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Abstract

The appeal of automatic formal veri�cation is that it's automatic | minimal hu-

man labor and expertise should be needed to get useful results and counterexamples.

BDD(binary decision diagram)-based approaches have promised to allow automatic

veri�cation of complex, real systems. For large classes of problems, however, (includ-

ing many distributed protocols, multiprocessor systems, and network architectures)

this promise has yet to be ful�lled. Indeed, the few successes have required exten-

sive time and e�ort from sophisticated researchers in the �eld. Clearly, techniques

are needed that are more sophisticated than the obvious direct implementation of

theoretical results.

This thesis addresses that need, emphasizing an application domain that has been

particularly di�cult for BDD-based methods | high-level models of systems or dis-

tributed protocols | rather than gate-level descriptions of circuits. Additionally, the

emphasis is on providing useful debugging information for the designer rather than

on certifying correctness. Accordingly, I only consider a simple veri�cation paradigm

(that all reachable states of a system satisfy a propositional logic formula) and seek to

make it applicable to complex, real systems, rather than devising theoretically more

complicated veri�cation paradigms.

I identify several common obstacles to BDD-based automatic formal veri�cation

and propose techniques to overcome them. Speci�cally, (1) I consider the di�culty of

specifying realistic high-level designs using BDDs and give a set of high-level language

constructs and the accompanying algorithms for automatic translation that are ex-

pressive enough to specify real designs, yet are still e�ciently handled by BDDs; (2) I

describe how to compute images (pre- and post-conditions) of sets of states e�ciently
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through the high-level description of the system being veri�ed without ever building

the BDD for the transition relation of the system, thereby avoiding a major BDD-size

blowup; and (3) I highlight why BDD-size blowup is so common when performing

high-level veri�cation and propose techniques based on functional dependencies and

on implicitly conjoined lists of BDDs to avoid some of these blowups. I have imple-

mented these techniques in the Ever veri�cation system and applied them to several

examples, illustrating the e�ectiveness of the new techniques in expanding the range

of problems that can routinely be veri�ed automatically.
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Chapter 1

Introduction

Chapter Overview

This chapter motivates my emphasis on automatic veri�cation as a practical debug-

ging tool, situates my approach as a state-exploration or model-checking approach

rather than a theorem-proving one, and provides basic background on CTL model-

checking, binary decision diagrams (BDDs), and how to use BDDs for my veri�cation

problem.

1.1 Motivation and Philosophy

Bugs cost money. Whenever an error creeps into a design, time and money must be

spent to locate the problem and correct it, and the longer a bug evades detection,

the harder and more expensive it is to �x. Indeed, the cost of making an engineering

change rises by an order of magnitude at each successive stage of the design cycle [78].

Beyond the high cost of �xing bugs is the even higher cost of being late to market | a

McKinsey and Company study indicates that being only six months late on a product

with a �ve year life cycle results in one-third less total pro�t [25]. Should a bug slip

through into the completed product, the results can be disastrous. For example, the

Pentium FDIV public relations �asco cost Intel Corporation a half billion dollars [40].

Detecting and eliminating bugs as early in the design cycle as possible is clearly an

1



2 CHAPTER 1. INTRODUCTION

economic imperative.

Working against this imperative, however, is the engineering reality that systems

are becoming ever larger and more complicated. A person can no longer gain a

reasonable assurance of correctness by simply staring at and thinking about a paper

design. Worse, as design complexity increases, simulation times become prohibitive

and coverage becomes poor, allowing numerous bugs to slip through to later stages

of the design cycle. What is needed, therefore, is an aid to developing conceptually

correct designs to start with and a supplement to simulation and testing in debugging

the implementation of the conceptual design.

My interest in formal veri�cation is to meet this need. Note that my motivation

is explicitly economic. I have made no appeals to safety-critical systems, saving lives,

or the moral superiority of proving systems correct. I do not discount the importance

of such work. Indeed, I believe that safety-critical systems demand the most rigorous

assurances of correctness available, especially when my own safety is at stake. But

I also believe that for an enormous range of practical, real problems, pure �nancial

pro�t is a compelling motivation to use formal veri�cation as a debugging tool to

speed a product to market, and my research focuses on this domain. Condensed to a

slogan, my research aims to save money, not lives.1

Adopting a purely economic justi�cation for formal veri�cation has consequences.

Fundamentally, the time and labor invested in veri�cation must repay itself by helping

the designer �nd and correct bugs quickly. Therefore, the emphasis must be on

methods that are easy-to-use and highly automatic to minimize the time and labor

invested and that provide counterexamples to help the designer �nd and correct the

bugs. Furthermore, veri�cation should be applied as early in the design cycle as

possible, when bugs are cheaper and easier to �x. The goal is rapid, light-weight

debugging support, rather than slow, laborious certi�cation of correctness.

1For readers interested in safety-critical systems, Leveson [60] provides a comprehensive

introduction.
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1.2 Background

The goals of designing correct systems and �nding and correcting bugs have been

around for as long as people were designing systems. The idea of using formal methods

to help these goals have been around almost as long.

1.2.1 Proof-Based Methods2

\In the beginning, there was Floyd."3 Floyd introduced the �rst rigorous treatment

of correctness of sequential programs [31]. The basic idea is to annotate each point

in a program with an assertion. The program computes the correct result if (1)

it terminates, (2) the state of the system before the program executes satis�es the

assertion at the start of the program, (3) for each statement in the program, we can

prove that the truth of the assertion before the statement implies the truth of the

assertion following the statement, and (4) the assertion at the end of the program

implies the result is correct. Of particular relevance to my work is Floyd's notion of

a strongest veri�able consequent: Given an assertion that holds before a statement,

the strongest veri�able consequent is the strongest assertion that must hold after

executing that statement. Furthermore, Floyd gives rules to compute the strongest

veri�able consequent automatically for several programming-language constructs and

notes that these rules allow fully automatic veri�cation in the absence of loops. We

will see these ideas again later in this thesis.

An extensive array of formal treatments of program correctness have sprung from

this start. Hoare reworked Floyd's ideas into a logical framework, introducing the

notation PfQgR to denote the statement: If assertion P (the precondition) holds

2The terminology is somewhat problematic, since all formalmethods are \proof-based" in that, by

de�nition, they produce some sort of mathematical proof. I am stealing this terminology from Long,

who contrasts \proof-based methods" | which emphasize the construction of a proof of correctness

via axioms and inference rules for the speci�cation language used | to \state-exploration methods"

| which search the state space of an implementation to check that it satis�es its speci�cation [62].

Emerson draws a similar distinction, labeling them \proof-theoretic" and \model-theoretic" [28].
3Quotation is from Lamport [58], referring to Floyd's seminal work [31].



4 CHAPTER 1. INTRODUCTION

before program Q executes, then assertion R (the postcondition) holds after Q com-

pletes [39]. An idea relevant to my thesis is that Hoare de�ned his axiom for as-

signment backwards from Floyd's | whereas Floyd starts from the precondition and

computes the strongest veri�able consequent, Hoare starts from the postcondition

and gives a means to compute the precondition. Dijkstra expanded in this direction,

introducing the notion of the weakest precondition wp(S;R), which is the weakest

assertion about the state prior to the execution of program (or program fragment)

S that guarantees that assertion R will hold afterwards [26]. Furthermore, Dijk-

stra provided rules to compute the weakest precondition of a program constructed

from assignment statements and guarded command sets (which provide if-then-else,

non-deterministic choice, and looping) by recursively propagating weakest precondi-

tions backward through the structure of the program. (In the absence of loops, this

approach also gives fully automatic veri�cation.) Pratt's introduction of dynamic

logic [79] uni�ed earlier work in a clean conceptual framework that has served as

the foundation for considerable further research, which lies beyond the scope of this

thesis. Kozen and Tiuryn [56] and Cousot [24] provide recent surveys of this area.

The above methods were all designed to deal with programs that compute a result

and then terminate, sometimes called transformative programs. In contrast, many

important applications, generally referred to as reactive systems, are considered not

to terminate: for example, operating systems, controllers, communication protocols,

and hardware systems. Instead, correct behavior means the system is maintaining a

continuing dialog with its environment. Thus, a di�erent logical formalism is better

suited to these applications.

Temporal logic has emerged as a main formalism for reactive systems. A temporal

logic is essentially an ordinary predicate or propositional logic with the addition of

modal operators for describing how the interpretation of symbols changes over time.

Typical temporal operators include the next-time operator (generally written 
 or

X), the eventuality operator (generally written 3 or F), and the henceforth or always

operator (generally written 2 or G). For example, the sentence p asserts that p holds

in the current state, the sentence Xp is true in the current state if p holds in the

next state, and the sentence 23p (always eventually p) is true if at all points in
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the future, it is always true that eventually p will hold (in other words, p will hold

in�nitely often). Pnueli introduced the use of temporal logic for the formal veri�cation

of reactive systems [76], and Manna and Pnueli codi�ed a general means to create a

temporal logic proof system for any programming language [64]. As with program

logics, the �eld of temporal logic has spawned considerable research, most of which

lies beyond the scope of this thesis. Pnueli [77] surveys this area espousing a proof-

based methodology; Emerson [28] provides a more recent survey and also covers the

model-checking approach to temporal logic (discussed below).

Regardless of logical formalism, constructing proofs can be tedious and di�cult,

so some have turned to automatic theorem provers, achieving limited success. The

�eld of automatic deduction and theorem proving is enormous, spanning both logic

and AI, and extending far beyond the �eld of formal veri�cation, not to mention

this thesis. Wos et al. [87] provide a starting point to survey this area. Recent

high-pro�le successes in the use of automatic theorem provers for formal veri�cation

include Cohn's veri�cation of the Viper microprocessor [20] using the HOL theorem

proving system [37, 36], Hunt's veri�cation of the FM8502 microprocessor [46] using

the Boyer-Moore theorem prover nqthm [4] (both of these microprocessors are very

simple and were speci�cally designed for formal veri�cation), and, very recently, Srivas

and Miller's veri�cation of a half-million transistor commercial microprocessor, the

AAMP5 [84], using the PVS theorem prover [71, 72].

Despite the periodic success stories, proof-based methods remain notoriously time-

consuming [60, p. 496], and \most of the `automated' theorem-provers available today

are semi-automated at best." [38, p. 220] Much progress has been made in automat-

ing proofs of correctness, but these methods have yet to have widespread industrial

impact. The user must cleverly guide the proof process, and the generation of appro-

priate invariants for loops and inductions is particularly di�cult. Furthermore, if the

user is unable to prove correctness, no indication di�erentiates inadequate cleverness

on the part of the user from the existence of a real bug in the design. Indeed, even

proponents of automatic theorem provers have taken a keen interest in integrating

state-exploration methods into their provers [52, 80], touting the increased automa-

tion and e�ciency of state-exploration methods over proof-based methods. Over a
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quarter century ago, Hoare wrote:

The practice of supplying proofs for nontrivial programs will not be-

come widespread until considerably more powerful proof techniques be-

come available, and even then will not be easy.... At present, the method

which a programmer uses to convince himself of the correctness of his

program is to try it out in particular cases and to modify it if the re-

sults produced do not correspond to his intentions. After he has found a

reasonably wide variety of example cases on which the program seems to

work, he believes that it will always work. [39, p. 579]

A quarter century later, the situation has only started to change.

1.2.2 State-Exploration Methods and Model Checking

Of course, the world of simulation and testing hasn't been stationary. Real people

have been designing ever larger and more complex real systems and have therefore

developed more sophisticated means to simulate and test them. (For just two exam-

ples, Holzmann [41] overviews a wide variety of validation techniques for protocols,

and Cheng and Agrawal [14] survey simulation and test generation techniques for

VLSI.) In particular, if we can somehow exhaustively simulate every possible exe-

cution of a system, then we have actually proven (by exhaustive case analysis) the

system correct. This idea provides a natural lead-in to the concept of model checking.

Model checking was invented by Clarke and Emerson [18] and represents an ap-

proach to veri�cation fundamentally di�erent from the proof-based methods described

above. With proof-based methods, the user describes the system being veri�ed using

assertions in some logical formalism and attempts to deduce a proof, using inference

rules for the logic being used, that the assertions imply the correctness property being

checked. In contrast, model checking treats the entire reachability graph of the sys-

tem being veri�ed as a Kripke structure, and veri�cation consists of checking whether

or not the structure is a model of the correctness property being checked. For many

logics, if the state space is �nite, checking whether the (�nite) Kripke structure is a
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model of a formula is very e�cient, using graph algorithms to traverse the Kripke

structure.

Before presenting an example of model checking, let me introduce the logical

notation used throughout this thesis as well as the temporal logic CTL used in the

following example. Throughout the thesis, I will mix Boolean algebra notation and

propositional logic notation in an e�ort to maximize clarity and brevity. Accordingly,

the unary operator : denotes logical negation, the binary operators � and ^ as well as

juxtaposition denote conjunction, the binary operator � denotes exclusive-OR, the

binary operators + and _ denote disjunction, and the binary operator ) denotes

logical implication. Operator precedence is in the order listed, with : being highest.

CTL (Computation Tree Logic) is a propositional, branching-time temporal logic

frequently associated with model checking [18, 17]. In addition to atomic propositions

and Boolean operators, CTL contains the usual forward time temporal operators: X

(next time), F (eventually), G (always), and U (until). However, each use of any

temporal operator must always be paired with a path quanti�er: A (for all paths), or

E (there exists a path). For example, the formula AGp is true in a state if for all paths

starting from that state, p is always true; the formula EFp is true in a state if there

exists a path starting in that state that eventually leads to a state where p is true;

and the formula AFGp is not a valid CTL formula because the G is not controlled

by a path quanti�er, and in fact, this formula cannot be expressed in CTL.4

Let's consider the simple example in Figure 1.1(a). In this example, the Kripke

structure has four states and ostensibly describes the transition structure of some

system we wish to verify. Suppose we wish to check the CTL formula AG(r ) AFs)

that says that throughout the system, whenever r is true, s must inevitably be true

now or in the future. Model checking proceeds by repeatedly traversing the graph,

labeling all states that satisfy each subformula. Note that in CTL, the truth or

falsehood of a subformula at a state does not depend on the formula in which it

is embedded, so we can make a single pass through the CTL formula starting from

4This result follows from Emerson and Halpern [29, Theorem 4.4], since AFGp is equivalent to

:EGF:p, which is equivalent to :E
1

F :p (\There does not exist a path where :p holds in�nitely

often."), which is shown not to be expressible in CTL.
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p q

sr

(a)

p

AFs

q

AFs

s

AFs

r

(b)

p

r=>AFs AFs

q

r=>AFs

AFs
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r=>AFs
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s
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(c)

p
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AG(r=>AFs)

AFs
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AG(r=>AFs)
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r

r=>AFs

AG(r=>AFs)

AFs

s

r=>AFs

AG(r=>AFs)

(d)

Figure 1.1: CTL Model Checking Example: Model checking proceeds by repeatedly
traversing the graph for each subformula, labeling those states that satisfy the subfor-
mula. Here, we are checking the formula AG(r ) AFs). Part (a) shows the original
Kripke structure labeled with atomic propositions, part (b) labels those states that
satisfy AFs, part (c) labels those states that satisfy r ) AFs, and part (d) labels
those states that satisfy the entire formula. As we can see, all states satisfy the
formula.
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the smallest subformulas, giving time complexity linear in the size of the formula.

Accordingly, we label those states that satisfy AFs (Figure 1.1(b)) by using a depth-

�rst search of the graph: if a state is labeled s, then label it AFs, mark it as visited,

and return; if a state is on our depth-�rst search stack, then there exists a cycle where

s is never true, so don't label it AFs, do mark it as visited, and return; otherwise,

AFs holds i� it holds at all of the successors of the state. Next, we can traverse the

graph again, labeling all states that satisfy r ) AFs (Figure 1.1(c)). Finally, we

perform another depth-�rst search, similar to the one for AF, to label all states that

satisfy AG(r ) AFs) (Figure 1.1(d)). Details about CTL model checking as well as

model checking research for other logics can be found in Emerson's recent survey [28,

Sec. 6.4 and 7.4].

In general, the complexity of model checking is a function of the size of the Kripke

structure. CTL model checking, for example, requires time proportional to the prod-

uct of the size of the structure and the length of the formula being checked. Since

the size of the model is typically exponential in the number of variables in the system

being veri�ed (the \state explosion problem"), unless we �nd e�cient means to rep-

resent the structure and sets of states, we can use model checking only on fairly small

problems. Symbolic model checking with binary decision diagrams promises to be

such an e�cient means and has generated considerable excitement recently. Before

we proceed, therefore, we need to know what a binary decision diagram is; then, we

can examine how to use binary decision diagrams for symbolic model checking.

1.2.3 Binary Decision Diagrams

The binary decision diagram (BDD) is a data structure for representing Boolean func-

tions. Bryant [6] introduced the BDD in its current popular incarnation, although

the general ideas have been 
oating around for quite some time (e.g., as branching

programs in the theoretical computer science literature). Conceptually, we can con-

struct the BDD for a Boolean function as follows. First, build a decision tree for the

desired function, obeying the restrictions that along any path from root to leaf, no

variable may appear more than once, and that along every path from root to leaf, the

variables always appear in the same order (Figure 1.2(a)). Next, repeatedly apply
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1 1 1

x

z

y

z z z

y

10 0 0 0

0 1

0 1 0 1

0 1 0 1 0 1 0 1

x
0 1

xxx
0 1 0

1

x

10

y

z

y

z

0 1

0 1 1 0

0 1 1 0

x
0 1

x

(a)

(b)

(c)

becomes

becomes

Figure 1.2: A Binary Decision Diagram (BDD): This example shows the BDD for the
exclusive OR of x, y, and z. Conceptually, we can construct the BDD for the function
by starting from a decision tree, shown in part (a). The decision tree is restricted so
that (1) along any path from root to leaf, no variable appears more than once, and
(2) along every path from root to leaf, the variables always appear in the same order.
Next, we merge identical nodes and delete redundant nodes, as shown in part (b).
The result is the BDD for the function, shown in part (c). In practice, BDDs are
always maintained in the fully reduced form.
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the following two reduction rules as much as possible: (1) Merge any duplicate (same

label and same children) nodes, and (2) if both child pointers of a node point to the

same child, delete the node because it is redundant (with the parents of the node

now pointing directly to the child of the node) (Figure 1.2(b)). The resulting DAG

is the BDD for the function (Figure 1.2(c)).5 In practice, BDDs are generated and

manipulated in the fully reduced form, without ever building the decision tree.

BDDs have several useful properties. First, although a simple counting argu-

ment shows that \most" Boolean functions require large BDD representations,6 many

common function have small BDDs. For example, generalizing the pattern in Fig-

ure 1.2(c), we can see that the BDD for the parity of n variables requires 2n � 1

nodes, whereas parity requires an exponential-size representation using disjunctive

normal form. In addition, BDDs are easy to manipulate. We can compute any bi-

nary Boolean operation on two functions represented as BDDs in time proportional

to the product of the sizes of the BDDs. We can evaluate a function in time linear

in the number of variables. We can existentially or universally quantify (Boolean)

variables in a function in time quadratic in the size of the BDD. Finally, once we �x

the order in which the variables appear, the BDD is a canonical representation for the

Boolean function. Thus, function comparison, including special cases tautology and

satis�ability, become trivially easy (constant time for e�cient implementations [5]).

Choosing a good variable order is important. For example, suppose we wish to

build a BDD for the function (x1�y1)+(x2�y2)+(x3�y3). If we order the variables

x1, x2, x3, y1, y2, y3, we get the large BDD shown in Figure 1.3(a). If instead we order

the variables x1, y1, x2, y2, x3, y3, we get the smaller BDD shown in Figure 1.3(b).

5In general usage, \BDD" refers to the data structure described here, possibly with some mod-

i�cations for e�ciency [5] that don't concern us at the moment. This data structure has achieved

widespread acceptance in VLSI, formal veri�cation, and other �elds. Subsequently, several re-

searchers have generated a menagerie of BDD variants that relax, modify, or extend the rules gov-

erning the construction of BDDs, e.g., if-then-else DAG [54], MDD [83, 53], XBDD [50], snDD [49],

EVBDD [57], FDD [55], SQBDD [70, 69], OPDD [74], ADD [1], etc., to name only a few. Ac-

cordingly, when there is risk of confusion in the literature, the BDD described here is dubbed an

ROBDD, for reduced (because the reduction rules were applied) ordered (because the variables are

always in the same order from root to leaf) BDD. Since this thesis only concerns itself with the

standard BDD, I will use the simpler and common term \BDD" rather than \ROBDD".
6There are 22

n

Boolean functions of n variables. A representation scheme with size bounded by

some polynomial P (n) can represent at most O(2P (n)) functions.
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x1

y1y1

x2

y2y2

x3

y3y3

0 1

0 1

0 1

0 1

0

0

0 1

1

1

1 0

1 0

1 0

x1

x2 x2

x3 x3 x3 x3

y1 y1 y1 y1 y1 y1 y1 y1

y2 y2 y2 y2

0 0 0 0

y3 y3

0 0

0 1

0

0 1

0 1 0 1

0 1 0 1 0 1 0 1

1 1 1 11 1 1 1 0 0 0 0

1 11 1 0 0

1 0 1

(a)

(b)

Figure 1.3: BDD Variable Order Matters: Here we consider the BDD for (x1� y1) +
(x2 � y2) + (x3 � y3) using two di�erent variable orders. In general, the choice of
variable order can make a di�erence between linear and exponential size.
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In general, the choice of variable order can make the di�erence between a linear

size BDD and an exponential one. The problem of �nding the best variable order

for a given function is co-NP-complete [6]. Friedman and Supowit give an O(n23n)

algorithm for �nding the optimum order [32]. Several heuristics for variable ordering

exist for various applications such as combinational circuits [34, 63, 33] and sequential

circuits [51]. The variable order can even be changed e�ciently after the BDD has

already been built [81].

In sum, BDDs are a practically e�cient representation of Boolean functions. This

is su�cient for us to examine how to use BDDs for model checking. Bryant [8] provides

a detailed exposition on BDDs and surveys some applications and variations.

1.2.4 Symbolic Model Checking

The basic idea behind symbolic model checking is to use a more e�cient \symbolic"

representation for the Kripke structure being checked and for sets of states of the

Kripke structure. Since the sizes of these representations is typically the limiting

factor in applying model checking, an e�cient representation can potentially allow

much larger structures to be checked. The idea of using BDDs as this representation

came upon several researchers roughly simultaneously [22, 21, 3, 10, 75, 85]. Among

these early works, Burch et al.'s [10] is the most comprehensive treatment of symbolic

model checking with BDDs and can be consulted for details. Here, I will brie
y sketch

symbolic model checking for CTL.

The �rst step is to label each state of the Kripke structure with a unique binary

vector of length n, choosing n so that 2n is at least the number of states in the

structure. Associate each position in the binary vectors with a Boolean variable.

For example, Figure 1.4 shows the same structure from the model checking example

we saw previously (Figure 1.1), but now each state has a unique two bit label. We

will associate the �rst bit with the Boolean variable x and the second bit with the

Boolean variable y. In practice, we omit this step and simply use the state variables

of the system we are verifying as the unique binary vector identifying each state. (For

hardware, use the logic levels of the nets or latches; for software, use the program

state.)
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(x,y)=(0,0) (x,y)=(0,1)

(x,y)=(1,0) (x,y)=(1,1)

p :x:y

q :xy

r x:y

s xy

AFs x+ y

r ) AFs 1
AG(r ) AFs) 1

Figure 1.4: Symbolic Model Checking Example: This is the same structure as in
Figure 1.1. Each state now has a unique two bit label (x; y), so we can describe any
set of states by a Boolean expression as shown. Symbolic model checking works by
computing directly with the Boolean expressions (represented as BDDs), rather than
with an explicit representation of the Kripke structure.

With this labeling, any expression on the Boolean variables represents a set of

states of the structure. For example, the expression :x:y represents the single state

in the upper left of the structure, the expression x+ y represents the set of all states

except the upper left corner, and the expression 1 represents the set of all states. To

perform model checking, instead of labeling states with subformulas as we did before,

we associate each subformula with a BDD that represents the Boolean expression for

the set of states at which the subformula holds. Thus, for example, we associate the

atomic proposition s with the BDD for the Boolean expression xy.

We also need to represent the Kripke structure itself symbolically. The easiest way

is to build the transition relation �(q; q0) that is true i� there is a transition from state

q to state q0. Note that in the preceding paragraph, we represent a set of states by

a Boolean function on a single state that indicates whether or not the state is in the

set. In contrast, here we need to represent a transition relation, which is a Boolean

function on a pair of states that indicates whether or not the speci�ed transition

exists. To use BDDs to represent transition relations, therefore, we must introduce
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for each BDD variable x, another BDD variable x0 that denotes the value of x in the

next state. Returning to the example in Figure 1.4, we see that (0; 0) can transition

to itself or state (0; 1) or state (1; 0), yielding :x:y ) :x0 + :y0. Similarly, state

(0; 1) must transition to state (1; 1), yielding :xy ) x0y0; state (1; 0) can transition

to either states (0; 1) or (1; 1), yielding x:y ) y0; and state (1; 1) must transition to

state (0; 0), yielding xy ) :x0:y0. Putting this all together gives us the transition

relation

(:x:y ) :x0 + :y0) � (:xy ) x0y0) � (x:y ) y0) � (xy ) :x0:y0);

which simpli�es to :x:y:x0 + :x:y:y0 + :xyx0y0 + xy:x0:y0 + x:yy0.

The key to symbolic model checking is to perform all calculations directly using

these Boolean expressions, rather than using the Kripke structure explicitly. For

example, if we want to complement or intersect sets of states, we can just negate

or AND the corresponding BDDs. More interesting are the modal operators. For

example, given BDDs for the transition relation � and the set of states that satisfy

some formula p, we can compute the BDD for the set of states that satisfy AXp as

�q8q0[�(q; q0) ) p(q0)].7 Using AX, we can express AFp as the least �xed point of a

predicate transformer:

AFp = lfpZ:p _AXZ;

which can be computed iteratively by starting Z at False. Similarly, AGp is the

greatest �xed point of a predicate transformer:

AGp = gfpZ:p ^AXZ;

which can be computed iteratively by starting Z at True. Convergence of both

7Please forgive the abuse of notation. Recall that � and p are BDDs and are therefore proposi-

tional. The pseudo-�rst-order notation here simply indicates whether the BDD contains the primed

or unprimed variables. Accordingly, the precise sequence of BDD operations to implement this ex-

pression is (1) change the BDD for p from unprimed to primed variables, (2) from the BDDs for

� and (primed) p, compute the BDD for the implication, and (3) universally quantify the primed

variables from the resulting BDD. Changing the variables in a BDD between primed and unprimed

is straightforward as long as the variable order keeps each primed-unprimed variable pair together.
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iterations is guaranteed because the transformation is monotonic on a �nite lattice.

Returning again to Figure 1.4, we can now work the example using symbolic model

checking. The atomic proposition s has associated Boolean formula xy. To compute

the Boolean formula for the CTL subformula AFs, we use the �xed point formula

given above:

Z0 = 0

Z1 = xy +AXZ0

= xy + 8x0y0[(:x:y:x0 + :x:y:y0 + :xyx0y0 + xy:x0:y0 + x:yy0)) 0]

= xy +

(:x:y + xy ) 0) �

(:x:y + x:y ) 0) �

(:x:y ) 0) �

(:xy + x:y ) 0)

= xy + (x+ y)(:x+ :y)(:x+ y)(x+ :y)

= xy

Z2 = xy +AXZ1

= xy + 8x0y0[(:x:y:x0 + :x:y:y0 + :xyx0y0 + xy:x0:y0 + x:yy0)) x0y0]

= xy +

(:x:y + xy ) 0) �

(:x:y + x:y ) 0) �

(:x:y ) 0) �

(:xy + x:y ) 1)

= xy + (x+ y)(:x+ :y)(:x+ y)

= y

Z3 = xy +AXZ2

= xy + 8x0y0[(:x:y:x0 + :x:y:y0 + :xyx0y0 + xy:x0:y0 + x:yy0)) y0]

= xy +
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(:x:y + xy ) 0) �

(:x:y + x:y ) 1) �

(:x:y ) 0) �

(:xy + x:y ) 1)

= xy + (x+ y)(:x+ :y)

= x+ y

Z4 = xy +AXZ3

= xy + 8x0y0[(:x:y:x0 + :x:y:y0 + :xyx0y0 + xy:x0:y0 + x:yy0)) x0 + y0]

= xy +

(:x:y + xy ) 0) �

(:x:y + x:y ) 1) �

(:x:y ) 1) �

(:xy + x:y ) 1)

= xy + (x+ y)(:x+ :y)

= x+ y;

yielding x + y as the Boolean formula for AFs. Atomic proposition r has Boolean

formula x:y, so CTL subformula r ) AFs has Boolean formula x:y ) x+ y, which

simpli�es to 1. Computing the Boolean formula for the entire CTL formula AG(r )

AFs) requires another �xed point computation, which converges immediately to 1.

Therefore, we know that all states in the structure satisfy the formula.

Note that all calculations described in this section can be done e�ciently, provided

the BDDs are reasonably small. Whether the BDDs are indeed small in practice

remains to be seen.

1.3 What This Thesis Is About

The research in this thesis falls under the general umbrella of symbolic model check-

ing using BDDs. The emphasis of the work, however, is very speci�c. While most
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current veri�cation work with BDDs has focused on gate and switch-level designs,

my emphasis is on the very highest levels of design, for example, checking commu-

nication and consistency-maintenance protocols in a very large system. As stated

earlier, the goal is to provide a powerful debugging tool to catch conceptual errors

early in the design cycle, when they are easier and cheaper to correct. Furthermore,

my emphasis is explicitly practical and problem-driven, continually attempting in-

teresting real problems in order to �nd the simplest tools that are still useful for a

real user. Accordingly, I have restricted myself to a simple, very limited veri�cation

paradigm that has still proven useful for debugging a wide range of real, high-level

designs [27] and instead concentrated on providing the techniques needed to bridge

the gap between what is theoretically possible and what is practically feasible. In

short, I have chosen to take something theoretically simple and try to make it useful

on complex real problems, rather than taking something theoretically complex and

apply it to simple problems.

More concretely, I consider verifying only that every reachable state of a system

satis�es a user-speci�ed propositional logic formula (equivalent to model-checking

only CTL formulas of the form AGp where p contains no modal operators). For-

mally, I model the system being veri�ed as a single non-deterministic �nite-state

machine. Non-determinism is important for high-level veri�cation both to model non-

determinism in the environment and also to abstract away implementation details,

allowing us to postpone making low-level decisions until we've �nished high-level ver-

i�cation. Let the machine have state space Q, transition relation � : Q�Q! f0; 1g,

and a set of start states S � Q. The veri�cation task is, given the set of \good"

states G � Q that satis�es the property being veri�ed, to determine if there exists a

path starting from a state in S and leading to a state not in G, and, if such a path

exists, to output it as a counterexample to the property being veri�ed.

Before proceeding, we need a bit of notation:

De�nition 1.1 (Image Operators) Given a set Z � Q, de�ne the following oper-

ators:

Image(�; Z) = fvj9u[u 2 Z ^ �(u; v)]g
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PreImage(�; Z) = fuj9v[v 2 Z ^ �(u; v)]g

BackImage(�; Z) = fuj8v[�(u; v)) v 2 Z]g:

Intuitively, Image gives the set of states that can be reached in one transition from a

state in Z, PreImage gives the set of states that in one transition can reach a state

in Z, and BackImage gives the set of states that in one transition must end up in Z.

These operators are by no means new: Image is essentially Floyd's strongest veri�able

consequent [31], and BackImage is essentially Dijkstra's weakest precondition [26]. In

CTL (with � implicit in the Kripke structure), PreImage(�; Z) corresponds to EX[Z],

and BackImage(�; Z) corresponds to AX[Z]. Using the uni�ed notation of dynamic

logic [79], the expression Image(�; Z) is precisely h��iZ, the expression PreImage(�; Z)

is precisely h�iZ, and the expression BackImage(�; Z) is precisely [�]Z.

Using these image operators, it's easy to explain the standard approaches to our

veri�cation problem. One standard algorithm I call \forward traversal." The intuition

is that we iteratively compute the set Ri of states that can be reached in i or fewer

transitions from the start states. Mathematically, we initialize R0 = S, and compute

Ri+1 = R0 _ Image(�;Ri).
8 If Ri ever goes outside the set of good states (Ri 6� G),

then we have a violation, and it's easy to produce a counterexample trace. Otherwise,

the sequence will eventually converge to the set of reachable states, meaning that the

veri�cation succeeds. (The predicate transformation is monotonic on a �nite Boolean

lattice, so convergence is guaranteed.) Details of this approach are available elsewhere

(e.g., [22, 11, 16, 85, 9]). The other standard algorithm I call \backward traversal."

The intuition here is that we iteratively compute the set Gi of states such that all

paths of length i or less starting in Gi must remain within the set of good states G.

Mathematically, we initialize G0 = G, and compute Gi+1 = G0 ^ BackImage(�;Gi).

8An alternative formulation that is perhaps more intuitive is Ri+1 = Ri _ Image(�;Ri). Both

formulas compute the same Ri for all i. An advantage of the formula given in the text is that R0

is often a simple property with smaller BDD than Ri. An advantage of the alternative formulation

is that we can actually compute the image on any set S such that Ri � Ri�1 � S � Ri, giving

Ri+1 = Ri_Image(�; S). This formula still generates the sameRi for all i, but the image computation

can be faster if we can �nd at each iteration an S with BDD representation smaller than Ri [22, 21].

Note that combining these tricks into Ri+1 = R0 _ Image(�; S) is not guaranteed to produce the

same sequence, and indeed may produce a sequence that is non-monotonic.
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If we reach a point where Gi does not contain all of the start states (S 6� Gi),

then there exists a sequence of i transitions from a start state to a violating state.

Otherwise, the sequence will converge, meaning the veri�cation succeeds. (Again,

convergence follows immediately from monotonicity and �niteness.) Details for this

approach are also available from several sources (e.g., [10, 75, 30]). Incidentally, these

two approaches are actually duals of each other, based on the dynamic logic duality

between forward and backward execution of a program [79].

At this point, I appear to be done: I've stated a simple veri�cation problem and

have given two standard algorithms to solve it. We just build BDDs for � and the

Ris or Gis, compute the image operators using De�nition 1.1, and crank through

the iterations described in the preceding paragraph. However, although indulging

my Inner Theoretician by declaring victory and moving on to more mathematically

beautiful veri�cation problems is tempting and certainly valuable, I've explicitly set

out to provide a practical solution to practical problems, so I need to indulge my

Inner Practitioner �rst. As often happens, the di�erence between theory and practice

emerges in the practice. Despite the extreme simplicity of our veri�cation problem,

several obstacles prevent the practical usefulness of direct implementations of the

standard approaches on an enormous range of real problems. In particular, describing

a complex system directly with BDDs is di�cult and error-prone, the BDD for � is

frequently too large to build, and the BDDs for the Ris and Gis are frequently too

large to build as well. This thesis addresses these problems.



Chapter 2

Translation into BDDs

Chapter Overview1

An enormous semantic gap lies between the low-level Boolean logic supported by

BDDs and the high-level descriptions of systems we wish to verify. The �rst part

of this chapter motivates the need to support high-level language constructs for

these high-level descriptions and identi�es an empirically useful set of constructs:

data structures consisting of scalars, arrays, and records; expressions built from

boolean and arithmetic operators; and control 
ow based on conventional assignment

statements, sequence, if-then-else, and non-deterministic choice. The remainder of

the chapter describes how to translate these language constructs automatically into

BDDs.

2.1 High-Level Language Constructs

The �rst step in BDD-based veri�cation is to use Boolean formulas to describe the

system being veri�ed. For high-level veri�cation, writing and maintaining such low-

level descriptions can be a major obstacle. Allow me to illustrate with a personal

1This chapter is based on material �rst published in the Fourth International Workshop on

Computer-Aided Veri�cation, 1992 [44].

21
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anecdote. The seed of the Stanford Mur' group began in the spring of 1990. In-

spired by recent stories of success with BDD-based model checking [10, 67], we set

out to use BDD-based veri�cation to help debug the directory-based cache coherence

protocol of the Stanford DASHmultiprocessor [59], then well under development. The

results were humbling. The task of modeling the high-level description of the system

in Boolean logic proved to be enormously time-consuming and error-prone. Further-

more, subtle modeling errors were hard to detect, as a hard-to-spot typographical

error in the Boolean description can silently delete transitions from the transition

relation. Worse, upon �nding an error in our model, the task of revising a description

written in Boolean logic was di�cult and even more error-prone. The killing blow

was that if we wanted to scale the description to have more or less memory or pro-

cessors, we essentially needed to rewrite the description from scratch. The end result

was that we were unable to produce useful veri�cation results in a timely manner. In

retrospect, McMillan and Schwalbe's success story that had inspired us | verifying

a hierarchical snooping cache coherence protocol [67] | should also have forewarned

us, as they too complained that the low-level Boolean descriptions were very cumber-

some for high-level veri�cation. Clearly, high-level veri�cation with BDDs required

better tool support.

We learned two main language-design lessons from this experience. First, de-

scriptions must be easy to revise and modify. This requirement is true for program-

ming in general but is particularly compelling for high-level prototyping, debugging,

and verifying, as we need and expect to iterate the modify-check-debug cycle very

quickly and very often. A particularly important revision for state-exploration ver-

i�cation is scaling. Often, we cannot verify the system in its full complexity, so

being able to quickly scale the sizes of various parts of the description (e.g., num-

ber of processors, number of addresses, size of bu�ers, etc.) is crucial to be able

to �nd bugs [27]. The other language-design lesson is that the description lan-

guage must be semantically close to the way the user normally writes descriptions.

Thus, the veri�cation system must support the data structures, the imperative se-

mantics, and the control 
ow typical of current programming languages. A partic-

ularly unpleasant mismatch between imperative semantics and logic is an instance
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of the Frame Problem in AI [66]: in imperative semantics, when modifying a vari-

able, any other variable that isn't mentioned doesn't change; in logic, any variable

that isn't mentioned is completely unconstrained. While it's straightforward but te-

dious to translate an imperative assignment like \x:=1" into the next-state relation2

(x0 = 1) ^ (y0 = y) ^ (z0 = z) ^ � � � (a clause for every variable) � � �, it's arduous,

error-prone, and still tedious to translate something (taken from an industrial cache

coherence protocol) like:

If (i < Homes[h].Dir[a].Shared_Count) &

(Homes[h].Dir[a].Entries[i] = n)

Then

-- overwrite this entry with last entry.

Homes[h].Dir[a].Entries[i] :=

Homes[h].Dir[a].Entries[Homes[h].Dir[a].Shared_Count-1];

-- clear last entry

Homes[h].Dir[a].Entries[Homes[h].Dir[a].Shared_Count-1] := 0;

Homes[h].Dir[a].Shared_Count := Homes[h].Dir[a].Shared_Count-1;

Endif;

The user should not be forced to perform such a translation by hand.

The objective, therefore, is to support a high-level description language, coun-

terbalanced by the need to keep the description �nite-state and comfortably within

the bounds of our veri�cation paradigm. For example, to allow easy scalability and

high-level descriptions, the language must support scalar-valued variables (integer and

enumerated types) as well as complex data structures built from records and arrays.

Pointers, however, would allow in�nite-state descriptions and must therefore be disal-

lowed. Once the language permits scalar-valued variables, it obviously must provide

adequate means to manipulate them, such as built-in operators for addition, subtrac-

tion, comparison, etc. Providing a built-in imperative assignment frees the user from

the onerous and error-prone translation described in the preceding paragraph. For

control 
ow, the imperative assignment goes hand-in-hand with sequential control

2Recall from Chapter 1 that a primed variable denotes the value of the variable in the next state.
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ow and if-then-else, which are basic control structures that the user expects to have.

While-loops, however, would require a nested �xed point computation, which is too

expensive to support. A non-deterministic choice operator provides a convenient high-

level means to introduce non-determinism and implement guarded command sets [26].

Finally, some sort of subroutine mechanism is needed to provide modularity, but we

cannot permit recursion, which could violate the �nite-state restriction.

We built the non-BDD-based Mur' veri�er around these language features [27],

embedded into an iterated, guarded command framework inspired by the UNITY

language [13]. That these language features are su�ciently high-level and easy-to-use

is clear from the consistent praise Mur' has drawn on ease of use and description

language convenience (e.g., [88, 86]). That these language features can be translated

into BDDs is the subject of the following section.

2.2 Translation

As noted in Chapter 1, symbolic model checking requires that the system be modeled

by a transition relation on the current and next state values of the state variables.

The preceding section listed the set of high-level language features we wish to support.

This section shows how to translate these features automatically into transition rela-

tions in Boolean logic, suitable for implementation with BDDs. I have implemented

the automatic translation in the Ever veri�cation system, described in more detail in

Appendix A.

I assume the preceding section's desirable language features are combined in the

typical manner into an Algol-style language. The translation process is syntax-

directed, traversing the high-level description recursively, building the Boolean for-

mulas for the subparts of a given part of the description and then combining the

formulas for the subparts into the Boolean formula(s) for the part. I will describe

the routines that perform this translation starting from the bottom-level translation

routines and proceeding to the top, which converts the entire high-level description

into a transition relation in Boolean logic.

The process of translation requires manipulating di�erent representations of the
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same conceptual objects, making explaining the process potentially confusing; in-

troducing some concepts and notation eases the exposition. The translation rou-

tines generate three main types of results: Boolean conditions, scalar quantities, and

transition relations that correspond to subparts of the high-level description. Both

Boolean conditions and transition relations are represented by single Boolean func-

tions, although keeping these two concepts distinct is helpful. In particular, the

Boolean formula for a condition refers only to variables for the current state or only

to variables for the next state, but not to both, whereas the Boolean formula for

a transition relation typically refers to variables for both the current and the next

state of the system. Scalar quantities are represented by vectors of Boolean formu-

las, which give the binary encoding of the scalar value. For a given part P of the

high-level description, let BFUN(P ), BVEC(P ), or TR(P ), whichever is appropri-

ate, denote the result of translating P into a Boolean formula, a vector of Boolean

formulas, or a transition relation, respectively. Unless otherwise speci�ed, Boolean

operations performed on vectors of Boolean formulas should be interpreted as apply-

ing component-wise. Subscripts specify particular formulas within a vector of Boolean

formulas, with 0 referring to the low-order bit. For example, BVEC(13)1 is False, and

BVEC(x)0 refers to the low-order bit of x. By default, Boolean formulas and vectors

of Boolean formulas should be assumed to refer to the current state variables; a tick

mark applied to any expression indicates that the expression refers to the next state

variables instead. For example, BFUN(x < 42) is a Boolean formula that speci�es

that the current value of x is less than 42, whereas BFUN(x < 42)0 is a Boolean

formula that speci�es that the next value of x is less than 42. Note that the expres-

sion BFUN(x0 < 42) is meaningful only if \x0 < 42" is meaningful in the high-level

description language; if the description language uses \x0" to denote the next value

of x, then BFUN(x0 < 42) = BFUN(x < 42)0.

2.2.1 Constants and Variables

For an integer constant c, the translation BVEC(c) is simply the binary representation

of c. Enumerated types can be handled by associating each enumeration constant

with an integer, exactly as a normal compiler does. Note that other encodings of
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�nite domains into Boolean variables are possible [53], but the binary encoding is

advantageous in supporting a high-level description language because it simpli�es

automatic translation of arithmetic and logical expressions, as we shall see shortly.

Variable declarations are handled exactly as in a normal compiler, except that

rather than allocating bits of memory for the high-level variables, the translator

allocates entries in an array of Boolean variables. Call this array V , with the notation

Vi indicating the ith Boolean variable and the notation Vi[s] indicating the s Boolean

variables starting with the ith one. I will assume a Pascal or C-like type system,

in which the base types are integers and enumerations, and additional types can be

constructed as records whose �elds are of previously de�ned types and as arrays whose

elements are of a previously de�ned type. For any type, a straightforward recursive

computation tells how many Boolean variables are needed to represent it: the size of

a scalar is the number of bits used to represent it, the size of a record is the sum of

the sizes of its �elds, and the size of an array is the product of the number of elements

in the array and the size of an array element. A related quantity is the o�set from

the start of a record or an array at which a speci�c record �eld or array element

starts. The o�set is easily computed as the sum of the sizes of the record �elds or

array elements that precede the speci�ed one. I will use the notation SIZEOF(x) to

denote the size of a variable or type x and the notation OFFSET(x) to denote the

o�set to the start of the �eld named x or the xth element in an array (using context

to disambiguate which I mean). When a new variable x is declared, its size and o�set

(We can treat all variables as �elds in a global record that starts at V0.) are stored

in the symbol table, and the Boolean variables VOFFSET(x)[SIZEOF(x)] are allocated

for variable x.

Recall from Section 1.2.3 the importance for BDDs of choosing a good variable

ordering. Ideally, such a detail should not belong in the high-level description; the

translator should choose a good order automatically. Unfortunately, current variable

ordering heuristics for high-level descriptions are not as good as what a human can

do, so the user needs some means to provide variable ordering hints to the translator.

For example, for an array, in some instances ordering all the BDD variables for one

array element before all of the BDD variables of the next array element is the best
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choice; in other instances, interleaving the corresponding bits (most signi�cant bits

�rst, followed by the next most signi�cant bits, etc.) is better [83, 53]. The user can

use intuition or a result like Jeong et al.'s Non-Interleaving Lemma [51]3 to decide

which order to use and must be able to tell the translator to do so.

When an expression refers to a variable (possibly with record �eld accesses and

array indexing), the translation process is again very similar to what a normal com-

piler does, except that rather than generate instructions that compute the correct

address o�set, the translation into Boolean logic generates a vector of case expres-

sions that select the correct Boolean variables. For a simple variable reference, the

translator looks up in the symbol table the o�set to the correct BDD variables much

as a compiler would generate the o�set to the start of the correct block of memory.

The Boolean variables starting at that o�set form the correct vector of Boolean for-

mulas. For a record �eld access, start with the base variable as before, add the �eld

o�set, and proceed as in the case of the simple variable reference. Array indexing

is the most complex. If the index were a constant, we could proceed as for records.

The index, however, can be an arbitrary scalar-valued expression. For example, an

expression like a[x+ 4] should be translated into a vector of Boolean formulas that,

when restricted to having x = 0, are equivalent to the Boolean formulas for a[4];

when restricted to having x = 1, are equivalent to a[5]; and so forth. Therefore, the

formulas for an array access must perform a case analysis for each possible value of

the array index.

More formally, the translation of a variable reference can be expressed by a recur-

sive computation. De�ne a modi�er to be either a �eld name or an array-indexing

expression. Since we can consider a variable to be just a �eld in a global record struc-

ture, any variable reference is just a list of modi�ers. Given an arbitrary variable

reference �, the translation BVEC(�) is given by the function SELECTBITS:

BVEC(�)
def
= SELECTBITS(�; 0;SIZEOF(�)):

3In an unfortunate clash of terminology, what I and Srinivasan et al. [83] call an interleaved

variable order, because the bits comprising the scalars are interleaved, creates what Jeong et al.

call a non-interleaved order, because the Boolean relations for the individual bit-slices have disjoint

supports and are grouped together.
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In de�ning SELECTBITS, recall that operations on vectors of Boolean formulas

should be assumed to be applied component-wise. Two exceptions are
�

=, which

denotes checking equality of two vectors of Boolean formulas and returns a single

Boolean formula, and
�

), which denotes a single Boolean formula implying a vec-

tor of Boolean formulas and returns the vector in which the implication was ap-

plied to each component. For example, BVEC(12) = BVEC(7) yields the result

(False;True;False;False), whereas BVEC(12)
�
= BVEC(7) yields the result False.

With this notation, we de�ne SELECTBITS recursively as follow:

SELECTBITS(�; o�set; size)
def
= Vo�set[size]

SELECTBITS(�eld name :: �; o�set; size)
def
=

SELECTBITS(�; o�set + OFFSET(�eld name); size)

SELECTBITS(index expr :: �; o�set; size)
def
=

û

i=l

2
6664

BVEC(index expr)
�
= BVEC(i)

�
)

SELECTBITS(�; o�set + OFFSET(i); size)

3
7775 ;

where � is a (possibly empty) list of modi�ers, � is the empty list, :: is the list cons

operator, and l and u are the lower and upper bounds of the array. The actual imple-

mentation also requires type information for the variables to be propagated through

the recursive calls in the obvious way; I have omitted this detail for brevity. We will

see how to compute BVEC(index expr) in a moment. The generated formulas are

essentially banks of multiplexors whose select lines are driven by the array-indexing

expressions and whose inputs are the BDD variables. The formula for array indexing

can be considered a scalar-valued generalization of work by Beatty et al. [2].

2.2.2 Arithmetic and Logical Expressions

Compared to the translation of variable references, the translation of arithmetic and

logical expressions is easy. I assume that the translator can parse expressions in the
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high-level language and perform type checking using standard compiler techniques.

Thus, the task of translating arbitrary expressions can be broken down into de�ning

the translation of each supported operator, assuming its operands have been properly

translated already. The translator applies these rules recursively on the parse tree,

�rst translating the subexpressions that are the arguments of an operator, and then

using the speci�c translation rules for that operator. The base cases of the recursion

are the translations for variable references and constants.

Keep in mind that the translation process does not compute the result of the

operation; it generates Boolean functions that compute the result of the operation

for all input values. For example, if the translation BVEC(expr) is the vector of

Boolean formulas (f3; f2; f1; f0), the translation of expr � 4 would be the vector of

formulas (f3 = f2;:f2; f1; f0).

The use of the standard unsigned binary representation to encode integers makes

de�ning the translation of common arithmetic operators easy.4 Let's consider some

representative examples: addition, less-than, and a conditional expression.

Suppose the high-level description contains the expression \expr1+ expr2", where

expr1 and expr2 are arbitrary scalar-valued expressions. As stated above, we �rst

apply the translation recursively on the subexpressions. Let x be the translation

BVEC(expr1), and let y be the translation BVEC(expr2). Compute the vector of

Boolean formulas z by the following rules:

c�1
def
= False

zi
def
= xi � yi � ci�1

ci
def
= (xi ^ yi) _ (ci�1 ^ (xi _ yi));

with � denoting exclusive-OR. These rules implement addition by a ripple-carry

adder. Note that since BDDs are canonical, using this simple adder structure gives

4Not surprisingly, we are actually encoding integers modulo 2k, where k is the number of bits

we've allocated for the result. Two's complement permits handling negative numbers with minimal

hassle. If the high-level language makes extensive use of negative numbers, the translation should

be modi�ed slightly to handle signed comparison (versus the unsigned comparison given in the text)

and sign extension issues, just as a normal compiler does.
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the exact same �nal result z as using a more complicated adder. The translation

BVEC(expr1+ expr2) is just the vector z.

As a second example, suppose the high-level description contains the expression

\expr1 < expr2", where again expr1 and expr2 are arbitrary scalar-valued expressions.

Note that in this example, the result should be a single Boolean formula, rather

than a vector of Boolean formulas, so the translation is denoted by BFUN rather

than BVEC. This type inference is a function of the high-level language, not the

translation process, and can be handled by standard compiler techniques. As in the

preceding example, let x be the translation BVEC(expr1), and let y be the translation

BVEC(expr2). Compute a sequence of Boolean formulas:

z0
def
= False

zi
def
= (:xi ^ yi) _ ((xi = yi) ^ zi�1):

The translation BFUN(expr1 < expr2) is just the Boolean formula zi for i equal to

the larger of SIZEOF(x) and SIZEOF(y). (If one expression is smaller than the other,

pad the smaller with leading 0s for the computation of z. Small adjustments like this

are needed for all operations.)

As a �nal example, consider a conditional expression: \cond?expr1:expr2" in C

syntax. Let x be BVEC(expr1) and y be BVEC(expr2) as in the previous examples.

Let c be BFUN(cond). Compute the vector of Boolean formulas z:

zi
def
= (c ^ xi) _ (:c ^ yi);

padding the smaller of x and y as before. The translation BVEC(cond?expr1:expr2)

is just z.

Translation rules for many other operators are similar.

2.2.3 Assignment

So far, we have only considered translating the bottom-level parts of a description:

constants, variables, and expressions. Now, we have developed enough machinery
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to translate our �rst construct that generates a transition relation: an assignment

statement. The assignment statement, in turn, will be the basis for inductively con-

structing high-level descriptions.

To translate an assignment statement, we use a computation similar to the variable

reference computation described above. Now, however, we must build a transition re-

lation that speci�es that every Boolean variable that isn't modi�ed in the assignment

keeps its current value. Doing so resolves the mismatch mentioned earlier between

imperative and logical semantics. For records, generating this relation is straightfor-

ward. For each �eld not being accessed, we AND into the Boolean relation being

generated the further requirement that the �eld not change. For the �eld that we do

access, we equate a variable reference expression like those we generated previously

with the right-hand side of the assignment. For arrays, we must again perform a case

analysis.

Formally, given assignment statement \var := expr", let � be the list of modi�ers

that corresponds to the variable reference var. As with the computation for a variable

reference, we de�ne the translation TR(var := expr) by a recursive helper function:

TR(var := expr)
def
= ASSIGN(�; 0;SIZEOF(�); expr):

The recursive de�nition of ASSIGN is similar to that of SELECTBITS:

ASSIGN(�; o�set; size; expr)
def
= (Vo�set[size]

0 �
= BVEC(expr))

ASSIGN(�eld name :: �; o�set; size; expr)
def
=

ASSIGN(�; o�set + OFFSET(�eld name); size; expr) ^

^

f 2 record �elds

f 6= �eld name

0
@ Vo�set+OFFSET(f)[SIZEOF(f)]

0 �
=

Vo�set+OFFSET(f)[SIZEOF(f)]

1
A

ASSIGN(index expr :: �; o�set; size; expr)
def
=
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û

i=l

2
66666666666664

if BVEC(index expr)
�

= BVEC(i)

then

ASSIGN(�; o�set + OFFSET(i); size; expr)

else0
@ Vo�set+OFFSET(i)[SIZEOF(element)]

0 �

=

Vo�set+OFFSET(i)[SIZEOF(element)]

1
A

3
77777777777775

;

where � is a list of modi�ers, � is the empty list, :: is the list cons operator, and l

and u are the lower and upper bounds of the array.

A non-deterministic assignment statement, in which a variable is assigned any

value that satis�es some user-speci�ed condition, can be implemented by essentially

the same computation, except the base case of the recursion is the condition on

the variable rather than the expression (Vo�set[size]
0 �

= BVEC(expr)) above. For

example, the translation of an assignment statement that says, \Let x have any value

less than 42." would proceed exactly as above for a normal deterministic assignment

to x, except the base case of the recursion would be BFUN(x < 42)0.

2.2.4 Control Flow

With the assignment statement as the basis, we can de�ne compound statements for

the high-level language features we wish to support (sequence, if-then-else, and non-

deterministic choice) inductively in the usual manner. If s1; : : : ; sn are statements,

then the sequence of statements \s1; : : : ; sn" (executed sequentially in order) is also

a statement. If s1 and s2 are statements and c is a conditional expression, then \if

c then s1 else s2 endif" is also a statement. If s1; : : : ; sn are statements, then the

non-deterministic choice of one of them, denoted here by the expression \s1j : : : jsn",

is also a statement. The description of the entire transition relation, therefore, is just

a single statement, albeit a complex one.

Given the inductive de�nition of statements, the translation of a statement into a

transition relation is naturally recursive. The base case is the assignment statement.

The other rules are as follows:
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Sequence: The result is just the composition of the transition relations for the state-

ments in the list:

TR(s1; : : : ; sn)
def
= TR(s1) � � � � � TR(sn);

where � denotes relational composition: �1��2
def
= �q; q0:9q00[�1(q; q

00)^�2(q
00; q0)].5

Clarke et al. [19], as part of a larger work on building approximate abstract

models of programs, have proposed essentially this rule combined with a special

case (no complex data structures) of the deterministic assignment rule from

Section 2.2.3.

If-Then-Else: The resulting transition relation just uses the condition to select

which branch applies:

TR(if c then s1 else s2 endif)
def
= (BFUN(c)) TR(s1)) ^

(:BFUN(c)) TR(s2)):

Non-Deterministic Choice: The result is just the OR of the transition relations

for the statements in the list:

TR(s1j : : : jsn)
def
= TR(s1) _ � � � _ TR(sn):

These rules complete the description of the translation process. Subroutines can

be handled by macro expansion since recursion is not allowed. We can now translate

an empirically useful set of high-level language features automatically into BDDs,

greatly simplifying this step for BDD-based veri�cation.

5Recall from Chapter 1 that this pseudo-�rst-order notation simply indicates which variables the

BDDs refer to. A straightforward implementation of relational composition introduces a double-

primed copy of each BDD variable. Accordingly, the precise sequence of BDD operations is (1)

change the primed variables to double-primed in the BDD for �1, (2) change the unprimed variables

to double-primed in the BDD for �2, (3) AND the two BDDs, and (4) existentially quantify the

double-primed variables from the resulting BDD.
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Chapter 3

E�cient Image Computation

Chapter Overview1

Although automatic translation from a high-level language to a transition relation in

Boolean logic as given in the preceding chapter is convenient, the transition relation

frequently turns out to be too large to represent as a BDD. Fortunately, the veri�ca-

tion algorithms do not actually need the transition relation as a BDD; rather, they

need to compute the images of sets of states through the transition relation. This

chapter shows how this computation can be done without building the BDD for the

transition relation.

3.1 Background

The techniques from Chapter 2 are su�cient to convert a high-level description into

a Boolean next-state relation represented as a BDD. If we return to the veri�cation

algorithms from Chapter 1, we �nd that the BDD for the transition relation makes

it easy to compute the image operators, which in turn make it easy to solve my

veri�cation problem.

Unfortunately, the BDD for the transition relation frequently turns out to be too

1This chapter is based on material �rst published in the Fourth International Workshop on

Computer-Aided Veri�cation, 1992 [44].

35
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large to build. Note that this is not a new problem resulting from ine�ciencies in the

translation routines I've given; transition relation BDD blow-up was noted in some

of the earliest papers on veri�cation with BDDs [21, 85, 9].

Fortunately, a closer examination of the BDD-based veri�cation algorithms sug-

gests that building the BDD for the transition relation might not be necessary. The

advantages of the BDD representation are ease of manipulation, canonicity (which

makes comparing functions easy), and frequently compact size. In this case, the BDD

for the transition relation is blowing up, so the compact size advantage does not ap-

ply. The veri�cation algorithms manipulate the transition relation only as part of the

image computation, and transition relations are never checked for equality, obviating

the need for canonicity. What we really need is to be able to compute the image

operators applied to sets of states represented as BDDs; building the BDD for the

transition relation is just a means unto the end of computing these image operations.2

The �rst technique to capitalize on this observation that we need not build a BDD

for the entire transition relation is the use of Boolean functional vectors [21, 51, 30].

This approach represents the transition structure of the system as a function from the

current state to the next state, using a separate BDD for each state bit to compute

the value of that bit in the next state. In the domain of gate-level sequential digital

circuits (for which this technique was developed), the BDDs correspond naturally to

the combinational fan-in cones of the latches. If these BDDs are small, using Boolean

functional vectors can be very e�cient. Image computation with Boolean functional

vectors is unintuitive, but empirically e�cient; see the references above for details.

Another approach to avoid building the BDD for the entire transition relation is

the idea of partitioned transition relations [9], which come in conjunctive and dis-

junctive varieties. For a conjunctive partitioned transition relation, the transition

relation is represented, not by a single BDD, but by a set of BDDs whose conjunction

forms the transition relation. Conjunctive partitionings arise naturally when model-

ing a system as the synchronous composition of subsystems: the transition relation

2Unfortunately, the fact that the BDD for the transition relation is too large to build precludes

a number of theoretical improvements to the veri�cation algorithm, such as performing don't-care

simpli�cation on the BDD for the transition relation [12] or computing transitive closures via iterative

squaring [10] or recursive block-matrix decompositions [65].
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for each subsystem is a separate BDD, and the transition relation of the whole system

is just the conjunction of the transition relations of the subsystems. Image computa-

tion with conjunctive partitioned transition relations can be expensive, degenerating

in the worst case to the non-partitioned case. Note that the Boolean functional

vector representation is easily converted into a conjunctive partitioned transition re-

lation [85]. For a disjunctive partitioned transition relation, the disjunction of a set

of BDDs forms the transition relation. Disjunctive partitionings arise naturally when

modeling a system with non-deterministic choice or asynchronous interleaving. Image

computation with disjunctive partitioned transition relations is easy, since conjunc-

tion and existential quanti�cation distribute over disjunction. The e�cient image

computation presented in the next section can be viewed as a generalization of the

disjunctive partitioned transition relation.

A completely di�erent view motivating the image computation presented in the

next section is as a combination of the temporal logic framework for verifying reactive

systems with the program logic framework for verifying transformational programs.

The veri�cation problem in this thesis falls squarely in the camp of temporal logic and

reactive systems. The temporal logic paradigm, however, views the transition relation

as a black box. Symbolic model checking proceeds by computing images of sets of

states through the transition relation. Now, recall from De�nition 1.1 (p. 18) that the

Image operator is essentially the strongest consequent and the BackImage operator

is essentially the weakest precondition. Since the transition relation is de�ned in

a high-level language, computing the image operators is the same as computing a

precondition or postcondition of a transformational program | the program that

de�nes the transition relation. In other words, veri�cation proceeds in the temporal

logic model checking framework of iterating to �xed points, but on each iteration, the

image computation consists of performing an automatic program-logic veri�cation of

a loop-free transformational program. The e�cient image computation presented in

the next section can be viewed as the application of dynamic logic rules of inference

to break down the veri�cation of a program into the veri�cation of its subparts [79].

This observation suggests that the image computation will be a recursive traversal of

the high-level description of the transition relation.
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3.2 Image Computation Procedure

For simplicity, I will only describe the computation for the Image operator. The

computations for PreImage and BackImage are similar.

The basic idea is to de�ne Image(�; Z) to assume the set of states Z is represented

by a Boolean formula, but to assume the transition relation is represented in the

high-level description language rather than as a Boolean formula. The de�nition of

Image can therefore recursively traverse the structure of the program de�ning the

transition relation. Since the high-level language statements are de�ned recursively,

Image has a recursive structure identical to that of TR:

Sequence: The image is propagated sequentially through the statements in the se-

quence:

Image(s1; : : : ; sn; Z)
def
= Image(sn; : : : Image(s1; Z) : : :):

If-Then-Else: The image computation proceeds down both branches separately:

Image(if c then s1 else s2 endif; Z)
def
= Image(s1;BFUN(c) ^ Z) _

Image(s2;:BFUN(c) ^ Z):

Non-Deterministic Choice: The result is just the OR of the images under each

option:

Image(s1j : : : jsn; Z)
def
= Image(s1; Z) _ � � � _ Image(sn; Z):

This case is Burch et al.'s disjunctive partitioned transition relation [9].

The base case of the recursion is anything (like an assignment statement) that doesn't

�t any case above. In the base case, we build the BDD for the (sub-)transition relation

using TR,3 and compute the image using the original de�nition (p. 18). In principle,

we could even resort to using Boolean functional vectors or conjunctive partitioned

3Chapter 2 wasn't a total waste. Indeed, only the part about control 
ow is displaced by this

chapter's image computation.
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transition relations to reduce the base case further, but in practice, building the BDD

for the transition relation in the base case has been adequate. Proving the equivalence

of the recursively computed Image presented here to the original de�nition of Image

is straightforward.

The recursive traversal can be cut short at any point. Thus, if some portion of

the high-level description has an e�cient BDD representation, we can build the BDD

for that part of the system and treat it as a base case.

The computation for PreImage is almost identical to the computation above, ex-

cept that the direction of the transition relations is reversed, since (in dynamic logic)

Image is h��i and PreImage is h�i. BackImage can be computed via a similar com-

putation, or by noting that BackImage(�; Z) = :PreImage(�;:Z), since negation is

constant time for e�cient BDD implementations [5].

Note that although this image computation is a simple trick, it successfully avoids

what otherwise is a show-stopping obstacle preventing BDD-based veri�cation of

many systems. For example, consider the task of computing the transition relation

for a number of systems.4 On a small model of a radix-4 SRT divider, the conventional

method could not complete in 20 minutes, using 74MB at that point. In contrast, this

chapter's recursive computation completed in 2 seconds and just over 1MB. Similarly,

on an industrial distributed linked-list protocol, the conventional method required 3

minutes 20 seconds and 56MB of memory, whereas the recursive computation com-

pleted in 17 seconds and 5MB. On an industrial directory-based cache coherence

protocol, both the conventional method and the disjunctive partitioned transition re-

lation exceeded 120MB without completing, but the recursive computation completed

in 5 minutes 33 seconds and 36MB.

4The actual task was to verify the property True via a backward traversal. Using this task makes

a fair comparison, as it forces this chapter's recursive image computation to traverse the entire

description. The examples were run using the Ever veri�er (See Appendix A.) on a Sun SPARC 20.
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Chapter 4

BDD Blow-Up Representing Sets

of States

Chapter Overview

The remaining stumbling block is that the BDDs representing sets of states become

too large during the veri�cation process. This chapter argues that for high-level

or system-level veri�cation with conventional BDD-based algorithms, this BDD-size

blow-up is typical and should be expected, rather than being a rare surprise or the

result of an unusually poor choice of variable ordering. The reason is that the high-

level view of the system exposes the myriad relationships between various parts of

the system, and these relationships produce myriad relationships between the values

of the BDD variables, resulting in BDD-size blow-up regardless of variable ordering.

This intuitive explanation of why BDD-size blow-up is so common for this type of

veri�cation naturally suggests two approaches to avoid the problem | functionally

dependent variables and implicitly conjoined BDDs | that are the subject of the

following two chapters.
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4.1 A Historical Note

Allow me to start this chapter by continuing the personal anecdote with which I

started Chapter 2. Recall our frustration trying to perform high-level veri�cation

with low-level tools. As a result, we created the Mur' project to build a state-

of-the-art high-level BDD-based veri�er. We had learned from painful experience,

however, the importance of attacking real problems in order to determine the practical

research issues, so we quickly created a non-BDD-based, explicit state enumeration

veri�er to jumpstart the process of writing real veri�cation examples. We intended

to have several complex real examples completed and ready to verify by the time we

�nished the BDD-based version of the veri�er, which we were sure would be vastly

superior. Meanwhile, others were publishing a steady stream of impressive BDD-

based veri�cation results: 1020 states [10]! 10120 states [9]! 101300 states [19]! And

beyond!1

To our surprise, the non-BDD-based veri�er turned out to be very useful. The

combination of a high-level, user-friendly description language, a fast, easy-to-use

veri�er, a big main memory, and clever veri�cation strategy produced real value in

helping debug real system-level designs [27]. To our surprise and dismay, the BDD-

based veri�er was unimpressive. Although the veri�er worked on small examples, and

although large veri�able examples with impressive state counts were easy to contrive,

on the complex real examples we had written, the BDD-based veri�er performed

comparably to and sometimes considerably worse than the non-BDD-based veri�er.

Even when verifying fairly small designs, the BDDs representing sets of states would

often be quite large, sometimes unmanageably so.

Since this experience 
ew in the face of the then prevailing wisdom that BDD-

based symbolic model checking was indubitably superior to explicit state exploration,

we sought to �gure out what we were doing wrong. Extensive variable-order twid-

dling, discussions with other researchers, and literature searches failed to produce any

breakthroughs that solved our problems. Apparently, the problems we were verifying

1For a while, this became an inside joke among veri�cation researchers. At one conference, a

speaker whose work dealt with in�nite-state systems jokingly subtitled his talk \101 States and

Beyond."
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were somehow di�erent from those that other people were verifying, and this di�er-

ence somehow made the problems unamenable to the BDD-based techniques available

at the time.

Eventually, we discovered an explanation. The number of states in a system, the

number of latches or variables, the number of gates, the number of lines of code, and

other standard measures of the complexity of a system are all poor measures of how

di�cult the system is to verify with BDDs. The real issue is BDD size, and BDD size

doesn't correlate well with any of these measures. Instead, BDD size captures some

notion of the communication complexity in the design. For example, a system with

a thousand latches, all of which can take any value at any time, is trivially easy to

verify with BDDs, yet has an enormous number of states. On the other hand, even

a small 16-bit multiplier produces huge BDDs. The high-level veri�cation problems

we were attacking tend to produce large BDDs. To understand why, we need some

intuition on what makes a BDD big.

4.2 BDD Size Intuition

As mentioned in Chapter 1, a simple counting argument shows that almost all Boolean

functions require large BDD representations. A similar argument, however, also shows

that almost all Boolean functions require large representations in any reasonable

representation scheme, including digital circuits. Rather than proving that BDDs and

digital circuits are useless, the argument really shows that most Boolean functions are

not practically interesting. As we have seen, the BDDs for many common functions

are small.

A more informative approach is to characterize which functions have small BDD

representations or to develop techniques to prove lower bounds on the size of the

BDD for a given function. A few results have appeared along these lines. Ishiura

and Yajima show that the class of functions that have polynomial (in the number of

variables) size BDDs is exactly the class of functions computable by a one-way o�-line

logspace Turing machine [47]. Meinel compares the expressive power of polynomial-

size BDDs to several other varieties of branching programs [68]. A particularly useful
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result is the fooling set method developed by Bryant [7] based on an earlier VLSI

complexity result. The method is currently the only general technique known for

proving lower bounds on the size of the BDD for a speci�c function.2 The basic idea

is to allow an adversary to partition inputs of the function arbitrarily into two sets L

and R of roughly equal size.3 A truth assignment to the input variables in set R is

said to distinguish between two truth assignments to the input variables in set L if the

function produces di�erent values depending on which of the two truth assignments

to the inputs in L is used. A fooling set is a set of truth assignments to the inputs in

L such that for any two truth assignments in the set, there exists a truth assignment

for the inputs in R that distinguishes between them. Bryant's main result is that if

for all partitions we can construct a fooling set of size cn, then the size of the BDD

for the function is lower-bounded by 
(cn).

The intuition behind the fooling set method provides general insight into causes

of BDD-size blowup. The basic idea is that information only 
ows downward in a

BDD. If we cut the BDD at any point in the variable order (so that all the nodes

above the cut come earlier in the variable order than all the nodes below the cut),

the BDD edges crossing this cut must terminate at as many di�erent BDD nodes as

are required to encode all the information needed from the variables above the cut.

Thus, for a given variable ordering and cut, with the variables above the cut forming

the set L and the variables below the cut forming the set R, if we can construct a

fooling set of size k, then the BDD edges crossing the cut must terminate in at least k

di�erent BDD nodes. If there weren't at least k BDD nodes, then at least two truth

assignments in the fooling set would end up in the same BDD node after crossing

the cut, whereupon the truth assignment to the set R that should have distinguished

between these two fooling set truth assignments can't possibly do so. Thus, the BDD

must have size at least k. See Figure 4.1.

Looking at this intuition a di�erent way, consider two variables x and y whose

values are related. The BDD must somehow remember the truth assignment given

2More precisely, for a family of Boolean functions parameterized by n, e.g., n�n-bit multipliers,

the method produces a lower bound as a function of n.
3Actually, we may designate a subset of the inputs and a constant fraction between 0 and 1 and

require that that fraction of the designated subset of inputs appears in the set L.
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Set L = {x1,x2,x3,y1}

Set R = {y2,y3}

Cut

Figure 4.1: Fooling Set Intuition: The BDD shown represents the function (x1 �
y1) + (x2 � y2) + (x3� y3) and is the same as in Figure 1.3(a). In this �gure, the cut
partitions the variables into the set L = fx1; x2; x3; y1g and the set R = fy2; y3g. A
possible fooling set (with the bit-vectors indicating the truth assignment to x1, x2, x3,
and y1 in that order) is f0001; 0000; 0010; 0100; 0110g. For any two truth assignments
in the fooling set, for example 0001 and 0000, there exists a truth assignment to
the variables in set R, such as 00, that distinguishes between them, as 000100 yields
(0�1)+(0�0)+(0�0) which evaluates to 1, but 000000 yields (0�0)+(0�0)+(0�0)
which evaluates to 0. No fooling set has size larger than 5, so the BDD edges that
cross the cut terminate in 5 di�erent nodes.
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Figure 4.2: E�ect of Separating Related Variables: This �gure shows BDDs for a
function (x� y) ^ f in which the variables x and y have related values. In part (a),
x and y are near each other in the variable order. In part (b), they are separated,
forcing the BDD to duplicate the nodes between x and y.
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to x until it reaches y. Therefore, at any cut of the BDD between x and y, we can

create a larger fooling set because we need to distinguish those truth assignments in

which x is true from those in which x is false. In other words, the number of BDD

nodes are roughly doubled between x and y. Hence, to keep the BDD small, intuition

tells us that we should keep related variables close together. See Figure 4.2. What

happens if the function has myriad such relationships between variables? In this case,

no matter which related variables we put close together in the variable order, other

related variables will be forced farther apart. Thus, no matter what variable order

we choose, intuition tells us to expect a large BDD.

4.3 High-Level Veri�cation Is Hard for BDDs

Unfortunately, a high-level model of a system tends to have numerous relationships

between the state variables for various parts of the system. To understand why this

situation is so common, consider the diagram in Figure 4.3. This �gure represents an

enormous range of systems viewed at a high level. The processes could be processors

in a multiprocessor, blocks of logic on a chip, components in a system, etc. They

communicate via some sort of interconnection network, which could be a bus, shared

memory, a switched network, assorted control lines, etc. Typically, each part of the

system has some local state variables that encode its own state and its knowledge

of what's happening in the rest of the system. As the system runs, relationships

between the state variables in various parts of the system are established, maintained,

and occasionally destroyed. For example, in a cache-coherent multiprocessor, each

processor has a local cache that sometimes equals what is in certain memory locations

and a local cache controller whose state provides some indication of what transactions

are occurring throughout the system. While the system runs, numerous invariants

will hold such as: If Processor A is waiting for data from Processor B, then Processor

B must have the data, the directory must indicate that Processor B has the data, the

network must contain a message dealing with this transaction, and so forth. Modeled

at a high level, similar properties typically hold between all parts of the system.

Suppose we try to use the standard BDD algorithms to verify a system at this
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Figure 4.3: A Typical System-Level Model Has Many Relationships Among Variables:
This �gure captures an enormous range of real designs at a system level. At this very
high-level, most systems consist of a number of components, such as processors in
a multiprocessor or logic blocks on a chip, communicating via an interconnection
network of some sort, such as a bus or point-to-point channels. Each part of the
system will have some local state. This local state is typically strongly related to the
state in other parts of the system because the local state re
ects the status of on-going
interactions with other parts of the system. For example, consider the hand-shaking
required in a communication protocol. Thus, regardless of variable order, the BDD
representing the set of all reachable states will be large.
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high level. For a forward traversal, the set of all reachable states will only include

those states that satisfy all of the relationships between the state variables. For a

backward traversal, if the property being checked is non-trivial, convergence will occur

only after the BDD represents only states that satisfy all of the relationships between

the state variables. In either case, the veri�er must generate a BDD for a function

in which most of the variables are related. Thus, no matter what variable order we

choose, some closely related variables will be forced to be far apart, so the BDD will

be large.

Armed with this intuition, we should expect the BDDs in high-level veri�cation

to be large, since the BDDs must encode the myriad relationships between the state

variables of the system. Fortunately, this intuition also gives us a clue to avoiding

the BDD-size blowup: try to eliminate relationships among the variables in a BDD.

This clue is the heart of the two methods I present in the next two chapters to avoid

BDD blowup representing sets of states during high-level veri�cation. Chapter 5

presents a method that exploits user-speci�ed functional relationships between state

variables. Chapter 6 presents a means to use a list of small BDDs instead of a single

large BDD to represent the set of states satisfying a property, thereby separating the

relationships among the state variables into separate BDDs.
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Chapter 5

Functionally Dependent Variables

Chapter Overview1

The preceding chapter explained why the numerous relationships among the the vari-

ables of a system produce BDD-size blowup. Frequently, some of these relationships

take the form of functional dependency | one variable is always a function of other

(independent) variables in the system. This chapter presents a novel means to use

user-speci�ed functional dependencies among the BDD variables to greatly reduce

BDD sizes, while also checking that the user-speci�ed functional relationship is true.

On an example, the new algorithm reduces exponentially-sized BDDs to provably

O(n log n)-sized ones.

5.1 Introduction

The preceding chapter tells us that interrelationships between variables in a system

produce BDD-size blowup, so we should try to minimize or avoid them. This chapter

identi�es a common form that some of these interrelationships take | one variable is

a function of others in the system | and �nds a method to avoid the blowup caused

by this relationship.

1This chapter is based on material �rst published in the 30th Design Automation Conference,

1993 [43].
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A variable in a system is a functionally dependent variable if there exists a function

that always gives the value of the variable in terms of other variables in the system,

assuming the system is operating correctly. Concurrent systems typically have many

functionally dependent variables: individual processes in a concurrent system must

maintain a local image of certain aspects of the global state of the system. For

example, in a directory-based cache-coherence protocol, the directory records which

processors have a given memory line cached. The state of the directory is therefore a

function of the states of the processor caches.

For another example, suppose a process sends a message requesting a service from

another process, and then enters a state waiting for a reply message. Here, the

process is in the \wait for reply" state exactly when the original message is in some

transmission queue, a remote server process is in an appropriate state processing the

request, or the reply message is in the server's transmission queue. In this case, the

state variable which stores the \wait for reply" state locally is functionally dependent

on the state variables encoding the queues and the state of the server process.

Functionally dependent variables have a high degree of correlation with the vari-

ables on which they depend. In a concurrent system with many dependent variables,

it becomes di�cult or impossible to order the variables so that the dependent vari-

ables are close to the variables upon which they depend. As we saw in Chapter 4,

the result is BDD-size blowup.

The few case studies of successful protocol veri�cation with BDDs also illustrate

the importance of functionally dependent variables, but by their relative absence. In

verifying the cache consistency protocol of the Encore Gigamax, for example, McMil-

lan and Schwalbe's careful choice of abstraction as well as the bus-snooping nature

of the protocol combine to create a description of the system with few dependent

variables [67]. Similarly, the Controller Area Network protocol veri�ed by Chiodo

et al. has almost no dependent variables because it relies on a broadcast bus with

automatic collision detection, and the individual nodes have no information about the

rest of the system [15]. Academic examples like dining philosophers also tend not to

have many dependent variables because each process has very little state and behaves

largely independently of the rest of the system. If BDD-based veri�cation is to apply



5.2. THEORETICAL BASIS 53

to a broader range of problems, dealing with functionally dependent variables is a

must.

This chapter presents a new idea for reducing the explosive e�ects of functionally

dependent variables. The user declares the dependent variables as a user-speci�ed

function of the independent variables. During veri�cation, the BDD representing

the set of reachable states contains only the independent variables. (The values of

dependent variables are implicit from the user-supplied function.) The fundamental

di�culty of this approach is that, typically, the dependent variables are only really

dependent when the protocol is error-free. If the protocol malfunctions due to a de-

scription or design error, the nature of the problem is often a discrepancy between

the dependent and independent variables (e.g., the local image of the global state is

not a true image). Hence, the method must check at each step of veri�cation whether

the functional dependency continues to hold. In other words, the method assumes

that the functional dependency holds, thereby realizing a substantial BDD-size sav-

ings, while simultaneously verifying that the assumption of functional dependency was

correct.

5.2 Theoretical Basis

We �rst need to formalize our notion of a functionally dependent variable.

De�nition 5.1 (Functionally Dependent Variable) A BDD variable y is func-

tionally dependent on a set of BDD variables x1; : : : ; xn i� there exists a function f

such that y = f(x1; : : : ; xn). For notational convenience, we extend this de�nition in

the obvious way to a vector of BDD variables ~y: ~y is functionally dependent on ~x i�

there exists a vector-valued function f such that ~y = f(~x).

Let us now review our original veri�cation problem in light of the concept of func-

tionally dependent variables. For concreteness, divide all of the state variables in

the system being veri�ed into two vectors of BDD variables: ~x and ~y. As before,

we specify the set of start states S(~x; ~y), the non-deterministic next-state relation



54 CHAPTER 5. FUNCTIONALLY DEPENDENT VARIABLES

�(~x; ~y; ~x0; ~y0), and the set of states satisfying the veri�cation condition G(~x; ~y).2 Ad-

ditionally, we specify a function f such that ~y = f(~x) should hold for all reachable

states. The goal is still to verify that all reachable states satisfy G, but we now

wish to use f to eliminate the BDD variables ~y, thereby reducing BDD size, while

simultaneously proving that ~y = f(~x) in all reachable states.

At �rst glance, this task appears impossible. To reduce BDD size, we must elimi-

nate the BDD variables for ~y by assuming ~y = f(~x) and substituting f(~x) in place of

~y, but if we assume ~y = f(~x), how can we possibly check that the assumption is cor-

rect? Furthermore, we cannot take advantage of a high-level language description of �

to check the functional dependency step-by-step through the description as we did in

Chapter 3 for image computation because, even if the functional dependency is true

in every reachable state, the functional dependency might not hold at intermediate

points in the next-state relation. For example, suppose the functional dependence is

that ~y = ~x, and the next-state relation includes the following code:

x := 0; -- Assignment 1

-- Additional code could go here.

y := 0; -- Assignment 2

After the �rst assignment, ~y no longer necessarily equals ~x. Indeed, at that point,

~y may not even be any function of ~x, since ~x must be 0, whereas ~y can still have

any value it used to have. After the second assignment, however, the functional

dependence holds once again.

The solution comes through the use of Boolean functional vectors [21]. Recall

from Chapter 3 that a Boolean functional vector represents the transition structure

of a system as a function from the current state to the next state. For each BDD

variable, a separate BDD computes the value of that variable in the next state as a

function of the current state BDD variables. For example, if we have a system with

exactly two state variables u and v, the Boolean functional vector (u; v) indicates

the transition structure in which the state never changes (corresponding to transition

2As in Chapters 1 and 2, the pseudo-�rst-order notation simplify clari�es which variables each

BDD refers to.
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relation (u0 = u) ^ (v0 = v)), the Boolean functional vector (v; u) indicates that the

variables u and v swap values at each time step (corresponding to transition relation

(u0 = v) ^ (v0 = u)), and the Boolean functional vector (v; u � v) produces a linear

feedback shift register (corresponding to transition relation (u0 = v) ^ (v0 = u� v)).

Suppose we were verifying a deterministic automaton with a total next-state func-

tion. In that case, we could compute a Boolean functional vector for the next state

as a function of the current state: ~x0 = �x(~x; ~y) and ~y0 = �y(~x; ~y). We could then both

check and assume the functional dependency as follows:

Theorem 5.1 Suppose that Ri(~x) is the set of states reachable in i or fewer steps

from the start states, and that the total deterministic next-state relation has next-

state Boolean functional vectors �x(~x; ~y) and �y(~x; ~y). If the functional dependency

~y = f(~x) is true for Ri(~x), then the functional dependency is also true for Ri+1(~x) i�

Ri(~x)) [�y(~x; f(~x)) = f(�x(~x; f(~x)))] :

Proof: Since the functional dependency holds for Ri(~x), we can substitute f(~x) for

~y when computing the values of the next-state functions. The result follows trivially

by substitution into the expression Ri(~x)) [~y0 = f(~x0)], where the primed variables

denote the value of the variable in the next state. 2

The next-state relation � is not, however, necessarily total and deterministic. We

need, therefore, to extend the concept of Boolean functional vectors.

De�nition 5.2 (MOCB) A multi-set of conditional Boolean functional vec-

tors (MOCB) is a multi-set of pairs (ci; ai), where the condition ci is a Boolean-valued

expression, and the action ai is a Boolean functional vector. The value of a MOCB is

de�ned to be the non-deterministic choice of one action a from the set of all actions

ai for which the corresponding condition ci is true.

De�nition 5.3 (MOB) A multi-set of Boolean functional vectors (MOB) is

a MOCB in which all conditions ci are identically equal to true.

Both the MOCB and the MOB explicitly handle non-determinism. The more cum-

bersome MOCB can represent a partial next-state relation; the MOB can represent
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only a total next-state relation, since Boolean functional vectors are total functions.

In practice, restricting oneself to total next-state relations is easy: null actions can

be represented by a self-looping transition, and terminating computations can be

represented by a transition to a self-looping dead state. Furthermore, a high-level

description language as described in Chapter 2 naturally generates a total next-state

relation. Accordingly, I use the simpler and more e�cient MOB; I will not consider

the general MOCB in the remainder of this thesis.

With this extension of Boolean functional vectors, we can now consider the im-

proved veri�cation algorithm:

Algorithm 5.1 (Forward Traversal with Functionally Dependent Variables)

Let the state variables be ~x, with functionally dependent variables ~y de�ned as ~y =

f(~x). Let the set of start states be S(~x) and the total, possibly non-deterministic

next-state relation be �(~x; ~y; ~x0; ~y0). Let the veri�cation condition be G(~x; ~y).

1. Compute the MOB for �(~x; ~y; ~x0; ~y0).

2. Let R0(~x) = S(~x).

3. Loop

(a) Check Ri(~x)) G(~x; f(~x)). If not, generate counterexample trace.

(b) For each Boolean functional vector (�x; �y) in the MOB,

apply the check from Theorem 5.1:

Ri(~x)) [�y(~x; f(~x)) = f(�x(~x; f(~x)))] :

If not, generate counterexample trace.

(c) Ri+1(~x) = Ri(~x) _ Image(Ri; �)(~x).

(d) If Ri+1(~x) = Ri(~x), terminate successfully.

As can be seen, this algorithm is essentially the standard forward traversal and is

open to the standard optimizations. The only di�erences are the generation of the

MOB, and the step to check that the functional dependency will be preserved on each

iteration.



5.3. IMPLEMENTATION 57

5.3 Implementation

I have implemented the above algorithm in the Ever veri�er, described in Appendix A.

To use functionally dependent variables, the user simply declares a variable to be

functionally dependent, giving the function that speci�es the dependency. From that

point on, the veri�er handles everything automatically. The interesting implementa-

tion issues are how to build the MOB and how to build the Boolean functional vectors

within the MOB.

I assume the high-level description language has the same feature set and Algol-

style structure as in Chapter 2. Imposing a few restrictions on the description lan-

guage ensures that the transition relation is total (so we don't need a MOCB), and

greatly simpli�es translating a high-level description into a MOB:

� The description must be structured as the non-deterministic choice among de-

terministic actions, in the manner of both Mur' and Unity. On any branch of

the parse tree for the next-state relation, therefore, all non-deterministic choice

expressed as a disjunction between sub-relations occurs �rst. This restriction

keeps the degree of non-deterministic choice reasonably small.

� A (sub-)next-state relation must not evaluate to false. To express a null action,

use a self-loop; to express a terminating computation, create a transition to

a self-looping dead state. This restriction, along with the next one, precludes

writing partial next-state relations.

� All assignments must be deterministic. Eliminating non-deterministic assign-

ment both discourages descriptions resulting in very large MOBs and also closes

a loop-hole that would have allowed creating a partial next-state relation.

With these restrictions, the next-state relation is essentially a tree with determin-

istic next-state relations at the leaves. Hence, building the MOB consists simply of

traversing the disjunctions at the top levels of the parse tree, collecting the Boolean

functional vectors built for each deterministic next-state sub-relation.

Building the Boolean functional vector for a deterministic next-state relation is a
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more complex computation. The computation is a syntax-directed recursive trans-

lation, much like the one described in Chapter 2. Here, however, as the translation

routines traverse the high-level description, they always maintain a Boolean functional

vector that indicates the values of all variables at that point in the description as a

function of the original current-state variables. At the start, this Boolean functional

vector is simply the array V of all BDD variables for the current state variables (de-

�ned on page 26), followed by the BDDs for f(~x) to give the values of the dependent

variables. As each statement is processed, the Boolean functional vector is updated

to re
ect the e�ect of that statement.

More formally, two key di�erences distinguish the translation in this chapter from

the translation in Chapter 2. The �rst di�erence is that the top-level translation is

handled by a new function BFV, which returns a Boolean functional vector, rather

than by the function TR, which returned a transition relation. The other di�er-

ence is that the helper translation functions in Chapter 2 (e.g., BFUN, BVEC,

SELECTBITS, etc.), must be modi�ed to take a Boolean functional vector as an

additional input parameter and to use this Boolean functional vector instead of the

array V of BDD variables to supply the current values of the state variables. Let the

su�x \ BFV" attached to the name of a function denote this modi�ed version. For

example, we can de�ne SELECTBITS BFV as follows (cf. p. 27):

SELECTBITS BFV(�; o�set; size; �)
def
= �o�set[size]

SELECTBITS BFV(�eld name :: �; o�set; size; �)
def
=

SELECTBITS BFV(�; o�set + OFFSET(�eld name); size; �)

SELECTBITS BFV(index expr :: �; o�set; size; �)
def
=

û

i=l

2
6664

BVEC(index expr)
�
= BVEC(i)

�

)

SELECTBITS BFV(�; o�set + OFFSET(i); size; �)

3
7775 ;

where � is the Boolean functional vector passed into the function and the other

notation is the same as in Chapter 2. Since we can consider the array V to be a
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Boolean functional vector, the functions in Chapter 2 are just special cases of the ones

de�ned here, e.g., if the user does not specify any functionally dependent variables,

then for any part of the description P , the function BFUN(P ) is exactly the same as

the function BFUN BFV(P; V ).

We can now de�ne recursively the function BFV that takes (a fragment of) a

deterministic high-level description and a Boolean functional vector giving the values

of the variables at the start of the fragment and that returns the Boolean functional

vector giving the values of the variables after the fragment has executed. Permissible

description-language constructs are null statements, deterministic assignment state-

ments, sequences of statements, and if-then-else statements. De�ne BFV as follows,

where � is the current Boolean functional vector:

Null Statement: The current Boolean functional vector is passed on unchanged:

BFV(null; �)
def
= �:

Assignment: An assignment statement is handled by a helper function (described

below) similar to the ASSIGN function de�ned in Chapter 2:

BFV(var := expr; �)
def
= ASSIGN BFV(�; 0;SIZEOF(�); expr; �);

where ASSIGN BFV is de�ned below and � is the list of modi�ers corresponding

to the variable reference var, exactly as in Chapter 2 (page 30).

Sequence: For a sequence of statements, BFV called on the �rst statement returns

the correct Boolean functional vector to start the processing of the rest of the

statements:

BFV(s1; s2; : : : ; sn; �)
def
= BFV(s2; : : : ; sn;BFV(s1; �)):

If-Then-Else: BFV simply uses the condition to select which branch applies:

BFV(if c then s1 else s2 endif; �)
def
=
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(BFUN BFV(c; �)
�

) BFV(s1; �)) ^

(:BFUN BFV(c; �)
�

) BFV(s2; �));

where
�

) denotes a single BDD implying each component of a vector of BDDs,

and the ^ is applied component-wise.

The de�nition of the ASSIGN BFV function is very similar to that of the ASSIGN

function described in Chapter 2. The main di�erence is that ASSIGN BFV collects

vectors of BDDs giving the next value of each variable and assembles the vectors

into longer vectors, whereas ASSIGN collects BDDs expressing the relationship be-

tween some current and next-state variables and conjoins them together into a single

BDD relating all of the state variables. Let � denote the operation of concatenating

two vectors of BDDs into a longer vector, e.g., (v; u � v) � (u; v) is (v; u � v; u; v).

ASSIGN BFV is de�ned recursively as follows:

ASSIGN BFV(�; o�set; size; expr; �)
def
= BVEC BFV(expr; �)1[size]

ASSIGN BFV(�eld name :: �; o�set; size; expr; �)
def
=

K

f2record �elds

2
6666666664

if f = �eld name

then

ASSIGN BFV(�; o�set + OFFSET(f); size; expr; �)

else

�o�set+OFFSET(f)[SIZEOF(f)]

3
7777777775

ASSIGN BFV(index expr :: �; o�set; size; expr; �)
def
=

uK
i=l

2
6666666664

if BVEC BFV(index expr; �)
�

= BVEC(i)

then

ASSIGN BFV(�; o�set + OFFSET(i); size; expr; �)

else

�o�set+OFFSET(i)[SIZEOF(element)]

3
7777777775

;

where � is a list of modi�ers, � is the empty list, :: is the list cons operator, l and u
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are the lower and upper bounds of the array, and the notation Bi[s] applied to any

vector of BDDs B denotes the s BDDs starting with the ith one.

A �nal implementation issue is how to compute the image operators (p. 18).

One possibility, since we've already computed Boolean functional vectors for the

next-state relation, is the straightforward extension of the Boolean functional vector

image computation techniques [22, 85] to handle the non-determinism of MOBs. For

the example that follows, however, I have identi�ed a special case that allows a

simpler solution. If the description of the next-state relation of the system does

not rely on the updated value of functionally dependent variables, assignments to

functionally dependent variables are no-ops when computing images. Hence, we can

reuse the existing e�cient image computation from Chapter 3 by simply ignoring

those assignments. (Of course, the assignments are not ignored when computing the

MOB for the next-state relation.)

5.4 A Benchmark Example

In many of our industrial examples, we need to model a communication network that

doesn't preserve message order. In addition, individual processors keep track of what

messages they have outstanding in the network. Clearly, each processor's message

status is a function of the network. Furthermore, the correctness of each processor's

status is a crucial component of the overall correctness of the system. Thus, this

situation perfectly illustrates functionally dependent variables arising in practice.

This section's benchmark example distills the essential properties from the sce-

nario above. Suppose we have a set of processors that non-deterministically issue

requests into the network. Each request contains the processor's ID as a return ad-

dress. A server non-deterministically pulls messages out of the network (modeling

a non-order-preserving network), and places an acknowledgement back into the net-

work. Eventually, the processor will receive the acknowledgement. When a processor

sends a request, it increments a counter. When the processor receives an acknowl-

edgement, it decrements the counter. See Figure 5.1.

For simplicity, assume there are n processors and that the network can hold n
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Count
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Count

Client

Count

Client

Network

req:id#
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Figure 5.1: Network Example: Each client non-deterministically issues requests into
a non-order-preserving network. A server non-deterministically receives requests and
responds with acknowledgments to the requesting clients. Each client keeps a count
of how many requests it has outstanding. If the system is operating correctly, this
count should be a function of the network. The veri�cation task is to verify that each
client's count is correct.
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messages. Integers will be k bits wide, with k > log2 n. Thus, we declare an array

of processors numbered 0 through n� 1. Each processor has a k-bit integer counter.

We model the network as an n-element array (numbered 0 through n � 1) of mes-

sages. Each message is a record with a valid bit, a request/acknowledge bit, and

a k-bit integer return address. At each time step, any one processor can choose to

send a request, or any one valid request in the network can be served (becoming an

acknowledge), or any one acknowledgement in the network can be delivered back to

the sender.

If we don't exploit the functional dependency, the BDD for the set of reachable

states will clearly be exponential for any straightforward variable ordering. For in-

stance, if the processor counters come �rst in the variable order, any truth assignment

such that the sum of the counts is less than or equal to n may or may not be a reach-

able state of the system depending on what the truth assignment for the network is.

(If the sum of the counts is greater than n, the state cannot be reachable since the

network has size n.) Thus, any of these truth assignments to the processor counters

is an element in a fooling set. The size of the fooling set is
Pn

i=0

�
n�1+i

i

�
, since

�
n�1+i

i

�

is the number of ways for the sum of the n processor counters to be exactly i. The

summation evaluates to
�
2n

n

�
, which is exponential. I conjecture that the BDD will

be exponentially sized for any variable ordering.

In contrast, if we declare the processor counts as functionally dependent variables,

we can prove low-order polynomial bounds on the sizes of the BDDs for sets of

reachable states. The BDDs will contain variables for only the network. Assume

a non-interleaved order for the network array. (All BDD variables for each array

element are kept together in the order.)

Theorem 5.2 With a non-interleaved variable order, the size of the BDD for the set

of all reachable states (R1 in Algorithm 5.1) is n(cn+1)+2, where cn is the number

of BDD nodes needed to show that an integer is less than n. Since the BDD size for

integer comparison is at most the number of bits in the integer, cn � dlog2 ne. In

practice, cn is bounded above by a constant, the logarithm of the largest possible value

of n.

Proof: Any state is reachable provided that for each element in the network array,
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if the valid bit is set, the return address must be less than n (a valid return address).

The test for each array element requires cn + 1 BDD nodes. The BDD for the set of

all reachable states is just the conjunction of the n tests. Since the variable order is

non-interleaved, the size of the conjunction is n(cn+1). Add 2 for the leaf nodes (add

1 instead if using complement edges as most e�cient BDD implementations do [5]). 2

Theorem 5.3 With a non-interleaved variable order, the size of the BDD for the set

of all states reachable in i or fewer iterations (Ri in Algorithm 5.1) is (n � i=2)(i +

1)(cn + 2) + (cn + 1)(i� n) + 2. Again, cn is logarithmic in n and can be treated as a

constant in practice.

Proof: The intuition behind the proof is as follows. After i iterations, at most

i \events" could have happened and still be visible, where an event is either the

creation of a new request or the servicing of a request (making it an acknowledge).

Therefore, at iteration i, any state is reachable as long as (1) for each element in the

network array, if the valid bit is set, the return address must be less than n (as in

Theorem 5.2), and (2) the state does not require more than i events to reach. Any

state can be generated in 2n events, so there are 2n iterations before convergence and

0 � i � 2n. The BDD for Ri roughly consists of i identical columns: each column

checks that every element with its valid bit set has a valid return address, and the

di�erent columns track how many events the BDD has seen so far.

More formally, we can enumerate the BDD nodes in Ri by laying the BDD nodes

out on a chessboard. Imagine an n � (i + 1) chessboard, with the rows numbered

1 : : : n from top to bottom, and the columns numbered 0 : : : i from left to right. In

the square at row r and column c are all BDD nodes pertaining to the rth element

in the network array (valid bit, req/ack bit, and return address for array element r)

and assuming that c events have been noted in the BDD already. Subdivide each

square into upper and lower parts: the upper part contains the valid and req/ack

nodes; the lower, the cn nodes to test the validity of the return address. The BDD

nodes are interconnected as follows: the false edge from the valid node at square (r; c)

goes to the valid node at square (r + 1; c), the true edge from the valid node goes to

the req/ack node at square (r; c), the edges from the req/ack node go to the return

address nodes of square (r; c+1) for a request and square (r; c+2) for an acknowledge,
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Valid? Valid?

Req/Ack Req/Ack

Address

OK?

Address
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ack

req
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Figure 5.2: Each square of the chessboard contains BDD nodes arranged like this.
The node labeled \Address OK?" is actually as many nodes as are needed to check
the address. If the address is not OK, the edge leads directly to the 0 leaf node.

and the edges from the return address check at square (r; c) go to the valid node of

square (r+1; c) if the address is valid and to the 0 leaf node if the address is invalid.

See Figure 5.2. Any edge that crosses the right edge of the chessboard goes directly

to the 0 leaf node; any edge that crosses the bottom of the chessboard goes to the 1

leaf node.

Note, however, that not every square has all of the BDD nodes in it. Since each

network element can count as at most 2 events (if it's an acknowledgement), any

square where c > 2(r � 1) cannot be reached and therefore contains no BDD nodes.

See Figure 5.3(a). Similarly, near the bottom of the BDD, if the number of possible

events left cannot possibly exceed i, then the BDD need no longer count events, so

the di�erent columns collapse into a single chain. I will count these nodes separately

as part of that chain. Therefore, I don't count the squares where i� c > 2(n� r)+ 1.

See Figure 5.3(b). The number of squares I do count is exactly (n � i=2)(i + 1). In

addition, of the squares that I do count, note that squares on the left edge of the

board do not need nodes to check return addresses, since the left edge of the board is
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reserved for the case where no messages have been valid, and note that the squares

on the right edge of the board do not need the req/ack nodes, since either case results

in too many events. Also, note that squares on the bottom boundary of the counted

region do not have their address check nodes counted, as these will be collapsed into

the chain counted separately since the event count no longer matters at that point.

There are exactly n � bi=2c counted squares on the left edge and n � di=2e counted

squares on the right edge. See Figure 5.3(c). Now, count the nodes that check return

addresses as part of the square below the one in which they occur. Therefore, the

total number of BDD nodes is (n� i=2)(i+1)(cn +2) for the counted squares, minus

(n� bi=2c)cn for the missing return address nodes on the left edge, minus n� di=2e

for the missing req/ack nodes on the right edge, plus the BDD nodes in the separate

chain. The separate chain consists of bi=2c layers of valid bit and return address

checks, plus an extra return address check if i is odd. See Figure 5.3(d). Putting it

all together yields:

(n� i=2)(i+ 1)(cn + 2)

� (n� bi=2c)cn

� n� di=2e

+ bi=2c(cn + 1)

+ cn[if i is odd];

which simpli�es to the desired result. (Add 1 or 2 for the leaf nodes as in the previous

theorem.) 2

Corollary 5.4 With a non-interleaved variable order, the size of the largest BDD for

an intermediate reachable set (any Ri in Algorithm 5.1) is (cn=2 + 1)(n2 + n) + 2.

Proof: The BDD-size formula in Theorem 5.3 de�nes a downward opening parabola

as a function of i. Di�erentiating with respect to i, we �nd the derivative is positive

at i = n and negative at i = n + 1. Evaluating at these two points, we �nd that

the largest BDD is the desired result at iteration i = n, with the BDD at the next

iteration one node smaller. 2



5.4. A BENCHMARK EXAMPLE 67
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Figure 5.3: These diagrams show how we count the BDD nodes. All nodes in a row
r deal with the rth network array element. Each column corresponds to how many
events the BDD has counted so far. The letter v indicates that a square contains a
node to check the valid bit; the letter r, a node to check the req/ack bit; and the letter
a, the cn BDD nodes needed to check the address. The slash divides the upper and
lower parts of each square. Part (a) shows that we don't count the nodes from the
unreachable squares in the upper-right corner. Part (b) shows that we don't count
the nodes in the lower-left corner, since the event count doesn't matter at that point
so the nodes collapse into a single column that we count separately. Part (c) shows
that there are no address check nodes on the left edge, no req/ack nodes on the right
edge, and no address check nodes on the bottom edge of the counted region. Part (d)
shows the extra chain of BDD nodes that handles the case when the BDD no longer
needs to count events. This chain is bi=2c squares long, plus an extra set of address
check nodes if i is odd. (In the bottom �gure, consider the square at row 2, column 0.
If the valid bit is on, and the req/ack bit indicates a request, the BDD must branch
to an address check in row 2, but it must also stop counting events, so there must be
the extra address check nodes in row 2 in the separate column.)
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The actual runs con�rm these theoretical results. I used 4-bit integers and BDDs

with complement edges, so the BDD size bounds from Theorem 5.2 and Corollary 5.4

are 5n+1 and 3(n2+n)+1. The di�erence between linear or quadratic and exponential

size is quite striking. Interestingly, although Algorithm 5.1 appears to be trading o�

time for space (since it's processing each deterministic choice separately and the

additional check for Theorem 5.1 must be performed at each iteration), it actually

runs faster, since the BDDs in the conventional approach are so large and the time

for a BDD operation is a function of the size of the BDD. The results are summarized

in the Table 5.1 and in Figs. 5.4 and 5.5.

Just as BDDs are no panacea, functionally dependent variables are no panacea,

either. There are many other reasons why a BDD might become excessively large.

On the other hand, functionally dependent variables are a common cause of BDD-size

blowup, and the techniques presented here pay o� dramatically, promising to extend

the range of applicability of BDD-based veri�cation. Although exploiting functional

dependencies is not a cure-all, it is clearly a necessary step.
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Figure 5.4: Largest Intermediate Reachable BDD Size (semi-log scale). \Conven-
tional BDD Traversal" is the normal forward traversal without taking advantage of
functional dependencies and clearly shows exponential growth. The theoretical bound
is based on Corollary 5.4, using cn � 4.



70 CHAPTER 5. FUNCTIONALLY DEPENDENT VARIABLES

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Conventional BDD Traversal
Algorithm 1

Linear Theoretical Upper Bound

Figure 5.5: Final Reachable State BDD Size (semi-log scale). Again, the conven-
tional approach clearly shows exponential growth. The theoretical bound is based on
Theorem 5.2.
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n Method Iterations Time (min:sec) Memory (KB) Max BDD Final BDD

1 Fwd 3 0:00.36 624 12 11

Bkwd 1 0:00.38 636 11 11

FDV 3 0:00.30 632 7 6

2 Fwd 5 0:00.67 816 65 53

Bkwd 1 0:00.61 796 56 56

FDV 5 0:00.79 776 16 9

3 Fwd 7 0:01.67 1188 287 208

Bkwd 1 0:01.28 1072 236 236

FDV 7 0:02.58 988 37 16

4 Fwd 9 0:04.73 1556 1198 788

Bkwd 1 0:03.16 1316 994 994

FDV 9 0:07.72 1320 41 13

5 Fwd 11 0:16.82 3904 5188 3104

Bkwd 1 0:08.62 2404 3922 3922

FDV 11 0:19.94 1556 91 26

6 Fwd 13 2:06.49 10644 21579 12177

Bkwd 1 0:29.52 4636 15550 15550

FDV 13 0:45.04 2416 106 25

7 Fwd 15 8:39.04 44800 88647 47267

Bkwd 1 2:19.77 14848 61861 61861

FDV 15 2:04.36 3260 169 36

8 Fwd Space Out

Bkwd 1 23:47.25 47480 246829 246829

FDV 17 3:56.32 4520 109 17

9 Fwd Space Out

Bkwd Space Out

FDV 19 7:16.76 6028 271 46

10 Fwd Space Out

Bkwd Space Out

FDV 21 12:50.99 8372 276 41

(continued on next page)

Table 5.1: Functional Dependency Results: n indicates the number of clients. The
Method column indicates which algorithm was used: \Fwd" and \Bkwd" are the stan-
dard BDD-based forward and backward traversals described in Chapter 1, \FDV" is
the forward traversal taking advantage of functional dependencies. All three methods
used the e�cient image computation procedure described in Chapter 3. Iterations is
the number of iterations to convergence. Time is total execution time as reported by
the UNIX shell. \Time Out" indicates execution time exceeded one hour. Memory
is the total amount of memory used as reported by the UNIX shell. \Space Out"
indicates total memory usage exceeded 60MB. Max BDD gives the size in BDD nodes
of the largest Ri or Gi encountered during veri�cation. Final BDD gives the size of
the BDD at convergence. The conventional BDD-based approaches cannot handle
the larger instances of this example. All results are from a Sun SPARCstation 2.



72 CHAPTER 5. FUNCTIONALLY DEPENDENT VARIABLES

(continuation of Table 5.1)

n Method Iterations Time (min:sec) Memory (KB) Max BDD Final BDD

11 Fwd Space Out

Bkwd Space Out

FDV 23 20:50.98 10516 397 56

12 Fwd Space Out

Bkwd Space Out

FDV 25 34:16.82 14124 313 37

13 Fwd Space Out

Bkwd Space Out

FDV 27 53:13.27 19788 547 66

14 Fwd Space Out

Bkwd Space Out

FDV Time Out

15 Fwd Space Out

Bkwd Space Out

FDV Time Out

16 Fwd Space Out

Bkwd Space Out

FDV Time Out



Chapter 6

Implicitly Conjoined BDDs

Chapter Overview1

Like Chapter 5, this chapter presents an enhancement to a standard BDD-based

veri�cation algorithm to avoid an empirically common cause of BDD-size blow-up.

The basic idea is to represent a set of states not by a single BDD, but rather by a

list of BDDs whose conjunction represents the set of states. The chapter motivates

the rationale behind implicitly conjoined BDDs, details the changes to the standard

backward traversal algorithm required by the new representation, and demonstrates

the e�ectiveness of the technique on some simple examples that illustrate commonly-

occurring causes of BDD-size blow-up.

6.1 Introduction

In Chapter 4, we saw that the BDD representing a set of states of a system is large

for all variable orderings if the BDD must encode numerous relationships among

the state variables of the system. The functionally dependent variables technique in

Chapter 5 attempts to avoid this situation by eliminating variables (and therefore

relationships between variables). The implicitly conjoined BDDs technique in this

1This chapter is based on material �rst published in the Fifth International Conference on

Computer-Aided Veri�cation, 1993 [42] and the 31st Design Automation Conference, 1994 [45].
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chapter attempts to avoid this situation by representing a set of states by a list of

BDDs, rather than a single BDD, so that each BDD ideally need only encode a few

relationships among a few state variables.

The intuition behind implicitly conjoined BDDs is straightforward. When mod-

eling at a high-level, we typically view the system as a collection of components ci.

Correct operation of the system requires some local correctness property pi to hold

of each component ci. Commonly, however, correct operation also requires that for

many pairs of components ci and cj, some consistency property pij hold between

them. For example, recall the network example from Chapter 5 (p. 61). The net-

work has a local correctness property that any valid message must have a legal return

address. Between each processor and the network must hold the consistency prop-

erty that the processor's count is equal to the number of messages relating to that

processor. If the components of the system are reasonably small, then the BDD for

each local correctness property and each consistency property is small by itself. To

verify correct operation of the system, however, the standard BDD-based veri�cation

algorithms must essentially build a BDD for the conjunction of all of these properties.

This BDD will encode numerous relationships among numerous state variables and

will therefore be very large. How can we verify without building the huge BDD for

this conjunction?

Suppose that instead of using a single BDD to represent a set of states, we used

a list of BDDs, where the list represents the conjunction of the BDDs in the list. In

other words, the BDDs in the list are implicitly assumed to be conjoined, and we

never explicitly build the BDD for the conjunction. If we could modify a standard

BDD-based veri�cation algorithm to use these implicitly conjoined lists of BDDs, we

could possibly avoid the BDD-size blow-up described above. Let us consider how

to perform such a modi�cation, and then we will see from examples how well the

technique works.
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6.2 Theoretical Basis

An important property of implicitly conjoined BDDs is that the BackImage operator

(p. 18) distributes over conjunction:

Theorem 6.1

BackImage(�; Y ^ Z) = BackImage(�; Y ) ^ BackImage(�; Z):

Proof:

BackImage(�; Y ^ Z) = 8v[�(u; v)) (Y (v) ^ Z(v))]

= 8v[(�(u; v)) Y (v)) ^ (�(u; v)) Z(v))]

= 8v[�(u; v)) Y (v)] ^ 8v[�(u; v)) Z(v)]

= BackImage(�; Y ) ^ BackImage(�; Z): 2

Thus, we can compute the BackImage of an implicitly conjoined list of BDDs by

taking the BackImage of each BDD in the list. This theorem suggests that implicitly

conjoined BDDs may work well with the backward traversal algorithm. Let us reex-

amine the backward traversal to see how to implement it with implicitly conjoined

BDDs.

Figure 6.1 shows the backward traversal and counterexample algorithms, with all

points that manipulate sets of states marked. Let us consider these points one-by-one.

Point A is easy. Suppose Gi is represented by an implicitly conjoined list of small

BDDs. Let Gi[j] denote the jth BDD in the list, so Gi = Gi[1] ^ � � � ^ Gi[n]. Then

S 6) Gi if and only if there exists a j such that S 6) Gi[j]. We can therefore check

for a violation of the veri�cation condition by checking each conjunct independently

from the other conjuncts.

Point B consists of two operations | the BackImage and the conjunction. The

BackImage is straightforward, thanks to Theorem 6.1. We can compute the BackIm-

age of each conjunct separately. For convenience, letBi[j] denote BackImage(�;Gi[j]),

with Bi denoting the entire implicitly conjoined list of BDDs Bi[1] ^ � � � ^Bi[n].
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Backward Traversal:
Let G0 := G and i := 0.
Repeat

Loop Invariant: For all i, set Gi is the set of all states x such that

any path from x to a state violating the property

must have length greater than i.

If S 6) Gi, then print counterexample and exit. (Point A)
Gi+1 := G0 ^ BackImage(�;Gi). (Point B)
i := i+ 1.

Until Gi = Gi�1. (Point C) Termination guaranteed by monotonicity.

Veri�cation succeeds. Exit.

Counterexample:
Let P := S.
Loop

Loop Invariant: There exists a path from P of length i leading to

a property violation, but no path of length i� 1.
Choose a state x that satis�es P ^ :Gi. (Point D)
Print x.
If i = 0, then x is a violating state. Exit.
P := Image(�; fxg).
i := i� 1.

End Loop

Figure 6.1: Backward Traversal Revisited: This is the same backward traversal algo-
rithm presented in Chapter 1, along with the counterexample algorithm. Points where
the algorithm must be modi�ed to handle implicitly conjoined BDDs are labeled.
Points A and D are easy, as the operation in question distributes over conjunction.
Points B and C require new heuristics.
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The interesting part of Point B is the conjunction of G0 with Bi, because there are

myriad possibilities, all of them mathematically correct, but with di�erent e�ciency

implications. On one extreme, for example, we could take the implicitly conjoined

lists of BDDs representing G0 and Bi and attempt to build the single BDD represent-

ing the conjunction of all of these small BDDs. Although this approach maintains

the correctness of the backward traversal algorithm, it defeats our intention of using

implicitly conjoined lists of BDDs to avoid BDD-size blowup. On the other extreme,

we could simply concatenate the list of conjuncts representing G0 with the list rep-

resenting Bi, again maintaining the correctness of the algorithm, but in this case

never building the BDD for any of the implied conjunctions. This choice has the

undesirable property that the length of the list of conjuncts will grow on each itera-

tion. Another option keeps this length constant on all iterations by setting Gi+1 to

be the implied conjunction Gi+1[1] ^ � � � ^Gi+1[n] where each Gi+1[j] is the BDD for

Gi[j]^Bi[j] (explicitly evaluated as a BDD AND), essentially verifying each conjunct

G[j] of the veri�cation condition G completely independently of the other conjuncts.

This choice has the advantage that it trivializes proving termination for Point C but

the disadvantage that each conjunct ignores information from the other conjuncts.

A key insight at this point exposes further options at Point B. The correctness of

the backward traversal algorithm depends only on the value of the implied conjunction

of an entire list of conjuncts, not on the speci�cs of each conjunct. Therefore, if one

conjunct is false for some truth assignment x, the whole conjunction is false at x, and

the values of all the other conjuncts at x don't matter at all. Accordingly, we can

simplify the BDD representation for each conjunct based on the other conjuncts. For

example, to simplify conjunct Gi[j] by conjunct Gi[k] (j 6= k), we can replace Gi[j]

by any other Boolean function Ĝi[j] so long as Gi[j] = Ĝi[j] wherever Gi[k] is true,

and hopefully the BDD for Ĝi[j] is smaller than the BDD for Gi[j]. (:Gi[k] can be

viewed as a don't-care set to simplify Boolean function Gi[j].) These simpli�cations

have no e�ect on the correctness of the backward traversal algorithm, because they

do not change the value of the (implied) conjunctions, but they can have a signi�cant

e�ect on the e�ciency of the backward traversal algorithm. Obviously, there are

many possible policies for applying these simpli�cations.
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Testing for convergence at Point C could conceivably be problematic, as implic-

itly conjoined lists of BDDs, unlike a single BDD, are not a canonical representa-

tion for Boolean functions, complicating testing for equality. Even proving that we

can detect convergence could be di�cult, depending on how complex our choice of

simpli�cation policy at Point B is, since the don't-care simpli�cation can introduce

non-monotonicity in the sequence G0[j]; G1[j]; : : :, for some values of j. (The entire

conjunction, of course, forms a monotonic sequence G0; G1; : : : that converges, but we

cannot build the BDD for the entire conjunction.)

Point D turns out to be straightforward. We know that there exists a path of

length i from P that violates the property being veri�ed, but no path of any length

less than i. Therefore, P ^:Gi is non-empty, implying that there exists a j such that

P ^ :Gi[j] is non-empty and that any x 2 P ^ :Gi[j] is also in P ^ :Gi. Again, we

can perform this operation on each conjunct independently.

The only open issues, therefore, are deciding which conjunctions to evaluate at

Point B and testing for convergence at Point C. For these questions, we turn to

heuristics.

6.3 Heuristics

I started with very simple heuristics and quickly found something that worked reason-

ably well on my test cases. I then developed more sophisticated heuristics to address

the problems with the simple ones. Descriptions of the heuristics follow. Results are

in Section 6.4.

6.3.1 A Simple Approach

A very simple answer to these two issues gives reasonable results. Compute Gi+1[j] =

Gi[j] ^ Bi[j] as described above, but then simplify each Gi+1[j] by all Gi+1[k] for

k < j. If G0 is an initial implicit conjunction of properties we wish to verify, then this

approach resembles verifying each property independently of the others, except that

the don't-care simpli�cation uses information from the earlier properties to simplify
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the veri�cation of the later ones. The BDD simpli�cation operator I use is Coudert,

Berthet, and Madre's Restrict operator (introduced in [22], named in [23]), which

takes two BDDs as input and produces a BDD that agrees with the �rst input BDD

wherever the second input BDD evaluates to true. (The second BDD speci�es a care

set to simplify the �rst BDD.) Another choice is the Constrain [21] or generalized

cofactor [85] operator.2

This simple evaluation policy tends to maintain correspondence between the jth

entry of the list on di�erent iterations, i.e., ignoring the e�ect of the simpli�cation

operator, for a given value of j, the sequence of BDDs G0[j]; G1[j]; : : : ; Gi[j] is just

the sequence of BDDs required to verify the jth property in G0. Therefore, a sim-

ple component-wise convergence test, checking that Gi[j] = Gi�1[j] for all j, seems

reasonable. This condition is obviously su�cient for convergence, so the veri�er will

never terminate prematurely. On the other hand, as mentioned earlier, a simpli-

�cation operator could conceivably introduce enough non-monotonicity to prevent

this test from detecting convergence. In practice, this simple test has consistently

performed correctly, even with very aggressive BDD-simpli�cation policies.

This simple approach has two main drawbacks. First, it makes no e�ort to �nd

good BDD combinations in the implicitly conjoined list. In particular, note that if

G0 is just a single BDD, this approach degenerates into the conventional backward

traversal with BDDs. Addressing this problem exacerbates the second drawback:

That termination is not proven is already disquieting; if our algorithm further modi�es

the lists of BDDs, the possibility of never detecting termination becomes too great.

Thus, we look for more sophisticated heuristics to address these issues.

6.3.2 Greedy Evaluation

On each iteration, the backward traversal algorithm computes an implicitly conjoined

list of BDDs for Gi+1 = G0 ^ BackImage(�;Gi). We seek to �nd an equivalent list

of BDDs that is smaller overall. More abstractly, given function X expressed as the

2Shiple et al. [82] survey several heuristics for BDD simpli�cation. Of the heuristics studied,

Restrict is the fastest and generally produces very good results.
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implicit conjunction of BDDs X1 ^ � � � ^Xn, we want to �nd an implicit conjunction

with smaller overall size Y = Y1 ^ � � � ^ Ym, such that X = Y .

We will again use the Restrict operator for BDD simpli�cation. While this oper-

ator doesn't always reduce the size of the BDD it is applied to,3 it seems generally

e�ective, so we �rst simplify each BDD Xi by every other BDD Xj that is smaller

than it. (Simplifying a small BDD by a large BDD generally does little good.) The

remaining problem is simply to decide which conjunctions to evaluate to minimize

the total size of the implicitly conjoined list.

At �rst glance, this problem appears an ideal combinatorial optimization problem.

For every subset of the BDDs in the list, we can replace that subset by the single

BDD that's the conjunction of all the BDDs in the subset. Thus, we arrive at a

set-covering problem:

Let X be a set of n conjuncts X = fX1; : : : ;Xng. For every subset

s � X, de�ne the cost of that subset c(s) to be the size of the (single)

BDD that represents the conjunction of all the members of s: c(s) =

BDDSize
�V

Xi2s
Xi

�
: Find the minimum cost set S of subsets that covers

all the conjuncts in X, i.e., �nd the S that minimizes
P

s2S c(s) subject

to 8i9s 2 S[Xi 2 s].

Unfortunately, this approach yields an instance of MinimumWeight Cover, and Mini-

mumWeight Cover is clearly NP-hard by reduction from MinimumCover [35], even if

restricted to subsets of three or fewer conjuncts. (The constraints on the cost function

imposed by BDD properties, however, might make this problem easier than Minimum

Weight Cover in general.) If we restrict ourselves to pairwise subsets only, we can

solve the problem in polynomial time:

Theorem 6.2 Finding the min cost pairwise cover is polynomial time.

3The belief that Restrict never increases the size of the BDD to which it is applied is a common

misconception. For a counterexample, consider the family of functions fn = x1 � � � � � xn and

cn = x1 _ � � � _ xn. Variable order is irrelevant because of symmetry. For plain BDDs, fn has

2n+ 1 nodes (including the terminals), whereas Restrict(fn; cn) has 3n� 2 nodes. For BDDs with

complement edges, fn has n + 1 nodes whereas Restrict(fn; cn) has 2n � 1 nodes. The Constrain

operator behaves identically on these functions. I would like to thank Jerry Burch for suggesting

that this choice of fn and cn would likely produce the desired counterexample.
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Proof: Draw a complete graph with a vertex for each conjunct. Label each edge with

the size of the BDD for the conjunction of the BDDs on the two incident vertices.

Next, make a copy of each vertex. Connect each original vertex to its copy; label that

edge with the minimum of the size of the BDD at that vertex and the labels of all

other incident edges. (This edge indicates the cheapest way to include this conjunct

ignoring all the other conjuncts.) Connect all the copy vertices to each other with

weight 0 edges.4 Minimum weighted matching, which is polynomial time (e.g. [73]),

on this graph gives the optimum cover. 2

Even this result is of limited practical value because in reality, for e�cient BDD

implementations, BDD sizes do not add, since all BDDs in the system can share nodes

with each other [5]. Using a complex \optimum" algorithm for a rough approximation

to a problem makes little sense. Thus, we turn to a greedy heuristic.

The heuristic I propose is fairly simple, yet accounts for some degree of node

sharing among di�erent BDDs. The intuition is to �nd the pair of BDDs for which

evaluating the conjunction gives the greatest savings over not evaluating the con-

junction. We replace the pair of BDDs with the single BDD for the conjunction and

repeat the process. The process terminates when the best conjunction to evaluate

doesn't give su�cient savings. The algorithm is given in Figure 6.2.

6.3.3 Exact Termination Testing

Deciding termination in the veri�cation algorithms requires testing whether the iter-

ation has converged | is Ri = Ri+1 or Gi = Gi+1? (Actually, checking implication

su�ces since these sequences are monotonic.) The simple termination test proposed

earlier relied on the structure of the simple evaluation policy to provide a good chance

of operating correctly. Given that the evaluation and simpli�cation technique pro-

posed in the preceding section can extensively modify an implicitly conjoined list of

BDDs, a method to compare two arbitrary implicitly conjoined lists of BDDs seems

necessary for reliable termination testing. Furthermore, veri�cation, by nature, should

favor a method that is guaranteed correct, but possibly slow, over a method that is

4I would like to thank Eric Torng for this construction.
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Conjunction Evaluation:
Let GrowThreshold = 1:0.
Build a table P of all pairwise conjunctions: Pij := Xi ^Xj .
Loop

Find the i; j (with i 6= j) that minimizes the ratio:
r = BDDSize(Pij)=BDDSize(Xi;Xj)
Note: BDDSize(Xi;Xj) takes node-sharing into account.

If rmin > GrowThreshold, then exit.
Replace Xi and Xj with Pij .
Update P to re
ect the modi�ed conjunct list.

EndLoop

Figure 6.2: Greedy Evaluation Algorithm: This algorithm is a greedy algorithm to
�nd a good set of conjunctions to evaluate in an implicitly conjoined list of BDDs. I
have set the GrowThreshold to 1:0 with satisfactory results. Additional tuning could
improve results further: a smaller threshold holds BDD size down, but can get caught
in a local minimum, whereas any threshold greater than 1 could theoretically allow
us to build exponentially-sized BDDs. Note that we can abort the computation of
Pij as soon as its size exceeds GrowThreshold times BDDSize(Xi;Xj).
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fast, but possibly wrong. Thus, we look for an exact test of implication for arbitrary

implicitly conjoined BDDs.

Suppose we have two implicitly conjoined lists of BDDs X = fX1 ^ � � � ^ Xng

and Y = fY1 ^ � � � ^ Ymg. Our task is to determine whether or not X ) Y , without

building the BDDs for X or for Y , since those BDDs are presumably too big to build.

Decomposing the problem is the most intuitive way to explain my solution. The origi-

nal implementation re
ected this decomposition [45], but the current implementation

described below is more e�cient. Note that

X ) Y = X ) (Y1 ^ � � � ^ Ym)

= (X ) Y1) ^ � � � ^ (X ) Ym);

so we can check each case separately. All the cases are identical, so, for brevity, let's

consider only the X ) Y1 case. Checking whether X ) Y1 is true is equivalent to

checking whether :X _ Y1 is a tautology, which is actually checking whether :X1 _

� � �_:Xn_Y1 is a tautology. Thus, we have reduced the problem of checking whether

one implicitly conjoined list of BDDs implies another to the problem of checking

whether the disjunction of a list of BDDs is a tautology. We can't simply build the

BDD for this disjunction, as that would still blow up, so we further decompose the

problem into smaller, more manageable pieces. The strategy here is to look for easy

special cases �rst (e.g., any disjunct is just True, two disjuncts are complements, etc.)

and if that fails, to perform a Shannon expansion on the implicit disjunction.

Although this decomposition is intuitively appealing, it su�ers from two major in-

e�ciencies. First, �nding that X 6) Yi might be easy for some i, but the decomposed

version of the algorithm may spend considerable time working on other cases �rst.

Second, each instance of tautology checking of the list of BDDs :X1 _ � � � _ :Xn _ Yi

shares all of the same disjuncts except for the last one, so the cost of the Shan-

non decomposition of the X should not be repeated m times for the conjuncts of

Y . Accordingly, although the current implementation follows the intuition from the

decomposed problem, it actually attacks the problem of X
?
) Y directly. Speci�cally,

it performs the following steps in sequence:



84 CHAPTER 6. IMPLICITLY CONJOINED BDDS

1. If any BDD in the X list is the constant False, return True.

If any BDD in the X list is the constant True, discard it.

If any BDD in the Y list is the constant False, replace Y by the constant False.

If any BDD in the Y list is the constant True, discard it.

If the Y list is empty, return True.

If the Y list is non-empty and the X list is empty, return False.

2. If any two BDDs in the X list are complements, return True. (Recall that

negation is fast in e�cient BDD implementations, so this is a cheap test.)

3. If any two BDDs in the Y list are complements, replace Y by the constant False.

4. If any two BDDs in X are identical, discard one. Similarly for Y .

5. Simplify each BDD in X by every other BDD in X. Simplify each BDD in

Y by every other BDD in Y and by every other BDD in X. (After a BDD is

simpli�ed, the new, simpli�ed BDD is used subsequently to simplify the other

BDDs.) This step reduces BDD sizes in the list, and also handles several special

cases (see below).

6. Repeat Step 1 to catch any special cases resulting from the simpli�cation.

7. If all else fails, choose a BDD variable from a BDD in the X list, perform a

Shannon expansion, and check tautology recursively on both cofactors. (The

positive and negative cofactors will each be an implication between implicitly

conjoined lists of BDDs.) For simplicity, the current implementation selects the

top BDD variable of the �rst BDD in the X list as the variable to cofactor on.

These steps are quite straightforward; obviously, many other variations are possible.

The following theorems explain how Step 5 handles several special cases:

Theorem 6.3 For any two Boolean functions a and b, with b not equal to the constant

False:

Restrict(a; b) returns the constant True i�
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Constrain(a; b) returns the constant True i�

(b) a) is the constant True (tautology):

Theorem 6.4 For any two Boolean functions a and b, with b not equal to the constant

False:

Restrict(a; b) returns the constant False i�

Constrain(a; b) returns the constant False i�

(a ^ b) is the constant False (contradiction).

Proof of Theorem 6.3: Let us �rst consider Restrict. The proof is by induction on

the number of variables in a and b. The base cases, when a is either the constant True

or the constant False or when b is the constant True, are easy to verify. The inductive

step relies on the recursive de�nition of Restrict, which de�nes Restrict(f; c) in terms

of the Shannon cofactors fx, f�x, cx, and c�x, where x is a BDD variable in f or in c:

(The exact de�nition of x is irrelevant here.)

Restrict(f; c) =

8>>>>>><
>>>>>>:

Restrict(f; cx _ c�x) if fx = f�x

Restrict(fx; cx) if c�x = False

Restrict(f�x; c�x) if cx = False

(x ^ Restrict(fx; cx)) _ (�x ^ Restrict(f�x; c�x)) otherwise

Case 1: If a is independent of x, then Restrict(a; b) is de�ned to be Restrict(a; bx_b�x),

which is the constant True i� (bx _ b�x ) a) is a tautology (by the inductive

hypothesis). The expression bx _ b�x ) a is equivalent to the expression (bx )

ax)^(b�x ) a�x) (since a = ax = a�x in this case), which is a tautology i� (b) a).

Case 2: If b�x is the constant False, then Restrict(a; b) is de�ned to be Restrict(ax; bx),

which is the constant True i� bx ) ax (by the inductive hypothesis), which is

equivalent to (bx ) ax) ^ (b�x ) a�x) (since b�x is the constant False), which is a

tautology i� (b) a) is.

Case 3: The case where bx is the constant False is very similar to the preceding case.
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Case 4: Otherwise, Restrict(a; b) equals (x^Restrict(ax; bx))_ (�x^Restrict(a�x; b�x)),

which is identically equal to the constant True i� Restrict(ax; bx) is the constant

True, and Restrict(a�x; b�x) is the constant True. By the inductive hypothesis,

this occurs i� (bx ) ax) is a tautology, and (b�x ) a�x) is a tautology, which

occurs i� (b) a) is a tautology.

The operator Constrain is identical to Restrict, except Case 1 is deleted. Thus, the

proof for Constrain is identical to the preceding argument with Case 1 omitted. 2

Proof of Theorem 6.4: This proof is structured identically to the preceding one.

Again, let us �rst consider Restrict. The base cases, when a is either the constant

True or the constant False or when b is the constant True, are easy to verify. The

inductive step again relies on the recursive de�nition of Restrict:

Case 1: If a is independent of x, then Restrict(a; b) is de�ned to be Restrict(a; bx_b�x),

which is the constant False i� (a^ (bx_ b�x)) is a contradiction (by the inductive

hypothesis). The expression (a^ (bx _ b�x)) is equivalent to the expression (ax ^

bx)_ (a�x^b�x) (since a = ax = a�x in this case), which is a contradiction i� (a^b)

is a contradiction.

Case 2: If b�x is the constant False, then Restrict(a; b) is de�ned to be Restrict(ax; bx),

which is the constant False i� (ax ^ bx) is a contradiction (by the inductive

hypothesis). The expression (ax ^ bx) is equal to (ax ^ bx) _ (a�x ^ b�x) (since b�x

is the constant False), which is a contradiction i� (a ^ b) is.

Case 3: The case where bx is the constant False is very similar to the preceding case.

Case 4: Otherwise, Restrict(a; b) equals (x^Restrict(ax; bx))_ (�x^Restrict(a�x; b�x)),

which is identically equal to the constant False i� Restrict(ax; bx) is the constant

False, and Restrict(a�x; b�x) is the constant False. By the inductive hypothesis,

this occurs i� (ax^ bx) is a contradiction, and (a�x^ b�x) is a contradiction, which

occurs i� (a ^ b) is a contradiction.

As in the preceding proof, apply this argument to the Constrain operator by deleting

Case 1. 2
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Therefore, by using Restrict or Constrain in Step 5, followed by a clean-up step,

we e�ciently handle the special cases where a conjunct in the antecedent implies

another conjunct in the antecedent or consequent (delete the larger conjunct), where

a conjunct in the consequent implies another conjunct in the consequent (delete the

larger conjunct), where two conjuncts in the antecedent contradict each other (return

true for the implication), and where a conjunct in the consequent contradicts another

conjunct (return false unless the antecedent is also a contradiction).

6.4 Experimental Results

To demonstrate the practical usefulness of these ideas, let's apply the above method

to some simple examples. These examples share two important properties. First, al-

though they are simple, they are intractable by the standard BDD-based veri�cation

algorithms. More importantly, these examples illustrate core characteristics of nu-

merous, real veri�cation problems. If we can't handle these simple examples, there's

an enormous range of important, practical veri�cation problems that we will never

be able to touch.

6.4.1 A Typed FIFO Bu�er

In most high-level BDD-based veri�ers, integer types are encoded as bit vectors [83,

53, 44]. The most natural encoding scheme is simply to use the binary representation

of the integer. In many instances, however, especially when performing high-level

veri�cation, the number of possible values is not exactly a power of 2. For example,

in a communication protocol, a variable might indicate which one of 17 di�erent

message types is being sent, or another variable might contain parity-encoded data.

Furthermore, if we use complex data structures, a variable might contain a compound,

non-numeric value like a processor instruction or a network message, and not all

possible values will be legal. Therefore, all legal states of the system will obey a set

of properties like \x < 17" or \y has odd parity" or \z contains a legal instruction".

I call these properties \type invariants".
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By itself, each of these type invariants typically has a small BDD. The system as

a whole, however, must satisfy all of the type invariants, leading to a BDD for the

conjunction of all of them that may be very large, depending on the variable-ordering

used. Consider, for example, a FIFO bu�er of d words, each of which is k bits wide.

(Such a bu�er occurs frequently in veri�cation models, both to model actual queues in

a system and also to time-delay computed results to check an implementation against

a di�erently timed speci�cation.) Each word of the bu�er must satisfy some property

P that depends on most of the k bits. (A typical example is a subrange constraint.)

Let w be the width of any cut of the BDD for P ; for example, if P says that the word

must be less than a constant, then w = 2. Furthermore, suppose we have interleaved

the bits for the FIFO bu�er, putting the high-order bit of all words �rst, followed by

the next most signi�cant bit of all words, etc. This variable ordering is generally nec-

essary in datapaths to minimize BDD size for comparisons and arithmetic [83, 53, 51].

In this case, the BDD for the conjunction of all the type invariants is of size O(kwd),

since in the BDD, after each bitslice, we must encode all wd possible intermediate

states of each type invariant, and there are k bitslices in all. If we attempt to perform

a forward traversal on this system, we will be forced to build this exponentially-sized

BDD, as any reachable state must satisfy all type invariants. Performing a conven-

tional backward traversal requires building this exponentially-sized BDD just to start

the veri�cation process. Leaving the conjunction implicit, however, keeps the vari-

ous type invariants separate throughout the veri�cation process, thereby avoiding the

BDD-size blowup.

A di�erent approach to this same problem is to change the encoding scheme so

that unused binary combinations become don't-cares by assigning multiple encodings

to some values [83, 53]. This encoding eliminates the type invariants altogether, as

every possible bit pattern encodes a legal value. This approach seems promising for

small, low-level systems (for which it was designed) where we might be performing

state encoding for a small controller. For larger systems and high-level veri�cation,

however, this approach has two major drawbacks. First, by complicating the en-

coding scheme, designing general algorithms for high-level operations like arithmetic,
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array-indexing, or comparison becomes impossible. Indeed, when using this don't-

care-encoding approach, one must de�ne speci�c operators (like addition) for each

combination of di�erent types. The second major drawback is that checking that the

type invariants are satis�ed becomes impossible, since we've already encoded them

out of existence. Again, at the low-level this isn't an issue, but for high-level veri�-

cation, checking that type properties hold (e.g. a counter doesn't go out-of-range) is

essential.

For the concrete example, the bu�er is n words deep; each word is 8-bits wide. At

each time step, each value in the bu�er is copied to the next word, and a new non-

deterministic value less than or equal to 128 is added to the end of the bu�er. The

veri�cation condition is that all entries in the bu�er are less than or equal to 128.

Table 6.1 summarizes results for this example. Clearly, using implicitly conjoined

BDDs greatly reduces both the memory and the time required for the veri�cation,

and the more complex heuristics from Sections 6.3.2 and 6.3.3 are only slightly slower

than the simple approach from Section 6.3.1.

6.4.2 A Simple Network

Next, let's reconsider the network example from Section 5.4. Note that any functional

dependency y = f(x) can also be viewed as an additional property we must verify,

which we can add to an implicit conjunction. Accordingly, for this example, the initial

implicit conjunction is just the conjunction over all processes that each process's count

is equal to the number of messages in the network relating to that process.

Results from this example are in Table 6.2 As we've seen previously, conventional

BDD approaches explode on this example. The functional dependency method gives

the smallest BDD sizes, but at substantial cost in runtime because of the additional

proof obligation at each iteration. The implicit conjunction methods give reason-

able BDD sizes and fast execution times. The computational overhead of the more

complicated implicit conjunction heuristics is minimal for this example.
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n Method Iterations Time (sec) Memory Max BDD (breakdown)

2 Fwd 3 0.34 592K 31

Bkwd 1 0.29 624K 31

IC 1 0.28 596K 17 (2� 9)

XIC 1 0.29 596K 17 (2� 9)

3 Fwd 4 0.62 724K 87

Bkwd 1 0.43 652K 87

IC 1 0.41 592K 25 (3� 9)

XIC 1 0.41 632K 25 (3� 9)

4 Fwd 5 1.30 936K 223

Bkwd 1 0.80 776K 223

IC 1 0.58 684K 33 (4� 9)

XIC 1 0.60 688K 33 (4� 9)

5 Fwd 6 3.69 1024K 543

Bkwd 1 1.69 1048K 543

IC 1 0.82 748K 41 (5� 9)

XIC 1 0.86 752K 41 (5� 9)

6 Fwd 7 9.33 1124K 1279

Bkwd 1 3.48 1032K 1279

IC 1 1.15 824K 49 (6� 9)

XIC 1 1.20 832K 49 (6� 9)

(continued on next page)

Table 6.1: Typed FIFO Bu�er Results: The bu�er is 8 bits wide. n indicates the
depth of the bu�er. The Method column indicates which algorithm was used: \Fwd"
and \Bkwd" are the standard BDD-based forward and backward traversals described
in Chapter 1, \IC" is the implicitly conjoined BDD method with the simple heuristics
from Section 6.3.1, \XIC" is with the fancy heuristics from Sections 6.3.2 and 6.3.3.
All methods used the e�cient image computation procedure described in Chapter 3.
Iterations is the number of iterations to convergence. Time is total execution time as
reported by the UNIX shell. Memory is the total amount of memory used as reported
by the UNIX shell. Max BDD gives the size in BDD nodes of the largest Ri or Gi

encountered during veri�cation. For implicit conjunctions, the number reported is the
total number of nodes used by all BDDs in the conjunct list. The breakdown shows
the sizes of the individual BDDs in the list. For example, \(2 � 9; 37)" indicates a
list containing two BDDs with 9 nodes each, and a third BDD with 37 nodes. The
number of nodes do not add up because of node sharing. Clearly, using implicitly
conjoined BDDs results in substantial savings of time and memory. All results are
from the Ever veri�er (Appendix A) running on a Sun SPARCstation 2.
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(continuation of Table 6.1)

n Method Iterations Time (sec) Memory Max BDD (breakdown)

7 Fwd 8 21.81 1636K 2943

Bkwd 1 8.99 1556K 2943

IC 1 1.55 860K 57 (7� 9)

XIC 1 1.61 896K 57 (7� 9)

8 Fwd 9 54.72 3380K 6655

Bkwd 1 21.06 2672K 6655

IC 1 1.99 944K 65 (8� 9)

XIC 1 2.07 960K 65 (8� 9)

9 Fwd 10 132.22 6428K 14847

Bkwd 1 50.77 5240K 14847

IC 1 2.52 984K 73 (9� 9)

XIC 1 2.63 1008K 73 (9� 9)

10 Fwd 11 313.40 13872K 32767

Bkwd 1 115.11 9268K 32767

IC 1 3.30 1140K 81 (10� 9)

XIC 1 3.43 1156K 81 (10� 9)

6.4.3 A Moving-Average Filter

The next example is a moving-average �lter, a common building block in digital signal

processing. The �lter continuously computes the average of the last n samples seen.

For this example, I compare an implementation using a pipelined tree of adders (trades

latency for higher throughput) against a speci�cation that computes the average

combinationally in a single clock cycle and then bu�ers the result to match the pipeline

latency of the implementation. See Figure 6.3. The veri�cation task is to prove that

the outputs of the implementation and of the speci�cation always agree. I will use

8-bit samples and verify �lters of depth 4, 8, and 16.

Note that the veri�cation task is not given as a conjunction of simpler properties.

The simple heuristics from Section 6.3.1, therefore, degenerate into the conventional

BDD backward traversal. Nothing prohibits us, however, from adding more properties

to verify, which we can implicitly conjoin with the speci�ed veri�cation property. In

this example, not only must the outputs of the implementation and speci�cation

agree, but each entry in the FIFO bu�er of the speci�cation must equal the average

of the corresponding layer of the adder tree in the implementation. If we attempt

to build a single BDD for the conjunction of all of these properties, the BDD will
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n Method Iterations Time (sec) Memory Max BDD (breakdown)

1 Fwd 3 0.36 624K 12

Bkwd 1 0.38 636K 11

FDV 3 0.30 632K 7

IC 1 0.35 588K 11 (11)

XIC 1 0.33 632K 11 (11)

2 Fwd 5 0.67 816K 65

Bkwd 1 0.61 796K 56

FDV 5 0.79 776K 16

IC 1 0.62 788K 45 (2� 23)

XIC 1 1.01 796K 45 (2� 23)

3 Fwd 7 1.67 1188K 287

Bkwd 1 1.28 1072K 236

FDV 7 2.58 988K 37

IC 1 1.28 1060K 115 (3� 39)

XIC 1 1.29 1072K 115 (3� 39)

4 Fwd 9 4.73 1556K 1198

Bkwd 1 3.16 1316K 994

FDV 9 7.72 1320K 41

IC 1 2.71 1304K 245 (4� 62)

XIC 1 2.79 1312K 245 (4� 62)

5 Fwd 11 16.82 3904K 5188

Bkwd 1 8.62 2404K 3922

FDV 11 19.94 1556K 91

IC 1 5.43 1848K 436 (5� 88)

XIC 1 5.90 1896K 436 (5� 88)

(continued on next page)

Table 6.2: Simple Network Results: n indicates the number of clients. The Method
column indicates which algorithm was used: \Fwd" and \Bkwd" are the standard
BDD-based forward and backward traversals described in Chapter 1, \FDV" is the
functional dependency method described in Chapter 5, \IC" is the implicitly con-
joined BDD method with the simple heuristics from Section 6.3.1, \XIC" is with the
fancy heuristics from Sections 6.3.2 and 6.3.3. Other columns are as in Table 6.1.
\TIME OUT" indicates that veri�cation could not complete in one hour of processor
time; \SPACE OUT", that veri�cation could not complete in 60MB of memory. The
normal BDD algorithms are unable to handle the larger instances of this example.
The functional dependency method produces the smallest BDDs | the BDD blow-
up in this example is entirely due to functionally dependent variables | but requires
longer run times than the implicitly conjoined BDDs methods, which still produce
reasonably-sized BDDs.
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(continuation of Table 6.2)

n Method Iterations Time (sec) Memory Max BDD (breakdown)

6 Fwd 13 126.49 10644K 21579

Bkwd 1 29.52 4636K 15550

FDV 13 45.04 2416K 106

IC 1 9.62 2476K 715 (6� 120)

XIC 1 10.25 2592K 715 (6� 120)

7 Fwd 15 519.04 44800K 88647

Bkwd 1 139.77 14848K 61861

FDV 15 124.36 3260K 169

IC 1 14.86 3356K 1086 (7� 156)

XIC 1 18.53 4080K 1086 (7� 156)

8 Fwd SPACE OUT

Bkwd 1 1427.25 47480K 246829

FDV 17 236.32 4520K 109

IC 1 22.97 4660K 1585 (8� 199)

XIC 1 27.58 5532K 1585 (8� 199)

9 Fwd SPACE OUT

Bkwd SPACE OUT

FDV 19 436.76 6028K 271

IC 1 34.44 5968K 2197 (9� 245)

XIC 1 38.49 7464K 2197 (9� 245)

10 Fwd SPACE OUT

Bkwd SPACE OUT

FDV 21 770.99 8372K 276

IC 1 48.04 8368K 2961 (10� 297)

XIC 1 54.45 8368K 2961 (10� 297)

11 Fwd SPACE OUT

Bkwd SPACE OUT

FDV 23 1250.98 10516K 397

IC 1 66.73 11752K 3873 (11� 353)

XIC 1 77.20 11996K 3873 (11� 353)

(continued on next page)
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(continuation of Table 6.2)

n Method Iterations Time (sec) Memory Max BDD (breakdown)

12 Fwd SPACE OUT

Bkwd SPACE OUT

FDV 25 2056.82 14124K 313

IC 1 93.03 14728K 4981 (12� 416)

XIC 1 106.10 16020K 4981 (12� 416)

13 Fwd SPACE OUT

Bkwd SPACE OUT

FDV 27 3193.27 19788K 547

IC 1 130.24 16672K 6254 (13� 482)

XIC 1 142.08 20012K 6254 (13� 482)

14 Fwd SPACE OUT

Bkwd SPACE OUT

FDV TIME OUT

IC 1 170.16 22708K 7743 (14� 554)

XIC 1 189.96 24700K 7743 (14� 554)

15 Fwd SPACE OUT

Bkwd SPACE OUT

FDV TIME OUT

IC 1 207.92 31400K 9436 (15� 630)

XIC 1 249.48 31612K 9436 (15� 630)

16 Fwd SPACE OUT

Bkwd SPACE OUT

FDV TIME OUT

IC 1 265.56 38108K 11345 (16� 710)

XIC 1 348.83 38264K 11345 (16� 710)
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Figure 6.3: Diagram of Size 8 Moving-Average Filter: The veri�cation task is to prove
that the implementation using a pipelined tree of adders gives the same result as the
speci�cation, which computes the average directly and then delays the results in a
FIFO to match the latency of the implementation.

blow up, but if we combine the properties into an implicit conjunction, veri�cation

completes quickly and e�ciently because the BDD that speci�es the property for one

layer of the �lter greatly simpli�es the BDD that speci�es the property for the next

layer of the �lter. Implicitly conjoined BDDs, therefore, provide a natural mechanism

for the user to assist the veri�er by introducing additional information.

Table 6.3 gives results for this example. Again, we see that the conventional BDD

approaches cannot handle the larger instances of this example, but the methods

using implicit conjunctions can. Note also that the more sophisticated heuristics

automatically derived the BDDs for the additional properties needed to complete the

veri�cation, whereas the the simpler heuristics required the user to specify them.

6.4.4 A Simple Pipelined Processor

The last example is to verify a simple pipelined processor against a non-pipelined

speci�cation. To reduce the size of the model, and since I am only concerned with

the processor, I will abstract away the memory. Instead, both versions of the pro-

cessor will execute the same non-deterministically-generated stream of instructions.

Instructions are encoded as a 3-bit opcode, followed by �elds specifying the source and



96 CHAPTER 6. IMPLICITLY CONJOINED BDDS

n Method Iterations Time (sec) Memory Max BDD (breakdown)

4 Fwd 3 48.58 7204K 11267

Bkwd 1 4.97 1400K 490

IC 1 3.17 1020K 146 (102; 45)

XIC 1 3.60 1000K 146 (102; 45)

8 Fwd SPACE OUT

Bkwd TIME OUT

IC 1 23.70 3920K 638 (390; 169; 81)

XIC 1 23.31 3924K 638 (390; 169; 81)

16 Fwd SPACE OUT

Bkwd SPACE OUT

IC 1 189.56 22316K 2558 (1501; 629; 290; 141)

XIC 1 181.12 18772K 2558 (1501; 629; 290; 141)

n Method Iterations Time (sec) Memory Max BDD (breakdown)

4 Fwd 3 64.18 6560K 11267

Bkwd 2 4.92 1380K 490

IC 2 4.86 1412K 490 (490)

XIC 2 3.40 1124K 146 (102; 45)

8 Fwd SPACE OUT

Bkwd TIME OUT

IC TIME OUT

XIC 3 29.47 5008K 638 (390; 169; 81)

16 Fwd SPACE OUT

Bkwd TIME OUT

IC TIME OUT

XIC 4 308.94 22976K 2558 (1501; 629; 290; 141)

Table 6.3: Moving-Average Filter Results: The upper table shows results for veri�ca-
tion with the additional user-speci�ed property that each layer of the implementation
must agree with the corresponding bu�er element in the speci�cation. The lower ta-
ble shows results if the user simply asks the veri�er to prove that the outputs always
agree. Only the more complex heuristics (from Sections 6.3.2 and 6.3.3) can handle
this case. n indicates the number of 8-bit values in the moving average. All columns
labels and notations are as in the preceding tables.
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destination registers, followed by a �eld for specifying immediate data values. There

are eight instructions: NOP, BR, LD, ST, ADD, SUB, MOV, and SR. NOP performs

no operation. BR models a branch instruction. Since the instruction stream is gener-

ated non-deterministically, the model has no program counter, so the BR instruction

essentially performs no operation. (It does, however, stall the pipeline, as we'll see

later.) LD loads the speci�ed destination register with the contents of the immediate

�eld. ST is a no-op, since we aren't modeling memory. ADD adds the contents of

the speci�ed source register into the speci�ed destination register. SUB subtracts the

source register from the destination register. MOV copies the source register into the

destination register. SR shifts the contents of the speci�ed destination register right

by one bit.

The pipeline is three stages deep. The �rst stage fetches the next instruction from

the non-deterministic instruction stream. The second stage decodes the instruction,

fetches the appropriate values from the register �le (or the immediate �eld for a LD)

and computes the result. The last stage writes the result back into the register �le.

There are, of course, some complications. First, if one instruction relies on the result

of the preceding instruction, the result won't be written back by the Writeback stage

in time for the Execute stage to fetch the correct value, eg.:

; assume r0=0 and r1=0

LD r1, #1 ; make r1=1

ADD r0, r1 ; add r1 to r0

After executing this code fragment, r0 should be equal to 1. As described, however,

the pipelined processor would not have updated r1 to be 1 in time for the ADD

instruction. The standard solution to this problem is to add a \register bypass path"

to the pipeline: If the Execute unit detects that the current instruction needs the

result of the previous instruction, it bypasses the register �le and gets the value needed

directly from the Writeback unit. The example includes such a register bypass path.

Another complication occurs because of branches. In a real machine, the Instruction

Fetch unit does not know where the next instruction will be until the Writeback unit

updates the program counter. For the example, I adopt a standard solution | the

branch stall. If any stage in the pipeline contains a BR instruction, the pipeline is
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?

Branch StallInstruction Fetch

Execute

Register File

Non-Deterministic Instruction Stream

Register Bypass

Implementation

Fetch-Execute-Writeback
Non-Pipelined

Instruction Delay

Instruction Delay

Register File

Specification

Register Writeback

Figure 6.4: Diagram of Pipelined Processor Example. A pipelined and a non-pipelined
version of a processor execute the same non-deterministically generated stream of
instructions. The veri�cation task is to prove that the register �les of the two versions
always agree.

forced to stall. (I implement the stall by forcing NOP instructions into the Fetch unit

until the BR clears the Writeback unit.)

The veri�cation task is to show that the register �les of the pipelined and non-

pipelined processors always agree when executing the same sequence of instructions.

In order to keep the two descriptions synchronized, the non-pipelined processor bu�ers

incoming instructions for two cycles to match the pipelined processor. Also, a branch

stall in the pipeline will also stall the non-pipelined processor. This example is sum-

marized in Figure 6.4. As in the preceding examples, there are many relationships

between the state variables of the description, leading us to expect BDD-size blow-up.

Table 6.4 summarizes the results for this veri�cation example for various numbers of

registers and datapath sizes (the bit-width of the registers and the immediate �eld).

6.5 Comments

As in the preceding chapter, the techniques presented here are not the last word in

BDD-based formal veri�cation. Countless other causes of BDD-size blow-up exist.
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Size Method Iter. Time (sec) Memory Max BDD (breakdown)

2R, 1B Fwd 4 296.03 46816K 284745

Bkwd 4 24.82 3884K 10745

IC 4 24.04 3884K 10745 (10745)

XIC 4 9.01 1488K 910 (646; 172; 86; 9)

2R, 2B Fwd SPACE OUT

Bkwd SPACE OUT

IC SPACE OUT

XIC 4 92.53 4192K 8485 (6657; 1345; 441;45)

2R, 3B Fwd SPACE OUT

Bkwd SPACE OUT

IC SPACE OUT

XIC 4 1232.99 19384K 57510 (45230; 9591; 2503; 189)

4R, 1B Fwd SPACE OUT

Bkwd SPACE OUT

IC SPACE OUT

XIC 4 380.65 10304K 12947 (10767; 1290; 849;45)

Table 6.4: Pipelined Processor Results: The size column shows the number of registers
and the width of the datapath in bits. All other columns are as in the preceding
tables. Again, we �nd that only the implicitly conjoined BDD method with the more
sophisticated heuristics is able to handle the larger instances.
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On the other hand, these techniques do apply to empirically common causes of BDD-

size blow-up and pay-o� dramatically when they work. The examples presented here

are not impressively large. Rather, they are embarrassingly small | embarrassing for

the standard BDD approaches that cannot handle what appear to be straightforward,

pedestrian veri�cation problems. This chapter enables us to solve these problems,

providing a necessary step to more practical formal veri�cation.

It is worth noting that some non-canonical, generalized BDD data structures

published previously, such as Jeong et al.'s Extended BDD [50] or Jain et al.'s Indexed

BDD [48], can be used to represent the implicit conjunction of a set of BDDs as well

as many other combinations of BDDs. By restricting ourselves to the special case

of implicit conjunctions | an empirically-motivated and useful special case | we

can produce a more e�cient implementation and the fast, specialized manipulation

routines that gave us good results in this chapter. In the future, we may need to

move toward the more general data structures, but we should do so only to the

extent demanded by the real examples we try to verify.



Chapter 7

Contributions and Future Work

Chapter Overview

This chapter summarizes the main contributions of the thesis, notes the importance

of a problem-driven research approach to maintain a practical focus, and suggests

some avenues for further research.

7.1 Contributions

All the disparate parts of this thesis have a uni�ed direction: they are all necessary

steps we must take to make high-level automatic formal veri�cation useful on real

problems in the real world. In particular, the main contributions of this thesis are as

follows:

� I have identi�ed a set of description language constructs that are e�ciently

translated into BDDs, yet are powerful and expressive enough to handle real

problems and are natural and easy-to-use for the user. I have described the

translation process in detail and implemented it as well. This automated trans-

lation is a crucial step to making BDD-based veri�cation easy enough for prac-

tical use. The user must be not be burdened with translating complex, real

designs into Boolean logic.

101



102 CHAPTER 7. CONTRIBUTIONS AND FUTURE WORK

� I have highlighted the BDD-size explosion problem and explained intuitively

why it's so common in high-level veri�cation. Previously, most researchers had

expected a naive, direct use of BDDs to surmount the state-explosion problem

in most practical veri�cation problems. We now know this is not the case for

high-level veri�cation, and, more importantly, we have intuition behind what

causes the BDD-size blow-up.

� I have developed a technique for image computation without building the BDD

for the transition relation, thereby avoiding a major cause of BDD-size blow up.

This technique, an extension of Burch et al.'s disjunctive partitioned transition

relation [9], enables computation with large, practical-sized, high-level descrip-

tions, something that had not in general been possible previously. Obviously,

if we are unable to build a computationally usable description of the system

being veri�ed, we cannot even begin to perform veri�cation, so this technique

is a key enabling technology.

� I have identi�ed some empirically common causes of BDD-size blow-up and have

developed two modi�cations | functionally dependent variables and implicitly

conjoined BDDs | to the standard BDD-based veri�cation algorithms in order

to address these causes of BDD-size blow-up. On some small but relevant

examples, these methods demonstrate considerable improvement in speed and

memory usage over the normal BDD-based algorithms.

� I have developed good heuristics for dealing with implicitly conjoined BDDs.

These heuristics are important in reducing the BDD-expertise required of the

user of a veri�cation system. Such increases in automation are critical to the

future practicality of formal veri�cation.

7.2 Future Work

This thesis expands the range of problems that can be veri�ed automatically. We have

not, however, made enough progress: simple examples that still cannot be veri�ed

automatically are distressingly common. Much work remains to be done.
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Obviously, any general advances in BDD algorithms or any improved BDD vari-

ant will pay o� immediately for formal veri�cation. For instance, I mentioned in

Chapter 1 that there already exists a menagerie of BDD variants, and more are being

published regularly. When the smoke clears, we may �nd a new data structure that

is superior for our purposes. On a di�erent front, �nding good heuristics for BDD

variable ordering is still an open problem. Some heuristics exist for gate-level digital

circuits (e.g., [34, 63, 51, 33]), but little work has been done for high-level veri�ca-

tion. In some sense, variable ordering should be easier at the high-level, because the

structure of the system being described is more apparent. Many people, especially

those working at the gate level or below, consider dynamic variable reordering [81]

to be the ultimate solution. I disagree. Dynamic variable reordering is outstanding

for (1) verifying systems in which the good variable orders change signi�cantly over

time (something I have never encountered in practice although other researchers claim

to have), (2) presenting an application interface which completely hides the issue of

variable ordering, and (3) providing passable performance when the user has no clue

about what might make a good order. The last two cases are especially valuable,

as they reduce the BDD expertise required of the user and increase the degree of

automation. These two cases, however, are also completely orthogonal to the issue

of dynamically reordering the variables; if we had a good variable-ordering heuristic,

we could order the variables statically at the start and get better performance. (In-

deed, a common use of dynamic variable reordering is to use dynamic ordering for a

while, interrupt the program and dump the current variable order, and then restart

the program from the beginning using the dumped variable order as a static variable

order.) In my own experience with high-level veri�cation, activating dynamic variable

reordering cut BDD sizes somewhat (say, in half) at the cost of roughly an order of

magnitude increase in run time. Although dynamic variable reordering is certainly

an important and valuable technique, it de�nitely does not obviate the need for good

static variable ordering heuristics.

Another direction is to use conventional BDDs in unconventional ways. This

thesis largely falls in this category and has successfully eliminated several BDD-size

problems. Further research in this direction could produce additional results. For
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instance, the heuristics for simplifying implicitly conjoined BDDs are rather crude.

I have been experimenting with techniques to use externally-generated invariants

or user-supplied structural information to help �nd good partitions into implicitly

conjoined lists of BDDs.

Combining state-exploration methods with automated theorem-proving has re-

cently started attracting interest. The promise is that the expressiveness of the the-

orem prover can support abstraction and decomposition of complex designs in a safe

way. The theorem prover can then rely on state-exploration veri�cation techniques

as powerful decision procedures for �nite-state pieces of the design, while the state-

exploration veri�er can rely on the theorem prover for don't-care information derived

from the decomposition process. Implicitly conjoined BDDs, used to add additional

veri�cation properties as described in Section 6.4.3, may be an e�ective means for a

theorem-prover to guide a model-checker. Preliminary reports of combined theorem-

provers and model-checkers are very promising [52, 80].

My research has been strongly problem-driven. Speci�c examples of real problems

exposed the limitations of the conventional BDD-based approaches and also pointed

to workable solutions. Additional problem-driven research should be equally fruitful.

One possibility is to target domain-speci�c veri�cation. By choosing a narrow appli-

cation domain that is still interesting (e.g. directory-based cache protocols, pipelined

microprocessors, DSP algorithms, etc.) we may �nd speci�c properties unique to the

domain that we can exploit to improve veri�cation e�ciency.

The most important lesson I've learned and a lesson that will guide my future

research is the necessity of continually testing one's ideas on practical, real problems.

Time and again I have ignored this point only to �nd myself churning out results

that bring me no closer to solving problems that matter. There is an in�nite number

of ideas and variations to explore, all of which are theoretically valid. One could

easily spend a lifetime, perhaps a very ful�lling one, never producing anything of

practical importance. A constant grounding in practicality is an e�cient heuristic for

separating the useless ideas from the useful ones. And useful ideas are what we need

to advance the state of the art.



You don't like these ideas?

I got others.

|\Marshall McLuhan" in

Ann Bogart's The Medium
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Appendix A

Ever Veri�er Reference Manual

A.1 Introduction

This appendix serves two purposes. First, I intend to make a version of the Ever veri-

�er publicly available shortly, and some people might actually try to use it. For them,

this appendix is a tutorial and reference manual. I hope they �nd it helpful. If you

want a copy of Ever, try anonymous ftp to snooze.stanford.edu and poke around

there. If that fails, try the Web at http://www-cs-students.stanford.edu/~ajh.

If that fails, you can try to email me at ajh@cs.stanford.edu. The second, more

important purpose is to help others who are building their own veri�cation systems.

I made several mistakes while designing Ever, and I hope others can learn from my

errors. Throughout this appendix, I will point out decisions I was particularly happy

or unhappy with.

Ever is an automatic BDD-based veri�er, using symbolic state-enumeration tech-

niques. The user describes the system being veri�ed using high-level language con-

structs, speci�es the set of start states of the system, and gives a (non-temporal,

propositional) property that should hold in every reachable state of the system. The

veri�er returns (eventually, if it doesn't run out of memory) either indicating that

the veri�cation succeeded or providing a counterexample trace from a start state to a

state that violates the property being checked. Details about the theory behind Ever

can be found in the rest of this thesis.
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Historically, Ever was intended as a BDD-based back-end to the Mur' veri�ca-

tion system. It is a separate program with its own input language solely for software

engineering reasons (to separate two programmers with incompatible coding styles).

The origin of Ever as a quick-and-dirty intermediate form explains many of its pe-

culiarities. Since then, the Mur' project has moved on in di�erent directions, and

Ever has evolved as a research workbench for trying new veri�cation ideas. This

creeping-featuristic evolution has grafted many additional peculiarities onto the Ever

system.

Some features that distinguish Ever from other BDD-based veri�ers include:

The Good | The main positive features of Ever stem from its high-level orienta-

tion. Ever supports unsigned integer and enumerated types, records, and arrays

much the way a high-level language would. Ever supplies numerous built-in op-

erators for arithmetic and logical operations. Ever models are usually written

with sequential semantics: control 
ow constructs include sequencing, if-then-

else, and non-deterministic choice. Sequential semantics, as opposed to the

data
ow model in many other veri�ers, have proven to be particularly easy

to use for high-level veri�cation. The other main advantage of Ever is that it

implements all of techniques in this thesis.

The Bad | Many minor annoyances result from Ever's humble beginning as an

intermediate form. For example, Ever doesn't provide symbolic constants or

full support of enumerated types, as I had assumed the front-end would handle

these issues. Other problems re
ect Ever's link to Mur': e.g., Ever is designed

to support an asynchronous interleaving model of concurrency as in Mur',

so modeling synchronous composition of machines is particularly unpleasant

(not impossible, though) and nulli�es many of Ever's features and advantages.

Finally, some problems are simply design mistakes. For example, Ever's type

system has severe limitations. I will discuss these issues in more detail at the

appropriate points in this appendix.

The Ugly | Ever syntax is strange | not bad, per se, but very strange. Friends

have described it as looking like a cross between LISP, Pascal, and FORTRAN.
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The syntax is yet another result of Ever's origins as an intermediate language.

The goal was to produce syntax that was trivially easy to generate, compactly

equivalent to Mur' programs, trivially easy to parse, and somewhat human-

readable and writable to ease debugging the front and back ends separately.

The crude syntax has made modifying the language very easy, and the language

is generally not painful to read or write. However, the strange syntax tends to

dissuade the casual reader, is a bit verbose at times, and occasionally makes

code hard to read. If I could go back in time and do it over again, I might still

choose the strange, but simple syntax. If I were designing a new veri�er today,

however, I'd de�nitely choose more conventional syntax.

Ever is written in C with the help of lex and yacc. It uses David Long's BDD and

memory management packages [61], which have proven quite reliable. I've found the

code generally portable across a few di�erent versions of UNIX. You can play with

Ever on a small machine, but to verify interesting properties of interesting systems,

you will need a lot of physical memory. All of the examples in this thesis can run

on a Sun SPARCstation 2 with 128MB of RAM; most examples require much less

memory.

A.2 A Tutorial Example

An example is perhaps the easiest way to acquaint oneself with the Ever language.

Let's consider a toy link-level protocol. See Figure A.1. There are four processes:

a source, a transmitter, a receiver, and a destination. These four operate asyn-

chronously, handshaking via shared variables. The source has a string of data, which

it sends a character at a time to the transmitter. The transmitter packs the char-

acters into packets, appends a checksum, and sends the packet to the receiver. The

receiver unpacks the characters, and sends them one at a time to the destination.

The destination receives characters and stores them in a bu�er.

Let's write an Ever description for this example. An Ever program consists of

a sequential list of declarations and commands. Within a declaration or command,

expressions are in LISP-like pre�x notation. Array and record accesses are denoted



110 APPENDIX A. EVER VERIFIER REFERENCE MANUAL

Destination
messages.received

dest_ptr

Source
messages.sent

src_ptr

Receiver
packets.rx

rx_ptr

rx_checksum

packets.tx

tx_checksum

Transmitter

tx_ptr

tx_ready

packets.sent

src_ready src_data rx_ready rx_data

Figure A.1: In this simple example, a message travels from source to destination.
The transmitter and receiver handle packets and checksums.
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by square brackets and periods, as in Pascal or C.

The description starts with some type declarations:

deftype signal (bits 1 "low" "high");

deftype char (bits 1 "a" "b");

deftype integer (bits 4);

deftype packet (record data (array 0 3 char) check char);

In Ever, we declare scalar types by the number of bits needed. (The strings following

the bit width are used for output.) Thus, types signal and char are both 1 bit, type

integer is 4 bits, and type packet is a record with two �elds: data, a four-element

array, and check, of type char.

The next few lines declare variables for the source and destination:

defvar src_ready signal; -- Variable src_ready is of type signal,

defvar src_ptr integer; -- and so forth.

defvar src_data char;

defvar dest_ptr integer;

defvar messages (interleaved record

sent (array 0 7 char)

received (array 0 7 char)

);

The source will send the contents of messages.sent to the destination, which writes

the data into messages.received. The characters -- introduce comments, which

extend to the end of the line. The interleaved keyword controls BDD variable

ordering: without the keyword, BDD variables are in the order declared, with all of

the BDD variables for one record �eld or array element preceding the BDD variables

for the next �eld or element; with the interleaved keyword, the BDD variables for

all �elds of a record or all elements of an array are interleaved (bitslices grouped

together). The user cannot control whether low-order or high-order bits come �rst,

except by changing the source and recompiling. Although the change is easy, (Edit
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function create_new_var in �le eversymtab.c.) forcing the user to edit the source

is a misfeature that should be �xed in the future.

We then declare variables for the transmitter and receiver.

defvar packets (interleaved record

tx packet

sent packet

rx packet

);

defvar tx_ptr integer;

defvar tx_checksum char;

defvar tx_ready signal;

defvar rx_ptr integer;

defvar rx_data char;

defvar rx_checksum char;

defvar rx_ready signal;

The next lines de�ne the set of possible start states:

defprop StartState

(and

(eq src_ptr^c 0) -- src_ptr must be 0

(eq src_ready^c 0) -- src_ready must be 0

(eq tx_ptr^c 0) -- etc.

(eq tx_ready^c 0)

(eq rx_ptr^c 4)

(eq rx_ready^c 0)

(eq dest_ptr^c 0)

);

The su�x ^c speci�es the current value of the variable, whereas the su�x ^n speci�es

the next value. The formula initializes the control variables, but leaves the data
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unspeci�ed, allowing them to assume any value.

Next, we de�ne the transition relation. The de�nition is in parts. We will de�ne

a transition relation for each part of the system, and then compose these transition

relations to form the transition relation of the whole system. First, we de�ne the

source:

defprop Source

(if (and (le src_ptr^c 7) (eq src_ready^c 0))

-- If there is another char to send and Tx is ready

-- then send the char to Tx

(compose

(becomes src_data^n messages.sent[src_ptr^c]^c)

(becomes src_ptr^n (add src_ptr^c 1))

(becomes src_ready^n 1)

)

-- else do nothing

CurNextEq

);

which simply writes the next character to a port if the port is ready. The becomes

operator provides deterministic assignment: it generates the BDD transition relation

that assigns an expression to a variable, while keeping all other variables constant.

Combining the becomes operator with the compose operator, which provides transi-

tion relation composition, produces a transition relation that corresponds to executing

a series of assignment statements sequentially. Note that built-in arithmetic opera-

tors make it easy to maintain counters. The CurNextEq keyword denotes the identity

transition relation, which forces all variables to maintain their current values. Next,

we de�ne the transmitter:

defprop Tx

(if (and (le tx_ptr^c 3) (eq src_ready^c 1))

-- If the current packet isn't full and

-- there is an incoming char
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-- then add it to the packet and update the checksum

(compose

(becomes packets.tx.check^n

(add packets.tx.check^c src_data^c))

(becomes packets.tx.data[tx_ptr^c]^n src_data^c)

(becomes tx_ptr^n (add tx_ptr^c 1))

(becomes src_ready^n 0)

)

-- else if current packet is full and channel is ready

(if (and (gt tx_ptr^c 3) (eq tx_ready^c 0))

(compose --then send the packet to Rx

(becomes packets.sent^n packets.tx^c)

(becomes packets.tx^n 0)

(becomes tx_ptr^n 0)

(becomes tx_ready^n 1)

)

CurNextEq --else do nothing

)

);

The transmitter reads characters from the source, appends them to a packet, and

computes a checksum. Whenever it has a complete packet and the channel to the

receiver is clear, it sends the packet. The receiver unpacks characters from the packets:

defprop Rx

-- If Rx can receive packet and packet is ready

(if (and (gt rx_ptr^c 3) (eq tx_ready^c 1))

-- then get the packet

(compose

(becomes packets.rx^n packets.sent^c)

(becomes packets.sent^n 0)

-- Error detection and recovery code would go here.

(becomes rx_ptr^n 0)



A.2. A TUTORIAL EXAMPLE 115

(becomes tx_ready^n 0)

)

-- else if Rx has data for Dest and Dest is ready

(if (and (le rx_ptr^c 3) (eq rx_ready^c 0))

(compose --then send it

(becomes rx_data^n packets.rx.data[rx_ptr^c]^c)

(becomes rx_ptr^n (add rx_ptr^c 1))

(becomes rx_ready^n 1)

)

CurNextEq --else do nothing

)

);

In a real link-level protocol, we would insert code to check the checksum and handle

errors at the indicated point. The destination is easy:

defprop Destination

(if (eq rx_ready^c 1) --If Rx has data for us

(compose --then get it

(becomes messages.received[dest_ptr^c]^n rx_data^c)

(becomes dest_ptr^n (add dest_ptr^c 1))

(becomes rx_ready^n 0)

)

CurNextEq --else do nothing

);

We de�ne the transition relation for the entire system

defprop NextState (or (Source) (Tx) (Rx) (Destination));

as the non-deterministic choice of the preceding transition relations.

The remaining lines of the program:

defprop Ok (if (gt dest_ptr^c 7)
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(eq messages.sent^c messages.received^c));

printtrace (StartState) (NextState) (not (Ok));

de�ne a simple veri�cation condition and invoke the reachability veri�er. The state-

reachability computation starts from all states that satisfy the start-state formula

and, using the speci�ed transition relation, outputs a trace that reaches the end

condition (or is as long as possible).

This program takes three and a half minutes on a Sun SPARCstation 2, using less

than 11MB of memory, to compute all reachable states and to �nd and print a longest

acyclic trace (37 states long). Interestingly, even this short example has 84 billion

reachable states (out of a state space of 1:8� 1016 states) putting it well-beyond the

reach of non-symbolic state-enumeration veri�ers.

A.3 Ever Language Details

From the preceding example, we have a rough feel for the Ever language. A program

consists of a sequence of commands that are executed one after another. There is

no looping. Each command can be a declaration or an invocation of a veri�cation

algorithm. Now, let's look at the language in more detail.

A.3.1 Lexical Units

Comments

Two hyphens -- introduce a comment. The comment extends to the end of the

line. This comment convention has worked well, although occasionally I've wanted

nestable, mult-line comments to comment out blocks of code.

Reserved Words

Ever has a very large number of reserved words, re
ecting the ad hoc additions of

numerous commands and operators. The following is a list of all reserved words. Case

is signi�cant.
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AF

AG

AU

AX

CurNextEq

EF

EG

EU

EX

FALSE

PrevCurEq

PrevNextEq

TRUE

add

and

andcompress

array

assuming

band

becomes

bequiv

bif

bimplies

bits

bnot

bor

bxor

checkinvariant

checkinvariantfwd

checkwithapprox

checkwithsupport

compose

constrain

ctlmodelcheck

defdepvar

defpred

defprop

deftype

defvar

defvec

end

eq

equiv

eval

exists

forall

ge

gt

hidecur

hidenext

hideprev

if

implies

include

interleaved

lambda

le

lt

not

or

orcompress

printprop

printsize

printstring

printtrace

reachable

reachgoal

record

simrel

sub

using

vector

xor

Identi�ers

Identi�ers can be any sequence of one or more letters, digits, or the underscore char-

acter _, provided it doesn't start with a digit. Case is signi�cant.

Numbers

Ever only supports unsigned integers, so a number is denoted by a string of digits.

The number is always assumed to be written in decimal.

I have been able to perform veri�cation of systems requiring negative numbers

(e.g. an SRT divider) by considering unsigned numbers to be in 2s complement. This

solution is far from ideal; a veri�er designed to handle such systems should provide

explicit support for both signed and unsigned integers.
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By default, Ever allocates the minimum number of bits required to represent a

number. Occasionally, the user needs control over the size of an integer. The syntax

'w'n, where w and n are strings of digits, speci�es the number represented by n,

but tells Ever to consider the number to be w bits wide. For example, 12 in Ever

represents the number 12 and is 4 bits wide, whereas '6'12 in Ever also represents

the number 12 but is 6 bits wide. (The width speci�er is actually handled by the

parser, not the lexer. In normal usage, the user won't notice the di�erence.)

Strings

Ever doesn't really support strings. String constants exist in the language simply to

enhance the readability of output. A string is any sequence of characters (including

newlines, etc.) enclosed in double quotes ". There is no way to represent double

quotes in a string.

Other Lexical Items

There are a few other lexical tokens that Ever uses: the \version designators" ^p, ^c,

^n; parentheses to group expressions; square brackets for array indexing; a period for

record accessing; a semicolon at the end of each command; and the left and right shift

operators << and >>. I mention these here only for completeness; we will see what

they do later.

Ever ignores all whitespace, except in strings and to separate tokens.

A.3.2 Type System

The tutorial example shows that Ever supports arrays and records. This fact may lead

one to expect that Ever has a type system similar to a normal high-level language.

Such an expectation is wrong. The Ever type system is idiosyncratic and perhaps the

greatest design error I made.

Ever allows the user to de�ne types consisting of arrays and records of previously

de�ned types, just as a normal high-level language does. In Ever, however, these

types apply only to variables, not to the results of expressions. When a variable is
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referenced, it is immediately considered to be a bit vector. For example, consider the

following variable declaration:

defvar x (record f1 (bits 4) f2 (array 0 3 (bits 3)));

which declares x to be a record with two �elds: the �rst is a 4-bit integer; the second,

an array of 3-bit integers. Ever knows the type of x, so it is legal to write expressions

like x^c, x.f2^c, and x.f2[2]^c in Ever. As soon as Ever sees these expressions,

however, it discards any type information, so it is also legal to write the expression:

(add x^c x.f2^c x.f2[2]^c)

even though the three arguments are intuitively of di�erent types. In Ever, this

expression is just the sum of three di�erent-sized bit vectors, producing another bit

vector as the result.

As we can see, Ever expressions do not obey the type declarations for variables.

Instead, Ever expressions can only be one of two types: propositions and bit vectors.

A proposition can take on the values true and false. A bit vector can be considered

to be the binary representation of an unsigned number. Ever considers propositions

to be a di�erent type from bit vectors of size 1.

Similarly, user-de�ned types do not apply to user-de�ned predicates or their pa-

rameters. Instead, user-de�ned predicates are always considered to be of type propo-

sition, and parameters are always considered to be of type bit vector. This limitation

is particularly onerous.

The rationale behind this type system was to trivialize the type-checking portion

of the Ever veri�er. The type of every expression is uniquely determined by the top-

level operator in that expression, so type checking is a local syntactic check. The weak

typing means almost no type casting and type checking is required. The drawbacks

of this type system are that it is cumbersome to use, error-prone, di�cult to extend

or modify, and not conducive to code modularization. I strongly encourage the use

of a more conventional type system in future veri�ers.
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A.3.3 Variable Versions

Ever tries to hide many of the details of BDD-based veri�cation from the user. When

designing Ever, however, I was not sure how successful this hiding could be. As a

result, many low-level BDD details are still visible and accessible to the user. While

these low-level escape hatches do provide 
exibility when used very carefully, they

also add unintuitive ugliness to the language.

The visibility of di�erent versions of the variables is a particularly prominent

ugliness. When the user declares a variable, rather than creating a single copy of

the variable, Ever creates three copies: the previous version, the current version, and

the next version. A BDD-based veri�er must maintain at least two versions of each

variable internally in order to model transition relations (since BDDs are propositional

and we need a BDD to represent a relation between the current and next states of the

system). The third copy permits computing relational products between transition

relations.

Ever makes these three versions of the variable explicitly available to the user.

Every variable reference must be followed by ^p to specify the previous version, ^c to

specify the current version, or ^n to specify the next version. This explicit access lets

the user create and manipulate transition relations directly. For example, if a system

has only two variables:

defvar x (bits 4);

defvar y (bits 4);

we can create a transition relation that only a�ects x, such as (eq x^n (add x^c 1)),

and another transition relation that only a�ects y, such as (eq y^n (add y^c 3)).

We could then create the synchronous composition of these two by simply conjoining

the relations:

defprop synch (and (eq x^n (add x^c 1)) (eq y^n (add y^c 3));

However, low-level manipulation is error-prone, especially when mixed with the high-

level features that distinguish Ever. For example:

defprop synch (and (eq x^n (add x^c 1)) (becomes y^n (add y^c 3));
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results in an empty transition relation. For the future, I recommend forbidding the

user direct access to the di�erent versions of the BDD variables, providing instead

the semantics the user requires in a safe and high-level manner.

A.3.4 Expressions

As we've seen, all expressions in Ever are of two types: propositions and bit vectors.

In describing the syntax of the expressions in this section, let p and pi denote arbitrary

expressions of type proposition, and let b and bi denote arbitrary expressions of type

bit vector.

Bit Vectors

The following list describes all ways to form an expression of type bit vector.

� identi�er

This denotes the bit vector bound to identi�er. The identi�er must be a formal

parameter in a predicate de�nition or must have been previously declared using

the defvec command.

� number

This denotes the bit vector that is the binary representation of number.

� variable-designator

This denotes the bit vector corresponding to the speci�ed bits of the variable.

The variable designator must specify which version (previous, current, next) of

the variable to use.

� (vector v1 : : : vn )

This expression returns the bit vector consisting of the concatenation of all its

arguments. The arguments v1 : : : vn can be expressions of type bit vector or

proposition.
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� (add b1 : : : bn )

Adds its arguments, which must be expressions of type bit vector. Discards

any carry. Over
ow wraps. The size of the result is the size of the larger of

the two addends. If there are more than two arguments, the addition is left-

associative. Because of the sizing and associativity rules, (add 10 1 1) is equal

to 12, whereas (add 1 1 10) equals 10. You may use sized integers to avoid

this wraparound. For example, (add '4'1 1 10) equals 12.

� (sub b1 b2 )

Both arguments must be bit vectors. Returns the di�erence formed by the �rst

argument minus the second, discarding the borrow. Under
ow wraps. The size

of the result is the larger of the sizes of the arguments.

� (<< b n )

� (>> b n )

The �rst argument must be a bit vector. The second argument must be an

integer constant. Returns a copy of the �rst argument logically left-shifted or

right-shifted by the amount of the second argument. The size of the result is

adjusted by the amount of shift.

� (band b1 : : : bn )

� (bor b1 : : : bn )

Bitwise Boolean AND/OR with low-order bits aligned. Associativity and sizing

rules are exactly as for add.

� (bnot b )

Complement the bits in bit vector b.

� (bxor b1 b2 )

Bitwise Boolean exclusive-or.
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� (bequiv b1 b2 )

Bitwise Boolean exclusive-nor.

� (bimplies b1 b2 )

Bitwise Boolean implication.

� (bif p b1 b2 )

Argument p must be an expression of type proposition. The other two argu-

ments must be bit vectors. Returns a bit vector that is equal to b1 when p is

true and that is equal to b2 when p is false.

Propositions

The following list describes all ways to form an expression of type proposition:

� TRUE

� FALSE

These reserved words are prede�ned constants for the values true and false.

� PrevCurEq

� CurNextEq

� PrevNextEq

These reserved words are prede�ned constants that return relations forcing

equality between the speci�ed versions of the variables.

� ( identi�er )

The value of this expression is whatever proposition identi�er was previously

declared to be using the defprop command.

� ( identi�er b1 : : : bn )

The value of this expression is whatever proposition identi�er was previously

declared to be using the defpred command, but with the actual parameters
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b1 : : : bn substituted (via macro substitution on the parse tree) in place of

the formal parameters. The actual parameters must be expressions of type bit

vector.

� (eval p )

The value of this expression is just the value of expression p, which must be

of type proposition. However, eval forces the (re)building of the BDD for

the expression p, even if one exists already. This operator is a holdover from

when I had a di�erent notion of when the BDDs for expressions would be built.

Currently, no BDDs are built until they are needed by a speci�c veri�cation

algorithm, and we can force evaluation by tricking the veri�cation algorithm. I

do not recommend using this operator.

� (and p1 : : : pn )

� (or p1 : : : pn )

Returns the logical conjunction/disjunction of the expressions p1 : : : pn, which

must be expressions of type proposition.

� (not p )

Returns the logical negation of the expression p, which must be an expression

of type proposition.

� (xor p1 p2 )

Returns the exclusive-or of propositions p1 and p2.

� (equiv p1 p2 )

Returns the exclusive-nor of propositions p1 and p2.

� (implies p1 p2 )

� (if p1 p2 )

Returns the logical implication p1 ) p2.
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� (if p1 p2 p3 )

Returns the if-then-else expression \if p1 then p2 else p3".

� (forall variable-list p )

� (exists variable-list p )

Returns the proposition p with the variables in the variable list universally or

existentially quanti�ed. Currently unimplemented.

� (hideprev p )

� (hidecur p )

� (hidenext p )

Returns p with all of the speci�ed versions of the variables existentially quanti-

�ed.

� (reachable p1 p2 )

Returns a proposition which speci�es the set of all reachable states starting

from the set speci�ed by p1 and using p2 as the transition relation. Currently

unimplemented.

� (reachgoal p1 p2 p3 )

Like reachable, except it returns as soon as the set intersects p3, rather than

computing the entire reachable state set. Currently unimplemented.

� (AG p1 p2 )

Returns the set of states that satisfy the CTL formula AGp1. p2 is a holdover

from when I thought I would specify the transition relation as part of the ex-

pression. Only works with the ctlmodelcheck command.

� (EG p1 p2 )

Returns the set of states that satisfy the CTL formula EGp1. p2 is a holdover

from when I thought I would specify the transition relation as part of the ex-

pression. Currently unimplemented.
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� (AF p1 p2 )

Returns the set of states that satisfy the CTL formula AFp1. p2 is a holdover

from when I thought I would specify the transition relation as part of the ex-

pression. Only works with the ctlmodelcheck command.

� (EF p1 p2 )

Returns the set of states that satisfy the CTL formula EFp1. p2 is a holdover

from when I thought I would specify the transition relation as part of the ex-

pression. Currently unimplemented.

� (AX p1 p2 )

Returns the set of states that satisfy the CTL formula AXp1. p2 is a holdover

from when I thought I would specify the transition relation as part of the ex-

pression. Only works with the ctlmodelcheck command.

� (EX p1 p2 )

Returns the set of states that satisfy the CTL formula EXp1. p2 is a holdover

from when I thought I would specify the transition relation as part of the ex-

pression. Currently unimplemented.

� (AU p1 p2 p3 )

Returns the set of states that satisfy the CTL formula A[p1Up2]. p3 is a holdover

from when I thought I would specify the transition relation as part of the ex-

pression. Only works with the ctlmodelcheck command.

� (EU p1 p2 p3 )

Returns the set of states that satisfy the CTL formula E[p1Up2]. p3 is a holdover

from when I thought I would specify the transition relation as part of the ex-

pression. Currently unimplemented.

� (simrel p1 p2 )

Computes a simulation relation between the transition relations given by propo-

sitions p1 and p2. Currently unimplemented.
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� (becomes variable-designator b )

Computes a transition relation that corresponds to an assignment statement.

(The variable being assigned gets the new value, and all other variables keep

their current values.) The expression b must be of type bit vector and should

only refer to the current state versions of the variables. variable-designator

speci�es the variable or the part of a variable being assigned to. It should use

the next state version of the variable. This operator correctly handles array

indexing with arbitrary bit-vector-valued index expressions.

� (constrain variable-designator p )

A non-deterministic version of becomes. Computes a transition relation that

allows the designated variable to take any value that satis�es proposition p and

holds all other variables to their current values. Both the variable-designator

and p should refer to the next state versions of the variables.

� (compose p1 : : : pn )

Indicates transition relation composition. If p1 : : : pn are transition relations

between the current and next state versions of the variables, compose will re-

turn the transition relation between the current and next state versions of the

variables corresponding to the relational product of p1 through pn (intuitively

equivalent to executing the transition relations one after the other).

� (gt b1 b2 )

� (ge b1 b2 )

� (eq b1 b2 )

� (le b1 b2 )

� (lt b1 b2 )

Unsigned numerical comparison between bit vectors b1 and b2. Operators pro-

vide greater-than, greater-or-equal, equal, less-or-equal, and less-than.
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� (andcompress b )

� (orcompress b )

Returns the result of computing the logical conjunction/disjunction of all of the

bits in bit vector b. Currently unimplemented.

A.3.5 Declarations

So far, we have been using declarations freely. Now we can take a closer look. There

are six kinds of declarations: types, variables, dependent variables, propositions,

predicates, and bit vectors. Let's consider these one at a time.

Type Declarations

The deftype command declares a new type.

deftype identi�er type-descriptor ;

This command declares that identi�er is the name of a new type. The type descriptor

must be one of the following:

� identi�er

where identi�er is the name of a previously declared type.

� (bits n s0 : : : s2n�1 )

where n is a positive integer and s0 : : : s2n�1 are string constants. This creates

a type that is n bits wide. The strings are optional. They are used to output

values of this type. If a variable of this type has value i, it will output as si.

� (array n1 n2 type-descriptor )

where n1 and n2 are integers with n1 < n2. This creates an array type that is

indexed from n1 to n2 inclusive. The array elements are of the speci�ed type.

� (record id1 type1 : : : idn typen )

This creates a record type. The identi�er idi is the name of the ith �eld, and

its type is given by the type descriptor typei.
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In addition, the reserved words array and record can be preceded by the reserved

word interleaved to specify an interleaved BDD variable order.

Variable Declarations

The defvar command declares a new variable.

defvar identi�er type-descriptor ;

This command declares that identi�er is the name of a new variable whose type is

given by the type descriptor.

Dependent Variable Declarations

Dependent variables must be declared to use the functionally dependent variable

method presented in Chapter 5. The declaration is just like a normal variable decla-

ration, except that the user must also specify the value the variable should have. For

example, if we want to declare z to be a dependent variable that is always the sum

of variables x and y, we would type the following:

defvar x (bits 4);

defvar y (bits 4);

defdepvar z (bits 4) (add x^c y^c);

The general syntax is

defvar identi�er type-descriptor bit-vector ;

Proposition Declarations

A proposition declaration simply binds an expression of type proposition to an iden-

ti�er, providing a shorthand for repetitive expressions. The syntax is

defprop identi�er proposition ;
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Predicate Declarations

Predicate declarations are like proposition declarations, but with parameters. The

distinction of propositions versus predicates is entirely arti�cial and results from a

design error I made initially. The syntax is

defpred identi�er ( formal-list ) proposition ;

where formal-list is a space-separated list of identi�ers that are the formal parameters

of the predicate.

Note that the formal parameters are untyped. They are assumed to be bit vectors.

This is a major design 
aw, as it prevents using the type information of complex data

structures passed as parameters.

I had originally intended to provide a lambda operator to create a parameterized

predicate from a non-parameterized expression. This feature is currently unimple-

mented.

Bit Vector Declarations

Bit vector declarations are a convenient shorthand, much like proposition declarations.

The syntax is

defvec identi�er bit-vector ;

where bit-vector is any expression that returns a bit vector.

Note the absence of parameters and of a type descriptor for the return value.

These are design errors that seriously limit the usefulness of bit vector declarations.

Scope

The scoping rules in Ever are trivial. There is a single global scope. All identi�ers

must be declared before use. There is no recursion and no forward declarations.

The only other scope is within the declaration for a predicate. In this scope, the

formal parameters are visible and obscure any con
icting declarations from the global

scope. At the end of the declaration, the formal parameters disappear, returning the

preexisting global scope.
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A.3.6 Commands

An Ever program is simply a sequence of commands. All of the declarations are

commands. The following is a list of all other commands.

� end;

Exits the veri�er.

� include �lename ;

where �lename is a string constant that contains the name of a �le. The veri�er

will read the input from the speci�ed �le as if it were typed to the veri�er at

this point. The include command does not nest.

� printstring string ;

Prints the given string.

� printprop p ;

Prints the BDD for proposition p.

� printsize p ;

Prints the number of BDD nodes used to represent p. This command is only

partially implemented. If the BDD for p has already been constructed, this

command will print its size. If the BDD for p has not yet been constructed, this

command will attempt to count the number of nodes in all the BDDs that make

up p. However, in this case, the count may be wrong if p contains operators that

the count function doesn't know about. printsizewill print warning messages

if the size reported might be wrong.

� printtrace p1 p2 p3 ;

where p1, p2, and p3 are propositions. Performs a forward traversal, starting

from the states speci�ed by p1, using p2 as the transition relation, trying to

reach a state that satis�es p3.
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If the system contains declared dependent variables, printtrace will automat-

ically use the method of functionally dependent variables from Chapter 5. This

method, however, is not fully implemented. In particular, and, or, not, eq,

vector, add, sub, and bif are currently the only operators supported when

using functionally dependent variables.

� checkinvariant p1 p2 p3 ;

performs a backward traversal. p1 speci�es the start states, p2 speci�es the

transition relation, and p3 speci�es the set of good states. If p3 is the conjunction

of several properties, checkinvariant automatically uses implicitly conjoined

BDDs. To prevent that, wrap an or around p3.

Switching between the simpler and more sophisticated heuristics for implicit

conjunctions requires editing the source code and recompiling. See the functions

converged and conjunct_and_simplify in the �le everinv.c.

This command does not currently support functionally dependent variables.

� ctlmodelcheck p1 p2 p3 ;

performs CTL model checking. p1 speci�es the states to be checked, p2 speci�es

the transition relation, and p3 speci�es the CTL formula to check.

This is currently a partial implementation. Only ACTL is supported, and the

only logical connectives permitted between modal formulas are and, or, and

not.

This command does not currently support functionally dependent variables. I

do not recommend using this command until further notice.

� checkwithapprox p1 p2 p3 assuming p4 ;

This is an experimental command to use approximations to help the backward

traversal (not described in this thesis). p1 through p3 are as in checkinvariant.

p4 is a proposition that gives assumptions we can use. As in checkinvariant,

a top-level and operator causes the creation of an implicit conjunction.
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This command does not currently support functionally dependent variables. I

do not recommend using this command until further notice.

� checkwithsupport p1 p2 p3 using bit-vector-list ;

This is another experimental command. It attempts to use the user-speci�ed

bit-vector-list to create good implicit conjunctions (not described in this thesis).

This command does not currently support functionally dependent variables. I

do not recommend using this command until further notice.

� checkinvfwd p1 p2 p3 ;

This is another experimental command. It is the dual of checkinvariant using

implicit conjunctions. It performs a forward traversal using implicit disjunc-

tions.

This command does not currently support functionally dependent variables. I

do not recommend using this command until further notice.

The structure of Ever programs as an arbitrary sequence of commands was de-

signed to provide 
exibility. For a research workbench like Ever, such 
exibility is

convenient. For a production tool, however, I recommend adopting a more structured

language that prevents the user from writing blatantly nonsensical descriptions.
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