
To appear in the 1996 Internet Society Symposium on Network and Distributed System Security (SNDSS)

Designing an Academic Firewall: Policy, Practice, and Experience With SURF

Michael B. Greenwald Sandeep K. Singhal Jonathan R. Stone David R. Cheriton

fmichaelg,singhal,jonathan,cheritong@CS.Stanford.EDU

Department of Computer Science
Stanford University

Stanford, CA 94305-9040

Abstract
Corporate network firewalls are well-understood and

are becoming commonplace. These firewalls establish a
security perimeter that aims to block (or heavily restrict)
both incoming and outgoing network communication. We
argue that these firewalls are neither effective nor appro-
priate for academic or corporate research environments
needing to maintain information security while still sup-
porting the free exchange of ideas.

In this paper, we present the Stanford University Re-
search Firewall (SURF), a network firewall design that is
suitable for a research environment. While still protecting
information and computing resources behind the firewall,
this firewall is less restrictive of outward information flow
than the traditional model; can be easily deployed; and
can give internal users the illusion of unrestricted e-mail,
anonymous FTP, and WWW connectivity to the greater In-
ternet. Our experience demonstrates that an adequate fire-
wall for a research environment can be constructed for min-
imal cost using off-the-shelf software and hardware com-
ponents.

1 Introduction
Growth of the Internet has increased awareness of the

need for security to prevent destruction of data by an in-
truder, maintain the privacy of local information, and pre-
vent unauthorizeduse of computing resources [15]. Indeed,
analysts estimate that 50% of large corporations have seen
a computer break-in over the past year [27]. Corporations
are concerned with preventing unauthorized leakage of cor-
porate intellectual property.

To achieve these goals, most corporate environments
have deployed firewalls to block (or heavily restrict) access
to internal data and computing resources from untrusted
hosts and limit access to untrusted hosts from inside. A typ-
ical corporate firewall is a strong security perimeter around
the employees who collaborate within the corporation, as
shown in Figure 1a. The network security perimeter sur-
rounds the corporate network and occasionally includes
machines at employee homes. Everything else is excluded.
The security perimeter carefully controls the transfer of
information and, in many instances, forbids all outward in-
formation flow. Although many corporations desire more
open access to the Internet, they limit Internet access and the
sacrifice such services as personal World-Wide-Web pages
to achieve corporate security. Even recent firewall designs

which attempt to relax some of these limitations [14] only
support specific interactions between sites located within a
single authentication domain or private network.

Academic institutions also face concerns about the se-
curity of computing resources and information. Academic
research groups often need to maintain the privacy of re-
search grant proposals, patent applications, ideas for future
research, or results of research in progress. Administrative
organizations need to prevent leakage of student grades,
personal contact information, and faculty and staff person-
nel records. Moreover, the cost of security compromises is
high. A research group could lose its competitive edge, and
administrative organizations could face legal proceedings
for unauthorized information release. Furthermore, aca-
demic institutionsare visible targets for hackers and intrud-
ers. Indeed, a large percentage of “crackers” are physically
located within academic environments, and they are highly
motivated to access and modify grades and other informa-
tion. Network break-ins—and subsequent time lost recov-
ering from break-ins and deletion of data—have become a
fact of day-to-day life at educational institutions [5, 7]

In a corporate environment, the natural place to draw a
security perimeter is around the corporation itself. How-
ever, in an academic environment, as depicted in Figure 1b,
it is nearly impossible to draw a perimeter surrounding all
of the people with whom we need to interact closely—and
only those people. If the firewall is too big, it includes un-
trusted people, as shown by the dashed box. For instance,
a corporate firewall erected around the entire University
wouldcontain many of the untrusted students and malicious
hackers that the firewall should keep outside the perimeter.
Moreover, universities offer almost no physical security.
On the other hand, if the firewall is too small, then it will
exclude some of the people with whom we must share data,
as shown by the dotted box. A corporate firewall erected
around a research group would exclude collaborators lo-
cated in other departments or even at other universities.
This tradeoff between safety and collaboration is unaccept-
able. Consequently, the traditional corporate firewall is
ill-suited for academic environments.

While corporations tolerate limited Internet connectiv-
ity in the name of security, research organizations sim-
ply cannot function under such limitations. First, trusted
users need unrestricted and transparent access to Internet
resources (including World-Wide-Web, FTP, Gopher, elec-
tronic mail, etc.) located outside the firewall. Researchers

1



Untrusted User

Trusted User

Close Collaboration

(a)

(b)

Figure 1: Nature of Trusted Users, Untrusted Users, and
Collaboration in (a) Corporate Environments and (b) Aca-
demic Environments

rely on fingertip access to on-line library catalogs and bibli-
ographies, preprints of papers, and other network resources
supporting collaborative work. Second, trusted users need
the unrestricted ability to publish and disseminate infor-
mation to people outside the firewall via anonymous FTP,
World-Wide-Web, etc. This dissemination of research re-
sults, papers, etc. is critical to the research community.
Third, the firewall must allow access to protected resources
from trusted users located outside the firewall. An in-
creasing number of users work at home or while traveling.
Research collaborators may also need to enter the firewall
from remote hosts. Besides these factors, the usual consid-
erations of cost, ease-of-management in a heterogeneous
computing environment, performance, and reliability ap-
ply. Budget cuts are precluding academic institutions from
allocating money for computer security hardware, software,
or personnel; we expect this to be a long-term constraint.
The lack of dedicated security staff means, for example,
that a firewall might be managed by inexperienced peo-
ple (i.e. incoming graduate students) with no expertise in
custom components.

In this paper, we describe the Stanford University Re-
search Firewall (SURF), a firewall implementation devel-
oped by the Distributed Systems Group at Stanford Uni-
versity to achieve the above goals. The next section de-

scribes our security policy and its motivation. We then
discuss how we implemented the three components of this
policy: “request-response” packet filtering for information
security, “expendable hosts” for information dissemination,
and a “virtual enclave” to support trusted users outside the
firewall. We highlight the lessons learned during the fire-
wall development process and then discuss how application
protocols can be modified to better support implementation
of our security policy. We conclude with an indication of
future work.

2 The SURF Security Policy
A firewall implements a particular security policy that

trades off the need to support collaborative work by main-
taining open Internet connectivity against the need to pro-
vide security by restricting this connectivity. The security
policy is affected by how much trust is given to internal
users and is limited by implementation considerations. Af-
ter all, there is little point in adopting a security policy that
is impractical to implement.

Our firewall policy attempts to balance the collabora-
tion and security concerns better than in traditional corpo-
rate firewalls. To achieve this goal, we trust our users to
understand the importance of security and not intention-
ally attempt to bypass the mechanisms in place. This trust
is comparable to allowing an individual to participate in
a research group, attend meetings, and have a computer
account. By making the firewall policy as unobtrusive to
users as possible, we also increase this trust by eliminating
the temptation to bypass the security mechanisms.

Our security policy can be stated in three simple rules,
summarized in Figure 2:

1. All outboundpackets are allowed to travel outside, and
inbound packets are allowed inside the firewall only if
they can be determined to be responses to outbound
requests.

2. Packets to or from outside-the-firewall “expendable
hosts” are unrestricted (aside from normal operating
system and application-level access controls) because
they are outside the security perimeter.

3. Packets known to be from authenticated hosts or users
outside the firewall are allowed inside the firewall.

The rationale for this policy is straightforward. Rule 1 fol-
lows from our recognition that open network access is a
necessary component of a research environment. The rule
relies on the assumption that we trust our users to under-
stand and adhere to the research group’s security goals. The
Request-Response security policy states that an outgoing re-
quest implicitlygrants permission to admit its response into
our secure network. Rule 2 addresses our need to support
information dissemination (FTP, WWW, etc.) in a research
environment. We simply accept that these expendable hosts
may be compromised and choose to automatically recover
their state on a regular basis from information kept se-
curely behind the firewall. Compromises to expendable
hosts therefore do not affect the security of the private net-
work. Rule 3 grants access to protected resources to users
as they work from home or while travelling, as well as to
collaborators located outside the research group. We rely

2



Filter

Unrestricted
Interaction

Within Firewall
Perimeter

Bastion Hosts Grant
Trusted Users Remote Access

Trusted Host

Untrusted Host

Trusted User

Untrusted User
Requests

Accept Responses
to Internally-GeneratedPacket

Recover From
Protected State
Inside Firewall

Expendable Hosts

Figure 2: SURF Design with a Request-Response Security Policy, Expendable Hosts, and Bastion Hosts Supporting Remote
Access for Trusted Users

on secure IP tunnels and carefully selected authentication
mechanisms to implement this virtual enclave environment.

This security policy addresses the needs of academic
environments—and indeed the needs of many corporate
environments. The next three sections describe how we
implemented these security rules within our research envi-
ronment.

3 Request-Response Policy
Our implementation of the request-response policy relies

primarily on a packet filter located at the firewall perimeter.
Some of the responsibilities for recognizing responses to
outstanding requests must be delegated to operating sys-
tem mechanisms provided by protected hosts themselves.
However, when application protocols are ill-suited for our
request-response paradigm, we must rely on application-
level proxies running on bastion hosts.

3.1 Packet Filtering and Host Filtering
The packet filter is responsible for detecting whether

an incoming packet is actually a response to a prior out-
bound request. This task is difficult, however, because
packet-filtering hardware is usually stateless; it must decide
whether to drop or pass a packet based only on the physical
port on which the packet arrives, the port on which it will
be forwarded, and data in the packet itself. Packet filters do
not, in general, have access to either previous packets or any
internal host state. Furthermore, caching information about
previous packets in a packet filter is equivalent to writing an
application-level proxy and is impractical because it would
increase the latency of all incoming packets.

TCP Request-Response: Filtering at Internal Hosts:
Packet filtering is best suited to handle TCP-based ser-
vices that establish explicit connections. In terms of our
request-response policy, we treat connection establishment
as a “request” and data transmission on an established TCP
connection as a “response.” Intuitively, the fact that an
internal host decides to establish a TCP connection to an

external host is, in itself, implicit permission for that exter-
nal host to send packets back through our firewall on that
TCP connection.

In other words, the request-response policy implies that
our firewall should allow external hosts to participate in
TCP connections established by any host inside our fire-
wall, but external hosts may not initiate such connections
themselves. We achieve this by filtering incoming con-
nection requests and relying on our internal hosts to drop
extraneous TCP segments.

We filter incoming connection requests using standard
SYN filtering. The TCP connection-establishment phase is
the three-way handshake: SYN, SYN+ACK, ACK. Our
filtering policy for TCP admits all inbound TCP pack-
ets, except packets attempting to initiate the three-way
handshake—that is have SYN set but not ACK.

External hosts can therefore inject arbitrary TCP packets
into our secure network except connection-request packets.
We rely on the TCP module on all of our hosts to function
correctly and discard TCP segments that do not match an
established connection. Because an external host cannot
initiate a TCP connection, TCP packets constructed by a
would-be intruder should always be dropped by the desti-
nation host.

Thus, the combination of filtering external SYN pack-
ets, admitting all other TCP segments, and a working
TCP implementation achieves precisely the desired request-
response policy. This implementation does leave us vulner-
able to denial-of-service and hijacking attacks, which are
discussed in Section 6.2.

Connection-Based UDP Services: A few UDP-based ap-
plication protocols, such as AFS, use well-known kernel
ports at both the client and server hosts. We treat such pro-
tocols much like TCP connections by deploying a heuristic
filter (based on source and destination addresses and port
numbers and packet contents) and trusting internal hosts to
further filter inappropriate responses.

3



NFS-client filtering at hosts: NFS [26] is a request-
response protocol: the NFS client sends RPC [25] requests
to the NFS server, and the server returns the results. The
request-response rule of our security policy implies that
NFS clients protected by our firewall should be permit-
ted to NFS-mount filesystems from NFS-servers outside
our firewall if group members behind the firewall choose
to do so. We have found this to be a useful way to ac-
cess resources such as campus software archives and Linux
slackware distributions. This policy decision is markedly
different from traditional network firewall policies.

As with TCP, we support a request-response policy for
NFS by using a coarse-grain filter and trusting internal hosts
to safely ignore and drop unexpected response packets.
Our packet filter allows any packets out, including NFS
requests. It also allows in any packets with a source port of
2049, with an SunRPC type of RPC REPLY, and with the
SunRPC program number set to RPCPROG NFS.

The process of performing an NFS mount actually re-
quires an exchange with a “mount daemon” on the remote
NFS server to obtain an initial NFS “file handle.” The
mount daemon is, in turn, located via an RPC request to the
remote server’s portmapper. To avoid problems with UDP
port mapping, we use a modified NFS-mount utility, that
performs these RPC transactions over TCP instead of UDP.

Our heuristic test for NFS response packets is currently
the biggest hole in our firewall: A would-be intruder could
generate UDP packets with all of the attributes of a valid
response and send them to an arbitrary machine behind
our firewall. We trust that each host’s NFS client software
correctly drops packets that are not valid responses to an
outstanding NFS request and that our heuristic is strong
enough to prevent forged responses from affecting other
UDP clients. The risks that our policy entails in our envi-
ronment are further discussed in Section 6.2. Modern NFS
clients and servers are configurable to run entirely over
TCP, which fits entirely within our TCP request-response
implementation. Unfortunately, because our internal work-
stations run Unix with NFS implemented inside the kernel,
using these newer implementations would require kernel
modifications, compromising our goal of easy firewall in-
stallation.
3.2 Application-Level Proxies for Ill-Behaved

Application Protocols
We have found that many application protocols are not

immediately amenable to our request-response paradigm.
These applications typically fall into two categories: con-
nectionless UDP-based applications and “reverse-channel”
TCP-based applications. For a few critical applications,
we introduce application-level proxies to create a request-
response illusion over an otherwise ill-behaved protocol.
The proxies run on a bastion host, an internal host config-
ured specifically for the purpose. Unlike many traditional
designs, our firewall permits multiple bastion hosts, thereby
both eliminating the performance bottlenecks often seen in
other firewall designs and allowing each bastion host to be
stripped-down to support a limited set of applications. The
packet filter accepts incoming packets for these restricted
protocols if they are destined for an appropriate bastion
host.

Connectionless UDP-Based Applications: Most appli-
cations do not use UDP sockets in connected mode, so

an application receives all packets addressed to its UDP
socket, regardless of the foreign address or port. Because
there is no connection setup, a packet filter and endpoint
host cannot distinguish between a UDP “response” from
an external host and a subsequent “request” from that ex-
ternal host that coincidentally or maliciously uses the same
remote and local port numbers as an earlier response. To
evaluate whether an inbound packet is indeed a valid UDP
“response,” the packet filter or host operating system would
need to retain some application-specific state. Clearly, our
TCP approach of a packet filter and host filtering is imprac-
tical for connectionless UDP protocols.

Two connectionless UDP services that we regard as
essential are NTP [20] for time synchronization, and
DNS [21] for mapping between hostnames and addresses.

NTP servers are configured in a tree; higher-level servers
periodically broadcast their current time statistics to lower-
level servers, so the lower-level servers can measure and
adjust for clock drift. This server-initiated traffic does not
match our request-response paradigm.

We allow NTP through our perimeter by designating a
set of internal hosts as NTP “bastions.” Our packet filters
allow traffic from the NTP port of any external host to the
NTP port of any NTP bastion. All other internal machines
synchronize to the bastion machines. This approach fits
naturally within the architecture of NTP, and has not caused
any problems to date.

Although DNS fits a request-response paradigm and can
be configured to use either TCP or UDP, DNS clients typ-
ically use UDP from an arbitrary UDP port. We manage
DNS like we manage NTP. We have configured a set of
internal “slave” nameservers that forward all requests they
receive to a set of external nameservers. Our packet filters
admit UDP traffic with source and destination ports set to
the DNS reserved port from external hosts to our internal
nameservers. This design has worked satisfactorily, and
has actually produced an unexpected positive side effect:
because the local nameservers maintain a cache, we have
seen improved performance during intermittent failures of
the campus nameservers.

The approach we have taken for other UDP services is
unconventional: we simply require users to invoke these
services from our expendable machine outside the firewall.
Services like talk, archie, and rusers use UDP and
are currently blocked by our packet filters. While far from
ideal, maintaining a login session to an expendable host for
these services has proved to be a workable interim solution.

Proxies for Reverse-Channel Services: Our request-
response implementation also cannot currently handle
TCP-based services that require a “back-channel” connec-
tion. For example, FTP clients implement requests like
dir and get by creating a local “throwaway” TCP socket,
sending a message to the remote server asking that the re-
sulting output be sent to the throwaway port, and then wait-
ing for the remote server to connect to the throwaway port
and send the data. Our request-response implementation
blocks the server’s connection to the throwaway port. The
FTP protocol is almost rich enough so that minor changes
to the client can eliminate most of FTP’s uses of back-
channels.1 Unfortunately, few protocols are as flexible as
FTP. For example, the back-channel problem also arises

1By turning off the PORT command, we can eliminate the back-

4



with the Berkeley rsh command, which establishes back-
channels for the remote stderr.

The back-channel problem arises in a different form
when a user inside the firewall tries to start an X win-
dows [24] client on an external host to appear on the user’s
local display. To connect to the display, the external client
must establish a TCP connection to the X server inside the
firewall. Our access policy does not allow this connection,
however. We could choose to let the connection through
the firewall and rely on the X server to reject unauthorized
connections. Unfortunately, authentication systems such
as Kerberos [23, 19] are not deployed on all potential ex-
ternal client machines. Without a convenient, unobtrusive,
and ubiquitous authentication mechanism, we believe the
temptation to disable server authentication is too great. At
this point, we have not fully assessed the implications of
allowing arbitrary client connections to reach internal X
servers.

We currently use off-the-shelf application-level proxies
for remote X clients, FTP, and login. This solution is similar
to that taken by existing corporate firewalls. For example,
the X proxy simply allocates a new logical display on the
bastion host corresponding to the display on a trusted, in-
ternal host H. If a client wants to open a window on host
H, it instead opens the corresponding logical display on
the bastion host. The proxy queries the user on host H
for permission to open the window. If the user on host
H grants permission, then the bastion translates all opera-
tions on the logical display to the corresponding window
on host H. At one level, the bastion is actually seeking
explicit human-level acknowledgement that the incoming
client connection was actually requested. This is, there-
fore, consistent with the request-response policy, though
the filtering is not automatic.

Ultimately, we regard the use of application-level prox-
ies as a temporary workaround for ill-designed application
protocols. We would prefer that our packet filter could
fully implement the request-response policy. As the need
for security becomes more prevalent, we hope and expect
that many of the connectionless UDP and back-channel
TCP protocols will be redesigned to support the automated
request-response paradigm.

4 Exposing a Secure Public Image
A carefully controlled “network identity” is a second

element of our academic firewall. The public image—
the host names, addresses, and services—exposed to the
Internet become the first target for intruders. By limiting the
number of exposed hosts and strategically setting up those
resources, we reduce our exposure to the most common
attacks.

Our public image consists only of “expendable” hosts
and decoy host names, as shown in Figure 3. An expendable
host is an outside-the-firewall machine whose data can be
easily re-created from information kept securely behind
the firewall. A decoy host name points either to a non-
existent machine or to a machine instrumented to simply
log all accesses. We do not publish DNS entries for any of
the machines located inside the firewall, except for bastion
hosts discussed in Section 3.

channel problem for get requests, but it remains for dir.

Bastion
Hosts

Authenticated access

Public Image

HTTP

FTP

? Decoy.Stanford.EDU

Protected Hosts

Figure 3: Only Expendable Hosts and Decoys are Exposed
to the Internet

Our public image is designed to support untrusted inter-
actions with the wider Internet community. These interac-
tions fall into three categories: information dissemination,
insecure software and experimental protocols, and guest
users.
4.1 Information Dissemination

All information dissemination services—such as anony-
mous FTP, HTTP (World-Wide-Web), Gopher, WAIS, and
finger—are provided by one or more expendable servers
outside the firewall. Providing these services is critical in a
research environment, but because they involve interactions
with unauthenticated users and hosts, they pose consider-
able security risks. In contrast to traditional firewall designs
that try to use “secure” or chroot’ed proxies to monitor the
behavior of these interactions, we simply assume that these
protocols are inherently insecure. Consequently, we run
standard server implementations on expendable hosts and
just assume that those server hosts are regularly compro-
mised by intruders.

This assumption of insecurity in the server hosts has
three major implications. First, private data should never
be placed on the server machines. By creating a physical
separation between publicly accessed data and non-public
data, we aim to prevent accidental release and/or corrup-
tion of non-public data when break-ins occur on the server
machines. Second, users should never need to log onto the
server machines. By keeping users off the insecure servers,
we reduce the chance of accidental information release or
corruption. We can provide a separate expendable host
for users to run untrusted software or protocols. Third, all
of the state on the server hosts must be easily recoverable
because we assume it gets corrupted. In fact, each of the ex-
pendable hosts should be automatically restored regularly
from uncompromised sources.

To implement these policies, all data stored on server
machines is simply a shadow of directory hierarchies stored
on protected machines inside the firewall. For exam-
ple, files made available for anonymous FTP are stored
in .../pub/ftp and files made available for HTTP are
stored in .../pub/www inside the firewall. These direc-
tories are rdist’ed hourly to the server machines. Recovery

5



from data corruption on a server machine is, therefore,
automatic. As a natural extension to this approach, the
entire operating system on the expendable hosts could be
re-installed nightly from a read-only hard drive.

By making the shadowed directories publicly writable
on the protected machines, we allow any trusted user to
add, remove, or modify his own public data. We find this
capability to be a powerful departure from corporate envi-
ronments where individual users are not permitted to make
information public.2 The capability means that users do not
need to access the expendable host, thereby enhancing their
own security. Moreover, the automated shadowing process
ensures that public data on the expendable machine is con-
figured correctly (i.e. owned by the appropriate user (ftp,
http, etc.), placed in the appropriate directories, and given
the appropriate access permissions). In effect, individual
users explicitly decide which data is public and which data
is private, and the system then assures that public data is
disseminated, that private data is kept secure, and that the
two types of data are kept separated.

Our approach to information dissemination has three
significant advantages for an academic environment. First,
it eliminates almost all management overhead. System
maintenance is largely automatic. Other than occasionally
scanning log files to note any anomalous access patterns, no
human intervention is needed. Second, in many ways, our
approach is more secure than those used by traditional cor-
porate firewalls. We do not need to rely on a proxy to catch
security threats, and we do not make assumptions about the
security of the underlying operating system. Third, our use
of expendable hosts offers a degree of extensibility that is
not provided by traditional firewall implementations. As
new Internet services and protocols are defined, we can im-
mediately deploy standard, possibly insecure, implementa-
tions on an expendable server. This option is very attractive,
particularly when compared to the alternative of obtaining
or creating a secure implementation of each new service.

4.2 Insecure Software
We have also explicitly decided that certain types of

software are intrinsically insecure, especially when inputs
arrive from outside the firewall. For example, in our re-
search environment, users often develop experimental net-
work protocols that they wish to test over the Internet.
Expendable machines provide an environment in which we
can deploy such experimental protocols. Testing behind
the firewall is permitted only if the tester can control all
inputs and no packets cross the firewall.

Our treatment of electronic mail delivery represents a
broader example of this approach to insecure software.
Based on sendmail’s long history of security prob-
lems [3, 4, 6], we have decided not to trust sendmail
to deliver electronic mail originating from outside the fire-
wall. The fact that four more security holes [9, 8, 10, 11]
were found in sendmail after we deployed our firewall
reinforces the wisdom of this decision. Consequently,

2Indeed, our expendable firewall machine provides the homepage for
the footbag competition. A group alumnus is a footbag competition
organizer, but his employer’s firewall implementation does not enable him
to make documents available to the public. He has a guest account on our
expendable host through which he periodically refreshes the footbag web
pages.

sendmail processing and delivery of all externally-
originating mail must occur on an expendable mail server
outside the firewall. In this way, all external mail is com-
pletely processed by the insecure sendmail before ever
touchinga protected machine.3 Internally-originatingmail,
on the other hand, is processed by sendmail on a host
inside the firewall. This separation of internal and exter-
nal mail is entirely consistent with our policy of physically
separating public and private data.

We accomplish the mail separation by publishing differ-
ent MX records to protected and unprotected hosts. Pro-
tected hosts are only aware of internal mail servers, while
external hosts only see the external mail servers. If a re-
search group does not have its own DNS domain, it can
implement the mail separation by associating each host
with multiple mail servers: the internal mail server is the
primary and the expendable mail server is the secondary.
The packet filter blocks incoming TCP connections, so all
outside mailers fall back to the secondary (external) mail
server. Internal mailers, on the other hand, can contact the
primary (internal) mail server directly. This alternative de-
sign has the drawback that if the primary mail server fails,
all internal electronic mail flows to the untrusted external
host, where it might be snooped or corrupted. Providing
multiple primary mail servers behind the firewall reduces
the chance of internal e-mail leakage, but ultimately, pre-
venting electronic mail leakage requires end-to-end encryp-
tion.

Normally, this separation of internal and external mail
would force users to access two separate spool files, thereby
hurting usability and transparency of the firewall. To ad-
dress this problem, the internal mail server uses NFS to
mount the spool directory of the external mail host. A
“Magic Carpet” process runs as a cron job on the internal
firewall at one minute intervals. For each authorized user
on the internal system, it checks for mail in the external
server’s spool directory. E-mail for those users is appended
to their internal spool files, and an appropriately formated
“Received” line [12] is added to the mail header to reflect
the transfer. Biff is notified of each delivered message.
To the user, therefore, internal and external mail are in-
distinguishable, even though they are initially processed by
sendmail processes running on different machines. By only
transferring mail for internal users, we can support “guest”
accounts on the external mail server.

The Magic Carpet program does not provide a general-
purpose rdist capability. Instead, it is written to operate
only with inert data files. For example, we do not preclude
the possibility of electronic mail “bombs” that exploit bugs
in mail reading software. Such errors manifest themselves
in user space, however, so the potential damage is less
severe. Moreover, the mail bomb problem is a larger issue
that the research community must address, particularly as
electronic mail is embedding a growing variety of data
types.

The expendable mail server is reconstructed nightly
from information stored inside the firewall. Its aliases file
is reconstructed behind the firewall by taking the internal

3Currently, all users in the internal mail server’s /etc/passwd file must
have entries in the expendable server’s /etc/passwd file, though the external
accountshell is typically set to /bin/false. We are currently exploring ways
to simplify this aspect of the setup.

6



server’s aliases file and appending information collected
from user .forward files. This technique provides addi-
tional security by ensuring that mail enters the firewall only
if it is locally deliverable. It also makes the mail forwarding
process transparent to users. We support logging of mail
to mailing lists by introducing specially tagged “dummy”
user names into the expendable server’s aliases file. For
example, the Magic Carpet delivers mail for users of the
form LOG-foo on the expendable server to a logfile foo
inside the firewall.

Our design for electronic mail processing offers two
significant advantages over alternatives such as Post Of-
fice Protocol (POP) [22]. First, except for a slight delay
in arrival of mail from outside the firewall, local and re-
mote delivery is transparent to users. Moreover, standard
mechanisms for mail forwarding, aliases, and logging are
naturally extended to the firewall environment. Our polling
model also supports standard mail notification mechanisms
such as biff. Second, because internal mail never leaves
the firewall, our system allows internal mail delivery to
continue and remain secure even when outside network
connectivity is lost. As soon as the network is restored,
delivery of external mail resumes as usual.

4.3 Supporting Guest Users
Many academic environments offer guest accounts to

short-term visitors, collaborators, and alumni. Because
these users are potentially numerous, are not always acces-
sible, and have no direct interest in maintaining the security
of our information, they are typically not trusted. We place
their accounts on an expendable machine outside the fire-
wall. These users are warned not to store critical informa-
tion in these courtesy accounts. This policy does not pose
any significant problems for guest users, however, because
they typically only require the guest account for accessing
their normal machine remotely or for receiving electronic
mail.

Expendable machines can also benefit trusted group
members in a similar way. An expendable machine with a
shadow copy of the internal /etc/passwd file can serve
as an emergency access point for users who are otherwise
unable to access protected resources from outside the fire-
wall (see Section 5). While the expendable machine does
not provide users with access to protected resources, it can
still provide basic electronic mail, news, FTP, and web ac-
cess to our users. Furthermore, exporting user passwords
onto an expendable machine does not introduce any addi-
tional security risks because user passwords are insufficient
for gaining access to protected hosts from outside the fire-
wall.

5 Secure Non-Local Access
Traditional corporate firewalls assume that most users

are physically co-located inside the corporate firewall. The
few users who are travelling on business or working from
home may be authorized to gain access through the corpo-
rate firewall. Such access typically involves a modem call
to a private, corporate point-of-presence, or “smart card”
shared-secret authentication, or (in some cases) both. Cor-
porate travellers do desire to access their secure machine
from an insecure terminal and network connection, such as
from facilities provided at a conference, but such access is
typically not permitted.

This assumption of physical co-location or secure net-
work access is not viable in research environments. Most
users do considerable work at home or while traveling. Fur-
thermore, mobile hosts, particularly laptops running Linux,
are becoming commonplace among researchers. In addi-
tion, collaborative research often requires that certain in-
dividuals from other organizations be granted access to
resources that we do not wish to make available to the gen-
eral public. In each case, the remote user is potentially ap-
proaching the firewall through an insecure network. Within
an academic research group, “smart cards” or dedicated
dial-in points-of-presence are too costly to acquire and ad-
minister, and they do not fully address our need to support
access from insecure hosts connected to the Internet.

Moreover, the SURF architecture defines security
perimeters at a much finer granularity than is usual: at the
level of an academic research group or department rather
than a single corporate entity. This finer granularity means
that extending a firewall to permanently encompass sites
outside a single building or a single LAN segment is more
important. Together, these multiple sites constitute a vir-
tual security enclave, and the enclave must have a firewall
at every point of connection to an insecure network.

The remote user, once authenticated to a trusted host,
should have access to protected resources as if she were
physically located behind the firewall—or as much as prac-
ticable. However, the security mechanisms must ensure
that granting this remote access does not compromise ei-
ther the user’s own, or anyone else’s, data security.

Our firewall provides two methods of non-local ac-
cess with different levels of functionality. The first access
method provides authenticated, secure IP access by means
of an IP tunnel. This tunnel allows the remote user to freely
send IP packets without restriction through the firewall. The
second access method provides authenticated remote login.
It is intended for use by users who are travelling or who
work off-site but cannot set up a secure IP channel.

5.1 Secure IP tunnelling
To support users who regularly work at home or trusted

collaborators at other schools, we need to connect isolated
sites and give them unrestricted access to all internal ma-
chines. We assume that the campus internetwork, which
is presumed to be insecure, will be used as the primary
conduit to provide users with access from home machines.

To connect two isolated sites that are protected and mutu-
ally trusting, we establish a secure IP tunnel between them.
Arbitrary IP packets are then encapsulated and tunnelled
between the two sites. We chose to use Ioannidis’ swIPe
protocol [18] to implement an authenticated, encrypted IP
tunnel. The endpoints of the tunnel are known, and the
filter ensures that incoming swIPe packets are actually part
of an already registered tunnel.

Alternatively, we can support a dedicated connection
(either leased line or modem) between two sites protected
by their own firewalls. For example, our security enclave
includes a subnet, directly connected via leased line, in
the home of a faculty member. However, due to cost con-
siderations, secure network connections are not generally
feasible.

5.2 Remote Login and Remote Execution
Permanent secure IP tunnels do not meet all of our needs,

however. While travelling, users cannot always gain access

7



to a trusted host, and those connections have a short dura-
tion. To support incoming access in these cases, we allow
remote login channels providing the illusion of a terminal
connection to a machine inside the firewall. Support for this
service is straightforward: the packet filter allows access
to a single bastion machine acting as a gatekeeper. After
authenticating themselves to the bastion machine, users are
given a proxy that permits a single telnet session to an-
other machine inside the firewall. We do not want shells
running on the bastion machine, because we believe that a
machine upon which one can execute a shell is more easily
compromised.

The need for remote login access is not unique to our
firewall. Many mechanisms are in widespread use. We
provide two remote login services: S/Key and Kerberos.

S/Key [16] generates a set of one-time passwords en-
abling the remote user to log onto a bastion from anywhere.
The keys are provided by interacting with the S/Key server
over a secure channel (local or Kerberos-encrypted telnet).
Users must be careful to acquire enough keys before going
off-site, because they have no safe way to acquire more
keys using only S/key access through the firewall.

S/Key provides only limited functionality. It is intended
for users who only have access to an off-the-shelf telnet
client. Because the conversation is not likely to be en-
crypted, we do not consider it completely trustworthy. In
particular, users of unencrypted S/Key must assume that
their passwords are compromised when typed over an in-
secure network.

Encrypted Kerberos connections [23, 19] are more se-
cure and, therefore, can permit greater functionality. Ker-
beros is used to authenticate the remote user, and encryption
is used to keep the connection secure. The Kerberos pass-
word is never typed over the network in the clear; so it is
not compromised. Because the connection is encrypted,
a Kerberized login may, for example, be used to acquire
more S/Key passwords.

We provide a Kerberos remote login server on a bastion
machine that only allows users to execute an rlogin com-
mand. No shells are permitted on this machine. Kerberos
does not eliminate the need for S/Key: Kerberized telnet
clients are not available for all of our portable platforms,
and even when a Kerberized telnet client is available on a
visited machine, we should be wary of trusting it with a
secret key.

6 Experiences in Designing and Deploying a
Firewall

Our most positive experience has been other people’s
break-ins. We saw three network break-ins in our building
over a three month period. After each break-in, the affected
groups have had several days down-time, while system
administrators re-install software and data from distribution
media and backups. We have not observed any break-ins
through our firewall in that period, but the firewall also has
a downside. To date, we have spent more time developing
our firewall than we would have spent recovering from
those break-ins. However, we view firewall development
as a time investment that will prove its worthas more break-
ins occur around us; moreover, other research groups that
choose to follow our firewall architecture need not invest
time reinventing this particular wheel.

Our firewall policy has evolved over nearly two years,
and we expect this evolution to continue. This evolution
confirms an important tenet of firewall design: having es-
tablished a firewall, one cannot become complacent. Evo-
lution occurs because of three forces. First, new security
concerns arise, whether as a result of CERT advisories, re-
cent breakins at other sites, or even penetration of one’s
own site. Second, application requirements change over
time. When a new networked application becomes com-
monplace, the firewall’s packet filters must eventually be
extended to support the new protocol. One might also
eliminate support for applications that are no longer widely
used. Third, user access requirements change. In particu-
lar, the need for flexible authentication for incoming access
seems to increase over time. The most difficult element of
this evolution has been trying to maintain the firewall’s sim-
plicity (and hence its maintainability and security) without
compromising flexibility. This evolution has led us to the
request-response policy that we aim to fully support.

6.1 Off-The-Shelf Software and Hardware
For simplicity and maintainability, we only used off-

the-shelf components, even though available components
did not always behave optimally. For example, we would
prefer that our telnet server and clients encrypt an S/Key
session with the next key in sequence, or that our X server
use a well-defined static mapping function so that a given
client could be told, under program control, which logical
display on the bastion host to use. Hopefully, to the extent
that such features are generally useful for firewalls, they
will be incorporated into these components in the future.

We are using an off-the-shelf switching Ethernet bridge
for our packet filtering. As with most Ethernet bridges, it
was not designed with firewalls specifically in mind, and we
consequently faced several problems. The switch’s biggest
shortfall occurs during reboots. It begins forwarding pack-
ets before its filters are enabled. For approximately 30
seconds, the bridge forwards packets with no filtering. Fur-
thermore, carefully chosen packet sequences can crash the
bridge, so an intruder could intentionally crash the bridge
and wreak havoc during the window of opportunity.

To reduce the likelihood of such a break-in, we have
installed a simplified version of our filter in the router con-
necting our network to the rest of the campus network.
Because this machine is not under our administrative con-
trol, we choose not to depend on the router’s filters during
the normal course of events. However, it does provide an
added level of protection, and in particular, protects against
compromising our network while the bridge is rebooting.

Currently, even when the network is idle (fewer than
15 incoming packets per second), our filters block one or
two packets per second. These packets are usually not
breakin attempts but instead are benign packets such as
rwho packets, unauthorized multicast packets, SNMP, etc.

Our experience with the switch’s packet filtering per-
formance reveals that anyone deploying a firewall must
measure the actual packet latencies, which may not match
the manufacturer’s specifications. Our switch re-parses its
filtering rules for every incoming packet, and we conjecture
that our packet filtering rules are much larger than the man-
ufacturer expected. Without packet filters, the switch takes
about 6.4 microseconds to process each packet. Accord-
ing to the manufacturer’s specification, our filters should

8



add about 11.8 and 14.1 microseconds, tripling the to-
tal processing time. This overhead is still less than the
time it takes to transmit a minimum size Ethernet packet,
so if dispatching were done in parallel with transmission,
the firewall filters should introduce no additional latency.
However, actual measurements show that packet filtering
increases the round-trip delay per packet by approximately
180 microseconds. In addition, this increased processing
time also increases the average packet queue length in the
firewall during heavy load. Under load, the packet filter in-
troduces an average additional latency (including additional
waiting time on the queue) of 400 microseconds.

The expressive power of the filter rule language also
leaves much to be desired—to the point that we developed
a richer filter language of our own and an optimizing trans-
lator to the switch’s native inputs. Although these observa-
tions are based upon experiences with a single switch, poor
filtering performance is characteristic of most switches on
the market. Switch and router vendors rate their products on
packets-per-second throughput, ignoring the need for filter-
ing in today’s Internet. As switch manufacturers realize the
increasing importance of firewalls, we hope and expect that
such failings will be eliminated and that necessary features
will be added to better support firewall development.

6.2 Vulnerabilities of the SURF Firewall
The SURF firewall design faces three potential sources

of vulnerability: the open environment behind the firewall
and absence of outgoing packet filtering, the coarseness of
the incoming packet filter, and the potential for hijacking
otherwise acceptable connections. We feel that each of
these risks is either necessary to maintain an acceptable
research environment or is already present with traditional
firewalls.

Open Research Environment: The first risk arises be-
cause we do not restrict traffic between machines behind
the firewall and because we do not filter any outbound
packets. As a result, an intruder who penetrates the secu-
rity perimeter has unrestricted access to all internal hosts.
Moreover, once an intruder gains access to an internal host,
SURF does not prevent any outbound operation, including
data transfer. In effect, once it has been breached, the fire-
wall no longer offers any protection. However, any attempt
to ease these risks would significantly affect the openness
of our research environment and thereby make the firewall
unacceptable to our users.

At first, it might appear that having multiple physical
enclaves connected by secure IP tunnels (swIPe) is an ad-
ditional security risk. However, each enclave is surrounded
by its own trusted firewall; these firewalls can be identical.
Clearly, an attack that breaches one of these firewalls would
also have breached a single physical enclave. Furthermore,
the swIPe tunnels themselves are secure because we trust
the DES encryption that they use. Therefore, our multiple
physical enclaves do not introduce any additional risk.

Coarse-Grain Packet Filter: Our second risk comes from
the design of our incoming packet filters. We employ a
coarse-grain packet filter and rely on internal hosts to per-
form additional filtering. As a consequence, our packet
filter admits packets that may not in fact be responses to
outstanding requests. This policy potentially exposes us
to a denial-of-service attack flooding our internal network

with “nuisance” packets that internal hosts must subse-
quently process and drop. However, this risk is also not
significant. An intruder can flood any protected network
by discovering a packet which elicits a response from be-
hind the firewall. Obviously, a packet filter cannot protect
anything outside the LAN, such as the tail circuit or the
filtering hardware itself.

In trusting internal hosts to discard inappropriate pack-
ets and unsolicited responses admitted by the filter, we
must carefully choose the set of acceptable protocols that
the packet filter accepts. We might otherwise accidentally
admit Trojan Horse packets masquerading as responses
to one application but in fact are requests to another; a
poorly-written application may fail to implement end-to-
end checks to validate that incoming packets are actually
responses to outstanding requests. However, these risks
are known in advance, and before allowing a particular
application protocol through the firewall, the network man-
agers must determine that the benefits of admitting ap-
parent responses of the new protocol outweigh the addi-
tional masquerading risk. The vulnerability largely results
from limitations in the application protocols themselves
(and the semantics of UDP ports), and in the long-term,
these protocols should be redesigned, as discussed in Sec-
tion 7. In our current environment, the risks associated with
over-permissive response filtering are worth the benefits of
transparent access using off-the-shelf clients and servers.

Connection Attacks: Our final risk arises from potential
attacks to authorized connections through the firewall. TCP
sessions to external hosts are subject to hijacking, man-in-
the-middle, and eavesdropping attacks. In addition, NFS
requests to a compromised external fileserver may cause us
to read or execute intruder-supplied data. To address these
dangers, one must simply be careful in selecting which
applications are available to users. For example, one would
be foolhardy to permit an application through the firewall if
its response packets could obtain control of a shell running
inside the firewall.

SURF is also vulnerable to this class of attack because it
supports authenticated access through potentially insecure
hosts and networks outside the firewall. If a research group
member is travelling and gains legitimate access to our
internal machines from some machine, then that connection
is vulnerable to attack at any point outside our network.
By inserting himself between the user and the firewall, an
intruder can gain full access to our network. These risks
will only be eliminated in the future when portable “bastion
hosts” (personal devices capable of encrypted telnet) are
ubiquitous. However, the ability to log in while traveling is
so important that, for the moment, we trust the discretion
of our group members. When unable to plug their own
personal computers into the network, users are expected
to use one-time passwords, carefully choose the machines
they use to log in, and be aware of the risks of connection
eavesdropping and hijacking.

6.3 User Acceptance
Over the past eighteen months, user response to our

firewall has been generally positive. All common outgoing
services are implemented transparently, so most users are
completely unaware of the firewall until they need to access
internal resources from outside the firewall.

We have, unfortunately, discovered that many people

9



in research environments are unaware of network security
risks. Even those who are aware of the issues are reluctant
to change their behavior, either because they expect to face
considerable inconvenience or because they do not feel that
the risks are significant (“breakins happen everywhere else
but not to me”). As a result, we must educate new group
members about the importance of security, remind them to
explicitly separate public and private data, and train them
on how to access data through the firewall.

Most user complaints have centered around the support
for incoming access. Users complain about being required
to carry around a list of one-time passwords for S/Key
access. FTP access to secure machines from outside the
firewall is also a problem. Our filters disallow FTP con-
nections from outside the firewall, so users must log onto
a secure machine and then initiate the FTP from inside the
firewall. Finally, our filters block finger requests origi-
nating outside the firewall. We found that Internet users rely
on finger to provide telephone and address information.
To address these concerns, we plan to support finger on
one of the expendable hosts.

Although we have amassed a considerable body of ex-
perience dealing with one firewall, we do not yet have
experience with an environment where all groups are be-
hind their own academic firewall. File transfer between two
protected hosts would then presumably require staging on
some public machine; for truly sensitive data it would also
require encryption and, consequently, more user training.

Finally, the level of interest in firewalls has been notice-
ably lacking in academic circles, as evidenced by the dearth
of forums for exchanging firewall design ideas, issues, and
experiences. We see this as unfortunate because many
academic institutions are completely unprotected from net-
work attacks. As a result of the lack of interest and expe-
rience in this area, those who wish to design an academic
firewall have been largely on their own. As the Internet
grows and security becomes more of a concern, we ex-
pect interest in academic firewalls to grow. A greater body
of experience in this area will considerably ease firewall
deployment.

7 Protocol Design Issues
Given current application protocol design, we do not

believe that it is possible to implement a pure request-
response firewall policy. For example, we cannot deploy
request-response filters for FTP, rsh, and other protocols
that require back-channel connections. UDP-based ser-
vices, in general, are also not filterable: packet filters do
not maintain state information about previous packets, and
without that state, the filter cannot ascertain whether a given
UDP packet is a response to an outstanding request.

We address these protocol limitations in our currently-
deployed firewall by either dropping packets and causing
application-level failure or by providing application-level
gateways on bastion hosts. We believe that in the medium-
term, protocols will have to change to address problems like
spoofing and connection hijacking, as well as accommo-
date IPv6. We therefore examine what additional protocol
changes would allow a realistic packet filter to implement
a pure request-response policy.
7.1 TCP Back-Channels

A SYN filtering strategy works extremely well for TCP.
The only change we advocate to protocol designers and

implementors is that TCP-based protocols should never re-
quire applications to open a back-channel connection. The
problem here is obvious: a request-response filter allows a
SYN packet to go out through the firewall but drops the SYN
packet by which the external host requests a back-channel.
Although a TCP connection originating from outside the
firewall might be an application-level “response” to an FTP
or rsh request originating within the firewall, a stateless
packet filter has no way of knowing this.

Protocols like FTP and rsh use back-channels to create an
additional connection over which an application can send a
data stream that is, at the application level, asynchronous or
conceptually separate from the “main” application connec-
tion. FTP uses a back-channel to separate command and
data streams; rsh does it to separate UNIX stdout and
stderr. Where a service requires additional TCP con-
nections to implement the desired application semantics,
we see no reason why those additional connections must
be opened by the server. The same effect can be obtained
by having the server bind a local socket, find the local port
number, send that port number in an application-level mes-
sage to the client, and start a passive TCP open. The client
then initiates an active open to the specified port on the
server which is waiting for the client machine to connect.4
The result is functionally identical to having the server es-
tablish a channel to the client but without requiring a SYN
packet from the server through the firewall.

However, replacing TCP back-channels with active con-
nections is not an adequate solution for X, where the roles of
client and server are reversed. There is no channel between
the X server and any external process over which external
clients can bootstrap connections. Addressing this version
of the back-channel problem without using an application-
level gateway would therefore require far-reaching changes
to the X window protocol and is an area for future research.
7.2 Connectionless Protocols

Implementing a request-response filtering policy for
UDP-based protocols is far more difficult than for TCP.
Because there is no explicit connection, we cannot simply
filter connection requests: each UDP (and ICMP) packet
must be examined individually. Although a packet filter
should only admit packets containing responses to earlier
requests, individual packets generally do not carry enough
information for a filter to correctly determine whether a
packet is a request or a response. Moreover, the large
number of UDP-based application protocols makes such
protocol-specific packet processing unmanageable.

In addition, any filtering scheme that tries using well-
known UDP port numbers to determine the protocol type
of a packet is, at best, a heuristic. For example, consider a
packet from source address A and UDP port 161 (SNMP)
to destination machine B and UDP port 53 (DNS). This
packet could be a DNS request from A (not running an
SNMP server) with a DNS client coincidentally running
on port 161. The same packet could equally well be an
SNMP response from A, to a client coincidentally running
at port 53 on B, which is not running a DNS server. This

4The TCP specification [17] (page 45) requires that the server be able
to bind the client host as the foreign address on the local socket before
initiating the passive TCP open. However, the BSD socket API does
not provide this functionality, so the server must explicitly verify that the
accepted connection actually originated from the expected client host.

10



exact example is unlikely between two machines running
Unix because of the BSD reserved port semantics; how-
ever, it could easily arise when one of the endpoints has
been compromised, is running a UDP implementation that
has no notion of reserved ports, or is running an unfriendly
application (e.g. one that calls bindresvport()). A
filter rule therefore cannot use either the source or desti-
nation port numbers to determine the protocol type of a
given packet, which it needs in order to parse the packet
and classify it as a request or a response.

We conclude, therefore, that UDP port numbers are un-
reliable filtering criteria and UDP application protocols are
too varied for monitoring in a filter. To support a reliable
request-response filter, we must therefore either:

� Add a request-response bit to the UDP header (or
equivalently to a well-known location in all UDP pack-
ets) that applications set and receive with end-to-end
significance.

� Partition the UDP port space between clients and
servers.

With the first alternative, the packet filter does not need
to examine the source or destination ports. It simply drops
all inbound packets which have the request-response bit
set to “request.” The request-response bit must be avail-
able to the application so that servers can detect requests
masquerading as response packets.

With the second alternative, the filter uses the disjoint
client and server port spaces as an implicit request-response
bit by verifying that the packet is destined for a UDP port in
the client range. This approach assumes that all UDP im-
plementations honor the same port space partitioning. Par-
titioning the UDP port space between clients and servers
(e.g. above and below port 32678) can be implemented
straightforwardly in Unix kernels. Servers can always ex-
plicitly bind to a port in the server range. Clients must
allow the kernel to assign a local port, which would fall in
the client port space (32768 or above). By using a fixed cut-
point between the client and server portions, the filter rules
can use a simple comparison operator which can remain
unchanged even as new UDP application protocols are de-
ployed. The concept of “privileged” UDP ports would be
abolished. The 4.4-BSD implementation attempts to parti-
tion its UDP port space: otherwise unspecified local ports
are bound in the range 1025–5000; however, this range
is not honored on other systems and overlaps with many
IANA-assigned registered ports.

Even with a firewall that discards all inbound UDP pack-
ets marked as requests, external hosts can still send anything
they want to a client port. Ultimately, only applications
themselves have sufficient knowledge and state to perform
exact request-response filtering. For example, only the
client can detect and discard unsolicited responses from
external hosts, as only the client knows exactly which re-
quests are still outstanding. UDP applications receiving a
request packet on a client port must treat the packet as an
invalid protocol operation.

Of course, the final approach to re-designing UDP pro-
tocols is to discard UDP in favor of an explicit transaction-
oriented protocol. Either VMTP [2] or transactional
TCP [1] would allow exact request-response filtering.
VMTP has an explicit request-response bit in the header,

while with transactional TCP, we can again apply TCP SYN
filtering. However, to the best of our knowledge, neither
protocol has ever seen production use, and transactional
TCP is also unable to address the second use of UDP—
namely IP multicast traffic.

7.3 Multicast traffic
We currently see no way to apply the request-response

filtering policy for IP multicast applications. In most mul-
ticast applications, it is not even meaningful to attempt to
classify packets as either requests or responses. Applica-
tions use multicast for a wide range of purposes, such as
resource location, one-to-many request-response, informa-
tion dissemination, and peer-to-peer conferencing. Differ-
ent applications can use the same multicast address simul-
taneously without restriction. Even within a single applica-
tion, a single multicast address can be used simultaneously
for different purposes.

Consider Van Jacobson’s wb [13] application as an ex-
ample. This distributed whiteboard is a peer-to-peer appli-
cation in which each participant subscribes to,and transmits
on, a single multicast address. Though the protocol treats
all hosts symmetrically, we can classify individual packets
as unsolicited information dissemination (for advertising
local additions to the shared whiteboard), one-to-many re-
quests (for requesting the retransmission of a previous dis-
semination), or one-to-many responses (in which some host
near the requesting host re-transmits the requested data). A
packet filter cannot discriminate between these different
uses of the multicast address without having considerable
application-specific knowledge.

Furthermore, filtering any of these three classes of pack-
ets would significantly disrupt a wb session. If the dissem-
ination packets are dropped, then local clients only see the
locally-contributed whiteboard data. If the retransmission
request packets are dropped and only local hosts possess the
requested data, then no outside participant will ever see that
data. Even if the data is available elsewhere, the inability
of local hosts to provide the data introduces an artificial la-
tency into the recovery process because more distant hosts
wait to see if hosts near the requester will answer first. Fi-
nally, if retransmission responses are dropped, then local
hosts may again never see all available whiteboard data.
Packet filtering must therefore be all-or-nothing on a per-
application basis, meaning that the firewall would need to
be informed about the multicast address used by each active
application session.

Filtering on a per-multicast address basis is not secure,
however. Because multiple applications may coinciden-
tally use the same multicast address simultaneously, multi-
cast applications themselves currently use heuristics to dis-
tinguish their own packets from those of other applications.
These heuristics typically search for private application and
session signatures in every received packet. Packets that
do not have the appropriate signatures are dropped. Any
packet admitted by the filter may be delivered to several
different applications behind the firewall, and we cannot be
sure that each of them will properly discard inappropriate
packets. Because the application-level signatures are only
a heuristic, we face the same masquerading problem as for
unicast; however, the number of potential application-level
protocol interactions is considerably higher with multicast
than with unicast. Consequently, without any further guar-

11



antee about how applications handle foreign packets, we
must drop all inbound multicast packets.

IP multicast is relatively new, and its implementation
and delivery semantics at endpoint hosts are still in flux. In
addition, most existing IP multicast-based applications are
still undergoing development. We regard this as a perfect
opportunity to develop a new non-UDP protocol above IP
multicast that provides reliable end-to-end application and
session authentication. Only when such a protocol is avail-
able can we trust endpoint applications to reliably discard
unexpected packets. Development of such a protocol is an
area of on-going research.

8 Conclusion
The SURF design meets the needs of research environ-

ments. The firewall has three basic elements:

Request-Response Policy: Incoming packets are dropped
unless they can be directly linked to a request origi-
nating inside the firewall.

Public Image: Use of expendable hosts and conscious se-
lection and physical separation of public data and
private data.

Virtual Enclaves: Linking isolated,mutually trusting host
groups, each protected by their own security perimeter,
using an IP tunnel.

As a consequence, the firewall is largely transparent to
trusted users and therefore retains the sense of “openness”
critical in a research environment. This transparency and
perceived openness actually increase security by eliminat-
ing the temptation for users to bypass our security mecha-
nisms.

Our implementation experience demonstrates that a re-
search firewall can be constructed with low costs in ac-
quisition and maintenance. Because our implementation
required no modifications to any operating system kernel,
it can be used to protect a heterogeneous set of machine
architectures. Indeed, our research environment includes
workstations from at least seven vendors. Furthermore,
our use of general-purpose software and hardware compo-
nents allows individual groups to easily customize the set
of exported network services and accepted connections.

In deploying our firewall, we have reduced our research
group’s outside dependencies. We have functioned virtu-
ally unaffected even during failures of the campus name-
servers and routers and during occasional broadcast packet
“storms” caused by misconfigured hosts on the campus net-
works. For example, by servicing DNS requests from their
caches, our internal nameservers can still function during
network outages; internal electronic mail delivery is obliv-
ious to the outside network’s existence. We feel that the
fault-tolerance granted by this autonomy is truly valuable.

However, our experience has also revealed that many
existing application protocols are not designed to oper-
ate within a secure network environment. We have out-
lined how protocols might be modified to better fit within a
request-response paradigm and therefore obviate the need
for application-level proxies on bastion hosts. Ideally, the
request-response policy could be enforced entirely by the
packet filter, with bastions only used to implement the vir-
tual enclave. This protocol re-design is an area of on-going
research.

We observe that implementation of a security policy
shares many of the same issues faced in mobile computing
environments. In both cases, one seeks to support the auton-
omy of several “enclaves” while still supporting commu-
nication between those disconnected machines. Moreover,
office environments are seeing increased use of wireless
LANs, so security policies must adapt to protect such envi-
ronments. We are exploring how secure IP tunneling might
be replaced with the encrypted IP used in mobile environ-
ments, and we are also exploring how a wireless computing
environment would affect security policy.

Rather than using statically-set filter rules, we are con-
sidering a security perimeter in which internal hosts dynam-
ically program the filter to control which packets are ad-
mitted. Dynamic filtering would allow implementation of
an exact request-response filtering policy. It introduces the
cost and complexity of a protocol allowing applications to
add and remove filter “rules” (i.e. UDP source/destination
address/port four-tuples), and timely removal of stale rules
left by applications and hosts that crash. Dynamic filter-
ing obviates the need to modify existing protocols, but it
requires substantial changes to all application implementa-
tions. We intend to investigate whether this is an effective
tradeoff, particularly for connection-oriented networks.

In designing the SURF firewall, we have identified that
network security for research institutions is a problem in
its own right and that traditional corporate firewalls impose
excessive restrictions. Research firewalls represent a dif-
ficult three-way tradeoff between perceived security risks,
user desires for an open research environment, and im-
plementation difficulty. While corporations also face this
tradeoff, security usually overshadows all other concerns.
Such choices are simply not as clear-cut within research
institutions.

Acknowledgements
We are indebted to numerous individualswho enabled us

to implement our firewall using off-the-shelf components:
John Ioannidis, Neil Haller, MIT project Athena, and Steve
Crocker, Marcus J. Ranum, and others at Trusted Informa-
tion Systems. Because these individuals made their respec-
tive software available for non-commercial use, we were
able to focus on the design and policy needs of a research
environment. In this spirit, we have made our locally-
developed software available for anonymous FTP from
gregorio.Stanford.EDU in /pub/firewall/.

Our firewall development resulted from enormous effort
by several other members of our research group, particu-
larly Ken Duda, Hugh Holbrook, and Mark Steiglitz. This
paper benefited greatly from feedback of our colleagues—
particularly Mary Baker, Stuart Cheshire, and Craig Par-
tridge.

The authors were supported by ARPA under contract
DABT63-91-K-0001. Michael Greenwald was supported
by a Rockwell Fellowship. Sandeep Singhal was supported
by a Fannie and John Hertz Foundation Fellowship.

Appendix A Filter Rules
Figure 4 illustrates the filter rules used to implement our

security policy discussed in Section 2. If a filtered protocol
is needed for our research or for a particular application,
then we either run the process on an expendable machine
or establish a proxy on a bastion and change the filters.

12



References
[1] Braden, Bob. “Extending TCP for Transactions.” Internet

RFC 1379, November 1992.

[2] Cheriton, David R. “VMTP: A Transport Protocol for the
Next Generation of Communication Systems.” In Proceed-
ings of SIGCOMM 1986, Pages 406–415, Stowe, VT, Au-
gust 1986. ACM SIGCOMM. Published as Computer Com-
munications Review 16(3), October 1986.

[3] Computer Emergency Response Team. “Sun Sendmail Vul-
nerability.” CERT Advisory CA:90:01, January 1990.

[4] Computer Emergency Response Team. “Sendmail Vulnera-
bility.” CERT Advisory CA:93:16, November 1993.

[5] Computer Emergency Response Team. “Ongoing Network
Monitoring Attacks.” CERT Advisory CA-94:01, February
1994.

[6] Computer Emergency Response Team. “Sendmail Vulnera-
bilities.” CERT Advisory CA:94:12, July 1994.

[7] Computer Emergency Response Team. “IP Spoofing At-
tacks and Hijacked Terminal Connections.” CERT Advisory
CA:95:01, January 1995.

[8] Computer Emergency Response Team. “Sendmail v.5 Vul-
nerability.” CERT Advisory CA:95:08, August 1995.

[9] Computer Emergency Response Team. “Sendmail Vulnera-
bilities.” CERT Advisory CA:95:05, February 1995.

[10] Computer Emergency Response Team. “Sun Sendmail -oR
Vulnerability.” CERT Advisory CA:95:11, September 1995.

[11] Computer Emergency Response Team. “Syslog
Vulnerability–A Workaround for Sendmail.” CERT Advi-
sory CA:95:13, October 1995.

[12] Crocker, David H. “Standard For the Format of ARPA In-
ternet Text Messages.” Internet RFC 822, August 1982.

[13] Floyd, Sally, Van Jacobson, Charley Liu, Steven McCanne,
and Lixia Zhang. “A Reliable Multicast Framework for
Light-Weight Sessions and Application-Level Framing.” In
Proceedings of SIGCOMM 1995, Pages 342–356, Cam-
bridge, MA, August 1995. ACM SIGCOMM. Published as
Computer Communications Review 25(4), October 1995.

[14] Ganesan,Ravi. “BAfirewall: A Modern Firewall Design.” In
Proceedings of the Internet Society Symposium on Network
and Distributed Systems Security, Pages 99–108,San Diego,
CA, February 1994. Internet Society.

[15] Germain, Ellen. “Guarding Against Internet Intruders.” Sci-
ence, 267:608–610, February 1995.

[16] Haller, Neil M. “The S/Key One-Time Password System.” In
Proceedings of the Internet Society Symposium on Network
and Distributed System Security, Pages 151–157,San Diego,
CA, February 1994. Internet Society.

[17] Information Sciences Institute. “Transmission Control Pro-
tocol.” Internet RFC 793, September 1981.

[18] Ioannidis, J. and M. Blaze. “The Architecture and Imple-
mentation of Network-Layer Security Under Unix.” In UNIX
Security Symposium IV Proceedings, Pages 29–39, Santa
Clara, CA, October 1993. USENIX Association.

[19] Kohl, John and B. Clifford Neuman. “The Kerberos Network
Authentication Service (V5).” Internet RFC 1510, Septem-
ber 1993.

[20] Mills, David L. “Network Time Protocol (version 3) Speci-
fication, Implementation.” Internet RFC 1304, March 1992.

[21] Mockapetris, Paul V. “Domain Names - Implementation and
Specification.” Internet RFC 1035, November 1987.

[22] Myers, John G. and Marshall T. Rose. “Post Office Protocol -
Version 3.” Internet RFC 1725, November 1994.

[23] Neuman, B. Clifford and Theodore Ts’o. “Kerberos: An Au-
thentication Service for Computer Networks.” IEEE Com-
munications, 32(9):33–38, September 1994.

[24] Scheifler,Robert W. and James Gettys. “The X Window Sys-
tem.” ACM Transactions on Graphics, 5(2):79–109, April
1986.

[25] Sun Microsystems, Inc. “RPC: Remote Procedure Call Pro-
tocol Specification: Version 2.” Internet RFC 1057, June
1988.

[26] Sun Microsystems, Inc. “NFS: Network File System Speci-
fication.” Internet RFC 1094, March 1989.

[27] Violino, Bob. “Break-Ins Are Rife: Survey Suggests an
Epidemic of Internet Hacking.” Information Week, 268:98,
9 Oct 1995.

All CERT Advisories are published by the CERT Coordination
Center, Software Engineering Institute, Carnegie-Mellon Univer-
sity, Pittsburgh, PA. They are available by anonymous FTP from
cert.org.

All Internet RFCs are published by the USC Information Sci-
ences Institute, Marina Del Rey, CA. They are available by anony-
mous FTP from venera.isi.edu.

13



Source Address
is Internal Host

No

Yes

ARP (note d)

Has IP
options

Protocol Type

IP

Yes

No

IGMP

Secure IP
Encapsulation

(swIPe)

(MBone)
(note c)

Encapsulated
Multicast

Other

ICMP

NoYes

ICMP ping/redirect

UDP

Certain trusted
protocols
(note b)

UDP fragments,
other than first

(note a)

(NTP, DNS, Kerberos)

Directable to
bastion host

No Yes

Yes

No

Open request
from other than

bastion host

TCP

Yes No

Packet Type

Other

(a) We filter the first UDP fragment and assume that later fragments are useless without the first.
(b) We treat certain protocols as safe and allow those packets through to every host. These protocols are not listed here

because they would then become a target and no longer be safe.
(c) Rejecting all IP multicast packets is acceptable because all multicast applications can be run on expendable hosts. If a

multicast application were to be selectively enabled, then corresponding IGMP packets must also be allowed.
(d) We currently accept ARP responses from our network gateway, which is located on the other side of the firewall. The

gateway is also under someone else’s administrative control, so its Ethernet interface could be changed without our
knowledge. (We would need to be informed if its IP address changed.) If our packet filter were implemented in a router,
then we could filter all ARP packets.

Figure 4: Filtering Rules for Processing Incoming Packets

14


