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Abstract. This paper presents a new computational model for real-
time systems, called the clocked transition system model. The model

is a development of our previous timed transition model, where some

of the changes are inspired by the model of timed automata. The new
model leads to a simpler style of temporal speci�cation and veri�cation,

requiring no extension of the temporal language. For verifying safety

properties, we present a run-preserving reduction from the new real-time
model to the untimed model of fair transition systems. This reduction

allows the (re)use of safety veri�cation methods and tools, developed

for untimed reactive systems, for proving safety properties of real-time
systems.

1 Introduction

A formal framework for specifying and verifying temporal properties of reactive

systems often contains the following components:

� A computational model de�ning the set of behaviors (computations) that are

to be associated with systems in the considered model.

� A requirement speci�cation language for specifying properties of systems

within the model. The languages we have considered in our previous work are

all variants of temporal logic extended to deal with various aspects speci�c to

the considered model, such as real-time and continuously changing variables.

� A system description language for describing systems within the model. We

frequently use both a textual programming language and appropriate exten-

sions of the graphical language of statecharts [Har87] to present systems.

� A set of proof rules by which valid properties of systems can be veri�ed,

showing that the systems satisfy their speci�cations.
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� A set of algorithmic methods enabling a fully automatic veri�cation of decid-

able subclasses of the veri�cation problem such as the veri�cation of �nite-

state systems (model checking).

In [MP93a], we considered a hierarchy of three models, each extending its pre-

decessor, as follows:

� A reactive systems model that captures the qualitative (non-quantitative)

temporal precedence aspect of time. This model can only identify that one

event precedes another but not by how much.

� A real-time systems model that captures the metric aspect of time in a

reactive system. This model can measure the time elapsing between two

events.

� A hybrid systems model that allows the inclusion of continuous components

in a reactive real-time system. Such continuous components may cause con-

tinuous change in the values of some state variables according to some phys-

ical or control law.

The computational model proposed for reactive systems is that of a fair transi-

tion system (fts) [MP91].

The approach to real time presented in [MP93a] and [HMP94] is based on

the computational model of timed transition systems (tts) in which time itself

is not explicitly represented but is re
ected in a time stamp a�xed to each

state in a computation of a tts. As a result of time not being available as a

value of some variable, the requirement speci�cation language must be based

on a necessary extension of temporal logic. In [MP93a], we present two such

extensions: metric temporal logic (mtl) which introduces bounded versions of

the temporal operators, subscripted by an interval speci�cation, and temporal

logic with age (TL� ) which introduces the operator � , measuring the length of

recent time in which a certain formula held continuously.

Consider, for example, the following important timed properties:

� Bounded response: Every p should be followed by an occurrence of a q, not

later than d time units.

� Minimal separation: No q can occur earlier than d time units after an oc-

currence of p.

In mtl, these two properties can be speci�ed as follows:

� Bounded response: p =� 1
�d q:

�Minimal separation: p =� 0 <d :q:

This approach to the speci�cation of timing properties has been advocated

in [KVdR83], [KdR85], and [Koy90], although an early proposal in [BH81] can

be viewed as a precursor to this speci�cation style.

Using TL� , the same properties can be speci�ed by:

� Bounded response: 0
h
�
�
(:q)S (p ^ :q)

�
� d

i
:

�Minimal separation: q =�
�
` (:p) _ � (:p) � d

�
:
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When constructing detailed proofs of such timed properties, we found it neces-

sary to form many auxiliary invariants involving the age function � . Very soon,

we realized that each age expression of the form � (p) represents a timer that

started measuring time as soon as p becomes true and is reset (or shut o�)

whenever p becomes false. This led to the suggestion that age expressions can

be eliminated in favor of the introduction of explicit timers.

Meanwhile, the model of timed automata [AD94] has gained dominance in the

arena of real-time algorithmic veri�cation. This model uses timers which can only

be reset by system transitions but increase uniformly whenever time progresses.

However, aiming at algorithmic veri�cation, this model can only capture �nite-

state systems.

In this paper we present a new computational model for real-time systems:

clocked transition system (cts). This model represents time by a set of clocks

(timers) which increase uniformly whenever time progresses, but can be set to

arbitrary values by system (program) transitions.

It is easy and natural to stipulate that one of the clocks T is never reset. In

this case, T represents the master clock measuring real time from the beginning

of the computation. This immediately yields the possibility of specifying timing

properties of systems by unextended temporal logic, which may refer to any of

the system variables, including the master clock T . Thus, the two yardstick prop-

erties considered above can be speci�ed by the following (unextended) temporal

formulas:

� Bounded response: p ^ (T = t0) =� 1 (q ^ T � t0 + d):

�Minimal separation: p ^ (T = t0) =� 0 (T < t0 + d ! :q):

A �rst advantage of the new computational model over its predecessors is that

it leads to a more natural style of veri�cation proofs, stating invariants in terms

of clocks, which are just another kind of system variables, instead of formulating

invariants in terms of � -expressions. A second advantage is that we can use

temporal logic without any extensions as the speci�cation language, and can

reuse many of the methods and tools developed for verifying reactive systems,

under the fts computational model, for verifying real-time systems under the

cts model. Another advantage of the cts model is that it can be viewed as a

natural �rst-order extension of the timed automata model [AD94].

In order to reuse fts veri�cation methods for verifying cts properties, we

will show that for every cts � there exists a corresponding fts P� such that

the runs of � and the runs of P� coincide. It follows that any safety property

is valid over the cts � i� it is valid over the fts P�. This reduction from

real-time systems to simpler transition systems enables us to use the deductive

methodology developed for proving safety properties of reactive systems, as well

as support systems for this methodology such as [MAB+94], for establishing

safety properties of timed systems.

It is interesting to note that the move from tts to cts brings us closer to the

approach proposed in [AL94], which also recommends handling real time with a

minimal extension of the reactive-systems formalism.
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The restriction to safety properties is not as constraining as one may think.

Many properties whose untimed version falls into the liveness class become safety

properties when we consider their timed version. For example, termination of a

program is a liveness property. However, the property of termination within

15 time units is a safety property. This indicates that, when we move to real-

time systems, the set of safety properties we may want to prove constitutes an

even higher portion of the total set of properties of interest than in the case of

untimed reactive-systems. We refer the reader to [Hen92] and [Pnu92] for further

discussions of this point.

We refer the reader to [AH89], [Ost90], [AL94], and the survey in [AH92], for

additional logics, models, and approaches to the veri�cation of real-time systems.

In the process algebra school, some of the representative approaches to real time

are [NSY92], [MT90], and many others are listed in [Sif91].

The paper is organized as follows. In Section 2, we present some background

material, consisting of the computational models of fair transition systems (fts)

and timed transition systems (tts). We also introduce the simple programming

language spl, in which sample programs are presented, and its transition seman-

tics in the two models. In Section 3 we present the new real-time computational

model of clocked transition systems (cts), compare it to the tts model and

illustrate proofs of some timing properties. In Section 4, we review the model

of hybrid systems and show how it can be viewed as a natural extension of the

cts model. A similar reduction from the hybrid-systems model to an fts is

presented and shown to preserve all system runs. This reduction can be used to

verify safety properties of hybrid systems, reusing methods and tools developed

for reactive systems. The methodology is illustrated on an example.

2 Background: Previous Models

In this section, we present some background material, consisting of the formal

framework for reactive systems, as well as the previous real-time model of timed

transition systems (tts) as presented in [MP93a].

2.1 Formal Framework for Reactive Systems

The computationalmodel for reactive systems is given by a fair transition system

(fts) � =


V;�; T ;J ; C

�
consisting of:

� V = fu1; :::; ung : A �nite set of system variables. We assume each variable

to be associated with a domain over which it ranges.

We de�ne a state s to be a type-consistent interpretation of V , assigning to

each variable u 2 V a value s[u] over its domain. We denote by � the set of

all states.

� � : The initial condition. A satis�able assertion characterizing the initial

states.
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� T : A �nite set of transitions. Each transition � 2 T is a function

� : � 7! 2�;

mapping each state s 2 � into a (possibly empty) set of � -successor states

� (s) � �.

The function associated with a transition � is represented by an assertion

�� (V; V
0), called the transition relation, which relates a state s 2 � to its

� -successor s0 2 � (s) by referring to both unprimed and primed versions of

the system variables. An unprimed version of a system variable refers to its

value in s, while a primed version of the same variable refers to its value in

s0. For example, the assertion x0 = x + 1 states that the value of x in s0 is

greater by 1 than its value in s.

� J � T : A set of just transitions (also called weakly fair transitions). Infor-

mally, the requirement of justice for � 2 J disallows a computation in which

� is continually enabled beyond a certain point but taken only �nitely many

times.

� C � T : A set of compassionate transitions (also called strongly fair tran-

sitions). Informally, the requirement of compassion for � 2 C disallows a

computation in which � is enabled in�nitely many times but taken only

�nitely many times.

The transition relation �� (V; V
0) identi�es state s0 as a � -successor of state s if

hs; s0i j= �� (V; V
0);

where hs; s0i is the joint interpretation which interprets x 2 V as s[x], and

interprets x0 as s0[x].

The enableness of a transition � can be expressed by the formula

En(� ) : 9V 0 �� (V; V
0);

which is true in s i� s has some � -successor.

We require that every state s 2 � has at least one transition enabled on it.

This is often ensured by including in T the idling transition �
I
(also called the

stuttering transition), whose transition relation is �
I
: (V = V 0).

Runs and Computations

Let � =


V;�; T ;J ; C

�
be a fair transition system. A run of � is an in�nite

sequence of states � : s0; s1; s2; :::; satisfying:

� Initiation: s0 is initial, i.e., s0 j= �.

� Consecution: For each j = 0; 1; :::, the state sj+1 is a � -successor of the state

sj , i.e., sj+1 2 � (sj), for some � 2 T . In this case, we say that the transition

� is taken at position j in �.

A computation of � is a run satisfying:
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� Justice: For each � 2 J , it is not the case that � is continually enabled

beyond some point in � but taken at only �nitely many positions in �.

� Compassion: For each � 2 C, it is not the case that � is enabled on in�nitely

many states of � but taken at only �nitely many positions in �.

Example 1. For the description of reactive systems, we use the simple pro-

gramming language spl introduced in [MP91].

Figure 1 presents a simple program consisting of two processes communicat-

ing by the shared variable x.

x; y: integer where x = y = 0"
`0 : while x = 0 do

`1 : y := y + 1
`2 :

# �
m0 : x := 1

m1 :

�

� P1 � � P2 �

Fig. 1. Program any-y

The fair transition system �ANY-Y associated with program any-y, is de�ned

as follows:

� System Variables: V = f�; x; yg. Variable � is a control variable ranging

over subsets of the locations of program any-y: f`0; `1; `2;m0;m1g. The
value of � in a state denotes all the locations of the program in which control

currently resides.

� Initial Condition:

� : � = f`0;m0g ^ x = y = 0

� Transitions: T : f�
I
; `0; `1;m0g with transition relations:

��
I

: �0 = � ^ x0 = x ^ y0 = y

�`0 : `0 2 � ^

0@x = 0 ^ �0 = � � f`0g [ f`1g
_

x 6= 0 ^ �0 = � � f`0g [ f`2g

1A ^ x0 = x ^ y0 = y

�`1 : `1 2 � ^ �0 = � � f`1g [ f`0g ^ x0 = x ^ y0 = y + 1

�m0
: m0 2 � ^ �0 = � � fm0g [ fm1g ^ x0 = 1 ^ y0 = y

� Set of Just Transitions: J : T � f�
I
g = f`0; `1;m0g

� Set of Compassionate transitions: C : �
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Following are some runs and computations of �ANY-Y.

�0 :

8><>:
h� : f`0; m0g; x : 0; y : 0i

m0�! h� : f`0; m1g; x : 1; y : 0i
`0�!

h� : f`2; m1g; x : 1; y : 0i
�
I�! h� : f`2; m1g; x : 1; y : 0i

�
I�!

: : :

�1 :

8>>><>>>:
h� : f`0; m0g; x : 0; y : 0i

`0�! h� : f`1; m0g; x : 0; y : 0i
`1�!

h� : f`0; m0g; x : 0; y : 1i
m0�! h� : f`0; m1g; x : 1; y : 1i

`0�!

h� : f`2; m1g; x : 1; y : 1i
�
I�! h� : f`2; m1g; x : 1; y : 1i

�
I�!

: : :

�2 :

8><>:
h� : f`0; m0g; x : 0; y : 0i

`0�! h� : f`1; m0g; x : 0; y : 0i
`1�!

h� : f`0; m0g; x : 0; y : 1i
`0�! h� : f`1; m0g; x : 0; y : 1i

`1�!

h� : f`0; m0g; x : 0; y : 2i
`0�! : : :

Both �0 and �1 are computations of program any-y. The in�nite sequence �2 in

which m0 is never taken, is a run but not a computation. This is because tran-

sition m0 is continually enabled but not taken in �2, violating the requirement

of justice towards m0.

Speci�cation Language

To specify properties of reactive systems, we use the language of temporal logic,

as presented in [MP91]. We use only the following:

� State formulas (assertions) - any �rst-order formula. For locations `i, `j , and

`k, we denote:

at�`i : `i 2 �

at�`j;k : at�`j _ at�`k

� 0 p - Always p, where p is an assertion.

� 1 p - Eventually p, where p is an assertion.

For a state s and assertion p, we write s j= p to indicate that p holds (is true)

over s. Let � : s0; s1 : : : be an in�nite sequence of states. We say that � j= 0 p

i� for all i � 0, si j= p. We say that � j= 1 p i� for some i � 0, si j= p.

A temporal formula ' is said to be valid over program P (or P -valid) if

� j= ' for every computation � of P . We write P j= ' to denote this fact.

Speci�cation and Veri�cation of Invariance Properties

A temporal formula ' that is valid over a program P speci�es a property of P ,

i.e., states a condition that is satis�ed by all computations of P . As is explained

in [MP91], the properties expressible by temporal logic can be arranged in a

hierarchy that identi�es di�erent classes of properties according to the form of

formulas expressing them.
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Here we will consider only invariance properties, namely, properties that can

be expressed by the formula 0 p, for some assertion p.

We now present proof rules for establishing the P -validity of an invariance

formula. We focus our attention on a particular program P , speci�ed by the

components hV;�; T ;J ; Ci. For a transition � and state formulas p and q, we

de�ne the veri�cation condition of � , relative to p and q, denoted fpg�fqg, to be
the implication:

(�� ^ p)! q0;

where �� is the transition relation corresponding to � , and q
0, the primed version

of the assertion q, is obtained from q by replacing each variable occurring in q

by its primed version. Since �� holds for two states s and s
0 i� s0 is a � -successor

of s, and q0 states that q holds on s0, it is not di�cult to see that

if the veri�cation condition fpg�fqg is valid, then every � -successor of a

p-state is a q-state.

For a set of transitions T � T , we denote by fpgTfqg the conjunction of veri�-

cation conditions, fpg�fqg for each � 2 T .

Basic Invariance Rule

The basic tool for establishing invariance properties is the following rule b-inv.

Rule b-inv

B1. � ! p

B2. fpg � fpg for every � 2 T

P j= 0 p

Premise B1 of the rule ensures that all initial states satisfy the assertion p.

Premise B2 ensures that the successor of each p-state in every run (and hence

in every computation) is also a p-state. By induction on the states in a run, it

follows that p holds on all states of all runs. Consequently, if premises B1 and

B2 are valid then p is an invariant of the considered program. In the application

of rule b-inv, it is not necessary to check premise B2 for the idling transition

�
I
, since the idling transition trivially preserves every assertion.

For example, we may use rule b-inv to establish the invariance of the asser-

tion

p: (x = 0 ^ at�`0;1) _ at�m1;

over program any-y (Fig. 1). This assertion claims that, at every state in the

execution of program any-y, either control of process P1 is at `0 or `1 and x = 0,

or control of P2 is at m1. In particular, it implies that if P1 is at `2 then P2 has

already arrived in m1.
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Applying rule b-inv to this choice of the assertion p, premise B1 assumes the

form

� = f`0;m0g ^ x = 0 ^ � � �| {z }
�

! (x = 0 ^ at�`0;1) _ � � �| {z }
p

which is obviously valid.

Premise B2 has to be checked for each � 2 f�
I
; `0; `1;m0g. For example,

premise B2 for `0 assumes the form0BBBBBBBB@

� � � ^

0@x = 0 ^ �0 = � � f`0g [ f`1g
_

x 6= 0 ^ �0 = � � f`0g [ f`2g

1A ^ x0 = x ^ � � �

| {z }
�`0

^
�
x = 0 ^ (`0 2 � _ `1 2 �)

�
_ m1 2 �| {z }

p

1CCCCCCCCA
!

�
x0 = 0 ^ (`0 2 �0 _ `1 2 �0)

�
_ m1 2 �0| {z }

p0

:

It is not di�cult to see that this implication is valid.

The Need for a Stronger Assertion

In some cases, rule b-inv is not strong enough to prove the invariance of an

assertion. Consider, for example, the assertion

': at�`0;1 _ at�m1:

It is obvious that assertion ' which is implied by the previously considered

assertion p: (x = 0 ^ at�`0;1) _ at�m1 is also an invariant of program any-y.

Unfortunately, this cannot be proven by rule b-inv. If we try to apply rule b-inv

to assertion ', we encounter the following instance of premise B2:

� � � ^
�
� � � _ (x 6= 0 ^ �0 = � � f`0g [ f`2g)

�
^ � � �| {z }

�`0

^ (`0 2 � _ `1 2 �) _ m1 2 �| {z }
'

! (`0 2 �0 _ `1 2 �0) _ m1 2 �0| {z }
'0

which is falsi�ed by � = f`0;m0g; x = 1.

To verify the invariance of an assertion such as ', we use the property that

the 0 operator is monotonic. This can be stated by the following rule:

Rule 0 -mon

M1. p ! '

M2. P j= 0 p

P j= 0 '

9



According to this rule, if assertion p is an invariant of program P , and p implies

the assertion ', then ' is also an invariant of P . Thus, to prove the invariance

of assertion ', we strengthen it into the assertion p and prove the invariance of

p by rule b-inv, as done above.

Invariance Veri�cation Diagram

An e�ective way of presenting the veri�cation of an invariance property by a

combination of rules b-inv and 0 -mon is provided by the graphical formalismof

veri�cation diagrams [MP94]. An (invariance) veri�cation diagram is a directed

labeled graph, constructed as follows:

� Nodes in the graph are labeled by assertions '1; : : : ; 'm. We will often refer

to a node by the assertion labeling it.

� Edges in the graph represent transitions between assertions. Each edge de-

parts from one node, connects to another, and is labeled by the name of a

transition in the program. We refer to an edge labeled by � as a � -edge.

� Some of the nodes are designated as initial nodes. They are annotated by

an entry arrow .

For example, in Fig. 2 we present a veri�cation diagram for program any-y.

m0'1 : x = 0 ^ at
�

`0;1 '2 : at
�

m1

Fig. 2. Veri�cation Diagram D1

Veri�cation Conditions for Diagrams

With each veri�cation diagram, we associate the following veri�cation condi-

tions:

� Let '1 be the (single) initial node in the diagram. The veri�cation condition

corresponding to premise B1 of rule b-inv is given by

� ! '1:

� Let ' be a node in the graph, � be a non-idling transition in the program, and

let '1; : : : ; 'k be the nodes reached by � -edges departing from '. The case

that no � -edges depart from ', i.e., k = 0, is also included. The veri�cation

condition associated with ' and � is given by

f'g � f' _ '1 _ : : :_ 'kg
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For example, the veri�cation conditions associated with diagram D1 (Fig. 2),

are:

B1: �! x = 0 ^ at�`0;1

B2 for '1 and `0 : fx = 0 ^ at�`0;1g `0 fx = 0 ^ at�`0;1g
B2 for '1 and `1 : fx = 0 ^ at�`0;1g `1 fx = 0 ^ at�`0;1g
B2 for '1 and m0 : fx = 0 ^ at�`0;1gm0 f(x = 0 ^ at�`0;1) _ at�m1g

B2 for '2 and `0 : fat�m1g `0 fat�m1g
B2 for '2 and `1 : fat�m1g `1 fat�m1g
B2 for '2 and m0 : fat�m1gm0 fat�m1g

We say that a veri�cation diagram is valid if all the veri�cation conditions

associated with the diagram are valid.

LetD
P
be a veri�cation diagramassociated with a programP . Let '1; : : : ; 'm

be the assertions labeling the nodes of D
P
.

Claim 1 If the veri�cation diagram DP is valid, then

P j= 0
m_
i=1

'i

If, in addition, 'i ! p for every i = 1; : : : ;m, then

P j= 0 p:

For example, all the veri�cation conditions associated with diagram D1 are

valid and the veri�cation diagram D1 establishes

any-y j= (at�`0;1 _ at�m1) (1)

Encapsulation Conventions

There are several encapsulation conventions that improve the presentation and

readability of veri�cation diagrams.We extend the notion of a directed graph into

a structured directed graph by allowing compound nodes that may encapsulate

other nodes, and edges that may depart or arrive at compound nodes. A node

that does not encapsulate other nodes is called a basic node.

We use the following conventions:

� Labels of compound nodes: A diagram containing a compound node n, la-

beled by an assertion ' and encapsulating nodes n1; : : : ; nk with assertions
'1; : : : ; 'k, is equivalent to a diagram in which n is unlabeled and nodes

n1; : : : ; nk are labeled by '1 ^ ', : : : , and 'k ^ '.

� Edges entering and exiting compound nodes: A diagram containing an edge

e connecting node A to a compound node n encapsulating nodes n1; : : : ; nk
is equivalent to a diagram in which there is an edge connecting A to each

ni, i = 1; : : : ; k, with the same label as e. Similarly, an edge e connecting

the compound node n to node B is the same as having a separate edge

connecting each ni, i = 1; : : : ; k, to B with the same label as e.
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With these conventions we can draw a more detailed veri�cation diagram estab-

lishing (1), as shown in Fig. 3.

x = 0

m0`0`1

at
�

`0

at
�

m1

at
�

`1

Fig. 3. A more detailed diagram, using encapsulation conventions

In the diagram of Fig. 3, the single assertion x = 0^at�`0;1, has been broken

into the two sub-cases: x = 0 ^ at�`0 and x = 0 ^ at�`1, explicitly displaying

the fact that transitions `0 and `1 cause the system to move between these two

sub-cases.

2.2 Timed Transition Systems

Next, we review the model of timed transition systems (tts), which was the

computational model proposed in [MP93a] for modeling real-time systems.

As the time domain we take the nonnegative reals R+. In some cases, we also

need its extension R1 = R
+ [ f1g.

A timed transition system (tts) S =


V;�; T ; l; u

�
consists of the following

components:

� V = fu1; :::; ung : A �nite set of system variables. A state is any type-

consistent interpretation of V . The set of all states is denoted by �.

� � : The initial condition. A satis�able assertion characterizing the initial

states.

� T : A �nite set of transitions. Each transition � 2 T is a function

� : � 7! 2�;

de�ned by a transition relation �� (V; V
0).

� A minimal delay l� 2 R
+ (also called lower bound) for every transition

� 2 T .
� A maximal delay u� 2 R

1 (also called upper bound) for every transition

� 2 T . It is required that u� � l� for all � 2 T .
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Note that the �rst three components of a tts are idntical to the �rst three

components of an fts, but that in the tts we eliminate the fairness-related

components of justice and compassion and replace them by the speci�cation

of lower and upper bounds. The role of the justice requirements in an fts is

to guarantee that transitions that have been enabled long enough are taken

su�ciently frequently. The time-bounds components impose a quanti�ed version

of the justice requirements by demanding that transition � cannot be continually

enabled for more than u� without being taken. Thus, in the presence of the

more stringent time-bounds requirements, justice is super
uous. It is possible to

retain the requirement of compassion but, in the simpler model presented here,

we decided to omit this requirement too.

We introduce a special variable T , sometimes called themaster clock variable.

At any point in an execution of a system, T has a value over R+ representing

the current time. The set of variables VT = V [fTg is called the set of situation

variables. A type-consistent interpretation of VT is called a situation, and the

set of all situations is denoted by �T . Often, we represent a situation as a pair

hs; ti where s is a state and t 2 R+ is the interpretation of the clock T .

To simplify the formalism, we assume that all transitions are self disabling .

This means that no transition � 2 T can be applied twice in succession to any

state, implying that � is disabled on any � -successor of any state, i.e., � (� (s)) = �

for any s. Consequently, we exclude the idling transition �
I
from timed transition

systems.

Runs and Computations

A run of a timed transition system S :


V;�; T ; l; u

�
is an in�nite sequence of

situations

� : hs0; t0i; hs1; t1i; hs2; t2i; : : : ;

satisfying:

� Initiation: s0 j= � and t0 = 0.

� Consecution: For each j = 0; 1; :::,

{ Either tj = tj+1 and sj+1 2 � (sj) for some transition � 2 T , or
{ sj = sj+1 and tj < tj+1. We refer to this step as a tick step, implying

that time has progressed.

� Lower bound: For every transition � 2 T and position j � 0, if � is taken

at j, there exists a position i, i � j, such that ti + l� � tj and � is enabled

on si; si+1; : : : ; sj . This implies that � must be continuously enabled for at

least l� time units before it can be taken.

� Upper bound: For every transition � 2 T and position i � 0, if � is enabled

at position i, there exists a position j, i � j, such that ti + u� � tj and � is

disabled on sj . In other words, � cannot be continuously enabled for more

than u� time units without being taken.

A computation of S is a run satisfying:

13



� Time Divergence: As i increases, ti grows beyond any bound.

Unlike the untimed case, it is not necessary to require that every state has at

least one transition enabled on it. This is because, even if all transitions are

disabled, we can always take tick steps, which ensures that all computations are

in�nite. Consequently, we no longer need the idling transition and its removal

causes no harm.

The upper bound requirement claims an equivalence between the formal con-

dition that � is disabled on sj, for some j � i, ti + u� � tj , and the intended

requirement that � cannot be continuously enabled for more than u� time units

without being taken. This equivalence holds only due to the assumption that

transitions are self disabling. Without this assumption, we would have to re-

quire that there exists some j � i, ti+ u� � tj, such that either � is disabled on

sj or � is taken at position j � 1.

As shown in [HMP94], the model of timed transition systems is expressive

enough to capture most of the features speci�c to real-time programs such as

delays, timeouts, preemption, interrupts and multi-programming scheduling.

Example 2. Consider the simple timed transition system given by:

� System Variables V : fx; yg.
� Initial Condition: � : (x = 0) ^ (y = 0).

� Transitions: T : f�0; �1; �2g where

� �� l� u�
�0 (y = 0) ^ even(x) ^ (x0 = x+ 1) 1 2

�1 (y = 0) ^ odd (x) ^ (x0 = x+ 1) 1 2

�2 (y = 0) ^ (y0 = 1) 3 3

The predicates even(x) and odd (x) test whether the value of x is even or odd,

respectively.

We present two computations of this timed transition system. The �rst com-

putation �1 attempts to let x reach its maximal possible value. Therefore, we

always try to activate �0 and �1 at the �rst possible position and �2, which causes

all three transitions to become disabled, as late as possible.

�1 : hx : 0 ; y : 0 ; T : 0i
tick
�! hx : 0 ; y : 0 ; T : 1i

�0�! hx : 1 ; y : 0 ; T : 1i
tick
�!

hx : 1 ; y : 0 ; T : 2i
�1�! hx : 2 ; y : 0 ; T : 2i

tick
�! hx : 2 ; y : 0 ; T : 3i

�0�!

hx : 3 ; y : 0 ; T : 3i
�2�! hx : 3 ; y : 1 ; T : 3i

tick
�! � � �

Note that transition �0 cannot be taken before T � 1 and, after it is taken,

we must wait one additional time unit before being able to take �1. Transition

�2 must be taken before time progresses beyond 3 in order to respect its upper

bound.

The second computation �2 attempts to keep the value of x as low as possible.

Consequently, it delays the activation of �0 to the latest possible position and

tries to activate �2 at the earliest possible position.
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�2 : hx : 0 ; y : 0 ; T : 0i
tick
�! hx : 0 ; y : 0 ; T : 2i

�0�! hx : 1 ; y : 0 ; T : 2i
tick
�!

hx : 1 ; y : 0 ; T : 3i
�2�! hx : 1 ; y : 1 ; T : 3i

tick
�! � � �

We say that a transition � is ripe at position j if it has been continuously

enabled for u� time units.

There are several observations that can be made concerning the computa-

tional model of timed transition systems.

� Computations alternate between tick steps that advance the clock by a pos-

itive amount and (possibly empty) sequences of state-changing transitions

that take zero time.

� Transitions mature together but execute separately in an interleaving man-

ner.

� Time can progress only after all ripe transitions are taken or become disabled.

� When time progresses, it can jump forward only by an amount on which all

the enabled transitions agree. That is, it must be such that it will not cause

any enabled transition to become \over-ripe."

The requirement of time divergence excludes Zeno computations in which there

are in�nitely many state changes within a �nite time interval [AL94].

Unfortunately, not every timed transition system is guaranteed to have com-

putations that satisfy all the requirements given above. Consider, for example,

a tts with a system variable x, initial condition x = 1 and two transitions �1
and �2 whose transition relations and time bounds are given by

� �� l� u�
�1 x > 0 ^ x0 = �x 0 0

�2 x < 0 ^ x0 = �x 0 0
This tts does not have a computation. This is because one of �1 or �2 is always

enabled (and ripe) and does not allow time to progress.

A tts S is called non-zeno if every pre�x of a run of S can be extended to

a computation of S. From now on, we restrict our attention to non-zeno timed

transition systems.

Timed Extension of the Textual Language

In [MP93a], we presented the system description language of timed statecharts

and showed how to interpret it as a tts. Here we will only consider the tts

corresponding to the textual language spl, extended to deal with real time.

Earlier on, we introduced the simple programming language spl for the un-

timed model. What extensions, if any, are necessary to deal with real-time?

On the lowest level, very few extensions are necessary. At the minimum,

it is only necessary to assign time bounds to the transitions associated with

statements of the program. For example, we can assign uniform time bounds l� =
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L and u� = U to every transition. As mentioned earlier, the set of transitions

associated with a real-time program no longer includes the idling transition �
I
.

It is obvious that with this time-bounds assignment each spl program can

be viewed as a tts.

With this timing assignment, we may reconsider a program such as any-y

and claim for it some stronger properties. For example, the property of termina-

tion can now be quanti�ed by saying that the program terminates within 3 � U
time units. In the following section we will show how such properties are speci�ed

and veri�ed.

To distinguish between the interpretation of a program P as a fair transition

system and its interpretation as a timed transition system (when given time

bounds for its transitions), we denote the latter as PT . For example, the property

of termination within 3 � U time units is valid for any-yT but is meaningless

for any-y, whose computations as a fair transition system do not contain any

timing information. We de�ne an splT program to be any spl program with

time bounds associated with its transitions, such as any-yT .

3 Real-Time Systems

We now introduce our new computational model for real-time systems, intended

to replace the tts model.

3.1 Computational Model: Clocked Transition System

Real-time systems are modeled as clocked transition systems (cts). A clocked

transition system � =


V;�; T ;�

�
consists of:

� V = fu1; : : : ; ung : A �nite set of system variables. The set V = D [ C

is partitioned into D the set of discrete variables and C the set of clocks.

Clocks always have the type real . The discrete variables can be of any type.

We introduce a special clock T 2 C, representing the master clock , as one

of the system variables.

� � : The initial condition. A satis�able assertion characterizing the initial

states. It is required that

� ! T = 0;

i.e., T = 0 at all initial states.

� T : A �nite set of transitions. Each transition � 2 T is a function

� : � 7! 2�;

mapping each state s 2 � into a (possibly empty) set of � -successor states

� (s) � �. As before, the successor function for � is de�ned by a transition

relation �� (V; V
0), which may refer to V and modify V �fTg. For every

� 2 T , it is required that

�� ! T 0 = T:
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� � : The time-progress condition. An assertion over V . The assertion is used

to specify a global restriction over the progress of time.

Extended Transitions

Let � :


V;�; T ;�

�
be a clocked transition system. We de�ne the set of extended

transitions TT associated with � as follows:

TT = T [ ftickg:

Transition tick is a special transition intended to represent the passage of time.

Its transition relation is given by:

�tick : 9� > 0:

0@ (D0 = D) ^ (C0 = C +�)

^
8t 2 [0;�): �(D;C + t)

1A
Let D = fu1; : : : ; umg be the set of discrete variables of � and C = fc1; : : : ; ckg
be the set of its clocks. Then, the expression C0 = C +� is an abbreviation for

c01 = c1 +� ^ � � � ^ c0k = c +�;

and �(D;C + t) is an abbreviation for �(u1; : : : ; um; c1 + t; : : : ; ck + t).

Runs and Computations

Let � :


V;�; T ;�

�
be a clocked transition system. A run of � is an in�nite

sequence of states � : s0; s1; : : : satisfying:

� Initiation: s0 j= �

� Consecution: For each j = 0; 1; :::, sj+1 2 � (sj), for some � 2 TT .

A computation of � is a run satisfying:

� Time Divergence: The sequence s0[T ]; s1[T ]; : : : grows beyond any bound.

That is, as i increases, the value of T at si increases beyond any bound.

A temporal formula ' is said to be valid over cts � (�-valid) if ' holds over all

computations of �.

Non-Zeno Systems

Similarly to the tts case, we say that a cts is non-zeno if every �nite sequence

of states � : s0; : : : ; sk satisfying the requirements of initiation and consecution

can be extended into a computation. In the following, we restrict our attention

to non-zeno cts's.
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3.2 The Fair Transition System induced by a cts

Let �:


V;�; T ;�

�
be a non-zeno cts. Consider the following fts:

P�:


V;�; TT ; ;; ;

�
;

in which the justice and compassion sets are taken to be empty. We refer to P�
as the fts induced by the cts �. An important relation between a cts � and

the fts it induces is identi�ed by the following claim:

Claim 2 A non-zeno cts � and the fts P� it induces have identical sets of

runs.

Justi�cation: The claim is a direct consequence of the de�nition of runs for

� and P�.

Corollary 3 An invariance formula 0 p is valid over a non-zeno cts � i� it

is valid over the induced fts P�.

Justi�cation: An invariance formula 0 p is falsi�ed by a model � (i.e.,

� j== 0 p) i� � has a pre�x �0 such that all in�nite extensions of �0 falsify 0 p.

We observe that the set of pre�xes of all computations of a non-zeno cts � is

equal to the set of pre�xes of all runs of � which, in turn, is equal to the set

of pre�xes of all runs of P� and, hence, is equal to the set of pre�xes of all

computations of P�. It follows that the invariance formula 0 p is �-valid i� it

is P�-valid.

Corollary 3 is not restricted to invariance formulas but holds for all safety

properties. It reduces the problem of proving that a safety formula ' (a formula

specifying a safety property) is valid over a given (non-zeno) cts � to proving

the validity of ' over the fts P�. Thus, we may use all the techniques and tools

developed for verifying safety properties of fts's for proving safety properties of

cts's.

3.3 From Timed Transition Systems to Clocked Transition

Systems

The cts model is at least as expressive as the tts model. To see this, we present

a sketch of a general translation from a tts S to a cts �
S
.

Recall that a tts-transition � is associated with lower and upper time bounds

[L;U ] (possibly dependent on � ), with the following implications:

� Transition � can be taken only after being continuously enabled for at least

L time units.

� Transition � cannot be continuously enabled for more than U time units

without being taken.

We start by showing how to translate each tts-transition into a cts-transition.

We will proceed in order of increasing complexity.
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Data-independent transitions

Consider �rst the case of tts-transition �TTS whose enableness condition depends

only on control but not on data. In timed statecharts ([MP93a]) such a transition

can be drawn as shown at the tts of Fig. 4. This transition is enabled whenever

cts:

=t := 0

[L;U ]
tts:

n1 n2

n2
t � L=t := 0n1 :

t � U

Fig. 4. Translation of a data-independent transition.

control is at node n1. It can be taken only after control has stayed at n1 for at

least L time units. On the other hand, control cannot stay at n1 for more than

U time units, without this or another transition departing from n1 being taken.

Thus, the transition relation for the displayed tts-transition is given by

�TTS� : n1 2 � ^ �0 = � � fn1g [ fn2g ^ pres(V � f�g);

where we assume that � is a control variable containing at any point the names

of the nodes in which control currently resides. For a set of variables U � V , the

formula pres(U ) stands for the conjunction

pres(U ):
^
y2U

y0 = y;

implying that all variables in U are preserved by the transition.

The translation of this transition is also presented in Fig. 4. As we see in

the �gure, a clock t is allocated to measure the duration of time control stayed

continually at n1. This clock is reset on any transition entering node n1. The

corresponding cts transition relation is given by

�CTS� : n1 2 � ^ t � L ^ (�0 = � � fn1g [ fn2g) ^ t0 = 0 ^ pres(V � f�; tg):
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Transition �CTS is enabled whenever control is at n1 and the clock t is not lower

than L, which implies that control has stayed at n1 for at least L time units.

On taking this transition, control moves to n2 while resetting the clock t to 0.

In addition to the generation of the cts-transition �CTS, the tts-transition �TTS

also contributes to the time-progress condition � of the cts �
S
the following

conjunct:

n1 2 � ! t � U

This conjunct disallows the progress of time when control is at n1 while t � U ,

forcing transition �CTS to be taken before time can progress. In the diagram of

Fig. 4, this conjunct is represented by the condition t � U inscribed inside node

n1, ensuring that the upper bound for transition �CTS is respected.

Immediate data-dependent transitions

Next, we consider the case of a tts-transition �TTS whose enableness condition

depends on the data variables, but whose time bounds satisfy L = U = 0. Tran-

sitions with such time bounds are called immediate. In Fig. 5, we present such

a transition and its cts translation. The label c represents the data condition

tts:

cts:

c

[0; 0]

c
n1::c

n1 n2

n2

Fig. 5. Translation of immediate data-dependent transition.

under which the transition is enabled. The transition relation for �CTS is given

by

�CTS� : n1 2 � ^ c ^ (�0 = � � fn1g [ fn2g) ^ t0 = 0 ^ pres(V � f�; tg):

Transition �TTS also contributes the following conjunct to the time-progress con-

dition.

n1 2 � ! :c;
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which allows time to progress while control is at n1 only when c is false (and

therefore �CTS is disabled). This identi�es transition �CTS as urgent in the sense

that, when the transition is enabled, time cannot progress before it is taken.

Non-immediate data-dependent transitions

The most complex case is that of a non-immediate data-dependent transition.

In Fig. 6, we present the translation of such tts-transition. The translation uses

n2

n2

n1
c

[L;U ]

cts:

tts:

n1: b = c ^ (:c _ t � U)
b ^ c ^ t � L= t := 0

=t := 0

b 6= c = (b; t) := (c; 0)

Fig. 6. Non-immediate transition, with condition.

a clock t to measure the length of time that control has been continually at n1
while c was continuously true. An additional boolean variable b is introduced to

guarantee that the system senses recent changes in the value of the condition c.

Part of the time-progress condition associated with node n1 is that b equals c.

If this is not the case, then time cannot progress and the self-transition drawn

from n1 to itself must be taken. This transition is enabled whenever b is di�erent

from c, and its e�ect is to set b to the current value of c and reset the clock t to

zero. The intention is that t measures the time since the last change in the value

of c. The transition from n1 to n2 which is intended to translate the original tts

transition, can be taken only if both b and c are true, and t � L, implying that

the time since c last changed to t is at least L.
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Formally, the translation introduces a clock t, a boolean variable b, and two

transitions �CTS and sense , whose transition relations are given by

�CTS� : n1 2 � ^ b ^ c ^ t � L ^ (�0 = ��fn1g[fn2g) ^ t0 = 0 ^ pres(V �f�; tg)

and

�sense : n1 2 � ^ b 6= c ^ b0 = c ^ t0 = 0 ^ pres(V � fb; tg);

respectively. Also, the following conjunct is added to the time-progress condition:

n1 2 � ! b = c ^ (:c _ t � U ):

The rest of the translation

Having sketched how each tts-transition can be translated to one or more cts-

transitions, we can complete the description of a translation from a general tts

S =


V;�; T ; l; u

�
into a corresponding cts � =


eV ; e�; eT ; e��.
� For system variables we take eV = V [ fb1; : : : ; bkg [ ft1; : : : ; tmg [ fTg,
where b1; : : : ; bk are the auxiliary boolean variables introduced by transla-

tions of non-immediate data-dependent transitions, t1; : : : ; tm are the clocks

introduced by any of the transition translations, and T is the master clock,

measuring time from the beginning of the computation.

� The initial condition is given bye�: � ^ t1 = 0 ^ � � � ^ tm = 0:

� The transitions eT include all the cts-transitions generated by translating

the tts-transitions in T .
� The time-progress condition e� is the conjunction of all the time-progress

clauses generated by translating the tts-transitions in T .

The Relation between a tts and its cts translation

It would be nice if we could claim that the set of runs of a tts S coincides with

the set of runs of its translated cts � (ignoring the additional variables and

clocks introduced in �). Unfortunately, this is not the case.

Consider, for example, the tts S1, presented in Fig. 7. Apart from di�erent

sampling points, system S1 has essentially one computation, which is represented

by the following sequence of situations:

�1 : h�: f`0;m0g; x: 0; T : 0i
tick
�! h�: f`0;m0g; x: 0; T : 1i

m0�!

h�: f`0;m1g; x: 1; T : 1i
m1�!

h�: f`0;m0g; x: 0; T : 1i
tick
�! h�: f`0;m0g; x: 0; T : 2i

m0�!

h�: f`0;m1g; x: 1; T : 2i
m1�! � � �

An obvious fact about this system is that control can never reach node `1 in

the upper level of the diagram. The reason for this is that transition `0 is never
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x = 0

[2; 2]

=x := 1

[1; 1]

=x := 0

`0 `1

m0 m1

x: integer where x = 0

[0; 0]

Fig. 7. tts S1.

continuously enabled for 2 time units. This is because every time unit, the lower

part of the diagram sets x to 1 and then back to 0 again.

On the other hand, consider cts �1, presented in Fig. 8 which was obtained

by the translation of S1 according to the recipe given above. In the translation

we took the liberty of de�ning b to be an integer rather than a boolean variable.

System �1 has a computation corresponding to computation �1 of S1, in which

the upper component periodically detects that x = 1 every single time unit,

and therefore can never take transition `0. On the other hand, it also has the

following computation

h�: f`0;m0g; x: 0; b: 0; t1: 0; t2: 0i
tick
�! h�: f`0;m0g; x: 0; b: 0; t1: 1; t2: 1i

m0�!

h�: f`0;m1g; x: 1; b: 0; t1: 1; t2: 0i
m1�!

h�: f`0;m0g; x: 0; b: 0; t1: 1; t2: 0i
tick
�! h�: f`0;m0g; x: 0; b: 0; t1: 2; t2: 1i

`0�!

h�: f`1;m0g; x: 0; b: 0; t1: 2; t2: 1i
m0�! � � � ;

in which control does get to `1. The reason that this is possible in cts �1 is that

the mechanism within node `0 which is supposed to detect an instance of x 6= 0

is allowed to ignore such instances if their duration is 0.

To see how this is possible, consider state h�: f`0;m1g; x: 1; b: 0; t1: 1; t2: 0i.
At this point in the execution, both transition `0 ! `0, which detects that x

equals 1, and transition m1 ! m0 are enabled, and the time-progress condition
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`1

x; b: integer where x = b = 0

m0: t2 � 1 m1:f
t2 � 1 = (x; t2) := (1; 0)

=x := 0

`0:
b = x ^ (x 6= 0 _ t1 � 2)

b = x = 0 ^ t1 � 2

b 6= x=(b; t1) := (x; 0)

Fig. 8. cts �1, translating tts S1.

within `0 is false (as b 6= x). This means that, presently, time cannot progress

and one of the enabled transitions must be taken. If `0 ! `0 is taken, then the

system detects an instance of x = 1 and resets clock t1. On the other hand, if

transition m1 ! m0 is taken, as is the case in the computation above, transition

`0 ! `0 is disabled again and the time-progress condition within `0 becomes

true again. This means that under this nondeterministic choice, the system has

lost the opportunity to detect an instance of x = 1.

However, apart from di�erences in the treatment of states that persist for zero

durations, the behavior of a tts is similar to the behavior of its corresponding

translated cts.

3.4 The cts corresponding to an splT program

Let PT be an splT program. That is, we are given an spl program P with time

bounds [l� ; u� ] associated with each transition � 2 TP . We will show how to
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construct a cts �PT corresponding to the splT program PT .

The construction can be described as a multi-stage process, which can be

summarized by the following sequence:

Program P �! fts FP
+ timing information

- tts SPT
construction 3:3

- cts �PT

Example 3. We illustrate the construction on the splT program any-y[3;5].

This consists of program any-y of Fig. 1 with the time bounds [3; 5] uniformly

assigned to each of its statements. The cts �any-y[3;5]
associated with any-y[3;5]

is de�ned as follows:

� System Variables: V = f�; x; y; t1; t2; Tg. In addition to the control variable
� and data variables x and y, the system variables also include clock t1,

measuring delays in process P1, clock t2, measuring delays in process P2, and

the master clock T , measuring time from the beginning of the computation.

� Initial Condition:

� : � = f`0;m0g ^ x = y = 0 ^ t1 = t2 = T = 0:

� Transitions: T : f`0; `1;m0g with transition relations:

�`0 : `0 2 � ^

0@x = 0 ^ �0 = � � f`0g [ f`1g
_

x 6= 0 ^ �0 = � � f`0g [ f`2g

1A ^ t1 � 3 ^ t01 = 0

^ pres(V � f�; t1g)

�`1 : `1 2 � ^ �0 = � � f`1g [ f`0g ^ y0 = y + 1 ^ t1 � 3 ^ t01 = 0

^ pres(V � f�; y; t1g)

�m0
: m0 2 � ^ �0 = � � fm0g [ fm1g ^ x0 = 1 ^ t2 � 3 ^ t02 = 0

^ pres(V � f�; x; t2g):

� Time-progress condition:

� : (at�`0;1 ! t1 � 5) ^ (at�m0 ! t2 � 5)

Faithfulness of the Model

In view of our previous discussions of the di�erences between the tts and cts

interpretations of non-immediate data-dependent transitions, one may be con-

cerned that a translation that includes a tts!cts link may involve some dis-

tortion of the semantics of statements that give rise to non-immediate data-

dependent transitions such as the await statement. In fact, the converse is true,

i.e., rather than distorting the faithful tts modeling of timed programs, the

cts modeling recti�es some anomalies present in the tts models. For example,

a deeper analysis shows that the cts interpretation of the await statement is

more realistic than the tts interpretation of that statement.

To sketch the issues, assume that process P1 contains an `: await c state-

ment, and a concurrent process causes c to become false for intervals of zero
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time such that every time interval of length L (the lower bound assigned to `),

contains at least one zero-length lapse in the continuous holding of c. Accord-

ing to the tts semantics, statement ` can never be fully executed, i.e., process

P1 will never progress beyond location `. The cts semantics is more liberal. It

allows computations in which P1 never progresses beyond ` but it also allows

computations in which P1 manages to ignore these zero duration interruptions

in c and does progress beyond `. Consequently, we believe the cts interpretation

of timed programs to be an improvement on their tts interpretation.

Verifying Invariance Properties over cts

As previously explained, to verify that the invariance formula 0 p is valid over

a cts �, one may prove instead that 0 p is valid over P�, the fts induced by

�. However, the explicit reduction is not necessary and we may, instead, apply

the following direct rule c-inv:

Rule c-inv

C1. � ! p

C2. fpg � fpg for every � 2 TT

� j= 0 p

As is the case with rule b-inv, rule c-inv is sound and (relatively) complete

for proving all invariance properties of non-zeno cts's.

In a similar way, we can adapt all proof rules for proving safety properties

of fair transition systems ([MP95]) to apply to veri�cation of the correspond-

ing safety property over a non-zeno cts. The only modi�cation necessary is to

consider all transitions in TT , wherever the fts rule considers all transitions in
T .

Example 4. We use rule c-inv to prove that program any-y[3;5] terminates

within 15 time units, as speci�ed by the following invariance formula:

0
�
T � 15 _ (at�`2 ^ at�m1)

�
The proof is represented by the veri�cation diagram in Fig. 9.

Example 5. As a second example, we present a fragment of a mutual-exclusion

algorithm, due to M. Fischer, which functions properly only due to the timing

constraints associated with the statements. Similar proofs to the one we will

present here are given in [SBM92], [AL94], and [MMP92].

The algorithm is presented in Fig. 10 under the name of program mutex.

By assigning all statements in mutex the uniform time bounds L and U , we

obtain the timed program mutex[L;U ]. Assuming that 2L > U , we prove that

the mutual exclusion property

0 :(at�`4 ^ at�m4)
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.

`1

`0

m0

'0 : at
�

`0;1 ^ at
�

m0 ^ x = 0 ^ t1 � 5 ^ t2 = T � 5

at
�

m1; x = 1

t1; t2; T � 0

'1 : at
�

`1 ^ T � 5 + t1 � 10

'2 : at
�

`0 ^ T � 10 + t1 � 15

'3 : at
�

`2 ^ at
�

m1

Fig. 9. Termination of any-y within 15 time units.

is valid for mutex[L;U ].

Premise C1 of rule c-inv, having the form

at�`0 ^ at�m0 ^ : : :| {z }
�

! :(at�`4 ^ at�m4)| {z }
p

;

is obviously valid.

Premise C2 is proven as follows: The situations that appear to threaten the

preservation of the assertion :(at�`4 ^ at�m4) are

at�`4 ^ at�m3 ^ x = 2 (2)

and

at�m4 ^ at�`3 ^ x = 1 (3)
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x: integer where x = 026664
`0 : await x = 0

`1 : x := 1
`2 : skip

`3 : await x = 1

`4 : Critical

37775
26664
m0 : await x = 0

m1 : x := 2
m2 : skip

m3 : await x = 2

m4 : Critical

37775
� P1 � � P2 �

Fig. 10. Program mutex, implementing Fischer's protocol.

which is proven symmetrically. We prove that (2) is impossible, by showing the

invariance of

at�`4 ! x = 1 (4)

The threatening situation to 4 is the following

at�`4 ^ at�m1 (5)

To show that (5) is impossible, we prove that process P2 cannot wait at m1 while

process P1 progresses from `1 to `4. This is proven in three major steps, showing

the invariance of three assertions as follows:

� at�`2 ^ at�m1 ! t2 � t1
The reasoning: Initially, this implication trivially holds. Taking transition

m0 while at�`2 is impossible, since at�`2 implies x 6= 0. Taking transition

`1 while at�m1, implies t01 = 0 � t2.

� at�`3 ^ at�m1 ! t2 � t1 + L

The initial holding of this implication is obvious. Transition m0 cannot be

taken while at�`3 holds. By the previous assertion, when transition `2 is

taken from a at�m1-state, the inequalities t2 � t1 and t1 � L hold, leading

to t2 � L. Since �`2 implies t01 = 0 and t02 = t2, we have that t
0
2 � t01 + L,

i.e., t2 � t1 + L holds after the transition.

� at�`4 ^ at�m1 ! t2 � t1 + 2 � L
The invariance of this assertion is proven in a way similar to the preceding

proof.

We conclude that the assumption 2 � L > U leads to

at�`4 ^ at�m1 ! t2 > U

contradicting the invariance formula

0 (at�m1 ! t2 � U );

which can easily be shown to be valid over mutex[L;U ].
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4 Hybrid Systems

In this section we consider the case of hybrid systems. Similarly to our treatment

of real-time systems, we present a computational model for hybrid systems that

admits a run-preserving reduction to an induced fts. This enables us to use the

methodologies and tools developed for fair transition systems to verify safety

properties of hybrid systems.

4.1 Computation Model: Phase Transition System

Hybrid systems are modeled as phase transition systems (pts). The pts model

was originally presented in [MMP92], [MP93b], as an extension of the ttsmodel.

The pts model presented here is an extension of the cts model, and is thus

slightly modi�ed to support the desired reduction from a pts to an induced fts.

A closely related model for hybrid systems is presented in [NOS+93].

A phase transition system (pts) � =


V;�; T ;A;�

�
consists of:

� V = fu1; :::; ung : A �nite set of system variables. The set V = D [ I is

partitioned into D the set of discrete variables and I the set of integrators.

Integrators always have the type real . The discrete variables can be of any

type. We introduce a special integrator T 2 I representing the master clock .

� � : The initial condition. A satis�able assertion characterizing the initial

states. It is required that

� ! T = 0:

� T : A �nite set of transitions. Each transition � 2 T is a function

� : � 7! 2�;

mapping each state s 2 � into a (possibly empty) set of � -successor states

� (s) � �. As before, the successor function for � is de�ned by a transition

relation �� (V; V
0), which may refer to V and modify V�fTg. For every

� 2 T , it is required that

�� ! T 0 = T:

� A : A �nite set of activities. Each activity � 2 A is represented by an activity

relation:

p� ! I(t) = F�(V 0; t)

where p� is a predicate over D called the activation condition of �. Activity

� is said to be active in state s if its activation condition p� holds on s. If

p� is true, it may be omitted.

Let I = fx1; : : : ; xm = Tg be the integrators of the system. The vector

equality I(t) = F�(V 0; t) is an abbreviation for the following set of individual

equalities:

xi(t) = F�
i (V

0; t); for each i = 1; : : : ;m;
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which de�ne the evolution of the integrators throughout a phase of contin-

uous change according to the activity �. The argument V 0 represents the

initial values of all the system variables at the beginning of the phase.

For every � 2 A it is required that

F�
i (V

0; 0) = x0i ; for every i = 1; : : : ;m

F�
T (V

0; t) = F�
m(V

0; t) = T 0 + t:

That is, F�
i (V

0; 0) agrees with the initial value of xi, and the e�ect of evo-

lution of length t on the master clock (integrator xm) is to add t to T .

It is required that the activation conditions associated with the di�erent

activities be exhaustive and exclusive, i.e., exactly one of them holds on any

state.

� � : The time-progress condition, is an assertion over V . The assertion is used

to specify a global restriction over the progress of time.

The enableness of a transition � can be expressed by the formula

En(� ) : (9V 0)�� (V; V
0);

which is true in s i� s has some � -successor. The enabling condition of a transition

� can always be written as �^�, where � is the largest subformula that does not

depend on integrators. We call � the integrator part of the enabling condition,

and denote it by EnI(� ).

Example 6. Consider the hybrid system �1 presented in �gure 11.

. x = �1=x := 1
x = 1

_x = �1

x � �1

Fig. 11. A hybrid system �1.

The system can be modeled by the following pts:

V = I : fx; Tg
� : x = 1 ^ T = 0

T : f�g where �� : x = �1 ^ x0 = 1 ^ T 0 = T

A : f�g with activity relation (omitting the � subscript and superscript)

t|{z}
p

! x = x0 � t| {z }
F (x0;t)

� : x � �1

The behavior of this system is (informally) presented in Fig. 12.
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�1

0

1

x

1 2 3 4

T

Fig. 12. Behavior of pts �1.

Extended Transitions

Let � :


V;�; T ;A;�

�
be a phase transition system. We de�ne the set of ex-

tended transitions TH associated with � as follows:

TH = T [ T�; where T� = f�� j � 2 Ag

For each � 2 A, the transition relation of �� is given by

��� : 9� > 0

0@D0 = D ^ p� ^ I0 = F�(V;�)

^
8t 2 [0;�): �(D;F�(V; t))

1A
The transition relation ��� characterizes possible values of the system vari-

ables at the beginning and end of an �-phase, where V = (D; I) denotes the

values at the beginning of the phase and V 0 = (D0; I0) denotes their values at

the end of the phase. The formula assumes a positive time increment � which

will be the length of the phase. It then states that the values of the discrete

variables are preserved (D0 = D), the activation condition p� currently holds,

the values of the integrators at the end of the phase are given by F�(V;�), and

the time-progress condition � holds for all intermediate time points within the

phase, i.e., for all t, 0 � t < �.

Runs and Computations

A run of a phase transition system � :


V;�; T ;A;�

�
is an in�nite sequence of

states � : s0; s1; : : : satisfying:
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� Initiation: s0 j= �

� Consecution: For each j = 0; 1; :::, sj+1 2 � (sj), for some � 2 TH .

A computation of a pts is a run satisfying:

� Time Divergence: The sequence s0[T ]; s1[T ]; : : : grows beyond any bound.

Non-Zeno Systems

As in the case of the cts model, we restrict our attention to non-zeno pts's.

These are systems for which any pre�x of a run can be extended to a computa-

tion.

System Description by Hybrid Statecharts

Hybrid systems can be conveniently described by an extension of statecharts

[Har87] called hybrid statecharts. The main extension is

� States may be labeled by (unconditional) di�erential equations. The impli-

cation is that the activity associated with the di�erential equation is active

precisely when the state it labels is active.

We illustrate this form of description by the example of Cat and Mouse taken

from [MMP92]. At time T = 0, a mouse starts running from a certain position

on the 
oor in a straight line towards a hole in the wall, which is at a distance

X0 from the initial position. The mouse runs at a constant velocity vm. After a

delay of � time units, a cat is released at the same initial position and chases

the mouse at velocity vc along the same path. Will the cat catch the mouse, or

will the mouse �nd sanctuary while the cat crashes against the wall?

The statechart in Fig. 13 describes the possible scenarios. This statechart

(and the underlying phase transition system) uses the integrators xm and xc,

measuring the distance of the mouse and the cat, respectively, from the wall.

The waiting time of the cat before it starts running is measured by the master

clock T . The statechart refers to the constants X0; vm; vc, and �.

A behavior of the system starts with statesM .rest andC .rest active, variables

xm and xc set to the initial valueX0, and the master clock T set to 0. The mouse

proceeds immediately to the state of running, in which its variable xm changes

continuously according to the equation _xm = �vm. The cat waits for a delay of

� before entering its running state, using the master clock T to measure this

delay. There are two possible termination scenarios. If the event xm = 0 happens

�rst, the mouse reaches sanctuary and moves to state safe, where it waits for

the cat to reach the wall. As soon as this happens, detectable by the condition

xc = xm = 0 becoming true, the system moves to state Mouse-Wins. The other

possibility is that the event X0 > xc = xm > 0 occurs �rst, which means that the

cat overtook the mouse before the mouse reached sanctuary. In this case they

both stop running and the system moves to state Cat-Wins. The compound

conditions xc = xm = 0 and X0 > xc = xm > 0 stand for the conjunctions

xc = xm ^ xm = 0 and X0 > xc ^ xc = xm ^ xm > 0, respectively.
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Initially xc = xm = X0; T = 0

safe

runrun

rest: T < �rest: f

xc = xm = 0

Cat-WinsMouse-Wins

X0 > xc = xm > 0

xm = 0

_xc = �vc
xc > xm

_xm = �vm
xm > 0

T = �

CatMouse

Fig. 13. Speci�cation of Cat and Mouse.

The statechart representation of the Cat and Mouse illustrates the typical

interleaving between continuous activities and discrete state changes which, in

this example, only involve changes of control.

The Underlying Phase Transition System

Following the graphical representation, we identify the phase transition system

underlying the picture of Fig. 13. We refer to states in the diagram that do not

enclose other states as basic states.
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� System Variables: V = D [ I, where D: f�g and I: fxc; xm; Tg. Variable �
is a control variable whose value is the set of basic states of the statechart

which are currently active.

� Initial Condition: Given by

� : � = fM :rest;C :restg ^ xc = xm = X0 ^ T = 0:

� Transitions: Listed together with the transition relations associated with

them.

M :rest-run :M :rest 2 � ^ �0 = � � fM :restg [ fM :rung
C :rest-run : C :rest 2 � ^ T = � ^ �0 = � � fC :restg [ fC :rung
M :run-safe :M :run 2 � ^ xm = 0 ^ �0 = � � fM :rung [ fM :safeg

M :win : (Active \ �) 6= � ^ xc = xm = 0 ^ �0 = fMouse-Winsg
C :win : (Active \ �) 6= � ^ X0 > xc = xm > 0 ^ �0 = fCat-Winsg;

where the set Active stands for the set of basic states

Active: fM :rest; M :run; M :safe; C :rest; C :rung:

� Activities: It is possible to group all the activities into a single activity,

given by:

�: xm = x0m�(at�M :run)�vmt ^ xc = x0c�(at�C :run)�vct ^ T = T 0+t:

In this representation, we used arithmetization of control expressions by

which at�M :run equals 1 whenever M :run 2 � and equals 0 at all other

instances. A less compact representation lists four activities corresponding

to the four cases of: cat and mouse both resting, cat rests and mouse runs,

cat runs and mouse is safe, cat and mouse both running.

� Time Progress Condition: Given by

� :

�
M :rest 62 � ^ (C :rest 2 � ! T < �) ^
(M :run 2 � ! xm > 0) ^ (C :run 2 � ! xc > xm)

�

4.2 The Fair Transition System induced by a pts

Let �:


V;�; T ;A;�

�
be a non-zeno pts. Consider the following fts:

P�:


V;�; TH; ;; ;

�
;

in which the justice and compassion sets are taken to be empty. We refer to P�
as the fts induced by the pts �. An important relation between a pts � and

the fts it induces is identi�ed by the following claim:

Claim 4 A non-zeno pts � and the fts P� it induces have identical sets of

runs.

Justi�cation: The claim is a direct consequence of the de�nition of runs for

� and P�.

34



Corollary 5 An invariance formula 0 p is valid over a non-zeno pts � i� it

is valid over the induced fts P�.

Justi�cation: Identical to that of the cts!fts reduction.

Similarly to Corollary 3, Corollary 5 is not restricted to invariance formulas

but holds for all safety properties. It reduces the problem of proving that a safety

formula ' (a formula specifying a safety property) is valid over a given (non-

zeno) pts � to proving the validity of ' over the fts P�. Thus, we may use all

the techniques and tools developed for verifying safety properties of fts's for

proving safety properties of pts's.

Verifying Invariance Properties over pts

As in the case of real-time systems, safety properties of hybrid systems can be

veri�ed without explicitly carrying out the reduction described above. Instead,

we can use the following h-inv rule.

Rule h-inv

H1. � ! p

H2. fpg � fpg for every � 2 TH

� j= 0 p

Rule h-inv is sound and (relatively) complete for proving all invariance prop-

erties of non-zeno pts's.

In a similar way, we can adapt all proof rules for proving safety properties

of fair transition systems ([MP95]) to apply to veri�cation of the correspond-

ing safety property over a non-zeno pts. The only modi�cation necessary is to

consider all transitions in TH , wherever the fts rule considers all transitions in
T .

Verifying a Property of the Cat and Mouse System

Consider the property that, under the assumptions

� > 0;
X0

vm
< �+

X0

vc
(6)

all computations of the Cat and Mouse system satisfy

0
�
xc = xm ! xc = X0 _ xm = 0

�
:

This invariant guarantees that the cat can never win.

In Fig. 14, we present a veri�cation diagram of this invariance property. In

this diagram we use control assertions indicating that certain basic states are

contained in �. For example, C.run stands for Cat :run 2 �. We also use tm for
X0

vm
, the time it takes the mouse to run the distance X0.
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M .run-safe

C .rest-run

M .rest-run

M .run-safe

'0 : M :rest ^ C :rest ^ xc = xm = X0 ^ T = 0

'1 :

0B@M :run ^ C :rest ^ 0 � T � �

^

xc = X0 ^ xm = X0 � vm � T

1CA

'2 :

0B@ M :run ^ C :run ^ � � T � tm
^

xc = X0 � vc � (T ��) > xm = X0 � vm � T

1CA

'3 : (M :safe _ M :win) ^ xm = 0

Fig. 14. A hybrid invariance proof diagram.

It is not di�cult to verify that the diagram is valid, including the preservation

of all assertions under the single activity-induced transition ��.

The part that requires some attention is showing that the '2 conjunct

xc = X0 � vc � (T ��) > xm = X0 � vm � T

is maintained until transitionM :run-safe becomes enabled, that is, as long as xm
is nonnegative. Obviously, xm � 0 implies T � tm. To show that the conjunct is

maintained, it is su�cient to show vc � (T ��) < vm � T which is equivalent to

vm

vc
> 1�

�

T
(7)
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From inequality (6), we can obtain

vm

vc
> 1�� �

vm

X0

which, using the de�nition of tm =
X0

vm
, gives

vm

vc
> 1�

�

tm
: (8)

Since T � tm, we have 1�
�

tm
� 1�

�

T
establishing (7).

It remains to show that

M :rest ^ C :rest ^ xc = xm = X0 ^ y = 0| {z }
�

^ T = 0 !

M :rest ^ C :rest ^ xc = xm = X0 ^ y = T = 0| {z }
'
0

(9)

'0 _ � � � _ '3 !
�
xc = xm ! xc = X0 _ xm = 0

�
: (10)

Implication (9) is obviously valid. To check implication (10), we observe that

both '0 and '1 imply xc = X0, '2 implies xc > xm (using the assumption

� > 0), and '3 implies xm = 0.

This shows that under assumption (6), property

0 (xc = xm ! xc = X0 _ xm = 0)

is valid for the Cat and Mouse system.

Conclusions

In this paper we have presented the new real-time model of clocked transition

system (cts). This model can be viewed as an extension of the timed automata

model [AD94]. In addition to algorithmic veri�cation of �nite-state systems,

the cts model can also support deductive veri�cation. In this paper, we have

restricted our attention to the veri�cation of safety properties, and have shown

a reduction from a cts to an fts, a reduction that preserves all the safety

properties of the original system. This reduction allows us to use methodologies

and tools developed for the fts model to verify safety properties of real-time

systems. In a similar way, we have shown a reduction from the phase transition

system model to the fts model, enabling the reuse of fts-veri�cation methods

for establishing safety properties of hybrid systems.
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