
Algorithms for Computing Intersection and Union of

Toleranced Polygons with Applications

F. Cazals, G.D. Ramkumar
�

Robotics Laboratory, Department of Computer Science, Stanford University,

Stanford, CA 94396 USA

E-MAIL: fcazals,ramkumarg@
amingo.stanford.edu

Abstract

Since mechanical operations are performed only up to a certain precision, the geometry of parts

involved in real life products is never known precisely. Nevertheless, operations on toleranced objects

have not been studied extensively. In this paper, we initiate a study of the analysis of the union

and intersection of toleranced simple polygon. We provide a practical and e�cient algorithm that

stores in an implicit data structure the information necessary to answer a request for speci�c values

of the tolerances without performing a computation from scratch. If the polygons are of sizes m

and n, and s is the number of intersections between edges occuring for all the combinations of

tolerance values, the pre-processed data structure takes O(s) space and the algorithm that computes

a union/intersection from it takes O((n + m) log s + k
0

+ k log k) time where k is the number of

vertices of the union/intersection and k � k
0

� s. Although the algorithm is not output sensitive,

we show that the expectations of k and k
0

remain within a constant factor � , a function of the input

geometry. Finally, we list interesting applications of the algorithms related to feasibility of assembly

and assembly sequencing of real assemblies.

1 Introduction

In the life cycle of a part in a manufactured product, say an engine, a piece of furniture, or a toy, etc.,

its exact geometry can never be described exactly. In fact, mechanical operations are performed only up

to as much precision as to ensure that a feature of the part (for example, a vertex) lies within a zone

called its tolerance zone. Models for toleracing and their role in product design have received substantial

interest in the literature [16, 17, 15, 18, 11, 6]. However, their geometric properties have not been

looked at extensively. Intersection volumes and surface areas for cylinders with tolerances are described

in [5]. Planning the assembly of toleranced products is addressed in [9]. But basic operations such as

intersection, union, convolution, and Minkowski sum of toleranced polygons have not yet been studied.

The basic operations among these are the union and the intersection. We adress their computation in

this paper: given two simple polygons whose geometry (but not topology) can vary, pre-process the set

of all possible intersections between edges of the two polygons so that for a particular set of tolerance

vlues their intersection or union can be computed e�ciently.

�F. Cazals is supported by Matra Datavision, G. D. Ramkumar is supported by NSF. Part of this work has also been
supported by NSF/ARPA grant IRI-9306544.

1



R

B

�2

�1

Figure 1: a)Intersection of two toleranced polygons and (b)Worst-case example of intersection

Figure 1(a) shows an example of two toleranced polygons intersecting in a con�guration that may

produce zero, one, or two components in the intersection depending on the exact tolerance values. Fig-

ure 1(b) shows such an example of two intersecting comb-like polygons R, and B | one vertical and one

horizontal with tolerances �1 and �2 on their horizontal and vertical edges respectively. In this example,

the number of components in the intersection can vary from 0 to �(m � n). In addition, the components

are determined by di�erent tolerance values, causing an exponential number of topologies. Hence it is

infeasible to represent the topologies explicitly.

The input consists of two simple polygons, referred to as a red polygon of n edges and a blue polygon

of m edges. Each edge has an associated tolerance parameter t de�ned with respect to a reference

frame attached to its polygon. The relative position of the two polygons is determined by those of their

respective frames. The con�guration space T has dimension n + m and an instantiation of the two

polygons is fully speci�ed by a set of tolerance values T = ft1; t2; : : : ; tn+mg. Let S refer to the set of

intersections between pairs of edges occurring for all combinations of tolerance values and by ST those

valid only for the input T .

Our results are three-fold. Firstly, we pre-process the toleranced polygons to enable e�cient compu-

tation of the union or intersection for a query instance of tolerance values. The results of pre-processing

are stored in a segment-tree like data structure. An instance of the intersection or union is computed in

time O((n +m) log jS j +k0

+ k log k) where k is the number of vertices of the union or intersection and

k � k
0 �jS j. The term k

0

causes the complexity to be not output sensitive; however, this aspect seems

necessary because the space of intersection of two toleranced edges only admits a complicated de�nition,

namely as as a semi-algebraic set in dimension six de�ned by four inequalities involving polynomials of

degree two. But we show that the amortized running time of our algorithm is output-sensitive by proving

that the expectations of k and k
0

remain within a constant factor � , a function of the input geometry.

Secondly, we use our data structure to report the set of all possible \local" topologies of the union and

intersection of the polygons. Thirdly, we present several straightforward applications of our algorithms

to feasibility of assembly and assembly sequencing.

There is substantial literature related to computing union and intersection of polygons without tol-

erances. The work is motivated by theoretical as well as practical interest. The intersection algorithm

of [2] can be used to compute the trapezoidal decomposition of an arrangement of edges. This provides

a union/intersection algorithm of simple polygons that runs in O((m+ n) log(m+ n) + k). Our method

is simpler and thus easier to implement and also is more e�cient if jS j= o(n+m), that is the tolerance

spaces do not admit a super-linear number of intersections; we believe this is the case in practical situa-

tions. Other previous work in the area of union/intersection computation is an integration of the linear

time triangulation algorithm of [1] with the linear time map merging of [7], giving a space-time optimal

solution.

This paper is organized as follows. In section 1, we introduce the toleranced model and in section 2

we study the intersection of toleranced edges, the basic primitive. Section 3 presents the algorithm that

outputs ST from S; section 4 shows how to perform the intersection/union operation of the set ST . In

section 5 we discuss the stability of intersection features. Section 6 considers three applications of the

2



toleranced intersection and section 7 list some oustanding problems and concludes the paper.

2 Tolerance model

2.1 Toleranced polygon

By toleranced polygon, we mean a simple polygon with an attached coordinate system (p;~i;~j) and each

edge of which is de�ned by a triple (�; [a; b]) as follows: the normal to the line supporting this edge makes

an angle � 2 [0; 2�) with the frame attached to the reference point of the polygon; the distance between

the edge and the polygon reference point is allowed to span the interval [a; b] where a; b > 0. The model

assumes that the parameter � is constant; in more general models � can have a tolerance range as well.

An edge is therefore characterized in (p;~i;~j) by the equation x cos � + y sin � � d = 0 with d 2 [a; b].

For a given polygon, these tolerance zones should be small enough so that all instances of the polygon

have the same topology. A su�cient condition is that no vertex falls into the intersection of more than

two stripes spanned by the edges.

d
4d

3

d
2

d
1

j
i

dii-1d di+1

Ol Or
L

P

C

Figure 2: (a)Toleranced polygon (b)Edge domain

In this model, the domain spanned by each edge is a trapezoid, as indicated in grey on �gure 2(b).

In fact, the lines supporting the two edges that have extremal values determine the parallel sides of the

trapezoid, and the two other sides correspond to the maximal values of the two connected edges. More

precisely, this trapezoid can be subdivided into three regions as indicated on �gure 2(b):

-the C � domain : whatever value di 2 [ai; bi] may have, the ith edge crosses this domain all the way (C

stands for compulsory).

-the O�domains Ol and Or : a point lying on the i
th edge might not be attained because of the tolerances

values of the adjacent edges (O stands for optional). It is for example the case of the point P in Or on

�gure 2(b). This trapezoid is called the toleranced edge in the rest of this paper. It is important to

observe that it depends on three variational parameters: the main parameter di, and the two connected

parameters di�1 and di+1. The tolerance model we use was introduced in [9].

2.2 Intersection of toleranced edges

2.2.1 Problem statement

In dealing with geometric operations between toleranced polygons, a crucial step consists of intersecting

toleranced edges. Given two toleranced edges, the status of their intersection is one of the following:

(i)they never intersect (ii)they always intersect (iii)they intersect conditionally to the variational param-

eters involved. Edges in cases (ii) and (iii) are referred to as compulsory and optional edges respectively.

As already observed, each toleranced edge depends on three parameters. The intersection between

edges i and j therefore depends on the six parameters of indices fi�1; i; i+1; j�1; j; j+1g. We note �ij
the corresponding subspace of T . If an intersection exists, it belongs to the polygon Iij intersection of

the two toleranced edges. This polygon is shown in grey on �gures 3(a) and 5. Compulsory intersections

require that Iij lies within the intersection of the C � domain of the toleranced edges and that any of

its section along the direction of a main parameter spans the whole domain of this parameter. This is

the case on �gure 3(a) for edges L2 and M2. On the other hand, �nding a simple description of optional

3



intersection is more laborious. Consider �gure 3(b) where the three edges L2; L3 and M2 have non null

tolerances zones. The three dashed lines correspond to instances of these edges for the tolerance values

x; y and z. In this con�guration, edges L2 and M2 intersects at point I . But in addition to x and z, I

also depends on y. Indeed for any value of y smaller than the one displayed, M2 intersects L3 but not

L2 anymore. It turns out that the condition under which the intersection occurs can no more be found

easily in the primal space, which accounts for an algebraic computation of �ij .

I

K J

j

i

i+1

(a)

xz

x1

x2

yz

z

(b)

Figure 3: Edges intersections

2.2.2 Algebraic speci�cation of toleranced intersection vertex

Let e1 = (u1; v1) and e2 = (u2; v2) be the two edges. They intersect i� the line supporting e1 divides

the edge e2 and viceversa (see �gure 4). Let Det(u; v; w) represent the signed area of the triangle uvw

de�ned by vertices u = (ux; uy); v = (vx; vy); and w = (wx; wy):

1 1 1

ux vx wx

uy vy wy

The condition Det(u; v; w) > 0 requires that u; v; w are in counterclockwise order on the plane. The line

supporting edge e1 divides the edge e2 i� u2 and v2 are on the opposite sides of the line supporting e1,

so that the conditions sought are

Det(u2; u1; v1)Det(v2; u1; v1) < 0 and Det(u1; u2; v2)Det(v1; u2; v2) < 0 (I)
Each of the vertices u1; v1; u2; v2 is a linear function of the tolerance parameters of the two edges

intersecting to produce it. The set of constraints de�nes a volume bounded by quadratic surfaces in

the space of 6 tolerance values. Since the edges preserve their orientation under variation of tolerance

parameters, requiring the two edges to intersect is tantamount to �xing the sign of each determinant (a

stronger condition than above).

u1

v1

u2 v2

Figure 4: Intersection conditions

4



To illustrate the previous computation, we implemented condition I under Maple to run some exper-

iments. For example, the con�guration of �gure 3, is de�ned precisely as follows(
L1 := (Pi; a1 2 [5:; 5:]); L2 := (Pi=2; a2 2 [5:; 11:]); L3 := (Pi=4; a3 2 [4:5 � sqrt(2); 7:5 � sqrt(2)]);
M1 := (Pi=2; b1 2 [3:; 3:]); M2 := (0; b2 2 [1:; 6:]); M3 := (Pi=2; b3 2 [14:; 14:]);

leads to the two conditions

(b1 � a2 )
�
�a2 +

p
2a3 + a1

�2
(b3 � a2 ) < 0 and

�
a2 �

p
2a3 + b2

�
(�b3 + b1 )

2
(b2 + a1 ) < 0

As this example shows, this space is not linear and actually not even convex. Indeed, it is easily

checked that the two following points P1 = [5:; 6:; 8; 48:; 3:; 6:; 14:] and P2 = [5:; 7:; 9:19; 3:; 6:; 14:]

belong to �ij but not their middle. Computing the volume pij of �ij cannot be performed using simple

techniques as those of [10] for convex polytopes and this issue will be adressed in section 5.1 in dealing

with the stability of the intersection components. However, storing �ij in a data structure to e�ciently

select the relevant intersections with respect to a particular input of tolerances remains an open question.

2.2.3 Approximate representation

For these reasons, we address the problem of �nding an approximate representation of �ij as an hyper-

rectangle �
0

ij of volume p
0

ij such that all the points located in this hyper-rectangle are candidates with a

high probability to be a true intersection between the two edges.

As intersection of two four sided polygons each depending on at least three parameters, Iij is at most

eight-sided and depends on at most six parameters. Moreover it is convex since the toleranced edges are

convex. If k is one of the six parameters involved in the intersection of edges i and j, then let stripek be

the minimal closed stripe of the plane with sides parallel to the kth parameter direction and containing

Iij . The two lines de�ning a stripe correspond to two values in the variational space of the corresponding

parameter, possibly out of the range [ak; bk] so that it is possible to reduce any stripe to its intersection

with the tolerance zone of its parameter. Let dsk the bounds of the reduced stripe in the variational zone

of parameter k.It is also possible that dsk = [ak; bk] in which case the corresponding parameter is called

useless since an intersection can occur for any of its value. If the opposite holds, it is called useful.

An obvious necessary condition on the main parameters for an intersection to exist is that di 2 dsi
and dj 2 dsj . See e.g. �gures 5(a)(b). For the optional parameters, the situation is more involved but

we can also come up with a condition of the same type.

In summary, each of the six parameters involved in the intersection of edges i and j produces a range

in its tolerance zone. Such a range might be useless if it spans the whole tolerance zone, and in this case

we discard it for a connected parameter. This leads to a representation of Iij as a hyper-rectangle �
0

ij of

dimension at least two and at most six that partitions �ij in two: the set of points that ful�l a necessary

condition for the edges to intersect, and its complement.

j

j+1j-1

i+1i-1

i
stripe

i+1

i

stripe
jstripe

(b)(a)

1
L

2
L

i
i+1i-1

j-1

j

j+1

(c)

Figure 5: Intersection and stripes

2.3 Computing the intersection of toleranced edges

We use a traditional Bentley-Ottman style algorithm to compute the intersection of toleranced edges. It

runs in O((m + n) log(m+ n) + s) time.

5



3 Selection of relevant intersections

3.1 Selecting a subset of events

Let T = ft1; : : : ; tn+mg be an instantiation of the two input polygons. Before we can get the topology

of the intersection/union, we must select the subset ET of intersections that are valid for the particular

input T . The problem we have to face here is that each Iij depends on at most six parameters while the

whole space has dimension m+n. Devising an e�cient data structure to retrieve these small dimensional

sub-spaces is a challenging problem. An easy way to get around it is therefore to allow the selection

process to operate in two steps as follows: �rst select EAT � E and then derive ET from EAT .

This strategy allows us to represent Iij using the hyper-rectangle �
0

ij described above. For a given ti,

�nding all the �
0

ij containing it reduces to a point-in-segment enclosure test. A suitable data structure

to perform this is a segment tree for each parameter leading to a forest of segment trees for the n +m

parameters.

r
1

b
1

rn bm

b
1

E
T

r
1

r
k

b
1

bm

Segment
trees

events
Set of

a tolerance
Subset for

r
n

E

Edges

Figure 6: Selecting active edges

More precisely, each main parameter k involved in the description of any �
0

ij is stored as follows:

� If it is useful, it is stored in its segment tree STk. In addition, each such range is given a pointer to

the �
0

ij it comes from.

� If it is useless but is involved in a compulsory intersection, it is stored in the linked list CLk with

a pointer to the �
0

ij it comes from.

� If it is useless and is involved in an optional intersection, it is stored in the linked list OLk with a

pointer to the �
0

ij it comes from.

An example con�guration of the forest of segment trees is shown in �gure 6. Observe that we have not

stored the connected parameters, but they are accessed through the pointer from the main parameters to

the �
0

ij they belong to. At last, we require that within each list or node the pointers are sorted according

to the labels of the edges of the second polygon. This constraint will be used in section 3.2.

We now describe below the selection process that leads from E to ET .

Selection algorithm

6



for i := 1 to n+m do

(1)Add to ET the intersections referenced by CLi still not accessed

(2)Add to ET the relevant intersections referenced by OLi still not checked

(3)Add to ET the intersections referenced by the segments of STi
containing ti , not accessed and relevant

(4)Merge all the valid intersections according to the labels of the edges of the second polygon

od

First observe that any �
0

ij involves two main ranges stored either in a list or a segment tree. Each

intersection or hyper-rectangle can thus be accessed by either of the two pointers. We assume that the

�rst access sets a 
ag.

Now, there are two kinds of intersections: compulsory and the optional, of which the latter have to be

checked. If more than two parameters are involved in the description of its �
0

ij , the �rst step is to check

that the connected parameters ful�ll the required conditions. If so, the intersection has to be computed

and a check has to be performed to see if it belongs to the two line segments supported by the main

parameters. These tests should be applied in this order because of their respective computational costs.

3.2 Analysis

Let si be the cumulated size of the ith segment tree and the associated lists. Selecting and reporting all

the segments containing ti in these structures costs O(log si + k
0

i) with k
0

i the output size. We handle

separately the analysis of these two terms when summed over the forest.

The �rst term sums to
Pn+m

i=1 O(log si) which is easily seen to be smaller than (n + m) log s with

s =
Pn+m

i=1 si. The second sums to ki � k
0

i relevant intersections by tree and lists. But remember that

for a given index we require the ranges to be sorted with respect to the label of the second polygon. Let

li be the number of di�erent lists that the ki ranges come from. A heap can be used for k-way merging

of the li lists in O(ki log li). The total merging time is thus
Pn+m

i=1 ki log li < k log k, with k =
P

ki.

An important task is to compare the relative values of k and k
0

. Since our data structure is intended

to process several queries, it would be nice to have an amortization phenomenon over these queries. Let

r be the number of queries. For any query i in 1::r and any intersection j in 1::s, let "
0

ij be the random

variable de�ned as 1 if the intersection j is selected at stage i through the ST data structure and 0

otherwise. Also, let "ij be a random variable de�ned as 1 if the previous intersection is not discarded

and 0 otherwise. A measure of the acceptance rate over the queries is

� =
E(
P

i;j "ij)

E(
P

i;j "
0

ij)

(where E is the expectation). But for any j,
P

i "
0

ij and
P

i "ij are distributed as binomial random

variables of parameters B(r; p
0

j) and B(r; pj) respectively, so that

� =

P
j pjP
j p

0

j

It is di�cult to state precisely which value � might have. But since the only case where pj=p
0

j = 0

is when the edges involved in that intersection are parallel, while con�gurations such as the one �gure

3(a)(b) respectively correspond to ratios of 1 and :549 (see section 5.1), it is reasonable to say that k
0

and k are within a constant factor.

Another interesting problem is whether or not it is possible to apply the paradigm of divide-and-

conquer to this selection process. We skip its discussion for space reasons.

7



4 Intersection/Union

4.1 Computing the intersection structure from the events

Figure 7 shows an example con�guration of the two polygons (after the tolerance values have been applied

to the edges of the base polygons).

a

b
c

2

3

4

5

6

B

1

R

pnextblackpnextred
pnextblackpnextred

Jordan sorting

enextblackenextred
enextblackenextred

Figure 7: a) Computing intersection structure and b) events from the structure

Along with each intersection vertex < eR; eB > found from the segment tree data structures, we also

obtain red and blue pnext pointers. The red pnext pointer corresponds to the intersection of eB with the

next counter-clockwise edge of the blue polygon (and similarly for the blue pnext pointer). For example,

consider the edge a of the polygon B in Figure 7. The red pnext pointer for the intersection < a; 1 >

stores the next intersection vertex along the red polygon R, namely the intersection vertex < b; 1 >.

Similarly, the blue pnext pointer stores the vertex < a; 3 >. This chaining of intersection vertices is

obtained as a result of sorting of the vertices at the nodes of the segment tree at which they are stored.

We emphasize that the pnext pointer stores the next vertex along the polygon edge sequence, rather

than the more obvious enext vertex along the sequence of intersections at a given edge (we are eventually

looking for this next vertex). We refer to this latter pointer as the enext pointer and we show how to use

Jordan sorting to derive the enext pointers from the pnext pointer.

4.2 Computing the intersections of the Jordan arc with a line segment

For each edge of each polygon, we use the Jordan sorting algorithm described in [8], to compute the

sorted sequence of intersections along the edge starting from the sorted sequence of intersections along

the intersecting polygon (the Jordan arc in the Jordan sorting algorithm). The sorting can be done in

time linear in the number of intersections (independent of the size of the Jordan arc itself). We now

obtain the (respectively red and blue) enext pointers for each intersection vertex, referring to the next

intersection along the edge of the (respectively red and blue) polygon.

Note that in this step, we are making use of the assumption that each of the polygons is non-self

intersecting for all possible values of the tolerance. If the polygon could be self-intersecting, it would not

be possible to use Jordan sorting at all, since the polygon would not be a Jordan arc.

It is also possible to sort the intersection vertices for each edge directly using traditional sorting

methods. The advantage of the Jordan sorting lies in the fact that we make use of the pre-sorted order

given the pnext pointer.

4.3 Computing the intersection structure from the results of the Jordan sort-

ing

Given the results of the Jordan sorting algorithm it is easy to compute the intersection structure by

following up the edges of the intersection in sequence. At any vertex of the intersection it is clear

8



from the local structure which edge must be pursued next, as in Figure 8. The enext pointers tell us

which vertex appears �rst along the edge that is being currently pursued. We have �nished with the

current component when we come back to the vertex from which we started. It is then time to visit the

next intersection vertex and enumerating the next component. This lets us iteratively obtain all of the

components of the intersection in an output-sensitive time manner.

R

B

eR

eB

Union pnext

Intersection pnext

Figure 8: Computing the union and intersection of events

4.4 Computing the union

The union computation proceeds along very similar lines as the intersection. Figure 8 shows the local

behavior of the union and the intersection of polygons R and B with polygon interiors depicted by the

straight arrows. The only di�erence between the two cases is the behavior of the enext pointer: the two

cases are shown using curved arrows. In both cases, we use the convention that the interior of the polygon

is always to the left of the enext direction. The union has a single outer face and possibly multiple number

of holes. Our convention for the enext results in a counter-clockwise outer face and clockwise holes.

5 Stability of Intersection Features

In this section, we study the stability of features of the intersection. Features of the union can be handled

similarly. There are obviously two kinds of features: vertices, and components that can involve several

vertices. For each of these, stability refers the probability of occurrence, with the distinction of stable

features that always exist, and optional features otherwise.

5.1 Vertices

Checking if a vertex is compulsory is easily done when computing the approximation �
0

ij of �ij . If the

vertex is optional, a measure of its stability is the volume pij of �ij . Computing the exact value of this

volume seems di�cult since we do not have a description of its boundary. Getting an ("; �) approximation

~pij of pij using a Monte Carlo method (see [12, 4]) is also an open problem since �ij might in general be

non-convex. However, from a practical point of view, the following boot-strapping algorithm may give

satisfactory results:

1. First, get a rough estimate ~pij of pij as the fraction of points satisfying condition I over a sample

of 'reasonable' size uniformly drawn in [0; 1]6

2. Use ~pij in the estimator theorem (theorem 11.1) of [12] which in turn gives the sample size such

that ~pij is accurate within a factor � with a probability greater than 1� �.

For example, on the con�guration of �gure 3(b), an estimate on a sample of size 1000 gives ~pij = :543

while the corrected value according to a sample of size 11000 given by the estimator theorem for a (:05; :05)

approximation is ~pij = :549.

9



5.2 Components

We de�ne a sequence of red, blue and purple vertices forming a simple polygon intersection of the

original polygons as a component. Extending this de�nition is tricky. Indeed, as depicted on �gure 9(a),

a component can be stable while none of its vertices are. In a similar way, a component can be stable

while none of its edges are so: on �gure 10(a)(b), by continuously transforming the leftmost con�guration

to the rightmost one, we go from a con�guration where the intersection consists of the leftmost edge of

the vertical rectangle together with the rightmost edges of the rotated square, to a con�guration involving

the rightmost edge of the rectangle and the leftmost edges of the square. For these reasons, we constrain

the previous de�nition to a �xed sequence of edges from the two polygons. For example on �gure 9, there

are four di�erent components, f2; b; 1g; f2; b; c; 1g; f2; a; b; 1g and f2; a; b; c; 1g.

b ca d

21

3

1

2

3

a

b c

d
(a) (b)

Figure 9: Components, stable vertices and IVG graph

(b)(a)

Figure 10: Components and stable edges

Enumerating these components is di�erent from enumerating the set of all topologies of the inter-

section. Indeed, the later re
ects the local interference between red and blue edges, while the former

is the cartesian product of these. We therefore focus our attention on the computation of components

involving a given intersecting edge. We do not claim any bound on the running time of the algorithm

but just sketch it here. Let IVG be the intersection vertices graph that is the oriented graph de�ning

the possible intersections between edges of the two polygons as well as the connectivity between the red

and blue edges. Figure 9(b) depicts the IVG for �gure 9(a). The convention used to assign directions to

edges of IVG is the following: edge u points to edge v if a turn from u into v that has interior to the left.

The basic idea of the algorithm consists in considering each a cycle of IVG and checking if it corresponds

to a valid component. But any cycle is not a good candidate, since the following constraints need to be

satis�ed:

� Each turn must have the interior to its left.

� If an edge e of a polygon, say the blue edge, appears several times in the labelling, the red intersecting

edges must respect the order output by the Jordan sorting algorithm.

10



� The labelling must respect as much as possible, the 'locality' of the intersection sought. For example

on �gure 9(b), the word 2abc can be expanded as 2abc1 or 2abcd. But 2abcd is obviously not valid.

It is not clear however how to use this geometric information while generating good candidates

cycles.

6 Applications

We brie
y examine in this section two applications of the computations described in this paper and

list another one that requires Minkowski operations to be de�ned for toleranced polygons. For space

requirements, we omit the details and the reader is requested to refer to the cited papers.

6.1 Feasibility of assembly of two parts

A simple but instructive real life example on how useful operations between toleranced objects is the

following from [5]: a 
y �shing reel consists of a spool mounted on high quality bearings spinning around

a centre pin assembly. The hole in the centre of the reel has to be machined smaller than the bearing

so that when the reel is pressed in place interference is observed. Performing the intersection operations

between the di�erent parts of the reel (on a crosssection so that cylinders are represented as rectangles)

therefore turns out to be very useful: it gives the topology of the interference zones, which provides

feedback to the designer on how precisely the parts have to be milled depending on the type of material

used (aluminum in this case).

6.2 Assembly sequencing

As already mentioned in the introduction, results were obtained recently for assembly sequencing of

toleranced assemblies in [9] that de�nes the tolerance model we use. Without mentioning the details, the

authors propose two algorithms:

-one that lists all the assembly sequences that are always feasible, whatever the tolerance values are

-another that lists the sequences that may be feasible only for some combinations of the parameters.

A failure of the second algorithm means that no instance of the product is assemblable, which in

turns implies that there is a collision between two parts, or that the product is `intrinsically' infeasible

for assembly. In the �rst case, applying our intersection algorithm to the toleranced polygons gives the

parameters involved in the intersection. This is important because paying more attention to these parts

in the manufacturing process {that is reducing the tolerance zones, might solve the problem. Handling

the second case is much more di�cult and goes beyond the scope of this paper.

For the above applications, using polygons to model the input for union and intersection operations is

not very restrictive since most of the contacts between parts are either cylindrical or between 
at surfaces.

6.3 Collision detection

It is well known that one of the most elementary operations in robotics consists in computing the

Minkowski di�erence between robots and an obstacle that encodes the space of intersection free trans-

lations of the robot. In particular in con�gurations that contain degenerate input such as contacts,

tangencies, etc, collision checking on the toleranced objects may give additional information.

7 Conclusion

In this paper we presented data structures and algorithms for computing the intersection and union of

simple polygons with tolerances on edges. Given two polygons of sizes n and m whose edges give rise

to s intersections for all the combinations of the tolerances values, our algorithm pre-computes in time

O((m+n) log(m+n)+s) a search structure that takes O(s) space. Given speci�c values for the tolerances,

11



we use the structure to output the speci�c intersection or union in time O((m + n) log s + k
0

+ k log k)

where k is the output size and k � k
0 � s. Although the algorithm is not output sensitive, we show that

the expected values of k and k
0

remain within a constant factor � , a function of the input geometry. The

algorithm is easy to implement, practical, and we believe it works well for realistic input instances. Also,

several straightforward applications to feasibility of assembly and assembly sequencing are described.

Many di�cult issues still remain. Firstly, directly storing the semi-algebraic set describing the in-

tersection of toleranced edges may enable more e�cient processing of union and intersection queries.

Secondly, getting an (�; �) approximation for the volume of the semi-algebraic set is an open question.

At last, the problems remain unaddressed for the case when the tolerance model is extended to include

angles on the polygons. There is also scope for future work on computing convolutions and Minkowski

sums of toleranced polygonal objects.

Acknowledgments: The authors wishes to thank Cyprien Godard and Danny Halperin for helpful

discussions.

References

[1] B. Chazelle. Triangulating a simple polygon in linear time. Discrete and Computational Geometry,

6:485{524, 1991.

[2] B. Chazelle and H. Edelsbrunner. An optimal algorithm for intersecting line segments in the plane.

J. of the ACM, 39(1-54), 1992.

[3] P. Dagum, R. Karp, M. Luby, and S. Ross. An optimal algorithm for Monte Carlo estimation

(extended abstract). In 36th Annual Symposium on Foundations of Computer Science, pages 142{

149, Milwaukee, Wisconsin, 1995. IEEE.

[4] M. Dyer, A. Frieze, and R. Kannan. A random polynomial time algorithm for approximating the

volume of convex bodies. In ACM STOC, pages 375{381, 1989.

[5] W. H. ElMaraghy et al. Intersection volumes and surface areas of cylinders for geometrical modelling

and tolerancing. C.A.D, 26(1):29{45, 1994.

[6] Shiaofen Fang and Beat Br�uderlin. Robustness in geometric modeling | tolerance-based methods.

In Computational Geometry | Methods, Algorithms and Applications: Proc. Internat. Workshop

Comput. Geom. CG '91, volume 553 of Lecture Notes in Computer Science, pages 85{101. Springer-

Verlag, 1991.

[7] U. Finke and K. Hinrichs. Overlaying simply connected planar subdivisions in linear time. In 11th

ACM Symposium on Computational Geometry, Vancouver, 1995.

[8] K.Y Fung et al. Simpli�ed linear-time jordan sorting and polygon clipping. IPL, 35, 1990.

[9] JC. Latombe and R.H. Wilson. Assembly sequencing with toleranced parts. In 3rd ACM Symposium

on Solid Modeling and Applications, Salt Lake City, 1995.

[10] J. Lawrence. Polytope volume computation. Mathematics of Computation, 57(195):259{71, 1991.

[11] B. Moller. Tolerances in product modelling. Informatik, Informationen Reporte, 1991(5):4{52, 1991.

[12] R. Motwani and P. Raghavan. Randomized Algorithms. Cambridge University Press, 1995.

[13] J. Nievergelt and F. Preparata. Plane-sweep algorithms for intersecting geometric �gures. Commu-

nications of the A.C.M, 25(10), 1982.

[14] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction. Springer-Verlag,

New York, NY, 1985.

12



[15] U. Roy, C.R. Liu, and T.C. Woo. Review of dimensioning and tolerancing: representation and

processing. Computer Aided Design, 23(7):466{83, 1991.

[16] V. Srinivasan. Recent e�orts in mathematization of asme/ansi y14.5m standard. In 3rd CIRP

seminars on computer aided tolerancing, Ed. Eyrolles, Paris, 1993.

[17] R.K. Walker and V. Srinivasan. Creation and evolution of the asme y14.5.1 standard. Manufacturing

Review, 7(1), 1994.

[18] N. Wang and T.M. Ozsoy. A scheme to represent features, dimensions, and tolerances in geometric

modeling. Journal of Manufacturing Systems, 10(3):233{40, 1991.

13


