequential behavior of the full circuit of Example 5.5

where S2 is accepted by the automaton of Figure 5.8. And �nally,

T = del(fy; vg)(T2) = (fxg; fzg; S; ;)

where S is accepted by the automaton of Figure 5.9.

In the preceding example, we demonstrated how to use the algebraic operators to create a

composite-circuit model from the models of its components. The following example highlights the

role of \X-e�ects," or \X-confusion," in sequential trace theory. This name was coined to describe

an undesirable artifact of the X-value in gate-level ternary simulation. However, in our model the

identical e�ects accurately re
ect the intended semantics of the \?" symbol.

Example 5.6 In this example, we consider four distinct circuits, each of which contains a single

latch and some combinational logic. For the sake of brevity, we do not walk the reader through the

composition process, as we did in the previous two examples of this section. Instead, we describe

the sequential trace structure representations of the primitive components of each circuit, and pro-

vide circuit algebraic formulas which correspond to these composite circuits. We then provide an

automaton representation of the behavior of three of these full circuits.

Two points are of interest in this example, beyond its role in further clarifying the algebraic

operators. The �rst is that we obtain identical sequential trace structures for the two circuits C6 and

C7: The second is the manifestation of \X-e�ects" in the presence of reconvergent fanout in T6; T7

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 134

ab=c

ab=c
ab=c

ab=c
a?b=c

?a b=c
a?b=Xc
?a b=Xc
?a?b =Xc

...............
......

�

AND-gate

�

...............
......

non-inverting bu�er

c=b

c=b
?c=Xb

Figure 5.10: Automata for the sequential behavior of an AND-gate and a non-inverting bu�er

ab=c

ab=c
ab=c

a b=c
Xab=c

aXb=c

?ab=Xc
a?b=Xc
?a?b =Xc

...............
......

�

NOR-gate

�

...............
......

MUX: n=d0,p=d1,c=ctrl,t=data-out

n pXc=t; npXc=t
?n?pXc=Xt; nXpc=t
nXpc=t;Xnpc=t
Xnpc=t;?nXpc=Xt

Xn?p c=Xt; np?c =Xt

np?c =Xt;?np?c =Xt

n?p?c =Xt

n?p?c =Xt

Figure 5.11: Automata representations of the sequential behavior of a NOR-gate and a MUX

and T8: Reconvergent fanout refers to a situation in a circuit in which a value computed by one

component propagates through two or more distinct routes to another component. X-e�ects occur

when a node holding value ? is not interpreted to have the same value by all gate-models of which

it is an input wire.

In our model X-e�ects accurately re
ect the intended semantics of the symbol \?". The X-value

of gate-level ternary simulation is intended to model two cases, that in which a node has value 0 and

that in which the same node has value 1: It is not intended to model a situation in which the Boolean

value of a node is ambiguous, but only one in which it is unknown. Hence \X-confusion" constitutes

a loss of information in that model. However, in our model the third wire value ? represents a

[possibly unstable] voltage which is not unambiguously interpretable as a 0 or as a 1; in this case, it

is entirely appropriate that the same node be interpreted variously as having several values.

Before we present the four circuits and their sequential trace structure representations, we provide

a list of gate and latch models for reference. All of these models have empty F -sets; that is, their

P -set and their S-set are identical. Let TD��xy be the D-
ip
op model whose P -set is de�ned by

the automaton of Figure 5.1 with initial state Q0: Let Tinv�ab be the inverter model whose P -set

is shown in Figure 5.2. Let Tor�ebc and Txor�yvz be the or-gate and xor-gate models, respectively,

whose P -sets are shown in Figure 5.6. Let Tand�abc be the and-gate model whose P -set is shown

in Figure 5.10. Let Tnor�abc and Tmux�npct be the nor-gate and MUX models, respectively, whose

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 135

S
R

QS

w3

w4
w2

notR

w5

Figure 5.12: The circuit C6

P -sets are shown in Figure 5.11. (Note that in the MUX model, n and p refer to the respective

data in lines d0 (negative) and d1 (positive), c is the control line, and t is the data out line). Models

for additional two-input gates may be created by composing the appropriate inverter model or models

with the appropriate two-input gate model.

We �rst consider the circuit in Figure 5.12. A trace structure representation of this circuit may

be described by the circuit algebra expression

T6 = del(fnotR,w2,w3,w4,w5g)(INV6 k (AND6a k (OR6 k (AND6b k (NOR6 k L6)))))

Next, we consider the circuit in Figure 5.13. A trace structure representation of this circuit may

be described by the expression

T7 = del(fnotR,d0,d1,ctrlg)(INV7 k (AND7 k (NOR7 k (MUX7 k L7))))

Computation of T6 and T7 reveals that they are identical. Note that this need not have been the

case if we had de�ned our primitive gate models di�erently: the two expressions are not algebraically

equivalent. Figure 5.14 contains the minimal automaton that accepts their P -set. As discussed

previously, this P -set exhibits X-e�ects; this will be discussed in more detail in Example 5.8 of

Section 5.4.5.

Now we consider the circuit of Figure 5.15. Note that this circuit is almost identical to the circuit

C7 of Figure 5.13; they di�er only in that the nor-gate in C7 has been replaced by a nxor-gate in

C8: Hence the circuit C8 may be modeled by the sequential trace structure described by the following

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 136

0

1

d0

d1

Q

Q

ctrl
S
R

R

S

notR

Figure 5.13: The circuit C7

�q = 0

...............
......

�
-

-
�

�

U �

K

q =? q = 1

Xsr=q;Xs?r =q

Xs?r =?q
?s r=?q

Xsr=q
Xs?r =q

sr=q
?s r=q
s?r =q
?s?r =q

Xsr=q
Xs ?r =q
?s r=q

Xs?r =q

s r=q
?s r=q
Xsr=q

s r=q
?s r=q
Xsr=q
Xs?r =q

?s r=?q

s?r =?q
?s?r =?q

s r=?q
?sr=?q
Xs?r =?q

Figure 5.14: Automaton representation of the behavior of T6 and T7

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 137

0

1

d0

d1

Q

Q

ctrl
S
R

R

S

notR

Figure 5.15: The circuit C8

circuit algebra expression:

T8 = del(fnotR,d0,d1,ctrlg)(INV7 k (AND7 k (NXOR8 k (MUX7 k L7))))

One might expect that T8 be identical to T7: However, a xor-gate has no controlling values: unless

both of its input wires hold known Boolean values, its output value is arbitrary. Hence T8 exhibits

even worse uncertainty than that exhibited by T7: In fact, the P -set of T8 contains that of T7 as a

proper subset.

Finally, we present a circuit whose Boolean behavior is identical to that of C6 and C7; but which

does not exhibit X-e�ects. It avoids X-e�ects because it does not contain reconvergent fanout. This

circuit, C9; appears in Figure 5.16. The minimal automaton representation of the P -set of T9 appears

in Figure 5.17.

We have provided sequential trace structure representations for four distinct circuits, two of which

turned out to be identical given our gate and latch models, and three of which exhibit X-e�ects because

of reconvergent fanout. In Section 5.4.5 we will examine all four of these trace structures again, and

determine which of them correctly implement an SR-
ip
op speci�cation.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 138

Q
w1

w0

S

R

Figure 5.16: The circuit C9

�q = 0

...............
......

�
-

-
�

�

U �

K

q =? q = 1

Xsr=q;Xs?r =q

Xs?r =?q Xsr=q
Xs?r =q

sr=q
?s r=q
s?r =q
?s?r =q

Xsr=q
Xs ?r =q

Xs?r =q

s r=q
?s r=q
Xsr=q

s r=q
?s r=q
Xsr=q
Xs?r =q

?s r=?q

s?r =?q
?s?r =?q

s r=?q
?sr=?q
Xs?r =?q

Figure 5.17: Automaton representation of the behavior of T9

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 139

5.4 Veri�cation for synchronous circuit models

5.4.1 Introduction

In this section we de�ne what it means for a synchronous circuit to correctly implement a require-

ments speci�cation. The conformance and substitution results from combinational relation struc-

tures extend intact to sequential trace structures, except that canonicalization is more involved.

Procedures that previously were applied to sets of input-output value combinations must now be

applied to sets of sequences of such value combinations. More precisely, procedures must now be

applied per state of a �nite-state automaton representation.

We de�ne failure-freedom, safe substitution, and the conformance relation � for sequential trace

structures exactly as for combinational relation structures. A sequential trace structure is a correct

implementation of another (considered as a speci�cation) if and only if it conforms to the speci�ca-

tion trace structure. Most of the other de�nitions are the same as well. There are three exceptions:

�rst, to compute the mirror of a sequential trace structure, we complement its F and P -sets in the

domain B(A): Second, the OUC property and operator are de�ned for sets of sequences of vectors.

Third, the concept of an autofailure must be rede�ned for sequential trace structures. We still de�ne

canon(T) = fe(afm(OUC(T))); and it is still the case that canon(T) is the unique canonicalized ele-

ment of the conformance-equivalence class of T: However, the de�nitions of autofailure manifestation

(afm); the OUC operator, and the precise de�nition of a canonicalized sequential trace structure,

di�er from the combinational case.

In this section, we sketch the derivation of our decision procedure for sound hierarchical formal

veri�cation of synchronous circuits, following the basic outline of the presentation for the combina-

tional case, which appears in Section 4.2. The substitution results for sequential trace structures

are presented in Section 5.5.

5.4.2 Correct implementation: the conformance relation

The de�nition of when one sequential trace structure is a correct implementation of another (con-

sidered as a speci�cation) is precisely the same as in the combinational case: one trace structure

conforms to another if the �rst may be safely substituted for the second in any context. As in

the combinational case, this conformance relation obeys the compositionality condition, because the

algebraic operations are monotonic with respect to conformance.

More formally, we de�ne the legal environment of a sequential trace structure T to be those

sequential trace structures whose I and O-sets complement those of T; as in the combinational

case. We can then prove, using precisely the same proofs as in Section 4.2.2, the equivalence of

the alternate characterizations of � in terms of trace structure intersection and composition rather

than expression contexts, and the relevant supporting lemmas. Again using the same proofs, we can

prove the monotonicity of the algebraic operations with respect to � for sequential trace structures.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 140

In other words, the analogs of Theorems and Lemmas 4.1 through 4.6 hold for sequential trace

structures. These results allow us to utilize the alternate equivalent characterizations of � in later

proofs. They also con�rm the soundness of hierarchical veri�cation for the synchronous case.

Conformance is a preorder rather than a partial order in the synchronous case as well. Again, we

de�ne T � T 0 to mean that T � T 0 and T 0 � T; and this equivalence relation induces a partial order

on conformance-equivalence classes of sequential trace structures. The preorder v over sequential

trace structures is stronger than the conformance relation: the analogs of Lemmas 4.7 and 4.8 hold

for sequential trace structures as well.

5.4.3 Conformance equivalence classes and canonicalization

In this section, we present in full detail the theoretical underpinnings of the canonicalization process

for sequential trace structures.

If we represent a trace structure T by a deterministic combined automaton that accepts both

its F -set and its P -set, we can talk about T 's control being in a state q of this automaton. This

corresponds to the automaton's having just accepted a partial behavior w 2 P such that q0
w
) q

(where q0 is the initial state of this deterministic automaton). If it is the case that T can force every

one of its legal environments into a failure state following the arrival of its control at the state q; then

we might as well simply mark q as an F -�nal state. This is because T will have a non-failure-free

composition with every legal environment that contains w in its own P -set whether or not we make

this addition to the F -set of T:

Similarly, we note that if a trace structure has already failed (control has already entered a

F -�nal state q0 such that q0
w
) q0) then it does not matter what it does afterwards. Again, this is

because the trace structure T will have a non-failure-free composition with every legal environment

that allows T to reach this F -�nal state (w 2 (P \PE)); irrespective of what the composition may or

may not do afterwards. These observations lead to the de�nition of autofailures and the autofailure

manifestation process.

We say a trace structure T = (I;O; S; F) is failure-forcing if and only if it has no failure-

free composition with any of its legal environments. Formally, for all legal environments E =

(O; I; SE ; FE) of T; E \ T is not failure-free. For a trace structure T = (I;O; S; F) and w 2 P;

we de�ne Tw = (I;O; ext(w ; S); ext(w ;F)): Using this property and new de�nition, we present the

formal de�nition of the autofailures of a trace structure T = (I;O; S; F) :

af (T) = fw 2 P j Tw is failure-forcingg

Clearly, af (T) is the set of all w 2 P such that every legal environment that admits w in its

own P -set can force T beyond (or at) w into the F -set of the composition. More speci�cally, the

de�nition above includes precisely those w 2 P beyond (or at) which they can all force control into

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 141

(F\PE): (The \or at" means that F � af (T)): Because the set of all legal environments admittingw

includes those with empty F -sets, this condition is equivalent to stating that all legal environments

could force T beyond w into ((F \PE)[(P \FE)); which is the full failure-set of the composition. In

contrast to the de�nition of autofailures in asynchronous trace theory, there is an extra complication

because the environment of a sequential trace structure can respond instantaneously. (Note also

that in contrast to the de�nition of a combinational autofailure, which is a combinational relation

structure, the autofailures we have just de�ned are elements of the P -set of a trace structure, as in

the asynchronous case). There is, however, an e�ective procedure for determining w 2 af (T): That

procedure is described in Chapter 6.

Lemma 5.1 Let T = (I;O; F; P) be a sequential trace structure. Then F � af (T):

Proof: Obvious, especially from the discussion.

We de�ne the operation of autofailure manifestation to be the addition of all autofailures and

their extensions to the F -set of a sequential trace structure:

afm((I;O; S; F)) = (I;O; S; af (T) � B(A))

Lemma 5.2 Let T be a sequential trace structure. Then afm(T) is too.

Proof:

Let T = (I;O; S; F) be a sequential trace structure. Then S and F are regular sets. Therefore

P = (S [F) is a regular set, and may be represented by a deterministic �nite-state automaton.

The de�nition of af (T) makes it clear that it de�nes a subset of the states in that deterministic

automaton. Therefore the set af (T) � B(A) is regular as well.

Clearly, af (T) � B(A) is input-downward-closed if af (T) is. We prove that af (T) is input-

downward-closed because F and P are:

Let x; x0 2 (T I)n such that x0 � x; and y 2 (T O)n such that (x [y) 2 P: Then by input-

downward-closure of P and F; respectively,

ext((x [y);P) � ext((x 0 [y);P) and ext((x [y);F) � ext((x 0 [y);F)

Thus T(x[y) v T(x0[y): But then by the sequential analog of Lemma 4.7, T(x[y) � T(x0[y):

Let (x [y) 2 af (T): Because for every legal environment E of T; E \ T(x[y) is not failure-

free, the same must hold of E \ T(x0[y): Therefore (x0 [y) 2 af (T) as well. Therefore af (T) is

input-downward-closed.

Because F � af (T) (by Lemma5.1) and af (T) � P; it must be the case that (S[F) = (S[af (T)):

Because P = (S [F) is input-downward-closed, (S [af (T) � B(A)) is also.

Similarly, (S [af (T) � B(A)) is non-empty if P is.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 142

And �nally, (S [af (T) � B(A)) obeys the receptiveness constraint if P does: for every w 2 P

there is an appropriate Cw � ext1 (w ;P) � ext1 (w ; (S [af (T) � B(A))); and for every w 2 ((S [

af (T) � B(A)) � P); w � B(A) is contained in (S [af (T) � B(A)) { so that clearly in this case as well

there exists an appropriate Cw:

Lemma 5.3 Let T be a sequential trace structure. Let T 0 = afm(T) = (I;O; S0; F 0
): Then F 0

=

F 0 � B(A) and af (T 0) � F 0:

Proof:

That F 0
= F 0 � B(A) is obvious from the de�nition of the afm operator.

In order to prove that af (T 0) � F 0
it su�ces to note that behaviors in S of which no element of

af (T) is a pre�x cannot be made into autofailures (of T 0) by autofailure manifestation.

Theorem 5.4 Let T be a sequential trace structure. Then T � afm(T):

Proof:

By Lemma 5.1, F � af (T): Therefore T v afm(T): Thus by the sequential analog of Lemma 4.7,

T � afm(T):

We must prove that afm(T) � T:

Let E = (O; I; SE ; FE) be a legal environment such that T \E is failure-free. Let w 2 (P \PE) =

P 00: Then Tw = (I;O; ext(w ;F); ext(w ;P)) and Ew = (O; I; ext(w ;FE); ext(w ;PE)) are sequential

trace structures such that (Tw \ Ew) is failure-free. Therefore Tw is not failure-forcing, and so

w 62 af (T): Thus

w 2 P 00
=) w 62 af (T)

Because af (T) � P; therefore (af (T) \PE) = ;: Because PE is pre�x-closed, it is also the case that

(af (T) � B(A) \ PE) = ;

Therefore, ((af (T)�B(A)\PE)[((P[(af (T)�B(A))\FE)) = ;; and so afm(T)\E is also failure-free.

Thus afm(T) � T; and so we have proved that afm(T) � T:

A sequential trace structure may have S and F sets which are not disjoint. A trace which appears

in both these sets represents a behavior that is nondeterministically either a success or a failure.

Composition with any other sequential trace structure admitting this trace will be non-failure-free

irrespective of whether the trace is also in S: Hence in attempting to delete extraneous information

from T in such a way as to maintain the soundness of our veri�cation, we require that such a trace

be considered solely as a failure.

We call the process of setting Snew = (S �F) failure-exclusion, and the resulting trace structure

fe(T): Note that failure-exclusion need not in the general case result in a sequential trace structure,

as the resulting S-set need not be pre�x-closed. However, if we have just applied autofailure-

manifestation to T; then (S � F) is guaranteed to be pre�x-closed.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 143

Lemma 5.5 Let T = (I;O; S; F) be a sequential trace structure. If F = F � B(A) then (S � F) is

pre�x-closed.

Proof: Obvious.

Lemma 5.6 Let T = (I;O; S; F) be a sequential trace structure such that F = F �B(A): Then fe(T)

is too.

Proof:

Neither the F -set nor the P -set of T is a�ected by the fe operator. Therefore we need only check

for the required properties of the new S-set: regularity and pre�x-closure.

Because S and F are regular, so is S � F = S \ F ; the new S-set. And by Lemma 5.5, (S � F)

is also pre�x-closed.

Theorem 5.7 Let T = (I;O; S; F) be a sequential trace structure such that F = F � B(A): Then

T � fe(T):

Proof:

Neither the F -set nor the P -set of T is a�ected by the fe operator. Therefore, T v fe(T) and

fe(T) v T: Thus, by the sequential analog of Lemma 4.8, T � fe(T):

We de�ne output-upwards-closure for sets of sequences of vectors in the obvious way, by analogy

to input-downwards-closure (IDC). Given predetermined input and output sets I and O respectively,

we say that a set W � B(I [O) is output-upwards-closed (OUC(W)) precisely when

8n 2 !:8x 2 (T I)n:8y; y0 2 (T O)n:[[(x[y) 2W ^ y � y0] =) (x [y0) 2W]

We say a sequential trace structure T = (I;O; F; P) is output-upwards-closed if and only if both its

F and P sets are.

In addition to the property OUC we de�ne an abstract operator OUC on sequential trace struc-

tures. If T = (I;O; S; F) is a sequential trace structure, we de�ne

OUC(T) = (I;O;OUCI;O(S); OUCI;O(F))

where OUCI;O(W) is the set W � B(I [O) together with the minimal set of additional behaviors

(elements of B(I [O)) necessary to make the resulting set output-upwards-closed, forW any of S; F;

or P: Clearly OUCI;O(S) [OUCI;O(F) = OUCI;O(P): We prove that the result of applying this

operator to a sequential trace structure is itself a sequential trace structure, and that all conformance

equivalence classes are closed under application of this operator.

In order to prove regularity of the S and F sets of OUC(T); it is necessary to provide details

of our implementation of this operator. In the lemmas immediately following the implementation

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 144

description, we show that applying the operator does indeed result in a sequential trace structure

that is output-upwards-closed.

We implement the abstract OUC operator by a concrete operator OUCimpl : for every sequential

trace structure T = (I;O; S; F) we de�ne

OUCimpl(T) = (I;O;OUCimpl(S); OUCimpl(F))

The concrete operator OUCimpl adds edges to existing �nite-state automata that represent S and

F and P: Let

M = h� = T (I[O); Q; q0;FinalStates; �i

be a �nite state-automaton such that L(M) is one of S; F or P: For every state q 2 Q in this

automaton, and every x 2 T I and y; y0 2 T O such that y � y0 and hq; (x [y); q0i 2 � for some

q0 2 Q; the OUCimpl operator adds the edge hq; (x [y
0
); q0i into �: Thus the transition relation of

M is expanded while its other parts (including FinalStates) are left untouched. It may be the case

that the S-, F - and P -sets of T are all represented by a single combined-automaton, in which case

the addition of edges need only be done to this single automaton. The proof that this construction

is correct follows.

Lemma 5.8 Let T be a sequential trace structure. Then OUCimpl(T) is the v-minimal output-

upwards-closed upper bound of T:

Proof:

The above description of the concrete OUCimpl operator describes a speci�c enhancement to S

and to F: We mathematically characterize this enhancement and prove that it is equivalent to our

previous abstract description of the OUCI;O operator.

The enhancement of S and F implemented by the operation described above results in automata

that de�ne the sets OUCimpl(S) and OUCimpl(F); respectively, here de�ned for a set W � B(I[O) :

OUCimpl(W) =

[
i2!

OUCi;impl(W)

where

� OUC0;impl(W) = W and

� OUC(n+1);impl(W) = f(w � (x [y0) � z) j w; z 2 B(I [O) ^ x 2 T I ^ y0 2 T O^

9y � y0:(w � (x [y) � z) 2 OUCn;impl(W)g

We prove that this enhancement is equivalent to our previous abstract description of the OUCI;O

operator. The proof is given for a set W � B(I [O); in lieu of its being repeated for each of S and

F:

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 145

� OUCimpl(W) � OUCI;O(W) :

Let a 2 OUCimpl(W): Then a 2 OUCk;impl(W) for some minimal k 2 !: In addition, there

exists some n 2 ! such that a 2 (T (I[O)
)
n; so that there exist x 2 (T I)n and y 2 (T O)n such

that a = (x [y):

By de�nition of OUCk;impl(W); there exists a chain fyigi � (T O)n of length (k+1) such that

y0 � y1 � : : : � : : : � yk and 8i 2 f0; : : : ; kg:(x [yi) 2 OUCi;impl(W) and yk = y: But then

(x [y0) 2 W and y0 � y; so that a = (x [y) 2 OUCI;O(W):

� OUCI;O(W) � OUCimpl(W) :

Let b 2 OUCI;O(W): Then there exist n 2 !; x 2 (T I)n; and y; y0 2 (T O)n such that

(x [y) 2W and y � y0 and b = (x [y0):

But then there exists a chain fyigi � (T O)n of length m � (n + 1) such that y = y0 � y1 �

: : : � y(m�1) � ym = y0 and such that each yi di�ers from y(i+1) in precisely a single position.

Thus b = (x [y0) 2 OUCm;impl(W) � OUCimpl(W):

QED Lemma 5.8

Lemma 5.9 If T is a sequential trace structure, then OUC(T) is too.

Proof:

The implementation described above makes it clear that all of OUCimpl(S); OUCimpl(F); and

OUCimpl(P) are regular, and that OUCimpl(S) [OUCimpl(F) = OUCimpl(P): By Lemma 5.8,

therefore, OUCI;O(S); OUCI;O(F); and OUCI;O(P) are all regular sets. In addition, the pre�x-

closure of S and P is clearly preserved by the operator. We also note that if P is non-empty, then

OUCI;O(P) is surely so as well.

We prove that OUCI;O(P) is receptive, and that OUCI;O(F) and OUCI;O(P) are input down-

ward closed:

� OUCI;O(P) is receptive:

Let w0 2 OUCI;O(P): Then there exists some w 2 P such that w0 2 OUCI;O(fwg): Pick some

such w:

By de�nition of the OUCI;O operator,

ext1 (w ;P) � ext1 (w ;OUCI ;O(P)) � ext1 (w
0;OUCI ;O(P))

Therefore we can simply set Cw0 to be Cw (from T): Therefore OUCI;O(P) is receptive.

� OUCI;O(F) and OUCI;O(P) are input-downward-closed:

We prove that application of the OUCI;O operator to any input-downward-closed set preserves

that set's input-downward-closure property.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 146

Let W � B(I [O) be input-downward-closed. Let n 2 !: Let x; x0 2 (T I)n such that x0 � x:

Let y 2 (T O)n such that (x [y) 2 OUCI;O(W):

By de�nition of the OUC operator, there exists y0 � y such that (x [y0) 2 W: But then by

input-downward-closure of W; (x0 [y0) 2W; and therefore (x0 [y) 2 OUCI;O(W):

Theorem 5.10 Let T be a sequential trace structure. Then T � OUC(T):

Proof: This follows by the proof presented for Theorem 4.14, with the types of x and y changed

appropriately.

We say that a sequential trace structure T = (I;O; S; F) is canonicalized if af (T) � F; F =

F �B(A); S\F = ;; and F and P are output-upward-closed. We will prove later that a canonicalized

sequential trace structure is unique in its conformance equivalence class. For now, we prove only

the fairly obvious statement that the procedures outlined above, if applied in such an order that

no operator undoes the desired e�ects of any other operator previously applied, do indeed result

in a canonicalized trace structure. In addition, we prove that application of these operators to an

already canonicalized trace structure T has no e�ect.

Theorem 5.11 Let T be a sequential trace structure. Then fe(afm(OUC(T))) is a canonicalized

sequential trace structure that is conformance equivalent to T:

Proof:

Let T be a sequential trace structure. Let T1 = OUC(T); T2 = afm(T1); and T3 = fe(T2):

We must prove that T3 is a sequential trace structure, that T3 � T; and that T3 is canonicalized.

By Lemma 5.9, T1 is a sequential trace structure. Hence by Lemma 5.2, T2 is too. In addition,

by Lemma 5.3, F2 = F2 � B(A): Thus, by Lemma 5.6, T3 is a sequential trace structure.

We utilize the transitivity of � to prove that T3 � T: By Theorem 5.10, T � T1: By Theorem 5.4,

T1 � T2: In addition, by Lemma 5.3, F2 = F2 � B(A): Therefore by Theorem 5.7, T2 � T3: Thus by

transitivity of the relation �; we have proved that T � T3:

In order to prove that T3 is canonicalized, we prove that each of the relevant criteria holds:

� F3 and P3 are output-upwards-closed:

By Lemma 5.8, T1 is output-upwards-closed. In order to prove that T2 is also output-upwards-

closed, it su�ces to prove that af (T1) is output-upward-closed. We prove that af (T1) is

output-upward-closed because F1 and P1 are.

Let y; y0 2 (T O)n such that y � y0; and x 2 (T I)n such that (x [y) 2 P1: Then by output-

upward-closure of P1 and F1; respectively, ext((x [y);P1) � ext((x [y 0);P1) and ext((x [

y);F1) � ext((x [y 0);F1): Thus (T1)(x[y) v (T1)(x[y0): But then by the sequential analog of

Lemma 4.7, (T1)(x[y) � (T1)(x[y0):

Let (x[y) 2 af (T1): Because for every legal environment E whose input set is T1's output set

and whose output set is T1's input set, E \ (T1)(x[y) is not failure-free, the same must hold of

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 147

E \ (T1)(x[y0): Therefore (x[y
0
) 2 af (T1) as well. Therefore af (T1) is output-upward-closed,

and so F2 = af (T1) � B(A) and P2 = F2 [P1 are each output-upward-closed.

Finally, F3 and P3 are output-upward-closed because by de�nition of failure exclusion, F3 = F2

and P3 = P2:

� F3 = F3 � B(A) :

By Lemma 5.3, F2 = F2 � B(A): Because F2 = F3; therefore F3 = F3 � B(A):

� (S3 \ F3) = ; : This follows directly from the de�nition of failure exclusion.

� af (T3) � F3 :

By Lemma 5.3, af (T2) � F2: Failure exclusion a�ects neither the F -set nor the P -set of the

trace structure being operated on, in this case T2: Therefore af (T3) = af (T2) � F2 = F3:

QED Theorem 5.11

In addition to being canonicalized and conformance equivalent to T; this derived trace structure

is identical to T if it was already canonicalized.

Lemma 5.12 If T is a canonicalized sequential trace structure, then fe(afm(OUC(T))) = T:

Proof: Let T be a canonicalized sequential trace structure. Then F and P are output-upward-

closed (that is, F = OUCI;O(F) and P = OUCI;O(P)): Therefore T = OUC(T):

Similarly, because T is canonicalized, F = F � B(A) and af (T) � F: Therefore by Lemma 5.1

F = af (T) � B(A); and so T = afm(T):

And �nally, because T is canonicalized, its S and F -sets are disjoint. Therefore fe(T) = T:

Because of these three facts, fe(afm(OUC(T))) = fe(afm(T)) = fe(T) = T:

5.4.4 Deciding conformance

As in the combinational theory, we de�ne the mirror of a canonicalized trace structure to be the

result of swapping its inputs and outputs, taking the complements of its F and P -sets, and then

swapping them. Formally, for T = (I;O; F; P) a canonicalized sequential trace structure, mir(T) =

(O; I;B(A)�P;B(A)�F):We de�ne canon(T) = fe(afm(OUC(T))) and TMaxEnv
= mir(canon(T)):

Those canonicalized trace structures for which TMaxEnv
is not a sequential trace structure are pre-

cisely the failure-forcing trace structures. For all other trace structures T; TMaxEnv
is the v-maximal

safe environment for T: Every conformance equivalence class contains a unique canonicalized ele-

ment, which we call its canonical element. The class of canonical trace structures, with suitably

rede�ned algebraic operators, forms a circuit algebra. Finally, the theorems that justify deciding

conformance via canonicalization and mirroring hold for sequential trace structures as well.

In order to prove these results, we extend the preorder v to structures (I;O; ;; ;) as we did in the

combinational case. Sequential trace structure analogs of Theorems and Lemmas 4.18 through 4.32

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 148

are proved using the identical proofs to those presented for the combinational case in Section 4.2.

The proof of the sequential analog of Lemma 4.17 closely follows that of Lemma 4.17, but it is not

syntactically identical. Therefore we present it below for the skeptical (or thorough) reader.

As for combinational relation structures, the cumulative e�ect of all these results is to provide us

with the outline of a decision procedure for determining, for given trace structures T and T 0 of the

same (I;O)-type, whether or not T � T 0: Actual application of this procedure requires that we be

able to e�ectively determine the autofailures af (T 0) of the trace structure T 0: An e�ective algorithm

for determining af (T 0) is presented in Chapter 6. The theorems also clarify that conformance

respects our assumption that the appearance of a ? value on an output wire in a synchronous

circuit speci�cation indicates that any of the values 0; 1 or ? may appear in its stead (under the

same circumstances) in the allowed implementations.

The decision procedure for checking conformance that is outlined by the above results is the

following. In order to check whether or not T � T 0; we �rst determine whether or not T 0 is failure-

forcing. (We do this by determining its autofailures: if the empty sequence " is in af (T 0); then T 0

is failure-forcing). If T 0 is failure-forcing, then T � T 0 by the sequential analog of Theorem 4.24.

Otherwise, we compute (T 0)MaxEnv : We then check for emptiness of the F -set of T \ (T 0)MaxEnv
: if

it is empty then T � T 0; and otherwise not.

We now present the proof of the sequential analog of Lemma 4.17. In the following subsection,

we present examples that illustrate the conformance relation for sequential trace structures, and its

use in hierarchical formal veri�cation of synchronous circuits.

Lemma 5.13 (The sequential analog of Lemma 4.17):

Let T = (I;O; S; F) be a canonicalized sequential trace structure such that S 6= ;: Then mir(T)

is also a canonicalized sequential trace structure.

Proof: Let T be a canonicalized sequential trace structure. Let T 0 = mir(T): We must prove

that T 0 is a sequential trace structure and that it is canonicalized.

Because S; F and P are all regular, so are S0 = S; F 0
= B(I [O) � P; and P 0

= B(I [O)� F:

Also, S0 is pre�x-closed because S is. Because S 6= ; and S \ F = ;; it must be the case that

F 6= B(A); and so P 0
= F 6= ;: P 0

is pre�x-closed because P 0
= F and F = F � B(A):

In order to prove that P 0
= F obeys the receptiveness constraint, we address two cases. In the

�rst, w 2 P � F = P 0: Because P is pre�x-closed, P = P � B(A): Therefore in this case there exists

Cw � ext1 (w ;F) = B(A) which is total in T O and has the upward-chains property (in (O; I)):

As a preliminary to addressing the second case, that of w 2 S � F = P 0; we note that for every

sequential trace structure T0 = (I;O; F0; P0) and legal environment E = (O; I; FE; PE);

(T0 \E) is failure-free () (P0 \ FE) = ; ^ (F0 \ PE) = ;

() FE � P0 ^ PE � F0

Let w 2 S � F = P 0: Then the above holds for T0 = Tw = (I;O; ext(w ;F); ext(w ;P)): Because

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 149

ext(w ;F) = ext(w ;F) and ext(w ;P) = ext(w ;P); the equations above state that

Tw \E is failure-free if and only if FE � ext(w ;P) and PE � ext(w ;F)

We must prove that there exists C � ext1 (w ;F) that is total (in T
O
) and that has the upward-

chains property (in (O; I)): The proof is by contradiction. Say that there exists no such C �

ext1 (w ;F): Then clearly no X � ext1 (w ;F) can contain such a C either. Thus, by this containment-

upward-closure property of the receptiveness constraint, there exists no legal environment E such

that Tw \ E is failure-free. This is because Tw \ E is failure-free only if PE � ext(w ;F): But if

PE � ext(w ;F) then it must be the case that ext1 (";PE) � ext1 (w ;F): Thus there can exist no

T O-total C � ext1 (";PE) having the upward-chains property in (O; I): Therefore PE does not obey

the receptiveness constraint, and so E is not a legal environment after all. By this argument, there

exists no legal environment E such that Tw \E is failure-free, and hence Tw is failure-forcing. But

then w 2 af (T); and so, since T is canonicalized by assumption, w 2 F: But by assumption, w 2 F:

Therefore there must exist appropriate C � ext1 (w ;F = P 0):

Finally, the proof that P 0
= F and F 0

= P are input-downward-closed (in (O; I)) follows from

the fact that F and P are output-upwards-closed (in (I;O)) :

Let n 2 !: Let y; y0 2 (T O)n and x 2 (T I)n such that (y [x) 2 F and y0 � y: We must prove

that (y0 [x) 2 F : By assumption, T is canonicalized. Therefore F is output-upwards-closed. Hence,

because (y [x) 62 F; it must be the case that (y0 [x) 62 F as well. But then (y0 [x) 2 F: The same

argument may be repeated with P in place of F:

This concludes our proof that T 0 = mir(T) is a sequential trace structure.

We proceed to prove that T 0 = mir(T) is canonicalized:

� F 0
and P 0

are output-upwards-closed:

F 0
= P is output-upwards-closed because P is input-downward-closed, and P 0

= F is output-

upwards-closed because F is input-downward-closed.

Let n 2 !: Let x; x0 2 (T I)n and y 2 (T O)n such that (y [x) 2 P and x � x0: We must prove

that (y[x0) 2 P: By assumption, P is input-downward-closed. Therefore, because (y[x) 62 P;

it must be the case that (y [x0) 62 P as well. But then (y [x0) 2 P = F 0: The same argument

may be repeated with F in place of P:

� F 0
= F 0 � B(A) :

P is pre�x-closed. Therefore P = P � B(A): In other words, F 0
= F 0 � B(A):

� S0 \ F 0
= ; :

S0 = S and F 0
= P = (S [F) � S = S0: Thus w 2 S0 =) w 62 F 0

and w 2 F 0
=) w 62 S0:

� af (T 0) � F 0
:

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 150

a
b

c b

Figure 5.18: A circuit given as a speci�cation

Let w 2 af (T 0): Either w 2 P or w 2 P: If w 2 P = F 0
then we're done. We focus on the case

in which w 2 P:

If w 2 af (T 0) then (T 0)w is failure-forcing. Because w 2 P; we know that Tw is a legal

environment for (T 0)w: But we also know that Tw \ (T 0)w is failure-free, because its F -set

is ((ext(w ;P) \ ext(w ;P)) [(ext(w ;F) \ ext(w ;F))); which is empty because ext(w ;W) =

ext(w ;W) for W 2 fF; Pg: Therefore (T 0)w cannot be failure-forcing. Hence w 62 P; and this

case cannot occur.

QED Lemma 5.13

5.4.5 Examples

In this section we present some examples which illustrate the conformance relation and its use in

hierarchical veri�cation of synchronous circuits.

Example 5.7 illustrates the meaning of a ? value on an output wire in a speci�cation. We present

a speci�cation that is in fact a composite circuit model. It is not output-upward closed, although

its component models are. When considered as a speci�cation, it allows arbitrary values in place of

a ? value on an output.

Example 5.8 illustrates some of the consequences of our accurate modeling of X-e�ects. We

discuss the possibility of expanding the F -set of a speci�cation in order to make a statement about

the environments in which its valid implementations are expected to function correctly.

In Example 5.9 the speci�cation is a sequential trace structure representation of a more complex

circuit. In this case, formal veri�cation allows us to check that an optimized version of the original

circuit is indeed a legitimate substitute for the original. Finally, Example 5.10 illustrates hierarchical

veri�cation of synchronous circuits.

Example 5.7 Consider the circuit of Figure 5.18. Although it is a combinational circuit, we are

interested in considering it as a speci�cation, and in determining whether or not this speci�cation

has any correct sequential implementations.

We may represent this circuit by the sequential trace structure

T = del(fcg)(Tand�abc k Tinv�cb)

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 151

�

...............
......

a=b; a=?b;?a=b;?a=?b

Figure 5.19: Automaton describing the S and P -sets of the circuit of Figure 5.18

where Tand�abc and Tinv�ab are as de�ned in Example 5.6, and

Tinv�cb = ren([c 7! a; b 7! b])(Tinv�ab)

Given our previous de�nitions of sequential trace structure models for an and-gate and an inverter,

cited above, we derive the S and P -sets of T to be the language described by the automaton of

Figure 5.19.

Consider this trace structure as a speci�cation. Then certainly it conforms to itself. Thus the

circuit depicted is a valid implementation of the trace structure T considered as a speci�cation.

It is also the case that an inverter legitimately implements this speci�cation:

Tinv�ab � T

Similarly, the constant trace structure which outputs only the value 1 is a valid implementation:

T1 = (fag; fbg; (Xa=b)
�; ;) � T

These facts are not obvious from the automaton representation of the S-set S of T; but follow from

output-upward closure. That is, T = (fag; fbg; S; ;) is conformance equivalent to

T 0 = (fag; fbg;OUCfag;fbg(S); ;);

and so any sequential trace structure that conforms to T 0 conforms also to T:

In order to clarify that output-upward closure extends beyond the combinational domain, we point

out that the sequential trace structure

T2 = (fag; fbg; S2; ;)

| whose S-set S2 is described by the automaton of Figure 5.20 | also conforms to T:

We now return to our SR-
ip
op speci�cation from the previous section. We illustrate that

we can indeed implement this speci�cation using only combinational parts and D-
ip
ops. We also

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 152

�

...............
......

- �
�

-

6

-

?a=Xb; a=b

?a=Xb

a=ba=b

?a=b

a=b
a=b a=b

a=b

Figure 5.20: Automaton describing the S-set S2 of T2 of Example 5.7

show that the X-e�ects exhibited by some of our candidate implementation circuit models re
ect real

oscillatory behavior, which we may choose to allow or disallow by carefully selecting the appropriate

speci�cation to express our requirements.

Example 5.8 As our second veri�cation example, we note that according to sequential trace theory,

the circuit C9 of Example 5.6 correctly implements the SR-
ip
op speci�cation of Example 5.4. That

is, T9 � TSR� :

Our models T6; T7 and T8 of circuits C6; C7 and C8; respectively { also presented in Example 5.6

{ do not conform to this speci�cation. This is because of X-e�ects: all three of these models allow

(contain in their P -set) the initial behavior Xsr=q followed by ?sr=?q or by ?sr=q; none of these

sequences is in the P -set of this speci�cation.

However, if we were to construct a speci�cation of an SR-
ip
op that explicitly disallowed any

oscillating behavior on its inputs { that is, a speci�cation that assumes the environment will never

provide it with ill-formed input values { we would �nd that these three models do constitute acceptable

implementations. In those environments that provide only stable Boolean input values, the models

behave exactly like the speci�cation. The SR-
ip
op speci�cation whose S and F -sets are provided

by the combined automaton of Figure 5.21 meets these criteria { and indeed, all three of T6; T7 and

T8 conform to it. Of course, T9 conforms to it as well.

Thus if we wish to model the possibility of oscillation, the original speci�cation TSR� provides

more conservative veri�cation results. However, if we wish to ignore oscillation, we may do so within

the parameters of sequential trace theory. In general, the more extensive the F -set of a speci�cation,

the less restrictive it is.

Our method of formal veri�cation allows us to determine whether or not a circuit which appears

to be an optimized version of another circuit is indeed a legitimate substitute for it. This is illustrated

by the following example.

Example 5.9 Consider the circuit C11 of Figure 5.22, Formal veri�cation in our model correctly

concludes that the optimized circuit C0
11 of Figure 5.23 is a valid implementation of the original

circuit considered as a speci�cation.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 153

�

?sXr=Xq
Xs?r=Xq

�
-

-
�

�

U

�

.............................
........
.....

� ^

j

q = 1 q = 0

sr=q

sr=qS S

q =?
S

F

sr=q

s r=q
sr=q

sr=q

sr=Xq

sr=Xq
?sXr=Xq
Xs?r=Xq

sr=Xq
?sXr=Xq
Xs?r=Xq

sr=q
s r=q

s r=Xq

XsXr=Xq

Figure 5.21: F-intensive behavioral speci�cation of an SR-
ip
op

b

a
b

x

w
z0

1
b1

y

a1
a

Figure 5.22: The original circuit C11 (Figure 4:6 of [55])

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 154

y
w

zxa
b

Figure 5.23: C0
11; an optimized version of C11

f

g
z

q

c

T

T

11

SRff

Figure 5.24: Composite speci�cation for Example 5.10

In the following example we illustrate how hierarchical veri�cation allows us to replace circuit

parts for their speci�cations without repeating the veri�cation process for the full new circuit.

Example 5.10 Consider the speci�cation

T = del (fq; zg)(ren([a 7! f; b 7! g])(T11) k ren([s 7! f; r 7! g])(TSR�) k ren([e 7! q; b 7! z])(Tor�ebc))

depicted in Figure 5.24, where T11 is our sequential trace structure representation of circuit C11 in

Figure 5.22, TSR� is the SR-
ip
op speci�cation of Figure 5.4 (page 127), and Tor�ebc is our sequen-

tial trace structure representation of an or-gate, with input wires labeled e and b and output wire la-

beled c; whose P -set appears in Figure 5.6 (page 131). According to Example 5.9, our sequential trace

structure representation of the circuit of Figure 5.23, which we will call T 011; conforms to T11: Thus

by mononicity of the renaming operator with respect to conformance, ren([a 7! f; b 7! g])(T 011) �

ren([a 7! f; b 7! g])(T11): According to Example 5.8, T9 � TSR� : Let T
0
9 = ren([s 7! f; r 7! g])(T9)

and let T 0SR� = ren([s 7! f; r 7! g])(TSR�): By monotonicity of the renaming operator with respect

to conformance, T 09 � T 0SR� : Therefore by monotonicity of renaming, hiding and composition with

respect to conformance, we may conclude that the circuit illustrated in Figure 5.25, whose trace

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 155

f

g
z

q

c

T

T11

9

Figure 5.25: Composite implementation for Example 5.10

structure representation is

del(fq; zg)[ren([a 7! f; b 7! g])(T 011) k ren([s 7! f; r 7! g])(T9) k ren([e 7! q; b 7! z])(Tor�ebc)]

conforms to the speci�cation T:

5.5 Substitution for synchronous circuit models

In this section we address the problem of correctness with respect to an environment for synchronous

circuits and environments. We are able to derive a closed-form expression that speci�es all and only

the allowed substitute circuitry for a subcircuit in a given circuit, as in the combinational case. We

�rst present our formal results and then illustrate their use via a series of examples.

5.5.1 Conformance with respect to an environment

The main substitution results for sequential trace structures are the following theorems. Theo-

rem 5.14 can be proved using almost the identical collection of lemmas and proofs that were used to

prove Theorem 4.33 (as presented in Sections 4.3.2 and 4.3.3). Theorem 5.15 follows directly from

Theorem 5.14, by setting T0[�] = E[�] and T = E[T 00]:

Theorem 5.14 (The sequential analog of Theorem 4.33):

If T = (I;O; S; F) and T 0 = (I�; O�; S
0; F 0

) are sequential trace structures, and T0[�] is an

expression context of type (I;O); then

T0[T
0
] � T i� T 0 � f(T0[�]; T)

Theorem 5.15 (The sequential analog of Theorem 4.34):

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 156

If E[�] is an expression context and T 00 = (I�; O�; S
00; F 00

) is a sequential trace structure, then

for all sequential trace structures T 0 = (I�; O�; S
0; F 0

);

T 0 �E T 00 () T 0 � f(E[�]; E[T 00])

In order to transform the proof of Theorem 4.33 into a proof of Theorem 5.14, we rede�ne the

auxiliary function f: The third part of its de�nition is now:

f(T3 k T2[�]; T) =

8>><
>>:

(I�; O�;B(A�);B(A�)) if T is failure forcing (FFor)

(I�; O�; ;; ;) if del(A � A2)(T
MaxEnv k T3) is FFor

f(T2[�]; (del(A� A2)(T
MaxEnv k T3))

MaxEnv
) otherwise

When (A \D) = ;; we de�ne del�1O ((I;O; S; F)) = (I;O [D; del�1(D)(S); del�1(D)(F)); as in the

combinational case, and we extend the � relation to structures of the form (I;O; ;; ;) for purposes

of explanation.

Using these new de�nitions, we may use the proof of Theorem 4.33 from Section 4.3.2 to prove

Theorem 5.14. The supporting lemmas on which it depends, which appear in Section 4.3.3, have

sequential analogs as well. With one exception, the proofs are identical.

We now present the proof of the sequential analog of the lone exception, Lemma 4.38. In

the following subsection, we present examples that illustrate the use of these theorems for correct

substitution and recti�cation.

Lemma 5.16 (The sequential analog of Lemma 4.38):

Let T = (I;O; F; P) be a sequential trace structure, and let (D \ (I [O)) = ;: Then

del�1O (D)(canon (T)) = canon(del�1O (D)(T))

Proof:

Let T = (I;O; F; P): Let w 2 P and w0 2 del�1(D)(w):

By the sequential analog of Lemma 4.36, which says that T is failure forcing if and only if

del�1O (D)(T) is failure forcing, and by Lemma 5.17 (below), Tw is failure-forcing if and only if

(del�1O (D)(T))w0 is failure forcing. This implies that w 2 af (T) if and only if w0 2 af (del�1O (D)(T)):

Therefore

w 2 af (T) =) del�1O (D)(w) � af (del�1O (D)(T))

and

(del�1O (D)(w) \ af (del�1O (D)(T))) 6= ; =) w 2 af (T)

Therefore del�1O (D)(af (T)) = af (del�1O (D)(T)): We will use this result in the remainder of the

proof.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 157

del�1O (D)(canon (T)) = del�1O (D)(canon ((I;O; F; P)))

= (I;O [D; del�1(D)[af (OUC(T)) � B(A)];

del�1(D)[OUCI;O(P) [af (OUC(T)) � B(A)])

= (I;O [D; del�1(D)(af (OUC(T)) � B(A [D);

del�1(D)(OUCI;O(P)) [del
�1
(D)(af (OUC(T)) � B(A [D))

= (I;O [D; af (del�1O (D)(OUC(T))) � B(A [D);

del�1(D)(OUCI;O(P)) [af (del
�1
O (D)(OUC(T))) � B(A [D))

{ by the proof above

= (I;

O [D;

af (OUC(del�1O (D)(T))) � B(A [D);

OUCI;(O[D)(del
�1
(D)(P)) [af (OUC(del�1O (D)(T))) � B(A [D))

{ by the sequential analog of Lemma 4.37

= canon(del�1O (D)(T))

Note that the S sets of both del�1O (D)(canon (T)) and canon(del�1O (D)(T)) are equal to their

common P set minus their common F set, and are therefore equal to each other. Thus there was

no need to mention failure-exclusion explicitly in the calculation above.

The above proof depended on the following lemma, which does not have a combinational analog:

Lemma 5.17 Let T = (I;O; S; F) be a sequential trace structure. Let (D\ (I [O)) = ;: Let w 2 P

and w0 2 del�1(D)(w): Then (del�1O (D)(T))w0 = del�1O (D)(Tw):

Proof:

Let T = (I;O; S; F): Let w 2 P and w0 2 del�1(D)(w): Then

(del�1O (D)(T))w0 = (I;O [D; ext(w 0; del�1 (D)(S)); ext(w 0; del�1 (D)(F)))

and

del�1O (D)(Tw) = (I;O [D; del�1(D)(ext(w ; S)); del�1 (D)(ext(w ;F)))

In order to prove that these two sequential trace structures are identical, we prove that for all sets

Y � B(I [O) and sequences w 2 B(I [O) and w0 2 del�1(D)(w); it is the case that

ext(w 0; del�1 (D)(Y)) = del�1 (D)(ext(w ;Y))

Fundamentally, this fact follows from the fact that del�1 and the [operator on sequences commute.

Application of this result to Y = S and Y = F proves the lemma.

� (=)) :

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 158

Let z0 2 ext(w 0; del�1 (D)(Y): Then there exist n;m 2 ! such that w0 2 (T (I[O[D)
)
n
and

z0 2 (T (I[O[D)
)
m: Furthermore, there exist w1 2 (T D)n; z0 2 (T (I[O)

)
m

and z1 2 (T D)m

such that w0 = w [w1 and z0 = z0 [z1:

By de�nition of the ext operator, (w0 � z0) 2 del�1(D)(Y): Thus (w [z0) 2 Y: Therefore

z0 2 ext(w ;Y): And �nally, therefore z0 = (z0 [z1) 2 del
�1
(D)(ext(w ;Y)):

Therefore ext(w 0; del�1 (D)(Y)) � del�1 (D)(ext(w ;Y)):

� ((=) :

Let z 2 del�1(D)(ext(w ;Y)): Then there exist n 2 !; z0 2 (T (I[O)
)
n
and z1 2 (T D)n such

that z = (z0 [z1):

By de�nition of the del�1 operator, z0 2 ext(w ;Y): Therefore, (w � z0) 2 Y: It follows that

(w0 � z) 2 del�1(D)(Y); and so z 2 ext(w 0; del�1 (D)(Y)):

Therefore del�1(D)(ext(w ;Y)) � ext(w 0; del�1 (D)(Y)):

QED Lemma 5.17

5.5.2 Examples

Theorems 5.14 and 5.15 may be used to characterize the full set of allowed substitutions for a

subcircuit such that the input-output behavior of the full synchronous circuit is maintained as is

(resynthesis), and to characterize the full set of allowed substitutions for a subcircuit such that

the behavior of the full synchronous circuit meets a predetermined speci�cation (synthesis and

recti�cation). Our results generalize known solutions to these problems, as discussed in Section 1.5.3.

In this section, we provide examples of these applications.

In the �rst two examples of this section, we walk through the derivation of the most general

characterization of allowed substitute circuitry for a subcircuit of a given circuit, and describe some

of the optimized circuits allowed by this derived speci�cation. In the �rst example, the subcircuit's

inputs are not constrained by the circuit of which it is a part; as a result, the derived speci�cation has

an empty F -set. In the second example, we illustrate how the F -set of the speci�cation incorporates

constraints placed by the surrounding circuitry on the values input to the subcircuit.

In our third example, we reconstruct the motivating example of [122] in our model, in order to

illustrate how sequential trace structures may be used to express multiple Boolean relations. Finally,

we provide a simple recti�cation example.

Example 5.11 (Example 38 of [55])

Consider the circuit of Figure 5.26. We would like to know what we may substitute for the

inverter without modifying the full circuit's input-output behavior. In other words, what may we

place in the blank box of Figure 5.27 so that the entire new circuit model conforms to our model of

the circuit in Figure 5.26?

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 159

y
z

v

x

Figure 5.26: Original circuit as speci�cation (Example 5.11)

y
z

v

x

Figure 5.27: Subcircuit substitution

Recall that in Example 5.5 we derived a sequential trace structure representation of the circuit of

Figure 5.26. Its P -set appears in Figure 5.9 on page 133. Call that trace structure T: Example 5.5

also contains trace structure representations of the components of T : the ones that concern us are

L1 and XOR1:

Assume we maintain all sequential trace structures in canonical form at all times, so that

TMaxEnv
= mir(T): Then according to Theorem 5.15, the most general speci�cation for what may

be placed in the blank box of Figure 5.27 is the sequential trace structure de�ned by the following

circuit algebra expression:

f(del (fy; vg)(�fxg;fyg k (L1 k XOR1)); T)

= f((�fxg;fyg k (L1 k XOR1)); del
�1
O (fy; vg)(T))

= f(�fxg;fyg;mir(del(fv; zg)(L1 k XOR1 k mir(del
�1
O (fy; vg)(T)))))

= mir(del(fv; zg)(L1 k XOR1 k mir(del�1O (fy; vg)(T))))

= mir(del(fv; zg)(L1 k XOR1 k del�1(fy; vg)(mir (T))))

The �nal step in this equation follows from the sequential analog of Lemma 4.39.

We reduce this expression to

T 0 = (fxg; fyg; S0; ;)

where S0 is the language accepted by the automaton of Figure 5.28.

A sequential trace structure conforms to T 0 if and only if it models legitimate substitute circuitry

for the original inverter in our circuit. The allowed substitute subcircuits include an inverter (as in

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 160

�

...............
......

-
��

-

?

6

x=y
x=y

x=y; x=y

?x=Xy

?x=Xy x=y; x=y

x=y
x=y

?x=Xy

Figure 5.28: S-set of the most general speci�cation for a replacement subcircuit (Example 5.11)

a

b

c
e
b

e d

v
u

y

y

u

v

e

f
g

h

j

Figure 5.29: Circuit to be optimized (Example 5.12)

the original) and a non-inverting bu�er.

In the preceding example, the most general characterization of all allowed subcircuits has an

empty F -set. This is because the input to the subcircuit is an input to the full circuit, which is

itself failure-free. In the following example, we brie
y discuss a circuit and subcircuit for which this

is not the case.

Example 5.12 (Examples 5 and 7-11 of [57])

Consider the circuit of Figure 5.29. We assume that the node labeled v is initialized to the value

1 and that the node labeled e is initialized to the value 0:

We wish to determine the most general speci�cation which fully characterizes the allowed substi-

tutions for the highlighted nxor-gate, such that the input-output behavior of the full circuit remains

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 161

unchanged.

We solve for this most general characterization of the allowed substitutions according to Theo-

rem 5.15, and derive a trace structure T 0 whose P -set P 0 has a minimal automaton representation

of 26 states. Among these states is a reachable F -�nal state. P 0 admits an nxor-gate, of course.

An and-gate may be substituted for the nxor-gate, as well. In addition, P 0 allows all correct clocked

circuits that may be substituted here without modifying the input-output behavior of the full circuit.

Clearly an automaton of this size is too cumbersome to depict graphically. However, we note the

following pattern: during the �rst and third clock cycles of the behavior described by the automaton,

any input-output combination w 2 T (I[O) which assigns to v one of the values 0 or ? labels an

edge leading to the automaton's F -�nal state. Thus any allowed substitute circuitry may assume

that in its �rst and third clock cycle of operation, its input wire labeled v holds value 1 : in response

to any other value on this wire at the relevant clock tick, it may exhibit arbitrary behavior { during

the current and all subsequent clock cycles. This degree of freedom in the allowed implementations

for the subcircuit follows directly from the fact that the values on the input wires of the designated

subcircuit are constrained by the remainder of the full circuit.

As is clear from the size of the preceding example, we have automated these computations; there

is no way to keep track of a trace set of the complexity of P 0
otherwise. We will introduce our

algorithms and describe our software in Chapter 6.

In the following example, we reconstruct the motivating example of Sentovich et al's [122], in

order to illustrate how our sequential trace structures provide the expressiveness of their MBRs. In

Section 1.5.3 we discussed the relative expressiveness of MBRs and nondeterministic Mealy machines.

We explained that MBRs are less expressive than these machines: nondeterministic Mealy machines

may be used to keep track of the solutions still available within an MBR, given the input-output

value combinations that we have committed to so far, but multiple distinct minimal nondeterministic

Mealy machines may represent the same MBR. The following example attempts to make this more

concrete.

Example 5.13 (Example 1:1 of [122])

Consider the automata M1 and M2 of Figure 5.30. They represent the behavior of the sequential

trace structures T1 = (fag; fbg; S1; ;) and T2 = (fbg; fcg; S2; ;); respectively. Their states are marked

with the names of the states in the automata of Example 1:1 of [122] to which they correspond. In that

example, MBRs were used to represent the degrees of freedom available for the correct implementation

of combinational circuitry at each state of the automaton T1: Using sequential trace structures, we

identify all the degrees of freedom for implementing the subcircuit T1 given that the design of T2 is

stable.

De�ne T to be their composition:

T = del (fbg)(T1 k T2)

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 162

6

?

6

?
...............

......

-

?

6

�

R

6
.

...............
......

-

?

6

�

6

R

M2

s1 s2

s3 [s2; s3]

s10 s20

s30 [s20; s30]

b=c

b=c
b=c

b=c; b=c

b=c
b=c
?b=Xc

b=c
b=c
?b=Xc

b=c

?b=c

?b=Xc

a=b
?a=b

M1

a=b
a=b
?a=Xb

?a=Xb

a=b
a=b
?a=Xb

a=b; a=b

a=b
a=b

?a=?ba=b
?a=b

Figure 5.30: Speci�cations of two components

- �

�

...............
......

-

?

�

-

?a=c

a=c; a=c a=c
a=c
?a=Xc

?a=Xc

a=c; a=c

a=c; a=c a=c
a=c
?a=Xc

Figure 5.31: Automaton representation of the behavior of T = del (fbg)(T1 k T2)

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 163

- �

�

...............
......

-

?
R

6

�

R

a=b; a=b a=b
a=b
?a=Xb

?a=Xb

a=b
a=b
?a=Xb

a=b
a=b ?a=Xb

a=b
a=b

a=b
a=b

Figure 5.32: Behavioral speci�cation of the allowed substitutions for T1

A minimal automaton representation of the P -set of T appears in Figure 5.31. Note the highlighted

area of this automaton, which has no counterpart in the Boolean example that we are reconstructing.

We seek to determine the most general speci�cation T 001 for T 01 such that

del(fbg)(T 01 k T2) � T

Applying Theorem 5.15, we determine that

T 001 = mir(del (fcg)(T2 k del
�1
(fbg)(mir(T))))

Figure 5.32 depicts the minimal automaton that accepts the P -set P 00
1 of T 001 : Note that the e�ect

of our additional wire value is transparent: as soon as a stable Boolean input value appears, every

implementation T 01 allowed by this speci�cation must stabilize to one of the allowed Boolean solutions.

P 00
1 allows all the solutions found by Sentovich et al. [122].

We conclude with a simple recti�cation example.

Example 5.14 Redesign example

Figure 5.33 depicts a circuit C1; surrounded by recti�cation circuitry. C1 is represented by a

sequential trace structure T1 = (fyg; fzg; S1; ;); which may be derived by appropriate composition and

hiding of the obvious component trace structures. We seek to rectify this circuit to implement the new

speci�cation TSpec = (fxg; fwg; SSpec; ;): An automaton that accepts SSpec appears in Figure 5.34.

We will take two distinct approaches to this recti�cation problem. In the �rst approach, we seek

to rectify the circuit by adding hardware to the original circuit C1 as indicated in Figure 5.33. In

the second, we identify a candidate component for replacement within C1; and determine the most

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 164

v

yx
wz

Figure 5.33: Recti�cation by addition of hardware

�

...............
......

-
��

-

�

�]

^

?x=Xw

x=Xw

?x=Xw

x=w

x=w

x=w

x=w

x=w

?x=w

Figure 5.34: Behavioral speci�cation SSpec for the recti�ed circuit

general speci�cation for the appropriate replacement circuitry.

In our �rst approach to the problem, we seek to determine T2 = (fx; zg; fy; wg; S2; ;) such that

del(fy; zg)(T1 k T2) � TSpec

Obviously, there are many possible such T2: We apply Theorem 5.14 to derive the most general

speci�cation T 02 of T2 such that del (fy; zg)(T1 k T2) � TSpec : it is T
0
2 = (fx; zg; fy; wg; S02; ;); whose

S-set S02 has a minimal automaton representation with ten states.

Both TSpec itself and a minimal solution T2 conform to T 02: The minimal solution is

T2 = (Tinv�xy k Tbuf�zw)

which inverts the input to T1 and passes its output value through unchanged.

Another approach to modifying C1 to meet the new speci�cation is to identify a subcircuit for

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 165

y
z

v

Figure 5.35: Recti�cation by modi�cation of existing hardware

�

...............
......

-
�

�
-

�

�

]

^

Xvy=z

v?y=z
v?y=Xz

?v?y=Xz

Xv?y=Xz

Xvy=z

Xv?y=Xz Xvy=z

vy=z
vy=Xz

?vy=Xz

Xvy=Xz vy=z; vy=Xz ;?vy=Xz

Figure 5.36: Behavioral speci�cation S03 of the allowed subcircuits T3

possible modi�cation. In this case, we identify the or-gate of C1 as a candidate for modi�cation (see

Figure 5.35). Now we seek the most general speci�cation T 03 for T3 such that

del(fvg)(T3 k TD��yv) � ren([x 7! y; w 7! z])(TSpec)

Let TSpec�yz = ren([x 7! y; w 7! z])(TSpec): Applying Theorem 5.14, we derive

T 03 = (fy; vg; fzg; S03; ;)

where a minimal automaton representation of S03 appears in Figure 5.36.

Despite the fact that the latch component of C1 constrains the relation between the values on the

nodes y and v in consecutive clock cycles, this speci�cation is failure-free. We might expect that a

clock cycle in which y = 1 cannot be followed by a clock cycle in which v 6= 1: We would expect this

constraint to manifest as a non-empty F -set for T 03: However, it does not: the F -set of T
0
3 is empty.

CHAPTER 5. SYNCHRONOUS CIRCUIT MODELS 166

The reason is that X-e�ects cancel any certainty about the value of y on the previous clock cycle, as

follows. Let T3 be any sequential trace structure that conforms to T 03: Consider any circuit C3 that

is reasonably modeled by T3: If the input wire y of C3 appears to hold the value 1; it may be the case

that y stabilized to 1 during this clock cycle, or it may be the case that y actually has value ? : If

y really holds the value 1; then v will stabilize to the value 1 in the following clock cycle. However,

if the y node actually holds the value ? (that is, it did not stabilize to any Boolean value), then the

latch component modeled by TD��yv may output an arbitrary value on the node v in the following

clock cycle. In other words, the latch too may perceive the ? value on node y to be any of ?; 0; or

1; and may react accordingly in the following clock cycle. The model T3 cannot distinguish the case

in which y holds 1 from the case in which y holds ?; and so no assumption may be made about the

value of the node v in the following clock cycle. The same argument holds for the case in which y

appears to hold the value 0: Therefore, the constraints imposed by the latch do not manifest as failure

traces in T 03:

Recall that in sequential trace theory, X-e�ects accurately re
ect the meaning of ? : In this case,

X-e�ects manifest in the fact that the latch and C3 need not perceive this ? value in the same way.

Chapter 6

Veri�cation Algorithms

6.1 Introduction

6.1.1 Introduction

In Chapters 4 and 5, we presented theorems that provide the theoretical underpinnings of a decision

procedure for conformance. However, converting these theorems and consequent algorithm outline

into an actual decision procedure requires that we know of an e�ective procedure for each of the

canonicalization steps. In particular, we require a decision procedure for determining the autofailures

of a sequential trace structure. We also require an e�ective procedure for determining whether a

combinational relation structure is an autofailure. It turns out that the latter is a special case of

the former, and that this procedure involves determining whether a related T 0 is indeed a sequential

trace structure (or combinational relation structure).

In this chapter, we present our algorithms for determining whether or not a structure is a sequen-

tial trace structure (or a combinational relation structure), and for performing the canonicalization

of both sequential trace structures and combinational relation structures. We also address the com-

putational complexity of canonicalization and of deciding conformance, and discuss our software

implementation of these procedures.

6.1.2 Representations

In discussing our algorithms, we assume the structure (I;O; S; F) is represented by a triple consisting

of the set I; the set O; and a �nite-state machineM that represents both S and F: M is a combined

automaton, as introduced in Section 5.2.3: it has two �nal sets, one for S and one for F: Employing

the �rst of these two �nal sets produces L(M1) = S; and employing the second produces L(M2) = F:

Of course, employing their union produces L(M3) = P: The two sets of �nal states need not be

disjoint, as S and F themselves may overlap.

167

CHAPTER 6. VERIFICATION ALGORITHMS 168

Let A = I [O: Then M = h�; Q; fq0g; hF1; F2i; �i; where � = T A; F1 � Q is the set of S-�nal

states, and F2 � Q is the set of F -�nal states. We assume all q 2 Q are reachable from q0; and that

(F1 [F2) = Q: Because � = T A; M may be a deterministic �nite-state automaton and yet not be

a deterministic Mealy machine (see Section 2.2.3).

A word is also in order concerning our non-standard use of a single automaton for the combined

representation of S and F: The determinization process creates new states which represent subsets of

the original Q: In determinizingM; we require that any composite state introduced by this process

be considered an F -�nal state if any of its component states are F -�nal, and that it be considered an

S-�nal state if any of its component states are S-�nal. (Recall that S and F need not be disjoint).

Thus, determinizingM preserves L(M1) = S and L(M2) = F:

6.1.3 New notation

In this chapter we will utilize some new notation that is intended to aid in the clarity of the

presentation.

We use the new terms I-downward-closed and O-downward-closed, in order to disambiguate

between \input-downward-closed" in a context in which I is the input-set and O is the output-set,

and in a context in which O is considered to be the input-set and I to be the output-set. Similarly,

we may employ the new terms O-upward-closed and I-upward-closed in place of the ambiguous term

\output-upward-closed." Note that I-upward-closed has the same meaning as \OUC in (O; I);" I-

downward-closed has the same meaning as \IDC in (I;O);" etc. By extension, we de�ne the terms

(I;O)-receptive and (O; I)-receptive to mean the same as \receptive in (I;O)" and \receptive in

(O; I);" respectively.

In addition, we may use the notation 9z0 � z as shorthand for 9z0 2 hthe appropriate seti:z � z0:

In our case, the appropriate set will always be one of T I or T O; and will be obvious from the context.

6.2 Is T a sequential trace structure?

6.2.1 Introduction

Given a structure of the form of a trace structure, checking whether or not it is a sequential trace

structure consists of checking for the regularity of S and F; the pre�x-closure of S and P; the

input-downward-closure of F and P; the non-emptiness of P; and the receptiveness of P:

We assume that the languages S; F and P are given to us in the form of an automaton or

automata, so that they are regular by de�nition. Such a presentation also makes trivial the checks

for pre�x-closure of S and P and the non-emptiness of P:

We focus here on our algorithms for checking of a regular set that it is input-downward-closed,

and for checking receptiveness.

CHAPTER 6. VERIFICATION ALGORITHMS 169

6.2.2 Checking input-downward-closure

By analogy to the procedure presented in Section 5.4.3 for implementing the abstract OUC operator

by a concrete operator OUCimpl; we de�ne an IDCimpl operator that implements the abstract IDC

operator. The IDC operator adds to its operand set all and only those traces necessary to make it

input-downward-closed.

We check for input-downward-closure of a regular set W; represented by an automaton, by testing

whether the languages W and IDCimpl (W) are equal. This involves only known algorithms over

�nite-state automata.

6.2.3 Is P receptive?

6.2.3.1 Introduction

Let T = (I;O; P): Let M be a deterministic �nite-state automaton such that L(M) = P: The

relation between this representation and that of Section 6.1.2 is clear: we need merely combine the

two �nal sets F1 and F2 into a single �nal set F3 = (F1 [F2):

In order to check that for each w 2 P; there exists C � ext1 (w ;P) with the required properties,

we will check of each state of M that there exists C contained in its set of out-edges that has the

required properties. Note that in checking this property, we may ignore the target-states of these

edges.

The transition function of M is �; which is the union of all out-edge sets. For each q 2 Q; let

�q be the out-edges of q: Formally, �q = fhq1; e; q2i j q1 = qg: Then � =
S
q2Q �q : We de�ne lab(�q)

to be the labels on the edges in �q : Formally, lab(hq; e; q0i) = e; and the natural extension of this

function to sets yields lab(�q) equal to the set of edge-labels on outedges of q: Our algorithm checks,

for each �q ; that lab(�q) contains a subset C which is total in T I and which has the upward-chains

property.

Note that for each q 2 Q; the edge-labels of �q are precisely ext1 (w ;P) for every w 2 P such

that q0
w
) q: Formally, for M any deterministic �nite-state automaton that accepts P;

8q 2 Q:8w;w0 2 P:[[q0
M;w
=) q and q0

M;w0

=) q] =) [ext1 (w ;P) = ext1 (w
0;P)]]

and 8q 2 Q:8w 2 P:[[q0
M;w
=) q] =) lab(�q) = ext1 (w ;P)]: Because P is pre�x-closed, and all states

q 2 Q are reachable, P is receptive if and only if every lab(�q) has the required properties.

Formally, we verify of each �q that there exists C � lab(�q) such that C is total in T I and such

that

8x; x0 2 T I :8y 2 T O:[[x � x0 ^ (x [y) 2 C] =) 9y0 2 T O:y � y0 ^ (x0 [y0) 2 C]

If there exists q 2 Q for which there exists no such C � lab(�q); then P is not receptive. If there

exists such C for every q 2 Q; then P is receptive.

CHAPTER 6. VERIFICATION ALGORITHMS 170

6.2.3.2 Searching for C � lab(�q)

In order to prove or disprove the existence of a subset C with the required properties, we note the

following fact.

Lemma 6.1 Let I \O = ; and Y � T (I[O): Let C1 � Y and C2 � Y both be total in T I and both

have the upward-chains property. Then C = (C1[C2) is also contained in Y; is total in T I and has

the upward-chains property.

Proof:

The �rst two claims concerning C are obvious. We prove that C has the upward-chains property.

Let x; x0 2 T I such that x � x0: Let y 2 T O such that (x [y) 2 C: We must prove that there

exists y0 2 T O such that y � y0 and (x0 [y0) 2 C:

We know that either (x [y) 2 C1 or (x [y) 2 C2 (or both). Say (x [y) 2 C1: Then by the

upward-chains property of C1; there exists y
0 � y such that (x0 [y0) 2 C1 � C: If (x[y) 62 C1 then

(x [y) 2 C2: In this case, the upward-chains property of C2 allows us to conclude that there exists

y0 � y such that (x0 [y0) 2 C2 � C: Thus in either case, there exists y0 2 T O such that y � y0 and

(x0 [y0) 2 C:

Thus it su�ces to �nd the largest qualifying C � ext1 (w ;P); or prove it does not exist. We

attempt to �nd such maximal C by pruning from �q only those elements that violate the upward-

chains property. We then check whether or not the remaining subset of lab(�q) is total in T
I : If it

is, we have found the largest qualifying C; and hence there exists an appropriate C: If not, there

exists no qualifying C; and this �q violates the receptiveness property.

In order to facilitate our search for the maximal C � lab(�q); we enter the elements of �q into a

table in which each of the 3
jIj

buckets is labeled with an element of T I : The elements in the bucket

labeled x 2 T I are those out-edges of q whose label has input-value combination part x: More

formally, for each x 2 T I ; the elements of the bucket labeled x are all of the form hq; (x[y); q0i for

some y 2 T O and q0 2 Q:

Consider the Hasse diagram of the partial order � over T I : It may be considered to be divided

into rows, labeled from 0 to n = jI j; where row m consists of all the elements of T I containing

precisely m non-? values. Row 0 contains the unique element ?I; and row n consists of the 2
n

elements of T I that are Boolean vectors. In general, row m contains 2
m �C(m;n) elements, where

C(m;n) is the number of ways to choose m distinct elements out of a set of n distinct elements. All

elements in the same row are incomparable. Each element of row m is immediately \above" (in the

partial order �) m elements of row (m� 1); for m 2 f1; 2; : : : ; ng: Similarly, each element of row m

is immediately \below" (in �) 2 � (n�m) elements of row (m + 1); for m 2 f0; 1; : : : ; (n� 1)g:

In order to check for violations of the upward-chains property, it su�ces to check of every

(x [y) 2 C and x0 � x such that x0 is in the Hasse-diagram row directly above that of x that there

exists some y0 � y such that (x0 [y0) 2 C: By transitivity of �; if this property does hold in all

CHAPTER 6. VERIFICATION ALGORITHMS 171

cases, then the upward-chains property holds of C: We would also like to check this property in a

single pass over �q : This means that we require that elements be deleted from �q in descending order

within the partial order T I : If we test for the property in an order that corresponds to checking

by row of the Hasse diagram of T I ; in descending row order, we can perform the entire pruning

procedure in a single pass.

In order to check for the existence of appropriate C � lab(�q); therefore, we would like our table

to represent the Hasse diagram of T I :We add to bucket x of the table, either explicitly or implicitly,

pointers to all buckets labeled with x0 2 T I such that x0 � x and such that x0 is in the row directly

above x in the Hasse diagram of the partial order.

Once �q has been entered into this data structure, we proceed to prune it by deleting those

elements that violate the upward-chains property. The search-and-prune algorithm is as follows.

For each row of the Hasse diagram of T I ; from second-from-the-top row down to bottom row:

For each bucket x in this row:

For each element (x [y) in bucket x :

For each bucket x0 � x in the Hasse-diagram row directly above x :

For each element (x0 [y0) of bucket x0 :

If y0 � y;

then

goto Check-next-bucket-�-x;

else

do-nothing (go to next element in bucket x0);

endForLoop; %% for each (x0 [y0)

%% x0 has no y0 � y possibility (6 9(x0 [y0) 2 C such that y0 � y) :

%%

delete(x [y);

goto Check-next-element-of-bucket-x;

%% We did �nd y0 � y for x0;

%% Now we check the next x0 :

%%

Check-next-bucket-�-x:

endForLoop; %% for each x0

%% Final decision as to whether we keep (x [y)

%% or not has been made and executed;

%% Go on to next element in bucket x :

%%

Check-next-element-of-bucket-x:

endForLoop; %% for each (x [y)

endForLoop; %% for each x

endForLoop; %% for each Hasse-diagram row, in descending row order

CHAPTER 6. VERIFICATION ALGORITHMS 172

Note that all the elements of lab(�q) whose input-value combination part is Boolean (i.e., is in

the top row of the T I Hasse diagram) are retained as elements of C: Because none of them can cause

a violation of the upward-chains property, they all participate in the maximal C that the algorithm

derives from �q :

This algorithm clearly terminates, as it involves no backtracking. There is repetition, as the

algorithm may traverse the entries in a bucket x0 multiple times. However, each time it does so, it

is dealing with a di�erent (x [y) 2 lab(�q) such that x � x0:

At the termination of this algorithm, the maximal C � ext1 (w ;P) having the upward-chains

property, for every w 2 P such that q0
w
) q; remains in the table. This is because we have

deleted precisely those elements of lab(�q) which violate the upward-chains property (and lab(�q) =

ext1 (w ;P) for each w 2 P such that q0
w
) q): If the remaining set is total in T I ; (that is, if

every bucket in the table contains at least one entry), then the remaining set is a qualifying Cw �

ext1 (w ;P) for every w 2 P such that q0
w
) q: Therefore none of those w 2 P violate the receptiveness

condition of P:

6.2.3.3 Complexity of the receptiveness check

The complexity of entering each �q into its table, preparatory to checking for the existence of

appropriate C � lab(�q); depends on our data structures and on the original representation of M

and �: In our software implementation of the procedure described above, we use a variant of BDDs

[33], which we call ternary decision diagrams (TDDs), to represent outedge sets. Therefore each

�q is immediately accessible (in constant time). However, partitioning the TDD representation of

�q according to the input-value combination of its label part takes time that is proportional to the

number of nodes in that TDD, which is 3
jI[Oj

in the worst case. (The base of 3 for TDDs, rather

than the usual 2 for BDDs, is a result of the fact that TDDs have three-way branching downward

from every node, one branch for each of the three possible wire values). Exhaustive analysis of some

of the possible e�ciency enhancements one might add to an explicit representation, in which each

element of �q is represented as a distinct piece of data, yields the same worst case upper bound on

the time required to enter each �q into its table: table entry is in O(3jI[Oj):

The search-and-prune algorithm requires time that is asymptotically polynomial in 3
jI[Oj; for

each q 2 Q: Consider the search-and-prune algorithm presented on the previous page. Its nesting

structure makes it clear that this algorithm terminates in time bounded above by

X
0�m�n

2
m �C(m;n) � 3n

0

� 2(n�m) � 3n
0

d

where n = jI j; n0 = jO j; and d is the time required to check whether or not y � y0: Per row m of

the T I Hasse diagram, we traverse all 2
m �C(m;n) buckets x; each of which may contain as many

as 3
jOj

elements, comparing each of these elements to all the elements (of which there are also as

CHAPTER 6. VERIFICATION ALGORITHMS 173

many as 3
jOj

) in each of the 2(n �m) buckets x0 which are � x and are in the T I Hasse diagram

row directly above that of x: Of course, while it is possible that every bucket contains 3jOj elements,

it is not technically possible that for all relevant x; x0; and y; the �rst element (x0 [y0) in bucket x0

such that y0 � y is always the �nal element in bucket x0: Therefore this is a loose upper bound.

In fact our software implementation of the receptiveness check is able to check in a single pass

over the data structures in the two buckets (that is, in a single pass for each hx; x0i pair) precisely

which y in the x-bucket have corresponding y0 � y in the x0-bucket. This is because we represent all

the elements in the x-bucket by a single ternary decision diagram (TDD), for every x 2 T I : However,

the time required in the worst case to compare every element in the x-bucket with every element in

the x0-bucket is asymptotically proportional to 3
n0

� 3n
0

: Therefore we were unable to improve the

previous upper bound on the time required for the algorithm in the worst case. In general, use of

BDDs does not improve worst case upper bounds and does not support improvement for average

case analysis either. Therefore the savings gained by our use of TDDs cannot easily be analyzed.

From this expression we derive an upper bound on the asymptotic complexity of the algorithm:

it is in

O(3jIj � 9jOj � jI j
2
� d) = O(3jIj � 9jOj)

for each q 2 Q:

Thus the full check for receptiveness of P; including entering each �q into the workspace data

structure and checking whether or not there exists appropriate Cw � lab(�q); is asymptotically

bounded above by 3
jIj � 9jOj � jQ j:

6.3 Canonicalization

6.3.1 Introduction

Canonicalization involves three operations: output-upward-closure of F and P; autofailure manifes-

tation, and failure exclusion. We have already described our implementation of the OUC operator

(see Section 5.4.3). Failure exclusion can be implemented in the obvious way using known opera-

tions on �nite-state automata. Autofailure manifestation can likewise be easily implemented on any

�nite-state automaton representation of F and P; assuming we can identify af (T):

The di�culty lies in identifying af (T): By de�nition, Tw is failure-forcing if and only if w is

an autofailure. In the following subsection, we present our algorithm for checking of a sequential

trace structure T whether or not it is failure-forcing. As a side-e�ect, the algorithm identi�es the

autofailures of OUC(T):

Each state of the deterministic combined automaton that accepts F and P represents a set of

sequences w; all of which have the same extensions in F and P: Therefore the algorithm actually

applies to automaton states: its application to the states of a deterministic combined automaton

CHAPTER 6. VERIFICATION ALGORITHMS 174

that accepts F and P identi�es the start-states of those (OUC(T))w which are failure forcing. Each

of these states represents a subset of af (OUC(T)); which is what we require in order to canonicalize

T: Because OUC(T) is failure-forcing if and only if T is, we may focus on an FSM representation

for OUC(T):

The naive method for computing af (OUC(T)) would be to reiterate the algorithm below for each

state q of a combined automaton that accepts OUCI;O(F) and OUCI;O(P); thereby determining

for every w 2 OUCI;O(P) whether or not (OUC(T))w is failure forcing. However, in determin-

ing whether or not T is failure-forcing, this algorithm computes as a side-e�ect the autofailures

of OUC(T): We may take advantage of this fact to avoid the need for multiple iterations of the

full algorithm. Our software implementation takes this approach, which is formally justi�ed in

Section 6.3.2.3, below.

Formally, we note that for M a deterministic combined automaton that accepts F and P;

8q 2 Q:8w;w0 2 P:[[q0
w
) q and q0

w0

) q] =) [ext(w ;F) = ext(w 0;F) and ext(w ;P) = ext(w 0;P)]]:

Therefore, for such w and w0; Tw and Tw0 are identical. We extend our notation and de�ne a state

q 2 Q of a deterministic combined automatonM that accepts F and P to be an autofailure, and to

be failure-forcing, precisely when all the elements of fTw j q0
w
) qg are failure-forcing, where q0 is

the start state of M:

In the following subsection, we present our algorithm for checking whether a state q 2 Q is failure

forcing.

6.3.2 Is T failure-forcing?

6.3.2.1 Introduction

A sequential trace structure T = (I;O; F; P) is failure-forcing if and only if it has no failure-free

composition with any of its legal environments. Formally, for all sequential trace structures E =

(O; I; FE; PE); (E \ T) is not failure-free.

Let E1 and E2 be legal environments of T that have identical P -sets but di�er in that FE1
= ;

and FE2
6= ;: If (T \ E2) is failure-free then (T \ E1) is as well. Therefore, in order to determine

whether or not T is failure forcing, it su�ces to check whether or not there exists a sequential

trace structure E = (O; I; FE = ;; PE) such that (E \ T) is failure-free. Such an E has P -set PE

such that (F \ PE) = ;: Hence we check whether or not there exists a sequential trace structure

E = (O; I; PE) such that PE � F:We attempt to �nd the maximal subset of F that is pre�x-closed,

regular, input-downward-closed (in (O; I)) and (O; I)-receptive. If this set is empty, T has no such

legal environment, and hence T is failure forcing. If this set is non-empty, it is the P -set of a legal

environment E of T such that (T \E) is failure free { and thus in this case T is not failure forcing.

CHAPTER 6. VERIFICATION ALGORITHMS 175

6.3.2.2 The algorithm

In this section we present our algorithm for deciding whether or not a given sequential trace structure

is failure-forcing. The algorithmderives the maximalsubset of F which isO-downward-closed, (O; I)-

receptive, regular, and pre�x-closed. In order to ensure that the subset of F which we derive is pre�x-

closed, we \extension-close" F before complementing it. In order to ensure that the derived subset

is input-downward-closed (in (O; I)); we also output-upward-close F before complementing it. We

check for receptiveness of the complemented set OUC(F �A�) using the algorithm of Section 6.2.3:

per state q of the resulting automaton M 0; we check that for every w 2 OUC(F �A�) such that

q0
M 0;w
=) q there exists Cw � ext1 (w ;OUC (F �A�)) with the required properties. If we encounter

a state for which this does not hold, we simply delete it from consideration, and check that the

remainder of the automaton does not violate receptiveness. Such a procedure is permissible because,

after all, we are only looking for an acceptable subset of F : Finally, in order to guarantee that the

automaton remaining after deletion of an unacceptable state q still de�nes an input-downward-closed

language, we apply the IDCimpl operator toM
0
before deleting any of its states. Because M 0

de�nes

a language that is input-downward-closed already, application of this operator does not a�ect the

language it de�nes: L(M 0
) = L(IDCimpl(M

0
)): The formal description of the algorithm follows.

Input:

Let T = (I;O; F; P):

LetM be a �nite-state automaton accepting F:

M0 �M modi�ed so that F � F �A�;

M1 � OUCimpl(M0);

M2 � the result of determinizingM1;

M3 � the complement ofM2 (swap �nal and non-�nal states);

%% ALSO swap what we consider to be the input and output sets!!

M4 � IDCimpl (M3); %% where the input set is O and the output set is I

Q � the set of states ofM4;

� � the transition relation ofM4;

Loop

Q0 � Q; %% set up a second copy of the current Q for later comparison

For each state q 2 Q :

�q � the outedges of q in �

If there does not exist Cw � lab(�q) such that

Cw is total in T O and

Cw has the upward-chains property in (O; I)

Then

%% Strip q and all its in- and out-edges out of our copy ofM4 :

%%

Q � Q� fqg

� � � � (�q [fhq
0; e; qi 2 � j q0 2 Q; e 2 T (I[O)g)

Until Q = Q0
%% Repeat until the remaining automaton is receptive or Q0

= ;

CHAPTER 6. VERIFICATION ALGORITHMS 176

6.3.2.3 The correctness of the algorithm

If the remaining receptive automaton de�nes a non-empty language (if reachable Q 6= ;); it de�nes

the P -set of a sequential trace structure (whose F -set is empty) which can be composed failure-free

with T: However, if reachable Q = ; at termination of the algorithm, any such structure has empty

P -set { in other words, there does not exist such a sequential trace structure.

In order to prove this, it is necessary to prove that the algorithm does indeed derive the maximal

subset of F which is O-downward-closed, (O; I)-receptive, regular, and pre�x-closed.

The following facts are crucial to the correctness of the algorithm.

Lemma 6.2 Let I \ O = ;: Let W � B(I [O) be an O-upward-closed set. Then W is an O-

downward-closed set.

Proof: Let n 2 !; x 2 (BI)n; y 2 (BO)n such that (x [y) 2 W: Let y0 � y: We must prove that

(x [y0) 2W:

Say not. Then (x [y0) 2 W: Thus by the O-upward-closure of W; it must be the case that

(x [y) 2 W as well. But by assumption, (x [y) 2 W: Therefore it cannot be the case that

(x [y0) 2W; and so (x [y0) 2W:

Lemma 6.3 Let I \O = ;: Let W � B(I [O): Then OUC(W) is the maximal O-downward-closed

subset of W (where the OUC operator is de�ned in (I;O)):

Proof: Let Y = OUC(W): Let Z be the maximalO-downward-closed subset ofW: Z is well-de�ned,

because if two sets A and B are O-downward-closed, then (A [B) is also O-downward-closed.

� Y � Z : By Lemma 6.2, Y is O-downward-closed. By de�nition of complement, Y is a subset

of W: Therefore Y � Z:

� Z � Y : Say not. Then there exist a 2 B(I) and b 2 B(O) such that (a[b) 2 Z but (a[b) 62 Y:

By de�nition of Y; this means that (a [b) 2 OUC(W): Thus there exists b0 � b such that

(a [b0) 2 W: However, by de�nition of Z; (a [b0) must be in Z as well. Therefore Z 6� W;

which is a contradiction. Hence it must be the case that there exists no such (a [b); and so

Z � Y:

Lemma 6.4 Let I \ O = ;: If W � B(I [O) is input-downward-closed (I-downward-closed) then

W = IDCimpl (W) (where the IDCimpl operator is de�ned in (I;O)):

Proof: By analogy to the proof in Section 5.4.3 that OUCimpl(W) = OUC(W): (Lemma 5.8).

Lemma 6.5 OUC(W) �A� = OUC(W �A�)

Proof: Obvious.

CHAPTER 6. VERIFICATION ALGORITHMS 177

Lemma 6.6 Let I \O = ;: If the deterministic �nite automaton M de�nes a language L � B(I [

O); then the �nite automaton resulting from the application of the IDCimpl operator to the M

representation of L has an input-downward-closure property that is impervious to deletion of states.

Proof: Let M be a deterministic �nite-state automaton such that L(M) = L: Let M 0
be the result

of applying the IDCimpl operator to M:

Assume M 0
= h� = T (I[O); Q; fq0g; QF = Q; �0 =

S
q2Q �qi: Let q

0 2 (Q � fq0g): (If q
0
= q0;

and we remove q0 from Q; then the resulting automaton trivially de�nes an input-downward-closed

language: the empty language). Let Q0
= (Q� fq0g): Let

M 00
= h�; Q0; fq0g; Q

0
F = Q0; �00 = �0 � (�q [fhq

0; e; qi 2 �0 j q0 2 Q; e 2 T (I[O)g); i

Let L00 = L(M 00
): We must prove that L00 is input-downward-closed.

Let w 2 L00: Let n 2 !: Let x 2 (T I)n and y 2 (T O)n such that w = (x [y): Let x0 � x: We

must prove that (x0 [y) 2 L00:

Because w 2 L00; we know there exists a path q0; q1; : : : ; qn � Q0
of length n such that

q0
w1

) q1
w2

) q2
w3

) � � �
wn
) qn

where w1 �w2 � : : :wn = w: In other words, for every i 2 f1; 2; : : : ; ng; hq(i�1); wi = (xi [yi); qii 2 �
00:

Therefore by de�nition of IDCimpl ; for every i 2 f1; 2; : : : ; ng; hq(i�1); (x
0
i [yi); qii 2 �

00: Therefore

(x0 [y) 2 L00:

In order to prove that the algorithm is correct, we must prove that the algorithm does indeed

derive the maximal subset of F which is O-downward-closed, (O; I)-receptive, regular, and pre�x-

closed.

We �rst de�ne M i
4 by induction on i 2 ! : M0

4 =M4 and M
(i+1)
4 is what remains ofM4 after

the i'th iteration through the inner loop of the algorithm. Qk
4 is the set of states of Mk

4 :

Lemma 6.7 The above algorithm terminates.

Proof: For all i 2 !; Q
(i+1)
4 � Qi

4: Therefore there exists minimal k 2 ! such that one of the

following holds: Qk
4 = ; or Q

(k+1)
4 = Qk

4: In both cases, the loop termination condition holds after

the (k + 1)'st iteration of the loop.

Lemma 6.8 If the above algorithm terminates after k iterations of the loop, then L(Mk
4) is O-

downward-closed, (O; I)-receptive, pre�x-closed and regular.

Proof:

Clearly L(Mk
4) is regular, because it is expressed as a �nite-state machine. We proceed to prove

the remaining points.

CHAPTER 6. VERIFICATION ALGORITHMS 178

� L(Mk
4) is O-downward-closed:

By Lemma 5.8, L(M1) is O-upward-closed. By de�nition of FSM determinization, L(M2) =

L(M1); and therefore L(M2) is O-upward-closed. By Lemma 6.2, L(M3) is O-downward-

closed. By Lemma 6.4, L(M4) = L(M3): And �nally, by de�nition ofM4 and by Lemma 6.6,

L(M i
4) is O-downward-closed for every i � k: Therefore L(Mk

4) is O-downward-closed.

� L(Mk
4) is (O; I)-receptive:

By the loop termination condition, for every state q of Mk
4 there exists C � lab(�q) that is

total in T O and that has the upward-chains property in (O; I); where �q are the outedges

of q that remain in Mk
4 : By the argument for the correctness of the algorithm for checking

receptiveness (see Section 6.2.3), L(Mk
4) is therefore (O; I)-receptive.

� L(Mk
4) is pre�x-closed:

By de�nition, L(M0) = L(M) �A�: By Lemma 5.8, L(M1) = OUC(L(M0)): By Lemma 6.5,

OUC(L(M0)) = OUC(L(M))�A�: Therefore L(M1) = OUC(L(M))�A�:As above, L(M2) =

L(M1): Clearly, therefore, L(M3) is pre�x-closed. Because deletion of states and their in- and

out-edges preserves pre�x-closure, L(M i
4) is pre�x-closed for every i � k: Therefore L(Mk

4) is

O-downward-closed.

QED Lemma 6.8

Theorem 6.9 If the above algorithm terminates after k iterations of the loop, then L(Mk
4) is the

maximal subset of F that is O-downward-closed, (O; I)-receptive, pre�x-closed and regular.

Proof: By Lemma 6.8, L(Mk
4) is O-downward,closed, (O; I)-receptive, pre�x-closed and regular.

We must prove that if L0 � F then either L0 � L(Mk
4) or at least one of these four properties does

not hold of L0:

Let L0 � F: We claim that one of the following must hold: L0 � L(M3) or L
0
is not pre�x-

closed or L0 is not O-downward-closed. As shown in the proof of Lemma 6.8, by Lemmas 5.8 and

6.5, L(M1) = OUC(L(M)) � A�: By de�nition, L(M) = F: Therefore L(M1) = OUC(F) � A�:

Thus L(M3) = OUC(F) �A�: Clearly, every pre�x-closed subset of OUC(F) must be a subset

of OUC(F) �A�: And by Lemma 6.3, every O-downward-closed subset of F must be a subset of

OUC(F): Therefore, every subset of F that is both pre�x-closed and O-downward-closed must be a

subset of L(M3):

Therefore, either L0 � L(M3); or at least one of the four properties does not hold of L0:

Assume L0 � L(M3): We claim that either L0 � L(Mk
4) or L

0
is not (O; I)-receptive. If M4

is a deterministic �nite-state machine, then this follows by the argument for the correctness of the

algorithm for checking receptiveness (see Section 6.2.3). However, ifM4 is a nondeterministic �nite-

state machine, the arguments given there do not obviously hold. This is because, for Q4 the set of

CHAPTER 6. VERIFICATION ALGORITHMS 179

states ofM4; there may exist two distinct q1; q2 2 Q4 such that q0
M4;w
=) q1 and q0

M4;w
=) q2: In such

a case, even if there exists appropriate Cw � ext1 (w ;OUC (F �A�)); it could hypothetically be the

case that for all such appropriate Cw; Cw 6� lab(�q1) and Cw 6� lab(�q2): In that case the algorithm

would erroneously remove q1 and q2 from Mk
4 ; thereby removing w from L(M

j
4) for some j � k:

In order to see that even whenM4 is nondeterministic, it is still the case that every w 62 L(Mk
4)

violates the receptiveness property in (O; I) of L(M4) = L(M3); we must prove that in fact such a

case cannot occur.

Referring back to the algorithm, we note that M3 = h�; �; q0; Q3; QF � Q3i is a deterministic

automaton. Let w 2 L(M3): Then there exists a unique q
0 2 Q3 such that q0

M3;w
=) q0: By de�nition,

lab(�q0) = ext1 (w ;OUC (F �A�)): While application of the IDCimpl operator toM3 increases � to

�0 � �; it does not a�ect the set of edge-labels on the out-edges of any q 2 Q3: In other words,

lab(�0q) = lab(�q) for every q 2 Q3 = Q4: Therefore, lab(�
0
q0) = ext1 (w ;OUC (F �A�)) as well, and so

if there exists Cw � ext1 (w ;OUC (F �A�)) with the appropriate properties, this Cw is a subset of

lab(�0q0): Therefore the hypothetical case outlined in the preceding paragraph cannot occur.

Thus if L0 � L(M3); either L
0 � L(Mk

4); or L
0
is not (O; I)-receptive. Therefore either L0 �

L(Mk
4); or at least one of the four properties does not hold of L0:

This concludes the proof that our algorithm derives the maximal subset having the required

properties, which is a necessary and su�cient condition for its correctness.

Note that the states in Q4�Q
k
4 correspond precisely to the autofailure states of OUC(T) inM2:

This fact is necessary and su�cient to prove the correctness of our software implementation of the

canonicalization process. In our software implementation, we maintain in each automaton a single

sink state that is neither S-�nal nor F -�nal. This facilitates quick complementation of the language

accepted by the automaton. M2 accepts F: We complementM2 to derive M3 by swapping the

designation of each state as F -�nal or not. Thus each state of M3 corresponds to a unique state

of M2: Q4; the states of M4; are exactly the states of M3: As clari�ed in the proof above, the

algorithm removes from Q4 = Q3 all and only those states that violate the receptiveness of L(M3):

But these states correspond precisely to those autofailure states of M2 which were not already

marked as F -�nal states. Therefore we may implement the canonicalization process by applying the

above algorithm toM such that L(M) = F; and considering all the states of Q4�Q
k
4 as autofailures

of OUC(T): This is in fact how we derive af (OUC(T)) for purposes of autofailure manifestation.

6.3.2.4 The complexity of the algorithm

The worst-case time required for the algorithm to terminate is in O(4jQj � 3jIj � 9jOj); where jQ j is

the cardinality of the state-set of the original automaton representation M of F: The computation

is as follows.

Computation ofM0 fromM requires the replacement of �q for each q 2 QF by 3
jI[Oj

self-loops.

The time required for this is in O(3jI[Oj � jQF j) if the edge representation is explicit. Our software

CHAPTER 6. VERIFICATION ALGORITHMS 180

implementation of this algorithm requires only constant time to replace �q by a representation of

3
jI[Oj

self-loops, for each q 2 QF : However, the program requires that the set of reachable states of

M0 be made explicit. Hence we must traverse all of the remaining automaton in order to determine

which states ofM are now unreachable { a process which is in O(3jI[Oj � jQ� QF j): Thus we again

derive that the computation ofM0 fromM is in O(3jI[Oj � jQ j):

Computation of M1 may require the addition of 3
jI[Oj

edges to each �q in the worst case.

Hence the time this step requires is in O(3jI[Oj � jQ j): In our software implementation, the TDD

representation of �q must be traversed and expanded where required by the output-upward-closure

operator. This process is in O(3jI[Oj) because in the worst case the size of the TDD is 3
jI[Oj:

Computation ofM2 requires determinization of a �nite-state automaton having jQ j states: this

operation is exponential in jQ j: Let Q0
be the state-set of M2: Then jQ

0 j � 2
jQj: This causes the

appearance of the exponential 2
jQj

in subsequent terms of the complexity bound.

ComplementingM2 takes time proportional to the size of Q0; and computingM4 fromM3 takes

time in O(3jI[Oj � jQ0 j); by the same reasoning used in calculating the time required to computeM1

fromM0:

The nested-loop construction and explicit loop termination test of the algorithm make it clear

that the receptiveness-violation check may be executed as many as

X
1�n�jQ0j

n = jQ0 j � (jQ0 j+ 1)=2 2 O(jQ0 j
2
)

times in the worst case. By the results of Section 6.2.3, the per-state receptiveness-violation check

takes time in O(3jIj � 9jOj) in the worst case.

Therefore the asymptotic upper bound on the worst-case time required by this algorithm to

decide whether or not T is failure-forcing is

O(2 � jQ j � 3jI[Oj + 2
jQj

+ 2
jQj � 3jI[Oj + (2

jQj
)
2 � 3jIj � 9jOj)

or more succinctly,

O(4jQj � 3jIj � 9jOj)

6.4 Veri�cation in Practice (Deciding Conformance)

We have implemented veri�cation procedures for sequential trace structures using these procedures.

More precisely, we utilize the results of the previous chapter in determining conformance, and we

use the algorithms we have just described for implementing the details of that procedure. In order

to determine whether or not T � T 0; for given sequential trace structures T and T 0 of the same

(I;O)-type, we �rst apply the algorithm described above in order to determine the autofailures of

OUC(T 0): Note that in general OUC(af (T 0)) 6= af (OUC(T 0)); but that T 0 is failure-forcing if and

CHAPTER 6. VERIFICATION ALGORITHMS 181

only if OUC(T 0) is failure forcing. This is because although in general OUC(T 0w) 6= (OUC(T 0))w;

the two trace structures are identical when w = ":

If OUC(T 0) is failure-forcing, then T � T 0: Otherwise, we apply autofailure manifestation and

failure exclusion to OUC(T 0); to derive canon(T 0): We then employ our implementation of the

algebraic composition operation and of the mirror operation to compute T k mir(canon (T 0)): We

may determine whether or not this sequential trace structure is failure-free via a single pass over the

set of states of its automaton representation.

We have implemented the algebraic operators, the mirror and canonicalization operations, and

the conformance decision procedure for sequential trace structures. We can also use this software to

check whether a given sequential trace structure represents correct substitute subcircuitry for a given

location in a given circuit. We compute the the closed-form expression suggested by Theorem 5.14

as the speci�cation. We may then determine, for any candidate replacement component, whether

its sequential trace structure representation conforms to this speci�cation.

Our software handles the formal veri�cation of combinational relation structures via the syn-

chronous theory: a combinational circuit is modeled by a sequential trace structure that repeats its

combinational behavior during each clock cycle. This sequential trace structure T is failure-forcing

if and only if the corresponding combinational relation structure T 0 is a combinational autofailure.

The computational complexity of our conformance decision procedure is dominated by the cost

of determining the autofailures of OUC(T 0): In our software implementation, composition of two

trace structures T1 and T2 takes time in O(jQ1 j � jQ2 j � 3
jI[Oj

); and computing the mirror of a trace

structure T takes time linear in jQ j: However, computing the autofailures of OUC(T 0) takes time

in O(4jQ
0j �3jIj �9jOj); as shown above. We expect the dominant factor to be the exponential, so that

the asymptotic complexity of our decision procedure is polynomial in 3
jI[Oj:

Chapter 7

Conclusion

7.1 Summary

In this thesis, we have developed a mathematical model of synchronous sequential circuits that

supports both automated formal hierarchical veri�cation and substitution. We have extended the

hierarchical veri�cation framework of asynchronous trace theory [61] to apply to both combinational

circuits and to clocked sequential circuits. Our models allow nondeterministic speci�cations and

may provide both a behavioral and a structural view of a circuit. In order to make these extensions,

we have addressed the question of zero-delay cycles in a behavioral circuit model. Our solution to

the zero-delay cycle problem avoids a particular class of false positives that may occur in formal

veri�cation as the result of disappearing behavior.

For substitution, we have utilized the structural view of a circuit in order to derive a formal

description of the full design space available for the correct implementation of a subcircuit.

In addition to developing a theoretical framework to support behavioral and structural compar-

ison of synchronous circuit models at various levels of detail, we have developed and implemented

automatic decision procedures for both formal veri�cation and substitution using these models.

In Chapter 2, we presented mathematical preliminaries and notation, and introduced the circuit

algebra framework. In Chapter 3, we presented our formal model of combinational circuits and

their requirements speci�cations, which incorporates our solution to the zero-delay cycle problem.

These behavioral circuit models, called combinational relation structures, provide a relational model

of circuit behavior. We showed that these models and the structural operations on them form a

circuit algebra [61], which guarantees that our framework correctly identi�es when two circuits must

exhibit the same behavior.

In Chapter 4, we extended the formal hierarchical veri�cation framework of asynchronous trace

theory to combinational relation structures. One combinational relation structure correctly imple-

ments another if it may be safely substituted for it in all contexts; we call this relation conformance.

182

CHAPTER 7. CONCLUSION 183

The outline of a decision procedure for conformance was derived using mirrors and results of circuit

algebra. These results are an extension of those in asynchronous trace theory. However, the descrip-

tion of when two combinational relation structures are indistinguishable via veri�cation is new, as it

is based on the instantaneous interaction of a circuit with its environment. We presented a canoni-

calization process based on this description that provides a decision procedure for conformance. We

also showed how the structural view of a circuit may be inverted to expose a subcircuit and the

exibility available for its correct implementation within a larger circuit. We derived a closed-form

expression that formally describes the entire design space available for its correct implementation.

In Chapter 5, we developed the theory of sequential trace structures, which are our model of syn-

chronous circuits and their requirements speci�cations. In order to correctly model the behavior of a

synchronous circuit during a single clock cycle, these behavioral models are based on a modi�cation

of traditional Mealy machines: a behavior is a trace, which is a sequence of combinational behaviors.

Sequential trace structures form a circuit algebra, and conformance between two sequential trace

structures is de�ned as in the asynchronous and the combinational theories. Our description of when

two sequential trace structures are indistinguishable via veri�cation is based on the instantaneous

interaction of a synchronous circuit with its (synchronous) environment within each clock cycle.

This description was converted into an e�ective procedure for deciding conformance. And �nally,

we duplicated the substitution results derived for combinational models in the previous chapter, to

apply to our synchronous circuit models.

In Chapter 6, we presented some details of the algorithms we employ in our software imple-

mentation of the veri�cation procedures developed in the previous two chapters. We discussed the

computational complexity of these algorithms, and proved their correctness.

7.2 Future Work

Synthesis and optimization: We have solved the problem of characterizing the space of allowed

replacement components for a subcircuit in a given circuit. However, this space is very large, and

so we would like to develop search techniques for �nding optimal implementations. Both exact and

heuristic search methods would be of interest.

More speci�cally, although we can derive the most general speci�cation for allowed replacement

components for a subcircuit in a given circuit, and we can determine of any candidate replacement

component whether or not it is an acceptable substitution according to the desired behavior of the full

circuit, we have not investigated the question of synthesizing a reasonable replacement component

from this speci�cation. This would involve synthesis of synchronous circuits from nondeterministic

speci�cations, a problem that has been investigated in [54, 138] for example. It remains to be seen

whether either of these approaches can be applied to sequential trace structures.

Liveness properties: Sequential trace structures can only express safety properties. If one

CHAPTER 7. CONCLUSION 184

were interested in a re�nement process from very high-level speci�cations, one might conceivably

want to express liveness properties. For example, a system speci�cation provided early in the design

process may be su�cienctly imprecise that it does not contain timeout information. In this case it

could be desirable to be able to express unbounded liveness.

In order to express general liveness properties, sequential trace structures would have to be

modi�ed by dropping the pre�x-closure constraint on P and by allowing in�nite-length traces as

behaviors. This expressiveness can easily be achieved using !-automata. However, the current

veri�cation procedures would no longer be directly applicable. In particular, the de�nitions of

canonicality and the canonicalization process require some thought.

E�ciency of formal veri�cation: Currently, the asymptotic complexity of the veri�cation

procedure is dominated by the cost of determining whether a given structure of the form of a

sequential trace structure is indeed a sequential trace structure (or may be made into one). The cost

arises from the need to determine whether or not the upward-chains property holds or can be made

to hold of this structure. Thus the precise de�nition of receptiveness directly impacts the complexity

of the veri�cation process.

One might consider modifying the precise de�nition of receptiveness in an attempt to obtain a

more e�cient decision procedure for formal veri�cation. We have already moved somewhat in this

direction: the original receptiveness de�nition that was proposed (for the combinational case) was

the requirement that P contain a monotonic function (in (I;O)): Pratt has proved that the problem

of determining for a given P whether or not it contains a monotonic function is NP-complete in 3
jI[Oj

[117]. Our best algorithm for determining whether P contains a monotonic function, in which P is

represented as a set of Boolean vectors, takes time doubly exponential in jI [O j: Thus one would

expect to move in the direction of even weaker approximations of full monotonicity in investigating

this question.

Bibliography

[1] B. Alpern and F. Schneider. Verifying temporal properties without using temporal logic.

Technical Report TR-85-723, Cornell University, 1985.

[2] B. Alpern and F. B. Schneider. De�ning liveness. Information Processing Letters, 21(4):181{

185, October 1985.

[3] B. Alpern and F. B. Schneider. Recognizing safety and liveness properties. Distributed Com-

puting, 2(3):117{126, December 1987.

[4] A. Appel. Simulating digital circuits with one bit per wire. IEEE Transactions on CAD,

7(9):987{993, September 1988.

[5] P. Ashar, S. Devadas, and A. R. Newton. Sequential Logic Synthesis. Kluwer International

Series in Engineering and Computer Science. Kluwer Academic Publishers, 1992.

[6] F. Baader and J. H. Siekmann. Uni�cation theory. In D. M. Gabbay, C. J. Hogger, and

J. A. Robinson, editors, Handbook of Logic in Arti�cial Intelligence and Logic Programming.

Volume 2: Deduction Methodologies, pages 41{125. Oxford University Press, 1993.

[7] A. Bailey, G. A. McCaskill, and G. J. Milne. An exercise in the automatic veri�cation of

asynchronous designs. Formal Methods in System Design, 4(3):213{242, May 1994.

[8] J. E. Barnes. A Mathematical Theory of Synchronous Communication. PhD thesis, Oxford

University Computing Laboratory, 1993. Technical Monograph PRG-112.

[9] K. A. Bartlett, R. K. Brayton, G. D. Hachtel, R. M. Jacoby, C. R. Morrison, R. L. Rudell,

A. Sangiovanni-Vincentelli, and A. R. Wang. Multilevel logic minimization using implicit don't

cares. IEEE Transactions on CAD, 7(6):723{740, June 1988.

[10] J. F. Beetem. Hierarchical topological sorting of apparent loops via partitioning. IEEE Trans-

actions on CAD, 11(5):607{619, May 1992.

[11] A. Benveniste and G. Berry. The synchronous approach to reactive and real-time systems.

Proceedings of the IEEE, 79(9):1270{1282, September 1991.

185

BIBLIOGRAPHY 186

[12] A. Benveniste, P. Le Guernic, and C. Jacquemot. Synchronous programming with events

and relations: The Signal language and its semantics. Science of Computer Programming,

16(2):103{149, September 1991.

[13] A. Benveniste, P. Le Guernic, Y. Sorel, and M. Sorine. A denotational theory of synchronous

reactive systems. Information and Computation, 99(2):192{230, August 1992.

[14] G. Berry, P. Couronne, and G. Gonthier. Synchronous programming of reactive systems: An

introduction to Esterel. Technical Report (Rapport de Recherche) 647, INRIA, March 1987.

[15] G. Berry and G. Gonthier. The Esterel synchronous programming language: design, seman-

tics, implementation. Science of Computer Programming, 19:87{152, November 1992.

[16] J. P. Billon. Perfect normal forms for discrete functions. Technical Report 87019, Bull Research

Center, Louveciennes, France, June 1987.

[17] S. Bose and A. L. Fisher. Automatic veri�cation of synchronous circuits using symbolic simu-

lation and temporal logic. In L. J. M. Claesen, editor, Formal VLSI Correctness Veri�cation:

VLSI Design Methods, II. Volume 2 of Proceedings of the IFIP International Workshop on

Applied Formal Methods for Correct VLSI Design, Houthalen, Belgium, 1989, pages 151{158.

North-Holland, 1990.

[18] F. Boussinot and R. De Simone. The Esterel language. Proceedings of the IEEE, 79(9):1293{

1303, September 1991.

[19] R. K. Brayton. Algorithms for multi-level logic synthesis and optimization. In G. De Micheli,

A. Sangiovanni-Vincentelli, and P. Antognetti, editors, Design Systems for VLSI Circuits:

Logic Synthesis and Silicon Compilation, pages 197{248. Martinus Nijho� Publishers, 1987.

NATO ASI Series E, No. 136.

[20] R. K. Brayton, G. D. Hachtel, and A. L. Sangiovanni-Vincentelli. Multilevel logic synthesis.

Proceedings of the IEEE, 78(2):264{300, February 1990.

[21] R. K. Brayton and E. M. Sentovich. Network hierarchies and node minimization. IEICE

Transactions on Information and Systems, E78-D(3):199{208, March 1995.

[22] R. K. Brayton and F. Somenzi. Boolean relations and the incomplete speci�cation of logic

networks. In G. Musgrave and U. Lauther, editors, Proceedings of the International Conference

on VLSI '89, Munich, August 1989, pages 231{240. North-Holland, 1989.

[23] M. A. Breuer. A note on three-valued logic simulation. IEEE Transactions on Computers,

C-21(4):399{402, April 1972.

BIBLIOGRAPHY 187

[24] A. Bronstein. MLP: String-Functional Semantics and Boyer-Moore Mechanization for the

Formal Veri�cation of Synchronous Circuits. PhD thesis, Stanford University, Stanford, CA,

December 1989. Tech Report STAN-CS-89-1293.

[25] A. Bronstein and C. L. Talcott. Formal veri�cation of pipelines based on string-functional

semantics. In L. J. M. Claesen, editor, Formal VLSI Correctness Veri�cation: VLSI Design

Methods, II. Volume 2 of Proceedings of the IFIP International Workshop on Applied Formal

Methods for Correct VLSI Design, Houthalen, Belgium, 1989, pages 349{366. North-Holland,

1990.

[26] A. Bronstein and C. L. Talcott. Formal veri�cation of synchronous circuits based on string-

functional semantics: The 7 Paillet circuits in Boyer-Moore. In J. Sifakis, editor, Automatic

Veri�cation Methods for Finite State Systems: International Workshop, Grenoble, France,

June 1989, pages 317{323. Springer-Verlag, 1990. LNCS 407.

[27] M. C. Browne and E. M. Clarke. SML: A high-level language for the design and veri�cation

of �nite-state machines. In D. Borrione, editor, From HDL Descriptions to Guaranteed Cor-

rect Circuit Designs, Proceedings of the International Working Conference, Grenoble, France,

September 1986, pages 269{292. North-Holland, 1987.

[28] M. C. Browne, E. M. Clarke, and D. L. Dill. Automatic circuit veri�cation using temporal

logic: Two new examples. In G. J. Milne and P. A. Subrahmanyam, editors, Formal Aspects of

VLSI Design: Proceedings of the 1985 Edinburgh Workshop on VLSI, pages 113{124. North-

Holland, 1986.

[29] M. C. Browne, E. M. Clarke, D. L. Dill, and B. Mishra. Automatic veri�cation of sequential cir-

cuits using temporal logic. IEEE Transactions on Computers, C-35(12):1035{1044, December

1986.

[30] R. E. Bryant. Race detection in MOS circuits by ternary simulation. In F. Anceau and

E. J. Aas, editors, Proceedings of the International Conference on VLSI '83, pages 85{95.

North-Holland, August 1983. Trondheim, Norway.

[31] R. E. Bryant. A switch-level model and simulator for MOS digital systems. IEEE Transactions

on Computers, C-33(2):160{177, February 1984.

[32] R. E. Bryant. Can a simulator verify a circuit? In G. J. Milne and P. A. Subrahmanyam,

editors, Formal Aspects of VLSI Design: Proceedings of the 1985 Edinburgh Workshop on

VLSI, pages 125{136. North-Holland, 1986.

[33] R. E. Bryant. Graph-based algorithms for Boolean function manipulation. IEEE Transactions

on Computers, C-35(8):677{691, August 1986.

BIBLIOGRAPHY 188

[34] R. E. Bryant. Algorithmic aspects of symbolic switch network analysis. IEEE Transactions

on CAD, CAD-6(4):618{633, July 1987.

[35] R. E. Bryant. Boolean analysis of MOS circuits. IEEE Transactions on CAD, CAD-6(4):634{

649, July 1987.

[36] R. E. Bryant. Formal veri�cation of memory circuits by switch-level simulation. IEEE Trans-

actions on CAD, 10(1):94{102, January 1991.

[37] R. E. Bryant. A methodology for hardware veri�cation based on logic simulation. Journal of

the ACM, 38(2):299{328, April 1991.

[38] R. E. Bryant, D. Beatty, K. Brace, K. Cho, and T. She�er. COSMOS: A compiled simulator

for MOS circuits. In Proceedings of the 24th Design Automation Conference (DAC'87), pages

9{16, 1987.

[39] J. A. Brzozowski and C.-J. H. Seger. Advances in asynchronous circuit theory, Part II: Bounded

inertial delay models, MOS circuits, design techniques. Bulletin of the European Association

for Theoretical Computer Science (EATCS), 43:199{263, February 1991.

[40] J. R. Burch, E. M. Clarke, D. E. Long, K. L. McMillan, and D. L. Dill. Symbolic model

checking for sequential circuit veri�cation. IEEE Transactions on CAD/ICAS, 13(4):401{424,

April 1994.

[41] J. R. Burch, D. Dill, E. Wolf, and G. De Micheli. Modeling hierarchical combinational cir-

cuits. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design

(ICCAD'93), pages 612{617, November 1993.

[42] P. Caspi. Clocks in data
ow languages. Theoretical Computer Science, 94(1):125{140, March

1992.

[43] P. Caspi, D. Pilaud, N. Halbwachs, and J. A. Plaice. Lustre: A declarative language for

programming synchronous systems. In Proceedings of the 14th Annual ACM Symposium on

the Principles of Programming Languages (POPL'87), pages 178{188, January 1987.

[44] E. Cerny and M. A. Marin. An approach to uni�ed methodology of combinational switching

circuits. IEEE Transactions on Computers, C-26(8):745{756, August 1977.

[45] A. C. L. Chiang, I. S. Reed, and A. V. Banes. Path sensitization, partial Boolean di�erence,

and automated fault diagnosis. IEEE Transactions on Computers, C-21(2):189{195, February

1972.

BIBLIOGRAPHY 189

[46] E. M. Clarke, I. A. Browne, and R. P. Kurshan. A uni�ed approach for showing language

containment and equivalence between various types of !-automata. In A. Arnold, editor,

Proceedings of the 15th Colloquium on Trees in Algebra and Programming (CAAP'90), pages

103{116. Springer-Verlag, May 1990. LNCS 431.

[47] E. M. Clarke, I. A. Draghicescu, and R. P. Kurshan. A uni�ed approach for showing language

containment and equivalence between various types of !-automata. Information Processing

Letters, 46(6):301{308, July 1993.

[48] E. M. Clarke, E. A. Emerson, and A. P. Sistla. Automatic veri�cation of �nite-state concurrent

systems using temporal logic. ACM Transactions on Programming Languages and Systems,

8(2):244{263, April 1986.

[49] E. M. Clarke, D. E. Long, and K. L. McMillan. Compositional model checking. In Proceedings

of the Third Annual Symposium on Logic in Computer Science (LICS'89), pages 353{362,

1989.

[50] E. M. Clarke, D. E. Long, and K. L. McMillan. A language for compositional speci�cation

and veri�cation of �nite state hardware controllers. Proceedings of the IEEE, 79(9):1283{1292,

September 1991.

[51] O. Coudert, C. Berthet, and J. C. Madre. Veri�cation of sequential machines using Boolean

functional vectors. In L. J. M. Claesen, editor, Formal VLSI Correctness Veri�cation: VLSI

Design Methods, II. Volume 2 of Proceedings of the IFIP International Workshop on Applied

Formal Methods for Correct VLSI Design, Houthalen, Belgium, 1989, pages 179{196. North-

Holland, 1990.

[52] O. Coudert, C. Berthet, and J. C. Madre. Veri�cation of synchronous sequential machines

based on symbolic execution. In J. Sifakis, editor, Automatic Veri�cation Methods for Fi-

nite State Systems: International Workshop, Grenoble, France, June 1989, pages 365{373.

Springer-Verlag, 1990. LNCS 407.

[53] O. Coudert, J. C. Madre, and C. Berthet. Verifying temporal properties of sequential machines

without building their state diagrams. In Proceedings of the Workshop on Computer-Aided

Veri�cation (CAV'90). Springer-Verlag, 1990. Also appeared as Volume 3 of DIMACS Series

in Discrete Mathematics and Theoretical Computer Science, AMS.

[54] M. Damiani. Nondeterministic �nite-state machines and sequential Don't Cares. In Proceed-

ings, the European Design and Test Conference: EDAC, the European Conference on Design

Automation; ETC, European Test Conference; and EUROASIC, the European event in ASIC

design, March 1994. Paris, France.

BIBLIOGRAPHY 190

[55] M. Damiani. Synthesis and Optimization of Synchronous Logic Circuits. PhD thesis, Stanford

University, Stanford, CA, June 1994. Tech Report STAN-CSL-TR-94-626.

[56] M. Damiani and G. De Micheli. Recurrence equations and the optimization of synchronous

logic circuits. In Proceedings of the 29th Design Automation Conference (DAC'92), pages

556{561, 1992.

[57] M. Damiani and G. De Micheli. Don't Care set speci�cations in combinational and synchronous

logic circuits. IEEE Transactions on CAD/ICAS, 12(3):365{388, March 1993.

[58] S. Devadas, A. Ghosh, and K. Keutzer. Logic Synthesis. McGraw-Hill Series on Computer

Engineering. McGraw-Hill, 1994.

[59] S. Devadas and K. Keutzer. An automata-theoretic approach to behavioral equivalence. Inte-

gration, the VLSI Journal, 12(2):109{129, December 1991.

[60] S. Devadas, H.-K. T. Ma, and A. R. Newton. On the veri�cation of sequential machines at

di�ering levels of abstraction. IEEE Transactions on CAD, 7(6):713{722, June 1988.

[61] D. L. Dill. Trace Theory for Automatic Hierarchical Veri�cation of Speed-Independent Circuits.

MIT Press, 1989. An ACM Distinguished Dissertation 1988.

[62] E. B. Eichelberger. Hazard detection in combinational and sequential switching circuits. IBM

Journal of Research and Development, 9(2):90{99, March 1965.

[63] M. Fujita, Y. Tamiya, Y. Kukimoto, and K. C. Chen. Application of Boolean uni�cation

to combinational logic synthesis. In Proceedings of the IEEE International Conference on

Computer-Aided Design (ICCAD'91), pages 510{513, 1991. Subsequently expanded into [84].

[64] P. Le Guernic, T. Gautier, M. Le Borgne, and C. Le Maire. Programming real-time applications

with Signal. Proceedings of the IEEE, 79(9):1321{1335, September 1991.

[65] A. Gupta. Formal hardware veri�cation methods: A survey. Formal Methods in System Design,

1(2/3):151{238, October 1992.

[66] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer International Series in

Engineering and Computer Science. Kluwer Academic Publishers, 1993.

[67] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud. The synchronous date
ow programming

language Lustre. Proceedings of the IEEE, 79(9):1305{1319, September 1991.

[68] N. Halbwachs and F. Maraninchi. On the symbolic analysis of combinational loops in circuits

and synchronous programs. In Euromicro'95, September 1995. Como, Italy.

BIBLIOGRAPHY 191

[69] D. Harel. Statecharts: A visual formalism for complex systems. Science of Computer Pro-

gramming, 8(3):231{274, June 1987.

[70] D. Harel and A. Pnueli. On the development of reactive systems. In K. R. Apt, editor,

Logics and Models of Concurrent Systems: Proceedings of the NATO Advanced Study Institute,

October 1984, NATO ASI Series. Series F, Computer and System Sciences Vol. 13, pages 477{

498. Springer-Verlag, 1985.

[71] D. Harel, A. Pnueli, J. P. Schmidt, and R. Sherman. On the formal semantics of Statecharts

(extended abstract). In Proceedings of the Second IEEE Symposium on Logic in Computer

Science (LICS'87), pages 54{64, 1987.

[72] C. A. R. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.

Prentice-Hall International series in computer science.

[73] R. Hojati, R. Mueller-Thuns, and R. K. Brayton. Improving language containment using

fairness graphs. In D. L. Dill, editor, Computer-Aided Veri�cation (CAV'94), pages 391{403.

Springer-Verlag, 1994. Stanford, CA, LNCS 818.

[74] J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory, Languages, and Compu-

tation. Addison-Wesley Publishing Company, 1979.

[75] C. Huizing and W. P. de Roever. Introduction to design choices in the semantics of Statecharts.

Information Processing Letters, 37(4):205{213, February 1991.

[76] C. Huizing, R. Gerth, and W. P. de Roever. Modelling Statecharts behaviour in a fully abstract

way. In M. Dauchet and M. Nivat, editors, Proceedings of the 13th Colloquium on Trees in

Algebra and Programming (CAAP'88), pages 271{294. Springer-Verlag, March 1988. LNCS

299.

[77] J. S. Jephson, R. P. McQuarrie, and R. E. Vogelsberg. A three-value computer design veri�-

cation system. IBM Systems Journal, 8(3):178{188, 1969.

[78] G. Jones. Getting your wires crossed. In R. Heldal, C. Kehler Holst, and P. Wadler, editors,

Functional Programming, Glasgow, 1991: Proceedings of the 1991 Glasgow Workshop, Portree,

UK, August 1991, Workshops in Computing Series, pages 191{206. Springer-Verlag, 1992.

[79] G. Jones and M. Sheeran. Circuit design in Ruby. In J. Staunstrup, editor, Formal Methods

for VLSI Design, pages 13{70. North-Holland, 1990.

[80] G. Jones and M. Sheeran. Deriving bit-serial circuits in Ruby. In A. Halaas and P. B. Denyer,

editors, Proceedings of the International Conference on VLSI '91, IFIP Transactions A, Volume

A-1, pages 71{80, August 1991. Edinburgh, UK.

BIBLIOGRAPHY 192

[81] W. H. Kautz. The necessity of closed circuit loops in minimal combinational circuits. IEEE

Transactions on Computers, C-19:162{164, February 1970.

[82] J. Kim and M. M. Newborn. The simpli�cation of sequential machines with input restrictions.

IEEE Transactions on Computers, C-21(12):1440{1443, December 1972.

[83] K. Knight. Uni�cation: A multidisciplinary survey. ACM Computing Surveys, 21(1):93{124,

March 1989.

[84] Y. Kukimoto and M. Fujita. Applications of Boolean uni�cation to combinational logic syn-

thesis. IEICE Transactions on Information and Systems, E75-A(10):1212{1219, October 1992.

This is an expanded version of [63].

[85] Y. Kukimoto and M. Fujita. Recti�cation method for lookup-table type FPGAs. In Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD'92), pages

54{61, November 1992.

[86] R. Kumar and T. Kropf, editors. Proceedings of the Second Conference on Theorem Provers

in Circuit Design (TPCD'94), Bad Herrenalb, Germany, September 1994. Springer-Verlag,

1995. LNCS 901.

[87] R. Kurshan. Automata-Theoretic Veri�cation of Coordinating Processes. Princeton University

Press, Princeton, NJ, 1994.

[88] R. P. Kurshan. Analysis of discrete event coordination. In J. W. de Bakker, W. P. de Roever,

and G. Rozenberg, editors, Stepwise Re�nement of Distributed Systems: Models, Formalisms,

Correctness, pages 414{453. Springer-Verlag, 1990. REX Workshop 1989 Proceedings. LNCS

430.

[89] L. Lamport. Proving the correctness of multiprocess programs. IEEE Transactions on Software

Engineering, SE-3(2):125{143, March 1977.

[90] C. E. Leiserson and J. B. Saxe. Retiming synchronous circuitry. Algorithmica, 6(1):5{35, 1991.

[91] B. Lin, G. de Jong, and T. Kolks. Modeling and optimization of hierarchical synchronous

circuits. In European Design and Test Conference, March 1995. Paris, France.

[92] S. Malik. Analysis of cyclic combinational circuits. IEEE Transactions on CAD/ICAS,

13(7):950{956, July 1994.

[93] S. Malik, E. M. Sentovich, R. K. Brayton, and A. Sangiovanni-Vincentelli. Retiming and resyn-

thesis: Optimizing sequential networks with combinational techniques. IEEE Transactions on

CAD, 10(1):74{84, January 1991.

BIBLIOGRAPHY 193

[94] F. Maraninchi. Argonaute: Graphical description, semantics and veri�cation of reactive sys-

tems by using a process algebra. In J. Sifakis, editor, Automatic Veri�cation Methods for

Finite State Systems: International Workshop, Grenoble, France, June 1989, pages 38{53.

Springer-Verlag, 1990. LNCS 407.

[95] F. Maraninchi. Operational and compositional semantics of synchronous automaton compo-

sitions. In W. R. Cleaveland, editor, Third International Conference on Concurrency Theory

(CONCUR'92), pages 550{564. Springer-Verlag, August 1992. Stonybrook, NY, LNCS 630.

[96] P. N. Marinos. Derivation of minimal complete sets of test-input sequences using Boolean

di�erences. IEEE Transactions on Computers, C-20(1):25{32, January 1971.

[97] U. Martin and T. Nipkow. Boolean uni�cation { the story so far. Journal of Symbolic Com-

putation, 7(3-4):275{293, March-April 1989.

[98] M. C. McFarland. Formal veri�cation of sequential hardware: A tutorial. IEEE Transactions

on CAD/ICAS, 12(5):633{654, May 1993.

[99] K. L. McMillan. Symbolic Model Checking: An Approach to the State-Explosion Problem. PhD

thesis, Carnegie-Mellon University, 1992. Tech Report CMU-CS-92-131.

[100] K. L. McMillan and J. Schwalbe. Formal veri�cation of the Encore Gigamax cache consistency

protocol. In Proceedings of the International Symposium on Shared Memory Multiprocessing,

pages 242{251, 1991. Tokyo, Japan.

[101] G. H. Mealy. A method for synthesizing sequential circuits. The Bell System Technical Journal,

34:1045{1079, September 1955.

[102] G. De Micheli. Synchronous logic synthesis: Algorithms for cycle-time minimization. IEEE

Transactions on CAD, 10(1):63{73, January 1991.

[103] G. De Micheli. Synthesis and Optimization of Digital Circuits. McGraw-Hill Series on Elec-

tronics and VLSI Circuits. McGraw-Hill, 1994.

[104] G. J. Milne. CIRCAL and the representation of communication, concurrency, and time. ACM

Transactions on Programming Languages and Systems, 7(2):270{298, April 1985.

[105] G. J. Milne. Veri�ably correct VLSI design. In G. J. Milne and P. A. Subrahmanyam, editors,

Formal Aspects of VLSI Design: Proceedings of the 1985 Edinburgh Workshop on VLSI, pages

1{22. North-Holland, 1986.

[106] R. Milner. A Calculus of Communicating Systems. Springer-Verlag, 1980. LNCS 92.

[107] R. Milner. Calculi for synchrony and asynchrony. Theoretical Computer Science, 25:267{310,

1983.

BIBLIOGRAPHY 194

[108] R. Milner. Communications and Concurrency. Prentice-Hall International, 1989. Prentice-Hall

International series in computer science.

[109] F. Moller. The de�nition of CIRCAL. In L. J. M. Claesen, editor, Formal VLSI Speci�cation

and Synthesis: VLSI Design Methods, I. Volume 1 of Proceedings of the IFIP International

Workshop on Applied Formal Methods for Correct VLSI Design, Houthalen, Belgium, 1989,

pages 281{290. North-Holland, 1990.

[110] E. F. Moore. Gedanken-experiments on seuential machines. In C. E. Shannon and J. McCarthy,

editors, Automata Studies, pages 129{153. Princeton University Press, Princeton, NJ, 1956.

Annals of Mathematics Studies no. 34.

[111] S. Muroga, Y. Kambayashi, H. C. Lai, and J. N. Culliney. The transduction method |

design of logic networks based on permissible functions. IEEE Transactions on Computers,

38(10):1404{1423, October 1989.

[112] D. Pilaud and N. Halbwachs. From a synchronous declarative language to a temporal logic

dealing with multiformtime. In M. Joseph, editor, Formal Techniques in Real-Time and Fault-

Tolerant Sytems: Proceedings of a Symposium, Warwick, UK, pages 99{110. Springer-Verlag,

September 1988. LNCS 331.

[113] C. Pixley, V. Singhal, A. Aziz, and R. K. Brayton. Multi-level synthesis for safe replaceabil-

ity. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design

(ICCAD'94), pages 442{449, November 1994.

[114] A. Pnueli. Applications of temporal logic to the speci�cation and veri�cation of reactive

systems: A survey of current trends. In Current Trends in Concurrency, pages 510{584.

Springer-Verlag, 1986. LNCS 224.

[115] A. Pnueli. How vital is liveness? Verifying timing properties of reactive and hybrid systems.

Extended abstract. In W. R. Cleaveland, editor, Third International Conference on Concur-

rency Theory (CONCUR'92), pages 162{175. Springer-Verlag, August 1992. Stonybrook, NY,

LNCS 630.

[116] A. Pnueli and M. Shalev. What is in a step: On the semantics of Statecharts. In T. Ito and

A. R. Meyer, editors, Theoretical Aspects of Computer Software: International Conference,

Sendai, Japan, September 1991 (TACS'91), pages 244{264. Springer-Verlag, 1991. LNCS 526.

[117] V. R. Pratt. Private communication, January 1994.

[118] J. P. Queille and J. Sifakis. Speci�cation and veri�cation of concurrent systems in CESAR.

In Proceedings of the Fifth International Symposium in Programming, pages 337{351, April

1982. LNCS 137.

BIBLIOGRAPHY 195

[119] J. Rho, G. Hachtel, and F. Somenzi. Don't Care sequences and the optimization of inter-

acting �nite-state machines. In Proceedings of the IEEE/ACM International Conference on

Computer-Aided Design (ICCAD'91), pages 418{421, November 1991.

[120] H. Savoj. Don't Cares in Multi-Level Network Optimization. PhD thesis, University of Cali-

fornia, Berkeley, 1992.

[121] F. F. Sellers, Jr., M. Y. Hsiao, and L. W. Bearnson. Analyzing errors with the Boolean

di�erence. IEEE Transactions on Computers, C-17(7):676{683, July 1968.

[122] E. M. Sentovich, V. Singhal, and R. K. Brayton. Multiple Boolean relations. In International

Workshop on Logic Synthesis, Workshop Notes, pages 7b1{7b14, May 1993.

[123] M. Sheeran. Describing and reasoning about circuits using relations. In K. McEvoy and J. V.

Tucker, editors, Theoretical Foundations of VLSI Design: Proceedings of the Workshop on

VLSI Design, Leeds, 1986, Cambridge Tracts in Theoretical Computer Science, pages 263{

298. Cambridge University Press, 1990.

[124] T. R. Shiple, H. Touati, and G. Berry. Causality analysis of circuits. Unpublished manuscript,

May 1995.

[125] V. Singhal and C. Pixley. The veri�cation problem for safe replaceability. In D. L. Dill, editor,

Computer-Aided Veri�cation (CAV'94), pages 311{323. Springer-Verlag, 1994. Stanford, CA,

LNCS 818.

[126] A. P. Sistla. On verifying that a concurrent program satis�es a nondeterministic speci�cation.

Information Processing Letters, 32:17{23, July 1989.

[127] A. P. Sistla. Proving correctness with respect to nondeterministic safety speci�cations. Infor-

mation Processing Letters, 39:45{49, July 1991.

[128] V. Stavridou. Formal Methods in Circuit Design. Cambridge Tracts in Theoretical Computer

Science 37. Cambridge University Press, 1993.

[129] V. Stavridou. Formal methods and VLSI engineering practice. The Computer Journal,

37(2):96{113, 1994.

[130] L. Stok. False loops through resource sharing. In Proceedings of the IEEE/ACM International

Conference on Computer-Aided Design (ICCAD'92), pages 345{348, November 1992.

[131] Synopsys. HDL Compiler for Verilog: Reference Manual for Version 3.0, December 1992.

[132] H.-Y. Wang and R. K. Brayton. Input Don't Care sequences in FSM networks. In Proceedings

of the IEEE/ACM International Conference on Computer-Aided Design (ICCAD'93), pages

321{328, November 1993.

BIBLIOGRAPHY 196

[133] H.-Y. Wang and R. K. Brayton. Permissible observability relations in FSM networks. In

Proceedings of the 31st Design Automation Conference (DAC'94), pages 677{683, 1994.

[134] Y. Watanabe. Logic Optimization of Interacting Components in Synchronous Digital Systems.

PhD thesis, University of California, Berkeley, 1994.

[135] Y. Watanabe and R. K. Brayton. Incremental synthesis for engineering changes. In Interna-

tional Conference on Computer Design (ICCD'91), pages 40{43, 1991.

[136] Y. Watanabe and R. K. Brayton. The maximum set of permissible behaviors for FSM net-

works. In Proceedings of the IEEE/ACM International Conference on Computer-Aided Design

(ICCAD'93), pages 316{320, November 1993. The full version of this paper appears as [137]

and as Chapter 4 of [134].

[137] Y.Watanabe and R. K. Brayton. The maximumset of permissible behaviors for FSM networks.

Technical Memorandum UCB/ERL M93/61, Electronics Research Laboratory, UC Berkeley,

August 1993.

[138] Y. Watanabe and R. K. Brayton. State minimization of pseudo non-deterministic FSM's. In

Proceedings, the European Design and Test Conference: EDAC, the European Conference on

Design Automation; ETC, European Test Conference; and EUROASIC, the European event

in ASIC design, March 1994. Paris, France.

