
STeP
STeP

The Stanford Temporal Prover

Educational Release

Version 1.0

USER'S MANUAL

Nikolaj Bj�rner, Anca Browne, Eddie Chang, Michael Col�on,

Arjun Kapur, Zohar Manna, Henny B. Sipma, and Tom�as E. Uribe

November, 1995

Computer Science Department

Stanford University

Stanford, California 94305

S

Contents

1 Introduction 1

1.1 Reading this Manual : 2

1.2 Starting step : 3

1.3 Interacting with step : 4

1.4 Terms and De�nitions : 7

1.5 Feedback : 10

1.6 Acknowledgements : 10

2 Systems and Speci�cations 13

2.1 Types : 13

2.2 Expressions : 14

2.3 Speci�cation Files : 17

2.4 Declarations : 18

2.4.1 Type Declarations : 19

2.4.2 Value and Macro Declarations : 20

2.4.3 Variable Declarations : 21

2.4.4 Rewrite and Simpli�cation Rules ? : : : : : : : : : : : : : : : : : : : 22

2.4.5 Channel Operations ? : 24

2.5 SPL Programs : 24

2.6 Transition Systems : 29

2.6.1 Fair Transition Systems : 29

2.6.2 Transition System Syntax : 31

2.6.3 Clocked Transition Systems ?? : 32

2.7 When Parsing Fails : 33

3 The Top-Level Interface 35

3.1 Menu Options : 37

3.2 Action Buttons : 48

4 Veri�cation and Logical Rules 51

4.1 The Proof Search : 51

4.2 Veri�cation Rules : 52

4.3 WPC and Strengthening : 55

4.4 Logical Rules : 55

4.5 The Model Checker : 56

i

ii CONTENTS

5 The Veri�cation Diagram Editor 59

5.1 De�nitions : 59

5.2 Wait-for Diagrams : 60

5.3 Invariance Diagrams : 60

5.4 Chain Diagrams ? : 61

5.5 Compound Nodes : 62

5.6 Veri�cation Diagram Editor: Interface : 64

5.7 Hierarchical Veri�cation Diagrams ? : 67

6 Automatic Theorem-Proving 69

6.1 The Automatic Simpli�er : 69

6.2 BDD Simpli�cation : 71

6.2.1 BDD split ? : 71

6.3 Tactics ? : 72

6.3.1 Composition Options : 73

6.3.2 Top-level Prover Tactics : 75

6.3.3 Interactive Prover Tactics : 75

6.3.4 Interrupting Tactics : 77

6.3.5 Commonly used Tactics : 77

7 Automatic Generation of Invariants 79

7.1 Local Invariants : 79

7.2 Linear Invariants : 80

7.3 Polyhedral Invariants ? : 80

8 The Interactive Prover ? 81

8.1 Proof Structure : 81

8.2 User Interface : 82

8.3 Interactive Prover Rules : 84

9 Basic Tutorial 91

9.1 Preliminaries : 91

9.2 mux-sem: Mutual Exclusion : 92

9.2.1 Using B-INV : 93

9.2.2 Using G-INV : 96

9.2.3 Using the Model Checker : 97

9.2.4 Using Veri�cation Diagrams : 98

9.2.5 Using MON-I and Linear Invariants : : : : : : : : : : : : : : : : : : 100

9.3 mux-pet1: Invariance Strengthening : 100

9.3.1 Using WPC : 100

9.3.2 Using Tactics ? : 102

9.3.3 Using veri�cation diagrams : 103

Appendix

CONTENTS iii

A Computational Model 105

A.1 Fair Transition Systems : 105

A.2 Computations : 106

A.3 SPL semantics : 106

B Linear-Time Temporal Logic 113

C Di�erences with the Book 115

C.1 SPL Programs : 115

C.2 Control Locations in step : 115

C.3 Type Declarations : 121

C.4 Initialization : 121

C.5 Parameterized Programs : 122

D Distribution and Installation 123

D.1 Example Programs : 124

E STeP Environment Variables 127

iv CONTENTS

Chapter 1

Introduction

The Stanford Temporal Prover, step, supports the computer-aided formal veri�cation of

concurrent and reactive systems based on temporal speci�cations. Reactive systems main-

tain an ongoing interaction with their environment, and their speci�cations are typically

expressed as constraints on their behavior over time. step is not restricted to �nite-state

systems, but combines model checking with deductive methods to allow for the veri�ca-

tion of a broad class of systems, including parameterized (N -component) circuit designs,

parameterized (N -process) programs, and programs with in�nite data domains.

Finite-state systems can be automatically veri�ed using model checking alone. For large

�nite-state or for in�nite-state systems, for which model checking is not possible or feasible,

step also uses deductive methods: Veri�cation rules [Manna and Pnueli, 1995] reduce

temporal properties to �rst-order veri�cation conditions. Veri�cation diagrams [Manna and

Pnueli, 1994] are a visual language for guiding, organizing and displaying proofs. They can

be used to construct proofs hierarchically, starting from a high-level sketch and proceeding

incrementally through layers of greater detail.

step also includes techniques for automatic invariant generation [Bj�rner et al., 1995].

Deductive veri�cation almost always relies on �nding, for a given program and speci�cation,

suitably strong invariants and intermediate assertions. The system generates bottom-up

invariants automatically by analyzing the program text. Combining them with the property

to be proved, su�ciently detailed invariants can often be obtained to carry through the

veri�cation process.

Finally, step provides a collection of simpli�cation and decision procedures that au-

tomatically check the validity of a large class of �rst-order and temporal formulas. This

degree of automated deduction can handle many of the veri�cation conditions that arise in

deductive veri�cation.

Figure 1.1 shows an overview of step. The main inputs are a reactive system (which can

be a description of hardware or software) and a property to be proven about the system,

represented by a temporal logic formula. Veri�cation can be performed by the model checker

or by deductive means. Model checking is automatic; deductive veri�cation is to a large

extent automatic for simple safety properties, while progress properties require more user

guidance, usually given in the form of a veri�cation diagram. In all cases, the automatic

prover is responsible for generating and proving the required veri�cation conditions. An

interactive Gentzen-style theorem prover is used to establish those veri�cation conditions

1

2 CHAPTER 1. INTRODUCTION

STeP

Automatic Prover

Strengthening

Model

Checker

Interactive
Prover

Verification

User

User

P-valid P-valid

Counter example Debugging Guidance

Reactive System
(SPL Program)

Hardware

of Invariants

Propagation

First-order Prover

Non-clausal resolution

Decision procedures

Simplification Gentzen style:

Temporal

First-order

Generator
Invariant

Bottom-up

Temporal Logic
Formula

Fair Transition
System

TL
Simplifier

Description

Rules

Verification

Diagrams

Automatic Prover

Strengthening

Model

Checker

Interactive
Prover

Diagram

Verification

User

User

P-valid P-valid

Counter example Debugging Guidance

Reactive System
(SPL Program)

Hardware

of Invariants

Propagation

First-order Prover

Non-clausal resolution

Decision procedures

Simplification Gentzen style:

Temporal

First-order

Generator
Invariant

Bottom-up

Temporal Logic
Formula

Fair Transition
System

TL
Simplifier

Description

Rules

Verification

Figure 1.1: An overview of the step system.

that are not proved automatically.

step: The Educational Version

The current release of step is the educational version, and is a companion to the textbook
[Manna and Pnueli, 1995]. Like the book, it concentrates on safety properties, and is

intended for use by students, instructors and researchers of formal methods.

1.1 Reading this Manual

This manual is a complete reference guide for using step. For more background on step's

framework for temporal speci�cation and program veri�cation, see [Manna and Pnueli, 1991]

and [Manna and Pnueli, 1995].

Following are some suggestions on reading this manual:

� Getting started: Section 1.2 describes how to get step up and running. Section 1.3

gives an overview of step and a
avor of how a typical session proceeds. Section 1.4

de�nes the main terms used throughout this manual.

1.2. STARTING STEP 3

� The Tutorial: This manual includes a basic tutorial on step, in Chapter 9. This

tutorial is the recommended method for readers to familiarize themselves with the

step interface and the di�erent styles of veri�cation in step.

After the tutorial, you should be able to verify some of the other programs included

in the examples directory as well as your own simple programs, using the rest of this

manual as a reference.

Some sections are marked with a \?" to indicate that they should be read only after

the unmarked sections are understood. For instance, �rst-time users can postpone studying

features such as tactics (Section 6.3) and user-de�ned rewrite and simpli�cation rules (Sec-

tion 2.4.4), until they feel comfortable with the rest of the system. Sections marked with

\??" are intended for advanced users and may be safely omitted by the beginning student.

Chapters 2-8 are the main reference for using the system. For those readers unfamiliar

with [Manna and Pnueli, 1995], Appendixes A and B summarize step's program and prop-

erty speci�cation languages. Appendix C presents the most important di�erences between

step and [Manna and Pnueli, 1995].

1.2 Starting step

The following are the steps for starting step:

1. Set your STEP DIR environment variable to the full directory path where step is

installed.1 If this variable is not set, you will not be able to run step. (If you are

installing the system, you can edit the bin/STeP �le to correctly set this value for all

users.)

2. The DISPLAY environment variable is used by X-windows to identify the screen where

programs should run, and is usually of the form machine-name:0.0. Due to the inner

workings of eXene (the SML X-windows library), this should be changed to the form

ip-address:0.0, where ip-address is the corresponding numerical IP-address.2

Alternatively, the display can be speci�ed with the -display command-line option

when running step, as in \STeP -display ip-address:0.0".

3. Make sure that the machine where you plan to run step has permission to open

windows on your display. To make sure this is the case, execute, in your X-windows

console, the command \xhost +".

4. Add STEP DIR to your path. In this way, when executing step you don't have to type

STEP DIR/STeP, but just STeP.

5. Execute step, by running STeP. If your DISPLAY variable and xhost permissions are

set correctly, the step main window will appear on your screen.

1Environment variables are set with \setenv variable value" Unix commands, which you can add to

your .cshrc �le for convenience.
2On UNIX systems, you can usually obtain this address with the commands \nslookup machine-name"

or \ping -l machine-name".

4 CHAPTER 1. INTRODUCTION

A number of other environment variables can be optionally set according to each user's

preferences; these are described in Appendix E.

Appendix D gives details on the installation of step. If you have problems installing or

running step, please send mail to step-bugs@cs.stanford.edu.

1.3 Interacting with step

step has three main interface components: the Top-level Prover , from which veri�cation

sessions are managed and veri�cation rules invoked; the Interactive Prover , used to prove

the validity of �rst-order and temporal-logic formulas; and the Veri�cation Diagram Editor ,

for the creation of Veri�cation Diagrams. Figure 1.2 shows all step's interfaces with the

program mux-sem loaded.

Figure 1.2: Overview of step's interfaces

1.3. INTERACTING WITH STEP 5

Veri�cation Session|An Overview

A veri�cation session begins by loading a program or a transition system that describes the

system of interest and entering a temporal-logic formula that expresses one or more system

properties to be proved.

The formula becomes the top or root goal of a proof tree. There are now several ways

to proceed. The most common route is to apply a veri�cation rule (Section 4.2), which

reduces the formula to simpler �rst-order or temporal formulas, thus generating the �rst

level of subgoals of the proof tree. These subgoals are numbered accordingly: 1.1, 1.2, 1.3,

etc. If all subgoals are established automatically by the Simpli�er (i.e., the Simpli�er can

reduce them to true), all branches are closed and the proof is �nished.

If the Simpli�er is not able to prove one of the subgoals, we have one of the following

possibilities:

1. The subgoal is not valid for the given program. In this case, the proof cannot succeed.

2. The property is valid for the program, but not generally valid. In this case you will

have to (a) strengthen the original formula, or (b) �rst prove some auxiliary properties

of the program, relative to which the problematic veri�cation condition becomes valid.

In the latter case you may start a new proof tree for the auxiliary property and return

to the original property after the auxiliary proof is �nished. This approach re
ects

the incremental proof style advocated in [Manna and Pnueli, 1995].

Another way to establish auxiliary properties is through the automatic generation of

invariants. step includes three such methods, which generate properties that often

help in proving veri�cation conditions (Chapter 7).

3. The property is generally valid, but the simpli�er is unable to reduce it to true . In this

case, the Interactive Prover (Chapter 8) can be used to establish the given property

with user guidance. If this is successful, the given subgoal is closed. Partial results

may also be returned to the Top-level Prover and incorporated in the current proof

tree as a new subgoal.

Another way to verify a program property is to use a veri�cation diagram. A veri�cation

diagram represents a set of veri�cation conditions su�cient to establish a given property.

Diagrams are created by the Veri�cation Diagram Editor (Chapter 5) and subsequently

transferred to the Top-level Prover.

Finally, any property or subgoal may be established by the Model Checker, through

the exploration of the state space of the system (Section 4.5). Although model checking is

only guaranteed to succeed for �nite-state programs whose state space is not too large, it

is also generally useful to identify erroneous properties, since it provides a counterexample

computation if the property is not valid for the given system.3

step can also be used as a theorem prover, independently of any particular system

veri�cation task. In this case you only need to load a speci�cation, and only the Simpli�er

and the Interactive Prover are used.

3Restrictions may be placed on the system to make model checking more feasible|see Section 4.5.

6 CHAPTER 1. INTRODUCTION

Veri�cation Session|A Quick Tour

To make things more concrete we will give an example of an actual step session. For a

step-by-step description of the commands needed to run this example, see the basic step

tutorial in Chapter 9.

local y : integer where y = 1

P1 ::

2
666664
`0: loop forever do2
6664
`1: noncritical

`2: request y

`3: critical

`4: release y

3
7775

3
777775 jj P2 ::

2
666664
m0: loop forever do2
6664
m1: noncritical

m2: request y

m3: critical

m4: release y

3
7775

3
777775

Figure 1.3: Program mux-sem (mutual exclusion by semaphores)

Consider program mux-sem, shown in Figure 1.3. It implements mutual exclusion using

the semaphore y, request decrements the semaphore, when it is positive, and release

imcrements the semaphore. We want to prove the following properties of this program:

'1 : 0 (y � 0)

'2 : 0 (:(`3 ^m3))

The �rst property, stating that y is always greater than or equal to 0, is proved automatically

using rule B-INV (Section 4.2) and decision procedures for linear arithmetic. The property

is then added to the list of background properties and may be used in subsequent proofs.

The second property expresses mutual exclusion and is not inductive, that is, it is not

preserved by all transitions. In particular, the veri�cation conditions for transitions `2 and

m2 are not valid, and indeed when we apply rule B-INV the Simpli�er does not reduce

them to true . We now have several options. Since this is a �nite-state program with a

small number of states, model checking has a good chance of succeeding; indeed, the Model

Checker can quickly verify this property.

Another option is to generate some auxiliary invariants. One of the linear invariants

automatically generated for this system is:

I : 0 (`0 + `1 + `2 = m3 +m4 + y)

Unfortunately, property '2 is not inductive relative to this invariant, so the Simpli�er is

still unable to prove the veri�cation conditions for `2 and m2. Repeating the application of

B-INV with all linear invariants active for simpli�cation, you will notice that simpli�cation

is signi�cantly slower, since the background properties are being used in simpli�cation.

However, property '2 is directly implied by the invariant I and the property '1 we

proved earlier. Therefore, we can apply rule MON-I (Section 4.4) directly to the top-level

goal, and �nish the proof after one simpli�cation step.

1.4. TERMS AND DEFINITIONS 7

Another option is to use rule G-INV (Section 4.2), supplementing the veri�cation with

a strengthened assertion, e.g.,

`3 + `4 +m3 +m4 + y = 1

This assertion implies mutual exclusion and is inductive (the locations have been arethme-

tized, e.g., the value of `3 is 1 if control resides at `3, 0 otherwise). All veri�cation conditions

are reduced to true by the Simpli�er, thus completing the proof.

Yet another option is a proof by veri�cation diagram. The lower left corner of Figure 1.2

shows a state-partition diagram for program mux-sem that implies mutual exclusion; the

property 0 (:(`3^m3)) is proved automatically by invoking the Veri�cation Diagram Rule

on this diagram. This produces 35 di�erent veri�cation conditions, all of which are reduced

to true .

1.4 Terms and De�nitions

step Sub-systems

In step we identify the following sub-systems, each of which operates relatively indepen-

dently of the rest:

Top-level Prover (Chapter 3) The Top-level Prover is the main interface to a step

session, from which all other activities are initiated.

Interactive Prover (Chapter 8) The Interactive Prover is invoked from the Top-level

Prover to prove a particular goal or subgoal. When the Interactive Prover is active

the Top-level Prover is suspended. The Interactive Prover provides a Gentzen-style

proof system, which is guided by the user. While the Interactive Prover is normally

used to complete the proof of a given subgoal, partial results from the Interactive

Prover can also be transferred back to the Top-level Prover.

Veri�cation Diagram Editor (Chapter 5) The Veri�cation Diagram Editor is also in-

voked from the Top-level Prover, but can be run concurrently with it. It is used to

create and edit veri�cation diagrams, which can be given to the Top-level Prover to

use in a proof.

Model Checker (Section 4.5) The Model Checker can be invoked from the Top-level

Prover on any given temporal subgoal. If the Model Checker establishes the P -validity

of the formula, the corresponding goal is proved. Otherwise, a counterexample com-

putation (i.e. one that violates the formula) is returned.

Simpli�er (Section 6.1) The Simpli�er is a collection of decision procedures and rewrite

rules used to reduce and prove general veri�cation conditions. The Simpli�er may

be invoked by the user, both from the Top-level Prover and the Interactive Prover,

to simplify single goals or subgoals. In the Top-level Prover, the Simpli�er uses all

axioms, invariants, and previously proven properties that are currently active. The

power of the Simpli�er, i.e., the trade-o� between power and speed, is controlled by

a number of global settings.

8 CHAPTER 1. INTRODUCTION

step Activities

We identify a few (nested) levels of activities, each with its own environment:

step session At the top level is the step session, which lasts for the entire period step is

running. Simpli�cation settings are part of the step session environment. They can

be changed at any time, but are not a�ected by loading new systems or moving on to

new goals.

System veri�cation session The next level down is the system veri�cation session, which

lasts from the time a program or system is loaded until a new one is loaded. Proven

properties are accumulated as long as the session lasts. Thus both the system and

all the properties proven about it, as well as the axioms loaded for it, are part of the

system veri�cation session environment. All properties proven are valid relative to the

current system. A system veri�cation session may be terminated explicitly by loading

a new system or resetting step.

Theorem-proving session At the same level as the system veri�cation session is the

theorem-proving session. The di�erence is that a theorem-proving session environment

does not include a system. Thus, properties are proved to be generally valid in this

case, and only the Simpli�er and the Interactive Prover can be used to prove formulas.

Goal session A system veri�cation or theorem-proving session may contain multiple goal

sessions . Each un�nished proof of a goal is represented by a tree with the goal as its

root. At any given time, only one tree is being worked on. The user can move from

one tree to the next in the middle of a proof, and later return to the un�nished proof,

e.g., when some auxiliary properties have been established. A goal session ends when

the goal is proved valid or is abandoned by the user.

Properties

We use di�erent terms for properties depending on their status in a veri�cation or theorem-

proving session. We list the terms here in alphabetical order:

Axiom An axiom is provided by the user and is assumed to be valid throughout a system

veri�cation or theorem-proving session. An axiom is considered to be a background

property.

Background property A background property is assumed or proven to be valid for the

program in a system veri�cation session, and assumed or proven to be generally valid

in a theorem-proving session. The user controls their use in simpli�cation by activating

and de-activating them. Background properties may also be deleted altogether from

a veri�cation session.

If active, background properties are used by the Simpli�er in the simpli�cation process

of goals and subgoals at the Top-level Prover, and can be added to the current sequent

in the Interactive Prover.

Background properties include axioms entered by the user, properties already proved

in the same veri�cation session, and automatically generated invariants.

1.4. TERMS AND DEFINITIONS 9

Note that the set of background properties is lost upon termination of a system-

veri�cation or theorem-proving session.

Goal A goal is a formula that we want to prove generally valid or valid over a given

program, and becomes the root of a proof tree.

Invariant An invariant is a formula of the form 0 p, stating that p is true at every state

of a program or system computation. Invariants can be independently proved, or

automatically generated by one of three methods: local, linear, or polyhedral invariant

generation. Proven invariants are added to the set of background properties, and will

be used by the simpli�er when simplifying new formulas. They can also be used as

axioms in the interactive prover.

Subgoal A subgoal is a formula that results from the application of a veri�cation rule to

a goal or another subgoal. It is a node of the proof tree. An open subgoal is a leaf of

the proof tree that has not been reduced to true.

Veri�cation condition A veri�cation condition is a formula that results from the appli-

cation of a veri�cation rule to a goal or a subgoal. Veri�cation conditions are a subset

of the subgoals.

System Description and Speci�cation

step accepts a system description in two di�erent formats, namely as an SPL program or as

a fair transition system. Speci�cations are entered as linear-time temporal logic formulas.

SPL program A system description may be given in the form of an SPL program (Simple

Programming Language program). The syntax of well-formed SPL programs is given

in Section 2.5. SPL programs are parsed into fair transition systems. The semantics

of SPL are given in Appendix A.

Fair transition system An alternative way to provide a system description is by means

of a fair transition system. A fair transition system is a tuple with the following

components:

� V , a set of system variables. These include all program variables.

� �, the initial condition.

� T , a set of transitions.

Each transition is a relation between states, specifying how the system can move from

one state to the next. Section 2.6 describes how transition systems are speci�ed in

step. Appendix A describes fair transition systems in more detail.

Auxiliary and system variables Auxiliary variables are declared in speci�cations. Sys-

tem variables get declared in system descriptions and participate in the transition

relations of the described transition system.

10 CHAPTER 1. INTRODUCTION

Flexible and rigid variables The value of a
exible variable may change over time, while

that of a rigid variable is assumed to be �xed throughout a computation. Auxiliary

variables in step can be declared to be
exible or rigid. System variables declared as

in are rigid, while those declared as out and local are
exible.

Note that the
exible or rigid status of variables has a signi�cant e�ect on whether

terms under the scope of temporal operators can be replaced by others during inter-

active and automatic theorem-proving.4

Future operators Future temporal operators are 0 (Henceforth), 1 (Eventually), U

(Until), W (Waiting-for also called Unless) and 2 (Next).

In step's ASCII representation, these are [], <>, Until, Awaits, and () (see Ap-

pendix B), respectively.

Past operators Past operators are ` (So-far), Q (Once), S (Since), B (Back-to), and �

(Previously).

In step's ASCII representation, these are [-], <->, Since, Backto, and (-) (see

Appendix B), respectively.

Past formula A past formula is a temporal-logic formula that does not contain any future

operators, that is, it only contains state formulas and past operators.

1.5 Feedback

If you have problems running step or �nd bugs in the system, please send mail to

step-bugs@cs.stanford.edu.

If you have questions or feedback, send mail to

step-comments@cs.stanford.edu.

There is a mailing list for step users, which will be used to distribute updated information

about the system. To be added or removed from the list, send mail to

step-request@cs.stanford.edu.

1.6 Acknowledgements

step has been designed and implemented by Nikolaj Bj�rner, Anca Browne, Eddie Chang

and Tom�as Uribe. Henny Sipma and Arjun Kapur have collaborated with the development

and documentation of step.

The Veri�cation Diagram editor was developed by Michael Col�on. The interface tools

were developed by Michael Col�on and Hsiao-Lan Liao, and the SPL compiler was imple-

mented by Jaejin Lee. Mark Stickel provided the AC-matching and uni�cation facilities.

4For example it is in general not possible to instantiate an existentially bound rigid variable by a term

containing
exible variables.

1.6. ACKNOWLEDGEMENTS 11

Harish Devarajan implemented the decision procedure for full Presburger arithmetic. As-

sistance and feedback has been provided by Anuchit Anuchitanukul, Luca de Alfaro, Je�

Kamerer, and Yoshihiro Yamada. We would also like to thank Paul Neves and the students

of CS256L at Stanford. The step logo was designed by Anuchit Anuchitanukul.

step has mainly been implemented in Standard ML of New Jersey, using its X-windows

utilities eXene for the user interface. David McQueen and John Reppy have been helpful

assisting us in using SML/NJ and eXene. Xavier Leroy introduced us to ML.

The polyhedral invariant generation uses the polyhedral manipulation package developed

at VERIMAG/CNRS (Grenoble) by Nicolas Halbwachs, Yann-Eric Proy and Herve Leverge.

The model checker uses the PTL satis�ability tester by Hugh McGuire at Stanford.

The step project has been supported in part by the National Science Foundation un-

der grant CCR-92-23226, by the Defense Advanced Research Projects Agency under grant

NAG2-892, and by the United States Air Force O�ce of Scienti�c Research under grant

F49620-93-1-0139.

The step project is supervised by Professor Zohar Manna.

12 CHAPTER 1. INTRODUCTION

Chapter 2

Systems and Speci�cations

A system can be input to step as an SPL program or directly as a transition system;

SPL programs are parsed into transition systems. The computational model associated

with transition systems and SPL programs is presented in Appendix A. The speci�cation

language is linear-time temporal logic. Its semantics is presented in Appendix B.

An SPL program or transition system is always loaded from a �le. The properties to be

proven may be entered directly or loaded from a �le.

This chapter presents the step format for describing systems and their speci�cations.

Since systems and speci�cations share the same syntax for variable and type declarations

and logical expressions, we �rst describe the general syntax for types (Section 2.1) and

expressions (Section 2.2). We then describe the overall style of speci�cations (Section 2.3)

and the syntax for declarations (Section 2.4). Finally, we present the syntax for describing

systems either as SPL programs (Section 2.5) or as transition systems (Section 2.6).

We use extended Backus-Naur form (EBNF) to describe the syntax of step's input. Ter-

minal symbols are written in typefont, non-terminals in italics. Alternatives are separated

by j, optional parts enclosed in [], zero or more occurrences of a construct are indicated by

enclosing in f g, and f g+ is used for one or more occurrences.

Comments can be included in a �le using the % character (indicating a comment until

the end of the line), or using (* and *) for multi-line comments.

2.1 Types

The basic types in step are booleans, integers, rationals, range types, underspeci�ed types,

and datatypes. New compound types can be created using type constructors . The type con-

structors in step, listed below, de�ne types for arrays, channels, and tuples of types in the

usual way. A type can be enclosed in parenthesis to distinguish for instance a tuple of three

elements, e.g., int * rat * bool, from a nested tuple of pairs, (int * rat) * bool.

type ::= id type identi�er

j basety base type

j array [range f, range g] of type array type

j channel of type synchronous channel

j channel [1..] of type unbounded asynchronous channel

13

14 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

j channel [1 .. int-const] of type bounded asynchronous channel

j [range] range type

j type f * typeg+ tuple type

j (type) parenthesized type

range ::= expn .. expn range

basety ::= bool boolean type

j int integer type

j rat rational type

The type constructor � has higher precedence than all other type constructors. Thus,

the type

channel [1..] of bool * int * int

is parsed as

channel [1..] of (bool * int * int).

Note that (bool * int * int), ((bool * int) * int) and (bool * (int * int)) are

three di�erent types.

New underspeci�ed types, datatypes and enumeration types can be declared in speci�-

cation �les; see Section 2.4.1.

2.2 Expressions

Expressions are constructed from constants, identi�ers, function application, array refer-

ences, tuple expressions, binary in�x expressions, pre�x expressions and quanti�cation.

The following well-formedness constraints are imposed:

� The boolean type is treated as a subtype of the integers, where the boolean value

false corresponds to the integer value 0, and true corresponds to 1. Therefore any

expression of boolean type can be used in an integer context. This is referred to

as arithmetization.1 Similarly, the integers (type int) are treated as a subtype of

rationals (type rat).

� The operators /\ (conjunction), \/ (disjunction), --> (implication), <-->, (bi-implication),

!, ~ (negation), and the temporal operators Until, Awaits, Since, Backto, ==>,

<==>, (), [], <>, (-), [-], <-> take boolean arguments, and the resulting ex-

pression is of type boolean.

� The operators +,-,* require integer or rational arguments and produce a value of the

corresponding type. Division / requires arguments of type integer or rational, and

results in a value of type rational. The operators mod and div require arguments of

type integer and result in a value of type integer.

1Users should note that this arithmetization is very convenient, but at times confusing, see Section 2.7.

2.2. EXPRESSIONS 15

� Variables bound by quanti�ers may not be array types.

The full grammar for expressions that can be used in speci�cations is as follows:

expn ::= bool-const boolean value, true or false

j int-const integer value

j id identi�er

j id { index f , index g } disjunction of locations

id can be an array identi�er

j id(expns) function application

j expr[expns] array reference

j (expn) parenthesized expression

j (expn,expns) a tuple of expressions

j # int-const expn int-const 'th projection of tuple

j expn in�x expn in�x operator

j pre�x expn unary pre�x operator

j if expn then expn else expn if then else

j bind bv . expn binding

j expn0 primed expression

expns ::= expn j expn , expns

bv ::= id globally or locally declared

j id : type [kind] bound variable

index ::= int-const j int-const .. int-const indexing locations

in�x ::= /\ j \/ j --> j <--> binary boolean operators

j Until j Awaits j Since j Backto binary temporal operators

j ==> j <==> entailment and congruence

j + j * j - j / j mod j div arithmetical operators

j = j != j < j > j >= j <= predicate operators

pre�x ::= ! j ~ negation

j - minus

j () j [] j <> future operators

j (-) j [-] j <-> past operators

j append j head j tail j length channel operations

j assign array update

bind ::= Forall j Exists j Exists! j Sum j Prod binding operators

kind ::= Rigid j Flexible
exibility of variable

bool-const ::= true | false

int-const ::= digit f digit g

16 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

id ::= alpha f alpha | digit | g
alpha ::= upper or lower case letter

digit ::= number between 0 and 9

location disjunction: As an abbreviated notation for the disjunction of consecutive loca-

tions, the speci�cation may contain expressions of the form

l{1..5,7,9..11}[i]

which is shorthand for

l1[i] \/ l2[i] \/ l3[i] \/ l4[i] \/ l5[i]

\/ l7[i] \/ l9[i] \/ l10[i] \/ l11[i]

channel operations are described separately in Section 2.4.5.

array assignment: Arrays are multidimensional tables. Individual table entries can be

updated by the built-in function assign.

Example: The expression entered below:

in N, M : int where N > 0 /\ M > 0

local A : array [1..N, 1 ..M] of int

assign(A,5,1,1)

is identical to the array A, except for position [1,1], where it has been updated

to the value 5.

The simpli�er uses the following simpli�cation rule automatically (so it really

does not have to be declared):

variable a,x : [1..N]

variable b,y : [1..M]

variable e : int

SIMPLIFY : (assign(A,e,a,b))[x,y] --->

if a = x /\ b = y then e else A[x,y]

See section 2.4.4 for how to declare your own simpli�cation rules.

tuple projection: The i'th element of a tuple t can be accessed as:

i t

Tuple indices are counted from 1, i.e., the �rst element in a tuple has index 1.

2.3. SPECIFICATION FILES 17

Symbols Associativity

of left

array left

bind bv . nonassoc

then nonassoc

else nonassoc

<-->, <==> right

-->, ==> right

\/ right

/\ right

Until Awaits Since Backto right

() [] <> (-) <-> [-] nonassoc

= < > >= <= != left

~ ! nonassoc

mod div left

binary -, + left

/ * left

unary - right

id head tail append length assign left

Table 2.1: Operator precedences from lowest to highest

binding: The binding operators Forall, Exists, and Exists! correspond to 8, 9 and 9!

(unique existence) respectively. They bind the variables in their scope, so for instance

in

Forall x : int . p(x)

the variable x is bound by the quanti�er Forall. The binding operators Sum and Prod

correspond to the arithmetic operators � and � and bind variables similarly.

As the syntax indicates, the type �eld of the bound variables is optional. If no type is

given, where the variable is bound, the variable must have been declared before using

a variable declaration.

priming: The primed verision of a
exible variable refers to its value at the next state. The

parser accepts primed expressions, and automatically distributes the prime inwards

to all its
exible variables. Double priming is not supported and results in a parser

error.

The precedence of the various operators is given in Table 2.1.

2.3 Speci�cation Files

A speci�cation �le usually contains three parts: declarations, axioms and properties.

1. The declarations de�ne new types, values, macros, rewrite rules, and auxiliary vari-

ables.

18 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

2. The axioms de�ne properties that may be assumed by step in a veri�cation session.

Each axiom becomes a background property, and may be activated or deactivated

from the Top-level Prover.

3. The properties are those formulas you want to prove true for a program or system, or

are state-valid in general. These become top-level goals in the Top-level Prover.

The format of the speci�cation �le is described by the following grammar:

speci�cation ::= f declaration g expn

j SPEC fdeclaration j axiom j propertyg

axiom ::= AXIOM desc : expn named axiom

property ::= PROPERTY desc : expn named property speci�cation

The nonterminal desc is an informal description of the corresponding axiom or property,

and can be any sequence of characters except colon (:).

Note that step does not guarantee the consistency of the given set of axioms, so the

speci�cation of axioms should be done with caution.

A speci�cation �le may contain a single formula, which by default becomes the property

to be proven, or may contain multiple axioms and properties. In addition, the speci�cation

�le may contain declarations of macros, values, and auxiliary variables. An example of a

�le with multiple axioms and properties is shown in Figure 2.1.

SPEC (* Greatest common divisor spec file *)

value COMMUTATIVE gcd : int*int --> int

AXIOM gcd1: []Forall m,n:int . (m != n --> gcd(m,n) = gcd(m-n,n))

AXIOM gcd2: []Forall m:int . (m > 0 --> gcd(m,m) = m)

AXIOM gcd3: []Forall m:int . (m < 0 --> gcd(m,m) = -m)

PROPERTY aux1: [](y1 > 0)

PROPERTY aux2: [](y2 > 0)

PROPERTY aux3: [](gcd(y1,y2) = gcd(a,b))

PROPERTY partial correctness: l8 ==> g = gcd(a,b)

Figure 2.1: Speci�cation �le with multiple axioms and properties

2.4 Declarations

Declarations can be in one of the following forms, which we describe below:

2.4. DECLARATIONS 19

declaration ::= type-decl j datatype-decl declaration of types

j value-decl j macro-decl declaration of constructs

j aux-var-decl j system-var-decl declaration of variables

j simplify j rewrite j order rewrite rules

2.4.1 Type Declarations

Type declarations are used to de�ne abbreviations for compound types, new underspeci�ed

types, and new datatypes .

Type abbreviations are declared as type id = type, where type is a type expression (see

Section 2.1). Omitting = and the type expression declares id as a new, underspeci�ed type:

type-decl ::= type id = type type declaration

j type id = { ids } enumeration type

j type id underspeci�ed type identi�er

Datatype Declarations ?

Datatypes are declared using == instead of a single =, with the following syntax:

datatype-decl ::= type id == constructors

f and id == constructors g datatype declaration

constructors ::= constructor f j constructor g
constructor ::= id [:: deconstructors] constructor id and �elds

deconstructors ::= id : type f , id : type g datatype deconstructors

The enumeration type declaration

type id = fid1, : : :, idng

is shorthand for the datatype declaration

type id == id1 j : : : j idn.

Example: A tree datatype can be de�ned recursively with a forest datatype as follows:

type ident

type tree == Node :: id: ident, children: forest

and forest == Nil

| Cons :: first: tree, next: forest

The type ident is de�ned as a new underspeci�ed type. A forest is a set of trees

represented as a list|either Nil or the Cons of a tree and a forest. A tree itself is a

Node containing an id and a set of children, represented as a forest.

The above datatype de�nition implicitly declares the following function symbols:

20 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

value Node: ident * forest --> tree

value id: tree -> ident

value children: tree -> forest

value Nil: forest

value Cons: tree * forest --> forest

value first: forest --> tree

value next: forest --> forest

The constructors (Node, Nil, Cons) are used to create new elements of the correspond-

ing type, while the deconstructors (id, children, first, next) are used to access the

di�erent components of the datatypes.

For the deconstructors, the following simpli�cation rules, explained in Section 2.4.4,

are automatically inferred, and do not have to be declared:

variable i: ident

variable ch,n: forest

variable t: tree

SIMPLIFY : id(Node(i,ch)) ---> i

SIMPLIFY : children(Node(i,ch)) ---> ch

SIMPLIFY : first(Cons(t,n)) ---> t

SIMPLIFY : next(Cons(t,n)) ---> n

These rules are used automatically by the simpli�cation procedures. Note that no

simpli�cation rules are given for first(Nil) and next(Nil) although these expressions

are well typed. Their interpretation is left underspeci�ed , but they are not erroneous.

For the constructors, axioms asserting injectivity are also asserted automatically and

used by the simpli�er, so they don't have to be declared:

Forall t:tree . Forall f:forest . Nil != Cons(t,f)

Forall i,j:ident . Forall c1,c2:forest .

Node(i,c1) = Node(j,c2) --> i = j /\ c1 = c2

Forall t1,t2:tree . Forall sib1,sib2:forest .

Cons(t1,sib1) = Cons(t2,sib2) --> t1 = t2 /\ sib1 = sib2

The complete axiomatization of datatypes also includes well-founded induction schemas

(see [Manna and Waldinger, 1993].) These are not automatically provided in the current

release of step, so the user may have to provide suitable instances.

2.4.2 Value and Macro Declarations

Program and speci�cation �les may contain value and macro declarations. Their syntax is

given by the following grammar:

value-decl ::= value [ac] ids : [type -->] type value declaration

macro-decl ::= macro id : [type -->] type macro declaration

where id [(ids)] = expn

2.4. DECLARATIONS 21

ac ::= AC j COMMUTATIVE j ASSOCIATIVE
ids ::= id f, id g identi�er list

Uninterpreted function symbols are declared as values. Binary function symbols can

have additional attributes used by the Simpli�er: the keyword AC states that the function is

both associative and commutative; COMMUTATIVE and ASSOCIATIVE state that the function is

only commutative or associative, respectively. For example, in Figure 2.1 the gcd function

was de�ned to be commutative. Thus the simpli�er assumes that Forall a,b: int .

gcd(a,b) = gcd(b,a) besides the other axioms.

Macros, which may take optional arguments, are declared with the keyword macro. A

where clause de�nes the expression corresponding to the macro. Each macro takes a �xed

number of arguments and is expanded by the parser through purely syntactic substitution.

A macro de�nition can use other previously de�ned macros, which will be expanded in turn.

Example: Figure 2.2 shows an example of value and macro declarations as they may

appear in a program or a speci�cation �le. The value declarations de�ne the integer

constant c and function symbol f , which takes a pair of arguments of boolean type

and returns an integer. The macro declarations indicate that the symbol m should be

expanded to the expression c < c + 1, and the symbol g with integer arguments (i; j)

should be expanded into i+ i+ j + 5.

value c:int

value f:bool * bool --> int

macro m:bool where m = c < c+1

macro g:int * int --> int where g(i,j) = i+i+j+5

Figure 2.2: Value and macro de�nitions

Example: Figure 2.3 shows a speci�cation �le to prove 1-bounded overtaking for program

mux-pet1 (Figure 3.4). The proof by rule G-WAIT requires the input of four auxiliary

assertions. Having de�ned these assertions in the speci�cation �le allows the user to

enter them by name, phi0, phi1, phi2 or phi3, in the dialog window, reducing the

chance of typing errors and saving time if the proof needs to be repeated multiple times.

2.4.3 Variable Declarations

aux-var-decl ::= variable ids : type [kind] auxiliary variable declaration

kind ::= Rigid j Flexible

system-var-decl ::= mode ids : type [where expn] system variable declaration

j clock ids [where expn] system clock

mode ::= in j out j local

ids ::= id f, id g list of identi�ers

22 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

% 1-bounded overtaking for mux-pet1

%

% for proof by rule G-WAIT use the following intermediate assertions:

%

% phi0: l4

% phi1: l3 /\ ((m0\/m1\/m2\/m5) \/ (m3 /\ !(s=1)))

% phi2: l3 /\ m4

% phi3: l3 /\ m3 /\ s=1

SPEC

macro phi0: bool where phi0 = l4

macro phi1: bool where phi1 = l3 /\ (mf0..2,5g \/ (m3 /\ !(s=1)))

macro phi2: bool where phi2 = l3 /\ m4

macro phi3: bool where phi3 = l3 /\ m3 /\ s=1

PROPERTY 1-bounded overtaking:

l3 ==> ((!m4) Awaits ((m4) Awaits ((!m4) Awaits l4)))

Figure 2.3: Speci�cation �le for proving mux-pet1 1-bounded overtaking

Auxiliary variables are declared with the keyword variable. Auxiliary variables can

only be declared in the speci�cation �le, or in a directly entered goal, and are not part of

the system being veri�ed. Each auxiliary variable can be optionally declared to be Rigid

(its value does not change over time) or Flexible (its value may change from one point

in time to another). By default, auxiliary variables are rigid. Auxiliary variables are often

used as part of macros and rewrite rules.

For convenience, a speci�cation may also include declarations for system variables; these

are further described in Section 2.5.

Example: The declarations

variable x,y,z : int

variable a,b,c : bool Flexible

variable i : [1..N]

declare the rigid integer-type variables x, y and z, the
exible boolean variables a, b

and c, and the rigid variable i of type range [1..N].

Previously declared auxiliary variables can be used in quanti�cation, so the type of the

quanti�ed variable type does not have to be declared within the quanti�er (see Section 2.2).

2.4.4 Rewrite and Simpli�cation Rules ?

Speci�cations can also include simpli�cation and rewrite rules to e�ciently build in equa-

tional axioms, as well as ordering relations to control automatic rewriting.

2.4. DECLARATIONS 23

User-de�ned rewrite rules can be speci�ed in one of two ways: rewrite rules declared with

the REWRITE keyword are applied under the user's control , step-by-step, in the Interactive

Prover. Simpli�cation rules , declared with the SIMPLIFY keyword, are applied automatically

and exhaustively whenever the Simpli�er is invoked from either the Top-level Prover or

the Interactive Prover. Thus, the set of user-de�ned simpli�cation rules is expected to

terminate, while the set of rewrite rules, under user control, does not have to be terminating.

An ordering relation, given by the ORDER keyword, speci�es a linear order over uninter-

preted function symbols, as a list. This order is used when converting equalities into rewrite

rules during simpli�cation; roughly speaking, if t1 = t2 or t2 = t1 is an equality encountered

in contextual simpli�cation, t1 will be rewritten to t2 if t1 is built from a function symbol

that appears earlier in the order.2

The syntax for simpli�cation and rewrite rules is given by the following grammar:

rewrite ::= REWRITE desc : expn ---> expn rewrite rule

simplify ::= SIMPLIFY desc : expn ---> expn simpli�cation rule

order ::= ORDER ids

The nonterminal desc can be any sequence of characters except colon (:), and is used as

an informal description of the simpli�cation or rewrite rule. The auxiliary variables free

in the expression to the left of ---> should be a superset of the free variables of the right

hand side expression. In connection with rewrite and simplifcation rules, system variables

are treated as constants (constructors).

Example:

Figure 2.4 shows an example of two rewrite rules. The rule Peano 1, rewrites 6 + 0 to

6, and the rule ad hoc rewrites, f(4 + 2) to if y then 4+2 else -(4+2).

variable x:int

local y:bool

value f:int --> int

REWRITE Peano 1: x + 0 ---> x

REWRITE ad hoc: f(x) ---> if y then x else -x

Figure 2.4: Rewrite rules in a speci�cation �le

As with axiomatizations, the user is responsible for the consistency of the set of rewrite

and simpli�cation rules. The reader interested in learning more about rewrite rules and their

applications should consult, for example, [Dershowitz and Jouannaud, 1990]. An example

of simpli�cation rules appears in Section 2.4.1.

2The Simpli�er uses the recursive path ordering on terms to orient equalities, see [Dershowitz and Jouan-

naud, 1990].

24 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

2.4.5 Channel Operations ?

Asynchronous channels are modeled as queues, i.e., new elements are appended to the tail

of the queue, and elements are extracted from the head.

The basic operations on channels, head, tail, append, and length are best described

in the speci�cation �le that users should provide when they want to establish properties of

channels. That is, step does not include the partial axiomatization given below; instead,

speci�cations should provide separate axiomatizations for each type of asynchronous channel

used.

%% Sample channel specification

SPEC

type t

type chan : channel [1..] of t

local ch : chan

value pick : chan * int --> t

variable x : t

AXIOM : [] Forall i : int .

pick(append(ch,x),i) =

if i-1 = length(ch) then x else pick(ch,i)

AXIOM : [] Forall i : int . pick(tail(ch),i) = pick(ch,i+1)

SIMPLIFY : head(ch) ---> pick(ch,1)

SIMPLIFY : length(append(ch,x)) ---> 1 + length(ch)

SIMPLIFY : length(tail(ch)) --->

if length(ch) = 0 then 0 else (length(ch)) - 1

Hence the operation head extracts the �rst element from the bu�er, tail returns the bu�er

excluding its �rst element, append inserts a new element to the end of the bu�er, and

length measures the number of elements residing in the bu�er. The auxiliary function

pick, axiomatized in the speci�cation, provides us with a formal de�nition of the head,

tail, and append operations. We notice that taking head of an empty bu�er only simpli�es

to some expression involving pick and its value is therefore underspeci�ed.

2.5 SPL Programs

The syntax of SPL programs follows that of traditional imperative languages such as Pascal.

In addition to the basic constructs found in these languages, SPL supports nondeterminism

by means of the selection statement or and parallel composition by means of the cooperation

statement ||. Parallel processes can interact through shared variables such as semaphores,

as well as by synchronous and asynchronous channels. Execution of parallel processes

is assumed to proceed by interleaving (see Appendix A for a complete account of SPL

semantics).

2.5. SPL PROGRAMS 25

in N : int where N >= 2

local f : array [1..N] of int where Forall i:[1..N] . (f[i] = 1)

local r : int where r = N - 1

|| P[i:[1..N]] ::

l0: loop forever do [

l1 : noncritical;

l2 : request r;

l3 : request f[i];

l4 : request f[(i mod N) + 1];

l5 : critical;

l6 : release f[i];

l7 : release f[(i mod N) + 1];

l8 : release r

]

Figure 2.5: Program dine (dining philosophers)

Program variables

As in most imperative languages, program variables must be declared prior to their use, in

the appropriate scope. SPL provides an additional mode associated with the declaration

of program variables. A variable declared as in is an input to the program; it may not be

modi�ed by any of the program statements, and is assumed to have a �xed value throughout

the program execution. Variables declared as local or outmay be changed by the program.

Variables may be initialized or constrained with an optional where clause. The given

condition is assumed to hold only at the start of the program, not each time the program

enters the block where the variable is declared.

Parameterized programs

SPL allows you to write parameterized (N -process) programs, in which an arbitrary number

of identical processes are declared. Both parameterized composition and parameterized

selection are supported.

Example:

Figure 2.5 shows a deadlock-free solution to the N -process Dining Philosophers prob-

lem. The program contains N instances of the in�nite loop l0-l8, each with its unique

value of i.

Grouped statements

A grouped statement is a set of statements enclosed by << and >>. A grouped statement

is translated into a single transition, that is, one atomically executable unit. Grouped

26 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

statements may only contain basic statements, and may only be combined into composite

statements by selection and concatenation. A grouped statement may contain at most one

send or receive statement on the same channel.

Example: To request resources r and s simultaneously one can enter

<< request r; request s >>

which can also be encoded as

guard r > 0 /\ s > 0 do (r,s) := (r-1,s-1)

Program statements

The following grammar provides the syntax of SPL programs:

program ::= f decl g composite stmt [; label]

composite stmt ::= composite stmt ; composite stmt concatenation

j composite stmt || composite stmt cooperation statement

j composite stmt or composite stmt selection statement

j [label] stmt

stmt ::= basic group stmt

j request variable request statement

j release variable release statement

j noncritical noncritical statement

j critical critical statement

j choose variable choose

j produce variable produce statement

j consume variable consume statement

j guard p expn do assignment guarded assignment

j if p expn then composite stmt 1-way conditional

j if p expn then composite stmt 2-way conditional

else composite stmt

j when p expn do composite stmt when statement

j while p expn do composite stmt while statement

j repeat composite stmt until p expn repeat statement

j loop forever do composite stmt in�nite loop

j [id ::] [program] block statement

j << comp group stmt >> grouped statement

j or binding composite stmt parameterized selection

j || binding composite stmt parameterized cooperation

comp group stmt ::= basic group stmt

j if p expn then comp group stmt 1-way conditional

2.5. SPL PROGRAMS 27

j if p expn then comp group stmt 2-way conditional

else comp group stmt

j when p expn do comp group stmt when statement

j comp group stmt or comp group stmt selection statement

j comp group stmt ; comp group stmt concatenation

basic group stmt ::= skip skip statement

j assignment

j await p expn await statement

j variable <== p expn send statement

j variable ==> variable receive statement

assignment ::= left-val := p expn

left-val ::= p expn assignable value

variable ::= id variable

j id [p expns] array variable

binding ::= id [params] :: named binding

j params . unnamed binding

params ::= param f, paramg list of parameters

param ::= id : [range] parameter

label ::= id : label

ids ::= id f , id g list of identi�ers

decl ::= type-decl j datatype-decl SPL declaration

j value-decl j macro-decl
j system-var-decl

system-var-decl ::= mode ids : type [where expn] basic variable declaration

mode ::= in j out j local mode of variable

Assignable expressions are built from system variables declared as local or out, and ar-

ray references to local or out arrays. Composite assignable expressions are obtained by

collecting simpler assignable expressions into tuples.

Example: An example of a composite assignment swaps the values of x and y as follows:

(x,y) := (y,x)

28 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

Expressions

The expressions allowed in SPL programs are a subset of the expressions allowed in speci-

�cations. In particular, the following are not allowed in SPL programs:

� primed variables

� Prod and Sum

� temporal operators

� location expressions

Furthermore, when binding variables by quanti�ers inside an SPL program, their types must

always be declared locally, and the optional kind is not allowed (they are always Rigid).

The syntax of SPL expressions is then as follows:

p expn ::= bool-const boolean value, true or false

j int-const integer value

j id identi�er

j id(p expns) function application

j expr[p expns] array reference

j (p expn) parenthesized expression

j (p expn,p expns) a tuple of expressions

j # int-const p expn int-const 'th projection of tuple

j p expn in�x p expn in�x operator

j pre�x p expn unary pre�x operator

j if p expn then p expn else p expn if then else

j bind id : type . p expn binding

p expns ::= p expn j p expn , p expns

in�x ::= /\ j \/ j --> j <--> binary boolean operators

j + j * j - j / j mod j div arithmetical operators

j = j != j < j > j >= j <= j <> predicate operators

pre�x ::= ! j ~ j - negation and minus

j append j head j tail j length channel operations

j assign array update

bind ::= Forall j Exists j Exists! binding operators

bool-const ::= true | false

int-const ::= digit f digit g

id ::= alpha f alpha j digit j g

2.6. TRANSITION SYSTEMS 29

2.6 Transition Systems

Transition systems are the basic system representation in step. SPL programs are parsed

into fair transition systems; an alternative to SPL is to describe transition systems di-

rectly. Appendix A includes the basic de�nitions of transition systems. For a more leisurely

introduction, see [Manna and Pnueli, 1991].

2.6.1 Fair Transition Systems

A transition system speci�cation contains:

� Declarations of types and free variables.

� An optional initial condition, which is assumed to hold at the initial state of every

computation.

� A set of transitions.

Transitions are expressed in terms of, and are usually equivalent to (see below), tran-

sition relations . A transition relation describes how the system can change from one state

to the next. Strictly speaking, a transition relation can be expressed by a formula over the

set of primed and unprimed system variables; however, for added convenience, transition

relations in step can be speci�ed by a combination of four di�erent �elds. Each �eld is

optional, and step inserts default values for absent ones. The four �elds are the following:

� The modvar �eld: contains a set of variables that are changed when the transition is

taken. To indicate that the transition relation allows a variable to change value non-

deterministically, one can include it in the modvar �eld and not mention it elsewhere.

By default the only variables that are changed by the transition relation are the

ones primed in the modrel �eld and the ones to the left-hand side of assignments in

the assign �eld described below. The modvar �eld does not need to contain those

variables.

� The enable �eld: the enabling condition, a formula that may not contain any primed

variables. The transition can only be taken if the enabling condition is satis�ed. By

default, the enabling condition is true.

� The modrel �eld: contains the modifying relation, an arbitrary relation over primed

and unprimed variables that is assumed to hold when the transition is taken. Its

default value is true.

� The assign �eld: lists the assignments for those variables whose next-state values

can be described as a function of the current-state (unprimed) variables.

An assignment x := t (in the assign �eld) can be equivalently expressed as a conjunct

x' = t in the modifying relation, but assignment relations need not also appear in the

modrel �eld. In fact, it is preferable to only include them in the assign �eld. For example,

rather than having x'=x+1 as a conjunct in the modrel �eld, you should include x:=x+1 in

the assign �eld.

30 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

In general, variables that appear on the left-hand side of an assignment statement should

not appear primed in the modifying relation (there is the risk of unwillingly specifying an

unsatis�able transition relation). Still, there is the possibility that the user will include a

conjunct of the form x'=x+1 in the modrel �eld, or will mention a primed variable that

is also assigned to. The parser will automatically discover these cases and normalize the

transition relation, while printing a warning to the console.

A transition consists of one or more transition relations . This partition allows a more

convenient representation of certain transition relations, e.g., those for the while and

if-then-else SPL constructs.3 A transition is considered enabled if at least one of its

constituent transition relations is enabled. It is considered taken when one of its transition

relations is taken. A transition can be taken only if it is enabled.

Transitions that only di�er with respect to some parameters can be collected in one

parameterized transition. The optional parameters are listed after the transition's name

and declare one transition for each value assignment to the parameters.

A transition contains an optional fairness requirement , which can be Just, Compassionate

or NoFairness. The default fairness requirement is NoFairness.

Example: The transition system in Figure 2.6 implements Euclid's algorithm for com-

puting the greatest common divisor of two positive integers x and y.

Transition System % Euclid's algorithm

in a,b: int where a > 0 /\ b > 0

local x,y: int

out gcd: int

Initially x = a /\ y = b

Transition t1 Just:

enable x > y

assign x := x - y

Transition t2 Just:

enable x < y

assign y := y - x

Transition t3 Just:

enable x = y

assign gcd := x

Figure 2.6: Euclid's algorithm for greatest common divisor

The system illustrates that no control locations need to be associated with the transi-

tions when it is entered directly as a transition system. This contrasts with the tran-

sitions generated from SPL programs. An SPL program corresponding to the above

3The veri�cation rules generate one veri�cation condition for each transition relation, which may be

simpler to manipulate than the veri�cation condition for the entire transition. See Appendix A for the

semantics of while and conditional statements. See [Manna and Pnueli, 1995] for an example where transition

relations are used to simplify veri�cation conditions.

2.6. TRANSITION SYSTEMS 31

transition system is shown in Figure 2.7. It generates the transition system shown in

Figure 2.8.

in a,b: int where a > 0, b > 0

local x,y: int where x = a, y = b

out gcd: int

l0: [loop forever do

[

t1: guard x > y do x := x - y

or

t2: guard x < y do y := y - x

or

t3: guard x = y do gcd := x

]

]

Figure 2.7: SPL program for Euclid's algorithm

Transition System

in a,b: int

local x,y: int

out gcd: int

control pi0 : [0..0]

Initially a > 0 /\ b > 0 /\ x = a /\ y = b /\ pi0 = 0

Transition t1 Just:

enable pi0 = 0 /\ x > y

assign x := x - y

Transition t2 Just:

enable pi0 = 0 /\ x < y

assign y := y - x

Transition t3 Just:

enable pi0 = 0 /\ x = y

assign gcd := x

Figure 2.8: Transition system obtained from the Euclid SPL program (Figure 2.7)

2.6.2 Transition System Syntax

The syntax of transition systems is given by the following grammar:

transition-system ::= Transition System

32 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

f decl g [initial] f transition g+
j Clocked Transition System

f decl g [initial] [progress] f transition g+
decl ::= type-decl j datatype-decl

j value-decl j macro-decl

j system-var-decl

system-var-decl ::= mode ids : type [where expn]

j clock ids [where expn]

mode ::= in j out j local

initial ::= Initially expn

progress ::= Progress expn

transition ::= Transition name [[params]] [fairness] : relation f ; relation g
relation ::= [modvar : ids]

[enable : expn]

[modrel : expn]

[assign : assignment f , assignment g]

name ::= id

params ::= id : type f , id : type g

fairness ::= Justice j Compassionate j NoFairness
assignment ::= left-val := expn

left-val ::= expn

Assignable expressions are built from system variables declared as local, out or clock,

as well as array references to local or out arrays.

2.6.3 Clocked Transition Systems ??

Clocked transition systems [Kesten et al., 1996] can be used to model discrete or continuous

real-time systems, and are partially supported in the educational release of step. Clocked

transition systems di�er from fair transition systems in the following ways:

� There are designated clock variables T (global time) and tick (time progress measure)

which may not be changed by the standard transitions. Only T may be used in the

standard transitions. Initially T is set to 0. These variables are declared automatically

when a clocked transition system is speci�ed.

� Fairness conditions on transitions are irrelevant, and therefore only the condition

NoFairness is allowed.

� The user can specify a special progress condition. It restricts the amount that time is

allowed to progress between the standard transitions.

The progress condition is written as:

2.7. WHEN PARSING FAILS 33

Progress expn

where expn is assumed to be a �rst-order formula F (clock1; : : : ; clockn; T), with the auxiliary

clocks clock1; : : : ; clockn and the global clock T as free variables. The progress condition

corresponds to a transition of the form:

Transition tick:

modvar tick

enable tick > 0

/\ Forall t : rat .

(0 <= t /\ t <= tick --> F(clock1+t,: : :,clockn+t,T+t))

assign (clock1,: : :,clockn,T) := (clock1+tick,: : :,clockn+tick,T+tick)

which is generated automatically by the parser. It is helpful to think about this transition

as one that allows time to progress from T to T + tick, whenever the progress condition F

is satis�ed for all intermediary values between T and T + tick.

Clock variables are always of type rat.

2.7 When Parsing Fails

It is common for programs and speci�cations to fail to parse on the �rst try. The error

messages generated by the parser typically indicate the line number and character range

where the error was detected, separated by a \:", and provide some extra information about

the o�ending part.

Unfortunately, the error messages are not always as illuminating as we would like. Here

are some hints for when things don't work as expected.

� The di�erent kinds of arrows can be confusing:

<-> is the temporal operator Q (\once");

<--> is double implication

<= is \less than or equals"

--> is normal implication, but

--> is also used in function types

==> is the temporal \entails" relation (p==>q stands for [](p-->q)), but

==> is also used for channel operations in SPL

<==> is a built-in macro, expanded to [](p<-->q)

---> is used to specify rewrite rules

� A period (\.") is expected after quanti�ers.

� Variables declared in the speci�cation �le and quanti�ed variables are rigid by default.

To specify a
exible variable in quanti�cation, just write

Forall x : int Flexible : expn:

Even after parsing a �le, watch out for the following:

34 CHAPTER 2. SYSTEMS AND SPECIFICATIONS

� Arithmetization:

1 <= i <= N is parsed as (1 <= i) <= N, hence as \the truth value of 1 <= i is less

than or equal to N", and not as 1 <= i /\ i <= N.

� Rigid vs.
exible variables (see above).

� Scope of quanti�ers and declarations:

Binding operators have maximal scope. Hence

Forall x : int . p(x) --> q

is parsed as

Forall x : int . (p(x) --> q)

and not as

(Forall x : int . p(x)) --> q

although x is not free in q.

� When in doubt, add parentheses!

Chapter 3

The Top-Level Interface

Starting step brings up the Top-level Prover window (Figure 3.1), a point-and-click X-

windows interface. The Top-level Prover window has the following main components:

1. At the top of the main step window is the main menu, used to load systems and

speci�cations, save proof searches, view systems, select properties to be used in proofs,

online help, and exit step.

2. Under the main menu is the status line. It displays the name of the current sys-

tem �le loaded, if any; the number of un�nished proof trees, the number of open

goals in the current proof tree, the current simpli�er settings, and whether automatic

simpli�cation is ON or OFF.

3. Below the status line is the current goal window, where the current unproven goal or

subgoal is displayed. This window has a scroll bar at the left. Veri�cation rules are

applied to the formula that appears in this window.

4. Below the current goal window is the output window , which displays the results of

applying rules and generating invariants. It will also state when a proof is complete,

and generally leave a record of the system's activities. This window can be reset

with the Clear text window item under the Settings pull-down menu.

5. Under the output window, at the bottom of the top-level prover, is step's mes-

sage/help line. In this window, step indicates what action is being done, which dialog

window is waiting for input, or if an action has terminated successfully or not. It will

also display a brief description of any feature that is being selected. For example, if

Undo is selected, this window will display \Backtrack to parent".

6. At the right side of the top-level window is the action region, a double column of

buttons that invoke veri�cation rules and decision procedures and apply them to the

the current goal.

Besides the (temporal) veri�cation rules, buttons in this column invoke the automatic

Simpli�er or start up the Interactive Prover. The Previous and Next buttons cycle

through the open goals in the current search.

35

36 CHAPTER 3. THE TOP-LEVEL INTERFACE

Figure 3.1: Top-level Prover window

3.1. MENU OPTIONS 37

7. In the lower right-hand corner of the window is a button with the step logo. This

button functions as the interrupt button, and can be used to halt most of the automatic

operations performed by step.

3.1 Menu Options

The File Menu

The File pull-down menu (Figure 3.2) is used to load system description and speci�cation

�les, and to save �nished and un�nished proofs.

Figure 3.2: Top-Level Prover File Menu

Several options in this menu activate the File Browser, a utility that allows you to move

around in the directory hierarchy and select �les.

Activating the File Browser brings up a window with several panels as shown in Fig-

ure 3.3. The name of the window re
ects the function that called it (in the �gure, Load

program). The window under File name shows the current �le selected, and you can

enter the �lename here directly. The two buttons below allow you to display all �les (*),

or only those with the default extension for the current function (*.spl , in this case, since

the default extension for programs is .spl). The left panel below these buttons shows the

�les in the selected directory, and the right panel shows the directory hierarchy. To move

to another directory, click on the directory name in the right panel. To select a �le, click

on the �lename in the left panel. To load or save a �le, click OK after selecting the �le or

entering its name.

38 CHAPTER 3. THE TOP-LEVEL INTERFACE

Figure 3.3: File Browser

If a �le does not parse correctly, a Read Error window will appear with an indication

of the �rst parsing error encountered. The �le can be corrected and read again by clicking

Try same �le again , or the operation canceled with Cancel .

Load program Loads an SPL program from a �le. The default extension for a program

�le is .spl. The program will be parsed into a fair transition system. The program

text is displayed in a separate window (setting the STEP SHOW LOADED environment

variable to OFF disables this|see Appendix E). The program text window may be

deleted at any time by clicking Quit , and redisplayed with the View program text

option below.

Figure 3.4 shows the program window for program mux-pet1. The program window

also displays the correspondence between the program locations and the value of

the internal control location variable. Control locations are explained in detail in

Appendix C.2.

If Load program is selected while another veri�cation session is still in progress, a

con�rmation window will �rst appear. The entire veri�cation session environment is

reset when a new program is loaded, i.e., all background properties and unproven

goals are deleted.

Load transitions The Load transitions option works like Load program, but expects a tran-

sition system �le. The default extension for transition system �les is .trans. The

format for transition systems was given in Section 2.6.

As with programs, the transition system is displayed in a separate window (unless

the STEP SHOW LOADED environment variable is OFF). Loading a new transition system

3.1. MENU OPTIONS 39

Figure 3.4: Program Window for program mux-pet1

40 CHAPTER 3. THE TOP-LEVEL INTERFACE

terminates the current veri�cation session.

Load speci�cation Loads a speci�cation (a list of axioms and properties to be proved)

from a �le. The default extension of a speci�cation �le is .spec. The input format

of speci�cation �les was given in Section 2.3. Each property becomes the root of

a separate proof tree, and the �rst one appears in the current goal window. If a

speci�cation �le is loaded during another goal session, the current proof search is

suspended and the �rst property in the speci�cation �le will become the new current

goal, as the root of a new proof search. The old proof search, however, remains in the

system, and may be returned to later (e.g. with the select search option).

Reset Searches Selecting Reset Searches deletes all pending proof trees and goals, as well

as all background properties. However, the current program or transition system is

retained. Thus, it resets a veri�cation session.

Reset All Terminates a system-veri�cation or theorem-proving session: it removes all cur-

rent proof trees, background properties, and the current system description, if any.

Save search Saves the current proof tree to a �le, in ASCII format, for o�-line inspection.

Note that the current proof tree is necessarily un�nished, i.e., it still has open subgoals.

Once all subgoals are closed the proof tree is removed from the list, and the next proof

tree, if any, becomes the current one. To save the last complete proof, use Save last

proof, described below.

Note: the current version of step does not support reloading this �le to resume the

proof. We plan to add this capability in future releases.

Save goal Saves the current goal to a �le. The �le will contain declarations for all free

variables.

Save properties Saves all background properties to a �le. The background properties

include all properties proven and all invariants generated during the current program

veri�cation session, as well as all axioms asserted by the user.

Save transitions Saves the current transition system to a �le; this is useful to see how

SPL programs are converted to transition systems.

Save last proof Saves the �nished proof of the most recently established goal.

View transitions Displays a separate window containing the current transition system.

It can also be selected when the system description is loaded as an SPL program. The

transition window can be deleted at any time by clicking on the Quit button of this

window.

View program text Displays a separate window with the text of the current SPL pro-

gram, similar to View transitions above.

Quit Terminates the step session, after con�rmation from the user.

3.1. MENU OPTIONS 41

The Properties Menu

The Properties pull-down menu (Figure 3.5) is used to manage the background properties,

move between di�erent proof trees, generate invariants, and enter new goals and axioms

directly.

Figure 3.5: Properties menu

Activate/Deactivate This option displays a window with all the background properties,

i.e., all axioms entered, invariants generated, and properties proven during the current

system veri�cation session. (See for example Figure 3.6, which displays the axioms,

some invariants and a proven property aux1 of the program gcd.) By default all

properties are active, which means that they are used by the Simpli�er. This window

allows you to deactivate properties, or delete them altogether. A property is deac-

tivated by clicking on the switch, and removed by clicking on the skull icon. The

buttons Select All and Deselect All select or deselect all the listed properties.

No window will appear when there are no background properties.

Select goal This menu option allows you to move to another open goal in the current proof

tree. When selected, it displays a window listing all open goals in the current proof

tree (see, for example, Figure 3.7). Each goal has a select button. By clicking on

Select the corresponding goal is made the current one. The Cancel button returns

to the current goal.

Next search Moves to the next proof tree with open subgoals. The previous proof tree is

kept in its current state, and may be returned to later. This option is useful if you

reach a dead-end in a proof and realize you need to prove another property �rst.

42 CHAPTER 3. THE TOP-LEVEL INTERFACE

Figure 3.6: Activate/Deactivate Window

3.1. MENU OPTIONS 43

Figure 3.7: Goal selection window

44 CHAPTER 3. THE TOP-LEVEL INTERFACE

Select search Generalizes Next search above to move to any other proof tree. A window

listing the root nodes of all proof trees is displayed. See Figure 3.8 for an example.

By clicking on the Select button, the corresponding proof tree is made the current

proof tree.

Figure 3.8: Proof tree selection window

No window will appear if there is nothing to select.

Abandon search Deletes the current proof tree and makes the next proof tree in the list,

if any, the current proof tree. A con�rmation window appears before this action is

taken.

The following options generate program invariants. When the invariant generation is done,

the invariants are displayed in the output window and added to the list of background

properties. By default they are active, and thus used in the simpli�cation of goals. They

may be deactivated with the Activate/Deactivate menu option (above). When the invariant

generation is �nished a message will appear in the message window.

Newly generated invariants are simpli�ed using the basic simpli�cation and decision

procedures, independently of previous background properties. Invariant generation and

simpli�cation can be halted by clicking on the interrupt button (the step logo).

Get local invariants Activates the local invariant generator; requires an SPL program.

Get global linear invariants Activates the linear invariant generator; requires an SPL

program or fair transition system.

3.1. MENU OPTIONS 45

Get global polyhedral invariants Activates the polyhedral invariant generator, after

prompting the user for a number of parameters that control the generation method.

See Chapter 7 for details. Polyhedral invariants are generated for SPL programs and

fair transition systems.

Enter axiom Used to enter a property that the system may assume to be true during

the current program veri�cation session, i.e., it is added to the list of background

properties. By default, the new axiom is active, and will thus be used by the Simpli�er.

Note: step does not guarantee the consistency of the set of background axioms, nor

does it require you to prove any of them, so this feature should be used with caution.

Enter new goal Used to enter a new goal to be proven. If the formula parses correctly it

will become the root of a new proof tree, which is made the current proof tree while

the previous one is put on hold.

Check runtime system Generates a set of goals that, if proved valid, ensure that the

transition system will not generate any runtime errors such as division by 0 or array

references out of range.

Weakest precondition This option allows you to calculate weakest precondition for an

arbitrary formula and transition in the current system (see Section 4.3).

The dialog window shown in Figure 3.9 (upper window) will appear; after entering

the transition name and formula, clicking on the OK button will display the weakest

precondition in a separate window (shown in Figure 3.9's lower window). The formula

may be saved to a �le with the Save button.

This function has no e�ect on the proof tree or on the background properties; it serves

a purely informative role. Weakest precondition is also provided as an inference rule,

useful for strengthening invariants, and is described in Section 4.3.

The Tactics Menu

The Tactics pull-down menu is used to run tactics loaded from a �le or entered directly.

Tactics can be run in two modes: batchmode and interactive. Batchmode tactics are applied

without any user interaction; they may not always terminate, but can be interrupted by

clicking on the step icon (the interrupt button).

For interactive tactics, a window appears with the �rst atomic step of the tactic. The

Apply button applies the displayed step, and the next one will appear. In this way, you

can apply tactic steps until the proof is �nished, or at any point interrupt the tactic by

clicking on the Quit button.

Tactics and their syntax are presented in Section 6.3.

Load batch tactic Reads a tactic from a �le using the File Browser and applies it in batch

mode.

Load interactive tactic Reads a tactic from a �le and runs it in interactive mode.

46 CHAPTER 3. THE TOP-LEVEL INTERFACE

Figure 3.9: Weakest Precondition: entry and output window

Enter batch tactic Prompts the user to enter a tactic, which is then parsed and run in

batch mode. Error messages from parsing the tactic are displayed in the bottom of

the input window.

Enter interactive tactic Prompts the user to enter a tactic, which is then parsed and

run in interactive mode.

The Diagrams Menu

The Diagrams pull-down menu is used to start up the Veri�cation Diagram Editor and

use veri�cation diagrams in the current veri�cation session. The Veri�cation Diagram Ed-

itor may be used in parallel with the Top-level Prover, and is described in more detail in

Chapter 5.

Edit diagram Starts the Veri�cation Diagram Editor in a separate window.

Veri�cation Diagram rule Uses the current veri�cation diagram as a veri�cation rule for

the current goal or subgoal. It generates subgoals corresponding to all the veri�cation

conditions implicit in the diagram, if the diagram is applicable. Thus, the veri�cation

diagram can be seen as a specialized veri�cation rule.

A veri�cation diagram is chosen to be the current one by the Current-to-verify menu

option in the Veri�cation Diagram Editor.

3.1. MENU OPTIONS 47

The Logical rules Menu

The Logical rules pull-down menu (Figure 3.10) provides inference rules that simplify tem-

poral properties. Thus, they can be used to derive new properties from previously proven

ones. Unlike veri�cation rules, these rules are independent of the system being veri�ed.

Section 4.4 presents a full description of these rules.

Figure 3.10: Logical Rules menu

The Settings Menu

The Settings pull-down menu (Figure 3.11) controls some of the global step environment

variables, such as automatic simpli�cation of subgoals and the strength of the Simpli�er.

Figure 3.11: Settings menu

Automatic Simpli�cation ON/OFF Sets and resets automatic simpli�cation; see Sec-

tion 4.1.

Simpli�cation Flags Brings up a window used to set the default strength of the Simpli�er.

See Section 6.1 for more details.

48 CHAPTER 3. THE TOP-LEVEL INTERFACE

Reset BDDs Resets the internal BDD package; if the package is used often, this option can

be used sporadically to save memory, at some (usually small) short-term e�ciency loss

(see Section 6.2). This option should also be used if the number of BDD nodes reaches

the maximum given by the STEP BDD NODES environment variable (see Section E).

Clear text window Clears the output window, but has no other e�ect on the system.

System information Prints out miscellaneous statistics (in the output window) for the

current veri�cation session, mostly related to the BDD package (see Section 6.2).

The Help menu

On-line help is available via your favorite WWW browser when clicking on the Help menu

near the right corner of the top-level interface. The hyper-text help pages give an alternative

and often quicker introduction to step's facilities.

3.2 Action Buttons

The right-hand column of the Top-level Prover contains rules to manipulate and construct

the main proof search. The �rst four buttons manipulate the structure of the proof tree:

Undo This button makes the parent of the current subgoal into the current goal. The

previous goal is remembered, to enable a Redo , until another veri�cation rule is

applied to the new goal.

Redo Redoes a previous Undo, that is, restores the part of the proof tree eliminated by

Undo .

Previous Postpones the current goal, and turns the previous subgoal in the subgoal queue

into the current subgoal.

Next Postpones the current subgoal and moves to the next subgoal in the subgoal queue.

The next set of buttons invoke veri�cation rules as described in [Manna and Pnueli, 1995].

These rules are not applicable if there is no current program or transition system.

Veri�cation rules:

B-INV G-INV

B-WAIT G-WAIT

B-CAUS G-CAUS

B-BACKTO G-BACKTO

See Section 4.2 for a description of the main veri�cation rules in their basic and general

versions. Section 4.2 also describes the WPC and Strengthen proof rules.

The remaining buttons in the action region invoke the Interactive Prover and the Sim-

pli�er as proof rules, applied to the current goal:

3.2. ACTION BUTTONS 49

Interactive Invokes the Interactive Prover on the current goal. The Interactive Prover

window will appear with the current goal as the single consequent in the sequent. Once

the Interactive Prover is active, the Top-level Prover is suspended, to be reactivated

when the Interactive Prover session is �nished.

Upon exiting the Interactive Prover you have the option to return the result to the

Top-level Prover. If the goal was proved, then the current goal is closed, and the next

goal in the proof tree, if any, becomes the current goal. If the goal was not proved, a

formula equivalent to the remaining subgoals is returned to the Top-level Prover as a

new subgoal.

The Interactive Prover is described in Chapter 8.

Modelcheck Invokes the Model Checker on the current goal. Before the Model Checker

starts, you can enter additional assumptions to limit the search space. If the goal is

proved without any additional assumptions, the current goal is closed, and the next

goal in the proof tree, if any, becomes the current goal. If the goal is not proved, it

remains unchanged.

If the goal is proved under additional assumptions, it is not added to the set of

background properties.

The Model Checker results are reported in a log�le. See Section 4.5 for a more detailed

description of the modelchecker.

BDD-split , Fast-simplify , Boolean , Simplify These buttons invoke various versions of

the automatic Simpli�er; while BDD-split can generate a set of subgoals, the others

can only reduce the formula to a simpler one. See Section 6.1 for details.

step logo The step logo serves as the interrupt button, and can be used to exit from each

of the following time-consuming operations:

� Simpli�cation of veri�cation conditions

� Generation and simpli�cation of invariants

� Model checking

50 CHAPTER 3. THE TOP-LEVEL INTERFACE

Chapter 4

Veri�cation and Logical Rules

The main function of the Top-level Prover is to apply veri�cation rules to temporal proper-

ties, reducing them to simpler veri�cation conditions. These veri�cation conditions become

subgoals in the top-level proof tree. The veri�cation rules depend on the system being

veri�ed. In contrast, a set of logical rules reduces temporal properties independent of the

system being veri�ed.

This chapter describes the general structure of the proof search and the rules used to

construct it in the Top-level Prover.

4.1 The Proof Search

The structure of the proof search is similar in the Top-level Prover and the Interactive

Prover: the proof is a tree, with the original goal as its root node. Nodes are labeled

with subgoals, called veri�cation conditions in the Top-level Prover and sequents in the

Interactive Prover, and the application of di�erent rules generates new subgoals (or children

nodes) for the current node.

Since more than one proof rule can be applied at each node, the process is a search.

The proof is �nished when there are no subgoals left; the number of subgoals is reduced

whenever a simpli�cation step reduces a subgoal to true, which is the only formula that

requires no proof.

In the Top-level Prover, the rules applied are temporal veri�cation rules, logical rules,

or simpli�cation steps. In addition, rules that can strengthen a veri�cation condition are

available, such as weakest precondition. Finally, goals in the Top-level Prover can also be

closed by sessions of the Interactive Prover.

The Background Properties:

Background properties include axioms, automatically generated invariants, and previously

established properties. When a top-level proof is completed, the property is added to the

list of background properties.

In the Top-level Prover, simpli�cation is carried out relative to the properties and axioms

that are active at the time (except for the Fast-simplify option, discussed in Section 6.1).

51

52 CHAPTER 4. VERIFICATION AND LOGICAL RULES

In the Interactive Prover, these background properties have to be explicitly added by the

user to the current sequent before the simpli�cation rule is called.

Navigating the Proof Tree:

The options Postpone (in the Interactive Prover), Previous , Next (in the Top-level

Prover), and Select goal (in both provers) can be used to jump from one open node to

another. The Undo and Redo buttons alternate between a given node and its children.

In the Top-level Prover, any number of proof searches can be conducted simultaneously,

sharing the same set of background properties. The Next search button can be used to

jump from one proof search to the next.

Automatic Simpli�cation

A veri�cation rule can generate a large number of veri�cation conditions, depending on

the size of the underlying transition system. After having applied a veri�cation rule a

message in the message window will display how many subgoals were generated. If automatic

simpli�cation is OFFthe �rst subgoal will be displayed in the speci�cation window. All the

generated subgoals can be viewed by selecting the Select goal option of the Properties pull-

down menu.

If automatic simpli�cation is ON, the Simpli�er will be applied to each subgoal. Only

those subgoals that fail to simplify to true will remain. Simpli�cations steps which fail to

simplify to true will be undone to enable subsequent application of rules such as Strengthen

and WPC ; these are only applicable to unsimpli�ed veri�cation conditions, since they

require knowing the particular transition that generates the veri�cation condition.

When automatic simpli�cation is OFF, a veri�cation rule only generates subgoals, but

does not simplify them. These then have to be manually simpli�ed by successive clicks on

Simplify , or with the Interactive Prover. If you unintentionally invoke a veri�cation rule

with automatic simpli�cation OFF, you can click on Undo, turn automatic simpli�cation ON,

and apply the rule again.

4.2 Veri�cation Rules

This section describes the veri�cation rules available in step. In the following description,

� refers to the initial condition of the current program or transition system, and T refers

to its set of transitions (see Appendix A). For a formula p, p0 is the initial version of p,

that is, the �rst-order formula equivalent to p at the initial state of the computation.

As usual, the notation fpg�fqg, stands for the veri�cation condition (p^ ��)) q0. The

inverse veri�cation condition, fpg��1fqg, is equivalent to f:qg�f:pg, giving an alternate

presentation of veri�cation conditions. Below, we try to use the most convenient one in

each case. The notation fpgT fqg stands for the set of veri�cation conditions fpg�fqg for

each transition � in the system; similarly, fpgT �1fqg is the set fpg��1fqg for each � .

Veri�cation conditions of the form �) � are replaced by � ! � when � and � are

assertions , that is, state-formulas with no temporal operators. In this case, the P -validity

4.2. VERIFICATION RULES 53

of � ! � implies that of �) �. If this P -validity cannot be established, the invariant

�) � may be proved separately, for an incremental proof.

� B-INV Applies the basic invariance rule to the current subgoal, which has to be of

the form 0 p, for a past formula p. This rule generates the following subgoals:

p) p Monotonicity

�! p0 Initial condition

fpg�fpg; for each � 2 T

The monotonicity subgoal is generated because this rule is based on rule G-INV,

below; this goal always trivially simpli�es to true .

� G-INV Applies the general invariance rule to the current subgoal. The current goal

has to be of the form 0 q, with q a past formula. After clicking, a dialog window will

appear that allows you to enter a strengthened version p of q. The default is q. After

entering the auxiliary assertion p, the following subgoals are generated:

p) q Monotonicity

�! p0 Initial condition

fpg�fpg for each � 2 T

� B-WAIT Applies the basic nested wait-for rule. This rule is applicable only if the

current goal is a nested wait-for formula, that is, it is of the form

p) qn W qn�1 W qn�2 : : : q1W q0;

where p; qn; : : : q0 are past formulas. Informally, the nested wait-for formula asserts

that whenever p becomes true, when there is a, possibly empty, interval where qn
holds, followed by a qn�1 interval, up to q0 becomes true, unless one of the previous

q's remains true in�nitely after. After clicking on this button the following subgoals

are generated:

p)
Wn
i=0 qi Premise N1

qi) qi Monotonicity i, for each i = 0 : : :n

fqigT f
W
j�i qjg for each i = 1 : : :n

The monotonicity conditions are generated because the implementation of B-WAIT

is based on that of G-WAIT, below. They always trivially simplify to true .

� G-WAIT This button invokes the general nested wait-for rule. This rule is applicable

only if the current goal is a nested wait-for formula, that is, it is of the form

p) qn W qn�1 W qn�2 : : : q1W q0;

where p; qn; : : : q0 are past formulas. A dialog window will appear which allows you to

enter the auxiliary assertions 'n; : : : ; '0. Their defaults are qn; : : : ; q0, respectively.

After entering these assertions the following subgoals are generated:

p)
Wn
i=0 'i Premise N1

'i) qi Monotonicity i, for each i = 0 : : :n

f'igT f
W
j�i 'jg for each i = 1 : : :n

54 CHAPTER 4. VERIFICATION AND LOGICAL RULES

� B-CAUS The basic causality rule is a specialization of the basic invariance rule. It

is applicable to goals of the form

p) Q q;

where p and q are past formulas. It usually generates simpler veri�cation conditions

than its counterpart B-INV, which is also applicable to goals of this form, by taking

into account the special form of the goal.

This rule generates the following subgoals:

p) p _ q Monotonicity

�! :(p)0 _ (q)0 Initial condition

fpgT �1fp _ qg

� G-CAUS The general causality rule specializes the general invariance rule. It is

applicable to goals of the form

p) Q q;

where p and q are past formulas. It usually generates simpler veri�cation conditions

than its counterpart G-INV, which is also applicable to goals of this form, by taking

into account the special form of the formula to be proved.

After clicking on this button a dialog window will appear, which allows you to enter

an intermediate formula ' (default q). After ' is entered, the following subgoals are

generated:
p) ' _ q Monotonicity

�! :(')0 _ (q)0 Initial condition

f'gT �1f'_ qg

� B-BACKTO The basic back-to rule establishes properties of the form

p) qn B : : : B q0

for past formulas p; qn; : : : ; q0. It generates the following subgoals:

p)
Wn
i=0 qi Premise N1

qi) qi Monotonicity for each i in 1 : : :n

fqigT
�1f

W
j�i qjg for each i in 1 : : :n

� G-BACKTO The general back-to rule generalizes the above by allowing strengthen-

ing of the qi's and weakening of p. To prove

p) qn B : : : B q0;

given formulas '0; : : : ; 'n, the following subgoals are generated:

p)
Wn
i=0 'i Premise N1

'i) qi Monotonicity for each i in 1 : : :n

f'igT
�1f

W
j�i 'jg for each i in 1 : : :n

4.3. WPC AND STRENGTHENING 55

4.3 WPC and Strengthening

A basic and often successful heuristic for constructing inductive invariance properties is

based on weakest preconditions .

� WPC The weakest precondition veri�cation rule can be used to prove a veri�cation

condition that does not itself simplify to true. The rule is applicable to subgoals of

the form

f'g�f g

and when applied it generates the subgoal

Weakest Precondition 0 (�� ! 0)

which implies the original veri�cation condition.

The symbol �� refers to the transition relation, and is the logical form of the transition

� . The formula 0 is the primed version of , in which each system variable occurring

free in has been replaced by its primed version. Appendix A describes transitions

and transition relations in more detail.

� Strengthen The strengthening rule can be used to strengthen a property that is not

inductive. The rule is applicable to subgoals of the form

f'g�f g

and when applied it generates the subgoal

0 (' ^ (�� ! 0)):

while deleting the original veri�cation condition and its siblings from the proof tree.

4.4 Logical Rules

The Logical rules pull-down menu provides inference rules that allow the derivation of new

properties from previously proven properties.

If the current formula does not match the kind of formula that the given rule applies

to, a message will appear in the bottom help window, and the given function will have no

e�ect.

MON-I The monotonicity rule for invariances can be used to prove a property of the form

0 p, where p is a state formula. If the current goal is 0 p, the following subgoal is

generated: ^
i

'i ! p

where 'i ranges over all the currently active in the background properties.

56 CHAPTER 4. VERIFICATION AND LOGICAL RULES

TRN-C The transitivity of causality rule proves a causality property from two other causal-

ity properties. If the current goal has the form p) Q r, this option displays a dialog

window for entering an auxiliary assertion. After a new assertion q is entered (default

is r), the following two subgoals are generated:

p) Q q Left Transitivity

q) Q r Right Transitivity

MON-C Themonotonicity rule for causality can prove a causality property from a stronger

causality property. If the current goal has the form p) Q u, for past formulas p and

u, this option generates a dialog window for entering two auxiliary assertions. After

entering the two assertions q and r (defaults are p and u) the following three subgoals

are generated:
p) q Monotonicity 1

q) Q r Causality

r) u Monotonicity 2

MON-W The monotonicity rule for wait-for formulas can be used to prove a wait-for

formula from a stronger wait-for formula. If the current goal has the form p)

qnW : : :Wq0, a dialog window will appear for entering n+2 auxiliary assertions. The

default assertions are p, qn,: : :, q0. After entering these assertions, pnew ; qn;new ; : : : q0;new

and clicking the OK button, the following n+ 3 subgoals are generated:

p) pnew Monotonicity

qn;new) qn Monotonicity n
...

q0;new) q0 Monotonicity 0

and

pnew) qn;newW : : :Wq0;new

CONT The contradiction rule can be used to prove a general safety property by converting

it into a causality formula.

If the current goal is of the form 0 :p, for past formula p, the following subgoal will

be generated:

p) Q false Contradiction

4.5 The Model Checker

Model checking determines if a given temporal formula holds for a given system by a sys-

tematic exploration of the state-space of the system. step includes a model checker for

transition systems and formulas of linear-time temporal logic, which can be used to close

subgoals or produce counterexamples to particular properties.

The step model checker checks the current goal under an optional additional �rst-order

assumption. If the goal is found to be false, a counterexample is reported.

4.5. THE MODEL CHECKER 57

When the Modelcheck proof rule is invoked, a dialog window appears requesting the

input of an auxiliary �rst-order assumption, by default true . You may enter restrictions

on parameters or system variables with in�nite domains, in order to make the program

�nite-state. For example, for the program mpx-sem you may enter M=2, indicating that the

number of processes you want to consider is two.

The goal is closed only if the Model Checker proves it with assumption true .

The Model Checker Preprocessor

The Model Checker �rst applies a preprocessor to the given system and the goal. If possi-

ble, a �nite number of problem instances with constant-size arrays and constant-bounded

parameters equivalent to the original goal is produced. If this is not possible, the Model

Checker terminates, control returns to the Top-level Prover and a message is displayed.

Some of the tasks accomplished by the preprocessor are:

� simpli�cation of data types;

� elimination of unnecessary variables;

� instantiation of parameters and other variables;

� introduction of additional transitions corresponding to possible run-time errors;

� general simpli�cation of the transition system and of the property, using the Simpli�er.

Note that the additional assumption can be used to restrict the range of a variable on which

array or parameter bounds depend.

The Core Model Checker

For each problem instance, an external core model checker is invoked. It searches the

state-space and stops when

1. a run-time error is found,

2. a counterexample computation is found, or

3. the entire state space has been explored.

The main algorithm used by the core model checker is adapted from [Hojati et al., 1993].

Restrictions

Not all programs and properties accepted by step can be model checked. The datatypes

handled by the core model checker are: boolean, integer, and channels, and arrays over

booleans and integers. The preprocessor can reduce some other datatypes to these. The

model checker can only handle basic logic, arithmetic, and channel operations applied to

these variables. Formulas given to the Model Checker cannot have temporal operators in

the scope of binding operators.

58 CHAPTER 4. VERIFICATION AND LOGICAL RULES

Log �le

The model checking results are reported in a log �le, selected by the user before model

checking begins.

After calling the core model checker, the log �le will contain: the list of relevant sys-

tem variables, the preprocessed transition system, some statistical information, and, if the

formula proved to be invalid, a counterexample computation.

Environment Variables

The search space may be in�nite if there are system variables that range over an in�nite

domain, and in this case the Model Checker may or may not terminate. Even if the system

is �nite-state, the state-space may prove too large for the time and memory available. The

following settings can be used to limit the Model Checker resources:

� STEP MC SPACE: Maximum amount of memory, in Megabytes.

Default: unlimited.

� STEP MC TIME: Maximum amount of user time, in minutes.

Default: unlimited.

� STEP MC CPU: Maximum amount of CPU time, in minutes.

Default: unlimited.

The Model Checker can be interrupted with step's interrupt button (the step logo).

NOTE: This may leave a UNIX process running in the background; see the UNIX kill

man pages for details on how to kill runaway processes.

Chapter 5

The Veri�cation Diagram Editor

Veri�cation diagrams are a visual representation of a proof. A veri�cation diagram describes

sets of states given by assertions and possible transitions between them. A well-formed

veri�cation diagram represents a set of veri�cation conditions that are su�cient to establish

a given temporal formula. Veri�cation diagrams are described in detail in [Manna and

Pnueli, 1994] and [Manna and Pnueli, 1995].

step currently supports three types of veri�cation diagrams:

� Invariance diagrams , to represent proofs of invariance formulas: 0 p.

� Wait-for diagrams , to represent proofs of nested wait-for formulas:

p) qnWqn�1 : : :Wq0:

� Chain diagrams , to represent proofs of response formulas p) 1 q that do not require

induction.

Here, p, q, q0; : : : ; qn are state assertions.

Hierarchical veri�cation diagrams (Section 5.7) support distributing a large veri�cation

diagram over several �les.

5.1 De�nitions

A veri�cation diagram is a directed labeled graph constructed as follows:

� Nodes in the graph are labeled by assertions.

� Edges in the graph represent transitions between nodes. Each edge connects one node

to another and is labeled by the name of a transition in the program. We refer to an

edge labeled by � as a � -edge.

� One of the nodes may be designated as a terminal node. This node is distinguished

by having a boldface boundary. No edges may depart from a terminal node.

59

60 CHAPTER 5. THE VERIFICATION DIAGRAM EDITOR

Veri�cation diagrams represent sets of veri�cation conditions as follows: For every non-

terminal node (labeled by) ' and transition � , let '1; : : : ; 'k be the nodes to which ' is

connected by � -edges. The veri�cation condition associated with ' and � is given by:

f'g � f' _ '1 _ : : :_ 'kg:

Note that if k = 0, i.e., no � -edges depart from ', the veri�cation condition is:

f'g�f'g:

No veri�cation conditions are associated with terminal nodes. A diagram is called

valid over program P (P-valid) if all the veri�cation conditions associated with nodes of the

diagram are P -state valid. Thus, a valid diagram provides a succinct representation of the

veri�cation conditions of the form f'g�f g, for all combinations of assertions ' and and

transitions � that appear in the diagram.

5.2 Wait-for Diagrams

A veri�cation diagram is called a wait-for diagram if there is only one terminal node and

it is labeled by '0 and the diagram is weakly acyclic, i.e., whenever node 'i is connected

by an edge to node 'j , i � j. P -valid wait-for diagrams can be used to establish the

P -validity of a nested wait-for formula.

A P -valid wait-for diagram establishes that the formula0
@ m_
j=0

'j

1
A) 'mW'm�1 : : :'1W'0

is P -valid. To establish the P -validity of

p) qmWqm�1 : : :Wq0

the following additional veri�cation conditions (referred to as side veri�cation conditions)

have to be established:

p!
Wm
j=0 'j (W1)

'i ! qi for i = 0; 1; : : : ; m: (W2)

5.3 Invariance Diagrams

A veri�cation diagram is called an invariance diagram if it is exit-free, i.e., it has no

terminal node. Unlike wait-for diagrams, invariance diagrams may contain cycles.

A P -valid invariance diagram with nodes '1; : : : ; 'm establishes that the formula

(
m_
j=1

'j)) 0 (
m_
j=1

'j)

5.4. CHAIN DIAGRAMS ? 61

is P -valid. To establish the validity of 0 q the following two side veri�cation conditions

have to be established:
�!

Wm
j=1 'j (I1)

(
Wm
j=1'j)! q (I2)

5.4 Chain Diagrams ?

Veri�cation diagrams can also represent fairness requirements. The main extension over

the previous types of diagrams is the introduction of two additional types of edges, double

and solid . A double edge corresponds to a helpful transition that is just, and a solid edge

corresponds to a helpful transition that is compassionate. Thus, edges connecting nodes in

a diagram can be single, double or solid.

A veri�cation diagram is said to be a chain diagram if its nodes are labeled by assertions

'0; : : : ; 'm, with '0 being the terminal node, and if it satis�es the following requirements:

� If a single edge connects node 'i to node 'j , then i � j.

� If a double or solid edge connects 'i to 'j , then i > j.

� Every node 'i, i > 0, has at least one departing edge which is either double or solid.

The transition labeling this edge is identi�ed as helpful for assertion 'i.

� Every transition can label at most one type of edge (single, double, or solid) departing

from the same node.

The �rst two requirements ensure that the diagram is weakly acyclic in the same sense

as de�ned for the wait-for diagram. The stronger second requirement ensures that the

subgraph based on the double and solid edges is acyclic, forbidding self-connections by

double or solid edges. The third requirement demands that every nonterminal node has at

least one helpful transition associated with it.

Chain diagrams allow proving progress properties that do not require an in�nite size well-

founded domain. Later releases of step will allow the user to enter well-founded domains

as part of the chain diagram.

Veri�cation Conditions

Let ' be a nonterminal node and '1; : : : ; 'k, k � 0, be the � -successors of '.

� If � labels a single edge, we associate with ' and � the usual veri�cation condition

f'g�f'_ '1 _ : : :_ 'kg:

� If � labels a double or solid edge, we associate with ' and � the veri�cation condition

f'g�f'1 _ : : :_ 'kg:

62 CHAPTER 5. THE VERIFICATION DIAGRAM EDITOR

� If � labels a double edge departing from ', we associate with ' and � the implication

'! En(�):

i.e., when ' holds, � is enabled.

� If � labels a solid edge departing from ', we associate with ' and � the compassion

requirement in the form of the response formula

') 1 (:' _En(�)):

Valid Chain Diagrams

A chain diagram is P -valid if the �rst three types of veri�cation conditions are P -state

valid and the compassion requirements associated with solid edges, are P -valid.

A P -valid chain diagram establishes that the response formula

(
m_
j=0

'j)) 1 '0

is P -valid. To establish the P -validity of

p) 1 q

the following two additional side veri�cation conditions have to be established:

p!
Wm
j=0 'j (FC1)

'0 ! q (FC2).

5.5 Compound Nodes

To make veri�cation diagrams more readable, step supports encapsulation conventions sim-

ilar to those of Statecharts [Harel, 1987]. The basic encapsulation construct is the compound

node containing internal nodes. We refer to the contained nodes as the descendants of the

compound node. Nodes that are not compound are called basic nodes.

Departing edges An edge departing from a compound node is interpreted as though it

departed from each of its descendants.

Arriving edges An edge arriving at a compound node is interpreted as though it arrived

at each of its descendants. An assertion ' labeling a compound node is interpreted

as though it were a conjunct added to each of its descendants.

5.5. COMPOUND NODES 63

Figure 5.1: The Veri�cation Diagram Editor

64 CHAPTER 5. THE VERIFICATION DIAGRAM EDITOR

5.6 Veri�cation Diagram Editor: Interface

The Veri�cation Diagram Editor allows you to load and manipulate veri�cation diagrams.

The interface is shown in Figure 5.1. The two top panels are used to edit the label and the

assertions on nodes and edges. The diagram itself is drawn in the large panel, using the

drawing tools displayed in the column to its left.

The veri�cation diagram does not have to be related to the current system description,

and you can use the Veri�cation Diagram Editor independently of the step veri�cation

session in progress. By selecting the Current-to-Verify option under the File menu, you make

the current diagram the one used by the veri�cation session. In this way, a veri�cation

diagram can be applied as a veri�cation rule to generate veri�cation conditions that establish

a given property.

The Veri�cation Diagram Editor does not parse the expressions labeling the nodes, or

check the existence of the transitions labeling the edges. These checks are performed when

the veri�cation diagram rule is invoked. If an assertion does not parse, or there is any

other problem with the diagram, a message indicating the error will appear in the message

window of the Top-level Prover. The veri�cation diagram can then be corrected within the

Veri�cation Diagram Editor, made current again, and the veri�cation diagram rule applied

again. 1

Drawing Tools

The leftmost column contains the tools for drawing basic and compound nodes, and edges

corresponding to the di�erent justice requirements.

This tool sets the pointer to selection mode. It enables you to select nodes

and edges by clicking on them. When an edge is selected, all the nodes to

which it is attached are selected too. To select a single edge (e.g., to convert

it into a di�erent type of edge) you �rst have to move the edge away from

the nodes. You can do this by pressing the left mouse button while pointing

at the edge and then moving it quickly while keeping the button pressed.

To select multiple edges and nodes, click on some location outside these

nodes, and while keeping the left mouse button pressed, drag the mouse

until the nodes and edges are enclosed in the region indicated by the dashed

rectangle.

1An inquisitive user may wonder why the Veri�cation Diagram Editor does not check for parsing errors.

The reason is that to check parsing errors, one requires knowing the system for which a diagram is being

applied to. However, step allows the Veri�cation Diagram Editor to run independent to any system. This

feature is useful when the same (or similar) diagrams uare being applied to di�erent systems.

5.6. VERIFICATION DIAGRAM EDITOR: INTERFACE 65

This tool is used to draw non-terminal nodes . After selecting it, move the

mouse to the location where you want the upper left corner of the new

node and click on the left button; while keeping it pressed, move the mouse

down and to the right until the displayed shape has the proper dimensions.

Releasing the button will then create the node. The node will be initially

selected, and the two editable �elds above the diagram will contain the

default name and label for this node. You can edit the name �eld and enter

a state assertion for this node.

To resize an existing node, select it with the left button (after �rst selecting

the pointer tool), move the mouse to one of its corners, and resize the node

while keeping the button pressed on the black square in the chosen corner.

Works exactly as the tool for non-terminal nodes, but the generated node is

a terminal node.

This tool draws an edge without an associated fairness requirement. An

edge is drawn using the left mouse button: press the button at the location

where you want the edge to start, keep the button pressed while moving the

pointer and release the button at the desired endpoint. To draw an edge

with corners, release the button momentarily at the location of the turn,

press again, and move the mouse in the new direction. Several consecutive

turns can be made in this way.

The label of the edge will appear in the top panel and can be edited there.

The label can correspond to any transition of the system being analyzed.

Works exactly as the tool for drawing a single-lined edge, but draws a double-

lined edge that has an associated Justice requirement. The label of such a

Just edge must be the name of a transition declared as Just or Compassion-

ate.

Works exactly as the tool for drawing a single-lined edge, but draws a solid-

lined edge that has an associated Compassion requirement. The label of a

Compassionate edge must be the name of a transition declared as Compas-

sionate.

Menu Options

The File Menu

The File menu is used to load and save veri�cation diagrams, as well as to make veri�cation

diagrams accessible to the Top-level Prover.

New Resets the veri�cation diagram editor, deleting the currently edited diagram.

Load Loads a veri�cation diagram from a �le.

Save Saves the veri�cation diagram currently being edited to a �le.

66 CHAPTER 5. THE VERIFICATION DIAGRAM EDITOR

Current-to-verify Selects the currently edited veri�cation diagram as the one used by

the Top-Level Prover.

Exit Quits the Veri�cation Diagram Editor after con�rmation by the user.

The Edit Menu

The Edit menu is used to cut and paste parts of the diagram.

Cut Deletes one or more selected items from the editing window. The deleted item(s)

(node or edge) are put on a scratchpad and can later be recovered by Paste.

Copy Copies the selected item from the editing window to the scratchpad.

Paste Takes the item most recently put on the scratchpad (either by Cut or Copy) and

puts it in the editing window in the same location it was before.

Duplicate Duplicates one or more selected items. This is equivalent to doing Copy followed

by Paste.

The Node Menu

The Node menu is used to group nodes into compound nodes, change terminal into nonter-

minal nodes, and vice-versa.

Group/Compound By selecting a large node and the nodes enclosed by the large node,

Group turns the large node into a compound node, containing the enclosed and selected

sub-nodes (see Figure 5.1).

Subnodes of a compound node cannot be edited. They have to be released with

Ungroup before you can change their labels or move them.

The label and assertion of the compound (enclosing) node is displayed in the upper

left corner of the node.

Ungroup/Uncompound Converts a selected compound node into a regular node, and

releases the subnodes such that they can be edited and moved.

Terminal Converts the selected node (only one node should be selected) into a terminal

node. The borders of the node are drawn with thick lines and the node is declared as

terminal.

Nonterminal Converts a selected terminal node into a nonterminal node.

The Edge Menu

The Edge menu lets you change the fairness requirements associated with a selected edge,

and check that all edges are properly connected to the nodes.

Cut Head Cuts the head hop of a selected edge. The head hop is the hop with an arrow

where an edge ends.

5.7. HIERARCHICAL VERIFICATION DIAGRAMS ? 67

Cut Tail Cuts the tail hop of a selected edge. The tail hop is the hop where an edge starts.

Merge Merges a selected edge with the edges chained to it. Two edges are considered

chained if one's ending point is close to the other's starting point.

Unjust Converts a selected edge into an Unjust edge. Unjust edges are drawn with thin

black lines.

Just Converts a selected edge into a Just edge. Just edges are drawn with double lines.

Compassionate Converts a selected edge into a Compassionate edge. Compassionate

edges are drawn with thick black lines.

Connectivity Highlights those edges whose ends are not connected to nodes. This is a

convenient way to check whether all edges are connected properly in the veri�cation

diagram.

Global Hookup Checks and hooks up all loose edges. An edge will be hooked up to a

node if its end is close enough to or inside the node.

Help

Activation of the on-line help pages, using Mosaic or your favorite html (WWW) browser.

The Top-level Prover help pages are accessible from the Veri�cation Diagram Editor help

pages and vice-versa, so a single help session should generally su�ce. The executable used

for on-line help can be changed by setting the STEP BROWSER environment variable.

5.7 Hierarchical Veri�cation Diagrams ?

In order to allow decomposition of veri�cation diagrams into smaller, more manageable

parts, step supports hierarchical veri�cation diagrams. With hierarchical diagrams, several

nodes in a large diagram can be represented by a single node, making large diagrams more

readable and easier to edit.

Import Nodes

A hierarchical veri�cation diagram has one or more import nodes. An import node imports

a veri�cation diagram from a �le. The imported diagram may itself have import nodes that

import other �les. The edges going out from the import node are matched up with outgoing

edges from the imported diagram, and similarly for incoming edges.

An import node is created by giving it the label #import and giving it as assertion

the �lename (with full or relative path name) within angle brackets (<>), for example

<mux-pet2/mux-h1.diagram>, of the �le that contains the diagram to be imported. The

assertion �eld may also contain parameters (see next paragraph) enclosed within \%". Any

text in the assertion �eld of an import node that is not enclosed by angle brackets or percent

signs is ignored.

68 CHAPTER 5. THE VERIFICATION DIAGRAM EDITOR

Parameter Passing

Hierarchical veri�cation diagrams allow macro-like text replacement when importing a ver-

i�cation diagram. Parameters (in the node to be imported) are of the form \@1", \@2",

\@3", etc., and \@1" is replaced by the �rst argument passed by the importing node, \@2"

is replaced by the second argument, etc.

When the top-level diagram is processed (i.e., when it is used as a veri�cation rule by the

Top-level Prover), step checks whether the number of parameters each imported diagram

requires is equal to the number of arguments passed. The arguments passed by the import

node are included in the assertion �eld; each argument is enclosed within percent signs

(\%"). An example of the assertion �eld of an import node that passes parameters is

<mux-pet2/mux-h1.diagram> %m3% %l3% %s=1%

The arguments do not have to be on the same line, and white space is ignored.

Edges

The connection of edges between the import node and the imported diagram is done by

matching unconnected outgoing edges in the imported diagram (also called dangling edges)

with outgoing edges of the import nodes that have the same label, and similarly for incoming

edges. If multiple edges of the imported diagram match multiple edges of the import node,

then edges are created for all possible combinations (taking the product over all edges).

Thus, one incoming edge in an imported diagram may translate into multiple edges with

the same label entering that same node in the imported diagram.

If multiple edges with the same label entering or leaving an import node need to be

distinguished (e.g., because they enter di�erent nodes in the imported diagram), the labels

may be provided with a secondary label. The secondary label follows the regular transition

name, separated by a colon. Thus, if l1 is the regular transition name, then l1:1 labels

an edge for transition l1, with secondary label 1. Edges connected to the import node

and dangling edges in the imported diagram only match when both the primary and the

secondary label are identical. White space is ignored in secondary labels. Secondary labels

default to 0 (zero) if left blank, but this value is not displayed in the diagram.

Edges can also be connected to import nodes as if the import node was a compound node

(i.e., an incoming edge in the import node is connected to all nodes of the imported diagram,

and similarly for an outgoing edge), by adding the secondary label All to the label of the

edge entering the import node. Thus, an edge labeled with All in the importing diagram

is connected to all nodes of the imported diagram without any name matching. It is not

meaningful to add the secondary label All to dangling edges in an imported diagram, and

this is therefore ignored.

If import nodes are within a compound node, then edges entering or leaving the com-

pound node are interpreted, as usual, to represent edges entering or leaving each enclosed

node. Therefore these edges are considered to be connected to the import nodes, and

interpreted as usual.

Chapter 6

Automatic Theorem-Proving

A computer-aided veri�cation system should try to make the task of proving veri�cation

conditions as easy as possible while still ensuring soundness.

To this e�ect, step provides powerful, usually fast, automatic simpli�cation procedures.

These are supplemented by the interactive Gentzen-style theorem prover, discussed in Chap-

ter 8, used to establish properties that the automatic simpli�er cannot.

6.1 The Automatic Simpli�er

There is a basic trade-o� between the strength and the speed of the automatic Simpli�er.

The more powerful the settings are, the slower the Simpli�er is. The default settings are a

good compromise: they are able to simplify most commonly occurring veri�cation conditions

in a reasonable time.

The impatient user may want to use the interrupt button to halt lengthy simpli�cation

operations and try alternative proof techniques.

Selecting the Simpli�cation Flagsmenu option brings up the window shown in Figure 6.1.

It contains the following settings:

Figure 6.1: Simpli�er settings

69

70 CHAPTER 6. AUTOMATIC THEOREM-PROVING

� Equality and Inequality

If ON, the Simpli�er will use properties of equalities and inequalities. For example it

will simplify

y > 1 ! y > 0

to true when this switch is ON, but not when it is OFF.

These decision procedures are quite e�cient and useful in general, so they are ON by

default.

� Linear Arithmetic

If ON, the Simpli�er will use decision procedures for linear arithmetic, which use

properties of >, +, and =. For example, it will simplify

y >= 0 ^ y0 = y + 1 ! y0 > 0

to true when the switch is ON, but will not be able to simplify it when the switch is

OFF. The default is OFF.

The performance of these procedures can vary widely from one formula to the next;

the interrupt button can be used to halt the computation.

� Associative and Commutative functions

If ON, step will take into account the associativity and commutativity of addition,

multiplication, and boolean connectives, as well as those user-de�ned binary function

symbols that have been declared as AC, ASSOCIATIVE or COMMUTATIVE (see

Section 2.3).

Note that since step rewrites all formulas into a normal form, it implicitly uses many

instances of the associative and commutative laws even when this
ag is OFF. The

default is OFF.

� BDD simpli�cation

If ON, the (propositionally complete) BDD simpli�cation method will be used as part

of the simpli�er, before other decision procedures are used (see Section 6.2). The

default is OFF.

� Conditional Rewrite Rules

If ON, the Simpli�er will use a number of built-in conditional rewrite rules. For

example, it will simplify

(y > 0 ^ x � y > 0)! x > 0

to true when the switch is ON, but will not be able to simplify it when the switch is

OFF.

Conditional rewrite rules may slow down the Simpli�er considerably, so they are

switched OFF by default.

Commonly used Simpli�er settings are also available as separate buttons in the action region

of the Top-level Prover:

6.2. BDD SIMPLIFICATION 71

Fast-simplify Applies only the most basic simpli�cation procedures, disregarding the

background properties. This is useful to rewrite formulas into a more standard form,

after which they can be compared more easily with each other.

Bool-simplify Applies a propositional satis�ability check, using the active background

properties. If the given formula is a propositional tautology with respect to the active

background properties, it will be simpli�ed to true. This procedure is complete for

propositional logic. The basic simpli�cation procedures (see Fast-simplify above)

are called before the propositional test.

This procedure uses step's BDD package (see Section 6.2).

Simplify Invokes the simpli�er and decision procedures as given by the current simpli�ca-

tion settings.

For material related to the decision procedures and indexing used in step, see [Bledsoe,

1975], [Shostak, 1979], [Nelson and Oppen, 1980], [Boyer and Moore, 1988], [Stickel, 1989],
[McCune, 1992], [Zhang, 1993].

6.2 BDD Simpli�cation

step includes a package for the creation and manipulation of propositional (i.e., boolean)

formulas using Binary Decision Diagrams (BDDs). This package is used in the BDD-split

proof rule as well as in boolean simpli�cation steps.

Since the amount of memory used by the BDD package can grow inde�nitely (in the

form of accumulated BDD nodes), the package can be reset at any time with the Reset BDDs

option under the Settings menu. This only incurs a (usually small) short-term e�ciency

loss, and does not a�ect the soundness of the prover.

This option should also be used if the number of BDD nodes reaches the maximum given

by the STEP BDD NODES environment variable (see Appendix E). The number of existing

BDD nodes can be obtained through the Sytem Information option.

A number of environment variables control the amount of memory that BDDs use:

� STEP BDD NODES The maximum number of BDD nodes kept around at one time.

� STEP BDD CACHE The size of the BDD result cache.

� STEP BDD SPLIT The maximum number of subgoals that can be generated by a BDD

split operation in both the Top-level and Interactive Provers (see Section 6.2.1 below).

For more information on BDDs, see [Bryant, 1986, Bryant, 1992].

6.2.1 BDD split ?

The BDD-split proof rule uses BDDs to convert the current goal into a list of subgoals,

each a disjunction of atomic formulas. The subgoals correspond to the negation of the

propositional models that can falsify the formula. If all the subgoals are valid, the original

goal is valid as well.

72 CHAPTER 6. AUTOMATIC THEOREM-PROVING

In the worst case, exponentially many children are produced using this expansion, but

in most applications there is a good chance that it will work well. The acceptable maximum

number of subgoals is given by the STEP BDD SPLIT environment variable.

In the Top-level Prover, the active background formulas are automatically used to reduce

the number of subgoals generated; in the Interactive Prover, the background formulas must

be added to the sequent before invoking BDD-split . This is analogous to the behavior of

the Simpli�er in the two provers.

6.3 Tactics ?

Tactics are a method to automate parts of the high-level proof search by encoding long or

repetitive sequences of proof commands. An individual proof command is an atomic tactic.

The Top-level Prover and the Interactive Prover share the same tactic language, param-

eterized by their atomic tactics (since each has a di�erent set of proof commands). The

general syntax of a tactic is as follows:

tactic ::= prede�ned Prede�ned tactic

j composite Composite tactic

j atomic Atomic tactic

prede�ned ::= skip Identity tactic

j fail Failure tactic

composite ::= try (tactic , tactic , tactic)

j then [form] tactics

j sequence tactics

j else tactics

j repeat [form] tactic

j spread tactic tactics

j branch tactic tactics [otherwise tactic]

j tactic ; tactic

j (tactic)

tactics ::= [[tactic f , tactic g]]

form ::= depth first

j breadth first

atomic ::= { atomic-tactic }

The grammar for atomic-tactic for the Top-level Prover is given in Section 6.3.2; the

grammar for the Interactive Prover atomic tactics is given in Section 6.3.3.

The curly brackets can be omitted if the atomic tactic can be written without spaces.

In other cases, curly brackets have to enclose each atomic tactic.

6.3. TACTICS ? 73

6.3.1 Composition Options

When a veri�cation rule is applied to a goal to which it does not syntactically make sense

(for example B-INV applied to a response formula) it fails, otherwise it succeeds. Tactics,

which are composed from veri�cation rules can also fail and succeed as described below.

try(tac1,tac2,tac3)

Try tactic tac1 , if it succeeds, apply tac2 to each subgoal generated. If tac1 fails,

apply tactic tac3 to the original goal. The entire tactic fails if tac2 fails on one of the

generated subgoals of tac1, or tac3 fails.

Figure 6.2 gives an idea of how the proof-search looks like after tac1 and tac2 have

been applied successfully, or tac1 failed and tac3 has been applied. The lower-most

dot represents the original goal, the �rst left-most layer of dots represent the subgoals

generated from tac1, the second left-most layer, the subgoals generated from tac2. To

the right is a schematic representation of the subgoals generated by tac3.

q q q q q q

q q q

qaa
aa

a

!!
!!

!A
A
�
�

A
A
�
�

A
A
�
�

q q q

qaa
aa

a

!!
!!

!

original goal original goal

tac1

tac2

tac3

Figure 6.2: try(tac1,tac2,tac3)

then [form] tactics

then [] has the same e�ect as skip - the original subgoal is reduced to itself. For

non-empty lists we de�ne inductively:

then breadth first [tac1,tac2,: : : ,tacn] applies tactic tac1 �rst. If it succeeds,

it applies the tactic then breadth first [tac2,: : : ,tacn] to each of the generated

subgoals. If it fails it applies the tactic then breadth first [tac2,: : : ,tacn] to the

original subgoal.

Figure 6.3 illustrates the levels obtained from successful completion of then breadth

first [tac1,tac2,tac3]. So for instance, the nodes above the original goal in the bottom

represent the result of applying tac1.

q q q q q q

q q q

q

q q q q q q q q q q q

aa
aa

a

!!
!!

!@
@

�
�

@
@

�
�

@
@

�
�

C
C
�
�

C
C
�
�

C
C
C
C
�
�

C
C
�
�

original goal

tac1

tac2

tac3

Figure 6.3: then breadth first [tac1,tac2,tac3]

74 CHAPTER 6. AUTOMATIC THEOREM-PROVING

then depth first [tac1,tac2,: : : ,tacn] applies the tactic tac1 �rst. If it succeeds, it

applies then depth first [tac2,: : : ,tacn] to the �rst subgoal generated. If it fails,

it applies then depth first [tac2,: : : ,tacn] to the original goal. If any left-most

subgoal is closed by a tactic taci, where i < n, then taci+1 : : : tacn are ignored.

Figure 6.4 illustrates the e�ect of successful completion of then depth first [tac1,tac2,tac3].

q

q q q

q q

q q

aa
aa

a

!!
!!

!@
@

�
�

C
C
�
�

original goal

tac1

tac2

tac3

Figure 6.4: then depth first [tac1,tac2,tac3]

If no form is given the default is breadth first.

sequence tactics

Applies the tactics in left-to-right order breadth �rst until the �rst tactic fails. The

constructor sequence can be de�ned in terms of try, namely sequence [tac1, tac2,

tac3] has the same e�ect as try(tac1, try(tac2, tac3,fail), fail).

tactic ; tactic

tac1 ; tac2 is shorthand for then [tac1; tac2]. The semicolon ; associates to the

left and has the highest precedence.

else tactics

Applies the �rst tactic that succeeds from the list of tactics supplied.

Figure 6.5 illustrates the result of else [tac1,tac2,...,taci,...,tacn], where taci is the

�rst tactic that succeeds.

q

q q q q q

aa
aa

a

@
@

�
�

!!
!!

! taci

original goal

Figure 6.5: else [tac1,tac2,...,taci,...,tacn]

repeat [form] tactic

repeat breadth first tac applies tac repeatedly until failure appears on one of the

generated subgoals in a layer.

repeat depth first tac applies tac repeatedly on the left-most subgoal generated.

spread tactic tactics

6.3. TACTICS ? 75

spread tac [tac1; tac2; : : : ; tacn] applies �rst tac, and then applies taci to the i'th

subgoal generated. The tactic fails if the number of subgoals generated from tac is

di�erent from n. Also if any of the tactics tac or taci fail, the entire tactic fails.

branch tactic tactics [otherwise tactic]

branch tac [tac1; : : : ; tacn] works like spread, except that if the number of subgoals

is m � n, then it applies tactic tacn to the subgoals indexed n; n+ 1; : : : ; m.

branch tac [tac1; : : : ; tacn] otherwise tac' �rst applies the tactic branch tac [tac1; : : : ; tacn].

If this fails, it applies tac' to the subgoal.

6.3.2 Top-level Prover Tactics

atomic-tactic ::= basic-rule Basic rule not requiring arguments

j arg-rule expns Rule requiring argument expressions

basic-rule ::= B-INV

j B-WAIT

j B-BACKTO

j B-CAUS

j Simplify

j Interactive

j Undo

j Redo

j Postpone

j BDD

arg-rule ::= G-INV

j G-WAIT

j G-BACKTO

j G-CAUS

j Modelcheck

expns ::= f ``expn'' g+

6.3.3 Interactive Prover Tactics

To appreciate this section it is helpful to have read Chapter 8.

atomic-tactic ::= basic-rule Basic rule not requiring arguments

j e-rule expns Rule taking expression argument

j p-rule positions Rule taking position arguments

j pe-rule expn-poss Rule taking position and expression arguments

j p-rule Position rule without position arguments

j replace Replacement of equals for equals

j skolemize Skolemization

76 CHAPTER 6. AUTOMATIC THEOREM-PROVING

basic-rule ::= Undo Basic rules behave the

j Redo same as their

j Postpone pushbutton counterparts

j Flatten

j Simplify

j Make-first-order

j Next

j Presburger

j All-Propositional

j BDD-split

j PTL-expansion

e-rule ::= Cut adds argument expressions as cuts

j Add-Axiom adds argument expressions as axioms

j Rewrite arguments is a tuple of pairs

each pair represents a rewrite rule

j Free-Induction arguments are the integer variables

in the induction

p-rule ::= Duplicate duplicates formulas at

indicated positions

j Delete duplicates formulas at

indicated positions

j Hide hides formulas at

indicated positions

j Unhide unhides formulas located at

their hidden positions.

j 1-Step-Propositional

j Induction

pe-rule ::= Instantiate Instantiate existential force

quanti�ers at indicated positions

by the listed expressions

replace ::= Replace at i-val left by right

j Replace at i-val right by left

In both cases i-val must be < 0.

skolemize ::= Skolemize

j Skolemize `` expn '' at position

j Skolemize position

expns ::= f `` expn '' g+

positions ::= f position g+
position ::= i-val

j [i-val f , i-val g]

6.3. TACTICS ? 77

expn-poss ::= f `` expn '' at position g+

If a p-rule is given without arguments, it is applied exhaustively in a breadth-�rst

manner.

6.3.4 Interrupting Tactics

Tactics are not guaranteed to terminate, or can otherwise run for a very long time; the

interrupt button (the step logo) is useful to stop the execution of a batchmode tactic.

Two things can actually happen if the interrupt button is pressed during the execution

of a tactic: if the interrupt button is activated during a simpli�cation step, the simpli�cation

will be canceled and the system will continue with the next one; if the system is interrupted

when no simpli�cation is going on, the entire tactic will be interrupted.

6.3.5 Commonly used Tactics

B-INV; Simplify

Applies the rule B-INV followed by simpli�cation of each subgoal. This di�ers from

the e�ect of setting Automatic Simpli�cation ON by not backtracking to the unsim-

pli�ed veri�cation condition when simpli�cation fails.

B-INV; Simplify; Undo

If simpli�cation does not establish the given subgoal of B-INV ; the current leaf in

the proof search tree is undone, getting back to the unsimpli�ed subgoal.

repeat(B-INV; Simplify; Undo; WPC)

Repeats application of B-INV to each unsimpli�ed subgoal that has been strength-

ened by the WPC rule.

f G-INV \(l5 /\ m5) /\ (l4 /\ m5 --> s = 2 /\ y1)" g; Simplify

Applies rule G-INV with a strengthening formula, and each subgoal is then simpli�ed.

G-INV only requires one strengthening formula; rules such as G-WAIT require more,

so a list of expressions must be entered following the keyword \G-WAIT".

Skolemize; Simplify; BDD-split; Simplify

Called from the Interactive Prover, this tactic attempts to establish a subgoal by

�rst skolemizing quanti�ers of universal force, and then simplifying in the hope that

simpli�cation will reduce the boolean complexity of the veri�cation condition. BDD-

split is then invoked to split the goal into subgoals of atomic formulas; the simpli�er

is �nally invoked to establish each of these subgoals.

1-Step-Propositional; Simplify

78 CHAPTER 6. AUTOMATIC THEOREM-PROVING

The Interactive Prover 1-Step-Propositional rule is used without a position. It is

therefore used exhaustively until it cannot be applied. Then each generated subgoal

is simpli�ed by Simplify .

Chapter 7

Automatic Generation of

Invariants

step includes three di�erent methods that automatically generate bottom-up invariants ,

based solely on the system to be veri�ed, of increasing power and complexity. Since these

invariants are, by construction, guaranteed to be true of the system, they are automatically

added to the list of active background properties.

Of the three methods, the �rst, local invariants , operates on an SPL program; the other

two operate on the transition system directly. A description of the general principles behind

step's invariant generation algorithms is [Bj�rner et al., 1995].

To obtain invariants, select the appropriate option under the Properties menu; when the

invariant generation is done, each invariant is simpli�ed, displayed in the output window,

and added to the set of background properties. By default they are active, and thus used

in the simpli�cation of goals. They may be deactivated with the Activate/Deactivate menu

option.

Each invariant is simpli�ed on its own (i.e., no background properties are used), using

the basic decision procedures for equality (see Section 6.1).

When the invariant generator is �nished a message will appear in the message window.

Invariant generation and simpli�cation can be halted by clicking on the interrupt button

(the step logo).

7.1 Local Invariants

Local invariant generation produces very simple but useful invariants, based on local analysis

of the program text. The generated invariants can be classi�ed in the following three groups:

1. Finite-domain invariants . Invariants of the form

li) x = c1 _ x = c2 _ : : :_ x = cn

where li is a program location, c1; ::; cn are constants, and x is a program variable.

2. Conditional invariants . Invariants of the form li) cond, where li is a program loca-

tion and cond is a formula arising from the initial condition or a branch statement,

79

80 CHAPTER 7. AUTOMATIC GENERATION OF INVARIANTS

e.g., the program fragment if cond then l1: S1 else l2: S2 generates the condi-

tional invariants l1) cond, and l2) :cond, if no variables in cond are modi�ed

by parallel statements.

3. Range invariants . Invariants of the form li) lb � x ^ x � ub, where lb and ub are

integer or rational constants (or in�nity).

7.2 Linear Invariants

Linear invariant generation arises from analyzing the linear relationships between system

variables in the course of a program.

The invariants generated are usually linear equalities of the form

a1x1 + a2x2 + : : :+ anxn = b

where a1; : : : ; an; b are constants. Each xi can be (a) a variable, (b) the sum Sum i:[m..M]. A[i],

of the values of an array, or (c) a sum Sum i:[m..M]. x[i], where x is a local variable of

a parameterized process P[i:[m..M]].

7.3 Polyhedral Invariants ?

The polyhedral invariant generator is the most powerful of the methods provided (currently

in \experimental" state). The invariants generated depend on the set of variables under

consideration, which can be controlled by the user. The more variables that are included,

the more powerful the invariants that can be generated, but the time spent generating

invariants will also increase (possibly in an exponential manner).

When the polyhedral invariant generation is selected, a dialog window appears where

the user can enter the following:

1. Variables to be ignored: you may enter a list of program and auxiliary variables, sepa-

rated by spaces or commas. These variables will be ignored by the invariant generator,

that is, the invariant generation will not try to deduce polyhedral relationships which

include them.

2. Location variables to be considered: By default, location variables are not considered

by the polyhedral invariant generator. Here you may enter a list of location variables

to be added to the vocabulary of the invariant generator.

The generator uses an external package, whose time and space limitations can be controlled

by setting the following environment variables:
STEP POLY SPACE (Megabytes)

STEP POLY TIME (minutes)

STEP POLY CPU (minutes)
The invariant generation can be interrupted by clicking on the interrupt button (the

step logo); this may leave a separate UNIX process running, which users may have to

terminate independently from a UNIX prompt (see the UNIX kill command man pages).

Chapter 8

The Interactive Prover ?

The Interactive Prover is based on a Gentzen-style proof system, specialized to linear-time

temporal logic. For more background, see, e.g., [Gallier, 1987]. This chapter explains the

basic functionality of the various rules provided in the Interactive Prover and gives examples

of their use.

8.1 Proof Structure

A goal or subgoal in the Interactive Prover is a sequent , of the form

� =) �

where � and � are multisets of formulas (i.e., formulas can be repeated). A sequent stands

for the formula ^

i !

_
�j

where
i are the elements of � and �j are the elements of �. Free variables are implicitly

universally quanti�ed.

The Interactive Prover creates a proof tree similar to that in the Top-level Prover. An

inference rule applies to zero or more of the formulas in a sequent � =) �, and produces

a number of subgoals, the branches of the tree, again in the form of sequents. The proof is

�nished when all subgoals are closed.

A subgoal is closed when one of the following conditions is satis�ed:

� The sequent contains true on the right-hand side of the long doubly lined implication.

� =) �; true

� The sequent contains false on the left-hand side of the long doubly lined implication:

�; false =) �

� The sequent contains a formula p in both the left and right sides of the long doubly

lined implication:

p;� =) �; p

81

82 CHAPTER 8. THE INTERACTIVE PROVER ?

� The sequent contains a formula (-)p on the left side of the long doubly lined impli-

cation, and no applications of Next (see Section 8.3) separate the sequent from the

root of the proof tree:

(�)p;� =) �

This axiom re
ects the well-foundedness of time. In the �rst time instance, the truth-

value of (-)p is false for any formula p, because there is no past at this instance.

� The sequent � =) � is duplicated along a branch in the proof tree, i.e., the following

conditions are satis�ed:

1. There is a sequent �0 =) �0 between the root and � =) �, such that �0 � �

and �0 � �.

2. The two sequents are separated by at least one application of the Next-rule.

3. There is an unful�lled formula, in the sense of the temporal tableau construction
[Manna and Pnueli, 1995], for the sequents below applications of Next and above

�0 =) �0.

It helps to think of duplication in the presence of unful�lled formulas as correspond-

ing to an induction step. The requirement also replaces inference rules formalizing

induction on temporal operators.

Fortunately all these conditions are kept track of automatically and you do not have to

worry about the detailed conditions, so that you can focus on the outline of the proof.

8.2 User Interface

Figure 8.1 shows the interface of the Interactive Prover. It has a menu bar on top and

action buttons to the right. Most interaction in the Interactive Prover is accomplished by

button clicks. If a rule is applicable to multiple formulas in the sequent, the candidates

are highlighted (shown in reverse video) and you can select the one to which you intend

to apply the rule. Some rules require additional information to be entered through dialog

windows.

Menu Options

Refresh redraws the Interactive Prover windows.

Tactics is equivalent to the Tactics menu in the Top-level Prover (Section 3.1) except now it

invokes tactics composed of Interactive Prover primitive commands (see Section 6.3).

Settings

Simpli�cation Flags This menu option is equivalent to the Simpli�cation Flags option

in the Top-level Prover. It brings up a window used to set the power of the

automatic Simpli�er; see Section 6.1.

8.2. USER INTERFACE 83

Figure 8.1: Interactive Prover Window

84 CHAPTER 8. THE INTERACTIVE PROVER ?

Select boxes This menu option allows the user to control whether boxes, i.e., the

temporal operator 0 known as \henceforth", in front of axioms added to the

sequent during the proof should be kept or not. By default boxes are removed

from axioms, when axioms are added to the sequent. See also the explanation of

Add-Axiom below for an example of the usage of Select boxes.

Quit brings up the window shown in Figure 8.2.

Figure 8.2: Exit Window for Interactive Prover

If you choose to use the results obtained, any un�nished goals are returned to the

Top-level Prover as a new goal with the name Interactive. If there are no goals left,

the current goal in the Top-level Prover is closed. If you choose to ignore the e�ect

of the Interactive Prover the proof tree in the Top-level Prover stays as it was before

invoking the Interactive Prover.

The button saving verbose versions allows you to save the entire proof in the format

seen during veri�cation. Each sequent is printed in its full length, and annotated with

its position in the proof-search.

The button saving for reruns, saves a dense proof-script, which can be loaded as a

tactic for later automatic recreation of the proof.

8.3 Interactive Prover Rules

The right column of the Interactive Prover contains buttons to manipulate the proof tree

and invoke the Gentzen proof rules. The proof search proceeds as usual, with logical rules

that reduce the current goal to a number of subgoals, and simpli�cation steps that close or

simplify the current goal.

A number of inference rules require the user to select subformulas in the sequent. The

subformulas, that may be selected are highlighted when selecting the inference rule, and

the user clicks on the relevant highlighted formula to invoke the rule on that formula.

Undo Makes the ancestor of the current subgoal into the current goal. The former current

goal is retained to enable a Redo , unless another proof rule is applied to the new

current goal.

8.3. INTERACTIVE PROVER RULES 85

Redo Redoes a previous Undo.

Hide Temporarily hides a formula from the current sequent. Hidden formulas do not par-

ticipate in simpli�cation steps, and cannot be acted upon by inference rules. Hidden

formulas, however, can be recovered with the Unhide rule, below. Hiding formulas

can make the sequent more readable and may speed up simpli�cation.

After clicking this button all formulas are highlighted, and you can select the formula

to hide. To hide several formulas you must use Hide multiple times.

Unhide Recovers a formula hidden with Hide .

Postpone The next subgoal in the subgoal queue becomes the current subgoal.

Duplicate Duplicates a formula in the sequent. This is useful if you need to instantiate

a quanti�ed variable more than once, using di�erent values. Note that duplicated

formulas can be hidden with Hide , above, until they are needed.

Delete This button implements the weakening rule. It allows you to delete formulas that

are not needed to establish the goal. Deletion of unnecessary or redundant formulas

makes the current goal easier to read and speeds up the simpli�cation procedures.

Flatten Creates a new sequent in which all conjunctions in the antecedent and all dis-

junctions in the consequent are split into separate formulas.

Example: For formulas a, b, c, d, e, f, g, Flatten has the following e�ect:

a; b; b n= c =) d =n e; f; g

a =n b; b n= c =) d =n e; f n= g

Simplify Invokes the Simpli�er on the current goal. The strength of the Simpli�er is

controlled via the Simpli�cation Flags option under the Settings menu.

1-Step-Propositional Application of propositional inference rules is controlled uniformly

with this button.

After clicking this button, formulas which contain propositional connectives that can

be analyzed are highlighted. Clicking on one of the highlighted formulas applies the

appropriate propositional inference rule to the selected formula.

The boolean connectives analyzed are:

^ , _ , !, $, :, if-then-else;

which are entered as:

/\ \/, -->, <-->, !, if-then-else

The temporal connectives analyzed are:

0 , 1 , U , W , ` , Q , S , B

86 CHAPTER 8. THE INTERACTIVE PROVER ?

which are entered as:

[], <>, Until, Awaits, [-], <->, Since, Backto

Notice that 2 and � are not in this group.

Figure 8.3 shows all the rules that can be applied by 1-Step-Propositional .

Skolemize Quanti�ers of universal force can be eliminated by skolemization, which re-

places the bound variable by a new variable.

If there are multiple instances of universally quanti�ed variables all of the correspond-

ing formulas are highlighted upon clicking on this button, and you can select the one

you want to skolemize by clicking on it.

Skolemize implements the inference rule:

�; f(b) =) �

�; Exists x : f(x) =) �

where b is a fresh variable not occurring free in �, � or Exists x . f(x).

� =) �; f(b)

� =) �; Forall x : f(x)

where again b is not free in either �, � or Forall x . f(x).

Besides these cases, the Interactive Prover supports skolemization of quanti�ers under

any nesting of the boolean connectives /\, \/, -->, ~, and the then and else

branches in if-then-else.

The type of the new variable b is that of x, where range types have been replaced

by int. Range constraints are reconstructed in a type condition that is added to the

formula f.

Example: For formulas e,f,g, Forall x : [1..N]. h(x), and y of type integer

not free in these, Skolemize eliminates the universal force quanti�er by:

f =) e � � > g =n (1 <= y =n y <= N � � > h(y))

f =) e � � > g =n Forall x : [1::N]: h(x)

Instantiate Quanti�ers of existential force can be instantiated by terms.

After clicking on this button, a data entry window appears for entering the term you

want to instantiate the bound variable with.

Instantiate implements the inference rules:

� =) �; p(t)

� =) �; Exists x : p(x)

�; p(t) =) �

�; Forall x : p(x) =) �

8.3. INTERACTIVE PROVER RULES 87

Propositional Rules

Sequents and formulas in square brackets [] are only generated when the sequent below

the line is above an application of the rule Next . This guarantees that statements such as

0 ` (�rst) are not derivable, as opposed to ` �rst.

(�rst is shorthand for :� true, which only holds at position 0.)

() :)
�; ') �

�) �;:'
(:))

�) �; '

�;:') �

() _)
�) �; ';

�) �; '_
(_))

�;) � �; ') �

�; '_) �

()!)
�; ') �;

�) �; '!
(!))

�;) � �) �; '

�; '!) �

()$)
�; ') �; �;) �; '

�) �; '$
($))

�; ; ') � �) �; ; '

�; '$) �

() ^)
�) �; �) �; '

�) �; '^
(^))

�; ';) �

�) �; '^

() 0)
�) �; ' ';�) �; 2 0 '

�) �; 0 '
(0))

�; '; 2 0 ') �

�; 0 ') �

() 1)
�) �; '; 2 1 '

�) �; 1 '
(1))

�; ') � 2 1 ';�) �; '

�; 1 ') �

() W)
�; '; 2 ('W)) � �;) �

�; 'W) � (W))
�) �; '; ';�) �; 2 ('W);

�) �; 'W

() U)
�; '; 2 (' U)) �; �;) �

�; ' U) �
(U))

�) �; '; �) �; 2 (' U);
�) �; ' U

() `)
�) �; ' [';�) �;� ` ']

�) �;` '
(`))

�; '[;� ` ']) �

�;` ') �

() Q)
�) �; '[;� Q ']

�) �;Q '
(Q))

�; ') � [� Q ';�) �; ']

�;Q ') �

() B)
�) �; '; [';�) �;� (' B);]

�) �; 'B
(B))

�; '[;� (' B)]) � �;) �
�; 'B) �

() S)
[�) �; ';] �) �[;� (' S)];

�) �; ' S (S))
[�; ';� (' S)) �;] �;) �

�; ' S) �

88 CHAPTER 8. THE INTERACTIVE PROVER ?

where t is a term and, p(x) is a formula containing x. Complementing skolemization,

instantiation applies to any existential force quanti�ers under

-->, \/, /\, ~, if-then-else.

If the user-supplied term t is not obviously of the same type as x, Instantiate generates

additional type constraint conditions along with the instantiated formula.

Example: For formulas (N > 0), Exists : [0..N-1]. h(x), and term t, Instantiate

x with t eliminates the existential quanti�er in the following way:

N > 0 =) 0 <= t =n t <= N � 1 =n h(t)

N > 0 =) Exists x : [0::N� 1]: h(x)

Replace This button allows you to replace equals by equals, that is, any term that is

asserted to be equal to another term in the antecedent may be replaced with that

other term throughout the sequent.

Upon clicking on this button all terms that are candidates to be replaced are high-

lighted, and you can select the term that you want to replace with.

Example: Starting with the sequent

x = 3; y = 4 =) x � x + y � y = 25

clicking on Replace highlights: x, y, 3, and 4. Clicking on 3 replaces x with 3 in

the consequent, resulting in

x = 3; y = 4 =) 3 � 3 + y � y = 25

Rewrite Brings up the Select rewrite window, which displays all rewrite rules that were

declared in the speci�cation during the current veri�cation session via

REWRITE desc : expn ---> expn

Rules can be selected and de-selected by clicking on the Select buttons. When

clicking on the Apply button, the current goal is simpli�ed according to the selected

rewrite rules.

Make-�rst-order Upon clicking on this button with current goal sequent G, a �rst-order

subgoal G0 is generated, such that the �rst-order validity of G0 implies the �rst-order

temporal validity of G.

Next Upon clicking on this button a new subgoal is created in which the operator

2 is deleted from (sub)formulas preceded by it, and in which � is appended to

(sub)formulas not preceded by 2 .

8.3. INTERACTIVE PROVER RULES 89

Cut With the Cut rule you can perform a case split analysis on the current goal.

Upon clicking on this button, a dialog window will appear, where you can enter the

formula to split on. Thus upon having entered the cut-formula p, Cut implements

the inference rule
�; p =) �

� =) �; p

� =) �

Induction Upon clicking on this button a dialog window will appear in which you can

enter the variable you want to do induction on. The variable has to be a universally

quanti�ed integer variable. The button implements the inference rule:

� =) �; p(0)

� =) �; Forall x : int : (x >= 0 =n p(x) � � > p(x+ 1))

� =) �; Forall x : int : (x <= 0 =n p(x) � � > p(x� 1))

� =) �; Forall x : int : p(x)

where p is a formula containing x.

Free-Induction supports simple mathematical induction for free variables. Suppose that

the integer variable x occurs free in the sequent � =) �, which we recall corresponds

to a formula:

p(x) :
^

(x)2�

(x)!
_

�(x)2�

�(x):

Since x is implicitly universally quanti�ed it makes sense to formulate the induction

principle:

=) p(0)

=) Forall x : int : (x >= 0 =n p(x) � � > p(x+ 1))

=) Forall x : int : (x <= 0 =n p(x) � � > p(x� 1))

� =) �

Presburger Decides formulas of Presburger arithmetic. Formulas belonging to Presburger

arithmetic may involve integer valued variables, addition, multiplication by constants,

boolean connectives, and quanti�ers over integer variables.

The decision problem is super-exponential, and thus only works on small examples. It

is seldom needed in practice, as the decision procedure cannot handle uninterpreted

function symbols (e.g., arrays).

Example: The following are Presburger formulas:

Forall x : int . Exists y : int . (x + y > 0)

Exists x : int . Forall y : int . Exists z : int .

(x > y \/ x < y \/ z < y - x /\ 5*z = x)

The following are not Presburger formulas:

90 CHAPTER 8. THE INTERACTIVE PROVER ?

Forall x : int . Exists y : int . (f(x) + y > 0)

Exists x : int . Forall y : rat . (x > y)

since the �rst contains an uninterpreted function symbol f, while the second

includes the unsupported type rat.

All-Propositional Applies 1-Step-Propositional recursively until there are no new formulas

to which it is applicable.

BDD-split Simpli�es the purely propositional structure of the formulas in the sequent.

Thus, a formula whose main connective is a temporal operator [], <>, Awaits,

Until, Since, Backto, [-], <->, is treated as an atomic formula (as opposed to

All-Propositional). See Section 6.2 for further explanations.

Add-Axiom A list of previously established properties or asserted axioms is displayed in

a separate window. The user selects the previously proved property or asserted axiom

to be inserted in the antecedent of the sequent.

The Select boxes menu-option under Settings allows the user to automatically remove

or retain preceding boxes from the axioms added by Add-Axiom . By default boxes

are removed from axioms added to the sequent.

Example: By default, adding the axiom [](p(x) /\ q(y)) to the sequent � =) �

generates

(p(x) =n q(y));� =) �:

Selecting Select boxes keeps the boxes. Hence adding the same axiom generates

the sequent:

[](p(x) =n q(y));� =) �:

PTL-expansion The structure of the Gentzen sequent calculus resembles the one used

in temporal tableau-like decision procedures for propositional linear-time temporal

logic. The prover therefore supports an automatic decision procedure for propositional

temporal logic.

Disclaimer : This implementation of PTL-expansion only applies well to small formu-

las, so its use should be limited to textbook examples. More e�cient implementation

are available, e.g., [Kesten et al., 1993].

Chapter 9

Basic Tutorial

This chapter presents detailed veri�cation sessions that can be followed as a tutorial for

step and used as templates for other veri�cations. All input �les mentioned in this chapter

are available in the examples directory in the step distribution. We assume that you have

successfully started step (see Section 1.2).

9.1 Preliminaries

The input to step will be an spl program P and a temporal-logic formula ' that expresses

a property of P to be veri�ed. A veri�cation session deals with a single program and one or

more properties to be veri�ed for that program. Thus, loading a new program reinitializes

the system, and starts a new veri�cation session.

Loading a program

To load an SPL program, select the Filemenu option in the upper left corner (see Figure 3.2),

and select Load program. This will start up the File Browser with a Load program window,

as shown in Figure 3.3. By clicking on the *.spl button, you can choose to see only the

�les with extension .spl, the standard extension for SPL program �les. The right column

shows the directory hierarchy, and the left column shows the �les in the current directory.

Clicking on a directory in the right column makes it the current directory. You can load

a �le by clicking on its �lename in the left column. Alternatively, you may enter the full

�lename directly in the entry line under File name. After entry, click the OK button, and

the selected �le will be loaded.

Loading the speci�cation

To load a speci�cation, select the Load speci�cation option from the File menu. Again,

this activates the File Browser, which brings up a Load speci�cation window. The default

extension for speci�cation �les is .spec. If the speci�cation �le contains a single formula,

this formula is understood to be the top-level goal, and is displayed in the top window

as the new current goal. If the �le contains multiple formulas to be proved, the �rst one

91

92 CHAPTER 9. BASIC TUTORIAL

is displayed as the current top-level goal. The other top-level goals can be accessed by

selecting the Next search or Select search option under the Properties menu.

Speci�cation �les can also contain declarations, axioms and de�nitions|see Chapter 2.

Help

At any time, you can get online help by selecting the Help option from the menu. This will

bring up a WWW browser with step's help pages.

Quitting step

To leave step, select the Quit option from the top-level menu or select the Quit option from

the File menu option. Both will bring up a con�rmation window asking if you really want

to exit step.

9.2 mux-sem: Mutual Exclusion

We now assume that you have started step and are able to load program and speci�cation

�les. The program and speci�cations mentioned in this section are available in the directory

examples/mux-sem.

local y : integer where y = 1

P1 ::

2
666664
`0: loop forever do2
6664
`1: noncritical

`2: request y

`3: critical

`4: release y

3
7775

3
777775 jj P2 ::

2
666664
m0: loop forever do2
6664
m1: noncritical

m2: request y

m3: critical

m4: release y

3
7775

3
777775

Figure 9.1: Program mux-sem (mutual exclusion by semaphores)

We begin with the proof of two simple safety properties for the program mux-sem,

shown in Figure 9.1: the �rst, '1, states that y is always greater than 0, and the second,

'2, expresses mutual exclusion. These properties are expressed by the formulas

'1 : 0 (y � 0)

'2 : 0 (:(`3 ^ m3))

or, in step's input format,

'1 : [](y >= 0)

'2 : []!(l3 /\ m3):

9.2. MUX-SEM: MUTUAL EXCLUSION 93

To illustrate the various methods available for veri�cation we will prove these properties in

a number of di�erent ways.

In this example we will load each property from a separate �le. Subsequent examples

will illustrate speci�cation �les with multiple properties, as well as entering goals directly.

9.2.1 Using B-INV

The �rst property, 0 (y � 0), is inductive, so we should in principle be able to be verify it

using rule B-INV. We can do this in the following steps:

1. Load the program mux-sem by loading the �le mux-sem.spl. This will bring up the

Program Text window shown in Figure 9.2. Apart from the program, it contains a

list of how the program's control locations correspond to step's internal variables.

Control locations are explained in detail in Appendix C.2. When an SPL program

is loaded, a fair transition system is automatically generated, which you can view by

selecting View Transitions from the File menu.

2. Load the speci�cation �le mux-sem/yge0.spec. The property appears in the current

goal window, as shown in Figure 9.3.

3. Enable automatic simpli�cation by selecting the Automatic Simpli�cation ON/OFF

option under the Settings menu.

4. Enable the use of decision procedures for linear arithmetic, by selecting the Simpli�-

cation Flags option under the Settings menu. A window with the title \Main Flags"

will appear, as shown in Figure 6.1. Click on the second switch to include decision

procedures for linear arithmetic in the standard simpli�cation, and press the OK

button.

(Throughout this tutorial we will assume that the decision procedures for equality are

also enabled; this is the default for step).

5. Click on the B-INV button in the action region. One by one, the veri�cation con-

ditions for all transitions are displayed in the current goal window, and the result

of their simpli�cation is displayed in the output window (see Figure 9.4). Since all

veri�cation conditions are simpli�ed to true , the proof is complete, as indicated.

The single original goal has now been proved, so there is no current (unproven) goal,

as indicated in the current goal window. The proved property is saved as a background

property and can be used in the proof of subsequent properties. The background properties

can be viewed by selecting the Activate/Deactivate option under the Properties menu. This

brings up a Property Checklist window, shown in Figure 9.5. By default, properties are

active and will be used in the proof of subsequent properties. However, you may deactivate

a property by clicking on the switch next to it.

Inactive properties can be reactivated later on; however, you may also entirely delete a

property by clicking on the skull.

To save the proof to a �le (in ASCII format), select the Save last proof option of the

File menu. The File Browser brings up a window with the title \Save completed proof".

94 CHAPTER 9. BASIC TUTORIAL

Figure 9.2: mux-sem program text window

9.2. MUX-SEM: MUTUAL EXCLUSION 95

Figure 9.3: Loaded speci�cation for mux-sem

Figure 9.4: Veri�cation of []y >= 0 for mux-sem

Figure 9.5: Background properties

96 CHAPTER 9. BASIC TUTORIAL

As when loading a �le, you can select an existing �lename or enter a new one. The default

extension for saved proofs is .search. The window also allows you to enter three lines of

text that will be added to the top of the �le as a comment. Finally, click on OK to save

your proof. Figure 9.6 shows the format of the saved proof.

% Proof of [](y>=0) for program mux-sem, with decision

% procedures for linear arithmetic turned on, using rule B-INV.

Formula abbreviations:

phi0: 0 <= y

Reduced via INV:

[]0 <= y

given the strengthening formula:

0 <= y

1 Established via Simplify: true

2 Established via Simplify: y = 1 /\ pi0 = 0 /\ pi1 = 0 --> 0 <= y

3 Established via Simplify: {phi0} idle {phi0}

4 Established via Simplify: {phi0} l0 {phi0}

5 Established via Simplify: {phi0} l1 {phi0}

6 Established via Simplify: {phi0} l2 {phi0}

7 Established via Simplify: {phi0} l3 {phi0}

8 Established via Simplify: {phi0} l4 {phi0}

9 Established via Simplify: {phi0} m0 {phi0}

10 Established via Simplify: {phi0} m1 {phi0}

11 Established via Simplify: {phi0} m2 {phi0}

12 Established via Simplify: {phi0} m3 {phi0}

13 Established via Simplify: {phi0} m4 {phi0}

Figure 9.6: Transcript for proof of [](y>=0) over mux-sem

9.2.2 Using G-INV

The next property we will prove, '2, expresses mutual exclusion. This property is not

inductive, even relative to the simple property '1 proved before. However, we can prove it

by strengthening the invariant being proved, as follows:

1. Load the speci�cation �le mux-sem/mux.spec. The property '2 will appear in the

current goal window.

2. Click on G-INV . This will bring up a window with the title \Input auxiliary

assertions". By default, the auxiliary assertion is the goal to be proven, so when

the default is used G-INV behaves exactly as B-INV. Now enter the following formula

after deleting the default one:

(l3+l4+m3+m4+y) = 1

9.2. MUX-SEM: MUTUAL EXCLUSION 97

and click on OK . If there is a syntax error in the entered formula, a message will be

displayed at the bottom of the entry window, and you will be asked to try again.

Using boolean terms such as l3 and m3 as integers is a convenient feature for writing

succinct speci�cations, and is called arithmetization. The boolean value true is also

interpreted as 1, and false as 0 (see Chapter 2).

After the strengthened assertion is entered, all veri�cation conditions are simpli�ed

to true and the proof is complete.

Note: The strengthened property only implies mutual exclusion based on the invariant

'1 : 0 (y � 0) that we proved before. If you do not prove this property before attempting

the proof of mutual exclusion, the Monotonicity veri�cation condition will fail to simplify

to true .

The basic but useful property y � 0 can also be generated automatically using step's

invariant generation tools. To see how this can be used, reset the searches with the Reset

searches option under the File menu, and repeat the two steps using G-INV above. The

Monotonicity property will not be simpli�ed to true . Now we can do the following:

3. Select the Get local invariants option from the Properties menu. Five invariants appear

in the output window. The �rst invariant, in Figure 9.7, is '1, the property we need.

Figure 9.7: Local invariants for mux-sem

4. Select the Simplify button. Now the Monotonicity condition should simplify to true ,

and the proof is complete.

Note also that these simpli�cation steps succeed only if the linear arithmetic decision

procedures are enabled. (This is done with the Simpli�cation Flags option under the Settings

menu). If they are not enabled, the Monotonicity premise will still fail to be simpli�ed to

true .

9.2.3 Using the Model Checker

Since program mux-sem is a �nite-state program we may use the Model Checker to prove

mutual exclusion, as follows:

98 CHAPTER 9. BASIC TUTORIAL

1. Load again the mutual-exclusion property from the mux-sem/mux.spec �le. (The

model checker does not use background properties, so you don't have to reset the

current background properties at this point.)

2. Click on the Modelcheck button. This will bring up a window titled \Input auxiliary

assertions". This window allows the user to enter additional assumptions under

which model checking is to be done. Since we don't need any, we can just click the

OK button. A File Browser window titled \Modelcheck log file" will appear.

Here, you have to specify a �le in which you want to have model checker results

recorded. The default extension of the model checker log �le is .mclog.

3. After the log �le is speci�ed, the model checker will run. We will then see in the

output window:

Modelcheck succeeded. The proof is COMPLETE.

The model checker log �le provides more detailed information, such as the number of

states explored. In general, however, the log �le is interesting only when the model

checker fails. In this case, the �le will include a counterexample computation, that is,

a computation of the system which violates the original property.

9.2.4 Using Veri�cation Diagrams

In the discussion of mux-sem, [Manna and Pnueli, 1995] presents a state-space partition

graph. This graph can easily be converted into the invariance veri�cation diagram shown in

Figure 9.8. This diagram may be used to prove mutual exclusion for mux-sem as follows:

1. Reset the background properties and current searches with the Reset searches option

under the File menu.

2. Load again the mutual-exclusion property from the mux-sem/mux.spec �le.

3. Select the Edit diagram option under the Diagrams menu. This brings up the Veri�-

cation Diagram Editor.

4. Select the Load option under the Filemenu in the Veri�cation Diagram Editor window.

This brings up the File Browser.

5. Select the �le mux-sem/state-partition.diagram. This loads the veri�cation dia-

gram, which is displayed in the editor window, as shown in Figure 9.8.

6. Select the Current-to-Verify option of the File menu of the Veri�cation Diagram Editor.

This will make the veri�cation diagram accessible to the Top-level Prover.

7. Select the Veri�cation diagram rule option of the Diagrams option. This generates all

the veri�cation conditions corresponding to the given veri�cation diagram as subgoals.

If automatic simpli�cation is enabled, the simpli�er will proceed to simplify each

subgoal.

9.2. MUX-SEM: MUTUAL EXCLUSION 99

Figure 9.8: Invariance veri�cation diagram for mux-sem

100 CHAPTER 9. BASIC TUTORIAL

The �rst two subgoals are side veri�cation conditions . They state that the label on

each of the nodes implies the invariant to be proven, and that the initial condition

implies the label of one of the nodes. Then the veri�cation conditions corresponding

to each of the edges in the diagram are simpli�ed (including those for the implicit

self-loops). In this case, all veri�cation conditions simplify to true (even without the

linear arithmetic decision procedures), and the proof is complete.

9.2.5 Using MON-I and Linear Invariants

Finally, we show how we can prove '2 based on '1 and automatically generated linear

invariants :

1. Load the examples/mux-sem.spl program and prove '1 : 0 (y � 0) using B-INV, as

described in Section 9.2.1.

2. Load the goal '2 from examples/mux.spec.

3. Select the Get global linear invariants option under the Properties menu. This will

automatically generate a number of linear invariants which are added to the set of

background properties, including

0 (l0 + l1 + l2 = m3 +m4 + y):

Your set of background properties should now contain this formula, as well as '1.

4. Make sure that linear decision procedures are enabled (with the Simpli�cation Flags

option under the Settings menu).

5. Select the MON-I rule under the Logical rules menu. This will generate a single veri-

�cation condition as the subgoal, stating that the conjunction of all the background

invariants implies the original goal.

6. Click on the Simplify button; the veri�cation condition will be simpli�ed to true , and

the proof is complete. (If automatic simpli�cation is ON, this simpli�cation will be

done automatically after MON-I is invoked.)

9.3 mux-pet1: Invariance Strengthening

In this section we illustrate the construction of the proof tree with the program mux-pet1,

shown in Figure 9.9. The program and speci�cation used in this section can be found in

the �les mux-pet1/mux-pet1.spl and mux-pet1/mux.spec respectively.

9.3.1 Using WPC

Mutual exclusion for mux-pet1 is not an inductive property. Instead of �nding a strength-

ened assertion and using G-INV, as we did for program mux-sem, we use step to do the

strengthening for us:

9.3. MUX-PET1: INVARIANCE STRENGTHENING 101

local y1; y2 : boolean where y1 = y2 = F

s : [1::2]

P1 ::

2
66666664

`0: while T do2
666664
`1: noncritical

`2: (y1; s) := (T; 1)

`3: await :y2 or s = 2

`4: critical

`5: y1 := F

3
777775

3
77777775

jj P2 ::

2
66666664

m0: while T do2
666664
m1: noncritical

m2: (y2; s) := (T; 2)

m3: await :y1 or s = 1

m4: critical

m5: y2 := F

3
777775

3
77777775

Figure 9.9: mux-pet1 Peterson's algorithm for mutual exclusion

1. Load the program mux-pet1.spl and the mutual exclusion property mux.spec from

the mux-pet1 directory.

2. Turn automatic simpli�cation on by selecting the Automatic Simpli�cation ON/OFF

option under the Settings menu.

3. Generate local invariants by selecting the Get local invariants from the Properties menu.

4. Invoke rule B-INV. As may be expected, the veri�cation conditions for `3 and m3 do

not simplify to true, since they are not valid. The �rst unproven veri�cation condition

is now displayed in the current goal window (in unsimpli�ed form). The other open

subgoal, the veri�cation condition for `3, can be viewed by selecting the Next button.

Again selecting Next goes back to the previous goal.

The Proof Tree

We interrupt our proof for a moment to look at the construction of the proof tree. We started

with the property we wanted to prove as the single top-level goal. This goal is the root of

the proof tree. When rule B-INV was applied, 15 subgoals were generated in this case: these

are the veri�cation conditions for monotonicity (always trivial for B-INV), initial condition,

the idle transition, and the 12 program transitions. Since automatic simpli�cation was on,

all but two of these subgoals were immediately simpli�ed to true and closed, which left us

with two open goals.

The buttons Previous and Next allow you to cycle through the entire list of open

goals in the tree. Two other buttons that manipulate the proof tree are Undo and Redo .

Applying Undo to a subgoal returns to its parent in the proof tree, and the subgoal and

all its siblings are removed from the tree. However, they may be recovered by clicking on

Redo , which restores the proof tree in the reverse order that steps were undone.

When multiple properties are being proved at the same time, multiple proof trees are

maintained, each with its own set of open subgoals. The Next search and Select search

options under the Properties menu are used to move from one proof search to another.

102 CHAPTER 9. BASIC TUTORIAL

Finishing the Proof

We now continue with the proof:

5. Click on the WPC button, which stands for Weakest Pre-Condition. This generates

the subgoal 0 wpc(:(`4 ^ m4); m3), in this case

(:y1 _ s = 1) ^ pi1 = 3) :(pi0 = 4);

where pi1 = 3 stands for at m3 and pi0 = 4 stands for at `4 (you may check this

by looking at the control correspondence information provided in the Program Text

window).

6. The subgoal generated by WPC is again an invariance property. Thus, we can try to

prove it using B-INV again. Click on B-INV to prove this subgoal: all the veri�cation

conditions generated by B-INV are simpli�ed to true , closing this branch of the proof

tree.

7. We can do the same for the unproved veri�cation condition for `3, which is now the

only open goal left. Click again on the WPC button, and then on the B-INV . Again,

all veri�cation conditions are simpli�ed to true, thus closing this second branch. This

leaves us without any open goals in the tree, so the proof of our original top-level goal

is complete.

9.3.2 Using Tactics ?

In the previous section we manually applied WPC to the two veri�cation conditions that

were not valid. Applying weakest precondition to invalid veri�cation condition is a common

technique that often succeeds, so we may want the application to be automatic. This can

be done with the help of tactics . step provides a simple tactic language in which sequences

of rules can be speci�ed. The tactic language is described in detail in Chapter 6.3, and

more examples of tactics are presented in Section 6.3.5.

To prove mutual exclusion for mux-pet1 using tactics we do the following:

1. Load program mux-pet1.spl and the speci�cation �le mux.spec.

2. Select Get local invariants from the Properties menu.

3. Select Enter batchmode tactic from the Tactics menu. This will bring up a data entry

window with the title \Enter tactic".

4. Enter the following in this window:

repeat(B-INV;Simplify;Undo;WPC)

and click on OK . This will apply B-INV to the goal. All resulting subgoals will be

simpli�ed. For those subgoals that do not simplify to true, the simpli�cation will be

undone, going back to the unsimpli�ed veri�cation condition, to which WPC is then

applied. Then the process is repeated for all open subgoals. In this case, they are

9.3. MUX-PET1: INVARIANCE STRENGTHENING 103

invariance formulas, since WPC always generates an invariance formula. Application

of the tactic is repeated in this way until there are no open subgoals left. This involves

two iterations in this case, and the proof is complete.

Thus, mutual exclusion for mux-pet1 can be proved automatically by this tactic. Note

that the batchmode application of a tactic such as this one is risky, since it may not ter-

minate. However, tactics can be interrupted by clicking on the interrupt button (the step

logo) in the bottom-right corner of the main interface.

When applying a tactic for the �rst time, it is recommended to apply it in interactive

mode. In this way, the behavior of the tactic can be followed at each step, and the tactic

can be easily interrupted at any time.

9.3.3 Using veri�cation diagrams

The chain diagram given in Figure 5.1 is a high-level proof-outline for process P1's acces-

sibility to its critical section. It establishes that whenever P1 requests access to its critical

section it will eventually get there. When speci�ed in step this reads

l2 ==> <>l4:

To use the chain-diagram in proving this response property, assume we have already loaded

the program, selected automatic simplication, and generated local invariants as described

in Section 9.3.1. We now apply the following steps:

1. Select Enter new goal under the Properties menu. Enter the goal l2 ==> <>l4.

2. Invoke the diagram editor by selecting Edit veri�cation diagram in the Diagrams menu.

3. From the veri�cation diagram editor select Load in the File menu to load the veri�ca-

tion diagram mux-pet1/response.diagram. The diagram in Figure 5.1 should now

appear in the veri�cation diagram window.

4. Enable step's top-level interface to use the veri�cation diagram by selecting Current-

to-verify under the File menu in the veri�cation diagram editor.

5. Back in step's top-level interface use the veri�cation diagram as a rule by select-

ing Veri�cation diagram rule from the Diagrams menu. The 88 veri�cation conditions

generated from the veri�cation diagram will now all simplify to true automatically.

104 CHAPTER 9. BASIC TUTORIAL

Appendix A

Computational Model

A.1 Fair Transition Systems

An SPL program is compiled into a fair transition system. A fair transition system

hV;�; T ;J ; Ci is given by the following components:

� V : system variables, including both data variables and control variables.

� �: initial condition, which is a satis�able assertion characterizing all the initial states

of a computation.

� T : set of transitions. Each transition � 2 T is a function

� : � 7! 2�;

where � is the set of all states, and a state is a type-consistent interpretation of V .

Each state in �(s) is called a � -successor of s. A transition � is said to be enabled on

S if �(s) 6= ;. Otherwise it is said to be disabled.

� J � T : the set of just transitions (also called weakly fair transitions).

� C � T : the set of compassionate transitions (also called strongly fair transitions).

Each transition � 2 T is represented by a �rst-order formula ��(V; V
0), called the transi-

tion relation, which may refer to both unprimed and primed versions of the system variables.

The transition relation expresses the relation holding between a state s and any of its � -

successors s0 2 �(s). The unprimed version of a variable refers to its value in s, and the

primed version refers to its value in s0.

Thus, the state s0 is a � -successor of the state s if the formula ��(V; V
0) evaluates to

true, when we interpret each x 2 V as s[x], and its primed version x0 as s0[x].

If not explicitly speci�ed, step adds to each fair transition system the idling transition

�I (also called the stuttering transition), whose transition relation is �I : (V = V 0).

105

106 APPENDIX A. COMPUTATIONAL MODEL

A.2 Computations

An in�nite sequence of states

� : s0; s1; s2; : : :

is de�ned to be a computation of a fair transition system P if it satis�es the following

requirements:

� Initiality: s0 is initial, that is, it satis�es the initial condition.

� Consecution: For each j = 0; 1; : : : the state sj+1 is a � -successor of the state sj .

� Justice: For each transition � 2 J , it is not the case that � is continually enabled

beyond some position j in � but not taken.

� Compassion: For each transition � 2 C, it is not the case that � is enabled at in�nitely
many positions in � but taken at only �nitely many positions.

A.3 SPL semantics

System Variables

The system variables V consist of the program variables declared in the program, and a set

of control variables (approximately one for each spawned subprocess), and a set of location

variables (one for each label in the program). A control variable ranges over a subset of

the integers, where each value corresponds to a location in a process (see Section C.2). A

location variable is a boolean variable with the same name as a program label. Its value

is true i� control currently resides at the location of the label, i.e., i� one of the control

variables equals the value of the corresponding location.

Initial Condition

The initial condition � for program P , with n top-level processes, is de�ned as

� : �0 = 0 ^ �1 = 0 ^ : : : ^ �n = 0 ^ ';

where ' is the conjunction of all the assertions that appear in the where clause of the

declaration of P . For a parameterized program, with top-level processes P [i], 1 � i � N ,

the initial condition is given by

� : 8i : [1 : : :N]:�0[i] = 0 ^ ':

Transitions

A transition relation is de�ned for each of the statements in the language.

To make the de�nitions more succinct, we de�ne the abbreviation

moveS(`; b̀) : �S = val(`) ^ �0S = val(b̀) ^ loc(`) ^ loc(b̀0);

A.3. SPL SEMANTICS 107

where �S refers to the control variable of the innermost subprocess in which the statement

S appears, and val(`) refers to the integer value associated with the location of `, and loc(`)

refers to the location variable associated with the location of `.

Since every transition usually modi�es only a few variables, we de�ne

pres(U) :
^
u2U

(u0 = u);

where U � V . It states that all variables in U preserve their value at the current step.

In the following we represent a statement S with label ` and post-label b̀ in the form

[` : S; b̀]. For a statement [` : S; b̀] we denote by YS , V �f�S ; loc(`); loc(b̀)g. Unless otherwise
speci�ed, all transitions are Just.

Basic Statements

� Skip

Statement: ` : skip; b̀ :
Transition relation:

�` : moveS(`; b̀) ^ pres(YS)

� Assignment

Statement: ` : �u := �e; b̀ :
Transition relation:

�` : moveS(`; b̀) ^ �u0 = �e ^ pres(YS � f�ug):

The assignment is always enabled (if control is at the assignment statement), even if �e

is not in the range of �u, which may happen with e.g., range types. A proof obligation

to check for this type of runtime error is generated by the Check Runtime System

menu option of the Top-level Prover.

� Await

Statement: ` : await c; b̀ :
Transition relation:

�` : moveS(`; b̀) ^ c ^ pres(YS)

� Asynchronous Send

Statement: ` : �(e; b̀ :, where � is an asynchronous channel.

Unbounded channel Transition relation:

�` : moveS(`; b̀) ^ �0 = append(�; e) ^ pres(YS � f�g):

Bounded channel For a channel � with bound k, the transition relation is:

�` : moveS(`; b̀) ^ length(�) < k ^ �0 = append(�; e) ^ pres(YS � f�g):

To ensure that a process cannot be excluded from sending to a bounded channel if

it is in�nitely often non-full, we associate the Compassionate justice requirement

with this transition.

108 APPENDIX A. COMPUTATIONAL MODEL

� Asynchronous Receive

Statement: ` : �) u; b̀ :
Transition relation:

�` : move(`; b̀) ^ length(�) > 0 ^ u0 = head(�) ^ �0 = tail(�) ^ pres(YS �fu; �g):

The asynchronous receive statement is enabled only if the channel is currently nonempty.

To ensure that a process must receive something if the channel is in�nitely often non-

empty, the Compassionate fairness requirement is associated with this transition.

� Synchronous Send-Receive

With each pair of matching send and receive statements:

` : � (e; b̀ : m : �) u; bm :

where two parallel statements are considered matching if they form an �(e, �) u

pair for some e and u for the same synchronous channel �.

Transition relation:

�h`;mi : �send = val(`) ^ �0send = val(b̀) ^
�receive = val(m) ^ �0receive = val(bm) ^ :loc(`) ^

loc(b̀) ^ :loc(m) ^ loc(bm) ^
u0 = e ^ pres(Ysend;receive)

Thus, transition �h`;mi is enabled if control is at ` and m simultaneously. When

executed, the transition causes joint progress in the two processes containing the send

and receive statement.

The fairness requirement associated with the generated transitions is Compassionate,

to ensure that a process cannot wait to transmit or receive a message inde�nitely if

in�nitely many messages are sent on the channel it is waiting on.

� Request

With the statement `: request(r); b̀:, we associate a transition �`, with the transition
relation

�`: move(`; b̀) ^ r > 0 ^ r0 = r � 1 ^ pres(YS�frg):

Thus, this statement is enabled when control is at ` and r is positive. When executed

it decrements r by 1.

To model fair scheduling of semaphores (in the form of for instance single or multi-level

feedback queues), the transition associated with request is Compassionate.

� Release

With the statement `: release(r); b̀:, we associate a transition �`, with the transition
relation

�`: move(`; b̀) ^ r0 = r + 1 ^ pres(YS�frg):

This statement increments r by 1.

A.3. SPL SEMANTICS 109

� Noncritical

With the statement `: noncritical; b̀:, we associate a transition �`, with transition

relation

�`: move(`; b̀) ^ pres(YS):

Thus, the only observable action of this statement is to terminate. The situation that

execution of the noncritical section does not terminate is modeled by a computation

that does not take transition �`. This is allowed by excluding �` from the justice set.

� Critical

With the statement `: critical; b̀:, we associate a transition �`, with transition relation
�`: move(`; b̀) ^ pres(YS):

The only observable action of the critical statement is to terminate.

� Produce

With the statement `: produce x; b̀:, we associate a transition �`, with transition

relation

�`: move(`; b̀) ^ x0 6= 0 ^ pres(YS�fxg):

The observable action of the produce statement is to assign a nonzero value to variable

x. Note that this transition is nondeterministic; that is, a state s may have more than

one �`-successors. In fact it may have in�nitely many successors, one for each possible

value of x0.

� Consume

With the statement `: consume y; b̀:, we associate a transition �`, with transition

relation

�`: move(`; b̀) ^ y0 = 0 ^ pres(YS�fyg):

The observable action of the consume statement is to set variable y to zero.

� Guarded Assignment

Statement: ` : guard c do �u := �e; b̀ :
Transition relation:

�` : c ^ moveS(`; b̀) ^ �u0 = �e ^ pres(YS � f�ug):

The assignment is enabled if control is at the assignment statement and c evaluates

to true . Run-time type errors are not considered in the enabling condition of the

transition. As with standard assignment, the possibility of run-time errors can be

checked with the Check Runtime System option under the Properties menu.

Composite Statements

Standard control constructs and primitives for concurrency compose simpler program state-

ments into more elaborate statements. A composite statement is in general of the form

C[S1; :::Sn], where S1; : : : ; Sn are the immediate substatements. The transitions associ-

ated with a composite statement comprise of the union of the transitions associated with

110 APPENDIX A. COMPUTATIONAL MODEL

S1; : : : ; Sn and the transitions associated with the construct C. Below we describe the tran-

sitions associated with each construct. Here YS refers to all system variables except the

control and location variables changed by each construct.

� Conditional

One-way With the statement `: [if c then è:S] ; b̀ :, we associate a transition �`,

with the transition relation

�`:

0
B@ c ^ move(`; è)

_

:c ^ move(`; b̀)
1
CA ^ pres(YS):

According to �`, when c evaluates to true control moves from ` to è, and when

c evaluates to false control moves from ` to b̀.
Two-way With the statement `: [if c then è

1:S1 else è2:S2] ; b̀ :, we associate a
transition �`, with the transition relation

�`:

0
B@ c ^ move(`; è1)

_

:c ^ move(`; è2)
1
CA ^ pres(YS):

According to �`, when c evaluates to true control moves from ` to è1, and when

c evaluates to false control moves from ` to è2.
� While

With the statement `: [while c do [è: eS]]; b̀ : we associate a transition �`, with the

transition relation

�`:

0
B@ c ^ move(`; è)

_

:c ^ move(`; b̀)
1
CA ^ pres(YS):

According to �`, when c evaluates to true control moves from ` to è, and when c

evaluates to false control moves from ` to b̀. Note that, in this context, the post-

location of eS is `. Note also that the enabling condition of �` is at `, which does not

depend on the value of c.

� Loop forever

With the statement `: [loop forever do [è: eS]]; b̀ : we do not associate any transi-

tions. However the locations `, è and post-location of eS are equivalent.

� Repeat until

With the statement `: [repeat [è: eS]b̀1: until c]; b̀2: we associate a transition �b̀
1

,

with the transition relation

�b̀
1

:

0
B@ c ^ move(b̀1; b̀2)

_

:c ^ move(b̀1; `)
1
CA ^ pres(YS):

A.3. SPL SEMANTICS 111

According to �b̀
1

, when c evaluates to true control moves from b̀
1 to b̀2, and when c

evaluates to false control moves from b̀
1 to `. The enabling condition of �b̀

1

is at b̀1,
which does not depend on the value of c. Note that the locations ` and èare equivalent.

� When

With the statement `: [when c do [è: eS]]; b̀ : we associate a transition �`, with the

transition relation

�`: c ^ move(`; è) ^ pres(YS):

According to �`, when c evaluates to true control moves from ` to è.
� Or

No special transition is associated with the statement S1 or S2:When control resides

at this statement, it is interpreted to reside simultaneously at the starting points of

S1 and S2.

� Cooperation

With the statement `: [`1: S1: b̀1]jj[`2: S2: b̀2]jj : : : jj[̀ n: Sn: b̀n] b̀: we associate two

transitions, �`Entry and �`Exit , with transition relations:

�`Entry : move(`; f`1; `2; : : : ; `ng) ^ pres(YS):

�`Exit : move(fb̀1; b̀2; : : : ; b̀ng; b̀) ^ pres(YS):

All they do is to move control from the guarding location ` into the prelocation of

each parallel statement, and from the post-location of each parallel statement to the

post-location b̀ of the entire statement.
step makes a special case for parallel composition at the top-level of the program.

They do not get a designated pre- and post-location, but the initial state is instead

what corresponds to `1; `2; : : : ; `n in the schema.

� Concatenation

No special transition is associated with sequential composition of statements:

S1 ; S2

Since the post-location of S1 is the pre-location of S2 the transitions generated from

each substatement S1 and S2 will move control appropriately from S1 to S2.

� Parameterized Cooperation

With the statement `: i : [1::N]: jj [`[i]: S[i] b̀[i]:] b̀: we associate two transitions ,
�`Entry and �`Exit , with transition relations:

�`Entry : move(`; f`[i] j i = 1; : : : ; Ng) ^ pres(YS):

�`Exit : move(fb̀[i] j i = 1; : : : ; Ng; b̀) ^ pres(YS):

They are the parameterized versions of the transitions associated with non-parameterized

cooperation.

112 APPENDIX A. COMPUTATIONAL MODEL

� Parameterized Or

No special transition is associated with parameterized selection. This re
ects that the

construct is the parameterized version of standard or.

� Blocks

Blocks are used to encapsulate variable declarations, and don't generate transitions

on their own.

Grouped Statements

To compose several simple statements into one atomic entity, SPL provides the grouping

construct << >>. For instance the transition associated with a grouped statement of the

form << S1;S2 >> is the relational composition of their transition relations.

Appendix B

Linear-Time Temporal Logic

As a requirement speci�cation language for reactive systems, we take linear-time temporal

logic. There is an underlying �rst-order assertion language L over interpreted symbols for

expressing functions and relations over concrete domains such as the integers, arrays, and

lists of integers (see Section 2.1).

We refer to a formula in the assertion language L as a state formula, or simply as an

assertion. A temporal formula is constructed out of state formulas by applying the boolean

operators : and _ (the other boolean operators can be de�ned from these), and temporal

operators. There are two classes of temporal operators, future and past . The future and

past temporal operators used in step are presented in Tables B.1 and B.2, respectively.

Operator Name step representation

0 p Henceforth p []

1 p Eventually p <>

p U q p Until q Until

pW q p Waiting-for (Unless) q Awaits

2 p Next p ()

Table B.1: Future Temporal Operators

Operator Name step representation

` p So-far p [-]

Q p Once p <->

p S q p Since q Since

pB q p Back-to q Backto

� q Previously p (-)

Table B.2: Past Temporal Operators

A model for a temporal formula p is an in�nite sequence of states � : s0; s1; : : : ; where

each state sj provides an interpretation for the vocabulary of p, i.e., the variables occurring

in p. For a given state sj and state formula q, we write sj q q when q is true when evaluated

over sj . Given a model �, we now present an inductive de�nition for the notion of a temporal

formula p holding at a position j � 0 in �, written as (�; j) q p:

113

114 APPENDIX B. LINEAR-TIME TEMPORAL LOGIC

� For a state formula p,

(�; j) q p () sj q p

That is, we evaluate p locally, using the interpretation provided by sj .

� (�; j) q :p () (�; j) q= p

� (�; j) q p _ q () (�; j) q p or (�; j) q q

� (�; j) q 0 p () for all k � j, (�; k) q p

� (�; j) q 1 p () for some k � j, (�; k) q p

� (�; j) q p U q () for some k � j, (�; k) q q,

and (�; i) q p for every i such that j � i < k

� (�; j) q pW q () (�; j) q p U q or (�; j) q 0 p

� (�; j) q 2 p () (�; j + 1) q p

For past operators, we have:
� (�; j) q ` p () for all k, 0 � k � j, (�; k) q p

� (�; j) q Q p () for some k, 0 � k � j, (�; k) q p

� (�; j) q p S q () for some k, 0 � k � j, (�; k) q p

and for every i such that k < i � j, (�; i) q p

� (�; j) q p B q () (�; j) q p S q or (�; j) q ` p

� (�; j) q � p () j > 0 and (�; j � 1) q p

Another useful derived operator is the entailment operator, de�ned by: p) q () 0 (p! q).

For a state formula p and a state s such that p holds on s, we say that s is a p-state. A

state formula that holds on all states is called state-valid .

For a temporal formula p and a position j � 0 such that (�; j) q p, we say that j is a

p-position (in �). If (�; 0) q p, we say that p holds on �, and write it as � q p. A formula

p is called satis�able if it holds on some model. A formula is called (temporally) valid if it

holds on all models.

Two formulas p and q are de�ned to be equivalent , written as p � q, if the formula

p $ q is valid, i.e., � q p i� � q q, for all models �. We adopt the convention by which a

formula p that is claimed to be valid is state-valid if p is an assertion, and is temporally

valid if p contains at least one temporal operator.

The formulas p and q are de�ned to be congruent , written as p � q, if the formula

0 (p $ q) is valid, i.e., (�; j) q p i� (�; j) q q, for all models � and all positions j � 0. If

p � q then p can be replaced by q in any context, i.e., '(p) � '(q) for any formula '(p)

containing occurrences of p.

The notion of (temporal) validity requires that the formula holds over all models. Given

a program P , we can restrict our attention to the set of models which correspond to com-

putations of P , i.e., Comp(P). This leads to the notion of P -validity, by which a temporal

formula p is P -valid (valid over program P) if it holds over all the computations of P .

Obviously, any formula that is temporally valid is also P -valid for any program P . In a

similar way, we obtain the notions of P -satis�ability and P -equivalence.

A state s that appears in some computation of P is called a P -accessible state. A state

formula is called P -state valid if it holds over all P -accessible states. Obviously, any state

formula that is state-valid is also P -state valid for any program P .

Again, we refer to a P -state valid formula simply as P -valid.

Appendix C

Di�erences with the Book

step was implemented based on [Manna and Pnueli, 1995]. However, due to implementation

considerations and limitations, there are some di�erences between step and [Manna and

Pnueli, 1995], hereafter referred to as MP95. For the convenience of those using step

together with MP95, this appendix highlights most of the di�erences. These are deviations

from the syntax of programs as well as di�erences in speci�cation style.

C.1 SPL Programs

step closely follows the SPL syntax described in MP95. However, some constructs had

to be translated into an ASCII equivalent. To ease transcribing programs from the book,

Table C.1 presents each statement as it appears in MP95 and its representation in step. In

the table, u refers to an arbitrary variable, �u refers to a list of variables (i.e., u1; : : : ; un),

e refers to an arbitrary expression, �e refers to a list of expressions, z refers to an arbitrary

channel, and S refers to an arbitrary statement.

Table C.2 presents the various types of expressions as they appear in MP95 and their

representation in step. Again, e is an arbitrary expression, u is an arbitrary variable, and

�e refers to a list of expressions.

The various types allowed in step are presented in Table C.3. In this table, e is an

arbitrary expression, u is an arbitrary variable, b is an arbitrary base type, t is an arbitrary

base or simple type, and T is an arbitrary type (i.e., base, simple or complex). A range in

step is written e1::e2.

C.2 Control Locations in step

As in MP95, step uses control variables to indicate where the current program control

resides. However, MP95 uses a single control variable �, whose value is the set of locations

where control currently resides. step, on the other hand, uses a set of control counters

where each control counter has its own subscript. We illustrate the di�erences between

MP95 and step with an example.

Consider the program schema presented in Figure C.1, which lists the value of the

control variable � (in italics) as it is used in MP95. In the �gure, Si refers to any simple

115

116 APPENDIX C. DIFFERENCES WITH THE BOOK

Class In MP95 In step Description

Simple skip skip skip

u := e u := e single assignment

(�u) := (�e) (�u) := (�e) multiple assignment

await e await e await

z (e z <== e send

z) u z ==> u receive

request r request r request

release r release r release

Schematic noncritical noncritical noncritical

critical critical critical

produce u produce u produce

consume u consume u consume

choose u choose u choose

Compound if e then S1 if e then S1 1-branch cond.

if e then S1 else S2 if e then S1 else S2 2-branch cond.

S1; S2 S1; S2 concatenation

when e do S when e do S when

S1 or S2 S1 or S2 selection

while e do S while e do S while loop

repeat S until e repeat S until e repeat

loop forever do S loop forever do S loop forever

S1 jjS2 S1 || S2 cooperation

[local decl; S] [local decl; S] block

M

OR
j=1

P [j] :: S[j] or P [j : [1::M]]::S[j] param. selection

M

OR
j=1

S[j] or j : [1::M].S[j] param. selection

M

j=1

P [j] :: S[j] || P [j : [1::M]]::S[j] param. cooperation

M

j=1

S[j] || j : [1::M].S[j] param. cooperation

Grouped hSi << S >> group

Table C.1: The statements of spl

C.2. CONTROL LOCATIONS IN STEP 117

In MP95 In step Description

T true true

F false false

integer integer integer value

u u variable

u[e] u[e] array access

(e) (e) parenthesized expression

(�e) (�e) tuple of expressions

e1 = e2 e1 = e2 equal

e1 6= e2 e1 != e2 not equal

e1 < e2 e1 < e2 less than

e1 > e2 e1 > e2 greater than

e1 � e2 e1 <= e2 less than or equal to

e1 � e2 e1 >= e2 greater than or equal to

�e -e unary minus

e1 mod e2 e1 mod e2 modulo

e1 div e2 e1 div e2 integer division

e1 + e2 e1 + e2 addition

e1 � e2 e1 - e2 subtraction

e1 � e2 e1 * e2 multiplication

e1=e2 e1 / e2 rational division
e2Y

i=e1

e Prod i:[e1..e2].e product

e2X
i=e1

e Sum i:[e1..e2].e summation

:e ~e negation

:e !e negation

e1 ^ e2 e1 /\ e2 conjunction

e1 _ e2 e1 \/ e2 disjunction

e1 ! e2 e1 --> e2 implication

e1 $ e2 e1 <--> e2 equivalence

8 u: e Forall u: e universal quanti�cation

9 u: e Exists u: e existential quanti�cation

9! u: e Exists! u: e unique existential quant.

Table C.2: spl expressions

118 APPENDIX C. DIFFERENCES WITH THE BOOK

Class In MP95 In step Description

Base type integer int integer

boolean bool boolean

rational rat rational

Simple type [range] [range] range type

t1 � � � � � tk t1 * � � � * tk tuple type

f values g f values g enumeration type

Complex type array [ranges] of T array [ranges] of T array type

channel of b channel of b synchronous

channel [1::] of b channel [1..] of b unbounded asynch.

channel [range] of b channel [range] of b bounded asynch.

(T) (T) parenthesized type

Table C.3: spl types in step

or schematic statement (i.e., any statement that has no substatements). The step version

of the same program schema is presented in Figure C.2, which lists all the control counters

used (in italics) and their value.

The following highlights the similarities and di�erences between step's interpretation

of control counters and the MP95 use of the control variable �:

1. step: The ordering of the labels does not a�ect the value of the control counters.

For example, if we renamed label l2 to be l25, the control counters would still have

the same values. In general, the program counter pi-j associated with the process Pj
starts at 0 and increases by 1 as control proceeds sequentially through the process.

MP95: The ordering of the labels does a�ect the value of the control variable �. So, in

the above example, if we rename `2 to `25 then � = f`2g would change to � = f`25g.

2. step: A cooperation statement amongN processes employs N control counters. If the

cooperation is a top-level cooperation statement (i.e., no entry and exit transitions)

then the program has only N control counters. This is not the case in Figure C.2,

where the cooperation statement has entry and exit transitions. In this case, we

have two control counters, pi1 and pi2, in addition to pi0, whose value within the

cooperation statement is constant.

MP95: There is always only one control variable, called �.

C.2. CONTROL LOCATIONS IN STEP 119

P1 ::

2
664

`0: (� = f`0g) S0

`2: (� = f`2g) S1

`3: (� = f`3g)

2
66666666664

P2 ::

2
64m0: (m0 2 �) S2

m1: (m1 2 �) S3

m2: (m2 2 �)

3
75

P3 ::

"
k0: (k0 2 �) S4

k1: (k1 2 �)

#

3
77777777775

`4: (� = f`4g)

2
66666666666666666666666666664

2
66666664

m4: (� = fm4g) S5

m5: (� = fm5g) S6

m6: (� = fm6g) S7

m7: (� = fm7g) S8

m8: (� = fm8g)

3
77777775

or2
66664
k4: (� = fk4g) S9

k5: (� = fk5g) S10

k6: (� = fk6g) S11

k7: (� = fk7g)

3
77775

or"
j4: (� = fj4g) S12

j5: (� = fj5g)

#

3
77777777777777777777777777775

`5: (� = f`5g) S13

`6: (� = f`6g)

3
775

Figure C.1: Program schema illustrating MP95's use of the control variable �

120 APPENDIX C. DIFFERENCES WITH THE BOOK

P1:: [l0: (pi0=0) S0;

l2: (pi0=1) S1;

l3: [(pi0=2)

P2:: [m0: (pi0=3, pi1=0) S2;

m1: (pi0=3, pi1=1) S3;

m2: (pi0=3, pi1=2)

]

||

P3:: [k0: (pi0=3, pi2=0) S4;

k1: (pi0=3, pi2=1)

]

];

l4: [(pi0=4)

[m4: (pi0=4) S5;

m5: (pi0=5) S6;

m6: (pi0=6) S7;

m7: (pi0=7) S8;

m8: (pi0=10)

]

or

[k4: (pi0=4) S9;

k5: (pi0=8) S10;

k6: (pi0=9) S11;

k7: (pi0=10)

]

or

[j4: (pi0=4) S12;

j5: (pi0=10)

]

];

l5: (pi0=10) S13;

l6: (pi0=11)

Figure C.2: Program schema illustrating step's use of control counters

C.3. TYPE DECLARATIONS 121

3. In both step and MP95, the same rules govern the notion of label equivalence.

step: This is achieved by assuming label-equivalent locations the same control-counter

values.

MP95: This is achieved by using the notational convenience that a label `i really

refers to its (label) equivalence class [`i]. Consequently, `4 � m4 � k4 � j4 and

`5 � m8 � k7 � j5 (see page 13-14 in MP95).

Location equivalences

In step, a loop forever do statement does not generate a transition, so the pre-location

and post-location of this statement are equivalent. However, both locations are entered as

location variables in the symbol table and can thus be referred to in the speci�cation.

C.3 Type Declarations

In several programs MP95 uses multiple lines of declarations as follows:

in x; y; z: integer

a; b; c: bool

local d; e; f : integer

g; h; i: bool

In step each line of declarations must be preceded by the mode of the variable, so the

above has to be entered as:

in x,y,z: integer

in a,b,c: bool

local d,e,f: integer

local g,h,i: bool

C.4 Initialization

Array Initialization

In several programs MP95 uses the following construct to initialize an array:

in M : integer where M � 1

y: array[1::M] of integer where y = T

In step this causes an error due to the incompatible types of y and T. In step this has

to be written as:

in M: int where M >= 1

in x: array[1..M] of int where Forall i:[1..M] . y[i] = true

122 APPENDIX C. DIFFERENCES WITH THE BOOK

Channel Initialization

In MP95 a channel may be initialized as the empty channel with

send = �

In step this is accomplished with

length(send) = 0

In MP95 a channel may be initialized with values as follows:

ack = [1 : : : 1]| {z }
N

step does not provide a construct to initialize a channel in the where clause. If the initial

values matter, the channel has to be initialized explicitly within the program with, for

example, a while statement. If the initial values do not matter, which is the case for

program prod-cons-c of Figure 1.18 in MP95, the channel may be initialized with the

following where clause:

in N :int where N > 0

local send, ack: channel [1..] of int where length(ack) = N /\

length(send) = 0

C.5 Parameterized Programs

In MP95 (page 174), terms such as N3 are often used to denote the number of processes

residing at a particular location. This abbreviation is not available in step, so there are

two ways to express such formulas: In a formula of the form

N3 � 1

(i.e., the number of processes at location 3 is less than 1), the recommended step represen-

tation is the following:

Forall i:[1..N] . Forall j:[1..N] . (l3[i] /\ l3[j] --> i=j)

This may be generalized to small numbers greater than 1 using disjunction in the consequent.

When this representation is not possible, e.g., in a formula of the form

N3 + y = z

you can use Sum as follows:

(Sum i : [1::N] : l3[i]) + y = z

We discourage the use of Sum for the simpler cases because reasoning with Sum is more

di�cult than reasoning with quanti�ers only.

Appendix D

Distribution and Installation

Installation

step is available for platforms that are supported by Standard ML of New Jersey ver-

sion 1.08, including:

� Sun SPARC workstations (SunOS and Solaris)

� DEC Alpha workstations (OSF1)

You should have copied the distribution �le speci�c to your machine. The only di�erence

is in the binaries included with each.

Files associated with running step are located in the bin directory. The executable �les

are found in the .bin and .heap directories, and accessed through the STeP, polyserv, and

model checker scripts. These scripts determine the machine type and operating system,

using the .arch-n-opsys command, and then invoke the appropriate binary �le (from the

.run or .bin directory) on the given arguments. Thus, none of these �les should be moved

or renamed.

You can edit the STeP script to set the STEP DIR environment variable once and for all.

Note: These scripts use the /bin/sh shell; if this shell is not found, you should edit them

and change the �rst line to indicate the appropriate location (actually, ksh is preferred).

step Distribution

When the distribution has been untarred it will have created three directories:

� The bin directory containing binaries step, model checker, and polyserv for execut-

ing step, and from within it the model checker and utilities for generating polyhedral

invariants.

� The doc directory. It contains:

1. The step manual (postscript).

123

124 APPENDIX D. DISTRIBUTION AND INSTALLATION

2. The step Technical Report (postscript), STAN-CS-TR-94-1518, Stanford Com-

puter Science Department, June 1994. This report complements the step man-

ual by giving a high-level description of the system and its goals and some extra

technical details.

3. The list of known problems and bugs known-bugs.txt.

4. A quick installation guide installation.txt.

5. The text of the licence agreement license-agreement.txt.

6. The WWW subdirectory, which contains the help pages.

� The examples directory containing a selection of simple example programs and spec-

i�cations that can be veri�ed using step.

New releases will include updated help pages; please let us know how those pages, and

this manual, can be improved.

D.1 Example Programs

The examples directory adheres to the default �lename extensions used by the File Browser.

These conventions are shown in Table D.1.

Filename extension contents of �le

.spl SPL program

.trans transition system

.cts clocked transition system

.spec speci�cation

.search proof search

.diagram veri�cation diagram

.tactic tactic

.mclog modelchecker log�le

Table D.1: Filename conventions

The example programs and speci�cation �les listed in Tables D.2 and D.3 are included

in the distribution. They correspond to simple examples and exercises from [Manna and

Pnueli, 1995]. In most cases the user will have to complete the speci�cations for exercises

in order to succeed deductive veri�cation. Thus, possible answers to the exercises are not

included in the distribution. The directory mux-�sher contains a simple real-time protocol

implemented with Clocked Transition Systems.

D.1. EXAMPLE PROGRAMS 125

directory program �le speci�cation �les other �les

add-two add-two add-two.spl yge0.spec

l1x=2.spec

any-nat any-nat any-nat.spl

binom binom binom.spl part-corr.spec

str-part-corr.spec

binom-c binom binom-c.spl part-corr.spec

str-part-corr.spec

cube cube cube.spl part-corr.spec

diff-inc di�-inc di�-inc.spl psi.spec

dine dine dine.spl

dine-contr dine-contr dine-contr.spl

dine-excl dine-excl dine-excl.spl

double double double.spl

euclid euclid euclid.trans

fact fact fact.spl part-corr.spec

gcd gcd gcd.spl part-corr.spec

gcdm gcdm gcdm.spl part-corr.spec

inc inc inc.spl psi.spec psi.search

loop loop loop.trans phi3.spec

psi3.spec

loop+ loop loop+.trans phi3.spec

psi3.spec

Table D.2: Example programs and speci�cations

126 APPENDIX D. DISTRIBUTION AND INSTALLATION

directory program �le speci�cation �les other �les

max-array max-array max-array.spl part-corr.spec phi3.search

phi4.search

phi5.search

mpx-sem mpx-sem mpx-sem.spl

mux-bak-a mux-bak-a mux-bak-a.spl mux.spec

mux-bak-c mux-bak-c mux-bak-c.spl

mux-bak-d mux-bak-d mux-bak-d.spl

mux-dek mux-dek mux-dek.spl mux.spec

mux-dek-a mux-dek-a mux-dek-a.spl mux.spec

mux-dek-b mux-dek-b mux-dek-b.spl mux.spec

mux-fisher mux-�sher mux-�sher.cts mux-�sher.spec

mux-pet1 mux-pet1 mux-pet1.spl mux.spec mux.tactic

mux-vd.spec mux.diagram

simple-prec.spec

1bo.spec

1bo-vd.spec 1bo.diagram

mux-pet2 mux-pet2 mux-pet2.spl mux.spec mux.tactic

mux-vd.spec mux.diagram

1bo-back.spec

1bo.spec

1bo-vd.spec 1bo.diagram

mux-pet3 mux-pet3 mux-pet3.spl mux.spec mux.tactic

accessibility.spec accessibility.diagram

1bo.spec

mux-sem mux-sem mux-sem.spl mux.spec mux.search

state-partition.diagram

yge0.spec

mux-val3 mux-val3 mux-val3.spl mux.spec mux.diagram

mux-compound.diagram

prod-cons prod-cons prod-cons.spl no-over
ow.spec

prod-cons-c prod-cons prod-cons-c.spl no-over
ow-c.spec

prod-cons-sv prod-cons-sv prod-cons-sv.spl part-corr.spec

res-alloc res-alloc res-alloc.spl

res-nd res-nd res-nd.spl mux.spec

res3 res3 res3.spl mux.spec

sem3 sem3 sem3.spl mux.spec

sqrt sqrt sqrt.spl phi-hat.spec

sqrt-c sqrt sqrt-c.spl str-part-corr.spec

Table D.3: More example programs and speci�cations.

Appendix E

STeP Environment Variables

A number of UNIX environment variables can be set before running step. The only manda-

tory variables are STEP DIR, which indicates the directory where step resides, and the

DISPLAY environment variable, which should be set to the IP-address of your screen. If

these variables are not set, you will not be able to run step.

To set a UNIX environment variable, enter

setenv variable-name new-value

from the UNIX prompt. You can also add these commands to your .cshrc �le, to make

them the defaults when you log in.

General variables

� STEP DIR: Local step installation directory.

Default: /local/step.

� STEP BROWSER: The location of the WWW/http browser executable used for on-line help.

Default /usr/local/bin/mosaic.

� STEP AUTO SIMPLIFY: If this
ag is set to anything other than \OFF," this will cause

step to start with the automatic simpli�cation
ag (see Section 4.1) ON.

� STEP SHOW LOADED: Set this to \OFF," if you do not want loaded programs and tran-

sition systems to be automatically displayed.

Veri�cation Diagram settings

The following values can be increased when very large diagrams need to be drawn.

� STEP DIAGRAM WIDTH: Maximum width, in pixels, of the veri�cation diagram canvas.

Default: 1200.

� STEP DIAGRAM HEIGHT: Maximum height, in pixels, of the veri�cation diagram canvas.

Default: 1200.

127

128 APPENDIX E. STEP ENVIRONMENT VARIABLES

BDD-package settings

These variables control the amount of memory used by the BDD's.

� STEP BDD NODES: Maximum number of BDD nodes that are kept around by the BDD

package. After this maximum is reached, the BDD packages has to be reset for BDD-

based operations to succeed.

Default: 100,000.

� STEP BDD SPLIT: Maximum number of subgoals that are generated by the BDD-split

rule in the Top-level Prover and Interactive Prover. If this maximum is reached, the

BDD-split rule fails. (BDD split can generate exponentially many subgoals in the

worst case.)

Default: 1,000.

� STEP BDD CACHE: Size of the BDD result cache, used for e�cient BDD operations.

Default: 32,000.

Modelchecker and polyhedral invariant resources

The following variables limit the space and time used by the external Model Checker and

polyhedral invariant packages. The MC variables control the Model Checker, and the

POLY variables control the polyhedral invariant generator. Both of them will fail if any of

the limits is exceeded.

� STEP MC SPACE, STEP POLY SPACE: Maximum amount of memory, in Megabytes.

Default: unlimited.

� STEP MC TIME, STEP POLY TIME: Maximum amount of user time, in minutes.

Default: unlimited.

� STEP MC CPU, STEP POLY CPU: Maximum amount of CPU time, in minutes.

Default: unlimited.

Finally, remember that the interrupt button can be used to interrupt lengthy computations

in step.

Bibliography

[Bj�rner et al., 1995] N. Bj�rner, I.A. Browne, and Z. Manna. Automatic generation of

invariants and intermediate assertions. In First Intl. Conference on Principles and Prac-

tice of Constraint Programming, volume 976 of LNCS, pages 589{623, Cassis, France,

September 1995. Springer-Verlag.

[Bledsoe, 1975] W. W. Bledsoe. A new method for proving certain Presburger formulas.

In Proc. of the 4th International Joint Conference on Arti�cial Intelligence, pages 15{21,

Tbilisi, Georgia, USSR, September 1975.

[Boyer and Moore, 1988] R.S. Boyer and J S. Moore. Integrating decision procedures into

heuristic theorem provers: A case study with linear arithmetic. Machine Intelligence,

11:83{124, 1988.

[Bryant, 1986] R.E. Bryant. Graph-based algorithms for Boolean function manipulation.

IEEE Transactions on Computers, 35(8):677{691, August 1986.

[Bryant, 1992] R.E. Bryant. Symbolic boolean manipulation with ordered binary-decision

diagrams. ACM Computing Surveys, 24(3):293{318, September 1992.

[Dershowitz and Jouannaud, 1990] N. Dershowitz and J-P. Jouannaud. Rewrite systems.

In J. van Leeuwen, editor, Handbook of Theoretical Computer Science, chapter 6, pages

244{320. Elsevier Science Publishers, 1990.

[Gallier, 1987] J.H. Gallier. Logic for Computer Science|Foundations for Automatic The-

orem Proving. Wiley, New York, 1987.

[Harel, 1987] D. Harel. Statecharts: A visual formalism for complex systems. Sci. Comp.

Prog., 8:231{274, 1987.

[Hojati et al., 1993] R. Hojati, V. Singhal, and R.K. Brayton. Edge-Street/Edge-Rabin

automata environment for formal veri�cation using language containment. SRC report,

University of California, Berkeley, 1993.

[Kesten et al., 1993] Y. Kesten, Z. Manna, H. McGuire, and A. Pnueli. A decision algorithm

for full propositional temporal logic. In C. Courcoubetis, editor, Proc. 5th Intl. Conference

on Computer Aided Veri�cation, volume 697 of LNCS, pages 97{109. Springer-Verlag,

1993.

129

130 BIBLIOGRAPHY

[Kesten et al., 1996] Y. Kesten, Z. Manna, and A. Pnueli. Verifying clocked transition

systems. In Hybrid Systems III, LNCS. Springer-Verlag, 1996. To appear.

[Manna and Pnueli, 1991] Z. Manna and A. Pnueli. The Temporal Logic of Reactive and

Concurrent Systems: Speci�cation. Springer-Verlag, New York, 1991.

[Manna and Pnueli, 1994] Z. Manna and A. Pnueli. Temporal veri�cation diagrams. In

Proc. Int. Symp. on Theoretical Aspects of Computer Software, volume 789 of LNCS,

pages 726{765. Springer-Verlag, 1994.

[Manna and Pnueli, 1995] Z. Manna and A. Pnueli. Temporal Veri�cation of Reactive Sys-

tems: Safety. Springer-Verlag, New York, 1995.

[Manna and Waldinger, 1993] Z. Manna and R. Waldinger. The Deductive Foundations of

Computer Programming. Addison-Wesley, Reading, MA, 1993.

[McCune, 1992] W.W. McCune. Experiments with discrimination-tree indexing and path

indexing for term retrieval. J. Automated Reasoning, 9(2):147{67, October 1992.

[Nelson and Oppen, 1980] G. Nelson and D.C. Oppen. Fast decision procedures based on

congruence closure. J. ACM, 27(2):356{364, April 1980.

[Shostak, 1979] R.E. Shostak. A practical decision procedure for arithmetic with function

symbols. J. ACM, 26(2):351{360, April 1979.

[Stickel, 1989] M.E. Stickel. The path indexing method for indexing terms. Technical Note

473, SRI International, Menlo Park, CA, October 1989.

[Zhang, 1993] H. Zhang. Contextual rewriting in automated reasoning. Technical Report

Technical Report 93-07, Department of Computer Science, University of Iowa, August

1993.

Index

� [initial condition], 53

� -successor, 105

move(`; b̀), 107
pres(U), 107

T [set of transitions], 53

* [type constructor], 13

Model Checker, 56

environment variables, 128

1-Step-Propositional [ip-button], 85

abandon search [menu option], 44

AC: associative and commutative, 21

accessible state, 114

action region (top-level prover), 35

activate/deactivate [menu option], 41

Add-axiom [ip-button], 90

All-Propositional [ip-button], 90

append [syntax], 16, 24, 28

arithmetical operators [syntax], 16

arithmetization, 14, 34

array [type declaration], 13

array initialization

di�erence with book, 121

array reference [syntax], 16

arriving edge, 62

assign [example], 16

assign [syntax], 16, 28, 31

assign �eld, 29

assignable expression, 27

assignment [statement], semantics, 107

assignment relation, 29

ASSOCIATIVE, 21

associative functions

simpli�cation setting, 70

asynchronous receive [statement], seman-

tics, 108

asynchronous send [statement], semantics,

107

atomic tactic, 72

automatic simpli�cation, 52

automatic simpli�cation [menu option], 47

auxiliary variable, 9

auxiliary variables, 9, 22

await [statement], semantics, 107

await [syntax], 27

Awaits [operator], 14

Awaits [syntax], 16

axiom, 8, 18

entry, 45

in interactive prover, 90

B-BACKTO [tlp-button], 54

B-CAUS [tlp-button], 54

B-INV [tlp-button], 53

tutorial, 93

B-WAIT [tlp-button], 53

back-to rule

basic: B-BACKTO, 54

general: B-BACKTO, 54

background properties, 51

activating, 41

deactivating, 41

deselecting, 41

selecting, 41

background property, 8

Backto [operator], 14

Backto [syntax], 16

basic back-to rule, 54

basic causality rule, 54

basic invariance rule, 53

basic node, 62, 64

basic type, 13

basic wait-for rule, 53

131

132 INDEX

BDD

environment variables, 128

simpli�cation setting, 70

BDD-split, 71

BDD-split [ip-button], 90

binding operators, 17

Bool-simplify [top-level button], 71

bound variables, 15

bound variables [syntax], 16

branch-otherwise [tactic], 75

causality rule

basic: B-CAUS, 54

general: G-CAUS, 54

chain diagram, 61

channel [type declaration], 13

channel initialization

di�erence with book, 122

channel operations, 24

check runtime system [menu option], 45

clear text window [menu option], 48

clock [syntax], 31

clock variable, 32

clocked transition system, 32

syntax, 31

comments, 13

COMMUTATIVE, 21

commutative functions

simpli�cation setting, 70

comparison operators [syntax], 16

Compassionate [syntax], 31

compassionate edge, 65

compassionate transition, 105

Compound [menu option], 66

compound node, 62

computation, 106

computational model, 105

conditional rewrite rules

simpli�cation setting, 70

congruent formulas, 114

constructor, 19

consume [statement], semantics, 109

consume [syntax], 27

CONT [menu option], 56

contradiction rule, 56

control locations, 115

critical [statement], semantics, 109

critical [syntax], 27

current goal window

top-level prover, 35

Cut [ip-button], 89

datatype declaration, 19

declarations, 18

datatype, 19

in speci�cation �le, 18

macro, 21

type, 19

value, 21

variable, 21

deconstructor, 19

Delete [ip-button], 85

departing edge, 62

diagrams menu, 46

dining philosophers, 25

disabled transition, 105

DISPLAY environment variable, 3

Distribution, 123

div [operator], 14

div [syntax], 16

documentation, 124

double edge, 61

Duplicate [ip-button], 85

edit diagram [menu option], 46

else [tactic], 74

enable [syntax], 31

enable �eld, 29

enabled transition, 105

entailment (temporal operator), 114

enter axiom [menu option], 45

enter batch tactic [menu option], 46

enter interactive tactic [menu option], 46

enter new goal [menu option], 45

enumeration type, 19

environment variables, 127

Model Checker, 128

BDD settings, 128

DISPLAY, 3

polyhedral invariants, 128

veri�cation diagram, 127

INDEX 133

equality, 70

simpli�cation setting, 69

equational axiom, 22

equivalent formulas, 114

Euclid's algorithm, 30

example

Euclid's algorithm, 30

Exists [syntax], 16, 28

expressions, 14

in SPL programs, 28

syntax in speci�cations, 15

fair transition system, 9

de�nition, 105

fairness requirement

in transition, 30

Fast-simplify [top-level button], 71

feedback on STeP, 10

�le menu [top-level prover], 37

�lebrowser, 37

�lename conventions, 124

�rst (temporal logic abbreviation), 87

Flatten [ip-button], 85

exible variable, 9, 22

Forall [syntax], 16, 28

forest [example], 19

formulas

P -state valid, 114

congruent, 114

state-valid, 114

Free-Induction [ip-button], 89

Future temporal operators, 113

G-BACKTO [tlp-button], 54

G-CAUS [tlp-button], 54

G-INV [tlp-button], 53

tutorial, 96

G-WAIT [tlp-button], 53

general back-to rule, 54

general causality rule, 54

general invariance rule, 53

general wait-for rule, 53

get [...] invariants [menu option], 44

global time, 32

goal, 9

entry, 45

goal-session, 8

Group [menu option], 66

grouped statements, 25

guard [statement], semantics, 109

guard [syntax], 27

guarded assignment, 109

head [syntax], 16, 24, 28

help, 92

top-level prover, 35

help menu [top-level menu], 48

helpful transition, 61

Hide [ip-button], 85

hierarchical veri�cation diagrams, 67

edges, 68

parameter passing, 68

idling transition, 105

if-then [syntax], 27

if-then-else [syntax], 27

import node, 67

in [mode], 25

in [syntax], 27, 31

Induction [ip-button], 89

inequality

simpli�cation setting, 69

initial condition, 105, 106

Initially [syntax], 31

installation, 123

Instantiate [ip-button], 86

Interactive Prover

rules, 84

tlp-button, 49

Interactive Prover button

1-Step-Propositional, 85

Add-axiom, 90

All-Propositional, 90

BDD-split, 90

Cut, 89

Delete, 85

Duplicate, 85

Flatten, 85

Free-Induction, 89

Hide, 85

Induction, 89

Instantiate, 86

134 INDEX

Make �rst order, 88

Next, 88

Postpone, 85

Presburger, 89

PTL-expansion, 90

Redo, 85

Replace, 88

Rewrite, 88

Simplify, 85

Skolemize, 86

Undo, 84

Unhide, 85

internal node, 62

interrupt button, 37, 77, 128

Model Checker, 58

invariant generation, 79

simpli�cation, 70

tactics, 45

invariance diagram, 60

invariance rule

basic: B-INV, 53

general: G-INV, 53

invariants, 9

obtaining linear, 44

obtaining local, 44

polyhedral, 45

IP-address, 3

just edge, 65

just transition, 105

Justice [syntax], 31

length [syntax], 16, 24, 28

linear arithmetic

simpli�cation setting, 70

linear invariants [menu option], 44

load batch tactic [menu option], 45

load interactive tactic [menu option], 45

load program [menu option], 38

load speci�cation [menu option], 40

load transitions [menu option], 38

loading

batch tactic, 45

interactive tactic, 45

speci�cation, 40, 91

SPL programs, 38, 91

tactic, 45

transition system, 38

local [mode], 25

local [syntax], 27, 31

local invariants [menu option], 44

location disjunction [syntax], 16

location equivalence, 121

logical rules menu, 47

loop forever [syntax], 27

macro declaration, 21

mailing list, 10

Make �rst order [ip-button], 88

menu option

abandon search, 44

activate/deactivate, 41

automatic simpli�cation, 47

check runtime system, 45

clear text window, 48

CONT, 56

edit diagram, 46

enter axiom, 45

enter batch tactic, 46

enter interactive tactic, 46

enter new goal, 45

get [...] invariants, 44

load batch tactic, 45

load interactive tactic, 45

load program, 38

load speci�cation, 40

load transitions, 38

MON-C, 56

MON-I, 55

MON-W, 56

next search, 41

quit, 40

reset all, 40

reset BDDs, 48

reset searches, 40

save goal, 40

save properties, 40

save search, 40

save transitions, 40

select boxes, 84

select goal, 41

INDEX 135

select search, 44

simpli�cation
ags, 47

system information, 48

TRN-C, 56

veri�cation diagram rule, 46

view program text, 40

view transitions, 40

weakest precondition, 45

mod [operator], 14

mod [syntax], 16

mode (in declaration), 121

mode of variables, 25

model (of temporal formula), 113

Modelcheck [tl-button], 49

Modelcheck [tlp-button]

tutorial, 97

modifying relation, 29

modrel

[syntax], 31

�eld, 29

modvar �eld, 29

MON-C [menu option], 56

MON-I

tutorial, 100

MON-I [menu option], 55

MON-W [menu option], 56

monotonicity rule (causality), 56

monotonicity rule (invariance), 55

monotonicity rule (wait-for), 56

MUX-PET1

mutual exclusion, 100

MUX-SEM

mutual exclusion, 92

Next [ip-button], 88

next [tlp-button], 48

next search [menu option], 41

NoFairness [syntax], 31

noncritical [statement], semantics, 109

noncritical [syntax], 27

Nonterminal [menu option], 66

nonterminal node, 60

operator associativity, 17

operator precedence, 17

ORDER [syntax], 23

ordering relation, 22, 23

out [mode], 25

out [syntax], 27, 31

output window

top-level prover, 35

P-valid

formula, 114

veri�cation diagram, 60

parameter

in hierarchical veri�cation diagram, 68

parameterized programs, 25

parser help, 33

past formula, 10

past operators, 10

Past temporal operators, 113

polyhedral invariants

environment variables, 128

polyhedral invariants [menu option], 45

Postpone [ip-button], 85

precedence, 17

Presburger [ip-button], 89

Presburger decision procedure, 89

previous [tlp-button], 48

primed variable, 105

priming, 17

Prod [operator], 28

produce [statement], semantics, 109

produce [syntax], 27

Product [syntax], 16

program

loading, 91

program variables, 25

program veri�cation session

terminating, 40

Progress [syntax], 31

progress condition, 32

proof search, 51

proof tree

in Interactive Prover, 81

navigating, 52

tutorial, 101

properties menu, 41

PTL-expansion [ip-button], 90

quanti�ers, 17

136 INDEX

quit [menu option], 40

quitting step, 92

range [type declaration], 13

real-time systems, 32

receive statement [syntax], 27

Redo [ip-button], 85

redo [tlp-button], 48

release [statement], semantics, 108

release [syntax], 27

repeat (SPL construct) [syntax], 27

repeat [tactic], 74

Replace [ip-button], 88

request [statement], semantics, 108

request [syntax], 27

reset all [menu option], 40

reset BDDs [menu option], 48

reset searches [menu option], 40

Rewrite [ip-button], 88

REWRITE [syntax], 23

rewrite rule, 22, 23

rigid variable, 22

runtime errors, 45

save goal [menu option], 40

save properties [menu option], 40

save search [menu option], 40

save transitions [menu option], 40

saving

goal, 40

proof, 40, 93

properties, 40

transitions, 40

select boxes [menu option], 84

select goal [menu option], 41

select search [menu option], 44

send statement [syntax], 27

sequence [tactic], 74

settings menu [top-level prover], 47

side veri�cation condition, 60

simpli�cation

automatic, 52

use of background properties, 51

simpli�cation
ags [menu option], 47

simpli�cation rule, 22, 23

simpli�cation settings

associative functions, 70

BDD simpli�cation, 70

commutative functions, 70

conditional rewrite rules, 70

equality, 69

inequality, 69

linear arithmetic, 70

Simplify [ip-button], 85

SIMPLIFY [syntax], 23

Simplify [top-level button], 71

Since [operator], 14

Since [syntax], 16

skip [statement]

syntax, 27

skip [statement], semantics, 107

Skolemize [ip-button], 86

solid edge, 61

speci�cation, 9, 17

declarations, 19

loading, 40, 91

SPL basic statements, 107

SPL composite statements, 109

SPL expressions, 28

SPL programs, 9

loading, 38, 91

syntax, 24

spread [tactic], 74

starting STeP, 3

state

accessible, 114

state-valid formulas, 114

Statecharts, 62

status line, top-level prover, 35

STeP

step session, 8

distribution, 123

documentation, 124

mailing list, 10

STEP AUTO SIMPLIFY, 127

STEP BDD CACHE, 128

STEP BDD NODES, 128

STEP BDD SPLIT, 128

STEP BROWSER, 127

STEP DIAGRAM HEIGHT, 127

STEP DIAGRAM WIDTH, 127

INDEX 137

STEP DIR, 3, 127

STEP MCTIME, 58, 128

STEP MC CPU, 58, 128

STEP MC SPACE, 58, 128

STEP POLY CPU, 128

STEP POLY SPACE, 128

STEP POLY TIME, 128

STEP SHOW LOADED, 127

Strengthen [tlp-button], 55

strengthening rule, 55

stuttering transition, 105

subgoal, 9

Sum [operator], 28

Sum [syntax], 16

synchronous send-receive [statement]

semantics, 108

system description, 9

system information [menu option], 48

system variables, 9, 105, 106

system veri�cation session, 8

tactic, 72

atomic, 72

branch-otherwise, 75

else, 74

entry, 46

examples, 77

loading, 45

repeat, 74

sequence, 74

spread, 74

try, 73

tactics

tutorial, 102

tactics menu, 45

tail [syntax], 16, 24, 28

temporal operators

future, 113

past, 113

temporal operators [syntax], 16

Terminal [menu option], 66

terminal node, 60

theorem-proving session, 8

terminating, 40

tick, 32

top-level prover, 35

top-level prover button

B-BACKTO, 54

B-CAUS, 54

B-INV, 53

B-WAIT, 53

G-BACKTO, 54

G-CAUS, 54

G-INV, 53

G-WAIT, 53

Interactive prover, 49

Modelcheck, 49

next, 48

previous, 48

redo, 48

Strengthen, 55

undo, 48

WPC, 55

transition, 30, 105

compassionate, 105

disabled, 105

enabled, 105

just, 105

Transition [syntax], 31

transition relation, 29, 105

transition system, 29

loading, 38

syntax, 31

transitivity rule, 56

tree [example], 19

TRN-C [menu option], 56

try [tactic], 73

tuple projection, 16

type constructor, 13

type declaration, 13, 19

types, 13

Uncompound [menu option], 66

Undo [ip-button], 84

undo [tlp-button], 48

Ungroup [menu option], 66

Unhide [ip-button], 85

UNIX environment variables, 127

unprimed variable, 105

Until [operator], 14

138 INDEX

Until [syntax], 16

validity

P -, 114

general, 8

state-, 114

value declaration, 21

variables

auxiliary, 22

bound, 15

declaration, 18, 21

exible, 9, 22

quanti�ed, 22

rigid, 9, 22

veri�cation condition, 9

side-, 60

veri�cation diagram, 59

basic node, 64

de�nition, 59

double edge, 61

environment variables, 127

hierarchical, 67

import node, 67

invariance, 60

nonterminal node, 60

P-valid, 60

response, 61

solid edge, 61

terminal node, 65

tutorial, 98

veri�cation rule, 46

wait-for, 60

veri�cation diagram editor, 59

activating, 46

drawing tools, 64

Edge menu, 66

Edit menu, 66

File menu, 65

Help menu, 67

interface, 64

menu options, 65

Node menu, 66

veri�cation diagram rule [menu option], 46

veri�cation rules, 52

invoking, 48

view program text [menu option], 40

view transitions [menu option], 40

wait-for diagram, 60

wait-for rule

basic: B-WAIT, 53

general: G-WAIT, 53

weakest precondition [menu option], 45

weakest precondition [rule], 55

when [syntax], 27

where clause, 106

while [syntax], 27

WPC [tlp-button], 55

tutorial, 100

X-windows, 3

xhost (UNIX command), 3

