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Abstract

Recent papers have demonstrated the use of force �elds for mechanical part orientation.
The force �eld is realized on a plane on which the part is placed. The forces exerted on
the part's contact surface translate and rotate the part to an equilibrium orientation. Part
manipulation by force �elds is very attractive since it requires no sensing. We describe force
�elds that result from elliptic potentials and induce only 2 stable equilibrium orientations
for most parts. The proposed �elds represent a considerable improvement over previously
developed force �elds which produced O(n) equilibria for polygonal parts with n vertices.
The successful realization of these force �elds could signi�cantly a�ect part manipulation in
industrial automation.

1 Introduction

Part orientation is an important and time-consuming operation in manufacturing. Parts and,

in particular, small parts arrive at the assembly site in boxes, and they have to be sorted before

they can be used in the manufacturing cycle. Traditionally part orientation has been performed

with Vibratory Part Feeders [7]. These are mechanical devices designed for the orientation of a

single part or of a small number of parts. They rely on a vibratory motion to force parts inside

tracks that have built-in mechanical �lters. These �lters allow only the parts with the right

orientation to go through them.

The automation of the sorting process has recently attracted a lot of attention. Goldberg

[5] showed how to orient a part with the use of parallel jaw grippers. The approach requires

no sensing since the gripper actions have no feedback. In [5] it is proved that the shortest

sequence of gripper actions that orient a part with O(n) vertices can be found with an O(n2 logn)

algorithm. The orientation is done up to symmetries of the convex hull of the part. The length

of the orientation sequence is O(n2).

B�ohringer et al. [1, 2, 3, 4] have investigated the use of force-�elds for part orientation. The

force �eld is realized on a plane and the part is placed on this plane with one of its surfaces

touching the plane. The force exerted on that surface makes the part translate and rotate on

the plane. Part orientation by force �elds is very attractive since it requires no sensing. In [4]

Microfabricated Actuator Arrays (MEMS) are used to implement force �elds for part orientation.
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In that paper, the authors developed the concept of \squeeze" �elds. These �elds can orient

parts in a way similar to the way that a parallel jaw gripper orients parts. In [2, 3] \squeeze" and

\radial" �elds, as well as general manipulation strategies for part orientation are investigated.

In the same papers, it is demonstrated that microelectromechanical structures are capable of

implementing some of these force �elds. Liu et al. [6] have also worked with the concept of a

dense array of programmable mechanisms. They call their array an \intelligent motion surface".

They explore the capabilities this surface and MEMS technologies for implementing it. It is

worth noting that force �elds may also be realized through di�erent technologies. For example,

[1] investigates the use of vibratory plates to create certain force �elds.

This paper shows that elliptic potentials can generate force �elds that induce a constant

number of equilibrium placements for most parts. In particular, it is shown that \asymmetric"

parts (see discussion in section 2.4) have only 2 stable equilibria in the proposed force �elds.

This result represents a considerable improvement over previously considered force �elds which

induced O(n) equilibria for polygonal parts with n vertices [3]. Furthermore, the analysis pro-

vides a way to take into account properties of the part (for example, varying friction coe�cients

over its contact surface or its weight), provided that a good model for these is available. The

equilibrium placements of a part can be computed a priori with numerical methods or, in certain

cases, analytic calculations. Our work makes no assumptions about the shape of the part to be

manipulated or its connectivity. The only assumption made is that the part has a surface in

contact with the force �eld and also that the part is rigid: even if it consists of multiple bodies,

these bodies are considered rigidly attached to each other. The realization of the proposed force

�elds is challenging. At a microscopic level, it may be possible to implement these �elds in the

future with MEMS technology [2, 3]. At a macroscopic level, one can imagine the implementa-

tion of these �elds with an array of motors (see also section 3). Borrowing our terminology from

physics, we refer below to parts as \mass" distributions over R2. The discussion in section 2 is

general. Its implications for part orientation are discussed in section 3.

2 Equilibrium Placements in Elliptic Potential Fields

Let w : R2! R be a \mass" distribution function. For our analysis we require that w(x; y) � 0,

for x; y 2 R, and W =
R
R2
w(x; y)dxdy <1. Let us also call

c = (cx; cy)
> =

1

W

Z
R2

(x; y)>w(x; y) dx dy (1)

the \center of mass" of the distribution w, and de�ne the following quantities if w:

smn = smn(w) =

Z
R2

xmynw(x; y) dx dy: (2)

Only s11, s20 and s02 will be relevant in our discussion and we assume that they are �nite.

We shall investigate the conditions for equilibrium for the mass distribution w in the presence

of a force �eld F : R2! R
2. It is assumed that the force �eld F is realized in a plane in such a

way that the force exerted on a domain 
 � R2 is
R


F(x; y)w(x; y)dxdy.
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We are interested in knowing which placements of a given mass distribution in a �xed force

�eld (of a very speci�c type) give rise to equilibrium. For convenience we assume that the

distribution is given at an initial position where c = 0 and, from now on, we use the notation

r = (x; y)>. By \a placement of w(r)" we mean a mass distribution of the type w(A�r + t),

where the matrix A� is rotation by � 2 [0; 2�) and t 2 R2 is a translation vector. The force �eld

F under consideration will be chosen so that the number of equilibria of w in F, i.e. the number

of parameters (�; t), is as small as possible.

2.1 Equilibrium conditions

For a mass distribution to be in equilibrium we require that (a) the total force exerted on the

distribution is zero and (b) the total moment about, say, the origin is zero. That is, we require

that the following two equations hold:Z
F(r)w(r) dxdy = 0; (3)

and Z
F(r)� rw(r) dx dy = 0; (4)

where from now on all integrals extend over R2.

2.2 Elliptic potential �elds

With hindsight we consider a force �eld of the type

F(x; y) = (��x;��y); (5)

where � and � are two distinct positive constants. Figure 1(a) displays one such force �eld with

� = 1 and � = 2. The magnitude of the force exerted at (x; y) is also plotted in Figure 1(b).

Note that this vector �eld is the negative gradient of the elliptic potential

f(x; y) =
�

2
x2 +

�

2
y2:

This potential is plotted in Figure 2, for � = 1 and � = 2. The use of potential �elds for

manipulation tasks was proposed in [2, 3].

2.3 Force equilibrium

If cx =
1

W

R
xw(x; y) dx dy and cy =

1

W

R
yw(x; y) dx dy are the coordinates of the center of mass

of w (see (1) above), the total force exerted on w, given by the left hand side of (3), is equal to

(��Wcx;��Wcy):

Condition (3) is thus equivalent to the center of mass of the distribution w being equal to 0.

But the center of mass of the general distribution w(A�r+ t) in our class is clearly t, therefore,

in looking for equilibrium placements of w, one only needs to consider the placements of the

type w(A�r).
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Figure 1: (a) Force �eld for � = 1 and � = 2, (b) Magnitude of the force of the same �eld.

-2
-1

0
1

2

-2

-1

0

1

2
0

1

2

3

4

5

xy

Figure 2: Elliptic potential for � = 1 and � = 2.
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2.4 Force and moment equilibrium

Having established that all distributions of the type w(A�r) satisfy condition (3) we now pass

to the investigation of condition (4). It will turn out that, for \most" mass distributions w and

for whatever distinct positive values of � and �, there are exactly 4 values of � for which (4)

holds.

The matrix A� is equal to

 
cos � � sin �

sin � cos �

!
. Making the change of variable (u; v)> =

A
��(x; y)

> and renaming the variables u; v again as x; y, the total moment of the mass distri-

bution w(A�r) becomes

M =

Z
F(r)� rw(A�r) dx dy

=

Z
F(A

��r)� (A
��r)w(r) dx dy

=

Z �������
i j k

��(x cos � + y sin �) ��(�x sin � + y cos �) 0

x cos � + y sin � �x sin � + y cos � 0

�������w(x; y) dx dy
=

Z
(� � �)(x cos � + y sin �)(�x sin � + y cos �)w(x; y) dx dy � k

=

Z
(� � �)(�x2 cos � sin � + xy cos2 � � xy sin2 � + y2 cos � sin �)w(x; y) dx dy � k

= (� � �)

Z �
(y2 � x2)

sin 2�

2
+ xy cos 2�

�
w(x; y) dx dy � k

= (� � �)

�
sin 2�

2

Z
(y2 � x2)w(x; y) dxdy+ cos 2�

Z
xy w(x; y) dx dy

�
� k:

Thus, since � 6= �, we have M = 0 if and only if

s02 � s20

2
sin 2� + s11 cos 2� = 0: (6)

Equivalently, we want the vectors (cos 2�; sin 2�) and (s11;
1

2
(s02 � s20)) to be orthogonal. We

now have to distinguish two cases.

Symmetry: s11 = 0 and s02 = s20.

Clearly in this case (6) is satis�ed for all � 2 [0; 2�) and we have equilibrium regardless of

orientation.

Asymmetry: s11 6= 0 or s02 6= s20.

When � goes from 0 to 2� the vector (cos 2�; sin 2�) traverses the unit circle twice. The two

vectors, (cos 2�; sin 2�) and (s11;
1

2
(s02 � s20)) will be orthogonal for exactly 4 values of �, say

�1 = �0, �2 = �0 + �, �3 = �0 +
�
2
, and �4 = �0 +

3�
2
. In addition, either the �rst pair of them is

stable and the second unstable, or vice versa. The reason is that the sign of the left hand side

of (6) determines the direction in which momentM rotates the mass distribution. If this sign is

positive, M rotates the mass distribution counter-clockwise, else the rotation is done clockwise.

5



While (cos 2�; sin 2�) is rotated around the vector (s11;
1

2
(s02�s20)) the sign of the left hand side

of (6) changes after the two vectors attain an orthogonal orientation. Hence, we observe sign

changes of the left hand side of (6) for the 4 values of � given above. Let �1 and �2 be the roots

of (6) for which the sign of its left hand side changes from a positive value to a negative value

while moving in a counter-clockwise direction. Then these values indicate stable equilibrium

placements of the mass distribution, since M will force the mass at the same equilibrium after

a small rotational perturbation. In this case, �3 and �4 are unstable placements since after a

small perturbation around them, M will rotate the mass away from �3 or �4, to one of �1 or �2.

In summary we have proved the following.

Theorem 1 Let w : R2! R be a nonnegative \mass" distribution with �nite sij with i+ j � 2

and whose \center of mass" is at 0, and let F(x; y) = (��x;��y), with � 6= �, � > 0, � > 0,

be the underlying force �eld.

Symmetry: If s11 = s20� s02 = 0 the \mass" distribution w(A�r+ t) is at (force and moment)

equilibrium whenever t = 0.

Asymmetry: Otherwise, the distribution w(A�r+ t) is in equilibrium only when t = 0 and for

exactly 4 distinct values of � 2 [0; 2�). These 4 values of � are �
2
apart and only 2 of them, say

�0 and �0 + �, represent stable equilibria, the others, �0 +
�
2
and �0 +

3�
2

being unstable.

3 Part Orientation

In practice, we seek to orient a part of �nite shape with the use of the force �elds described in

the previous section. If w(x; y) is the support function of the part, then all the requirements of

Theorem 1 are satis�ed. It is also very easy to compute with numerical techniques the values of

s11, s20, and s02 and predict, for a given part, whether it will have 2 stable equilibria in the force

�eld considered. The equilibrium orientations can also be calculated. Note that the equilibrium

placements of a part are independent of � and �.

In many cases it is clear that a part will have many equilibrium orientations. For example,

consider a part whose contact surface with a force �eld is a regular n-gon. This part will be at

equilibrium when its \center of mass", as de�ned above, is at 0 no matter what its orientation

is. The \center of mass" in this case is the center of its n-gon contact surface. Suppose now

that the part had only two equilibria �0 and �0 + � and that the part is at equilibrium �0. If

we rotate the part by 2�
n

then we should have an equilibrium again, due to the symmetry of

the part. Hence, since this part can not have only two equilibrium orientation it must be in

equilibrium for any value of �, according to Theorem 1. Indeed, for this part, it can be shown

that s11 = s20 � s02 = 0.

Importantly, our analysis provides a way to take into account properties of the part. If, for

example, the friction coe�cient is varying over the contact surface of the part, then w can be

used to encode this information. Or, if there is a simple relation between the weight of the

part above (x; y) and the force exerted at (x; y), then w can be used to represent this relation.

In general, provided that a good model is available, the use of w can be of great practical

importance.
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The realization of these force �elds presents us with a challenge. At a macroscopic level,

it may be possible to implement these �elds with a n � n array of motors, each of which has

the orientation of the force it should exert. The magnitude of the force needs to be controlled

individually. At a microscopic level, it may be possible to implement such an array in the future

with MEMS technology [4, 2, 3]. If the magnitude and orientation of the force exerted by every

pixel in this array can be controlled, the realization of these �elds will be easy: every pixel will

instructed to exert a force with Fx coordinate equal to � multiplied by the x coordinate of the

pixel exerting the force, and Fy coordinate equal to � multiplied by the y coordinate of the pixel.

If it is only possible to specify a force in one of the x or y directions at each pixel, then two

arrays, one controlled only in the x direction and the other controlled only in the y direction

can be \interleaved". If the arrays are dense, the resulting force will be a force with the desired

magnitude and direction. Once a single array is constructed, it can be used for orienting many

parts. In fact, since the �nal orientation of a part can be predicted beforehand, the orientation of

the array can be changed so that the part will end up in the desired orientation for the assembly

task.
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