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Abstract

Abstraction has proven to be a powerful tool for controlling the combinatorics of a problem-

solving search. It is also of critical importance for learning systems. This research develops

a set of abstraction techniques which provide a problem solver with a domain-independent

weak method for abstraction. The method allows the problem solver to: (1) automatically

determine when to abstract; (2) automatically determine what to abstract, and dynami-

cally create abstract problem spaces from the original domain spaces; and (3) provides the

problem solver with an integrated model of abstract problem-solving and learning.

The abstraction method has been implemented and empirically evaluated. It has been

shown to: reduce planning time, while still yielding solutions of acceptable quality; reduce

learning time; and increase the e�ectiveness of learned rules by enabling them to transfer

to a wider range of situations.

The core idea underlying the abstraction techniques is that abstraction can arise as an

obviation response to impasses in planning. This basic idea is used to reduce the amount of

e�ort required to perform look-ahead searches during problem solving (searches performed in

service of a control decision, during which the available options are explored and evaluated),

by performing abstract search in problem spaces which are dynamically and automatically

abstracted from the ground spaces during search. New search control rules are learned

based on the abstract searches; they constitute an abstract plan the problem solver can use

in future situations, and are used to produce an emergent multi-level abstraction behavior.

Although this basic abstraction method is broadly applicable, it is too weak and does

not yield good performance in all of the domains to which it is applied. In response to

this, several domain-independent method increments have been developed to strengthen the

method; added to the basic abstraction method, they have succeeded in making tractable

a number of problems which were intractable with both non-abstract problem-solving and

the simpler weak abstraction method. The two primary method increments are called
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assumption counting and iterative abstraction.

Assumption counting involves adding a component to the plan evaluation function that

counts the number of times the ground domain theory was reformulated before a solution

was reached. This is a measure { though not an exact one { of the amount of instantiation

that will be required of the abstract plan, and enables abstract detection of interactions

between subgoals.

Iterative abstraction can be viewed as a search through a space of plans at varying

levels of abstraction. It uses a heuristic which suggests that in the absence of more speci�c

knowledge, a useful level of abstraction for a given control decision during problem solving

is that at which one of the choices at the decision appears clearly the best. Implementation

of this situation-dependent heuristic enables a unique approach to abstraction creation,

during which the problem solver combines selection and synthesis by experimenting with

successively less abstract versions of a situation in an e�ort to estimate the most abstract

(hence cheapest) level of description at which useful decision-making can still occur for a

situation. With the iterative abstraction method increment, more e�ort is spent in searching

for the initial abstract plan, so as to increase the chances of being able to e�ectively and

e�ciently implement it.

Using iterative abstraction, upon making a decision about the level of abstraction it

considers appropriate for a particular situation, the system learns plan fragments for the

situation at that level of abstraction. Thus, the system accumulates plans containing infor-

mation at multiple abstraction levels. In new situations, the context determines the level

of abstraction of the plans used.
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Chapter 1

Introduction

As the �eld of AI matures, there has been a growing realization that it is di�cult

to solve problems of any complexity without abstracting away at times from the full

detail of a problem. The general planning problem has, for example, been shown

to be intractable [Chapman, 1987]. Abstractions of a task can provide a system

with a \general picture" of a problem with less e�ort than needed to solve the full

problem, and thus suggest heuristics about how to solve the original task. Therefore,

the generation as well as the use of abstractions is of much interest.

This thesis will describe an integrated set of methods for both creating abstractions

and using them during problem solving. Before the method is introduced, however,

we will give some background on the di�erent general categories of abstractions, and

some of the issues which can arise with their use.

1.1 Background

Informally, an abstraction can be described as a mapping of a representation of

a \ground" problem into a more abstract representation of the problem in which

some details of the ground problem are removed, such that more than one ground

problem can map to the same abstract problem. E.g., ground and abstract prob-

lems may be represented as axiomatic systems, in which are speci�ed a language; a

set of true statements, or theorems, in that language; and a deductive mechanism

1
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Figure 1.1: Search expense often increases exponentially with search depth. (The
dark nodes indicate a solution path in the search tree).

(not necessarily logical deduction) by which other true statements can be generated.

An abstraction is then such a mapping from one system to another [Plaisted, 1981;

Giunchiglia and Walsh, 1990a]].

The utility of an abstraction mapping is that information obtained by problem-

solving in an abstract space can then be used to guide the problem-solving in a

corresponding ground space, thus reducing the combinatorics of the ground-space

search. For a graphical representation of this process, consider the following set of

�gures. Figure 1.1 shows what a non-abstract problem search might look like. If the

branching factor of the search is relatively constant, then the search expense will on

average increase exponentially with search depth.

Using an abstraction mapping, the non-abstract problem representation can be

mapped to a more abstract one, and the abstract problem solved using the operations,

or theorems, of the abstract representation. If the search depth in the abstract space is

shallower (because the abstract operations require fewer steps to achieve an (abstract)
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Figure 1.3: The results of abstract problem-solving can serve to constrain search in
more detailed spaces. E.g., abstract states can map to subgoals in the ground space
(suggested by the dark circles), and abstract operators can be used to constrain
information about which ground-space operator(s) are considered at a search point
(suggested by the dark lines).
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1.1.1 Classes of Abstractions

First, abstraction mappings fall into three general categories. Mappings can be com-

plete (the abstraction of any ground theorem, or result, is a theorem in the ab-

stract space) but not necessarily correct with respect to the ground space (there

may be theorems in the abstract space which do not correspond to any theorem

in the ground space). Or, they can be correct but not necessarily complete (all

theorems in the abstract space are abstractions of ground-space theorems, but not

all ground-space theorems necessarily have corresponding theorems in the abstract

space). Alternatively, they may be both complete and correct. [Giunchiglia and

Walsh, 1990a] name these three kinds of mappings Theorem-Increasing, Theorem-

Decreasing, and Theorem-Constant abstractions, respectively. Equivalently, [Tenen-

berg, 1988] de�nes Theorem-Increasing abstractions as having an \upward solution

property", and Theorem-Decreasing abstractions as having a \downward solution

property". Examples exist of systems which use all types of abstractions; see Chap-

ter 8 for descriptions1. Knowledge of which category an abstraction falls into can be

used to help interpret the success or failure of an abstract search with respect to its

corresponding ground search. E.g., when applying a Theorem-Increasing abstraction

to a problem, a proof that there was no solution to the abstracted version of the

problem would imply that no non-abstract solution existed as well.

Second, the information available from the abstract search can be used to di�erent

extents in the ground space. If the structure of the abstract problem-solving is not

expected to bear a resemblance to the structure of the more detailed problem-solving,

then it might make sense to make use of just the result, or output, of the abstract

search. However, if the structure of the abstract search is expected to bear some

similarity to the ground-space search, then information about the intermediate steps

of the abstract solution may be used as well. The greater the amount of abstract

information usable in the ground space, the greater the extent to which the abstract

search can constrain the ground search.

1It is also possible to construct abstractions that are both incomplete and incorrect.
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1.1.2 Proof-Increasing Abstractions

A particularly useful subclass of Theorem-Increasing, or TI-Abstractions, has been

identi�ed. These abstractions have been called Proof-Increasing Abstractions (or

PI-Abstractions) [Giunchiglia and Walsh, 1990a; Giunchiglia and Walsh, 1990b], and

preserve the structure of proofs. PI-Abstractions are of utility because all of the steps

of an abstract proof can be used to guide the production of a more detailed proof2;

thus, they allow a large amount of abstract information to be used in the ground

space.

To de�ne PI-Abstractions, Giunchiglia and Walsh �rst introduce a de�nition of

tree subsumption. Informally, an abstract proof tree �2 subsumes a ground proof tree

�1 if all w�s in �2 are in �1, with the same global ordering (the \below", \above", and

\adjacency" relations are maintained). Tree subsumption is a monotonicity property

on the depth, the number of formulae occurrences, the ordering of w�s, and the

branches of the proof trees.

Let f be an abstraction mapping from a non-abstract system to an abstract sys-

tem, � be a proof tree constructed in the non-abstract system, and f(�) be the tree

constructed by applying f to every node in �. An abstraction is then classi�ed as a

PI-Abstraction i� for any non-abstract proof �1 of a theorem ' in the non-abstract

system, there exists a proof �2 of f(') in the abstract system such that �2 subsumes

f(�1). This property holds across multiple levels of abstraction (an abstraction hi-

erarchy), when all levels of the hierarchy are PI-Abstractions. As an example, the

abstractions produced by ABStrips [Sacerdoti, 1974] (further described in chapter 8)

are PI-Abstractions.

Similarly, Knoblock [1991], de�nes a class of abstraction mappings in which a

set of literals of a non-abstract language are removed from the language, states, and

operators of the non-abstract system to produce an abstract system. He then shows

that for this class of abstraction mappings, the existence of a ground-level proof

implies the existence of an abstract proof that can be re�ned into a ground-level

solution while leaving the established literals in the abstract plan unchanged (again,

2The term \proof" does not necessarily refer to the result of using logical deduction, but is used
more generally to refer to the result of using any deductive mechanism.
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this result holds for abstraction hierarchies as well as for a single abstract level).

These abstractions are then said to have the monotonicity property, and in fact are

PI-Abstractions3.

To make use of the structure of a PI-abstract proof of a problem, the abstract

proof must �rst be \unabstracted". This can be done by constructing a ground-

level \skeleton proof" or schema whose abstraction equals the abstract proof. There

may be more than one such schema, but representations can be used which allow

the ground-level system to reason about the range of possible unabstractions. For

example, an abstract state may map back to more than one non-abstract state, but

may be represented in the ground system as a subgoal which is satis�ed when one

such non-abstract state is reached. Or, the operators used in the abstract proof

may provide information about which ground-level operators or sets of operators to

consider at various points in the ground-level search. Figure 1.3 in fact shows a

PI-Abstraction and suggests both these processes.

The problem solver can then attempt to re�ne, or �ll in, the skeleton proof; the

skeleton proof serves to guide and constrain the way in which the problem solver will

try to �nd a ground-level solution to the problem, therefore reducing search. Note that

because PI-Abstractions are Theorem-Increasing abstractions, it is not guaranteed

that a re�nement will exist for every abstract proof. However, it is guaranteed that

a re�nement will exist for some abstract proof, such that a ground solution may

be constructed by monotonically adding to the abstract proof without deleting or

\moving" any of the abstract proof steps.

The abstract proof provides ordering information about some of the components in

the ground-level solution, but does not in itself specify how the problem solver will use

the information. For example, if the states of the abstract proof were to be mapped

to a series of ground-space subgoals, this information might be interpreted by the

problem solver as specifying an ordering on subgoal achievement, but still allowing in-

terleaved work on more than one subgoal at once. Alternatively, the series of subgoals

might be interpreted by the problem solver as a series of independent subproblems,

3Knoblock further describes a subclass of such mappings which have a stronger property; that of
ordered monotonicity. This work is discussed in Chapter 8.
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each achieved before the next is begun. This is the approach taken by many systems

(see Chapter 8). The assumption of subgoal independence allows a best-case exponen-

tial reduction in search complexity from the abstract to the ground space [Korf, 1987;

Knoblock, 1991]. However, with PI-Abstractions it is not guaranteed, for an arbitrary

domain and abstraction, that a ground solution is reachable by assuming subgoal in-

dependence; thus this is not always a reasonable assumption.

The interpretation of an abstract solution in the less abstract space (e.g., whether

or not the subgoals generated by the abstraction are treated as independent) is often

viewed as being part of the abstraction method. However, this need not be the case.

As will be illustrated in this thesis, the use of abstraction may be implemented such

that the re�nement of an abstract proof is in
uenced by the various problem-solving

methods that a problem solver uses for a task; thus, a systemmay implement di�erent

re�nement approaches at di�erent times, as appropriate in di�erent domains.

1.1.2.1 Multiple Levels of Abstraction

Thus far we have discussed the use of just one abstraction level, but in fact multiple

levels of abstraction may be used for a problem, with each level guiding the re�nement

of more detailed level(s). The use of multiple abstraction levels can constrain the total

search e�ort to a greater extent than is possible with just one level [Korf, 1987]. With

PI-Abstractions, if each abstract solution step is interpreted as de�ning an indepen-

dent subgoal for more detailed problem solving, and with optimal abstraction mapping

characteristics { e.g., with respect to the number of abstraction levels and the amount

of re�nement required at each abstraction level { it is theoretically possible to reduce

the search complexity to linear in the length of the ground-level solution [Korf, 1987;

Knoblock, 1991]. In practice this rarely occurs, except in domains of extreme regu-

larity.

Many existing abstraction problem solvers | problem solvers which use abstract

planning to guide more detailed problem-solving | in fact use some form of PI-

Abstraction. Often, such abstractions are called \approximation" abstractions. Pre-

condition relaxation abstractions (in which certain preconditions of operators in the
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non-abstract system are removed from the operator descriptions in the abstract sys-

tem) are one type of commonly-used PI-Abstraction, as are abstractions in which

literals are removed from the states and operators of a problem space.

1.2 Contributions of the Dissertation

In this thesis, we have developed a problem-solving method for automatic abstraction

called Spatula, which creates and uses PI-Abstractions. Spatula is implemented

in (and is motivated by) the Soar general problem-solving architecture [Laird et al.,

1987a; Rosenbloom et al., 1991a]. Although some systems hard-wire particular behav-

iors into their architectures, with Soar all problem-solving methods are determined by

the knowledge in Soar's memory{ di�erent knowledge can produce di�erent problem-

solving methods. Consistently with this approach, Spatula does not require any

modi�cations to the Soar architecture, but rather is implemented by providing Soar

with knowledge about how to abstract. That is, the problem solver, using the knowl-

edge provided by Spatula, acquires the capability to create and use abstractions.

In this section, the contributions of the thesis are �rst introduced. Then, in

Section 1.3, an overview is given of the approach used to achieve the contributions

and produce Spatula's abstraction behavior.

1.2.1 General Weak Method

Spatula is designed to be a general weak problem-solving method for abstraction

[Laird et al., 1987b].

Weak methods are a class of problem-solving methods which require little domain-

speci�c knowledge about a task. Thus they are applicable in most problem domains

in the absence of (or in conjunction with) more domain-speci�c knowledge. By de�-

nition, although weak methods are useful in a wide range of situations, their limited

operational demands sometimes translate into poor performance; they are not guar-

anteed to work well in every domain in which they are applicable. Hill climbing

[Nilsson, 1980] is an example of such a weak method; with hill climbing, the problem
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solver makes a next move based on a local estimation of the situation. While this may

not always be an optimal strategy, it is one which may be used for many problems,

and can often allow a problem solver to make progress when more domain-speci�c

methods are not available.

Spatula, as a general weak method, has been designed to:

� increase problem-solving e�ciency;

� produce good solutions4;

� allow a system to learn more easily from its problem solving | that is, require

less e�ort to build new knowledge about its tasks;

� and increase the transfer of learned knowledge to new situations.

By specifying when and how to abstract, Spatula allows Soar to become a system

with an integrated framework for learning, using, re�ning, and repairing abstract

plans, and to accomplish the goals above via this framework. Because it is a weak

method, Spatula may not meet these goals for every task to which it is applied.

However, amortized over all the problem instances to which the method is applied,

we would like these goals to hold.

Using Spatula, the problem solver exhibits the following characteristics.

1.2.2 Automatic Determination of When to Abstract

Using Spatula, the problem solver only abstracts when necessary. Most other ab-

straction planners use abstraction in all situations | that is, given a task, problem-

solving is always �rst carried out in an abstract space and then the abstract results

used for more detailed problem-solving. However, in some situations a problem solver

may know exactly what to do and may not need to use abstraction planning to pro-

vide search heuristics. In these cases its use would only generate unnecessary com-

putation. Therefore, the problem solver should use abstraction planning only when

4The de�nition of \good" will be elaborated upon in the following chapters; however, the solutions
produced using the abstraction method should at the least be better than those produced when the
problem solver makes a choice at a control impasse based only upon its preexisting search control
knowledge about the situation.
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existing search control is not su�cient to allow it to make progress on a task; there

is no need for it to abstract in situations when it already knows what to do next.

1.2.3 Automatic Determination of What to Abstract

Most previous abstraction research has used abstraction mappings which are gener-

ated by a human designer. Such abstractions can be very e�ective, since much work

can be done to tailor them so that they focus on the most important aspects of a

problem. However, because they must be tailored to a domain by a human designer,

a dependency upon them is restrictive. Clearly, if a problem-solver is able to gen-

erate its own useful abstractions, this will be an advantage in situations for which

abstractions have not been provided.

To be a weak method, Spatula must be able to provide information to the

problem solver about how to automatically construct its own abstractions; the system

should not be dependent upon abstraction information from a human designer. In

addition, as a weak method, Spatula should depend as little as possible upon speci�c

descriptive information about its domains, since such information may not always be

available. The greater the extent to which this is the case, the wider the range

of situations in which the method will be usable. This dissertation describes an

automatic abstraction method which constructs PI-Abstractions { using precondition

relaxation { from a domain's original non-abstract problem spaces. It does not require

that abstract problem spaces be provided, or that changes be made to the problem

solver's architecture.

There has been a recent and growing body of work towards the automatic gener-

ation of abstractions (some such systems are discussed in Chapter 8). The research

has primarily been focused on developing abstractions by performing pre-task anal-

yses of a problem-solving domain; that is, before problem solving is initiated. Such

analyses make certain demands on the system's knowledge about its domains and

usually require a new \module" attached to the problem solver to perform the anal-

ysis. For example, some automatic abstraction methods, such as [Christensen, 1990;

Benjamin, 1989; Ellman, 1988; Knoblock, 1989; Tenenberg, 1988], derive abstractions

before problem solving for a task begins, based on a description of the domain and
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task.

The abstraction method described here draws on a di�erent source of knowledge,

that of di�culties encountered while problem solving, and enables a unique approach

to dynamically generated abstract problem spaces and abstraction levels; it does

not assume access to declarative descriptions of task domains. This thesis does not

claim that Spatula's approach is to be a replacement for more knowledge-intensive

methods of generating abstractions, but that it serves a di�erent purpose. Because

Spatula's source of knowledge is obtained during problem solving, it may be available

when more declarative descriptions of the domain problem spaces are not (or when

there is not an opportunity to do pre-task analysis).

1.2.3.1 Context-dependent Selection of Abstraction Level

An important component of Spatula's weak-method approach is the implementation

of a heuristic which the problem solver uses to help it dynamically determine the

abstractions used in a given situation. This heuristic (called iterative abstraction)

suggests that in the absence of more speci�c knowledge, a useful level of abstraction

for a given control decision during problem solving is that at which one of the choices

at the decision appears clearly the best. Implementation of this situation-dependent

heuristic enables a unique approach to abstraction creation, during which the problem

solver experiments with successively more detailed versions of a situation in an e�ort

to estimate the most abstract (hence cheapest) level of description at which useful

decision-making can still occur for a situation.

1.2.4 Integration of Abstract Problem-Solving

and Learning

Until recently, abstraction planning research and learning research have been almost

entirely disassociated; there has been very little exploration of the ways in which a

system can learn from its abstract problem solving, and then use the information

that it has learned in new situations. However, it is easy to see the utility of such an

ability. Such an approach has interest not only for e�ciency reasons (abstract plans
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don't have to be re-discovered in the future), but because of the kind of learning that

may occur.

Soar is able to learn from its problem-solving experiences; in fact, in Soar all learn-

ing occurs as a result of problem-solving activity. Soar's capabilities allow Spatula

to utilize a uniquely integrated approach to learning about and using its automatically

generated abstractions.

Learning produces abstract plans which are inductively generalized from the ground-

level domain theory; thus Spatula provides the systemwith the capacity for knowledge-

level learning [Rosenbloom et al., 1987; Rosenbloom et al., 1991b; Dietterich, 1986].

The cost of building abstract plans is less than for their non-abstract counterparts,

and the abstract plans are applicable in a wider range of situations.

The abstraction process creates abstract plans at multiple levels of abstraction.

The level of abstraction used to guide a given decision is context-sensitive; plans from

di�erent levels of abstraction may be applied simultaneously to di�erent aspects of the

same situation as appropriate. The abstract plans are indexed, re�ned, and repaired

in a situated manner, producing an emergent multi-level abstraction behavior.

1.2.5 Implementation and Empirical Evaluation

One goal of this research was to examine how much \mileage" could be obtained

by the use of such a weak-method approach | what could be accomplished with

minimal declarative information with which to analyze the domains. The Spatula

abstraction techniques, implemented in Soar, were empirically evaluated in three

distinct domains. The experimental results showed that Spatula was able to meet

the goals of its weak-method approach.

1.3 Overview of Approach

This section gives an overview of Spatula, and the way in which it achieves the

contributions presented in the previous section. This description is in several parts.

The �rst part outlines a technique for dynamically and automatically abstracting a
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domain's problem spaces in a domain-independent fashion, and then describes the way

in which this basic abstraction technique may be used by a problem solver to produce

an integrated model of abstraction use. Next, we describe several augmentations to

the basic abstraction method, called method increments. The method increments

| in the form of additional knowledge given to the problem solver | modify and

increase the utility of the basic abstraction method by obtaining more information

from the problem-solving context, while allowing the abstraction process to remain

domain-independent.

Spatula, as a set of techniques, encompasses both the basic abstraction method

and its method increments. (However, as will be seen below, it is not required that

all of Spatula's capabilities be used simultaneously by a problem solver.)

1.3.1 The Basic Abstraction Method

1.3.1.1 Soar

As discussed above, Spatula is implemented in the Soar problem-solving architecture

[Laird et al., 1987a; Rosenbloom et al., 1991a], and motivated by its capabilities.

In Soar, problems are solved by search in problem spaces, in which operators are

applied to yield new states. Long-term knowledge is represented in the form of rules.

Inadequate knowledge about how to proceed in a situation produces an impasse,

which the system tries to resolve by problem solving in a subgoal generated to resolve

the impasse. Further subgoals may be recursively generated. A control impasse is a

particular type of impasse which occurs if the problem solver is in a situation where

more than one option exists for its next action, and it does not know what to do next.

Learning occurs in Soar by converting the results of subgoal-based search into new

long-term memory rules which generate comparable results under similar conditions,

so that in the future the system has compiled knowledge about what to do in relevantly

similar situations. Soar's learning technique is a variant of explanation-based learning

[Rosenbloom and Laird, 1986; Mitchell et al., 1986].

The Soar architecture does not need to be altered to implementSpatula. Rather,

new domain-independent information is added to Soar's long-term memory to tell it
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Figure 1.4: A simple Robot Domain task.

when and how to abstract. These new abstraction rules then work in conjunction

with domain knowledge to produce abstract problem-solving behavior.

The abstraction method is presented using Soar's general problem-solving frame-

work, but the ideas behind the method are not Soar-speci�c, and are applicable to

other problem solvers which perform search in problem spaces and apply explanation-

based learning techniques. This will be further discussed in Chapter 9.

1.3.1.2 The Context in which Abstraction Occurs

Spatula is used during problem solving to reduce the amount of e�ort required to

perform lookahead, or projection, searches. These are searches performed towards the

resolution of a control impasse, during which the implications of choosing each of the

available options are explored and evaluated in turn. Without specifying yet how

this occurs, the lookahead searches are performed abstractly; within lookahead, the

abstract problem spaces are created from the original spaces as the search proceeds.

Figure 1.4 shows a simple task in a robot domain, and Figure 1.5 shows a typical

control decision which might be encountered while carrying out the task. At some

point during problem solving, a control impasse may be reached (indicated by a \?")
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Figure 1.5: The Abstraction Context.
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because the problem solver can not decide how to get Robot1 into RoomB. The options

in this example include moving Robot1 into RoomB from RoomA, and having Robot1

push a box into RoomB (although we have not described the operators used in this

�gure, their e�ects should be intuitive from their names). Other options might include

moving the robot through RoomD, etc. The problem solver will, for each of its options,

generate a subgoal (marked \E") to evaluate the option. Typically, it will perform

these evaluations using some form of lookahead search. A decision will then be made

based on these evaluations, thus resolving the control impasse (in this example, the

choice was made to move the robot into RoomB from RoomA).

Using Spatula, the lookahead searches on which the evaluations are based are

performed abstractly rather than in full detail. If the abstract lookahead searches

take less time than non-abstract searches, then the control decision will be made

more quickly and tractably (though it might not necessarily be correct). Execution

of the task will then continue from that point. If a new control impasse is generated,

then abstract search can occur again. Note that the system does not abstract unless

it has reached a control impasse; in parts of a task for which it has adequate search

control to guide problem solving, abstraction is unnecessary and will not be used.

1.3.1.3 Basic Abstraction Technique: Precondition Abstraction

Using Spatula, the problem solver abstracts its lookahead searches in the following

basic manner. If the problem solver is searching in a context in which it wishes to

abstract, then it does so by dynamically abstracting any unmet operator-precondition

impasses (impasses generated because a precondition is not achieved) of the operators

that it applies. For instance, during abstract search in the example above, the problem

solver would abstract an unmet precondition of the \go-through-door" operator which

required that the robot be \next to" the door.

The unmet-precondition impasses are abstracted by having the problem solver

\assume" that the preconditions have been met, terminating the unmet-precondition

impasses, and applying its operators as best as possible. When operator precondi-

tions are abstracted, partial operator application may occur if there is not enough

information available for the operator to apply completely. As a result of such partial
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operator application, abstract states | with incomplete or incorrect information |

may be generated. Therefore, as the lookahead search continues, further problem

solving will be most useful if the domain operators can still be appropriately selected

given the abstract states, and if they can be partially applied when there is not enough

information for full operator application.

If the domain operators are in fact able to be appropriately selected and partially

applied from an abstract state, the deliberate precondition abstractions will propagate.

In this way, a dynamic reformulation of the original non-abstract problem space

occurs during lookahead search, creating an abstract space on the 
y. No special

\abstract" problem spaces or operators need to be supplied for this to occur, nor are

any architectural changes to the problem-solver necessary.

A set of domain-independent problem-space design guidelines has been developed

which, when followed, facilitates the problem solver's ability to proceed with problem

solving in a useful manner within a dynamically abstracted space. The guidelines

make primarily syntactic suggestions about how the domain knowledge should be

represented in memory. It is not required that these guidelines be followed for ab-

straction to take place; however, if the guidelines are followed the abstract search is

more likely to be useful.

The initial abstractions produced by Spatula are PI-Abstractions; more specif-

ically, they are precondition-relaxation abstractions, such as those used by ABStrips

[Sacerdoti, 1974]. Further propagation of the abstractions via partial operator appli-

cation can create reduced states as well. Spatula's abstractions di�er in several ways

from those of other systems which use precondition relaxation. For example, with

Spatula the abstract problem spaces are not created ahead of time via predicate re-

moval, but rather are created dynamically. In addition, the abstractions are created

for an operator instance (an operator schema with its parameters instantiated) at a

particular state, rather than more globally (e.g., for all instantiations of an operator

schema, or for an operator instance across all states). This approach allows a greater


exibility and context-sensitivity in the types of abstractions which can occur.
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1.3.2 Using the Abstract Searches

The basic abstraction method described above can be used by the problem solver to

learn and re�ne abstract plans at multiple levels of abstraction.

1.3.2.1 Learning from Abstract Search

In Soar, new search control rules are learned during the process of resolving a control

impasse5. Using Spatula, abstract look-ahead search will yield abstract, or general-

ized, search control rules. This is because the \explanation" of the control decision,

used to construct the new rules, includes fewer problem details when abstraction is

used. The abstract search constructs an explanation using an abstract, dynamically

reformulated theory (generated during the abstract search), and the new search con-

trol rules are learned by backtracing over the explanation for the reformulated theory

rather than the original one.

Because the abstract explanations are simpler, the backtracing process is simpler

as well. Thus, the abstract rules are easier to learn, and apply in a wider range of

new situations. Although the abstract rules are based on deductive consequences

of the reformulated abstract theory, they are inductively generalized with respect to

the original domain theory. Soar's learning mechanism remains unchanged. Thus,

the abstraction process illustrates that deductive learning mechanisms such as EBL

can provide inductive concept learning; the abstractions provide the system with a

learning bias [Rosenbloom et al., 1992; Ellman, 1990; Bennett, 1990b; Knoblock et

al., 1991]. Spatula was in fact the �rst system to learn inductively via abstract

search using EBL.

The learned abstract rules form an abstract plan. To see this, consider that the

accumulation of new search control rules may be viewed as the incremental con-

struction of a plan. Such a plan is not a monolithic declarative structure to be

interpreted by the problem solver. Rather, in relevantly similar future situations, the

learned search control rules will reactively apply to provide guidance6. (Examples of

5More exactly, new rules are learned whenever results of the subgoal search are added to the
parent goal.

6See [Rosenbloom et al., 1992] for a more detailed general discussion of plans and planning in
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other systems which take a similar approach to plan use include [Minton et al., 1989;

Drummond et al., 1992].) If lookahead search has been abstract, then the learned

plan will be abstract as well. If abstraction has been used for only a portion of a task,

then the plan may be partially abstract.

1.3.2.2 Abstract Plan Re�nement and Repair

Once a decision is made for an impasse such as that shown in Figure 1.5, ground-

space execution continues. The abstract plans learned while resolving the impasse

will apply in the non-abstract space and serve to constrain the more detailed search.

Plan re�nement and repair occurs in a situated manner. If an abstract plan does

not cover all details of a task | whether because a detail has not yet been worked out

or because an abstract plan no longer matches the current situation | then further

control impasses will be generated in response to the gaps. The problem solver will

again do abstract planning to resolve these new impasses. The new abstract searches,

�lling in the gaps in the plan, will tend to address more detailed aspects of the task

than did the previous searches.

The problem-solver interleaves planning and execution in this manner | it does

not need to have a full plan for the current task before beginning execution. (The

implications of such an interleaved approach are discussed in Chapter 4). As further

plan details are successively worked out, a form of multi-level abstraction occurs.

1.3.3 Finding a useful level of abstraction:

Method Increments

A problem with the abstraction technique as presented thus far is that abstracting all

unmet preconditions during look-ahead search is often too extreme; too much infor-

mation is lost, and therefore the decisions based on the abstract search are not always

useful. Thus, the system needs to obtain more information about the abstractions it

is making, while making no further demands on the knowledge available to it.

Soar.
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To address the problem of making more discriminate abstractions without domain-

speci�c knowledge, �ve method increments, or augmentations to the basic weak

method, have been developed. The method increment knowledge | when added

to the \basic" abstraction method knowledge used by the problem solver | produces

new abstraction methods which use more information about the global problem-

solving state than does the basic method, though still making only limited demands

on knowledge about the problem domain.

The two primary method increments developed as part of Spatula are called

assumption counting and iterative abstraction. These method increments combine

synergistically with each other, and allow the system to use abstraction e�ectively in

a broader range of situations. They accomplish this by obtaining leverage from the

problem-solving context itself; as was the case with the basic abstraction technique,

they are driven by the problem solving process.

1.3.3.1 Assumption Counting

With the assumption-counting method increment, existing domain evaluation crite-

ria are combined with a meta-evaluation based on the number of assumptions, or

abstracted preconditions, required to complete an abstract search. The new com-

bined evaluation is used instead of the domain function to compare the results of the

abstract lookahead searches for each option.

Assumption counting is a relatively simple but surprisingly e�ective method incre-

ment. Without requiring semantic knowledge about operator preconditions, it o�ers

a measure (though not an exact one) of the relative di�culty of instantiating the

abstract plans discovered during search. It also provides an estimate of the relative

amounts of subgoal interaction (both useful and detrimental) in di�erent subgoal

orderings. This approach bears a similarity to work done in abduction research

to estimate which abductive explanation (that is, which set of hypotheses) is most

appropriate. Some examples of such systems will be discussed in Chapter 8.
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1.3.3.2 Iterative Abstraction

The iterative abstraction method increment is based on the hypothesis that if the

problem-solver can't distinguish between the results of evaluating two options at a

control impasse, it's operating at too high a level of abstraction. Another way to

state this is that with iterative abstraction, the problem solver uses the heuristic that

a useful level of abstraction for a particular control decision is that at which it can

discriminate among its options.

The iterative-abstraction technique uses the following general algorithm: The

system �rst tries to resolve a control impasse while evaluating the candidate options

with much of the problem detail abstracted. If this provides insu�cient information to

completely discriminate between options, then rather than making a random choice,

it re-evaluates those options which looked the best at an increased level of detail (it

does not reconsider the options which looked worse). The problem solver continues

to iterate, increasing the level of detail at each iteration, until it is able to distinguish

between the remaining options (or ascertain that they are equivalent for its purposes).

As discussed in Section 1.3.2.1, the problem solver learns search-control rules as

a result of the abstract evaluations. A search control rule is learned each time the

problem solver is able to distinguish between a pair of options. This can happen at

any iteration cycle | at each iteration, some options may be ruled out. Therefore,

during the process of making a single control decision, search control rules may be

learned at varying levels of abstraction. The problem solver is acquiring, during

problem solving, context-sensitive information about the amount of detail expected

to be useful in making various decisions. Thus, it is learning about what abstractions

to use.

Using iterative abstraction, more e�ort than with the basic abstraction method is

being spent searching for an initial abstract plan, so as to increase the chances of being

able to e�ectively and e�ciently implement it. The process is related to traditional

multi-level planning, but the multiple levels occur here in service of creating the

abstract plan, rather than instantiating it.
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1.3.3.3 Additional Method Increments

In addition to the method increments described above, three other method incre-

ments were developed. The extended plan use method increment, which is used with

iterative abstraction, allows the system to deliberate about the extent to which it will

use its abstract plans, and to di�erentiate between plan fragments learned at di�erent

iteration levels so as to use only the most detailed available. Two additional method

increments | goal achievement iteration and the abstraction-gradient method incre-

ment | reduce the abstract search complexity while employing heuristics about how

to focus on the most relevant aspects of the search.

1.4 Guide to Thesis

The remaining chapters describe and evaluate Spatula. Chapter 2 describes the

foundations of Soar necessary to understanding the implementation of Spatula.

Chapter 3 describes how Spatula is used to dynamically create abstract problems

spaces from the given ground-level spaces during problem solving. Chapter 4 dis-

cusses how the problem solver uses the basic abstraction method in an integrated

approach to abstract problem-solving. Then, Spatula's abstraction method incre-

ments are described in Chapter 5 and a complexity analysis is given of the abstraction

problem-solving framework.

Chapters 6 and 7 describe the results of the empirical evaluation of Spatula in

three experimental domains. Chapter 8 describes other research related to Spatula.

Chapter 9 discusses research issues, outlines future work, and concludes.



Chapter 2

Overview of Soar

The Spatula abstraction methods are implemented for the Soar general problem-

solving architecture [Laird et al., 1987a; Rosenbloom et al., 1991a], and motivated by

its capabilities. Thus, in the chapters to follow, Spatula will be described within

the context of a Soar-like problem solver. Towards that end, an overview of those

aspects of Soar important to the thesis is given here.

2.1 Introduction

Soar performs goal-oriented problem solving. Essentially, this means that whenever

Soar becomes stuck while trying to perform a task, it sets itself a subgoal to get

itself unstuck. Soar's goals can be generated recursively: while working to solve one

problem-solving impasse, new subgoals may be generated to resolve new di�culties.

Soar is based on the hypothesis that all symbolic goal-oriented problem-solving

behavior may be represented in terms of problem spaces, where a problem space

is de�ned by a set of (possible) states and a set of operators [Newell, 1990]. The

states represent situations, and the operators represent actions which, when applied

to states, produce new (changed) states. A problem space thus can be viewed as

representing a context in which a task or subtask will be attempted. A domain may

be described by one or many problem spaces, each with its own set of operators

associated with it, and each used at appropriate points during problem-solving to

24
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achieve a part of a given task.

When given a new goal or subgoal to achieve, Soar must �rst decide what problem

space it will choose for the situation. This serves to focus and constrain the system's

problem solving to that which is relevant for the task at hand. Once a problem space

is selected, Soar applies operators to states within that problem space in an e�ort to

move towards its goal. Knowledge may be available in Soar's memory to help it decide

what actions to take. If this knowledge turns out to be insu�cient at some point,

creating a di�culty in deciding what to do next, a subgoal will be generated to resolve

the di�culty. This new subgoal might require an entirely di�erent problem-solving

approach than that used in the �rst problem space. A problem space will again be

selected for the new subgoal | this problem space may be the same as that used

for a previously-generated goal, or it may be di�erent, with its own operators and

legal states. (E.g., a problem space to parse an English sentence might be supported

by problem spaces used to interpret the semantics of words in the sentence [Lewis,

1992].)

All of Soar's problem-solving activity takes place in this manner, by using subgoal-

based search in problem spaces. The types of subgoals which may be generated in

response to impasses, and the range of knowledge which may be represented by the

problem spaces used within the subgoals, allow a wide variety of problem-solving

behaviors.

Soar is able to learn from its problem-solving, and in fact in Soar all learning occurs

in the context of problem-solving behavior; one of Soar's tenets is that learning should

not occur in a vacuum, and that what is learned is dependent upon the type of task

being addressed. Soar's learning mechanism is a form of explanation-based learning

[Rosenbloom and Laird, 1986; Mitchell et al., 1986].

The description of Soar will be given in a top-down manner. First, we will describe

Soar's goal-oriented problem-solving behavior in more detail. Then, we will describe

Soar's decision procedure | the way in which Soar decides what to do next at any

point during problem solving | and show how the goal-oriented behavior emerges

from it. Next, we will discuss the memory access representations and mechanisms

which form the foundation of these capabilities. Then, we will describe the way in
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which Soar learns from its problem-solving. After Soar has been described, a �nal

section will discuss some of the default problem-solving behaviors which may be

utilized by Soar, by adding default knowledge to Soar's memory.

2.2 Goal-oriented Problem Solving

The activity of generating and selecting problem spaces, states, and operators com-

pletely determines the behavior of Soar. All problem-solving behavior is rooted to an

initial, or \top-level" goal, which can be viewed as the goal of interacting with the

world. Since problem spaces de�ne sets of applicable states and operators, a problem-

solving session must �rst start by choosing an appropriate problem space to focus the

problem-solving within the current top-level goal. For example, if the system was

assigned the task of solving a sliding-tile puzzle, it might be appropriate to select a

problem space that de�ned a set of operators which could move tiles. Next, since

operators must always apply from states, Soar will always try to generate and select

a suitable state once it has selected an appropriate problem space for a situation.

Typically, for the initial goal, the initial state will be created using information about

the current \state of the world" with respect to the task at hand1. Next, an operator

may be selected and applied. For example, with the sliding-tile task, an operator

might be selected to move a tile. The actions of the operator change the state. From

the new state, a new operator may be selected (e.g., to move another tile), and so

on2. Progress continues in this manner; if a new problem space is selected, it will

de�ne new sets of potential states and operators.

Soar tries to select problem spaces, states, and operators based on information

stored in its memory. If this is not possible | if the system does not have su�cient

information about a situation to make a selection for that situation | then an impasse

will be generated. There are various types of impasses. For example, the system may

reach a situation in which several operators look equally appropriate, and it does not

1Much recent Soar research has been devoted to Soar's input and output capabilities| perception
and action. However, detailed discussion of these capabilities is beyond the scope of this chapter.

2Operators modify the current state when they apply, and so there is no need to explicitly create
a new state as the result of an operator application.
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Figure 2.1: Overview of Problem-Solving in Soar

know which one to select next. Such an impasse is called a tie impasse. Other types

of impasses will be generated if the system can not �nd any appropriate operators, or

does not have stored information about how to apply an operator. In response to an

impasse, a subgoal will be automatically generated by the architecture. Within this

subgoal, problem-solving will take place to try to resolve the impasse; towards this

end, the system again generates and selects problem spaces, states, and operators. For

example, if a subgoal was generated because of a tie impasse, it might be appropriate

to select a problem space for the subgoal which encoded knowledge about how to

deal with ties. (Section 1.3.1.2 in Chapter 1 discusses such a problem space, when

describing the technique of lookahead search).

Subgoal generation is recursive; in the process of resolving one impasse, new ones
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may be generated. In each subgoal, problem-solving occurs in the same manner, by

generating and selecting problem spaces, states, and operators. The current problem

space, state, and operator for a goal de�ne that goal's context, and are referred to as

context objects. Each goal has its own current context. In an e�ort to make progress

in the top-level goal, a stack of goals may be generated, with the initial goal at the

top of the stack; the entire stack describes the global problem-solving context.

An impasse is resolved when the system has done su�cient problem solving to

acquire information about what to do at the impasse. For example, with an operator

tie impasse, the impasse will be resolved when the system is able (as the result of

search in a subgoal) to choose an operator to select. When the choice is made, all

subgoals created because of the impasse will be terminated, and problem solving will

continue in the goal in which the impasse was encountered. If an impasse high in the

goal stack is resolved, all descendent subgoals lower in the goal stack (more recent)

than the impasse will be terminated, since they were all created in service of the

impasse.

Figure 2.1 illustrates the way in which problem solving takes place in recursively

generated goals. In the �gure, squares represent goals. \?"s represent impasses;

each impasse causes a new subgoal to be generated. Triangles represent problem

spaces. A problem space must be selected for each new goal. The circles represent

states, and the solid arrows represent selected operators (selected from the set of

operators de�ned by the problem space), which may apply to the states to generate

new states. Impasse #1, a tie impasse, is generated because the system does not

have enough stored information to choose among several operators (the short dashed

arrows at Impasse #1 represent operators under consideration). Impasses #2 and #3

are generated because the system does not have enough stored information about how

to apply a selected operator. In all cases, a new subgoal is generated to resolve the

impasse. Impasse #3 shows how a second subgoal can be generated recursively within

a �rst. The long upward-pointing dashed arrows show the return from a subgoal upon

the resolution of the impasse which created it, after some amount of problem solving.
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2.3 The Decision Cycle

To generate and select problem spaces, states, and operators | context objects |

Soar uses a control cycle called a decision cycle. The decision cycle can be viewed

as a problem-solving step; at each step, Soar tries to make progress by selecting a

new context object for at least one of its goals on the goal stack. It does this by

accessing its stored knowledge in memory, and using this knowledge to attempt to

make a selection.

Each decision cycle has two phases. The �rst is a memory access phase, called the

elaboration phase. During this phase, Soar accesses and retrieves from its memory

all information relevant to any aspect of any goal context on the goal stack (the

details of memory access and representation are described in the following section).

For example, the retrieved information can cause a currently selected operator to be

applied; provide search control knowledge (suggestions about what to do next, given

the current global context); or add annotations to a problem space, state, or operator.

No selective reasoning is done during the memory access phase about what to retrieve

from memory; all relevant information is always retrieved. The retrieval process may

draw from memory more than once; initially retrieved information may then cause

additional information to become newly relevant, and it will be retrieved as well. The

retrieval process does not halt until there is no more relevant information to access.

When there is no more relevant information to access, the second phase of the

decision cycle begins. It is called the decision procedure. In this phase, Soar takes into

account new information produced during the memory access phase, in conjunction

with any previously retrieved information about the global problem-solving context,

and uses it to try to decide on a new context object for one (or more) of its goals. The

decision procedure is architecturally �xed; Soar utilizes a �xed semantic interpretation

of its available search control information about a situation to try to decide on a

change. For example, a decision cycle might result in the selection of a new operator

within some goal. A context change may be to any goal context(s) in the goal stack.

If the system is able to make a change to a \higher-level" goal context and in doing
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Figure 2.2: Soar's decision cycles.

so resolve an impasse generated earlier, then this decision will terminate any lower-

level subgoals generated in service of the impasse. For example, if an operator is

selected for a goal which had earlier generated an operator tie impasse, the selection

of the operator will resolve the impasse and terminate any subgoal(s) generated in

its behalf. Figure 2.1 showed such a situation; Impasse #1 (an operator tie impasse)

is resolved when enough problem solving has taken place in a subgoal to determine

which operator to select within the highest-level goal context. When an operator is

selected, the subgoal is terminated.

In each new decision cycle during problem solving, the elaboration (memory ac-

cess) phase again retrieves any new information relevant to the changed global con-

text. For example, if an operator is selected during one decision cycle, then in the

next decision cycle, information might be retrieved not only about the e�ects of per-

forming the operator, but | consequently based upon the operator's e�ects | about

which operator to choose next. Thus, the result of the following decision cycle could

be that a new operator is then selected to replace the �rst one.

Figure 2.2 shows this process for three decision cycles; each wide vertical arrow

in the elaboration phase represents the retrieval from memory of a piece of informa-

tion. There may be successive memory accesses (suggested in the �gure by successive

rows of arrows) in the same elaboration phase, as additional information in memory

becomes relevant due to previous retrievals. When no more information is newly

relevant, the decision procedure is initiated for that decision cycle. The �gure shows
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the way in which the decision cycle maps to the goal-oriented behavior of Figure 2.1;

here, each decision causes states and operators to be selected.

If Soar does not have enough information to make any context changes at the

end of one of its decision cycles, then this means that it has been unable to retrieve

enough information to make a decision (i.e., make problem-solving progress) in its

most recently generated subgoal or any other. Therefore, a new impasse would be

generated within the most recent subgoal| the type of impasse is determined by the

results of the decision procedure | and a new subgoal added to the goal stack in

service of resolving that impasse.

2.4 Memory

Soar has both a long-term and a short-termmemory. During the elaboration (memory

access) phase of the decision cycle, as shown in Figure 2.2, information is retrieved by

accessing the long-term memory. The retrieved information is then added to a global

short-term, or working memory. Soar's long-term memory is represented by produc-

tion rules, where each rule is a condition-action pair. The conditions of the rules

match against the contents of the working memory (rules may contain variables). If

a rule's conditions are matched, the rule is executed, or �red, by adding the results

speci�ed by the rule actions to working memory. All the rules matched to a given sit-

uation are �red conceptually in parallel; there is no con
ict resolution during memory

access (in contrast to traditional production systems). Rule execution changes the

contents of working memory, and thus after matched rules have �red, additional rules

may then match and execute, and add new information to working memory. During

the elaboration phase of the decision cycle, this match/execute process continues until

no new rules match against the current working memory contents3.

The process of information retrieval from long-term memory is important because

Soar is not able to examine the structure of its own long-term-memory rules. This

was a deliberate design decision; when Soar's architecture is viewed as a cognitive

model, it is hypothesized that the rules provide roughly the same memory access

3Provisions are made to terminate in�nite match/execute cycles.
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functionality as the brain's neural pathways, and thus that they should be equally

impenetrable to introspection. This means that Soar can only access its long-term

memory via the results of the rules' execution; working memory can thus be viewed

as a worksheet, which allows Soar to access currently relevant portions of long-term

memory.

All goal context information is held in working memory; problem spaces, states,

and operators (as well as annotations to these objects such as information describing

what is in a state) are all created and added to working memory by rule execution.

Another important type of knowledge which rules may add to working memory

is the preference4. Preferences encode control knowledge about the acceptability and

desirability of objects in working memory. Examples of preferences include indi�er-

ent preferences (two working-memory objects are to be considered equally good with

respect to each other within a given context), better preferences (one working-memory

object is better than another), and reject preferences (an object is not appropriate

within a given context). It is preference information which is used during the deci-

sion procedure described in the previous section, to try make a decision about what

problem space, state, or operator to select next in a context5. Thus, the preferences

encode search control knowledge about a situation.

Although it will not be necessary to consider Soar's knowledge representation in

detail for the purposes of this thesis, two aspects of memory representation are of

importance: operator representation and plan representation.

2.4.1 Operator Representation and Implementation

Operators are working-memory objects. They may be implemented, or their actions

speci�ed, by sets of production rules. This is in contrast to some traditional pro-

duction systems, in which individual production rules have a conceptual one-to-one

4Strictly speaking, preferences have their own separate working memory now in the current
version of Soar.

5Although we will not go into detail here, the preferences also determine which annotations to
context objects are currently supported as well (e.g., they determine what information is currently in
a state). Working memory is built upon a TMS, so that if a working-memory object is not currently
\selected", it becomes inaccessible, as do any other objects whose preferences depend upon the �rst
object's accessibility.
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Operator creation rule:

if the problem space for a goal is \sliding tiles"
^ there exists a tile tile and location loc

^ loc is adjacent to tile's current location
) create an operator for that goal to move tile to loc

Rules to check operator preconditions:

if the problem space is \sliding tiles"
^ there exists a move-tile operator with parameters tile tile

and location loc

^ loc has no other tiles on it
) precondition-loc-clear is true for the operator

if the problem space is \sliding tiles"
^ there exists a move-tile operator such that precondition-loc-clear
is true for the operator
) the operator may-apply

Operator application rule:

if the problem space is \sliding tiles"
^ the current operator for a goal is a move-tile operator
with parameters tile and loc

^ the operator may-apply
) change the state for that goal by moving tile to loc

Figure 2.3: Example pseudo-code representation of a move-tile operator for a
sliding-tile puzzle (some simpli�cations have been made for explanatory purposes).
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mapping to operators. Consider an operator used in a sliding-tile-puzzle task, to move

a tile on a grid. Such an operator, called, e.g., move-tile, might be represented (using

pseudo-code) as shown in Figure 2.3.

In the �gure, one set of long-term memory rules determines when it is appropriate

to create and add to working memory an instance of an operator; another set tests

that the operator's preconditions (conditions which must be true before the operator

may be applied) are met, and adds that information to working memory; and a third

set describes how to apply the operator once it has been selected (via the decision

procedure) to be the current operator for a goal context, and its preconditions are

met. Though just one such operator application rule is shown in the �gure, for a

more complex operator more than one rule might be used. These three sets of rules

together form the move-tile operator description6.

2.4.2 Plan Representation

As discussed in Section 2.4, search control is expressed using preferences. Thus, search

control knowledge is encoded in long-term memory by rules which add preferences

to working memory. E.g., an operator search control rule might state that if certain

conditions are met, add to working memory the preference that one operator is better

than another.

The search control rules in Soar's long-term memory serve as Soar's plans. The

rules implicitly represent a sequence of actions (or a partial ordering of actions) to be

taken in a situation. If a set of search control rules is applicable in a given class of

situations, then this set of rules serves as a generalized plan for the class of situations.

Soar's plans are used reactively: plan fragments are applied whenever their conditions

match the current situation. Thus, a complete plan for one task may be partially

applicable to another. This will be discussed in more detail in the following chapters;

see also [Rosenbloom et al., 1992].

6The rules in Figure 2.3 do not illustrate the only way in which an operator may be represented.
For example, an operator may be implemented in a subgoal: once an operator is selected, a subgoal
is generated to apply it, possibly using a di�erent problem space.
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2.5 Learning from Impasse Resolution

Soar learns from its problem solving, using a form of explanation-based learning

[Rosenbloom and Laird, 1986; Mitchell et al., 1986]. Its learning results in new long-

term memory rules, called chunks. Chunks have exactly the same syntax as Soar's

other long-term memory rules, and summarize the problem-solving that has occurred

in subgoals. The rules are learned in the following manner.

Each result of a subgoal | knowledge added to a higher-level goal context as a

result of the subgoal search | causes a new chunk, or rule, to be learned. The actions

of the new rule represent the result generated; the conditions of the rule test for those

elements, associated with the parent goals, upon which the results depended. The

conditions are determined by analyzing the traces of the rules which �red within the

subgoal. This dependency analysis determines what information in existence prior

to the creation of the subgoal explains the results; this information then provides

the conditions of the new rule. The learned rules are deductively generalized; only

those aspects of the situation relevant to a particular result are incorporated into

rules learned for that result. In future relevantly similar situations, the new rules will

match and execute, and allow decisions to be based on direct retrieval of information

from long-term memory rather than on problem-solving within a subgoal. In this

way, similar impasses may be avoided.

Soar's learning mechanism allows it to exhibit a wide variety of behaviors, deter-

mined by the type of subgoals from which the rules are learned. For example, when

preferences about higher-level goal contexts are added to working memory as the re-

sult of subgoal processing, search control rules will be learned. As discussed above,

the search control rules constitute new plan fragments | in similar situations, Soar

can directly access its plans in memory to decide what to do next. Thus, through

learning, plans are acquired incrementally. Partial plans learned in several di�erent

situations may be used together for a new task. If previously learned search control

turns out to be incorrect, it is possible to learn new search control which overrides

the old [Laird, 1988].
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2.6 Problem-solving Methods and

Default Knowledge

The Soar architecture provides a framework for a large variety of behaviors; the be-

haviors are shaped by the knowledge in Soar's long-term-memory, which tells it how

to react in various situations; e.g., by making suggestions about what problem space

to choose in a certain situation, or what operators to prefer in a problem space.

Problem-solving methods are considered \strong" if they contain a large amount of

domain knowledge, and are tailored to a speci�c set of tasks. In contrast, \weak"

problem-solving methods make only minimal requirements on the amount of knowl-

edge available about a domain. Thus, they are applicable in a wider range of situa-

tions, but will not always be as useful as the more knowledge-intensive strong methods

[Laird et al., 1987b].

Some weak problem-solving methods are provided as default knowledge to Soar.

As defaults, they are methods to be used by Soar in the absence of (or in conjunction

with) stronger and more domain-speci�c problem-solving techniques. Soar's archi-

tecture is not changed in any way to provide the default knowledge. Rather, long-

term-memory rules are added to Soar which make suggestions about how to react to

the di�erent types of impasses which may be generated. These default methods are

applicable over a wide range of tasks, and | as defaults | may be overridden by

stronger and more domain-speci�c long-term-memory knowledge if it should become

available.

2.6.1 Lookahead Search

Two default weak method approaches used by Soar and pertinent to this thesis are the

use of the \selection" problem space and the lookahead search technique introduced

in Chapter 17. When Soar generates a tie or con
ict subgoal | i.e., when it can not

decide which of several candidate operators should be selected during a decision cycle

| it takes the default action of creating a selection problem space in which it will

7These are two separate methods, but are often used together.
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try to evaluate its options and make a choice. Within this problem space, Soar has

knowledge about how to set up new recursively-generated subgoals to evaluate each

option in turn. Once such an evaluation subgoal is generated for a control decision

option, the default \lookahead search" knowledge is relevant. This knowledge tells

Soar to set up and perform a lookahead search for the option| that is, to perform

projections to see what could occur if the option was chosen at that point in the task.

Within the lookahead search, Soar tries to reach a state from which it can evaluate the

utility of the option (such a state need not be a task goal state). Using the evaluations

produced by the lookahead searches, the selection space tries to reach a decision and

thus resolve the impasse; in the process, it will learn new rules encoding the results

of the decision. Thus, these default weak methods let Soar compare its options at a

control decision when it does not yet have compiled long-term knowledge about how

to do the evaluations. As a result of problem-solving using the weak methods, Soar

will learn search control knowledge which will allow it to choose an option and avoid

the control decision impasse in relevantly similar future situations.

2.6.2 Operator Subgoaling

Another default problem-solving method used by Soar is called operator subgoaling.

Again, the method behavior is produced by adding knowledge to Soar's long-term

memory rather than altering the architecture. When an operator is selected but can

not apply because some of its preconditions are unmet, a subgoal will always be

architecturally generated in response to this impasse. At that point, the operator-

subgoaling knowledge suggests that the system perform problem solving within this

subgoal, using the same problem space and state as used in the parent goal, to change

the state such that the operator in the parent goal can in fact apply. When such a

state is reached, the operator applies, the operator application impasse is resolved,

and the subgoal is terminated. For example, in the sliding tile domain introduced

earlier, suppose an operator was selected to move a tile to a spot occupied by another

tile. If the operator could not immediately apply, an operator subgoal might be

generated to search for a way to reach a state from which the operator could apply;

e.g., a state in which the destination spot was empty.
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It is important to note that operator subgoaling alone does not specify which op-

erators will be selected within an operator-subgoal; this depends upon the system's

search control knowledge for such a situation. (The problem solving in the operator

subgoal may recursively generate new subgoals, in order to search di�erent potential

operator sequences to see if they acceptably achieve the unmet preconditions.) The

operator-subgoaling method simply provides the framework within which to use any

available control knowledge about operator subgoals. In practice (both in Soar and in

other systems which use similar approaches), the use of operator subgoaling has often

been associated with the use of some type of means-end analysis, or MEA | knowl-

edge about which operators are likely to achieve which e�ects | during the search to

reach a state from which the operator can apply. However, this need not necessarily

be the case; in Soar, the operator subgoaling method places no restrictions on the

type of search control used within the operator subgoal. In fact, MEA knowledge is

not part of Soar's repertoire of default methods, and must be explicitly provided as

(or derivable from) domain knowledge if it is to be used. (This is because Soar is

deliberately designed such that it is not able to examine its own long-term memory

rules, and thus means-end knowledge can not be automatically extracted from the

operator representations, or provided by the architecture.)

2.6.3 Goal Achievement and Protection

Soar does not architecturally enforce any particular techniques for goal conjunction

achievement and protection. The problem-solving knowledge used for a given task

will determine whether or not, e.g., goal conjunct achievement is interleaved, and

whether achieved conjuncts are protected.

2.7 Conclusion

This chapter has presented an overview of Soar. While by no means a complete

description, it has outlined the general capabilities of Soar relevant to the Spatula

abstraction method described in this thesis. In the following chapters, we show how



2.7. CONCLUSION 39

Spatula is motivated by these capabilities, and implemented by providing Soar with

new long-term-memory rules about how to abstract. As is the case with the default

problem solving methods described in Section 2.6, the Soar architecture does not

need to be modi�ed in any way to produce the abstraction techniques which will be

described.



Chapter 3

Creating an Abstract Problem

Space

Spatula is an automatic and dynamic weak problem-solving method for abstraction.

Spatula has been implemented in Soar, and is designed to be a new problem-solving

method used by Soar. As with Soar's default weak methods, some of which were

described in Section 2.6, Spatula's abstraction behavior is produced by adding new

rules | \abstraction rules" | to Soar's long-term memory. These rules tell Soar

how to abstract and how to use the results of its abstract search. Soar's architecture

does not need to be changed in any way for it to make use of Spatula's abstraction

techniques.

Spatula will be described here as used with a Soar-like impasse-driven problem

solver, which represents long-term knowledge in the form of production rules and

learns from its problem solving. However, Spatula's approach can generalize beyond

use with Soar; the general capabilities required by a problem solver for it to use

Spatula will be discussed in Chapter 9.

As mentioned in Chapter 1, the Spatula abstraction method is used when Soar

plans (performs a lookahead search, or a projection). Non-abstract domain problem

spaces are dynamically and automatically transformed into abstract spaces during

lookahead search. The abstract lookahead searches are easier to perform than would

be their non-abstract counterparts. They provide the problem solver with control

40



3.1 BASIC ABSTRACTION METHOD 41

information which may be used to restrict more detailed search and thus make the

task more tractable.

The description of Spatula can be broken down into three parts. The �rst part

describes the basic techniques by which the problem solver performs an abstract

search using Spatula, including the way in which abstract problem-spaces are cre-

ated automatically during problem solving from non-abstract spaces. E�ectively, the

abstract search creates a dynamic reformulation of a non-abstract space into an ab-

stract one. This chapter describes the techniques which produce and support the

reformulation process.

The second part of Spatula's description describes the way in which the abstract

searches may be used by the problem-solver to provide problem-solving heuristics,

increase problem-solving e�ciency, and learn abstract plans. The third part describes

how, given the basic method of abstract plan generation and use, it is possible to build

on this basic method in several domain-independent ways (calledmethod increments),

to produce abstractions of increased utility. These topics are presented in Chapter 4

and 5, respectively.

3.1 Basic Abstraction Method:

Creating an Abstract Problem Space

The abstraction technique which forms the foundation of Spatula is motivated by

the idea that it is possible to use performance impasses to in
uence what to abstract,

and the philosophy that all learning activity (including learning about abstractions)

should arise from problem-solving.

Many automatic abstraction methods, e.g. [Christensen, 1991; Ellman, 1990;

Knoblock, 1991], derive abstractions before problem solving on a task begins, based

on a prior analysis of the domain and task descriptions. The abstraction method to

be described here draws on a di�erent source of knowledge, that of di�culties encoun-

tered during problem solving, and enables dynamically generated abstract problem
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#-of-robots-in-RoomB = 4

Robot1 in RoomB

initial state

Robot1 in RoomA

#-of-robots-in-RoomB = 3

#-of-robots-in-RoomA = 2

Robot1 in RoomA

#-of-robots-in-RoomB = 3 #-of-robots-in-RoomA = 1

apply operator
count-robots

Operator Subgoal  on
unmet precond. of
go-through-door  operator

apply operator
GO-THROUGH-DOOR
  (RoomB, Robot1)

?   unmet
precondition
impasse for 

go-through-door
operator

A B A B

Figure 3.1: A non-abstract application of the go-through-door operator.

spaces and abstraction levels. Using Spatula, the problem solver's abstraction capa-

bilities are obtained not by modifying the problem-solving architecture, but by adding

new default knowledge about how to abstract to the problem-solver's memory, and

by representing problem spaces so that abstraction can usefully occur.

Because Spatula is designed to be a weak problem-solving method, it is not

expected to be useful in every situation, nor is it expected to be as powerful as

methods which draw more heavily from knowledge about the domain. However,

its sources of knowledge may be available when knowledge which permits problem-

space analysis is not | or when there is no opportunity to perform a problem space

analysis | and may perhaps be used in conjunction with additional knowledge and

abstraction methods to produce even more e�ective behavior.

3.1.1 Non-abstract Search

To describe the way in which the system uses Spatula to abstract during plan-

ning, it is helpful to �rst consider the way in which an impasse-driven problem solver

such as Soar would behave during a non-abstract lookahead search. Consider a simple

ABStrips-like robot domain which contains an operator to cause a robot to go through
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a door into another room. The operator application for the go-through-door oper-

ator includes updating a count of the number of robots in each room of the domain,

as well as moving the robot. The preconditions of the operator are that 1) the robot

is in a room adjoining the door; and 2) the problem solver knows how many robots

are currently in both the robot's current and destination rooms.

Figure 3.1 shows the way in which a non-abstract application of the go-through-

door operator might occur during lookahead search, where the shaded robot in

RoomA is being moved. Suppose that the problem-solver has previously counted

the number of robots in RoomB, but has not yet counted the robots in RoomA.

An unmet precondition impasse is generated, a subgoal is created, and within the

subgoal an operator is proposed to count them. When the robots are counted, the

go-through-door operator's preconditions are met, and the system is able to apply

the operator and terminate the subgoal. It does so, moving the operator into RoomB,

and updating the robot-count information for each room. The lookahead search may

continue from that point.

3.1.2 Abstract Search

Spatula's dynamic creation of an abstract problem space from the non-abstract

space during lookahead search has two facets, described below. In the �rst, ab-

stractions are deliberately initiated. In the second, these deliberate abstractions are

propagated via further problem-solving, creating new incidental abstractions. Both

the deliberate initial abstractions and their subsequent propagations contribute to

the resultant abstractness of a problem space. In this section, we will describe these

processes in general terms. Then, in the remainder of the chapter, the mechanics of

abstraction in Soar will be described in more detail.

When the problem solver is performing a lookahead search in a context within

which it is appropriate to abstract1, it initiates abstractions at unmet operator

precondition-achievement impasses. (\Precondition", as in the ABStrips work [Sac-

erdoti, 1974], is used to mean a condition which must hold before an operator can

1This context will be precisely described in Chapters 4 and 5.
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be applied). A precondition-achievement impasse is generated after an operator is

selected, when the operator's preconditions are not achieved and the problem solver

does not have direct knowledge in its long-term memory about how to achieve them2.

The unmet precondition impasses are abstracted by having the problem solver assume

that the preconditions have been met, and thus terminate the impasses. An alter-

native way of viewing this process is that the problem solver doesn't care whether or

not the unmet preconditions are achieved.

The particular precondition abstractions which occur using Spatula are dynami-

cally determined by which operators are selected, and which of their preconditions are

unmet. Abstraction of an operator precondition does not occur if, once an operator

is selected, knowledge is accessible to achieve the unmet precondition. In addition,

the problem solver's search-control knowledge determines when an operator is sug-

gested, and thus what preconditions are unmet at that point. The abstractions are

performed on operator instances | individual instantiated operators | rather than

necessarily abstracting a precondition in the same way across an entire task. Thus,

depending upon what is learned during problem solving, the problem-solver's search

control knowledge, and the particular task, di�erent sets of preconditions may be

abstracted at di�erent times. Figure 3.2 shows the precondition abstraction which

would occur for the scenario shown in Figure 3.1. The unmet precondition impasse for

the go-through-door operator, generated because of the missing count information,

is ignored.

After an operator's unmet preconditions are assumed met, the problem solver

may then apply the operator. During the operator application process, the system

does not reason about whether or not abstraction has occurred, but simply applies

the operator as completely as possible, given the (possibly abstract) state informa-

tion available to it. So, in Figure 3.2, the problem solver will attempt to apply the

2The weak method for abstraction described in this chapter provides knowledge about how to
abstract at operator precondition impasses only. However, abstraction may occur at other types of
problem-solving impasses as well. In particular, abstraction may occur at operator implementation
impasses. [Unruh and Rosenbloom, 1989] describes an investigation of operator implementation
abstraction.
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#-of-robots-in-RoomB = 4

Robot1 in RoomB

initial state

Robot1 in RoomA

#-of-robots-in-RoomB = 3 partially
apply operator
GO-THROUGH-DOOR
  (RoomB, Robot1)

?  unmet
precondition
impasse for 

go-through-door
operator

ignore unmet precondition

A B A B

Figure 3.2: The corresponding abstract application of the go-through-door operator;
partial operator application allows propagation of the abstraction.

go-through-door operator once its unmet precondition has been abstracted. How-

ever, normal application information is missing (that which deals with the number

of robots in RoomA). If the problem-solver is able to partially apply the operator

based on the information it does have, then it can still move the robot to its new

room, update the number of operators in RoomB, and continue problem-solving from

that point. (Section 3.3 will describe in more detail the way in which this partial

application occurs.)

The example of Figure 3.2 illustrates two di�erent stages of the process by which

an abstract problem space is dynamically created from the original space when unmet

preconditions are abstracted. First, the initial deliberate abstraction of the precondi-

tions creates an abstraction; the operator is achieving only an approximation of what

its full impact would have been had all its preconditions been met. Abstraction of

preconditions may result in a situation in which state information is incomplete (e.g.,

the missing robot count in the example), or incorrect, or both. It will be incomplete

if achieving an ignored precondition would have created a new object or relation, and

incorrect if an ignored precondition achievement would have changed or deleted an

object or relation.

Second, the problem solver may not have enough information to apply the operator

in full if the preconditions are not achieved. E.g., in this example, it does not have

enough information to update the robot counts. If this is the case, but if the operator
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is able to apply partially based on the information it does have, then the problem

solver will not be stuck, and will be able to make some progress towards the goal. As

the operator applies partially, it may create new abstractions.

A third stage in the creation of an abstract problem space | not illustrated

in the example | occurs if abstractions remove information needed for subsequent

operator application as well. For example, if the scenario shown above is continued,

a subsequent operator application might also reference the number of robots in each

room. Again, if these subsequent operators are able to apply partially given the

abstract state information, then the e�ects of previous abstractions can cause them to

apply incompletely as well, creating further abstractions. This can occur regardless

of whether or not the preconditions of these subsequent operators are themselves

abstracted.

Thus, via partial application, abstractions can propagate through the abstract

search, with initial deliberate precondition abstractions spawning additional abstrac-

tions as well. In this way, the assumption process e�ectively initiates a dynamic

reformulation of the original non-abstract problem space theory into a new, abstract,

theory. With this process, the capability for partial operator application is useful

precisely because the abstractions are created dynamically, rather than having been

constructed before problem solving begins. As shown in the example, when partial

operator application is possible, then precondition abstraction can allow the problem

solver to make progress towards its goal with less e�ort. In Figure 3.2, if the task goals

do not deal with the number of robots in RoomA, then the abstracted information is

not likely to be necessary for subsequent search | as long as partial application can

occur, the problem solver can continue applying operators without this information.

Spatula's abstractions are Proof-Increasing (PI) abstractions [Giunchiglia and

Walsh, 1990a]. The initial abstractions are precondition relaxation abstractions (the

most well-known example of which is used in ABStrips [Sacerdoti, 1974]), but subse-

quent propagation of the initial abstractions can cause reduction of the information

in the problem-space as well. As discussed in Chapter 1, PI-Abstractions have the

characteristic that if there exists a ground-level solution path for a task, then there

exists an abstract solution path which subsumes it. As will be seen in Sections 3.4
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and 3.5, the dynamic and situated aspects of Spatula's use disallow a guarantee that

for every non-abstract solution in an arbitrarily-designed problem space, such an ab-

stract solution may be constructed. However, it is possible to provide problem-space

design guidelines which, if followed, allow this guarantee.

The description above outlined the way in which an abstract problem-space can

be dynamically created from a non-abstract space during search. In the following

sections, we examine in more detail how this occurs. In Section 3.2, we describe the

mechanics of the initial deliberate precondition abstractions. In Sections 3.4 and 3.5,

we discuss those aspects of problem-space design which can impact the propagation of

the initial abstractions to subsequent additional abstractions, and present guidelines

for designing domain problem-spaces such that the abstract search may be complete

and useful. Then, in Section 3.6, we discuss how abstraction can change the shape of

a search space.

3.2 Speci�cation of Precondition Abstraction

Technique

An important aspect of the Spatula abstraction method is that Soar's abstraction

capabilities are obtained not from adding any new modules or pre-processing to the

architecture, but by giving Soar new long-term memory rules about how to react in

certain situations, and by designing problem spaces so that abstractions can occur

usefully once initiated. (These abstraction rules are listed in Appendix A.) Soar's

knowledge about how to initiate precondition abstractions is provided by one of these

abstraction rules. Figures 3.3{3.5 show the way in which this is accomplished.

As described in Chapter 2, operators are objects in memory. Rules provide knowl-

edge about the operators (e.g., when to propose the operators, how to test that their

preconditions are met, and how to apply them). As an example, the �rst three rules

in Figure 3.3 show pseudo-code versions of the domain knowledge which tests that

the individual preconditions of the go-through-door operator in Figure 3.2 are met.

These rules will �re (whether or not the search is abstract) when each precondition is
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operator op is go-through-door

^ op is instantiated with door, robot

^ state is augmented with adjoins(room-x, door)

^ state is augmented with inroom(robot, room-x)

) go-through-door-precond-1(op,true)

operator op is go-through-door

^ op is instantiated with robot

^ state is augmented with inroom(robot, room-x)

^ state is augmented with #-of-robots-in-room(room-x, n)

) go-through-door-precond-2(op,true)

operator op is go-through-door

^ op is instantiated with new-room

^ state is augmented with #-of-robots-in-room(new-room, n)

) go-through-door-precond-3(op,true)

operator op is go-through-door

^ go-through-door-precond-1(op,true)

^ go-through-door-precond-2(op,true)

^ go-through-door-precond-3(op,true)

) operator-may-apply(op)

Figure 3.3: Pseudo-code representations of rules to test the preconditions of the
go-through-door operator. For readability, most of the rule variables are set in
bold-face, and constants are set in italics.

true. The last rule in the �gure tests that all preconditions of the go-through-door

operator are met. If this is true, then the operator may-apply.

Figure 3.4 sketches out the format of operator application rules for the go-through-

door operator. If all rule conditions are met, including the test that the operator

may-apply, then the operator e�ects are added to short-term memory. The domain

knowledge about how to apply the operator may be encoded in more than one rule,

each with a separate set of left-hand-side tests. In Section 3.5.1, the representation

of operator application knowledge will be discussed in more detail.

Figure 3.5 then shows the abstraction rule which is added to long-term memory

to produce abstractions of unmet preconditions when appropriate. The rule will be
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operator op is go-through-door

^ operator-may-apply(op)

^ fCondition Ag

^ fCondition Bg

^ . . .

^ fCondition Xg

) f Set 1 of operator effects g

operator op is go-through-door

^ operator-may-apply(op)

^ fCondition Cg

^ fCondition Dg

^ . . .

^ fCondition Yg

) f Set 2 of operator effects g

Figure 3.4: Templates showing the format of operator application rules.

matched when in an abstraction context (other rules, described in Chapters 4 and 5

but not shown here, determine whether or not this is the case), and when an impasse

has been generated for the currently selected operator because of one or more unmet

preconditions. The rule will �re for each unmet precondition of the current operator,

and will add to working memory the information that the precondition has in fact

been met. When the unmet operator preconditions are assumed met by using this

rule, the last rule in Figure 3.3 will �re, and consequently the unmet precondition

impasse will be resolved and operator application rules in Figure 3.4 may apply if

their other left-hand-side conditions are matched3. As may be seen, the mechanics of

initial precondition abstraction are very simple.

As an operator's unmet precondition impasse is resolved using the rule in Fig-

ure 3.5, new long-term memory rule(s) are learned, one for each unmet precondition.

Then, if in the future the problem-solver is in an abstraction context and the same

operator type has the same unmet preconditions, the learned rules will �re and mark

the preconditions met, thus allowing the operator to apply abstractly without �rst

3It is possible that no long-term-memory rules will exist to tell the system how to directly apply
the operator. In such a case, the system will probably try to apply the operator in an implementation

subgoal.
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operator op is a domain operator with name opname

^ operator application of op has reached an impasse

^ the problem-solver is in-abstraction-context

^ <opname>-precond-<X>(op,false)

) <opname>-precond-<X>(op,true)

Figure 3.5: The rule for abstracting an unmet precondition when it is appropriate to
do so (i.e., when in-abstraction-context).

generating such an impasse.

Spatula's technique for initial precondition abstraction does not require the prob-

lem solver to have knowledge of the semantics of the operator preconditions to ab-

stract them; it is not required to know what the achievement of the preconditions

will accomplish, but only whether or not they are met. However, if domain infor-

mation is available which allows the problem solver to reason about whether or not

certain of an operator's preconditions should be abstracted, this information could

override the default abstraction behavior during abstract search, by specifying that

some of the operator's preconditions should not be assumed met. In such a situ-

ation, the achievement signals for those preconditions could be superseded by the

domain-speci�c abstraction information.

3.3 Propagation of Abstractions:

Guidelines For Problem-Space Design

As illustrated in Section 3.1, the initial abstraction of unmet preconditions impasses is

only part of the process of dynamically creating an abstraction. Problem solving must

be able to continue in a useful manner after preconditions abstractions are initiated.

That is the topic of this section.

If the operators in a problem space are designed so that they can apply partially

based on whatever information is available to them, then a deliberate precondition

abstraction may result in a situation in which both the initially abstracted operator

and subsequent operators apply with abstract information as well, thus propagating
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the initial abstractions and creating an abstract problem space on the 
y. As an

abstraction propagates, missing and incorrect information can generate explicit or

implicit inconsistencies in the abstract space. This is a well-known consequence of

precondition relaxation techniques [Nilsson, 1980]. However, this need not be prob-

lematic; recall that the problem solver is only using the abstract search to plan | that

is, to make decisions about how to execute a task. If the incorrect or missing infor-

mation does not hamper its ability to make progress in the abstract search space and

to reach useful decisions, then it is not an issue.

However, problems with both search completeness and utility can potentially arise

when preconditions are ignored, given an arbitrarily-designed problem space. First,

it is possible for the abstractions to interact negatively with operator creation rules or

domain search control, and prevent some operators from being suggested when they

in fact would be useful or necessary. Second, if the domain operators are not able to

apply partially, then this may engender further problem-solving and undermine the

utility of the abstraction. (Examples of these problems will be given below).

Clearly, such di�culties should be avoided. However, the philosophy embodied

by Spatula's weak-method approach is that no special abstract operators should

need to be supplied to the problem solver before a task is attempted, nor should

any abstraction pre-processing be required, for the abstraction to occur. Therefore,

a set of problem-space design guidelines have been developed. If followed, they let

the problem solver avoid the potential problems listed above, and enable it to make

progress in a dynamically created abstract version of a problem space, without being

hindered by the abstractions. The guidelines are primarily syntactic rather than

semantic in the sense that they do not constrain the content of the states and operators

in a problem space{ e.g., they do not suggest what the operators and objects in the

problem space should be, or what preconditions the operators should have. However,

they do make some semantic suggestions about the most useful representation of some

types of domain knowledge; e.g., about the type of search control which will be the

most useful.

The design guidelines listed in this section are not strictly part of the Spatula

problem-solving method, in the sense that they are not part of the default rules
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which specify when and how to abstract. However, though the guidelines need not be

followed for the abstract problem-solving to be successful, the extent to which they

are followed will in
uence how useful the abstract problem solving will be. Thus they

are included in the global description of Spatula as an approach to abstraction, and

in that sense are considered part of the method.

The guidelines can be organized into two groups; those which a�ect abstract

problem-solving completeness (i.e., is the abstract search able to reach a goal state

in every case for which the corresponding non-abstract search can reach the goal?),

and those which a�ect abstract search e�ciency (how e�ciently does the abstract

search reach its goal?). Guidelines a�ecting search completeness will be discussed in

Section 3.4; those a�ecting search e�ciency will be discussed in Section 3.5. Note

that the discussions in this chapter will deal with issues involved in performing the

abstract search; Chapters 4 and 5 then discuss similar issues within the framework of

using the results of the abstract search to guide more detailed problem-solving.

3.4 Completeness of the Abstract Search

A problem space is complete with respect to the Spatula abstraction method if for

every non-abstract solution, the problem solver can construct an abstract solution

which subsumes it (as de�ned in Chapter 1). Though all precondition-relaxation ab-

stractions fall theoretically into the category of PI-Abstractions and thus provide this

completeness property, an arbitrary problem space may not in fact allow complete-

ness. Proofs that an abstraction has Proof-Increasing characteristics, e.g. [Giunchiglia

and Walsh, 1990a; Knoblock, 1991], are based on the assumptions that 1) those op-

erators whose parameters are instantiable in the abstract space can always be instan-

tiated, or created if need be to reach a solution; and 2) during abstract search, the

system is not prevented from exploring all solutions valid in the abstract space.

In actuality, a domain's operator creation knowledge or search control knowledge

may prevent the construction of an abstract solution even if it theoretically exists. For

example, suppose that in some task, goal conjunctX is achieved by applying operator

A, and goal conjunct Y is achieved by satisfying the preconditions of A. Further
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suppose that operator B achieves these preconditions. Suppose that goal Y only

occurs when X is present, and hence the designer of the problem space has provided

domain knowledge which only creates an instance of operator B after operator A has

been selected and has generated an operator subgoal. That is, the connection between

Y and B has been made implicit. This operator creation knowledge might work in

the non-abstract space. However, if in the abstract space operator A's preconditions

are ignored, then the problem solver will never subgoal to achieve these preconditions.

Therefore, operator B would never be proposed at all in the abstract search, and goal

conjunct Y would not be achievable4.

Completeness of abstract search using Spatula may be guaranteed by ensuring

that the problem solver has the knowledge necessary to create and suggest all opera-

tors appropriate to a problem-space situation, and if necessary can apply them in an

order di�erent from that which is initially suggested by the domain's search control.

In Soar, abstract search completeness for any problem-space representation is assured

by providing three things:

1. the ability to create all instantiable operators within a problem space;

2. adequate default knowledge about handling bad search paths;

3. and non-restrictive use of search control

(all are described in more detail below).

If the system has these capabilities, then it will always be able to �nd a solution

during abstract search if a non-abstract solution exists, regardless of the problem

space's capability for partial operator application. First, if the initially preferred

search control does not lead to a solution in the abstract space, then the system

will always be able to instantiate and try other sequences of operators. Second, if

certain abstractions prevent operators from being created or applied at some point,

then the system will always be able to construct an alternative operator sequence in

which operator preconditions are �rst achieved such that the abstractions causing the

di�culties need not occur.

4The example also illustrates that we do not assume that MEA knowledge will necessarily be
architecturally provided by the operator de�nitions.
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Thus, if the problem solver has the three capabilities above, it will always be

able to produce complete abstract searches using Spatula. This may be seen by

considering that in the worst case, it is always possible to construct non-abstract

solutions: solutions in which all of the operators' preconditions are achieved before

they are selected, so that no abstractions need occur. Note that in this worst case, the

solutions produced within the abstract search space will be only trivially PI-Abstract;

that is, they will be equivalent to the non-abstract solutions. Section 3.5 will describe

how to design a problem space such that an abstract search is less expensive than

its corresponding non-abstract search, as well as complete. First, we discuss in more

detail the three requirements for search space completeness using Spatula.

3.4.1 Completeness of Operator Creation

One approach to problem solving is to only suggest operators when they are relevant

to the current situation. The di�culty with this approach | as shown in the example

above with operators A and B | is that a de�nition of relevance which works in a

non-abstract space will not necessarily work in an abstract space. Therefore, to ensure

search completeness for both search spaces, it is necessary to always suggest (create)

all instantiable operators within a problem space. The domain's search control still

determines which of these operators are considered �rst. Thus, the branching factor

of the search will not increase as long as the existing search control is indeed able

to guide the problem solver to its goal{ only the best operators in the partial order

produced by the search control knowledge are initially considered at a decision point.

However, if none of the subset of operators �rst considered are successful, the problem

solver will not be stuck.

3.4.2 Default Behavior of Problem Solver

To ensure abstract search completeness, the problem solver must be able to back up

from any \dead ends" it encounters during abstract search, and try a di�erent search

path. This is always possible because abstract problem-solving can only occur during

lookahead search, or projection | the system can always undo mistakes. In Soar,
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such a backtracking capability is in fact already provided by Soar's default rules.

The problem solver must also possess the knowledge to detect search loops, since

it is possible for loops to occur in the abstract space which would not occur in the

non-abstract space.

3.4.3 Non-Restrictive use of Search Control

To ensure abstract search completeness, the problem solver must not commit a priori

to using or rejecting certain operators in given situations. This is because search

control knowledge which guides the system to a goal in the non-abstract space may

not necessarily be appropriate in the abstract space. If this is the case, the system

must be able to try operator sequences other than the one �rst proposed. In Soar, this

requirement a�ects the use of two preference values with special semantics, require

and prohibit. If an operator is required at some state in a problem space, it must

be applied from that state to reach the goal. If an operator is prohibited, it must

not be applied if the goal is to be reached. Since the structure of abstract lookahead

search could be di�erent from that of non-abstract search, the semantics of require

and prohibit preferences may not still be valid in the abstract space. To guarantee

completeness of the abstract search given arbitrary search control knowledge, they

should not be used.

3.5 Guidelines for Abstract Search Utility

In addition to the completeness of the abstract search, its utility can also be a�ected

by the design of the domain problem spaces. Clearly, we would like the abstract search

to be easier to perform than the corresponding non-abstract search. Two aspects of

the problem-space representation impact the relative e�ciency of the abstract search:

� If the problem space is designed so that partial problem-solving can proceed

when information is abstracted, then the system will be able to construct ab-

stract solutions which subsume their corresponding non-abstract solutions.
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Consider what would happen if the go-through-door operator of Sec-

tion 3.1 had not been able to apply partially during abstract search.

If this was the case, then the system would have had to do additional

problem solving to count the robots in Room A before it could apply

the operator, and the search in the abstract space would have pro-

vided no e�ciency gains over the non-abstract. Thus, the greater the

extent to which the system can make progress when information is

missing, the less problem solving it will require to �ll in the informa-

tion before it can reach a solution. The more abstract a solution, the

simpler and potentially easier to construct it will be.

We will describe two techniques for problem-space design, called factorization

and the information-access guideline, which allow the problem solver to make

progress towards an abstract solution with partial information.

� Abstract search will be most e�cient when knowledge about a domain's search

control, precondition tests, and goal tests can transfer from non-abstract to

abstract situations. Such knowledge can be expected to translate most usefully

between non-abstract and abstract spaces if it does not depend upon implicit

assumptions about what should have happened during past problem-solving.

Below, we describe these guidelines for problem-space utility. Then, their impact

on the abstract search space will be discussed.

3.5.1 Factorization

The less a particular piece of knowledge depends upon the existence of other unre-

lated problem space information, the more likely it is to remain accessible when other

problem space information is abstracted. This is the motivation behind factoriza-

tion. A problem space is factored if its long-term-memory representations of problem

space knowledge (e.g., knowledge about state creation, operators, or goal tests) are

separated into any independent sub-parts which compose them.
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operator op is go-through-door

^ op is instantiated with robot, door, new-room

^ the operator may apply

^ state is augmented with inroom(robot,old-room)

^ state is augmented with #-of-robots-in-room(old-room,n1)

^ state is augmented with #-of-robots-in-room(new-room,n2)

) add(inroom(robot,new-room)) to state

^ delete(inroom(robot,old-room)) from state

^ delete(#-of-robots-in-room(new-room,n2)) from state

^ delete(#-of-robots-in-room(old-room,n1)) from state

^ add(#-of-robots-in-room(new-room,n2+1)) to state

^ add(#-of-robots-in-room(old-room,n1-1)) to state

Figure 3.6: An unfactored operator application.

Soar suggests a particular approach to factorization; as discussed in Chapter 2,

Soar was deliberately designed such that it does not reason about the contents of

its own rules, or match the rule's conditions in a partial manner. If an abstracted

rule condition no longer matches, its rule will not �re. Thus, with Soar, factorization

occurs during the problem-space design process by representing independent actions

as separate rules, as will be shown below. With a di�erent problem-solver, di�erent

approaches to the implementation of factorization might be possible, but the need

for factorization would remain the same. An example will �rst be given of a factored

operator application, and then the process of factorization will be detailed.

3.5.1.1 Example

Consider the possible representations of operator application knowledge which could

be employed for the go-through-door operator of Figures 3.1 and 3.2. The rules

which test the operator preconditions were shown in Figure 3.3; if the precondi-

tions are either met or abstracted, then it will be true that the operator may-apply.

Figure 3.6 shows an unfactored representation (in pseudo-code) of the operator appli-

cation knowledge. If, as in Figure 3.2, state information about the number of robots

in a room is missing, this rule will not match on all conditions, and the operator will

not be able to apply.
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operator op is go-through-door

^ op is instantiated with robot

^ the operator may apply

^ state is augmented with inroom(robot, old-room)

) delete(inroom(robot,old-room)) from state

operator op is go-through-door

^ op is instantiated with robot, new-room

^ the operator may apply

) add(inroom(robot,new-room)) to state

operator op is go-through-door

^ op is instantiated with robot, new-room

^ the operator may apply

^ state is augmented with #-of-robots-in-room(new-room,n2)

) delete(#-of-robots-in-room(new-room, n2)) from state

add(#-of-robots-in-room(new-room, n2+1)) to state

operator op is go-through-door

^ op is instantiated with robot, new-room

^ the operator may apply

^ state is augmented with #-of-robots-in-room(old-room,n1)

^ state is augmented with inroom(robot,old-room)

) delete(#-of-robots-in-room(old-room,n1)) from state

add(#-of-robots-in-room(old-room,n1-1)) to state

Figure 3.7: The operator of Figure 3.6, factored.
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Figure 3.7 shows a factored version of the same operator application (and instan-

tiates Figure 3.4). Each independent action is represented separately. The factored

operator allows partial application since the rules can �re separately; the robot may

be moved and the number of robots in the target room updated even if the number

of robots in the originating room remains unknown. In this way abstract problem-

solving progress can still be made when information is missing.

3.5.1.2 Implementation

The process of factoring a problem space may be operationally de�ned as follows. The

procedure described below splits unfactored rules, then merges some of the resultant

rules back together as appropriate. In the following, \action" refers to the creation

of a new object, relation, or piece of search control information. The term \legality

conditions" is used for those conditions which are used only to determine whether

or not a rule will apply, but don't bind any variables for the actions. For example,

consider the following rule:

operator is go-through-door

^ op is instantiated with robot, new-room

^ state is augmented with color(robot, color)

^ color is blue or green

^ the operator may apply

) add(inroom(robot,new-room)) to state.

In this rule, the clauses

^ state is augmented with color(robot, color)

^ color is blue or green

are legality conditions. The binding of the variables in the rule action do not change

with a change in robot color.

To create a factored problem space:

1. First, ensure that operator precondition tests are separated from operator ap-

plication rules and explicitly represented, if the problem space has not already
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been designed in this manner. To do this, all legality conditions in operator ap-

plication rules, except for a test that the operator \may apply", are by default

assumed to be preconditions of the operator application. Any such precondi-

tions are moved to separate rules. Any conditions of the original rule necessary

to create bindings for the precondition tests are copied to the new precondition

rule as well. A rule is created for each such precondition, according to the format

described in Section 3.2. For example, in the operator application rule above,

the test for robot color would be moved to a separate precondition-testing rule.

Note that any legality conditions which are not moved to separate precondition-

testing rules will be treated as critical [Sacerdoti, 1974] preconditions by the sys-

tem (preconditions which are unachievable if not already met, and thus should

not be abstracted). If preconditions are not explicitly represented in separate

rules, they will not be abstracted. Thus, if the system designer has semantic

knowledge about which preconditions should be considered critical, this knowl-

edge can be used to override the default factorization process, and retain those

critical preconditions as part of the operator application rules.

Of course, in the absence of such knowledge, some of the explicitly represented

preconditions may be critical under certain conditions. The problem-solver will

discover for itself whether or not this is the case (and will repair its plan if nec-

essary, as will be described in Chapter 4). In addition, if domain information is

available which allows the problem solver to reason about whether or not cer-

tain of an operator's preconditions should be abstracted, this information could

override the default abstraction behavior during abstract search, by specifying

that some of the operator's preconditions should not be assumed met. However,

if the problem-space representation does not allow many preconditions to be ex-

plicitly reasoned about, then the scope of possible abstractions will be small.

Next, for all problem-space rules (including the newly separated precondition-

testing and operator application rules), do the following:

2. For each rule with more than one action on its right-hand-side, replace the
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original rule with a set of new rules; one for each action of the original rule, and

each with the same left-hand-side conditions as the original rule. E.g., one new

rule would be created for each action in the rule of Figure 3.6.

3. It may be the case that multiple actions of the original unfactored rule are

linked, such that the result of one action must be accessed to achieve another

action of the same unfactored rule. In this case, augment each new rule as

necessary such that it also includes in its left-hand-side any tests for objects or

relations which were created in the original rule, and which the action of that

new rule needs to access.

For example, in the illustrative robot domain described above, suppose that

an unfactored rule creates a go-through-door operator for a speci�c robot A,

and augments the operator with information about the number of other robots

in the same room as A. Two new rules will be constructed to replace the

unfactored rule; the �rst will create the operator, and the second will add the

number-of-robots augmentation. This second rule will need to incorporate on

its left-hand-side a test for the existence of the operator, so that it may then

augment it. Note that if several actions of the original unfactored rule produce

a chain of related objects, then it may be necessary to add a corresponding

chain of such tests to a new rule.

4. From each new rule, remove any conditions which are required solely for legal-

ity (that is, remove any conditions not used to bind the variables of the rule

action)5. For example, when constructing the rules in Figure 3.7, the tests for

#-of-robots-in-room were removed from the left-hand-side of the rule which

adds \inroom(robot,new-room)" to the state, since the count information is

not required when specifying the robot's new room.

Compare the conditions of the resulting rules with the conditions of the original

rule from which they were constructed. Let SetC be any conditions of the

original rule, not yet used in any new rule. From the group of new rules formed

5Recall that precondition tests will have already been removed from operator application rules
before this step, and thus are not included in the legality conditions considered here.
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from the original rule, �nd all rules whose conditions do not depend upon the

actions of other rules in the group. Call this non-dependent subset of rules,

SetR. Add the conditions in SetC to each rule in SetR. For example, suppose

that an original rule was split into two new rules, one which created a new state,

and another which added some information to that state. Then, any legality

conditions of the original rule, not required to bind variables for the actions of

the new rules, would be added only to the rule creating the new state.

5. Any factored rules with identical left-hand-sides may now be merged. For ex-

ample, two such rules were merged to produce the fourth rule in Figure 3.7. In

addition, if there exist two rules 1 and 2 such that Rule 1 has action X and Rule

2's left-hand-side is a subset of Rule 1's left-hand-side plus a test for the object

or relation created by X, then the two rules may be merged. The merged rule

will have the conditions of Rule 1 on its left-hand-side, and the (linked) actions

of both rules as its actions. For example, suppose that under all conditions in

which the operator above is created, it is given the name \go-through-door".

In this case, two actions (creating the operator and adding the name to the op-

erator) can be merged into one rule which both creates the operator and then

adds the name to the operator.

Factorization increases the e�ciency of problem solving in a dynamically ab-

stracted space. E.g., as illustrated in Figure 3.2, the problem solver can reach the

goal in the abstract space using fewer operations if it can make progress using partial

information. The greater the extent to which a problem space is factored, the more

e�cient abstract problem-solving can become.

The utility of factorization extends beyond operator application. All problem-

space knowledge should be factored. Speci�cally, knowledge about: operator appli-

cation, operator preconditions, object creation, and goal tests should all be factored.

Note that factorization separates creation of objects from the creation of search con-

trol about the objects. Precondition factorization was discussed above; the examples

below discuss in more detail the way in which factorization of the other types of

problem-space knowledge listed above can increase abstract problem-solving utility.
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3.5.1.3 Factorization of Operator applications

A factored operator application was shown in Figure 3.7 above. If an operator appli-

cation is composed of a number of independent sub-actions, and if each sub-action is

described separately, then some of the sub-actions may be able to apply even though

there is not enough information available to allow the operator to apply in its entirety.

In this manner as much of the operation is completed as possible.

In contrast, if the operator was not able to apply partially, then one of two things

could happen with the abstract search. If the operator was required to apply fully,

then more problem solving would have to be done to reach a state in which the opera-

tor could in fact apply fully. Alternatively, the operator could be considered vacuously

\done". But in that case the problem-solving state would not have changed, and the

problem solver would be no closer to its goal in the abstract space. Factorization al-

lows the operators to apply as completely as possible in the abstract space, and thus

progress can be made without doing the work necessary to reach a state in which the

operator can apply in full. One way to view the operator application factorization

process is that only those parts of the operator application which solely test those

operator parameters required for operator creation, will always be able to apply and

thus will be non-conditional in the abstract space. All other operator e�ects may

become conditional during the abstract search.

3.5.1.4 Factorization of Object Creation from Object Augmentations

When a new object is created, the core knowledge needed to create or de�ne it should

be separated from knowledge which augments the object with auxiliary or deductive

information (the auxiliary knowledge should of course be factored as well). This

guideline should be followed for all problem-space objects. Two cases | state and

operator creation | are discussed below in more detail.

New State Creation. Creation of initial states in lookahead subgoals is usually

based on information in already-existing subgoals. When state information in these

pre-existing subgoals is incomplete or incorrect, then knowledge about copying state

information from one subgoal to another will be most e�ective when factored. If all
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knowledge about new state initialization were to be stored in the same rule, then the

rule would not �re unless it was completely matched. In contrast, factorization of

initialization knowledge allows new states to be created as completely as possible

during abstract problem solving, which increases the chance that useful problem

solving can occur in the new subgoal. The extent to which the new state can be

instantiated determines the extent to which it will be initially abstracted in the new

subgoal.

Operator Creation. When operators have factorable e�ects, the knowledge about

operator creation needs to be correspondingly factored as well. As an example, con-

sider a push-box operator from a robot domain such as the one described above.

Suppose that the primary function of the operator is to have a robot push a box from

one location to another. Also suppose that the problem space designer additionally

wishes to add to the operator application knowledge the following conditional e�ects:

if there is anything \light" on top of the box when the robot pushes it, the object on

top will be jolted and knocked o�; and if there is something \heavy" on top of the

box, it will shift but not fall o�.

Operator creation, could then be accomplished in at least two ways. A �rst (non-

factored) approach would be to de�ne three di�erent push-box operator-creation

rules: one which was used if there was something light on top of the box to be pushed,

one which was used if there was something heavy on the box, and one created when

there was nothing on the box. Each would augment the new operator's parameters

accordingly.

However, suppose that during an abstract search, the information about some

object's weight was abstracted away. A problem arises if this object is on top of a

box which needs to be pushed. In this situation, the problem solver would not be able

to utilize any of the three push-box operator creation rules described above, since

the �rst two rules need to know the weight of the object, and the third tests that

there is no object on top of the box. Thus, even if the operator's application rules

were factored, the problem-solver could make no progress, since it would not be able

to create the operator.
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An alternative, and more useful, approach to operator creation would be to fac-

tor the process by �rst creating the push-box operator with no reference to object

weights or whether anything is on top of the box, and then augmenting it with such

information if it was available. Since the knowledge about operator application should

be correspondingly factored as well, such an operator would then apply partially even

if object weight were unknown.

Operator Creation Rules and Critical Preconditions. After a problem space

is factored, any legality conditions in operator creation rules will implicitly serve as

critical (unabstractable) preconditions. If the legality conditions are not met, the

operator will not be proposed (and thus there is no opportunity to abstract these

conditions during abstract operator application). For example, in a robot domain,

a problem space might be designed such that operators which push boxes are not

proposed unless the boxes are \pushable". By designing the problem space so that the

test for \pushable" is put in the operator creation rather than operator application

rules, it is ensured that the system will not have the opportunity to abstract (or

subgoal upon) this condition during operator application.

3.5.1.5 Factorization of Goal Testing.

Factorization of goal-testing knowledge can increase the e�ciency of the abstract

search as well. If knowledge about how to test for a goal is not factored, then the

problem solver can only ascertain whether or not a goal has been entirely achieved{

it can not test the status of any task sub-goals (conjuncts or disjuncts). The system

has a better chance to make progress if it can reason about individual conjuncts or

disjuncts of the goal.

3.5.2 Access of State Information from Operators

In addition to factorization, a second guideline for problem-space design has been

de�ned, called the information-access guideline. It prevents a partial operator appli-

cation from being overridden by information which is incorrect due to precondition
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abstraction. The motivation behind the factorization technique of Section 3.5.1 is

to ensure that the inapplicability of one part of a problem-solving operation will not

prevent the application of other parts. However, it may sometimes be the case that

information which is incorrect due to an ignored precondition can change or prevent

the application of the primary operator actions. For example, if a precondition of

an operator is that some amount of a resource exists, and this resource is monitored

throughout operator application, then abstraction of the precondition can potentially

cause the operator application to be aborted due to lack of resources. This issue may

potentially arise with all precondition-relaxation techniques| unless precondition lit-

erals are systematically removed from the abstract language prior to problem-solving

| and is not speci�c to Spatula. The information-access guideline syntactically

structures a problem space so that such problems are avoided.

Before describing the guideline, we must note that for the experimental domains

which will be described in Chapter 6, design of the problem space according to this

guideline had no additional e�ect on the abstractions produced, for reasons to be

discussed below. (For the same reasons, it did not arise, e.g., in the ABStrips work

[Sacerdoti, 1974]). Therefore, it has not yet been extensively utilized; this remains a

topic for further work.

To introduce the information-access guideline, consider two extensions to the

go-through-door operator introduced above. First, another precondition of the op-

erator is added (Precondition 4), stating that the door between the current room and

the new room must be open. Second, the operator application rules are changed so

that the operator moves a given sequence of robots through the door rather than just

one. Suppose that each time a robot moves through the door, a draft, proportional to

the size of the robot, moves it shut a bit. The door movement is calculated as part of

the operator application; if the door is shut too far to move the next robot through,

then the operator application is terminated at that point (a subsequent go-through-

door operator will be proposed to move any remaining robots in the sequence, after

the door is reopened).

If the \open-door" precondition for the go-through-door operator is abstracted

when unmet, then the door will stay at its prior status of closed. This has the
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operator op is go-through-door

^ op has door

^ state has status(door, open)

) go-through-door-precond-4(op, true)

Figure 3.8: A new precondition of the go-through-door operator, which checks that
the door is open. (Although not shown here, a test for precondition-4 would also be
added to the last rule in Figure 3.3, which checks that all preconditions are met).

operator op is go-through-door

^ op has door

^ op may apply

^ state has status(door, closed)

) abort application of op

operator op is go-through-door

^ op has door, current-robot

^ op may apply

^ current-robot has size

^ state has door-status(door, open by width)

) delete(door-status(door, open by width)) from state

add(door-status(door, new-status(width,size))) to state

Figure 3.9: One representation of an extension to the go-through-door operator ap-
plication, where as a robot moves through, the door shuts by an amount propor-
tional to the robot's size. Using this representation, di�culties are encountered if
go-through-door-precond-4 is abstracted, since the operator application is aborted
if the door appears closed.
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potential to cause problems for the abstract operator application, since if the operator

tests for the status of the door after the precondition has been abstracted, it will

appear as though no robots in the sequence have room to move through. In this case,

problem-solving would be at least as ine�cient with abstraction as without | using

abstraction, the problem solver would still have to determine that it needed to open

the door before it could make any further progress. One potential representation of the

extended operator, in which this problem does in fact occur, is shown in Figures 3.9

and 3.8.

However, if the operator is represented di�erently than as shown in Figure 3.9,

so that information about the status of the door becomes no longer accessible to the

go-through-door operator when the \open-door" precondition is abstracted, then

the abstraction of Precondition 4 will be more useful. If the door-status information

is no longer accessible | i.e. if the rules can no longer match against the door-status

information | then via factorization those parts of the operator application which

do not reason about door status will still apply, such as the rules which update the

number of robots in each room. However, those parts of the operator which modify or

test the door status will not match if the operator precondition has been abstracted.

Speci�cally, the rules which modify and test the amount by which the door is open will

not match. Thus, the operator would not fail when Precondition 4 was abstracted,

but instead would apply abstractly by moving all the robots in the sequence through

the door (since this is the default behavior as long as the door is su�ciently open).

As this scenario suggests, Spatula's abstraction techniques will be more useful if

abstracted precondition information is no longer accessible to the operator during ap-

plication. This is the motivation behind the information-access guideline. However,

because Spatula's abstractions are dynamically determined, we do not want to re-

move information from a problem space before abstract problem solving starts | this

approach in fact motivates all of the problem-space design guidelines in this chapter.

Nor do we want to assume that the problem solver has been provided with knowledge

about what state information would be a�ected by the abstraction of a particular

precondition under a particular set of conditions. In the remainder of this section,

we will �rst describe the way in which a problem space can be designed to address
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this issue during dynamic abstraction, and then discuss some of the implications of

our approach.

3.5.2.1 Approach

To allow the system to ignore state information which may be incorrect due to ab-

straction, we use the following technique: the operator precondition tests are used

to dynamically annotate the operator with any state information which causes a pre-

condition of a currently selected operator to be met for the current situation. Such

state information can only be accessed by the operator via this dynamic annotation.

Then, any state information which could potentially contribute to the achievement

of a precondition but is not explicitly noted as doing so, is therefore not accessible to

the operator. For example, a notation, recording the door status, will be added to

the go-through-door operator if Precondition 4 is achieved. If the precondition is

ignored, then no such notation will be added to the operator. The go-through-door

operator application rules will be designed so that they can only learn about the

door-status by looking at this notation. Non-abstract operator application will pro-

ceed as before (since the notation will always be present). However, abstraction of

the precondition will simply cause any door-status information in the state to be ig-

nored during operator application (since no \door-status" notation, with respect to

the current go-through-door operator, will then exist). Through factorization, the

abstract operator will apply partially without the door-status knowledge.

3.5.2.2 Implementation in Soar

The information-access problem-space design guideline is implemented in Soar as

described below, and an example is given. To ensure that precondition abstractions

do not in fact cause the failure of primary operator e�ects, the operators must be

syntactically designed such that three things happen:

1. The state information tested on the left-hand-side of operator precondition test

rules is copied and linked to the operator data structure at the same time that

the precondition is noted as achieved. For convenience, call this subset of state
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operator op is go-through-door

^ op has door

^ state has status(door, open by widest amount)

) go-through-door-precond-4(op,true)

add(door-status(door, open by widest-amount)) to op

operator op is go-through-door

^ op has current-robot, door

^ state has inroom(current-robot, roomx)

^ state has adjoins(door, roomx)

) go-through-door-precond-1(op,true)

add(inroom(current-robot, roomx)) to op

add(adjoins(door, roomx)) to op

operator op is go-through-door

^ op has new-room

^ state has #-of-robots-in-room(new-room, n)

) go-through-door-precond-3(op,true)

add(#-of-robots-in-room(new-room, n)) to op

operator op is go-through-door

^ op has current-robot

^ state has inroom(current-robot, roomx)

^ state has #-of-robots-in-room(roomx, n)

) go-through-door-precond-2(op,true)

add(inroom(robot, roomx)) to op

add(#-of-robots-in-room(roomx, n)) to op

Figure 3.10: Precondition testing rules for the new version of the go-through-door
operator, revised to facilitate more useful operator application if abstraction occurs.
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information, added to the operator, Set X; where \X" is uniquely instantiated

for each di�erent precondition test. If the precondition-testing rules are mod-

i�ed in this manner, then such an operator augmentation will be made for

each achieved operator precondition; both those which happened to be already

achieved before the operator was selected, and those which were achieved after

the operator was selected, in an operator-subgoal.

Figure 3.10 shows the rule which checks Precondition 4 for the go-through-door

operator, modi�ed according to the information-access guideline. It also shows

the precondition tests of Figure 3.3, similarly modi�ed to re
ect the guideline.

2. If the operator is partially (or completely) applied via compiled rules, and a left-

hand-side of an an operator application rule tests for information always con-

tained in some Set X, then the rule should be designed to access this information

only through the operator augmentations added as described in Item 1 above.

Tests for information not necessarily contained in any Set X should be accessed

directly from the state rather than the operator augmentations. Any modi�ca-

tion during operator application of information in some Set X, must modify the

operator augmentations as well as the state information.

Figure 3.11 shows the operator application rules for the new version of the

go-through-door operator, designed according to the information-access guide-

line. The �rst four rules incorporate the new operator extensions. The door-

status information is accessed from the operator rather than the state during

application.

The last four rules in the �gure are the original operator application rules for the

go-through-door operator, �rst shown in Figure 3.7. These rules will not in

fact apply any di�erently when they are modi�ed according to the information-

access guideline. This is because the non-achievement of the preconditions in

Figure 3.3 can not a�ect any state information during operator application

other than the abstracted information itself. For example, abstraction of the

preconditions that the robots be counted (preconditions 2 and 3) can not impact

the way that the robot gets moved from one room to the other if the operator is
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operator op is go-through-door

^ op has door
^ op may apply

^ op has door-status(door, closed)
) terminate application of op

operator op is go-through-door

^ op has door, current-robot
^ op may apply

^ current-robot has size
^ op has door-status(door, open by width)
) delete(door-status(door, open by width)) from state and op

add(door-status(door, new-status(width,size))) to state and op

operator op is go-through-door(current-robot,robot-seq,door,new-room)
^ op has current-robot, new-room, robot-seq

^ op may apply

^ state has inroom(current-robot, new-room)

) change(current-robot=pop(robot-seq)) for op

operator op is go-through-door

^ op has robot-seq=empty

) terminate application of op

operator op is go-through-door

^ op has current-robot, new-room
^ the operator may apply

^ state has inroom(current-robot, old-room 6= new-room)
) delete(inroom(current-robot,old-room)) from state and op

operator is go-through-door
^ op has current-robot, new-room

^ the operator may apply

) add(inroom(current-robot,new-room)) to state and op

operator op is go-through-door

^ op has current-robot

^ op may apply

^ op has inroom(current-robot, roomx)

^ op has #-of-robots-in-room(roomx, n)
) delete(#-of-robots-in-room(new-room, n)) from state and op

add(#-of-robots-in-room(new-room, n-1)) to state and op

operator op is go-through-door

^ op has new-room
^ op may apply

^ op has #-of-robots-in-room(new-room, n)
) delete(#-of-robots-in-room(new-room, n)) from state and op

add(#-of-robots-in-room(new-room, n+1)) to state and op

Figure 3.11: Representation of an extension to the go-through-door operator application, in

which a sequence of operators is moved through the door. (After each robot in the sequence is

moved through the door, the next one is \popped" from the list, and made to be the operator's

current robot). Here, the extended operator is represented using the information-access guideline,

such that the operator application is facilitated in an abstract space.
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factored, regardless of whether or not the \robot count" information is incorrect.

The operators in the domains described in Chapter 6 are in fact of this form,

and thus for those domains, it did not matter whether or not the operators were

designed according to the information-access guideline.

3. If the operator is partially (or completely) applied via sub-operators applying in

a subgoal, and information contained in some Set X is to be added to the initial

state, the initial state creation rules for the subgoal must access this information

only through the operator | if such augmentations exist. This requirement is

not illustrated in our examples, which do not show operators implemented in

subgoals, but is included for completeness.

3.5.2.3 Discussion

With the information-access guideline, we have presented a method for addressing

a situation which may potentially arise when using precondition-relaxation abstrac-

tions. Information which is incorrect as a result of precondition abstractions may

prevent an operator from applying partially when there is in fact su�cient informa-

tion for it to do so. One example of a class of preconditions for which this problem

may arise are those which require that a resource be obtained. Our approach re-

quires the problem-space designer to make a syntactic connection between two parts

of the operator: precondition testing and operator application. Using this syntactic

link, the process of precondition-testing determines the information used to apply the

operator.

Note that the information-access guideline does not in itself always provide a

guarantee that abstract application di�culties will be avoided. As a rather unlikely

example, the \door-open" precondition test in the scenario above could have been

represented implicitly such that to check whether or not the door was open, the

problem-solver consulted a \door-status" log sheet posted by the door. With this

implicit check, the information accessed in the precondition test (the log sheet) would

not be the information which was used during operator application (the physical

status of the door). Thus, the implementation of the information-access guideline with
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respect to the log sheet precondition test would not prevent problems from occurring

when the actual door status was accessed during abstract operator application. To

be fully e�ective, the information-access guideline must be used in conjunction with

an explicit representation of the precondition-test requirements. Section 3.5.3 further

addresses this issue.

Our approach may be viewed as analogous to the \Strips assumption", which

addresses the frame problem [McCarthy and Hayes, 1969] | the problem of describing

how a situation changes after an operator has applied { by explicitly describing a set

of objects and relations which have changed, and assuming that everything else about

the situation has stayed the the same. With the information-access guideline, we take

a similar approach in determining what state information to ignore when applying

an operator. We make note of the information contributing to those preconditions

which were met, and assume that all such information not explicitly noted is to be

ignored. Incorrect information is not removed from the state, but if it causes any

preconditions of subsequent operators to be unmet, these subsequent operators will

also be designed such that the incorrect information does not prevent partial operator

application.

In contrast, an alternative approach could have attempted to invert the process

by explicitly determining all objects or relations in the state whose current values

could have prevented abstracted preconditions from being achieved, and then delet-

ing those objects from the abstract state so that they did not impact the operator

application. However, there would be several problems with such an approach. First,

it would require extra work to determine those objects and relations which could have

prevented a precondition from being achieved, in addition to performing the precon-

dition tests. The motivation behind abstraction is to reduce the work required during

search. Second, there may be many di�erent ways to achieve a precondition. E.g.,

the \door open" precondition of the go-through-door operator could conceivably be

achieved by either removing the door from its hinges or pushing it ajar. Since the

problem solver could not be expected to have a priori knowledge of which way the

precondition would have been achieved if it had not been ignored, it would (if the

problem space designer took this alternative approach) need to remove from the state



3.5. GUIDELINES FOR ABSTRACT SEARCH UTILITY 75

all objects and relations which could contribute to an unmet precondition. E.g, if

the \door open" precondition was abstracted, the problem solver would then need

to remove from the abstract state any information which could have lead to an un-

met door-open precondition. This could include the information that the door was

attached to its hinges, as well as the information that the door was in the closed

position, as well as any other information which could lead to an unmet door-open

precondition. The problem of enumeration of these possibilities is similar to that of

the quali�cation problem [McCarthy, 1977]. Removal of all such information from the

state could in general produce a state which was too abstract to be useful during fur-

ther problem solving. For these reasons, this alternative approach to implementation

of the information-access guideline was rejected.

3.5.3 Avoidance of Implicit Assumptions about Problem

State

Thus far we have presented two problem-space design guidelines, factorization and

the information-access guideline. These techniques provide support for useful search

in dynamically created abstract spaces, by allowing abstract operators to apply with

partial information. Thus, they allow the problem solver to progress towards an

abstract solution via precondition relaxation. However, to ensure that the structure

of the abstract search is as useful as that of the non-abstract, an additional design

guideline must be addressed as well; that of avoidance of implicit assumptions about

problem state.

As discussed earlier, problem-solving in the abstract and non-abstract spaces will

not necessarily follow the same problem-solving steps. Therefore, domain knowledge

can be expected to translate most usefully between non-abstract and abstract spaces

if it does not depend upon implicit assumptions about what should have happened

during past problem-solving. This section addresses this issue, and discusses three

aspects of problem design with respect to this guideline: representation of search

control, goal tests, and precondition tests.
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3.5.3.1 Search Control

A domain's search-control knowledge can a�ect abstract search e�ciency. If the search

control developed for a non-abstract domain does not transfer to a corresponding

abstract search, then it may not be more e�cient than the non-abstract problem-

solving. This issue is relevant for any abstraction technique in which ground-level

search control is used in an abstract space, and is not speci�c to Spatula.

Section 3.4 gave an example which illustrated the way in which search control

based on assumptions about what should have happened can back�re. The less the

extent to which arbitrary search-control knowledge depends upon assumptions about

what should have happened, the more reliably it will transfer to an abstracted search.

If a domain's search control includes complete goal-directed search-control knowl-

edge | where \goal-directed" means that, given an unmet task goal or subgoal, the

system has knowledge about what set of operators to suggest | then this search

control will be independent of previous problem-solving, and thus will be equally ef-

fective during both abstract and non-abstract search. For this reason, goal-directed

search control (such as MEA knowledge) can play a useful backup role as weak search

control, alone or in conjunction with other control knowledge.

3.5.3.2 Goal Tests

Goal tests should be represented such that they test directly for all required goals.

The system should not make any assumptions about the achievement of one goal

conjunct via the achievement of another, since an implicit goal achievement which

takes place in the non-abstract space may not take place during a corresponding

abstract search. Again, this issue is not speci�c to Spatula.

3.5.3.3 Precondition Tests

Operator precondition tests should be represented such that they test explicitly for

any conditions of the state which contribute to the achievement of the operator's

preconditions, rather than testing for implicit signals that the precondition has been
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Figure 3.12: Branching factor of state-space search without and with precondition
abstraction.

achieved. The \log sheet" precondition test described in Section 3.5.2 was an exam-

ple of an (undesirable) implicit test of whether a door was open. As discussed in

Section 3.5.2, explicit testing for such information allows syntactic detection of that

precondition information which was not ignored during the precondition achievement

process, and which hence may be safely accessed during operator application.

3.6 Impact of the Spatula Abstraction

Techniques on Search Characteristics

Changes in branching factor, search depth, and solution length can occur when a non-

abstract problem space is dynamically mapped to an abstract one. Such changes are

discussed in this section, with respect to the abstraction properties provided by Spat-

ula. As has been illustrated in the previous sections, problem-space representation

can impact the abstract problem-solving which occurs when Spatula is applied to a
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domain. Therefore, no blanket statements can be made about the way in which the

solutions and/or search space will always change within the abstract search. However,

if the design guidelines described in Sections 3.4 and 3.5 are adhered to, the following

changes will occur.

3.6.1 Branching Factor

During abstract problem solving, more operators can potentially apply directly at

each new situation, since it is no longer necessary for all of their preconditions to be

met before they apply. This will be true of any precondition-relaxation technique.

Figure 3.12 illustrates this change. The �gure shows a search space, where circles

indicate states and arrows indicate operators. The top �gure shows a non-abstract

search. The bottom �gure shows the same space, where abstraction has enabled

additional operators to be applicable (as shown by the dashed lines).

However, the increased applicability of the operators in the abstract space does not

in general increase the relative branching factor of abstract search. With Spatula,

unmet operator preconditions are not abstracted until the operator is selected. This

means that operator selection criteria, even that which is based upon whether or not

the operator's preconditions are met, will remain equally applicable during abstract

and non-abstract search. Thus, if domain search control is designed according to the

guidelines described earlier | such that suggestions about what to do next are based

upon the current state and goals and are independent of previous problem-solving |

then the branching factor from a given state will not be a�ected by abstraction.

3.6.2 Solution Length

In [Kibler, 1985; Pearl, 1983; Valtorta, 1984], it is shown that with the use of pre-

condition relaxation, the length of the shortest abstract solution to a problem will

always be less than or equal to the length of the shortest non-abstract solution. This

result in fact extends to the class of all PI-Abstractions, and allows PI-Abstract so-

lutions to be viewed as a source of admissible search heuristics, to be used by search

algorithms such as A*. Chapter 8 further discusses examples of systems which take
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this approach.

This theoretical result will always hold for a problem solver using Spatula, given

that the domain problem spaces are designed according to the guidelines described

above. If this is the case, then 1) the operators will be able to apply abstractly with-

out their preconditions met, thus allowing shorter solutions by e�ectively removing

precondition subtrees from the solution trace; and 2) overly restrictive search control

will not prevent the shorter solutions from being found.

However, for all precondition-relaxation methods, the fact that a shorter abstract

solution exists does not necessarily mean it will be found (given arbitrary search

control knowledge), unless only admissible search methods are used.

Consider a task for which a system has only incomplete MEA knowledge about

its domain. Suppose that Operator A achieves a precondition of an Operator B as

its primary e�ect, and causes secondary e�ects as well. Suppose that these secondary

e�ects opportunistically achieve various task goals, but that the domain's search con-

trol is not \aware" of these opportunistic e�ects, and only includes the knowledge

that A achieves B's precondition. For this task, the shortest abstract solution might

involve �rst applying Operator A, and then applying Operator B. However, the

problem solver might not ever construct this solution during its abstract search if it

abstracted B's preconditions (and did not perform exhaustive search of the abstract

space). A corresponding non-abstract search might in fact be shorter than the ab-

stract, if it serendipitously discovered the opportunistic e�ects of A while searching

to achieve B's preconditions.

Although we have presented this example in terms of comparative solution lengths,

this issue is in fact more general; the problem-solving biases present during abstract

search can work in conjunction with abstraction to a�ect the range of non-abstract

solutions which the system will produce. This issue is discussed further in Chapter 5,

after we have presented the way in which the problem solver uses the abstract search

capability provided by Spatula.
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3.6.3 Search Expense

With Spatula's abstraction method, abstraction removes subtrees from the non-

abstract search tree. Those branches of the ground-level search in which the problem

solver achieved operator preconditions will no longer be explored. Thus, the search

depth will be reduced. If the branching factor of the search stays the same from non-

abstract to abstract search, then | since search expense will increase exponentially

with search depth | the abstract searches will be exponentially cheaper than the

non-abstract.

3.7 Discussion and Summary

3.7.1 Use of Problem Space Design Guidelines

The problem-space design guidelines presented in this chapter are summarized in

Figure 3.13. The utility of the guidelines is independent of what preconditions in

particular are abstracted | an abstraction method which performs dynamic precon-

dition abstraction using di�erent criteria than Spatula would still need to deal with

these same issues. In addition, the ideas implemented by the guidelines are indepen-

dent of the particular problem-space representations used by a problem solver; e.g.,

a system need not represent operators using production rules for the factorization

guidelines to apply.

The problem-space design guidelines need not be strictly followed for Spatula

to provide useful abstractions. However, the greater the extent to which they are

adhered to in an arbitrary domain, the more useful the abstraction will be.

In addition, the guidelines may actually have a wider applicability than their

usefulness for performing deliberately abstracted search. They may also increase the

robustness of search which is not deliberately abstracted, but in which | because of

noise or an incomplete theory | complete task information is not always available.

For example, even if a search is not being deliberately abstracted, noise can cause

discrepancies, and operators selected during search may not be performable exactly

as foreseen. If a domain is factored, then partial application of operators can occur,
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Guidelines for Problem-space Design:

� Completeness

1. The ability to create all instantiable operators within a problem space.

2. Adequate default knowledge about handling bad search paths.

3. Non-restrictive use of search control.

� Utility

1. Factorization: separation of problem-space components into their in-
dependent sub-parts.

2. Information-access guideline: representation of precondition knowledge
such that incorrect information is ignored.

3. Avoidance of implicit assumptions about problem state in search con-
trol rules, goal tests, and precondition tests.

Figure 3.13: Summary of guidelines for design of a problem space so that abstraction
may e�ectively occur using Spatula.

and still allow useful results to be derived during search.

Similarly, a system should be more robust in general if its search control does not

depend upon a particular sequence of operators having been applied in the past. That

is, the less the problem-solving sequence is hard-wired, the more able the problem

solver will be to respond to unanticipated situations. This is in fact a commonly-

discussed issue in the expert systems literature.

3.7.2 Discussion: Operator Representations

Given the basic mechanism of precondition abstraction, a wide variety of potential

abstractions are possible. Clearly, with Spatula, a domain's abstract search behavior

will be a�ected by the way in which domain knowledge has been conceptualized.

Soar allows a fair amount of variability in the way its operators are represented.

Thus, the problem-space designer must make representational decisions during the

design phase, some of which can impact the system's behavior during abstraction.
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In Section 3.3 we discussed one such type of decision: whether to represent operator

preconditions explicitly so that they may potentially be abstracted, or to represent

them as critical (unachievable if not already met) so that they may not abstracted.

This may be done by deciding to retain the critical preconditions as conditions in the

operator application rules, rather than performing the default factorization into sep-

arate precondition tests. Alternatively, preconditions may be implicitly represented

as critical by including them in the operator creation rules. If this is done, it means

that such conditions must already be met before an operator is proposed, and thus

the system does not have the opportunity to subgoal upon or abstract the conditions.

The latter technique (that of including critical conditions in operator creation

rules) is an example of an aspect of operator representation in Soar which has a

large impact on the range of abstractions produced in a domain: the abstractions

which can occur in a domain are dependent upon which subtasks are considered

operator preconditions and which are considered part of operator implementations.

As discussed in Chapter 2, in Soar (as well as other problem solvers which set up

subgoals to address subtasks), operators may be completely or partially implemented

in subgoals. For many domains, it is possible to conceive of task representations

in which a subtask can be represented either as a complex operator implemented

in a subgoal, or as a simple operator plus a set of preconditions which must be

accomplished before the operator can apply, or some combination of the two (that is,

a complex operator implemented in a subgoal can also have some preconditions that

must be achieved before the work is done in the subgoal).

As an example, imagine an operator from the robot domain in the example above,

a push-box operator which pushes a box to a given location. It can be represented as a

simple operator which instructs a robot to move a box, with the precondition that the

robot is next to the box. This is the way the operation was represented in the ABStrips

work. However, the operation could also be represented as a more complex (non-

\primitive") operator which accomplishes in an operator implementation subgoal the

tasks of both maneuvering the robot over to the box and pushing the box6. Such

6SPATULA abstracts operator preconditions only (previous work did involve abstraction of op-
erator implementations; this work is discussed in [Unruh and Rosenbloom, 1989]).
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an operator may not have any preconditions which need to be met before subgoal

implementation, although the operators in the implementation subgoal may have

preconditions of their own (thus allowing the implementation-subgoal problem solving

to be abstract).

Thus, the representation of a problem domain, and the designer's conceptualiza-

tion of operators and their preconditions, have a large impact on the abstractions

which may be produced using Spatula. This impact is independent of whether or

not the domain is structured according to the design guidelines presented in this

chapter. The e�ect of operator representations on abstraction re�nement will be fur-

ther discussed in later chapters, after we present the way in which the capability for

abstract search may be used by the problem solver.

3.7.3 Summary

This chapter has presented a method for dynamic reformulation of a problem space

using precondition abstraction. The abstractions are driven by unmet precondition

impasses encountered during problem-solving. As an abstract search proceeds, the

initial unmet precondition abstractions can propagate via partial operator applica-

tions. These subsequent abstractions as well as the initial deliberate abstractions

de�ne the new abstract space. The abstract searches will in general be shallower

than their non-abstract counterparts, and thus allow a solution to be found more

easily.

Because the abstractions are generated dynamically, the abstract problem spaces

(i.e., the abstract states and operators) do not need to be created ahead of time{ they

are produced during problem-solving from the original problem spaces.

However, again because the abstractions are generated dynamically, the non-

abstract problem spaces should be designed so that they may be abstracted in a

useful manner. Towards this end, problem-space design guidelines were presented;

when followed, they allow a complete and more e�cient abstract search, from which

subtrees of the corresponding non-abstract search will have been pruned.

The next chapters will build on this basic abstraction method, and show how it

may be augmented and used by the problem solver to increase the tractability of
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search for a ground-space solution.



Chapter 4

Using Abstract Plans for Problem

Solving

The previous chapter has described the way in which an abstract problem space can

be dynamically created from a non-abstract one during problem solving, via delib-

erate precondition abstraction and subsequent propagation of the abstractions; and

discussed issues of e�ciency and completeness related to creating abstract solutions.

However, there has not yet been extensive discussion of the way in which, once ab-

stract problem-solving is able to occur, it can be used to solve the original problem.

As discussed in Chapter 1, one goal of this thesis is to develop Spatula as a

general weak problem-solving method for abstraction. Spatula, as a general weak

method, has been designed to:

� increase problem-solving e�ciency;

� produce good solutions;

� allow a system to learn more easily from its problem solving | that is, require

less e�ort to build new knowledge about its tasks;

� and increase the transfer of learned knowledge to new situations.

Towards this end, Spatula is implemented by providing the problem solver not

only with knowledge about how to create an abstract space, but also with knowledge

85
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about when and how to use the results of abstract search to guide more detailed

problem-solving. With the use of Spatula, the problem solver has an integrated

framework for learning, using, re�ning, and repairing abstract plans, and accom-

plishes the goals above via this framework. Spatula does not require any architec-

tural changes to provide this framework, but rather is implemented by providing the

problem solver with additional default knowledge about how to abstract.

This chapter presents this integrated model for abstraction, and describes the

way in which the abstract problem-space creation techniques of the previous chapter

are used by it. That is, we build on the abstraction method knowledge described

in the previous chapter, by providing additional method knowledge which tells the

problem solver how to use its abstract search capability. We then discuss the impact of

the abstraction method on the problem solver's abilities, and the way it provides the

integrated model for abstraction. We will refer to this integrated model as Spatula's

basic abstraction technique.

Then, given this framework, Chapter 5 will describe domain-independent mod-

i�cations to the basic abstraction method, called method increments. The method

increments | which take the form of additional knowledge provided to the system

| build on and improve the basic method, and use the problem-solving context to

provide heuristics for selecting useful abstractions.

4.1 The Abstraction Context Revisited:

Reducing Decision Time

As brie
y discussed in Chapter 3, Spatula's abstraction techniques are only used

within the context of searches to decide what to do at evaluation and selection control

impasses | points in the problem solving at which the problem solver does not know

what to do next because more than one operation seems equally good.

In Soar, a control impasse generates a subgoal in which the problem solver works to

resolve the impasse; the impasse will be resolved when there is su�cient search control

knowledge generated about the objects involved in the impasse to allow a decision to
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be made. Recall from Chapter 2 that the type of search performed in the subgoal

towards generation of these preferences is not predetermined by the architecture, and

depends upon the kind of knowledge the problem solver has about problem-solving

methods in general and about its domain in particular. However, within such a

subgoal the problem solver will always be performing internal lookahead search, or

planning, rather than executing actions in the \real" world. The lookahead searches

can be recursive; one can be generated within another.

We will refer to the problem-solver's goals of interacting with the world as top-

level, or execution-space goals (in contrast with subgoals generated to plan and reason

about the real-world interactions). Spatula does not use abstraction for the top-level

goals of the problem-solver; any actions taken in the context of these goals are real

actions, output to the world. Because the actions in the execution space are meant

to be real, it does not make sense, conceptually, to try to abstract them. E.g., there

is no way to abstract the actual action of walking through a door. What does make

sense is to abstract the work that the problem solver needs to do to decide which of

these top-level operations to perform.

Spatula is then used to reduce the amount of e�ort required to perform lookahead

searches and resolve control impasses. More speci�cally, Spatula includes knowledge

which matches against the current global problem-solving state and tells the problem-

solver when it is in a context in which search may be abstract. The lookahead

searches are then dynamically abstracted from the original problem spaces, using the

techniques described in Chapter 3.

The abstract lookahead searches will produce abstract evaluations of the candi-

date options causing the control impasse. The evaluations are abstract because they

depend upon fewer task details. These abstract evaluations then are used to resolve

the control impasse. If an abstract search takes less time than the non-abstract one

would have | which will be the case if the design guidelines of the previous chapter

are followed | then the impasse will be resolved more quickly. Abstraction allows

the problem solver to make decisions about its domain operations more easily.

Once the impasse is resolved, problem-solving continues from that point. If any

new impasses are encountered, the process of abstract lookahead search is repeated to
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Lookahead Search

control decision
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Rules Learned

evaluation of
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. . .

go-through-door
[doorAB,roomB,
robot1]

push-through-door
[boxC,doorAB,roomB,
robot1]

go-through-door
[doorAB,roomB,
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push-through-door
[boxC,doorAB,roomB,
robot1]
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go-through-door
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robot1]
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Figure 4.1: The context in which abstraction takes place during problem-solving.
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Terms used in the default rule descriptions:

� \Execution space" goals are those in which the system is outputting real
actions (rather than engaging in lookahead search).

� \Top-level control-impasse subgoal" refers to a subgoal generated in the
execution space when the system can not decide which of several operators
to choose.

� \Top-level lookahead-search subgoal" refers to a subgoal generated to eval-
uate one of the options in a top-level control impasse; there will be one such
subgoal for each option being evaluated.

� \Lower-level lookahead-search subgoal" refers to any further subgoals gen-
erated in the course of performing a lookahead search.

� \Operator subgoal" is a subgoal generated when an operator can not apply
because of unmet preconditions.

Figure 4.2: Terms used in the default rule descriptions of Figures 4.3 and 4.4.

resolve these impasses. Thus, the problem solver interleaves (abstract) planning and

execution. Figure 4.1 reproduces Figure 1.5, and illustrates this process. Note that

in this model, the problem-solver is using the results of its abstract search directly

in the execution space, rather than using the abstract information to guide further,

less abstract, lookahead search. This usage is independent of the particular methods

used to generate the abstractions, and is further discussed in Section 4.4.2.

Figure 4.2 de�nes the terms used in the abstraction-rule descriptions of Figures 4.3

and 4.4. Then, Figures 4.3 and 4.4 summarize the contents of those default rules which

provide to the system the knowledge about when and how to initiate abstract search1.

That is, they allow the system to remember when it is within a lookahead search

context, and to deliberately abstract unmet preconditions as described in Chapter 3.

In these rules, the abstract-at-level for all lookahead search subgoals is set to

1The rules in the �gures give an overview only; Appendix A provides more detail. Some of the
rules in the �gures may correspond to more than one production rule in the appendix. The order of
the rules does not imply a chronological ordering; they �re when their conditions match the current
problem-solving context.
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1. When a top-level control-impasse subgoal is initiated, set the

abstract-at-level variable for that impasse to 1.

2. When the top-level lookahead-search subgoal for each option in

a control impasse is initiated, set the level-count variable

for that search to 1.

3. When the top-level lookahead-search subgoal for each option in

a control impasse is initiated, set the

current-abstract-at-level variable for that lookahead search

subgoal to the value of abstract-at-level.

4. For each new lower-level subgoal within a lookahead search,

create a copy of the parent subgoal's current-abstract-at-level

variable, local to the new subgoal.

5. Within lookahead search, for each subgoal, compare the

level-count value with the current-abstract-at-level value for

that subgoal. If level-count is � current-abstract-at-level set

an in-abstraction-context flag in that subgoal.

6. If a subgoal is in an abstraction context (that is, flag

in-abstraction-context is set), then copy and set the flag in

any child subgoals which are generated.

Figure 4.3: Default knowledge for detection of abstraction context.

7. If a subgoal is in an abstraction context (that is, flag

in-abstraction-context is set), and there is an operator

application impasse and a precondition of that operator is not

met, then add the flag which states that the precondition is

in fact met.

Figure 4.4: Default knowledge for initial abstraction of preconditions. This �gure is
a generalization of the rule shown in Chapter 3, Figure 3.5.
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1, which matches the top level of lookahead search. This simply means that given

these rules alone, the problem solver will consider all search subgoals to be within the

abstraction context, and will perform all lookahead searches abstractly, by abstracting

all unmet preconditions of selected operators.

The rules in these two �gures, in conjunction with the techniques of Chapter 3,

provide the problem-solver with its basic abstraction framework: one which allows

multi-level abstraction, as well as situated learning, use, and re�nement of abstract

plans. In the remainder of this chapter we will describe the way in which this occurs.

In Chapter 5, we will then add to this set of default rules to build upon this framework

and modify the context in which abstraction occurs.

4.2 Abstract Search Occurs Only When

Necessary

An important aspect of Spatula's approach is that since abstraction is only used

when a control impasse is encountered, it is not employed unnecessarily. The problem

solver will use abstraction only when existing search control is not su�cient; there is

no need for it to abstract when it already knows what it will do next. In addition,

since the abstractions are produced dynamically during lookahead search, the problem

solver avoids generating abstractions which it will never use.

4.3 Learning From Search in the Abstract Space

If a system has the ability to learn from problem-solving, as does Soar, and it is able

to conduct search in an abstract space, then it can learn from the abstract search.

The abstract rules are more general, and may be of greater utility; non-abstract rules

learned via EBL are often overly speci�c [Etzioni and Minton, 1992].

In Soar, whenever results are obtained from subgoal processing, new long-term-

memory rules are learned which contain the results in their right-hand-sides and

encode in their left-hand sides those conditions that existed in the goal context before
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the impasse occurred, which were necessary for the result to be generated (multiple

results produce multiple new rules). The learning is a variant of EBL [Rosenbloom

and Laird, 1986]; the rule's conditions are determined by backtracing through the

dependency structure of data produced by the problem-solving in the subgoal, with

the result as the goal concept.

In the case of a control-impasse subgoal, new rules are learned as a result of adding

to working memory any new search-control information generated in the subgoal to

resolve the impasse. The left-hand-sides of the new rules contain those aspects of the

situation in which the impasse was generated which were relevant to producing that

search control knowledge; the right-hand side is the search control itself.

If the problem-solving in the subgoal has been abstract, the problem solver will

have looked at less information to produce its results, since parts of the problem have

been ignored. That is, information that would normally have been backtraced through

to explain a result is abstracted, and some subtrees of the corresponding unabstracted

explanation tree no longer need to be expanded for the goal to be explained. (Another

way of looking at this is that during abstraction, some nodes in the explanation of

the solution are e�ectively replaced with the value true [Keller, 1990]). Because of

this change in the proof tree, the conditions of the new rules will be abstract as well;

that is, they will test for fewer aspects of the current context before �ring than would

their non-abstract counterparts. They are also more general.

4.3.1 Examples of Abstract Learning

As an example of the abstract learning process, consider again a task in a simple

ABStrips-like robot domain. Figure 4.5 shows the necessary operators, initial state,

and goal state for the task. Figure 4.6 shows the explanation structure produced by

the problem solver for this task; arrows represent explanation dependencies. Without

abstraction, suppose that the problem solver �rst proposes the push-box-to-box

operator to move B1 to B2, generates an operator subgoal (because the robot is not

next to B1), does some further problem-solving (using the goto-box operator) to

get near B1, and then is able to apply the operator. The leaves (leftmost nodes) of

the explanation show the initial state and context information used to produce the
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Initial state: Robot and two boxes in room.

Goal: boxes next to each other.

Operators 
include:
push-box-to-box(boxA,boxB)     

preconditions: in-same-room(boxA,boxB),   
                        next-to(robot,boxA)
effects: next-to(boxA,boxB)

goto(box)

preconditions: in-same-room(box,robot)
effects: next-to(robot,box)

B1

B2

Figure 4.5: Example robot domain task and operators.

solution2.

When the problem is solved abstractly using Spatula, the encircled nodes (and

the dashed dependency arrows) are no longer required for the explanation. The unmet

precondition of the push-box-to-box operator is ignored, and since problem-solving

is no longer done to achieve that precondition, some of the leaves of the explanation

(e.g. in-same-room(b1,robot)) are no longer necessary, and will not be incorporated

into the learned rule. Essentially, the rule no longer tests that the robot and box B1

are in the same room before suggesting that the push-box-to-box operator will be

useful when the next-to goal is present.

For a more complex comparison of the di�erence between learning with and with-

out Spatula, Figure 4.7 shows another task in a more extensive Robot Domain.

The domain shown here is used for some of the results presented in Chapter 6, and a

complete listing of the operators is given in Appendix D.

Figures 4.8 and 4.9 show the rule learned for this task during non-abstract and

abstract search, respectively, as a result of resolving the �rst execution-level operator

tie. At this decision, the system compares the operator to close the door between

Rooms 5 and 6 with the operator to push Box C into Room 7. In both cases (from

both the abstract and non-abstract search), the system learns that it is easier to close

the door �rst and then move the box, rather than to move the box and then come

2For simplicity, this example just shows the problem-solver reaching \goal success". In reality,
for both the non-abstract and abstract searches, the search will produce an evaluation, which will
consequently be used to produce search control rules.
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operator is
goto(b1)

next-to(b1,robot)

next-to(b1,b2)

goal success

-next-to(b1,robot)

operator is
push-box-to-box(b1,b2)

in-same-room(b1,robot)

in-same-room(b1,b2)

Figure 4.6: An explanation of goal success for the task of Figure 4.6. Arrows repre-
sent explanation dependencies. Circled area and dotted arrows represent information
ignored during abstract problem-solving. With non-abstract problem-solving, all of
the leaves (leftmost nodes) are conditions of the explanation. With abstract problem-
solving, only the unshaded leaves are conditions of the explanation.

back to the door. In the case of the abstract search, it makes this assessment by

noticing how close the robot is to the door, and does not work out the full details of

moving the box into Room7.

In the rules, which are shown in Soar-like syntax, the variable names are enclosed

in angle brackets (e.g., \<g6>"). In the examples, most of the Soar-generated vari-

able names have been replaced by names indicating the values with which they were

originally matched when the rule was formed. This facilitates comparison between

the two examples. (The variables can of course still match with other appropriate

values as well.)3

The non-abstract rule contains more \if", or left-hand-side, conditions than the

abstract rule. Those conditions not contained in the abstract rule are marked with

an asterisk on the non-abstract rule. Both rules check that doors Room-5/Room-

6, Room-5/Room-7, and Room-4/Room-7 are open; that the robot is in Room 5;

3In addition, for readability, various tests which require that variables be di�erent from each
other (e.g., that two \room" variables are matched to di�erent rooms) have been removed from the
rules as well. For the purpose of the example, the reader may assume that if variables have di�erent
names, they must match di�erent short-term memory objects (normally there is no such restriction).
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open

Goals:
   (door-closed Room-5,Room6)
   (in-room Box-C Room-7)

open

op
en

op
en

op
en

open

op
en

B

E

D A
C

Room 1

Room 2

Room 5 Room 6

Room 7

closed

Room 3 Room 4

Figure 4.7: Example initial state and goal for Robot Domain task.
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;; non-abstract rule
(sp st-2-15-p8615 elaborate

;; if:
(goal <g6> ^problem-space <p1> ^state <s1> ^desired-state <d6>

^op-set <o1>
^desired-op <d5> ^desired <d6> -^operator <o2>)

(problem-space <p1> ^name robot-domain )
(op-set <o1> ^operator <o3> <o2>)

(desired <d6> ^better lower ^goal-conjuncts <g3>)

(goal-conjuncts <g3> ^door-closed <g2> ^in-room <g5>)
(door-closed <g2> ^door <room5/room6>)
(in-room <g5> ^box <b1> ^room <room7>)
(state <s1> ^door <room5/room6>

* <room5/room7> <room4/room7> <room3/room4> <room4/room5>
^connects <c1> <c9>

* ^connects <c3> <c4> <c2>
* ^next-to <n1>

^box <b1> ^robot <robot>
^in-room <i1>

* ^in-room <i2>
^door-status <d1> <d4> <d7>

* ^door-status <d2> <d3>
)
(door <room5/room6> ^type door)
(connects <c1> ^door <room5/room6> ^room <room5>)
(box <b1> ^pushable t )
(room <room7> ^type room)
(connects <c9> ^room <room7> <room4> ^door <room4/room7>)
(door <room4/room7> ^type door)
(in-room <i2> ^obj <robot> ^room <room5>)
(door-status <d1> ^status open ^door <room5/room7>)
(door-status <d4> ^status open ^door <room5/room6>)
(door-status <d7> ^status open ^door <room4/room7>)

* (room <room5> ^type room)
* (connects <c3> ^room <room5> <room7> ^door <room5/room7> )
* (door <room5/room7> ^type door)
* (room <room4> ^type room)
* (connects <c4> ^room <room4> <room3> ^door <room3/room4>)
* (door <room3/room4> ^type door)
* (next-to <n1> ^obj2 <room3/room4> ^obj1 <b1>)
* (connects <c2> ^room <room5> <room4> ^door <room4/room5>)
* (door <room4/room5> ^type door)
* (in-room <i1> ^obj <b1> ^room <room3>)
* (door-status <d2> ^status open ^door <room3/room4>)
* (door-status <d3> ^status open ^door <room4/room5>)

(operator <o3> ^name close-door
^type robot-domain-op ^door <room5/room6>)

(operator <o2> ^name push-through-door
^type robot-domain-op ^into-room <room7>
^from-room <room5> ^box <b1> ^door <room5/room7>)

;; then:
-->
;; operator <o2> is worse than operator <o3>

(goal <g6> ^operator <o2> < <o3>))

Figure 4.8: A non-abstract rule produced for the example task of Figure 4.7.
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;;abstract rule
(sp st-2-15-p85 elaborate

;; if:
(goal <g6> ^problem-space <p2>

^state <s1> ^desired-state <d4> ^op-set <o1> ^desired-op <d3>
^desired <d4> -^operator <o2>)

(problem-space <p2> ^name robot-domain )
(op-set <o1> ^operator <o3> <o2>)
(desired <d4> ^better lower ^goal-conjuncts <g3>)
(goal-conjuncts <g3> ^door-closed <g2> ^in-room <g5>)
(door-closed <g2> ^door <room5/room6>)
(in-room <g5> ^box <b1> ^room <room7>)
(state <s1> ^door <room5/room6> ^connects <c1> <c3> ^box <b1>

^robot <robot> ^in-room <i1>
^door-status <d1> <d2> <d5>)

(door <room5/room6> ^type door)
(connects <c1> ^door <room5/room6> ^room <room5> )
(box <b1> ^pushable t)
(room <room7> ^type room)
(connects <c3> ^room <room7> <room4> ^door <room4/room7>)
(door <room4/room7> ^type door)
(in-room <i1> ^obj <robot> ^room <room5>)
(door-status <d1> ^status open ^door <room5/room7>)
(door-status <d2> ^status open ^door <room5/room6>)
(door-status <d5> ^status open ^door <room4/room7>)
(operator <o3> ^name close-door

^type robot-domain-op ^door <room5/room6>)
(operator <o2> ^name push-through-door

^type robot-domain-op ^from-room <room5> ^into-room <room7>
^box <b1> ^door <room5/room7>)

;; then:
-->
;; operator <o2> is worse than operator <o3>
(goal <g6> ^operator <o2> < <o3>))

Figure 4.9: The corresponding abstract rule produced for the example task.
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and that Room-4 adjoins Room-7 and Room-5 adjoins Room-6. This information

was therefore used in making both the abstract and non-abstract comparisons. For

example, both abstract and non-abstract search used the information that the robot

was in a room next to the door which needed to be opened. However, the location of

Box C was not important to the abstract search | the system abstracted away the

details of getting the box into a room adjacent to Room-7.

The non-abstract rule also tests for several other conditions in the state. It test

that doors Room-3/Room-4 and Room-4/Room-5 are open; and that Room-5 adjoins

Room-7, Room-3 adjoins Room-4, and Room-5 adjoins Room-4. In addition, it also

tests that Box C is next to door Room-3/Room-4, and that Box C is in Room 3.

This information was important in non-abstractly moving Box C into Room7. For

example, since the problem-solver did not abstract away the details of getting Box C

to a room adjacent to Room-7, its initial room location is now important, as is the

fact that it was next to a door.

The additional conditions in the non-abstract rules may make them more accurate

than the abstract rules | they may be more likely to be correct in new situations with

which they match. However, the additional conditions constrain the future situations

in which the non-abstract rule can be used. For example, the additional non-abstract

speci�cations about room connectivity and door status reduce the chance that the

rule will be applicable in a new situation with a slightly di�erent room con�guration.

In contrast, the abstract rule will apply to most situations in which the robot is

in a room adjacent to a door which must be opened. In Chapter 6, we report on

experiments in which the transfer and accuracy of abstract and non-abstract rules

were compared.

4.3.2 Learning MEA Knowledge

Experiments in a robot domain showed that it is possible to use Spatula to learn

means-end knowledge from abstract search, in a manner similar to that suggested by

the examples above. In these experiments, the problem solver was not provided with

any search control knowledge about its domain. When an operator tie was generated,

the system searched abstractly through its space of legal operators until it found one
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(sp p1644 elaborate
(goal <g1> ^problem-space { <> undecided <s2> }

^state { <> undecided <s3> } ^desired <o1>)
(problem-space <s2> ^name strips)

(state <s3> ^robot <r1> ^box <b1> <b2> ^at <a1>)
(desired <o1> ^task-goals <d1>)
(task-goals <d1> ^next-to <n1>)

(next-to <n1> ^box <b1> { <> <b1> <b2> })
(box <b1> ^type object ^pushable t)
(box <b2> ^type object ^pushable t)

(preference <q1> ^role operator ^value acceptable ^goal <g1>

^problem-space <s2> ^state <s3>)
(operator <q1> ^name push-box-to-box

^instantiation <i1>)
(instantiation <i1> ^near-object <b2> ^robot <r1> ^far-object <b1>)
(at <a1> ^box <b1>)
-->
(preference <q1> ^role operator ^value best ^goal <g1>

^problem-space <s2> ^state <s3>))

Figure 4.10: Example of MEA knowledge learned during abstract search.

which, when (abstractly) applied, could achieve a current task subgoal. The problem-

solver then gave that operator a best preference, which generated a search control rule

encoding the conditions under which the operator was successful.

For example, Figure 4.10 shows a Soar rule which was built when the system

discovered that abstractly applying a push-box-to-box operator caused the achieve-

ment, in the abstract space, of a task goal that two boxes be next to each other.

Essentially, this rule says that:

if a task goal is to have two boxes next to each other

and the boxes are pushable

and there is an operator called \push-box-to-box"

instantiated with the boxes

then suggest that the operator is \best".

Note that the rule does not test preconditions of the operator | speci�cally, it

does not test whether or not the robot is next to the box it is going to push, or

whether this box and the robot are in the same room as the target box. Because

the rule was learned during abstract search, these conditions were not important to

the result. Thus, using abstraction, the system is able to more easily learn which

operators are likely to achieve a given task goal| in fact, the system is learning
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MEA knowledge. It would have been much more time-intensive for the system to

have learned the rules which would have been produced by a corresponding non-

abstract search | though these rules would have been more accurate and tested

for the operator's preconditions | since such a search would have involved a blind

search to achieve all the operator's preconditions as well. Therefore, such abstract

rules can help a knowledge-poor system \bootstrap" itself, by providing information

about which operators are likely to reduce a di�erence. (If more than one operator

is suggested as \best", then further problem-solving will be necessary to resolve the

tie between such operators.)

Although this approach has some interesting possibilities, it was not pursued to

any great extent in our experiments, since knowledge-free searches quickly become

unmanageable in domains with a reasonably large set of operators. However, the

experiments suggest that the weaker the previously existing domain search control,

the greater the relative payo� from the use of abstraction. That is, the less knowledge

the system has about its choices, the more e�ective becomes what is learned from

exploring the primary e�ects of the operators. Thus, in conjunction with other weak

sources of search control knowledge to help focus the search, this may be a promising

area for further research.

4.3.3 Inductive Learning using Abstraction

The abstract rules learned using Spatula are constructed without modifying Soar's

chunking mechanism in any way. Rather, the abstraction process has inductivelymod-

i�ed the domain theory so that it allows simpler explanations; deductive explanation-

based learning over the abstract theory then produces rules which are inductively gen-

eralized with respect to the original domain theory. Hence, the example demonstrates

that deductive learning mechanisms such as EBL can provide inductive concept learn-

ing; the theory and operationality criteria used for the explanation can be seen to

constitute the system's learning bias4. Spatula thus provides the system with the ca-

pacity for knowledge-level learning [Rosenbloom et al., 1987; Rosenbloom et al., 1991b;

4See [Rosenbloom et al., 1992] for an extended discussion of the role of bias in explanation-based
learning.
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Dietterich, 1986]. Other systems which use this general approach include [Ellman,

1990; Bennett, 1990b; Knoblock et al., 1991] (see Chapter 8).

Spatula's approach to inductive learning of explanations contrasts with ap-

proaches which �rst produce full problem-solving traces, and then abstract from

them (see Chapter 8). Each approach can have advantages. With Spatula, by

abstracting the domain theory before learning, the generalization process as well as

the problem-solving becomes more tractable.

4.4 Using Abstract Control Rules: Plans

Once a control impasse is resolved using abstract lookahead search, the problem solver

is able to choose one of the actions involved in the impasse and continue execution

from that point. New abstract search control rules will have been learned in the

process, not only for the initial control impasse, but for any sub-searches carried out

in service of control impasses which were recursively generated during the lookahead

searches. The abstract rules | as is the case for all Soar rules | are used in a situated

manner. When a rule matches the current situation, it will �re. Hence, abstract and

non-abstract search control rules may be applied together if both types of rules are

relevant to a situation.

The accumulation of new search control rules may be thought of as the incremental

construction and storage of an implicit plan. The rules de�ne a sequence of actions

for a problem, which may be accessed in situations relevantly similar to the one in

which they were learned. If the problem solver encounters a new situation which is

somewhat but not entirely similar to a learned-about situation, then some of the rules

from the previous situation may apply even if others are not relevant; in this case the

plan will be partially utilized. This can occur, for example, if after initial planning a

situation changes somewhat. The plan in its entirety would no longer be applicable,

but parts of the plan are still likely to apply. In fact, a problem-solver's plan for a

task can be considered to be its accumulated search control knowledge relevant to

that task, which may have been acquired by learning about many di�erent situations

rather than just one. Of course, if two or more sources of applicable knowledge
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contradict each other, the system will need to do further search to determine what

action to take5. Examples of other systems which take a similar approach to plan use

include [Minton et al., 1989; Drummond et al., 1992].

If the search control rules for a task are abstract, then the implicit plan used by

the problem solver is an abstract one. Since an abstract plan is more general than a

corresponding non-abstract plan would be, it is apt to be relevant for a wider range

of potential new situations. Because of the way in which Spatula is incorporated as

part of Soar's integrated problem-solving approach, the abstract plans learned from

the lookahead searches may potentially be used in any relevant context in future

problem-solving | both in the execution space, or during future lookahead search6.

4.4.1 Multi-Level Re�nement and Repair of Abstract Plans

The problem solver's use of Spatula's abstract plans produces not simply a map-

ping from one abstract level to the ground space, but an emergent impasse-driven

multi-level plan re�nement behavior, as the planning and execution phases of prob-

lem solving are interleaved. Suppose that an operator is selected as a result of a

decision during abstract search. Since the search was abstract, it is likely that the

problem solver has not yet developed a plan which speci�es how all of the operator's

preconditions are to be met | that is, its abstract plan has not been completely

expanded to the level of executable operators. If this is in fact the case, then an

impasse will be generated, and the system will search to achieve the preconditions. It

will perform these searches using abstraction as well. But this time, its abstractions

will be lower-level abstractions, in the sense that they are lower in the subgoaling

hierarchy; this time, the abstractions will a�ect preconditions of operators proposed

to achieve other, higher-level, preconditions. The lower-level preconditions often ad-

dress less important aspects of the task, but this need not necessarily be the case.

(This issue is further discussed in the chapters to follow.) With these new searches,

5See [Rosenbloom et al., 1992] for a more detailed general discussion of plans and planning in
Soar.

6The abstract rules learned from lookahead sub-searches can match in the execution space as long
as the \single-representation trick" [Dietterich, 1980] is used, such that the task representations are
similar in both spaces. We in fact assume here that this will be the case.
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more of the plan will be re�ned, or �lled in.

The re�nement process is iterative; once the new control impasses are resolved ab-

stractly, and lower-level operators are selected for execution, any unexpanded portions

of the plan will again generate impasses, which will again be resolved by searching

abstractly. Thus the plan is successively re�ned; at each re�nement it becomes less

abstract, and attends to more aspects of the task. The multiple levels of abstraction

de�ned by this process are determined dynamically, during problem solving, and are

driven by the task context as well as the search control knowledge the problem solver

has previously acquired about its task and domain.

Figure 4.11 illustrates the use of Spatula to re�ne a plan, with a simple example

in which the task goal is to move a robot into a given room, and to push a box

into a corner of that room. The initial state and goal for the task are shown in

Figure 4.12. In Figure 4.11, the problem-solver �rst performs an abstract search to

determine which operators it will apply to achieve its task goal conjuncts. The search

may include di�erent ways to achieve a task goal conjunct (e.g., the robot may be

moved to Room 3 while pushing a box, or alone), as well as di�erent orders in which

to achieve the goal conjuncts7.

Suppose that as the result of this abstract search, Plan (1) is formed. It does not

include information about how to achieve the preconditions of the push-through-door

and move-box operators, since the search did not address these subproblems. (Al-

though the problem-solver's plans in actuality consist of situated search control knowl-

edge | used to generate partial orders for operator application | they are shown

here as operator sequences for ease of illustration). The push-through-door operator

is selected for execution. This operator can not apply directly, because its precondi-

tions are not met (the robot and box are not at the door, and the door is not open).

An operator subgoal is generated (indicated by a triangle), and an abstract search is

performed within the operator subgoal to determine how best to achieve its precon-

ditions. As a result of this search, the system's plan for the task is re�ned as shown

in Plan (2). The push-box-to-door operator is selected for application, and again it

7For this example, we assume that Spatula's abstract search abstracts all unmet operator pre-
conditions. As will be seen in Chapter 5, this will not always be the case when extensions of the
basic abstraction method are used.
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Figure 4.11: Successive re�nement of a plan for a simple task in a robot domain.
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Room 1 Room 2 Room 3

Goals: Robot in Room 3,  Box in lower right corner of Room 3

Figure 4.12: Initial state and goal for the robot domain example of Figure 4.11.

can not apply directly. Abstract search is performed within the new operator subgoal

to determine how best to achieve the preconditions of the push-box-to-door opera-

tor, and as a result, the plan is further re�ned as shown in Plan (3). (The operators

used to achieve the preconditions of the push-box-to-door operator are suggested

by \xxx" and \yyy").

Similar re�nements occur as necessary to continue application of the go-through-

door operator. After it has been applied, the problem-solver's plan suggests that the

move-box operator be applied next. If this operator can not be applied directly be-

cause of unmet preconditions, the plan will be further augmented as shown in Plan (4).

(The operators used to achieve the preconditions of the close-door operator are sug-

gested by \www" and \zzz"). The plan re�nement process continues until the system

has acquired su�cient information to achieve its task goals without further search.

By using abstract plans, the problem solver can reduce its search e�ort. The

abstract plans | created with less e�ort than would have been required for a more

detailed search | provide heuristics to constrain search at the less abstract problem

levels. If an abstract plan is used to de�ne an ordered set of independent subgoals at

a more detailed level, then abstraction can provide an exponential reduction in search

[Korf, 1987]. In the next chapter, we will discuss search reduction using Spatula in

greater detail.
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The plan/execute cycle of plan re�nements described above allows plan repair to

occur implicitly as the abstract plan is expanded, in the same way that re�nement

occurs. The system need not distinguish between the two processes. For example,

when an abstract plan is executed in detail, it may be that unexpected results of the

non-abstract execution will render part of the abstract plan inapplicable. This may

occur both because 1) no plans match; or 2) because existing plans are overridden by

the recognition of an undesirable situation which must be repaired. In either case,

an impasse will be reached, and additional abstract search will be performed to �ll

in the gaps in the system's knowledge with new rules (more will be said about plan

repair in the following section). If the plan gets back on track later on, previously

learned search control rules will again apply. In the case of 2), if the problem solver

recognizes an operator in the abstract plan as contributing to the unfavorable results,

then new search control can be learned to reject that operator in the future when a

relevantly similar situation is encountered. These new rules override the previously

learned rules [Laird, 1988].

If there is no way to apply an operator selected from the abstract plan during non-

abstract execution | for example, because there is no way to achieve the operator's

preconditions within an operator subgoal | then it will be rejected (using Soar's

default problem-solving knowledge) and a new operator will be selected in its place.

The selection of the replacement operator will bring to bear all of the problem solver's

additional search control knowledge about the situation; for example, it may have

knowledge to suggest that some operator is next best once the original operator has

been rejected. The selection process may or may not require additional abstract

search.

Therefore, no explicit reasoning needs to be done about gaps or failures of a plan

when it is represented as incremental search control knowledge in this way. If exist-

ing search control (abstract or non-abstract) does not apply at some point, additional

search will be done to acquire new knowledge. If existing search control does not ap-

ply when it was expected to, but is applicable at some other point during the problem

execution, it will be opportunistically used then. The problem solver can still e�ect
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repairs regardless of whether existing search control is inadequate because a new situ-

ation has been encountered, or because a previously learned-about situation was not

completely explored or has unexpected facets. Note that Soar's integrated response

to abstract plan re�nement and repair does not preclude any explicit reasoning about

why an abstraction has generated di�culties. If such information is available, it can

aid the repair process.

4.4.2 Context of the Abstraction Re�nement

The context in which abstraction takes place a�ects the ways in which abstract plan

repair may occur. In the version of Spatula implemented here, the problem solver is

using abstract search to select an executable action. In contrast, some other planners

use abstraction to guide the construction of a full ground-level plan within a planning

search, and then output the full plan for execution (see Chapter 8). In both cases,

abstraction is used to constrain search and provide heuristics about what to do next.

However, the di�erence lies in the degree to which a plan is re�ned before it is used

to actually select an action.

This di�erence is independent of the particular abstraction techniques used by a

planner (except to the degree to which the abstractions are driven by actual rather

than expected results of operator applications). Therefore, Spatula's methods for

automatically generating abstractions may be disjoined from the context in which the

abstract plans are used. For example, both the basic abstraction method described

in this chapter and Chapter 3, and the method increments to be described in Chap-

ter 5, would work equally well within a method framework which used abstraction

to construct a more detailed plan. (Such a framework could also be implemented in

Soar, using a di�erent set of default abstraction rules). Nevertheless, the context in

which an abstract plan is used impacts the problem-solver's behavior, and hence a

description of Spatula as implemented here includes a discussion of this impact.

As stated previously, Spatula falls into the class of abstractions called \precon-

dition relaxations", which are themselves a subset of the class of \PI-Abstractions"

[Giunchiglia and Walsh, 1990a; Giunchiglia and Walsh, 1990b], or \monotonic ab-

stractions" [Knoblock, 1991]. As described in Chapter 1, it has been proven that
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using PI-Abstractions, for every ground-level solution, there is guaranteed to exist an

abstract solution such that a monotonic re�nement from the abstract to the ground

solution may be constructed. This is the case for abstraction hierarchies as well as

single-level abstractions.

These results hold for Soar using Spatula if the task domains are designed accord-

ing to the guidelines presented in the previous chapter. However, for PI-Abstractions,

it is not guaranteed that every abstract solution will have such a monotonic re�ne-

ment. The system's problem solving methods then determine how it handles | or

even whether it explicitly detects | such a situation. The non-monotonicity of a

re�nement is not necessarily problematic. The system may very well �nd a solution

more easily by patching its existing plan | e.g., re-doing an undone precondition |

than by backtracking to �nd an abstract solution which a�ords monotonic re�nement.

However, regardless of the problem solver's approach to monotonicity violations,

it may at times be necessary to undo the e�ects of previous plan steps and take a new

approach if a solution is to be reached. The way in which the abstract plans are used

determine the system's options in such a situation. If the abstract plan is re�ned

during additional, more detailed, planning search, then the system can backtrack

within the planning search. If the problem solver uses the results of its abstract

search to select executable actions, then it can not backtrack in this sense, since it

is executing actions rather than doing hypothetical planning. It may still be able to

back up, but it must do this by applying new operators which undo the e�ects of its

previous actions. Both usages of abstract plans have their advantages; domain and

task characteristics can determine which is most appropriate.

If a plan is completely re�ned before it is used (that is, if a ground-level plan is

output from the planning process), then, given that the planning domain theory is

correct and the current state of the world stable, this plan will be executable. The

advantage of this approach is that if the abstract heuristics used during the planning

phase lead the planner into di�culties developing the plan, the planner can in fact

back up during its planning search and �nd a di�erent, more successful plan.

If on the other hand, heuristics developed from abstract plans are used to select

the problem solver's next executable operation (as with Spatula's use here), and
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potential problems with the plans are not patchable, then the task may fail. As was

the case with the guidelines of Chapter 3, problem-space design can in
uence the

extent to which the problem solver is able to patch problems in execution-time plan

re�nement. During execution, the problem-solver:

� should be able to potentially propose all legal domain operators;

� should have default problem-solving knowledge about how to reject operators

which have been selected but can not be applied;

� and should not employ search control equivalent to Soar's prohibit and require

preferences.

With these capabilities, the system is not restricted in its actions by what the problem-

space designer thought would happen, and thus is not at a loss in unanticipated

situations encountered when using abstract heuristics.

However, execution-space problem solving is still not guaranteed to be complete

with respect to the use of abstraction |that is, the problem solver is not guaranteed

to be able to �nd a solution using abstraction in every case for which it can �nd a

solution without abstraction | unless any e�ects which prevent a solution from being

reached can always be undone. If some important mistakes can not be recovered from,

then the domain may not be an appropriate one in which to use approximate heuristics

in the execution space, whether derived from abstraction or from some other source.

(An example of such a domain is intensive-care management, where deadlines are

exactly that.) In such domains, it may be more suitable to use Spatula's abstraction

techniques to guide further planning search, rather than to guide executable actions

as is done here.

However, there are several advantages to using abstract heuristics directly to se-

lect executable actions, and such advantages have in
uenced the implementation of

Spatula described here.

� The abstract heuristics are easier to learn than would be the corresponding

non-abstract rules.
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� Because the abstract rules are more general, they may be used in a wider range

of new situations.

� Domain theories may not be completely correct, and/or the world may change

because of inputs beyond the problem solver's control. In these cases, the e�ort

needed to produce a complete and executable plan is often wasted because the

plan is not usable in its entirety once it is produced. Abstract plans are more

likely to remain usable given small situational changes.

� It may be the case that some lower-level plan information is not available during

the planning process. As a simple example, when planning a bus trip, it may

be the case that the bus number and boarding location is not yet known. Nev-

ertheless, an abstract plan to board a bus can be constructed, with the actions

for �nding and boarding the speci�c bus �lled in later.

� Even if the domain theory is correct, it may be a waste of time to fully expand

the plan. It may be more e�cient to deal with lower-level plan details in a

reactive manner. (See Chapter 8).

Under such conditions, an abstract plan can be used as a guide to the actions the

problem solver should take; the plan will be re�ned as execution proceeds, and this

re�nement will be able to take into account any unanticipated developments in the

external environment. As discussed above, the Soar architecture is well suited to such

an interleaved planning/execution approach.

4.5 Summary

In this chapter, we have described the way in which Spatula's default knowledge

about how to perform abstract search is used by an impasse-driven problem solver

such as Soar { in conjunction with abstract-problem-space creation techniques such

as those described in Chapter 3 | to produce a basic framework for the use of

abstraction as a general weak problem-solving method.
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Within this framework, abstraction is not employed unnecessarily | abstract

searches are performed only when the problem solver does not have access to other

search control knowledge which would tell it what to do next. The abstract searches

allow control impasses to be resolved more e�ciently, and produce abstract search

heuristics. The abstract rules are inductively generalized as a result of learning from

search over an abstract theory; because the abstract search is simpler, the rules are

easier to learn. The learned abstract rules serve as abstract plans; the plans constrain

more detailed search. Plan re�nement is interleaved with execution and driven by

the needs of the problem solver and its acquired knowledge. As the abstract plan

is re�ned, a multi-level abstraction behavior emerges. The abstraction levels are

determined dynamically by the problem-solving context. Any necessary patching or

abstract plan repair is integrated with the plan re�nement process.

Although Spatula's basic abstraction framework was presented in conjunction

with a particular method for abstracting a problem space, we expect that the frame-

work will extend to use with other problem-space abstraction methods as well. The

general approach | that of using abstract search to learn and re�ne abstract plans

| is not dependent upon the use of a speci�c class of abstractions.



Chapter 5

Abstraction Method Increments

5.1 Introduction

In Chapters 3 and 4 we have presented an integrated abstraction method which

allows an impasse-driven problem solver to automatically create and use abstract

plans. This basic abstraction technique can be useful as is. For example, it can be

helpful if the problem solver must choose among a large number of operators and does

not know which ones advance it towards its goal. In this case, abstraction permits the

problem solver to more easily guess which operators are likely to achieve an aspect

of the current goal and which are likely to be unrelated. An example of this use

of abstraction | in which the problem solver learned new MEA knowledge | was

presented in Section 4.3.2.

Using this basic abstraction method, one abstract search path will be chosen

over another if it has a higher domain evaluation. For a domain with goal-driven

search control knowledge, in which operators are proposed in response to unachieved

subgoals, and which has a domain evaluation based on solution length, the basic

abstraction method will prefer one search path over another when:

� one operator has a net achievement of more goals than another operator (this

includes situations in which opportunistic achievement or clobbering of a second

goal occurs while applying an operator in service of a �rst).

112
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� one way of achieving a goal requires a longer series of operators than another.

These conditions may not arise very often using Spatula's basic abstraction

method. Conditional or opportunistic e�ects may not be observable for abstractions

of the high-level operators proposed to achieve task subgoals, and often the sequences

of these high level operators proposed to achieve a goal are of the same length. There-

fore, if a problem-solver is using goal-driven search control, it may not be the case

that abstract search, using Spatula's basic abstraction method, will provide much

new information about which path is best. Too much information will have been

abstracted away for the purposes of the task.

To address the problem of making more discriminate abstractions without requir-

ing domain-speci�c knowledge, we have added a set of abstraction method increments

to Spatula. Method increments augment and modify the behavior of previously

existing problem-solving methods, by adding additional knowledge to the methods.

With Spatula, the method increments take the form of additional default rules.

These method increment rules, when added to the basic abstraction method knowl-

edge of the previous chapters, produce new abstraction methods. The new methods

use more information about the global problem-solving state than does the basic

method, though they still make only limited demands on knowledge about the prob-

lem domain.

Two of the abstraction method increments enable the problem solver to obtain

more information about its problem-solving context, and make better situated judg-

ments about what would be useful abstractions for a particular task or subtask. As

will be seen, both make these judgments by using relative | rather than absolute |

information about the control decision options and problem-solving context. These

two method increments are called iterative abstraction and assumption counting.

A third method increment is called extended plan use. It allows the system to de-

liberate about the extent to which it wishes to use its abstract plans during execution,

using a heuristic which states that plans learned under certain circumstances are likely

to be less useful than others. This method increment is used in conjunction with itera-

tive abstraction. The last two method increments are driven by e�ciencymotivations;

they provide heuristics for restricting the abstract search, yet still producing useful
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8. For each new lookahead search (including sub-searches of

top-level lookahead search) initialize the assumption-count

for that search to 0.

9. If a subgoal is in-abstraction-context, and there is an impasse

at an operator application and a precondition is not met, then

add a flag that the precondition is abstracted. (This rule

will fire at the same time as Rule 7 of Figure 4.4).

10. Each time a precondition is noted as abstracted, increment the

assumption-count for that lookahead search.

Figure 5.1: Default knowledge for the assumption counting method increment.

decisions. These are called the abstraction-gradient and goal-achievement-iteration

method increments.

The method increments may be used singly or in conjunction with each other,

although some are null methods if not used with others. As will be shown below,

they can interact synergistically with each other to produce better abstractions than

any would have produced alone.

5.2 Assumption counting

The assumption counting method increment combines existing domain evaluation cri-

teria with a new meta-evaluation based on the number of assumptions, or abstracted

preconditions, required to complete an abstract search. The new combined evalua-

tion criteria are used instead of the domain evaluation to compare the results of the

abstract lookahead searches for each option.

In the current implementation of Spatula, the evaluation criteria are combined

lexicographically. To compare two options, the problem-solver looks �rst at the num-

ber of assumptions made during abstract search and compares the domain evaluations

only if the number of assumptions are equal.

The method increment is implemented by adding knowledge to the system about
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how to note and count abstracted preconditions, and how to combine this information

with the domain evaluation. Figures 5.1 and 5.2 summarize the long-term-memory

rules in Appendix A which provide this knowledge to Soar. The rules in Figure 5.1

provide the knowledge to allow the system to keep track of the assumptions made

during a lookahead search; the rules in Figure 5.2 then tell the system how to perform

evaluations given that knowledge. ( Figure 4.2 may again be referred to for a de�nition

of some of the terms used for the rules). These rules build on the rules listed in

Section 4.1, by making use of the information about whether the system is in an

abstraction context. Note that if abstraction is not used for an option's search, or

if no assumptions are made during abstract search, then the number of assumptions

for that search will be zero. Thus, the method increment is robust with respect to

whether or not abstraction is used for a given part of the task; in a comparison of two

options for which abstraction was not used, the system will simply base its preferences

upon its domain evaluations.

Although assumption counting is simple, it provides the problem-solver with a

surprising amount of leverage. It provides a measure (though not an exact one)

of the di�culty of instantiating the abstract plan discovered during the search. In

addition, as is shown below, it allows the system to detect goal interdependencies, by

letting it observe the relative number of assumptions required for various operator

sequences.

5.2.1 Example of Assumption Counting

Consider an example, again from an ABStrips-like robot domain, in which two boxes

need to be moved to new locations. The diagram of Figure 5.3 shows the initial

state and desired goal state | the goal locations of the boxes are shown in gray. The

preconditions and e�ects of the relevant operators | push-to-loc and push-to-room

| are listed. We assume the domain problem space is designed according to the

guidelines presented in the previous chapter. To simplify the example, we also assume

that the problem solver has been provided with MEA search control knowledge about

its domain. However, the e�cacy of the assumption counting method increment is

not linked to any particular type of search control, as further discussed in Section 5.5.
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Replace those system default rules which tell the system how to give preferences
to operators when their lookahead search domain evaluations are di�erent from
each other, with the following rules. The new rules implement the lexicographic
ordering of the current method of combining assumption counts with domain
evaluations; if the combination function is changed, these rules must be changed.

11. When lookahead search success is detected (by whatever domain

criteria), create a combined evaluation which includes both

the domain evaluation and the assumption-count. This must be

done for both operator-subgoaling success (i.e., the system

has found a state from which a subgoaled-upon operator can

apply) and more general lookahead search success, in which the

system has reached a state from which it can evaluate one of

the options in its top-level control impasse.

12. If the combined evaluation for one operator search has a lower

assumption-count than the combined evaluation for another

operator search, create a better preference for the first

operator.

13. If two combined evaluations have the same assumption-count,

but different domain evaluations, then prefer the operator

with the best domain evaluation (with respect to the system's

knowledge about domain evaluations).

Figure 5.2: Modi�cations of existing default evaluation knowledge for assump-

tion counting method increment.
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1

Room A Room B1

2

2

Goals:    Box 1 in lower-left corner of Room A
               Box 2  in  Room B

Operators include:
 
     push-to-loc(robot,box,target location)
        preconditions:  robot at box
         effects:   robot and box at target location,
                        no longer at previous locations

     push-to-room(robot,box,room)
         preconditions: robot  at box, box at door to room
         effects:   robot  and box in room,  no longer in
                        previous rooms
                       robot and box at door, no longer at
                         previous locations

push-to-loc (1)

push-to-loc (1)

push-to-room (2)

push-to-room(2)

[ignore
robot not at box 2,
box not at door]

[ignore
robot not at box 1]

Lookahead Searches:

[ignore
robot not at box 2,
box not at door] = 2 assumptions total

= 3 assumptions total

Figure 5.3: Example of utility of assumption counting.
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Given this task, the problem solver will reach an impasse when it tries to deter-

mine which goal conjunct to work on �rst. Using Spatula, it will perform abstract

lookahead searches to decide how best to achieve the task.

The problem solver's two lookahead searches are shown at the bottom of Fig-

ure 5.3. Unmet preconditions are shown in brackets. When all unmet preconditions

are abstracted, the searches simply involve trying the two operators in either order. If

domain evaluations are based on solution length, then without assumption counting,

both operator sequences will look equally good.

However, when assumption counting is used, the system is able to decide that

the �rst of the two sequences, in which it pushes Box 1 �rst, is best. It can guess

by its comparison (without knowing the semantics of the precondition tests) that if

the operators are applied in the reverse order, the push-to-room operator undoes a

previously achieved precondition of the push-to-loc operator, and hence it estimates

that less work is required to push Box 1 �rst.

Thus, assumption counting can give the problem solver information about the

interactions occurring between the task operators1, as well as an estimate of how

di�cult each operator will be to achieve. It does not require semantic knowledge

about the operator preconditions to make these estimates. Note that the utility

of the assumption counts comes from the comparisons between the operators; as

an absolute measure, the counts would not provide much information. Assumption

counting implicitly uses the heuristic that the abstracted preconditions of the options

being evaluated are of approximately the same importance with respect to di�culty

of achievement and/or impact on other parts of the task (so that it makes sense to

compare them). This heuristic is further discussed in Section 5.5.1.

With the assumption counting method increment, if no assumptions were made

during an evaluation search, then the problem solver e�ectively uses the domain

evaluation function by itself, since the assumption count is zero. Therefore, this

method may be used consistently by the problem solver regardless of whether or not

a lookahead search is abstract, or whether or not the problem space is represented

1Here, \interaction" is used not just to mean the cases in which one operator undoes a previously
achieved subgoal, but also cases in which the application of one operator in service of one subgoal
makes another subgoal harder or easier to achieve.



5.3. ITERATIVE ABSTRACTION 119

such that assumptions can be counted.

We are not convinced that the lexicographic ordering is always the most useful

way to combine the assumption count with the domain evaluation. For example, if

one abstract solution path is twenty steps longer than another (to pick an arbitrary

number), but has one fewer assumption, then it may not be useful to pick the path

with fewer assumptions unless the ignored preconditions are expected to take at least

twenty steps on average to achieve. However | as will be seen from the empirical

tests described in Chapter 6 | the lexicographic ordering proved to be a useful

domain-independent measure. Our investigations suggested other potentially useful

combination policies as well; these will be discussed later and are topics for future

work.

5.2.2 Factorization: Operator Precondition Testing

To make use of the assumption counting method, the problem solver must be able

to detect whether or not an operator's preconditions are met, for each precondition

individually. Therefore, the factorization guidelines of Chapter 3 must be followed. In

particular, precondition testing must not only be factored from operator application,

but the test for each precondition must be made separately; that is, must be contained

in a separate rule. Then, the problem solver is able to discern which preconditions

are met and which are not, and thus keep a count. (In contrast, one big test for all

preconditions would, if it failed, only indicate that at least one of the preconditions

was not met, and would only provide information about the number of operators

along each path for which assumptions were made.)

5.3 Iterative Abstraction

Spatula's next method increment is called iterative abstraction. Iterative abstraction

is based on the heuristic that if the problem-solver can't distinguish between the

results of evaluating two or more options at a control impasse | if it can't tell which

is best | then it's operating at too high a level of abstraction. To state this another
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To resolve a control decision impasse using iterative abstraction:

� Set the variable abstraction-level to its most abstract value.

� Search to evaluate each control decision option at abstraction-level.

� As the result of search, can any options be distinguished as worse than
others? If so, create preferences to that e�ect, thus removing those worse
options from consideration in the control impasse.

� As the result of search, are there any options whose evaluation searches
required no assumptions, and which appear equally good? If so, give them
preferences which state that they are indi�erent to each other.

� If only one option is left, or all remaining options are indi�erently preferred,
the control impasse will be resolved.

� Else, decrease abstraction-level, and go to 2.

Figure 5.4: The general algorithm for iterative abstraction.

way, iterative abstraction implements the heuristic that a useful level of abstraction

for a situation is that at which the system can discriminate among the situation's

options.

The iterative abstraction technique uses the general algorithm shown in Figure 5.4.

It may be summarized as follows:

The problem solver �rst tries to resolve a control decision by evaluating

the options involved in the control impasse at a high level of abstraction.

If the evaluations provide insu�cient information to completely discrim-

inate between options, then | rather than making a random choice |

the problem solver iterates by re-evaluating those options which looked

the best at an increased level of detail (it does not reconsider those op-

tions, if any, which looked worse). The iteration cycle is continued, with

level of detail increasing at each iteration, until the problem solver is able

to distinguish between the remaining options or ascertain that they are

equivalent for its purposes. At this point a decision is made and the

control impasse is resolved.
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?
?

?

?

option 1

option 2

option 1

option 1

option 1

option 3

option 3

option 3

option 2

option 2

option 2

Figure 5.5: Iterative abstraction; �rst iteration level lookahead searches for each of
three options.

Note that as stated in general terms this algorithm makes no assumptions about

the abstraction method that the problem solver is using, and does not require that the

problem solver use the method described in Chapter 3. For example, if the problem

solver has domain knowledge of any type about what preconditions to abstract and

how to increase the level of problem solving detail, the iteration algorithm can be

used. If the problem solver has analogous knowledge about abstracting operator

implementations, rather than (or in addition to) operator preconditions, again the

algorithm can apply.

However, for the purpose of this research, the concept of \increased level of detail"

is operationalized with respect to the domain-independent precondition abstraction

of Chapter 3 in the following way. The problem solver �rst attempts to evaluate

the options of a control decision by abstracting away all operator preconditions in

the evaluation searches for that control decision. Figure 5.5 shows an example of

such lookahead searches. If each operator being considered (Options 1{3) achieves a

di�erent goal conjunct, then the system still must search to determine how best to

order the operators (it may have other search control or methods which obviate the
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need for an exhaustive search). Although it is not shown in the �gure, it may require

more than one operator to achieve a goal conjunct, and/or the system may also need

to search to discover the best way to achieve a goal conjunct as well. However, the

system does not need to search to achieve the operators' preconditions, since they are

abstracted. This �rst-iteration-level search may suggest that some candidate options

are worse than others, particularly if other method increments, such as assumption

counting, are used. If one option is not clearly best (or good enough by some domain

criteria), the problem solver iterates with the best candidates.

At the next iteration, the abstract look-ahead searches are performed in more

detail by requiring the problem solver to achieve those operator preconditions (call

them \set A") which it abstracted away before. This is done for all operators be-

ing considered in the control decision. Thus the task is considered in more detail.

However, in this new iteration the problem solver will still abstract away the precon-

ditions of the operators which are applied to achieve the preconditions in set A. (Call

these newly abstracted preconditions \set B"). Because set A was abstracted in the

previous iteration, there was no possibility of even considering set B previously.

Figure 5.6 shows the second-iteration-level lookahead search which begins by ap-

plying Option 3 of Figure 5.5 (the searches which begin by applying Options 1 and

2 would be analogous). At this iteration level, the system must now achieve the

preconditions of Option 3. Suppose that its preconditions are achieved by applying

Options 4 and 5. The problem-solver may �rst need to search to determine the best

sequence for Options 4 and 5. For any operator ties generated in the process of these

searches, equal evaluations will in fact generate preferences stating that the operators

are equal to each other. That is, within a search at a given iteration, sub-searches

do not iterate recursively | the search stays at the same iteration level all the way

through. This way, any larger-grained di�erences between options may be discovered

without spending a lot of time on more detailed distinctions.

Once it has selected an ordering for precondition achievement, the problem solver

applies Option 5, then 4. However, these operators are themselves applied abstractly;

their unmet preconditions are assumed met. After Options 4 and 5 are abstractly

applied, then Option 3's preconditions will be met and it may be applied. (Though its
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preconditions are met, its application may be abstract as a result of the abstractions

of Options 4 and 5). The remainder of the searches proceed in the same way, with

the preconditions of Options 1 and 2 now being considered.

If the problem solver can not yet make a decision at this second level of abstraction,

the iteration process continues. However, if any of Options 1{3 looks worse than the

others, it will be eliminated from further iterations at this point. In the next iteration,

the preconditions of Options 4 and 5 must now be considered, and so on.

An important e�ect of the iteration process is that at each iteration, those options

which are unre�nable at that level of abstraction (e.g., because there is no way to

achieve a necessary precondition) will fail and be rejected. Thus, at each iteration

level, the task context's critical preconditions for that level are discovered. The

system is able to determine these critical preconditions without searching all paths

in full detail.

5.3.1 Implementation

Implementation of the iterative-abstraction method increment consists of providing

the problem solver with the following new abilities: counting abstraction iterations,

counting operator subgoal levels, specifying when it is appropriate to abstract a search

based on this information (i.e., specifying when the problem solver is in an abstraction

context), and specifying how to eliminate options from the iteration process via their

evaluations. As implemented for our experiments, the iteration process will halt when

one option has a better evaluation than all others, or when options are shown to be

non-abstractly equal. Other halting conditions are possible, and are discussed later.

Figures 5.7 and 5.8 summarize those default rules of Appendix A which provide

this knowledge to the system. The �rst rule of Figure 5.7 tells the system how to

count the operator-subgoaling levels generated by the system. The next two rules

tell the system when to iterate, and how to keep track of the iteration level. As with

the assumption counting rules, these rules build on the basic abstraction method

knowledge of Section 4.1, and are described using the terms of Figure 4.2. They

allow the system to change the values of the variables which tell it when it is in an

abstraction context | with each iteration, the system must generate an additional
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14. For each operator subgoal initiated during lookahead search,

increment the level-count variable of the parent goal to create

a new level-count for the new subgoal. For each

non-operator-subgoal generated, copy the level-count value

unchanged.

15. Note when all options in a top-level operator control impasse

have been evaluated; if they have, then iterate, by setting up

the state in the control impasse subgoal for a new round of

evaluations. (If the system was able to discriminate among

all options then the control-impasse subgoal would be

architecturally resolved and this rule would not match. Those

options judged worse will be removed from the impasse, and the

next iteration will only evaluate those remaining.)

16. At each iteration within a control impasse, increment the

abstract-at-level value. (This then influences when Rule 5 of

Section 4.1 may fire).

Figure 5.7: Default knowledge for the iterative abstraction method increment.
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Replace the existing Soar default knowledge about handling equal evaluations
with the following rules.

17. If the evaluations for two operators are the same, and the

search is a lower-level lookahead search, then add a preference

which states that the two operators are indi�erent to each

other.

18. If the evaluations for two operators are the same, and no

abstractions were made during search, then add a preference

which states that the two operators are indi�erent to each

other.

19. If the evaluations for two operators are the same, and the

search is a top-level lookahead search, and abstractions were

made during search, then create no new preferences between the

operators.

Figure 5.8: Modi�cation of default long-term-memory evaluation knowledge for iter-
ative abstraction method increment.

operator subgoal level before it can begin to abstract.

The rules of Figure 5.8 modify the system's set of evaluation rules so that it

now requires that control decision options be discriminable (or non-abstractly equal)

before it generates preferences to resolve the control impasse.

5.3.2 Examples of Iterative Abstraction

The iterative abstraction process may be further instantiated by considering the ex-

ample of Figure 5.3, but with a slightly di�erent initial state, as shown in Figure 5.9.

The robot has the same goals, but it is no longer next to either box. Therefore,

its �rst-iteration-level search (abstracting all unmet preconditions) does not provide

enough information (even with assumption counting) for the system to distinguish be-

tween its proposed operator sequences. This �rst-level search is shown in Figure 5.10.

Hence, the system iterates and considers the problem in more detail.

Figure 5.11 shows the lookahead searches produced with iterative abstraction at
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Room A Room B

Goals:    Box 1 in lower-left corner of Room A
               Box 2  in  Room B

Operators include:
 
     push-to-loc(robot,box,target location)
        preconditions:  robot at box
         effects:   robot and box at target location,
                        no longer at previous locations

     push-to-room(robot,box,room)
         preconditions: robot  at box, box at door to room
         effects:   robot  and box in room,  no longer in
                        previous rooms
                       robot and box at door, no longer at
                         previous locations

1

1

2

2

goto-box(robot,box)
        preconditions:  robot in room with box
         effects:   robot  at box.
                         no longer at previous location
push-to-door(robot,box)
        preconditions:  robot at box
         effects:   robot  at box,
                       robot and box at door,
                        no longer at previous locations

Figure 5.9: Example of iterative abstraction.
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push-to-loc (1)

push-to-loc (1)

push-to-room (2)

push-to-room(2)

[ignore
robot not at box 2,
box not at door]

[ignore
robot not at box 1]

Lookahead Searches:

[ignore
robot not at box 2,
box not at door] = 3 assumptions total

= 3 assumptions total

[ignore
robot not at box 1]

Figure 5.10: First-level abstract lookahead search for iterative abstraction example.

goto-box (1) push-to-loc (1)

Lookahead Searches, second iteration:

[ignore
robot not at box 2]

push-to-door (2) push-to-room (2)

push-to-door (2) push-to-room (2) goto box (1) push-to-loc(1)

[ignore
robot not at box 2]

[ignore 
robot not in room
with box 1] = 2 assumptions total

= 1 assumption total

Figure 5.11: Second-level abstract lookahead search for iterative abstraction example.
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the second level, using the additional operators described in Figure 5.9. At this

iteration, one level of preconditions is achieved by the goto-box and push-to-door

operators, but their unmet preconditions are now abstracted. In this example, each

second-level search still produces solutions of equal length (this need not always be the

case), but if the number of assumptions is compared, the system is able to determine

that the upper solution appears easier; by �rst pushing Box 1, it does not need to

perform the extra work of coming back from the adjacent room.

Thus, this task provides an illustration of both the way in which the iteration pro-

cess can be used to discover a useful level of detail for a particular context, and the

way in which assumption counting and iterative abstraction can work together; with-

out assumption counting, the system would require further iterations to discriminate

between options.

5.3.2.1 Eight-Puzzle

A second example shows the utility of iterative abstraction in a di�erent domain |

the Eight-Puzzle, as described in Appendix B. In this simpler domain, there is one

operator, which moves a tile to an adjacent cell. The operator's precondition is that

the adjacent cell be empty. For this example, the problem solver uses search control

knowledge which suggests that tiles be moved to adjacent cells in a direction towards

their goal position, and that unobstructed moves onto the blank be preferred before

moves onto currently occupied cells.

For the example task shown in Figure 5.12, abstract searches at the �rst iteration

level (that is, using the \basic" abstraction method) do not provide any information

about which initial move | the 4 tile or the 8 tile | is better2. Both require nine

more abstract moves to reach the goal. Unmet preconditions that a cell be clear are

ignored, so some tiles are placed in occupied cells, e.g. the 8 and 2 tiles in the second

search.

Figure 5.13 shows the searches at the second iteration level. Now, for the search

2An initial move of tile 2 is not shown in the example, but would produce the same evaluation
as the tile 8 move.
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Figure 5.12: Eight-Puzzle lookahead search using iterative abstraction: �rst level.
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Figure 5.13: Eight-Puzzle lookahead search using iterative abstraction: second level.
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on the right, the problem solver must achieve the �rst level of unmet operator pre-

conditions and clear the lower-right cell before moving the 8 tile there. However, any

unmet preconditions encountered while doing the clearing are themselves ignored, e.g.

the 2 tile is placed with the 1 tile.

At this level of abstraction, the system is able to distinguish between the two

searches{ the second one now takes a greater number of steps, since the necessary

displacement for tile 8 moved another tile further from its goal. Using iterative

abstraction, the system can estimate that this second search will take more work

without needing to expand the search to its full detail (that is, without needing to

perform the cascade of moves necessary to clear the bottom middle cell for the 2 tile

move.)

Although it was not used in the example, the assumption counting method incre-

ment would also have suggested that the �rst search was the easier of the two.

5.3.3 Learning Multi-Level Abstract Plans With Iterative

Abstraction

The use of iterative abstraction impacts not only the choices made at control de-

cision impasses, but the information learned from those impasses, and allows the

system to draw on a source of multi-level abstraction di�erent from that described in

Section 4.4.1.

With iterative abstraction, the abstraction level required to discriminate between

a pair of options is context-sensitive. As discussed in Section 4.3, a search control rule

is learned each time such discrimination takes place. With iterative abstraction, the

learned rules re
ect the level of abstraction used to make a particular decision. Since

at each iteration at a control decision some options may be ruled out, search control

rules may be learned at varying levels of abstraction during the process of making

a single control decision. Thus, the use of iterative abstraction may generate a plan

which is more abstract in some portions than in others. Then, once a decision is made

using iterative abstraction, multi-level re�nement occurs as described in Section 4.4.1

to �ll out, or re�ne, the plan acquired so far. At the points in which the plan is less
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abstract, less re�nement will be necessary.

5.3.4 Discussion

The iterative abstraction method lets the system invest more e�ort in the resolution

of a control impasse | to increase the chance that it may then be e�ectively and

e�ciently re�ned | while attempting to keep the search as abstract as possible

to increase tractability. That is, the system uses iteration to try to �nd a useful

balance between cost and accuracy. As was the case with the assumption counting

method increment, it is the comparison of the di�erent operators being evaluated

which provides the problem solver with its leverage for guessing which precondition

level is the best; relative rather than absolute information is important. Several

iteration levels may be useful within the context of a single control impasse{ one level

of abstraction may indicate that a particular set of operators is worse than another

set; but further iterations may be necessary to distinguish between the operators of

the better set. The iteration process also provides the system with the ability to

detect unre�nable search paths (e.g., paths for which there is no way to achieve a

necessary precondition) without exploring all paths at full detail. At each iteration,

it is able to determine the \critical" preconditions for that level.

As with assumption counting, iterative abstraction is a heuristic only, and will not

always produce useful decisions. Results are in
uenced by the levels of abstraction

created during iterative abstraction, and domain search control as well as problem

representations can a�ect these levels. Recall that Soar is not restricted to using

any speci�c search control; its default operator subgoaling behavior is independent

of any particular search control used within the operator subgoal. Therefore, it need

not use pure MEA knowledge to achieve unmet operator preconditions as was done

with the robot domain examples | or any MEA knowledge at all. So, for example,

given an unmet precondition, domain search control might suggest a single higher-

level operator to achieve that precondition, where the suggested operator has further

unmet preconditions of its own. Alternatively, the search control could instead suggest

the application of a series of lower-level operators to achieve the precondition, where

the lower-level operators have no unmet preconditions themselves. These two sets



134 CHAPTER 5. ABSTRACTION METHOD INCREMENTS

of search control will produce very di�erent abstraction hierarchies when iterative

abstraction is used. This issue is further discussed in Section 5.5.

Iterative abstraction bears some similarities to the technique of iterative depth-

�rst search, or Iterative-Deepening-A*[Korf, 1985a]. With iterative deepening, a

sequence of depth-�rst searches are performed, with the depth of the search increasing

at each iteration until a solution is found or resources are exhausted. If resources are

exhausted, an evaluation can be made based on the deepest search completed. The

idea behind iterative deepening is that the cost of each new search will tend to be

exponentially more expensive than the cost of the previous, and thus relatively little

extra e�ort is expended | iterative deepening expands the same number of nodes,

asymptotically, as A* on an exponential tree. However, it uses only linear space, thus

avoiding the storage cost required for breadth-�rst search.

With iterative abstraction, the iteration is on abstraction level rather than search

depth, and the termination conditions for the iteration process use di�erent criteria |

the system is attempting not to �nd the most detailed solution with the resources

available, but to �nd the abstraction level that allows a good tradeo� between ac-

curacy and e�ciency. However, it shares the motivation that each abstract iteration

is of relatively small cost compared with the next more detailed search. In addition,

iterative abstraction has the potential to provide a capability for resource-limited

planning. At each iteration, the system tends to generate more accurate preferences

about its options, and may eliminate some of the candidates. If it must stop planning

before it is able to completely discriminate among its choices, it can pick randomly

among those options which currently look the best, and make use of the abstract

plans available at that point. This capability has not yet been tested empirically, but

is an important area for future research.
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5.4 Extended Example: Iterative Abstraction

and Assumption Counting

Iterative abstraction and assumption counting can work together to allow more ac-

curate and e�cient abstract evaluations than either method increment would have

provided by itself. This need not necessarily be the case; however, our experiments

suggest empirically that the two method increments provide better search control

when used together rather than singly, since they provide complementary sources of

information. The following example illustrates such an interaction, and shows in more

detail the structure of an abstract search.

Consider a task with four goal conjuncts, again from an ABStrips-like robot do-

main. The particular domain presented in this example is used for some of the

empirical tests described in Chapter 6. The task takes place in a series of rooms with

connecting doors, with several boxes and a robot at various locations in the rooms.

A complete description of the domain operators is given in Appendix D, but the

description will not be necessary to understand this example. The initial state and

goals for the task are shown in Figure 5.14.

In this example, the problem solver possesses MEA knowledge about its domain

such that it suggests operators which it believes will achieve the goal conjuncts. Since

all such operators will appear equally good given only the MEA search control, the

operator tie shown in Figure 5.15 is generated. The problem solver then performs

abstract lookahead search, using both iterative abstraction and assumption counting,

to decide which operator to select. The domain evaluation function prefers solutions

with fewer steps.

The problem solver begins by performing lookahead searches for the tied operators

at the �rst abstraction iteration level, in which it abstracts away all unmet precon-

ditions of the operators in the tie. This proves to be too abstract; although it is not

shown here, all operators will look equally good at this highest level of abstraction.

(Therefore, for this task, use of the assumption counting method increment alone

would have been no more useful than choosing randomly.) Because it can not make

a decision, the problem solver iterates.
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Figure 5.14: Initial state for a 4-goal-conjunct task in a robot domain.



5.4 EXTENDED EXAMPLE 137

?

Open-door (Room-1,Room-2)

Open-door (Room-5,Room-7)

Open-door (Room-4,Room-5)

Push-to-box (Box-C, Box-E)

Push-to-box (Box-E,Box-C)

Figure 5.15: Initial operator tie generated for the task of Figure 5.14.

Go-through-door (Room-5,Room-6) into Room-5
 [robot not next to door]
Go-to-door (Room-4,Room-5)  

Open-door (Room-4,Room-5)

?

Go-through-door (Room-5,Room-2) into Room-5
 [robot not next to door, robot not in Room-2]
Go-to-door (Room-4,Room-5)  

Go-through-door (Room-5,Room-7) into Room-5
  [robot not next to door, robot not in Room-7, 
    door not open]

Go-to-door (Room-4,Room-5)  

Go-through-door (Room-2,Room-4) into Room-4
  [robot not next to door, robot not in Room-2]
Go-to-door (Room-4,Room-5)  

Assumptions:1
Steps: 2

Assumptions:2
Steps: 2

Assumptions:3
Steps: 2

Assumptions:2
Steps: 2

  Go-through-door (Room-5,Room-6) into Room-5 [1 assumption]
  Go-to-door (Room-4,Room-5)
<== Operator applies; completed Operator Subgoal

==> Operator Subgoal

CHOICE

Figure 5.16: Beginning of second-level iteration for the Open-door(Room-4,Room-5)
operator: achieving the Open-door preconditions. The top unshaded box proves to
be the best operator sequence.
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At the second iteration level, the searches expand to the achievement of one

more level of preconditions. Consider the lookahead search which occurs for the

Open-door(Room-4,Room-5) operator at this level of abstraction | that is, the search

to evaluate the plan that is produced by applying the Open-door(Room-4,Room-5)

operator �rst. The problem solver must �rst plan to achieve the preconditions of this

initial Open-door operator, which are that it be must be in an adjacent room and next

to the door. Figure 5.16 shows a portion of the operator tie generated by the possibil-

ities. The robot can approach the door between Room-4 and Room-5 from either

Room-4 or Room-5. To get into these rooms, it has several choices. E.g., Room-4

can be approached from Room-3, Room-2, or Room-7. Each box in the �gure

shows an operator sequence explored by the system to achieve the preconditions.

When evaluating the choices, the problem solver now abstracts any unmet pre-

conditions of the operators in Figure 5.16. Unmet and abstracted preconditions are

shown in brackets. For each sequence of operators, the system discovers that all of

the choices take the same number of steps, i.e., have the same domain evaluation.

Thus, at this point, iterative abstraction alone would not have allowed the system to

make a decision. However, the choice of going from Room-6 (in the unshaded box)

requires the fewest assumptions; therefore it looks the easiest. (And, it is in fact true

that it is the easiest). Therefore the problem solver chooses this operator sequence

and, still within the context of the abstract lookahead search, applies it abstractly.

The room layout of Figure 5.17 shows the result.

Now, still within the lookahead search which began with the Open-door(Room-4,

Room-5) operator, the problem solver must decide which goal is best to work on next.

Figure 5.18 illustrates this process. Since the system is searching at the second itera-

tion level, for each subgoal it explores next it must achieve one level of preconditions

before abstracting. (The operator ties generated during these precondition searches

are not shown here).

For ease of explication, suppose that the problem solver stops the search when two

goal conjuncts have been achieved. Then, based on the evaluations, the problem solver

next chooses to apply the Open-door(Room-5,Room-7) operator. This operator, in

the top unshaded box, has no assumptions | the operator was easy enough that no
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Figure 5.17: Result of applying the Open-door(Room-4,Room-5) operator at the
second level.

abstraction was used to apply it. This is the case because (in the abstract space) the

robot is now in a room adjoining the door. Using abstraction, the problem solver is

able to determine this easily without exploring the other choices in detail.

The abstract plan constructed thus far at the second iteration level for the

Open-door(Room-4,Room-5) operator is shown in the top box of Figure 5.19. It takes

�ve steps, and requires one assumption (shown in square brackets). The abstract plan

segment achieves two goal conjuncts.

The abstract plan segments generated for all of the operators in the original tie

are shown in Figure 5.19 (again, the ties generated during the precondition searches

are not shown here). For each operator in the tie, a search is done to �nd the best

plan segment which begins with that operator (and achieves two goal conjuncts).

For example, if the robot �rst pushes Box-C to Box-E, then the goal conjunct which

appears easiest to achieve next is that which opens door Room-4/Room-5.

The top two unshaded abstract plan sequences for the Open-door ( Room-4,
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  Go-through-door (Room-5,Room-6) into Room-5
  Go-to-door (Room-4,Room-5)
<== Operator applies; completed Operator Subgoal

Open-door (Room-4,Room-5)
==> Operator Subgoal on Open-door

Open-door (Room-5,Room-7)
==> Operator Subgoal on Open-door
  Go-to-door (Room-5,Room-7)  

?

Push-to-box (Box-E to Box-C)
==> Operator Subgoal on Push-to-box
  Push-through-door (Box-E,Room-2,Room-1)
into Room-1
  [robot and box not in Room-2, 

    robot not next to box, box not next to door]

Open-door (Room-1,Room-2)
==> Operator Subgoal on Open-door
  Go-through-door (Room-5,Room-2) into Room-2
   [robot not next to door, robot not in Room-5, 

     door not open]

  Go-to-door (Room-1,Room-2)  

Push-to-box (Box-C to Box-E)
==> Operator Subgoal on Push-to-box
  Push-through-door (Box-C, Room-7*, Room-4)
  into Room-4 
  [robot and box not in Room-7*, 

    robot not next to box, box not next to door,

    door not open]

* Or Room-3 or Room-2

Assumptions: 0
Steps: 2

Assumptions: 3
Steps: 2

Assumptions: 4
Steps: 2

Assumptions: 1
Steps: 3

Figure 5.18: Continuance of the second level search starting with the
Open-door(Room-4,Room-5) operator. Top unshaded box indicates best choice.
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Push-to-box (Box-E to Box-C)
==> Operator Subgoal on Push-to-box
  Push-through-door(Box-E, Room-2, Room-1)
   into Room-1 [4]
<== Completed Operator Subgoal
Open-door(Room-1,Room-2)
==> Operator Subgoal on Open-door
  Go-to-door(Room-1,Room-2)
<== Completed Operator Subgoal

 

Push-to-box (Box-C to Box-E)
==> Operator Subgoal on Push-to-box
  Push-through-door(Box-C, Room-2, Room-4)
    into Room-4 [3]
<== Completed Operator Subgoal
Open-door (Room-4,Room-5)
==> Operator Subgoal on Open-door
  Go-to-door (Room-4,Room-5)
<== Completed Operator Subgoal  

Open-door (Room-1,Room-2)
==> Operator Subgoal on Open-door
  Go-through-door (Room-4,Room-2) to Room-2 [2] 
  Go-to-door (Room-1,Room-2) 
<== Completed Operator Subgoal
Open-door (Room-5,Room-7)
==> Operator Subgoal on Open-door
  Go-through-door (Room-2,Room-5) into Room-5 [1]                       
 Go-to-door (Room-5,Room-7)
<== Completed Operator Subgoal
  

Assumptions:1
Steps: 5

Open-door (Room-4,Room-5)
==> Operator Subgoal on Open-door
  Go-through-door (Room-5,Room-6) into Room-5 [1]
  Go-to-door (Room-4,Room-5)
<== Completed Operator Subgoal
Open-door (Room-5,Room-7)
==> Operator Subgoal on Open-door
  Go-to-door (Room-5,Room-7)
<== Completed Operator Subgoal 

Open-door (Room-5,Room-7)
==> Operator Subgoal on Open-door
  Go-through-door (Room-5,Room-6) into Room-5 [1]
  Go-to-door (Room-5,Room-7)
<== Completed Operator Subgoal
Open-door (Room-4,Room-5)
==> Operator Subgoal on Open-door
  Go-to-door (Room-4,Room-5)
<== Completed Operator Subgoal 

Assumptions:1
Steps: 5

Assumptions:3
Steps: 6

Assumptions:3
Steps: 4

Assumptions:4
Steps: 4

?

Figure 5.19: Second level abstract plan segments for all operators in initial tie. Top
unshaded boxes indicate best choices.
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Room-5) and Open-door (Room-5, Room-7) operators have the best evaluations3,

and to resolve the control impasse the problem solver will pick randomly between the

two operators (after another iteration).

In this example, the two operators which received the best evaluations are in fact

the best operators to apply �rst. From its abstract plans, the system detects that

if it applies these two operators after any of the others, they will not be as easy to

do; however, the same is not true of the other operators. The system's information

is relative and comes from comparison of its choices.

Note that some of the other options produce abstract plans which have fewer

steps. If assumption counting had not been used, then the problem solver would

have picked one of these operators instead, which would have generated a longer

�nal ground-level plan. Conversely, if iterative abstraction had not been used, then

an essentially random decision would have been made at the most abstract plan

level, using assumption counting alone. Hence, the two method increments interact

synergistically.

5.5 Problem Representation and Spatula's

Method-Increment Abstractions

Because Spatula's abstractions are driven by the problem-solving context, its per-

formance is a�ected by the problem-space representations and search control used by

the system for a given domain. When a problem solver uses operator subgoaling to

achieve unmet preconditions, its solutions implicitly de�ne a hierarchy of precondi-

tions, with each level of the hierarchy associated with an operator subgoaling level.

As discussed in Section 3.7.2, the shape of such a hierarchy is constrained by the

operator representations. In addition, the hierarchy is in
uenced by the system's

search control, including the search control knowledge used with respect to precon-

dition achievement (that is, which operators are proposed to achieve which unmet

3If the abstract searches had extended to achieve all four goal conjuncts, these two operators
would still have been ranked best.
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preconditions). This knowledge need not be traditional MEA search control knowl-

edge, with which for each unmet precondition, operators are proposed whose primary

e�ects achieve that precondition. Rather, this knowledge may be of arbitrary form.

(For example, the precondition hierarchy would be 
atter than with traditional MEA

knowledge if produced by a predominately forward-chaining search strategy). This

search control knowledge may change dynamically as new rules are learned. Although

MEA knowledge was used, e.g., for the robot domain described in this chapter, this

need not be the case, and thus Spatula's abstraction hierarchy need not take on a

\MEA-re�nement" shape. The operators selected during operator subgoaling deter-

mine what is abstracted and how abstract the search becomes.

Spatula, as a weak method, can be viewed as using the general heuristic that, on

average, problem spaces will be designed such that the conceptually more important

preconditions, with respect to their role in making useful abstract decisions, will be

towards the top of this hierarchy. Clearly, an entire task or even problem space is

not likely to be organized in this fashion. However, the greater the extent to which

this is the case, the more likely that important problem interactions will be visible at

high levels of abstraction, and thus the more useful Spatula's general approach to

abstraction will be.

Assumption counting and iterative abstraction compensate in part for those sit-

uations in which the implicit precondition hierarchy is not thus optimally organized.

However, they themselves make certain assumptions about the structure of the hier-

archy. The assumptions may be re
ected in the particular method-increment param-

eters used. As discussed below, there is latitude for adjustment of these parameters

beyond the values used for our experiments; this remains for further work.

With assumption counting, the method increment parameter is the \combination"

evaluation function, used to combine the domain evaluation with the assumption

count. The combination function may vary in the model used (i.e., the function may

be lexicographic, polynomial, etc.), as well as the weight given to each input.

With iterative abstraction, the method increment parameters are:

� The number of iterations, showing a di�erence between two options, that are

required before one option is preferred. (For example, only one iteration, or
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several). A related parameter is how much of a di�erence is required at each

of these iterations before a decision is made. (For example, the system may

require an increasing di�erence between two options for n iterations before one

is preferred).

� the initial iteration level.

� the halting criteria for iteration. (For example, the system may halt and choose

randomly if more two or more options looks equally good for n iterations without

change. Alternatively, it may halt only if one option appears clearly better, or

if search reaches its most detailed level).

5.5.1 Problem Representation and Assumption Counting

Assumption counting allows the system to estimate the degree to which an abstract

solution still needs to be �lled in. By preferring those solutions which appear to need

less re�nement, the system is recognizing that unperceived interactions can cause

problems. The weight given to the assumption count as compared to the domain

evaluation information indicates the degree to which the system believes that the

unperceived interactions will cause di�culties.

However, assumption counting itself uses the heuristic that the abstracted pre-

conditions of the options being evaluated are of approximately the same importance

with respect to di�culty of achievement and/or impact on other parts of the task (so

that it makes sense to compare them). The less the extent to which this is true, the

less credence should be given to an exact assumption count. For example, in some

domains the method increment parameters might work better if adjusted so that the

system only judges one solution better than another if the �rst solution uses n fewer

assumptions.

In the future, a decision-theoretic approach might provide one means of adjusting

the assumption-counting method increment parameters. Suppose that the importance

(with respect to di�culty and/or task impact) of the unmet preconditions in a domain

is observed over time to have a normal distribution around some average. If the

variance of the distribution were known, this would have two implications:
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1. Given two search paths, each with some number of assumptions, it would be

possible to calculate the probability that the assumptions made along one search

path represent more important work than the assumptions of the other search

path, by at least some number of \importance" units. This estimated di�er-

ence in importance might then be a more useful contribution to the combination

evaluation function than just the assumption counts. The probability of the dif-

ference in importance might also provide a more principled means of combining

assumption counting information with the domain evaluation.

2. If the potential range of importance of the assumptions remains the same at each

iteration level when iterative abstraction is used, and if the number of assump-

tions tends to increase as the iteration level increases, then the probability that

the assumptions along two paths are of the same average importance, would in-

crease with iteration level. Thus, the higher the iteration level, the more certain

it would become that a di�erence in assumption counts actually does indicate

a di�erence in total unmet precondition importance.

5.5.2 Problem Representation and Iterative Abstraction

With the use of iterative abstraction, the system recognizes that the abstract evalua-

tions produced at the highest levels of abstraction may not be an accurate re
ection of

the abstract plans' utility. Iterative abstraction uses the heuristic that unimportant

di�erences between two search paths will tend to average out until a key di�erence is

found. These unimportant di�erences may be considered to be \noise", in the sense

that they are not salient problem details with respect to picking a good abstraction.

The less the extent to which di�erences average out, the more conservative the iter-

ative abstraction algorithm should be about eliminating options at an iteration. For

example, the system may wish to only eliminate a candidate if it remains worse for

some number of iterations, or if its evaluation is worse by some signi�cant amount.

Again, a decision-theoretic approach might provide one means for adjusting the

parameters used for iterative abstraction. Suppose that for each problem aspect along

a search path | where, e.g., a problem aspect is some aspect of the state which must
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be changed or assumed done to reach the search goal | the probability that it is

\noise" is observed over time to follow a normal distribution. If the variance of this

normal distribution was known, then, given two search paths with some number of

\problem aspects" each, it would be possible to calculate the probability that the

paths were distinguishable (beyond noise) by some amount. Given evaluations for

two paths, this information would then provide a means of adjusting the comparisons

between evaluations to generate preferences. E.g., if a large amount of noise is sus-

pected, then one search path with a better evaluation might not be given a better

preference and a further iteration would be required.

The more problem aspects in the search paths being compared, the greater the

probability that the noise for each path approaches the average of the distribution.

So, the more detailed the search, the more likely that any perceived distinguishability

is not spurious. If the average branching factor of the search trees for a domain were

known (so that it was possible to estimate the increase in problem aspects considered

at each new precondition level), then it might be possible to calculate a likely level

of iteration for which there was a high probability of considering the options distin-

guishable. The search could then start at this level of iteration, rather than a more

abstract level.

For both iterative abstraction and assumption counting, the less the extent to

which important problem features are at the top of the implicit precondition hierarchy,

the more expensive the abstract searches must become to produce useful results.

(Conversely, if the method increment parameters are not set conservatively enough,

the abstract decisions will not be as useful under such circumstances.) This does

not necessarily mean that Spatula should not be used under such circumstances.

As will be discussed in Section 5.9, under a certain set of assumptions abstraction

will remain less expensive regardless of the number of abstraction iterations required,

except for very easy problems.

An important area for future research is the exploration of domain-independent

ways to determine the most useful settings for the method-increment parameters (and

consequently, to determine more accurately when the abstraction method may be too
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expensive to be useful). This will be further discussed below in Chapter 9.

5.6 Extended Plan Use Method Increment

The next method increment to be described is called extended plan use. The extended

plan use method increment addresses the issue of when to use the abstract plans that

are learned during lookahead search, rather than what abstractions to make, as was

the case with iterative abstraction and assumption counting. There are two parts to

the method. The �rst part provides the system a means to reason explicitly about

the extent to which it will use abstract plans learned during lookahead sub-searches.

To do this, the problem solver must have a means to discriminate between the plans

learned at each abstraction iteration, and use only the most detailed sub-search plans

available. The second part of the method increment provides a heuristic for guessing

which rules from these sub-searches will be most useful, and uses only these more

useful plan fragments as the plan is re�ned.

5.6.1 Extended Plan Use: Part 1

As described previously, search control is learned during the process of resolving

control impasses. Such rules are learned from lower-level impasses generated during

lookahead search, as well as from the execution-space impasse which originated the

lookahead search. The search control rules learned at the end of the iteration process

during resolution of the top-level execution-space impasse do not test for abstraction

level (since the execution space has no abstraction level), and thus these top-level rules

may potentially �re at any time during problem solving. However, each rule learned

during a lower-level search will | because of the way that iterative abstraction is

performed |contain on its left-hand-side a test for the abstraction level at which

it was learned4. This means that it will not �re unless the problem-solver is again

problem-solving at that same abstraction level. This representation is necessary be-

cause the system must not use the lower-level plans learned during one iteration for a

4Recall that the default abstract rules are such that if iterative abstraction is not used, the
abstraction level is set by default at 1.
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subsequent iteration; if it did so, then it would not learn anything new by performing

the new iterations.

Once a lookahead search has been completed to resolve an execution-level impasse,

we would like to provide the problem solver with the opportunity to use { in the

execution space { the most detailed plan that it developed during the lookahead sub-

searches. That is, we would like the problem solver to use only the rules learned

at the highest available iteration level for that situation. Similarly, if plans learned

in di�erent situations simultaneously apply, we would like the problem solver to be

able to use only the most detailed. The �rst part of the extended plan use method

increment gives the problem solver these abilities, by allowing the problem solver to

explicitly detect and reason about the abstraction level of its plans. Then, once it

has determined the most detailed plans available for a given situation, it must then

allow these plans to �re in the execution space.

The implementation of these abilities is driven by the way in which Soar reactively

matches and uses its plans. (Other systems, which incorporate a declarative access

to their own memory, might use di�erent implementations). The default evaluation

rules for lower-level impasses are modi�ed such that the actions of the learned search

control rules not only add a preference to working memory, but also add a tag stating

the iteration level at which the rule was learned. Then, each time a new execution-

space operator is selected, the following sequence takes place. Signals are �rst added

to working memory which indicate that rules of all abstraction levels are appropriate

in the execution space. Each applicable rule from any abstraction level will then

match against the signal for the level at which it was created, and will �re and add

to working memory both search control information and the tag indicating the rule's

abstraction level. These abstraction-level tags are then compared to determine the

highest level of detail for all the rules which were applicable in that situation. When

the problem solver determines this highest level, it removes the execution-space signals

for all other levels. The less detailed rules, without a signal to match against, will be

retracted. Only the most detailed search control remains in working memory. This

process is repeated each time a new execution-space operator is selected. The rules

which implement the �rst part of the extended-plan-use method increment are shown
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To use plans from sub-lookahead-searches within the execution space:

20. Modify the evaluation rules of Figures 5.2 and 5.8 such that

the current-abstract-at-level (the iteration level) of the goal

in which the operators generated the control impasse is added

to working memory when the preferences are posted.

21. As each execution-space goal is created (i.e., the initial

task goal as well as any operator-subgoals generated in the

execution space), add ``iteration flags'' to the goal such

that plans from all levels of search can potentially match and

fire in the execution space. Add an iteration flag for each

potential level of iteration, up to some maximum level (to

which it is expected the search will not reach).

22. For execution-space goals, analyze the iteration level

information posted by each learned search control rule when it

fires, via the modification of Rule 20. Reject all but the

highest-iteration-level iteration flags which were added to

the execution space goals. (This causes any search control

which matched a rejected flag to be retracted.)

23. For execution-space goals, after each operator has applied,

replace the ``iteration flags'' for all iteration levels as in

Rule 21 (so that the highest iteration level of search control

for the next operator can again be reasoned about in the new

situation).

Figure 5.20: Default knowledge for the �rst part of the extended plan use method
increment. These rules allow the system to reason about the levels of detail encoded
by its learned control rules from lookahead sub-searches.
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To prevent just those search control rules which post indi�erent preferences, and
were learned in lower-level lookahead searches, from being used in the execution
space:
24. Modify Rule 17 of Figure 5.8 so that it additionally tests

that it is in a lookahead search context before firing. (This

test will be incorporated into the search control learned as a

results of firing the rule.)

Figure 5.21: Default knowledge for the second part of the extended plan use method
increment.

in Figure 5.20.

5.6.2 Extended Plan Use: Part 2 (Conservative Version)

The second part of the extended plan use method increment makes more conser-

vative use of which sub-search knowledge is transferred to the execution space. It is

motivated by a variant of the same heuristic used to produce the iterative abstrac-

tion method increment, but this time cast in terms of what may be learned from a

lookahead sub-search. As described in Section 5.3, with iterative abstraction, sub-

searches within an iterative search do not iterate recursively | the search stays at

the same iteration level all the way through. Thus, options which appear equally

good at lower-level control impasses are given indi�erent preferences, and lower-level

plans are learned accordingly. The idea behind this more conservative approach to

extended plan use is that these plan fragments, learned when the system was not

able to discriminate between options during lookahead sub-searches, were not learned

at a su�cient level of detail to be useful to execution-space problem solving. Only

those lower-level search control rules which were learned when one option appeared

clearly better should be transferred. Use of this heuristic provides a more conservative

version of extended plan use.

The implementation of this heuristic as part of the extended plan use method

increment is very simple, and requires modi�cation only to one of the system's default

evaluation rules. The change to this evaluation rule is shown in Figure 5.21; the
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rule which creates indi�erent preferences for abstract lower-level searches is modi�ed

so that it explicitly tests that the search is taking place within a lookahead search

context. This test then becomes part of the explanation of the preference, and will be

incorporated into the conditions of the learned search control rule. Thus, such rules

will only be applicable within a planning context. In contrast, those plan fragments

learned when one option appeared clearly better, transfer to the execution space.

5.6.3 Discussion: A Spectrum of Plan Use Methods

The �rst part of the method increment is e�ective with or without the iterative

abstraction method increment; without iterative abstraction, all plans applicable in

the execution space are at the same abstraction level, and will always be utilized.

The second part of the extended plan use method increment, which produces a more

conservative version of the method, will be null without the �rst (since if the problem

solver does not transfer lower-level abstract plans to the execution space, it does not

matter which subset of those plans are applicable outside the planning context).

The extended plan use method increment provides the problem solver with ability

to discriminate between lookahead-sub-search plans at di�erent levels of abstraction,

and to reason about their use. However, use of these lower-level plans may not always

be bene�cial. If the system does not use the extended plan use method increment,

then it will e�ectively be using only the �rst step of an abstract plan developed

to resolve a top-level control decision impasse (since the sub-search plans will not

transfer to the execution space). Without information about the later steps in the

plan, control impasses will be re-generated as the abstract plan is re�ned, and these

control impasses will need to be resolved again. However, this time the problem

solver will be making the decisions with any new information obtained from the plan

re�nement that has occurred in the interim. This means that its re-resolution of these

impasses, though requiring additional search time, may be more accurate. Similarly,

if the problem solver uses the more conservative version of the extended plan use

method increment, it must re-resolve those lower-level impasses in which two options

looked equally good | again, the re-resolution of these impasses will be at greater

cost, but increased accuracy.
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Thus, the extended plan use method increment gives the problem solver the lever-

age to make a decision about how conservative it will be in the use of its lower-level

abstract plans. In a domain in which mistakes are relatively costly to patch and/or

cause poorer solutions, operation without the extended plan use method increment

can provide the best cost/bene�t tradeo� [Korf, 1990]. Conversely, in a domain in

which mistakes are easy to patch and do not greatly impact solution quality, a less

conservative approach to plan use is probably more appropriate. We have not yet

automated the problem solver's selection of the appropriate plan use mode, but in

Chapter 6, we will gives examples of domains for which di�erent plans use modes

proved to be most e�ective.

5.7 E�ciency-Driven Method Increments

The last two method increments provided by Spatula reduce the computational cost

of the problem solver's abstract searches, while at the same time employing heuris-

tics to allow the most relevant information from the searches to be maintained. They

are called the abstraction-gradient and goal-achievement iterationmethod increments.

The two method increments both use greedy, or localized, evaluation approaches |

they examine most closely the more immediate e�ects caused by the operator being

evaluated. They share in common the idea that it is possible to estimate the e�ects

of applying a particular operator (and thus to make a control decision) without de-

termining the e�ects of that operator on the entire task, and that this can be done in

such a way as to keep the cost of successive abstraction iterations from escalating as

sharply. Thus, the more highly interdependent are the goals in a task, the worse may

be the performance of these method increments. A rationale behind both method

increments is that if there is uncertainty in the environment, it will become worse the

further into the future the plan is projected.

The two method increments are orthogonal to each other and may be used in

conjunction with any of the other method increments presented above.
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5.7.1 The Abstraction-Gradient Method Increment

The abstraction-gradient method increment causes an abstract search to becomemore

and more abstract the longer the search continues, until some most abstract level

is reached. As with the method increments described above, this method can be

considered both in general terms and as implemented in a particular way by the

research described here. In general, the idea is that the most detailed problem solving

during an abstract search will occur at the beginning of the search, and that problem

solving then becomes more abstract (and hence involves less work) the longer the

search continues. Using abstraction-gradient, the system pays the most attention to

those aspects of the task which are the most direct consequences of the operator being

evaluated; thus, the increment takes a greedy approach to search.

For Spatula, the way in which we have operationalized the idea of performing

increasingly abstract problem solving within a search, is to use the concept of levels

of abstraction described in the iterative abstraction method above, and to apply it

in reverse to an individual abstract search, where the search may or may not be part

of an iteration series. Speci�cally, the problem solver begins a lookahead search at

some given level of abstraction. However, after each operator application within the

initial (highest) goal of the lookahead search, the method increment directs the prob-

lem solver to reduce the level of detail by decrementing the number of precondition

levels which must be achieved before abstraction can occur. When the number of

precondition levels reaches one (that is, when the operators in the top goal of the

abstract search have their preconditions ignored), the problem solver remains at this

level of abstraction for the remainder of the search.

If the abstraction-gradient method increment is used with iterative abstraction,

then with each iteration, an increasingly larger amount of problem-solving will take

place before the lookahead search reaches its most abstract. Figure 5.22 shows the

abstraction-gradient method increment applied to a lookahead search for three sub-

sequent iterations within a control impasse. In the �gure, triangles indicate search

to achieve an operator; the bigger the triangle, the more detailed the search. At the

�rst iteration, search is initiated at the system's most abstract level and so does not
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operator 2operator 1 operator 3

operator 2operator 1 operator 3

operator 2operator 1 operator 3

Second-iteration search

First-iteration search

Third-iteration search

Figure 5.22: An illustration of the abstraction-gradient method increment. The initial
abstraction level of a search determines how much more abstract it becomes as search
becomes deeper.
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25. Within a top-level lookahead search subgoal (for each option

in a top-level control impasse), each time an operator is

applied, and the current-abstract-at-level variable for this top

search subgoal is > 1, then decrement the

current-abstract-at-level variable.

Figure 5.23: Default knowledge for abstraction-gradient method increment.

become more abstract. At the second iteration, which begins in more detail, the sys-

tem will reduce the detail of the search after the �rst operator is applied. However,

the search is then at its most abstract and is not abstracted further after the second

operator has applied. At the third iteration, the search begins at yet more detail, and

becomes progressively more abstract the deeper the search.

Figure 5.23 summarizes the single rule from Appendix A used by the system

to implement the abstraction-gradient method increment. It tests and modi�es the

same variable | abstract-at-level | that the system compares against the cur-

rent subgoal level of search to determine if it should currently be abstracting, and

which the iterative-abstraction method increment increases at each iteration. The

abstraction-gradient method may be used with or without iterative abstraction, al-

though if lookahead search is initiated at its most abstract level without iterative

abstraction, abstraction-gradient will have no e�ect.

As an example of the abstraction-gradient method increment, Figure 5.24 revisits

the searches of Figure 5.19, and shows the evaluations which would be produced for

the operators at the second iteration level if this method increment was employed

as well. For each search path, the problem solver begins by solving for one level

of preconditions. However, as a goal conjunct is achieved, the level is decremented

for that search. So, the remainders of the searches are performed with all operator

preconditions abstracted.

As may be seen from the evaluations, by using the abstraction-gradient method

increment, the problem solver is still able to estimate that it is easier to open one

of the doors closer to the robot's initial position �rst, rather than achieve another

subgoal and then return. It is able to make this distinction with less e�ort than
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Push-to-box Box-E to Box-C
==> Operator Subgoal on Push-to-box
  Push Box-E through door Room-2/Room-1
   into Room-1 [4]
<== Completed Operator Subgoal
Open-door Room-1/Room-2 [1]

 

Push-to-box Box-C to Box-E
==> Operator Subgoal on Push-to-box
  Push Box-C through door Room-2/Room-4
    into Room-4 [3]
<== Completed Operator Subgoal
Open-door Room-4/Room-5* [1]

Open-door Room-1/Room-2
==> Operator Subgoal on Open-door
  Go-through-door Room-4/Room-2 to Room-2 [2] 
  Go-to-door Room-1/Room-2 
<== Completed Operator Subgoal
All other operators equal [2]

Assumptions:2
Steps: 4

Open-door Room-4/Room-5
==> Operator Subgoal on Open-door
  Go-through-door Room-5/Room-6 into Room-5 [1]
  Go-to-door Room-4/Room-5
<== Completed Operator Subgoal
Open-door Room-5/Room-7 [1]

Open-door Room-5/Room-7
==> Operator Subgoal on Open-door
  Go-through-door Room-5/Room-6 into Room-5 [1]
  Go-to-door Room-5/Room-7
<== Completed Operator Subgoal
Open-door Room-4/Room-5 [1]

Assumptions:2
Steps: 4

Assumptions:4
Steps: 4

Assumptions:4
Steps: 3

Assumptions:5
Steps: 3

?

* or Room-5/Room-7 [2],
where operator is suggested 
via previously learned abstract rules

Figure 5.24: The searches of Figure 5.19, with the abstraction-gradient method in-
crement used as well. The same evaluation is obtained with less e�ort.
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required previously, by looking at the beginning of its search paths in the most detail.

In this example, a greedy approach works well.

5.7.2 Iteration on Goal Conjunct Achievement

The second e�ciency-driven method increment is called goal-achievement iteration.

It also expresses, in a di�erent way, the idea that it may be useful to reduce the e�ort

required to perform an abstract search by using increasingly abstract problem-solving

the longer the search proceeds.

Goal-achievement iteration is motivated by the observation that if some goal con-

juncts in a situation may be achieved independently of each other, then the problem

solver can work locally on the best ordering of the operators which achieve the de-

pendent goal conjuncts, without needing to take the full task into consideration. This

search control technique | that of only searching to achieve a subset of the task goals

| may be considered a form of abstraction, since with its use, part of the task is

abstracted away during search. E.g., [Lansky, 1992] provides a discussion of such a

technique, called localization, and discusses its relationship to abstraction. However,

the automatic determination of subgoal dependencies requires an assumption about

the availability of declarative information for problem analysis. As an alternative ap-

proach, if the system does not have information about which goal conjuncts provide

operator interactions, but were to know the size of the largest subset of interacting

goal conjuncts (call this size k), then it could use this knowledge to reduce its evalua-

tion e�ort at a control decision, by only searching to achieve k goal conjuncts together

along each search path.

For example, consider a robot domain task whose goal conjuncts include moving

a box to a room, and closing the only door to that same room. Suppose that for

this task, the problem solver is given the information that the achievement of each

goal conjunct can a�ect at most the achievement of one other conjunct, and uses

this information to search to achieve only two goal conjuncts during its planning

phases. At a control impasse which included the relevant push-box and close-door

operators, the system would evaluate the results of pushing the box and then achieving

another conjunct, as well as the results of closing the door and then achieving another
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conjunct. Without searching to achieve the complete task, it would learn that pushing

the box and then closing the door was more useful than closing the door �rst (since

the door would only need to be opened again when pushing the box, thus undoing

the goal conjunct achievement). A partial goal conjunct ordering would thus be

developed. Using this approach, as problem-solving proceeds and more goal conjuncts

are achieved, evaluation searches to k additional conjuncts will reach further towards

the task goal state. In this way, an incremental re�nement of the goal ordering for

the task is generated. However, although this approach is e�ective if the problem

solver is given a good estimate of k, it will not be provided with such information in

general.

The goal-achievement-iteration method increment addresses this di�culty, by

modifying the iterative-abstraction method increment. It reduces the e�ort spent

during iterative-abstraction search, by having the problem solver look for interac-

tions between many goal conjuncts at less detail than it uses to look for interactions

between fewer goal conjuncts. The system does this within the context of iterative

abstraction by �rst looking for any interactions between large sets of goal conjuncts

at a high level of abstraction (and thus more cheaply)5. The highly abstract searches

may indicate with relatively little e�ort that some of the options at a control decision

impasse will lead to undesirable interactions. Such options will be eliminated from

consideration. As search detail is increased using iterative abstraction, the remaining

options will be evaluated at greater detail. At the same time, using goal-achievement

iteration, the problem solver will decrease the size of the subsets of goal interactions

that it considers, by reducing the number of goal conjuncts which must be achieved

during search. At each iteration, more detailed interactions may be detected, but

fewer potential interactions are considered. Therefore, goal-achievement iteration will

be most appropriate for tasks in which goal conjunct interactions are either relatively

localized, or easy to detect at a high level of abstraction. As with the abstraction-

gradient method increment, goal-achievement iteration takes a greedy approach to

search.

5The set of goal conjuncts under consideration need not necessarily consist of all the goals of a
task; this method may be applied to a currently \in focus" subset of the task goals.
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With goal-achievement iteration, a search within a control impasse subgoal may

result in a partial rather than total ordering on task goal conjuncts. As task problem-

solving proceeds and goal conjuncts are successively achieved, fewer additional goal

conjuncts need to be achieved to reach the goal. Thus, at each new top-level control

decision impasse, this partial ordering will be incrementally re�ned.

Note that goal-achievement iteration is not entirely independent of the domain

evaluation used for the task, because it assumes that it is possible to perform an

evaluation given that only some subset of the goal conjuncts have been achieved. For

example, the method increment may be used with a domain evaluation based on a

metric such as solution length or cumulative operator cost.

5.7.2.1 Implementation

Goal-achievement iteration is implemented in Spatula by building on iterative ab-

straction as follows. At each iterative-abstraction iteration, the problem solver decre-

ments a variable which holds the number of goal conjuncts to achieve at each iteration,

at the same time that the abstraction level is increased using iterative abstraction.

So at the �rst iteration for a control impasse, the abstract searches are performed

very abstractly, but all required goal conjuncts are taken into consideration. If the

problem solver is not able to resolve the impasse, then another abstraction iteration

is performed, in which the searches are made in more detail but the number of goal

conjuncts to solve for is decremented. The iteration process continues in this manner.

Variations on this basic procedure are topics for future work. E.g., it may be useful

for the results of the option evaluations at each iteration to in
uence whether the

goal conjunct count is in fact decremented or remains the same.

Figure 5.25 summarizes the knowledge in Appendix A used by the system to pro-

duce the goal achievement iteration method increment. The current implementation

of the method increment assumes that the system has knowledge of the total number

of goal conjuncts for which it would normally solve when performing an evaluation

for the operator in question. However, if this is not the case, then this information

could be derived during the �rst iteration of problem solving, by noting the number of

conjuncts achieved when the system's domain knowledge detects that an evaluation
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26. When a top-level control-impasse subgoal is initiated,

initialize number-of-goals-to-achieve. The initial value may

be the total number of goal conjuncts in the task, or less.

27. When a top-level lookahead search subgoal is initiated,

initialize goal-conjuncts-achieved to 0.

28. As each new lower-level subgoal within a lookahead search is

initiated, copy down the value of goal-conjuncts-achieved from

parent goal.

29. Note when a goal conjunct has been achieved; increment

goal-conjuncts-achieved.

30. Note when a goal conjunct has been un-achieved; decrement

goal-conjuncts-achieved.

31. For each iteration within a control impasse, decrement the

number-of-goals-to-achieve. (This rule will fire synchronously

with the iterative abstraction rule which increments the

abstract-at-level variable for the control-impasse subgoal).

32. When goal-conjuncts-achieved � number-of-goals-to-achieve, add

a flag which signals that search success is detected. (This

then indicates to other default rules that an evaluation of

the search may then be performed).

Figure 5.25: Default knowledge for the goal-achievement-iteration method increment.
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should be performed. As discussed above, the method increment is not appropriate if

evaluations can not still be performed when some smaller number of goals conjuncts

than this total are achieved. If used without iterative abstraction, this increment is

a null method unless the initial number-of goals-to-achieve is set to a number

di�erent than the total number of goal conjuncts.

5.7.2.2 Example

The example presented in Section 5.4 illustrates the way in which a useful partial

ordering for task subgoals can be constructed by using goal-achievement iteration in

conjunction with iterative abstraction. The example illustrated search at the second

iteration level. Recall that the system was able to choose to open the two doors

nearest to the robot �rst, while only searching to achieve two goal conjuncts.

Goal-achievement iteration will produce good results for this task because it is

not necessary to look at all sequences of all goal conjuncts to make a decision about

the system's �rst move. By a relative comparison of the results of achieving all

combinations of any two goal conjuncts, the problem solver was able to determine

that it appeared easier to open the two closest doors �rst, rather than to achieve any

of the other goal conjuncts �rst and then open one of the closest doors6.

In this example, once the initial two Open-door operators have applied in the ex-

ecution space, the problem solver will require additional search to determine which of

the remaining two goal conjuncts (Next-to(Box-E,Box-C) and Open-door(Room-1,

Room-2)) to work on next. If it is using goal-achievement iteration, then, as before, it

will start its search by achieving a relatively large number of goal conjuncts at a high

level of abstraction, and decrease the number of goal conjuncts with each iteration.

However, now that there are only two goals left to achieve, the system will be able to

search to task completion at the second abstraction iteration. In this example, the

Push(Box-E,Box-C) operator will be applied next. This operator is chosen because

the system detects that after the application of the �rst two operators, the robot is

6As described above, goal-achievement iteration would in fact have solved for three rather than
two goal conjuncts at the second abstraction iteration, given that the system initially began by
achieving all four task goals at its �rst iteration. Thus, for this example, even weaker conditions
than the default are e�ective.
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now near Box-E, and that once it has pushed Box-E into Room-1, it will be near

the door between Room-1 and Room-2. (It does not, however, detect that the door

will be fortuitously opened in the process of pushing Box-E).

Thus, for this example, an initial partial ordering of the goals was useful, but a

total ordering was not necessary | the remaining goals were ordered later in the

task. In this way, goal-achievement iteration produces an incremental re�nement of

the partial ordering of the goal conjuncts.

5.7.2.3 Factorization of Goal Conjunct Tests

To be e�ective, the goal-achievement iteration method requires that | as suggested

in Chapter 3 | tests for goal conjunct achievement be factored. In the same way

that precondition tests must be factored to allow assumptions to be counted, goal

tests must be factored to allow the problem solver to count the number of conjuncts

achieved.

If the goal test is not factored, the problem solver will not be able to detect that

individual goal conjuncts have been achieved. The evaluation search will terminate

when the complete goal is reached (if no other terminating conditions are reached

�rst). In such a case, goal achievement iteration will be a null method, and have no

additional e�ect on the iterative abstraction method.

5.7.3 Discussion

The abstraction-gradient and goal-achievement-iteration method increments reduce

abstract planning expense by expending less planning e�ort the deeper the search

becomes. These method increments proved useful in most of our experimental do-

mains, as will be described in Chapter 6. Their utility is related to the extent to

which the task goal conjuncts are interdependent, and thus we do not expect them

to be equally useful in every domain. Further research is required to characterize the

cost-bene�t tradeo�s of these method increments with respect to the potential goal

interdependencies in a given domain.
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(move E Table) (move A Table) (move B Table)  (move D F) 
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(move C Table)  (move D F) 

For  G1

(move A Table) (move B Table)

For G2
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For  G1For G2

G2 is 
opportunistically
achieved

(move E Table)

Figure 5.26: Example of bias in abstraction.

5.8 Discussion: Method Increment Biases

Use of Spatula's method increments provides several biases to the solutions produced

by the system when using abstraction, where a bias is de�ned as any basis for choosing

one plan over another other than the task goal.

One notable bias is produced by the conjunction of iterative abstraction and as-

sumption counting; if there are helpful interactions between subgoals, the system will

tend to prefer to work on the easiest subgoals �rst. If the interactions are detrimen-

tal, it will tend to do the easiest subgoals last. The reason is that during lookahead

search, the system is able to see the e�ects of easier subgoals more completely.
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Consider the simple \Blocks World" example of Figure 5.26. Assume that the

system is searching using a linear goal achievement strategy, to determine which of

its two goals to achieve �rst. Assume also that the move operator in the example

has the preconditions that both the block being moved and the target location are

clear. The domain evaluation is solution length, and the system is using both iterative

abstraction and assumption counting.

For this task, the abstract lookahead searches at the �rst, most abstract iteration

level will not discriminate between the two goal orderings, and thus the system will

iterate. Figures 5.26(b) and 5.26(c) show the abstract lookahead searches from the

initial state to the goal, at the second iteration level. Figure 5.26(b) shows the

lookahead search which takes place when Goal G2 is attempted �rst. It turns out

that no abstraction is actually necessary during this search at the second iteration

level, since the preconditions of (move A Table), (move E Table), and (move C

Table) are all met. Next, 5.26(c) shows the lookahead search which takes place when

Goal G1 is attempted �rst. Here, the unmet precondition of the (move C Table)

operator is abstracted. Since the abstract operator application does not alter the

state information that A is on top of B, A must still be moved to the table before B

may be moved.

Spatula considers search (c) more expensive than search (b), since it makes more

assumptions. (Search (b) makes no assumptions). Therefore, the plan described by

search (b) would be selected. This plan needs no further re�nement.

If the plan described by search (c) had been selected, it would have been re�ned to

the sequence shown in (d). Without abstraction, this solution would have appeared as

good as (b). However, with the abstraction method increments, the system is biased

towards the solution which works on the easier subgoal �rst; the system can ascertain

that achievement of G2 does part of the work for G1, but at the second abstraction

iteration level, it can not tell that the reverse is true as well.

Other primary method increment problem-solving biases are produced by the

conditions which test whether an option should be eliminated from the iteration

process, and whether all remaining options should be considered equally good (that

is, when to halt). These decisions are a�ected by both the iterative abstraction



5.9. SEARCH COMPLEXITY USING SPATULA 165

parameters and the assumption counting meta-evaluation function. These conditions

bias the problem solver because it is making a guess that an option which does not

look promising at a high level of abstraction will not look any better during later

iterations and thus does not need to be considered further. These early guesses may

then impact the choices made during later iterations of the same impasse, or during

later impasses.

The other method increments bias the system as well. Abstract plans can transfer

overgenerally and impact the space of possible solutions; thus, the extent to which

the plans are used provide a bias. Clearly, the e�ciency-driven method increments

bias the problem solver, since they force the system to attend most closely to the

more localized e�ects of an operator.

Therefore, changes in the method increment parameters change the system's bias,

and consequently impact the space of inductively generalized search control concepts

which may be learned during problem-solving.

5.9 Search Complexity using Spatula

In this section, the complexity of search using Spatula is analyzed with respect to a

linear goal achievement strategy, where \linear" goal achievement is de�ned as that in

which work on di�erent subgoals is not interleaved. However, search may still include

consideration of the di�erent ways in which to achieve a subgoal | with respect to

its impact on the achievement of other subgoals | as well as the order in which the

subgoals are achieved. This strategy is relevant since it is the default control strategy

used for our experimental domains7.

The analysis makes several simplifying assumptions. It assumes that learning en-

ables the problem-solver to remember the plans it has constructed, but, for purposes

of simpli�cation, that no transfer to new situations occurs. (As observed from empir-

ical tests to be described in Chapter 6, in reality some transfer would be likely.) The

analysis assumes no use of the e�ciency-driven method increments of Section 5.7, but

7As will be discussed in Chapter 6, use of linear goal achievement as the default strategy did not
mean that the problem solver was restricted to the linearity assumption; rather, if its linear strategy
failed, other operator orderings could be utilized.
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does assume the use of iterative abstraction. The analysis does not take into account

any plan repair activity. In reality, with Spatula, the utility of its abstractions varies

with the domain and domain representation, and repair is necessary at times.

5.9.1 Search to apply an operator

First, consider the average cost of a search to apply one top-level operator (that is,

an operator proposed to help achieve a task goal) non-abstractly. An operator with

unmet preconditions will have some number of di�erent orders in which it will try to

achieve its preconditions (with respect to domain search control), and some number

of di�erent sub-operators with which it will try to achieve a precondition (again,

with respect to domain search control). Call the average cost of enumerating the

sub-operators in all the di�erent potential paths for achieving the preconditions, B.

That is, the search tree of possible sub-operator sequences to achieve an operator's

preconditions has an average of B nodes. Because we are assuming here that goal

achievement is linear, each of these B sub-operators will also require cost B to order

the operators achieving their preconditions, and so on. Let d be the average number of

operator-subgoaling levels required to re�ne a top-level operator. Then, the average

non-abstract search expense for such an operator will be O(Bd).

Now, consider the cost of an abstract search to apply a top-level operator, again

using linear goal achievement. Call the average number of sub-operators required to

achieve an operator's preconditions, l. So, B must always be > l. (If B = l, then

there is no search necessary to apply the operator and abstraction would not be used).

Suppose the system is performing its abstract searches at the kth abstraction level

(that is, it searches to achieve k levels of preconditions). Given a top-level operator,

the system will �rst perform an abstract search of cost O(Bk). This will produce an

abstract solution of length O(lk), in which a plan is produced for the achievement of

k levels of preconditions.

Then, each of the O(lk) operators in the abstract solution must be re�ned. If

the system were to re�ne these sub-operators non-abstractly, the cost of this search

would be O(Bd�klk). However, when kth-level abstract search is used to re�ne each of

the operators, an abstract plan will be produced of length l2k, at cost O(Bklk). The
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cost of re�ning each of the l2k operators may again be reduced using abstraction, and

so on. With multi-level abstraction | that is, with abstraction used for each new

sub-re�nement | the total re�nement cost with abstract search is

O(Bk(1 + lk + l2k + ::::+ ld�k)) = O(Bkld�k)

when d divides k evenly. (When d does not divide k evenly, the cost is

O(Bklk((d div k)�1) +Bdmodkld�(dmodk))).

With iterative abstraction, an abstract search starts by abstracting all precondi-

tions of the operators in its search, and increases the levels of preconditions solved

for until a choice is made. If for each re�nement a decision is made at the kth

level of precondition achievement, then the cost for multi-level abstraction over the d

operator-subgoaling levels is is

O((B +B2 + :::+Bk)(1 + lk + l2k + :::+ ld�k))

when d divides k evenly. As with iterative deepening [Korf, 1985a], the dominant

complexity of the expression comes from the last iteration. Thus, the complexity

of using iterative abstraction to apply an operator remains O(Bkld�k), when k is

the number of iterations required for each re�nement. (Analogously, the complexity

remains the same for the case in which d is not an even multiple of k.)

5.9.2 N goal conjuncts

Now consider the work needed to solve a task with n goal conjuncts, again with linear

goal achievement. With Spatula, as with any relaxed-model abstraction method,

the number of task goal conjuncts is not reduced. Thus, the problem-solver must

search abstractly to order the operators which achieve its task goal conjuncts.

The search to �nd the best ordering for a group of n objects is of complexity n!,

which approaches O(nn). If for each of n task goal conjuncts, there are c possible

top-level operators which can achieve that conjunct, then the complexity of search

to order a task's top-level operators can approach O((cn)n). (This is a worst-case

estimate, since other sources of search control may obviate the need to search for all
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orderings of all goal conjuncts). The cost of non-abstractly solving a task with n goal

conjuncts is then O((cn)nBd).

As above, suppose that using abstract search, k levels of precondition achievement

are required to discriminate among options and make a decision at a choice point.

Then, the abstract search to order the operators that achieve n task goal conjuncts

will be of cost O((cn)nBk). This search will produce an abstract solution of length nlk.

The remainder of the task plan re�nementwith abstraction will be of costO(nBkld�k),

since the task goal conjunct order is now �xed, and there are nlk operators with

re�nement cost O(Bkld�2k) each. Thus, the total task cost with abstraction is

O((cn)nBk + nBkld�k):

(For simplicity we assume that one top-level operator is required to achieve each task

conjunct; if a operators are required to achieve each conjunct, then the second term in

the sum is multiplied by a.) The complexity of the �rst term in the sum is exponential

in n, but the second is not. This is because task goals can vary in number, but we

are assuming that the average cost of applying a top-level operator is independent of

this number, and depends upon the domain representation and search control.

The ratio of task expense with abstraction to without is

O

 
1

Bd�k
+

ld�k

(cn)n�1Bd�k

!
:

Several results may be observed from this expression.

� Abstraction is theoretically cheapest when k = 1, assuming that no backtracking

or patching need occur. (In reality, the e�ciency of fewer iterations must be

balanced against the utility of the abstractions produced.)

� The complexity of search using Spatula can not be less than the expense

required to order the top-level goals. This expense will depend upon the domain

search control, but may be exponential in the number of goals.

� For small n, the second term in the ratio is dominant, and the relative savings

from abstraction depends upon the relative costs of B and l, and will increase
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as n increases. However, as (cn)n�1 becomes larger than ld�k, the �rst term be-

comes dominant and the ratio approaches O(Bd�k). Thus, the relative savings

from Spatula using linear goal achievement is bounded by domain characteris-

tics rather than task size. (Though not discussed here, this bound does not exist

when achievement of subgoals is interleaved. In that case, though the expense

of both abstract and non-abstract search increases, relative savings provided by

abstraction increases with the number of task goal conjuncts).

� For a given n, the relative savings increases as B or d increases. Thus, an

increase in domain complexity provides an increase in the relative gains provided

by Spatula.

5.10 Summary

The basic abstraction method described in Chapters 3 and 4, when used alone, will not

always provide new information to the problem solver during search if strong sources

of other search control knowledge about operator e�ects are already available. In this

chapter, building on the framework of the basic abstraction technique, a repertoire

of abstraction method increments was added to Spatula to strengthen the method.

The method increments provide heuristics for generating useful abstractions, while

avoiding any assumptions about the extent of the declarative knowledge available to

the problem solver about its domain. Figure 5.27 summarizes the abstraction method

increments described in this chapter.

In the chapters thus far, we have described an abstraction method which addresses

our research goals: it is domain-independent, allows the problem solver to make de-

cisions more e�ciently, learn about its domain more easily, and increase transfer of

its plans to new situations. In the next chapter, we will present the results of empir-

ically evaluating the utility of Spatula's basic abstraction technique and associated

method increments in several test domains.
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� Method increments which allow the problem solver to obtain additional
contextual information with which to estimate which abstractions will prove
most useful:

{ Assumption counting: The number of assumptions required to com-
plete an abstract search path is taken into account when estimating
the relative merit of di�erent control decision options.

{ Iterative abstraction: Makes use of the heuristic that a useful level of
abstraction for a situation is that at which the system can discriminate
among the situation's options. Iteratively increases search detail at a
control decision until such a discrimination can be made.

� Method increment which allows the problem solver to reason about its ab-
stract plans:

{ Extended plan use: allows the problem solver to control the circum-
stances under which its di�erent levels of abstract plans are learned
and used.

� Method increments to increase the e�ciency of the abstract search, while
providing heuristics which allow the problem solver to focus on important
aspects of its task. These method increments tend to be less e�ective in
domains for which many task goal conjuncts are highly interactive:

{ Abstraction-gradient: Abstraction level increases as an evaluation
search progresses, thus focusing more attention on actions taken at
the beginning of the search.

{ Goal-achievement iteration: As search detail increases, search is re-
stricted to exploring interactions between smaller sets of task goal con-
juncts. A null method without the concurrent use of iterative abstrac-
tion.

Figure 5.27: Summary of Spatula's method increments.



Chapter 6

Basic Experimental Results

6.1 Introduction

The general weak abstraction methods which comprise Spatula have been imple-

mented in the Soar problem solver, and experimentally tested in three distinct do-

mains: a Robot Domain, the Tower of Hanoi, and the Eight-Puzzle. In addition, some

experiments were run using a less general method for abstracting operator imple-

mentations (rather than preconditions) in a fourth domain, computer con�guration.

In this chapter and Chapter 7, the results obtained with the Spatula abstraction

method are presented. The computer-con�guration results are discussed in [Unruh

and Rosenbloom, 1989].

Our experiments were performed to determine the extent to which the use of

Spatula's abstraction methods:

� produces good task solutions;

� increases problem-solving e�ciency;

� allows the problem solver to learn new rules about its domains more easily;

� and increases transfer of the rules learned.

In this chapter, we focus on the results pertinent to the issues above. We will

show that in our experimental domains:

171
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� using Spatula, solution quality is signi�cantly better than that produced by

choosing a solution based on pre-existing domain search control.

� using Spatula, abstract search requires fewer problem-solving steps than the

corresponding non-abstract search.

� the harder the domain, the larger the payo� | in e�ciency and solution quality

| to be obtained from tractably constructing a good plan with which to guide

the construction of a solution. Spatula provides a means for constructing such

plans.

� using Spatula, the cost of building learned rules is reduced. The more complex

the non-abstract subgoal search, the greater the cost reduction.

� except in domains for which tasks are very similar to each other, learned abstract

plans allow signi�cantly better plan transfer than non-abstract plans.

In the remainder of this chapter, we �rst describe the experimental domains and

methodology used for the experiments. Then, the results introduced above are de-

scribed in the following manner. First, the impact of Spatula's basic abstraction

method alone is discussed. The next two sections focus on the results of using iterative

abstraction and assumption counting. Then, abstract plan utility data is discussed,

including issues of plan expense, generality, and impact on solution quality. Last, the

results of this chapter are summarized.

Then, in Chapter 7, we discuss some of the additional results obtained from the

use of Spatula, including discussion of the additional method increments, and un-

expected results both bene�cial and problematic.

6.2 Description of Experimental Domains

The experiments to test Spatula were performed in three domains: the Eight-Puzzle

(ep), a Robot Domain, and the Tower of Hanoi (toh). Appendices B, D, and C

describe the domain operators and tasks used for each respectively. Each domain was

created following the problem-space design guidelines of Chapter 3. These domains
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were considered appropriate for Spatula's interleaved approach to planning and

execution as discussed in Section 4.4.2; in each domain, all mistakes are correctable

eventually during execution if memory resources are not exhausted.

Below, we describe the search control used for each task, and any notable charac-

teristics of problem-solving in the domain.

6.2.1 Eight-Puzzle

The Eight-Puzzle domain was chosen as a test domain because of its search-intensive

characteristics and its history in previous abstraction work. For this domain, ten

randomly generated tasks with ten-move solutions were tested. In the domain for-

mulation used here, the ep domain has one operator, which moves a tile from square

to square. The operator is instantiated with the tile and the source and destination

squares. The operator has one precondition | the destination square must be blank.

The condition that the tiles be adjacent was critical, in that it was represented as part

of the conditions for proposing the operator. (There is no reason that experiments

couldn't be run with this condition explicitly represented as a precondition as well.

This is left for future work.) Thus, during abstract search with this representation,

the tile may be moved to an adjacent square without regard to whether or not there

is already a tile on the square. Measuring the number of steps in the shortest such

search produces the \Manhattan Distance" heuristic [Pearl, 1983].

6.2.1.1 Search Control

The ep search control prefers operators which move tiles towards a goal; and of

those, prefers operators whose preconditions are met. In addition, if an operator

subgoal is generated because the operator's precondition is not met, search control

proposes operators which move the tile blocking the destination square; one operator

is proposed for each direction of movement other than back onto the source square.
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6.2.1.2 Domain Problem-solving Characteristics

The ep domain and search control were such that if the problem solver managed to

make good choices at its �rst few decisions, and started on a good search path, there

were then relatively few subsequent choice points and it was easy to �nd a solution.

( This may have been due in part to the relatively short optimal solution lengths |

10 moves | in the tasks tested.) In addition, these good solution paths tended to

involve very little operator subgoaling, since search control preferred operators with

preconditions met.

Of the ten tasks tested, about half of the operators in a task's initial top-level tie,

if chosen, would lead easily to the solution. However, the other half of the choices in

the top-level ties, which led down bad paths, generated searches in which it was very

di�cult to reach the solution | tiles would get further and further out of place, and

the search control was not su�cient to reorder them.

6.2.2 Robot Domain

The Robot Domain was developed from the domain used in the ABStrips work [Sac-

erdoti, 1974]. Two versions of the robot's world were used for the tasks run in this

domain. The �rst version based the tasks' initial states upon the original room layout

used for ABStrips. The second version used initial states in which the complexity

of the room layout and the connections between the rooms were increased along one

dimension | that of the number of rooms and the connections between them.

Figure 6.1 shows a 2-goal-conjunct task in which the ABStrips layout is used.

Figure 6.2 shows the same task, using the more complex room layout. For each task

tested with both layouts, the initial con�guration of the original rooms and doors

remained the same. Thus, the optimal solution for each task remained the same as

well | if the problem solver wasn't led astray by the extra information, it could solve

the task using the complex layout in exactly the same way as in the original layout.

The tasks used for the Robot Domain experiments were drawn from randomly

generated sets1, grouped according to number of goal conjuncts. Tasks with 2, 3, and

1We would like to thank Craig Knoblock for providing these benchmark tasks.
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Figure 6.1: A typical task in the Robot Domain, using the \ABStrips" room layout.
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Figure 6.2: The same task as in Figure 6.1, using the more complex room layout.
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4 goal conjuncts were tested.

6.2.2.1 Search Control

The problem solver was provided with MEA knowledge about the Robot Domain.

The MEA knowledge took the form of search control which, given a goal conjunct,

suggests operators which are likely (but not guaranteed) to help achieve the subgoal2.

For example, if the robot has a goal to be in a particular room, operators will be

proposed to move the robot into the room from adjoining rooms. However, in actuality

it may not be possible to reach (all of) the adjoining rooms from the robot's current

position.

6.2.2.2 Domain Problem-solving Characteristics

Using the original room layout, many tasks are fairly easy to solve in this Robot

Domain; since the paths between rooms are fairly short, choices of bad paths have

relatively minor repercussions. Exceptions are tasks in which there is a large amount

of subgoal interaction. However, with the complex room layout, the subgoal search

is more di�cult; bad choices can cause a large increase in task di�culty and solution

length.

6.2.3 Tower of Hanoi

The toh domain is a favorite in abstraction research, since its recursive nature admits

to nice hierarchical abstractions of the problem. For example, the top n disks may

be aggregated into one or ignored, with n decreasing as search becomes less abstract.

Because Spatula does not perform the pre-search problem-space analyses which

2Although many systems, e.g. \Prolog-based" problem-solvers, use a single-representation trick
such that the preconditions of an operator are the new task goals, it is not required in Soar that
there be an explicit connection between knowing about operator preconditions and knowledge about
how to achieve the preconditions. They may be described using di�erent vocabulary. Therefore,
in the Robot Domain, the problem solver was also provided with search control knowledge which
suggested particular task subgoals given particular unmet operator preconditions. For example, an
unmet precondition \not(robot-next-to-door)" will cause a suggestion that a task goal be posted
to move the robot next to the door.
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lead to these recursive approaches, we were interested in exploring the abstractions

produced in such a domain.

In the formulation of the toh domain used here, there is one operator, which

moves a disk to a peg. Preconditions of the operator are that the disk be clear (no

other disks on top of it) and that the top disk on the target peg not be smaller than

the disk being moved. Thus, during abstract search, it is possible for a disk to be

moved on top of a smaller disk, or for a disk to be moved without clearing out the

disks on top of it.

Tasks with 3 and 4 disks were tested. Tests included the \canonical" task in which

all disks start on one peg and end stacked on another, as well as other tasks with the

disks in di�erent randomly generated initial con�gurations and the same goal. Task

goals were speci�ed by giving only the target peg for each disk (and not specifying

the order in which the disks should be placed on their pegs).

6.2.3.1 Search Control

The Toh Domain was provided with the following two search control rules. First,

if a disk to be moved is not clear, then move the disk on top of it out of the way.

Second, if a disk on a peg is smaller than the disk to be moved to that peg, then move

the �rst disk to a di�erent peg (note that this second rule does not specify the order

in which the pegs on a disk should be moved o�). With this search control, search

was still required to determine which potential ordering of disks could create a legal

stack.

6.2.3.2 Domain Problem-solving Characteristics

Given loop detection, the toh is a relatively constrained domain. Although there are

many possible non-optimal moves given the search control described above, the bad

paths are not very long.
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6.3 General Experimental Methodology

In the experiments, we �rst investigated the e�ects of the basic abstraction method

alone. Then, more extensive tests were performed to include the method increments.

For the tests which included the method increments, a series of tasks from each

domain of Section 6.2 was run using variants of Spatula (i.e., with di�erent method

increments), as well as two non-abstract search methods.

Empirical comparisons were made, across problem-solving methods, of task solu-

tion quality and problem-solving performance. In addition, the interaction of learning

and abstraction | the expense, transfer, and utility of learned rules | was explored

in the toh and Robot Domain3.

Analyses were also done of trends in these measurements across changes in domain

characteristics. In addition to comparing results across domains, comparisons were

made in the Robot Domain across tasks increasing in two di�erent dimensions of dif-

�culty: number of goal conjuncts4 and complexity of domain. In addition, qualitative

analyses were done of the types of abstractions which were produced in each domain,

and the conditions under which they occurred.

6.3.1 Default Weak Problem-solving Methods

All test methods in all domains used the default lookahead method of depth-�rst

search described in Chapter 2. (There exist more e�cient (but perhaps less cognitively

plausible) search methods, such as IDA* [Korf, 1985a], but since all tests in a domain

used the same default search knowledge, comparisons show relative performance). For

all domains tested, the problem solver was provided with default rules about operator

subgoaling. Therefore, if an operator is selected but | because its preconditions are

not all met | is not able to apply, then the problem solver knows how to set up

a subgoal in which to search for a state from which the operator can apply. (Note

that the operator subgoaling method does not assume the presence of any particular

3Although these tests were not made in the ep (the �rst domain tested), there is no technical
reason why this could not be done as well. This is a topic for further work.

4Although tasks with a larger number of goal conjuncts weren't necessarily more complex on a
task-by-task basis, this was the case overall.
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search control knowledge guiding the problem solver to a state in which the operator

can apply. The search control knowledge used by each domain was described above

in Section 6.2).

The default goal achievement strategy used for all domains was linear, in that

initially search control was employed to work on only one task goal conjunct at a

time. If the current goal spawned task subgoals, then focus would shift to choosing

an ordering on the subgoals and achieving each in turn. (See [Rosenbloom et al.,

1992] for a description of the implementation of other goal achievement strategies

in Soar). The system's default knowledge about management of goal conjuncts was

such that all in-focus goal conjuncts were considered equally for achievement (that

is, no a priori goal ordering was used, as in Prolog). Therefore, even if the system

was given domain knowledge about what actions were likely to achieve its subgoals, it

might still need to search to determine which task subgoal to work on �rst, as well as

how the subgoal might best be achieved. Often, characteristics of the other subgoals

can a�ect how best to achieve a particular subgoal. Because the goal management

knowledge was default, it could be overridden by more domain-speci�c knowledge

about which goal to work on �rst.

The system noted when subgoals were achieved and clobbered, but did not back-

track at clobbered goals; instead it reachieved them. The initial goal achievement

strategy was linear, but the problem-solver was not restricted to employing the lin-

earity assumption; if its linear strategy failed, other operator orderings could be

utilized, in which subgoals were achieved in an interleaved manner.

Detection of problem-solving loops is not provided architecturally in Soar. Knowl-

edge to detect operator-subgoaling search loops was provided as part of the system's

knowledge. However, in the Robot Domain and toh, the problem solver did not

have the knowledge to detect a particular kind of loop in which it had re-achieved

a previously achieved state of the world within a single goal context. Runs which

looped in this way were omitted from the data below; they do not fall into the same

category as tasks which were unable to be completed for intractability reasons, and it

is hard to estimate the statistics (number of problem-solving steps, etc.) they would

have generated had their loops been detected.
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6.3.2 Learning

It was taken as a \given" in our tests that the Soar architecture should learn from

its problem-solving, be it abstract or non-abstract, since the integration of learning

and problem solving is an important part of the Soar problem-solving architecture.

However, the interaction between abstraction and learning is of particular interest.

Since abstraction produces rules which are more general than their non-abstract coun-

terparts, there is a greater possibility that the abstract rules will be over-general5.

(This issue is distinct from that of whether the abstract lookahead search causes one

operator to be mistakenly chosen over another; it may be that a good decision is

made as a result of abstract lookahead search, but that the resultant rules apply in a

non-useful future situation.) In addition, the abstract rules might be more expensive

to use. Therefore, though learning and plan use was considered to be an integral

part of the abstraction methods, analyses were done to determine the impact of the

abstract plans.

6.3.3 Comparison with Non-abstract Problem-Solving

Methods

Two non-abstract problem-solving methods were selected to provide comparative in-

formation about the abstraction methods: non-abstract best-path search and non-

abstract �rst-path search.

Non-abstract best-path search requires that the problem solver compare all search

paths | with respect to its existing search control, problem-solving, and evaluation

methods6 | before making a decision. Theoretically, such searches, since they use

depth-�rst lookahead, can become in�nitely deep. However, our search spaces were

�nite, and as discussed above, in each of our experimental domains the problem solver

was provided with knowledge about cutting o� most search loops. The exceptions

were removed from the data set.

5It is possible for non-abstract rules to be over-general too [Laird et al., 1986b], but this does not
occur as often.

6Therefore, the problem solver will not necessarily search all legal paths, since it is biased by its
other knowledge.
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Best-path search provides a measure of how hard it is to come up with the best

solution to a task, with respect to the system's problem-solving methods and biases.

Therefore, since the abstraction methods we tested used the same lookahead search

methods as the best-path search, a comparison allows analysis of the e�ects of ab-

straction on the search. In contrast, with �rst-path search, the problem solver just

selects randomly from its set of possibilities (constrained by existing search control),

at each new operator tie during lookahead search. The depth-�rst search terminates

when some solution is found (again, though theoretically this search can be in�nite,

this was not a problem in our tests). The better the domain search control, the bet-

ter the problem solver will perform when using this method. Such �rst-path searches

indicate how tractably a domain responds to decisions made solely on the basis of

existing search control, and what penalties are paid because of the need to repair ran-

dom mistakes during search. In addition, the comparison of abstract and �rst-path

solutions indicates the extent to which solutions produced using abstraction improve

on existing search control.

6.3.4 Data Collection

Performance measurements were made of both the solution quality and e�ciency of

the tests run, since an analysis of the cost-e�ectiveness of an abstraction method

includes both considerations of how good the solution is and how easily the solution

is produced. Comparisons of these measurements then help indicate what gains and

tradeo�s are produced by using the various method increments and method increment

combinations, and what changes occur across methods as the domain complexity

changes.

The data collected for some method increment combinations is more sparse than

others (that is, only a subset of the tasks were tested for some combinations). The

reason for this is that it was sometimes di�cult and slow to do the test runs, and we

wanted to obtain data points from a relatively large area of the experimental space.

Results are shown in bar graphs, which facilitate visual comparisons of relative

di�erences between methods. In this chapter, summary graphs are presented, which

show average measurements across the tasks in a domain. Then, in Appendix E, more
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detailed graphs are listed, showing the individual task measurements. The di�erences

in measurements across search methods were tested for signi�cance using a pairwise

Student T-test, with � = :05. Unless otherwise indicated, all di�erences reported

below are statistically signi�cant.

The tasks which were solved using �rst-path search necessarily produced random

results (with respect to existing search control biases), since at each choice point

the problem-solver picked at random from its options. For the tasks solved using

abstraction there was a smaller degree of randomness generated by situations in which

abstract rule transfer suggested that more than one option was equally good. For

such tasks, where several di�erent runs of the same task and method were available,

the results were averaged for that task. However, since the tasks themselves were

randomly generated, it was not considered necessary to run multiple trials of each such

task. Instead, the cumulative results of all such tasks are expected to be randomly

distributed over the spectrum of possible results | some solutions will be better than

average, and some will be worse.

6.3.4.1 Solution Quality and Problem-solving e�ciency

In all experimental domains tested, the metric used by the domain evaluation func-

tions was solution length | those task solutions which required the fewest number

of operator applications were considered the best. Therefore, when evaluating the

empirical results in each domain, solution quality was evaluated by comparing the

solution lengths of the tasks. Since the problem-solver, using Spatula, interleaves

abstract planning and execution, the solution lengths discussed below include the

execution of any repairs which may have been required if mistakes were made in the

execution space.

Problem-solving e�ciency was measured along two di�erent dimensions: the num-

ber of Soar decision cycles (i.e., problem-solving steps) required to complete a task,

and the computational resources necessary. (Recall from Chapter 2 that Soar's de-

cision cycles include selection of problem-spaces and states as well as operators, and

generation of goals.)

The number of problem-solving steps includes both planning and execution steps.
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However, execution represents only a small proportion of the total number of steps;

therefore, the total number of steps indicate how hard it was for the problem-solver

to make decisions about what actions to take. For example, if contradictory abstract

search control caused an operator con
ict, the extra work to resolve the con
ict would

be re
ected in the number of problem-solving steps required. If plans learned during

earlier search do not apply once part of the plan has been executed, the necessary

replanning would again be re
ected in the number of problem-solving steps. Similarly,

if the problem-solver makes a mistake and needs to patch, this is re
ected also.

Soar's decision cycles are hypothesized to represent cognitive steps [Newell, 1990].

Thus, given the \right" distributed implementation of Soar, it is hypothesized that

they will take constant time. If this turns out to be the case, then the number

of problem-solving steps is the most telling measure of problem-solving di�culty.

However, in the current implementation, the problem-solving steps can take variable

amounts of time.

In Soar, average problem-solving time per step can increase for several reasons.

It may be because there are many rules �ring at once. This type of slow-down

would be expected to be favorably impacted by a distributed implementation of Soar.

Problem-solving slowdown can also occur because rule matching is more expensive.

The expense of rule matching is often increased as the problem-solving subgoal depth

is increased, since there are more goal contexts to match against the deeper the goal

stack becomes. Thus, tasks with deep goal stacks will usually run slower per step

than tasks with shallow goal stacks. In addition, the amount of time spent building

new rules can also impact the overall problem-solving time.

Therefore, for our tasks, we looked at the following measures of computational

resources in addition to the number of problem-solving steps. These measures are

implementation-dependent and| in the case of timemeasures|machine-dependent,

and thus are not meaningful as absolute measurements. However, with respect to the

version of Soar used for these tests, a comparison across search methods gives an

indication of the relative expense of the di�erent methods:
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� Total problem-solving time | measure of total computational resources re-

quired. Unfortunately, this measure was not always reliable7. Though it pro-

vides some indication of relative problem-solving e�ort, exact comparisons should

be taken with a grain of salt.

� Total token changes, and average token changes per rule �ring. The size of

Soar's token memory at any point indicates the number of matches for each

condition of each rule. The total number of token changes registers the changes

in token memory over the course of a task, and thus measures the e�ort required

to match and �re rules during the task (though not to build new rules). This

expense is a�ected by the particular conditions (left-hand-sides) of the rules as

well as the goal stacks generated while solving a task.

� Percent learning overhead | the percent of problem-solving time spent building

new rules.

� Average time to build a new rule.

� Number of new rules learned.

The summary �gures in this chapter and the next do not present all measurements

for all tasks. More detailed data are in Appendix E.

In the presentation of the data, some tasks are marked as intractable with respect

to a problem-solving method. Intractability could occur in three ways. In the ep and

the Robot Domain tasks, a cuto� was set of a maximal number of problem-solving

steps. If a task took more than this number of steps, it was considered intractable. In

addition, a task could exceed its memory limits before reaching the cuto� number of

steps if its token memory became too large; this was de�ned as intractability as well.

Finally, a few of the abstract tasks were terminated because many abstract rules were

7This was the case for at least two reasons. First, in the implementation of Soar used for these
tests, old internal data structures were retained during problem-solving, thus causing longer runs
to gradually increase in time per step. This problem has since been corrected. Second, system
processing time appeared to be included in the reported time. For example, the same task could
vary in time by more than a factor of four depending upon whether or not other processes on the
machine were requiring a lot of CPU time.
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�ring at some points during problem-solving, causing some problem steps to be very

slow. (The reason for this e�ect, and the tasks with which it occurred, are described

in Chapter 7.) All tasks were run with the same memory allocation and thus all

had the same intractability limits. Clearly, the speci�c limit set on memory usage

a�ects the results; some of the tasks would have �nished if they had been allotted

more memory. However, given a particular memory limitation, the results provide

comparative information across methods.

Measurements of expense don't completely re
ect the di�cult end of the spec-

trum of tasks, since 1) for technical reasons, it was not always possible to gather

�nal statistics on tasks which ran out of memory; and 2) such statistics would not be

directly comparable to those of tasks which had �nished. For example, disproportion-

ate amounts of learning might have occurred. Thus, numerical data was in general

gathered only for those tasks which were able to �nish, and these measurements must

be viewed in conjunction with the information on the number of tasks which were

intractable.

6.4 Results: Basic Abstraction Method

As discussed in Section 5.1, Spatula's basic abstraction method, without use of the

method increments, can be useful in domains with very little search control. In these

domains, abstraction permits the problem solver to more easily guess which operators

are likely to achieve an aspect of the current goal and which are likely to be unrelated.

In Section 4.3.2, it was shown that abstraction allows the problem solver to learn new

MEA knowledge. However, as discussed in Section 5.1, the conditions under which

the basic method produces discriminatory information may not arise very often when

using goal-driven search control. Such conditions in fact rarely occurred in our test

domains | side e�ects were usually hidden when all preconditions were abstracted,

and the MEA knowledge (at this highest abstraction level) always caused operator

sequences of equal length to be suggested. At the highest abstraction level in the toh

and Robot Domain, one operator would be proposed for each goal conjunct. In the

ep domain, a goal conjunct could cause a sequence of operators to be proposed, but
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these sequences, based on the \Manhattan Distance" to the goal state, were always

of the same length as each other. Thus, for our tests, Spatula's basic abstraction

method alone was not useful.

In fact, the basic abstraction method alone gives results similar to those produced

by �rst-path search (in which the problem solver chooses randomly at an operator tie),

except that the system will have to repair or back out of mistakes at the execution

level rather than within lookahead search. Experiments which used earlier versions of

our test domains, though not presented here, con�rm this similarity. Thus, the �rst-

path results presented below provide information about the improvement in solution

quality when abstraction method increments are added to the basic method.

6.5 Results: Solution Quality and

Problem-Solving E�ciency with

Spatula's Method Increments

The assumption-counting method increment, described in Section 5.2, provides the

problem solver with a heuristic for estimating the relative di�culty of expanding its

abstract plans, and lets it incorporate this information into its decisions. Iterative

abstraction, described in Section 5.3, provides a heuristic for �nding a useful abstrac-

tion level, by iteratively increasing level of detail during search until the options of a

control decision are discriminable. In this section, we analyze the impact of these two

method increments on the experimental tasks, with respect to solution quality and

problem-solving e�ciency. Our experiments showed the method increments tended

to work together synergistically, each improving on the results that would have been

obtained by using one method increment alone. Together, they increased problem-

solving e�ciency while producing good (and at times optimal) solutions.

In the Robot Domain, results presented here are from runs which used the e�ciency-

driven method increments of Section 5.7 in addition to iterative abstraction and as-

sumption counting, to increase tractability of abstract search for the harder tasks.

With the goal achievement iteration method increment, the initial number of goal
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conjuncts to achieve was set to three (one less than the highest number of goal con-

juncts in the Robot Domain tasks tested). Section 7.4 presents a further set of tests

done to gauge the impact of these methods on the experimental tasks in all domains.

In the toh, results presented in this section are from tests which used the extended-

plan-use method increment of Section 5.6 in addition to iterative abstraction and

assumption counting. Section 7.3.3 will discuss the impact of the extended plan use

method in both the toh and Robot Domain. In addition, the toh results presented

here are from tests in which all iterative abstraction iterations were started at the

second iteration level | that is, for these abstract searches, at least one level of

preconditions was always required to be achieved. It was shown that in this domain,

the problem solver never will have enough information to make a decision at the �rst

iteration level (that is, it will always iterate). Thus, searching at the �rst iteration

level in the toh domain is a waste of e�ort. The issue of \tuning" the initial iteration

level was discussed in Section 5.5, and is further addressed in Chapter 9.

In this section, we will present the numerical results obtained from testing iterative

abstraction and assumption counting in our three domains, by analyzing solution

quality and problem-solving e�ciency. After presentation of the results for each

domain, the results will be interpreted and trends discussed. Then, in Section 7.2

of the next chapter, a qualitative analysis will be made of the types of abstractions

which were produced using these two method increments, and the situations in which

the methods were the most and least helpful for the domains tested.

6.5.1 The Eight Puzzle

The ep domain, while simple to describe, can be di�cult to search because of the

potentially large amount of interaction between placement of the tiles. In this domain,

Spatula proved useful as a means of tractably estimating useful search paths, while

avoiding the complexity of searches down bad paths.

Ten randomly generated tasks of solution length 10 were run in the ep domain.

For these tasks, once the problem solver had started on a good path, it was easy

for it to �nd a solution, given the domain's search control. However, a bad decision

at an early choice point tended to be hard for the problem solver to recover from;
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Figure 6.3: Eight-puzzle: comparison of search methods.

cascading interactions would move it further and further from a solution. Tasks which

took more than 4000 steps were cut o� and considered intractable. For this set of

tasks, it was uninformative to compare the quality of the solutions produced. All

solutions produced by runs in which the system managed to complete the task were

optimal or close to optimal. Therefore, task completion indicated good decisions at

choice points and thus high-quality solutions.

Figure 6.3 shows the percentage of tasks completed in this domain for each method

of search. Only 2 of the tasks were easy enough to allow non-abstract best-path so-

lutions. In contrast, 8 of 10 were solvable using abstraction. The �gure for the

percentage of non-abstract �rst-path tasks not completed is an estimate. The per-

centage of top-level choices which led to intractable paths was shown to be 50% over

all tasks. This �gure was obtained via a set of tests, one for each top-level operator-tie

option of each task, in which the problem-solver initiated problem-solving by selecting
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that option. Thus, it would be expected that from a pool of random �rst-path trials

with these tasks, about half would not be able to complete8.

The �gure also shows the average percentage of problem-solving steps required

to solve the tasks abstractly, with respect to the number of steps required for non-

abstract best-path search. Because un�nished tasks were cut o� at 4000 steps, the

calculated di�erence between abstract and best-path search is conservative and would

in reality be even greater. For those �rst-path searches which randomly chose good

paths and thus managed to complete, it is expected that the number of problem-

solving steps would have been relatively short compared to both other searches.

The results indicate that in the ep domain, decisions made by problem-solving

with iterative abstraction and assumption counting are of better-than-random quality.

Thus, the advantage gained from abstraction over both types of non-abstract search

in this domain was the ability to explore all search paths at a high level of detail

in order to pick a useful one, without becoming bogged down in those paths which

were not likely to be promising. In this domain, abstract search tended to be good

at �nding the easy solutions; if an operator had a good abstract evaluation, it was

usually on a good path.

Because the non-abstract problem-solving was largely intractable, most �nal statis-

tics from non-abstract search, including problem-solving time, were not available. The

available data are too sparse to be statistically signi�cant, but suggest that in the ep

domain, problem-solving time was reduced using abstraction for even the easier tasks.

Had statistics been available for the harder tasks, the di�erence would be expected

to be even more pronounced.

6.5.2 The Tower of Hanoi

In the toh domain, an interesting result was obtained: all solutions produced using

iterative abstraction and assumption counting were optimal. That is, using abstrac-

tion, the number of external moves made by the system was the minimum possible.

8Actual �rst-path searches were not performed in this domain, which was the earliest tested.
However, there is no technical reason that this could not be done. In fact, earlier experiments with
a slightly di�erent EP version produced the result that less than half of a set of �rst-path tasks
completed.
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The optimality of the solutions using abstraction was independent of the number of

disks in a task, or initial and goal disk con�gurations, and stemmed from the inter-

action between iterative abstraction and assumption counting | neither one alone

would have produced the optimal results. In addition, the abstraction method incre-

ments were created before this domain was tested, and thus the toh's characteristics

did not drive their development in any way.

The optimal strategy was a rather novel one, in which the system, at each choice

point, picked the easiest of the subgoals along the optimal solution path to achieve

next (rather than following the more common fully recursive strategy). This strategy

is an instantiation of Spatula's easiest-subgoals-�rst bias described in Section 5.8,

and is discussed further in the following chapter.

For the tests in this domain, 4 tasks each were run for the 3-disk and 4-disk

con�gurations, using both best-path and abstract search. For some runs, learned rules

caused looping in goal conjunct selection during �rst-path search, and this caused

di�culty (unrelated to abstraction issues) in collecting a large number of �rst-path

runs. Six instances of �rst-path search were averaged to provide the �rst-path solution
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quality data, and 4 of these runs were simulated by hand | using a random-number

generator to select moves at decision points | to provide a better estimate of an

average �rst-path solution. Figure 6.4 shows results for the 4-disk task. The �gure

shows that the optimal solutions produced by abstraction were signi�cantly better

than those generated by �rst-path search.

The �gure also shows that with abstract search requiring about 90% of the number

of steps of the non-abstract search, there is not a large e�ciency di�erence between

the two methods (though the di�erence is statistically signi�cant). In this formulation

of the toh domain, the operator subgoals were relatively shallow, and thus did not

provide Spatula with an opportunity to avoid a large amount of problem-solving.

As might be expected, the task with the deepest subgoals provided the largest savings

from abstraction. The e�ect of shallow subgoals was particularly noticeable for the 3-

disk tasks. Here, the di�erence between abstract and non-abstract search was minimal

because very few abstractions were made during search, and thus the 3-disk results

are not shown in the �gure.

Because of operator subgoaling loop detection provided to the domain, it was rel-

atively easy for the system to �nd a solution using �rst-path search, since | given

the shallow operator subgoals | mistakes were easily recovered from, though such

solutions were not very good. However, because of the above-mentioned di�culty

with looping, only sparse data was available on the number of problem-solving steps

for �rst-path search. Existing data suggests that the �rst-path searches take approx-

imately 10% of the steps of best-path search.

The toh �ve-disk tasks proved to be too hard for the system, both with non-

abstract best-path and with abstract search. This was because the combinatorics of

exploring all orderings of the �ve top-level goal conjuncts caused the problem-solver

to run out of memory before it was �nished. This illustrates the theoretical result

discussed in Section 5.9. See Section 7.5 in the next chapter for further discussion of

this issue9.

9This �ve-disk limitwas speci�c only to Soar| a lisp simulationwas able to solve larger problems.
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6.5.3 Robot Domain

In the Robot Domain, the solutions produced using abstraction were more variable

than those in the two other domains; this re
ected the increased variability of the

domain, operators, and preconditions. In addition, the experiments in this domain

provided an exploration of the problem-solving trends resulting from an increase of

both task and domain complexity. In this section, we group the results by number of

goal conjuncts in the task. Then in the following section, trends across sets of tasks

are examined.

In the solution quality �gures for this domain, \optimal" solutions are those that

were produced by the non-abstract best-path problem-solving method | that is,

they are optimal with respect to the other problem-solving biases of the domain.

(For any non-abstract problems which were intractable, the optimal solutions were

�gured by hand.) In the results cited below, all average di�erences between methods

are statistically signi�cant unless otherwise noted.

6.5.3.1 2-Goal-Conjunct Tasks

Figure 6.5 shows the results from the set of 2-goal-conjunct Robot Domain tasks

tested. The �gure shows relative solution quality, number of problem-solving steps,

and percentage of tasks completed. Data is shown for both the original and complex

room layouts of Figures 6.1 and 6.2. For this set of tasks, non-abstract best-path

runs which took more than 2600 steps were cut o�. Thus, the average numbers for

the non-abstract best-path method are lower than they would in actuality be.

Figure 6.5 shows that for both the original and complex room layouts, abstract

search produced better solutions than �rst-path search. In addition, as domain com-

plexity increased, the disparity in the abstract and �rst-path solution quality also

increased. This is a notable result, since the more complex layout would seem to

provide no additional advantage to abstract search; in the complex layout, the oppor-

tunities both to explore and choose longer paths are increased (though the optimal

solution paths remain the same as in the original layout). Thus, the complex layout

provided the iterative abstraction technique with more chances to miss an important
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Figure 6.5: 2-goal-conjunct tasks in Robot Domain: average solution quality, per-
centage of tasks completed, and average problem-solving steps. 19 tasks were tested
with the original layout. A subset of 14 of these tasks was tested with the complex
layout.
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interaction along a search path, by potentially halting iteration too soon at a spuri-

ous distinction, than did the original layout. Nevertheless, abstract search produced

a markedly smaller solution degradation than did �rst-path search, with abstract

solutions at 28% longer than optimal, and �rst-path solutions at 206% longer than

optimal. This means that the use of abstraction continued to allow the problem-solver

to make good decisions at choice points in the complex layout. In contrast, with �rst-

path search, the increased complexity of the domain made the problem-solver's less

informed choices more costly.

In terms of problem-solving steps, the di�erence between abstract and �rst-path

search with the original layout was not signi�cant; both took only a small percentage

of non-abstract best-path steps. In the complex domain, non-abstract best-path tasks

were not attempted (the non-abstract best-path searches would have had to explore

the largely intractable �rst-path searches as just one of their possible search paths).

However, the best-path searches would have been of greater di�culty than the best-

path non-abstract searches in the original room layout, since the subgoal depths were

greatly increased. In addition, they would have been of relatively greater di�culty

than the abstract searches, since | as discussed in Section 5.9 | the relative savings

achieved by abstraction increase as the subgoal di�culty increases.

The di�erence between number of abstract and �rst-path problem-solving steps

remained small with the complex layout. However, with the complex layout, only a

small percentage of the �rst-path searches were able to complete, as compared to all

but two of the abstract searches. The intractability of the �rst-path searches in the

complex domain was due to the long search paths and deep subgoals produced by

the random search. Because the abstract searches tended to produce better decisions

based on a shallower search, they did a better job of avoiding long search paths.

6.5.3.2 3-Goal-Conjunct Tasks

Figure 6.6 shows the results of tests run for 3-goal-conjunct tasks, again with both

the original and complex room layouts. For these tasks, the non-abstract best-path

method was (almost entirely) intractable; thus the optimal solutions are �gured by

hand, and thus there is no data shown on number of best-path problem-solving steps.
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Figure 6.6: 3-goal-conjunct tasks in Robot Domain: average solution quality, per-
centage of tasks completed, and average problem-solving steps. 18 tasks were tested
with the original layout. A subset of 9 of these tasks was tested with the complex
layout.

However, had they �nished, the di�erence in number of problem-solving steps between

best-path and the other two search methods tested would have been greater than that

observed for the 2-goal-conjunct tasks.

For the 3-goal-conjunct tasks solved with the original room layout, the abstract

solutions were again much better than the �rst-path solutions. For these original-

layout tasks, abstract problem-solving required a larger number of steps than did

the �rst-path search. The di�erence stems from the abstract search to order the

task goal conjuncts, a cost not incurred by the �rst-path search (which just selects

goal conjuncts at random until the task is solved). Section 7.5, in the next chapter,

discusses this issue further. To allow comparison between abstract and �rst-path

search, we give the di�erence between abstract and �rst-path problem-solving steps

as a percent of abstract steps required.

Of the 3-goal-conjunct tasks tested in the complex room layout, only 1 of the

�rst-path searches �nished without running out of memory. Again, the intractability
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of the �rst-path searches in the complex domain was due to the long search paths

and deep subgoals produced by the random search, and the 3-goal �rst-path searches

showed increased intractability with respect to their analogs in the 2-goal-conjunct

complex domain tests. The more goals in a task, the greater the opportunities to

choose a search path which is globally intractable.

In contrast to the �rst-path searches, the percentage of uncompleted abstract

searches did not increase with the complex layout. This means that abstract search

continued to do well at avoiding hard search paths.

Because of the intractability of the �rst-path search in the complex layout, it

was not possible to compare complex-layout solution quality of the two methods.

However, observation during problem solving suggested that as with the 2-goal tasks,

the solution quality of the complex-layout �rst-path searches was again much worse

than with the original layout. In contrast, the complex-layout abstract solutions

increased in length by only a small amount.

6.5.3.3 4-Goal-Conjunct Tasks

Figure 6.7 shows the results for the set of 4-goal-conjunct tasks solved with the original

room layout10. Again, the use of abstraction produced better solutions than the use

of �rst-path search. In addition, for this group, more of the abstract tasks are able to

complete than the �rst-path tasks. The relative di�erence in solution quality produced

by abstract and �rst-path search has decreased compared to that seen in the easier

sets of tasks. However, examination of the 4-goal tasks suggested that the drop was

spurious, and caused by the intractability of the randomly worse solutions. That is,

only the easier 4-goal �rst-path tasks �nished | those which randomly picked good

solution paths. Inspection of those 4-goal �rst-path tasks which did not �nish, and

projection of the solutions they would have produced, suggests that the un�nished

solutions would have produced a higher average solution length.

For the 4-goal tasks, there is a larger disparity than in the easier tasks between

the number of problem-solving steps required for the abstract and �rst-path searches

10The complex room layout was not tested with the 4-goal-conjunct tasks; this remains for future
tests.
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Figure 6.7: 4-goal-conjunct tasks in Robot Domain: average solution quality, per-
centage of tasks completed, and average problem-solving steps. 12 tasks were tested
with the original layout. Evidence suggests that the relatively smaller di�erence in
solution quality (as compared to the easier sets of tasks) is spurious, and caused by
the increasing intractability of the solutions generated by the �rst-path searches (only
the solutions from the tractable searches are recorded).

| again because of the increased goal ordering work done by the abstract searches.

However, many more of the abstract searches, as compared to the �rst-path tasks,

are able to complete at all. As before, this suggests that the larger number of goal

conjuncts provide a larger opportunity for the �rst-path search to take di�cult and

unproductive paths, whereas the decisions made during abstract search | though

they take longer to generate | lead to better paths.

6.5.4 Discussion

The toh domain, because of its shallow subgoals, did not prove to be a good domain

for producing large e�ciency savings with Spatula. However, it is an interesting
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domain in that the solutions produced with Spatula are optimal, though the devel-

opment of the abstraction techniques had not been driven in any way by the toh.

In the ep and the robot domain, the subgoals are deeper. Here, the use of Spat-

ula allows search that is signi�cantly more e�cient than best-path, while producing

solutions that are signi�cantly better than the solutions produced with �rst-path

search. In the Robot Domain, the solutions produced using abstraction were more

variable than those in the two other domains; this re
ected the increased variability of

the domain, operators, and preconditions. Several additional trends may be observed

from these results.

6.5.4.1 Trends in Abstraction Across Increasing Numbers of Goal Con-

juncts

Figure 6.8 summarizes the trends seen in the Robot Domain tasks across increasing

number of goal conjuncts with the original room layout. As the number of task

goal conjuncts increases, several e�ects are seen. The solutions produced by the

abstract search degrade slightly as more goal conjuncts are added; the greater the

task complexity, the greater the opportunity to make mistakes. (Exceptions are

domains such as the toh, where abstraction produces optimal orderings for any

number of disks). The abstract solutions remain signi�cantly better than the �rst-

path solutions, though the 4-goal-conjunct tasks show a relative reduction in the

di�erence. As discussed above, we believe this e�ect is due to the fact that a relatively

smaller percentage of 4-goal �rst-path searches were able to complete { those in which

shorter search paths (and thus better solutions) were generated.

The di�erence between the number of problem-solving steps required to solve a

task abstractly and with �rst-path search increases as the number of goal conjuncts

increases. This increase is due to the increased necessity of constructing an ordering

for the goal conjuncts. The �rst-path searches do not carry out any goal ordering

activity, and thus avoid this dimension of complexity.

First-path and abstract search both show increased intractability as the number of

goal conjuncts increase, but for di�erent reasons. With abstract search, as predicted

in Section 5.9, as the number of goal conjuncts increases, a point is reached at which
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Figure 6.8: Summary of trends across increasing numbers of goal conjuncts in the
Robot Domain, with the original room layout. Evidence suggests that the relatively
smaller di�erence in solution quality for the 4-goal tasks is spurious, and caused by
the increasing intractability of the solutions generated by the �rst-path searches (only
the solutions from the tractable searches are recorded).
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the increased e�ort required to order the conjuncts becomes prohibitive. The par-

ticular point at which this occurs is domain- and implementation-dependent. (Note,

however, that non-abstract best-path search reaches this point much earlier than the

abstract search; only the 2-goal-conjunct Robot Domain tasks were tractable with

non-abstract best-path search). The results show that while Spatula can greatly

increase problem-solving tractability while producing good solutions, it can not do

so inde�nitely, as the number of goal conjuncts becomes larger, without the use of

additional problem-solving knowledge about how to decompose the conjunct ordering

process. See Section 7.5 in the following chapter for further discussion of these issues.

The �rst-path search also shows increased intractability as the number of goal

conjuncts in a task increases, but for a di�erent reason. With �rst-path search,

the more complex the task, the greater the chance for the system to make mistakes

and explore paths that are hard to recover from. Thus, with the 4-goal-conjunct

tasks, the abstract searches require more problem-solving steps than the �rst-path

searches which �nished, but the superior solutions produced with abstraction allow

more abstract searches to �nish.

6.5.4.2 Trends in Abstraction Across Increasing Domain Complexity

The experimental results demonstrated that the more complex the operator-subgoaling

search, the more e�cient abstraction is with respect to non-abstract best-path search.

This was observed by comparing the toh with the Robot Domain and ep. The Robot

Domain and ep, with harder subgoals, demonstrated a much better comparative sav-

ings in number of steps than the toh, in which the operator subgoals were shallow

and did not provide Spatula with the opportunity to abstract away large portions

of the search space.

The two Robot Domain layouts also provide a comparison of domain complexity.

Figure 6.9 shows task results across the two layouts. In the more complex domain,

both abstract and �rst-path solution quality is worse than in the original domain;

this is not surprising since the complex layout a�ords a greater opportunity for costly

mistakes. However, the solution degradation is much more marked for the �rst-path

searches than for the abstract searches, even though the complex layout provides
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relatively greater opportunities for Spatula to make mistakes, as compared to the

original layout. This suggests that the use of abstraction continued to produce good

decisions in the complex domain. With �rst-path search, more mistakes were made

in both domains, and the cost of these mistakes | with respect to solution quality

| increased with the complexity of the domain.

The �gure also shows that the more complex the operator subgoaling in a domain,

and the greater the interactions between subgoals, the more tractably abstraction

performs when compared to �rst-path search. If search is complex, then mistakes

have also greater consequences with respect to problem-solving e�ciency than they

would in a less di�cult domain { they lead to a greater chance of the problem solver

becoming bogged down in complex subgoals that cause unwanted interactions or are

hard to achieve. Thus, as the cost of repairing random mistakes increases, the relative

cost of a �rst-path solution can be expected to increase as well. This was borne out in

the �rst-path results for both the ep as well as the complex Robot Domain, in which

many of the potential search paths led to intractability. In contrast, the abstract
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search in these domains remained signi�cantly more tractable.

Thus, the experiments suggest an important result: the harder the domain with

respect to the penalties paid (both in repair time and solution quality) for mistakes,

the larger the payo�| in solution quality as well as e�ciency | to be obtained by

tractably �nding a good plan. The use of Spatula was shown to be one way to allow

a good solution to be more tractably produced.

6.6 Abstract Plan Utility

Learning plays an important part in the abstraction process. The previous section

discussed solution quality and problem-solving time when using Spatula (with learn-

ing), but did not examine the type of abstract rules learned, or when they were used.

Here, we examine the interaction of learning and abstraction. There are several as-

pects of problem-solving to consider in the evaluation of learned abstract plans:

� The cost of building the abstract plans.

� The generalizations produced by abstraction.

� The amount of transfer of the plans, both within the same task and to other

tasks in the domain, and their subsequent impact upon solution quality and

problem-solving e�ciency.

All of the considerations above must be combined to give a global picture of plan

utility, since for example, it is possible for an initial expense in learning plans to be

amortized over subsequent tasks.

6.6.1 Expense of Building Abstract Rules

The expense of building new rules can be gauged both by the percent of problem-

solving time spent building rules and the number of rules built; and by the cost of

building a single rule.

It is not necessarily informative to compare the abstract and �rst-path searches'

rule-building expense, since the coverage provided by the two sets of learned rules
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is di�erent. Abstraction provides a wide but shallow coverage, and generates rules

which compare many options at a high level of abstraction. First-path search provides

a deep and narrow coverage, and generates rules which learned in detail about one

particular path, but which do not provide information about other parts of the search

space. However, the average learning overhead and cost per rule was in fact less for

abstraction than for �rst-path search throughout the Robot Domain tasks.

Non-abstract best-path search produces the same type of coverage of learned rules

as does the abstract search, in that both sets of learned rules cover comparison of

options at a control decision. Therefore, the percent of problem-solving time spent

learning rules, as well as the average time to build a rule, are comparable across

these two methods. These data were available for the toh domain, and the 2-goal-

conjunct tasks in the Robot Domain (as discussed above, the non-abstract searches

were intractable for the harder Robot Domain tasks).
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Figure 6.10 summarizes the results for both domains, by showing the average dif-

ference between non-abstract and abstract learning, as the percentage of non-abstract

expense. In both cases, the average percentage of problem-solving time spent learning

was less for the abstract than non-abstract search. Both di�erences were statistically

signi�cant, but the di�erence was less in the toh than in the Robot Domain. The av-

erage di�erence in time to build a rule, as well as the number of rules, was signi�cantly

less in the Robot Domain, but not in the toh.

Thus, as with other experimental results discussed above, the di�erence between

rule-building expense for non-abstract best-path search vs. abstract search increases

as the complexity of subgoal search in the domain increases. We expect that had

non-abstract best-path data been available for the 3- and 4-goal-conjunct tasks in the

Robot Domain, the di�erence would have continued to increase for these tasks.

6.6.2 Plan Transfer

Because abstract rules are more general, they have the potential to apply in a wider

range of situations than their non-abstract counterparts. An example comparing

the generality of an abstract and non-abstract rule was given in Section 4.3.1. The

abstract rules' greater generality over the non-abstract rules may not necessarily

be bene�cial to problem-solving. Thus, an analysis of the utility of abstract rules

includes a consideration of the extent to which rules learned from solving one task

or situation in a domain transfer to other tasks or situations in the domain, and the

impact that the transfer rules have on solution quality and problem-solving e�ciency.

A comparison of these measurements across methods indicates the relative utility of

abstract and non-abstract plans.

In this section, plan transfer experiments | done to assess the relative impact

of abstract rules both within the same task and across tasks | are presented and

discussed. The results suggest that in domains with variability in the situations and

operators (i.e., in domains in which the tasks are not very similar and there are more

than just a few instantiated operators), abstract rules transfer with greater utility

than the non-abstract.
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6.6.2.1 Within-Task Plan Transfer

As discussed previously, it was taken as given that Soar should learn while it problem-

solved; therefore, there was no extensive comparison done between tasks run with and

without learning. However, to observe the impact of within-task transfer of abstract

rules on solution quality, we ran tests of Spatula for a set of 6 3-goal-conjunct tasks

in the Robot Domain with learning turned o�. For these tasks, there was a only

a small di�erence in the solution of one of the tasks, producing an average percent

solution di�erence of .7% (not statistically signi�cant) as compared to the solutions

produced with learning. However, the tasks using Spatula without learning took

many more steps to complete, with an average 40% increase in problem-solving steps

over the tasks using Spatula with learning.

These experiments suggest that in the Robot Domain, there was very little over-

general within-task transfer of abstract plans. That is, the abstract rules did not

cause signi�cant overgeneral transfer within the same task to situations for which

they were not learned, since there was only minimal degradation of the solutions

which were produced by using abstraction without learning. In the toh, of course,

such tests would provide no information about overgeneral transfer, since all solutions

are already optimal.

6.6.2.2 Across-Task Plan Transfer

Experiments were also performed to test abstract plan transfer from one task to

another. Across-task plan transfer was tested in the 2-goal-conjunct set of tasks from

the Robot Domain, and in the toh. (In the toh, as with previous tests, the extended-

plan-use method increment was utilized; its use is further discussed in Section 7.3.3).

The purpose of these tests was both to compare the amount of transfer occurring

in abstract and non-abstract search, and to observe the impact of the transfer upon

solution quality and problem-solving e�ciency. The transfer tests were made with

rules produced from both the abstract and non-abstract best-path problem-solving

methods. For purposes of comparison, we were restricted to testing tasks for which the

non-abstract method was able to �nish. In these tests, transfer of abstract plans was
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tested on tasks run with abstraction, and transfer of non-abstract plans was tested

on tasks run without abstraction11. Although the absolute change in problem-solving

steps, etc., is not directly comparable across methods, a comparison was done of the

e�ects of transfer on the tasks relative to their performance without the additional

plans.

Two opposing factors can contribute to the transfer results. The non-abstract

best-path plans, since they are more detailed, can provide information about a greater

number of previously-encountered situations. This means that in new, relevantly

similar situations, less search may be necessary when using the non-abstract plan as

compared to the abstract. However, the abstract plans are more general than their

non-abstract counterparts. Therefore, they may transfer to new situations where the

non-abstract plans would not. Thus, the relative utility of abstract and non-abstract

plan transfer depends upon the similarity of the new tasks to previous ones, as well

as the level of generality of the abstract plans.

In the tests described here, we used a \batch" approach to testing transfer, in

which, for each test of transfer, rules from the other tasks in the set of transfer

experiments were provided together to the problem-solver when the test task was

run. For example, in the toh, Task 1 was run with rules from tasks 2,3, and 4 loaded

in, Task 2 was run with rules from tasks 1,3, and 4 loaded in, etc. In the Robot

Domain, a randomly selected set of 8 2-goal-conjunct tasks was tested; thus, for each

of the tasks, plans from the other 7 tasks were used. As a topic for future work, it

would also be informative to examine the interactions which occur when rules are

accumulated incrementally.

Tower of Hanoi. For the toh, the task solutions remained optimal when using

both abstract and non-abstract rules from other tasks. This is an interesting result

with respect to the learned abstract rules, since it means that the optimal abstract

11Abstract and �rst-path rule transfer were not compared, since the type of rule coverage is not
the same. In addition, it did not make sense to test abstract rules with tasks run non-abstractly,
or vice versa. If non-abstract rules are used during abstract problem-solving, they may not transfer
to abstract states (since the abstract states may contain inconsistent or missing information). If
abstract rules are used with non-abstract problem-solving, then the abstract rules will only transfer
in the top-level execution space (since lookahead search will not be abstract).
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Figure 6.11: Summary of plan transfer results in the Tower of Hanoi.

strategy learned for one task is equally accurate for tasks using the same number of

disks.

However, in the toh domain, there was not much di�erence between transfer

e�ects for abstract and non-abstract plans. Figure 6.11 shows the average di�erence

in number of problem-solving steps between tasks run with and without the rules

from other tasks. Here, both abstract and non-abstract transfer rules provided a

signi�cant savings. The di�erence between abstract and non-abstract problem steps

using the additional rules (shown as a percentage of non-abstract steps) was not

statistically signi�cant (though abstract search took slightly fewer steps). The reason

for this is that in the toh, the tasks are all very similar to each other; though

they have di�erent initial states, they all have the same goal, and tend to share the

same subgoals. With these characteristics, non-abstract subplans learned during one

task were often applicable to another. Thus, the more comprehensive plan coverage

provided by the non-abstract plans | containing a larger total number of rules |
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paid o� on average.

Robot Domain. In contrast to the toh, in the Robot Domain the abstract plans

transferred to a much greater extent than did the non-abstract plans. In the Robot

Domain, there was more task variability than in the toh | the task goals were

di�erent, and it was not as likely that one task had a great deal in common with

another. Here, the non-abstract plans proved too task-speci�c to provide more than

minimal transfer.

Figure 6.12 summarizes the result of the transfer tests on solution quality and

problem-solving steps in the Robot Domain. The comparisons are shown as percent-

age di�erence from the results obtained without using the additional rules. Of the

8 non-abstract tasks tested, transfer of other non-abstract plans impacted only one.
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Overall, the number of problem-solving steps decreased by an average of only 2%,

with no change in solution length. For the other non-abstract tasks, there was no

impact on the number of problem-solving steps or on solutions. The non-abstract

rule from the example in Section 4.3 illustrates the reasons for the minimal transfer

| the rules were too speci�c to apply in situations in which, e.g., room connectivity

was slightly di�erent.

In contrast, the abstract plans were general enough to provide signi�cant rule

transfer from one task to another, while using fewer total rules, for an average decrease

of 21% in problem-solving steps. It is interesting to note that though the abstract

plans produced a signi�cant average decrease in problem-solving steps, two tasks

required more steps using the additional rules than did the original tasks. In one case,

the increase was caused by the occurrence of an operator con
ict (from con
icting

search control), which then required additional problem-solving to resolve. In the

other case, the additional plans led the problem-solver down a di�erent solution path

than in the original task, one which required more problem solving.

In the abstract transfer tests, the solution quality degraded in only one of the

tasks, as compared to the solution quality without the use of the additional plans.

The di�erence was not statistically signi�cant. The solution degradation occurred in

one of the same tasks which took longer to solve using the additional plans. For this

task, transfer was overgeneral | the di�erent path suggested by the additional plans

turned out to be worse.

6.6.2.3 Discussion

The transfer test results suggest that unless a domain's tasks are very similar, much

more e�ective transfer will occur with abstract than non-abstract plans. In addition,

they suggest that the solutions generated using abstract plan transfer will be of good

quality and require fewer problem-solving steps than the tasks without the additional

plans.
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6.7 Summary

Iterative abstraction and assumption counting proved useful in all domains tested.

In all domains, Spatula produced good solutions, signi�cantly better than those

produced by �rst-path search | in the toh, the solutions were in fact always optimal.

The use of Spatula signi�cantly reduced problem-solving time over that required

to �nd an optimal solution. The relative e�ciency advantages of abstraction over

best-path non-abstract search increased as the complexity of the operator subgoaling

required in the domain increased. The experiments also suggested that the weaker

the previously existing domain search control, the greater the relative payo� in search

reduction obtained from abstraction.

When compared with �rst-path search, the results showed that in domains where

little search was required to �nd some solution, �rst-path search produced solutions

more e�ciently (though the solutions were not as good). However, in domains for

which there was a signi�cant amount of search, and in which it was more di�cult to

recover from a bad search path, abstraction performed better both in terms of e�-

ciency and solution quality. It remained tractable when �rst-path search did not; and

the abstract solutions deteriorated much less sharply than did those of the �rst-path

tasks which did manage to complete. These results suggest that as the complexity

of a domain or task increases, the payo� provided by searching for a good solution

(rather than any solution) increases as well. Abstraction provides one method to

increase the tractability of this search for a good solution. This general e�ect has

been observed elsewhere as well [Knoblock, 1991].

The use of Spatula produced rules which were easier to learn than non-abstract

rules, and transferred to a wider range of situations than their non-abstract coun-

terparts while continuing to produce good solutions. (Although the large amount of

recursive similarity in the toh produced good plan transfer both with and without

abstraction, this was not the case in the Robot Domain, with greater variability in

both tasks and subgoals.)

In the next chapter, we continue discussion of the experimental results.



Chapter 7

Further Experimental Results

7.1 Introduction

Chapter 6 described the results relevant to the goals stated in the development of

the abstraction method. In this chapter, we describe the unexpected results of the

experiments, both bene�cial and problematic. A section is devoted to each of the

following topics:

� A qualitative analysis of iterative abstraction and assumption counting, includ-

ing the synergistic interaction between the two method increments. The novel

problem-solving strategy produced in the toh domain, as a result of this inter-

action, is discussed.

� Frequency of abstract rule use. Because the abstract rules are more general,

more can �re per step than non-abstract, and this can cause a problem-solving

slowdown.

� Detection of rule overgenerality. In our experiments, the wider the range of

previously-learned abstract plans available, the greater the detection of plan

overgenerality via the generation and resolution of plan con
icts.

� The extended-plan-use method increment. Results for the method increment

are discussed, including results for two variations, and issues with its current

212
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implementation.

� The e�ciency-driven method increments. Results are discussed; the utility of

these method increments proved to be domain-dependent.

� The relationship between goal ordering issues and the method increments.

We discuss each topic in turn, then summarize.

7.2 Qualitative Analysis: Iterative Abstraction

and Assumption Counting

The numerical analyses in the previous chapter described only part of the impact

of abstraction in the test domains. It is also informative to examine the observed

qualitative e�ects of iterative abstraction and assumption counting in each domain.

In all domains, assumption counting improved the e�ciency of iterative abstrac-

tion, by providing additional information which enabled the problem solver to make

a decision in fewer iterations than would otherwise have been possible. In addition,

it at times improved the quality of the decisions that would have been made using

iterative abstraction alone.

Conversely, iterative abstraction provided the problem solver with additional in-

formation about a decision when assumption counting alone was not su�cient to

discriminate among the options. As discussed in Section 5.3, the iteration process

also let the problem solver discover, for each iteration level, any preconditions which

were critical (in the ABStrips sense) at the previous level | that is, any precondi-

tions for which no method of achievement could be found. Thus, the two method

increments proved to interact helpfully with each other, improving the performance

which would have been obtained with either alone.

7.2.1 The Eight Puzzle

In the ep domain, search can be di�cult due to the interaction of the tiles. However,

the domain representation itself is simple, with one operator. This means that for
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abstraction methods such as [Knoblock, 1991] (see Chapter 8), which create abstract

spaces based on the interactions between operators, this domain does not produce any

abstractions. In contrast, abstractions produced by Spatula's method increments

proved useful in this domain.

Assumption counting proved to be so e�ective that, of the 10 tasks tested, using

both assumption counting and iterative abstraction, the problem solver only iterated

on abstraction level for one task. For all other tasks, the use of assumption counting

was su�cient to allow the system to distinguish between its options at the highest

level of abstraction (that is, with all preconditions abstracted away).

The reason for this e�ectiveness stemmed from characteristics of the Eight-Puzzle

tasks and domain. Recall that the problem representation was such that an operator

was generated for each movement of a tile to an adjacent square, with the precondition

that the adjacent square be clear. Given this representation, it was often possible to

�nd some solution to the tasks for which very few such preconditions were unmet

(i.e., for which very little operator subgoaling was necessary). That is, if the moves

were ordered properly, then tiles could be moved incrementally along the x and y

directions towards their goal locations without much need to move other tiles out of

the way �rst1. Therefore, there was usually one abstract plan with just one or two

assumptions, and this would be preferred over the others. In all but one of the tasks

tested, choosing such a path resulted in a good solution.

It is worth noting that the search control used by the ep, in which operators with

no unmet preconditions are preferred (or even a variant in which the operator with

the fewest unmet preconditions is preferred), would not have been useful in the other

two domains tested. In general, more useful information is provided by �nding the

search path with the fewest total assumptions, since this provides information about

interactions between goal conjuncts. Thus, such search knowledge as used by the ep

is only useful if there tend to be paths with very few total assumptions. Otherwise,

a \horizon e�ect" will tend to occur.

The use of iterative abstraction alone (without assumption counting) was tested

1This domain characteristic may have been due partly to the relative shortness of the tasks, which
had optimal paths of ten moves long.
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in the ep domain as well2. Iterative abstraction alone also proved e�ective in the

ep domain. The reason for its e�ectiveness was again the fact that it tended to be

possible to construct some solution path which used very little operator subgoaling.

At the �rst iteration level of abstract search in the EP, the number of steps required to

reach the goal was always the same for each path considered. With further iterations

(as further e�ects of clearing destination squares were calculated), some paths would

require more steps than others to reach the goal. When the problem solver found an

iteration level where there was a di�erence in the number of steps, there tended to be

an actual (ground-level) di�erence between the choices as well. This is because after

some small amount of subgoaling, the solutions for the good choices tended to fall

into place with no more subgoaling necessary, whereas the bad paths tended to cause

more and more displacement at each iteration, and thus longer paths. The example

of Figure 5.3.2.1 illustrated this e�ect.

7.2.2 Tower of Hanoi and Robot Domain

In the toh and the Robot Domain, neither assumption counting nor iterative ab-

straction by itself was su�cient to make abstraction as useful as if the two method

increments were combined. This is because these domains were represented such that

ground-level solutions could not be reached without some amount of operator sub-

goaling. Thus, in these domains, assumption counting by itself was rarely su�cient to

provide much discrimination among control decision options{ all search paths at the

most abstract level tended to make about the same number of assumptions. However,

used in conjunction with iterative abstraction, the problem solver was able to iterate

until its searches were at a level of detail such that assumption counting was useful.

Conversely, the use of assumption counting with iterative abstraction allowed

the problem solver to make decisions at an earlier abstraction iteration than the

problem solver would otherwise have required to distinguish between its options, thus

increasing the e�ciency of iterative abstraction. In addition, assumption counting at

times allowed the problem solver to improve on the decisions that would have been

2These tests used an earlier version of Soar as well as a slightly di�erent version of the domain
and search control, and thus are not directly comparable with the other EP results discussed here.
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made using iterative abstraction alone, since a path with a shorter number of abstract

steps (i.e., with a better domain evaluation) is not necessarily the easiest path. Thus,

the two method increments worked synergistically together. Below, we discuss their

e�ects in each domain in turn.

7.2.2.1 Tower of Hanoi

The toh domain was represented in our tests using one \move-disk" operator, which

was instantiated with a particular disk and peg as appropriate. Using this represen-

tation, Spatula produces abstractions which generate optimal solutions | that is,

the use of abstraction in the toh domain allowed the problem solver to reach the

goal state without any false moves.

The synergistic e�ect of iterative abstraction and assumption counting on solution

quality was most marked in the toh domain. In this domain, the use of assumption

counting by itself did not produce any discrimination of options, and thus choices

would be as random as if assumption counting had not been used at all. Iterative

abstraction alone produced discrimination of options (at the second abstraction it-

eration), but caused the problem solver to make the wrong choices (since shorter

abstraction solutions were not in actuality easier to expand) and to produce a non-

optimal solution.

Using both assumption counting and iterative abstraction, the problem solver was

able to �nd optimal solutions. The use of both method increments, and the lexical

ordering of the evaluation function | which placed assumption counting over domain

evaluations | proved crucial to this result. In addition, tests were run in the toh

domain after the method increments were developed; the toh did not drive their

development in any way).

The optimal strategy produced for the toh is rather novel, and stems from one of

Spatula's problem-solving biases described in Section 5.8 | easier subgoals appear

preferable to work on �rst, all else being equal. With this bias, the problem solver,

rather than adopting a more common completely recursive approach to setting sub-

goals, selects the easiest of the subgoals along its optimal solution path.

This strategy is illustrated in Figure 7.1 for the canonical 4-disk task (the task with
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. . . 

. . . 
Create subgoal: disk 2 on peg 3

Create subgoal: disk 4 on peg 3

. . . 

. . . 

Create subgoal: disk 1 on peg 3

Create subgoal: disk 3 on peg 3

Figure 7.1: Easiest-subgoal-�rst strategy employed with Spatula in the toh.



218 CHAPTER 7. FURTHER EXPERIMENTAL RESULTS

the initial state of all disks on the �rst peg, as shown at the top of the �gure and a goal

to place all disks on peg 3). The �gure shows the �rst part of the series of task subgoals

generated by the problem-solver when using Spatula. (In the �gure, intermediate

lower-level subgoals are omitted). The system �rst chooses a task subgoal of moving

disk 2 to the goal peg. (Its abstract evaluations have lead it to prefer disk 2 over disk

1). After that subgoal is accomplished, the system chooses the goal of moving disk 4.

With disk 4 in place, it next chooses to move disk 1 to peg 3, then disk 3, and so on.

This strategy is employed by the system because of Spatula's easiest-subgoals-�rst

bias.

In contrast, a fully recursive approach would chose an initial task subgoal of

moving disk 4 to the goal peg, and when that was completed, a task subgoal to move

disk 3 to peg 3. In the process of moving disk 4 from the initial state, an optimal

set of moves requires an intermediate state in which disk 2 is placed on the goal peg

as shown in the �gure. (Note that an initial goal to move disk 1 or 3 to the goal

peg would not be on the optimal path). Similarly, once disk 4 is on the goal peg, an

optimal set of moves for the goal to move disk 3 to peg 3 requires an intermediate state

in which disk 1 is placed on the goal peg. However, the fully recursive strategy di�ers

from Spatula's in that with the fully recursive strategy, these intermediate moves

are not explicitly cast as top-level task goals. Using Spatula, the system constructs

a strategy in which the top-level task subgoals are on average simpler than those

generated using the fully recursive approach, yet the solution path is still optimal.

In the toh, the task solutions also remained optimal when using abstract rules

from other tasks. This is an equally important result with respect to abstract plan

use, since it means that the abstract strategy learned for one task is equally accurate

for other tasks using the same number of disks. Thus, the abstract plans produced

using Spatula for the toh domain had no overgenerality.

Although the combination of the two method increments produced solutions of

optimal quality in the toh, the method was not relatively e�cient | that is, it did

not require fewer steps than solving the problem non-abstractly | unless the iterative

abstraction began its abstract searches at the second iteration level by always solving

for one level of preconditions rather than initially ignoring all unmet preconditions.
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This occurred because the toh domain and search control knowledge is such that the

search depth for operator subgoaling is not very deep, and thus the abstract searches

were not that much shallower than the non-abstract ones. In this domain, because

the highest level of abstraction provided no discrimination among control decision

options, the overhead of the iteration process made the two abstract searches (at

successive abstraction levels) more expensive together than one non-abstract search3.

7.2.2.2 Robot Domain

In the Robot Domain, abstraction used with iterative abstraction and assumption

counting generated good (sometimes optimal) solutions, while providing a more sig-

ni�cant e�ciency gain with respect to the non-abstract search than seen in the toh

domain{ the search to achieve a subgoal could potentially get much deeper in the

Robot Domain, and thus the relative savings were increased as well. Using assump-

tion counting and iterative abstraction, the problem solver was usually able to make

decisions at a relatively high level of abstraction (that is, after just a few iterations).

In this domain (as with the toh domain), the use of either assumption count-

ing or iterative abstraction alone would not have produced results as useful as those

produced by combining the methods. Assumption counting by itself rarely enabled

su�cient discrimination to make useful choices among the options. Iterative abstrac-

tion provided the necessary detail, and allowed discovery of critical preconditions.

Conversely, experiments with a subset of the tasks indicated that the use of iterative

abstraction alone required more problem-solving steps to generate a solution (since

without assumption counting, many more iterations were required to make a decision

and/or there were more options per iteration), and were not always as good. The

example of Section 5.4 illustrated the way in which iterative abstraction and assump-

tion counting worked synergistically in this domain; the task in the example was one

of the 4-goal-conjunct tasks used in the empirical tests.

Although the method incrementsworked well in the Robot Domain, more mistakes

3The analysis of Section 5.9 shows that in general, abstract searches should be cheaper than
non-abstract regardless of the number of iterations required. However, analogously to iterative
deepening, this not true for a very small number of assumptions.
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| with respect to non-optimal solution paths | were made with abstraction in this

domain than in the other two. The experiments in the di�erent domains suggest

that the greater the variability in the domain operators, the greater the improvement

in solution quality produced by being more conservative in the interpretation of the

information provided by the method increments. For example, in the Robot Domain,

the meta-evaluation function (which combined the assumption count with the domain

evaluation) and the iteration halting conditions were probably too simplistic. A large

subset of the problem-solver's mistakes could have been avoided if it had not chosen

one option over another on the basis of just one assumption, but rather had taken

a more conservative approach, and required a di�erence of either more than one

assumption, or a di�erence in domain evaluation as well as number of assumptions.

The impact that such changes would have had on problem-solving time is not obvious;

although they would cause more work during abstract planning, this might have been

compensated by increased ease of solution re�nement, particularly with the complex

room layout. The problem-solving impact of tuning the method increment parameters

is an important area for future work, and may drive the development of e�ective

but less sensitive domain-independent method increment parameters. Section 5.5

discussed this issue, and other possibilities will be further explored in Chapter 9.

7.3 Learning and Plan Utility

In Chapter 6, we showed that in our experimental domains, abstract plans were

learned more easily, and | except in domains of great regularity | produced better

transfer to new situations while continuing to generate useful solutions. In this sec-

tion, we discuss some of the other issues that arose, both bene�cial and problematic,

in the use of abstract plans.

7.3.1 The Generality of Abstract Plans and Problem-Solving

Time
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Robot Domain (i.e., abstract��rst-pathabstract ).
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Because learned abstract plans are more general than non-abstract plans, they tend

to match in more situations and �re more often. In our experiments, this was partic-

ularly the case when compared to rules learned during non-abstract �rst-path search,

since the �rst-path rules are learned for just one search path rather than many, and

thus are less likely to be applicable in new situations. As a result of the larger

number of average rule-�rings per step in abstract search, the abstract search could

require more time per step than the �rst-path. As the number of goal conjuncts

increased, the average relative di�erence in time per step increased as well. This is

because an increased number of goal conjuncts provide an increased opportunity for

the application of comparative search control rules. Figure 7.2 shows average relative

di�erence in time to solve abstract and �rst-path tasks. Compare this �gure with

the last set of columns in Figure 6.8, which shows relative di�erences between task

problem-solving steps. For the 3- and 4-goal-conjunct tasks, the percent di�erence in

task time between the two methods is slightly larger than the di�erence in task steps

(thus indicating that time per abstract step is slightly greater as well); and as shown

by the two �gures, the disparity increases with number of goal conjuncts.

However, run statistics on tokens per rule, given in Appendix E, showed that

the abstract rules were not more expensive to match on a per-rule basis. Thus, the

slow-down may be primarily an implementation-speci�c plan utility issue. With a

distributed implementation of Soar, in which each applicable rule was �red in parallel,

we would expect this problem to be alleviated, as long as the number of rules �red

at each elaboration was bounded. This is an area for further investigation. Note that

the issue is not speci�c to the rules produced by Spatula, but pertains to any rules

of increased generality, regardless of origin.

7.3.2 Plan Transfer: Detection and Correction of

Overgeneral Plans

As described in Section 6.6.2, the plan transfer experiments showed that abstract

plans from previously-encountered tasks allowed signi�cantly more transfer than the

non-abstract plans (unless the tasks were very similar to one another), with only small
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degradation in solution quality over that which would have been produced without

the additional plans.

Examination of the transfer runs determined that the good solution quality was

due in part to an interesting interaction between the di�erent abstract plans, which

curtailed their potential overgenerality. Operator con
icts were generated several

times when the additional plans contradicted each other, and the system had to

deliberately resolve the con
ict by re-evaluating the operators in question. Thus,

the con
icting preferences were a 
ag that over-general rules were being applied and

that further evaluation was required. Only once did this additional problem-solving

cause the transfer task to take longer than the original; in the other cases, the overall

transfer of information more than made up for the extra e�ort at the con
ict.

The experiments suggest that the greater the range of experience applied to a

new task, the greater the chance to detect that a rule is too general. This result has

implications not only for abstract planning, but for the use of any type of potentially

over-general rule, whether learned or pre-provided. It suggests that the wider the

range of experience available to a problem-solver, the greater the opportunities for

the system to detect | via inconsistencies | that its knowledge is not su�ciently

accurate in a given situation. Additional work is required to explore and con�rm this

hypothesis.

7.3.3 Extended-Plan-Use Method Increment

The investigation of abstract plan utility included an exploration of the di�erent ways

of using learned abstract plans, by employing di�erent variations of the extended-plan-

use method increment. In this section, we describe the results of tests performed with

this method increment.

As described in Section 5.6, the extended-plan-use method increment provides the

system with a means to reason explicitly about the extent to which it will use abstract

plans learned during lookahead sub-searches. It also provides a heuristic, based on

the motivation behind iterative abstraction, for guessing which rules from these sub-

searches will be most useful, and will use only these more useful plan fragments as

the plan is re�ned (the conservative version of extended plan use). It is not a priori
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evident that the problem-solver will always bene�t from the use of either version of

the extended-plan-use method increment. It may sometimes be more useful to replan

in the abstract space using new information rather than using all of a previously-

generated plan.

The extended-plan-use method increment was tested in the toh and Robot Do-

mains. The bulk of the tests used only the least conservative version of the method.

That is, all of the plans from the most detailed sub-searches were utilized. In the

Robot Domain, a small set of additional tests was also performed using the conser-

vative version of the method increment, in which the only rules which transferred

from the sub-searches to the execution space were those for which a discrimination

between options was made. Further exploration of this spectrum of plan usage is an

important area for future work.

7.3.3.1 Tower of Hanoi

Because Spatula always produced correct plans at the second iteration level in the

toh, the full use of the plans produced from sub-search at that level had no detrimen-

tal e�ect on solution quality, and their use always improved problem-solving e�ciency.

In fact, when the extended-plan-use method increment was not utilized, the abstract

searches took longer than the non-abstract. This was because the relatively short

operator subgoals did not a�ord much savings from abstraction, and the regularity

of the domain allowed a large amount of non-abstract plan transfer from one part of

the task to another.

7.3.3.2 Robot Domain

In contrast to the toh, in the Robot Domain the subgoals could become much deeper

and thus abstraction provided much more of relative savings in problem-solving e�ort

regardless of whether or not full use was made of the abstract plans. The Robot

Domain experiments described in the previous chapter did not use the extended-

plan-use method increment, and thus took the most conservative approach in which

the system did no reasoning about the iteration levels of its plans; only those plans

learned for the top-level control decision could transfer to situations independent of
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Figure 7.3: Summary of extended plan use results in Robot Domain.

their iteration level. In addition, the abstract search control in the Robot Domain was

not always correct, so it would be expected that more extended use of the abstract

plans | instead of re-planning | could produce some degradation in solution quality.

Thus, it was less evident how bene�cial the extended plan use method would

prove to be in the Robot Domain. Experiments were performed to observe both the

resultant problem-solving savings and the change in solution quality when the method

increment was used. These extended-plan-use tests were made on a randomly selected

subset of the Robot Domain tasks from each goal conjunct group, and used the least

conservative version of the method increment.

Figure 7.3 summarizes these results. Only little solution degradation occurred

with these tasks, as may be seen by comparing the average percent di�erence from

the optimal solution for abstraction with and without extended plan use. The dif-

ference in solutions with and without the method increment was not statistically
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signi�cant. Most of the new mistakes made using the extended-plan-use method in-

crement occurred because of the indi�erent preferences in the extended plans, which

proved too abstract in even the situations for which they were learned. This means

that the conservative version of the extended plan use method would have improved

the solution quality results. For two of the tasks, the solutions generated with ex-

tended plan use produced solutions that were better than those without. This result,

which may appear non-intuitive, points out that the abstract plans are not completely

correct. Thus, on occasion, a less informed choice actually causes the better of the

options to be selected.

With the extended-plan-use method increment, the use of the additional plans

means that the problem solver has more knowledge about how to select its task

operators. In general, one would expect that problem-solving using the additional

plans will take fewer steps. As shown by the di�erence in problem steps, this proved

to be the case. However, for a few of the tasks, use of the extended plans actually

added to the number of steps required to solve the task. This occurred in our tests

for two reasons. First, the additional plans, since they are more abstract, could

transfer overgenerally and cause an operator con
ict which did not occur with the

more conservative plan usage. Further problem-solving would then be required to

resolve the con
ict. Second, the solution path suggested by the additional plans could

take longer to re�ne (e.g., if a sub-operator-tie was particularly hard to resolve). The

2-goal and 4-goal di�erences in problem-solving steps were statistically signi�cant;

the 3-goal average di�erence was reduced and not statistically signi�cant due to a

large increase in problem-solving steps observed for one task.

Some of the tasks solved with the extended-plan-use method increment (EPU)

took much longer to run than without. This is shown by the negative time per-

centages in the �gure, which indicate average
(time without EPU)�(time with)

(time without)
. The

cause of this slow-down was that more rules were �ring per step, although the total

rule matching costs were not more expensive, nor were individual rules more expen-

sive. The reason for this was not directly related to increased generalization due

to abstraction. Rather, it was because the system was required to �re applicable

rules from all iteration levels in a new situation, and then retract the ones which
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were not of the highest applicable level. The e�ect increased with increased task

di�culty. Some of the extended-plan-use tasks were terminated if they were taking

an excessive amount of time per step, and judged intractable even if they weren't

memory-intensive. This is re
ected by the intractability percentages in Figure 7.3,

which indicate average
(completed without EPU)�(completed with)

(completed without)
.

As discussed in Section 7.3.1, a slow-down due to rule �ring may be primarily an

implementation issue, which would be avoided with a distributed implementation of

Soar. However, since there may be an arbitrary number of abstraction iteration levels,

it is not clear that the number of rules �red and then retracted with the extended-

plan-use method increment can be expected to remain bounded. It may be the case

that the idea behind the method increment | that of selecting and using the most

detailed of the available abstract sub-search plans | will need to be re-implemented

using a di�erent approach if extended plan use is to have practical utility.

7.3.3.3 Extended Plan Use, Conservative Version

As discussed above, for some of the tasks tested with the more liberal version of the

extended-plan-use method increment, the full use of abstract sub-search plans proved

too abstract to produce good solutions. Of these tasks, 3 were used to test the use of

the conservative version of the method increment. Use of this version of the method

increment only allows execution-level transfer of those abstract plans formed when

control decision options are discriminable (or when no assumptions are made).

For the tasks tested with the conservative version of extended plan use, quality

degraded by only 3% as compared to the solutions generated without any use of

sub-search abstract plans, and improved by 23% over those generated using the more

liberal version. At the same time, the average problem-solving steps were only 77%

of those required without the extended-plan-use method increment.

7.3.3.4 The Spectrum of Abstract Plan Usage

The results of the previous section are still preliminary, but indicate that the heuristic

provided by the conservative version of the extended-plan-use method increment is

a useful one. Although the less conservative use of all sub-search plans produced
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good solutions in both domains tested, the experiments suggest that the full use of

abstract sub-search plans may in general prove to be too abstract and expensive. At

the other end of the spectrum, tasks solved without any version of the extended-plan-

use method increment (thus only using the problem-solver's top-level abstract plans

and allowing the system to reason about any new information after each operator

execution), generate the most accurate decisions. However, the empirical results

suggest that this approach is too conservative, and that judicious use of the lower-

level plans can improve e�ciency with very little solution degradation.

Therefore, on the spectrum of abstract plan usage, use of the more conservative

version of the extended-plan-use method increment may provide the best balance

between solution quality and planning e�ort. This issue remains an important area

for future research, since the relative utility of each point on the plan use spectrum

may be impacted by the characteristics of a given domain.

7.4 Impact of E�ciency-Driven Method

Increments

Two additional method increments were tested in the experimental domains as well;

goal achievement iteration, and the abstraction-gradient method increment. As dis-

cussed in Chapter 6, these methods were used with the set of Robot Domain tests

presented in that chapter. In this section, we evaluate the impact of these method

increments on our experimental domains.

As described in Section 5.7, the two method increments both use greedy, or lo-

calized, approaches to making an evaluation | they examine most closely the more

immediate e�ects caused by the operator being evaluated. They share in common

the idea that it is possible to estimate the e�ects of applying a particular operator

(and thus to make a control decision) without determining the e�ects of that operator

on the entire task, and that this can be done to keep the cost of successive abstrac-

tion iterations from escalating as sharply. Unlike assumption counting and iterative

abstraction, these method increments don't have the potential to provide any new
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information to the abstract search. Instead, they provide heuristics about how to

reduce the information used during abstract search, to increase its e�ciency while

still allowing relevant decisions.

Goal achievement iteration decreases the number of goal conjuncts solved for at

each abstraction iteration; that is, it decreases the number of conjuncts as the level

of detail increases. The second method increment, abstraction-gradient, decreases

the level of detail as the problem-solving progresses, thus focusing the most detailed

analysis on the beginning of the network of e�ects caused by applying an operator.

One would expect the utility of both of these method increments to be impacted

by both the degree and depth of the interdependencies between the goal conjuncts.

The more tightly interacting the goals, the more desirable one would expect it to

be to examine much of the problem in lookahead before making a decision about

what to do next. The deeper the interactions, the smaller the likelihood that they

will be discovered at a high level of abstraction, or when the detail of lookahead

search tapers o�. Experiments were performed in the Robot Domain and Tower of

Hanoi domains to test the two e�ciency-driven method increments in conjunction

with iterative abstraction and assumption counting; these hypotheses were borne out

in our experiments. As will be discussed below, the method increments proved useful

in the Robot Domain, but notably non-useful in the toh domain. Thus, their utility

is domain-dependent.

7.4.1 Tower of Hanoi

With the Tower of Hanoi, use of either of the two e�ciency-driven method increments

(alone or together) proved detrimental to the optimality of the solutions produced

using abstraction. This is because the interactions between the subgoals in the toh

not only are very tight, they can not in general be detected at the �rst level of

abstraction.

If the problem solver utilizes the abstraction-gradient method increment, then it

is not able to examine the e�ects of achieving the task subgoals in su�cient detail

to make good decisions. Thus, although total problem-solving time is decreased,

the problem solver does not choose optimal moves. If the problem solver uses goal
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achievement iteration in the toh domain, then when it iteratively decreases the level

of abstraction (thus allowing detection of interactions between subgoals) it is no longer

solving for all goal conjuncts. Since the goal conjuncts are tightly interactive, again

this does not give the problem solver enough information to make a good decision,

and again it chooses moves o� the solution path (e.g., it will plot solutions which

do not take the largest disk into account). This proved to be the case regardless of

whether or not goal achievement iteration was used with abstraction. In addition, the

search control rules learned as a result of employing goal achievement iteration proved

to produce an unusually high number of search control con
icts, thus requiring extra

problem-solving time to resolve the con
icts, and causing the search to take more

time than if all goal conjuncts had been used to begin with.

7.4.2 Robot Domain

In contrast to the Tower of Hanoi, the e�ciency-driven method increments provided a

much more acceptable tradeo� between e�ciency and accuracy in the Robot Domain.

This was because the subgoals of the tasks tested were not as tightly interacting

across all subgoals. That is, it was rare that all subgoals had large interactions with

all other subgoals (even though it was often the case that all subgoals interacted with

some other subgoals.) Therefore, it was possible for the problem-solver to �nd good

(sometimes optimal) goal conjunct sequences while using these method increments,

thus increasing search e�ciency. Below, we discuss the results obtained with and

without each method.

7.4.2.1 The Abstraction-Gradient Method Increment

In the Robot Domain, unlike the toh, solution quality was not greatly degraded

by increasing abstraction as a search progressed. While the goal conjuncts typically

interacted with each other, they were not as tightly interacting as were the goals in

the toh. Recall the example of Figure 5.24, in which the problem-solver is able to

reach a good decision by examining the search path for each of its options in the most

detail at the beginning of the searches.
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As discussed above, the majority of the tests in the Robot Domain were performed

using the abstraction-gradient method increment. Thus, to assess the impact of

this method increment on these results, we tested 15 tasks from the 3- and 4-goal-

conjunct groups with and without the use of the method, and compared the results.

Iterative abstraction and assumption counting were used in all cases, as was the goal

achievement iteration method increment.

For one task, attempts both with and without the abstraction-gradient method

increment were intractable. Of the 14 remaining tasks, three of the 4-goal-conjunct

tasks were intractable without the use of the method increment. For those tasks

which �nished both with and without the method increment, abstraction-gradient

decreased the number of problem-solving steps for all but two of the tasks, with a

total average decrease of 13%. (For the two tasks in which problem-solving steps were

actually increased with the method, one increase occurred because a choice on the

solution path required many iterations to resolve. The other increase occurred because

the more expensive solution produced by the method required enough additional

execution-space steps to make up for the e�ciency bene�t). Solution quality was

slightly but not signi�cantly degraded with use of the abstraction-gradient method

increment; its use produced an average 7% increase in solution length, as a percentage

of the solution without abstraction-gradient. Thus, the method increment appeared

to be a useful technique for the Robot Domain.

7.4.2.2 Goal Achievement Iteration

As discussed in Section 6.5, for the experiments run using goal achievement iteration

in the Robot Domain, the initial number of goal conjuncts to solve for was set to

three (one less than the highest number of goal conjuncts in the Robot Domain tasks

tested), and decreased by one at each iteration. Thus, goal achievement iteration

had very little impact on the 2-goal-conjunct tasks, and the greatest impact on the

4-goal-conjunct tasks.

As shown by the results in Section 6.5, for many of the tasks in the Robot Domain

the problem solver did not require an initial total ordering of the goal conjuncts to

produce a good solution. An incrementally constructed partial goal ordering provided
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su�cient information much of the time. Recall the example of Section 5.4, in which

it was not necessary to consider all total orderings of the goal conjuncts to determine

which operators should be applied �rst; once a partial ordering has been constructed,

any additional top-level operator ties generate a new search which reaches further to

the goal and re�nes the ordering. In fact, an examination of the problem-solving traces

in the Robot Domain showed that most mistakes were made because of undetected

interactions between pairs of goal conjuncts (rather than a failure to consider a large

enough number of goal conjuncts).

Thus, the goal achievement iteration method would be expected to impact Robot

Domain tasks primarily in terms of problem-solving time. To assess this impact,

we compared a small subset of the 3-goal and 4-goal-conjunct tasks solved with and

without the method. The 2-goal tasks were not included in the comparative tests

since the method increment rarely had an impact on them. There was also no need

to perform comparative tests for non-abstract goal conjunct iteration (by terminating

the non-abstract searches after 3 goal conjuncts had been achieved). Such truncated

searches would only have a�ected the 4-goal-conjunct tasks. These 4-goal-conjunct

tasks would have been more di�cult than the non-abstract three-goal-conjunct tasks,

and thus would have been intractable.

Four 3-goal-conjunct tasks were tested without the goal-achievement-iteration

method increment. As hypothesized, consideration of all task goals during looka-

head did not a�ect resolution of the control decision impasses; the same operators

were still picked in all tasks | that is, the tests showed that solutions had not been

degraded by use of the method increment. However, an interesting result was ob-

served when the tasks were run using the extended plan use method increment. The

sub-search plans learned without goal achievement iteration were less general, and

caused fewer operator con
icts than did the plans learned using extended plan use,

thus sometimes reducing total problem steps. This provided another indication that

the full use of abstract sub-search rules (e.g., the less conservative version of extended

plan use) produces plans that are too general. Three of the 4-goal-conjunct tasks were

tested without goal achievement iteration. Two of these tasks proved to be too hard

without the method increment (the system ran out of memory), thus suggesting that
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use of the method increment improved tractability in the harder Robot Domain tasks.

For the task which �nished without use of the method increment, solution length was

the same (though a di�erent solution was selected).

Thus, these tests suggest that goal achievement iteration improved the overall

tractability of the Robot Domain tasks with little to no solution degradation. How-

ever, the tests also suggest that there is an interesting interaction between e�ciency

of the method increment | in terms of problem-solving steps | and the extended

plan use method increment, which requires further study. The intractability of the

4-goal-conjunct tasks without goal achievement iteration again illustrates that even

with the large savings provided by Spatula, the e�ciency of the problem solving

is still limited by the combinatorics, required by the problem-solving methods, to

order the task's goal conjuncts. (The exact point at which this \wall" is reached is

implementation- and task-dependent; 4 goals were not too di�cult in the toh). With

the goal achievement iteration method, the goal ordering e�ort is reduced for each

iteration as the detail increases. These tests therefore support the theoretical results

of Section 5.9.

7.4.3 Discussion

Experiments indicate that the utility of the goal achievement iteration and abstraction-

gradient method increments is dependent upon the degree and depth of goal conjunct

interaction in a domain. In the Robot Domain, the methods in general increased

problem-solving tractability with only little degradation of solution quality. However,

they were not as successful with the recursive and tightly interacting toh. Therefore,

although they are general methods, they can not be unilaterally recommended with-

out �rst determining their impact on a domain via preliminary testing or analysis.

It may be the case that they will prove appropriate for many \every-day" tasks, in

which only a small number of goal conjuncts interact at one time.
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7.5 The Method Increments and Goal Conjunct

Ordering

In our experiments, we contrasted abstract search (in which search options were com-

pared), with non-abstract �rst-path search (in which an action was selected arbitrarily

from the set proposed by the existing domain search control). When the number of

task goal conjuncts became su�ciently large, the abstract search was constrained by

the work required to order the goal conjuncts (or more exactly, the work required to

order the operators that achieved the task goal conjuncts), and became intractable.

With the non-abstract �rst-path search, no goal ordering e�ort was required, and

thus this e�ect was not observed. (However, �rst-path intractability did increase

with the harder tasks, particularly in the more complex domains, for another reason:

the larger the task, the greater the chance for �rst-path search to select bad paths

from which it was hard to recover).

The experiments did not test abstract �rst-path search, though this might seem

a natural comparison with non-abstract �rst-path search. In fact, with Spatula,

an abstract �rst-path search will provide no more information than a search without

any use of iterative abstraction and assumption counting. Consider that both itera-

tive abstraction and assumption counting method increments get their leverage from

comparison of the choices at a control decision, via lookahead search. With a strictly

�rst-path search, such comparative information is not utilized to make decisions (the

only information used to select an operator is that of the pre-existing search control).

So, with �rst-path search, iterative abstraction and assumption counting provide

no new information about which operator to select. Thus, a �rst-path abstract search

with the method increments will be only as useful as Spatula's basic abstraction

method with �rst-path search. Such a �rst-path search will only be useful if failures or

goal clobberings are detectable at the problem solver's initial level of abstract search.

The more abstract the initial search, the smaller the probability that such detection

will be possible. (A parameter of the basic method can be the number of levels

of preconditions for which the problem solver initially solves). In the experimental

domains described here and with the initial level of abstraction set to abstract all
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unmet preconditions, an abstract �rst-path search would rarely have provided useful

information. However, this does not mean that domains do not exist in which abstract

�rst-path search would have more utility.

With other abstraction methods in which the abstractions are produced prior to

problem-solving, the abstractions may be better (in the sense of capturing more of the

important aspects of the domain) than Spatula's basic abstraction method. Recall

that the purpose of Spatula's method increments is in fact to dynamically search for

and produce a useful level of abstraction, in those cases for which the system can not

construct abstractions prior to problem-solving. This means that �rst-path searches

using pre-determined abstractions may tend to provide more information about goal

clobberings, etc., than will Spatula's basic abstraction method.

This analysis does not imply that a full combinatorial exploration of all di�erent

operator orderings must be performed in order to use Spatula's method increments,

but that some comparative search must occur for the method increments to have an

impact. The experimental results con�rmed the theoretical results of Section 5.9, and

suggest that for tasks which require the ordering of a large number of goal conjuncts,

Spatula | while it increases tractability | still needs to be used in conjunction

with some other method of controlling search through the space of goal conjunct

orderings, whether it be the two e�ciency-driven method increments described here,

or some other method for partitioning and/or search limitation.

7.6 Summary

In this chapter, we discussed the unexpected results, both bene�cial and problematic,

that were obtained from testing Spatula.

In all of our test domains, iterative abstraction and assumption counting worked

synergistically together and improved the results which were obtained when either was

used alone. The simultaneous use of these method increments produced an interesting

bias, in which, all else appearing equal, the problem solver chose to attempt the easiest

subproblems �rst. This bias manifested itself most notably in the toh domain, where

a novel problem-solving strategy was generated, in which at each decision point, the
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easiest subgoal along the optimal solution path was selected.

The abstract plans learned using Spatula produced good solutions, were easier to

learn, and transferred in a wider range of situations than corresponding non-abstract

rules. However, because more abstract rules could �re per step, an average increase

in time per step was observed. This e�ect increased with the complexity of the

task, since the larger the number of comparisons explored, the greater the number of

abstract rules learned.

The plan transfer experiments produced an additional unexpected and interesting

e�ect: the wider the use of plans learned in previously encountered situations, the

greater the ability of the system to detect and correct over-general portions of the

plans, by re-evaluating the situations in which the di�erent plans provide con
icting

information. We expect that this e�ect will be observed with the use of any type of

generalized knowledge, and will thus have rami�cations beyond the use of Spatula.

The extended-plan-use method increment produced good solutions in domains for

which it was tested; use of the problem solver's abstract sub-search rules caused only a

small increase in solution degradation, with a signi�cant decrease in problem-solving

steps required. However, the results indicated that the lower-level rules which did

not discriminate among options were of only limited utility. Thus, the experiments

(though still preliminary) suggest that the conservative version of the extended-plan-

use method increment | prohibiting transfer of such rules to top-level problem-

solving | provides the most useful cost/accuracy tradeo�, and that use of the sub-

search plans should be restricted only to those rules which preferred one option over

another.

An important issue with extended plan use was that for many tasks, it exacerbated

the slow-down per step observed with abstraction. This is because the implementa-

tion of the method increment entails �ring all applicable sub-search rules and then

retracting the less detailed ones. Further work is required to determine the extent to

which this slow-down is a Soar implementation issue, and to investigate alternative

implementations of the technique.

The two e�ciency-driven method increments (goal achievement iteration and

the abstraction-gradient method increment) proved e�ective in the Robot Domain.
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There, they allowed many important interactions to be detected, while increasing the

e�ciency of the search. However, these method increments will not produce good

solutions in domains such as the toh, in which many subgoals are highly interactive,

or in which interactions occur at a deep level of operator subgoaling. Thus their use

can not be unilaterally recommended.



Chapter 8

Related Work

Within the general framework of using abstraction to guide and constrain search,

there are a wide variety of systems which utilize abstraction in some way. There are

several dimensions along which such a system can be considered, including:

� the type of abstraction used (its properties, etc.)

� the way in which the abstraction is created (e.g., manually or automatically),

when it is created (constructed as part of the problem-solving for the task or

via prior analysis, etc.) and with what information.

� how the abstraction is used to reduce search.

� whether or not the system is able to learn about its abstractions, and if so, how

the information is used in new situations.

We will �rst give an overview of the basic types of abstractions found in problem-

solving systems and the ways in which they are used to reduce search; then, discuss

how systems generate abstractions; and the way in which abstract knowledge can

be learned. Last, we will brie
y survey other search-reduction research related to

abstraction.

238
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8.1 Classes of abstractions

Abstraction research has produced problem solvers which use both TD- and TI-

Abstractions [Giunchiglia and Walsh, 1990a]. As discussed in Chapter 1, TD-Abstract-

ions are those for which all theorems in the abstract space are abstractions of ground-

space theorems, but not all ground-space theorems necessarily have corresponding

theorems in the abstract space. Conversely, TI-Abstractions are those for which the

abstraction of any ground theorem is a theorem in the abstract space, but there may

exist theorems in the abstract space which do not correspond to any ground-space

theorems.

Research which makes use of TD-Abstractions includes Tenenberg's [1988] down-

ward-solution-property formalization. [Subramanian and Genesereth, 1987] describes

a technique for generating abstractions of a theory which are both TD- and TI-

Abstractions with respect to a particular set of task goals. [Levy et al., 1992] also

provides an example of a system which uses TD-Abstractions. Given the task of

constructing a proof, the system determines heuristically which theorems are likely

to provide fruitful information (to be \relevant"), and as a result of this analysis

removes \irrelevant" domain theorems. The remaining abstraction of the theory is

not guaranteed to �nd an answer if one exists, but if an answer is found, it will be

correct (when a monotonic representation language is used).

In qualitative modeling research, describing a function as monotonically increas-

ing (or decreasing) with respect to some input is a TD-abstraction of the function

[Kuipers, 1986]; any behavior which may be generated using the monotonic constraint

will hold for a more detailed function as well. Similarly,Weld [1992] describes a class of

model approximations called �tting approximations, which can generate useful model

abstractions. One model is a �tting approximation of another when the di�erence

between the behaviors they predict approaches zero, as a \�tting parameter" of the

more detailed model approaches an endpoint of its range. For example, one �tting

approximation would be frictionless motion, where friction is the �tting parameter.

Given a �tting approximation on a given parameter, model sensitivity analysis can

be performed to determine the e�ect of the simpli�cation, by computing the sign of
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partial derivatives in the more detailed model. The analysis allows one to determine

whether the approximation will overestimate or underestimate model output param-

eters. (E.g., a frictionless model will overestimate velocity). Once the sensitivity

analysis has been performed, the �tting approximations can be interpreted under

certain conditions as TD-abstractions. For example, if it is known that an approx-

imate model always overestimates, then certain questions about the more detailed

model may always be answered accurately with the approximate one. The sensitivity

analysis allows approximate models to be generated on a per-query basis, with respect

to their use as TD-abstractions.

However, most abstraction problem-solvers in the existing body of abstraction

research use some type of TI-Abstraction, most usually Proof-Increasing (PI) Ab-

stractions [Giunchiglia and Walsh, 1990a]. As discussed in Chapter 1, with PI-

Abstractions, if there exists a ground-level solution to a task, then there always exists

some abstract proof for which a monotonic re�nement to the more detailed proof is

possible [Knoblock, 1991]. With PI-Abstractions, the structure of the abstract proof,

rather than just its �nal output or evaluation, is likely to be useful when used to guide

the more detailed search; it is therefore reasonable to try to \�ll in" such an abstract

proof to get a ground-level solution. Because Spatula uses this type of abstraction,

such systems will be the primary focus of the survey below.

8.2 Abstract Search Representations

In this section, we brie
y discuss the paradigms in which abstract search may take

place. Planners are usually classi�ed as performing either \state-space" search or

\plan-space" search. Below, we describe each type of search, and provide a few

examples of systems which fall into each category1.

1The sets of examples are not intended to be exhaustive, but are presented for the purpose of
illustration. Additional systems from each category will be described in the following sections.
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8.2.1 State-space planners

Spatula is an example of a state-space planner. With state-space problem-solving,

lookahead search, or projection, takes place in an abstract problem space or spaces.

Information about the abstract search is mapped to a more detailed space to provide

search constraints. The search constraints may be represented in at least two di�erent

ways: 1) as actual subgoals generated from abstract states and mapped back to the

more detailed representation; or 2) suggestions about operator sequences in the more

detailed space (where the applicability conditions of the operators then implicitly

de�ne a set of subgoals which the system must achieve). The latter is the approach

taken by Spatula.

Examples of planners which use state-space search include the following systems:

Planning GPS [Newell and Simon, 1972] was one of the earliest examples of a

problem-solver which used abstraction. It used a reduced-model problem space in

the domain of propositional logic, constructed by replacing all logical connectives by

a single abstract symbol. The problem was �rst solved in this abstract space using

GPS, by selecting operators which reduced a (largest) di�erence between the current

and goal state. The abstract solution was then mapped back into the original problem

space and re�ned.

ABStrips [Sacerdoti, 1974] used multiple levels of abstraction created by precondi-

tion elimination. Levels of abstraction corresponded to levels of precondition critical-

ity, where at each abstraction level, only those preconditions with the corresponding

criticality value or higher were considered. The criticality levels were de�ned for a

domain via a semi-manual process. The system was provided with a partial criticality

ordering of domain literals, and attempted to �nd a short plan to achieve each literal.

Those literals for which no such plan could be found were assigned a criticality greater

than the highest rank in the partial order. Otherwise, the literal was assigned its rank

in the partial order. The same set of abstraction levels was used for each task in the

domain. This analysis did not consider possible interactions between subgoals, and

could cause the system to perform ine�ciently for tasks in which there was subgoal

interaction [Knoblock, 1992].

Hansson and Mayer [1989] describe the construction of subgoals through abstract
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problem-solving using precondition relaxation. Their experimental domain is the

Eight-Puzzle. They only map back those abstract states which are \legal" in the

ground space; e.g., states with stacked tiles are eliminated from consideration as

subgoals. They discuss the use of both static and dynamic subgoaling. With static

subgoaling, the ground-level search is guided by a static series of subgoals. With

dynamic subgoaling, the selection of | and abstract search for | subgoals are inter-

leaved; thus allowing one to inform the other. The system described in [Hansson and

Mayer, 1989] implements only static subgoals, but the authors discuss future work

involving dynamic subgoaling as well.

8.2.2 Plan-space planners

Plan-space planners construct a solution by searching through a space of partial plans.

Typically, they are least-commitment planners2. Abstract planning is performed by

constructing a partial order of abstract operators and then expanding or re�ning

the operators | e.g., by expanding them into a set of lower-level actions, or by

attending to their preconditions. The partial orderings on the abstract operators

serve to constrain the search.

Plan-space planners sometimes encounter what has been termed the \hierarchical

inaccuracy" problem [Yang, 1990], in which, if di�erent parts of the plan are not

re�ned in temporal order, inconsistencies may arise | a temporally later part of the

plan may be based on conditions which will not in fact turn out to exist. In plan-space

search, careful attention must be paid to ensure that changes are propagated properly,

so that these situations are detected. State-space searches, since they re-project the

search at each abstraction level, �nd it easier to avoid this problem.

Plan-space planners which use abstraction to hierarchically decompose the plan

space include NOAH [Sacerdoti, 1977], SIPE [Wilkins, 1984; Wilkins, 1988], MOL-

GEN [Ste�k, 1981], NONLIN [Tate, 1977], and O-Plan [Currie and Tate, 1988]. For

all these systems, the abstraction hierarchies must be pre-de�ned.

2Least-commitment planning is sometimes confusingly characterized as \non-linear", since the
plan-space representation provides a means for reasoning about and avoiding the linearity assump-

tion. However, state-space planners may be designed to avoid the linearity assumption as well
[Rosenbloom et al., 1992; Veloso, 1989]. See [Hendler et al., 1990] for a discussion of this issue.
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With ABTWEAK, [Yang and Tenenberg, 1990] presented a formalization of domain-

independent, least-commitment planners with respect to precondition abstraction,

and showed that the monotonicity property [Knoblock, 1991] holds in such planners.

In the future, it may prove fruitful to use Spatula's techniques in conjunction

with a least-commitment planner. A least-commitment planner, though it allows a

partial operator ordering, must still perform search at points in the plan for which

there is more than one way to accomplish a subgoal. Use of iterative abstraction and

assumption counting would provide a means for a plan-space planner to heuristically

prune this search and commit to expanding only a subset of the possible search paths.

8.3 Use of Abstract Search Information

Abstractions are used to guide and reduce search for a ground-level problem. Their

use can be categorized according to how the results of abstract search are interpreted

by the system. The results of abstract search may be used in two general ways:

� As (admissible) search heuristics, which may then be used with ground-level

search technique such as A* or IDA* [Nilsson, 1980; Korf, 1985a].

� To suggest search or execution subgoals in a more detailed space; or to suggest

actions in a more detailed space. (Suggested actions may then provide the

problem solver with new subgoal information).

Each use will be discussed in more detail below, and examples given of systems

which use abstraction in such a way.

8.3.1 Using Abstractions to Produce Admissible Search

Evaluations

For many abstractions, including PI-Abstractions, the length of an optimal abstract

solution to a task is always shorter than the optimal corresponding non-abstract

solution. Therefore, abstract solutions are a source of admissible heuristics for the
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non-abstract problem-solving. Much work has been done on deriving such admissible

heuristics [Gaschnig, 1979; Kibler, 1985; Pearl, 1983; Valtorta, 1984].

Typically, the admissible evaluations are coupled with search algorithms which

ensure optimality, such as A* search. In such a paradigm, abstraction is not used to

directly eliminate part of the non-abstract search tree. Rather, all (non-abstract) leaf

nodes are still considered at each step in the search, using the abstract evaluations,

to determine which is best to expand. Therefore, this approach does not require that

abstract problem-solving produce mappable solutions, just an evaluation as output.

Valtorta [Valtorta, 1984] has shown that if optimal-output (e.g., breadth-�rst)

dropped-precondition abstract searches are used with A* search in this manner, the

total amount of search required in the two spaces (ground and abstract) will always be

greater than that required to simply perform breadth-�rst search in the non-abstract

space. Therefore, if this type of abstraction is to be useful in generating admissible

heuristics, search in the abstract space must be constrained to be less than a complete

exponential search.

For example, Mostow and Prieditis' Absolver [Mostow and Prieditis, 1989] gen-

erates admissible heuristics by dropping information about a problem de�nition via

various problem transformations. Then, the abstractions are analyzed and optimized

(e.g., by factoring the abstract problem into independent subproblems). The opti-

mizations produce less expensive abstract searches. Then, the system determines the

conditions under which the abstractions may be used to produce evaluations which

will speed up the base-level search.

8.3.2 Using Abstraction to Suggest Actions or Search Sub-

goals

The problem-solver can use information from abstract searches in a less conservative

manner than that described above. That is, it can use the information from the

abstract search to constrain the set of ground-level search paths that it considers.

The constraints may provide information about which problem subgoal(s) to pursue

in a given situation during search, or may constrain the set of actions which will be
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applied in a situation. In contrast to the approach described above, here some search

paths in a more detailed space are eliminated from initial consideration based on the

abstract information (though some may be reconsidered if backtracking is necessary).

As Korf [1987] and others have shown, the use of abstract solutions to constrain more

detailed searches can provide an exponential reduction in total search complexity.

As discussed previously, the characteristics of PI-Abstractions make them natural

candidates for use with this type of approach.

Within this framework of using the abstract plan to constrain search, there can

be various degrees of commitment to the abstract plan and the extent to which the

abstract problem-solving is used to guide the more detailed problem. Systems may be

classi�ed along several dimensions with respect to the use of constraining information

provided by the abstract plan, as follows.

8.3.2.1 Extent to which the Abstract Plan is Used

The problem solver may use all of an abstract plan to guide more detailed search, and

commit to using the entire plan until part of it proves inapplicable. Alternatively, the

problem solver may use only an initial segment of an abstract plan to guide re�nement,

and then re-evaluate the problem, thus interleaving search for abstract plans and

expansion of those plans. Such an approach allows the abstract re-evaluation to

utilize any new information provided by the previous plan re�nement.

Historically, most abstraction planners do in fact attempt to use the full abstract

plan, backtracking only if di�culties are encountered. In contrast, Spatula allows

the second, interleaved approach to be used by the problem solver if desired. In

the work by Hansson and Mayer [1989] described above, their proposal for dynamic

subgoaling is another example of interleaved abstract search and re�nement, though

it had not yet been implemented.

The RTA* algorithm [Korf, 1990] takes an interleaved plan/execute approach sim-

ilar to both that suggested in Hansson and Mayer and that used by Spatula, though

it does not explicitly use abstraction. RTA* utilizes a planning algorithm (approaches

such as time-limited A* or threshold-limited iterative deepening are suggested, but
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other methods may be used) to produce an evaluation function. The evaluation func-

tion is used to estimate the merits of every node relative to the current position of

the problem solver (rather than the initial state), and executes a move based on that

evaluation. During search, RTA* keeps a list of the states previously visited, and uses

the heuristic that it should return to a previously visited state when the estimate of

solving the problem from that state plus the cost of returning to that state is less

than the estimated cost of going forward from the current state. It is shown that for

problem spaces in which a goal state is reachable from every state (and in which there

are positive edge costs and �nite heuristic estimations), RTA* will �nd a solution.

Plan-space planners which re�ne portions of their plan \vertically" without com-

pletely expanding the plan at each higher level can also be viewed as working in an

interleaved plan/re�ne mode. (As discussed above, problems can arise if the planner

is not careful in propagating the results of such re�nement throughout the rest of the

plan structure).

8.3.2.2 Interpretation of the Abstract Plan

The abstract proof provides ordering information about some of the components in

the ground-level solution, but does not in itself specify how the problem solver will

use the information. For example, if the states of the abstract proof were to be

mapped to a series of ground-space subgoals, this information might be interpreted

by the problem solver as specifying an ordering on subgoal achievement, but still

allowing interleaved work on more than one subgoal at once. Alternatively, the series

of subgoals might be interpreted by the problem solver as a series of independent

subproblems, each achieved before the next is begun. This is the approach taken by

many systems, e.g. [Knoblock, 1991; Sacerdoti, 1974]. The assumption of subgoal

independence allows a best-case exponential-to-linear reduction in search complexity

from the abstract to the ground space, using multiple levels of abstraction [Korf, 1987;

Knoblock, 1991]. However, with PI-Abstractions it is not guaranteed, for an arbitrary

domain and abstraction, that a ground solution is reachable by assuming subgoal

independence; thus this is not always a reasonable assumption.

The interpretation of an abstract solution in the less abstract space (e.g., whether
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or not the subgoals generated by the abstraction are treated as independent) is often

viewed as being part of the abstraction method. However, this need not be the

case. With Spatula, the use of abstraction is implemented such that the re�nement

of an abstract proof is in
uenced by the various problem-solving methods that the

problem solver uses for a task. Di�erent re�nement approaches may be implemented

as appropriate in di�erent domains.

8.3.2.3 Context of Abstract Plan Use

As described in Section 4.4.2, the system may use its abstract information in di�erent

contexts. It may use the information to decide what action to execute next (i.e., what

to do in the \real" world), or it may be more conservative and use the information to

suggest subgoals in a more detailed planning space. The advantages of each approach

were discussed in Section 4.4.2.

Systems which use abstraction to guide further planning include those which ab-

stract during both \plan space" and \state space" search. All of the systems discussed

above in Section 8.2 used the results of abstraction to guide search in a more detailed

planning space. Additional examples of such planners will be given Section 8.4.

Using Abstract Plans in the Execution Space. Alternatively, the system may

map information from the abstract plan directly into the \execution" space. Again,

the abstract plans used by such systems can be constructed using state-space or

plan-space search; and as above, the abstract plans may be used with varying degrees

of commitment. Often, these systems utilize \impasse-driven" or \failure-driven"

re�nement of their abstract plans, in which feedback from execution of the abstract

plan in the environment suggests when and where re�nement is necessary.

Spatula is an example of such a system, since it maps the results of abstract state-

space search directly back into the execution space, and interleaves plan re�nement

with execution. Other systems which make use of this general paradigm | that

of using abstract information to select executable actions | include those whose

abstractions are \necessary" rather than deliberate: during the planning phase, a

system may not have all of the information required to construct a complete plan,



248 CHAPTER 8. RELATED WORK

and thus may be required to construct incomplete, or partial plans. Such systems

are not always viewed as using abstraction, but the distinction is in the semantics of

what is abstracted; the impact on the solution proof tree can be the same as that

which occurs from deliberate abstractions.

Among the abstraction systems which map abstract plans into the execution

space are those which are categorized as performing assumption-based or default

reasoning, e.g. [Morgenstern, 1990], abduction, e.g.[Fawcett, 1989; Elkan, 1990a;

O'Rorke, 1990], theory re�nement, e.g. [Rajamoney and DeJong, 1987], and deferred

plan construction, e.g. [Gervasio and DeJong, 1989].

For example, theory revision/re�nement, such as that discussed in [Rajamoney

and DeJong, 1987], often involves construction of (what turned out to be) an abstract

plan for a task, and then correcting and re�ning the theory (�lling in the holes in the

proof) based on feedback about mismatches between the abstract theory's prediction

and what actually happened.

Abductive reasoning involves the construction of explanations which incorporate

hypotheses for which there is no deductive proof, or for which proof is very expensive

to obtain. While constructing the explanations, the system must reason about which

hypotheses, or assumptions, it will use | that is, which part of its implicit non-

abstract proof tree it is best to prune away3.

Similarly, planners may have incomplete information about future con�gurations

of the environment; here too they are forced to make assumptions. Therefore, in

addition to abstracting for tractability purposes, planners may postpone expansion

of part of their plan out of necessity. In [Gervasio and DeJong, 1989], a system

is presented which plans using \placeholders" for parts of the plan which require

reactivity. To reason about the reactive components of the plan, the planner uses

contingent explanations, which conjecture the existence of values which will satisfy

certain conditions.

Further examples of systems that use execution-space abstract plan expansion are

discussed in more detail in the following sections.

3Whether a proof is considered an \explanation" or a \plan" depends upon the way it is used
by the system. For the purposes of this chapter, the terms are used interchangeably; both are the
products of reasoning about a domain theory.
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8.4 Automatic Creation of Abstractions

Until recently, most research with abstraction problem-solving involved pre-de�ned

abstractions and abstraction hierarchies. However, recent work has focused on devel-

opment of ways in which the problem solver can automatically, or semi-automatically,

generate the abstractions itself. Spatula is an example of such a system.

Those automatic abstraction systems which produce PI-Abstractions | as does

Spatula| are particularly relevant. The di�erent ways of automatically producing

PI-Abstractions can be thought of as di�erent methods of automatically deciding

how to prune a proof tree to produce an abstract proof tree which subsumes it. Most

automatic abstraction methods described below fall into this category.

Automatically generated abstractions can be created prior to planning by problem-

space analysis, or be driven by the planning process (as is the case with Spatula). In

addition, abstract heuristics can be constructed post-planning by empirical analysis of

the problem traces. Hybrid approaches are possible as well. In this section, we discuss

systems which utilize the �rst two approaches; the latter approach, which does not

tend to actually utilize abstract problem-solving, is discussed below in Section 8.5.

8.4.1 Determination of abstractions prior to search

Systems which create abstractions prior to problem-solving can take both analytical

and empirical approaches. The analytical approaches typically utilize declarative

information about operator preconditions and e�ects, and perform a static problem-

space analysis. Examples of such approaches include the following systems:

ABStrips, discussed above, produced levels of precondition abstraction based on a

semi-automatic process. Historically, ABStrips has had a great impact on automatic

abstraction research.

Pablo[Christensen, 1991] performs reduced-model abstraction. It uses the gen-

eral philosophy behind ABStrips, in that it ranks predicates based on how many steps

are required to achieve them | predicates which require longer plans are worked on

�rst. Pablo allows a �ner-grained abstraction hierarchy than ABStrips; it relaxes

predicates by regressing them over operators to produce the weakest relation that
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ensures the subsequent truth of the predicate after executing the operator. Any

predicates which are true for some regression sequence of n ops are ignored at the

nth abstraction level. The system's analysis of plan length depends upon knowing

information about the initial state, as well as the operator descriptions. E.g., a travel

domain example is given in which whether or not \having a bus token" is a detail

depends upon whether or not money is available with which to buy the fare, etc.

Thus, the analysis must be done with respect to the initial state for a particular task.

A potential di�culty in using the method is that in complex domains, it may be very

expensive to perform a complete analysis (particularly if recursion can take place).

In addition, as with ABStrips, the system does not take into account interactions

between achievement of di�erent literals, and thus can be ine�cient in domains for

which there are such interactions.

Pablo can store the compiled plans learned from its abstraction derivations to

use in a reactive manner if it is interrupted during planning. This use of its knowl-

edge bears similarity to approaches described in [Etzioni, 1991] or [Schoppers, 1990],

though it does not analyze interactions between its compiled plans.

Opie4 [Anderson and Farley, 1988; Anderson and Fickas, 1990] takes a hybrid

approach with respect to generating its abstractions prior to or after search. Prior

to search, it produces hierarchies of operator generalizations, either from generalizing

over objects which are used in the same way (e.g, objects which may be \grasped" in

the same way), or from generalizing by combining those operators which share some,

but not all, literals. (In the worst case, the hierarchy-building process may take an

exponential amount of time). Then, ground-level plan traces are generalized using

this information to produce abstract macros (i.e., a plan containing abstract opera-

tors). Thus, problem-solving in
uences the actual abstract plans which are produced

| the abstractions preserve the user/consumer structure which was present in the

non-abstract plan. The generalization is conservative; it is taken as far as possible up

the hierarchy without removing plan structure. Use of the abstract plans then allows

deferred commitment to a particular operator as well as deferred reasoning about

preconditions and secondary e�ects; this reduces the branching factor. A potential

4Apparently previously named PLANEREUS.
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problem with Opie's approach is that those preconditions which did not need to be

achieved in the ground-level plan are then abstracted away, although they may turn

out to be important in future situations. (Spatula avoids this particular problem by

incorporating knowledge about those preconditions which were met into its compar-

ative search control rules.) Alternatively, the preconditions which were incorporated

into the abstract plan may in fact | since generalization is conservative | be details

which cause unnecessary abstract computation.

Alpine[Knoblock, 1991] applies reduced-model abstraction. Abstractions come

from determining interactions between operators in domain (in addition, information

about particular task goals is utilized to avoid unnecessarily restrictive abstractions

for that task). The analysis produces partial orders of problem-space literals, which

are used to create abstraction hierarchies with the ordered monotonicity property.

If a hierarchy has this property, then literals established at one level of abstraction

can't be unestablished by anything done at a lower abstraction level as the plan is

expanded. This property then greatly increases the chance that an abstract plan

will \work", since expansion at a lower level is guaranteed not to spoil the plan (the

property still doesn't guarantee that a particular abstract plan is re�neable, however).

The abstraction hierarchy is then used to guide search in successively more detailed

problem spaces, using state-space search. The approach can be overly constraining.

Spatula can produce useful abstractions when Alpine can not. For example, this

is the case for the ep formulation used in Chapter 6.

Other abstraction methods utilize empirical testing to decide which abstractions

to use. These include the following systems:

Pollyanna[Ellman, 1988; Ellman, 1990] has a space of abstraction transfor-

mations which use generic simplifying assumptions and transformations, including

Bernoulli's Principle of Insu�cient Reason. The transformations de�ne a space of

simpli�ed theories, in which abstract problem solving is performed. The abstract

problem traces are then used to generate abstract heuristics using EBL. The space

of heuristics can then be evaluated empirically, using a test set of tasks, to deter-

mine the best region of the space with respect to (domain-dependent) cost/accuracy

tradeo�s. Pollyanna's method of learning abstract rules is similar to that used by
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Spatula, but the method of building the abstractions is more domain-dependent

and less context-sensitive, and Pollyanna does not have the ability to learn and

reason about plans at multiple levels of abstraction.

Martin and Allen[Martin and Allen, 1990] use two semi-independent systems, one

reactive and one which does planning. Based on statistical information about similar

problems and knowledge of the reactor's capabilities, the planning component decides

whether to decompose a subproblem during planning, or to leave the plan segment

abstract and let the reactive system re�ne it.

Absolver[Mostow and Prieditis, 1989], described above, takes a similar generate-

and-test approach in determining what abstractions to use (though its use of these

abstractions is di�erent).

8.4.2 Determination of abstractions during search

Another group of abstraction problem-solvers abstracts in a more situated manner:

the abstractions are driven either partially or entirely by the current problem-solving

context. Spatula belongs to this group.

Grasper[Bennett, 1990a; Bennett, 1990b] uses approximations while planning.

The system is hybrid with respect to the origination of the abstractions. Though

some of the abstractions are generated prior to problem-solving, others are generated

during planning. Some of these abstractions are generated because of sensor limita-

tions (externally generated abstractions). In addition, other abstractions deliberately

reduce the complexity of sensed objects, e.g. by transforming a sensed polygon to one

with a smaller number of sides (internally generated abstractions). These abstrac-

tions are dynamically generated, since the problem context determines the particular

approximations that are created. Grasper is similar to both Pollyanna and Spat-

ula in that EBL is performed over the abstract problem-solving to learn approximate

plans. Only if execution failures occur does the system reason about the approximate

nature of its data. It then tunes its rules, focusing on those aspects of the plans

in which expectations failed. Grasper di�ers from Spatula in that its dynami-

cally generated abstractions are data abstractions, rather than operator abstractions.

(Grasper does employ rule approximations as well, but these are pre-de�ned).
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Chien [Chien, 1989] increases the tractability of planning by using limited infer-

ence. He does this by procedurally relaxing the truth criterion used by his plan-space

planner; established facts in a developing plan are not protected against conditional

e�ects, unless the conditional e�ects are used to achieve a goal. Thus, the abstractions

are dynamically determined by the problem-solving context. (This type of abstrac-

tion a�ects di�erent parts of the proof tree than does precondition abstraction, and

will not tend to impose the same hierarchical structure on the search.) The system

uses failure-driven plan re�nement| when failures occur, simpli�cations are incre-

mentally retracted by examining the failure and adding a previously-ignored negative

e�ect-protection interaction. The approach assumes that a strong diagnostic capa-

bility exists to construct explanations for failures, the cost of failure is low, and that

the system is allowed multiple chances to solve a problem.

The non-monotonic reasoning system described in [Elkan, 1990b; Elkan, 1990a]

uses the heuristic that default assumptions are reasonable points at which to abstract

proofs. The default assumptions are represented as negated conditions. Normally,

the system, called PERFLOG, uses negation-as-failure to show that the negations do

not hold; that is, it attempts to prove the positive version of the negated condition.

This can take an arbitrarily large amount of computation. With abstraction, the

system searches iteratively deeper to prove the default assumptions don't hold; if it

can not disprove them for a particular iteration depth, it assumes that they do hold at

that depth. Thus at each iteration the proof becomes increasingly less abstract. The

more resources given the planner, the better its plans will be. The \depth" measure

for the iterative process is de�ned using conspiracy numbers [Mcllester, 1988]. The

conspiracy set then implicitly de�nes the abstractions constructed by the system.

Thus, the abstractions are dynamically generated, and determined by the conspiracy

sets for a particular task. The SEPIA system [Segre and Turney, ] has incorporated

Elkan's technique to do route-planning.

The system bears a similarity to both Spatula and iterative deepening [Korf,

1985a] (described in Section 5.3) in its iterative approach to constructing successively

more detailed plans by expanding deeper proof subtrees. The di�erences are that

PERFLOG is already provided with information about allowable abstractions (the
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default assumptions), and is iterating to �nd the most accurate plan in the time

available. Spatula does not require such semantic knowledge (though it could make

use of this information if it had it) and instead uses its method increments to try to

discover a useful set of abstractions with respect to the cost/accuracy tradeo�.

The problem of constructing abductive explanations is very similar to a default

reasoning task. The issue of deciding which hypotheses to use is close to that of

deciding which default assumptions to make | the impact on the proof tree is the

same | although there can be a semantic distinction in that with abduction, a

system may not be able to prove its hypotheses, rather than choosing not to for

computational reasons.

O'Rorke [1990] describes a system called AbE which performs best-�rst search

through the space of abductive explanations, using a scoring function which includes

preference of those explanations which make the fewest assumptions. Fawcett [1989]

describes an abductive explanation scoring function which includes not only num-

ber of assumptions, but length of explanation and use of more speci�c rules in the

explanation construction.

The abductive comparison functions, particularly Fawcett's, are similar to those

currently used by Spatula; both make use of the idea that although such scor-

ing functions are meaningless in an absolute sense, they provide relative information

about options; and both prefer shorter explanations/solutions with fewer assump-

tions. These systems di�er from Spatula in that the abduction systems are biased

towards more detailed solutions (e.g., Fawcett's system does not allow the use of

assumptions for an antecedent once the antecedent has been shown to have a com-

plete explanation) whereas Spatula uses iterative abstraction to look for the most

abstract solution which is still useful in guiding search.

8.5 Learning Abstract Heuristics

The more general, or more abstract a search heuristic is, the easier it should be to

match and the more widely applicable it can be. A problem-solver with learning

capabilities can use abstraction to produce inductively generalized heuristics, which
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can then guide problem solving both in later parts of the same task, and in new tasks.

There are at least two general methods by which a problem-solver can learn ab-

stract, or more general, heuristics and plans (where \learning" is loosely used to mean

that the system is able to remember the plan or heuristic and has the potential to

use it in a new situation, distinct from the one in which the heuristic was originally

learned). It can 1) learn from performing abstract problem solving; or 2) generalize

from non-abstract proof trees/concepts to produce abstract heuristics.

8.5.1 Learning from abstract problem-solving

As discussed in Chapter 4, learning from problem-solving with an abstract domain

theory can produce rules which are deductively correct with respect to the abstract

theory, but inductively generalized with respect to the corresponding ground-level

theory. The abstract theory provides an inductive bias to the learning mechanism.

The abstract rules can be used to guide further abstract problem-solving, or can be

used as abstract heuristics for more detailed problem-solving, or both. The advantage

of this approach to generalization is that it can make the learning process more

tractable | there is a smaller proof tree to generate and explain.

Soar with Spatula learns abstract plans in this manner, as do other systems

including [Ellman, 1990; Bennett, 1990b; Chien, 1989], discussed above. Recent work

has also been done to combine Alpine (discussed above) and Prodigy [Knoblock, 1991;

Minton et al., 1989; Knoblock et al., 1991]; Prodigy's EBL capabilities have been

used to allow learning at each abstraction level that Alpine generates. Thus far, the

abstract rules have not been used in di�erent abstract levels than the ones for which

they were generated, but future work is planned in this direction.

Spatula is distinct from the other systems which use this technique in that Soar's

capabilities allow it to take a uniquely integrated approach to both learning and using

abstract plans. It was in fact the �rst system to learn inductively via EBL from

abstract searches. It uses its abstract plans for new situations in both the abstract

and non-abstract spaces | which we believe no other system does | and interleaves

learning with execution to produce a multi-level re�nement of the abstract plan.

With Spatula, abstract learning only occurs when necessary, is context-sensitive,
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and allows learning of rules from di�erent levels of abstraction during the same search.

8.5.2 Abstracting from more detailed problem-solving

An alternative approach to learning abstractions is to perform \ground-level" problem-

solving, and then abstract from the problem trace(s) or concepts for use in future

situations. This approach does not provide any computational advantages during the

initial non-abstract problem-solving and learning, but may more easily allow induc-

tion over multiple problem traces, or comparison of various small approximations to

the same non-abstract rule.

For example, Keller [Keller, 1990] suggests an approach in which a concept (learned

using EBL) may be made approximate by replacing subtrees in its explanation by

either true or false. Then, given information about acceptable cost/accuracy tradeo�s

in the domain, experiments can be performed to determine the most useful abstrac-

tions; these can be used as future heuristics. This bears many similarities to the work

described in [Ellman, 1988]; the di�erence is that here the heuristics are abstracted

after problem-solving rather than during.

A related approach is taken in Chase et al. [Chase et al., 1989], which describes

a method of approximating rules by analyzing which rule conditions tended to be

statistically predicted by other conditions (the rules are analyzed in top-to-bottom

order) and removing them from the rules.

Opie [Anderson and Fickas, 1990], described above, creates abstract macro oper-

ators from non-abstract problem traces: it is a hybrid system in that its abstractions

are partly created using problem-space analysis and partly driven by generalization

from the non-abstract problem solving.

Danyluk [Danyluk, 1989] describes an abduction system in which incomplete ab-

ductive explanations are examined by a similarity-based learning component. Using

contextual information from previous explanations, the SBL component is better able

to induce useful abductive hypotheses.

In the SteppingStones system [Ruby and Kibler, 1991], a non-abstract problem is

examined to produce generalized state descriptions which can be used heuristically as

subgoals in new situations. The system does not always use the subgoals; �rst it tries
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to achieve a task's goal conjuncts using goal protection | that is, the achievement

of each new conjunct is not allowed to undo previously achieved conjuncts. If this

tactic fails, then the system searches its memory for applicable, previously learned,

subgoal sequences. If this fails as well, then it does an exhaustive search, solves the

(sub)problem, and generalizes new subgoals from the solution trace. The subgoals

appear to be abstract in that they focus only on prede�ned aspects of the state which

relate directly to maintaining previously achieved goal conjuncts while achieving the

new one.

8.6 Analyses of Abstraction Properties

Most analyses of abstraction properties have focused on a best-case re�nement sce-

nario, in which no backtracking to higher abstraction levels is necessary. Recently,

probability-based analyses have considered scenarios in which an abstraction is not

always re�neable.

Bacchus and Yang present a probabilistic analysis of the utility of using multiple

levels of abstraction [1992], which extends earlier work by including as a parameter

the probability that a TI-abstraction may be successfully monotonically re�ned. The

results show that abstraction is cost-e�ective both when there is a high probability

of re�nement, and a low probability. (If there is a low probability of re�nement, then

even though the number of bad subtrees which must be searched is large, it does not

require much e�ort to search them since most paths will die out at a high abstraction

level). In the middle region, where the probability of re�nement is not small nor very

high, search complexity depends upon both the number of abstraction levels and the

branching factor, and may become almost as expensive as non-abstract search. The

analysis assumes that the individual \gap subproblems" created during re�nement

from one abstraction level to another may be solved without signi�cant interaction,

and that the abstraction hierarchy is regular, in the sense that the number of operators

needed to solve gap subproblems is approximately constant across abstraction levels.

The authors use this analysis in an extension of ALPINE called HIGHPOINT, in

which the partial ordering of literals produced by ALPINE is further re�ned via an
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analysis of the re�nement probabilities.

In contrast to the approach in [Bacchus and Yang, 1992], the use of Spatula

does not necessarily imply that the system will backtrack at a violation of monotonic

re�nement; instead, the plan may be patched if possible. The approach used for a

domain depends upon the search knowledge used in conjunction with Spatula for

that domain. However, with patching instead of backtracking, there still remains an

analogous di�cult middle region of search, in which it may take much goal replanning

to �nd a re�nement or discover that one does not exist. Spatula's method incre-

ments provide heuristics for generating situation-dependent abstractions that avoid

this region.

In [Williams, 1992], Williams builds a probabilistic model of abstraction, which

suggests that the probability of successful re�nement should not be modeled as inde-

pendent of the abstraction \strength"(the ratio of the length of a proof in the ground

space to that in the abstract space) | a more reasonable model is produced if the

re�nement reliability decays as the abstraction strength is increased. The model pro-

duced here is dissimilar to that of [Bacchus and Yang, 1992], because here it is not

assumed that the abstraction is Theorem-Increasing. Because it is possible that no

solution can be found at an abstract level, the predicted cost must include the prob-

ability that search at the ground level must be re-initiated. Due to this restriction,

the model does not show a decrease in search cost as the probability of re�nement

failure becomes very high.

Ginsberg [Ginsberg, 1991] discusses the heuristic of abstracting default assump-

tions in the context of a non-monotonic reasoning system, and gives an analysis of

the situations under which the basic use of this heuristic will be expected to be

cost-e�ective, depending on the ratio of default assumptions to other subgoals, and

the expected probability that a default will fail. His approach is similar to that of

[Williams, 1992], in that he assumes that re-planning occurs at the ground level if an

abstraction re�nement fails.



8.7. RELATED SEARCH REDUCTION APPROACHES 259

8.6.1 Aggregation Abstractions

This chapter has focused primarily on systems which use approximation abstractions,

since this is the technique employed by Spatula. Some abstraction planners employ

aggregation abstractions instead. Aggregation abstractions are those in which more

than one object at a lower level of abstraction are grouped into a single object at

a higher abstraction level. For example, [Benjamin, 1989] describes an algebraic

method for problem decomposition as the formation of a hierarchical machine. In the

three-disk Tower of Hanoi domain, the method maps the top two disks to a single

disk in the abstract space. Campbell's CHUNKER [Campbell, 1988], in the chess

domain, generates aggregate abstractions based on groupings of chess pieces, and

then searches the abstract space based on interactions between the groupings.

8.7 Related search reduction approaches

Abstraction is one way to reduce problem-solving search. There exist many other

related approaches to search reduction.

Section 5.8 described how Spatula provides the problem-solver with several

search biases. Such a bias determines which parts of the space of possible plans

are searched, and thus in
uences which solutions are generated [Rosenbloom et al.,

1992]. [Lee and Rosenbloom, 1992] describe a framework for explicitly representing

several other planning biases | linearity, goal protection, and directness { and com-

bining them to produce a planner with multiple planning methods, in which the most

restricted approaches are tried �rst.

Problem reduction techniques are those which decompose a problem into subprob-

lems. This de�nition encompasses a broad range of approaches. For example, a set

of transformation rules may be applied to a task to break it into subtasks, where

some of the subproblems created via reduction transformation may potentially be

in a di�erent problem space than the parent problem [Bresina, 1988; Amarel, 1967;

Riddle, 1990]. Abstraction can be viewed as one source of heuristics about how to

break up a task, since an abstract solution may be used to de�ne subproblems in a

more detailed space.
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Similarly, Joslin and Roach [1989] propose a graph formalism for analyzing goal

conjunct interactions in domains with �nite search spaces, to determine when a task

requires a solution in which the goal conjuncts interact.

Lansky compares abstraction with localization [Lansky, 1992], a search reduction

technique implemented in the GEMPLAN system, which decreases the search space

by working on (possibly overlapping) subproblems (regions) independently, and then

modifying and combining the sub-plans so that they are globally consistent. She

claims that abstraction is subsumed by localization, and makes this mapping by

utilizing her planner's capability to incrementally add regions, constraints on the

regions, etc.

Macro-operators package the e�ects of a series of actions into one aggregate op-

erator [Fikes and Nilsson, 1971; Iba, 1989]. In contrast to abstract operators, the

macro-operators are added to a domain's original search space. Because they encode

more than one step into a single operator, the use of macro-operators reduces the

number of operators required to construct a solution during search, and thus can

exponentially reduce the size of a search space [Korf, 1987]. However, depending

upon the implementation of a system, the addition of compiled knowledge such as

macro-operators to a domain sometimes reduces e�ciency [Minton, 1990], because it

increases the breadth of the search. Soar's chunking mechanism allows the production

of macro-operators, as described in [Laird et al., 1986a].

In [Korf, 1985b], Korf describes a method for solving a problem by developing a set

of macros and compiling a macro table. For each macro, the table speci�es the context

under which it may be applied to achieve a subgoal, such that it leaves all previously

achieved subgoals achieved on its completion (though the previously achieved goals

might be temporarily violated during macro application). Tasks which admit such an

approach are termed serially decomposable. The approach was developed to address

the solution of tasks which are serially decomposable in this manner, but can not be

solved by making the linearity assumption. A related approach is taken by Guvenir

and Ernst [1990]). They extend Korf's work by developing a technique for �nding a

series of serially decomposable subproblems. Then, macro-operators can be generated

to assist search within such a subproblem.



Chapter 9

Conclusion

This chapter will review the approach to abstraction taken by Spatula, the the-

sis claims, and results. Then, we will describe some of the factors that in
uence

Spatula's abstractions, and the capabilities a problem-solver needs to use Spatula.

Next, we will discuss some of the limitations of Spatula's weak-method approach,

and conclude with future work.

9.1 Summary of Approach

This thesis has described the implementation and testing of Spatula, a weak method

for abstraction.

The foundation of Spatula is a basic abstraction technique, which provides

knowledge to a problem solver about how to automatically create abstract problem

spaces from non-abstract domain spaces dynamically during problem-solving. The

dynamic reformulation is achieved by abstracting unmet preconditions and propagat-

ing the abstractions via partial application. In addition to describing this technique,

we have speci�ed a set of problem-space design guidelines which, if followed, ensure

that the process of dynamic abstract-problem-space creation will produce abstract

searches which are both complete and e�cient.

Spatula's dynamic abstraction method is used by the problem solver in the

context of search to make a control decision; abstraction allows the decisions to be

261
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made more tractably, and abstract plans to be produced.

Spatula's method increments then build on the basic abstraction techniques.

We have described two method increments which use the problem context to provide

the system with heuristics for constructing more useful abstract plans than would

be produced solely using the basic abstraction method. The assumption-counting

method increment helps the system estimate the relative di�culty of re�ning a plan,

and detect subgoal interactions. The iterative-abstraction method increment, via

relative comparison of options, estimates the most useful level of abstraction for a

particular context.

In addition, three other method increments were described. The extended-plan-

use method increment allows the system to deliberate about the extent to which it

will use its abstract plans. The goal-achievement-iteration and abstraction-gradient

method increments reduce the abstract search complexity while employing heuristics

about how to focus on the most relevant aspects of the search.

9.2 Review of Contributions and Results

Spatula is designed to provide a problem solver with an automatic and general weak

method for abstraction. The method's abstraction techniques, reviewed above, pro-

vide these weak method capabilities. The abstraction techniques are problem-driven

and may be applied in any domain without requiring knowledge of what the abstrac-

tions should be, or declarative descriptions of the problem spaces. As implemented

in Soar, the techniques are provided by new default rules; the architecture remains

unchanged.

The use of Spatula provides a problem solver with an integrated framework for

learning, using, re�ning, and repairing abstract plans. With Spatula, the problem

solver only abstracts when necessary; it does not generate abstractions which it will

not use, or perform abstract search when it already possesses su�cient search control

to make progress in a task.

The integrated framework enables an emergent multi-level abstraction behavior,

in which the multiple levels result from further abstraction during re�nement. The
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abstract plans produced during abstract search are inductively generalized with re-

spect to the ground-level domain theory and | using the method increments | are

learned at context-sensitive levels of abstraction.

The design goals of Spatula as a weak method were that it | on average |

produce useful solutions, increase problem-solving e�ciency, and make it easier to

learn and use abstract plans. Empirical tests of Spatula were performed in three

distinct domains to determine the extent to which it met these goals. For the em-

pirical tests, none of the problem spaces, including representation of operator actions

or preconditions, were driven by the abstraction method (the given problem-space

representations, once created, were of course factored as described in Chapter 3). In

the Robot Domain, operators and tasks were obtained from an outside source.

In all experimental domains, the abstraction method on average produced good

(signi�cantly better than random) solutions. In the toh domain, it produced op-

timal solutions. It was observed that the two primary method increments worked

together synergistically in producing the useful solutions. The optimal toh solutions

were most notably enabled by this synergistic interaction | either method increment

alone would not have produced optimal results. The method increments were de-

veloped prior to toh testing, so that the results con�rmed rather than drove their

development.

Spatula produced useful abstractions in situations for which other automatic

abstraction mechanisms, which order literals according to operator interactions, would

not be able to produce an abstract space. For example, the method described in

[Knoblock, 1991] would not be able to produce abstractions for our ep domain, in

which the operator had just one precondition.

The number of problem solving steps required to �nd a solution using abstraction

was signi�cantly less than the number of steps using the corresponding non-abstract

search, and the use of Spatula rendered previously intractable tasks tractable. For

the toh domain, in which the non-abstract operator subgoals were relatively shallow,

abstract search still took less time but a�orded the smallest e�ciency gains.

Results using Spatula were also compared with results using �rst-path search,

in which the problem solver selects randomly from its set of possibilities (constrained
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by existing search control), at each new operator tie during lookahead search. The

�rst-path searches produced signi�cantly inferior solutions, but in the less search-

intensive experimental domains in which the system could not stray very far from a

solution path | the smaller Robot Domain room layout and the toh| were usually

more e�cient. In contrast, in the more search-intensive experimental domains | the

more complex Robot Domain room layout and the ep | a greater amount of search

was required to construct even a random solution. With these domains the e�ort

invested to �nd a good abstract solution | which could then be used to constrain

more detailed search | paid o�; in such domains, Spatula allowed tasks to remain

tractable which became intractable with random search. This general e�ect has been

observed elsewhere as well [Knoblock, 1991].

The use of Spatula resulted in abstract plans which were both easier to learn,

and applied in a wider range of new situations, than the corresponding non-abstract

plans. It was observed that as the regularity of the domain (e.g., with respect to

initial states and goals) decreased, there was very little transfer of non-abstract plans

learned previously to new tasks | the non-abstract plans were often too detailed to

match. In contrast, the more general abstract plans provided a signi�cant amount

of transfer to new situations, with only little accompanying solution degradation.

However, the abstract rules would sometimes slow down problem-solving time when

many of them �red at once, even though they were not individually more expensive.

This issue is discussed further below.

9.3 Factors Which In
uence Spatula's Abstrac-

tions

Spatula's abstractions, since they are generated dynamically, can be harder to char-

acterize than those which are statically generated for a task prior to problem-solving.

During lookahead search, the operator subgoaling process can be thought of as

dynamically producing an implicit hierarchy, or tree, of preconditions, where each

precondition has below it the preconditions of those operators which were applied to
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achieve it. The tree is temporally ordered, since the way one precondition is achieved

can a�ect the work needed to achieve a later precondition. At the leaves of the tree

are those preconditions which are met or assumed met.

Using Spatula, two di�erent types of abstraction hierarchies may be built during

work on a task. First, there is the abstraction hierarchy generated during the several

iterations of a single lookahead search. Such a hierarchy may be described by a series

of precondition trees. Roughly, a level of unabstracted preconditions is added to a

precondition tree at each new search iteration to make a new tree. However, this

description provides only an approximate view of the process. Even though there

exists such a monotonic re�nement to a full tree, the abstract precondition trees that

are actually produced may not necessarily be monotonically re�neable in this way.

That is, the precondition tree may change nonmonotonically at each iteration. In

addition, a new level of preconditions may not be added uniformly across the entire

tree, depending upon the particular method increments employed.

A second abstraction hierarchy is de�ned by the abstractions chosen as a result

of the lookahead searches, and used by the problem-solver to guide more detailed

searches. This abstraction hierarchy is re�ned each time new abstract plan fragments

are learned; it is the multi-level abstraction described in Chapter 4. Each level in

this hierarchy may correspond to more than one level in a precondition tree (and

again, the re�nement process may not necessarily be monotonic, nor leaves in the tree

added uniformly across the whole tree). The shape of the �rst abstraction hierarchy

in
uences the second.

A useful way to view the factors which determine what is abstracted is to break

them down into three parts: those factors which in
uence the shape of the precondi-

tion trees independent of the abstraction method; those factors which in
uence the

way in which a particular search is abstracted at each iteration; and those factors

which in
uence the way in which a particular precondition tree is selected as the

result of lookahead search.

� Factors which in
uence the shape of the precondition trees independent of the

abstraction method:
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1. The operator representations: what operator knowledge is represented in

terms of preconditions (rather than operator implementations, for exam-

ple).

2. The current problem-solving context, including the order in which the pre-

vious preconditions at each level of operator subgoaling have been achieved.

3. Search control knowledge, including what search control knowledge is used

with respect to precondition achievement (that is, which operators are pro-

posed to achieve which unmet preconditions). This knowledge need not be

traditional MEA search control knowledge, with which for each unmet pre-

condition, operators are proposed whose primary e�ects achieve that pre-

condition. Rather, this knowledge may be of arbitrary form. (For example,

the precondition tree would be 
atter than with traditional MEA knowl-

edge if produced by a predominately forward-chaining search strategy).

This search control knowledge may change dynamically as new chunks are

acquired.

4. What compiled knowledge about precondition achievement exists. This

dimension of the abstraction technique was not explored in our experi-

ments. However, if there exists compiled knowledge about how to achieve

an unmet precondition, which can be accessed and applied during a deci-

sion cycle, then an unmet precondition impasse will not be generated and

the precondition won't be abstracted.

� Factors which in
uence the way in which a particular search is abstracted at

each iteration. That is, those factors which determine where the border is on

the precondition tree below which all unmet preconditions are ignored:

The goal-achievement-iteration and abstraction-gradient method increments fall

in this category. For example, the abstraction-gradient method increment in-

creases the level of abstraction the further the lookahead search progresses. So

with this method increment, the left-hand side of the precondition tree will be

deeper than the right (when the search is temporally ordered from left to right).
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� Factors which in
uence the way in which a particular precondition tree is se-

lected { as the result of lookahead search { to be used and re�ned:

Iterative abstraction and assumption counting fall into this category. The fac-

tors are not independent; iteration level a�ects which option looks better, and

the way in which assumption counting is used in the evaluation function a�ects

which level of iteration is necessary.

All of these factors must be included in a consideration of the abstractions that

Spatula will generate.

9.4 Capabilities required to implement Spatula

Spatula has been implemented by adding rules to Soar's memory. However, the

ideas behind the basic approach and method increments should be applicable to

other systems with the following basic capabilities. (The following assumes that state

changes are represented in terms of operators and their e�ects | whether in plan-

space or state-space search).

1. The system must be able to use a problem-solving strategy similar to operator

subgoaling. That is, it must be able to work towards applying operators whose

preconditions are not met, and not be restricted during search to selecting only

those operators for which all preconditions are met. If it does not have this

ability, then the abstraction method will have no e�ect (since there will be no

unmet preconditions to abstract).

2. No particular way(s) of achieving an operator precondition should be hard-wired

in to the system, such that the additional knowledge

\if abstracting and current operator's precondition-X not met

) precondition-X is met"

can not be added.

3. The problem solver must then able to select this additional way of achieving a

precondition, when abstracting.
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4. The system must be able to take note of when it is searching to make a choice,

and to allow abstraction only within such contexts. With least-commitment

planners, this includes contexts in which the system is working with a partial

plan for which there is more than one potential ordering of operators.

5. At choice points, the system must have the ability to compare and evaluate all

its options, rather than selecting one option arbitrarily and backtracking only

if a solution can not be reached.

6. The system must have the ability to factor its operations. This may be done

representationally, as described in Section 3.3, or by analyzing the structure of

the operations, and applying them partially as appropriate. Factorization must

be possible for operators as well as any other problem-solving operations which

might reference abstracted information.

7. For assumption counting, the problem solver must be able to make note of when

and how many times it has used the abstraction rule of Item 2.

8. For iterative abstraction, the systemmust be able to keep track of the number of

levels of operator subgoals generated during search, and to use that information

in deciding when to abstract within the search context (when using iterative

abstraction).

9. If the system is to implement the learning aspects of the abstraction method, it

must have the ability to remember the operator choices made during abstract

search, and use them as a plan to guide and constrain more detailed search1. The

system should have the ability to transfer the abstract plans to new relevantly

similar situations as well as using them to guide re�nement of the situation for

which they were originally learned.

10. For iterative abstraction and the extended-plan-use method increment, the sys-

tem must have the ability to determine the iteration level at which a plan or

1E�cacy of the transfer may not be independent of representation, e.g., the plan transfer may
be less e�ective if the plans are represented monolithically.
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plan fragment was learned, and to use that information in deciding when a plan

should be used.

9.5 Limitations of Spatula

Spatula's weak method approach is not without its limitations. The utility of the

abstractions produced is in
uenced by problem representations, additional search

control, domain characteristics, and given tasks. Spatula performs less usefully

when the method increment parameters are inappropriately tuned for a particular

domain; and in domains with deep manifestation of plan re�nement di�culties or

interactions, shallow operator subgoals, or which require many goal conjuncts to be

ordered. Below, we discuss each in more detail.

9.5.1 Domain Representations and Method Increment

Parameters

As discussed in Section 5.5 and above, Spatula's abstractions are driven by the way

the domain operators are represented and the particular search control used with

that representation. If the method increments are not responsive to these factors,

the abstractions may not always be useful. For the experiments described in this

thesis, the method increment parameters were not adjusted according to the domain

characteristics. However, Section 5.5 discussed some possible probabilistic approaches

for adjusting the parameters used in the method increments to respond to a given

representation and search control. Additionally, if the problem-solver were to be

provided with explicit representations of its operators, then further problem-space

analysis could be performed (using, e.g., some of the methods described in Chapter 8)

to obtain information about the conditions under which subgoals tend to be hard to

achieve and/or tend to interact with other subgoals. Such information could be

used in adjusting the method increment parameters, as well as selectively abstracting

only some preconditions. Such techniques, however, would require more assumptions
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about the explicit domain knowledge available than is the case with Spatula's weak-

method approach.

9.5.2 Deep Manifestation of Plan Re�nement Di�culties

and Interactions

In some domains, di�culties in re�ning an abstract plan may not manifest themselves

until search is performed at a very detailed level. An example might be a domain in

which there is only a limited amount of time to perform a task, and in which many

task search paths must be almost completely re�ned to determine whether or not

they may be applied within the time limit. Even if Spatula's method increment

parameters were adjusted such that good decisions were made in such a domain,

abstraction would not provide big e�ciency savings.

9.5.3 Shallow Operator Subgoals

In domains with shallow subgoals, Spatula has relatively little impact on task e�-

ciency. This was seen in the toh experiments of Chapter 6. Another class of tasks in

this category are those for which there is an ordering of operators, given the search

control used in the domain, such that all (or most) operator preconditions are met.

An example of such a domain is the \job shop" described in [Minton, 1990]. In

this domain, most preconditions for applying machining operations (such as lathing,

polishing, etc.) are requirements such as \object must be cold", or \object must be

unpolished". The tasks are such that for most of the operators which achieve a task

goal conjunct, there exists a global operator ordering such that the preconditions of

the operators are met. Using Spatula in this domain, the problem solver will suc-

cessfully choose such an ordering, since it requires the fewest assumptions. However,

abstraction will provide little e�ciency savings, since little work will be abstracted

to �nd the solution.
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9.5.4 Goal conjunct ordering

Because Spatula creates abstractions by dynamic precondition relaxation (rather

than creating a reduced model via deliberate removal of literals from the domain

language), the goals of a task are not abstracted. Although propagation of the initial

abstractions through partial application can consequently create a reduced problem

space, these reductions can not be relied upon to reduce the number of goals which

must be considered. Hence, as described in Section 5.9, the e�ciency of problem

solving using Spatula's techniques is limited by any work necessary to order a task's

goal conjuncts.

As discussed in Section 7.5, this result is of relevance because Spatula's method

increments obtain their leverage from the comparison | via lookahead search |

of operators at a choice point. With a non-comparative search method, such as

�rst-path search, such information is not utilized in the decision-making process; the

only information used to select an operator is that of the pre-existing search control.

So, with non-comparative methods, iterative abstraction and assumption counting

provide no new information. Thus, a non-comparative search with Spatula's method

increments will be only as useful as the basic abstraction method with the same

technique. E.g., an abstract �rst-path search will only be useful if failures or goal

\clobberings" are detectable at this initial level of abstraction. The more abstract

the initial search, the less likely this will be. (A parameter of the basic method can

be the number of levels of preconditions the problem solver initially solves for).

This analysis does not imply that a full combinatorial exploration of all di�erent

operator orderings must be performed in order to use the method increments, but that

some comparative search must occur for the method increments to have an impact.

For tasks/methods which require many goal conjuncts to be ordered, it is likely that

Spatula will be most e�ective when used in conjunction with other techniques for

reducing the combinatorics of goal ordering, while still allowing useful comparisons

of possible solution paths. The secondary method increments described in Chapter 5

were in fact such techniques (though they did not prove to be e�cacious in domains

with a high degree of goal conjunct interaction).
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9.6 Future Work

There remain many interesting areas for future development of Spatula. First, we

hope to test Spatula in additional domains. We also hope to explore Spatula's

potential | using iterative abstraction | to aid the problem solver in resource-limited

environments, as was discussed in Section 5.3.3.

In addition, we would like to explore the use of Spatula in further learning

experiments, with respect to plan utility, knowledge acquisition in knowledge-poor

domains, and detection of plan overgenerality. We would also like to investigate the

integration of Spatula with a least-commitment approach to planning, as well as

extension of the method increments in several ways.

9.6.1 Learning Experiments

Soar's ability to learn about abstractions using Spatula provides several interesting

areas for future work.

9.6.1.1 Plan Utility

In Soar, when more rules �re per step, problem-solving time per step increases. This

e�ect can be expected for any situation in which the generality of the learned rules

is increased, and is not speci�c to use of Spatula. It is hypothesized that if 1) the

individual rules do not increase in expense; and 2) the number of rules �ring per step

can be bounded; then the slow-down will not occur with a distributed implementation

of the architecture. In the future, we would like to explore this hypothesis further,

in particular with respect to the abstractions produced by Spatula. We would like

to determine if there is any inherent slow-down attendant with the use of Spatula

(and if so, what changes to the method address this e�ect), or if the slow-down may

be considered an implementation issue rather than a conceptual one.
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9.6.1.2 Knowledge Acquisition in Knowledge-Poor Domains

All of our empirical tests were made in domains with fairly strong search control

knowledge; although the system still had to search to determine subgoal orderings

and to choose among di�erent ways of accomplishing a subgoal, it had knowledge

about which operators were likely to be useful with respect to achieving a subgoal.

In domains for which the system has not yet acquired knowledge correlating operator

actions and subgoal achievement, search is likely to be much more intractable.

With Spatula, abstract plans are easier to acquire than non-abstract and are

applicable in a wider range of new situations. Thus, as suggested by the experiments

described in Section 4.3.2, it may be possible to use Spatula to \bootstrap" the

system in new domains for which it has very little search control. Using abstraction,

the system could more easily obtain a rough idea of which operations accomplish

which desired results, and thus more quickly begin to take relevant actions in the new

domain. Once the system has acquired its rough action model, the re�nement of the

model would be expected to be more tractable.

9.6.1.3 Detection of Over-General Search Control

In Soar, a control decision con
ict will be generated whenever one search-control

rule states that one operator is more useful than another, and a second rule states

the reverse2. Using abstraction, such situations are most likely to have occurred

because the rules were learned in situations fairly di�erent from each other, but were

generalized such that they are both applicable in the new situation. The fact that

the rules are in con
ict suggests that at least one is too general and is not useful.

The con
ict triggers a new subgoal in which the system re-evaluates the operators

in con
ict and chooses the one it wants to use. With the re-evaluation, the system

has a better chance of making a decision which is useful with respect to the current

situation.

It is our hypothesis | supported by our empirical tests | that the greater the

range of abstract plans learned in other situations which are available to the system,

2More generally, a con
ict will be generated for any such cycle of two or more operators.
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the greater the system's chance to detect and correct overgeneral abstract search

control (rather than to use it unsuspectingly). Additional work is required to explore

and con�rm this hypothesis.

9.6.2 Least-Commitment Planning

It may prove fruitful to use Spatula in conjunction with a least-commitment planner.

The least-commitment approach can help alleviate the combinatoric expense of goal

ordering (since the planner avoids committing to an ordering for as long as possible),

while Spatula can provide heuristic guidance at points for which there is more than

one possible way to accomplish a subgoal, and for which the system must therefore

still perform search.

9.6.3 Extensions to Method Increments

There are several interesting directions in which the method increments can be ex-

tended.

Additional information may be used to adjust and tune the method increments.

Probabilistic information may be useful in this adjustment, as discussed in Section 5.5.

In addition, the maintenance of such information could be used to predict expected

task costs with respect to re�nement probability, similarly to the work described in

Section 8.6. Such research could involve both the use of a language to talk about

cost/accuracy tradeo�s, and the construction by the problem solver of declarative

data structures, based on problem-solving experience, to allow it to reason about its

possibilities.

The suite of abstraction methods could also be strengthened by providing the prob-

lem solver with declarative domain information, and the ability to reason about this

information, as discussed in Section 9.5. For example, if the system was provided with

explicit representations of its operators, then it could utilize some of the approaches

described in Chapter 8 for constructing abstractions via static problem-space analy-

sis, and use this information to guide the dynamic problem-driven abstractions. In

turn, dynamic and experiential heuristics about how to construct abstractions may
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be useful when the domain does not a�ord a rigorous analytic construction of ab-

straction levels. Such a hybrid method, combining the best of both approaches to

abstraction, could be very e�ective.

Further investigation of the extended-plan-use method increment is also war-

ranted. For each point on the plan-use spectrum, it would be useful to characterize the

classes of domains for which that point provides a good cost/accuracy tradeo�. Such

a characterization may be linked to the research in method-increment parameter set-

tings suggested above. E.g., although use of the abstract sub-search plans produced

good results in our experimental domains, it seems likely that the less accurate the

abstractions, the more the systemmay obtain good results by re-evaluating later parts

of its plans given updated plan execution information, rather than attempting to use

an entire previously generated abstract plan without question. In addition, more

extensive research is required to determine the impact of the conservative version of

extended plan use, in which the system does not use those sub-search plan fragments

learned when options were not distinguishable. Experiments suggest that this mode

of plan use has the greatest utility. Further work is also required to address the plan

utility issue that arises when using the extended plan use method increment; it is

expensive to apply and then retract rules from potentially applicable sub-searches. A

more e�cient implementation of this method increment may be possible.

Additional method increments may be developed as well. An interesting area of

research would again involve providing the problem solver with the means to con-

struct \bookkeeping" information about the abstractions it makes as the abstract

search proceeds. Such information could include declarative structures representing

the preconditions which were abstracted and the e�ect of the abstract operator appli-

cations on the abstract space. The structures would then provide the system with the

ability to perform (possibly problem-driven) analyses of the impact of its abstractions

and to learn from these analyses.
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Default Rules: Implementing the

Abstraction Methods

This appendix lists the Soar default rules (Soar version 5.0.2) used to implement

Spatula. The rules are roughly organized according to function. The rules assume

that an operator-subgoaling capability has been provided to the problem-solver, as

well as the ability to count and keep track of the task goals achieved, and to calculate

and represent domain evaluations. These capabilities are not represented here, since

the way in which they are implemented is independent of the abstraction method.

However, in some places, the abstraction rules below need hooks into the information

provided by these capabilities; these places are indicated in the rule comments. For

such rules, certain variable names, etc., are assumed. For example, the rules assume

a certain way of representing operator subgoaling information.

Some of the rules contain square brackets around names. This is not Soar syntax,

but indicates a \template" rule, which is to be �lled in, e.g., with the name of an

operator.

276
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A.1 Basic Abstraction Method

A.1.1 Detection of Search Subgoals

;;; explicitly notice that evaluation of objects (i.e., lookahead
;;; search) is occurring, by tagging the goal with this information.

(sp find-in-eval-obj-space

(Goal <g> ^object <sg>)
(Goal <sg> ^operator <sq>)

(Operator <sq> ^name evaluate-object ^role Operator)
-->
(Goal <g> ^in-eval-obj-subgoal t)

)

;;; Copy down from a goal to its subgoal the information that these
;;; goals are within a lookahead search. In addition, tag the subgoal
;;; with the information that it's not the first (highest-level)
;;; subgoal within the lookahead search (this knowledge is needed for the
;;; iterative abstraction method).
(sp copy-down-eval-obj-tag

(Goal <g> ^object <sg>)
(Goal <sg> ^in-eval-obj-subgoal)
-->
(Goal <g> ^in-eval-obj-subgoal t)
(Goal <g> ^not-first-eval-goal true)
)

;;; Copy down to a new subgoal the tag which says that preconditions may
;;; not be abstracted in the subgoal. This will always be the case
;;; before the problem-solver generates an evaluation subgoal (before it
;;; begins lookahead). The "not-in-abstr-subgoal" tag is added to the
;;; initial goal. So, as long as the problem solver only generates
;;; operator subgoals from the initial goal, the tag is copied down.
;;; (Currently, this only works for domains in which there are no operator
;;; implementation subgoals, but it could easily be modified.)
(sp copy-down-non-selection-tag

(goal <g> ^name operator-subgoal
^object <supergoal>)
(goal <supergoal> ^not-in-abstr-subgoal)
-->
(goal <g> ^not-in-abstr-subgoal t))

;;; Detect when, within a lookahead search, operator preconditions should be
;;; abstracted. This production compares the number of operator-subgoals
;;; currently generated with the "abstract-after-level" variable (the number
;;; of precondition levels to be solved for before preconditions are
;;; abstracted) and determines whether it is time to begin abstracting. When
;;; using just the 'basic' abstraction method, the "abstract-after-level"
;;; will have been set to 1. With iterative abstraction, it is incremented
;;; at each iteration.
(sp [ps-domain-name]*propose*evaluate-state*detect-time-to-abstract

(goal <g> ^problem-space <p> ^state <s>
)
(goal <g> - ^not-in-abstr-subgoal)

(goal <g> ^abstract-after-level <ss-count> ^subgoal-count <count>)
(count <ss-count> ^num <num>)
(count <count> ^num >= <num>)
-->
(goal <g> ^in-abstr-subgoal t)

)

;; The rule above must be considered an operator application.
(operator-applications '( robot*propose*evaluate-state*detect-time-to-abstract))

A.1.2 Abstracting Preconditions

;;; This rule makes an assumption about (i.e., ignores) an unmet operator
;;; precondition, if an impasse is caused when the problem-solver attempts
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;;; to apply the operator. At the same time it notes that an assumption has
;;; been made.

;;; As currently implemented, a separate such rule is required for each
;;; operator precondition. The square brackets indicate where
;;; precondition names are substituted.
;;; However, it would be possible to attach to the problem space the
;;; information about each operator's preconditions, and then use one
;;; template rule to grab this information off the problem space. Note
;;; that the precondition names are not required to be 'meaningful'-- the
;;; system just needs to distinguish between them to count the number of
;;; assumptions made.

;;; When the rule below fires, a chunk is built which looks like this.
;;; Next time the operator is selected, this chunk will fire if the
;;; precondition is not met (the operator's preconditions will have been

;;; tested before it is selected.)
;;;(sp p121 elaborate

;;; (goal <g1> ^in-abstr-subgoal t ^problem-space <p1> ^state <d2>
;;; ^operator <d3> -^[precondition-name]-precond <d3> -^applied <d3>)

;;; (problem-space <p1> ^name [ps-domain-name])
;;; -{(goal <g1> ^desired-op <d1> ^operator <d3>)
;;; (operator <d3> ^duplicate-of <d1>)}
;;; (operator <d3> ^name [operator-name])
;;; -->
;;; (goal <g1> ^[precondition-name]-precond-abs <d3> &, <d3> +
;;; ^[precondition-name]-precond <d3> &, <d3> +)
;;; )
;;;
(Sp [ps-domain-name]*apply*[operator-name]*abs-prec-chk*[precondition-name]

(Goal <subgoal> ^impasse no-change ^attribute Operator ^object <g>)
(Goal <g> ^problem-space <p> ^state <s>

;; if abstracting
^in-abstr-subgoal
^operator <q>)
;; if the current operator has not yet applied
(Goal <g> - ^applied <q>)
;; and if the current operator is not the one (or rather a duplicate of
;; one) which was subgoaled-on, since don't want to ignore
;; preconditions
- { (Goal <g> ^desired-op <des> ^operator <q>)
(Operator <q> ^duplicate-of <des>) }
(Problem-Space <p> ^name [ps-domain-name])
(Operator <q> ^name [operator-name])
;; and if a precondition of the current operator is not met
-(Goal <g> ^[precondition-name]-precond <q> )
-->
;; then add the information that the precondition IS met (this lets the
;; operator application continue). In addition, add the information
;; that the precondition was abstracted.
(Goal <g> ^[precondition-name]-precond <q> <q> &)
(goal <g> ^[precondition-name]-precond-abs <q> + &)

)

;;; This declaration is necessary for each such rule above.
(operator-applications
'(
[ps-domain-name]*apply*[operator-name]*abs-prec-chk*[precondition-name]
)

)

;;; For completeness, the following rule sketches out the format of a rule
;;; that would test a precondition of an operator once it has been proposed.
;;; This is done when the operator is proposed. Then, if some preconditions
;;; aren't met, they can be deliberately ignored when the operator is
;;; selected (if abstracting).

(Sp [ps-domain-name]*propose*[operator-name]*check-precond*[precondition-name]
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(Problem-Space <p> ^name [ps-domain-name])
;; if the operator has been proposed
(op-set <opss> ^operator <q>)
(Operator <q> ^name [operator-name] )
;; then check one of its preconditions.
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[various other tests involving the operator and state information]
-->
(Goal <g> ^[precondition-name]-precond <q> <q> & )
)

;;; Check that all preconditions of an operator are met. There needs to be

;;; one such rule for each operator (again, a more general format could be
;;; used if information was stored on the problem-space about the
;;; precondition names for each operator.) This rule will apply regardless
;;; of whether or not the preconditions were REALLY met or were ignored
;;; through abstraction. Then, the domain operator application rules will
;;; check that there is an 'operator-may-apply' tag for that operator
;;; before application can occur.
(Sp [ps-domain-name]*propose*[operator-name]*check-precond*all-preconds

(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss>)

(op-set <opss> ^operator <q>)

(Problem-Space <p> ^name [ps-domain-name])
(Operator <q> ^name [operator-name] )

(Goal <g> ^[precondition-name-1]-precond <q> )
(Goal <g> ^[precondition-name-2]-precond <q> )
-->
(Goal <g> ^operator-may-apply <q> <q> & )
)

A.2 Method Increment Parameters:

Initialization and Management

A.2.1 Task Initialization

;;; For the extended plan use method increment to work, the state in the
;;; execution space needs to contain some information for the chunks
;;; learned in the iterative searches. We would like the chunks to apply
;;; regardless of what abstraction level they were learned at (then the
;;; ones not at the highest level will be retracted). Ditto for chunks
;;; learned with various values of the 'goal-achievem-req' parameter, etc.
;;; Therefore, info is added at the top level to let the iterative plans
;;; apply. If the "extended plan use" method increment is not used, then
;;; it is not necessary to add this extra information.
(sp [domain-name]*create-initial-state&desired-state

(goal <g> ^problem-space <p>
^name [top-level-ps-domain-name] ^desired <d>)
(desired <d> ^name desired-state)
(problem-space <p> ^name toh-domain)
-->
(goal <g> ^state <s> ^abstract-after-level <all> ^subgoal-count <s-all>

^goal-achievem-req <gar>)

(state <s>
^g-ach-count <gac>
[other initial state initialization]
)
;; set the 'abstract-after-level' and 'subgoal-count' numbers to range
;; from 1 to the expected highest number of iterations the system will
;; reach on this task. Although this number is arbitrary (unless the

;; domain has been carefully analyzed), it is easy
;; to set the high end of the range to a number large enough so that
;; it's virtually certain that there will not be that many iterations.
(count <all> ^num 1 + &, 2 + &, 3 + &, 4 + &,
5 + &, 6 + &, 7 + &, 8 + &, 9 + &, 10 + &)
(count <s-all> ^num 1 + &, 2 + &, 3 + &, 4 + &,
5 + &, 6 + &, 7 + &, 8 + &, 9 + &, 10 + &)
;; set the 'goal-achievem-req' numbers to range from 1 to the total
;; number of goal conjuncts for the task.

(count <gar> ^num 5 + &, 4 + &, 3 + &, 2 + &, 1 + &)
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;; set the 'g-ach-count' numbers to range from 0 to the total number of goal
;; conjuncts for the task.

(count <gac> ^num 5 + &, 4 + &, 3 + &, 2 + &, 1 + &, 0 + &)

;; Describe desired state. If the 'goal achievement iteration' method
;; will be used, need to represent the goals separately since need to
;; reason about them separately. The specific way in which this is
;; done does not matter. E.g.:

(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
;; list the goal conjuncts

(goal-conjuncts <gc> ^[goal-type-1] <goal-id-1>...
)
;; describe each goal conjunct
([goal-type-1] <goal-id-1> ^<attr1> <value1> ...

^goal-name <goal1>)
;; note that they are initially false
(state <s> ^goal-false <goal1> + &, <goal2> + &, ...)

)

(Sp [ps-domain-name]*create-problem-space
(Goal <g> ^object nil) ;no supergoal
-->
(Goal <g> ^name [ps-domain-name]

^desired <d> <d> & ^problem-space <p>
)
(Goal <g> ^desired-op <d-op> <d-op> &

;; mark the top-level goal with the information that there can be
;; no abstraction in this goal (can never abstract except within
;; lookahead search)
^not-in-abstr-subgoal t)
[additional goal and problem-space information]
(Problem-Space <p> ^name [ps-domain-name]
;; add the information that this problem space is a
;; 'domain', rather than 'meta', problem space. (A
;; 'meta' problem space is the selection space.)
^type domain-problem-space)
;; augment the problem-space with all possible abstraction levels --
;; that is, with numbers up to the highest abstraction iteration the
;; system is expected to encounter. These numbers will be used later
;; as 'canonical' abstraction level numbers, by chunks learned during
;; iterative abstraction.
(problem-space <p> ^abstraction-level <co1> + &, <co2> + &, <co3> + &,

<co4> + &, <co5> + &, <co6> + &, <co7> + &, <co8> + &,
<co9> + &, <co10> + &)
(count <co1> ^num 1)
(count <co2> ^num 2)
(count <co3> ^num 3)
(count <co4> ^num 4)
(count <co5> ^num 5)
(count <co6> ^num 6)
(count <co7> ^num 7)
(count <co8> ^num 8)
(count <co9> ^num 9)
(count <co10> ^num 10)
)

A.2.2 Initializing at new goals and copying to subgoals

;;; While in the "execution" space, just copy information about subgoal
;;; count from goal to subgoal. Subgoals are only REALLY counted during
;;; lookahead search-- the information copied here is 'dummy' information,
;;; which exists to allow the chunks built during iterative planning to
;;; fire in the 'execution space', when using the "extended plan use"
;;; method increment.
(sp copy-down-subgoal-count*top-level

(goal <g>
^problem-space <p> ^state <s>
^object <supergoal> ^not-in-abstr-subgoal t

)
(goal <supergoal> ^subgoal-count <count>)
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-->
(goal <g> ^subgoal-count <count> + &)
)

;;; Given a new subgoal, add to the "subgoal count" if in lookahead search.
;;; 'Subgoal count' keeps track of how many levels of precondition
;;; achievement the problem solver has operator-subgoaled to. This count
;;; will then be used to tell the system when to start abstracting.
(Sp abstraction*iterate-in-subgoal

(Goal <g> ^problem-space <p>
^object <supergoal> ^state <s>)

(problem-space <p> - ^name selection)
;; only add to the count if not in the "execution space". In addition,
;; don't add to the count for an evaluate-object subgoal, since are
;; counting levels of operator-subgoaling before abstracting.

(goal <g> - ^name implement-evaluate-object

- ^not-in-abstr-subgoal)
(Goal <supergoal> ^subgoal-count <count>)

(COUNT <count> ^num <num>)
-->
(Goal <g> ^subgoal-count <count> - )
(goal <g> ^subgoal-count <ncount> + &)
(COUNT <ncount> ^num (Compute 1 + <num> ))
)

;;; At the highest-level operator tie (that is, a tie generated in the
;;; "execution space", indicated by a subgoal-count of 0), want to begin
;;; counting the subgoal levels.
(Sp abstraction*keep-count-in-subgoal*eval-obj*first-eval

(Goal <g> ^problem-space <p>
^object <supergoal>)
(goal <g> ^name implement-evaluate-object)
(Goal <supergoal> ^subgoal-count <count>)
(COUNT <count> ^num 0)
-->
(goal <g> ^subgoal-count <count> -)
(Goal <g> ^subgoal-count <ncount> )
(count <ncount> ^num 1)
)

;;; for any EVALUATE-OBJECT subgoal other than the first (top-level) one,
;;; just copy down the "subgoal-count". (don't increment subgoal-count for
;;; evaluate-object subgoals).
(Sp abstraction*keep-count-in-subgoal*eval-obj

(Goal <g> ^problem-space <p>
^object <sg>)
(goal <g> ^name implement-evaluate-object)
(Goal <sg> ^subgoal-count <count> )
(COUNT <count> ^num { > 0 <num>})
-->
(Goal <g> ^subgoal-count <count> )
)

;;; For "selection" subgoals, just copy down the "subgoal-count".
(Sp abstraction*keep-count-in-subgoal*selection-sp

(Goal <g> ^problem-space <p>
^object <sg>)
(problem-space <p> ^name selection)
(Goal <sg> ^subgoal-count <count>

)
(COUNT <count> ^num <num>)
-->
(Goal <g> ^subgoal-count <count> + &)

)

;;; However, don't want to copy the "subgoal-count" if the selection
;;; subgoal is for a top-level operator tie generated in the execution
;;; space. Therefore, reject this information.
;;; Other productions will initialize the subgoal count for the lookahead
;;; search.
(sp abstraction*reject-top-level-subg-count

(goal <g> ^problem-space <p> ^object <sg> ^subgoal-count <count>)
(problem-space <p> ^name selection)

(goal <sg> ^subgoal-count <count> ^not-in-abstr-subgoal)
-->
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(goal <g> ^subgoal-count <count> - )

)

;;; This rule is used with the goal achievement iteration method increment.
;;; If the selection space goal has no information about the number of goals
;;; to achieve, initialize this information.
(sp select*create-state*add-g-ach-req*no-g-ach

(Goal <g> ^problem-space <p> ^state <s> )
(Problem-Space <p> ^name selection)

(Goal <g> - ^goal-achievem-req)
-->
(State <s> ^goal-achievem-req <newcount> + &)

(COUNT <newcount> ^num [initial number of goals to solve for])
;; add the information that this goal is for the top selection space in
;; the lookahead search.
(Goal <g> ^top-lkahead-sel-spce t

)
)

;;; Initialize the variable used with the iterative abstraction method
;;; increment, which hold the information about how many precondition levels
;;; to solve for in the initial iteration). Initialize the subgoal count
;;; (which keeps track of how many operator subgoaling levels the search will
;;; generate) as well.
(sp select*create-state*add-abs-after-level*no-abs-after

(Goal <g> ^problem-space <p> ^state <s> )
(Problem-Space <p> ^name selection)
(Goal <g> - ^abstract-after-level)
-->
(State <s> ^abstract-after-level <newcount> + &)
(COUNT <newcount>
^num [initial precondition level at which to begin abstracting])
(Goal <g> ^top-lkahead-sel-spce t ^subgoal-count <scount>)
( count <scount> ^num 0)
)

;;; Initialize info about assumption counting when a new
;;; evaluate-object subgoal is generated. This rule would fire at the same
;;; time any initialization occurs for the domain eval. (A domain evaluation
;;; initialization is shown in comments as an example).
(Sp eval*select-state*role-operator*init-acount

(Goal <g> ^problem-space <p> ^superoperator <o2> )
(Operator <o2> ^name evaluate-object ^role Operator ^object <o>

^superproblem-space <p> ^superstate <s>)
(Goal <g> ^state <snew> + )
(State <snew> ^duplicate-of <s>)
-->
(State <snew> ;^domain-eval <ncount>

^assumption-count <ancount>)
;;(COUNT <ncount> ^num 0)
(COUNT <ancount> ^num 0)
)

;;; copy down to a new subgoal the info about the number of subgoals to
;;; achieve during lookahead search.
(sp copy-down-goal-achievem-req

(goal <g> ^object <sg> )

(goal <sg> ^goal-achievem-req <count>)
-->
(goal <g> ^goal-achievem-req <count> + &)

)

;;; Copy down to a new subgoal the info about how many levels of
;;; preconditions to work on before beginning to abstract.
(sp copy-down-abstract-after-level

(goal <g> ^object <sg> )

(goal <sg> ^abstract-after-level <count>)
-->
(goal <g> ^abstract-after-level <count> + &)
)

;;; If a new evaluate-object subgoal is generated for an op, copy down the
;;; "goal achievement count" from the selection space state above (that is,
;;; the number of goals that have been achieved thus far during lookahead).
;;; The number is relative to the initial, or top-level operator tie-- it's
;;; set to 0 then, and added to or subtracted from when appropriate.
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(Sp eval*select-state*role-operator*copy-down-goal-achievem-req

(Goal <g> ^problem-space <p> ^superoperator <o2>

^object <supergoal>)
(Goal <supergoal> ^problem-space <sp> ^state <ss>)

(Problem-Space <sp> ^name selection)
(State <ss> ^goal-achievem-req <acount>)

(Operator <o2> ^name evaluate-object ^role Operator ^object <o>
^superproblem-space <p> ^superstate <s>)

-->
(Goal <g> ^goal-achievem-req <acount> + &)
)

;;; If a new evaluate-object subgoal is generated, copy down the
;;; "abstract-after-level" information from the selection space state to
;;; the new goal.

(Sp eval*select-state*role-operator*copy-down-abstract-after-level
(Goal <g> ^problem-space <p> ^superoperator <o2>

^object <supergoal>)
(Goal <supergoal> ^problem-space <sp> ^state <ss>)

(Problem-Space <sp> ^name selection)
(State <ss> ^abstract-after-level <acount>)
(Operator <o2> ^name evaluate-object ^role Operator ^object <o>

^superproblem-space <p> ^superstate <s>)
-->
(Goal <g> ^abstract-after-level <acount> + &)
)

;;; If the selection space goal already has information about goal
;;; achievement iteration (passed from the goal above) then copy this
;;; information to the selection space's state (where it will be used
;;; by the selection space's 'iterate' operator.)
(sp select*create-state*add-g-ach-req*have-g-ach

(goal <g> ^problem-space <p> ^state <s> )
(problem-space <p> ^name selection)
(Goal <g> ^goal-achievem-req <acount>)
(count <acount> ^num <anum>)
-->
(State <s> ^goal-achievem-req <acount> + &)
(goal <g> ^not-top-lkahead-sel-spce t)
)

;;; The same as above, except copy the information used by the iterative
;;; abstraction method increment.
(sp select*create-state*add-abs-after-level*compute*have-abs-after

(goal <g> ^problem-space <p>
^state <s> - ^not-in-abstr-subgoal)
(problem-space <p> ^name selection)
(Goal <g> ^abstract-after-level <acount>)
(count <acount> ^num <anum>)
-->
(State <s> ^abstract-after-level <acount> + &)
(goal <g> ^not-top-lkahead-sel-spce t)
)

;;; If a state has a subgoal-count, add this information to the goal as
;;; well.
(Sp abstraction*pass-new-implementation-subgoal-count-to-goal

(Goal <g> ^problem-space <p> ^state <s> )
(Problem-Space <p> ^type domain-problem-space)
(State <s> ^subgoal-count <count>)
-->
(Goal <g> ^subgoal-count <count>)
)

;;; This production is necessary because of the "extended plan use" method
;;; increment. All possible goal achievement counts are added to the
;;; initial goal, so that chunks built at any plan iteration level have the
;;; potential to fire in the "execution" space. However, once a lookahead
;;; search is begun, we want to get rid of the 'dummy' goal achievement
;;; counts in the search spaces.
(sp reject-top-level-goal-achievem-req

(goal <g> ^object <sg> ^goal-achievem-req <count>
^problem-space <p> ^state <s>)
(goal <sg> ^goal-achievem-req <count> ^not-in-abstr-subgoal)
(goal <g> - ^not-in-abstr-subgoal)
-->
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(goal <g> ^goal-achievem-req <count> - )

)

;;; As with the rule above, this rule is necessary because of the "extended
;;; plan use" method increment. Reject any 'dummy' goal-achievem-req
;;; information which is copied from the execution space to the state in
;;; the selection space.

(sp reject-top-level-goal-achievem-req-state

(goal <g> ^object <sg>
^problem-space <p> ^state <s>)

(goal <sg> ^goal-achievem-req <count> ^not-in-abstr-subgoal)
(goal <g> - ^not-in-abstr-subgoal)

(state <s> ^goal-achievem-req <count>)
-->
(state <s> ^goal-achievem-req <count> - )

)

;;; Again, necessary for the "extended plan use" method. If a new subgoal
;;; is within lookahead search and is therefore a goal in which
;;; abstraction may occur, then remove the from the subgoal the 'dummy'
;;; "abstract-after-level" information which it obtained from the upper
;;; (execution-space) goal.
(sp reject-top-level-abstract-after-level

(goal <g> ^object <supergoal> ^abstract-after-level <count>
^problem-space <p> ^state <s>)
(goal <supergoal> ^abstract-after-level <count> ^not-in-abstr-subgoal)
(goal <g> - ^not-in-abstr-subgoal)
-->
(goal <g> ^abstract-after-level <count> - )
)

;;; This rule is also used because of the "extended plan use" method
;;; increment, and removes execution-space "abstract-after-level" information
;;; from the selection space state in the new subgoal (it will have been
;;; copied to the selection space state from the goal above).
(sp reject-top-level-abstract-after-level-state

(goal <g> ^object <supergoal>
^problem-space <p> ^state <s>)
(goal <supergoal> ^abstract-after-level <count> ^not-in-abstr-subgoal)
(goal <g> - ^not-in-abstr-subgoal)
(state <s> ^abstract-after-level <count>)
-->
(state <s> ^abstract-after-level <count> - )
)

A.3 Evaluation Rules

The rules in this section implement the meta-evaluation function used in our
experimental tests, which combines information about assumption counts and
domain evaluations in lexicographic order. To modify the meta-evaluation,
these rules would be modified.

;;; excise the following default rule-- it is replaced with several new
;;; rules.
(Excise eval*equal-eval-indifferent-preference)

;;; If two evaluations both have a zero assumption count and the same
;;; domain evaluation, then they are given indifferent preferences.
;;; This rule assumes that the domain evaluation is numeric, and that the
;;; evaluation has two components: "numeric-value" and "assump-count-num".
(sp equal-eval-indiff*zero-acount

(goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2>
^impasse tie)
(problem-space <p> ^name selection)

(state <s> ^evaluation <e1> { <> <e1> <e2> } )
(evaluation <e1> ^numeric-value <nv1> ^object <op1>)
(numeric-value <nv1> ^eval-num <en> ^assump-count-num 0)
(evaluation <e2> ^numeric-value <nv2> ^object { <> <op1> <op2> } )

(numeric-value <nv2> ^eval-num <en> ^assump-count-num 0)
-->
(goal <g2> ^<role> <op1> = <op2> )
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)

;;; There are two sets of the following rules to translate evaluations to
;;; preferences: the first set are the rules to create preferences for ties
;;; generated at the top, or execution level, and the second are the rules to
;;; create preferences for ties generated at lower levels. They differ in
;;; that for the lower levels, information is deliberately included about
;;; what iterations level the preference was created in. This information is
;;; then used for the "extended plan use" method increment to reason about
;;; which preferences, from which iteration, are most accurate. In contrast,
;;; the preferences learned for the top-level tie are iteration-independent.

;;; The rules assume that the domain evaluations are numeric;
;;; this should be changed for other evaluation schemes.

;;; Given two evaluations, if one has a lower assumption count, then give it a
;;; better preference.
(Sp eval*prefer-lower-evaluation*assumption-count*top-level

(goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2>
^impasse tie)

-{ (goal <g> ^operator <iterate>)
(operator <iterate> ^name iterate) }

(Problem-Space <p> ^name selection)
;; use this rule for the "top level" tie.
(goal <g> - ^not-top-lkahead-sel-spce)
(goal <g2> ^problem-space <p2> ^state <s2> ^{ << desired-state

desired-op Desired >> <des> } <d>)
;; don't want to fire the resulting chunk if the op is already
;; selected (at least in soar5.0.2 ...)
(goal <g2> - ^operator <o2>)
(goal <g2> ^op-set <op-set>)
(op-set <op-set> ^operator <o2> { <> <o2> <o1> })
(State <s> ^evaluation <e1> ^evaluation { <> <e1> <e2> })
;; don't add the preference until evals for all ops are obtained.
(goal <g> - ^need-eval )
(evaluation <e1> ^object <o1> ^numeric-value <v>

^<des> <d>)
(numeric-value <v> ^assump-count-num <an>)
(evaluation <e2> ^object { <> <o1> <o2> } ^numeric-value <v2>

^<des> <d>)
(numeric-value <v2> ^assump-count-num { > <an> <an2> })
(operator <o1> ^checked-general-count true)
(operator <o2> ^checked-general-count true)
-->
(Goal <g2> ^operator <o2> < <o1> )
)

;;; The same as the rule above, except it fires at ties below the top-level
;;; tie and adds information about iteration level.
(Sp eval*prefer-lower-evaluation*assumption-count

(goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2>
^impasse tie)

-{ (goal <g> ^operator <iterate>)

(operator <iterate> ^name iterate) }
(Problem-Space <p> ^name selection)
;; This rule is used for ties below the "top-level" tie.

(goal <g> - ^top-lkahead-sel-spce)
(state <s> ^abstract-after-level <aacount>)
(count <aacount> ^num <aanum>)
(goal <g2> ^problem-space <p2> ^state <s2> ^{ << desired-state

desired-op Desired >> <des> } <d>)
(problem-space <p2> ^abstraction-level <naacount>)

(count <naacount> ^num <aanum>)
;; don't want to fire the resulting chunk if the op is already
;; selected (at least in soar5.0.2 ...)
(goal <g2> - ^operator <o2>)
(goal <g2> ^op-set <op-set>)
;;(state <s2> ^g-ach-count <gachcount>)
(op-set <op-set> ^operator <o2> { <> <o2> <o1> })
(State <s> ^evaluation <e1> ^evaluation { <> <e1> <e2> })
(goal <g> - ^need-eval )

(evaluation <e1> ^object <o1> ^numeric-value <v>
^<des> <d>)

(numeric-value <v> ^assump-count-num <an>)
(evaluation <e2> ^object { <> <o1> <o2> } ^numeric-value <v2>
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^<des> <d>)
(numeric-value <v2> ^assump-count-num { > <an> <an2> })

(operator <o1> ^checked-general-count true)
(operator <o2> ^checked-general-count true)
-->
(Goal <g2> ^operator <o2> < <o1> )
(state <s2> ^abstraction-level <naacount> + &)
)

;;; The rule fires at the top-level tie if two evaluations have the same
;;; assumption counts but different domain evaluations.
;;; This rule assumes that the evaluation is numeric and that lower evals
;;; are better-- the rule can be changed accordingly if that is not the
;;; case.
(Sp eval*prefer-lower-evaluation*top-evaluation

(Goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2> ^impasse tie)

-{ (goal <g> ^operator <iterate>)

(operator <iterate> ^name iterate) }
(goal <g> - ^not-top-lkahead-sel-spce)

(Problem-Space <p> ^name selection)
(Goal <g2> ^problem-space <p2> ^state <s2> ^{ << desired-state

desired-op Desired >> <des> } <d>)
;; don't want to fire the resulting chunk if the op is already
;; selected (at least in soar5.0.2 ...)
(goal <g2> - ^operator <o2>)
(goal <g2> ^op-set <op-set>)
(op-set <op-set> ^operator <o2> { <> <o2> <o1> })
(State <s> ^evaluation <e1> ^evaluation { <> <e1> <e2> })
;; Wait until all operator evals are generated before making
;; comparisons.
(goal <g> - ^need-eval )
(desired <d> ^better lower)
(evaluation <e1> ^object <o1> ^numeric-value <v>

^<des> <d>)
(numeric-value <v> ^assump-count-num <an> ^eval-num <en>)
(evaluation <e2> ^object { <> <o1> <o2> } ^numeric-value <v2>

^<des> <d>)
(numeric-value <v2> ^assump-count-num <an> ^eval-num { > <en> <en2> })
(operator <o1> ^checked-general-count true)
(operator <o2> ^checked-general-count true)
-->
(Goal <g2> ^operator <o2> < <o1> )
)

;;; The same as the rule above, except that this rule fires for the ties
;;; below the top-level tie and adds information about iteration level.
(Sp eval*prefer-lower-evaluation*evaluation

(Goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2> ^impasse tie)
(goal <g> - ^top-lkahead-sel-spce)
-{ (goal <g> ^operator <iterate>)
(operator <iterate> ^name iterate) }
(Problem-Space <p> ^name selection)
(state <s> ^abstract-after-level <aacount>)
(count <aacount> ^num <aanum>)
(Goal <g2> ^problem-space <p2> ^state <s2> ^{ << desired-state

desired-op Desired >> <des> } <d>)
(problem-space <p2> ^abstraction-level <naacount>)
(count <naacount> ^num <aanum>)
;; don't want to fire the resulting chunk if the op is already
;; selected (at least in soar5.0.2 ...)
(goal <g2> - ^operator <o2>)
(goal <g2> ^op-set <op-set>)
(op-set <op-set> ^operator <o2> { <> <o2> <o1> })

(State <s> ^evaluation <e1> ^evaluation { <> <e1> <e2> })
(goal <g> - ^need-eval )
(desired <d> ^better lower)
(evaluation <e1> ^object <o1> ^numeric-value <v>

^<des> <d>)
(numeric-value <v> ^assump-count-num <an> ^eval-num <en>)
(evaluation <e2> ^object { <> <o1> <o2> } ^numeric-value <v2>

^<des> <d>)
(numeric-value <v2> ^assump-count-num <an> ^eval-num { > <en> <en2> })

(operator <o1> ^checked-general-count true)
(operator <o2> ^checked-general-count true)
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-->
(Goal <g2> ^operator <o2> < <o1> )
;; add information about the abstraction, or iteration, level
(state <s2> ^abstraction-level <naacount> + &)
)

;;; This rule is used if two evaluations are equal-- if they both have the
;;; same domain evaluation, and had the same number of assumptions made.
;;; It's only used for ties below the top-level tie, since at the top
;;; level, the system iterates until it can distinguish between the
;;; operators in the tie, or until no assumptions are made in at least
;;; one of the evaluations.
(Sp eval*equal-eval-indifferent*not-top-lkahead-sel-spce

(Goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2>
^impasse tie)

-{ (goal <g> ^operator <iterate>)

(operator <iterate> ^name iterate) }
(Problem-Space <p> ^name selection)

(state <s> ^abstract-after-level <aacount>)
(count <aacount> ^num <aanum>)
(Goal <g> - ^top-lkahead-sel-spce

- ^need-eval)
(State <s> ^evaluation <e1> ^evaluation { <> <e1> <e2> })
(Goal <g2> ^problem-space <p2> ^state <s2> ^{ << Desired-state

desired-op Desired >> <des> } <d>)
(problem-space <p2> ^abstraction-level <naacount>)
(count <naacount> ^num <aanum>)
(goal <g2> ^op-set <op-set>)
(evaluation <e1> ^object <x> ^numeric-value <v> ^<des> <d>)
(numeric-value <v> ^assump-count-num <an> ^eval-num <cn>)
(Evaluation <e2> ^object <y> ^numeric-value <v2> ^<des> <d>)
;; for the evaluations to be the same, the assumption-count and the
;; problem-space evaluation have to be the same.
(numeric-value <v2> ^assump-count-num <an> ^eval-num <cn>)
(operator <x> ^checked-general-count true)
(operator <y> ^checked-general-count true)
(op-set <op-set> ^operator <x> { <> <x> <y> })
-->
(Goal <g2> ^<role> <x> = <y>)
;; add information about the abstraction, or iteration, level
(state <s2> ^abstraction-level <naacount> + &)
)

A.4 Detection of Search Completion

;;; ==================================================
;;; detection of successful search
;;; ==================================================

;;; The following two rules are modifications of the default operator
;;; subgoaling rule which detects that within a lookahead search, a duplicate
;;; of the "desired" (i.e., subgoaled-upon) operator has been able to apply.
;;; The rules create an evaluation which contains both the domain evaluation
;;; and the number of assumptions made. The rules here assume that domain
;;; evaluation is represented in the selection space in a particular way
;;; (e.g., with ``^domain-eval''). Thus, the exact form of these two rules
;;; will vary with the operator subgoaling scheme and domain evaluation used
;;; by a domain; the point is that the evaluation built from the search needs
;;; to include the assumption count.

;;; There are two rules here instead of one for chunking purposes-- the
;;; second rule fires if the application of the duplicate "desired" operator
;;; has generated a desired goal state for the task. (If this is the case,

;;; we would like it to learn from this fact).

(Sp opsub*detect-indirect-opsub-success*1
(Goal <g-eval> ^problem-space <p> ^state <s> ^desired-op <o>

^operator <o-dup>
^applied <o-dup> ^superoperator <sq> ^object <sg> ^desired <d>
- ^op-sub-reject <op-mark>)
(Operator <o-dup> ^duplicate-of <o>

)
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(state <s> ^op-mark <op-mark>)

(goal <sg> ^problem-space <sp> ^state <ss>)

(problem-space <sp> ^name selection)
(operator <sq> ^name evaluate-object ^evaluation <e>)

(state <s>
;; wait until this tag is present-- it indicates that all the
;; counts (e.g. goal conjunct achievement count, assumption

;; count) have been updated, and that there has been time to
;; check whether or not the current state is the desired goal
;; state for the task.
^checked-for-desired-state <o-dup>
^domain-eval <count> ^assumption-count <acount>
;; the current state was not the desired goal state for the task

- ^found-success )
(count <count> ^num <count-num>)
(count <acount> ^num <assump-count-num>)
-->
(evaluation <e> ^found-success true ^numeric-value <nv> + &,

^desired <d>)
(numeric-value <nv> ^assump-count-num <assump-count-num>
^eval-num <count-num>)
)

(Sp opsub*detect-indirect-opsub-success*2
(Goal <g-eval> ^problem-space <p> ^state <s> ^desired-op <o>
^applied <o-dup> ^superoperator <sq> ^object <sg>
^desired-state <d>
- ^op-sub-reject <op-mark>)
(Operator <o-dup> ^duplicate-of <o>

)
(state <s> ^op-mark <op-mark>)
(goal <sg> ^problem-space <sp> ^state <ss>)
(problem-space <sp> ^name selection)
(operator <sq> ^name evaluate-object ^evaluation <e>)
(state <s>
^checked-for-desired-state <o-dup>
^domain-eval <count> ^assumption-count <acount>
;; the current state WAS the desired goal state for the task
^found-success <d>)
(count <count> ^num <count-num>)
(count <acount> ^num <assump-count-num>)
-->
(evaluation <e> ^found-success true ^numeric-value <nv> + &,

^desired <d>)
(numeric-value <nv> ^assump-count-num <assump-count-num>
^eval-num <count-num>)
)

;;; The following two productions detect that all required goal conjuncts
;;; of a task (those listed in "goal-conjuncts") have been completed.
;;; The particular productions here test, as an example, for completion
;;; four-goal-conjunct tasks. These productions could be modified to
;;; be made more general and to deal with a variable number of task goal
;;; conjuncts.

;;; This rule checks for completion in the top, or execution, space. It
;;; doesn't involve the abstraction method, but is included for comparison
;;; with the rule below.
(sp toh*exit-test*detect-desired-state*top

(goal <g> ^problem-space <p> ^state <s> ^desired-state <d> ^object nil
^operator <q> ^applied <q>)
(problem-space <p> ^name toh-domain)
(desired <d> ^goal-conjuncts <gc>)

(goal-conjuncts <gc> ^<goal-a> <xx> ^<goal-b> { <> <xx> <yy> }
^<goal-c> { <> <xx> <> <yy> <zz>}
^<goal-d> { <> <xx> <> <yy> <> <zz> <ww>}

)
(<goal-a> <xx> ^goal-name <gn1>)
(<goal-b> <yy> ^goal-name <gn2>)

(<goal-c> <zz> ^goal-name <gn3>)
(<goal-d> <ww> ^goal-name <gn4>)

(state <s> ^goal-true <gn1> <gn2> <gn3> <gn4>)
-->
(state <s> ^found-success <d> <d> &)
)
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;;; This rule tests for task completion in the lookahead search spaces.
;;; Again, this rule would be used for a task with four goal conjuncts. The
;;; exact syntax of the goal conjunct representation is not
;;; important-- however, the bookkeeping checks related to the abstraction
;;; process are necessary.

(sp toh*exit-test*detect-desired-state*lookahead
(goal <g> ^problem-space <p> ^state <s> ^desired-state <d>

^operator <q> ^applied <q>)
;; if operator subgoaling, make this test for the highest of the goals
;; with state <s>.
- { (goal <g> ^object <sg>)

(goal <sg> ^state <s> ^operator ) }

(problem-space <p> ^name toh-domain)
;; check that all bookkeeping needed for the evaluation is done.

(state <s> - ^update-domain-eval - ^add-to-assump-ct)

(desired <d> ^goal-conjuncts <gc>)
(goal-conjuncts <gc> ^<goal-a> <xx> ^<goal-b> { <> <xx> <yy> }

^<goal-c> { <> <xx> <> <yy> <zz>}
^<goal-d> { <> <xx> <> <yy> <> <zz> <ww>}
)
(<goal-a> <xx> ^goal-name <gn1>)
(<goal-b> <yy> ^goal-name <gn2> )
(<goal-c> <zz> ^goal-name <gn3>)
(<goal-d> <ww> ^goal-name <gn4>)
;; The following test is a hack due to a Soar5.0.2 problem-- chunks are
;; built by tracing from the last "found-success" attribute posted, so
;; wait until have checked for success due to the goal achievement
;; iteration count (see below) BEFORE checking for success due to
;; completion of all goals. This way, chunks will be learned based on
;; the fact that all goals were completed.
(state <s> ^checked-for-g-ach-success <q>
^goal-true <gn1> <gn2> <gn3> <gn4>)
-->
(state <s> ^found-success <d> <d> & ^all-goals t)
(state <s> ^checked-for-desired-state <q>)
)

;;; Used with the method increment for goal achievement iteration, this
;;; production checks to see if enough goals have been achieved to stop the
;;; search and evaluate. The production assumes the existence of a domain
;;; state attribute called "g-ach-count", which contains the number of goal
;;; conjuncts achieved thus far in the search. The rules checks that no
;;; changes to this count are waiting to be made, by checking the existence
;;; of two variables, 'add-to-g-ach-ct' and 'sub-from-g-ach-ct'. These tests
;;; (and the attribute names) can be changed to fit the needs of a particular
;;; domain; since the code to count the number of goals achieved is not
;;; intrinsically related to abstraction, it is not included here.
(sp g-ach-abstraction*detect-desired-state*2

(Goal <g> ^problem-space <p> ^state <s> ^desired-state <d>)
;; Don't use this method in the "execution" space-- it's only used
;; during lookahead.
(goal <g> - ^not-in-abstr-subgoal)
(Problem-Space <p> ^type domain-problem-space)
(Goal <g> ^goal-achievem-req <xxx>)
(COUNT <xxx> ^num <num>)
;; if operator subgoaling, want this rule to fire only at the highest
;; operator subgoal which has the state <s>

- { (goal <g> ^object <sg>)
(goal <sg> ^state <s> ^operator ) }

(State <s>
;; check that that the "g-ach-count" is up to date
- ^add-to-g-ach-ct - ^sub-from-g-ach-ct
;; check that the domain evaluation and the assumption count have
;; been brought up to date as well.
- ^update-domain-eval - ^add-to-assump-ct)
;; if the number of goals achieved is >= the number required to be
;; achieved.
(State <s> ^g-ach-count <gc>)
(COUNT <gc> ^num >= <num>)
-->
(State <s> ^found-success <d> <d> &)
)

;;; This is a "timing" production-- it fires under the conditions when the
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;;; production above fires, except it doesn't check the g-ach-count. It is
;;; used to 'time' the firing of the production above which checks for

;;; completion of ALL goals (``toh*exit-test*detect-desired-state*lookahead'')
;;; -- for soar5.0.2 chunking reasons, we would like that rule to fire AFTER
;;; the one directly above has had a chance to fire. (The chunks will be
;;; based on the last, or most recent, reason for detecting lookahead

;;; success.)
(Sp abstraction*checked-for-g-ach-success

(Goal <g> ^problem-space <p> ^state <s> ^desired-state <d>

^operator <q> ^applied <q>)
(Problem-Space <p> ^type domain-problem-space)

- { (goal <g> ^object <sg>)
(goal <sg> ^state <s> ^operator ) }

(State <s> - ^update-domain-eval - ^add-to-g-ach-ct

- ^sub-from-g-ach-ct - ^add-to-assump-ct)
-->
(State <s> ^checked-for-g-ach-success <q> <q> &)
)

;;; This is also a timing production; it fires when the system has had time
;;; to check for success both due to achieving N goal conjuncts in the
;;; particular lookahead search (if goal achievement iteration is being
;;; used), and due to achieving all task goal conjuncts. At this point,
;;; the production following this one, which creates the lookahead search
;;; evaluation, can fire.
(sp abstraction*checked-for-desired-state*lookahead

(Goal <g> ^problem-space <p> ^state <s> ^desired-state <d>
^operator <q> ^applied <q>)
(Problem-Space <p> ^type domain-problem-space)
(State <s> - ^add-to-assump-ct - ^update-domain-eval
^checked-for-g-ach-success <q>)
-->
(State <s> ^checked-for-desired-state <q>)
)

;;; This rule creates an evaluation for a successful lookahead search.
;;; It assumes that the domain evaluation is numeric.
(Sp abstraction*detect-numeric-success

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
^superoperator <sq> ^object <sg> ^desired <d>)
(Problem-Space <p> ^type domain-problem-space)
(Goal <sg> ^problem-space <sp> ^state <ss>

)
(Problem-Space <sp> ^name selection)
(Operator <sq> ^name evaluate-object ^evaluation <e>)
(State <s> ^found-success <d>
;; see above-- this test is necessary in soar5.0.2.
;; The systems waits until all tests for success have been made,
;; to ensure that useful learning will occur.
^checked-for-desired-state <q>
^domain-eval <count> ^assumption-count <acount>)

(COUNT <count> ^num <count-num>) ;the domain evaluation
(COUNT <acount> ^num <assump-count-num>) ;the number of assumptions made.
-->
(evaluation <e> ^found-success true

^numeric-value <nv> <nv> &
^desired <d>)

;; keep two values separate so that can combine them lexicographically
;; when comparing evaluations.
(numeric-value <nv> ^assump-count-num <assump-count-num> ^eval-num <count-num>)
)

;;; If success was based on achieving all goals, add this information to
;;; the evaluation.
(Sp abstraction*detect-numeric-success*note-all-goals

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>

^superoperator <sq> ^object <sg> ^desired <d>)
(Problem-Space <p> ^type domain-problem-space)
(Goal <sg> ^problem-space <sp> ^state <ss>

)
(Problem-Space <sp> ^name selection)

(Operator <sq> ^name evaluate-object ^evaluation <e>)
(State <s> ^found-success <d> ^checked-for-desired-state <q>
^all-goals t)
-->
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(evaluation <e> ^all-goals t)

)

A.5 Method Increments

A.5.1 Iterative abstraction and Goal Achievement Itera-

tion

See also the section on \Detection of Search Completion" (Section A.4), in which the

goal achievement iteration method is additionally implemented by declaring that a

search has been successful when some number of the task's goal conjuncts have been

achieved.

;;; This production produces an evaluate-object operator, in the selection
;;; space, for each item (e.g., operator) in a tie. This production replaces
;;; an original default rule, and is is different from the original in that
;;; here, new evaluate-object operators are proposed EACH TIME the selection
;;; space iterates on abstraction level.
(Sp eval*select-evaluate

(Goal <g> ^problem-space <p> ^state <s> ^item <x>)
(Problem-Space <p> ^name selection)
;;want to propose new eval ops for each change of the
;;'abstract-after-level' (i.e., iteration level).
(State <s> ^abstract-after-level <count>
)
-->
(Operator <o> ^state <s> ^name evaluate-object ^object <x>)
(Goal <g> ^operator <o> = )
(Goal <g> ^operator <o> + ))

;;; The following two rules allow the system to notice that it needs an
;;; evaluation for an operator -- the first rule postulates that an eval is needed
;;; for each operator (for each abstraction iteration), and the second
;;; retracts the information if that is not true.
(sp eval*notice-need-evals

(goal <g> ^problem-space <p> ^item <op> ^state <s>)
(problem-space <p> ^name selection)
(state <s> ^abstract-after-level <n> )
-->
(goal <g> ^need-eval <op> + &)
)

(sp eval*notice-have-eval

(goal <g> ^problem-space <p> ^state <s>)
(problem-space <p> ^name selection)
(state <s> ^evaluation <e>)
(evaluation <e> ^object <op> ^<< cutoff numeric-value >> <nv>)
-->
(goal <g> ^need-eval <op> - )

)

;;; Propose a new "iterate" operator for each set of "abstract-after-level"
;;; and "goal-achievem-req" values in the top-level selection space. This
;;; operator is made worse than the eval-object operators, and if they
;;; have all applied but the impasse has not been resolved, the
;;; iterate operator causes a new abstraction iteration to begin.
(Sp eval*propose*iterate

(Goal <g> ^problem-space <p> ^state <s>
;; if this is the top-level selection space
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^top-lkahead-sel-spce t)

(Problem-Space <p> ^name selection)

(State <s> ^abstract-after-level <count> ^goal-achievem-req <gcount>)
-->
(Goal <g> ^operator <o> + )
(operator <o> ^abstract-after-level <count> + &, ^goal-achievem-req <gcount> + &)

(Operator <o> ^name iterate)

)

;;; The 'save-old-evals' operator saves the operator evaluations from the
;;; previous iteration to the new one. This can be useful for comparative
;;; purposes. As it turns out, this information is not used by the current
;;; methods. However, the productions which implement it are listed here
;;; since they would in fact be used by proposed extensions of the method
;;; increments.

;;; Propose the 'save-old-evals' operator.

(Sp eval*propose*save-old-evals

(Goal <g> ^problem-space <p> ^state <s>
^top-lkahead-sel-spce t)
(Problem-Space <p> ^name selection)
(State <s> ^abstract-after-level <count> ^goal-achievem-req <gcount>)
-->
(Goal <g> ^operator <o> + )
(operator <o> ^abstract-after-level <count> + &, ^goal-achievem-req <gcount> + &)
(Operator <o> ^name save-old-evals)
)

;;; make the 'save-old-evals' operator worse than the eval-object
;;; operators ...
(Sp eval*preference*save-old-evals*worse

(Goal <g> ^problem-space <p> ^state <s> ^operator <q> +
^operator { <> <q> <q-eval> } +
)
(Problem-Space <p> ^name selection)
(Operator <q> ^name save-old-evals)
(Operator <q-eval> ^name evaluate-object)
-->
(Goal <g> ^operator <q> < <q-eval>)
)

;;; ... but better than the iterate operator, so it will be done
;;; before the iterate operation.
(sp eval*preference*save-old-evals*better*iterate

(Goal <g> ^problem-space <p> ^state <s> ^operator <q> +
^operator { <> <q> <iterate> } +
)
(Problem-Space <p> ^name selection)
(Operator <q> ^name save-old-evals)
(operator <iterate> ^name iterate)
-->
(goal <g> ^operator <q> > <iterate>)
)

;;; the iterate operator is also worse than the eval-object operators.
(Sp eval*preference*iterate*worse

(Goal <g> ^problem-space <p> ^state <s> ^operator <q> +
^operator { <> <q> <q-eval> } +
;^op-set <opss>
)
(Problem-Space <p> ^name selection)
(Operator <q> ^name iterate)
(Operator <q-eval> ^name evaluate-object)
-->
(Goal <g> ^operator <q> < <q-eval>)

)

;; 'reconsider' the 'save-old-evals' operator once it is proposed.
(sp eval*reconsider-save-old-evals

(goal <g> ^problem-space <p> ^state <s> ^item <x> ^operator <q>

)
(problem-space <p> ^name selection)
(operator <q> ^name save-old-evals)
-->
(goal <g> ^operator <q> @)

)
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;;; In the selection space, if the operator is 'save-old-evals', then
;;; move the evaluations to the "old-evaluations".
(sp eval*apply-evaluate*move-evals-to-old-evals

(Goal <g> ^problem-space <p> ^operator <o> ^state <s>
- ^not-in-abstr-subgoal)

(Problem-Space <p> ^name selection)
(Operator <o> ^name save-old-evals)

(State <s> ^evaluation <old-eval>)
;; wait until have moved the previous "old evals" from the state.

(state <s> ^removed-old-evals <o>)
-->
(State <s> ^old-evaluation <old-eval> + &)
(state <s> ^evaluation <old-eval> - )
(state <s> ^changed-new-to-old-evals <o>)

(State <s> ^old-e-not-ag t -)

)

;; when the operator is "save-old-evals", remove the previous "old
;; evals" from the state in preparation to shifting the current evals to
;; the "old evals".
(sp eval*apply-evaluate*remove-old-old-evals

(Goal <g> ^problem-space <p> ^operator <o> ^state <s>)
(Problem-Space <p> ^name selection)
(Operator <o> ^name save-old-evalss)
(State <s> ^old-evaluation <old-eval>
- ^removed-old-evals <o>)
-->
(State <s> ^old-evaluation <old-eval> -)
)

;;; This production applies at the same time as the one above, and
;;; indicates that there has been time to remove the previous "old evals"
;;; from the state.
(sp eval*apply-evaluate*remove-old-old-evals*tag

(Goal <g> ^problem-space <p> ^operator <o> ^state <s>)
(Problem-Space <p> ^name selection)
(Operator <o> ^name save-old-evals)
-->
(state <s> ^removed-old-evals <o> + &)
)

;;; This rule is used with the goal achievement iteration method. If the
;;; operator is 'iterate' (i.e., if iterating), then decrement the
;;; 'goal-achievem-req' count. Don't want to decrement it if it's already
;;; at '1'.
(Sp eval*apply*g-iterate*decr-goal-ach-req

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
^object <sg>
)
(Problem-Space <p> ^name selection)
(Operator <q> ^name iterate)
(Operator <q> ^goal-achievem-req <count>)
(state <s> ^changed-new-to-old-evals <q>)
;;; don't decrement if already one-- always want to achieve at
;;; least one goal

(COUNT <count> ^num { <> 1 <num>} )
-->
(State <s> ^goal-achievem-req <ncount> + &)
(State <s> ^goal-achievem-req <count> - )

(COUNT <ncount> ^num (compute <num> - 1))
(Goal <g> ^operator <q> - )

(goal <g> ^operator <q> @)
)

;;; similarly, when the operator is 'iterate', increment the
;;; 'abstract-after' level for the iterative abstraction method.
(Sp eval*apply*iterate*incr-abstract-level

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
^object <sg>
)
(Problem-Space <p> ^name selection)
(Operator <q> ^name iterate)
(Operator <q> ^abstract-after-level <count>)
(COUNT <count> ^num <num>)
-->
(State <s> ^abstract-after-level <ncount> + &)
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(State <s> ^abstract-after-level <count> - )
(COUNT <ncount> ^num (compute 1 + <num>))

(Goal <g> ^operator <q> - )
(goal <g> ^operator <q> @)

)

;;; make sure that the two previous rules are considered operator
;;; applications.
(operator-applications '(eval*apply*iterate*decr-goal-ach-req

eval*apply*g-iterate*incr-abstract-level))

;;; if there are no items left to eval (all been rejected) then no need to
;;; iterate.
(Sp eval*preference*reject*iterate*no-items-to-eval

(Goal <g> ^problem-space <p> ^state <s> ^quiescence t

- ^item)
(Problem-Space <p> ^name selection)

(Goal <g> ^operator <o> + )
(Operator <o> ^name iterate)
-->
(Goal <g> ^operator <o> - )
)

A.5.2 Assumption Counting

;;; If a precondition was abstracted, note that an assumption was made.
;;; As the rules are presented here, it is necessary to have a
;;; different such rule for each precondition of each operator, but the
;;; process could be generalized.
(Sp [ps-domain-name]*apply*[operator-name]*abs-prec-chk*[precondition-name]*assump-ct

(Goal <g> ^problem-space <p> ^state <s> ^in-abstr-subgoal
;; if precondition was abstracted
^operator <q> ^[precondition-name]-precond-abs <q>)
(state <s> ^op-mark <om>)
(Goal <g> - ^applied <q>)
;; don't make preconds met of operator that was subgoaled on.
- { (Goal <g> ^desired-op <des> ^operator <q>)
(Operator <q> ^duplicate-of <des>) }
(Problem-Space <p> ^name [ps-domain-name])
(Operator <q> ^name [operator-name])
-->
;; note that had to make an assumption for the operator.
;; The assumption-count tags are given both an acceptable and an
;; indiff. preference. If there are more than one, then one will
;; randomly become the value of ^add-to-assump-ct. Then, once it's
;; tallied and rejected, another value will pop into place.
(State <s> ^add-to-assump-ct [operator-name]-[precondition-name])
(State <s> ^add-to-assump-ct [operator-name]-[precondition-name] = )
;; A hack for soar 5.0.2: keep a list of all the assumption-counts as
;; well, since don't want them to be retracted and disappear forever
;; before they are made acceptable. (this supposedly won't be
;; necessary in soar5.1).

(state <s> ^add-to-assump-ct-list [operator-name]-[precondition-name] + & )
)

(operator-applications
'(
[ps-domain-name]*apply*[operator-name]*abs-no-prec-chk*[precondition-name]*assump-ct
)

)

;;; Again, a hack necessary for Soar 5.0.2: keep assumption-counts that
;;; haven't been made acceptable yet 'alive' so that they can be selected.
(sp abstraction*propose*assump-ct*keep-accept

(goal <g> ^problem-space <p> ^state <s>)
(problem-space <p> ^type domain-problem-space)
- { (Goal <g> ^object <sg>)

(Goal <sg> ^state <s> ^operator ) }
(state <s> ^add-to-assump-ct-list <item>

- ^add-to-assump-ct <item>)
-->
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(state <s> ^add-to-assump-ct <item> <item> = )

)

;;; For each "add-to-assump-ct" value, add 1 to the assumption-count value
;;; for the current lookahead search. Note that these rules, as they
;;; stand, don't tally any information about the number of assumptions made
;;; PER OPERATOR, since the "assumption counting" method increment only
;;; uses information about the entire search. The idea is that this
;;; production will fire once for each "add-to-assump-ct" there is (they
;;; are indifferent to each other, and as each one is tallied, it is
;;; rejected, giving the next one a chance to pop up.)

(Sp [ps-domain-name]*add-to-assumption-count
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Problem-Space <p> ^name [ps-domain-name])
(Operator <q> ^type [ps-domain-name]-op)

- { (Goal <g> ^object <sg>)

(Goal <sg> ^state <s> ^operator ) }
(State <s> ^add-to-assump-ct <xxx>)

(State <s> ^assumption-count <count>)
(COUNT <count> ^num <num>)
-->
(State <s> ^assumption-count <newcount> <newcount> &)
(State <s> ^assumption-count <count> - )
(COUNT <newcount> ^num (Compute 1 + <num>))
(State <s> ^add-to-assump-ct <xxx> - )
(state <s> ^add-to-assump-ct-list <xxx> - )
)

A.5.3 The Abstraction-Gradient Method Increment

;;; This production is loaded in when using the abstraction-gradient method increment in
;;; which abstr level is increased as a search progresses. When an
;;; operator subgoal is resolved, the "abstract-after-level", which determines
;;; how many levels of preconditions are subgoaled upon before abstracting,
;;; is decremented. This means that the next operator applied in the
;;; search will be more abstract.
(sp opsub*decr-abstraction-level*1

(goal <subg>
^name operator-subgoal ^in-eval-obj-subgoal
^object <g> ^problem-space <subp> ^state <subs> )
(goal <g> ^problem-space <p> ^state <s> ^operator <q> ^applied <q>

^abstract-after-level <count> - ^passed-back-abs-info <q>)
(count <count> ^num <num>)

-->
(goal <g> ^abstract-after-level <count> - )

(goal <g> ^abstract-after-level <ncount> + &, ^passed-back-abs-info <q> + &,)
(count <ncount> ^num (compute <num> - 1 ))
;;(write1 (crlf) "passed back abstr info for goal" <g> ".")
)

;;; This production is loaded in for a variation on the method increment
;;; above, and is used in conjunction with the the method increment which does
;;; iteration on goal achievement. In this variation, the count which
;;; tells the problem solver how many goal conjuncts must be achieved in

;;; the lookahead search ("goal-achievem-req") is incremented under the
;;; same conditions in which the "abstract-after-level" is decremented. This
;;; "backs off" the search so that now the same conditions exist as in the
;;; previous iteration, and the chunks learned in the previous iteration

;;; can now apply. (This does not necessarily provide the best
;;; performance!)

(sp opsub*decr-abstraction-levelthen*2
(goal <subg>

^name operator-subgoal ^in-eval-obj-subgoal

^object <g> ^problem-space <subp> ^state <subs> )
(goal <g> ^problem-space <p> ^state <s> ^operator <q> ^applied <q>

^goal-achievem-req <count>

- ^passed-back-abs-info <q>)
(count <count> ^num <num>)

-->
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(goal <g> ^goal-achievem-req <count> - )

(goal <g> ^goal-achievem-req <ncount> + &, ^passed-back-abs-info <q> + &,)

(count <ncount> ^num (compute <num> + 1 ))
;;(write1 (crlf) "passed back g-abstr info for goal" <g> ".")

)

;; ensure that the two rules above are considered "operator applications".
(operator-applications '(opsub*decr-abstraction-level*1

opsub*decr-abstraction-level*2))

A.5.4 The Extended Plan Use method increment

;;; the following productions implement the use and retraction of the plans
;;; learned during iterative abstract search, at the execution level. All
;;; plans from all iterations are allowed to fire in the execution space,
;;; and add to the state their "abstraction level". They fire because
;;; there exists an "abstract-after-level" tag on the goal with their
;;; particular abstraction level. Then, the new "abstraction-level"
;;; augmentations to the state are compared. Only the highest-level plans
;;; are retained-- the rest are RETRACTED by retracting the
;;; "abstract-after-level" tag for their level; when
;;; the tag is retracted for a level, the conditions of the plans for that
;;; level are no longer met.

;;; This rules compares the "abstraction-levels" which exist in an
;;; execution-space state. Retract the corresponding "abstract-after-level"
;;; tags (attached to the goal) for all but the highest level.
(sp top-level-reject-abs-afters

(goal <g> ^problem-space <p> ^state <s> ^not-in-abstr-subgoal)
(state <s> ^abstraction-level <a1> <a2>)
(goal <g> ^abstract-after-level <abs>)
(count <a1> ^num <num1>)
(count <a2> ^num { < <num1> <num2> } )
-->
(count <abs> ^num <num2> - )
)

;;; If an operator generates a tie impasse, retract the
;;; "abstract-after-level" augmentations from the goal which generated the
;;; tie. Want to keep them removed until the tie is resolved.
(sp retract-abstract-after-level

(goal <subg> ^object <g> ^quiescence t
^impasse tie ^attribute operator)
(goal <g> ^problem-space <p> ^state <s> - ^operator

^not-in-abstr-subgoal)
(goal <g> ^abstract-after-level <abs>)
-->
(goal <g> ^abstract-after-level <abs> - )
)

;;; When an operator has applied, replace the "abstract-after-level"
;;; augmentations to the goal, so that new abstract plans can fire.
(sp replace*abstract-after-level

(goal <g> ^problem-space <p> ^state <s> ^operator <o>
^applied <o>
;; do when in execution space

^not-in-abstr-subgoal)
(goal <g> ^abstract-after-level <count> - ^replaced-aal <o>)
-->
(goal <g> ^abstract-after-level <count> -)
(goal <g> ^abstract-after-level <abs> ^replaced-aal <o> + &)
;; The replacement numbers of the abstract-after-level augmentations
;; should match the initialization numbers added originally in the
;; production which initialized the initial state, etc. (see section on

;; 'Task Initialization' above.)
(count <abs> ^num 1 + &, 2 + &, 3 + &, 4 + &,
5 + &, 6 + &, 7 + &, 8 + &, 9 + &, 10 + &)
)

;;; This rule also replaces the "abstract-after-level" augmentations to the
;;; goal, but this occurs when each new operator is selected, IF there are
;;; no abstract-after-level augmentations present at all. This means that
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;;; they were removed while working in an operator tie subgoal, and now
;;; that the subgoal is resolved and an operator selected, they need to be
;;; replaced.

(sp add-back-in*abstract-after-level
(goal <g> ^problem-space <p> ^state <s> ^operator <o>

- ^applied <o>
;; do this when in execution space
^not-in-abstr-subgoal)

(goal <g> - ^abstract-after-level )
-->
(goal <g> ^abstract-after-level <abs> )

(count <abs> ^num 1 + &, 2 + &, 3 + &, 4 + &,
5 + &, 6 + &, 7 + &, 8 + &, 9 + &, 10 + &)
)

;;; each time an operator applies in the execution space, want to remove
;;; the "abstraction level" tags added via previous chunks. This way, when
;;; new chunks fire, we can again figure out the highest iteration level of
;;; the chunks, and retract the ones not from that level.
(sp remove-from-state*abstraction-levels

(goal <g> ^problem-space <p> ^state <s> ^operator <o>
^applied <o>
;; do when in execution space
^not-in-abstr-subgoal)
(goal <g> - ^removed-abs-level <o>

- ^replaced-aal <o>)
(state <s> ^abstraction-level <abslevel>)
-->
(state <s> ^abstraction-level <abslevel> - )
(goal <g> ^removed-abs-level <o> + &)
)

;; ensure that the productions above are considered operator applications.
(operator-applications '(
replace*abstract-after-level
remove-from-state*abstraction-levels
add-back-in*abstract-after-level))

A.6 Con
ict Resolution

Because con
icts can only be resolved by rejecting all but one item in the con
ict

(in the version of Soar used for this paper), there need to be separate rules for tie

resolution and con
ict resolution. However, analogously to the rules in Section A.3,

these rules look at both domain evaluation and assumption count to make their

decision, and implement the same lexicographic ordering.

(operator-applications
'( eval*prefer-lower-evaluation*assumption-count*conflict

eval*prefer-lower-evaluation*evaluation*conflict
eval*equal-eval-indifferent*not-first-abs-count*conflict
robot*eval*equal-eval-indiff*same-evals*acount*conflict
robot*eval*equal-eval-indiff*same-evals*eval-num*conflict

))

(Sp eval*prefer-lower-evaluation*assumption-count*conflict
(Goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2>

^impasse conflict ^quiescence t

)
(Problem-Space <p> ^name selection)
(Goal <g2> ^problem-space <p2> ^state <s2> ^{ << desired-state desired-op Desired >> <des> } <d>)

(State <s> ^evaluation <e1> ^evaluation { <> <e1> <e2> })
(desired <d> ^better lower)
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(evaluation <e1> ^object <o1> ^numeric-value <v>
;;^<< desired-state desired-op Desired >> <d>

^<des> <d>)
(numeric-value <v> ^acount-num <an>)
(evaluation <e2> ^object { <> <o1> <o2> } ^numeric-value <v2>

;;^<< desired-state desired-op Desired >> <d>
^<des> <d>)

(numeric-value <v2> ^acount-num { > <an> <an2> })
-->
;;(Goal <g2> ^operator <o2> < <o1> )
(goal <g2> ^operator <o2> -)

)

;;; only if the assumption counts are the same, look at the evaluations.

(Sp eval*prefer-lower-evaluation*evaluation*conflict
(Goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2> ^impasse conflict

^quiescence t

)
(Problem-Space <p> ^name selection)
(Goal <g2> ^problem-space <p2> ^state <s2> ^{ << desired-state desired-op Desired >> <des> } <d>)

(State <s> ^evaluation <e1> ^evaluation { <> <e1> <e2> })
(desired <d> ^better lower)
(evaluation <e1> ^object <o1> ^numeric-value <v>

;;^<< desired-state desired-op Desired >> <d>
^<des> <d>)

(numeric-value <v> ^acount-num <an> ^eval-num <en>)
(evaluation <e2> ^object { <> <o1> <o2> } ^numeric-value <v2>

;;^<< desired-state desired-op Desired >> <d>
^<des> <d>)

(numeric-value <v2> ^acount-num <an> ^eval-num { > <en> <en2> })
-->
;;(Goal <g2> ^operator <o2> < <o1> )
(goal <g2> ^operator <o2> -)
)

(Sp eval*equal-eval-indifferent*not-first-abs-count*conflict
(Goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2>

^impasse conflict ^operator <eval> ^quiescence t)
(Problem-Space <p> ^name selection)
(Goal <g> ^not-first-abs-count)
(operator <eval> ^name evaluate-object ^object <y>)
(State <s> ^evaluation <e1> ^evaluation { <> <e1> <e2> })
(Goal <g2> ^problem-space <p2> ^state <s2> ^{ << Desired-state desired-op Desired >> <des> } <d>)
(evaluation <e1> ^object <x> ^numeric-value <v> ^<des> <d>)
(numeric-value <v> ^acount-num <an> ^eval-num <cn>)
(Evaluation <e2> ^object <y> ^numeric-value <v2> ^<des> <d>)
;; for the evaluations to be the same, the assumption-count and the
;; problem-space evaluation have to be the same.
(numeric-value <v2> ^acount-num <an> ^eval-num <cn>)
-->
(Goal <g2> ^<role> <y> - )

)

(sp robot*eval*equal-eval-indiff*zero-acount*conflict

(goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2>
^impasse conflict ^operator <eval> ^quiescence t)
(operator <eval> ^name evaluate-object ^object <op2>)
(problem-space <p> ^name selection)

(state <s> ^evaluation <e1> { <> <e1> <e2> } )
(evaluation <e1> ^numeric-value <nv1> ^object <op1>)

(numeric-value <nv1> ^eval-num <en> ^acount-num 0)
(evaluation <e2> ^numeric-value <nv2> ^object { <> <op1> <op2> } )
(numeric-value <nv2> ^eval-num <en> ^acount-num 0)
-->
;;(goal <g2> ^<role> <op1> = <op2> )
(goal <g2> ^<role> <op2> -)

)

(sp robot*eval*equal-eval-indiff*same-evals*acount*conflict
(goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2>

^impasse conflict ^operator <eval> ^quiescence t)
(problem-space <p> ^name selection)
(operator <eval> ^name evaluate-object ^object <op2>)
(state <s> ^evaluation <e1> { <> <e1> <e2> }
^old-evaluation <oe1> { <> <oe1> <oe2> } )
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(evaluation <e1> ^numeric-value <nv1> ^object <op1>)

(numeric-value <nv1> ^eval-num <en> ^acount-num <an>)
(evaluation <e2> ^numeric-value <nv2> ^object { <> <op1> <op2> } )
(numeric-value <nv2> ^eval-num <en> ^acount-num <an>)
(evaluation <oe1> ^numeric-value <onv1> ^object <op1>)

(numeric-value <onv1> ^eval-num <en> ^acount-num <an>)
(evaluation <oe2> ^numeric-value <onv2> ^object <op2>)

(numeric-value <onv2> ^eval-num <en> ^acount-num <an>)
-{(state <s> ^evaluation <e3> ^old-evaluation <oe3>)
(evaluation <e3> ^numeric-value <nv3> ^object <op3>)
(evaluation <oe3> ^numeric-value <onv3> ^object <op3>)

(numeric-value <nv3> ^acount-num <nv3-a>)
(numeric-value <onv3> - ^acount-num <nv3-a>)}
-->
;(goal <g2> ^<role> <op1> = <op2> )

(goal <g2> ^<role> <op2> -)

)

(sp robot*eval*equal-eval-indiff*same-evals*eval-num*conflict

(goal <g> ^problem-space <p> ^state <s> ^attribute <role> ^object <g2>
^impasse conflict ^operator <eval> ^quiescence t)
(problem-space <p> ^name selection)
(operator <eval> ^name evaluate-object ^object <op2>)
(state <s> ^evaluation <e1> { <> <e1> <e2> }
^old-evaluation <oe1> { <> <oe1> <oe2> } )
(evaluation <e1> ^numeric-value <nv1> ^object <op1>)
(numeric-value <nv1> ^eval-num <en> ^acount-num <an>)
(evaluation <e2> ^numeric-value <nv2> ^object { <> <op1> <op2> } )
(numeric-value <nv2> ^eval-num <en> ^acount-num <an>)
(evaluation <oe1> ^numeric-value <onv1> ^object <op1>)
(numeric-value <onv1> ^eval-num <en> ^acount-num <an>)
(evaluation <oe2> ^numeric-value <onv2> ^object <op2>)
(numeric-value <onv2> ^eval-num <en> ^acount-num <an>)
-{(state <s> ^evaluation <e3> ^old-evaluation <oe3>)
(evaluation <e3> ^numeric-value <nv3> ^object <op3>)
(evaluation <oe3> ^numeric-value <onv3> ^object <op3>)
(numeric-value <nv3> ^acount-num <nv3-a> ^eval-num <nv3-e>)
(numeric-value <onv3> ^acount-num <nv3-a> - ^eval-num <nv3-e> )}
-->
;;(goal <g2> ^<role> <op1> = <op2> )
(goal <g2> ^<role> <op2> -)
)



Appendix B

Eight-Puzzle Domain

The Eight-Puzzle is a sliding tile puzzle in which there are eight tiles and one empty

space in a 9x9 grid of 'cells', as shown in Figure B.1. The tiles are numbered, and

arbitrarily ordered at the beginning of the task. The task goal is to slide the tiles

from cell to cell until they show a given goal con�guration. In our tests, such goals

were speci�ed by a conjunction of tile/cell pairs.

In our formulation, the ep domain has one operator, which moves a tile from

square to square. The operator is instantiated with a tile, and the source and des-

tination squares. The operator has one precondition | the destination square must

be blank. The condition that the tiles be adjacent is critical, in that it is represented

as part of the conditions for proposing the operator. (There is no reason that exper-

iments couldn't be run with this condition explicitly represented as a precondition

as well. This is left for future work.) Thus, during abstract search, the tile may be

moved to an adjacent square without regard to whether or not there is already a tile

on the square. Measuring the number of steps in the shortest such search produces

the \Manhattan Distance" heuristic [Pearl, 1983].

The search control for the ep domain prefers operators which move a tile towards

its goal spot along either the x- or y-axis of the grid of cells. Of those operators which

move a tile towards its goal, search control prefers those for which all preconditions

are met. If an operator is selected and can not directly apply because its target cell is

occupied, operator subgoaling search control prefers operators which clear the target

300
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Figure B.1: Example state in eight-puzzle task. The dark square represents the empty
spot in the grid, and the white squares represent tiles.

cell, by moving the tile already on the target cell in any direction. Additional search

control prevents operator subgoaling loops: if an operator is proposed to move Tile X

to a target cell, and an operator subgoal is generated to achieve this operator, Tile X

can not be moved to a cell other than that target cell as part of that operator subgoal.

B.1 Operator Application Rules

Below are listed the Soar rules for applying the ep operator. Rules which add a

\reconsider" preference (\@") for an operator signal that the operator application

has completed. For a full speci�cation of the syntax of the version of Soar used in

this paper (version 5.0.2), see [Laird et al., 1989]. In the following, \binding" relations

specify which tile is currently on which cell. In the move-tile operator instantiations,

the \tile-cell" is the cell currently containing the tile being moved; the \other-cell"

is the target cell; and the \tile-binding" is the binding of the tile being moved. In

the state, \tile-cell" contains the target cell of the most recent move; \tile-binding"

is the cell binding created by the most recent move; and the \prev-cell" is the cell

most recently moved from. The blank is represented as Tile 0.

(sp eight*apply*move-tile*change-old-tile-cell-bindings
(goal <g> ^problem-space <p> ^state <s> ^operator <o> )

(problem-space <p> ^name eight-puzzle)

(Goal <g> ^all-preconds-met <o>)
(state <s> ^binding <b1> )

(operator <o> ^tile-cell <cell>
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^name move-tile ^tile-binding <b2>)

(binding <b2> ^tile <t2> ^cell <cell>)

(binding <b1> ^tile <t2> ^cell <cell>)
-->
(state <s> ^binding <b1> - ^prev-cell <cell> + & )
)

(sp eight*apply*move-tile*change-old-tile-cell-bindings2

(goal <g> ^problem-space <p> ^state <s> ^operator <o> )
(problem-space <p> ^name eight-puzzle)

(Goal <g> ^all-preconds-met <o>)

(operator <o> ^name move-tile ^other-cell <other-cell> ^tile-binding <b2>)
(binding <b2> ^tile <t2>)
-->
(state <s> ^tile-cell <other-cell> + &, ^tile-binding <b3>+ &,

^binding <b3> + & )

(binding <b3> ^tile <t2> ^cell <other-cell>)
)

(Sp eight*apply*move-tile*remove-old-tile-binding-info

(goal <g> ^problem-space <p> ^state <s> ^operator <o>)
(problem-space <p> ^name eight-puzzle)
(operator <o> ^name move-tile ^other-cell <other-cell>
)

(Goal <g> ^all-preconds-met <o>)
(State <s> ^tile-binding <some-binding>)
(binding <some-binding> ^cell <> <other-cell> )
-->
(state <s> ^tile-binding <some-binding> - )
)

(sp eight*apply*move-tile*remove-old-tile-cell-info
(goal <g> ^problem-space <p> ^state <s> ^operator <o>)
(problem-space <p> ^name eight-puzzle)
(operator <o> ^name move-tile ^other-cell <other-cell>)
(Goal <g> ^all-preconds-met <o>)
(State <s> ^tile-cell {<> <other-cell> <something>} )
-->
(state <s> ^tile-cell <something> -)
)

(sp eight*apply*move-tile*remove-old-prev-cell-info
(goal <g> ^problem-space <p> ^state <s> ^operator <o>)
(problem-space <p> ^name eight-puzzle)
(operator <o> ^name move-tile ^tile-cell <tile-cell>)
(Goal <g> ^all-preconds-met <o>)
(State <s> ^prev-cell {<> <tile-cell> <something>} )
-->
(state <s> ^prev-cell <something> -)
)

;; If a tile is moved onto the blank cell, remove the 'blank' annotation.
(sp eight*apply*move-tile*remove-blank

(goal <g1> ^state <d2> ^problem-space <p1>)
(problem-space <p1> ^name eight-puzzle)
- { (goal <g1> ^object <sg>)
(goal <sg> ^state <d2>

) }
(state <d2> ^binding <d1> { <> <d1> <b1> })

(binding <d1> ^cell <c1> ^tile <t1>)
(tile <t1> ^name 0)
(binding <b1> ^cell <c1> ^tile { <> <t1> <t2> })

-->
(state <d2> ^binding <d1> -))

(sp eight*apply*move-tile*change-tile-cell-bindings*make-blank
(goal <g> ^problem-space <p> ^state <s> ^operator <o> )

(problem-space <p> ^name eight-puzzle)
(operator <o> ^tile-cell <cell> ^name move-tile )
(Goal <g> ^all-preconds-met <o>)
-->
(state <s> ^binding <b4> <b4> &)
;;; the cell the tile was moved FROM becomes blank.
(binding <b4> ^tile <t-blank> ^cell <cell>)

(tile <t-blank> ^name 0)
)
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(sp eight*reconsider-move-tile-op

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Problem-Space <p> ^name eight-puzzle)

(Operator <q> ^name move-tile ^tile-cell <cell> ^other-cell <ocell>

^tile-binding <tb>)
(binding <tb> ^tile <tile>)

(State <s> ^prev-cell <cell> ^tile-cell <ocell>)
(state <s> ^binding <bind>)

(binding <bind> ^tile <tile> ^cell <ocell>)
-->
(Goal <g> ^operator <q> @ )

)

B.2 ep tasks

For the tests described here, the tasks each required 10 tile movements from initial to

goal state. The tasks were randomly generated. The initial and goal states for each

task are listed below, using Soar syntax.

Tile <t0> represents the blank, or empty, cell.

;; task #1, initial state.
(binding <bb0> ^cell <c11> ^tile <t6>)
(binding <bb1> ^cell <c12> ^tile <t8>)
(binding <bb2> ^cell <c13> ^tile <t2>)
(binding <bb3> ^cell <c21> ^tile <t4>)
(binding <bb4> ^cell <c22> ^tile <t5>)
(binding <bb5> ^cell <c23> ^tile <t7>)
(binding <bb6> ^cell <c31> ^tile <t3>)
(binding <bb7> ^cell <c32> ^tile <t1>)
(binding <bb8> ^cell <c33> ^tile <t0>)

;; task #1, desired state
(binding <d2> ^cell <c12> ^tile <t8>)
(binding <d3> ^cell <c13> ^tile <t7>)
(binding <d8> ^cell <c21> ^tile <t6>)
(binding <d0> ^cell <c22> ^tile <t2>)
(binding <d4> ^cell <c23> ^tile <t5>)
(binding <d7> ^cell <c31> ^tile <t4>)
(binding <d6> ^cell <c32> ^tile <t3>)

(binding <d5> ^cell <c33> ^tile <t1>)

;; task #2, initial state.
(binding <bb0> ^cell <c11> ^tile <t5>)
(binding <bb1> ^cell <c12> ^tile <t7>)

(binding <bb2> ^cell <c13> ^tile <t3>)

(binding <bb3> ^cell <c21> ^tile <t6>)
(binding <bb4> ^cell <c22> ^tile <t8>)
(binding <bb5> ^cell <c23> ^tile <t1>)
(binding <bb6> ^cell <c31> ^tile <t4>)

(binding <bb7> ^cell <c32> ^tile <t0>)
(binding <bb8> ^cell <c33> ^tile <t2>)

;; task #2, desired state
(binding <d1> ^cell <c11> ^tile <t7>)
(binding <d2> ^cell <c12> ^tile <t3>)
(binding <d3> ^cell <c13> ^tile <t1>)

(binding <d8> ^cell <c21> ^tile <t5>)
(binding <d0> ^cell <c22> ^tile <t4>)

(binding <d7> ^cell <c31> ^tile <t6>)
(binding <d6> ^cell <c32> ^tile <t2>)
(binding <d5> ^cell <c33> ^tile <t8>)
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;; task #3, initial state.
(binding <bb0> ^cell <c11> ^tile <t5>)

(binding <bb1> ^cell <c12> ^tile <t0>)
(binding <bb2> ^cell <c13> ^tile <t3>)

(binding <bb3> ^cell <c21> ^tile <t1>)

(binding <bb4> ^cell <c22> ^tile <t7>)
(binding <bb5> ^cell <c23> ^tile <t4>)

(binding <bb6> ^cell <c31> ^tile <t6>)
(binding <bb7> ^cell <c32> ^tile <t8>)

(binding <bb8> ^cell <c33> ^tile <t2>)

;; task #3, desired state
(binding <d1> ^cell <c11> ^tile <t5>)

(binding <d2> ^cell <c12> ^tile <t3>)

(binding <d3> ^cell <c13> ^tile <t4>)
(binding <d8> ^cell <c21> ^tile <t8>)

(binding <d0> ^cell <c22> ^tile <t6>)
(binding <d7> ^cell <c31> ^tile <t1>)

(binding <d6> ^cell <c32> ^tile <t2>)
(binding <d5> ^cell <c33> ^tile <t7>)

;; task #4, initial state.
(binding <bb0> ^cell <c11> ^tile <t2>)
(binding <bb1> ^cell <c12> ^tile <t3>)
(binding <bb2> ^cell <c13> ^tile <t1>)
(binding <bb3> ^cell <c21> ^tile <t0>)
(binding <bb4> ^cell <c22> ^tile <t6>)
(binding <bb5> ^cell <c23> ^tile <t8>)
(binding <bb6> ^cell <c31> ^tile <t7>)
(binding <bb7> ^cell <c32> ^tile <t5>)
(binding <bb8> ^cell <c33> ^tile <t4>)

;; task #4, desired state
(binding <d1> ^cell <c11> ^tile <t3>)
(binding <d2> ^cell <c12> ^tile <t1>)
(binding <d3> ^cell <c13> ^tile <t8>)
(binding <d8> ^cell <c21> ^tile <t5>)
(binding <d0> ^cell <c22> ^tile <t7>)
(binding <d4> ^cell <c23> ^tile <t6>)
(binding <d7> ^cell <c31> ^tile <t2>)
(binding <d5> ^cell <c33> ^tile <t4>)

;; task #5, initial state.
(binding <bb0> ^cell <c11> ^tile <t2>)
(binding <bb1> ^cell <c12> ^tile <t7>)
(binding <bb2> ^cell <c13> ^tile <t8>)
(binding <bb3> ^cell <c21> ^tile <t4>)
(binding <bb4> ^cell <c22> ^tile <t6>)
(binding <bb5> ^cell <c23> ^tile <t0>)
(binding <bb6> ^cell <c31> ^tile <t3>)
(binding <bb7> ^cell <c32> ^tile <t5>)
(binding <bb8> ^cell <c33> ^tile <t1>)

;; task #5, desired state
(binding <d1> ^cell <c11> ^tile <t4>)

(binding <d2> ^cell <c12> ^tile <t2>)
(binding <d3> ^cell <c13> ^tile <t7>)
(binding <d8> ^cell <c21> ^tile <t5>)

(binding <d0> ^cell <c22> ^tile <t3>)
(binding <d4> ^cell <c23> ^tile <t8>)
(binding <d7> ^cell <c31> ^tile <t6>)
(binding <d5> ^cell <c33> ^tile <t1>)

;; task #6, initial state.
(binding <bb0> ^cell <c11> ^tile <t2>)

(binding <bb1> ^cell <c12> ^tile <t8>)
(binding <bb2> ^cell <c13> ^tile <t0>)
(binding <bb3> ^cell <c21> ^tile <t6>)

(binding <bb4> ^cell <c22> ^tile <t4>)
(binding <bb5> ^cell <c23> ^tile <t3>)
(binding <bb6> ^cell <c31> ^tile <t7>)
(binding <bb7> ^cell <c32> ^tile <t1>)

(binding <bb8> ^cell <c33> ^tile <t5>)

;; task #6, desired state
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(binding <d1> ^cell <c11> ^tile <t6>)

(binding <d2> ^cell <c12> ^tile <t2>)

(binding <d3> ^cell <c13> ^tile <t3>)
(binding <d8> ^cell <c21> ^tile <t8>)

(binding <d0> ^cell <c22> ^tile <t4>)
(binding <d4> ^cell <c23> ^tile <t5>)

(binding <d6> ^cell <c32> ^tile <t7>)
(binding <d5> ^cell <c33> ^tile <t1>)

;; task #7. initial state.
(binding <bb0> ^cell <c11> ^tile <t4>)

(binding <bb1> ^cell <c12> ^tile <t2>)
(binding <bb2> ^cell <c13> ^tile <t8>)

(binding <bb3> ^cell <c21> ^tile <t6>)
(binding <bb4> ^cell <c22> ^tile <t7>)

(binding <bb5> ^cell <c23> ^tile <t3>)

(binding <bb6> ^cell <c31> ^tile <t1>)
(binding <bb7> ^cell <c32> ^tile <t0>)

(binding <bb8> ^cell <c33> ^tile <t5>)

;; task #7, desired state
(binding <d1> ^cell <c11> ^tile <t4>)
(binding <d2> ^cell <c12> ^tile <t2>)
(binding <d3> ^cell <c13> ^tile <t8>)
(binding <d8> ^cell <c21> ^tile <t6>)
(binding <d0> ^cell <c22> ^tile <t7>)
(binding <d4> ^cell <c23> ^tile <t1>)
(binding <d7> ^cell <c31> ^tile <t5>)
(binding <d5> ^cell <c33> ^tile <t3>)

;; task #8, initial state.
(binding <bb0> ^cell <c11> ^tile <t3>)
(binding <bb1> ^cell <c12> ^tile <t0>)
(binding <bb2> ^cell <c13> ^tile <t6>)
(binding <bb3> ^cell <c21> ^tile <t1>)
(binding <bb4> ^cell <c22> ^tile <t5>)
(binding <bb5> ^cell <c23> ^tile <t4>)
(binding <bb6> ^cell <c31> ^tile <t2>)
(binding <bb7> ^cell <c32> ^tile <t8>)
(binding <bb8> ^cell <c33> ^tile <t7>)

;; task #8, desired state
(binding <d1> ^cell <c11> ^tile <t3>)
(binding <d2> ^cell <c12> ^tile <t8>)
(binding <d3> ^cell <c13> ^tile <t6>)
(binding <d8> ^cell <c21> ^tile <t1>)
(binding <d0> ^cell <c22> ^tile <t2>)
(binding <d4> ^cell <c23> ^tile <t4>)
(binding <d7> ^cell <c31> ^tile <t5>)

(binding <d5> ^cell <c33> ^tile <t7>)

;; task #9, initial state.
(binding <bb0> ^cell <c11> ^tile <t2>)
(binding <bb1> ^cell <c12> ^tile <t3>)

(binding <bb2> ^cell <c13> ^tile <t4>)

(binding <bb3> ^cell <c21> ^tile <t1>)
(binding <bb4> ^cell <c22> ^tile <t5>)
(binding <bb5> ^cell <c23> ^tile <t0>)
(binding <bb6> ^cell <c31> ^tile <t7>)

(binding <bb7> ^cell <c32> ^tile <t6>)
(binding <bb8> ^cell <c33> ^tile <t8>)

;; task #9, desired state
(binding <d1> ^cell <c11> ^tile <t2>)
(binding <d2> ^cell <c12> ^tile <t8>)
(binding <d3> ^cell <c13> ^tile <t3>)

(binding <d8> ^cell <c21> ^tile <t1>)
(binding <d0> ^cell <c22> ^tile <t5>)
(binding <d4> ^cell <c23> ^tile <t4>)

(binding <d7> ^cell <c31> ^tile <t7>)
(binding <d5> ^cell <c33> ^tile <t6>)

;; task #10, initial state.
(binding <bb0> ^cell <c11> ^tile <t0>)
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(binding <bb1> ^cell <c12> ^tile <t5>)

(binding <bb2> ^cell <c13> ^tile <t1>)

(binding <bb3> ^cell <c21> ^tile <t8>)
(binding <bb4> ^cell <c22> ^tile <t7>)

(binding <bb5> ^cell <c23> ^tile <t3>)
(binding <bb6> ^cell <c31> ^tile <t4>)

(binding <bb7> ^cell <c32> ^tile <t6>)
(binding <bb8> ^cell <c33> ^tile <t2>)

;; task #10, desired state
(binding <d2> ^cell <c12> ^tile <t5>)

(binding <d3> ^cell <c13> ^tile <t3>)
(binding <d8> ^cell <c21> ^tile <t8>)

(binding <d0> ^cell <c22> ^tile <t1>)
(binding <d4> ^cell <c23> ^tile <t2>)

(binding <d7> ^cell <c31> ^tile <t4>)

(binding <d6> ^cell <c32> ^tile <t7>)
(binding <d5> ^cell <c33> ^tile <t6>)



Appendix C

Tower of Hanoi Domain

The Tower of Hanoi puzzle has three pegs, and N disks of increasing size. For our

experiments, the 3- and 4-disk versions of the puzzle were used. The rules of the

puzzle state that only the top disk on a stack can be moved to another peg, and that

a larger disk can not be moved on top of a smaller one. Figure C.1 shows selected

states during the solution of a typical toh task; here the goal is to stack all disks on

the third peg.

In the formulation of the toh domain used here, there is one operator, which

moves a disk to a peg. The preconditions of the operator encode the puzzle rules: the

disk must be clear (no other disks on top of it) and the top disk on the target peg

must not be smaller than the disk being moved. Thus, during abstract search when

preconditions are ignored, it is possible for a disk to be moved on top of a smaller

disk, or for a disk to be moved without clearing out the disks on top of it.

The Toh domain was provided with the following two search control rules. First,

if a disk to be moved is not clear, then move the disk on top of it out of the way.

Second, if a disk on a peg is smaller than the disk to be moved to that peg, then move

the �rst disk to a di�erent peg (note that this second rule does not specify the order

in which the pegs on a disk should be moved o�). With this search control, search is

still required to determine which potential ordering of disks can create a legal stack.

Search control was also provided to prevent operator subgoaling loops: if an operator

is proposed to move Disk X to a target peg, and an operator subgoal is generated to
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. . .

. . .

. . .

Figure C.1: Selected steps from a typical Tower of Hanoi task.
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achieve this operator, Disk X can not be moved to a peg other than that target peg

as part of that same operator subgoal.

C.1 Operator Application Rules

Below are listed the operator application rules for the toh domain. Rules which add

a \reconsider" preference (\@") for an operator signal that the operator application

has completed. For a full speci�cation of the syntax of the version of Soar used in

this paper (version 5.0.2), see [Laird et al., 1989]. In the following, each disk-to-peg

operator is instantiated with the disk being moved and its target peg. Included in the

states are \on-peg" relations (which specify which peg a disk is on), and \on-disk"

relations (which specify that one disk is on top of another).

(sp toh*apply*disk-to-peg*remove-on-peg
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name toh-domain)
(Operator <q> ^name disk-to-peg ^disk <disk> ^peg <peg>)
(State <s> ^on-peg <onp>)
(on-peg <onp> ^disk <disk> ^peg { <> <peg> <peg2>})
-->
(State <s> ^on-peg <onp> - )
)

(sp toh*apply*disk-to-peg*remove-on-disk*1
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name toh-domain)
(Operator <q> ^name disk-to-peg ^disk <disk> ^peg <peg>)
(State <s> ^on-disk <ond1> )
;; the disk is on another disk
(on-disk <ond1> ^top-disk <disk> ^bottom-disk <diskb>)
;; the disk is not already on the new peg
-{(state <s> ^on-peg <onp>)

(on-peg <onp> ^disk <disk> ^peg <peg>)}
-->
(State <s> ^on-disk <ond1> - )
)

(sp toh*apply*disk-to-peg*remove-on-disk*2
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name toh-domain)
(Operator <q> ^name disk-to-peg ^disk <disk>)

(State <s> ^on-disk <ond1> )
(on-disk <ond1> ^bottom-disk <disk> ^top-disk <diskb>)
-->
(State <s> ^on-disk <ond1> - )
)

(sp toh*apply*disk-to-peg*add-other-on-disk
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name toh-domain)

(Operator <q> ^name disk-to-peg ^disk <disk>)
(State <s> ^on-disk <ond1> <ond2>)
(on-disk <ond1> ^top-disk <disk> ^bottom-disk <diskb>)
(on-disk <ond2> ^bottom-disk <disk> ^top-disk <diskt>)
-{(state <s> ^on-peg <onp>)
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(on-peg <onp> ^disk <disk> ^peg <peg>)}
-->
(State <s> ^on-disk <ondnew> + & )
(on-disk <ondnew> ^top-disk <diskt> ^bottom-disk <diskb>)
)

(sp toh*apply*disk-to-peg*on-peg

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name toh-domain)
(Operator <q> ^name disk-to-peg ^disk <disk> ^peg <peg>)

(state <s> ^op-mark <om>)

-{(state <s> ^on-peg <onpx>)
(on-peg <onpx> ^disk <disk> ^peg <peg>)}
-->
(state <s> ^on-peg <onp> + &)

(on-peg <onp> ^disk <disk> ^peg <peg>)

)

(sp toh*apply*disk-to-peg*on-disk

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name toh-domain)
(Operator <q> ^name disk-to-peg ^disk <disk> ^peg <peg>)
(state <s> ^on-peg <onp>)
;; another disk already on the peg
(on-peg <onp> ^peg <peg> ^disk { <> <disk> <disk2> })
;; and it's the top disk on that peg
-{(state <s> ^on-disk <on>)
(on-disk <on> ^bottom-disk <disk2>)}
-{(state <s> ^on-disk <ondx>)
(on-disk <ondx> ^bottom-disk <disk2> ^top-disk <disk>)}
-->
(state <s> ^on-disk <ond2> + &)
(on-disk <ond2> ^bottom-disk <disk2> ^top-disk <disk>)
)

(Sp toh*reconsider*disk-to-peg
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
- ^applied <q>)
(Problem-Space <p> ^name toh-domain)
(Operator <q> ^name disk-to-peg ^disk <disk> ^peg <peg>)
(State <s> ^on-peg <onp>)
(on-peg <onp> ^disk <disk> ^peg <peg>)
-->
(Goal <g> ^operator <q> @ )
)

C.2 Tower of Hanoi Tasks

The initial and goal states for each task used in Chp 6 are listed below, using Soar

syntax. For each task, the listing �rst describes the relevant initial state augmenta-

tions for the task, and then the task goal. Note that the goal statements describe

which disk should end on which peg, but do not specify an ordering of disks on pegs.

;;; Task 1

;; initial state augmentations:
(on-peg <onp1> ^disk <disk1> ^peg <peg1>)

(on-peg <onp2> ^disk <disk2> ^peg <peg1>)
(on-peg <onp3> ^disk <disk3> ^peg <peg1>)
(on-peg <onp4> ^disk <disk4> ^peg <peg1>)
(on-disk <ond3> ^bottom-disk <disk4> ^top-disk <disk3>)
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(on-disk <ond1> ^bottom-disk <disk3> ^top-disk <disk2>)

(on-disk <ond2> ^bottom-disk <disk2> ^top-disk <disk1>)

;; goal statement

(goal-conjuncts <gc> ^disk-on-peg <g-onp1> + &, <g-onp2> + &,
<g-onp3> + &, <g-onp4> + &,)

(disk-on-peg <g-onp1> ^disk <disk1> ^peg <peg3>
^args two ^goal-name <gname1>)

(disk-on-peg <g-onp2> ^disk <disk2> ^peg <peg3>

^args two ^goal-name <gname2>)
(disk-on-peg <g-onp3> ^disk <disk3> ^peg <peg3>

^args two ^goal-name <gname3>)
(disk-on-peg <g-onp4> ^disk <disk4> ^peg <peg3>

^args two ^goal-name <gname4>)

;; Task 2

;; initial state augmentations:

(on-peg <onp1> ^disk <disk1> ^peg <peg2>)
(on-peg <onp2> ^disk <disk2> ^peg <peg1>)

(on-peg <onp3> ^disk <disk3> ^peg <peg1>)
(on-peg <onp4> ^disk <disk4> ^peg <peg2>)
(on-disk <ond2> ^bottom-disk <disk4> ^top-disk <disk1>)
(on-disk <ond1> ^bottom-disk <disk3> ^top-disk <disk2>)

;; goal statement
(goal-conjuncts <gc> ^disk-on-peg <g-onp1> + &, <g-onp2> + &,
<g-onp3> + &, <g-onp4> + &,)
(disk-on-peg <g-onp1> ^disk <disk1> ^peg <peg3>

^args two ^goal-name <gname1>)
(disk-on-peg <g-onp2> ^disk <disk2> ^peg <peg3>

^args two ^goal-name <gname2>)
(disk-on-peg <g-onp3> ^disk <disk3> ^peg <peg3>

^args two ^goal-name <gname3>)
(disk-on-peg <g-onp4> ^disk <disk4> ^peg <peg3>

^args two ^goal-name <gname4>)

;;; Task 3

;; initial state augmentations:
(on-peg <onp1> ^disk <disk1> ^peg <peg1>)
(on-peg <onp2> ^disk <disk2> ^peg <peg3>)
(on-peg <onp3> ^disk <disk3> ^peg <peg3>)
(on-peg <onp4> ^disk <disk4> ^peg <peg1>)
(on-disk <ond2> ^bottom-disk <disk4> ^top-disk <disk1>)
(on-disk <ond1> ^bottom-disk <disk3> ^top-disk <disk2>)

;; goal statement
(goal-conjuncts <gc> ^disk-on-peg <g-onp1> + &, <g-onp2> + &,
<g-onp3> + &, <g-onp4> + &,)
(disk-on-peg <g-onp1> ^disk <disk1> ^peg <peg3>

^args two ^goal-name <gname1>)

(disk-on-peg <g-onp2> ^disk <disk2> ^peg <peg3>
^args two ^goal-name <gname2>)

(disk-on-peg <g-onp3> ^disk <disk3> ^peg <peg3>

^args two ^goal-name <gname3>)
(disk-on-peg <g-onp4> ^disk <disk4> ^peg <peg3>

^args two ^goal-name <gname4>)

;; Task 4

;; initial state augmentations:

(on-peg <onp1> ^disk <disk1> ^peg <peg2>)

(on-peg <onp2> ^disk <disk2> ^peg <peg2>)
(on-peg <onp3> ^disk <disk3> ^peg <peg1>)
(on-peg <onp4> ^disk <disk4> ^peg <peg2>)
(on-disk <ond2> ^bottom-disk <disk4> ^top-disk <disk2>)

(on-disk <ond1> ^bottom-disk <disk2> ^top-disk <disk1>)

;; goal statement

(goal-conjuncts <gc> ^disk-on-peg <g-onp1> + &, <g-onp2> + &,
<g-onp3> + &, <g-onp4> + &,)

(disk-on-peg <g-onp1> ^disk <disk1> ^peg <peg3>
^args two ^goal-name <gname1>)

(disk-on-peg <g-onp2> ^disk <disk2> ^peg <peg3>
^args two ^goal-name <gname2>)

(disk-on-peg <g-onp3> ^disk <disk3> ^peg <peg3>



312 APPENDIX C. TOWER OF HANOI DOMAIN

^args two ^goal-name <gname3>)

(disk-on-peg <g-onp4> ^disk <disk4> ^peg <peg3>

^args two ^goal-name <gname4>)



Appendix D

Robot Domain

The Robot Domain was developed from the domain used in the original ABStrips

work [Sacerdoti, 1974]. In this domain, a simulated robot manipulates boxes within a

group of rooms. Some of the rooms are connected by doors which are initially either

opened or closed; the robot has the ability to close and open the doors as well. In

addition, the robot is able to move to various locations, and is able to move (push)

the boxes to speci�ed target locations.

Two room con�gurations were used{ the original ABStrips room con�guration,

and a more complex con�guration. The two con�gurations were shown in Figures 6.1

and 6.2 of Chapter 6.

A task in the Robot Domain is speci�ed by providing the problem solver with

an initial state and a set of goal conjuncts to achieve. The initial state description

describes the placement and status of the robot, boxes, and doors. The goal con-

juncts describe aspects of the desired state of the task, e.g. \Robot next to Door-A",

\Door-B closed", or \Box-A next to Box-B". There may be any number of goal con-

juncts (goal disjuncts were not used for these experiments, but nothing in the domain

prohibits such goal speci�cations as well).

Some of the Robot Domain tasks were tested both with and without the use of

domain knowledge about goal invariants, manifested as additional goal conjunct(s).

For example, in this domain, for a task in which a goal is to move one box (boxA)

next to another (boxB), the two boxes will always be in the same room when this

313
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goal is achieved. Thus, the goal conjunct \in-same-room(boxA, boxB)" may always

be added to such a task with no loss of generality. In the task listings below, any goal

invariants are so marked. Then, in the detailed results of Appendix E, versions of a

task which use the additional goal invariant are marked with an \x".

MEA search control was used for our tests. Precondition-testing rules are listed

in Section D.2, as are the rules which create task subgoals for unmet preconditions.

Triggered by the task subgoals, MEA rules then �re to propose operators whose e�ects

achieve the task subgoals. Knowledge was also provided about how to detect operator

subgoaling loops.

D.1 Operator Application Rules

Below are listed the operator application rules for the Robot Domain. The rules

which add a \reconsider" preference (\@") for an operator signal that the operator

application has completed. For a full speci�cation of the syntax of the version of Soar

used in this paper (version 5.0.2), see [Laird et al., 1989].

;=========goto-box operator applications:

(sp robot*apply*goto-box*loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(State <s> ^at <at> )
(Operator <q> ^name goto-box)
(at <at> ^obj <robot> )
(robot <robot> ^type robot)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*goto-box*other-box
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(State <s> ^next-to <nt> )
(next-to <nt> ^obj1 <robot> ^obj2 { <> <box> <box1>}

- ^obj2 <box>)
(Operator <q> ^name goto-box ^box <box>)

(robot <robot> ^type robot)
(box <box1> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*goto-box*door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(State <s> ^next-to <nt> )
(next-to <nt> ^obj1 <robot> ^obj2 <door1>)
(Operator <q> ^name goto-box)
(robot <robot> ^type robot)

(door <door1> ^type door)
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-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*goto-box

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name goto-box ^box <box>)
(State <s> ^robot <robot>)
-{(state <s> ^next-to <snt>)
(next-to <snt> ^obj1 <robot> ^obj2 <box>)}
-->
(State <s> ^next-to <nt> <nt> &)
(next-to <nt> ^obj1 <robot> ^obj2 <box>)
)

(Sp robot*reconsider*goto-box
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>

- ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-box ^box <box>)
(State <s> ^next-to <nt> ^robot <robot>)
(next-to <nt> ^obj1 <robot> ^obj2 <box>)
-->
(Goal <g> ^operator <q> @ )
)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; goto-door operator applications

(sp robot*apply*goto-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-door ^door <door>)
(State <s> ^robot <robot>)
-{(state <s> ^next-to <snt>)
(next-to <snt> ^obj1 <robot> ^obj2 <door>)}
-->
(State <s> ^next-to <nt> <nt> &)
(next-to <nt> ^obj1 <robot> ^obj2 <door>)
)

(sp robot*apply*goto-door*loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-door )
(State <s> ^at <at>)
(at <at> ^obj <robot>)
(robot <robot> ^type robot)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*goto-door*box
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name goto-door )
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <box1>)
(robot <robot> ^type robot)

(box <box1> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*goto-door*other-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-door ^door <door>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 {<> <door> <door1>}
- ^obj2 <door>)
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(robot <robot> ^type robot)

(door <door1> ^type door)
-->
(State <s> ^next-to <nt> - )
)

(Sp robot*reconsider*goto-door

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
- ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-door ^door <door>)

(State <s> ^next-to <nt> ^robot <robot>)
(next-to <nt> ^obj1 <robot> ^obj2 <door>)
-->
(Goal <g> ^operator <q> @ )

)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; goto-loc operator application

(sp robot*apply*goto-loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-loc ^loc <loc>)
(State <s> ^robot <robot>)
-{(state <s> ^at <sat>)
(at <sat> ^obj <robot> ^loc <loc>)}
-->
(State <s> ^at <at> <at> &)
(at <at> ^obj <robot> ^loc <loc>)
)

(sp robot*apply*goto-loc*other-loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-loc ^loc <loc>)
(State <s> ^at <at>)
(at <at> ^obj <robot> - ^loc <loc>)
(robot <robot> ^type robot)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*goto-loc*box
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-loc )
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <box1>)
(robot <robot> ^type robot>)

(box <box1> ^type <box1>)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*goto-loc*door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-loc )
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <door1>)
(robot <robot> ^type robot>)

(door <door1> ^type door)
-->
(State <s> ^next-to <nt> - )
)

(Sp robot*reconsider*goto-loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>

- ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name goto-loc ^loc <loc>)
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(State <s> ^at <at> ^robot <robot>)
(at <at> ^obj <robot> ^loc <loc>)
-->
(Goal <g> ^operator <q> @ )
)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; push-box operator application -- a robot moves
;;; one box to another box. The operator
;;; is instantiated with a ``move-box'' (the box being

;;; moved) and a ``to-box'' (the target box).

(sp robot*apply*push-box*add-next-to*1
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box ^move-box <box-x> ^to-box <box-y>)

(State <s> ^robot <robot>)
-{(state <s> ^next-to <snt>)
(next-to <snt> ^obj1 <box-y> ^obj2 <box-x>)}
-->
(State <s> ^next-to <nt1> <nt1> &, )
(next-to <nt1> ^obj1 <box-y> ^obj2 <box-x>)
)

(sp robot*apply*push-box*add-next-to*2
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box ^move-box <box-x> ^to-box <box-y>)
(State <s> ^robot <robot>)
-{(state <s> ^next-to <snt>)
(next-to <snt> ^obj1 <box-x> ^obj2 <box-y>)}
-->
(State <s> ^next-to <nt2> <nt2> &,
)
(next-to <nt2> ^obj1 <box-x> ^obj2 <box-y>)
)

(sp robot*apply*push-box*add-next-to*3
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box ^move-box <box-x> ^to-box <box-y>)
(State <s> ^robot <robot>)
-{(state <s> ^next-to <snt>)
(next-to <snt> ^obj1 <robot> ^obj2 <box-x>)}
-->
(State <s> ^next-to <nt3> <nt3> &
)
(next-to <nt3> ^obj1 <robot> ^obj2 <box-x>)
)

(sp robot*apply*push-box*loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box )

(State <s> ^at <at>)
(at <at> ^obj <robot> )
(robot <robot> ^type robot)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*push-box*other-box
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box ^move-box <box-x>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 {<> <box-x> <box1> }

- ^obj2 <box-x>)
(robot <robot> ^type robot)
(box <box1> ^type box)
-->
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(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-box*robot-door

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box )

(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <door1>)

(robot <robot> ^type robot)
(door <door1> ^type door)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-box*box-loc

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name push-box ^move-box <box-x>)
(State <s> ^at <at>)
(at <at> ^obj <box-x> )
-->
(State <s> ^at <at> - )
)

(sp robot*apply*push-box*box-x-nt*1
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box ^move-box <box-x> ^to-box <box-y>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box-x> ^obj2 {<> <box-y> <box3> }
- ^obj2 <box-y>)
(box <box3> ^type box )
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-box*box-x-nt*2
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box ^move-box <box-x> ^to-box <box-y>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 {<> <box-y> <box3> } - ^obj1 <box-y>
^obj2 <box-x> )
(box <box3> ^type box )
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-box*box-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box ^move-box <box-x>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box-x> ^obj2 <door1>)
(door <door1> ^type door)
-->
(State <s> ^next-to <nt> - )
)

(Sp robot*reconsider*push-box

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
- ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(State <s> ^robot <robot>)
(Operator <q> ^name push-box ^move-box <box-x> ^to-box <box-y>)
(State <s> ^next-to <nt1> { <> <nt1> <nt2> } { <> <nt1> <> <nt2> <nt3> })
(next-to <nt1> ^obj1 <box-y> ^obj2 <box-x>)

(next-to <nt2> ^obj1 <box-x> ^obj2 <box-y>)
(next-to <nt3> ^obj1 <robot> ^obj2 <box-x>)
-->
(Goal <g> ^operator <q> @ )
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)

;;; ;;;;;;;;;;;;;;;;;;;;
;;; push-to-door operator application--- pushes a box to a door.

(sp robot*apply*push-to-door*add-next-to*1

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-door ^box <box> ^door <door>)

-{(state <s> ^next-to <snt>)
(next-to <snt> ^obj1 <box> ^obj2 <door>)}
-->
(State <s> ^next-to <nt1> <nt1> &,
)
(next-to <nt1> ^obj1 <box> ^obj2 <door>)

)

(sp robot*apply*push-to-door-add-next-to*2

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-door ^box <box>
)

(State <s> ^robot <robot>)
-{(state <s> ^next-to <snt>)
(next-to <snt> ^obj1 <robot> ^obj2 <box>)}
-->
(State <s> ^next-to
<nt2> <nt2> &
)
(next-to <nt2> ^obj1 <robot> ^obj2 <box>)
)

(sp robot*apply*push-to-door*robot-loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-door )
(State <s> ^at <at>)
(at <at> ^obj <robot>)
(robot <robot> ^type robot)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*push-to-door*other-box
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-door ^box <box>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 { <> <box> <box1> }

- ^obj2 <box>)
(robot <robot> ^type robot)
(box <box1> ^type box )
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-to-door*other-door

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-door )
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <door1>)
(robot <robot> ^type robot)
(door <door1> ^type door )
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-to-door*box-loc

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name push-to-door ^box <box>)
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(State <s> ^at <at>)
(at <at> ^obj <box>)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*push-to-door*box-nt-b*1

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name push-to-door ^box <box>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box> ^obj2 <other-box>)

(box <other-box> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-to-door*box-nt-b*2

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-door ^box <box>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <other-box> ^obj2 <box>)
(box <other-box> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-to-door*box-other-d
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-door ^box <box> ^door <door>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box> ^obj2 { <> <door> <door1> }
- ^obj2 <door>)
(door <door1> ^type door)
-->
(State <s> ^next-to <nt> - )
)

(Sp robot*reconsider*push-to-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
- ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(State <s> ^robot <robot>)
(Operator <q> ^name push-to-door ^box <box> ^door <door>)
(State <s> ^next-to <nt1> { <> <nt1> <nt2> } )
(next-to <nt1> ^obj1 <box> ^obj2 <door>)
(next-to <nt2> ^obj1 <robot> ^obj2 <box>)
-->
(Goal <g> ^operator <q> @ )

)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; push-to-loc operator application

(sp robot*apply*push-to-loc*add-at
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name push-to-loc ^box <box> ^loc <loc>)
(State <s> ^robot <robot>)
-{(state <s> ^at <sat>)
(at <sat> ^obj <box> ^loc <loc>)}
-->
(State <s> ^at <at> <at> & )
(at <at> ^obj <box> ^loc <loc>)
)

(sp robot*apply*push-to-loc*add-next-to
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-loc ^box <box>
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)
(State <s> ^robot <robot>)
-{(state <s> ^next-to <snt>)
(next-to <snt> ^obj1 <robot> ^obj2 <box>)}
-->
(State <s> ^next-to <nt1> <nt1> &
)
(Next-to <nt1> ^obj1 <robot> ^obj2 <box>)
)

(Sp robot*reconsider*push-to-loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>

- ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(State <s> ^robot <robot>)
(Operator <q> ^name push-to-loc ^box <box> ^loc <loc>)
(State <s> ^next-to <nt1> ^at <at> )
(at <at> ^obj <box> ^loc <loc>)

(Next-to <nt1> ^obj1 <robot> ^obj2 <box>)
-->
(Goal <g> ^operator <q> @ )
)

(sp robot*apply*push-to-loc*other-loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-loc )
(State <s> ^at <at>)
(at <at> ^obj <robot>)
(robot <robot> ^type robot)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*push-to-loc*box
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-loc ^box <box>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 { <> <box> <box1> }
- ^obj2 <box>)
(robot <robot> ^type robot)
(box <box1> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-to-loc*door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-loc )
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <door1>)
(robot <robot> ^type robot)

(door <door1> ^type door)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-to-loc*box-loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-loc ^box <box> ^loc <loc>)
(State <s> ^at <at>)
(at <at> ^obj <box> - ^loc <loc>)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*push-to-loc*box-nt-b*1
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
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(Operator <q> ^name push-to-loc ^box <box>)

(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box> ^obj2 <box3>)
(box <box3> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-to-loc*box-nt-b*2
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name push-to-loc ^box <box>)

(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box3> ^obj2 <box>)
(box <box3> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-to-loc*box-nt-d
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-loc ^box <box>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box> ^obj2 <door2>)
(door <door2> ^type door)
-->
(State <s> ^next-to <nt> - )
)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; go-through-door operator application-- moves a robot through
;;; a door.

(sp robot*apply*go-through-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name go-through-door ^door <door> ^into-room <room-x>)
(State <s> ^robot <robot>)
-{(state <s> ^in-room <sinr>)
(in-room <sinr> ^obj <robot> ^room <room-x>)}
-->
(State <s> ^in-room <inr> <inr> &)
(in-room <inr> ^obj <robot> ^room <room-x>)
)

(sp robot*apply*go-through-door*loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name go-through-door )
(State <s> ^at <at>)
(at <at> ^obj <robot>)
(robot <robot> ^type robot)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*go-through-door*box

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name go-through-door )

(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <box>)

(robot <robot> ^type robot)
(box <box> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*go-through-door*other-door

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
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(Operator <q> ^name go-through-door )

(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <door>)
(robot <robot> ^type robot)

(door <door> ^type door)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*go-through-door*other-room

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name go-through-door ^into-room <room-x>)
(State <s> ^in-room <inr>)
(in-room <inr> ^obj <robot> - ^room <room-x>)

(robot <robot> ^type robot)
-->
(State <s> ^in-room <inr> - )
)

(Sp robot*reconsider*go-through-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
- ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name go-through-door ^door <door> ^into-room <room-x>)
(State <s> ^in-room <inr> ^robot <robot>)
(in-room <inr> ^obj <robot> ^room <room-x>)
-->
(Goal <g> ^operator <q> @ )
)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; push-through-door operator application--- a robot pushes a box
;;; through a door.

(sp robot*apply*push-through-door*add-next-to
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box>
)

(State <s> ^robot <robot>)
-{(state <s> ^next-to <snt>)
(next-to <snt> ^obj1 <robot> ^obj2 <box>)}
-->
(State <s>

^next-to <nt> <nt> &)
(next-to <nt> ^obj1 <robot> ^obj2 <box>)
)

(sp robot*apply*push-through-door*add-inr-box
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box>

^into-room <room-x>)
-{(state <s> ^in-room <sinr>)
(in-room <sinr> ^obj <box> ^room <room-x>)}
-->
(State <s> ^in-room <inr> <inr> &, )
(in-room <inr> ^obj <box> ^room <room-x>)
)

(sp robot*apply*push-through-door*add-inr-robot
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door

^into-room <room-x>)
(State <s> ^robot <robot>)
-{(state <s> ^in-room <sinr>)
(in-room <sinr> ^obj <robot> ^room <room-x>)}
-->
(State <s> ^in-room
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<inr2> <inr2> &,
)
(in-room <inr2> ^obj <robot> ^room <room-x>)

)

(sp robot*apply*push-through-door*loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door )

(State <s> ^at <at>)
(at <at> ^obj <robot> )
(robot <robot> ^type robot)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*push-through-door*box

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 { <> <box> <box1> }
- ^obj2 <box>)
(robot <robot> ^type robot)
(box <box1> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-through-door*door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door )
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <door1>)
(robot <robot> ^type robot)
(door <door1> ^type door)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-through-door*box-loc
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box>)
(State <s> ^at <at>)
(at <at> ^obj <box>)
-->
(State <s> ^at <at> - )
)

(sp robot*apply*push-through-door*box-nt-b*1

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box> ^obj2 <box3>)
(box <box3> ^type box)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-through-door*box-nt-b*2
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box3> ^obj2 <box>)

(box <box3> ^type box)
-->
(State <s> ^next-to <nt> - )
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)

(sp robot*apply*push-through-door*box-nt-d

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name push-through-door ^box <box>)
(State <s> ^next-to <nt>)
(next-to <nt> ^obj1 <box> ^obj2 <door2>)

(door <door2> ^type door)
-->
(State <s> ^next-to <nt> - )
)

(sp robot*apply*push-through-door*other-room*robot
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^into-room <room-x>)

(State <s> ^in-room <inr>)
(in-room <inr> ^obj <robot> - ^room <room-x>)
(robot <robot> ^type robot)
-->
(State <s> ^in-room <inr> - )
)

(sp robot*apply*push-through-door*other-room*box
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box> ^into-room <room-x>)
(State <s> ^in-room <inr>)
(in-room <inr> ^obj <box> - ^room <room-x>)
-->
(State <s> ^in-room <inr> - )
)

(Sp robot*reconsider*push-through-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
- ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(State <s> ^robot <robot>)
(Operator <q> ^name push-through-door ^box <box> ^door <door> ^into-room <room-x>
^from-room <f-room>)

(State <s> ^in-room <inr> { <> <inr> <inr2> }
^next-to <nt>)

(next-to <nt> ^obj1 <robot> ^obj2 <box>)
(in-room <inr> ^obj <box> ^room <room-x>)
(in-room <inr2> ^obj <robot> ^room <room-x>)
-->
(Goal <g> ^operator <q> @ )
)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; open-door operator application

(sp robot*apply*open-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)

(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name open-door ^door <door>)
-{(state <s> ^door-status <sds>)
(door-status <sds> ^door <door> ^status open)}
-->
(State <s> ^door-status <ds> <ds> &)
(door-status <ds> ^door <door> ^status open)
)

(sp robot*apply*open-door*other-status
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name open-door ^door <door>)
(State <s> ^door-status <ds>)
(door-status <ds> ^door <door> ^status closed)
-->
(State <s> ^door-status <ds> - )
)
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(Sp robot*reconsider*open-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>

- ^applied <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name open-door ^door <door>)
(State <s> ^door-status <ds>)
(door-status <ds> ^door <door> ^status open)
-->
(Goal <g> ^operator <q> @ )
)

;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;
;;; close-door operator application

(sp robot*apply*close-door

(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name close-door ^door <door>)

-{(state <s> ^door-status <sds>)
(door-status <sds> ^door <door> ^status closed)}
-->
(State <s> ^door-status <ds> <ds> &)
(door-status <ds> ^door <door> ^status closed)
)

(sp robot*apply*close-door*other-status
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>)
(Goal <g> ^all-preconds-met <q> - ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name close-door ^door <door>)
(State <s> ^door-status <ds>)
(door-status <ds> ^door <door> ^status open)
-->
(State <s> ^door-status <ds> - )
)

(Sp robot*reconsider*close-door
(Goal <g> ^problem-space <p> ^state <s> ^operator <q>
- ^applied <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name close-door ^door <door>)
(State <s> ^door-status <ds>)
(door-status <ds> ^door <door> ^status closed)
-->
(Goal <g> ^operator <q> @ )
)

D.2 Operator precondition-testing rules

Below are the the precondition-testing rules for each operator in the Robot Domain.

Not shown are the rules which test that all preconditions of an operator are met, and

add the \operator-may-apply" 
ag for that operator (as described in Section 3.2).

;; =========goto-box precond tests

(Sp robot*propose*goto-box*check-precond*type-box
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name goto-box ^box <box>)
(State <s> ^robot <robot> ^in-room <inr1> { <> <inr1> <inr2> } )
(in-room <inr1> ^obj <robot> ^room <some-room>)

(in-room <inr2> ^obj <box> ^room <some-room>)
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-->
(Goal <g> ^in-same-room-precond <q> <q> & )
)

;; =========goto-door precond tests

(Sp robot*propose*goto-door*check-precond*in-same-room-door

(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)

(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name goto-door ^door <door>)

;;(state <s> )
(State <s> ^connects <conn> ^in-room <inr> ^robot <robot>)
(connects <conn> ^door <door> ^room <some-room>)
(in-room <inr> ^obj <robot> ^room <some-room>)
-->
(Goal <g> ^in-same-room-door-precond <q> <q> & )
)

;; =========goto-loc precond tests

(Sp robot*propose*goto-loc*check-precond*in-same-room
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name goto-loc ^loc <loc>)
;;(state <s> )
(State <s> ^loc-in-room <lir> ^in-room <inr> ^robot <robot>)
(loc-in-room <lir> ^loc <loc> ^room <some-room>)
(in-room <inr> ^obj <robot> ^room <some-room>)
-->
(Goal <g> ^in-same-room-precond <q> <q> & )
)

;; =========push-box precond tests

(Sp robot*propose*push-box*check-precond*in-same-room
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-box ^move-box <box-x>
^to-box <box-y> )

;;(state <s> )
(State <s> ^robot <robot> ^in-room <inr1> { <> <inr1> <inr2> } { <> <inr1> <> <inr2> <inr3> } )
(in-room <inr1> ^obj <box-y> ^room <some-room>)
(in-room <inr2> ^obj <box-x> ^room <some-room>)
(in-room <inr3> ^obj <robot> ^room <some-room>)
-->
(Goal <g> ^in-same-room-precond <q> <q> & )
)

(Sp robot*propose*push-box*check-precond*next-to
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)

(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name push-box ^move-box <box-x>
;^to-box <box-y>

)
;;(state <s> )
(State <s> ^robot <robot> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <box-x>)
-->
(Goal <g> ^next-to-precond <q> <q> & )
)

;; =========push-to-door precond tests

(Sp robot*propose*push-to-door*check-precond*in-same-room-door
(Goal <g> ^problem-space <p> ^state <s>

^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-door ^box <box> ^door <door>)
;;(state <s> )
(State <s> ^robot <robot> ^connects <conn> ^in-room <inr1> { <> <inr1> <inr2> } )
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(connects <conn> ^door <door> ^room <some-room>)
(in-room <inr1> ^obj <robot> ^room <some-room>)

(in-room <inr2> ^obj <box> ^room <some-room>)
-->
(Goal <g> ^in-same-room-door-precond <q> <q> & )

)

(Sp robot*propose*push-to-door*check-precond*next-to
(Goal <g> ^problem-space <p> ^state <s>

^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)

(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name push-to-door ^box <box> )
;;(state <s> )
(State <s> ^robot <robot> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <box>)
-->
(Goal <g> ^next-to-precond <q> <q> & )

)

;; ========= push-to-loc precond tests

(Sp robot*propose*push-to-loc*check-precond*in-same-room
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-loc ^box <box> ^loc <loc>)
;;(state <s> )
(State <s> ^robot <robot> ^loc-in-room <lir> ^in-room <inr1> { <> <inr1> <inr2> } )
(loc-in-room <lir> ^loc <loc> ^room <some-room>)
(in-room <inr1> ^obj <robot> ^room <some-room>)
(in-room <inr2> ^obj <box> ^room <some-room>)
-->
(Goal <g> ^in-same-room-precond <q> <q> & )
)

(Sp robot*propose*push-to-loc*check-precond*next-to
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-to-loc ^box <box>)
;;(state <s> )
(State <s> ^robot <robot> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <box>)
-->
(Goal <g> ^next-to-precond <q> <q> & )
)

;; ========= go-through-door precond tests

(Sp robot*propose*go-through-door*check-precond*in-same-connective-room
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)

(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name go-through-door ^door <door> ^into-room <room>)

;;(state <s> )
(State <s> ^robot <robot> ^connects <conn> ^in-room <inr>)
(connects <conn> ^door <door> ^room <room> { <> <room> <conn-room> } )
(in-room <inr> ^obj <robot> ^room <conn-room>)
-->
(Goal <g> ^in-same-conn-room-precond <q> <q> & )
)

(Sp robot*propose*go-through-door*check-precond*next-to

(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)

(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name go-through-door ^door <door> )
;;(state <s> )
(State <s> ^robot <robot> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <door>)
-->
(Goal <g> ^next-to-precond <q> <q> & )
)
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(Sp robot*propose*go-through-door*check-precond*door-open
(Goal <g> ^problem-space <p> ^state <s>

^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name go-through-door ^door <door> )

;;(state <s> )
(State <s> ^door-status <ds>)
(door-status <ds> ^door <door> ^status open)
-->
(Goal <g> ^door-open-precond <q> <q> & )

)

;; ========= push-through-door precond tests

(Sp robot*propose*push-through-door*check-precond*in-same-connective-room

(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)

(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box> ^door <door> ^into-room <room>)
;;(state <s> )
(State <s> ^robot <robot> ^connects <conn> ^in-room <inr> { <> <inr> <inr2> } )
(connects <conn> ^door <door> ^room <room> { <> <room> <conn-room> } )
(in-room <inr> ^obj <robot> ^room <conn-room>)
(in-room <inr2> ^obj <box> ^room <conn-room>)
-->
(Goal <g> ^in-same-conn-room-precond <q> <q> & )
)

(Sp robot*propose*push-through-door*check-precond*next-to-robot
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box>)
;;(state <s> )
(State <s> ^robot <robot> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <box>)
-->
(Goal <g> ^next-to-robot-precond <q> <q> & )
)

(Sp robot*propose*push-through-door*check-precond*next-to-door
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^box <box> ^door <door>)
;;(state <s> )
(State <s> ;;^robot <robot>
^next-to <nt>)
(next-to <nt> ^obj1 <box> ^obj2 <door>)
-->
(Goal <g> ^next-to-door-precond <q> <q> & )
)

(Sp robot*propose*push-through-door*check-precond*door-open
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)

(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name push-through-door ^door <door> )
(State <s> ^door-status <ds>)
(door-status <ds> ^door <door> ^status open)
-->
(Goal <g> ^door-open-precond <q> <q> & )
)

;;========= open-door precond tests

(Sp robot*propose*open-door*check-precond*in-same-room-door
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)

(op-set <opss> ^operator <q>)

(Problem-Space <p> ^name robot-domain)
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(Operator <q> ^name open-door ^door <door>)

;;(state <s> )
(State <s> ^robot <robot> ^in-room <inr1> ^connects <conn>)
(in-room <inr1> ^obj <robot> ^room <room>)
(connects <conn> ^door <door> ^room <room>)
-->
(Goal <g> ^in-same-room-door-precond <q> <q> & )

)

(Sp robot*propose*open-door*check-precond*next-to

(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)

(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)

(Operator <q> ^name open-door ^door <door>)

;;(state <s> )
(State <s> ^robot <robot> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <door>)
-->
(Goal <g> ^next-to-precond <q> <q> & )
)

(Sp robot*propose*open-door*check-precond*door-closed
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name open-door ^door <door>)
;;(state <s> )
(State <s> ^door-status <ds>)
(door-status <ds> ^door <door> ^status closed)
-->
(Goal <g> ^door-closed-precond <q> <q> & )
)

;; ========= close-door precond tests

(Sp robot*propose*close-door*check-precond*in-same-room-door
(Goal <g> ^problem-space <p> ^state <s>

^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)
(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name close-door ^door <door>)
;;(state <s> )
(State <s> ^robot <robot> ^in-room <inr> ^connects <conn>)
(connects <conn> ^door <door> ^room <room>)
(in-room <inr> ^obj <robot> ^room <room>)
-->
(Goal <g> ^in-same-room-door-precond <q> <q> & )
)

(Sp robot*propose*close-door*check-precond*next-to

(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name close-door ^door <door>)
;;(state <s> )
(State <s> ^robot <robot> ^next-to <nt>)
(next-to <nt> ^obj1 <robot> ^obj2 <door>)
-->
(Goal <g> ^next-to-precond <q> <q> & )
)

(Sp robot*propose*close-door*check-precond*door-open
(Goal <g> ^problem-space <p> ^state <s>
^op-set <opss> - ^applied <q>)
(op-set <opss> ^operator <q>)

(Problem-Space <p> ^name robot-domain)
(Operator <q> ^name close-door ^door <door>)

;;(state <s> )
(State <s> ^door-status <ds>)
(door-status <ds> ^door <door> ^status open)
-->
(Goal <g> ^door-open-precond <q> <q> & )
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)

;;Generation of Task Subgoals for Operator Preconditions:

;;When an operator is proposed but can not apply, an operator subgoal is
;;generated. Below are listed the rules which create task subgoals
;;(representational, not architectural) for each precondition of the
;;subgoaled-upon operator. Once the task subgoals are posted, MEA rules
;;will fire, to propose operators whose effects achieve the subgoals.
;;Other rules also test whether or not such a task subgoal is met,
;;and delete it if that is the case, or re-generate it if it becomes unachieved
;;during the course of further problem solving.

;;; =============================================

(Sp robot*opsub*create-desired-goal-conjunct*goto-box

(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)
(Goal <g2> ^operator <q> ^state <s>)

(Operator <q> ^name goto-box ^box <box>)

(State <s> ^robot <robot>)
-->
(Goal <g> ^desired <des>)
(desired <des> ^goal-conjuncts <gc> ^for-op <q>
^goal-literals <box>)

(goal-conjuncts <gc> ^in-same-room <ins>)
(in-same-room <ins> ^box <box> ^robot <robot> ^args two)
)

(Sp robot*opsub*create-desired-goal-conjunct*goto-door
(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)
(Goal <g2> ^operator <q> ^state <s>)
(Operator <q> ^name goto-door ^door <door>)
(State <s> ^robot <robot>)
-->
(Goal <g> ^desired <des>)
(desired <des> ^goal-conjuncts <gc> ^for-op <q>
^goal-literals <door>)

(goal-conjuncts <gc> ^in-same-room-door <ins>)
(in-same-room-door <ins> ^door <door> ^robot <robot> ^args two)
)

(Sp robot*opsub*create-desired-goal-conjunct*goto-loc
(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)
(Goal <g2> ^operator <q> ^state <s>)
(Operator <q> ^name goto-loc ^loc <loc>)
(State <s> ^robot <robot>)
-->
(Goal <g> ^desired <des>)
(desired <des> ^goal-conjuncts <gc> ^for-op <q>
^goal-literals <loc>)

(goal-conjuncts <gc> ^in-same-room <ins>)
(in-same-room <ins> ^loc <loc> ^robot <robot> ^args two)

)

(Sp robot*opsub*create-desired-goal-conjunct*push-box
(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)

(Goal <g2> ^operator <q> ^state <s>)
(Operator <q> ^name push-box ^move-box <box-x> ^to-box <box-y>)
(State <s> ^robot <robot>)
-->
(Goal <g> ^desired <des>)
(desired <des> ^goal-conjuncts <gc> ^for-op <q>

^goal-literals <box-x> + &, <box-y> + &)

(goal-conjuncts <gc> ^in-same-room <ins>)
(in-same-room <ins> ^robot <robot> ^move-box <box-x>

^to-box <box-y> ^next-goal <nt> ^args three)
(next-to <nt> ^robot <robot> ^box <box-x> ^args two)
)

(Sp robot*opsub*create-desired-goal-conjunct*push-to-door
(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)
(Goal <g2> ^operator <q> ^state <s>)
(Operator <q> ^name push-to-door ^box <box> ^door <door>)

(State <s> ^robot <robot>)
-->
(Goal <g> ^desired <des>)

(desired <des> ^goal-conjuncts <gc> ^for-op <q>
^goal-literals <box> + &, <door> + &)
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(goal-conjuncts <gc> ^in-same-room-door <ins>)

(in-same-room-door <ins> ^robot <robot> ^box <box> ^door <door>
^next-goal <nt> ^args three)

(next-to <nt> ^robot <robot> ^box <box> ^args two)

)

(Sp robot*opsub*create-desired-goal-conjunct*push-to-loc
(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)

(Goal <g2> ^operator <q> ^state <s>)

(Operator <q> ^name push-to-loc ^box <box> ^loc <loc>)
(State <s> ^robot <robot>)
-->
(Goal <g> ^desired <des>)

(desired <des> ^goal-conjuncts <gc> ^for-op <q>
^goal-literals <box> + &, <loc> + &)

(goal-conjuncts <gc> ^in-same-room <ins>)
(in-same-room <ins> ^robot <robot> ^box <box> ^loc <loc>
^next-goal <nt> ^args three)

(next-to <nt> ^robot <robot> ^box <box> ^args two)
)

(Sp robot*opsub*create-desired-goal-conjunct*go-through-door
(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)
(Goal <g2> ^operator <q> ^state <s>)
(Operator <q> ^name go-through-door ^door <door> ^into-room <room>)
(State <s> ^robot <robot>)
-->
(Goal <g> ^desired <des>)
(desired <des> ^goal-conjuncts <gc> ^for-op <q>
^goal-literals <door> + &, <room> + &)
(goal-conjuncts <gc> ^in-same-conn-room <ins>)
(in-same-conn-room <ins> ^robot <robot> ^door <door> ^into-room <room>
^next-goal <nt> ^args three)
(next-to <nt> ^robot <robot> ^door <door> ^next-goal <do> ^args two)
(door-open <do> ^door <door> ^args one)
)

(Sp robot*opsub*create-desired-goal-conjunct*push-through-door
(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)
(Goal <g2> ^operator <q> ^state <s>)
(Operator <q> ^name push-through-door ^box <box> ^door <door> ^into-room <room>)
(State <s> ^robot <robot>)
-->
(Goal <g> ^desired <des>)
(desired <des> ^goal-conjuncts <gc> ^for-op <q>
^goal-literals <box> + &, <door> + &, <room> + &)
(goal-conjuncts <gc> ^in-same-conn-room <ins>)
(in-same-conn-room <ins> ^robot <robot> ^box <box> ^door <door>

^into-room <room> ^next-goal <nt> ^args four)
(next-to <nt> ^box <box> ^door <door> ^next-goal <nt2> ^args two)
(next-to <nt2> ^robot <robot> ^box <box> ^next-goal <do> ^args two)
(door-open <do> ^door <door> ^args one)
)

(Sp robot*opsub*create-desired-goal-conjunct*open-door

(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)
(Goal <g2> ^operator <q> ^state <s>)
(Operator <q> ^name open-door ^door <door>)
(State <s> ^robot <robot>)
-->
(Goal <g> ^desired <des>)
(desired <des> ^goal-conjuncts <gc> ^for-op <q>
^goal-literals <door>)

(goal-conjuncts <gc> ^in-same-room-door <insrd> )
(in-same-room-door <insrd> ^robot <robot> ^door <door> ^args two

^next-goal <nt>)

(next-to <nt> ^robot <robot> ^door <door> ^next-goal <dc> ^args two)
(door-closed <dc> ^door <door> ^args one)
)

(Sp robot*opsub*create-desired-goal-conjunct*close-door
(Goal <g> ^problem-space <p> ^name operator-subgoal ^object <g2>)
(Goal <g2> ^operator <q> ^state <s>)
(Operator <q> ^name close-door ^door <door>)

(State <s> ^robot <robot>)
-->
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(Goal <g> ^desired <des>)

(desired <des> ^goal-conjuncts <gc> ^for-op <q>

^goal-literals <door>)
(goal-conjuncts <gc> ^in-same-room-door <insrd> )

(in-same-room-door <insrd> ^robot <robot> ^door <door> ^args two
^next-goal <nt>)

(next-to <nt> ^robot <robot> ^door <door> ^next-goal <do> ^args two)
(door-open <do> ^door <door> ^args one)

)

D.3 2-goal-conjunct tasks

The following pieces of Soar code describe the initial and goal states for the 2-goal-

conjunct Robot Domain tasks used in Chapter 6. For each task, the listing �rst

describes the relevant initial state augmentations for the task, and then the task goal.

;; Task 1

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <Room2Room4>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room6>)
(in-room <inr2> ^obj <box-d> ^room <Room3>)
(in-room <inr3> ^obj <box-c> ^room <Room1>)
(in-room <inr4> ^obj <box-b> ^room <Room4>)
(in-room <inr5> ^obj <box-a> ^room <Room5>)
(in-room <inr6> ^obj <robot> ^room <Room7>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^next-to <gnt> ^in-same-room <gnt2>
)
(next-to <gnt> ^box <box-b> <box-b> &, <box-e> <box-e> &, ^args two
^goal-name <gname1>)

(in-same-room <gnt2> ^box <box-b> + &, <box-e> + &, ^args two ^goal-name <gname2>)

;; Task 2

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <Room5Room4>)
(next-to <nt2> ^obj1 <box-d> ^obj2 <box-a>)
(next-to <nt3> ^obj1 <box-a> ^obj2 <box-d>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room7>)
(in-room <inr2> ^obj <box-d> ^room <Room6>)
(in-room <inr3> ^obj <box-c> ^room <Room1>)
(in-room <inr4> ^obj <box-b> ^room <Room5>)
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(in-room <inr5> ^obj <box-a> ^room <Room6>)

(in-room <inr6> ^obj <robot> ^room <Room5>)

;; goal statement

(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^next-to <gnt> ^in-room <gnt2>

)
(next-to <gnt> ^box <box-b> ^door <Room4Room3> ^args two ^goal-name <gname1>)

(in-room <gnt2> ^box <box-a> ^room <Room1> ^args two ^goal-name <gname2>)

;; Task 3

;; initial state augmentations

(next-to <nt1> ^obj1 <box-e> ^obj2 <Room7Room4>)

(door-status <ds1> ^door <Room4Room3> ^status open)

(door-status <ds2> ^door <Room7Room4> ^status open)

(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room4>)
(in-room <inr2> ^obj <box-d> ^room <Room2>)
(in-room <inr3> ^obj <box-c> ^room <Room1>)
(in-room <inr4> ^obj <box-b> ^room <Room3>)
(in-room <inr5> ^obj <box-a> ^room <Room7>)
(in-room <inr6> ^obj <robot> ^room <Room7>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^in-room <gnt> ^door-closed <gnt2>
)
(in-room <gnt> ^box <box-e> ^room <Room3> ^args two ^goal-name <gname1>)
(door-closed <gnt2> ^door <Room2Room4> ^args one ^goal-name <gname2>)

;; Task 4

;;;; initial state augmentations
(next-to <nt1> ^obj1 <box-e> ^obj2 <box-d>)
(next-to <nt2> ^obj1 <box-d> ^obj2 <box-e>)
(next-to <nt3> ^obj1 <box-c> ^obj2 <box-b>)
(next-to <nt4> ^obj1 <box-b> ^obj2 <box-c>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room7>)

(in-room <inr2> ^obj <box-d> ^room <Room7>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room5>)

(in-room <inr5> ^obj <box-a> ^room <Room6>)
(in-room <inr6> ^obj <robot> ^room <Room5>)

;; goal statement

(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^in-room <gnt> ^door-open <gnt2>

)
(in-room <gnt> ^box <box-b> ^room <Room7> ^args two ^goal-name <gname1>)
(door-open <gnt2> ^door <Room5Room7> ^args one ^goal-name <gname2>)

;; Task 5

;; initial state augmentations
(next-to <nt1> ^obj1 <box-e> ^obj2 <box-a>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-e>)
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(next-to <nt3> ^obj1 <box-e> ^obj2 <Room4Room3>)

(next-to <nt4> ^obj1 <box-a> ^obj2 <Room4Room3>)

(next-to <nt5> ^obj1 <box-b> ^obj2 <Room5Room2>)
(next-to <nt6> ^obj1 <box-d> ^obj2 <Room6Room5>)

(door-status <ds1> ^door <Room4Room3> ^status open)

(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)

(door-status <ds4> ^door <Room5Room4> ^status open)

(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status open)

(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room4>)
(in-room <inr2> ^obj <box-d> ^room <Room6>)

(in-room <inr3> ^obj <box-c> ^room <Room2>)
(in-room <inr4> ^obj <box-b> ^room <Room5>)

(in-room <inr5> ^obj <box-a> ^room <Room4>)

(in-room <inr6> ^obj <robot> ^room <Room4>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^next-to <gnt> ^door-closed <gnt2>
)
(next-to <gnt> ^box <box-c> + &, <box-d> + &, ^args two ^goal-name <gname1>)
(door-closed <gnt2> ^door <Room5Room7> ^args one ^goal-name <gname2>)

;; Task 6

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-a>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-d> ^obj2 <Room5Room4>)
(next-to <nt4> ^obj1 <box-a> ^obj2 <Room4Room3>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room2>)
(in-room <inr2> ^obj <box-d> ^room <Room4>)
(in-room <inr3> ^obj <box-c> ^room <Room7>)
(in-room <inr4> ^obj <box-b> ^room <Room6>)
(in-room <inr5> ^obj <box-a> ^room <Room4>)
(in-room <inr6> ^obj <robot> ^room <Room5>)

;; goal statement

(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^next-to <gnt> ^door-open <gnt2>
)
(next-to <gnt> ^box <box-e> ^door <Room5Room2> ^args two ^goal-name <gname1>)
(door-open <gnt2> ^door <Room5Room7> ^args one ^goal-name <gname2>)

;;; Task 7

;; initial state augmentations

(next-to <nt1> ^obj1 <box-c> ^obj2 <box-a>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-c>)

(next-to <nt3> ^obj1 <box-d> ^obj2 <Room2Room4>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)

(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room3>)
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(in-room <inr2> ^obj <box-d> ^room <Room4>)

(in-room <inr3> ^obj <box-c> ^room <Room5>)

(in-room <inr4> ^obj <box-b> ^room <Room1>)
(in-room <inr5> ^obj <box-a> ^room <Room5>)

(in-room <inr6> ^obj <robot> ^room <Room6>)

;; goal statement
(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^next-to <gnt> ^door-closed <gnt2>
)
(next-to <gnt> ^box <box-a> ^door <Room5Room2> ^args two

^goal-name <gname1>)
(door-closed <gnt2> ^door <Room5Room2> ^args one

^goal-name <gname2>)

;;; Task 8

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <Room5Room2>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room5>)
(in-room <inr2> ^obj <box-d> ^room <Room5>)
(in-room <inr3> ^obj <box-c> ^room <Room4>)
(in-room <inr4> ^obj <box-b> ^room <Room2>)
(in-room <inr5> ^obj <box-a> ^room <Room4>)
(in-room <inr6> ^obj <robot> ^room <Room7>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^in-room <gnt> ^door-open <gnt2>
)
(in-room <gnt> ^robot <robot> ^room <Room2> ^args two
^goal-name <gname1>)
(door-open <gnt2> ^door <Room2Room1> ^args one ^goal-name <gname2>)

;;; Task 9

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <box-d>)
(next-to <nt2> ^obj1 <box-d> ^obj2 <box-b>)
(next-to <nt3> ^obj1 <box-b> ^obj2 <Room5Room4>)

(door-status <ds1> ^door <Room4Room3> ^status open)

(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status open)

(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room6>)

(in-room <inr2> ^obj <box-d> ^room <Room5>)

(in-room <inr3> ^obj <box-c> ^room <Room6>)
(in-room <inr4> ^obj <box-b> ^room <Room5>)
(in-room <inr5> ^obj <box-a> ^room <Room3>)
(in-room <inr6> ^obj <robot> ^room <Room6>)

;; goal statement

(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^in-room <gnt> ^next-to <gnt2>
)
(in-room <gnt> ^box <box-c> ^room <Room3> ^args two ^goal-name <gname1>)
(next-to <gnt2> ^box <box-a> ^door <Room5Room2> ^args two
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^goal-name <gname2>)

;; Task 10

;; initial state augmentations

(next-to <nt1> ^obj1 <box-d> ^obj2 <Room2Room4>)
(next-to <nt2> ^obj1 <box-b> ^obj2 <Room5Room7>)

(next-to <nt3> ^obj1 <box-c> ^obj2 <Room6Room5>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status open)

(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room3>)

(in-room <inr2> ^obj <box-d> ^room <Room2>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)

(in-room <inr4> ^obj <box-b> ^room <Room5>)
(in-room <inr5> ^obj <box-a> ^room <Room2>)
(in-room <inr6> ^obj <robot> ^room <Room4>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^in-room <gnt> ^next-to <gnt2>
)
(in-room <gnt> ^box <box-d> ^room <Room6> ^args two ^goal-name <gname1>)
(next-to <gnt2> ^box <box-c> ^door <Room5Room2> ^args two ^goal-name <gname2>)

;; Task 11

;; initial state augmentations
(next-to <nt1> ^obj1 <box-a> ^obj2 <Room2Room1>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room1>)
(in-room <inr2> ^obj <box-d> ^room <Room2>)
(in-room <inr3> ^obj <box-c> ^room <Room6>)
(in-room <inr4> ^obj <box-b> ^room <Room3>)
(in-room <inr5> ^obj <box-a> ^room <Room1>)
(in-room <inr6> ^obj <robot> ^room <Room7>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^in-room <gnt> ^next-to <gnt2>
)
(in-room <gnt> ^box <box-e> ^room <Room4> ^args two ^goal-name <gname1>)

(next-to <gnt2> ^box <box-b> + &, <box-d> + &, ^args two

^goal-name <gname2>)

;; Task 13

;; initial state augmentations
(next-to <nt1> ^obj1 <box-c> ^obj2 <Room2Room4>)

(next-to <nt2> ^obj1 <box-b> ^obj2 <box-e>)
(next-to <nt3> ^obj1 <box-e> ^obj2 <box-b>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status open)

(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status closed)
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(in-room <inr1> ^obj <box-e> ^room <Room1>)

(in-room <inr2> ^obj <box-d> ^room <Room6>)

(in-room <inr3> ^obj <box-c> ^room <Room4>)
(in-room <inr4> ^obj <box-b> ^room <Room1>)

(in-room <inr5> ^obj <box-a> ^room <Room3>)
(in-room <inr6> ^obj <robot> ^room <Room3>)

;; goal statement

(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-open <gnt> ^door-closed <gnt2>

)
(door-open <gnt> ^door <Room6Room5> ^args one ^goal-name <gname1>)
(door-closed <gnt2> ^door <Room2Room4> ^args one ^goal-name <gname2>)

;; Task 14

;; initial state augmentations

(next-to <nt1> ^obj1 <box-d> ^obj2 <Room4Room3>)

(next-to <nt2> ^obj1 <box-e> ^obj2 <Room6Room5>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room5>)
(in-room <inr2> ^obj <box-d> ^room <Room4>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room6>)
(in-room <inr5> ^obj <box-a> ^room <Room3>)
(in-room <inr6> ^obj <robot> ^room <Room1>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-open <gnt> ^in-room <gnt2>
)
(door-open <gnt> ^door <Room7Room4> ^args one ^goal-name <gname1>)
(in-room <gnt2> ^box <box-b> ^room <Room3> ^args two ^goal-name <gname2>)

;; Task 15

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-b>)
(next-to <nt2> ^obj1 <box-b> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-c> ^obj2 <box-d>)
(next-to <nt4> ^obj1 <box-d> ^obj2 <box-c>)
(next-to <nt5> ^obj1 <box-c> ^obj2 <Room4Room3>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status open)

(door-status <ds4> ^door <Room5Room4> ^status open)

(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room7>)
(in-room <inr2> ^obj <box-d> ^room <Room3>)
(in-room <inr3> ^obj <box-c> ^room <Room3>)

(in-room <inr4> ^obj <box-b> ^room <Room3>)
(in-room <inr5> ^obj <box-a> ^room <Room6>)
(in-room <inr6> ^obj <robot> ^room <Room5>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^door-closed <gnt> ^in-room <gnt2>

)
(door-closed <gnt> ^door <Room6Room5> ^args one ^goal-name <gname1>)
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(in-room <gnt2> ^box <box-c> ^room <Room7> ^args two ^goal-name <gname2>)

;; Task 16

;; initial state augmentations

(next-to <nt1> ^obj1 <box-e> ^obj2 <Room5Room2>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-d>)

(next-to <nt3> ^obj1 <box-d> ^obj2 <box-a>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)

(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room5>)

(in-room <inr2> ^obj <box-d> ^room <Room7>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)

(in-room <inr4> ^obj <box-b> ^room <Room6>)
(in-room <inr5> ^obj <box-a> ^room <Room7>)
(in-room <inr6> ^obj <robot> ^room <Room3>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^next-to <gnt> ^in-room <gnt2>
)
(next-to <gnt> ^box <box-c> ^door <Room5Room4> ^args two
^goal-name <gname1>)
(in-room <gnt2> ^box <box-e> ^room <Room7> ^args two
^goal-name <gname2>)

;; Task 17

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <Room5psp>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <Room2Room1>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room6>)
(in-room <inr2> ^obj <box-d> ^room <Room5>)
(in-room <inr3> ^obj <box-c> ^room <Room4>)
(in-room <inr4> ^obj <box-b> ^room <Room7>)
(in-room <inr5> ^obj <box-a> ^room <Room2>)

(in-room <inr6> ^obj <robot> ^room <Room2>)

;; goal statement

(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-open <gnt> ^in-room <gnt2>
)
(door-open <gnt> ^door <Room4Room3> ^args one ^goal-name <gname1>)

(in-room <gnt2> ^box <box-d> ^room <Room2> ^args two ^goal-name <gname2>)

;; Task 18

;; initial state augmentations

(next-to <nt1> ^obj1 <box-e> ^obj2 <box-b>)
(next-to <nt2> ^obj1 <box-b> ^obj2 <box-e>)
(next-to <nt3> ^obj1 <box-d> ^obj2 <box-a>)
(next-to <nt4> ^obj1 <box-a> ^obj2 <box-d>)

(next-to <nt5> ^obj1 <box-d> ^obj2 <Room7Room4>)

(next-to <nt6> ^obj1 <box-c> ^obj2 <Room6Room5>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status open)

(door-status <ds3> ^door <Room2Room4> ^status closed)
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(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)

(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room1>)
(in-room <inr2> ^obj <box-d> ^room <Room7>)

(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room1>)

(in-room <inr5> ^obj <box-a> ^room <Room7>)

(in-room <inr6> ^obj <robot> ^room <Room1>)

;; goal statements
(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-closed <gnt> ^door-open <gnt2>

)
(door-closed <gnt> ^door <Room5Room7> ^args one ^goal-name <gname1>)

(door-open <gnt2> ^door <Room6Room5> ^args one ^goal-name <gname2>)

;; Task 19

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-c>)
(next-to <nt2> ^obj1 <box-c> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-b> ^obj2 <Room4Room3>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room7>)
(in-room <inr2> ^obj <box-d> ^room <Room6>)
(in-room <inr3> ^obj <box-c> ^room <Room6>)
(in-room <inr4> ^obj <box-b> ^room <Room3>)
(in-room <inr5> ^obj <box-a> ^room <Room5>)
(in-room <inr6> ^obj <robot> ^room <Room4>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-closed <gnt> ^in-room <gnt2>
)
(door-closed <gnt> ^door <Room5Room4> ^args one ^goal-name <gname1>)
(in-room <gnt2> ^box <box-b> ^room <Room2> ^args two ^goal-name <gname2>)

;; Task 20

;; initial state augmentations
(next-to <nt1> ^obj1 <box-e> ^obj2 <box-a>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-e>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)

(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room6>)
(in-room <inr2> ^obj <box-d> ^room <Room7>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room7>)

(in-room <inr5> ^obj <box-a> ^room <Room6>)
(in-room <inr6> ^obj <robot> ^room <Room3>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
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(goal-conjuncts <gc> ^door-closed <gnt> ^next-to <gnt2>

)
(door-closed <gnt> ^door <Room5Room7> ^args one ^goal-name <gname1>)
(next-to <gnt2> ^box <box-e> ^door <Room4Room3> ^args two ^goal-name <gname2>)

D.4 3-goal-conjunct tasks

The following pieces of Soar code describe the initial and goal states for the 3-goal-

conjunct Robot Domain tasks used in Chapter 6. For each task, the listing �rst

describes the relevant initial state augmentations for the task, and then the task goal.

;;; Task 1

;; initial state augmentations
(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room7>)
(in-room <inr2> ^obj <box-d> ^room <Room7>)
(in-room <inr3> ^obj <box-c> ^room <Room6>)
(in-room <inr4> ^obj <box-b> ^room <Room3>)
(in-room <inr5> ^obj <box-a> ^room <Room5>)
(in-room <inr6> ^obj <robot> ^room <Room6>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-closed <gnt> + &, ^in-room <gnt2> + &, ^next-to <gnt3>
)
(door-closed <gnt> ^door <Room6Room5> ^args one ^goal-name <gname1>)
(in-room <gnt2> ^box <box-d> ^room <Room2> ^args two ^goal-name <gname2>)
(next-to <gnt3> ^box <box-d> ^door <Room5Room2> ^args two ^goal-name <gname3>)

;;; Task 2

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-a>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-d> ^obj2 <Room4Room3>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room1>)
(in-room <inr2> ^obj <box-d> ^room <Room3>)
(in-room <inr3> ^obj <box-c> ^room <Room6>)

(in-room <inr4> ^obj <box-b> ^room <Room7>)
(in-room <inr5> ^obj <box-a> ^room <Room3>)

(in-room <inr6> ^obj <robot> ^room <Room6>)

;; goal statement

(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
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(goal-conjuncts <gc> ^door-closed <gnt> + &, <gnt2> + &, ^in-room <gnt3>

)
(door-closed <gnt> ^door <Room5Room7> ^args one ^goal-name <gname1>)
(door-closed <gnt2> ^door <Room2Room1> ^args one ^goal-name <gname2>)

(in-room <gnt3> ^box <box-b> ^room <Room4> ^args two ^goal-name <gname3>)

;;; Task 3

;; initial state augmentations
(next-to <nt1> ^obj1 <box-c> ^obj2 <box-a>)

(next-to <nt2> ^obj1 <box-a> ^obj2 <box-c>)

(next-to <nt3> ^obj1 <box-a> ^obj2 <Room5Room2>)
(next-to <nt4> ^obj1 <box-d> ^obj2 <Room5Room7>)

(next-to <nt5> ^obj1 <box-b> ^obj2 <Room5Room7>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status open)

(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)

(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room3>)
(in-room <inr2> ^obj <box-d> ^room <Room7>)
(in-room <inr3> ^obj <box-c> ^room <Room2>)
(in-room <inr4> ^obj <box-b> ^room <Room5>)
(in-room <inr5> ^obj <box-a> ^room <Room2>)
(in-room <inr6> ^obj <robot> ^room <Room3>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-closed <gnt> + &, <gnt2> + &, ^in-room <gnt3>
)
(door-closed <gnt> ^door <Room4Room3> ^args one ^goal-name <gname1>)
(door-closed <gnt2> ^door <Room2Room4> ^args one ^goal-name <gname2>)
(in-room <gnt3> ^box <box-d> ^room <Room4> ^args two ^goal-name <gname3>)

;;; Task 4

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-b>)
(next-to <nt2> ^obj1 <box-b> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-a> ^obj2 <Room5Room2>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room2>)

(in-room <inr2> ^obj <box-d> ^room <Room7>)
(in-room <inr3> ^obj <box-c> ^room <Room1>)
(in-room <inr4> ^obj <box-b> ^room <Room7>)
(in-room <inr5> ^obj <box-a> ^room <Room5>)
(in-room <inr6> ^obj <robot> ^room <Room2>)

;; goal statement

(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-closed <gnt> + &,
^in-room <gnt2> + &, <gnt3> + &
)
(door-closed <gnt> ^door <Room6Room5> ^args one ^goal-name <gname1>)
(in-room <gnt2> ^box <box-d> ^room <Room1> ^args two ^goal-name <gname2>)

(in-room <gnt3> ^box <box-a> ^room <Room1> ^args two ^goal-name <gname3>)

;;; Task 5

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <Room5Room7>)
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(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)

(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status open)

(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room3>)
(in-room <inr2> ^obj <box-d> ^room <Room4>)

(in-room <inr3> ^obj <box-c> ^room <Room1>)
(in-room <inr4> ^obj <box-b> ^room <Room5>)

(in-room <inr5> ^obj <box-a> ^room <Room2>)

(in-room <inr6> ^obj <robot> ^room <Room4>)

;; goal statement
(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-closed <gnt> + &, ^next-to <gnt2> + &,
^in-room <gnt3> ^in-same-room <gnt4>
)
(door-closed <gnt> ^door <Room4Room3> ^args one ^goal-name <gname1>)
(next-to <gnt2> ^box <box-e> + &, <box-c> + &, ^args two
^goal-name <gname2>)
(in-room <gnt3> ^robot <robot> ^room <Room5> ^args two ^goal-name <gname3>)
;; additional goal for problem-space invariant
(in-same-room <gnt4> ^box <box-e> + &, <box-c> + &, ^args two

^goal-name <gname4>)

;;; Task 6

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <Room4Room3>)
(next-to <nt2> ^obj1 <box-c> ^obj2 <Room5Room7>)
(next-to <nt3> ^obj1 <box-d> ^obj2 <Room2Room1>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room7>)
(in-room <inr2> ^obj <box-d> ^room <Room2>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room4>)
(in-room <inr5> ^obj <box-a> ^room <Room1>)
(in-room <inr6> ^obj <robot> ^room <Room4>)

;; goal statement
(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^door-open <gnt> + &, ^in-room <gnt2> + &,
^in-room <gnt3> + &,
^next-to <gnt4> + &,

)
(door-open <gnt> ^door <Room5Room7> ^args one ^goal-name <gname1>)
(in-room <gnt2> ^box <box-a> ^room <Room5> ^args two ^goal-name <gname2>)

(in-room <gnt3> ^box <box-b> ^room <Room5> ^args two ^goal-name <gname3>)
;; additional goal for problem-space invariant
(next-to <gnt4> ^box <box-a> + &, <box-b> + &, ^args two

^goal-name <gname4>)

;;; Task 7

;; initial state augmentations

(next-to <nt1> ^obj1 <box-b> ^obj2 <Room7Room4>)
(next-to <nt2> ^obj1 <box-c> ^obj2 <Room2Room1>)

(door-status <ds1> ^door <Room4Room3> ^status open)

(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status closed)
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(door-status <ds5> ^door <Room5Room7> ^status open)

(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room7>)

(in-room <inr2> ^obj <box-d> ^room <Room4>)
(in-room <inr3> ^obj <box-c> ^room <Room2>)

(in-room <inr4> ^obj <box-b> ^room <Room7>)

(in-room <inr5> ^obj <box-a> ^room <Room1>)
(in-room <inr6> ^obj <robot> ^room <Room5>)

;; goal statement

(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc>
^in-room <gnt> + &, <gnt2> + &,
^in-room <gnt3> + &,
^next-to <gnt4> + &,
)
(in-room <gnt> ^box <box-a> ^room <Room2> ^args two ^goal-name <gname1>)
(in-room <gnt2> ^box <box-b> ^room <Room6> ^args two ^goal-name <gname2>)
;; additional goal for problem-space invariant
(in-room <gnt3> ^box <box-c> ^room <Room6> ^args two ^goal-name <gname3>)
(next-to <gnt4> ^box <box-c> + &, <box-b> + &, ^args two
^goal-name <gname4>)

;;; Task 8

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-a>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-d> ^obj2 <Room2Room1>)
(next-to <nt4> ^obj1 <box-e> ^obj2 <Room5Room2>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room5>)
(in-room <inr2> ^obj <box-d> ^room <Room1>)
(in-room <inr3> ^obj <box-c> ^room <Room7>)
(in-room <inr4> ^obj <box-b> ^room <Room7>)
(in-room <inr5> ^obj <box-a> ^room <Room1>)
(in-room <inr6> ^obj <robot> ^room <Room2>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^in-room <gnt> + &, <gnt2> + &, <gnt3> + &,
)
(in-room <gnt> ^box <box-c> ^room <Room6> ^args two ^goal-name <gname1>)

(in-room <gnt2> ^box <box-a> ^room <Room7> ^args two ^goal-name <gname2>)
(in-room <gnt3> ^box <box-d> ^room <Room7> ^args two ^goal-name <gname3>)

;;; Task 9

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <Room4Room3>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <Room5Room4>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)

(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status open)

(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room6>)
(in-room <inr2> ^obj <box-d> ^room <Room7>)

(in-room <inr3> ^obj <box-c> ^room <Room5>)
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(in-room <inr4> ^obj <box-b> ^room <Room3>)

(in-room <inr5> ^obj <box-a> ^room <Room4>)

(in-room <inr6> ^obj <robot> ^room <Room1>)

;; goal statement
(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-open <gnt> + &, <gnt2> + &,
^next-to <gnt3> + &, ^in-same-room <gnt4>

)
(door-open <gnt> ^door <Room4Room3> ^args one ^goal-name <gname1>)
(door-open <gnt2> ^door <Room5Room7> ^args one ^goal-name <gname2>)

(next-to <gnt3> ^box <box-c> + &, <box-a> + &,
^args two ^goal-name <gname3>)
;; additional goal for problem-space invariant

(in-same-room <gnt4> ^box <box-c> + &, <box-a> + &,

^args two ^goal-name <gname4>)

;;; Task 10

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <box-a>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-b>)
(next-to <nt3> ^obj1 <box-b> ^obj2 <box-e>)
(next-to <nt4> ^obj1 <box-e> ^obj2 <box-b>)
(next-to <nt5> ^obj1 <box-e> ^obj2 <box-c>)
(next-to <nt6> ^obj1 <box-c> ^obj2 <box-e>)
(next-to <nt7> ^obj1 <box-a> ^obj2 <Room2Room4>)
(next-to <nt8> ^obj1 <box-e> ^obj2 <Room2Room4>)
(next-to <nt9> ^obj1 <box-c> ^obj2 <Room2Room1>)
(next-to <nt10> ^obj1 <box-d> ^obj2 <Room4Room3>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room2>)
(in-room <inr2> ^obj <box-d> ^room <Room3>)
(in-room <inr3> ^obj <box-c> ^room <Room2>)
(in-room <inr4> ^obj <box-b> ^room <Room2>)
(in-room <inr5> ^obj <box-a> ^room <Room2>)
(in-room <inr6> ^obj <robot> ^room <Room5>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-open <gnt> + &,
^in-room <gnt3> + &,
<gnt2> + &,
^next-to <gnt4> + &,
)
(door-open <gnt> ^door <Room2Room1> ^args one ^goal-name <gname1>)
(in-room <gnt3> ^box <box-a> ^room <Room3> ^args two ^goal-name <gname3>)
(in-room <gnt2> ^box <box-c> ^room <Room3> ^args two ^goal-name <gname2>)
;; additional goal for problem-space invariant
(next-to <gnt4> ^box <box-c> + &, <box-a> + &, ^args two
^goal-name <gname4>)

;;; Task 11

;; initial state augmentations
(next-to <nt1> ^obj1 <box-e> ^obj2 <box-d>)
(next-to <nt2> ^obj1 <box-d> ^obj2 <box-e>)
(next-to <nt3> ^obj1 <box-e> ^obj2 <Room2Room1>)

(next-to <nt4> ^obj1 <box-d> ^obj2 <Room2Room1>)

(next-to <nt5> ^obj1 <box-b> ^obj2 <Room6Room5>)

(door-status <ds1> ^door <Room4Room3> ^status open)

(door-status <ds2> ^door <Room7Room4> ^status open)

(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)
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(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)

(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room1>)
(in-room <inr2> ^obj <box-d> ^room <Room1>)

(in-room <inr3> ^obj <box-c> ^room <Room7>)
(in-room <inr4> ^obj <box-b> ^room <Room5>)

(in-room <inr5> ^obj <box-a> ^room <Room6>)

(in-room <inr6> ^obj <robot> ^room <Room6>)

;; goal statement
(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-closed <gnt> + &,
^next-to <gnt3> + &, <gnt2> + &,

)
(door-closed <gnt> ^door <Room7Room4> ^args one ^goal-name <gname1>)
(next-to <gnt2> ^box <box-e> + &, <box-a> + &, ^args two
^goal-name <gname2>)
(next-to <gnt3> ^box <box-c> + &, <box-b> + &, ^args two
^goal-name <gname3>)

;; Task 12

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <box-c>)
(next-to <nt2> ^obj1 <box-c> ^obj2 <box-b>)
(next-to <nt3> ^obj1 <box-c> ^obj2 <Room5Room7>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room6>)
(in-room <inr2> ^obj <box-d> ^room <Room1>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room5>)
(in-room <inr5> ^obj <box-a> ^room <Room2>)
(in-room <inr6> ^obj <robot> ^room <Room2>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-closed <gnt> + &,
^door-open <gnt2> + &,
^in-room <gnt3>
)
(door-closed <gnt> ^door <Room6Room5> ^args one ^goal-name <gname1>)

(door-open <gnt2> ^door <Room5Room2> ^args one ^goal-name <gname2>)
(in-room <gnt3> ^box <box-a> ^room <Room5> ^args two ^goal-name <gname3>)

;;; Task 13

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <box-d>)

(next-to <nt2> ^obj1 <box-d> ^obj2 <box-b>)
(next-to <nt3> ^obj1 <box-d> ^obj2 <box-c>)

(next-to <nt4> ^obj1 <box-c> ^obj2 <box-d>)
(next-to <nt5> ^obj1 <box-a> ^obj2 <Room6Room5>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room7>)
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(in-room <inr2> ^obj <box-d> ^room <Room1>)

(in-room <inr3> ^obj <box-c> ^room <Room1>)

(in-room <inr4> ^obj <box-b> ^room <Room1>)
(in-room <inr5> ^obj <box-a> ^room <Room6>)

(in-room <inr6> ^obj <robot> ^room <Room1>)

;; goal statement
(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^door-closed <gnt> + &,
^in-room <gnt2> + &,
^next-to <gnt3> + &, ^in-same-room <gnt4>

)
(door-closed <gnt> ^door <Room5Room2> ^args one ^goal-name <gname1>)
(in-room <gnt2> ^robot <robot> ^room <Room6> ^args two ^goal-name <gname2>)

(next-to <gnt3> ^box <box-e> + &, <box-b> + &,

^args two ^goal-name <gname3>)
;; additional goal for problem-space invariant

(in-same-room <gnt4> ^box <box-e> + &, <box-b> + &,
^args two ^goal-name <gname4>)

;;; Task 14

;; initial state augmentations
(next-to <nt1> ^obj1 <box-e> ^obj2 <box-d>)
(next-to <nt2> ^obj1 <box-d> ^obj2 <box-e>)
(next-to <nt3> ^obj1 <box-d> ^obj2 <Room2Room4>)
(next-to <nt4> ^obj1 <box-c> ^obj2 <Room5Room2>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room4>)
(in-room <inr2> ^obj <box-d> ^room <Room4>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room2>)
(in-room <inr5> ^obj <box-a> ^room <Room3>)
(in-room <inr6> ^obj <robot> ^room <Room7>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-open <gnt> + &,
^in-room <gnt2> + &, <gnt3> + &,
^next-to <gnt4> + &,
)
(door-open <gnt> ^door <Room2Room1> ^args one ^goal-name <gname1>)

(in-room <gnt2> ^box <box-d> ^room <Room5> ^args two ^goal-name <gname2>)
(next-to <gnt4> ^box <box-a> + &, <box-d> + &,
^args two ^goal-name <gname4>)
;; additional goal for problem-space invariant
(in-room <gnt3> ^box <box-a> ^room <Room5> ^args two ^goal-name <gname3>)

;;; Task 15

;; initial state augmentations
(next-to <nt1> ^obj1 <box-c> ^obj2 <box-a>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-c>)
(next-to <nt3> ^obj1 <box-e> ^obj2 <Room4Room3>)
(next-to <nt4> ^obj1 <box-c> ^obj2 <Room2Room4>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room4>)
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(in-room <inr2> ^obj <box-d> ^room <Room3>)

(in-room <inr3> ^obj <box-c> ^room <Room2>)

(in-room <inr4> ^obj <box-b> ^room <Room6>)
(in-room <inr5> ^obj <box-a> ^room <Room2>)

(in-room <inr6> ^obj <robot> ^room <Room7>)

;; goal statement
(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^door-open <gnt> + &,
^in-room <gnt2> + &,
^next-to <gnt3> + &,

)
(door-open <gnt> ^door <Room5Room4> ^args one ^goal-name <gname1>)
(in-room <gnt2> ^box <box-d> ^room <Room7> ^args two ^goal-name <gname2>)

(next-to <gnt3> ^box <box-b> ^door <Room5Room2>

^args two ^goal-name <gname3>)

D.5 4-goal-conjunct tasks

The following pieces of Soar code describe the initial and goal states for the 4-goal-

conjunct Robot Domain tasks used in Chapter 6. For each task, the listing �rst

describes the relevant initial state augmentations for the task, and then the task goal.

;;; Task 1

;; initial state augmentations
(next-to <nt1> ^obj1 <box-c> ^obj2 <box-b>)
(next-to <nt2> ^obj1 <box-b> ^obj2 <box-c>)
(next-to <nt3> ^obj1 <box-e> ^obj2 <Room7Room4>)
(next-to <nt4> ^obj1 <box-a> ^obj2 <Room5Room7>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room4>)
(in-room <inr2> ^obj <box-d> ^room <Room4>)
(in-room <inr3> ^obj <box-c> ^room <Room1>)
(in-room <inr4> ^obj <box-b> ^room <Room1>)
(in-room <inr5> ^obj <box-a> ^room <Room5>)

(in-room <inr6> ^obj <robot> ^room <Room3>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-open <gnt> + &, <gnt4> + &,
^in-room <gnt2> + &, <gnt3> + &,

)
(door-open <gnt> ^door <Room2Room1> ^args one ^goal-name <gname1>)

(in-room <gnt2> ^box <box-b> ^room <Room5> ^args two ^goal-name <gname2>)
(in-room <gnt3> ^box <box-e> ^room <Room2> ^args two ^goal-name <gname3>)
(door-open <gnt4> ^door <Room4Room3> ^args one ^goal-name <gname4>)

;;; Task 2

;; initial state augmentations
(next-to <nt1> ^obj1 <box-c> ^obj2 <Room5Room7>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
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(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)

(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room3>)

(in-room <inr2> ^obj <box-d> ^room <Room7>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)

(in-room <inr4> ^obj <box-b> ^room <Room7>)

(in-room <inr5> ^obj <box-a> ^room <Room1>)
(in-room <inr6> ^obj <robot> ^room <Room4>)

;; goal statement

(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^door-open <gnt> ^in-room <gnt2> + &, <gnt3> + &,
<gnt4> + &,
)
(door-open <gnt> ^door <Room6Room5> ^args one ^goal-name <gname1>)
(in-room <gnt2> ^box <box-e> ^room <Room7> ^args two ^goal-name <gname2>)
(in-room <gnt3> ^robot <robot> ^room <Room5> ^args two ^goal-name <gname3>)
(in-room <gnt4> ^box <box-a> ^room <Room6> ^args two ^goal-name <gname4>)

;;; Task 3

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-b>)
(next-to <nt2> ^obj1 <box-b> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-e> ^obj2 <Room5Room4>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room4>)
(in-room <inr2> ^obj <box-d> ^room <Room7>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room7>)
(in-room <inr5> ^obj <box-a> ^room <Room2>)
(in-room <inr6> ^obj <robot> ^room <Room6>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^in-room <gnt> + &, <gnt4> + &,
^next-to <gnt3> + &, <gnt2> + &,
)
(in-room <gnt> ^box <box-e> ^room <Room5> ^args two ^goal-name <gname1>)
(next-to <gnt2> ^box <box-b> ^door <Room4Room3> ^args two
^goal-name <gname2>)
(next-to <gnt3> ^box <box-a> + &, <box-d> + &, ^args two

^goal-name <gname3>)
(in-room <gnt4> ^box <box-c> ^room <Room7> ^args two ^goal-name <gname4>)

;;; Task 4

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-e>)

(next-to <nt2> ^obj1 <box-e> ^obj2 <box-d>)

(next-to <nt3> ^obj1 <box-b> ^obj2 <box-c>)
(next-to <nt4> ^obj1 <box-c> ^obj2 <box-b>)
(next-to <nt5> ^obj1 <box-a> ^obj2 <Room5Room2>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status open)

(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
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(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)

(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room4>)
(in-room <inr2> ^obj <box-d> ^room <Room4>)

(in-room <inr3> ^obj <box-c> ^room <Room1>)
(in-room <inr4> ^obj <box-b> ^room <Room1>)

(in-room <inr5> ^obj <box-a> ^room <Room2>)

(in-room <inr6> ^obj <robot> ^room <Room6>)

;; goal statement
(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^door-open <gnt> + &, <gnt2> + &, <gnt3> + &,
^next-to <gnt4>

)
(door-open <gnt> ^door <Room5Room7> ^args one ^goal-name <gname1>)
(door-open <gnt2> ^door <Room2Room1> ^args one ^goal-name <gname2>)

(door-open <gnt3> ^door <Room5Room4> ^args one ^goal-name <gname3>)
(next-to <gnt4> ^box <box-e> + &, <box-c> + &, ^args two
^goal-name <gname4>)

;;; Task 5

;; initial state augmentations
(next-to <nt1> ^obj1 <box-b> ^obj2 <box-e>)
(next-to <nt2> ^obj1 <box-e> ^obj2 <box-b>)
(next-to <nt3> ^obj1 <box-c> ^obj2 <Room2Room1>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room7>)
(in-room <inr2> ^obj <box-d> ^room <Room3>)
(in-room <inr3> ^obj <box-c> ^room <Room2>)
(in-room <inr4> ^obj <box-b> ^room <Room7>)
(in-room <inr5> ^obj <box-a> ^room <Room4>)
(in-room <inr6> ^obj <robot> ^room <Room6>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^next-to <gnt> + &, <gnt3> + &,
^in-room <gnt2> + &, <gnt4> + &
)
(next-to <gnt> ^box <box-a> + &, <box-b> + &, ^args two
^goal-name <gname1>)
(in-room <gnt2> ^box <box-a> ^room <Room1> ^args two ^goal-name <gname2>)
(next-to <gnt3> ^box <box-e> ^door <Room2Room4> ^args two

^goal-name <gname3>)
(in-room <gnt4> ^box <box-b> ^room <Room1> ^args two ^goal-name <gname4>)

;;; Task 6

;; initial state augmentations

(next-to <nt1> ^obj1 <box-d> ^obj2 <box-a>)
(next-to <nt2> ^obj1 <box-a> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-c> ^obj2 <Room5Room2>)

(door-status <ds1> ^door <Room4Room3> ^status open)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status open)

(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room1>)
(in-room <inr2> ^obj <box-d> ^room <Room5>)



D.5. 4-GOAL-CONJUNCT TASKS 351

(in-room <inr3> ^obj <box-c> ^room <Room2>)

(in-room <inr4> ^obj <box-b> ^room <Room5>)

(in-room <inr5> ^obj <box-a> ^room <Room5>)
(in-room <inr6> ^obj <robot> ^room <Room1>)

;; goal statement

(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^door-closed <gnt> + &, ^door-closed <gnt2> + &,
^in-room <gnt3> + &,^in-room <gnt4> + &
)
(door-closed <gnt> ^door <Room6Room5> ^args one ^goal-name <gname1>)

(door-closed <gnt2> ^door <Room5Room7> ^args one ^goal-name <gname2>)
(in-room <gnt3> ^robot <robot> ^room <Room7> ^args two ^goal-name <gname3>)

(in-room <gnt4> ^box <box-d> ^room <Room2> ^args two ^goal-name <gname4>)

;;; Task 7

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-b>)
(next-to <nt2> ^obj1 <box-b> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-e> ^obj2 <Room7Room4>)
(next-to <nt4> ^obj1 <box-c> ^obj2 <Room4Room3>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room7>)
(in-room <inr2> ^obj <box-d> ^room <Room6>)
(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room6>)
(in-room <inr5> ^obj <box-a> ^room <Room4>)
(in-room <inr6> ^obj <robot> ^room <Room2>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^in-room <gnt> + &, <gnt3> + &, <gnt4> + &,
^door-closed <gnt2> ^next-to <gnt5>)
(in-room <gnt> ^box <box-d> ^room <Room4> ^args two ^goal-name <gname1>)
(door-closed <gnt2> ^door <Room5Room4> ^args one ^goal-name <gname2>)
(in-room <gnt3> ^box <box-a> ^room <Room3> ^args two ^goal-name <gname3>)
;; additional goal for problem-space invariant
(in-room <gnt4> ^box <box-c> ^room <Room3> ^args two ^goal-name <gname4>)
(next-to <gnt5> ^box <box-a> + &, <box-c> + &, ^args two ^goal-name <gname5>)

;;; Task 8

;; initial state augmentations
(next-to <nt1> ^obj1 <box-a> ^obj2 <box-b>)
(next-to <nt2> ^obj1 <box-b> ^obj2 <box-a>)
(next-to <nt3> ^obj1 <box-e> ^obj2 <Room2Room1>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status closed)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status closed)

(in-room <inr1> ^obj <box-e> ^room <Room2>)
(in-room <inr2> ^obj <box-d> ^room <Room1>)

(in-room <inr3> ^obj <box-c> ^room <Room5>)
(in-room <inr4> ^obj <box-b> ^room <Room3>)

(in-room <inr5> ^obj <box-a> ^room <Room3>)
(in-room <inr6> ^obj <robot> ^room <Room1>)

;; desired state
(goal <g> ^desired-state <d>)
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(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^in-room <gnt> + &, <gnt3> + &,
<gnt4> + &,
^door-closed <gnt2> ^next-to <gnt5>)

(in-room <gnt> ^box <box-e> ^room <Room3> ^args two ^goal-name <gname1>)
(door-closed <gnt2> ^door <Room2Room4> ^args one ^goal-name <gname2>)

(in-room <gnt3> ^box <box-c> ^room <Room3> ^args two ^goal-name <gname3>)
;; additional goal for problem-space invariant

(in-room <gnt4> ^box <box-d> ^room <Room6> ^args two ^goal-name <gname4>)
(next-to <gnt5> ^box <box-e> + &, <box-c> + &, ^args two

^goal-name <gname5>)

;;; Task 10

;; initial state augmentations
(next-to <nt1> ^obj1 <box-a> ^obj2 <box-e>)

(next-to <nt2> ^obj1 <box-e> ^obj2 <box-a>)

(next-to <nt3> ^obj1 <box-e> ^obj2 <Room2Room1>)
(next-to <nt4> ^obj1 <box-a> ^obj2 <Room5Room2>)
(next-to <nt5> ^obj1 <box-d> ^obj2 <Room2Room4>)
(next-to <nt6> ^obj1 <box-d> ^obj2 <box-b>)
(next-to <nt7> ^obj1 <box-b> ^obj2 <box-d>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status open)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room2>)
(in-room <inr2> ^obj <box-d> ^room <Room4>)
(in-room <inr3> ^obj <box-c> ^room <Room1>)
(in-room <inr4> ^obj <box-b> ^room <Room4>)
(in-room <inr5> ^obj <box-a> ^room <Room2>)
(in-room <inr6> ^obj <robot> ^room <Room1>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^in-room <gnt> + &, ^next-to <gnt2> + &,
^door-open <gnt3> + &,
^door-closed <gnt4>
)
(in-room <gnt> ^box <box-b> ^room <Room5> ^args two ^goal-name <gname1>)
(door-closed <gnt4> ^door <Room2Room1> ^args one ^goal-name <gname4>)
(door-open <gnt3> ^door <Room5Room2> ^args one ^goal-name <gname3>)
(next-to <gnt2> ^box <box-a> + &, <box-c> + &, ^args two
^goal-name <gname2>)

;;; Task 11

;; initial state augmentations
(next-to <nt1> ^obj1 <box-a> ^obj2 <box-c>)
(next-to <nt2> ^obj1 <box-c> ^obj2 <box-a>)
(next-to <nt3> ^obj1 <box-c> ^obj2 <Room7Room4>)

(next-to <nt4> ^obj1 <box-a> ^obj2 <Room7Room4>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status closed)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room1>)

(in-room <inr2> ^obj <box-d> ^room <Room3>)
(in-room <inr3> ^obj <box-c> ^room <Room7>)
(in-room <inr4> ^obj <box-b> ^room <Room5>)

(in-room <inr5> ^obj <box-a> ^room <Room7>)
(in-room <inr6> ^obj <robot> ^room <Room7>)

;; goal statement
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(goal <g> ^desired-state <d>)

(desired <d> ^goal-conjuncts <gc> ^better lower

)
(goal-conjuncts <gc> ^in-room <gnt> + &, ^in-room <gnt2> + &,
^next-to <gnt3> + &,

)
(in-room <gnt> ^box <box-b> ^room <Room3> ^args two ^goal-name <gname1>)
(in-room <gnt2> ^box <box-a> ^room <Room2> ^args two ^goal-name <gname2>)

(next-to <gnt3> ^box <box-e> + &, <box-d> + &, ^args two

^goal-name <gname3>)

;;; Task 12

;; initial state augmentations
(next-to <nt1> ^obj1 <box-a> ^obj2 <box-b>)

(next-to <nt2> ^obj1 <box-b> ^obj2 <box-a>)

(next-to <nt3> ^obj1 <box-a> ^obj2 <Room7Room4>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status open)

(door-status <ds3> ^door <Room2Room4> ^status open)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status closed)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room2>)
(in-room <inr2> ^obj <box-d> ^room <Room3>)
(in-room <inr3> ^obj <box-c> ^room <Room7>)
(in-room <inr4> ^obj <box-b> ^room <Room4>)
(in-room <inr5> ^obj <box-a> ^room <Room4>)
(in-room <inr6> ^obj <robot> ^room <Room5>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^door-closed <gnt> + &,
^next-to <gnt3> + &, <gnt2> + &,
)
(door-closed <gnt> ^door <Room7Room4> ^args one ^goal-name <gname1>)
(next-to <gnt2> ^box <box-a> + &, <box-c> + &, ^args two
^goal-name <gname2>)
(next-to <gnt3> ^box <box-c> + &, <box-d> + &, ^args two
^goal-name <gname3>)

;;; Task 13

;; initial state augmentations
(next-to <nt1> ^obj1 <box-d> ^obj2 <box-c>)
(next-to <nt2> ^obj1 <box-c> ^obj2 <box-d>)
(next-to <nt3> ^obj1 <box-c> ^obj2 <Room6Room5>)

(door-status <ds1> ^door <Room4Room3> ^status closed)
(door-status <ds2> ^door <Room7Room4> ^status open)
(door-status <ds3> ^door <Room2Room4> ^status closed)
(door-status <ds4> ^door <Room5Room4> ^status open)
(door-status <ds5> ^door <Room5Room7> ^status closed)
(door-status <ds6> ^door <Room2Room1> ^status closed)
(door-status <ds7> ^door <Room5Room2> ^status open)
(door-status <ds8> ^door <Room6Room5> ^status open)

(in-room <inr1> ^obj <box-e> ^room <Room1>)
(in-room <inr2> ^obj <box-d> ^room <Room6>)
(in-room <inr3> ^obj <box-c> ^room <Room6>)
(in-room <inr4> ^obj <box-b> ^room <Room3>)
(in-room <inr5> ^obj <box-a> ^room <Room4>)

(in-room <inr6> ^obj <robot> ^room <Room7>)

;; goal statement
(goal <g> ^desired-state <d>)
(desired <d> ^goal-conjuncts <gc> ^better lower
)
(goal-conjuncts <gc> ^in-room <gnt> + &, ^in-room <gnt2> + &,
^next-to <gnt3>
^door-closed <gnt4>
)
(in-room <gnt> ^box <box-e> ^room <Room7> ^args two ^goal-name <gname1>)
(in-room <gnt2> ^box <box-a> ^room <Room7> ^args two ^goal-name <gname2>)
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(door-closed <gnt4> ^door <Room6Room5> ^args one ^goal-name <gname4>)

(next-to <gnt3> ^box <box-b> + &, <box-c> + &, ^args two

^goal-name <gname3>)



Appendix E

Experimental Results: Detailed

Information

This appendix gives the detailed numeric information used to construct the �gures

of Chapter 6. In the �gures below, the tasks corresponding to each task number are

given in Appendices B, D, and C.

E.1 Solution Quality

355
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Figure E.1: Robot Domain: Solution length for 2-goal-conjunct tasks, original room
layout.
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Figure E.2: Robot Domain: Solution length for 2-goal-conjunct tasks in complex
room layout, as compared with the corresponding tasks in the original room layout.
Optimal solutions remain the same. Missing entries indicate which tasks were not
able to �nish.
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Figure E.11: Robot Domain: problem-solving steps for 2-goal-conjunct tasks. Tasks
which took more than 2600 steps were cut o�.
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Figure E.12: Robot Domain, 2 goal conjuncts: problem-solving time (secs.) En-
tries are missing for one �rst-path and one non-abstract best-path search because of
recording errors.
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plex room layout. Blank entries indicate tasks which did not complete.
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Figure E.17: Robot Domain, 3 goal conjuncts: problem-solving steps; original room
layout. Non-abstract best-path search was not tractable. Missing entries indicate
tasks which did not complete.
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Figure E.18: Robot Domain, 3 goal conjuncts: problem-solving time (secs.); origi-
nal room layout. Non-abstract best-path search was not tractable. Missing entries
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Figure E.19: Robot Domain, 3 goal conjuncts: tokens per production �ring; original
room layout.
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Figure E.21: Robot Domain, 3 goal conjuncts: problem-solving time; complex room
layout. Non-abstract best-path search was not tractable. Missing entries indicate
tasks which did not complete.
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Figure E.35: Robot Domain, original layout, 3 goal conjuncts, extended-plan-use
method increment: problem-solving steps. Blank entries indicate tasks which did not
�nish.
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Figure E.36: Robot Domain, original layout, 3 goal conjuncts, extended-plan-use
method increment: problem-solving time. Blank entries indicate tasks which did not
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Figure E.37: Robot Domain, original layout, 3 goal conjuncts, extended-plan-use
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Figure E.39: Robot Domain, original layout, 4 goal conjuncts, extended-plan-use
method increment: problem-solving time. Blank entries indicate tasks which did not
�nish.
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Figure E.40: Robot Domain, original layout, 4 goal conjuncts, extended-plan-use
method increment: token changes.
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Figure E.43: Robot Domain, original layout, 4 goal conjuncts, extended-plan-use
method increment: tokens per production �ring.
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Figure E.44: Robot Domain, 3 goal conjuncts: problem-solving with the extended
plan use method in the complex room layout.
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E.3.2 Plan Transfer
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Figure E.45: E�ect of transfer of rules on number of problem-solving steps in the
Tower of Hanoi.
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