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ABSTRACT

Although neural networks have been applied to medical problems

in recent years, their applicability has been limited for a variety of

reasons. One of those barriers has been the problem of recognizing

rare categories. In this dissertation, I demonstrate, and prove the util-

ity of, a new method for tackling this problem. In particular, I have

developed a method that allows the recognition of rare categories

with high sensitivity and specificity, and will show that it is practical

and robust. This method involves the construction of sequential neu-

ral networks.

Rare categories occur and must be learned if practical application

of neural-network technology is to be achieved. Survival analysis is

one area in which this problem appears. In this work, I test the

hypotheses that (1) sequential systems of neural networks produce

results that are more accurate (in terms of calibration and resolution)

than nonhierarchical neural networks; and (2) in certain circum-

stances, sequential neural networks produce more accurate estimates

of survival time than Cox proportional hazards and logistic regression

models. I use two sets of data to test the hypotheses: (1) a data set of

HIV+ patients (AIDS Time-Oriented Health Outcome Study—

ATHOS data set); and (2) a data set of patients followed prospec-

tively for the development of cardiac conditions (Framingham data

set).

Using the ATHOS data set, I show that a neural network model

can predict death due to AIDS more accurately than a Cox propor-

tional hazards model. Furthermore, I show that a sequential neural
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network model is more accurate than a standard neural network model. Using the

Framingham data set, I show that the predictions of logistic regression and neural net-

works are not significantly different, but that any of these models used sequentially is

more accurate than its standard counterpart.

The sequential use of predictive models for survival analysis is advantageous because

it makes better use of the available information. It often increases resolution with no sacri-

fice of calibration, as I demonstrate in this study. It also helps to delineate patterns of dis-

ease progression for individuals, rather than for groups of patients.
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CHAPTER 1 Introduction

The field of medical informatics has evolved around structuring,

processing, storing, and transmitting medical information for a vari-

ety of purposes [Shortliffe, 1990]. One of these purposes is to

develop decision-support systems that enhance the human ability to

diagnose, treat, and assess prognoses of pathologic conditions. Even

if disease processes were fully understood, population variability

would still make individualized diagnosis, treatment, and progno-

sis—all essential parts of good health care—difficult classification

tasks. The reality is, however, that diseases are not fully understood,

nor is population variability fully taken into account in many deci-

sion-making situations. Sometimes it is not possible for a clinician to

employ the principles learned in the basic and clinical sciences to

determine whether a patient has a given disease, whether he or she

should be given a certain treatment, and how long he or she will sur-

vive.

Studies that use aggregate data provide a “statistical rational” that

often overcomes the limitations of reasoning from first principles.

These studies are not only abundant in the medical literature, but are

also key in defining practice guidelines for diagnosis and treatment

and in defining prognostic indices. The generality of these studies

may inhibit their being used in a practical setting, where senior clini-

cians still emphasize that a case-by-case analysis is always necessary,
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and therefore employ a routine that resembles the classic nearest-neighbor algorithm

[Duda, 1973]: Use the results of the study whose population characteristics most closely

resemble the patient at hand. The ideal situation when decision-support tools are

employed, however, would be to get the most likely diagnosis, prognosis, or ideal treat-

mentfor the particular case at hand.

Current statistical models based on regression offer the possibility of establishing indi-

vidualized responses, but may require unrealistic assumptions about the distribution and

interdependence of data or errors. Oversimplified models constructed according to such

assumptions may be of limited value. Furthermore, algorithms that are able analytically to

calculate exact solutions for certain simplified problems are gradually being replaced by

algorithms that utilize numerical methods to reach approximate solutions to real-world

complex problems [Maron, 1987]. Neural networks (see Chapter 2) have been shown to

solve complex problems with high accuracy. They constitute good alternatives to current

regression models in medicine, although they have some drawbacks. One of these draw-

backs is that certain types of neural networks are very slow in recognizing infrequent pat-

terns, and often cannot recognize these patterns at all. Rare patterns do occur, however,

and must be learned if practical application of neural networking technology is to be

achieved.

1.1 Problem: Recognition of Infrequent Patterns

Researchers in medical informatics have dealt with the problem of encoding clinical

data for electronic processing for a long time. These data can be used for a variety of pur-

poses, including automated recognition of patterns and classification by machine-learning

methods (useful in making diagnoses, predicting prognoses, recommending procedures

and treatments, and forecasting outcomes), as depicted in Figure 1.1.
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Figure 1.1. Machine learning in medicine.

Electronic medical data can serve as input to classifiers such as neural net-
works. In these machine-learning approaches, models are constructed from
available data by the computer. Outputs are classifications.

1.1.1 Machine learning and medicine

Machine-learning methods for classification provide inexpensive means to perform

diagnosis, prognosis, or detection of certain outcomes in health care research. With the

increasing number of electronic clinical databases, and the increasing costs of manual pro-

cessing, it is likely that machine-learning applications will be necessary to detect rare con-

ditions, unnecessary procedures, and unexpected outcomes. Although these patterns are

infrequent, they may be typical and their detection is important. Therefore, there is a need

to enhance the predictive power of machine-learning methods by increasing sensitivity for

low-frequency patterns without decreasing specificity.

For example, let us suppose that a South American patient comes to a California clinic

with signs, symptoms, and test results that point to cardiomegaly, megaesophagus, and

megacolon. The physician may recognize the pattern of Chagas’ disease1 immediately,

even though this disease is extremely rare in the U.S. If a large data set of patients coming

to the same clinic were available, machine-learning methods could be used to develop sys-

tems that assist with the diagnoses of diseases for patients presenting in that setting. The

medical researcher would want Chagas’ disease to be recognized if it were sufficiently dif-

ferent from other diseases, even though its prevalence in the data set would be very low.

1 Chagas’ disease is caused byTrypanosoma cruzi, and is common in southern Brazil and northern Argentina. Some
cases have been described in the southern United States and Mexico [Veronesi, 1992].
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My goal in this research is to provide a means for improving the ability of machine-learn-

ing methods to recognize infrequent patterns and thereby improve their predictive abili-

ties. I focus on learning using neural network technology and, in particular, the method

known asbackpropagation.

A large number of medical applications in which classification is desired have the goal

of discriminating a pattern with low frequency (e.g., “thyroid disease,” “bad prognosis”)

from a pattern with high frequency (e.g., “no disease,” “good prognosis”). For example, if

only a very small group of patients who have undergone bypass surgery have prolonged

lengths of stay in hospital, this category will hardly be recognized by most machine-learn-

ing methods. These patients, however, provide exactly the patterns that need to be studied

and followed more closely. Another example is screening for certain diseases with low

prevalences but for which there is some form of intervention that will improve the

patient’s or the population’s well-being, and the overall benefit of detecting a case justifies

the costs (e.g., screening for congenital hypothyroidism, a disease that has a prevalence of

1/4,000) [U.S. Preventive Task Force, 1989].

Even though the patterns for certain conditions and diseases are well known to the

medical community, others may be not as well defined. For example, we still do not know

why some patients with the HIV virus survive longer than others who have been infected

for similar periods of time. Screening electronic databases of HIV-infected individuals

may provide some clues regarding how these patients cluster, and establish a means to

predict prognosis for such clusters. Furthermore, certain cases represent patterns that will

characterize a condition only if sufficient numbers of such cases are reviewed. Rare condi-

tions or unexpected outcomes may constitute only one or two cases in the career of a

health care provider. Instead of discarding such cases as mere “outliers,” pooling them in

an electronic database and using a machine-learning method may reveal interesting and

important correlations. As structured electronic medical records become more common

and more widely accessible to researchers, screening large data sets for certain patterns

(also called “database mining for knowledge discovery” by computer scientists) may be
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greatly enhanced by the use of machine-learning methods. The patterns detected by these

methods can then be processed by a number of manual or computer-based decision-sup-

port applications.

1.1.2 Survival analysis

Survival analysis can be considered a classification problem in which the application of

machine-learning methods is appropriate. In this case, the outputs of a classification sys-

tem are categories that correspond to predetermined intervals of time. A prognostic esti-

mate may be produced for each interval of time. Although the results of such a classifier

may not seem as precise as those of classical models of survival analysis, the final use of

those results is probably the same. For example, if a patient is told that his mean survival

time is 198 days, plus or minus 12, he will translate this information to “My mean survival

is approximately six months.” By establishing meaningful intervals of time according to a

particular situation, survival analysis can easily be seen as a classification problem.

Survival analysis plays an important role not only for healthcare policymakers, but also

for the clinician. The results of survival analyses can be used for individual prognosis (as

in the case of an AIDS patient who wants to know how long he is likely to survive), for

population prognosis (as in the case of a health minister in Africa, who wants to know

how many adults will compose the work force in the next decade), or even for commercial

interests (as in the case of a pharmaceutical company that wants to know how much

zidovudine to produce next year).

In chronic diseases, such as myocardiopathies, the number of individuals who die

within a certain period of time, compared to the pool of all diseased subjects, is small. Pre-

dicting death for such individuals may be important both at the individual level of patient

care and for health policy planning. Survival analysis applies not only to the study of a

deadly event, but also to the study of the duration of a normal condition, such as “healthy

status.” Therefore, the development of a certain pathologic condition after a period of time

(e.g., myocardial infarction) is also amenable to survival analysis. Even in a disease with a
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100 percent fatality rate, such as AIDS, the number of individuals who die in the first year

after infection is low, compared to the set of all individuals with the disease. It is therefore

necessary to be able to recognize low-frequency patterns in survival analysis. Classical

statistical methods of survival analysis require certain assumptions about the distribution

of the data (e.g., normal distribution, proportional hazards, as discussed later in Section

5.2). Neural networks can constitute a good alternative when some of these assumptions

cannot be verified.

1.1.3 Neural networks

Neural networks, also known as connectionist or parallel distributed processing (PDP)

systems, are machine-learning models implemented using a computational framework

developed primarily to understand and simulate physiological neural systems [Rumelhart,

1986]. While neuroscientists still utilize neural networks to simulate the function of real

neurons, engineers, analysts, physicians, and scientists have used them to model processes

as diverse as the classification of military targets, the prediction of stock market activity,

the recognition of speech, and the diagnosis of medical problems [Hertz, 1991].

Neural networks may have the same inputs and outputs of a regression model, and may

be built to perform exactly the same tasks. For example, Figure 1.2 shows a hypothetical

neural network set up to diagnose four conditions from cases that have information on

four findings.
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Figure 1.2. Hypothetical neural network for diagnosis.

Inputs for this simple neural network include the presence or absence of four
findings. In this example, Findings 1, 3, and 4 are present, and Finding 2 is
absent. The network provides the diagnosis of Disease 2. The inputs and out-
puts of this neural network model could be used in a regression model for
diagnosis as well.

Neural networks have been applied for a variety of purposes in biomedical research. A

search of the MEDLINE medical literature database for the years 1982 to 1995 yields

more than 600 articles that describe neural networks for diagnosis, prognosis, or clustering

of medical data, and applications in the basic medical sciences, especially molecular biol-

ogy. In Chapter 2, I provide a summarized history of the development of neural networks,

and their application in many biomedical domains. I explain how neural network systems

work and how they acquire knowledge from training examples.

The backpropagation algorithm for estimating parameters in neural networks2 has

been the most popular in the medical literature [Reggia, 1993], and it is explained in

Chapter 2. One of the problems encountered by researchers utilizing the backpropagation

algorithm is that low-frequency patterns (or rare patterns) may take a long training time to

2 Estimating parameters in neural network models is also calledlearning or training in the neural network literature.
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be recognized, because frequent patterns “dominate” the error. Some rare patterns cannot

be recognized at all. In some biomedical applications, the pattern of interestis exactly the

one that is rare, and backpropagation-based neural networks may have difficulties in

learning this pattern. In survival analysis, the final event (usually death) is relatively infre-

quent in each time interval, so the use of neural networks for survival analysis has been

limited. The difficulties related to learning infrequent patterns in neural networks have led

some investigators to propose algorithms for preprocessing the data and to develop modi-

fications of the backpropagation algorithm. One of these solutions has been thereplication

of rare patterns in the training set (or theremoval of some instances of the most frequent

pattern), such that all categories become equally represented.3

Figure 1.3. Equal representation of patterns to neural networks.

Replicating infrequent patterns so that all output categories become equally
represented in the training set leads to an increased number of training cases,
which makes training slower. Removing frequent patterns causes the loss of
information contained in removed cases.

Figure 1.3 shows the methods for assuring that the neural networks receive an equal

number of instances of several patterns. In the case ofreplication, the number of training

patterns may become so large that training gets extremely slow. Furthermore, information

on prior probabilities is ignored. In the case ofremoval of frequent pattern instances,

important information contained in the removed cases is lost.

Another solution to the problem of dealing with infrequent patterns in

3 D.E. Rumelhart. Personal communication, 1994.
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backpropagation-based neural networks has been the modification of the weight update

function used in the backpropagation algorithm, such that utilities for identifying specific

patterns are taken into account in the training phase [Lowe, 1990]. In thisutility-modified

backpropagation method, some patterns are deemed more important than others, so the

utility of recognizing them is embedded in the backpropagation cost function.

These existing solutions imply either a significant preprocessing or manipulation of the

data (replication or removal), which leads in many cases to changes in the prior probabili-

ties of each output category in the transformed data sets, or to a significant change in the

backpropagation algorithm (utility-modified backpropagation), with a degree of custom-

tailoring that makes it necessary to retrain the network every time utilities change. Both

solutions significantly increase the neural network model’s sensitivity for rare patterns at

the expense of a concomitant significant decrease in its corresponding specificity or an

increase in learning time. Chapter 3 is dedicated to the problem of recognizing rare pat-

terns in neural networks whose training is based on the backpropagation algorithm, and to

the comparison of existing solutions. In Chapter 4, I present another solution: the use of

hierarchical systems of neural networks. This solution can be generalized to a sequential

system of neural networks that has special use in survival analysis, as shown in Chapter 5.

1.2 Solution: Hierarchical and Sequential Systems of Neural Networks

 A relevant issue for the use of predictive models in health-related research, which is

not addressed fully by the classical statistical classifiers, is the ability to perform hierarchi-

cal classification. In medical practice, this type of prediction or classification, as opposed

to a one-step procedure, is often desirable given the time constraints and the nature of the

medical interventions. For example, the health care worker may need to take actions

before a certain time (e.g., the patient's next appointment), or want to know only a

patient’s short-term prognosis for developing a given infection, so that adequate prophy-

lactic drugs can be prescribed. It may even be unnecessary for the healthcare worker to
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reach a definitive or final diagnosis if the treatment for all entities in a given differential

diagnosis is the same. Analogously, it may be unnecessary to know the long-term progno-

sis if there are no ways to influence the long-term outcome. By narrowing the differential

diagnosis at an early stage, the health care worker can avoid ordering unnecessary, expen-

sive, and potentially harmful tests. For survival analysis, a precise prediction of the short-

term prognosis for a given patient may help the health care worker to select the best thera-

peutic measures and to discard expensive and invasive interventions that have little chance

of being successful. A full battery of tests that help to predict long-term prognosis or assist

in the choice of interventions that have only long-term effects may not be needed, for

example, in a case where the patient has a poor short-term prognosis. Instead, resources

may be allocated to try to reverse the causes for the unfavorable prognosis at the early

stage, or at least to enhance the quality of life for that patient.

Hierarchical classifiers are not common, but they can be implemented within most

machine-learning models. They should not be confused with other classification methods

that partition the outcome space according to a small number of variables, as do recursive

partitioning methods [Breiman, 1984]. Hierarchical classifiers can partition the outcome

space according to multiple variables. There are several advantages to having an auto-

matic classifier perform hierarchically. First, development and implementation of the

model can be incremental; that is, detailed classification can be postponed to a later stage.

Second, there is a potential for identifying where in the hierarchy the classifier starts to

lose its discriminating power. For example, a classifier that determines whether a patient

has a disease that belongs to a large class of diseases, such ashypothyroidism, is more

accurate than a classifier that determines whether the patient has a specific type of

hypothyroidism. In this case, the hierarchical system may start to lose its discriminating

power after the classification ofhypothyroidism is achieved. Third, the use of the full set

of attributes may be unnecessary at different levels, so censored data may be used. For

example, data from patients who do not have measurements from a certain laboratory test

should not be discarded in the initial phase if the missing test is necessary only to define a
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detailed and final classification.

The hierarchical architecture of neural networks that I propose is depicted schemati-

cally in Figure 1.4, and is described in detail in Chapter 4. In hierarchical systems of neu-

ral networks, a triage network divides the sample into smaller groups, classifying the cases

according to similarity and creating abstract groupings. The smaller groups constitute

inputs to specialized networks that are able to discriminate certain patterns with enhanced

accuracy and at enhanced speed, as will be demonstrated in Chapter 4.

Figure 1.4. Hierarchical system of neural networks.

A triage network is used to “filter” interesting cases (represented by squares
and circles) from the whole training set. The filtered instances are further pro-
cessed by specialized networks that provide the final classification.

Hierarchical neural networks (HNNs) do not imply a change in the backpropagation

algorithm per se, but they provide a method for constructing and training neural networks

incrementally. The backpropagation algorithm is utilized in its pure form in each of the

various levels of the hierarchical system. There is no need to alter the weight update func-

tion for each output category. This method separates the process of categorizing using

input features from that of assigning utilities for each correct classification to obtain the

best decision boundary based on a decision-theoretic principle. In addition, the prepro-

cessing of data to form abstractions used in the intermediate levels of the hierarchical sys-

tem may provide a means to later explain the system’s reasoning. Patterns are grouped by

similarity, and the changes in prior probabilities are due solely to rearrangement of pat-

terns in similar groups. There are no replications or deletions of data that change the prior

probability of each output category in the system as a whole. Figure 1.5 shows how this

TRIAGE NETWORK

SPECIALIZED
NETWORK
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grouping permits an increase in frequency of the patterns that will be processed in special-

ized neural networks.

Figure 1.5. Representation of patterns in the hierarchical system.

In the hierarchical system, patterns are grouped in intermediate abstract
groups, based on similarity. The patterns that constitute the intermediate
abstractions are then processed by their own specialized neural network. By
removing frequent patterns from the whole training set, patterns that were rela-
tively infrequent in the initial set become more frequent as inputs to the spe-
cialized networks.

Related research on hierarchies of neural networks is discussed in Chapter 4.

Sequential neural networks, shown in Figure 1.6, are similar to HNNs.

Figure 1.6. Sequential system of neural networks.

A top-level network is used to provide a probability that a case belongs to a
certain class. The low-level network uses this information to provide the final
classification.

The main difference is that, instead of triaging cases into two or more classes, the top-

level network provides a probability that the input belongs to any of the classes (interme-

diate abstractions). The low-level network processes all cases, but it is given a “hint”
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Hypotheses

about which class a given case belongs to. This decomposition facilitates the discrimina-

tion of infrequent patterns by making the classifier focus its attention on a certain range of

prognostic indices, as explained in Chapter 5.

HNNs can be viewed as special cases of sequential neural networks, in which the top-

level network makes a binary decision on whether the case belongs to a certain class,

sending either a “0” or a “1” to the low-level network. Depending on the classification at

the top level, the low-level network behaves differently, utilizing the portion of the low-

level network that specializes in cases of that class, as shown schematically in Figure 1.7.

Figure 1.7. HNNs are special cases of sequential neural networks.

1.3 Hypotheses

The goal of this research is to show that neural networks can make an accurate individ-

ualized prognosis of a patient given his or her particular condition. For example, several

studies show that the survival of patients diagnosed with AIDS for more than five years is

an unlikely event. However, this statistic applies to the whole pool of patients. If we have

more information about a particular patient (other than just the date of the diagnosis), such

as age, gender, AIDS-defining diagnosis, and laboratory test results, we may be able to

predict the prognosis for that patient more accurately. Special systems of hierarchically or

sequentially arranged neural networks, described in detail in Chapters 4 and 5, were built
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for the experiments described in this dissertation.

I tested the hypotheses that (1) sequential systems of neural networks produce results

that are more accurate than are those of nonsequential neural networks (in terms of cali-

bration and resolution, discussed in Chapter 6), and (2) in certain circumstances, neural

networks produce more accurate estimates of survival time than Cox proportional hazards

models and logistic regression models. The hypotheses were tested in the real data sets

described in Chapters 7 and 8. As the results show, sequential neural networks outper-

formed nonsequential neural networks and Cox proportional hazards models.

1.4 Validation in Medical Data Sets

The use of clinical or epidemiological data sets for developing and testing neural net-

work models imposes difficult challenges. Typically, these data sets do not contain thou-

sands of cases, nor do they constitute complete and noise-free collections. Furthermore,

some categories of data may be underrepresented, making the learning process slow.

There are currently no published guidelines for deciding when to use a neural network,

nor are there guidelines for which network architecture to use in a given setting. HNNs

have been successfully applied in studies using an artificial data set and a large clinical

data set of patients suspected of having thyroid diseases. These studies are presented in

Chapter 4.

The sequential neural network model, presented in Chapter 5, was evaluated in two dif-

ferent sets of medical data: (1) the AIDS Time-Oriented Health Outcome Study (ATHOS)

data set (a data set of HIV+ patients whose death over each interval of a long follow-up

period is the low-frequency event) [Fries, 1992] and (2) the Framingham data set (a data

set of patients regularly followed for several years by researchers interested in prospec-

tively investigating the epidemiology of cardiac diseases) [Dawber, 1980]. The low-fre-

quency episode in the latter case is development of coronary heart disease (CHD). These

data sets encompass different challenges: the ATHOS data set is a small collection of
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cases that contains many missing values and addresses a medical problem that is relatively

new; the Framingham data set is a collection of several cohorts of patients who may or

may not develop a highly prevalent condition (cardiac disease) the contributing factors of

which are still under study. The results of this work may serve as a benchmark for the per-

formance of the different prognostic models in these data sets. Using the ATHOS data set,

I tested the hypothesis that sequential neural networks can be used to predict death due to

AIDS, and that its results are better than those of nonsequential neural networks and the

Cox model. Using the Framingham data set, I tested the hypothesis that sequential neural

networks can adequately model CHD development, and that their performance is better

than that of logistic regression models. I also compared standard and sequential models.

 Chapter 7 describes the Framingham data set and discusses the relevance of novel neu-

ral network models of the development of cardiac conditions. Chapter 8 describes in detail

the ATHOS data set and the significance of improving prognostic methods of HIV pro-

gression and survival modeling for patients with AIDS. In each of these chapters, specific

hypotheses are stated, and specific evaluation procedures are explained. The gold standard

for the evaluation was the actual data contained in the data sets. The performance was

evaluated by comparing calibration and resolution.

1.5 A Guide to the Reader

In Chapter 2, I review the history of neural network development and describe selected

applications of neural networks in biomedicine.

In Chapter 3, I discuss the problem of learning rare patterns in medical data, and I com-

pare current approaches for dealing with this problem. I use an artificial data set to illus-

trate the problem.

In Chapter 4, I present an architecture of hierarchical neural networks that can be used

to address the problem described in the previous chapter, and I compare its performance

with the current models using the data set presented in Chapter 3. I present also an
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example of a diagnostic task that is facilitated by the use of HNNs in the domain of

thyroid diseases.

In Chapter 5, I discuss additional functionality required by prognostic systems. In these

types of problems, noise is present, missing values are abundant, and the boundaries of

each output category are sometimes not well delimited. I present an architecture of

sequential neural networks (of which HNNs are a special case) and its use in survival fore-

casting.

In Chapter 6, I review the evaluation methods required for assessment of performance

of prognostic systems.

In Chapter 7, I describe the neural network and the logistic regression models that were

used to predict CHD in the Framingham data set. Dependent and independent variables, as

well as model specifications, are presented in detail.

In Chapter 8, I describe Cox proportional hazards and neural network models used to

predict death due to AIDS in the ATHOS data set.

In Chapter 9, I discuss the implications of the results in both data sets, highlighting the

differences and similarities of both experiments, and generalizing the conclusions.

In Chapter 10, I provide a summary of the dissertation, its contributions to the field of

medical informatics, and the lessons learned in this research. I also comment on future

extensions of this work.
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CHAPTER 2 Neural Network

Applications in Medicine

The purpose of this chapter is to provide an overview of neural

networks and their applications in several areas of medicine. The

most frequently used algorithm for neural network learning in medi-

cal applications, the backpropagation algorithm, is presented in

detail. A summary of the development of neural networks and the

concepts of supervised and unsupervised learning is presented in

Section 2.1. Section 2.2 summarizes some applications of neural net-

works in medicine, explaining how neural networks can be used as

statistical tools for making inferences and in which aspects they are

more promising than conventional statistical techniques. In

Section 2.3, guidelines for evaluating neural networks in medicine

are suggested.
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2.1 Brief Introduction to Neural Networks

2.1.1 History

Neural networks, also known as connectionist systems or parallel distributed process-

ing models, are computer-based, self-adaptive models that were first developed in the

1960s, but they reached great popularity only in the mid-1980s after the development of

the backpropagation algorithm by Rumelhart et al. [1986]. Initially derived from neurosci-

entists’ models of human neurons, neural networks now encompass a wide variety of sys-

tems (many of which are in no way intended to mimic the functions of the human brain).

Neural network research has its origins in the work developed by McCullough and Pitts

[1943], who developed mathematical models based on observational studies of real neu-

rons. Figure 2.1 compares the anatomies of real and artificial neural configurations.

Figure 2.1. Real and artificial neural networks.

The neural body is represented in artificial neural networks as a circle, and is
called a node. The synapses are represented as lines connecting nodes, and
are called weights.

 In artificial neural networks, the connections are calledweights and are represented by

real numbers. The Hebbian rule [Hebb, 1949] for learning in simple neural models dic-

tates that, if two connected neurons (ornodes, in the case of artificial neural networks) are
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simultaneously in an active state, the connection between them should be strengthened.

Making a connection between two nodes stronger means that the real number is increased

by a certain positive amount. Making a connection weaker requires that a negative number

be added to the weight. Common learning rules used in artificial neural networks are

derived from the Hebbian rule.

A perceptron is the simplest form of a neural network model. It is composed of an input

layer (where values for attributes are entered) and an output layer (where output values are

produced). Figure 2.2 shows a simplified version of a perceptron. Input values for attribute

i of a certain pattern are represented byxi, weights connecting units i and j are represented

by wij , net inputs to unitj are represented byaj, thresholds (also calledbiases in the neural

network literature) for unitj are represented byθj, and the output from unitj is designated

oj (which is a function ofaj andθj).

Figure 2.2. Fundamental elements of a perceptron.

Perceptrons are composed of an input layer and an output layer. Input values
are multiplied by weights and the result constitutes the input for the output
layer. In the output layer, an activation function will determine the activation of
the output node for a given input pattern.

2.1.2 How neural networks work

Each layer in a neural network is composed of several nodes, each of which has an

Input units

Input to unit j: aj = Σwijxi

j

i

Input to unit i: xi
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associated activation status that is a function of the node’s input value. Each node or unit

in the output layer receives inputs from the incoming connections, processes the value

with an activation function (also called transfer, squashing, or gain function), and pro-

duces its own output, which represents the activation status. Commonly used activation

functions are the logistic, the linear threshold (usually used in perceptrons), and the hyper-

bolic tangent, shown in Figure 2.3.

Figure 2.3. Activation functions.

Initial neural network models used the linear threshold function to simulate the
behavior of real neurons, which are only active if the impulse they receive is
above a certain threshold. Logistic and hyperbolic tangent functions were used
to make the function differentiable, and differ only in the output range (0 to 1
for the logistic and -1 to 1 for the hyperbolic tangent).

Figure 2.4 shows an example of a neural network that performs the Boolean function

AND. The inputs and outputs are composed of binary digits. Whenever “00,” “01,” or

“10” are presented, the output is “0,” and whenever the input “11” is presented, the output

is “1.” The neural network has to set up values for its weights that will always reproduce

these results. The threshold (or bias) for the output node determines the value over which

the node will start to produce an output of “1” instead of its default “0.” That is, whenever

the output node receives an input over 0.5, it will produce a “1.”
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Figure 2.4. Simple neural network that performs the Boolean function AND.

Input units receive values from x1 and x2, which are multiplied by w1 and w2.
The result will be the input to the output unit, and will be entered in a threshold
function that has a bias θ = 0.5. If the input is greater than 0.5, the output unit
will produce a “1”; otherwise, it will produce a “0.” Some possible values for the
weights w1 and w2 are displayed in the lower table. The neural network learn-
ing algorithm determines best values for the weights.

A neural network may have many output units. Usually, the output unit that has the

highest activation at the end of the training phase will indicate the predicted category. In a

classification application, inputs are generally composed of the attributes of each instance

in a data set, and outputs constitute classification categories. For example, a perceptron

that was designed to classify patients complaining of abdominal pain is shown in

Figure 2.5. In this example, each case is represented by a set of attribute values, which

may be continuous, such as “temperature,” or discrete, such as “male.” In this example,

the perceptron concludes that the patient has “non-specific abdominal pain.”
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Figure 2.5. Perceptron for diagnosing abdominal pain.

In this hypothetical example, the goal is to diagnose conditions related to
abdominal pain. Inputs correspond to demographic data or measured values
for Age, Temperature, etc. The initial random weights will be adjusted in order
to produce correct diagnoses for a given training set.

Neural networks can classify patterns quickly once they know the values of the

weights, by performing simple operations such as multiplication and addition. However,

learning the values of the weights may take a long time, as will be shown next.

2.1.3 How neural networks learn

Learning in neural networks is performed by iteratively modifying weights such that

the desired output is eventually produced by the network, with a minimal amount of error.

Typically, initial small random weights are updated gradually.

Going back to the example in Figure 2.4, suppose that the network started with random

weights ofw1 = 0.9 andw2 = 0.85. The initial outputs for patterns “00,” “01,” “10,” and

“11,” using the threshold or biasθ of 0.5 and a linear threshold activation functionf,

would be

f(x1*w1 + x2*w2) = y
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f(0*0.9 + 0*0.85) = 0

f(0*0.9 + 1*0.85) = 1

f(1*0.9 + 0*0.85) = 1

f(1*0.9 + 1*0.85) = 1

respectively. In this case, it is easy to see that the network should decrease its weights in

order to produce the desired response. The sum ofw1 andw2 must be greater than 0.5, and

bothw1 andw2 should be smaller than 0.5. Taking the difference between the desired out-

put and what the network produced for each pattern gives us an error of -2 (since patterns

“01” and “10” are wrongly producing high results at this point). The next step is then to

changew1 andw2 in the direction that minimizes the error. A small change is done at each

cycle of the network training phase, which is guided by the direction (signal) of the error,

and a constant of proportionalityη (or learning rate), according to

whereδ is the difference between target (desired output) and real output, anda is the value

entered in the input unit. The updated weight is calculated by summing the∆w and the ini-

tial weight. Therefore, ifη is 0.3, the weightsw1 andw2 change to

0.90 + [0.3 * (0 - 0.9) * 1] = 0.63

and

0.85 + ([.3 * (0 - 0.85) * 1] = 0.595

respectively. These updated weights will produce

f(0*0.63 + 0*0.595) = 0

f(0*0.63 + 1*0.595) = 1

f(1*0.63 + 0*0.595) = 1

f(1*0.63 + 1*0.595) = 1

The solution was not achieved at this first training cycle (orepoch), so another cycle

begins, where weightsw1 andw2 are changed to 0.63 - 0.189 = 0.441 and 0.595 - 0.1785 =

0.4165. This set of weights solves the problem, since

∆w ηδa=
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f(0*0.441 + 0*0.416) = 0

f(0*0.441 + 1*0.416) = 0

f(1*0.441 + 0*0.416) = 0

f(1*0.441 + 1*0.416) = 1

No more training cycles are necessary. Figure 2.6 shows the weight changes.

Figure 2.6. Weight changes for the example in Figure 2.4.

In this example, it was easy to see that the weights should be decreased,
since the outputs were too high for patterns “01” and “10.” In practice, how-
ever, knowing how to change the weights is much less obvious.

Widrow and Hoff [1960] developed what is nowadays called thedelta rule for estimat-

ing parameters of their models of one-layered neural networks (calledAdalines, or adap-

tive linear elements). Adalines are very similar to perceptrons, but they use the logistic

activation function in the output layer. The delta rule performs the parameter (weight) esti-

mation iteratively. The rule is simple: Whenever the network’s output is not close enough

to the desired output, a change in weights occurs in the direction that minimizes the error.

The change is proportional to the difference between the network’s output and the desired

output, or target.

The cost function being minimized is usually

or

whereE is the cumulative error,t is the target, or desired output, for each patternp and
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each output uniti, ando is the real output [Hertz, 1991]. In other words, the error is a func-

tion of the difference (ordelta) between what the network produced and what we wanted

it to produce. Other error functions, such as the cross-entropy error, have also been used

[Curry, 1990].

Learning in neural networks means finding a set of weights that minimizes the overall

error. Figure 2.7 shows an error surface defined by two weights. The objective of learning

is to find the lowest location in the error surface, by modifying the weights in the direction

that minimizes the error.

Figure 2.7. Error surface.

Learning is done by modifying the weights w1 and w2, so that the Error
decreases.

A common way to find a suitable set of weights that minimize the error (at least

locally) is to performgradient descent, i.e., to modify the weights such that the changes

are inversely proportional to the derivative of the error with respect to the weights

[Rumelhart, 1986]. For example, Figure 2.8 shows the direction of weight change in a

problem where there is only one input, and therefore only one weight.

Error

w1

w2
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Figure 2.8. Error change according to the derivative of the error.

In this one-dimensional example, the derivative of the error function is nega-
tive, which indicates that the change in weight should be positive. Note that
there may exist local minima in the error surface, so that changing the error
according to the derivative may not always result in a global optimum solution.

The basic idea underlying the learning algorithms usually utilized in neural networks is

simple. The model starts with small random real numbers as the starting weights. At each

training cycle, the error is calculated, and the weights are changed in the direction that

minimizes the error. The error surface has as many dimensions as the number of weights,

and all the weights obey this basic principle. Gradient descent is a greedy algorithm: it

makes the choices that look best at the moment [Cormen, 1990], so it may lead to local

minima. In order to reduce the chances of choosing a local minimum as the solution,

researchers in neural networks usually develop their models using different random start-

ing weights and select the model with the best prediction capability.

The reader with no interest in specific aspects of neural network learning may skip the

end of this subsection and resume reading at Section 2.1.4.
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Figure 2.9. Learning in neural networks.

In this example of learning when the logistic activation function is used, the
change in weights is proportional to the derivative of the error function, and
gradient descent is used. Note that the threshold, or bias θ, can be modeled as
a unit which always has activation 1, connecting to the output unit through
weight θ. This weight θ is also learned using the delta rule.

 As shown in Figure 2.9, in order to perform gradient descent, each weight change

between unitsi andj, or ∆wij , corresponding to a given patternp, is calculated by the for-

mula

whereδpj is given by

when the logistic activation function is used. The target, or desired output, for a given pat-

ternp in output unitj is represented bytpj, and the output calculated by the network is rep-

resented byopj. The derivation of these formulas is described by Rumelhart [1986].

Let us now look at one example of such learning in action. Suppose that a neural net-

work has the trivial problem of deciding which patients have fever, given the data on their

temperatures. The training data is shown in Table 1.1.

j

i

wij  output of i:  opi = xp

input of j: apj = opiwij + θ

input of i: xp

1

 1 + e-(apj +θ)

Expected output (target) of j: tpj

θ

1

output of j: opj  =

weight change at each cycle:

∆wij =η[(tpj - opj)(opj)(1-opj)]opi

∆wij =ηδpjopi

∆pwij w∂
∂E ηδpjopi= =

δpj tpj opj–( ) opj( ) 1 opj–( )=
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The neural network for this example is shown in Figure 2.10.

Figure 2.10. Simple network to diagnose fever: Initial weights.

This example shows how weights are learned. The logistic activation function
is used at the output unit, and the initial parameter values are displayed in the
figure.

After a first pass, the weight has to be updated according to1

∆w = Σ∆kw,

where

∆kw = ηδk ak.

The letterk represents the patient number (e.g.,p1, p2, etc.) anda represents the input.

1 Subscripts forw andδ denoting the units (e.g.wij) were ignored in order to simplify the example. They were unneces-
sary because the example deals withone weight,one bias,one input unit, andone output unit only.

Table 1.1. Training data for a simple example.

patient
temperature
(rescaled) fever

p1 36.5 (0.4) 0

p2 38.5 (0.8) 1

p3 35.5 (0.2) 0

p4 37.5 (0.6) 1

w

θ

1

Fever

Temperature

η = 5
initial weight w= -0.5
initial biasθ= 0.5

0.5

.2 .4 .6 .8

1

o
u

tp
u

t

input

p1
p2
p3
p4

0.4          0.57444
0.8          0.52497
0.2          0.59868
0.6          0.54983

patient input ( a)   output( o)

activation function: logistic

1

 1 + e-(aw +θ)
output: o =

sq error: 1.11

Epoch 0
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Therefore,

∆p1w = (5) [(0 - 0.57444) (0.57444)(1 - 0.57444)] (0.4) = -0.28085

∆p2w = (5) [(1 - 0.52497) (0.52497)(1 - 0.52497)] (0.8) =  0.47384

∆p3w = (5) [(0 - 0.59868) (0.59868)(1 - 0.59868)] (0.2) = -0.14384

and

∆p4w = (5) [(1 - 0.54983) (0.54983)(1 - 0.54983)] (0.6) =  0.33427.

The total update forw must then be

(-0.28085 + 0.47384 + -0.14384 + 0.33427) = 0.38342.

The update for the bias must be

∆p1θ = (5) [(0 - 0.57444) (0.57444)(1 - 0.57444)] (1) = -0.70213

∆p2θ = (5) [(1 - 0.52497) (0.52497)(1 - 0.52497)] (1) =  0.59230

∆p3θ = (5) [(0 - 0.59868) (0.59868)(1 - 0.59868)] (1) = -0.71920

and

∆p4θ = (5) [(1 - 0.54983) (0.54983)(1 - 0.54983)] (1) =  0.55712.

 The total update forθ must then be

(-0.70213 + 0.59230 + -0.71920 + 0.55712) = -0.27190.

The new weightw is then

-0.50 + 0.38342 = -0.11658

and the new biasθ is

0.5 - 0.27190 = 0.22810.

Figure 2.11 shows the network after one epoch.
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Figure 2.11. Simple network to diagnose fever, after one epoch.

The weight w was increased and the bias θ was decreased in this first cycle of
learning. The output is still wrong.

Figure 2.12 shows what happens to the outputs after several epochs.
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Figure 2.12. Simple network to diagnose fever, after several epochs.

The input is the value for the temperature, and the binary output represents the
presence or absence of fever (“0” and “1,” respectively). After relatively few
epochs, the neural network determines values for its weights that accommo-
date all training patterns. As we can see in this example, the training phase
may take several cycles until the network perfectly classifies all cases.
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Figure 2.13 shows the decrease of the total sum of squared errors (tss).

Figure 2.13. Decrease of tss  and the number of epochs.

The decrease in error is fast in the first epochs.

In neural network learning, the updates can be done each time a pattern is presented

(training by pattern), or after all patterns are presented in a training cycle, also called an

epoch (training by epoch). When training is done by pattern, the order of pattern presenta-

tion to the network may change the results.

2.1.4 Linear separability

 A problem is linearly separable if one(n-1) dimensional plane can separate different

categories in a space ofn dimensions [Peretto, 1992]. Figure 2.14 shows the classic XOR

problem, in which the two-dimensional space cannot be divided in two by a single line

that separates patterns “00” and “11” from patterns “01” and “10.” The same figure shows

linear separability failure in a three-dimensional problem where patterns “000,” “010,”

“101,” and “111” must be separated from the other patterns. At least two planes are neces-

sary. The convergence theorem states that the perceptron can learn any function that is lin-

early separable [Rosenblatt, 1962]. Nevertheless, functions that are not linearly

separable—which are not uncommon in medicine—cannot be solved by this model. Min-

sky showed this deficiency with the XOR function [Minsky, 1969], but also noted that, if

an additional layer of neurons was added and a functionother than the linear function was

used for activation (since the use of linear activation functions makes multilayered neural

networks equivalent to single-layered neural networks), nonlinear problems could be

1
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solved. Other authors showed that any function, including nonlinear functions, could be

estimated if sufficient nodes were added to this intermediate, or hidden, layer [Hornik,

1989].

Figure 2.14. Linear separability failure.

The first figure corresponds to the classic “exclusive or” (XOR) problem. It is
not possible to use one line to separate patterns “00” and “11” from “01” and
“10” in the first figure. In the second figure, linear separability fails in a three-
dimensional problem: it is not possible to use just one plane to separate pat-
terns in the shaded corners.

Figure 2.15 shows a hypothetical example where linear separation is not possible.

Figure 2.15. Classifying diseases according to treatment.

Suppose the symptoms Cough and Headache determined whether the patient
had No disease, Pneumonia, Meningitis, or Flu, as shown in the figure. The
problem of distinguishing patients who should receive treatment (e.g., antibi-
otic therapy for meningitis or pneumonia) from those who should not is not lin-
early separable.

1101

1000 000 100

010

101

111011

110

CoughNo cough

CoughNo cough
No headache No headache

Headache Headache

No disease

Meningitis Flu

Pneumonia

No treatment

Treatment

00 00

00 00



Neural Network Applications in Medicine

34 Lucila Ohno-Machado

Figure 2.16 shows the basic components of a feedforward neural network.2 Input val-

ues are multiplied by weights that are adjusted iteratively every time a set of patterns is

presented. The results of the multiplication are passed through an activation function in

each hidden unit of the intermediate layer of nodes (in our figure, the activation function is

the logistic). The activation values for the units of the hidden layer will then be multiplied

by the weights of the second layer, and the results of these operations will subsequently

pass through the activation function of the output layer, providing the final solution.

Figure 2.16. Fundamental elements of neural networks.

A hidden layer of neurons is added to the perceptron to model complex func-
tions. The hidden layer also has an activation function (the logistic in this
example), and receives inputs from the multiplication of input values and
weights in the first layer. The input is passed through the logistic activation
function, and will be multiplied by weights in the second layer to produce inputs
for the output layer.

Note that the output of a multilayered neural network is the composite result of a num-

ber of logistic functions. In the case of a simple logistic regression model, there is only

one logistic function being used, and only parameters referring to this single function have

2 Neural networks whose weights are not bidirectional.
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to be estimated. In the neural network case, there are several logistic functions, and the

parameters for all of them are being estimated. A hypothetical example of a multilayered

perceptron is shown in Figure 2.17. A review of existing applications of neural networks

in medical basic and clinical sciences is presented in Section 2.2.

Figure 2.17. Multilayered neural network for diagnosing abdominal pain.

In this hypothetical example, a layer of hidden nodes was added to the simpler
neural network shown in Figure 2.5. Weights are adjusted by the backpropa-
gation algorithm.

Researchers have known for a long time that multilayered neural networks composed

of nonlinear units were able to solve nonlinearly separable problems. The main difficulty,

however, was to find an appropriate algorithm to estimate the weights, or a way totrain

the network tolearn those functions. Although the target for the output units is well

defined, so that the delta rule can be used for this layer, the target for the hidden units is

not, so that determining how the update should be done in a principled way at intermediate

layers was the major obstacle to applying the delta rule. This problem was solved by the

backpropagation algorithm, a generalization of the delta rule for multilayered neural

networks [Rumelhart, 1986]. Since the publication of the backpropagation algorithm,
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numerous applications in different fields have used multilayered neural networks

successfully. Learning by error backpropagation consists of a modification of the delta

rule, applied to all layers.

The next subsection should be skipped by readers who are not interested in specific

aspects of the backpropagation algorithm. Reading should resume in Section 2.1.6.

2.1.5 Backpropagation of errors

The backpropagation algorithm consists of the propagation of errors beginning at the

output layer, through the hidden layer, and so on, to the input layer, in a backward direc-

tion. The weights are therefore updated at each layer, beginning at the output layer. The

changes in weights are proportional to the derivative of the errors with respect to the

incoming weights. Figure 2.18 shows the propagation of the signals in feedforward neural

networks, and the backpropagation of errors.

Figure 2.18. Direction of propagation: signal and error.

Backpropagation uses the delta rule recursively. Errors are calculated for the
output layer, and are then backpropagated to the intermediate layer, in a direc-
tion opposed to that of the impulse. Weights are updated according to the
errors.

In the backpropagation algorithm, if the unit is in the output layer, its incoming weights
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are updated as

where η is the learning rate,δpj is the change in weight connecting uniti with output unitj

required by patternp, andopi is the output of uniti for a patternp, as shown in Figure 2.19.

Figure 2.19. Backpropagation in a simple neural network.

In learning by backpropagation, the weights wij connecting to units in the out-
put layer are modified according to the standard delta rule. The weights whi in
other layers are modified recursively according to these updates. The thresh-
old, or bias θj, in the last layer can be modeled as a unit that always has acti-
vation 1, connecting to the output unit through weight θj. This weight θj is also
learned using the delta rule. The threshold θi in the previous layer is modified
recursively according to the update in the last layer.

The delta for a connection between an output unitj and a hidden uniti is the same as

∆wij ηδpjopi=

j

i

wij  output of i:  opi =

input of j: apj = opiwij + θj

1

 1 + e-(apj +θj)

weight change at each cycle:

∆wij =η[(tpj - opj)(opj)(1-opj)]opi

Expected output (target) of j: tpj

θj

1

output of j: opj  =

h

whi  output of i:  oph= xp

input of i: api = ophwhi + θi

input of i: xp

θi

1
weight change at each cycle:

∆whi =η[(opi)(1-opi)δpj whi]oph

∆wij =ηδpjopi

∆whi =η(δpj)oph

1

 1 + e-(api +θi)
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the one defined before for a neural network with no hidden units:

.

The weight update is therefore

.

If the unit i is in the hidden layer and it has only one connection to an output unitj, its

incoming weight connecting to input unith is updated in an amount proportional toδpj:

.

Therefore,

.

The error is calculated at the output layer and itsδj is defined. The connections leading

to the output layer are updated. Next, the connections between the hidden layer and the

output layer are updated, using the result obtained previously for theδj in the output layer.

The weight update function in intermediate layers is, therefore, defined recursively as a

function of the update in the next layer, up to the output layer whose target is known.

The derivation of the backpropagation algorithm requires the activation function to be

semi-linear: a continuous, nondecreasing, and differentiable function. The backpropaga-

tion algorithm applies a steepest descent (or hill-climbing) method to minimize the error

function, and therefore it inherits steepest descent’s well-known problems: the existence

of local minima, the possibility of having multiple solutions, and the difficulty of assuring

that the solution found is optimal. Nevertheless, none of the limitations mentioned above

has prevented backpropagation-based neural networks from being useful in a variety of

real-world settings. Some authors have proposed a system of voting networks in which the

same architecture is initialized with different random weights a number of times, and the

results are accumulated, in order to maximize the chances of finding the optimal solution

[Benediktsson, 1993; Kammerer, 1990].

2.1.6 Interpretation of neural network results

Neural network qualities such as resilience to noise (graceful degradation), local

δpj tpj opj–( ) opj( ) 1 opj–( )˙=

∆wij η tpj opj–( ) opj( ) 1 opj–( )[ ] opi
˙=

δpi opj( ) 1 opj–( ) δpjwhi
˙=

∆whi η opi( ) 1 opi–( ) δpjwhioph
˙=
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processing, and distributed representation make them appealing as a physiologically

plausible model. However, it is exactly these qualities that make them cognitively

challenging, imposing obstacles on their prompt interpretation. Explanation has been the

stumbling block of neural network models. Even when high accuracy is achieved in neural

network models, it is difficult to explain which inputs were taken into account to calculate

the outputs, and to provide any insight on how the variables interact. The problem of

selecting inputs has been addressed using weight-decay methods that automatically prune

out weights whose values are too small, leading sometimes to deletion of nodes [Weigend,

1991], or by preprocessing of inputs by unsupervised statistical methods, such as principal

components analysis. Another approach involves the stepwise addition or removal of

variables guided by the differences in classification or prediction performance [Baxt,

1992] as it is done in regression models. A general solution to the problem has yet to be

achieved. A way of counterbalancing the difficult interpretability of neural network

models, while using backpropagation learning, is to impose some structure on the neural

network architecture, such as intermediate abstractions [Ohno-Machado, 1994].

2.1.7 Supervised learning

The neural networks presented so far perform supervised learning—that is, they are

taught to learn a function of the input values in order to produce an output that is known.

In the training phase, the networks receive a number of training examples and learn a

function from those examples. The function can be used as new cases are presented.

Supervised learning is to neural networks what parameter estimation is to statistical mod-

els such as regression, linear discriminant analysis, linear recursive partitioning, and many

other non-exploratory data models: It is a way of constructing the model, given the avail-

able data. The type of partitions of the data set that each of the above methods allows is

different. Whereas in linear methods the partitions of ann-ary feature space are done by

hyperplanes ofn-1 dimensions, in non-linear methods the partitions may be done by non-

linear figures. The assumptions required by each method are also diverse (e.g., in linear
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discriminant analysis—a parametric model—the categories must have the same Gaussian

distribution, varying only in their means, whereas in nonparametric models, such as neural

networks or regression trees, no assumption regarding the distribution of the categories is

necessary).

 Supervised neural networks started to receive attention after the work of Hopfield

[1984], who applied principles of statistical physics to the development of their models.

The Hopfield model consists of an associative memory that uses the Hebbian rule (see

Section 2.1.1) asynchronously to update weights that connect binary units. Weights are

updated such that each new pattern that is presented to the network is “attracted” to the

one stored pattern that is most similar to itself. Learning in the Hopfield model is based on

the minimization of an energy function (also called a Lyapunov, Hamiltonian, or cost

function). If the units in a Hopfield model are stochastic, then simulated annealing can be

applied in order to decrease the problems with local minima.3 Variations of supervised

learning algorithms may address specific situations. Reinforcement learning is a type of

supervised learning in which the network is only told if it produced the correct answer or

not. The network receives no information about how much or in what direction weights

should be updated. There are a number of supervised learning algorithms and architectures

for neural networks the discussion of which is beyond the scope of this work.

Recurrent neural networks are still another type of network in which supervised learn-

ing can take place. They can have the same architecture as standard feedforward neural

networks, except that they allow feedback connections. Time series have been modeled by

this type of networks. An alternative for building recurrent neural networks is the use of

backpropagation through time [Rumelhart, 1986].

2.1.8 Unsupervised learning

Unsupervised models for parameter estimation (training) in neural networks have also

3 Simulated annealing is a phenomenon that occurs in physics. If the temperature of a material is decreased gradually,
lower energy states can be achieved than if the temperature is decreased abruptly.
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been developed. They are analogous to the statistical exploratory methods of clustering,

such as hierarchical clustering or multidimensional scaling, since there are no pre-estab-

lished results. This characteristic makes evaluations of these models extremely difficult.

There is no “gold standard” with which unsupervised models of neural networks can be

compared. The advantage of not having to classify the examples that are used to train the

networka priori is counterbalanced by the fact that the clusters have to be identified and

labeleda posteriori.

Competitive learning neural networks have been developed by Rumelhart [1986].

Among other neural network models of unsupervised learning for use in a variety of tasks,

Kohonen’s self-organizing feature maps are popular, having several applications in image

processing and other pattern recognition situations [Kohonen, 1982]. Adaptive Resonance

Theory has been developed by Carpenter and Grossberg [1988] as another type of unsu-

pervised neural network model, which was further enhanced by the incorporation of prin-

ciples of fuzzy logic. There are additionally models that combine unsupervised and

supervised learning.

2.1.9 Hybrid models

The termhybrid models has been used indiscriminately in the neural network literature.

While some authors use it to describe models in which both unsupervised and supervised

neural network concepts are used in different parts of a connectionist model, others use it

to describe models where neural networks are combined with rule-based, classic statisti-

cal, and other types of modeling approaches. Examples of the first use can be found in

Hertz [1991], whereas Gallant [1988] and Medsker [1994] prefer the second use.

2.1.10 Hardware implementations

Analogous to the development of computerized tomography in the late 1970s, where

the understanding and testing of the pioneering ideas were basically developed in soft-

ware, and the final commercial products implemented the concepts in hardware in order to
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improve performance, neural network VLSI chips have been continuously produced and

enhanced by the hardware industry since the mid-1980s [Mead, 1987]. These processors

are based on a parallel distributed processing architecture, and have error and update func-

tions implemented as hardware. Although the advantages in terms of speed are coupled

with a certain degree of inflexibility, hardware implementations of neural networks have

the potential of being embedded in certain commercial medical appliances.

2.2 Neural Networks as Statistical Tools for Medical Research

A simple search in MEDLINE for articles about computer-based artificial neural net-

works for the years 1982 to 1994 results in more than 600 citations over the last decade.

Other bibliographic data sets also contain numerous publications that deal with the use of

neural networks in the health sciences. Several applications of neural network models in

medicine deal with the use of artificial neural networks that simulate real neurons, but oth-

ers use neural networks as a statistical tool for performing classification for diagnosis and

prognosis, usually replacing regression models. Applications in the basic sciences,

although dominated by neurophysiologic models, contain a significant number of models

in molecular biology, where neural networks have been accepted as a useful tool to predict

secondary and tertiary structures of proteins and other biologically interesting sequences.

The increase in popularity of these parallel processing models has been accompanied by a

diversification of areas of applications as well. Whereas in the mid-1980s most of the

applications reflected the use of neural networks in the neurosciences, their use in clinical

applications has increased considerably. Hardly any specialty in medicine lacks an appli-

cation of neural network models.

2.2.1 Neural networks versus regression models

Researchers in the medical sciences are familiar with conventional statistical methods

for classification, such as multiple nonlinear regression, and linear discriminant analysis.
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Neural networks can be used to perform the same tasks, and have both advantages and dis-

advantages over regression methods (I will consider linear discriminant analysis a special

case of regression from now on).

Advantages. Nonlinear regression often involves an educated guess about the degree of

the polynomial function whose parameters are being estimated and the forms of interac-

tions in which the independent variables may relate to each other. Suppose that there are

two independent variables and one dependent variable. The independent variables may

appear in several terms for each degree of the polynomial function. For example, if the

variables arex, a possible regression model with degree 2 would be:

y = ax2z2 + bx2z + cx2 + dxz2 + ez2 + fxz + gx +hz + i.

As the number of independent variables increases, the number of possible regression

models becomes intractable. Furthermore, parameter estimation requires operations on

matrices, which are often of limited size in commercial software packages. In neural net-

works, it is not necessary to specify the degree of the polynomial in advance, or the inter-

actions between variables. Parameter estimation is a simple process that requires only

repeated (though sometimes time-consuming) additions and multiplications of real num-

bers. If a sufficient number of hidden units is present, functions of any complexity can be

approximated by neural networks [Hornik, 1989].

Other types of nonlinear regression, such as project pursuit regression, generalized

additive models, and multivariate adaptive regression splines, have also been approxi-

mated by neural networks [Cheng, 1994]. A full account of the performance and estima-

tion time trade-offs for different types of models is still necessary.

Disadvantages. Linear models are easily constructed in conventional linear regression and

mechanisms for comparing the performance of these models have been well studied. If the

function being approximated is linear, training in neural network models will be very slow

and offers no advantage over the calculation of parameters by Fisher’s linear discriminant
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or other conventional statistical methods. In complex examples, however, it is not always

evident whether the function being approximated is linear. In neural network models,

there are no coefficients that can be interpreted, as there are in regression models. There-

fore, there is no indication as to which inputs (or independent variables) have a stronger

influence on the results of the classification, especially when there are interactions

between variables. The interpretability of neural networks is one of their most criticized

features. Currently, no way of interpreting neural network weights has been universally

accepted.

2.2.2  Applications in the basic sciences

Although the majority of neural network applications in the basic sciences are related

to simulations of connections of real neurons to reach the ultimate goal of understanding

physiological systems (a biological approach), I will focus on the use of artificial neural

networks as a tool for performing classification (a statistical approach). Among other

applications, neural networks have been used to identify pathogens in microbiology [Free-

man, 1994] and to design and discover new drugs in pharmacology [Weinstein, 1994].

Their most frequent use, however, has been in the analysis of sequential data in biological

structures. The Genome Project has made possible the storage and fast retrieval of a vari-

ety of sequences.4 The analysis of these sequences has been the focus of many research-

ers, who apply classic and Bayesian statistics, linear-programming techniques, and also

neural network models to classify and compare structures [Presnell, 1993].

4 The Genome Project is an initiative of the U.S. government to promote the development of molecular biology and the
understanding of the human genome. Several institutions across the country are engaged in massive sequencing of
the human genome and storage of this information in centralized databases.
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Figure 2.20. Prediction of the secondary structure of proteins.

A window of five slots of aminoacids. Each amino acid is represented by four
inputs. For example, the aminoacid Cysteine (also known by the letter “C,” the
third letter of the alphabet), is represented by the binary number 3. Output cat-
egories are secondary structures: α helix, β sheet, and coil.

Neural networks have been applied to the prediction of secondary and tertiary struc-

tures of proteins, DNA, and other biologically interesting sequences. Several authors use

the number of each of the 20 aminoacids, and amino acid properties such as hydrophobic-

ity and charge, to predict the existence of alpha helices, beta sheets, or coils. Others incor-

porate proximity information, by choosing a “window” of aminoacids that may fall into

one of the spatial categories. The representation of amino acids can be localized, using 20

nodes for input for each slot in the window, or distributed, using a four nodes, as shown in

Figure 2.20.

2.2.3 Applications in clinical medicine

Classification, or pattern recognition, is one of the most common uses of neural

networks in medicine. Statistical methods for classification in health sciences have been

used in medicine [Lew, 1983] to solve problems as different as (1) prediction of

diagnoses, (2) prediction of outcomes, such as length of stay, charges, prognoses, and rate

of complications [Knaus, 1991], (3) determination of cut-off values for diagnostic tests,
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and (4) determination of risk or disease profiles [Kannel, 1993]. The medical literature

also has numerous examples of neural network models. They have been applied as

statistical tools to solve problems including (1) prediction of diagnoses, such as

myocardial infarction [Baxt, 1991], giant cell arteritis [Astion, 1994], several types of

cancer [Maclin, 1994 and 1992; Rogers, 1994; Wilding, 1994]; (2) prognoses, such as

valve-related complications in heart disease [Katz, 1994 and 1993], length of stay in the

intensive care unit [Doig, 1993; Tu, 1993; Buchman, 1994], admission to the psychiatry

ward [Somoza, 1993], outcomes of liver transplantation [Doyle, 1994], outcomes of

oncologic treatment [Burke, 1994; Kappen, 1993; Ravdin, 1992; McGuire, 1992], failure

to survive following cardio-pulmonary resuscitation [Ebell, 1993], and survival after

trauma [McGonigal, 1993]; (3) interpretation of diagnostic tests, such as pancreatic

enzymes [Kazmierczak, 1993], thyroid panels [Sharpe, 1993; Bolinger, 1991; Ohno-

Machado, 1994], and tumor markers; and (4) decision support, such as assessment of the

adequacy of weaning patients from ventilators [Ashutosh, 1992] and of esophageal

intubation [Leon, 1994]. The overwhelming majority of these articles involve applications

of the backpropagation algorithm.

2.2.4 Applications in signal processing and interpretation

Neural networks have been applied to the study of ECGs [Bortolan, 1993; Edenbrandt,

1993], EEGs [Kloppel, 1994], EMGs [Chiou, 1994] and hemodynamic signals [Laursen,

1994]. In ECG analysis, both supervised and unsupervised neural networks have been

used to assist the diagnosis of myocardial infarction or ischemia [Heden, 1994], arrhyth-

mia [Evans, 1994; Griffin, 1994; Yang, 1993], and left ventricular strain [Devine, 1993].

Inputs are usually abstracted features, but some authors have worked with raw digital sig-

nals. McAuliffe [1993] used neural networks to compress Holter data. Figure 2.21 shows

how abstracted features can constitute inputs in a neural network that is able to diagnose

cardiac conditions.
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Figure 2.21. ECG interpretation.

Inputs for signal processing applications may either be abstracted features,
such as P-R interval or S-T elevation, or raw readings from the ECG.

Similar work has been developed for EEG analysis. Neural networks have been used to

diagnose Alzheimer’s disease and dementia [Pritchard, 1994; Anderer 1994], multiple

sclerosis [Wu, 1993], and epilepsy [Jando, 1993]. The scope of applications in signal anal-

ysis is broad. It also encompasses the use of EMG signals to drive member prosthesis

[Hudgins, 1993] and the analysis of hemodynamic data to detect life-threatening events

[Laursen, 1994].

2.2.5 Applications in image processing

As in signal analysis, several applications in image processing utilize the pattern-recog-

nition capability of neural networks. As digital data become more pervasive in radiology,

nuclear medicine, and even in other medical areas in which images are fundamental tools,

such as dermatology, pathology, and endoscopy, computer-based systems for image analy-

sis become increasingly more useful. It is not only for digital data that neural networks are

used. As explained above for signal-processing applications, input units in neural network

systems may be abstracted features instead of actual pixel values.

Neural networks for X-ray analysis have been applied in the domains of
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mammography [Zhang, 1994] and chest radiographs [Chiou, 1994; Lin, 1993; Lo, 1993].

Recent applications in ultrasonography include the examination of the gallbladder [Rinast,

1993] and the vascular system [Akay, 1993, Allen, 1993]. Computerized tomography,

magnetic resonance, and nuclear medicine imaging have also witnessed an impressive

growth in neural network applications over the last few years.

2.3 Evaluating Neural Network Applications in Medicine

The recent emphasis on formal evaluation of neural network models has been responsi-

ble for the increasing popularity of neural network models among health care researchers.

Earlier systems demonstrated only that neural networks were able to learn patterns in a

given (training) set. Researchers did not evaluate how these models would perform in dif-

ferent (or test) sets, did not compare their performance with other types of models, and did

not assess how much information was gained by using them.

2.3.1 Neural networks as diagnostic tests

One important issue in diagnostic test evaluation is the balance between Type I errors

(when the null hypothesis is rejected, but should have been accepted) and Type II errors

(when the null hypothesis is accepted, but should have been rejected). This issue was not

addressed by earlier work in the field of neural network classifiers. Penalties for false pos-

itives were assumed to be the same as penalties for false negatives. This assumption rarely

holds in real-world problems. Systems must be evaluated not only in terms of total accu-

racy (the percentage of correct classifications), but also on how much information they

provide over a simple educated guess that all cases belong to the most frequently repre-

sented category (which would result in a 99 percent accuracy in a data set where 99 per-

cent of the cases belong to a given category).
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Figure 2.22. ROC curve.

Classifier 2 is better than Classifier 1, since the area under the ROC for Classi-
fier 2 is larger than that for Classifier 1.

Sensitivity and specificity, as well as positive and negative predictive values, must be

used to evaluate performance of such systems. Receiving Operating Characteristic (ROC)

curves may also be used in order to evaluate performance for all possible thresholds of a

given classifier [Swets, 1973]. Figure 2.22 shows the areas under the ROC curves for two

different classifiers. The classifier with the largest area is usually considered the best if all

other features (such as price, risk, discomfort, availability) are the same.

2.3.2 Avoiding overfitting: Training, test, and validation sets

Several early applications of neural networks in medicine reported the fitness of the

model to a given set of data. The impressive results usually were derived from overfitted

models, where too many free parameters were allowed. Figure 2.23 shows an example of

a perfect fit to the training data that was sampled from a quadratic distribution.
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Figure 2.23. Overfitting data.

Overfit to training data is caused by allowing too many free parameters
(weights and/or cycles) in the neural network model. Overfitted models do not
generalize well to new data.

In overfitted models, near-perfection is achieved for modeling a given set of training

data. However, since the training set is just a sample of the real population, and even the

sampling variations were accounted for in the overfitted model, new data will probably

not be well modeled. As mentioned before, multilayered neural networks are known to be

able to approximate any function, provided that enough hidden units (and consequently

enough weights) are utilized. It is therefore expected that, for a given training set, a neural

network system will be able to reach 100 percent accuracy, by simply “memorizing” all

the cases.5

The grand challenge is, however, to generalize these results for a new set of data not

used in the training phase. For this purpose, training, holdout, and test sets may be used, as

shown in Figure 2.24.

5 The most commonly used statistical models do not suffer as much from the problem of overfitting, because they are
often limited in the way they can fit the data. For example, the linear regression model requires that data be modeled
in a line, which is a strong limitation on how the model can fit all data points. Therefore,R2 values, which are often
used as a measure of how much the data can be explained by the model, are relatively good measures of generaliza-
tion capability for these models. They do not apply to neural networks.

Overfitted ModelReal Distribution

training data

test data
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Figure 2.24. Training, holdout, and test sets.

After random assignment of cases, training, holdout, and test sets of data are
created. The training set is used to build the neural network model, the holdout
set is used to monitor overfitting, and the test set is used to evaluate perfor-
mance on new cases (generalization).

In neural network models, the error in the holdout set is monitored to determine when

the learning phase should be terminated. Both the training and the holdout set errors are

high when the system starts learning from the initial random distribution of weights. The

error in the training set will always decrease, and it may eventually reach zero when the

system is overfitted. The error in the holdout set will decrease in the beginning of the

learning phase, but it will at some point begin to increase again. At this point, learning

should stop. Figure 2.25 shows the stopping criterion to avoid overfitting in neural net-

work models.
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Figure 2.25. Stopping criterion.

In this example, tss is the total sum of squared errors. A holdout set is used to
determine the stopping criterion for training in a neural network. When the
error in the holdout set starts to increase, it is time to stop training to avoid
overfitting.

2.3.3 Techniques for dealing with small samples

It is not always possible to divide the sets for training, monitoring overfitting, and test-

ing the networks, because data collected in real life are often not abundant. Neural net-

works can generalize to new cases only if they are trained on a significant set of data. By

dividing a small set into training, holdout, and test sets, the researcher may lose important

cases for building an accurate model.

There are two techniques for dealing with small samples that deserve special attention,

cross-validation and bootstrap. In both of them, an approximation of the true error is

sought, while the full model is trained on all the examples. The apparent error of the train-

ing and holdout sets guides the learning phase, but the evaluation is done on an example

that hasnot been yet presented to the network, or a test set, so a better approximation of

the true error rate is achieved.

Cross-validation: leavingn out. In this method, the sample is divided into groups ofn ele-

ments. All groups except one are used to train the network. The group that is left out is

used for testing the model, and the results are recorded. A different group is then chosen to
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be left out, and the network is trained with all other groups, and tested with the one left

out. This process is repeated until all groups have been left out once for testing. All results

are combined to approximate the true error [Stone, 1977]. In the example of Figure 2.26,

we divided a set of patients into 10 groups by systematically classifying them according to

the last digit of the database record number. Therefore, all patients with record numbers

containing “0” as the last digit were grouped in the first set (Group 0), all patients with

record numbers containing “1” as the last digit were grouped in the second set (Group 1),

and so on. The training set was composed of those records left behind after each group

was selected. For example, when Group 0 was selected as the test set, all other records

containing last digits different from “0” would compose the training set and would be used

to build the model. This process was repeated 10 times, so that every group was used once

as a test set, and all patients were tested.

Figure 2.26. Example of leave-n-ou t method.

In this example, a neural network determines whether a patient will be alive or
dead at a given interval.
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Bootstrap. In this method, the sampling is done differently: Replacement is allowed in the

composition of the training set, up to the point where this set contains the same number of

cases as the original sample. The test set is composed of the cases that were left out. Sev-

eral models are constructed and the final evaluation is a weighted average of error in the

training and test sets [Efron, 1979]. The procedure for the bootstrap 0.632 estimation

method involves the creation of training sets by sampling the original set with replace-

ment, until the number of cases in the training set is the same as the original set. The test

set is composed of the cases that did not compose the training set. The procedure is

repeated many times, so that several training and test sets are created. Errors for both the

training and the test sets are calculated, and the final bootstrap estimate of the total error,

which is an approximation of the total error, is an average of the weighted sum of the

training and test errors of each pair of training and test sets [Walker, 1992]:

Bootstrap error = 0.632 * bootstrap test-set error + 0.368 * bootstrap training-set error.

2.4 Considerations about the appropriateness of neural network models

Neural network models are not a panacea for all problems of data modeling for predic-

tion. Computer-based systems based on production rules have also proven to be capable of

exhibiting intelligent behavior in medical tasks, such as diagnosis in the domain of infec-

tious diseases [Shortliffe, 1976] and selection of optimal parameter values for ventilators

in ICUs [Fagan, 1980]. In these structured domains, rules can be provided by human

experts, and the scrupulous selection and concatenation of these rules produces a model

that is able to perform adequately when new cases are presented. In these pioneering sys-

tems, the machine-learning phase was substituted by human knowledge acquisition,

whereby a knowledge engineer interacts with an expert. Even though later knowledge

acquisition tools further facilitated knowledge acquisition, automating part of the process

[Musen, 1989], knowledge acquisition is still considered the bottleneck in the develop-

ment of expert systems, partly because in certain domains structured knowledge is scarce,
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making it difficult to extract explicit knowledge from experts. If that is the case, but data

are abundant, neural network models can be used effectively. Figure 2.27 illustrates this

idea. Early work in machine learning addressed the problem of discovering diagnostic

rules from a set of diagnosed cases of diseases. In his work, Michalski [1980] claimed that

a system based on induction of rules from a case library performed better than a system

constructed from decision rules volunteered by experts. A system of neural networks also

acquires knowledge from a case library, and has the potential of providing accurate classi-

fications. The main difference between neural network and symbolic approaches to induc-

tive learning6 is that the former encodes knowledge in its internal weights and not in

explicit rules.

Figure 2.27. Expert systems vs. neural networks.

Neural networks and knowledge-based expert systems are not competitors.
Knowledge-based expert systems should be used when there is abundance of
structured knowledge and experts are available. Neural networks should be
used when data are abundant and structured knowledge is not.

Neural networks require that a large number of cases be available for the learning

phase. Even though human knowledge is required to determine the architecture of the net-

work and the adequate values for some initial parameters, most of the learning is done by

the system itself. Nevertheless, the complexity of these nonlinear models hinders their

explanation capability. Recent research in trying to determine which features are impor-

tant in the final model and how they are related is still in its infancy. General guidelines for

6 Learning by generalizing specific facts or observations [Michalski, 1980].
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when to use neural networks and which architectures to choose from are not yet available.

2.5 Summary

Neural networks, or connectionist systems, are computer-based tools inspired by the

vertebrate nervous system that have been increasingly used in the past decade to model

biomedical domains . The backpropagation algorithm has been used in the vast majority

of applications in the fields of basic sciences, clinical sciences, and signal and image anal-

ysis. Pioneer researchers of connectionist systems based the evaluation of these models on

the apparent error in a training set. The use of training and test sets to avoid overfitting and

to provide an approximation of the true error rate is now the standard. Neural networks

should not be used indiscriminately, and they can be more useful if the domain being mod-

eled lacks structured or explicit knowledge, if the number of examples is high, and if

explanation capabilities are not essential.
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CHAPTER 3 Rare Category Recognition in

an Artificial Data Set

This chapter describes the limitations of backpropagation-based

neural networks in dealing with rare-category recognition. In

Section 3.1, the problem is described and existing solutions are dis-

cussed. In Section 3.2, the existence of the problem is demonstrated

and quantified in an artificial data set where the classification is deter-

ministic. An example using a similar data set, but with probabilistic

classification, is presented in Section 3.3. A current solution to the

problem of recognizing infrequent categories is also attempted: pat-

terns are replicated so that all categories are equally represented.

Although learning speed is enhanced with replication, the final solu-

tion is not correct. The increase in sensitivity for low-frequency cate-

gories is accompanied by a decrease in specificity for those

categories.
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3.1 Rare Categories and Backpropagation-based Neural Networks

The problem of learning rare categories (or rareclasses) in neural network research has

been described by Lowe [1990] and briefly mentioned by Curry [1990]. As Lowe states,

“Adaptive networks trained on a 1-from-c1 classifier problem exhibit a strong bias in

favour of those classes which have the largest membership in the training data, [which] is

an undesirable feature of networks (and many other standard classifiers) in problems

where information on one particular class may be more difficult or expensive to obtain

than other classes, and where the relative importance of the classes follows a different dis-

tribution from their frequency of occurrence.” Lowe devised an analytic regularization

scheme to compensate for the uneven class membership and tune the network by error

weighting. This weighting may be done according to the prior probabilities of each cate-

gory, and is therefore very similar to the solution discussed later in Section 3.2.4. Curry

and Rumelhart [1990] used a similar weighting in their work on classification of chemical

compounds, as discussed in Section 3.2.4.

Even though researchers in medical informatics are often looking for low-frequency

data or rare categories, the latter are difficult to recognize in certain types of machine-

learning methods, including backpropagation-based neural networks. The difficulty is

often due to the fact that the error corresponding to frequent categories, being higher than

that of rare categories, drives the learning algorithm and slows the learning phase. That is,

categories that occur more frequently account for a larger error than categories that are

infrequent, as is shown in the error function. The standard error function to be minimized

in a backpropagation-based neural network for each output node is usually

whereζi is the expected output for patterni, andOi is the output provided by the network

[Hertz, 1991]. The changes in weights in the backpropagation algorithm are proportional

to the first derivative of the error function. Since the error function is the result of the sum

1 A classifier that determines that a case belongs to one out ofc categories.
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of squared errors ofall patterns in all categories, categories with higher frequency will

have a stronger influence on the weight changes.2 Utilities can be taken into account in the

process of changing weights if the error function is changed to reflect the researcher’s

interest in detecting a given category. For example, if it is important to diagnose an infre-

quent disease, the error corresponding to a failure to recognizing that disease should be

increased by a certain factor (utility or importance factor), so that it becomes more easily

identifiable by the neural network. Figure 3.1 shows how utilities can be incorporated into

the error function. In this case, however, a different network will have to be trained each

time the utilities change, and the recognition of a category for a given pattern, which

would be analogous to determining the probability of a disease given a set of symptoms,

cannot be disambiguated from the process of making an optimal decision using a physi-

cian’s specific set of values, which would then include issues such as costs, risk, patient’s

preferences, and so on.

Figure 3.1. Embedding utilities in the error function.

Utilities can be embedded in the error function by multiplying the error corre-
sponding to category (output node) p1 by I1 (importance or utility constant),
and the error corresponding to p2 by I2.

Traditional classification methods, such as linear discriminant analysis, also have diffi-

culties in detecting infrequent categories [Gray, 1976]. If the variability of the most fre-

quent categories is high, then a rare class may be considered just another instance of the

most frequent class, and no discrimination will be possible. On the other hand, if all

2 The use of the cross-entropy error function, explained in Section 3.3.2, is also affected, though to a smaller degree, by
the prior probability of the categories, thereby hindering the learning of rare categories.
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classes are equally represented, neural networks should be able to make the distinction

easily. Unless neural network applications address the problem of discriminating low-fre-

quency classes, their use in medical applications will not scale up to useful real-world

applications.

Curry and Rumelhart [1990] used a “rule of thumb” that dictates that, whenever the fre-

quency of a certain category is below 1 percent, backpropagation neural networks will

have difficulties in identifying the rare category. Two solutions for this problem have been

proposed: (1) changing the prior probabilities of each category, by replicating patterns in

rare categories or removing patterns in frequent categories, such that all categories

become equally represented as inputs in a neural network; (2) changing the error function

by embedding utilities or import values, such that errors corresponding to infrequent cate-

gories have a higher weight than those corresponding to frequent categories. The implica-

tions of the use of each method are that (1) information on prior probability of each

category is lost, and the artificially replicated examples increase the number of training

patterns, slowing learning in the backpropagation algorithm, without providing any addi-

tional information, and (2) whenever utilities change, the whole neural network has to be

retrained. These implications were briefly discussed in Chapter 1. We will quantify in the

next examples the problem of recognizing infrequent categories in two artificial data sets.

In the first example, the categories are deterministic, such that equal patterns are always

classified the same way. In the second example, categories are determined stochastically,

that is, the same pattern will have a certain probability of being labeled “category 1,” “cat-

egory 2,” and so on.

3.2 Example I: Deterministic Sorting of Binary Numbers

I will demonstrate the problem of learning infrequent categories in a simple artificial

example. Although meaningless from a medical point of view (since medical problems

tend to be much more complex), this example illustrates the basic ideas underlying the
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recognition of infrequent categories and current methods to minimize this problem. Once

the reader is convinced of the existence of this problem and the drawbacks of current solu-

tions, it will be easier to switch to real examples, which are provided in Chapter 5.

3.2.1 The data set

I created an artificial data set using a known distribution. In this data set, four catego-

ries (Category 0, Category 1, and so on) have to be discriminated. There were two

attributes for each pattern, which constituted the binary representation of the number

assigned to each of the classes (“00” was the pattern that corresponded to Category “0,”

“01” corresponded to Category “1,” “10” corresponded to Category “2,” and “11” corre-

sponded to Category “3”). Each input unit corresponded to one digit of the binary number.

All the units were binary. The input patterns, frequency of each type of pattern, and

expected output categories are shown in Table 3.1.

Consider that the problem could be formulated as follows. There are two symptoms, S1

(cough) and S2 (headache), and four conditions, D1 (No disease), D2 (Meningitis), D3

(Pneumonia), and D4 (Flu). If the patient has both symptoms S1 and S2 (cough and head-

ache), then the diagnosis should be D4 (Flu); if the patient has symptoms S1 (cough) and

¬S2 (no headache), the diagnosis should be D3 (Pneumonia); if the patient has symptom

S2 and¬S1 (headache, but no cough), the diagnosis should be D2 (Meningitis); and finally,

if the patient has symptoms¬S1 and ¬S2 (neither cough nor headache), the diagnosis

should be D1 (No disease). Figure 3.2 shows how the patterns are distributed and the per-

fect classification that is achieved by defining categories in quadrants. The task of a

machine-learning method is to define the boundaries of such quadrants.

Table 3.1. Distribution of patterns for Example I.

Pattern Frequency Output (Disease)

 00 ¬S1¬S2 ● 44% 0                              D1

01 ¬S1S2    ◆ 1% 1                              D2

10 S1¬S2 ▲ 5% 2                              D3

11 S1S2 ■ 50% 3                              D4
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Figure 3.2. Example I. Perfect classification of patterns in four categories.

In this simple example, classification of diseases is deterministic: ¬S1¬S2 (00)

corresponds to D1 (No disease), ¬S1S2 (01) corresponds to D2 (Meningitis),

S1¬S2 (10) corresponds to D3 (Pneumonia), and S1S2 (11) corresponds to D4

(Flu).

3.2.2 The neural network classifier

A standard feedforward neural network, with 2 input, 4 hidden, and 4 output units, as

displayed in Figure 3.3, was created to learn these categories. The network had 24 weights

to be iteratively learned. Using a fixed learning rate of 0.01, and no momentum term,3 the

network took an average of 148,791 epochs to converge to a perfect solution. A perfect

solution was defined to be achieved when the activation of the correct output unit was at

least twice that of the other output units. No noise was added to the data. Training was

done by epochs. I performed 10 simulations for each system, starting with different initial

weights. Although the nature of the problem allows a simple perceptron (a one-layered

neural network) to converge to a solution, my study focused on the behavior of the back-

propagation algorithm for multilayered neural networks. The perceptron’s performance on

this problem was extremely good, as expected, but it would not be as good in the case of a

nonlinearly separable problem, as we will see later in Chapter 5.

3 The momentum term can be added to the weight update function to avoid weight oscillation [see Rumelhart, 1986].

D2

D4D3

D1

¬ cough, headache

cough, headache

 ¬ cough,¬headache¬S1¬S2 (00) → D1 No disease (44%)

cough,¬headache
→ D4 Flu (50%)S1S2 (11)

¬S1S2 (01) → D2 Meningitis (1%)
S1¬S2 (10) → D3 Pneumonia (5%)
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Figure 3.3. Neural network to sort two-digit binary numbers.

All patterns are sorted by a standard neural network.

3.2.3 Results

Figure 3.4 displays the number of epochs (in fact, the logarithm of the number of

epochs, given the orders of magnitude involved) required for a standard neural network to

learn categories with different frequencies using the minimum square error function.

Figure 3.4. Example I: Number of epochs and category frequency.

Frequent categories are learned after a relatively few number of epochs. Infre-
quent categories take longer to be learned. A 2-4-4 network using the standard
error function was used in this example.

Since outputs in this example are binary, the cross-entropy function4 is the appropriate

error function to use in this example [Rumelhart, 1995]. The objective is to maximize the
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likelihood of a diagnosis given a certain pattern (or approximate the posterior probability

of a disease given a pattern). The use of the cross-entropy error function considerably

reduces the number of epochs that are necessary to learn each category, as we can see in

Figure 3.5, but the relation between the learning times for each category is unchanged:

rare categories take more epochs to be learned, and the relation between category fre-

quency and the number of learning cycles is not linear. As we can see in this example, the

standard neural network required an overwhelming number of training cycles to detect

low-frequency categories.

Figure 3.5. Example I: Number of epochs and category frequency: Using the cross-entropy

error function.

Frequent categories are learned after a relatively few number of epochs. Infre-
quent categories take longer to be learned. A 2-5-4 network using the cross-
entropy error function was used in this example.

Evaluation of a test set was not necessary in this artificial example because the catego-

ries weredefined as being the decimal representation of the binary numbers. The systems

would have exhibited the same classification performance on any test set composed of the

same patterns, independent of their distribution. Overfitting was not a concern for exactly

the same reason. The evolution of the activation values for the output units, when the

cross-entropy error function is used, is depicted in Figure 3.6.

4 The cross-entropy error function is given by ,whereti is the target, or
desired output, andyi is the actual output produced by the network. Minimizing this function is the same as perform-
ing maximum likelihood estimation [Curry, 1990].
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Figure 3.6. Example I: Activation values for the output units for different input patterns.

Activations of output units start at random values and are updated at each
epoch. After enough training epochs, the output unit that corresponds to a
given input has higher activation than any other output unit. Note that the net-
work seems to try to guess the most frequent categories as outputs for all input
patterns early (~15 epochs), approximating the prior probabilities of the corre-
sponding categories. After this early phase, the categories D1 and D4 are eas-
ily learned. The same does not happen for D2 and D3, since these categories
are rare.

 Note that it only takes about 30 epochs for pattern “00” (which has a frequency of 44

percent and corresponds to category D1) to be learned. Compare this number with that of

learning pattern “01” (which has a frequency of 1 percent and corresponds to category

D2), which is around 800 epochs. Clearly, categories that are rare take longer to be

learned. This difference is even more evident when least square errors is performed, as

shown previously in Figure 3.4. Note also that, at early stages of learning (e.g., after five

epochs of training), the neural network classifies all patterns as belonging to the most
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frequent category, D4. In those early stages, the network seems to be only using the prior

probability of each category. Later on, the network seems to be able to somehow learn the

posterior probability of the disease given S1 and S2.

3.2.4 Current methods of recognizing rare categories

We have seen in this example that rare categories take a vast number of epochs to be

learned. The two proposed solutions for this problem involve either the preprocessing of

inputs or the modification of the error function. Preprocessing involves the replication of

patterns in rare categories up to the point where all categories have equal prior probabili-

ties. In this example, since the categorization is deterministic and the classes do not over-

lap, replicating the patterns in infrequent categories (or, conversely, deleting the patterns

in frequent ones) up to the point where each category represents 25 percent of the inputs

would result in faster learning, with no decrease in the number of correct results. If the cat-

egories are, however, stochastically determined, the change in prior probabilities may

result in spurious results, as we will see in the next example.

The second existing solution, the change in error function to account for utilities of

learning certain categories, was not attempted, since the neural network was created to

produce posterior probabilities of a category given a pattern (or of a disease given the two

symptoms), andnot to produce the optimal decision boundary based on an information-

theoretic perspective. Once the posterior probability is produced, the use of risks and the

definition of the optimal decision is straightforward. In medicine, one might argue that this

is the mechanism used by physicians to make diagnoses. Going back to the trypanosomia-

sis example presented in Section 1.1, the physician may recognize Chagas’ disease as the

most probable diagnosis, but may place it low on her differential list, not because the clin-

ical picture is not clear (that is, the posterior probability of that disease given the symp-

toms is high), but because failing to promptly diagnose this chronic (and at this stage,

irreversible), disease is not as harmful for the patient as failing to diagnose other treatable

diseases.
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3.3 Example II: Probabilistic Sorting of Binary Numbers

Although the replication method seemed to produce good results in Example I, there is

an important limitation in the data set used there. All classifications in that example were

deterministic and mutually exclusive (that is, once a pattern was known, its classification

did not depend on any random factor and it belonged to just one category). I will demon-

strate next that when random factors are involved in classification (that is, once a pattern is

known, there is a certain probability—different from 1—that it belongs to a given class),

the replication method does not work. In this example categories are still mutually exclu-

sive, but the results apply to similar problems where categories are not mutually exclusive

as well.

3.3.1 The data set

I have shown in the previous example that backpropagation neural networks take a

long time to recognize categories that are infrequent. In that example, the categories were

deterministically defined, and the replication method would work nicely to enhance the

speed of learning. In this next example, however, categories are stochastic: the same pat-

tern may appear in different categories, and the relative frequency of each pattern in a cer-

tain category will determine how that pattern should be classified. The distribution of the

patterns and their categories is shown in Table 3.2. The shaded cells indicate the best diag-

nosis for each input pattern. For example, a patient with symptoms S1S2 should be classi-

fied as having disease D4, a patient with S1¬S2 should be classified as having D3, a patient

with ¬S1S2 should be classified as having D2, and a patient with¬S1¬S2 should be classi-

fied as having D1, because the posterior probability of these diseases is the highest, given

the symptoms just mentioned. The posterior probability of a disease given the symptoms

is not, of course, 100 percent. For example, a patient with¬S1¬S2 has a probability of 24/

44 (54.6%) of having D1, 2/44(4.5%) of having D2, 3/44 (6.8%) of having D3, and 15/44
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(34.1%) of having D4.

Shaded cells indicate the best diagnosis for a given pattern (e.g., D1 is the best diagnosis if “00” is presented,
and D2 is the best diagnosis if “01” is presented. The same information is presented graphically in the lower
table. The classification of a pattern (diagnosis) should not change for this data set.

Figure 3.7 shows how patterns are distributed in the four output diagnostic categories.

Table 3.2. Distribution of patterns for Example II.

Input pattern D1 (%) D2 (%) D3 (%) D4 (%) Total (%)

00 ¬S1¬S2 ● 24 2 3 15 44 (44%)

01 ¬ S1S2 ◆ 0 1 0 0 1    (1%)

10    S1¬S2 ▲ 1 0 3 1 5    (5%)

11       S1S2 ■ 12 6 12 20 50 (50%)

Total (%) 37(37%) 9 (9%) 18 (18%) 36 (36%) 100 (100%)

Input pattern D1 (%) D2 (%) D3 (%) D4 (%) Total (%)

00 ¬S1¬S2 ● ●●●●●●

●●●●●●

●●●●●●

●●●●●●

●● ●●● ●●●●●●

●●●●●●

●●●

44 (44%)

01 ¬ S1S2 ◆ ◆ 1    (1%)

10    S1¬S2 ▲ ▲ ▲▲▲ ▲ 5    (5%)

11       S1S2 ■ ■■■■■■

■■■■■■

■■■■■■ ■■■■■■

■■■■■■

■■■■■■

■■■■■■

■■■■■■

■■

50 (50%)

Total (%) 37(37%) 9 (9%) 18 (18%) 36 (36%) 100 (100%)
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Figure 3.7. Example II: Distribution of patterns and output categories.

In this artificial data set, classification of diseases is stochastic: each input pat-
tern has a probability of belonging to a given disease category. For example, if
pattern “00” is present, there is a probability of 55% that D1 is present, 4% that
D2 is present, 7% that D3 is present, and 34% that D4 is present.

3.3.2 Results

The same network used in Example I, with the cross-entropy error function, was used

to classify the patterns. The number of epochs that the network needed to classify cor-

rectly all cases is shown in Figure 3.8. The evolution of the activation values for the out-

put units is depicted in Figure 3.9.

Figure 3.8. Example II: Number of epochs and category frequency using the cross-entropy

error.

Infrequent categories take longer to be learned. A 2-5-4 network using the
cross-entropy error function was used in this example.
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Figure 3.9. Example II. Activations for the output units for different input patterns.

Note again that the network tries to guess the most frequent categories as out-
puts for all input patterns early (~15 epochs), approximating the prior probabil-
ities of the corresponding categories. Infrequent categories (Meningitis and
Pneumonia) are learned later than frequent ones (No disease and Flu).

The graphics also show the order of a possible differential diagnosis list. For example,

if pattern “10” is presented, D3 would be the first in the list, D1 and D4 would be tied in

second place, and D2 would be the most unlikely diagnosis. It is again evident that catego-

ries that are less frequent are more difficult for the neural network to recognize.

3.3.3 Replicating patterns in infrequent categories

Now consider the option of replicating some patterns in infrequent categories (so that

each output category is equally represented) in order to enhance the speed by which all

categories are learned. Table 3.3 shows the distribution after replication of the patterns in

the most frequent categories. Figure 3.10 shows graphically how the patterns would be
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distributed in each category. Patterns are replicated in rare categories, but their proportions

inside that category remain practically unchanged after this process. For example, patterns

for category D2 are replicated so that the initial proportion of input patterns — 2/9 (22%)

for “00,” 1/9 (11%) for “01,” 0/9 (0%) for “10,” and 6/9 (67%) for “11” are replicated to

8/37 (22%), 4/37 (11%), 0/37 (0%), and 25/37 (67%), respectively.

Patterns in infrequent categories were replicated, so that all categories became equally represented (25% of the pat-
terns of each category) in this example. Replication makes learning of a rare category easier. Shaded cells corre-
spond to the diagnosis that should be made for each pattern. The same information is presented graphically in the
lower table. Compare these shaded cells with the ones presented in Table 3.2. Note that the best diagnosis for “11” is
now either D2 or D3, andnot D4, as it should be. Replication may result in spurious classification when the catego-
ries are not deterministically defined, that is, when the same pattern may belong to more than one category.

Table 3.3. Distribution of patterns for Example II, after replication.

D1 (%) D2 (%) D3 (%) D4 (%) Total (%)

00 ¬S1¬S2 ● 24 8 6 15 53(36%)

01 ¬S1S2 ◆ 0 4 0 0 4 (3%)

10    S1¬S2 ▲ 1 0 6 1 8 (5%)

11       S1S2 ■ 12 25 25 21 83 (56%)

Total (%) 37 (25%) 37 (25%) 37 (25%) 37 (25%) 148 (100%)

Input pattern D1 (%) D2 (%) D3 (%) D4 (%) Total (%)

00 ¬S1¬S2 ● ●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●●●●●

●●

●●●●●● ●●●●●●

●●●●●●

●●●

44 (44%)

01 ¬ S1S2 ◆ ◆◆◆◆ 1    (1%)

10    S1¬S2 ▲ ▲ ▲▲▲▲▲

▲
▲ 5    (5%)

11       S1S2 ■ ■■■■■■

■■■■■■

■■■■■■

■■■■■■

■■■■■■

■■■■■■

■

■■■■■■

■■■■■■

■■■■■■

■■■■■■

■

■■■■■■

■■■■■■

■■■■■■

■■■

50 (50%)

Total (%) 37(37%) 9 (9%) 18 (18%) 36 (36%) 100 (100%)
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Figure 3.10. Example II. New distribution of patterns after replication.

After replication, all quadrants have the same number of patterns. Patterns are
replicated in each quadrant so that initial proportions inside a category are
approximately unaltered.

Note that changing the prior probabilities of each category by replicating patterns in

that category will cause a change in posterior probabilities. Since the network approxi-

mates the posterior probabilities given an input pattern, it will produce wrong results. For

example, Figure 3.11 shows the activation of the output units during learning.

The network does not classify correctly cases with input pattern “11”: it tries to guess

that the output for that pattern should be either D2 or D3, whereas in fact it should be D4

(the correct diagnosis before replication). Therefore, learning may be faster with replica-

tion, but accuracy is sacrificed. The number of false positives for categories in which input

patterns were replicated rises. The number of epochs that the network needed to classify

correctly all cases is shown in Figure 3.12.

D2

D4D3

D1

¬cough, headache

cough, headache

 ¬cough,¬headache¬S1¬S2 (00) → D1 (45%), D2 (15%), D3 (11%), D4 (29%)

cough,¬headache

→ D1 (14%), D2 (30%), D3 (30%), D4 (25%)S1S2 (11)

¬S1S2 (01) → D1 (0%), D2 (100%), D3 (0%), D4 (0%)
S1¬S2 (10) → D1 (12%), D2 (0%), D3 (75%), D4 (12%)
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Figure 3.11. Example II: Activation values for the output units for different input patterns

after replication.

After replication, learning categories is apparently easier. After 45 epochs, all
categories are learned. However, since posterior probabilities of each category
given an input pattern have changed, the categorization is not correct in all
cases. For example, whenever pattern “11” is presented, the most probable
diagnosis now is either D2 or D3, and not D4, which is not correct. The number
of false positives for D2 and D3 is now higher.

Figure 3.12. Example II: Using the cross-entropy error function after replication.

After replication, the difference in the number of epochs that are necessary to
learn each category is smaller than before replication. A 2-5-4 network using
the cross-entropy error function was used in this example.
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3.3.4 Removing patterns in frequent categories

Removal of patterns from frequent categories so that all categories become equally rep-

resented has the same effect as replicating patterns. Furthermore, information contained in

the removed cases is lost. A minimum of one case had to be left for each input pattern that

corresponded to a given diagnosis in the initial sample. Table 3.4 shows the distribution of

cases after removal. Shaded areas correspond to the best diagnosis given this distribution.

Note that the diagnosis for pattern “11” is again incorrect. Pattern “10” will also be incor-

rectly classified.

In this example, patterns in frequent categories were removed so that all categories became equally repre-
sented (25% of the patterns in each category).

Figure 3.13 shows graphically how the patterns would be distributed in each category

Figure 3.13. Example II. New distribution of patterns after removal.

After removal, all quadrants have the same number of patterns. Patterns are
removed from each quadrant so that initial proportions are approximately unal-
tered. Fractions of a pattern were rounded to 1.

Table 3.4. Distribution of patterns for Example II, after removal.

D1 (%) D2 (%) D3 (%) D4 (%) Total (%)

00 ¬S1¬S2 ● 6 2 1 3 12 (33%)

01 ¬S1S2 ◆ 0 1 0 0 1 (3%)

10    S1¬S2 ▲ 1 0 1 1 3 (8%)

11       S1S2 ■ 2 6 7 5 20 (56%)

Total (%) 9(25%) 9 (25%) 9(25%) 9(25%) 36(100%)

D2

D4D3

D1

¬cough, headache

cough, headache

 ¬cough,¬headache ¬S1¬S2 (00) → D1 (50%), D2 (16%), D3 (9%), D4 (25%)

cough,¬headache

 → D1 (10%), D2 (30%), D3 (35%), D4 (25%)S1S2 (11)

¬S1S2 (01) → D1 (0%), D2 (100%), D3 (0%), D4 (0%)
S1¬S2 (10) → D1 (33%), D2 (0%), D3 (33%), D4 (33%)
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Summary

3.4 Summary

I have shown in an artificial example that learning rare categories in a backpropagation

neural network is hard. Currently available solutions are not adequate. By artificially

increasing the prior probability of a category, in the case of rare-category replication (or

removal of frequent categories), the rise in sensitivity for a given category is coupled with

a decrease in specificity. If utilities are used to make learning of one category faster than

the learning of others, in the case of error function modification, retraining of the network

is necessary every time the utilities change.

In screening large databases, where the desired category is rare, it is desirable that the

rate of false positives for that category not be too high. Therefore, there is a need to

improve sensitivity to rare categories, without a corresponding decrease in specificity.

Hierarchical neural networks are good candidates for achieving this goal, as we will see in

Chapter 4.
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CHAPTER 4 Hierarchical Neural
Networks for Diagnosis

This chapter presents a new solution to the problem of recognizing

infrequent categories, discussed in Chapter 3. A hierarchical system

of triage and specialized networks is applied to the same problems

described in Chapter 3, demonstrating an improvement in learning

time. Section 4.1 describes hierarchical systems of neural networks

(HNNs), and how the use of intermediate abstractions to divide and

conquer the problem provides a means to enhance sensitivity to rare

categories, without a corresponding decrease in specificity. Section

4.2  describes hierarchical structures of neural networks that have

been developed by other authors, emphasizing major similarities and

differences with this work. Section 4.3 uses the example of the deter-

ministic sorting of binary numbers to illustrate the advantages of hier-

archical neural networks. Section 4.4 is analogous to Section 3.3 in

Chapter 3, where a similar data set is used for learning probabilistic

classification. Section 4.5 uses a real-world complex medical diag-

nostic problem to illustrate the use of HNNs.
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4.1 Using Divide-and-Conquer in Neural Networks

The HNN is an architecture of neural networks in which the problem is divided and

solved in more than one step. Figure 4.1 shows how a hierarchical system of neural net-

works should operate: the first classifier, or triage network, divides the data set into

smaller subsets, which will then constitute the inputs for the specialized networks.

Figure 4.1. Hierarchical neural network.

Electronic data from medical records are entered into a triage network. This
network filters records that should be further processed by specialized net-
works.

The application of multilayered neural networks in more than one step allows the prior

probability of a given category to increase at each step, provided that the predictive power

of the network at the previous level is greater than that of simply guessing the most fre-

quent category (i.e., the area under the ROC curve is greater than 0.5). For example, sup-

pose a researcher needs to discriminate four categories in a given data set. Among the

categories, there exists one that occurs only 1 percent of the time. The other categories

have prior probabilities of 5, 44, and 50 percent (see the example in Chapter 3). By apply-

ing a classifier that can reliably discriminate a set of two categories from the other ones,

and applying another classifier to the results of this preclassification, the total number of

categories in the second step is decreased, and consequently the frequency of a given cate-

gory is increased. This increase in frequency allows a hierarchical neural network classi-

fier to learn to discriminate categories more quickly, as I will demonstrate.

The hierarchical model assumes that the first classifier (triage network) is able to

TRIAGE NETWORK

SPECIALIZED
NETWORKS

DATABASE RECORDS
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discriminate a superset of some categories, which includes the desired one, from the other

categories. Since in any of these reliably constructed supersets the prior probability of a

category in the set is higher than that of the initial sample, this process will yield higher

posterior probabilities for the desired category than one in which the classifier attempts to

make all distinctions in a single step.

Using Bayes’s rule, whereX is a vector of attributes andCi is a category, we have

In the two-category case, the equation becomes

Assuming thatk1 = P(X|C1) andk2 = P(X|¬C1) are constants and that P(¬C1) = 1 –

P(C1), we can see that wheneverP(C1) is increased, the posterior probabilityP(C1|X) is

also increased, as shown in

Therefore, if the prior probability of a category is augmented in the training set and the

sensitivity and specificity of the network remain unchanged, the posterior probability of

the class is increased. In other words, if the triage and the specialized networks of the hier-

archical system each have the same number of weights as that of the generic system (and

consequently the same potential for achieving the same sensitivity and specificity after

training), they can perform better than the nonhierarchical system can.

This process confirms the intuition that if the prevalence of a category is increased,

while everything else remains unchanged, the posterior probability of that category, given

the same set of attributes, is increased. Therefore, if a triage network is applied and is able

to reliably discriminate a subset that contains the desired category, an increase in the prior

probability of that category will occur, also causing an increase in the posterior probability

of that category in the corresponding specialized network. The question remains whether

triage and specialized networks with a smaller number of weights than that of the

corresponding generic network (a network that classifies patterns in just one step) can also

P C1 X( )
P X C1( ) P C1( )
ΣP X Ci( ) P Ci( )
-------------------------------------------=

P C1 X( )
P X C1( ) P C1( )

P X C1( ) P C1( ) P X C¬ 1( ) P C¬ 1( )+
-------------------------------------------------------------------------------------------------=

P C1 X( )
k1P C1( )

k1 k2–( ) P C1( ) k2+
----------------------------------------------------=
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perform better than the nonhierarchical system. If thetotal number of free parameters

(weights) in both systems is the same, the triage and specialized networks will certainly

havefewer weights than the generic network. The experiments described in this chapter

were designed to answer this question.

4.2 Hierarchical Architectures

Several authors have dealt with the decomposition of complex problems inside and

outside the field of neural networks. Their reasons for developing hierarchical models of

neural networks were sometimes different from the ones presented in this work.

Before commenting on existing hierarchical models and describing the details of the

experiments used throughout this dissertation, it will be helpful to define some terms that

will be used frequently.

Model: A set of coefficients resulting from parameter estimation using statistical mod-

els (logistic regression or Cox proportional hazards) or a set of weights learned

by a neural network.

Method: A way of constructing models. A standard method makes only final classifica-

tions of specific diagnoses. A hierarchical method makes intermediate classifi-

cation of cases in classes, and then final classification of cases in specific

diagnoses.

Hierarchical systems can be constructed either in a bottom–up or a top–down manner,

as explained next.

4.2.1 Bottom-up hierarchical architectures

In bottom-up hierarchical designs, several specialized networks are used to classify all

instances, and the results of these specialized networks are aggregated by a top-level net-

work. Usually, the specialized networks work only on certain features. For example, in a

handwritten-character–recognition task, one specialized network may be used to identify
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horizontal strokes, while another may be used to identify vertical ones. A top-level net-

work integrates the results of these specialized networks and provides the final solution. In

this type of design, all instances are used in all networks, as illustrated in Figure 4.2.

Figure 4.2. Bottom-up hierarchical architectures.

Specialized networks classify inputs according to a specific feature. The
results of the specialized networks are used by an Integrating network that
provides the final output.

There are several examples of bottom-up hierarchical architectures. Fukushima [1988]

developed the Neocognitron for eliminating the problem of space variations in the visual

recognition of handwritten digits. The author was not specifically concerned with the fre-

quencies of the categories involved. He has also suggested that there are similarities

between his architecture and the human visual cortex. Ballard [1990] also developed a

system of hierarchical neural networks for applications in machine vision, and he was par-

ticularly concerned with the problem that the backpropagation algorithm might not scale

up to complex networks. Hrycej [1992] discussed modularization in neural networks. In

his system, preprocessing of inputs was done in an unsupervised manner by a neural net-

work, and the results of this factoring process were then imputed in the following net-

works. Hripcsak [1990] developed a connectionist model for decision support in medicine

based on several backpropagation modules to incorporate real-valued and uncertain data.

Jordan [1991] proposed a system in which many networks of experts would receive the

Input patterns
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NETWORK
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inputs and compete for providing the best solution. A gating network would then decide

among the experts’ solutions. The system used in this work is different: Even though spe-

cialized networks refine the partial solutions proposed by the triage network, the decision

on which network to use is done first, so not all experts need to be overburdened with all

data. It follows a top-down hierarchical architecture.

4.2.2 Top-down hierarchical architectures

Top-down hierarchical systems are different from bottom-up hierarchical systems not

only in the way they are created, but also in the final neural network design. In this type of

hierarchy, a top-level network divides the inputs to be classified in specialized networks.

Figure 4.3 shows the design of this type of systems.

Figure 4.3. Top-down hierarchical architectures.

In top-down hierarchies, all inputs are preclassified by a top-level network to
be used in specialized networks that provide the final classification.

Matsuoka et al. [1989] used a top-down hierarchical architecture to perform syllable

recognition, and showed certain advantages over a nonhierarchical backpropagation neu-

ral network constructed to perform the same task. The authors were not concerned with

the problem of rare-category recognition and did not try to generalize their results to other

applications. Furthermore, the authors seem to have used the same data set to train and to

Input patterns

TOP LEVEL
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NETWORK

Round Dotted Tall

Tall Letters
(b,d,f,g,h,l, etc.)

Round Letters
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test their results. The same criticism applies to the work of Cho and Kim [1990] for

printed character recognition. Other authors have employed similar architectures to bio-

logical data, but have not explored the gain in accuracy over standard models [Boddy,

1994].

Curry and Rumelhart’s work on the Mass Spectrometry Network (MSNet) is closely

related to the work presented here. In that system, categories of chemical compounds were

determined in a top-level network. The probability of belonging to a given group, allied to

the original input attribute vector, was then used by specialized networks to refine the

solution and get a final diagnosis. The authors were concerned with the fact that low-fre-

quency categories would cause the performance of the network to decay, and they

addressed that concern by using a different strategy: they trained the network to recognize

low-frequency categories by assigning a utility to these categories. A factor inversely pro-

portional to the frequency was multiplied by the error originating from each category, so

that the network was trained as if all categories were equally represented. This procedure

was done by modifying the learning algorithm and processing the final output to reflect the

consequent changes in posterior probabilities.

The system of HNNs that I propose, however, tries to disambiguate the process of diag-

nosing the categories from the process of using utilities while training to make an optimal

decision based on a decision-theoretic approach. In this system, the diagnosis is based on

the similarities among the categories, and not on their relative utility. Once the diagnostic

process is proven to be reliable and is based mainly on the features presented by the

inputs, the use of utilities and the decision on which category to choose should be straight-

forward.

4.2.3 Theory of hierarchical modular systems

Large self-organizing natural systems, such as monetary, computer vision, and natural-

language understanding systems, can be modeled using hierarchical modular systems .  In
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computer vision, pyramidal architectures (usually binary or quad pyramids, shown in

Figure 4.4) have been used to segment images for machine recognition. Variable-resolu-

tion grids compose multiresolution systems with layers of increasing detail [Cantoni,

1994]. This computer architecture tries to mimic human vision, which is composed of a

preattentive phase, in which detection of regions of interest is performed, and anattentive

phase, in which extensive analysis of a subset of the visual field is performed [Freeman,

1988]. In pyramidal architectures for image segmentation [Bischof, 1995], the initial

image is divided into quadrants. A significant change in color from one quadrant to

another signals that segmentation should take place somewhere between those quadrants.

Finer grids (subquadrants) are therefore created in each of these quadrants, and the process

is repeated. Adjacent quadrants with no color difference are ignored for purposes of seg-

mentation, so that the use of subquadrants is not widespread, causing significant resource

savings.

Figure 4.4. Pyramidal architectures for computer vision.

At the top level, segmentation is coarse: the system can detect only gross
changes in color from one quadrant to another. Adjacent quarters that have no
color change will probably not contain borders and will therefore be ignored by
the segmentation algorithm. Adjacent quadrants that have a color difference
will be subdivided into subquadrants, and the algorithm will be recursively
applied until the borders are well defined. At the bottom of the pyramid, seg-
mentation is fine.
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HMS can be adapted for use with neural networks. In hierarchical neural networks,

intermediate abstractions (analogous to the quadrants used in computer vision) need to be

defined in order to make learning faster. In medical applications, however, there is usually

an additional goal: the intermediate abstractions need to make sense from a medical per-

spective, so that if learning had to be interrupted at any level, the results of the classifica-

tion up to that level would be medically useful, and the work would not have been a loss.

4.2.4 Divide-and-conquer methods

Divide-and-conquer methods are not new in computer science. Simple search trees are

perhaps the best-known example, where the complexity of simple operations takes

O(log n), with n being the number of candidate solutions, as opposed to O(n), as occurs

with linear lists [Ullman, 1993].  We can make an intuitive assessment of the value of hier-

archical systems when the objective is to recognize only one category of rare outputs in a

set of three or more categories if we think of the hierarchical architecture as a binary tree,

as shown in Figure 4.5.

Figure 4.5. Hierarchical decomposition: binary trees and HNNs.

When the objective is to learn one category (in this example, category 1), cer-
tain HNNs can be viewed as binary trees: the solution space is recursively
divided in halves, and categories that do not belong to the path are ignored.

Initial Set:
All Categories

Abstraction I:
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 In this case, we are comparing the task of learning all categories in the nonhierarchical

system to that of learning only one category in the hierarchical case (since we successively

discard all cases not belonging to that category or any supersets containing that category).

This would be the equivalent of doing a single search in a binary tree in which all leaf

nodes were the categories (O(log n), wheren is the number of categories), as opposed to

traversing a linked list of categories, as in the nonhierarchical case (O(n)). As in binary

trees, the objective in a HNN is to make the tree as balanced as possible, so that the paths

that lead to leaf nodes are short [Cormen, 1990].

One could argue that if the only objective is to learn a given category, a simplified

nonhierarchical neural network could be built that would only distinguish between the

desired category and “others,” as shown in Figure 4.6. This simplified network would then

be solving the identical problem as the HNN, and therefore should take a similar amount

of time. This is sometimes not verified in practice (the simplified network seems to take

either the same number as the HNN or more cycles than the HNN for the problems pre-

sented in Chapter 3). The reason may be that the frequency of the desired category in the

simplified network is lower than the frequency in any network of the hierarchical system.

Furthermore, the results of the simplified network may not always be useful when the goal

becomes to learn another category, as opposed to what happens in HNNs, where the inter-

mediate results can always be reused.

Figure 4.6. Decomposition: HNNs and simplified nonhierarchical neural networks.

It could be argued that a simplified nonhierarchical neural network could learn
to distinguish category 1 from the other categories faster than an HNN can.
This fact was not observed in the example presented in Chapter 3, because
the frequency of category 1 was very low in the nonhierarchical example.

.
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4.2.5 How to define intermediate abstractions

There are basically three approaches to grouping categories to create intermediate clas-

sifications (orintermediate abstractions) for use in the triage networks: (1) a conceptual

approach, in which categories are classified according to predefinitions imposed by the

domain (e.g., in medicine, the classification of patients into “normal,” “hypothyroid,” and

“hyperthyroid” is a conceptual one, and will be used in Chapter 5); (2) a utility-based

approach, in which categories are classified such that the cost of making a misclassifica-

tion within a group is much lower than that of misclassifying casesbetween groups; and

(3) a pattern-recognition approach, in which categories are grouped in superclasses (inter-

mediate abstractions) according to the similarity in their features (e.g., patterns “011” and

“111” are similar and should be grouped together, whereas “100” and “000” should belong

to a different group). The decision as to which approach is the best depends on the applica-

tion. All approaches have their advantages and drawbacks. Approach (1) can be easily jus-

tified only in a domain where the concepts are well defined, but is easily understood by the

user; approach (2) maximizes the utility of grouping, but it is based on how the informa-

tion on the classification can be best used, and therefore requires different groupings every

time utilities change; approach (3) seems to work well, as discussed in the next section,

but requires a clustering algorithm to define intermediate abstractions that may not make

sense to the user.

4.3 Example I: Deterministic Sorting of Binary Numbers

I tested the hypothesis that the HNN could discriminate low-frequency categories ear-

lier (i.e., requiring fewer training cycles) than a standard neural network could, provided

that the systems had the same number of weights, using the same data set described in

Section 3.2. Figure 4.7 shows how the hierarchical system of neural networks works. The

standard feed-forward neural network that tries to classify the categories in just one step

was used for comparison. Classification in the HNN was done in a supervised manner in
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each step. The neural networks of the first level (triage networks) discriminate categories 0

and 1 (patterns “00” and “01”) from categories 2 and 3 (patterns “10” and “11”). The two

networks of the second level (specialized networks) discriminate patterns between the cat-

egories 0 and 1 and categories 2 and 3, respectively.1 Note that thetotal number of

weights in the HNN is approximately the same as that of the standard neural network (i.e.,

the total number of parameters that needed to be estimated in each of the systems is con-

trolled to be approximately the same).

Figure 4.7. Hierarchical sorting of binary numbers.

Instead of sorting all numbers at once, this hierarchical system of neural net-
works first decides which inputs are either “00” or “01,” and sends them to a
specialized network that sorts “00” and “01.” Other inputs are sent to another
specialized network that sorts “10” and “11.”

Figure 4.8 displays the number of parameters (weights) to be estimated, the number of

training cycles (epochs), and the average time that each system took to converge to a per-

fect solution. A perfect solution was defined to be achieved when the activation of the cor-

rect output unit was at least twice that of the other output units. No noise was added to the

data. Training was done by epochs. I performed 10 simulations for each system, starting

1. A category name (output, such as 0) corresponds to the decimal value of a binary number, which is represented as the
input pattern (e.g., “00”).
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with different initial weights. All networks were trained with a fixed learning rate of 0.01

and no momentum term. The overall time spent on making the perfect classification was

significantly reduced (p< 0.01) with the use of HNN. I did not run specialized networks in

parallel, even though by doing so the amount of time could be reduced even more. It must

also be taken into account that one epoch in the nonhierarchical network takes longer than

one epoch in any of the networks in the hierarchical system, given the smaller number of

weights in each of the networks of the latter, and the smaller number of patterns in the spe-

cialized networks.

Figure 4.8. Comparison of systems: Standard error function.

Hierarchical systems learn infrequent category 1 (pattern “01”) faster than do
standard nonhierarchical systems.

The same experiment was repeated using the cross-entropy error function (defined in

Section 3.2) and triage network with 2 input, 3 hidden, and 2 output nodes (2-3-2), and a

specialized network with 2 input, 4 hidden, and 3 output nodes (2-4-3). The total number

of weights in the HNN was 28 (12 for the triage and 8 for the two specialized networks),

compared to 30 for the (2-5-4) nonhierarchical network presented in Section 3.3.

Results using the cross-entropy error function were very similar to the ones just pre-

sented for the standard error function, as shown in Figure 4.9. As expected, since the out-

put units were binomial, the use of the cross-entropy error function increased speed of

learning in both the nonhierarchical and the hierarchical systems, when compared to that

of the standard error function [Rumelhart, 1995]. However, the hierarchical system was

still able to learn infrequent categories faster than the nonhierarchical system.
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Figure 4.9. Comparison of systems: Cross-entropy error function.

Hierarchical systems could learn infrequent categories faster than could stan-
dard nonhierarchical systems.

The perceptron’s performance on this problem was extremely good, as expected, but it

would not be as good in the case of a nonlinearly separable problem, as we will see in

Example II. A multilayered neural network that has enough hidden nodes can approximate

any function [Hornik, 1989], and its applicability is therefore much broader than that of a

perceptron. Furthermore, a hierarchical system of perceptrons also proved to converge

faster than a standard perceptron did in this example, as shown in Figure 4.10.

Figure 4.10. Comparison of perceptrons.

A hierarchical system of perceptrons learned faster than a standard nonhierar-
chical system.

One might still argue that the preselection of subsets that were themselves linearly sep-

arable introduced a bias in favor of the hierarchical system. I also ran the same experi-

ments dividing the subsets in a different way, such that categories 0 and 3 (patterns “00”

and “11”) would be separated from categories 1 and 2 (patterns “01” and “10”) in the tri-

age network. This grouping required the triage network to solve a nonlinearly separable
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problem first, and is by far the worst possible grouping: the Hamming distance1 between

patterns in the same group is twice that of patterns in other groups. Furthermore, the pro-

portions involved required the triage network to detect a subgroup that had a low-fre-

quency value itself (categories 1 and 2, corresponding to patterns “01” and “10,”

constitute only six percent of the total number of patterns). Ten systems of networks, start-

ing with different initial random weights, were built. The HNN exhibited a peculiar

behavior: four of the ten systems converged to a solution after relatively few epochs

(mean: 34,944), but the other six did not converge to a perfect solution even after 4x105

epochs. This result indicates that patterns should be grouped by similarity of features,

rather than be based purely on category frequencies, for the triage network to work. Merg-

ing rare categories that do not share similarities into a group simply to increase their fre-

quency in the training set does not seem to enhance the performance of the triage network.

Another experiment, in which the pattern distribution was changed to the one shown in

Table 4.1, also indicated that the difficulties encountered by the triage network were not

related to the combined low frequency of the group “01” and “10,” but to the fact that the

similarities within the groups were low. None of the 10 triage networks built for this

experiment converged to a perfect solution after 4x105 epochs. Pattern similarity seems to

be the key factor in determining the success of the HNN.

1. The Hamming distance is the difference in the number of bits of two patterns. For example, the Hamming distance
between “00” and “10,” “10” and “11,” or “00” and “01” is 1, whereas the difference between “10” and “01” or “00
and “11” is 2.

Table 4.1. Another distribution of patterns for Example I.

Pattern Frequency Output (Category)

00 1% 0

01 45% 1

10 5% 2

11 49% 3
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4.4 Example II: Probabilistic Sorting of Binary Numbers

In order to check whether the performance of HNNs would be better than that of the

hierarchical system when classification is stochastic, the following experiment was

designed. I used the same data set provided in Section 3.3 to test the hypothesis that the

HNN could learn the classification of D2 earlier than the nonhierarchical system, without a

decrease in specificity for that category. Table 4.2 shows the distribution of patterns for the

triage network.

Shaded cells indicate the most frequent category for a given pattern. The
first column indicate the input patterns. The second column indicates how
many patterns belong to categories D1 or D2. The third column indicates
how many patterns belong to categories D3 or D4.

Table 4.2 shows the distribution of patterns for the specialized network that decides

between 00 and 01. Patterns 10 and 11 were sent to the other specialized network.

Note that the frequencies for category D2 are much higher in the first specialized net-

work (7%) than those in the nonhierarchical system (1%).

Shaded cells indicate the most frequent category for a given pattern.

Figure 4.11 shows the comparison of an HNN and a nonhierarchical neural network for

this example. The difference in time was not as remarkable as in the deterministic exam-

ple, but the less frequent category D2 was not as rare in Example II as in Example I (9%

Table 4.2. Triage network: Distribution of patterns for Example II.

Input pattern D1 or D2 (%) D3 or D4 (%) Total(%)

00 ¬S1¬S2 ● 26 18 44 (44%)

01 ¬ S1S2 ◆ 1 0 1 (1%)

10    S1¬S2 ▲ 1 4 5 (5%)

11       S1S2 ■ 18 32 50 (50%)

Total (%) 46(46%) 54 (54%) 100 (100)

Table 4.3. Specialized network: Distribution of patterns for Example II.

Input pattern D1 (%) D2 (%) Others: D3or D4 (%) Total (%)

00 ¬S1¬S2 ● 24 2 18 44 (98%)

01 ¬ S1S2 ◆ 0 1 0 1 (2%)

Total (%) 24(53%) 3 (7%) 18(40%) 45(100%)
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and 1%, respectively). HNNs seem to be more advantageous when frequencies of the cat-

egory one wants to detect are very low.

Figure 4.11. Example II: Comparison of systems using the cross-entropy error function.

Hierarchical systems learn infrequent categories faster than do standard
nonhierarchical systems in a stochastic classification task.

Other decompositions were also used, and in all of them the learning performance in

terms of time of the HNN was at least as good as the nonhierarchical system.

4.5 Example III: Diagnosis of Thyroid Diseases

Thyroid diseases result from hyper- or hyposecretion of thyroid hormones and have a

high prevalence in the U.S. (2 – 3%) [U.S. Preventive Services Task Force, 1989]. The

diagnosis of thyroid conditions is based on interpretation of clinical and laboratory find-

ings. Accurate diagnosis of major classes of thyroid diseases, such as hyperthyroidism and

hypothyroidism, has been done accurately by some automated methods. None of these

methods, however, has shown results on refined diagnoses such as primary, secondary, or

compensated hypothyroidism.

For my experiments, I obtained a set of 9172 patients suspected of having thyroid dis-

eases from the data repository at the University of California at Irvine [Murphy, 1993].

The same data set was used by Quinlan to demonstrate the performance of decision trees

in diagnosing hypothyroidism [Quinlan, 1986]. I used a subset of 4,586 patients to train

the networks. A standard neural network discriminated 10 different diagnoses. It consisted
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of 22 inputs, 10 hidden units, and 10 outputs. The standard neural network, or generic net-

work, is shown in Figure 4.12.

Figure 4.12. A generic neural network for thyroid disease.

This network tries to diagnose 10 different diseases in just one step.

In the HNN, the triage network was dedicated to discriminating patterns ofhypothy-

roidism, hyperthyroidism, normality,and other thyroid conditions. The rationale for estab-

lishing these groupings was based on the assumptions that (a) patients in each group

shared similar attribute values and (b), even if not all the specialized networks were able

to refine the solution and obtain a final diagnosis, the partial diagnoses provided by the tri-

age network could be clinically useful. Figure 4.13 shows the triage network.

Input units

Output units

Hidden units

Age
Gender
Medications
Clinical Signs

TSH
TT4
T3
T4U
TBG

Normal
Hyperthyroidism, NOS
T3 Toxicosis
Toxic Goiter
2ary toxicosis
Hypothyroidism, NOS
1ary hypothyroidism

2ary hypothyroidism
Other conditions

Compensated hyothyroidism

Pregnancy
Other illness
I131
Thyroid
surgery
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Figure 4.13. A triage neural network for thyroid disease .

This network separates the patterns corresponding to “Normal,” “Hypothyroid-
ism,” “Hyperthyroidism,” and “Other conditions.” The classification task is sim-
pler than that of the nonhierarchical network shown in Figure 4.12. The prior
probability of each category is higher in this network.

The specialized network for hypothyroidism, shown in Figure 4.14, takes as inputs all

patients that were classified inhypothyroidism in the triage network and discriminates the

patterns ofprimary hypothyroidism, secondary hypothyroidism, compensated hypothy-

roidism,and hypothyroidism not otherwise specified.

Figure 4.14. A specialized neural networks for hypothyroidism.

This network has as inputs only the cases classified as “Hypothyroidism” by
the triage network. It operates with fewer examples, and has a structure that is
simpler than that of the generic network shown in Figure 4.12.

Table 4.4 shows the distribution of the output categories in the training set. Some

Input units

Output units

Hidden units
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Hypothyroidism
Hyperthyroidism

Other conditions
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“hypothyroidism” will
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HYPOTHYROIDISM network
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Gender
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Clinical Signs

TSH
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T4U
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Pregnancy
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I131
Thyroid

surgery

Input units Output unitsHidden
units

Primary hypothyroidism

Secondary hypothyroidism
Compensated hypothyroidism

Hypothyroidism, NOS
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patients had more than one diagnosis. Input attributes included age, gender, current medi-

cations, pregnancy status, previous thyroid surgery, presence of other illness, treatment

with 131I, clinical signs, and laboratory values for TSH, TT4, T4U, T3, and TBG. Missing

values were imputed as their means (in the case of continuous variables) or their mode (in

the case of categorical variables).

The networks were trained as long as the error rate in the test set of 4586 patients was

declining. When the error in the test set started to increase again, the stopping criterion

was reached and training was discontinued. The networks were not trained up to conver-

gence in order to avoid overfitting, as explained in Section 2.3.2. More details on an ear-

lier implementation of HNN and the data set used for making the automated diagnosis of

thyroid conditions can be found in [Ohno-Machado, 1994]. Figure 4.15 shows the time

taken by the different systems to reach the stopping criterion.

Figure 4.15. Comparison of systems.

Table 4.4. Distribution of patterns.

Output Category Frequency Percentage

Normal 6771 72.52

Hyperthyroidism, NOS 193 2.07

Primary hyperthyroidism 21 2.25x 10-3

Toxic goiter 18 1.93x 10-3

Secondary hyperthyroidism 9 9.64x 10-4

Hypothyroidism, NOS 1 1.07x 10-4

Primary hypothyroidism 239 2.56

Compensated hypothyroidism 419 4.49

Secondary hypothyroidism 8 8.57x 10-4

Other conditions 1658 17.76
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The time performance of hierarchical systems was clearly better. The perceptron was

not able to discriminate rare patterns even after 4 x 105 epochs, indicating that the problem

was probably nonlinearly separable.

Table 4.5 shows the sensitivities and specificities of the different systems after 90 min-

utes of training for the superclass (or intermediate abstraction) Hypothyroidism.1

Table 4.5. Prediction of class  Hypothyroidism.

 After approximately 90 minutes on an HP9000 workstation.

Table 4.6 shows the equivalent numbers for the classcompensated hypothyroidism.

These numbers are based on the test set. Note that the increase in sensitivity obtained by

using HNNs is not coupled with a marked decrease in specificity. The superiority of the

hierarchical system was clearly demonstrated in this complex problem. Not all possible

subsets of variables were tried, but the results clearly confirm what was learned from the

experiment using the artificial data set: HNNs can learn rare patterns faster than can their

nonhierarchical counterparts. At any given point in time, classification performance of

HNNs was better.

Table 4.6. Prediction of class Compensated Hypothyroidism.

 After approximately 90 minutes on an HP9000 workstation.

4.6 Summary

Several hierarchical systems of neural networks have been proposed in the past. In bot-

tom-up hierarchical designs, specialized neural networks are used to classify all inputs

1. This superclass contains all subtypes of hypothyroidism:Hypothyroidism NOS, Primary Hypothyroidism, Compen-
sated Hypothyroidism, andSecondary Hypothyroidism.

System Sensitivity Specificity Epochs

Standard NN 49.25% 98.97% 650

Hierarchical NN 79.35% 98.82% 1,800

System Sensitivity Specificity Epochs

Standard NN 41.83% 98.45% 650

Hierarchical NN 65.87% 98.79% 3,800
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according to one or more features. The results of these specialized networks are then used

by an integrating network that provides the final solution. In top-down approaches, such as

the one proposed in this work, a top-level network discriminates which inputs will be clas-

sified by each of the specialized networks, and the results of the latter will be the outputs

of the system.

I built a top-down hierarchical system of neural networks to address the problem of

rare-category recognition in backpropagation neural networks. I showed in two simplistic

examples that HNNs can achieve the accuracy of nonhierarchical networks in shorter

time, given approximately the same number of weights. In these examples, however, over-

fitting was not a problem and the networks were trained until they found the optimal clas-

sification. I also showed in a more complex example (in which controlling for overfitting

was a concern) that HNNs can improve performance in a medical diagnostic task.
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CHAPTER 5 Sequential Neural

Networks for Prognosis

While diagnostic tasks usually require classification of cases for

one time point, prognostic tasks may require the assessment of a

patient’s status over time. Sequential neural networks were built to

determine whether the difficulties that standard neural networks have

in detecting low-frequency patterns in prognostic tasks can be over-

come. Section 5.1 describes the use of sequential neural networks for

prognosis. Section 5.2 reviews the essential concepts in survival anal-

ysis and discusses existing methods, their advantages, and their defi-

ciencies. Section 5.3 shows how sequential neural networks can be

used as alternatives to current survival analysis models for establish-

ing prognoses over time.
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5.1 Sequential Neural Networks

Outcome prediction is not an easy task in medicine. Even though researchers are famil-

iar with the concept ofsurvival in five years for the study of outcomes of deadly diseases,

there is an increasing need for predictions for shorter intervals of time, and for projections

of patient-specific survival curves. Neural networks have been shown to be good predic-

tors of outcomes in a variety of medical applications, but current neural network models

often mimic the models of five-year survival (i.e., they make predictions for one specific

time point) and fail to provide a complete picture of a temporal pattern of disease progres-

sion. A sequential system of neural networks can produce patient-specific survival curves

and facilitate the recognition of temporal patterns of disease, making a distinction between

patterns of fast and slow development. The accurate prediction of survival for different

patients makes it easier to track the patients whose disease development is fast. These

patients usually demand more aggressive management than those whose diseases exhibit

patterns of slow development.

Current use of neural networks in survival analysis is aimed at producing either (1) an

absolute estimate of survival (e.g., 254 plus or minus 10 days) or (2) a single point esti-

mate of survival (e.g., 70 percent probability of survival in five years). An absolute esti-

mate of survival may be useful for certain purposes, but provides no information on

whether disease development seems to be fast or slow for a given patient. Figure 5.1

shows how an absolute estimate of survival of 254 days can be produced by different pat-

terns of disease progression.

Figure 5.1. Absolute survival estimate.

Patients A and B have the same estimate of survival (254 days), but disease
progression for B is faster in the beginning.
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A single-point estimate cannot illustrate temporal patterns of disease development. For

example, Figure 5.2 shows how a single point estimate may be misleading for long-term

predictions.

Figure 5.2. Point estimated of survival.

Patients A and B have the same probability of being dead in five years (50%),
but the long-term prognosis for B is better.

5.1.1 Neural networks and survival curves

A nonsequential neural network that produces multiple point estimates of survival,

such as the one shown in Figure 5.3, can be used to produce survival curves.

Figure 5.3. Standard neural network and nonmonotonic survival curve.

A neural network with multiple point estimates may produce a survival curve.
However, predictions from one interval cannot enhance predictions for other
intervals, and for a given patient an anomalous survival curve, such as the one
shown here, may result.
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This network, however, is not able to use predictions for a given interval to enhance

predictions for another interval. For example, this network may estimate that survival in

one year for a given patient is 70 percent and survival in two years for the same patient is

90 percent (which is impossible!) because it cannot take into account predictions for year

1 in the model that predicts survival in year 2. This network is also unable to deal with

censored data. Figure 5.4 shows a sequential system of networks that can deal with these

problems.

Figure 5.4. Sequential neural network models.

In a sequential system of neural networks, predictions for time t1 are inputs to
the model that makes predictions for time t2, and so on. Anomalies in survival
curves are minimized by utilizing information of some intervals as inputs.

High accuracy can be achieved with sequential neural networks, even when low-fre-

quency patterns are present, as will be shown in Chapters 7 and 8. But their use has also

some disadvantages. It implies the construction of more complex models that may require

long training times. It may induce errors in predictions if the input predictions are too

inaccurate, as will be discussed in Chapter 9.
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5.2 The Analysis of Survival Data

The understanding of disease progression is facilitated by survival analysis methods. In

HIV infection, a relatively new disease, there is still much to be learned about patterns of

disease progression. Existing survival analysis methods present some deficiencies, espe-

cially when data are censored and time-dependent variables are necessary.

5.2.1 Censored data

Survival analysis is confronted with several sources of difficulties. One of them is the

possibility that some individuals may not be observed for the full time up to death [Cox,

1984]. This type of missing data is called censored data and is exemplified in Figure 5.5.

For example, in a study to determine the five-year survival with AIDS, it may happen that

some individuals are alive at the end of study, and although researchers know that these

patients survived more than five years, they do not know exactly how long (Type I censor-

ing) [Lee, 1992].

Figure 5.5. Example of censored data.

✕ indicates that the patient died during the study. Patients’ data with no ✕

were censored at time corresponding to the end of the segment. The end of

the study is January 1994. Patients still alive at this date will have data corre-

sponding to Type I censored data.

 Another source of difficulty in survival analysis is the possibility that some patients are

lost to follow-up in the middle of the study (Type II censoring). Patients may also enter the

study at different times and their data may be censored by a combination of Type I and

1989 1990 1991 1992 1993

✕

✕

✕

✕

✕
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Type II censoring (Type III censoring). Censoring of Types I and II is called singly cen-

sored data, and censoring of Type III is called progressively censored data. These three

types of censoring are examples ofright censoring. It also may be unclear when the

patients entered the study (e.g., patients infected with HIV, where the date of infection is

usually unclear). Data from these patients is consideredleft censored.

Using censored data is an important feature of a survival analysis method. Even though

data is incomplete, it contains a certain amount of information. For example, if patients

with AIDS are lost to follow-up after five years, their cases provide the important informa-

tion that these patients have survived at least that long. Given the difficulties of obtaining

and collecting information on a significant number of patients for clinical studies, it is evi-

dent that the amount of information lost should be minimal. Discarding censored cases

from survival analysis studies should be avoided whenever possible. As we will see later,

however, certain methods of survival analysis have difficulties in dealing with censored

data.

5.2.2 Functions of survival time

Two functions of central interest in modeling survival data are the survivor function

and the hazard function. The survivor function is defined as the probability that an individ-

ual survives at least up to a certain time. The hazard function is defines as the probability

that an individual will die at a certain time, conditioned on his survival up to that time, and

denotes the instantaneous death rate [Collet, 1994]. Survival analysis models, such as

actuarial life tables [Cutler, 1958], product-limit estimators [Kaplan, 1958], proportional

hazards [Cox, 1984], and fully parametric models [Lee, 1992] produce estimates for both

the survivor function and the hazard function. Parametric methods of survival analysis

require specification of a probability density function for estimating these functions. Non-

parametric models do not require this specification, and are predominant in the biomedical

literature. The process of searching for an appropriate model of distribution for parametric

models may be too time-consuming or economically impractical. In that case, researchers
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may use nonparametric models, such as regression trees [Segal, 1989] and neural net-

works [Ravdin, 1992].

5.2.3 Life tables and product-limit estimators

Actuarial life tables and product-limit estimators of survivor functions (also known as

Kaplan-Meier survival curves) are simple nonparametric models that help researchers to

summarize survival data. Both types of models involve the assumption that the survival of

an individual at timet is conditioned on his survival at timet-1. The survivor function for

actuarial life tables and product-limit estimators is

wheredj is the number of deaths in intervalj andnj is the number of individuals at risk

[Collet, 1994]. In the actuarial method,nj is theaverage number of individuals at risk.

Actuarial life tables and product-limit estimators differ in the way that time intervals are

built. The former model predefines intervals of equal duration and groups deaths in those

intervals. The latter model builds one interval for each death, and therefore does not cause

loss of information. An example of a Kaplan-Meier survival curve is shown in Figure 5.6.

Both models allow for censored data. Neural network models, as we will demonstrate,

also can estimate survivor functions in intervals when censored data are present.

Figure 5.6. Kaplan–Meier survival curve.

Survival curve for 428 AIDS patients of the ATHOS data set.

Life tables and product-limit estimators are good for describing survival of a group of

individuals.  Comparison of different survival curves produced by these methods is done
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using log-rank [Tarone, 1979] or Breslow tests [Breslow, 1970]. Survival curves can be

built for a group of patients who share a given characteristic. For example, patients who

are over 40 years of age, and compared to survival curves for younger patients. Continu-

ous variables have to be discretized, and a threshold value needs to be arbitrarily chosen to

allow the division of patients into major groups. It is not possible to create individualized

survival curves for each patient. Although comparisons with multiple variables are possi-

ble (e.g., age and gender), the number of patients in each resulting group must not fall

below a certain minimum, otherwise a reliable survival curve cannot be created. These

models are good for explaining existing data and making univariate or simple multivariate

comparisons, but their prognostic use is limited.

5.2.4 Parametric models for disease progression

Parametric models of disease progression, such as the accelerated failure-times model,

have also been used for survival analysis, where the restrictive assumption of a fixed dis-

tribution is traded for efficiency and facility of mathematical manipulation. The assump-

tion of a fixed distribution sometimes allows for an analytical solution to a survival

analysis problem, and helps to minimize the problem of overfitting the data. Small differ-

ences in goodness-of-fit can often be detected when parametric models are used. However,

the choice of the function that represents survival in these methods is arbitrary. If different

groups of patients happen to have survival curves that do not fit a given distribution, the

models have limited value. Nonparametric methods have the advantage of not being lim-

ited to a certain class of functions.

5.2.5 Survival analysis for prognosis

The models mentioned so far are usually employed to explain the data, rather than to

make predictions. An important requirement for a classifier is its ability to use as much

information as it can on an individual case to make accurate predictions. To determine the

predictive value of different variables for the progression of disease, a logistic regression
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model, discussed in Chapter 7, or a Cox proportional hazards models [Cox, 1972] can be

used. In the domain of HIV infection, the most commonly used method is the latter.

When the task is to define which variables (or cofactors) influence the survival (and

therefore allow an individualized prediction of survival) other methods, shown in

Section 5.2.6, are better suited.

5.2.6 Cox proportional hazards and other logistic regression models

The Cox proportional hazards model is frequently used to study the importance of

covariates for survival and to produce survival prognoses. The Cox model is a multiple

regression semi-parametric model that allows modeling of continuous covariates. It

requires the assumption that there is a simplifying transformation of the initial data and

that the hazards for the different individuals are proportional. A baseline hazard has to be

estimated and hazards for individuals are multiples of the baseline hazard. Although there

are methods to test the validity of the assumptions [Chale, 1992], they are seldom used in

practice. For example, Hanson et al. described a cohort of HIV+ patients for whom the

assumption of hazard proportionality does not hold [1993]. For these cases, fully nonpara-

metric models of survival that allow non-proportional hazards are needed. Actuarial life

tables and product-limit estimators could be used to produce survivor estimates for differ-

ent strata, which should then be compared by the Mantel-Haenszel method [1959], but this

method cannot deal with continuous variables. Furthermore, stratifying data may result in

few patients in each stratum, decreasing the statistical significance of the study. Other

regression models, in which the proportionality assumption is not required, have been

used. In the pooled logistic regression model, discussed in Chapter 7, data obtained from

one individual may be used more than once as inputs to the logistic regression. For exam-

ple, if data from a patient was collected at intervalsI1, I2, andI3, the researcher may use

the three different records as inputs to the logistic regression models.

The use of time-dependent variables is important in some survival analysis models.

Time-dependent variables, as the name suggests, are the ones that are allowed to change
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over time. For example, initial values for cholesterol may be of great importance in deter-

mining development of coronary heart disease. If cholesterol levels are entered in a model

as time-dependent variables, theevolution of cholesterol levels can be modeled, so initial

cholesterol levels, as well as those measured at the end of the first and second intervals,

may be used as prognostic variables. Obviously, there are other variables such as “Gen-

der” and “Ethnic origin” that cannot need to be modeled as time-dependent variables.

Neural networks have not been used extensively for survival analysis, but they offer no

conceptual obstacle to handling censored data or time-dependent variables. Sequential

neural networks can easily deal with censored data. Time-dependent variables are more

easily handled in sequential rather than standard neural networks. The summary of other

authors’ experiences with neural networks for survival analysis is presented next.

5.2.7 Previous work on neural networks for survival analysis

The most common applications of neural networks in clinical medicine have been for

diagnosis of diseases. A few reports on the use of neural networks for other kinds of clas-

sification tasks have been published. These systems determine prognosis after cardiopul-

monary resuscitation [Ebell, 1993], strategies for weaning from respiratory support

[Ashutosh, 1992], tumor stage in oncology [Burke, 1994], graft outcome after liver trans-

plantation [Doyle, 1994], and prognosis in trauma [McGonigal, 1993]. Ravdin et al.

[1992] studied the prognosis of breast cancer patients using neural network models. In

their models, time was entered as a predictor, and each patient had as many entries in the

model as the number of intervals during which she was alive. The intervals were derived

from Kaplan–Meier estimates, according to percentiles. The survival curves for the quar-

tiles that generated similar prognoses were then plotted, and were compared with those of

a Cox regression. There were no significant differences. The data probably respected the

proportionality assumption, although this hypothesis was not tested explicitly. A bias was

introduced by coding time as a covariate (so that no time-dependent variables were used),

and the authors had to balance the input data set to account for that bias. The importance
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of individual variables to the overall prediction of survival was not analyzed. The work of

Ravdin et al. [1993] was one of the first studies to address the use of neural networks for

survival analysis using real clinical data, producing accurate estimates for survival of

breast cancer patients, and raising the important issue as to how to deal with censored data

in neural network implementations for survival analysis. McGonigal et al. [1993] have

applied neural network models to assess the probability of survival for trauma patients,

and the neural network model compared favorably with other systems. Both these neural

network models for survival analysis were implemented nonsequentially.

5.3 Survival Analysis Using the Standard and the Sequential Methods

The decomposition of a classification task into small subcomponents facilitates learn-

ing in neural network systems, especially when there are sequences of solutions and the

frequency (prior probability) of certain categories is low. This approach can be used in

survival analysis, where the frequency of events in each interval may be low compared to

the overall number of individuals. The number of options for building a sequence of

abstractions to use in sequential neural networks that perform survival analysis can be

considered smaller than the number of options available in other classification problems,

since the abstractions are all based in one single concept: time. Nevertheless, by consider-

ing survival analysis a type of classification problem that is amenable to decomposition by

sequential neural networks, and in which survival times are classified according to pre-

defined intervals, I have to introduce the assumption that no significant information is lost

by transforming a real number that represents the exact survival time of an individual

(e.g., 58.4 days) into an integer that represents the interval in which that survival time is

contained (e.g., 2 months).  Although in survival analysis the choice of intermediate

abstractions is not as varied as in other classification problems, some principles for quali-

tatively modeling classification tasks into useful hierarchies and the development of

requirements for building sequential neural networks for survival analysis are important
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contributions to this work. Before describing the experiments with sequential neural net-

works in Chapters 7 and 8, some definitions are needed:

Standard model:A model that predicts outcomes in a single interval or a single point in

time, using no information on other intervals.

Sequential model:A model that predicts outcomes in a single interval or a single point

in time using predictions for other intervals (among other variables).

Informative Interval: An interval or point in time for which predictions are made using

a standard model. Its predictions can be used as input, along with other variables,

to a sequential model.

Informed Interval: An interval or point in time for which predictions are made using a

sequential model.

An example of a standard model is shown in Figure 5.7.

Figure 5.7. Standard model.

Standard models can be constructed for neural networks and other classifica-

tion models. In a standard model, a simple model is created for each interval.

For example, a simple logistic regression model for interval ζ (e.g., 2 years)

can be created by providing training data Xtrζ to a parameter estimator (e.g.,

SAS procedure LOGISTIC). The standard model for interval ζ is the mapping

of Xζ to Yζ, defined as the function fζ. This function can be applied to both

training and test data (Xtrζ and Xteζ, respectively) to produce predictions for

both sets (e.g., 70 percent probability of survival in 2 years). Predictions for

other intervals are NOT entered as inputs.

Data Xtrζ
Parameter
Estimator

MODEL tζ
Yζ=fζ(Xζ)+

STANDARD
Training

=

Data Xteζ
Test

+
MODEL tζ
Yζ=fζ(Xteζ)

STANDARD
= Predictions Yteζ

Building a standard model for tζ

Making predictions for tζ in a test set
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Survival Analysis Using the Standard and the Sequential Methods

In the sequential model, predictions from a given interval are entered in a model that

makes predictions for another interval, as shown in Figure 5.8. The number of cases used

for sequential models is usually limited by the minimum number of noncensored cases in

the intervals considered, which is usually the number of cases available for prediction in

the longest interval. For example, if predictions for year 8 are entered in a model that pre-

dicts CHD in year 4, only the cases who had follow-up of at least 8 years can be used. Evi-

dently, if predictions for year 4 were entered in a model that predicts CHD in year 8, only

the cases who were followed for at least 8 years can be used.

Figure 5.8. Sequential model.

Standard models can be constructed for neural networks and other classifica-

tion models. In a sequential model, a complex model is created for each inter-

val, using predictions from another interval. For example, a sequential logistic

regression model for interval ω (e.g., 4 years) can be created by providing

training data Xtrω to a parameter estimator (e.g., SAS/STAT procedure LOGIS-

TIC) and predictions Ytrζ for another interval ζ (e.g., 2 years), obtained from

the standard model for interval ζ. The sequential model for interval ω is the

mapping of Xω and Yζ to Yω, defined as the function fω. This function can be

applied to both training and test data (Xtrω and Xteω, respectively) to produce

predictions for both sets. Sequential models can be built in either ascending

order (i.e., ζ precedes ω) or descending order (i.e., ω precedes ζ).

Chapters 7 and 8 provide many examples of sequential models.

Data Xtrω
Parameter
Estimator

MODEL tω
Yω=fω(Xω,Yζ)+

SEQUENTIAL
Training

=Predictions Ytrζ +
(from standard model)

Building a sequential model tω using results from tζ

Making predictions tω using prediction from tζ

Data Xteω
Test

+ =
MODEL tω
Yω=fω(Xteω,Yteζ)

SEQUENTIAL
Predictions Yteζ +

Predictions Yteω
(from standard model)
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5.4  Summary

 Medical researchers who perform prognostic modeling usually oversimplify the prob-

lem by choosing a single point in time to predict outcomes (e.g., death in five years). This

approach not only fails to differentiate patterns of disease progression, but also wastes

important information that is usually available in time-oriented research data bases. The

adequate use of time-oriented data bases can improve the performance of prognostic sys-

tems if the interdependencies among prognoses at different intervals of time are explicitly

modeled. In such models, predictions for a certain interval of time (e.g., death within one

year) are influenced by predictions made for other intervals, and prognostic survival

curves that provide consistent estimates for several points in time can be produced. The

recognition of temporal patterns by neural networks can be facilitated with a sequential

system. In this system, predictions from timetω can be improved if predictions on timetζ

are provided as inputs, and so on. A temporal pattern can be delineated this way, even for

rare cases. Current survival analysis models require assumptions that may not always be

verified in real-world data. An introduction to these models was given in this chapter, and

the need for sequential systems of neural networks in survival analysis was justified. A

system of neural networks constructed sequentially can make prognoses accurately, pro-

ducing survival curves that define specific temporal patterns of disease progression.

Sequential versions of other classification models, such as logistic regression models, can

also be built.
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CHAPTER 6 Evaluation Methods

In this chapter, I will explain the evaluation methods that are cur-

rently used to assess binary classification tasks, and discuss the ratio-

nale for choosing certain ones to evaluate my experiments.

Performances of classification models should be compared not only

on the basis of the number of correctly classified cases, which is

dependent on the number of cases per category, but also on the basis

of how much and which type of information was actually gained by

using a certain model. The communication of results has to be made

in a language that is understandable by the average researcher, who is

often a specialist in a medical domain but not a specialist in evalua-

tion methods.

There are currently no universally accepted guidelines on how to

evaluate the performance of different neural network models, except

the reduction in entropy, the comparison of areas under the ROC

curve (see Section 2.3), and the total number of correct answers pro-

vided by the model when applied to a test set, which in fact represents

the generalization capability of neural network models. For regres-

sion models, measurements that represent the fitness of the data to the

model are obtained from the training data and may guide the selection

of variables.



Evaluation Methods

114 Lucila Ohno-Machado

6.1 Evaluation of a Model’s Goodness-of-Fit

The reduction in error accounted for the inclusion of variables in regression models can

be evaluated by the Akaike’s Information Criterion (AIC) [Akaike, 1977]. The AIC is

based on the maximum likelihood test statistic for testing modelX, with r degrees of free-

dom, against the saturated model, withq degrees of freedom, and corresponds to

for log-linear models, whereG2 is the likelihood ratio test statistic [Christensen, 1990].

The AIC is usually used to compare regression models that differ in the number of vari-

ables, and by itself provides no insight on how accurate a model is.

There are currently no tests for assessing the goodness-of-fit of neural network models

that are adjusted for the number of parameters. There are, however, several tests that

assess predictive performance on test sets and that can also provide some insight into how

accurate (and therefore useful) the models are. These tests will be explained next.

6.2 Evaluation of Continuous Estimates of Binary Outcomes

Classifiers such as neural networks usually produce real numbers as their outputs.

These real numbers may be processed or interpreted in different ways to provide a classifi-

cation: the researcher may establish a threshold above which the final output of a certain

unit will be “1” or “true,” or he or she may choose as correct the output that has the high-

est number in a set of mutually exclusive alternatives (see Figure 6.1). When the actual

outcome is binary (like the one in our survival analysis models, where a given individual

is either dead or alive at a given interval) and the estimates, or predictions, are given in

real numbers, the evaluation of the model requires that two aspects of the estimates be

evaluated: calibration and resolution.

AX G2 X( ) q r–[ ]–=
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Evaluation of Continuous Estimates of Binary Outcomes

Figure 6.1. Interpretation of continuous estimates from a neural network.

(a) If a threshold of 0.5 is chosen, Outputs #2 and #3 are considered “true.” (b)
Output #2 is considered “true” if the output with the highest number is chosen.

6.2.1 Example

In order to illustrate some of the statistics explained in this chapter, I will use a very

simple example. Suppose the predictions of a predictive survival analysis are the ones

shown in Table 6.1.

*Real status according to gold standard, “1” = dead and “0” = alive

(1) How close are the predictions to the real outcomes?

(2) Are the predictions systematically high or low?

(3) How much do predictions for cases with real outcome “1” differ from those with

real outcome “0”?

Table 6.1. Simple example of outcomes and predictions.

Case number Outcome* Prediction

1 1 0.9

2 0 0.2

3 1 0.6

4 0 0.1

5 0 0.5

6 0 0.4

7 1 0.8

8 1 0.7

9 1 0.4

10 0 0.6

0.3 0.8 0.6

input
units

output
units 0.3 0.8 0.6

(a) (b)

“true”

“false”

#1 #2 #3 #1 #2 #3
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In order to answer these questions, the researcher can utilize several evaluation

methods. I will comment on the most frequently used evaluation methods next, discussing

briefly their advantages and disadvantages.

6.2.2 Brier score

A simple way to evaluate how much the predictions departed from the outcomes in our

example is to calculate the difference between each prediction and each outcome. In our

example, the differences would be 0.9 - 1 = - 0.1 for the first row in Table 6.1, 0.2 - 0 = 0.2

for the second row, and so on. Assuming that the penalty for type I and type II errors is the

same (i.e., that it is as bad to state that someone will die when in fact he survives as it is to

state that someone will survive when in fact he dies), we can square the errors and get to a

global error by summing the squares for all individuals, as shown in Table 6.2. The perfect

classifier would produce predictions that correspond to zero global error. The Brier score,

or probability score, is the global error divided by the number of cases, and represents a

type of average error per case.

* Real status according to gold standard, “1” = dead and “0” = alive

Table 6.2. Errors for each case and global error.

Case # Outcome* Prediction Error  Square of Error

1 1 0.9 -0.1 0.01

2 0 0.2 0.2 0.04

3 1 0.6 -0.4 0.16

4 0 0.1 0.1 0.01

5 0 0.5 0.5 0.25

6 0 0.4 0.4 0.16

7 1 0.8 -0.2 0.04

8 1 0.7 -0.3 0.09

9 1 0.4 -0.6 0.36

10 0 0.6 0.6 0.36

Global error = 1.48
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Although there are methods to compare Brier scores from different models

[Redelmeier, 1991], they do not provide much insight into the prediction performance and

do not answer question 2 (Are the predictions systematically high or low?) and 3 (How

much do predictions for cases with outcome “1” differ from those with outcome “0”?)

from above. In order to answer those question, the Brier score has been decomposed into

more interpretable components by many authors. The most popular decomposition is

attributed to Yates [Yates, 1982]. Calibration and resolution are the most important com-

ponents of the Brier score and will be discussed next. All components can be visualized in

a covariance graph, which will be discussed in Section 6.5.3.

6.3 Calibration

Calibration is a measure of how close the predictions of a given model are to the real

outcome. It indicates whether the predictions are high or low when compared to the real

outcomes.

6.3.1 Calibration-in-the-large

 One of the ways to assess calibration is to take the difference between the average

observation and the average outcome of a given group. If an outcome of “1” is a desirable

outcome, this statistic can be viewed as a measure of “optimism.” For example, if the

average estimated prediction of survival produced by a model for a given group of patients

is 0.85 and the average survival of the patients is 0.70, the model is being too optimistic on

average. This type of calibration is called “calibration-in-the large,” because it takes into

account the whole test sample, and is simple to calculate and interpret. This measure

answers question (2) from the previous section (Are the predictions systematically high or

low?), but it is not very useful in practice, since there are many examples in which a model

can be perfectly calibrated-in-the-large, and yet provide no information.

Consider an example where a physician is asked to assess the probability that an
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individual survives in an ICU. If the physician is not provided with any information about

the patient (e.g., gender, age, disease, vital signs), his best guess will be the prior

probability of a patient surviving in that unit. For example, if he knows that 70 percent of

the patients survive in that unit, he should guess 0.7 and would indeed be perfectly

calibrated according to this statistic. Note that a model that always produces as its

prediction the prior probability of the event (like our physician) will always be perfectly

“calibrated-in-the-large,” but may never discriminate patients who survive from patients

who die. In other examples, each individual prediction could be very far from the real

outcome, but the errors might compensate each other and the final average number could

falsely represent excellent calibration.

6.3.2 Calibration-in-the-small

A more refined way to measure calibration, called “calibration-in-the-small,” is done

by dividing the sample into smaller groups sorted by predictions, calculating the sum of

predictions and sum of outcomes for each group, and determining whether there are any

statistically significant differences between the expected and observed numbers by a sim-

ple χ2 method. In practice, this procedure is done by sorting the predictions, choosing a

numbern, dividing the sorted set uniformly inton groups, summing predictions and sum-

ming outcomes for each group, and performing aχ2 test withn-2 degrees of freedom.

Using the example of Section 6.2.1, three groups could be determined, as shown in

Table 6.3.
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* Real status according to gold standard, “1” = dead and “0” = alive

A χ2 test with 1 degree of freedom that resulted in ap > 0.05 would indicate that there

are no statistically significant differences between summed predictions and summed out-

comes, and therefore there is good calibration1. This test is usually referred to as the Hos-

mer-Lemeshow test and is a common measure of goodness-of-fit for logistic regression

models [Glantz, 1990]. Cox proposed a similar method to assess the agreement between a

sequence of observations and a set of probabilities, mainly for use in the analysis of logis-

tic regression models [Cox, 1984], but suggested some additional statistics when small

numbers of data are available. The calculation and interpretation of these statistics is not

as easy as the ones shown in this chapter, and they are rarely used in practice.

The Hosmer-Lemeshow test, as opposed to other methods to assess calibration, such as

the graphical methods presented later in this chapter, has the advantage that it can

1 This test could not be done with the simple Table 6.3, since the counts in the cells are below five, and there is an
expected value of zero in the first group. Alternative tests to be used in situations such as this one are discussed in
[Freeman, 1987].

Table 6.3. Cases from Table 1 sorted by prediction.

Case # Outcome* Prediction Group

4 0 0.1

12 0 0.2

6 0 0.4

group sum 0 0.7

9 1 0.4

25 0 0.5

10 0 0.6

group sum 1 1.5

3 1 0.6

3

8 1 0.7

7 1 0.8

1 1 0.9

group sum 4 3
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determine to a certain degree of confidence whether there are statistical differences

between the predictions and the outcomes. Graphical methods, as we will see later, are

useful to detect gross calibration deviances, but are not adequate to detect small deviances.

6.4 Resolution

Resolution, or discrimination, measures how much the model is able to separate cases

with outcome “1” from those with outcome “0.” It is independent of calibration, since

there are models that have good calibration but poor resolution and models that have good

resolution but poor calibration.

6.4.1 Slope

Slope is a simple measure of resolution that represents the difference between the aver-

age predictiony1 for cases with outcome “1” and the average predictiony0 for cases with

outcome “0.” A slope of “0” would indicate no resolution, whereas a slope of “1” would

indicate perfect resolution on average. The slope is calculated by simply dividing the sam-

ple into two groups according to their outcome and calculating the difference between the

average prediction and the average outcome, as shown in Table 6.4.
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Resolution

*Real status according to gold standard, “1” = dead and “0” = alive

The slope in this case is 0.68 - 0.36 = 0.32. Although the slope is easy to calculate, it is

not easy to interpret nor useful for comparisons across different models. It cannot deter-

mine to a certain degree of confidence whether a model’s predictions are discriminatory or

not, and is used mainly for illustrative purposes when there is a gross deviance in resolu-

tion.

6.4.2 Pairwise discrimination

In pairwise discrimination, resolution is assessed by (a) making all possible pairs of

cases in which one case represents outcome “1” and the other represents outcome “0,” (b)

counting the number of concordant pairs (i.e., pairs where the prediction for the case with

outcome “1” is higher than that of the case with outcome “0”), and (c) scaling the sum

according to the total number of pairs, as shown in Table 6.5. When the number of concor-

dant pairs is high compared to the total number of pairs, there is good discrimination

between cases with outcome “0” and those with outcome “1.”

Table 6.4. Cases from Table 6.1 sorted by expected outcomes.

Case # Outcome* Prediction

1 1 0.9

3 1 0.6

7 1 0.8

8 1 0.7

9 1 0.4

average: 0.68

2 0 0.2

4 0 0.1

5 0 0.5

6 0 0.4

10 0 0.6

average: 0.36
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* Real status according to gold standard, “1” = dead and “0” = alive

Table 6.5. All possible pairs composed of one case with outcome “1” and one case with
outcome “0.”

Pair
case# - case#

Prediction
1st case
ϕ(#1)

 Prediction
2nd case

ϕ(#2)
ϕ(#1)>ϕ(#2)
Concordant

ϕ(#1)<ϕ(#2)
Discordant

ϕ(#1) =ϕ(#2)
Tie

  1     -    2 0.9 0.2 Y

  1     -    4 0.9 0.1 Y

  1    -     5 0.9 0.5 Y

  1    -     6 0.9 0.4 Y

  1    -   10 0.9 0.6 Y

  3    -     2 0.6 0.2 Y

  3    -     4 0.6 0.1 Y

  3    -     5 0.6 0.5 Y

  3    -     6 0.6 0.4 Y

  3    -   10 0.6 0.6 Y

  7    -     2 0.8 0.2 Y

  7    -     4 0.8 0.1 Y

  7    -     5 0.8 0.5 Y

  7    -     6 0.8 0.4 Y

  7    -    10 0.8 0.6 Y

  8    -     2 0.7 0.2 Y

  8    -     4 0.7 0.1 Y

  8    -     5 0.7 0.5 Y

  8    -     6 0.7 0.4 Y

  8    -    10 0.7 0.6 Y

  9    -     2 0.4 0.2 Y

  9    -     4 0.4 0.1 Y

  9    -     5 0.4 0.5 Y

  9    -     6 0.4 0.4 Y

  9    -    10 0.4 0.6 Y

Total 21 2 2

c-index = [21 + (2/2)]/25 = 0.88



Connectionist Models of Survival   123

Graphical Methods

There are several pairwise discrimination indices, which vary basically in the way they

handle the ties (i.e., pairs that have exactly the same prediction for the two elements and

are consequently neither concordant nor discordant).

The c-index is the index of pairwise discrimination presented above where the assump-

tion is that one half of the ties accounts for concordant pairs and the other half accounts for

discordant pairs [SAS, 1990]. It is calculated as

(Q + T/2) / n = Q / n0*n1

whereQ is the number of concordant pairs,T is the number of ties,n is the total num-

ber of pairs,n0 is the number of cases with outcome “0,” andn1 is the number of cases

with outcome “1.” A c-index of “1” would mean perfect discrimination, whereas a c-index

of 0.5 would mean no discrimination. Other frequently used measures of concordance of

pairs are the Kendall tau-b and the Sommer’s index [SAS, 1990]. The c-index is the most

frequently used and easiest to interpret index. The c-index is also known as the Wilcoxon

statistic [Larsen, 1990], for which standard errors can be calculated. Statistical tests of res-

olution using the Wilcoxon statistic can determine to a certain degree of confidence

whether predictions from different models differ. Readers who are familiar with concepts

such as test sensitivity, specificity, and ROC curves should not have any problems inter-

preting the Wilcoxon statistic, since it is synonymous to the area under the ROC curve, as

shown by McNeil [1984] (see Section 6.5.2).

6.5 Graphical Methods

Graphical methods not only facilitate visualization of the results, but also can provide a

powerful tool to detect gross discrepancies in calibration and resolution. Calibration can

be visualized using calibration plots. Resolution can be visualized by ROC curves. A

covariance graph can represent measures of calibration and resolution. Each of these

graphical methods will be discussed next.
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6.5.1 Calibration plot

A calibration plot is obtained by plotting the summed group predictions and summed

group outcomes used to implement the Hosmer-Lemeshow test, discussed previously in

Section 6.3.2. “Optimism” or “pessimism” can be detected in the plot if the line connect-

ing the points is below or above the 45-degree line, as shown in Figure 6.2.

Figure 6.2. Example of a calibration plot.

If the outcome “1” is considered undesirable (e.g., death), then the points
below the 45 degree line represent the model’s bias towards being optimistic
(i.e., the model is predicting lower probabilities of dying in those points).

In another graphical representation of this idea, some authors suggested that sums of

the predictions for the groups could be plotted against the sums of the outcomes, and the

slope of the curve obtained by linear regression on these numbers compared to the slope of

1 (45-degree line), as shown in Figure 6.3. The equality of two slopes resulting from dif-

ferent models can be tested to assess differences in calibration [Larsen, 1990].
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Figure 6.3. Example of linear regression analysis of group data.

A linear regression is performed with the summed data from the groups. The
regression line should not be very distant from the 45-degree line if the predic-
tions are calibrated.

6.5.2 ROC curve

The ROC curve is a graphical representation of resolution. The ROC curve is a plot of

the sensitivity versus one minus the specificity of a model in a binary classification task

[Bernstein, 1988; Swets 1982; Egan 1975]. Sensitivity is defined as the number of cor-

rectly classified cases with outcome “1” (true positives) divided by the total number of

cases with outcome “1” (real positives). Specificity is defined as the number of correctly

classified cases with outcome “0” (true negatives) divided by the total number of cases

with outcome “0” (real negatives). Each point in the ROC curve corresponds to a numeric

threshold above which cases are classified as having outcome “1” (positive). At each point

it is possible to define a 2 x 2 table with true positives, false positives, true negatives, and

false negatives and hence plot sensitivity and specificity. The points defined in this plot

can be approximated by a continuous function in a variety of ways, and therefore an area

under the curve can be calculated. The easiest way is to connect the points with straight

lines and calculate the areas of the resulting trapezoids [Centor, 1991].

The area under the ROC curve represents the discriminatory ability of the model. An

area of 0.5, corresponding to the 45-degree line, as shown in Figure 6.4, represents no dis-

criminatory ability, whereas an area of 1 represents perfect discriminatory ability.
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Figure 6.4. Example of an ROC curve.

An area of 0.5 represents no resolution. An area of 1 represents perfect reso-
lution.

Hanley and McNeil have shown that the area under the ROC curve calculated by the

trapezoidal method corresponds to the Wilcoxon statistic. They have also shown ways to

calculate the standard error and to compare resolution of different models using that statis-

tic [Hanley, 1982 and 1983].

The comparison of areas under the ROC curve [Swets, 1982] implies that the

researcher is interested in all range of cut-off values for deciding in favor of a classifica-

tion, which rarely happens in practice. Hilden [1991] has criticized the indiscriminate use

of ROC areas to compare diagnostic tests. It is sometimes more interesting to compare

only portions of, rather than the entire, ROC curve, or to utilize other measures of perfor-

mance when ROC curves cross [Moise, 1988]. The accuracy index may be based on just

one ROC point. In this case, a value that corresponds to an acceptable specificity may be

chosen, and the sensitivities may be compared, as suggested by McNeil [1984]. If neces-

sary, other indexes [Centor, 1991] may be used.

6.5.3 Covariance graph

The covariance graph can represent measures of calibration, resolution, and scatter that

are referred to in the decomposition of the Brier score [Arkes, 1995]. I will describe each
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component of the graph: bias, slope, and scatter.

Bias is a measure of calibration-in-the-large, and is calculated by taking the square of

the difference between the average prediction and the average outcome,

bias = Σ(ei - oi)
2

wherei is the number of the case,ei is the average prediction produced by the model

for casei, andoi is the average outcome for casei.

This difference is represented in the covariance graph by the distance between the

crossing of the lines representing the average prediction and the average outcome and the

45-degree line, as shown in Figure 6.5. If the crossing happens below the 45-degree line,

and outcome “1” is not desirable, then the predictions are “optimistic.” For example, sup-

pose the outcome is “0” if a person is alive and “1” if a person is dead. If the crossing of

the average prediction and the average outcome occurs below the 45-degree line, then the

predictions are too optimistic: they indicate that the average of the probabilities of being

dead as given by the model are below the ones that actually could be verified.

Figure 6.5. Assessing calibration in a covariance graph.

Calibration-in-the-large can be visualized by the bias.

A rough measure of resolution is represented in the covariance graph by theslope, dis-

cussed in Section 6.4.1. A perfect slope would correspond to 1, and would be represented
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by a 45-degree line in the graph, as shown in Figure 6.6.

Figure 6.6. Assessing resolution in a covariance graph.

Average prediction for cases with outcome “0” and average prediction for
cases with outcome “1” are connected by a line. An horizontal line (slope 0)
indicates no resolution, whereas a 45-degree line indicates perfect resolution.

Scatter, or variability, is a measure of the “noisiness” in the data, and is represented by

horizontal bars composing rotated histograms at each side of the covariance graph. Scatter

is calculated as

scatter = [N1 Var(f1) + N0 Var(f0)] / (N1 + N0)

whereN1 is the number of patients with outcome “1,”N0 is the number of patients with

outcome “0,”f1 is the average prediction for patients with outcome “1,”f0 is the average

prediction for patients with outcome “0,” andVar(f1) is the variance off.

A perfect scatter would be zero, as shown in Figure 6.7. A large scatter means that

patients with a given outcome have predictions that have high variance (e.g., predictions

that vary from 0.5 to 1 for patients with real outcome “1”), which is often obtained when

noisy data is introduced. Note that is it possible for the predictions to have large scatter (an

undesirable feature), but still have high resolution. For example, if all patients with out-

come “1” have predictions that are uniformly distributed in the interval of 0.5 to 1 and all

patients with outcome “0” have predictions that are uniformly distributed in the interval 0

to 0.499, a large scatter and a large area under the ROC curve will result.
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Figure 6.7. Assessing scatter in a covariance graph.

In a perfect scatter, all predictions for cases with outcome “0” would have pre-
dictions “0,” and cases with outcome “1” would have predictions of “1,” so there
would be no variance.

Conversely, a small scatter just means that the predictions have low variance (which is

desirable), but gives no indication as to whether these predictions are well calibrated or

discriminatory. For example, a zero scatter is obtained by making the same prediction for

all patients.

Figure 6.8 shows a complete covariance graph.

Figure 6.8. Complete covariance graph.

The complete covariance graph shows calibration, resolution, and scatter.
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6.6 Methods Used in This Work

Calibration and resolution are complementary, and should be assessed for every model.

As discussed previously, certain models can provide predictions that result in high calibra-

tion but poor resolution and other models can be highly discriminatory but poorly cali-

brated. Depending on the use of the model, calibration may have precedence over

resolution, or vice versa. In the case of most diagnostic tests, for example, the most dis-

criminatory threshold is chosen and a positive or negative interpretation is produced for a

given patient. The test does not provide a probability that a patient has a disease, but a

value that, if higher or lower than the threshold, will determine a positive or negative

result. In other cases, such as providing prognostic estimates for a specific patient, calibra-

tion may take precedence over resolution. The physician wants to provide an estimate that

is closer to the average outcome for a group of patients with similar characteristics. If,

however, the goal is to discriminate patients with good and bad prognoses to allocate

resources accordingly, resolution may take precedence. In the medical literature, calibra-

tion and resolution are frequently used in isolation. The use of both measures to evaluate a

study facilitates the interpretation of results and should be done more often.

It is neither feasible nor necessary to apply all evaluation methods described in the

chapter to the experiments of this work. Although certain measures of calibration and res-

olution help to determine whether gross differences between two models exist, and graph-

ical methods help us to visualize these gross differences, but we are often confronted with

models that are not grossly different. Furthermore, for several evaluation methods

described here, there is no way to calculate standard errors and test statistical significance.

Given that the Hosmer-Lemeshow test and the Wilcoxon statistic provide a means to sta-

tistically test the null hypothesis that any two given models have the same classification

performance in terms of calibration and resolution, respectively, and that both these fea-

tures are important in evaluating the performance of a classification model, they were cho-

sen as the primary evaluation methods for this work.

All evaluation methods described in this chapter fail to take into account asymmetric
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loss functions (the penalty for false positives is the same as that for false negatives). These

classical measures of predictive accuracy can be highly misleading depending on the cir-

cumstances in which they are used. If predictions for model A result in a larger area under

the ROC curve than that resulting from predictions for model B using the same set of

cases, it does not follow necessarily that model A is always better than model B. It may be

the case that the area under the ROC curve for model A within a certain region of interest

is in fact smaller than that of model B. In this case, model B would be considered the best.

The results of this work describe the comparison of different models for predictions. The

best way to use these predictions for decision making requires a decision-analytic

approach that includes. among other things, the assessment of utilities for every outcome

and the calculation of expected values, which are beyond the scope of this work.

Figure 6.9 shows the stages of the evaluation of resolution for different models.

Figure 6.9. Stages of evaluation.

The test sets are processed by the two models. The Hosmer-Lemeshow test is

applied to the results of each model, and χ2 and p are calculated for a given
significance level α. The highest p defines the model with best calibration.
Sensitivities and specificities for each model at each cut-off are made, and
ROCs are built. Comparison of the areas under the ROCs defines the best
model in terms of resolution.
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CHAPTER 7 Models of Survival using
the Framingham Data
Set

This chapter describes the experiments that were conducted, using

the Framingham data set, to test the hypotheses that (a) sequential

models produce better prognostic indices than nonsequential models,

and (b) neural network models produce better prognostic indices than

logistic regression models. As we will see in the next sections, both

the sequential neural network and the sequential logistic regression

models performed better than their standard counterparts. The perfor-

mances of neural network and logistic regression models were simi-

lar.

Section 7.1  introduces the domain of this study, describing the

importance of modeling prognosis of coronary heart disease (CHD)

development, listing currently recognized risk factors, and explaining

the current models for prediction of CHD. Section 7.2  describes the

logistic regression and the neural network models used in this work,

emphasizing the experimental design. Section 7.3 compares neural

network and logistic regression models. Section 7.4 compares stan-

dard and sequential methods. Section 8.5 discusses the results of this

study.
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7.1 Prognosis of CHD Development and the Framingham Data Set

CHD is the leading cause of death in industrialized countries. Although the death rate

from CHD has decreased in recent years, as a result of both changes in lifestyle and thera-

peutic interventions, acute myocardial infarction (a manifestation of CHD) is still a major

cause of death and disability in the United States. Major identified risk factors for CHD

include (1) elevated blood pressure [Kannel, 1993 and 1990], (2) elevated serum choles-

terol [Kreger, 1994; Kannel, 1993; Castelli, 1992; Anderson, 1991; Wong, 1991], (3) ele-

vated hematocrit [Gagnon, 1994], (4) elevated serum glucose [Kannel, 1990], (5) obesity

[Higgins, 1993; Posner 1993; Kannel, 1991], (6) increased serum fibrinogen [Kannel,

1992 and 1990], (7) elevated heart rate [Gillman, 1993], (8) advanced age [Jenner, 1993],

(9) male gender [Jenner, 1993], and (10) cigarette smoking [Freund, 1993; Kannel, 1990].

Kannel [1993] has pointed out that“ no single factor has been found to be essential or suf-

ficient in the evolution of the disease,”  emphasizing the importance of multivariate analy-

ses to predict the development or aggravation of CHD. Thus, the risk associated with any

one of these factors should not be calculated independent of the other factors [Percy,

1993]. For example, one study has shown that the risk associated with elevated levels of

cholesterol varies according to age: while increased levels are harmful for middle-aged

males, they seem to be associated withno increase in risk for CHD mortality (or even a

decrease in overall mortality) for the elderly [Kronmal, 1993]. For some groups, it still

unclear whether cholesterol-reduction measures (especially those based on medications)

are associated with an increase in survival. Some authors recommend lowering cholesterol

levels (including the use of lipid-lowering medications) for elderly patients with high cho-

lesterol levels, whereas other are more cautious [Drown, 1994; Temple 1994; Pacala,

1994; Capurso, 1992].

Different models can be used to study CHD development, given a set of data. The Cox

proportional hazards model is one of them. However, the form of the function that relates

risk (or hazards) of death from CHD to time for two different cholesterol-based strata may

be of the type shown in Figure 8.1, indicating that modeling of disease progression by Cox
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proportional hazards models may not be appropriate, since hazards may not remain pro-

portional over time for these strata. That is, a survival curve for patients with high choles-

terol levels may cross that of patients with low cholesterol levels after a certain time, as in

the example shown in Figure 8.2. This is clearly a violation of the proportional hazards

assumption.

Figure 7.1. Hypothetical example of nonproportional hazards.

The hazards for patients with high cholesterol may not always be proportion-
ally higher than those for patients with low cholesterol.

Figure 7.2. Survival curves crossing for the hypothetical example.

If the hazards are not proportional, it is likely that survival curves for patients
with high and low cholesterol will cross after a certain time, which violates the
proportionality assumption.

The Framingham Heart Study provided a fundamental source of data concerning the

development of CHD for several researchers [Dawber, 1980]. It began in 1948 with a

cohort of 5209 men and women aged 30 to 62 who did not have cardiac disease. Every

two years all patients were assessed for cardiovascular and oncologic diseases, as well as
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mortality. Fewer than 2 percent of the participants have been lost to follow-up [Posner,

1993]. Information was collected at baseline concerning lifestyle (diet, physical activity,

use of cigarettes, alcohol, and coffee), atherogenic traits (blood lipids, blood pressure,

blood glucose, and fibrinogen), and ECG [Kannel, 1990]. CHD events included angina

pectoris, unstable angina, and myocardial infarction [Ho, 1993]. The causes and date of

death have been recorded for all cases. Traditionally, the Framingham data have been ana-

lyzed by logistic regression models [D’Agostino, 1990, Cupples, 1988]. In their pure

form, logistic regression models do not entail any assumption of hazards proportionality.

 The associations between the covariates (risk factors) and CHD have been modeled

mainly by pooled-logistic regression analysis. Figure 7.3 shows a kind of pooled-logistic

regression used [Cupples, 1988], the Pool of Repeated Observations (PRO), in which

repeated observations are pooled in intervals and presented to the logistic regression

model. In pooled-logistic regression models, data from the same individual may be

entered several times (e.g., once every two years).

Figure 7.3. Pool of Repeated Observations (PRO).

In the PRO model, data from the same patient may be entered more than once
if the patient has survived for a long period. No information is lost, but there is
an implicit assumption that repeated measurements of the same patient are
independent of each other.

The PRO model can use censored data and can update the risk factors at the beginning

of each observation interval, allowing for time-dependent covariates. D’Agostino [1990]
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has shown that the PRO and the Cox models are asymptotically equivalent when the inter-

vals between measurements are short, and the probability of an event within the interval is

small. Ingram [1989] has shown that if the proportion of deaths is not high (<20 percent),

the cumulative and person-time logistic models produce parameter estimates that are sim-

ilar to those arrived at using the Cox model. Ingram also states that mild violations of the

proportional hazards assumption do not significantly influence the parameter estimates

from the Cox or logistic models.

PRO usually assumes that only the current risk profile is necessary to predict the event

(Markovian assumption). Necessary assumptions for applying this model include the

absence of secular trends and the same underlying risk of disease in each interval [Cup-

ples, 1988]. The risk related to a certain combination of variable values is obtained for a

given interval and is multiplied to obtain the risk in multiples of that interval. For exam-

ple, if a risk of developing CHD in two years is 0.02 for a patient with a given set of vari-

able values, the risk of this patient developing CHD in four years is 2*0.02=0.04. Implicit

in this model is a proportionality assumption. It is easy to see that if the risk is high or the

interval being considered is long, a risk of 1 or higher will be obtained by this method,

which would lead to the false result that virtually every patient would develop CHD after

a certain time.

The majority of the models described in the literature that used either Cox proportional

hazards or logistic regression to study CHD had the goal of defining important variables in

the development of the disease. These models were not designed to provide a prognosis

for patients with a given set of variable values and therefore were not evaluated using a

different set of cases. The measures of goodness-of-fit provide a clue to the generalization

ability of these models, but no cross-validation or resampling methods—such as the ones

described in Chapter 2— have been utilized. Overfitting may have occurred. Furthermore,

these models may be inadequate for long-term prognoses.

Since the objective of this study was to compare the accuracy of the prognostic indices

produced by two different methods (standard, or nonsequential, and sequential) and two
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different types of models (logistic regression and neural networks) on a previously unseen

set of cases, and for short and long-term prognosis, I could not use the existing results

from the literature as the “control” set, so I developed new logistic and neural network

models.

7.2 Experimental Design and Results

The subset of the Framingham data set used in this study was obtained from Garber

[1994], and described of 2594 men for whom data on cigarette smoking, total cholesterol,

systolic and diastolic blood pressure, metropolitan relative weight, age, myocardial infarc-

tion and other CHD diagnoses, glucose intolerance, hematocrit, vital capacity, left ventric-

ular hypertrophy diagnosis, and cause of death (when applicable) were available. The data

set consisted of one entry for each patient’s biannual examination. All patients were given

an identification number in ascending order according to their appearance in the data set.

Every third patient was assigned to a test set and all his exams were removed from the

original data set, which became the training set. There was no imputation of values on the

data. Training and test tests were made for each interval of two years of follow-up, con-

sisting of 2/3 and 1/3 of the cases available for that interval, respectively. The number of

entries (exams) and the distribution of CHD according to year of follow-up for training

and test sets are show in Table 7.1. The balance of cases in each set is defined as

balance = min(CHD/Total, non-CHD/Total)

A balance of 0.5 means that the proportion of cases is 1:1, and is the one that best facil-

itates classification by statistical and neural network models.
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The last year with available follow-up was year 22.

Neural network and logistic regression models were built to test the hypotheses that (a)

a sequential model could predict survival more accurately than a nonsequential model, and

(b) a neural network model could predict survival more accurately than a logistic regres-

sion model that used the same covariates. Accuracy was determined by comparing predic-

tions on a test set, according to measurements of calibration and resolution, as discussed

previously in Chapter 6.

Independent variables are shown in Table 7.1. The same interactions among variables

used by Garber [1994] were utilized in our experiment. The dependent variable was devel-

opment of CHD.

Table 7.1. Distribution of cases in training and test sets according to year of follow-up.

Training set Test set

Year of
follow-up CHD non-CHD Total Balance CHD non-CHD Total Balance

2 189 5017 5206 0.0363 95 2496 2591 0.0367

4 344 4249 4593 0.0749 184 2116 2300 0.0800

6 499 3990 4489 0.1112 250 1987 2237 0.1118

8 648 3699 4347 0.1491 326 1846 2172 0.1501

10 794 3426 4220 0.1882 392 1703 2095 0.1871

12 946 2673 3619 0.2614 467 1367 1834 0.2546

14 1069 2013 3082 0.3469 531 1009 1540 0.3448

16 1162 1448 2610 0.4452 579 734 1313 0.4410

18 1236 941 2177 0.4322 611 495 1106 0.4476

20 1276 810 2086 0.3882 631 438 1069 0.4097

22 1315 350 1665 0.2102 655 194 849 0.2285
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Standard Logistic Regression Model. A standard logistic regression model, similar to

the one shown in Figure 7.4, was built for each biannual interval with the variables pre-

sented earlier in this chapter.

Table 7.2. Independent variables.

name description

AGE age

HBP hypertension

FVC functional lung vital capacity

LVH left ventricular hypertrophy

VEN ECG’s ventricular rate

SCL serum cholesterol

SCLL1 serum cholesterol at first exam

AVEDP average diastolic blood pressure

AVESP average systolic blood pressure

MRW metropolitan relative weight

CSM number cigarettes smoked per day

GLI glucose intolerance

AVESCL average cholesterol

AGESPF AGE*systolic blood pressure

AGEDPF AGE*diastolic blood pressure

AGECSM AGE*CSM

AGEGLI AGE*GLI

AGEMRW AGE*MRW

SCLSQ SCL2

AGESCL AGE*SCL

AVESCLSQ AVESCL2

AGEAVDP AGE*AVEDP

AGEAVSP AGE*AVESP

AGAVSC AGE*AVESCL

AGAVSCSQ AGE*AVESCLS2

AGESCLSQ AGE*SCL2

MRWCSM MRW*CSM
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Figure 7.4. Standard logistic regression model: Framingham data.

In a standard logistic regression model, the probability of an event at time tζ
can be calculated as a function of the available variables. Maximum likelihood
estimates (coefficients a,b,c, etc.) are produced.

The SAS/STAT procedure LOGISTIC [SAS, 1990], using the IRLS algorithm, was

used in the training set to calculate the maximum likelihood estimators of the regression

parameters. No variable selection procedure was used. In all models, the -2 log L statis-

tics1 provided aχ2 value that corresponded top<0.05, indicating that the coefficients of

the explanatory variables were different from zero. The variables with the largest stan-

dardized coefficients were SCL, SCL1, and AVESCL (see Table 7.1 for description), con-

firming the importance of total cholesterol values in the development of CHD.

Table 7.1 shows the calibration of the standard logistic regression model for training

and test sets.

1 L is the value ot the likelihood function when the parameters are replaced by their maximum likelihood extimates [Col-
let, 1994].

Table 7.3. Calibration of standard logistic regression models.

Test set

Year of
follow-up χ2 p

2 15.5092 0.04997

4 16.0343 0.04189

6 18.4838 0.01788

8 20.3515 0.00909

10 22.6141 0.00390

12 17.0659 0.02943

14 9.7718 0.28141

16 5.0194 0.75551

18 12.2332 0.14110

20 7.2723 0.49704

22 17.8476 0.02240

Prob(CHDhtζ) =
e(a*agetζ+b*gender+c*bptζ+d*choltζ+e*smokingtζ+f*weighttζ)

1+e(a*agetζ+b*gendetζr+c*bptζ+d*choltζ+e*smokingtζ+f*weighttζ)
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Four of the 11 models in the test set were well calibrated (p>0.05).

Table 7.1 shows the areas under the ROC curves for the test sets.

The best discrimination was achieved for the last interval, or follow-up of 22 years.

Figure 7.5 shows how resolution is related to data balance.

Figure 7.5. Resolution and data balance in standard logistic regression model.

Resolution is represented by squares and scaled in the left axis. Balance is
represented by triangles and scaled in the right axis.

Table 7.4. Resolution of standard logistic regression models.

Test set

Year of follow-up
area under the ROC
curve standard error

2 0.6717 0.0261

4 0.7277 0.0186

6 0.7356 0.0154

8 0.7337 0.0137

10 0.7332 0.0127

12 0.7482 0.0123

14 0.7791 0.0120

16 0.8126 0.0116

18 0.8400 0.0116

20 0.8432 0.0118

22 0.8436 0.0153
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The predictions had low resolution for years in which data were highly unbalanced

(e.g., years 2 and 4). Resolution increased for years in which data were balanced.

 Every two years, a different standard logistic regression model was used to assess the

probability of CHD development for all patients. Predictions for 11 intervals where plot-

ted for 10 patients, producing the survival curves in Figure 7.6.

Figure 7.6. Survival curves for ten patients using standard logistic regression.

Since the models have no relation to each other, survival curves that are not
monotonically decreasing, although impossible in theory, can be produced,
such as for patient number 9.

The range of probabilities produced by the model in the first intervals was limited (e.g.,

the minimum probability of survival in Year 2 was 0.67, and most predictions would cor-

respond to values over 0.8), as shown in Figure 7.7. The range of probabilities in the last

intervals was wider, indicating a higher balance in those intervals.
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Figure 7.7. Range of probabilities for standard logistic regression model.

Predictions for the first intervals tended to be conservative, avoiding
small values. Predictions for the last intervals were better distributed, indicat-
ing a better data balance.

Standard Neural Network Model. A standard neural network model, similar to the one

shown in Figure 7.8, was built for each biannual interval with the variables presented ear-

lier in this chapter.

Figure 7.8. Standard neural network model: Framingham data.

In a standard neural network model, survival is predicted for one interval at a
time, and no information on previous intervals is provided.

The models constructed for each interval could have been combined in an overall stan-

dard neural network model, such as the one shown in Figure 7.9, but that was not done

since an overall standard neural network model could not handle censored data (outcomes

for all intervals would be necessary) and no equivalent logistic regression model could be

built for comparison.

P
ro

ba
bi

lit
y 

of
 li

fe
 w

ith
ou

t C
H

D

YEAR
2 4 6 8 10 12 14 16 18 20 220

age
gender

blood pressure

cholesterol
smoking

weight

CHD in tζ



Connectionist Models of Survival   145

Experimental Design and Results

Figure 7.9. Equivalence of standard neural network models: Framingham data.

The model on the right was the one chosen for this experiment. The model on
the left is more economical (fewer weights) than the one at the right, but the
nonsequential nature of the processing of information is the same. Further-
more, it is advantageous to use the model on the right, since it can use cen-
sored data and it has a logistic regression equivalent.

Neural networks were constructed with ten hidden nodes and trained by minimization

of cross-entropy error using the quickpropagation algorithm (an optimization of backprop-

agation) developed by Fahlman [1988]. Overfitting was monitored by the error in half of

the training set. The software NevProp2, developed by Goodman and colleagues [1994]

was used.
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Table 7.1 shows the calibration of the model for the test sets.

Six of the 11 models in the test set had good calibration (p>0.05).

Table 7.1 shows the areas under the ROC curves for the test sets.

The best discrimination was achieved for a follow-up of 20 years. Figure 7.10 shows

how resolution is related to data balance.

Table 7.5. Calibration of standard neural network models.

Test set

Year of
follow-up χ2 p

2 15.0118 0.0589

4 11.1389 0.1939

6 19.6175 0.0118

8 30.3247 0.0001

10 23.6363 0.0026

12 11.6443 0.1677

14 9.3273 0.3154

16 6.7588 0.5628

18 26.1660 0.0009

20 22.3739 0.0042

22 12.7683 0.1200

Table 7.6. Resolution of standard neural network models.

Test set

Year of follow-up
area under the
ROC curve standard error

2 0.7038 0.0242

4 0.7117 0.0190

6 0.7352 0.0152

8 0.7337 0.0138

10 0.7333 0.0130

12 0.7448 0.0123

14 0.7752 0.0121

16 0.8059 0.0119

18 0.8275 0.0122

20 0.8374 0.0122

22 0.8324 0.0163
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Figure 7.10. Resolution and data balance in standard neural network model.

Resolution is represented by squares and scaled in the left axis. Balance is
represented by triangles and scaled in the right axis.

Figure 7.11 shows an example of ten survival curves produced by the standard neural

network models.

Figure 7.11. Survival curves for ten patients using standard neural networks.

Since the models have no relation to each other, survival curves that are not
monotonically decreasing, although impossible in theory, can be produced,
such as for patient number 9.

The range of probabilities produced by the model in the first intervals was limited (e.g.,

the minimum probability of survival in Year 2 was 0.74, and most predictions would
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correspond to values over 0.8), as shown in Figure 7.12. The range of probabilities in the

last intervals was wider, indicating a higher balance of data in those intervals.

Figure 7.12. Range of probabilities for standard neural network model for all patients.

Predictions for the first intervals tended to be conservative, avoiding small val-
ues. Predictions for the last intervals were better distributed, indicating a better
data balance

Sequential Logistic Regression Model. A sequential model, similar to the one shown in

Figure 7.13, was built for each possible pair of intervals, resulting in 110 sequential mod-

els (e.g., a sequential model in which the output of the standard logistic regression model

for Year 2 was entered as input to a sequential model for Year 4).

Figure 7.13. Sequential logistic regression model.

In a sequential logistic regression model, the probability of an event at time tζ
obtained from the standard model can be entered as input to the sequential
logistic regression model that predicts the event at time tω.

The SAS/STAT procedure LOGISTIC [SAS, 1990], using the IRLS algorithm, was

used in the training set to calculate the maximum likelihood estimators of the regression

parameters. No variable selection procedure was used.
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Prob(CHDtζ) =
e(a*agetζ+b*gender+c*bptζ+d*choltζ+e*smokingtζ+f*weighttζ)

1+e(a*agetζ+b*gendetζr+c*bptζ+d*choltζ+e*smokingtζ+f*weighttζ)

Prob(CHDtω) =
e(g*Prob(CHDh

tζ
)+ a*agetω+b*gender+c*bptω+d*choltω+e*smokingtω+f*weighttω)

1+e(Prob(CHDh
tζ

)+a*agetω+b*gendertω+c*bptω+d*choltω+e*smokingtω+f*weighttω)
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In all models, the -2 log L statistics provided aχ2 value that corresponded top<0.05,

indicating that the coefficients of the explanatory variables were different from zero. The

magnitude of the standardized coefficient of a variable can be interpreted as the impor-

tance of that variable to the model. The higher the standardized coefficient, the greater the

contribution of that variable to the model. In the sequential logistic regression model, the

variables with the largest standardized coefficients were again the ones corresponding to

the prediction of CHD development in another interval, SCL, SCL1, and AVESCL, con-

firming the importance of total cholesterol values in the development of CHD. The inde-

pendent variable that corresponded to a prediction in a certain year that was provided for

the sequential equation always had high standardized coefficients in the final sequential

equations, often among the five higher standardized coefficients, meaning that providing

information on a certain year was indeed taken into account to construct the model.

Of the 110 sequential logistic regression models, 79 were well calibrated (p>0.05)

using the Hosmer-Lemeshow test, as shown in Table 7.7.
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.

Table 7.8 shows the areas under the ROC curves and standard errors for all sequential

logistic regression models.

Table 7.7. Calibration of sequential logistic regression models.

Year

2 4 6 8 10 12

χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p

In
fo

rm
at

iv
e 

Y
ea

r

2 16.2622 0.04 16.4773 0.04 16.9170 0.03 18.8832 0.02 16.9412 0.03

4 9.2603 0.32 14.6006 0.07 19.5386 0.01 21.2465 0.01 15.9692 0.04

6 9.8167 0.28 13.3485 0.10 22.7839 0.00 18.9354 0.02 12.7160 0.12

8 9.0782 0.34 9.2630 0.32 25.6066 0.00 18.3071 0.02 13.3926 0.10

10 6.4889 0.59 11.5179 0.17 23.0568 0.00 14.8270 0.06 12.4154 0.13

12 8.8974 0.35 10.8185 0.21 8.9106 0.35 6.3869 0.60 6.8580 0.55

14 7.6828 0.47 13.0043 0.11 8.4339 0.39 14.7627 0.06 17.8473 0.02 10.8511 0.21

16 11.7466 0.16 11.0953 0.20 16.0566 0.04 12.7058 0.12 25.7655 0.00 13.5346 0.09

18 9.8240 0.28 9.0164 0.34 13.9674 0.08 7.0831 0.53 22.4416 0.00 11.8906 0.16

20 12.5060 0.13 8.2823 0.41 12.7024 0.12 7.4784 0.49 9.1290 0.33 14.3677 0.07

22 12.6895 0.12 14.3858 0.07 14.3320 0.07 14.9852 0.06 16.4859 0.04 10.4696 0.23

14 16 18 20 22

χ2 p χ2 p χ2 p χ2 p χ2 p

In
fo

rm
at

iv
e 

Y
ea

r

2 10.6408 0.22 4.3869 0.82 9.9329 0.27 6.0103 0.65 18.9968 0.01

4 10.5416 0.23 4.2342 0.84 9.2062 0.33 6.7098 0.57 20.8384 0.01

6 12.9967 0.11 8.0011 0.43 9.9158 0.27 6.0370 0.64 20.2341 0.01

8 14.7925 0.06 6.5203 0.59 7.9279 0.44 6.2640 0.62 20.9151 0.01

10 16.1173 0.04 5.4484 0.71 8.2986 0.40 7.4760 0.49 22.0034 0.00

12 10.7715 0.21 7.8378 0.45 3.9319 0.86 7.6052 0.47 22.6384 0.00

14 8.3419 0.40 5.8397 0.67 6.7003 0.57 18.5448 0.02

16 6.8376 0.55 7.7899 0.45 8.0565 0.43 17.1252 0.03

18 13.6960 0.09 7.8347 0.45 7.4139 0.49 18.9089 0.02

20 15.1968 0.06 10.7171 0.22 6.6289 0.58 23.9396 0.00

22 8.9876 0.34 7.8237 0.45 25.9936 0.00 21.7507 0.01
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Table 7.8. Resolution of sequential logistic regression models.

Year

2 4 6 8 10

W s.e. W s.e. W s.e. W s.e. W s.e.

In
fo

rm
at

iv
e 

Y
ea

r

2 0.7131 0.0257 0.7175 0.0253 0.7310 0.0245 0.7347 0.0246

4 0.7276 0.0187 0.7323 0.0184 0.7429 0.0182 0.7472 0.0184

6 0.7333 0.0158 0.7351 0.0156 0.7473 0.0154 0.7536 0.0154

8 0.7326 0.0138 0.7335 0.0137 0.7346 0.0138 0.7424 0.0137

10 0.7436 0.0127 0.7438 0.0127 0.7443 0.0127 0.7457 0.0127

12 0.7485 0.0124 0.7488 0.0123 0.7484 0.0124 0.7489 0.0123 0.7488 0.0123

14 0.7789 0.0120 0.7792 0.0120 0.7798 0.0120 0.7797 0.0120 0.7798 0.0120

16 0.8129 0.0117 0.8127 0.0117 0.8130 0.0116 0.8133 0.0116 0.8134 0.0116

18 0.8399 0.0117 0.8399 0.0117 0.8398 0.0117 0.8399 0.0117 0.8394 0.0117

20 0.8429 0.0119 0.8431 0.0119 0.8432 0.0119 0.8431 0.0119 0.8430 0.0119

22 0.8433 0.0154 0.8433 0.0154 0.8439 0.0154 0.8434 0.0155 0.8423 0.0156

12 14 16 18 20

W s.e. W s.e. W s.e. W s.e. W s.e.

In
fo

rm
at

iv
e 

Y
ea

r

2 0.7328 0.0255 0.7507 0.0252 0.7518 0.0254 0.7480 0.0249 0.7442 0.0250

4 0.7534 0.0185 0.7691 0.0184 0.7742 0.0185 0.7753 0.0183 0.7718 0.0184

6 0.7583 0.0157 0.7759 0.0155 0.7875 0.0153 0.7881 0.0157 0.7884 0.0156

8 0.7516 0.0139 0.7719 0.0138 0.7857 0.0138 0.7896 0.0141 0.7899 0.0142

10 0.7568 0.0128 0.7819 0.0127 0.8001 0.0127 0.8064 0.0131 0.8088 0.0131

12 0.7803 0.0122 0.8060 0.0121 0.8195 0.0124 0.8227 0.0125

14 0.7795 0.0120 0.8098 0.0119 0.8307 0.0120 0.8360 0.0121

16 0.8127 0.0117 0.8132 0.0116 0.8409 0.0116 0.8478 0.0116

18 0.8391 0.0117 0.8393 0.0117 0.8401 0.0117 0.8483 0.0116

20 0.8428 0.0119 0.8431 0.0119 0.8436 0.0119 0.8432 0.0119

22 0.8422 0.0156 0.8425 0.0156 0.8424 0.0155 0.8436 0.0154 0.8432 0.0155

22

W s.e.

In
fo

rm
at

iv
e 

Y
ea

r

2 0.7020 0.0266

4 0.7385 0.0200

6 0.7542 0.0175

8 0.7519 0.0165

10 0.7713 0.0158

12 0.7901 0.0156

14 0.8130 0.0153

16 0.8356 0.0146

18 0.8441 0.0147

20 0.8373 0.0157
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Figure 7.14 shows an example of ten survival curves produced by the sequential logis-

tic regression models in which predictions in Year 20 were provided.

Figure 7.14. Survival curves using logistic regression and information of Year 20.

Nonmonotonic curves, such as the one corresponding to patient number 9, are
still produced in sequential logistic regression models, but they are not as
steep.

The range of probabilities is shown in Figure 7.15.

Figure 7.15. Range of probabilities for logistic regression using information from Year 20.

The range of probabilities for sequential models is wide, including the ones
produced for the first intervals.
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Sequential Neural Network Model. A sequential model, similar to the one shown in

Figure 7.16, was built for each possible pair of intervals, resulting in 110 sequential mod-

els, just as in the sequential logistic regression model described above.

Figure 7.16. Sequential neural network model.

In a sequential neural network model, the probability of an event at time tζ
obtained from the standard neural network model can be entered as input to
the sequential neural network model that predicts the event at time tω .

Neural networks were constructed with ten hidden nodes and trained by minimization

of cross-entropy error using the quickpropagation algorithm. Overfitting was monitored

by the error in half of the training set. The software NevProp2 was used.

Of the 110 sequential neural networks, 48 were well calibrated (p>0.05) using the Hos-

mer-Lemeshow test, as shown in Table 7.9.

age
gender

blood pressure

cholesterol
smoking

weight

CHD in tζ

age
gender

blood pressure

cholesterol
smoking

weight

CHD in tω
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Table 7.10 shows the areas under the ROC curves for the sequential neural network

models.

Table 7.9. Calibration of sequential neural network models.

Year

2 4 6 8 10 12

χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p

In
fo

rm
at

iv
e 

Y
ea

r

2 13.1435 0.11 14.6240 0.07 8.5727 0.38 52.6269 0.00 18.3555 0.02

4 9.8212 0.28 12.8448 0.12 14.9645 0.06 41.8917 0.00 22.6315 0.00

6 3.3991 0.91 11.6007 0.17 25.1379 0.00 42.5970 0.00 29.1821 0.00

8 17.0644 0.03 14.9963 0.06 10.6357 0.22 52.0179 0.00 12.2629 0.14

10 18.2274 0.02 13.6959 0.09 30.4125 0.00 29.3929 0.00 7.9547 0.44

12 12.9322 0.11 8.3186 0.40 43.6185 0.00 38.5990 0.00 35.2165 0.00

14 8.2831 0.41 13.2362 0.10 29.9100 0.00 19.6264 0.01 48.8063 0.00 10.2974 0.24

16 6.1119 0.63 8.7042 0.37 26.7849 0.00 26.7072 0.00 26.7886 0.00 11.6152 0.17

18 9.6610 0.29 8.9642 0.35 51.4274 0.00 71.1437 0.00 18.1969 0.02 36.4449 0.00

20 10.2685 0.25 22.5018 0.00 27.5929 0.00 13.0709 0.11 40.1797 0.00 19.4396 0.01

22 9.6340 0.29 22.3997 0.00 19.4347 0.01 55.7164 0.00 13.7669 0.09 13.5392 0.09

14 16 18 20 22

χ2 p χ2 p χ2 p χ2 p χ2 p

In
fo

rm
at

iv
e 

Y
ea

r

2 13.7267 0.09 5.5901 0.69 21.2171 0.01 23.1064 0.00 12.4202 0.13

4 19.7395 0.01 5.7234 0.68 10.0610 0.26 21.2731 0.01 6.8863 0.55

6 40.9677 0.00 9.4570 0.31 34.4733 0.00 26.6079 0.00 13.9140 0.08

8 15.2342 0.05 3.0978 0.93 20.2522 0.01 19.9029 0.01 13.4868 0.10

10 12.8500 0.12 10.3195 0.24 41.8349 0.00 39.8103 0.00 16.6063 0.03

12 25.1583 0.00 7.6935 0.46 19.9963 0.01 51.1736 0.00 10.9975 0.20

14 4.6081 0.80 23.5968 0.00 33.0921 0.00 13.3280 0.10

16 15.0717 0.06 14.6768 0.07 23.9607 0.00 13.9382 0.08

18 23.8345 0.00 13.6680 0.09 13.6152 0.09 10.3478 0.24

20 14.7418 0.06 21.2347 0.01 21.8059 0.01 23.6344 0.00

22 10.3695 0.24 7.0661 0.53 20.0486 0.01 11.6077 0.17
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Table 7.10. Resolution of sequential neural network models.

Year

2 4 6 8 10

W s.e. W s.e. W s.e. W s.e. W s.e.

In
fo

rm
at

iv
e 

Y
ea

r

2 0.7311 0.0187 0.7244 0.0157 0.7275 0.0144 0.7331 0.0131
4 0.7243 0.0230 0.7169 0.0159 0.7282 0.0143 0.7311 0.0131
6 0.7314 0.0258 0.7312 0.0191 0.7318 0.0142 0.7376 0.0129
8 0.7317 0.0234 0.7401 0.0187 0.7302 0.0166 0.7339 0.0130

10 0.7390 0.0235 0.7230 0.0191 0.7354 0.0155 0.7325 0.0140
12 0.7544 0.0231 0.7516 0.0181 0.7563 0.0153 0.7563 0.0135 0.7558 0.0128
14 0.7645 0.0232 0.7724 0.0179 0.7747 0.0154 0.7709 0.0137 0.7814 0.0126
16 0.7703 0.0233 0.7745 0.0179 0.7798 0.0157 0.7835 0.0138 0.7959 0.0129
18 0.7453 0.0247 0.7704 0.0177 0.7874 0.0154 0.7827 0.0142 0.7974 0.0133
20 0.7483 0.0236 0.7722 0.0179 0.7774 0.0159 0.7866 0.0143 0.8060 0.0132
22 0.7015 0.0256 0.7292 0.0200 0.7507 0.0175 0.7513 0.0166 0.7696 0.0159

12 14 16 18 20

W s.e. W s.e. W s.e. W s.e. W s.e.

In
fo

rm
at

iv
e 

Y
ea

r

2 0.7448 0.0124 0.7724 0.0122 0.8065 0.0119 0.8322 0.0121 0.8363 0.0123
4 0.7455 0.0124 0.7721 0.0122 0.8045 0.0120 0.8301 0.0122 0.8369 0.0123
6 0.7430 0.0125 0.7756 0.0122 0.8073 0.0119 0.8304 0.0122 0.8347 0.0124
8 0.7414 0.0124 0.7733 0.0121 0.8033 0.0120 0.8309 0.0121 0.8364 0.0124

10 0.7444 0.0124 0.7689 0.0122 0.8070 0.0119 0.8336 0.0121 0.8358 0.0124
12 0.7742 0.0121 0.8046 0.0120 0.8293 0.0122 0.8359 0.0124
14 0.7730 0.0124 0.8060 0.0120 0.8324 0.0121 0.8366 0.0123
16 0.7954 0.0125 0.8058 0.0120 0.8265 0.0124 0.8332 0.0125
18 0.8052 0.0130 0.8248 0.0123 0.8337 0.0120 0.8337 0.0125
20 0.8127 0.0129 0.8301 0.0124 0.8420 0.0120 0.8404 0.0121
22 0.7826 0.0159 0.8128 0.0153 0.8380 0.0144 0.8334 0.0152 0.8322 0.0158

22

W s.e.

In
fo

rm
at

iv
e 

Y
ea

r

2 0.8413 0.0152
4 0.8437 0.0151
6 0.8415 0.0152
8 0.8448 0.0149

10 0.8432 0.0150
12 0.8343 0.0156
14 0.8315 0.0156
16 0.8367 0.0156
18 0.8411 0.0153
20 0.8444 0.0150
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Figure 7.17 shows an example of ten survival curves produced by the sequential neural

networks in which predictions in Year 20 were provided.

Figure 7.17. Survival curves using neural network and information from Year 20.

Nonmonotonic curves, such as the one corresponding to patient number 9, are
still produced in sequential neural network models, but they are not as steep
as in the standard neural network model.

Figure 7.18 shows the range of probabilities.

Figure 7.18. Range of probabilities for neural network model using information on Year 20.

The range of probabilities for sequential models is wide, including the ones
produced for the first intervals.
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7.3 Model Comparison

In this section we compare neural networks and logistic regression models that use the

same method (i.e., standard neural networks versus standard logistic regression models

and sequential neural networks versus sequential logistic regression models). Comparison

of resolution was simple, since there are published methods to compare pairs of areas

under the ROC curves or the Wilcoxon statistic derived from the same cases [Hanley,

1983]. Overall resolution comparison across all models was done by a nonparametric sign

test. Comparison of calibration is not as easily defined, and the results shown here report

how many perfectly calibrated models were obtained in neural network and logistic

regression models.

7.3.1 Standard neural networks versus standard logistic regression models

Equivalent standard logistic and standard neural network models, such the ones shown

in Figure 7.19 were compared for calibration and resolution.

Figure 7.19. Standard neural networks and standard logistic regression models.

Standard neural networks perform the same task as that of standard logistic
regression models. Results from both models are compared.

The results of applying the Hosmer-Lemeshow test to all standard models are shown in

Figure 7.20. The perfect calibration curve was plotted for reference. Note that the scales

change from graph to graph. Figure 7.21 shows the areas under the ROC curves.
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Prob(CHDtζ) =
e(a*agetζ+b*gender+c*bptζ+d*choltζ+e*smokingtζ+f*weighttζ)

1+e(a*agetζ+b*gendetζr+c*bptζ+d*choltζ+e*smokingtζ+f*weighttζ)

CHD in tζ
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Figure 7.20. Calibration plots and Hosmer-Lemeshow χ2 (p) for all standard models.
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Figure 7.21. Areas under the ROC curves (standard errors) for all standard models
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Table 7.11 shows the difference in resolution between the logistic regression and the

neural network models and thep for testing the hypothesis that the differences are statisti-

cally significant for all intervals. There were no differences forα = 0.05.

Table 7.11. Differences ( d) in resolution of standard models.

A rank sign test resulted inp=0.0674, suggesting the results were not statistically dif-

ferent.

7.3.2 Sequential neural networks versus sequential logistic regression models

Sequential logistic regression and sequential neural network models, similar to the ones

shown in Figure 7.22, were compared for calibration and resolution.

Year d p

2 -0.0320 0.94

4 0.0159 0.14

6 0.0004 0.48

8 -0.0004 0.51

10 0.0103 0.11

12 0.0034 0.34

14 0.0038 0.32

16 0.0067 0.20

18 0.0125 0.06

20 0.0057 0.22

22 0.0111 0.16
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Figure 7.22. Sequential logistic regression versus sequential neural network models.

Sequential logistic regression models perform the same task as that of
sequential neural network models. Results are compared.

Table 7.12 shows the differences in resolution between the logistic regression and the

neural network models for all intervals, as well as thep for testing the hypothesis that the

differences were statistically significant. None of the differences were significant forα =

0.05.

age

gender

blood pressure

cholesterol

smoking

weight

CHD in tζ

age

gender

blood pressure

cholesterol

smoking

weight

CHD in tω

Prob(CHDtζ) =
e(a*age

tζ
+b*gender+c*bp

tζ
+d*cho

tζ
+e*smoking

tζ
+f*weight

tζ
)

1+e(a*age
tζ

+b*gender
tζ

+c*bp
tζ

+d*chol
tζ

+e*smoking
tζ

+f*weight
tζ

)

Prob(CHDtω) =
e(g*Prob(CHD

tω
)+ a*age

tω
+b*gender+c*bp

tω
+d*chol

tω
+e*smoking

tω
+f*weight

tω
)

1+e(Prob(CHD
tζ

)+a*age
tω

+b*gender
tω

+c*bp
tω

+d*chol
tω

+e*smoking
tω

+f*weight
tω

)



Models of Survival using the Framingham Data Set

162 Lucila Ohno-Machado

Table 7.12. Difference (d) in resolution of sequential models.

Year

2 4 6 8 10

d p d p d p d p d p

In
fo

rm
at

iv
e 

Y
ea

r

2 -0.0034 0.58 0.0088 0.23 0.0050 0.31 0.0104 0.13
4 -0.0112 0.70 0.0181 0.08 0.0053 0.30 0.0126 0.09
6 -0.0138 0.73 0.0011 0.47 0.0028 0.40 0.0066 0.23
8 -0.0007 0.51 0.0028 0.41 0.0170 0.08 0.0117 0.09

10 -0.0043 0.58 0.0242 0.07 0.0182 0.05 0.0099 0.15
12 -0.0216 0.87 0.0018 0.44 0.0019 0.43 -0.0047 0.69 0.0010 0.45
14 -0.0138 0.77 -0.0032 0.60 0.0011 0.45 0.0010 0.46 0.0004 0.47
16 -0.0185 0.83 -0.0002 0.50 0.0077 0.24 0.0021 0.41 0.0041 0.31
18 0.0027 0.44 0.0048 0.36 0.0006 0.47 0.0068 0.24 0.0089 0.19
20 -0.0041 0.58 -0.0004 0.51 0.0109 0.19 0.0032 0.38 0.0027 0.38
22 0.0004 0.49 0.0093 0.29 0.0035 0.39 0.0005 0.48 0.0016 0.44

12 14 16 18 20

d p d p d p d p d p

In
fo

rm
at

iv
e 

Y
ea

r

2 0.0037 0.31 0.0065 0.21 0.0064 0.22 0.0076 0.17 0.0065 0.22
4 0.0032 0.33 0.0071 0.19 0.0082 0.16 0.0098 0.13 0.0061 0.22
6 0.0054 0.27 0.0041 0.30 0.0057 0.24 0.0093 0.12 0.0084 0.17
8 0.007 0.18 0.0064 0.20 0.0099 0.11 0.0089 0.15 0.0066 0.20

10 0.0043 0.29 0.0108 0.10 0.0064 0.21 0.0058 0.23 0.0071 0.20
12 0.0053 0.24 0.0080 0.16 0.0098 0.14 0.0069 0.20
14 0.0073 0.19 0.0071 0.19 0.0068 0.21 0.0065 0.22
16 0.0105 0.10 0.0039 0.32 0.0135 0.07 0.0103 0.12
18 0.0143 0.06 0.0058 0.22 0.0072 0.17 0.0095 0.13
20 0.0100 0.12 0.0059 0.23 0.0057 0.25 0.0078 0.18
22 0.0075 0.26 0.0001 0.49 -0.0023 0.59 0.0107 0.15 0.0050 0.32

22

d p

In
fo

rm
at

iv
e 

Y
ea

r

2 0.0020 0.42
4 -0.0003 0.51
6 0.0024 0.41
8 -0.0014 0.55

10 -0.0009 0.53
12 0.0079 0.26
14 0.0110 0.19
16 0.0057 0.32
18 0.0025 0.41
20 -0.0012 0.54
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A rank sign test to test the hypothesis that the differences were not significant resulted

in p=0.0001, favoring the logistic regression model.

7.4 Method Comparison

7.4.1 Standard versus sequential logistic regression

Standard and sequential logistic regression models, similar to the ones shown in

Figure 7.23, were compared for calibration and resolution.

Figure 7.23. Standard versus sequential logistic regression: Framingham data.

Standard and sequential models were compared for calibration and resolution.

The comparison of the Akaike information criterion showed that the sequential logistic

regression models had a better fit to the data than the standard regression models.

Figure 7.24 shows thep obtained by the Hosmer-Lemeshow test on the standard mod-

els and the averagep obtained by the same test on the sequential models. Overall, there

was small change in calibration favoring the sequential model, especially for the first

intervals.
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Figure 7.24. Calibration of standard and sequential logistic regression models.

The p (triangles) and average p (squares) obtained by the Hosmer-Lemeshow
test are plotted for the standard and sequential models, respectively. There
was not a small change in calibration favoring the sequential method.

Of the 110 sequential logistic regression equations, 47 resulted in significantly larger

areas under the ROC curve (p<0.05) than their equivalent standard equations. None of the

sequential equations produced areas that were statistically smaller than their standard

counterparts, as shown in Figure 7.25. The ROC curves produced by the sequential logis-

tic regression models had higher standard errors than those of the standard models because

the number of cases was either the same or smaller.

YEAR

p
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Figure 7.25. Resolution of standard and sequential logistic regression models.

Bars represent the area under the ROC curve for sequential models when dif-
ferent informative years were entered in the model. The dotted line represents
the resolution of the standard model for reference.
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Consider each pair of (A,B), whereA is the year for which predictions are produced in

the sequential logistic regression, andB is the year whose predictions from the standard

model were provided to build the sequential model. The “most informative year” is

defined as the most frequent value ofB in the 47(A,B) pairs. This value was 20. The “most

informed year,” that is, the year that most benefitted from information on another year is

defined as the most frequentA in the same 47 pairs. This value was 2. Conversely, the

“least informative year” is defined as the most infrequent value ofB in the 47(A,B) pairs,

and was 2. The “least informed year” is defined as the most infrequent value ofA in the 47

pairs and was 20. Note, in Figure 7.26, that the degree to which each year was informative

is correlated with the balance of the data: The more balanced the data were, the more

information the predictions for that year could enhance resolution.

Figure 7.26. Informative years and balance in sequential logistic regression model.

Squares represent the number of times an informative year corresponded to a
significant improvement in the area under the ROC curve and are scaled in the
left axis. Triangles represent the data balance and are scaled in the right axis.
The “most informative years” were the ones in which data were most bal-
anced.

7.4.2 Standard versus sequential neural networks

Standard and sequential neural network models, similar to the ones shown in

Figure 7.27, were compared for calibration and resolution.
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Figure 7.27. Standard versus sequential neural network: Framingham data.

Standard and sequential models were compared for calibration and resolution.

Figure 7.28 shows thep obtained by the Hosmer-Lemeshow test on the standard mod-

els and the averagep obtained by the same test on the sequential models. Overall, there

was not a major change in calibration: it stayed low in intervals where it was low, and did

not have major increases in intervals where it was already high.

Figure 7.28. Calibration of standard and sequential neural network models.

The p (triangles) and average p (squares) obtained by the Hosmer-Lemeshow
test are plotted for the standard and sequential models, respectively. There
was not a major change in calibration when the sequential method was used.

Of the 110 sequential neural networks, 42 resulted in significantly larger areas under

the ROC curve (p<0.05) than their equivalent standard models, as shown in Figure . None

of the sequential networks produced areas that were statistically smaller than their stan-

dard counterparts.
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Figure 7.29. Resolution of sequential neural networks.

Bars represent the area under the ROC curve for sequential models when dif-
ferent informative years were entered in the model. The dotted line represents
the resolution of the standard model for reference.
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Summary of Results

The “most informative year” was 20. The “most informed year” was 2. The “least

informative year” was 2. The “least informed year” was 20. Note, in Figure 8.31, that here

the degree to which each year was informative is also positively correlated with the bal-

ance of the data.

Figure 7.30. Informative years and balance in sequential neural network models.

Squares represent the number of times an informative year corresponded to a
significant improvement in the area under the ROC curve and are scaled in the
left axis. Triangles represent the data balance and are scaled in the right axis.
The “most informative years” were the ones in which data were most bal-
anced.

7.5 Summary of Results

No difference in resolution could be detected for standard logistic regression and

sequential neural network models. Standard logistic regression and standard neural net-

work models were well calibrated in different intervals (six out of eleven times calibration

of standard logistic regression models was superior).

No direct pairwise difference in performance in terms of resolution could be detected

for sequential logistic regression and sequential neural network models, although an

overall sign test indicates statistical difference favoring the sequential logistic regression
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models.

The sequential method performed better than the standard method, in terms of calibra-

tion and resolution, for both logistic regression and neural network models in this data set.

7.6 Discussion

It is surprising that the neural network models did not outperform their logistic regres-

sion counterparts. As discussed previously in Chapter 2, neural networks with hidden lay-

ers can approximate more functions than can logistic regression models. There may be

several reasons why, in this particular problem, the neural networks models did not pro-

vide any advantage over logistic regression models:

(1) The number of hidden nodes may have been insufficient, constraining the number

of functions that could be approximated by the neural networks. Although I tried neural

networks with more hidden nodes (e.g., 30 hidden nodes), and did not get results that were

significantly different from the ones shown here, I might have tried an even higher num-

ber. However, the error in the holdout set started to increase after a certain number of

cycles, indicating that the number of hidden nodes probably did not play a pivotal role in

limiting the performance.

(2) The learning rate was fixed and, perhaps, inadequate. It is possible that the choice of

too large a learning rate made it impossible for the network to reach a state of minimal

error. There are currently no guidelines on how to choose the ideal learning rate for a spe-

cific problem, other than the general knowledge that the learning rate should be dimin-

ished when the network is incapable of learning, which was definitely not the case in this

experiment.

(3) The logistic regression models had an excellent fit. Indeed, the Akaike information

criterion for every logistic regression model tested in this experiment indicated that there

was a good fit to the data. Neural networks should be able to easily approximate the
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logistic function, but it is hard to detect overfitting when the backpropagation algorithm is

used in a multilayered neural network. The criterion used to stop training (stop when the

error in the holdout set was twice that of the error in the best cycle so far) may have been

inapropriate. Furthermore, the need for a holdout set restricted the effective size of the

training set.

It is not surprising to see that sequential methods outperform standard methods. In this

particular application of logistic regression and neural networks for survival analysis, an

important piece of information is missing when prognostic indices are created for each

interval: the model does not have the commonsense knowledge to know that the results of

one interval are dependent on the results of other intervals. This is why nonmonotonic

curves are created. Although the sequential method still allows nonmonotonicity, there are

fewer instances when it in fact occurs.

The fact that predictions coming from intervals where data was more balanced (year

20) were more informative was expected. The fact that the highest increases in the area

under the ROC curve occurred for intervals where the data was less balanced (year 2) was

also not a surprise. It was unclear, however, whether the improvement in resolution would

imply a decrease in calibration. As discussed previously in Chapter 6, it is hard to directly

compare calibrations for these two methods, but there was apparently no decrease in this

case. The range of probabilities produced by sequential models was larger than that of

standard models, especially for the less balanced intervals, suggesting even an improve-

ment in calibration. A larger range of probabilities for the interval corresponding to Year

2, for example, means that the models were able to produce overall smaller values for their

predictions or CHD development in that year, being able to (a) better approximate the

probability of developing CHD (better calibration), and (b) better differentiate between

patients who developed and who did not develop CHD in that interval (better resolution).

In all cases in which there was a significant difference in resolution between the standard

and the sequential methods, this difference favored the latter. Even among the nonsignifi-

cant differences, the majority favored the sequential method, suggesting that, everything
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else being equal, it should be the first choice for researchers dealing with prognostic indi-

ces for time-oriented dependent data.

 Sequential methods are probably facilitating the assignment of probabilities for each

interval by constraining the universe of possibilities for a given probability value in inter-

vals surrounding the informative interval, as illustrated in Figure 7.31.

Figure 7.31. Sequential models and limitation of search space.

Sequential models seem to be facilitating the task of assigning prognoses by
limiting the search space of possible probability values at certain intervals.

In this study, there was never a statistically significant difference for models in which

the informative year preceded the year for which the prognostic index was produced. For

example, it was never the case that predictions for year 2 accounted for a significant differ-

ence in performance for any other interval, predictions for year 6 were only informative to

models predicting CHD in 2 or 4 years, etc. In other data sets, this should not always be

the case. For example, in domains where all patients happen to have the same final out-

come after a certain time (e.g., death), the last intervals may be as unbalanced as the first

ones, since the event is nonreversible and it will have happened to most patients in those

intervals. For predictions in these last intervals, it is probably the case that the sequential

method will also be useful, and predictions for an interval that preceded the ones in ques-

tion may be helpful. In this data set, it was not possible to verify this intuition.
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This study also suggests that no improvement in resolution can be obtained if the reso-

lution of the informative interval is lower than that of the interval in question, regardless

of data balance (e.g., data was unbalanced for year 22, and yet no improvement was

achieved with any sequential models, including the ones in which predictions for the

highly balanced years 16 or 18 were provided). Evidently, there is an upper bound on the

resolution that can be obtained with any interval in a data set. Once this level is achieved,

no more information can be extracted from the data.

Although resolution was almost identical for logistic regression and neural network

models, calibration was not. For some intervals, calibration of logistic regression models

was better than that of neural networks; for others, the reverse was true. This result indi-

cates that both models may be determining the probability of CHD development by differ-

ent means, suggesting that a combination of models (e.g., a mixed model in which results

from one model are entered into another) may be useful. Since neural networks allow a

larger number of functions to be modeled than logistic regression models, predictions

obtained from the latter should constitute additional imputs to the former.
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CHAPTER 8 Models of Survival in

HIV Infection

This chapter describes the experiments that were conducted, using

the ATHOS data set, to compare the performance of Cox proportional

hazards, standard neural networks, and sequential neural networks in

the prediction of death related to AIDS. These models were used to

test the hypotheses that (a) sequential systems of neural networks per-

form better than standard neural networks, and (b) neural networks

produce better estimates of survival time than Cox proportional haz-

ards models.

Section 8.1 gives an overview of the problem and significance,

emphasizing the need for predictive models for prognosis of AIDS

and commenting on the deficiencies of current models. Section 8.2

describes the Cox proportional hazards model and the neural network

model used in this experiment. Section 8.3 compares the perfor-

mances of the Cox model and the standard neural network, showing

that standard neural networks produce more accurate estimates of

survival than those of the Cox model. Section 8.4 compares the per-

formances of standard versus sequential neural networks, showing

that sequential neural networks enhance the resolution of standard

neural network models. Section 8.5 summarizes the results, and

Section 8.6 discusses their implications to AIDS modeling.
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8.1 Prognosis of Death Due to AIDS: Existing Models

HIV infection is the most challenging public health problem that has arisen in the sec-

ond half of the twentieth century. Worldwide, AIDS has killed more than 300,000 people

in the last decade, and HIV has infected 5 to 10 million people [Quinn, 1990]. It is, there-

fore, vitally important to understand the natural history of the disease, to be able to predict

the development of the disease in HIV+ individuals, to formulate national policies to slow

disease progression, and to establish guidelines for adequate medical intervention.  Mod-

eling state transitions from HIV+ status to AIDS and from AIDS to death provides tools

for the health care provider to use in predicting the prognoses of HIV+ patients and in for-

mulating adequate health care policies.

Prognostic evaluations of patients who are HIV+ can help both patients and physicians

to allocate resources. The classification of patients according to different disease-progres-

sion profiles also helps policymakers to determine the nation’s health care needs. Escalat-

ing health care costs related to the prevention and treatment of HIV infection call for

policies that are derived from existing data using reliable quantitative tools [Seage, 1990].

In this project, I built and evaluated a Cox proportional hazards model and a neural net-

work model to predict the survival of patients who had AIDS according to the 1993 CDC

definition of the disease [Centers for Disease Control and Prevention, 1993] in a specific

data set.

Several authors have shown the relevance of demographic, physical, biochemical, and

therapeutic factors in the development of AIDS. The demographic factors include age

[Easterbrook, 1993; Lemp, 1990; Rothemberg, 1987], gender [Rothemberg, 1987], ethnic-

ity [Easterbrook, 1993 and 1991; Moore, 1991; Rothemberg, 1987], and risk group

[Rothemberg, 1987]. Initial presentation of the immunodeficiency is also a marker related

to prognosis, especially if oral thrush [Lin, 1993; Rabeneck, 1993; Selwyin 1992; Saah,

1992], esophageal candidiasis [Hanson, 1993],pneumocystis carinii pneumonia [Chang,

1993; Harris, 1990], Kaposi’s sarcoma [Seage, 1993; Levine, 1991], pyogenic bacterial

infections [Alcabes, 1993], or atypical mycobacterial infections [Wenger, 1988] are
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present. Physical factors affecting state transitions include constitutional symptoms and

physical signs, such as fatigue [Saah, 1992], clinical anemia [Gardner, 1992], weight loss

[Hanson, 1993; Chlebowski, 1989], and diarrhea. Laboratory markers of disease progres-

sion include CD4 [Rubsamen-Waigmannm 1991; Reibnegger, 1991; Fahey, 1990;

Schechter, 1990; Pedersen, 1989], white blood cell and platelet counts [Justice, 1989],

CD4/CD8 ratio, serum p24 antigen [Fahey, 1990; Pedersen, 1989], HIV viremia, hemo-

globin [Justice, 1989; Fuchs, 1989], HDL [Rubsamen-Waigmann, 1991], albumin [Jus-

tice, 1989; Chlebowski, 1989], serum IgA [Schechter, 1990; Pedersen, 1989], serumβ-2

microglobulin levels [Whittle, 1992], erythrocyte sedimentation rate [Hanson, 1993], and

skin tests. Therapeutic factors influencing the prognosis of the HIV infection include pro-

phylaxis for specific opportunistic infections, such aspneumocystis carinii pneumonia and

infection by atypical mycobacteria, and antiretroviral therapy [Graham, 1991]. The least

controversial marker is the CD4 lymphocyte count. A review of existing markers for dis-

ease progression in HIV+ people was done by Libman [1992]. Curtis et al. [1993]

reviewed the studies relating ethnic factors and survival time with AIDS.

I used common markers of disease progression available in the ATHOS data set to

make predictions of death for patients who had AIDS. This study was intended to assess

predictive performance of different models that delineate patterns of survival for different

patients in the ATHOS data set, to show how neural networks can be useful for modeling

survival in this population, and to compare predictive performance in test cases deriving

from the same population. Results in other populations may be very different. As we will

see in Section 8.2, variables indicating interventions, such as antiretroviral therapy, were

entered as independent variables. If these variables reflect the influences of unknown vari-

ables (not included in the study), and in a different population the reasons for determining

an intervention are not exactly the same, or the correlations between the unmeasured vari-

ables and the treatment variables follow a different pattern, then the results obtained in this

sutdy will not be reproduceable. On the other hand, if the interventions are based solely on

the variables already entered in the sudy, collinearity may be a problem. This study was
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not intended to establish causal relations, but rather predict outcomes based on the

observed variables.

The ATHOS data set is described in Section 8.2.1. A full account of the markers uti-

lized in the experiments is given later in this chapter, in Section 8.2.2. Before describing

the experiments in detail and justifying the choice of neural networks as a modeling tool,

however, I will comment on existing models of disease progression in HIV infection and

their advantages and disadvantages.

8.1.1 Nonparametric models for disease progression

Several authors have modeled transitions from seronegative to seropositive HIV, from

asymptomatic HIV+ status to symptomatic HIV+ status, from HIV+ status to AIDS, and

from AIDS to death [Mariotto, 1992; Longini, 1989], as shown in Figure 8.1.

Figure 8.1. Transitions from HIV- to death.

It is possible to model each transition from HIV- state until death. Each transi-
tion requires different assumptions and has a corresponding error associated
with it. Earlier transitions are more difficult to model because the precise date
of infections is usually unknown, and the occurrence of the first symptoms can-
not be easily determined.

The simplest nonparametric models for disease progression use actuarial life tables or

Kaplan–Meier product-limit estimators (see Section 5.2). Applications of both models in

the domain of HIV infections have been published [Aragon, 1993; Moore, 1992; Danne-

mann 1992; Fischl, 1987; Vadhan-Raj, 1986]. In the domain of HIV infection, nonpara-

metric models such as classification trees have been used to model survival [Segal, 1989;

Piette, 1992]. Parametric models in the domain of AIDS have also been used [Mariotto,

1992; Longini, 1991 and 1989].

The Cox proportional hazards model is classified as a semiparametric model, and
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involves the assumptions that there is a simplifying transformation of the initial data and

that the hazards for the different groups are proportional, as discussed in Chapter 5

[Selvin, 1991]. Hanson et al. [1993] found that the proportional assumption required by

the Cox proportional hazards model did not hold for their cohort of HIV+ patients. Under

these circumstances, a nonparametric predictive model, such as a neural network, may be

more appropriate. Few studies have addressed the predictive power of neural networks in

survival analysis, as discussed in Chapter 5. Neural networks have rarely been used to

model survival in the domain of HIV infection, and their comparison to other prognostic

models has been limited. A particular implementation of Cox proportional hazards to

model death for AIDS patients is shown in Section 8.2.3.

8.2 Experimental Design and Results

Cox proportional hazards and neural network models were built to make predictions of

death for patients who had AIDS, and to produce individualized survival curves for these

patients. Standard and sequential systems of neural networks were used. All models were

built using the ATHOS data set, and the comparisons were made on the same subset of

cases.

8.2.1 The ATHOS data set

The ATHOS database is a longitudinal, primary data set of HIV+ and at-risk subjects,

collected from 10 clinics in California (3 private practices in the San Francisco Bay Area,

2 private practices in Los Angeles, and 5 community clinics associated with the Owen

Clinic at University of California–San Diego), under the direction of Dr. James Fries

[1992]. The ATHOS database was built to provide a national HIV data resource that

permits the systematic study of (1) disease costs and financing, (2) drug effectiveness,

toxicity, and cost, (3) delivery systems and practice variations, (4) health status and quality

of life, and (5) disease transitions and modeling. The data collection began in 1989 at
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Stanford University and involved abstraction of existing charts, as well as prospective

collection of clinical and laboratory information. Some authors have used the ATHOS

database to assess the socioeconomic impact of the AIDS epidemic, as well as to

investigate medical issues related to HIV infection [McShane, 1993; Lubeck 1993 and

1992].

Data from 5471 patients were available for mortality studies and over 700 variables

were represented. The variables included diagnoses, signs and symptoms, results of labo-

ratory tests, and medications. Additional detailed data, collected from questionnaires,

were available for 1335 of the patients. Variables included in the questionnaire assess

functional status, quality of life, insurance coverage, medical resources utilization, side

effects, and multiple health outcomes. Data were collected in three-month intervals. The

distribution of cases in the various ethnic groups is shown in Table 8.1.

Researchers of the ATHOS project have developed quality-control protocols that assure

the reliability of ATHOS data. Approximately 50 percent of the patients have AIDS (1993

CDC definition), 25 percent are HIV+ but do not have AIDS, and 25 percent are HIV-, but

at risk for HIV infection. There were 290 deaths and 572 diagnoses of AIDS through mid-

1993. Figure 8.2 shows the distribution of patient cases according to clinical stage and

ethnicity.

Table 8.1. Distribution of cases according to ethnicity

Ethnic group Percentage of cases

White 85%

Hispanic 8%

African-American 4%

Asian or Pacific Islander 1%

Native American 1%

Other origins 1%
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Figure 8.2. Distribution of ATHOS patients according to clinical stage and ethnicity.

Some patients enrolled in the ATHOS study do not have AIDS.

A subset of the ATHOS data set was used for the experiments described in this chapter.

Not all AIDS patients from the ATHOS data set were used because some lacked the date

of AIDS diagnosis. Table 8.2 shows the distribution of cases according to the year of fol-

low-up. Censored cases were not used in the models.

8.2.2 Specification of covariates and outcomes

The major endpoint in this analysis was prediction of mortality due to AIDS-related

conditions. Survival was measured from the date of AIDS diagnosis using the 1993 CDC

definition. Variables were included in the model only when the literature showed that they

have been proven to be informative. Not all published markers for disease progression in

HIV infection were available in the ATHOS data set. Only baseline values, at the time of

AIDS diagnosis, were used. No time-dependent variables were used.

Demographic and socioeconomic explanatory variables included age, gender, race, risk

group, AIDS-defining diagnoses, insurance coverage, hospitalizations, and time elapsed

Table 8.2. Distribution of cases according to year of follow-up.

Year of
follow-up Dead Alive Total Balance

1 64 850 914 0.0752

2 150 606 756 0.1984

3 229 358 587 0.3901

4 257 199 456 0.4364

5 274 86 360 0.2388

6 277 28 305 0.0918

Asymptomatic HIV+

Symptomatic HIV+

AIDS

White Nonwhite0
2300

✞

500
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from the estimated HIV seroconversion. Clinical findings included fatigue, weight loss,

diarrhea, mental status, and Karnofsky scores. Laboratory test results included CD4

counts, CD4/CD8 ratio, hemoglobin, erythrocyte sedimentation rate, erythrocyte and

platelet counts, white blood cell counts, serum p24 antigen, serumβ-2 microglobulin, total

cholesterol, HDL, and albumin levels. Variables indicating antiretroviral and prophylactic

medications for opportunistic infections were also entered, as well as AIDS-related condi-

tions reported after the patient entered the study. Continuous variables were represented as

such, but they were normalized before entry. Dummy coding was used for categorical

variables. Table 8.3 displays all independent variables. The dependent variable was death

due to AIDS.

* Dummy-coded variables

8.2.3 Cox proportional hazards model

A Cox proportional hazards model, simplified in Figure 8.17, was built. The SAS/

STAT procedure PHREG with its default parameters was used to build the model. The

BASELINE statement was used to produce a survival curve for each patient.

Table 8.3. Independent variables.

Demographic Clinical Laboratory Interventions
Age Fatigue CD4 count Antiretroviral therapy*

Gender Weight loss CD4/CD8 Prophylactic therapy for
opportunistic infections

Risk group* Diarrhea hemoglobin Therapeutic medications

AIDS-defining diagnosis* Mental status ESR

Time elapsed from HIV sero-
conversion

Karnofsky score Erythrocyte count

Length of stay in hospital AIDS-related dis-
orders*

Platelet count

WBC count

p24 antigen

Total cholesterol

HDL cholesterol

Albumin

β2-microglobulin
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Figure 8.3. Cox proportional hazards: ATHOS data.

In a Cox proportional hazards model, the hazard at time t, h(t), is related to a
baseline hazard h0(t) by an exponential function. The regression model is
given the survival time for a given patient and calculates the proportional haz-
ards for all time intervals. If a baseline hazard is provided, the hazard (and the
survival) can be easily calculated.

Table 8.4 shows the calibration of the Cox proportional hazards model for predictions

in one to six years. Note that, except for year 6, predictions were poorly calibrated.

Table 8.2 shows the resolution of the model.

The best discrimination was achieved for a follow-up of six years. Figure 8.4 shows

how resolution is related to data balance.

Table 8.4. Calibration of Cox proportional hazards model.

Year of
follow-up χ2 p

1 24.0970 0.0022

2 22.3187 0.0043

3 25.7879 0.0011

4 26.1228 0.0010

5 24.4776 0.0019

6 2.61953 0.9559

Table 8.5. Resolution of Cox proportional hazards model.

Year of
follow-up

Area under the
ROC curve

Standard
error

1 0.7122 0.0342

2 0.7388 0.0239

3 0.7527 0.0213

4 0.7917 0.0207

5 0.8109 0.0250

6 0.8145 0.0323

h(t)  = e(a*age+b*gender+c*Karnofsky+d*CD4+e*p24+f*antiretroviral_therapy+...)

ho(t)
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Figure 8.4. Resolution and data balance in the Cox proportional hazards model.

Resolution is represented by squares and scaled in the left axis. Balance is
represented by triangles and scaled in the right axis.

Figure 8.5 shows an example of 10 survival curves produced by the Cox proportional

hazards model.

Figure 8.5. Survival curves for 10 patients using the Cox proportional hazards model.

Since the models have no relation to each other, survival curves that are not
monotonically decreasing, although impossible in theory, can be produced,
such as for patient number 10.

The range of probabilities produced by the model in the first and last intervals was very

limited (most predictions would correspond to values over 0.75), as shown in Figure 8.6.
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Figure 8.6. Range of probabilities for the Cox proportional hazards model.

Predictions for the first and last intervals tended to be conservative, avoiding
extreme values. Predictions for the intermediate intervals were better distrib-
uted, indicating a better data balance.

The range of probabilities in the intermediate intervals (e.g., three and four years) was

wider, indicating a higher balance of people in those intervals. Evidently, the balance for

the first and last intervals is lower, since in the first intervals almost all patients are alive,

and in the last intervals almost all patients are dead. It is not surprising that the predictions

are more spread in intervals where the balance is high (years 3 and 4) than in intervals

where the balance is low (years 1 and 6).

8.2.4 Standard neural network model

A standard neural network model, similar to the one shown in Figure 8.7, was built.
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Figure 8.7. Standard neural network: ATHOS data.

Variables marked by * are composed of several binary variables. For example,
Risk group is composed of Gay/Bisexual, IVDU, Heterosexual, and Transfu-
sion recipient. AIDS-Dx is composed of PCP pneumonia, Kaposi sarcoma,
and so on.

The neural network had 38 inputs and 20 hidden nodes. It was trained by backpropaga-

tion with adaptive learning rate. Overfitting was monitored in a holdout set of 40 percent

of the cases. The software package NevProp2 [Goodman, 1994] was used.

Table 8.2 shows the calibration of the standard neural network model for each year.

Except for year 3, calibration was good.

Table 8.6. Calibration of standard neural network models.

Year of
follow-up χ2 p

1 7.78301 0.45495

2 8.62868 0.37458

3 25.7896 0.00114

4 9.28662 0.31870

5 10.7534 0.21607

6 12.3251 0.13728

Age
Gender
Risk group*
AIDS-Dx*
Ethnicity*
Fatigue
Weight loss
Diarrhea
Mental Status
Karnofsky
CD4
CD4/CD8
Hemoglobin
ESR
RBC
Platelets
WBC
p24 antigen
Cholesterol
HDL
Albumin
β2 microglobulin
Antiretroviral Rx
Prophylaxis O.I.

Death in tζ
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Table 8.2 shows the resolution of the models.

The best discrimination was achieved for a follow-up of four years. Figure 8.8 shows

how resolution is related to data balance.

Figure 8.8. Resolution and data balance in standard neural network model.

 Resolution is represented by squares and scaled in the left axis. Balance is
represented by triangles and scaled in the right axis.

Figure 8.9 shows an example of 10 survival curves produced by the standard neural

network models.

Table 8.7. Resolution of standard neural network models.

Year of
follow-up

Area under the
ROC curve Standard Error

1 0.7554 0.032997

2 0.7879 0.021300

3 0.7818 0.197550

4 0.8703 0.017448

5 0.8647 0.020774

6 0.8346 0.031737
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Figure 8.9. Survival curves for 10 patients using standard neural networks.

Since the models have no relation to each other, survival curves that are not
monotonically decreasing, although impossible in theory, can be produced,
such as for patient number 4.

The range of probabilities produced by the model is shown in Figure 8.10.

Figure 8.10. Range of probabilities for standard neural network model.

The range of probabilities for this model was wider than that for the Cox pro-
portional hazards model, especially for intermediate intervals (years 3 and 4).

8.2.5 Sequential neural network model

A sequential neural network model, similar to the one shown in Figure 8.11, was built.
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The neural network had 39 inputs (1 extra input for predictions in another year) and 20

hidden nodes. It was trained by backpropagation with adaptive learning rate. Overfitting

was monitored in a holdout set of 40 percent of the cases. The software package NevProp2

[Goodman, 1994] was used.

Figure 8.11. Sequential neural network: ATHOS data.

In the sequential model, predictions for time tω are entered as inputs for the
model that predicts death in tζ.

Age
Gender
Risk group*
AIDS-Dx*
Ethnicity*
Fatigue
Weight loss
Diarrhea
Mental Status
Karnofsky
CD4
CD4/CD8
Hemoglobin
ESR
RBC
Platelets
WBC
p24 antigen
Cholesterol
HDL
Albumin
β2 microglobulin
Antiretroviral Rx
Prophylaxis O.I.

Death in tω

Age
Gender
Risk group*
AIDS-Dx*
Ethnicity*
Fatigue
Weight loss
Diarrhea
Mental Status
Karnofsky
CD4
CD4/CD8
Hemoglobin
ESR
RBC
Platelets
WBC
p24 antigen
Cholesterol
HDL
Albumin
β2 microglobulin
Antiretroviral Rx
Prophylaxis O.I.

Death in tζ
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Table 8.12 shows the calibration of all sequential models.

Table 8.12 shows the resolution of all sequential models.

Figure 8.12 shows an example of 10 survival curves produced by the sequential neural

network models that have predictions of year 4 as inputs.

Table 8.8. Calibration of sequential neural network models.

Year of Prediction

1 2 3 4 5 6

χ2 p χ2 p χ2 p χ2 p χ2 p χ2 p

In
fo

rm
at

iv
e 

Y
ea

r 1 8.8125 0.3583 21.677 0.0055 14.784 0.0634 28.754 0.0003 4.7113 0.7879

2 10.933 0.2054 4.1572 0.8426 11.651 0.1674 25.116 0.0014 4.9896 0.7586

3 10.661 0.2216 6.2774 0.6161 10.559 0.2279 28.646 0.0003 6.0991 0.6361

4 7.6529 0.4680 9.2198 0.3241 25.431 0.0013 8.1632 0.4176 5.6195 0.6897

5 10.364 0.2403 8.0985 0.4239 26.487 0.0008 11.274 0.1866 10.540 0.2291

6 4.9829 0.7594 6.6582 0.5739 3.5031 0.8989 12.798 0.1189 33.434 0.0000

Table 8.9. Resolution of sequential neural network models.

Year of Prediction

1 2 3 4 5 6

Area
under
ROC

std.
error

Area
under
ROC

std.
error

Area
under
ROC

std.
error

Area
under
ROC

std.
error

Area
under
ROC

std.
error

Area
under
ROC

std.
error

In
fo

rm
at

iv
e 

Y
ea

r 1 0.7906 0.0210 0.7914 0.0194 0.8235 0.0191 0.8382 0.0224 0.8610 0.0324

2 0.7888 0.0295 0.7973 0.0192 0.8234 0.0191 0.8367 0.0225 0.8646 0.0314

3 0.8291 0.0223 0.7733 0.0226 0.8231 0.0192 0.8377 0.0224 0.8646 0.0329

4 0.7912 0.0304 0.7936 0.0221 0.8063 0.0198 0.8720 0.0198 0.9065 0.0289

5 0.8092 0.0261 0.7739 0.0227 0.7883 0.0199 0.8177 0.0196 0.8851 0.0301

6 0.8008 0.0279 0.7890 0.0212 0.7986 0.0192 0.8222 0.0192 0.8285 0.0230
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Figure 8.12. Survival curves using neural networks and information on Year 4.

Curves produced by the sequential models tended to have better spread and
fewer nonmonotonic intervals.

The range of probabilities produced by the models that have predictions of year 4 as

inputs is shown in Figure 8.13.

Figure 8.13. Range of probabilities using neural networks and information on Year 4.

The range of probabilities for all intervals were higher than those produced by
standard neural networks.
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8.3 Model Comparison

Cox proportional hazards and standard neural network models, similar to the ones

shown in Figure 8.14, were compared for calibration and resolution.

Figure 8.14. Cox proportional hazards versus standard neural network: ATHOS data.

Training data provided to Cox proportional hazards models are more complete
(i.e., Cox models are given the number of survival days for a given case,
whereas standard neural networks are only given whether the patient was
alive or dead at a given interval.

Cox models were given complete information about survival (e.g., 254 days), whereas

standard neural networks were only given a binary assessment of survival (e.g., dead or

alive at year 2). Comparisons were made for predictions at the end of each interval.

Figure 8.15 displays calibration plots for Cox and standard neural network models.

h(t)
= e (a*age+b*gender+c*Karnofsky+d*CD4+e*p24+f*antiretroviral_therapy+...)

Age
Gender
Risk group*
AIDS-Dx*
Ethnicity*
Fatigue
Weight loss
Diarrhea
Mental Status
Karnofsky
CD4
CD4/CD8
Hemoglobin
ESR
RBC
Platelets
WBC
p24 antigen
Cholesterol
HDL
Albumin
β2 microglobulin
Antiretroviral Rx
Prophylaxis O.I.

Death in tζ

ho(t)
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Figure 8.15. Calibration plots and Hosmer-Lemeshow χ2 (p) for Cox and standard networks.

*Values in bold  indicate good calibration. Note that axis scales differ.

Figure 8.16 shows areas under the ROC curves for Cox and standard network models.

Cox Proportional

Hazards

Neural

Network

Year 1 Year 2 Year 3

Year 4 Year 5 Year 6

χ2 = 24.09  (p = 0.002) 22.31 (0.004) 25.78 (0.001)

χ2 = 26.12 (p = 0.001) 24.47 (0.001)

 7.78 (0.454)*  8.62 (0.374) 25.78 (0.001)

9.28 (0.318) 10.75 (0.216)

2.61 (0.955)

12.32 (0.137)
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Figure 8.16. ROC curves and areas (standard errors) for Cox and standard network models.

The darker triangles indicate no discrimination (area under the ROC
curve=0.5).

Cox Proportional

Hazards

Neural

Network

Year 1 Year 2 Year 3

Year 4 Year 5 Year 6

area = 0.7122  (std.err. = 0.0342) 0.7388 (0.0239) 0.7527 (0.0213)

area = 0.7917 (std.err. = 0.0207) 0.8109 (0.0250)

 0.7554 (0.0329)  0.7879 (0.0213) 0.7818 (0.0197)

 0.8703 (0.0174) 0.8647 (0.0207)

 0.8145 (0.0323)

0.8346 (0.0317)
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The neural network model was better calibrated than the Cox model, except for predic-

tions in the last interval (year 6). For that interval, neural network calibration was lower

than that of the Cox model, but still considered good (p = 0.137).

Table 8.10 shows the differences in resolution between Cox and standard neural net-

work models and their significance. Neural network models always provided larger areas

under the ROC curve than did the Cox models. The differences were statistically signifi-

cant (α = 0.10) for years 2, 4, and 5.

8.4 Method Comparison

Standard and sequential neural network models, simplified in Figure 8.17, were com-

pared for calibration and resolution.

Figure 8.17. Standard versus sequential neural network: ATHOS data.*

Standard and sequential models were compared for calibration and resolution.
*Not all variables are shown in this figure.

Figure 8.18 shows thep obtained by the Hosmer-Lemeshow test on the standard mod-

els and the averagep obtained by the same test on the sequential models. Overall, there

Table 8.10. Differences ( d) in resolution between Cox and standard neural networks.

Year d p

1 -0.04320 0.17694

2 -0.04910 0.06089

3 -0.02915 0.15836

4 -0.07857 0.00186

5 -0.05381 0.04902

6 -0.02011 0.32861

age
gender

risk group
CD4
p24

therapy

death in tω

age
gender

risk group
CD4
p24

therapy

death in tζ

age
gender

risk group
CD4
p24

therapy

death in tω
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was not a major change in calibration. Calibration plots (not shown here) did not show

major departures from the expected numbers, indicating that calibration could be consid-

ered acceptable if the significance level of 0.05 were relaxed.

Figure 8.18. Calibration of standard and sequential neural network models.

The p (squares) and average p (triangles) obtained by the Hosmer-Lemeshow
test are plotted for the standard and sequential models, respectively. The sig-
nificance level of 0.05 is displayed for reference.

Of the 30 sequential neural networks, 11 resulted in significantly larger areas under the

ROC curve (p<0.10) than their equivalent standard models, as shown in Figure 8.19.

There was significant increase in resolution for years 1 and 6. The most informative year

was 4. The most informed year was 1. The least informative year was 1. The least

informed year was 4. Note that there was a significant decrease in resolution when infor-

mation on other year predictions was added to the model that predicted death in year 4.

The same type of decrease occurred for models predicting death at year 5, except when

predictions for year 4 were provided, producing a sequential model with significantly

higher resolution.

p
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Figure 8.19. Resolution of sequential neural networks.

Bars represent the area under the ROC curve for sequential models when dif-
ferent informative years were entered in the model. The dotted line represents
the resolution of the standard model for reference. Darker bars indicate that
the difference in resolution was not significantly different for α = 0.10.

Note, in Figure 8.20, that here the degree to which each year was informative is posi-

tively correlated with the balance of the data.

Year 1
Year 1 Year 2

Year 3 Year 4

Year 6Year 5

informative year informative year

informative year informative year

informative year informative year

ar
ea

 u
nd

er
 R

O
C

ar
ea

 u
nd

er
 R

O
C

ar
ea

 u
nd

er
 R

O
C

ar
ea

 u
nd

er
 R

O
C

ar
ea

 u
nd

er
 R

O
C

ar
ea

 u
nd

er
 R

O
C



Models of Survival in HIV Infection

198 Lucila Ohno-Machado

Figure 8.20. Informative years and balance in sequential neural network models.

Squares represent the number of times an informative year corresponded to a
significant improvement in the area under the ROC curve and are scaled in the
left axis. Triangles represent the data balance and are scaled in the right axis.
The most informative years were the ones in which data was most balanced.

8.5 Summary of Results

I modeled disease progression for patients who are HIV+ in a large set of patients using

Cox proportional hazards, standard, and sequential neural networks. The hypothesis that

neural networks could make more accurate predictions of AIDS survival in terms of cali-

bration and resolution than could Cox proportional hazards was confirmed. The hypothe-

sis that sequential neural networks could make more accurate predictions of AIDS

survival than could standard neural networks was confirmed. The intervals that were more

informative were positively correlated with the balance of the data. It was not advanta-

geous to use predictions for intervals where (a) data were not balanced or (b) the resolu-

tion in the standard model was poor. On average, there was not a significant difference in

calibration between sequential and standard models.

Standard neural networks performed better than Cox proportional hazards in this data

set. Sequential neural networks performed better than standard neural networks.
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8.6 Discussion

The results reported here show performance on the whole subset chosen for this study.

Overfitting in neural networks was controlled by monitoring the error in a holdout set of

cases. Overfitting in the Cox model was limited by the fixed distribution function for the

effects of the explanatory variables. However, controlling for overfitting does not mean

that there is not underestimation of errors, since they are being calculated on a training set.

The adjusted area under the ROC curve was calculated using the bootstrap method [Efron,

1983] for all neural network models. One hundred boots were used for each model, result-

ing in the adjusted areas under the ROC curves shown in Table 8.11 for standard neural

network models. This areas are calculated on test sets that contain cases that were not used

to build the models.

*Using bootstrap (100 boots for each model).

If a comparison is made between theadjusted areas under the ROC curves for the neu-

ral network models (Table 8.11) and theunadjusted areas under the ROC curves for the

Cox proportional hazards models (Table 8.2), the differences still favor the neural network

model. Table 8.12 shows the adjusted areas under the ROC curves for sequential neural

network models.

Table 8.11. Adjusted resolution for standard neural networks.*

Year of
follow-up

Adjusted areas
under the ROC
curves

1 0.6871

2 0.7466

3 0.7415

4 0.8275

5 0.8106

6 0.7703
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*Using bootstrap (100 boots for each model).

The fact that neural networks in general, and sequential neural networks in particular,

provide better estimates of prognosis for this set of patients than does the Cox proportional

model is not surprising. Neural networks are not limited by a parametric restriction on the

relation between covariates and outcome. Complex nonlinear functions can be modeled by

neural networks. This flexibility, however, is counterbalanced by the inability of neural

network models to explain their results. As discussed previously in Chapter 2, neural net-

work models cannot define which variables were the most influential in making a predic-

tion.

Table 8.12. Adjusted error estimates for sequential neural networks.*

Year of Prediction

1 2 3 4 5 6

adjusted
area

adjusted
area

adjusted
area

adjusted
area

adjusted
area

adjusted
area

In
fo

rm
at

iv
e 

Y
ea

r 1 0.7471 0.7498 0.7756 0.7835 0.7909

2 0.7286 0.7570 0.7774 0.7832 0.7954

3 0.7661 0.7311 0.7772 0.7852 0.7972

4 0.7351 0.7564 0.7692 0.8300 0.8784

5 0.7476 0.7305 0.7466 0.7709 0.8492

6 0.7389 0.7475 0.7578 0.7743 0.7725
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CHAPTER 9 Discussion of Results
and Conclusions

In Chapters 7 and 8, different experiments compared standard and

sequential neural networks to statistical prognostic models in two

medical domains, and discussed why certain results were obtained in

those data sets. Overall, sequential models outperformed standard

models in terms of resolution, without a decrease in calibration. Neu-

ral networks outperformed a Cox proportional hazards model in the

ATHOS data set, but did not outperform logistic regression models

using the Framingham data set. This chapter presents differences

between and common aspects of the two experiments, and general-

izes the results. Existing related work in hierarchical and sequential

classification systems is also discussed. Section 9.1 describes the

main differences in the experiments and results using the Framing-

ham and the ATHOS data sets. Section 9.2 describes the similarities

and generalizes the results. Section 9.3 explains the main steps

involved in building an adequate sequential system of neural net-

works. Section 9.4 compares this work to other models for survival

analysis.



Discussion of Results and Conclusions

202 Lucila Ohno-Machado

9.1 Differences Between the Experiments: End-points and Data Collection

Two data sets were used to assess the performance of classical statistical models of sur-

vival analysis and standard and sequential neural networks. The Framingham data were

used to develop logistic regression and neural network models that predict development of

coronary heart disease (CHD), and the ATHOS data was used to develop Cox proportional

hazards and neural network models that predict death due to AIDS. In the Framingham

experiment, standard logistic regression and standard neural network models exhibited the

same performance, as did sequential logistic regression and sequential neural network

models. The performance of the sequential models was always better than that of their

standard counterparts. In the ATHOS experiment, the standard neural network had better

performance than the standard Cox proportional hazards model. The sequential neural net-

work model had better performance than the standard neural network model. Although

part of these results can be generalized, as explained in Section 9.2, some differences

regarding the data collection, its utilization, and end-points of study deserve special atten-

tion.

The Framingham data set is not limited to the collection of data on people who already

have an established disease, as is the ATHOS data set. For this reason, it can have many

more cases than the ATHOS data set. Furthermore, the Framingham data collection is

more extensive, since it started over 30 years ago, and it there is not a great number of

missing data.

In the Framingham experiment, the inputs for the logistic and neural network models

were values for a given patient at a specific exam, rather than at baseline, as in the ATHOS

data set. In ATHOS, there was a specific entry criterion, AIDS diagnosis, so survival from

AIDS to death was assessed. In the former, there was not a specific entry criterion (except

the absence of CHD), and consequently no baseline values. It would be harder to interpret

the results of a Cox proportional hazards model for this problem, since no absolute sur-

vival from a baseline date for a given patient (e.g., 234 days) could be provided, but only

survival relative to the date of a specific exam (e.g., 234 days from the 2/1/84 exam). In
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this work, survival without CHD was assessed using logistic regression models and neural

networks. For both models, standard and sequential versions could be built.

In the ATHOS experiment, a standard Cox proportional hazards model was built and

survival predictions were assessed for years 1 through 6. Because no information can be

added by simply including a variable representing predictions in other time points in a

Cox model (the absolute survival in days is already given for a certain patient and it drives

the construction of the whole survival curve for that patient), a sequential Cox propor-

tional hazards model was not constructed. Both standard and sequential neural networks

were built. Since the comparison between standard neural networks and the Cox propor-

tional hazards models resulted in improved performance for the standard neural network,

and the comparison of the standard and sequential neural network models resulted in

improved performance for the later, a direct comparison between the sequential neural

network and the Cox proportional hazards model was not necessary.

In the Framingham experiment, the predictions of either standard or sequential neural

network models were not significantly different from those of the corresponding logistic

regression models. In the ATHOS data set, both the standard and the sequential neural net-

work models had higher calibration and resolution than those of the Cox proportional haz-

ards model. Evidently, it is not true that neural network models always produce better

estimates than equivalent statistical models. Different models make different assumptions

about the distribution of data, such as hazards proportionality. The assumptions made by

the logistic regression models with respect to the Framingham data were not as restrictive

and probably more adequate than the ones made by the Cox models with respect to the

ATHOS data. For researchers dealing with the same task (i.e., prediction of survival with

AIDS and prediction of CHD development) and the same subsets of data from the ATHOS

and the Framingham data set, the results of these experiments can serve as benchmarks for

comparison of predictive performance for different models.

Although there were differences between the experiments with the Framingham and

the ATHOS data sets, the main results regarding the hypothesis that sequential neural
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networks perform better than standard neural networks were the same. The following

section describes the results that were common to both experiments.

9.2 Common Results Using the Framingham and the ATHOS Data Sets

The portion of this research that compares the performance of standard and sequential

models is the one that can be generalized to other tasks and other data sets. In both experi-

ments, sequential models had better resolution than standard models, without sacrifice of

calibration. The reason for this improvement was simply the addition of a standard

model’s prediction for another time point. For example, predictions obtained from a stan-

dard neural network that modeled death within four years in the ATHOS data set were

added to the model that predicts death within one year. What the standard models lack are

exactly the dependencies that need to exist between predictions for different intervals. The

dependency can exist both ways: If knowing the predictions for year 4 helps to make bet-

ter predictions for year 1, the reverse will be true (but only if both the balance of the data

in the informative year and the resolution achieved by its standard model are higher than

those of the informed year, as indicated by the result of both experiments).

In order to understand why certain intervals yield models with higher predictive ability

than others, let us first explore a simple example. Let us then see why the intervals that

would apparently be the easiest ones to predict may be the ones that pose the greatest chal-

lenges, due to the problem of recognizing infrequent examples. Suppose that I wanted to

estimate the probability of survival for all my friends who are currently in their late twen-

ties and early thirties (excuse me for the morbid example) for several points in time: 1

year, 40 years, and 70 years from today. Which time point could I predict with highest

accuracy? Seventy years from now we will probably all be dead, so that prediction seems

easy: 0 percent for all. One year from now we will probably all be alive, so prediction

seems easy for all: 100 percent for all. Note that this type of prediction is not discriminat-

ing at all, resulting in areas under the ROC curves that are very close to 0.5. Forty years
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from now, however, some of us will be alive and others will be dead. Making an estimate

based on personality types, cigarette smoking, cholesterol levels, exercise levels, etc.,

given our previous experience, can yield models that are more discriminatory, because

data are more balanced at this time point (forty years) than at the extreme time points (one

and forty years). The area under the ROC curve would be larger than 0.5. Making the

same type of estimate for 1 and 70 years is not as easy.

In a sequential model, I can use the predictions for 40 years (since it is the most dis-

criminatory) as a starting point to minimize the problem of recognizing infrequent patterns

in 1 or 70 years. If there is a high probability that a person will be dead in forty years, that

person will probably be dead in 70 years. Conversely, if I want to know the probability of

survival in one year, I can work backward: If a person had a high probability of being alive

in 40 years, he probably has a high probability of being alive in 1 year. Since survival has

to be a monotonically decreasing function, it would seem intuitive that making accurate

predictions for any time point would facilitate predictions for other time points, just as

described above. However, the results in both data sets show that predictions for timeζ,

when used as inputs for sequential models that predict survival in timeω, are only useful

when (a) the predictions for timeζ were made with high accuracy (at least higher accuracy

than those of the standard model for timeω) and (b) the balance of data in timeζ is higher

than that in timeω. These are necessary conditions for a significant improvement to be

detected, as the results have shown.

In the next section, I use these conclusions to develop guidelines on how to build

sequential models. Then I examine, in Section 9.4, how some current models of survival

analysis and time-series forecasting relate to this research.
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9.3 Lessons Learned: How to Build Sequential Neural Networks

As we saw in the experiments described in this dissertation, not all sequential imple-

mentations of neural networks or logistic regression models result in better predictive

models. Certain constructions improve the resolution provided by standard models,

whereas others can bias the predictions. Possible reasons for this behavior have been dis-

cussed in Chapter 9. Overall, the results indicated that the following steps should be taken

when constructing a two-step sequential system:

1. Start by building and assessing calibration and resolution in standard

models for all outcomes. In the case of prognostic systems related to sur-

vival, the outcomes are survival predictions for various intervals of time.

In diagnostic systems, outcomes are the most specific, detailed, diag-

noses.

2. If the standard models are deemed adequate and there is no justification

for spending more time and resources in building sequential models,

stop. Otherwise, proceed to step 3.

3. Build supersets of outcomes with common characteristics, using data

that is well balanced. In the case of survival analysis, supersets are natu-

ral: the set of patients alive at yearn belongs to the superset of patients

alive at yearn-1, and so on. Conversely, the set of patients dead at yearn

belongs to the superset of patients who are dead at yearn+1. Two super-

sets can then be defined using the year with the most balanced data as a

separator. For example, if the balance between dead and alive at year 4 is

the best, build two supersets of patients: one for those alive at year 4 and

another for those dead at the end of that time interval.

4. If the resolution of the model that discriminates data in both supersets is

not greater than that of the standard model that tries to identify a given

outcome, then stop and try other separators. Otherwise, produce a
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prediction for the separator outcome (e.g., year 4) and apply the

predictions to another model (e.g., a model that predicts death in one

year).

The generalization to a three-or-more-step sequential system is an extension of these

guidelines.

9.4 Relations to Other Prognostic Models

9.4.1 Relation to other neural networks models for prognosis

As discussed previously in Chapter 5, the intention of the work described in this disser-

tation was to show that neural networks can be used to build individualized prognostic

curves for a given patient (and not only single point estimate of survival) even when data

are unbalanced. Building a prognostic curve allows a temporal pattern of disease develop-

ment to be delineated and makes possible the recognition of abnormal patterns or varia-

tions within normal patterns.

Many of the existing prognostic neural network models are intended to provide a spe-

cific point estimate of survival (e.g., survival in five years) or a continuous estimate of sur-

vival (e.g., 432 days). By contrast, the work of Ravdin [1992], where time is considered an

input variable and variable values for individuals in different time points are provided as

inputs, is an exception. It allows the construction of survival curves if necessary. The

architecture can be seen in Figure 9.1. It has the advantage of being very simple, since a

single network models predictions for all intervals. It involves considerable preprocessing

of data, with selective duplication of cases that have longer survival. For example, if

patient A lives five years and patient B lives one year, the input data set may contain five

copies of patient A (one for year 1, one for year 2, etc.), but only one copy of patient B.

Ravdin has developed a method to account for this bias in the final prediction. This archi-

tecture uses a single function to map inputs to outputs (patient features to predictions of

survival), and it may be a complex function if the number of hidden nodes is large.
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Figure 9.1. Example of Ravdin’s architecture for survival analysis.

Time is part of the input in this architecture. Values for the same patient at dif-
ferent times constitute the training set.

The sequential system described in this dissertation used multiple functions to map

inputs and outputs. From the results of Chapters 7 and 8, we can see that there are signifi-

cant differences in calibration and resolution for models that predict outcomes in different

time points. For example, the resolution of a model that predicts death in four years for a

patient with AIDS is higher than that of a model that predicts death in six years. If we

establish a threshold on calibration and resolution, we may determine which standard

models provide “reasonable” performance and refrain from making predictions for other

time intervals in a nonsequential way. To make those predictions, we use the predictions

of “good” standard models as inputs to our sequential models.

9.4.2 Relation to ARIMA models for time-series forecasting

The sequential models used in the Framingham experiment described in Chapter 7

resemble those used for time-series forecasting, especially time-series regression [Bower-

man, 1987]. This special type of regression combines Box-Jenkins methodology (also

called Autoregressive Integrated Moving Average—ARIMA models) with regression

analysis. The continuous outputs in time-series regression for timet are dependent on a

number of variables, including the outputs for timet-1. For example, the probability of
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survival without CHD at year 2 is dependent on a patient’s values for age, cholesterol, etc.,

and also on the probability of survival at year 1.

There are important differences between the sequential models used in the experiments

described in Chapter 7 and time-series regression models. First, the outputs in the former

did not need to be equally spaced in time. Second, the sequential models were built in

either ascending or descending order with respect to time. We have seen that the sequen-

tial models that turned out to be the most useful were often constructed in descending

order: using predictions for year 20 as inputs for the model that predicts CHD in year 10

was more useful than the reverse. In time-series regression, a trend is usually modeled

only in ascending order. Third, time-series regression uses information on the whole series

to build a curve that fits the historical data and to extrapolate and make new predictions.

The sequential models presented in this work only used one other time point prediction as

input (although using more time points could have also been done, as will be discussed in

Chapter 10.

Comparisons between neural networks and other classification models are not new in

the literature. Depending on the assumptions required and how they are verified in the

available data sets, it is possible to show that certain models have better performance than

others. In this research, I have shown that neural networks are superior to Cox propor-

tional hazards models for prognosis of AIDS patients using the ATHOS data set, whereas

neural networks were not superior to logistic regression models for prognosis of CHD

development using the Framingham data set. The results of these experiments illustrate

how important it is to start modeling with the simplest and most interpretable models, and

then to assess possible improvements by applying novel techniques. These results cannot

be generalized to other tasks and other data sets, but can serve as benchmarks for other

researchers working with the same data sets.

When comparing the standard and sequential models, however, I showed that in both

the Framingham and the ATHOS data sets, sequential models improved resolution over
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standard ones, and I provided an explanation for this result, indicating that that will always

hold under certain circumstances, regardless of the tasks or the data sets involved. These

results can be used by other researchers who need to model prognostic tasks over time.

Even though most of the results shown in Chapters 7 and 8 indicate good prognostic

performance for the various models, the information provided by the absolute areas under

the ROC and the definition of what constitutes a significant difference from the point of

view of the health care worker and the patient depends on a variety of other factors. Trade-

offs between predictive performance and resource utilization by the several models have

not been addressed here. Healthcare provider and patient utilities were not taken into

account, either.
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CHAPTER 10 Summary and Future
Work

The anticipation of events is an essential part of the practice of

medicine. Important decisions regarding the pursuit of aggressive

diagnostic or therapeutic interventions are based on the balance of

expected costs and benefits. Current data on patient outcomes make it

possible to develop models to predict development of disease using

multiple variables. These models can exhibit better performance if

developed sequentially, in such a way that most information is uti-

lized. I developed and tested a sequential model of neural networks

that allows accurate prediction of disease development over time.

This model can help health care providers and patients anticipate

events with more precision and therefore make more informed deci-

sions.

The preceding chapters have presented and discussed (1) the prob-

lems related to the recognition of rare categories in machine-learning

methods, (2) existing deficiencies in current prognostic models and

the advantages of using neural networks, and (3) the results of exper-

iments that demonstrate that sequential neural networks provide pre-

dictions that are associated with high resolution and calibration.

This chapter provides a summary of this dissertation. Section 10.1

discusses the significance of the problem of recognizing rare catego-

ries in medicine, and the impact of this problem on the performance

of models that predict outcomes. Section 10.2 presents sequential
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neural networks as a solution to this problem. Section 10.3 restates the main hypotheses of

this research and highlights the results and conclusions derived from two different experi-

ments. Section 10.4 discusses possible extensions to this work. Section 10.5 provides an

overview of the contributions of this work to the fields of medicine and information sci-

ences.

10.1 Significance

If the practice of medicine were limited to diagnosis and treatment of common ill-

nesses, there would be little place for sophisticated learning and specialization to take

place: a simple memorization of adequate protocols of assessment and interventions

would suffice. It is the existence of rare conditions and the need for individualized assess-

ment and treatment that make the practice of medicine challenging, and that help to distin-

guish those who simply practice “cookbook” medicine from those who master the “art of

medicine.” To a certain extent, the same is true of machine-learning models. While the

performance of several machine-learning models has been shown to be good on average

(especially in the recognition of common conditions), it is often the ability to recognize

infrequent patterns and to differentiate certain patterns of disease that differentiates good

and bad models. Current machine-learning models of diagnosis in medicine, including

neural networks, do not easily or accurately recognize rare categories or discriminate pat-

terns with sufficient precision [Lowe, 1990]. The same can be said for current machine-

learning models for prognosis. Current solutions are inadequate.

The prognostic assessment of disease progression is an essential part of medicine.

From the caregiver’s perspective, predicting outcomes for a given patient influences thera-

peutic decisions. From the policymaker’s perspective, predicting outcomes for a subset of

a population influences allocation of resources. From the patient’s perspective, predicting

outcomes influences many aspects of life: financial, professional, and emotional. The
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availability of electronic databases and new computer-based technologies has made it eas-

ier for the practice of evidence-based medicine to be extended to the prognostic assess-

ment of disease progression: statistical models for prognosis of patients in special settings

(e.g., ICU), or with special conditions (e.g., trauma) have received increased attention

from all those involved in the health care industry. As these methodologies evolved, meth-

ods that once illustrated principles and were restricted to the academic community as

recently as ten years ago can now be used at the office or the bedside. Making a prognosis

for an individual patient based not only on previous experience, but also on the experience

of others—gathered from the literature and analyzed by quantitative methods that require

the use of a computer—should be the rule, rather than the exception, in the practice of

contemporary medicine.

Neural networks have a relatively short history of utilization in medicine, and their

potential in the field is not yet fully understood. As with any other new method, neural net-

works have suffered the criticism of people who did not understand them (but who were

still eager to point out their deficiencies). Neural networks’ need for large amounts of data,

their slowness to estimate parameters, and their inability to explain the relative importance

of variables are some of the complaints of those who still believe these “black boxes” will

never have a place in the gallery of well-accepted statistical methods, such as linear and

logistic regression, and Cox proportional hazards (in survival analysis applications), to

name just a few.

The requirements for neural networks are approximately the same as those for regres-

sion models, especially when there are many variables involved and potential interactions

among terms need to be taken into account. No neural network researcher has ever advo-

cated the use of neural networks for simple univariate problems, which can be easily

solved with current regression models. But medical problems can seldom be so simplified.

Neural networks are usually applied to problems in which the classification has to be done

with respect to multiple dimensions, and for which no simple causal relationship can be

derived. This multidimensionality not only implies the use of several exemplar cases to
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develop a neural network model, but also determines the difficulties in the interpretation

of its results. Yet, although it is desirable that a model indicates causal relations between

independent and dependent variables, we cannot discard the importance of neural net-

works as predictive tools. The medical community, as opposed to the financial or engi-

neering community, has been reluctant to accept a method that admittedly (1) is not

guaranteed always to provide the best solution and (2) cannot be easily interpreted, even

though it has been shown to provide accurate predictions. If the purpose of the model is

explanatory, then that might be a reason to support this attitude. If the purpose of the

model is to provide accurate forecasts, then there is no reason at all not to use neural net-

works in medical applications.

The prediction of outcomes for an individual patient is dependent on several variables.

Unknown interactions, as well as noise, may influence the results. Although neural net-

works have been shown to be resilient to noise and able to handle interactions, their pre-

dictive accuracy is severely limited when the data are not well balanced (i.e., the priors for

some outcome classes are low). This limitation is not exclusive to neural networks, and

current methods for decreasing its impact on classification accuracy have been applied to

other classification systems as well: equalization of priors (by sampling the training set in

a way that would make the representation of classes more balanced) or application of cost

functions (or utility functions) in parameter estimation. The problems with these two

approaches were discussed in Chapter 4.

The assessment of prognosis for patients over time illustrates the need for dealing with

the problem of unbalanced data: at the extremes of the time intervals that represent the

duration of a disease or the life span of a human being, there are often time points in which

the data represent few people with or without a certain condition (e.g., dead, in the case of

the initial time points in a study of survival). In these cases, the classification of infrequent

exemplars is hard. The sequential application of neural networks to partial subtasks facili-

tates the recognition of these infrequent cases, without an impairment of total classifica-

tion accuracy. I have shown in this dissertation that sequential application of neural
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networks or logistic regression models to the prognosis of patients provides results that

not only are more accurate in terms of discrimination (especially for infrequent cases) but

are also more realistic, since they incorporate the commonsense knowledge that predic-

tions of survival are necessarily correlated over time. Sequential methods make more use

of the available information, and can significantly enhance the predictive ability of current

models of prognostic survival analysis, delineating patterns of disease progression that

could not be envisioned by current methods. This increase in predictive ability will (1)

empower patients, since they will have more precise estimates as to how their disease will

progress, (2) empower health care givers, who will be able to make more informed deci-

sions on the course of therapeutics, and (3) empower health care organizations, which will

be able to anticipate the needs of their covered population and anticipate costs.

Survival analysis can be viewed as a problem in which rare categories of events need to

be discriminated. Standard neural networks can be accurate predictors, provided that the

frequency of events is not low. Sequential neural networks provide a way to achieve high

accuracy even for low-frequency events. I applied sequential neural networks to two med-

ical problems, and compared their performance in terms of calibration and resolution to

that of more conventional statistical models. The Framingham data set was used to study

coronary heart disease development and the ATHOS data set was used to study survival

with AIDS.

The Framingham and ATHOS data sets, which I used to illustrate the problem of recog-

nizing infrequent outcomes and the improvement in accuracy achieved by a sequential

neural network model, each addressed a different, though extremely important, domain in

the medical field.

Coronary Heart Disease (CHD) has a high prevalence in developed countries, and is

responsible for the majority of deaths in adults. The understanding of factors that influ-

ence the development of coronary disease continues to be a challenge for health care

researchers. Currently, logistic regression models are the most frequently used in survival
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analysis in this domain. I have shown that neural networks can provide good models to

predict death from CHD, especially if built sequentially.

The ongoing AIDS epidemic has posed new challenges for disease modeling. Not only

are the relevant variables for predicting death not fully validated, but also the disease, hav-

ing emerged only a little more than a decade ago, has a short history of follow-up. Accu-

rate models of survival analysis for AIDS patients can be useful either on a one-to-one

basis for advising a patient, or on a large-population scale for developing health care poli-

cies. Currently, the most frequently used model of survival analysis in the AIDS domain is

the Cox proportional hazards model. The performance of this model is dependent on

assumptions that have been shown to be not always satisfied with actual data from AIDS

patients. Neural network models, in general, provide a good alternative for modeling

AIDS survival, and sequential neural networks, in particular, can provide accurate predic-

tions of death due to AIDS.

In both the Framingham and the ATHOS data sets, there were intervals of time for

which data were unbalanced. For both data sets, it was important to accurately predict sur-

vival in those intervals in order to delineate an individualized survival prognostic curve

for a given patient.

10.2 Sequential Neural Networks

A sequential system of neural networks was presented as a solution to the problem of

recognizing infrequent patterns in survival data. The sequential system makes use of

accurate predictions for a certain time point to develop a model that makes predictions for

other time points in which the accuracy is not as high. The use of this type of information

not only allows an increase in resolution for certain time points, but also increases the

model’s overall consistency, by producing survival curves that have fewer nonmonotonic

intervals. The sequential system does not require that the predictions are made in

ascending order. As we learned in the experiments described in Chapters 7 and 8, the
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important features for a specific time-point prediction to be used first in a sequential model

are that (1) data are balanced in that time point and (2) the resolution of predictions is

high.

Sequential neural networks are easy to build, and do not require any change in the

learning algorithm. Certain sequential models may, however, require longer training times

than their standard counterparts. In the example of Chapter 7, sequential logistic regres-

sion models outperformed standard logistic regression models.

10.3  Hypotheses and Overall Results

I tested the hypotheses that (1) sequential neural networks produce results that are more

sensitive and more specific to infrequent patterns than nonhierarchical neural networks,

given shorter training times, and (2) in certain circumstances, neural networks produce

better estimates of survival time than (a) logistic regression models or (b) Cox propor-

tional hazards models.

My first hypothesis was tested in both the Framingham and the ATHOS data sets.   In

both experiments, sequential neural networks exhibited better performance in terms of res-

olution than the standard networks, so that hypothesis was accepted. In the Framingham

data set, I further tested whether a sequential logistic regression system performed better

than standard logistic regression, again obtaining significant improvements in resolution,

with no sacrifice of calibration. The results indicated that sequential models were more

accurate than their equivalent standard models, regardless of whether they were based on

neural networks or on logistic regression.

Hypothesis (2a) was tested in the Framingham data set and was rejected. In that data

set, there were no significant differences between the performances of logistic regression

models and neural network models. The relation between covariates and outcomes was

well fitted with the logistic function, and no improvement could be verified when neural

networks were used. However, since neural networks can model a large set of functions,
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and their performance is potentially at least as good as logistic regression, their use can be

justified. The discussion in Chapter 7 also provides some clues as to why the performance

of neural networks was not better in this experiment.

Hypothesis (2b) was tested in the ATHOS data set and was accepted. Neural networks

had better predictive performance than Cox proportional hazards models in this data set.

10.4 Future Work

Only two-step sequential systems were described in this dissertation. The use of more

steps would imply using more computer resources, but would have the potential to

improve still further the resolution of certain models. For applications that try to deter-

mine survival, for example, a three-step model that first predicts the extremes of an inter-

val and then applies those predictions to the model that predicts the middle of the interval

may improve resolution. Suppose that the researcher is only interested in the 15-year sur-

vival for a certain group of patients. If the data are such that predictions for survival in 10

and 20 years using a standard model are more accurate than those for survival in 5 years

using the same kind of model, then the predictions for years 10 and 20 could be used as

inputs to a sequential model that predicts survival in 15 years. The improvement would

result from establishing accurate bounds to the range of probabilities that are produced by

the model that predicts survival in 15 years, as shown in Figure 10.1.
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Figure 10.1. Bounding the range of probabilities in a sequential model.

Predictions of a sequential model in the middle of an interval can be more
accurate if they are bounded by predictions for the extremes of the interval,
usually produced by standard models. In this example, predictions for year 15
in a sequential model would fall in the interval 0.33 to 0.68.

Other extensions to this work involve the comparison of neural networks and other

nonparametric models, such as regression trees, and validation in other data sets and other

domains.

10.5  Contributions

I expect that the results of this work will encourage more widespread use of neural net-

works in certain types of medical applications, and that this use of neural networks will

sometimes produce models that are more accurate than currently used statistical models.

The main contribution of this work is conceptual: I did not create backpropagation, I sim-

ply demonstrated how this popular algorithm can provide better results in certain medical

problems if applied in a certain manner.
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10.5.1 Contribution to medicine

Currently used backpropagation-based neural network models to classify medical pat-

terns, or to forecast medical events, generally have difficulty learning infrequent patterns.

By showing that there is a significant improvement in resolution with sequential neural

networks, without a decrease in calibration, I broadened the spectrum of medical applica-

tions that can benefit from neural network models. In particular, I demonstrated how

sequential neural networks can be used in survival analysis for predictive purposes, pro-

viding accurate results without a need for assumptions usually required by conventional

statistical methods. I have also shown that other models of prediction, such as logistic

regression models, can provide accurate results if utilized in a sequential architecture.

The researcher confronted with the problem of forecasting events or establishing pro-

jections of survival curves for individuals, including for intervals of time in which data are

unbalanced, should benefit from the sequential utilization of prediction models described

in this dissertation, especially neural network models. As I showed, the predictive perfor-

mance of neural network models is at least as good as that of other models, and sequential

models have the ability to increase discriminatory performance for intervals in which pre-

diction accuracy is poor. Clearly, simple models of prediction should always be tried first.

These models are generally more economical in terms of computer resources, and gener-

ally provide results that are easy to interpret. The assumptions required by some of these

models are, however, often unrealistic. Neural networks can be added to the gallery of

tools available for the epidemiologist who wants to make predictions for a population, for

the physician who is confronted with an individual case, and for the patient who wants to

know more about his or her condition.

10.5.2 Contribution to information sciences

The main contributions to information sciences are (1) to demonstrate that backpropa-

gation-based neural networks can be used even when the frequency of certain events is

low, by using a hierarchical system of networks (or its generalization, a sequential system

of neural networks) and (2) to describe the learning enhancement of certain patterns in
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backpropagation-based neural networks when additional structural information is added to

the model (e.g., intermediate grouping abstractions). A method that utilizes sound princi-

ples for qualitatively modeling classification tasks into useful hierarchies, and that estab-

lishes some requirements for building sequential neural networks, is also a significant

contribution of this work to information sciences.

There is still a long way to go to reach full recognition of neural networks as acceptable

models of disease progression. The initial prejudice against connectionist models is slowly

being eroded by increasing interest in these models, bolstered by their undeniable success

in other disciplines and by rigorous evaluation. It is my expectation, therefore, that the

contributions of sequential neural networks to survival prediction will be recognized first

by the nonmedical community. In other domains, where the researchers admit their lack of

ability to establish causal relations, and where the prediction of events is sometimes more

important than their explanation (e.g., prediction of earthquakes, prediction of stock mar-

ket behavior), sequential neural networks may be easily adopted. Acceptance by the med-

ical community will depend, among other things, on their success in other domains.
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