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Abstract

This report describes a two-pass binocular stereo algorithm that is specif-
ically geared towards the detection of depth discontinuities. In the �rst pass,
introduced in part I of the report, stereo matching is performed independently
on each epipolar pair for maximum e�ciency. In the second pass, described in
part II, disparity information is propagated between the scanlines.

Part I. Our stereo algorithm explicitly matches the pixels in the two images,
leaving occluded pixels unpaired. Matching is based upon intensity alone with-
out utilizing windows. Since the algorithm prefers piecewise constant disparity
maps, it sacri�ces depth accuracy for the sake of crisp boundaries, leading to
precise localization of the depth discontinuities. Three features of the algorithm
are worth noting: (1) unlike most stereo algorithms, it does not require texture
throughout the images, making it useful in unmodi�ed indoor settings, (2) it
uses a measure of pixel dissimilarity that is provably insensitive to sampling,
and (3) it prunes bad nodes during the search, resulting in a running time that
is faster than that of standard dynamic programming.

Part II. After the scanlines are processed independently, the disparity map
is postprocessed, leading to more accurate disparities and depth discontinuities.
Both the algorithm and the postprocessor are fast, producing a dense disparity
map in about 1.5 microseconds per pixel per disparity on a workstation. Results
on �ve stereo pairs are given.
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Chapter 1

Introduction

Many powerful heuristics often fail at depth discontinuities: surfaces in the
world are not continuous from the current viewpoint; the motion �eld often is
not continuous; a window that straddles a depth discontinuity does not contain
points from a single object; and scene points that are visible in one frame may
not be visible in the next. So, on the one hand, depth discontinuities restrict
the use of common assumptions and are therefore regarded by many image
analysis methods as a hindrance. These methods see their performance degrade
along depth discontinuities, where di�erent disparities or image motions abut.
Yet, from an image understanding point of view, depth discontinuities contain
essential information about the scene: they contain information about the depth
ordering of objects, are often strongly correlated to object shape, and facilitate
�gure-ground segregation. Therefore, many applications would bene�t from a
knowledge of the depth discontinuities, applications such as object tracking,
interpolating between frames of an image sequence, merging di�erent views of a
scene, and planning camera motion to investigate areas of the scene which are
not currently visible.

One appealing aspect of depth discontinuities is that they have a simple,
purely geometric de�nition: A depth discontinuity is a point on the image plane
whose projection ray, assuming a pinhole camera model, grazes a surface in the
world. Thus, in the scene below, the black dots mark the depth discontinuities.

focal point

objectobject

object

image
plane

3



The goal of the approach described in this report is to detect depth discon-
tinuities from a stereo pair of images. The distinctive 
avor of our algorithm is
that it is two-dimensional in nature. That is, it tries to locate the boundaries of
objects (i.e., the depth discontinuities) rather than to recover an accurate depth
map. To this end, it explicitly matches the pixels in the two images, preferring
to assign a constant disparity to each object even if that object's depth is not
constant. The pixels which are unmatched are assumed to be occluded, and the
respective ends of the occluded regions are depth discontinuities. Localization
of depth discontinuities is sharp because no windows are used for matching, but
only individual pixels.

Because our algorithm establishes full correspondence, it is a stereo system
in its own right, despite its specialized purpose. As such, it is similar to other
stereo algorithms that incorporate depth discontinuities and occluded regions
[2, 7, 6, 11, 8, 9]. Three aspects of the algorithm are worth noting. First, it uses
a measure of pixel dissimilarity that looks at the linearly interpolated intensity
functions surrounding the two pixels, and thus is provably insensitive to sam-
pling e�ects. Sampling is an important phenomenon that greatly in
uences the
values of the pixels that are near large variations in intensity. We have found
that discrepancies between the sampling grids in the two images translate into
intensity discrepancies as large as �fteen out of 256 gray levels (see Figure 3.7
on page 14). Our method handles these di�erences correctly. This is crucial
in stereo matching, because it is precisely the pixels near intensity variations
that have the most information. In contrast to the computationally expensive
solution of matching at subpixel resolution or over windows, our dissimilarity
measure solves the sampling problem with only a negligible increase in compu-
tation.

Most stereo algorithms require texture1 throughout the image (but see [6],
[8], and [1]), the assumption presumably being that untextured regions have no
information for matching. However, images quite often contain large untextured
regions, particularly in indoor settings. Our algorithm is able to handle these
regions by making the simple but powerful assumption that depth discontinuities
are always accompanied by intensity gradients. Based on this assumption, and
on the observation that an intensity gradient between a near and a far object has
the same disparity as the near object, the algorithm places depth discontinuities
on the proper side of untextured regions. In our experience, this assumption is
usually valid because our threshold for declaring intensity gradients is very low.
In other words, our intensity gradients are not located just at strong intensity
edges.

The �nal noteworthy point of the algorithm is that it prunes bad nodes
during search, resulting in an average running time proportional to n�log�
rather than the more common n�2 of standard dynamic programming. (n is the
number of pixels in the scanline and � is the number of disparity levels.) On a
high-end workstation, it takes about �ve seconds to process a pair of 630� 480
images, using 15 disparity levels. (Note that the postprocessing described in

1
By the term texture, we simply mean some variation in intensity.
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Part II of this report takes an additional two seconds.)
We have strived for simplicity in our investigation. Thus the algorithm

described here uses a simple cost function and processes each scanline indepen-
dently. Not only has this simplicity facilitated our research by allowing us to
isolate di�erent phenomena, but the algorithmworks surprisingly well with such
little computational e�ort.

In the following chapter, we explicitly document the assumptions that the
algorithm makes about the world, so that the reader can better evaluate the
approach and the experimental results. Then, in Chaper 3, we formulate the
correspondence problem, which is followed by descriptions of the cost function,
the pixel dissimilarity measure, and the manner in which we handle untextured
regions. In Chapter 4 we present our algorithm. In Chapter 5 we show the
results of the algorithm on �ve pairs of images, and �nally we conclude in
Chapter 9.

5



Chapter 2

Assumptions

Every stereo algorithmmakes assumptions about the world. Knowledge of these
assumptions is important when evaluating an algorithm, because they nearly
always a�ect the applicability of the algorithm. Below we provide an explicit
list of our algorithm's assumptions:

A1. Each point in the scene looks identical in the two images. In other words,
all surfaces are Lambertian, and the two image sensors are ideal samplers.
The obvious violator is specular re
ection. Another important problem
arises with aliasing, which we alleviate by slightly defocusing the lens.
Other sources of error are camera noise, lens distortion, lens blur (near a
depth discontinuity where there is a nearby intensity gradient on the far-
ther object), misalignment of the scanlines (where there is a large intensity
gradient perpendicular to the scanlines), and di�erent imaging parameters
for the two cameras.

A2. In the absence of photometric information, the depth of the scene is piece-
wise constant in the direction of the scanlines. Although this is stronger
than the usual assumption of piecewise continuity, some variation in depth
is allowed, since the resolution of the disparity map is one pixel. Since our
goal is to detect depth discontinuities rather than to compute an accurate
depth map, we prefer to assign a constant disparity to each object, even
if the depth of that object varies slightly (as in the case of a cylinder).

A3. At every depth discontinuity, there is an intensity gradient between the
near object and the far object. This assumption (which is similar to the
one made in [6]) allows us to prohibit depth discontinuities in regions of
nearly constant intensity (i.e., untextured regions).

A4. Within each scanline, every object contains at least a modest amount of
intensity variation. Therefore, we are not hindered by ambiguity in sepa-
rating two adjacent objects. Because an intensity gradient between a near
object and a far object belongs to the near object (as explained in Section
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3.2.1), this assumption is automatically satis�ed, by means of the previous
assumption, for all objects except for those that are never adjacent to a
farther object. We call these objects background objects. Therefore, this
assumption is equivalent to assuming that background objects contain at
least a modest amount of intensity variation.

A5. No scene point is viewed from both sides of another scene point. This is
the monotonic ordering assumption.

A6. Each scene point is at least a certain distance from the camera. Because
of this assumption, the search can be restricted to a small subset of all
possible disparities.

A7. In any scanline in which an object is partially visible to one camera, that
object is also partially visible to the other camera. Therefore, the depths
of the objects can be determined by triangulation.

Just how restrictive are these assumptions? Overall, we have found A1 to
be fairly reasonable (similar to the observation made in [2]), even though real-
world objects are often not Lambertian [13]. Specular re
ections cause little
problem in our images since the baseline is small (but see [4] for one approach
to handling them). Our experiments suggest that the assumption becomes less
valid as the baseline is increased. To remove the e�ects of di�erent imaging
parameters, we obtained our stereo images by translating a single camera in a
static scene; using two di�erent cameras may require calibration. Also, we re-
duced distortion by using a lens with a long focal length. Surprisingly, A2 may
be less restrictive than one might expect, because if a slanted object straddles
two di�erent disparities, the independent scanlines will place the discontinuities
at somewhat random locations within the object; therefore the true discontinu-
ity boundaries are still recognizable as coherent curves of depth discontinuities.
(The experimental results of Figure 5.7 seem to justify this claim.) In our ex-
perience, A3 is not restrictive: an intensity gradient nearly always accompanies
a depth discontinuity, because our threshold for declaring intensity gradients
is low (see Section 3.2.1 for details). On the other hand, A4 is actually quite
restrictive: although it allows for the untextured background walls which are
prevalent in indoor settings, between any two foreground objects it requires the
wall to have some intensity variation (such as a light switch or a door jamb).
Propagating information between scanlines would generalize this assumption.
Assumption A5 seems reasonable, since it is violated only when a thin object
close to the viewer occludes a distant surface. In addition, it is worth noting
that it can be proved to hold wherever the scene contains a unique surface of
nonzero thickness [5]. Assumption A6 is easily enforced by maintaining a mod-
est clearance in front of the cameras, and A7 is violated only in the presence of
deep and narrow holes.
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Chapter 3

Match Sequences

We pose the stereo correspondence problem as the problem of matching pixels
in one scanline to pixels in the other scanline, assuming that the two cameras
are aligned. Although our formulation could easily be extended to subpixel
resolution, pixel resolution is su�cient to compute a rough depth map and to
detect most depth discontinuities. Other pixel-resolution stereo algorithms are
described in [7], [9], [10], and [8].

Correspondence is encoded in a match sequence, which is a sequence of
matches. Each match is an ordered pair (x; y) of pixels signifying that the
intensities IL(x) and IR(y) are images of the same scene point. Unmatched pix-
els are occluded, and a subsequence of adjacent occluded pixels that is bordered
by two non-occluded pixels (or by a non-occluded pixel and the image bound-
ary) is called an occlusion. We de�ne depth-discontinuity pixels as those pixels
that border a change in disparity and that lie on the far object. See Figure 3.1
for an illustration of these de�nitions on a pair of unusually short scanlines and
Figure 3.2 for an actual match sequence found by the algorithm.

To formalize this framework, we let L and R denote the left and right scan-
lines, respectively, of a recti�ed stereo pair of images. IL(x) denotes the in-
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Figure 3.1: The match sequence M = h(1; 0); (2; 1); (6; 2); (7; 3); (8;4); (9;5);
(10; 6); (11; 9); (12;10); (13; 11)i. The slope of a line is directly related to the
disparity of its pixels; thus the �ve matches in the middle correspond to a near
object. The left occlusions are h0i and h3; 4; 5i, while the right occlusions are
h7; 8i and h12; 13i. The depth-discontinuity pixels are circled; note that the
occlusions at the ends of the scanlines are caused by the borders of the image
plane rather than by depth discontinuities.
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Figure 3.2: Part of the match sequence found by the algorithm on scanline 198
of the images in Figure 5.3. For viewing clarity, the left scanline (the top one)
is shifted up, while the right scanline (the bottom one) is shifted to the right.
In other words, the vertical axis is valid for R, while the horizontal axis is valid
for L. The matches correspond, from left to right, to the Simulink box, the
background wall, and the Clorox box.

tensity of pixel x in the left scanline, while IR(y) denotes the intensity of pixel
y in the right scanline. We assume that each scanline is of length n, so that
x; y 2 f0; 1; : : : ; n� 1g.

The disparity �(x) of a pixel x in L that matches some pixel y in R is de�ned
in the usual way as x� y, while the disparities of all the pixels in an occlusion
are assigned the disparity of the farther of the two neighboring objects. In
other words, if hx; x + 1; : : : ; x + ki is a left occlusion,1 then all of the pixels
x; x+ 1; : : : ; x+ k are assigned a disparity of minf�(x� 1); �(x+ k+ 1)g. Since
disparity is inversely proportional to depth, at every change in disparity the
side of the change with the smaller disparity belongs to the far object, while
the side of the change with the larger disparity belongs to the near object. The
depth-discontinuity pixels are labelled as those pixels that border a change in
disparity and that lie on the far object. Thus, x is a depth-discontinuity pixel if
either �(x) < �(x� 1) or �(x) < �(x+1). It is worth noting that the right-most
pixel in each left occlusion is a depth-discontinuity pixel, as well as the left-most
pixel in each right occlusion (see Figure 3.1).

This de�nition of depth-discontinuity pixels does not allow for any disparity
variation within an object. Thus, depth-discontinuity pixels will sometimes
be declared where there are no actual depth discontinuities, such as within a
slanted object. We show in Section 5, and in particular Figure 5.7, that the
problems associated with this de�nition are not as severe as one might expect.
And, since slanted objects often require a change in disparity of only one pixel,
slightly modifying the above de�nition to require a disparity change of at least
two pixels would alleviate this problem, at the expense of losing shallow depth
discontinuities.

With each match sequence M we associate a cost 
(M ) that measures how

1
A left occlusion is an occlusion in the left scanline, as shown in Figure 3.1.
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unlikely it is that M describes the true correspondence. (That is, the best
match sequence has the lowest cost.) In addition, we impose hard constraints
to disallow certain types of unlikely match sequences. The cost function and
hard constraints are the subjects of the next two sections.

3.1 Cost function

Instead of deriving a maximum a posteriori cost function from a Bayesian for-
mulation (as is done in [2], [7], and [11]), we propose a simple cost function
based mainly on intuition and justi�ed solely by empirical evidence.

We de�ne the cost 
 of a match sequence M as a constant penalty for each
occlusion, a constant reward for each match, and a sum of the dissimilarities
between the matched pixels:


(M ) = Nocc�occ �Nm�r +

NmX
i=1

d(xi; yi); (3.1)

where �occ is the constant occlusion penalty, �r is the constant match reward,
d(xi; yi) is the dissimilarity between pixels xi and yi, and Nocc and Nm are the
number of occlusions and matches, respectively, in M .

This cost function prefers piecewise-constant disparity maps. Thus, if possi-
ble, each object is assigned a single disparity. Although this behavior sacri�ces
accurate depth reconstruction, it is desirable for detecting depth discontinu-
ities. In addition, the simplicity of Equation 3.1 makes our cost function easy
to implement and to evaluate.

When an object is slanted, or otherwise straddles two disparities, more than
one disparity is assigned to the object. This change in disparity is interpreted
as an occlusion and hence a depth discontinuity. However, as we argued in the
previous section, this error is not as severe as one might expect, because these
false depth-discontinuity pixels will exhibit little coherence between adjacent
scanlines (see Figure 5.7), and because these changes in disparity are often only
one pixel, while true depth discontinuities usually cause changes of several pixels
or more.

3.1.1 Occlusion penalty and match reward

Technically, �occ is interpreted as the amount of evidence (in terms of mis-
matched pixel intensities) that is necessary to declare a change in disparity,
while �r is interpreted as the maximum amount of pixel dissimilarity that is
generally expected between two matching pixels. Together, the two terms func-
tion like an occlusion penalty that is dependent on the length of the occlusion.
(Figure 3.3 demonstrates the interaction of the two terms.) Nevertheless, we
keep the terms separate because a constant occlusion penalty is central to our
method of pruning the search space, as described in Chapter 4.2.

In our implementation, we set �occ to 25 and �r to 5, leading to an e�ective
occlusion penalty function �e� (l) as shown in Figure 3.4. As long as we are
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Figure 3.3: The match reward causes occlusions to be penalized based on their
lengths. In fact, although the number of occlusions is the same (three) in both
(a) and (b), the lengths of the occlusions a�ect the number of matches. As-
suming that all of the dissimilarities between matched pixels are zero, the cost
function evaluates to: (a) 3�occ � 9�r and (b) 3�occ � 8�r.
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Figure 3.4: The e�ective penalty �e� of an occlusion vs. the length of the
occlusion. �e� is a combination of �occ and �r.

using Equation 3.1, this function must satisfy two conditions. First, the function
must increase with the length of an occlusion, or else the matching algorithm
will skip over regions of the images in which the intensities of matching pixels
di�er signi�cantly due to noise or other phenomena. In other words, if a large
occlusion has a relatively small penalty, then the algorithm will declare a large
occlusion in the left (or right) scanline followed by a single match followed by a
large occlusion in the right (or left) scanline to avoidmatching the pixels a�ected
by noise. Other researchers have encountered di�culty in using a cost function
that adds only a constant occlusion penalty to pixel dissimilarities [8]. Second,
as explained in [7], the function must satisfy �e� (l1)+�e� (l2) � �e� (l1+ l2) for
all lengths l1 and l2. Otherwise, the algorithm would prefer to declare two small
occlusions instead of one large occlusion, leading to a staircase-like disparity
function. Making the left-hand side of this inequality signi�cantly greater than
the right-hand side causes each object to be assigned a constant disparity, even
if the object's depth is not constant (as in the case of a cylinder). The result is
a piecewise-constant disparity map.

3.1.2 Pixel dissimilarity

The term d(xi; yi) measures how unlikely it is that IL(xi) and IR(yi) are images
of the same scene point. This dissimilarity cannot be measured by simply taking

11



LI

-1

(x )LI

x i

i

ix +1ix

interval for y

y

RI

(y)R

yi

I

yi
-1 +1

IR

yi

Figure 3.5: De�nition of �d(xi; yi; IL; IR).

the di�erence between IL(xi) and IR(yi), as is often done, because these intensi-
ties are a�ected by image sensor sampling. In fact, this di�erence in intensities
varies depending upon how much the intensity of the image is changing in the
vicinity. We know of no one who has explicitly addressed this problem. Typi-
cally, the problem is alleviated either by working at subpixel resolution [2, 11]
or by adding robustness through window-based matching [7, 9, 6]. Instead,
we propose to use the linearly interpolated intensity functions surrounding two
pixels to measure their dissimilarity, in a method that is provably insensitive
to sampling. For this method to work well, the intensity functions must vary
predictably between pixels; therefore, we slightly defocus the lens to remove
aliasing.

More precisely, as shown in Figure 3.5, we �rst de�ne the minimum di�er-
ence �d between IL(xi) and ÎR(y), where ÎR is the function obtained by linearly
interpolating IR and where jy � yij �

1

2
:

�d(xi; yi; IL; IR) = min
yi�

1

2
�y�yi+

1

2

jIL(xi) � ÎR(y)j:

Then we de�ne the minimum di�erence in the other direction, and we take the
minimum of the two: d(xi; yi) = minf �d(xi; yi; IL; IR); �d(yi; xi; IR; IL)g. Thus,
the de�nition of d is symmetrical.

Since the extreme points of a piecewise linear function must be its break-
points, the computation of d is rather straightforward. See Figure 3.6. First
we compute I�R � ÎR(yi �

1

2
) = 1

2
(IR(yi) + IR(yi � 1)), the linearly interpo-

lated intensity halfway between yi and its neighboring pixel to the left, and the
analogous quantity I+R � ÎR(yi +

1

2
) = 1

2
(IR(yi) + IR(yi + 1)). Then we let

Imin = min(I�R ; I+R ; IR(yi)) and Imax = max(I�R ; I+R ; IR(yi)). With these
quantities de�ned,

�d(xi; yi; IL; IR) = maxf0; IL(xi)� Imax; Imin � IL(xi)g:

This computation takes only a constant amount of time more than taking the
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Figure 3.6: Computation of �d(xi; yi; IL; IR).

absolute di�erence in intensities, yet it saves us the expensive task of having to
compute matches at subpixel resolution or within windows.

It is shown in Appendix A that d is insensitive to sampling in the sense
that, without noise or other distortions, d(xi; yi) = 0 whenever yi is the closest
sampling point to the y value corresponding to xi. The only restriction is that
the continuous intensity function incident upon the sensor be either concave
or convex in the vicinity of xi and yi. In practice, in
ection points cause no
problem since the regions surrounding them are approximately linear { and
linear functions are both concave and convex. Therefore, our cost function
works well as long as the intensity function varies slowly compared to the pixel
spacing on the sensor, i.e., as long as aliasing does not occur. As mentioned
above, we slightly defocus the lens to ensure this condition.

Figure 3.7 contrasts our dissimilarity measure with the absolute di�erence
in intensity. (We will call the latter method SAD, although there is no sum
involved.) Wherever the intensity function is nearly constant, or wherever the
disparity between the two scanlines is close to an integer number of pixels,
the two approaches yield similar results, since sampling e�ects are negligible.
However, where the intensity function changes rapidly and the disparity is not
an integer number of pixels, the SAD between two matching pixels is large,
while our dissimilaritymeasure remains well-behaved. Close examination of the
pixel intensities veri�es that the erratic plot of Figure 3.7(c) is due to sampling
rather than the choice of matched pixels.

3.2 Hard constraints

In addition to measuring the likelihood of a match sequence by its cost, we
impose hard constraints upon each match sequence. These constraints serve
two purposes: (1) they disallow certain types of unlikely match sequences, and
(2) they facilitate a systematic search of the space of possible match sequences.
Of the seven constraints described below, they all serve the �rst purpose, but
only the last �ve serve the second purpose.

In the following treatment, we assume that we have a match sequence M =
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Figure 3.7: (a) A portion of the match sequence computed for scanline 240 of
the images in Figure 5.3. For viewing clarity, the left scanline is shifted up,
while the right scanline is shifted to the right. (b) The dissimilarities between
the matched pixels, as computed by our measure. Most of the values are zero.
The black rectangle indicates that the dissimilarity of the unmatched pixel 427
is unde�ned. (c) The dissimilarities computed by taking the absolute value of
the di�erence (SAD) in intensity.
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Figure 3.8: An intensity gradient due to a depth discontinuity has the same
disparity as the near object. In this example, the near object is an untextured
black wall, while the far object is an untextured white wall. Together, the
objects produce a step edge in each image. The disparity � between the step
edges is identical to the disparity of any point on the black wall. (b is the
baseline.)

h(x1; y1); : : : ; (xk; yk)i, where k = Nm is the number of matches in M .

3.2.1 Intensity gradients accompany depth discontinuities

Assume, as we did in Chapter 2, that every depth discontinuity is accompanied
by an intensity gradient. Such a gradient will have the same disparity as the
near object and therefore will be considered as part of the near object. (To be
convinced of this important but non-obvious principle, consult Figure 3.8. An
argument from real images is presented in Chapter 5, item A3.) An occlusion
in the left scanline occurs because the near object is to the right of the far
object. Since the intensity gradient is part of the near object, and since the
occluded pixels come from the far object, the occlusion must lie immediately to
the left of the intensity gradient. Likewise, a right occlusion must lie immedi-
ately to the right of an intensity gradient. Therefore, we impose the following
two constraints:

C1. if hxi; : : : ; xji is a left occlusion, then xj lies to the left of an intensity
gradient, 1 � i � j < k

C2. if hyi; : : : ; yji is a right occlusion, then yi lies to the right of an intensity
gradient, 1 < i � j � k

Examples showing various allowed and non-allowed placements of an occlusion
relative to its intensity gradient are shown in Figure 3.9.

A pixel x in the left scanline is said to lie to the left of an intensity gradient
if the intensity variation between x+1, x+2, and x+3 is at least 5 gray levels.
Likewise, a pixel y in the right scanline is said to lie to the right of an intensity
gradient if the intensity variation between y � 1, y � 2, and y � 3 is at least 5
gray levels. The size of the window is chosen to make the computation fairly
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Figure 3.9: An occlusion in the left image must lie to the left of an intensity
gradient. (a) Correct placement of occlusion. (b) Occlusion is too far from
gradient. (c) Occlusion has no gradient to its right.
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Figure 3.10: Darkened pixels lie (a) to the left and (b) to the right of intensity
gradients. The scanlines are from Figure 3.2.

robust to noise while still being localized. The threshold of 5 is chosen to be
just above the intensity variation in untextured regions for our camera. Since
noise depends on intensity, calibrating the camera would yield a more accurate
threshold. As an example of the output of this computation, Figure 3.10 shows
the pixels which are determined to lie next to intensity gradients.

It is important to note that we are not trying to place depth discontinuities
along strong intensity \edges", since our threshold for image intensity variation
is so small. Rather, we are merely preventing the cost function from making a
poor decision in a region where there is little information.

3.2.2 Constraints related to search

C3. 0 � xi � yi � �; i = 1; : : : ; k

C4. y1 = 0

C5. xk = n� 1

C6. xi < xj, and
yi < yj ; 1 � i < j � k
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C7. xi+1 = xi + 1, or
yi+1 = yi + 1; i = 1; : : : ; k� 1

To greatly reduce the size of the search space, C3 introduces � as the max-
imum allowed disparity. This constraint is justi�ed by the assumption that
all objects are at least a certain depth from the cameras (Assumption A6 of
Chapter 2); because the cameras are recti�ed, it also requires that the dispar-
ity be nonnegative. The next two constraints force the left-most pixel in the
right scanline and the right-most pixel in the left scanline to be matched; this is
due to a technical requirement of dynamic programming. Since the number of
matched pixels far outweighs the number of occluded pixels in a typical image,
it is reasonable to assume that these two pixels should be matched.

The �nal two constraints enable the use of dynamic programming to traverse
the entire search space (although C7 is slightly more restrictive than necessary).
While C6 follows naturally from the monotonic ordering assumption (A5), the
justi�cation of C7 may not be obvious at �rst glance. Still, it is not hard to
show that it also follows from the assumptions of Chapter 2. Suppose that we
have a match (xi; yi) which corresponds to a point on an object in the scene.
Three situations are possible:

1. Neither xi nor yi is near a depth discontinuity. In this case, (xi+1; yi+1)
will be a match corresponding to a point on the same object. So C7 is
valid.

2. The pixel xi is near a depth discontinuity in scanline L. This situation is
symmetric to the following one and should be clear from the explanation
there.

3. The pixel yi is near a depth discontinuity in scanline R. To see that
Constraint C7 is valid in this case, refer to Figure 3.11 which shows the
projection rays from the two cameras landing on the two objects in the
scene; these objects are piecewise constant in depth due to Assumption
A2. In the drawing, the vertical line connecting the two planes at di�erent
depths signi�es that no projection ray crossing that line can give rise to a
match, due to the monotonic ordering assumption. If the projection rays
for xi and yi meet on some object in the world, then the projection ray
for yi+1 must terminate at some point p on the next object; it can't skip
an object or else the mutual visibility assumption (A7) would be violated.
It is clear from the monotonic ordering assumption that there can be no
obstruction between p and the left focal point. Therefore, there must be
some j > i such that (xj; yi+1) is a match.
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Figure 3.11: Justi�cation of Constraint C7.
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Chapter 4

Searching for the Optimal

Match Sequence

Thanks to the structure of the cost function (Equation 3.1), the technique of
dynamic programming (also used in [1], [12], [2], and [7]), can be used to �nd the
optimal match sequence by searching over all the match sequences that satisfy
the constraints given in Section 3.2.

Figure 4.1a illustrates the search grid for n = 10 and � = 3. (Recall that n is
the number of pixels in each scanline and � is the maximumdisparity allowed.)
Because of constraint C3, many of the cells in the grid are disallowed; these
are shown as black cells. The algorithm searches for the best possible path1

stretching from the left-hand side to the right-hand side. The match sequence
h(1; 0); (2; 1); (3; 2); (5; 3); (6; 4); (7;5); (8;7); (9; 8)i is shown by the cells marked
with �. Notice that any column or row that does not contain an � corresponds
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Figure 4.1: (a) The search grid and a match sequence (\�" cells). x indexes
the left scanline, while y indexes the right scanline. (b) The matches (white
cells) that can immediately precede a match (striped cell), when the bounds on
disparity are ignored. (c) The matches that can immediately follow a match.

1
Informally, we will use the terms cell andmatch interchangeably, as well as the terms path

and match sequence.
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Figure 4.2: (a) The shifted search grid. (b) The immediately preceding matches
(ignoring disparity bounds). (c) The immediately following matches.

to an occluded pixel.
For any match (xi; yi), the matches which can possibly be chosen as its

immediately preceding match (xi�1; yi�1) are the cells shown in Figure 4.1b, due
to constraints C6 and C7. Similarly, the matches which can possibly be chosen
as its immediately following match (xi+1; yi+1) are the cells shown in Figure
4.1c. Placing Figure 4.1b and Figure 4.1c onto the grid of Figure 4.1a reveals
that each match has � + 1 possible candidates as its immediately preceding
match and �+1 possible candidates as its immediately following match (unless
it is near one of the boundaries).

In order to make the diagram in Figure 4.1 more compact, we shift each
column up by an amount equal to the number of the column, which leads to
the grid in Figure 4.2. The vertical axis is now � = x � y, the disparity. In a
similar manner, Figures 4.1b and 4.1c become Figures 4.2b and 4.2c.

For each cell of the shifted search grid, we record two pieces of information:
'[�; y] is the cost of the best match sequence (so far) ending at match (y+ �; y),
and �[�; y] points to the immediately preceding match in that match sequence.
Two additional arrays are used: gL[x] is TRUE if the pixel x in the left scanline
lies to the left of an intensity gradient, and is FALSE otherwise; similarly, gR[y] is
TRUE if the pixel y in the right scanline lies to the right of an intensity gradient,
and is FALSE otherwise.

4.1 Two dual optimal algorithms

Because of the duality between a match's preceding matches and its following
matches, there are two dual algorithms for searching this space. The �rst al-
gorithm is more intuitive and straightforward, but the second one provides us
with a framework to speed the search by pruning bad cells, as we will see in
Section 4.2. Both algorithms traverse the ' array from left to right, and from
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top to bottom, computing the cost of the best path to each cell:2

'[�; y] = 
0(y + �; y)

= d(y + �; y) � �r (4.1)

+min

8<
:

'[�; y � 1];
'[� � 1; y � 1] + �occ; : : : ; '[0; y� 1] + �occ;

'[� + 1; y � 2] + �occ; : : : ; '[�; y+ � ��� 1] + �occ

9=
; ;

where the minimum is taken over the costs of the best paths to the possible
preceding matches of (y+ �; y): �rst the match preceding no occlusion, then the
matches preceding left occlusions, then the matches preceding right occlusions.
Once the ' array is �lled, the lowest-cost cell which satis�es constraint C5 is
selected as the ending match mk. Then, starting at this cell, � is traced to �nd
the optimal match sequence.

4.1.1 Backward-Looking Algorithm

The Backward-Looking Algorithm, shown in Figure 4.3, iterates through all the
cells [�; y] of the shifted search grid, computing Equation 4.1 for each cell. When
a cell is encountered, all of its possible preceding matches [�p; yp] are checked
to determine which one lies on the best path to the cell. The algorithm gets its
name from the fact that it looks backward to the preceding matches.

For simplicity, we have omitted the test if yp > 0, which is necessary to
ensure that array indexing is in bounds. Line 7 is simply a compact formula
to express the position of the possible preceding matches (Figure 4.2b). Line
8 prevents '0 from being updated if the match being considered would cause a
depth discontinuity without an intensity gradient. The test � > �p is true when
there is a left occlusion, in which case the depth-discontinuity pixel y+��1 must
lie to the left of an intensity gradient; similarly the test � < �p is true when
there is a right occlusion, in which case the depth-discontinuity pixel yp + 1
must lie to the right of an intensity gradient. Line 9 updates '0 by adding
�occ whenever there is an occlusion. (We are using the convention that � 6= �p
is equal to 1 if there is an occlusion and zero otherwise; � denotes ordinary
multiplication.) After the for loop of lines 6-12, �̂ points to the best preceding
match, and '̂ holds its value, plus any occlusion penalty. The last two lines use
this information to update the ' and � arrays.

4.1.2 Forward-Looking Algorithm

The Forward-Looking Algorithm, shown in Figure 4.4, splits the minimization
of Equation 4.1 so that '[�; y] is computed sequentially as follows: the minimum
of the �rst two arguments, then the minimum of its current value and the third
argument, then the minimum of its current value and the fourth argument, and

2
We introduce the notation 
0(x; y) to refer to the cost of the best match sequence whose

endingmatch is (x; y). The endingmatch of a match sequence h(x1; y1); : : : ; (xk; yk)i is de�ned
as (xk; yk).
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Backward-Looking Algorithm

1 for �  0 to �
2 '[�; 0] d(�; 0)
3 for y  1 to n� 1
4 for �  0 to �
5 '̂ 1

6 for �p  0 to �
7 yp  y �max(1; �p � � + 1)
8 if (� = �p) or (� > �p and gL[y + � � 1])

or (� < �p and gR[yp + 1]) then

9 '0  '[�p; yp] + �occ � (� 6= �p)
10 if '0 < '̂ then

11 '̂ '0

12 �̂ [�p; yp]
13 '[�; y] '̂ + d(y + �; y) � �r
14 �[�; y] �̂

Figure 4.3: Backward-Looking Algorithm.

so on. It iterates through the cells [�p; yp] of the search grid, determining for
each cell whether that cell lies on the best path to one of its possible following
matches [�; y]. The path to the cell itself is not updated, since its best path
has already been computed; rather, the paths to its possible following matches
are updated. Therefore, it takes � + 1 iterations (because each match has this
number of possible preceding matches) before '[�; y] is equal to 
0(y + �; y).
The algorithm gets its name from the fact that it looks forward to the following
matches.

Lines 1-5 initialize the array. The equation in line 9 expresses the position
of the possible following matches (Figure 4.2c). The variable '0 contains the
cost of the best path (so far) to [�; y] through [�p; yp]. If this path is better than
all the paths which have already been examined, then the best path to [�; y] is
updated accordingly.

4.1.3 Comparison

These two algorithms perform identical computations, and the running time
of each is O(n�2). Since the Backward-Looking Algorithm is slightly more
intuitive, the advantage of Forward-Looking Algorithm may not be obvious at
�rst glance. The answer lies in the fact that, when a cell is encountered by
the Forward-Looking Algorithm, the cost of its best path has already been
computed. Therefore, we can determine before the cell is expanded whether or
not it is likely to lie on the optimal path. By performing this test we can prune
those cells with high costs, resulting in an algorithm with a greatly reduced
running time. The justi�cation and details of pruning are the subject of the
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Forward-Looking Algorithm

1 for �  0 to �
2 '[�; 0] d(�; 0)
3 for y  1 to n� 1
4 for �  0 to �
5 '[�; y] 1
6 for yp  0 to n� 2
7 for �p  0 to �
8 for �  0 to �
9 y  yp +max(1; �p � � + 1)
10 if (� = �p) or (� > �p and gL[y + � � 1])

or (� < �p and gR[yp + 1]) then

11 '0  '[�p; yp] + d(y + �; y) � �r + �occ � (� 6= �p)
12 if '0 < '[�; y] then

13 '[�; y] '0

14 �[�; y] [�p; yp]

Figure 4.4: Forward-Looking Algorithm.

next section.

4.2 A Faster Algorithm

In the interest of optimality, both of the algorithms described in Section 4.1
perform a great deal of unnecessary computation because they compute the
best paths to all the cells, even to bad ones. The Forward-Looking Algorithm
provides a framework within which we can prune these bad cells to produce an
algorithmwith a greatly reduced running time. Although optimality is sacri�ced
in theory, the results of the algorithms are nearly identical in practice.3

Consider a match p with a possible following match c such that there is
a right occlusion between them, as shown in Figure 4.5 with respect to the
original search grid of Figure 4.1. Now suppose that there is some match q to
the left of and on the same row as p whose best path has a lower cost, i.e.,

0(q) < 
0(p). Then q is also a possible preceding match of c (as is evident from
Figure 4.1c), and the best path to c through q is better than the best path to c

through p, since the occlusion penalty is constant. Therefore, there is no need
for the Forward-Looking Algorithm to expand p to c, or indeed to any of the
matches on c's row since q is also a possible preceding match of each of them.
By a similar argument, we conclude that it is fruitless to expand p to any of the
matches on its adjacent column if there is a lower-cost match above it.

3
Our experiments show that the resulting disparity maps disagree in fewer than 0:7% of

their values, for � ranging from 14 to 40 pixels.
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Figure 4.5: Optimality is retained when p is not rightward expanded, assuming
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Figure 4.6: Optimality is lost when p is not rightward expanded, assuming that

0(r) < 
0(p).

In light of these observations we could, without sacri�cing optimality, mod-
ify the Forward-Looking Algorithm so that it refuses to rightward expand any
match with a lower-cost match to its left and refuses to downward expand any
match with a lower-cost match above it. However, the running time would not
be reduced because of the di�culty in determining whether there is a lower-cost
match above or to the left of another match. Instead, we modify the algorithm
so that it refuses to rightward expand any match with a lower-cost match in its
row and refuses to downward expand any match with a lower-cost match in its
column. We call the resulting algorithm the Faster Algorithm.

To see that optimality is lost, consider the situation shown in Figure 4.6,
in which a match p has a possible following match c such that there is a right
occlusion between them, as we had before. Now suppose there is a match r on
the same row as p which has a lower-cost best path, i.e., 
0(r) < 
0(p). Also
suppose that, by the time p is encountered, the best path to r is better than
the best path to p, i.e., '[r] < '[p].4 (Recall that '[p] is guaranteed to be equal
to 
0(p) when p is encountered, while '[r] will probably not be equal to 
0(r).)
Then the Faster Algorithm will refuse to rightward expand p, since there is a
lower-cost cell on its row. Yet if there is no match to the left of p, or even to
the left of c, whose best path has a lower cost than that of p, then the best
path to c might very well pass through p. Thus optimality is lost. However, it
is not surprising that the loss of optimality is small, given the large number of
assumptions that we had to make.

The average running time of the Faster Algorithm is estimated empirically
to be proportional to n�log�, as explained in Section 5.2. Justifying this ex-

4The meaning here should be clear, despite the abuse of notation.
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pression analytically would require making assumptions about the distribution
of the elements in the ' table.

The Faster Algorithm, shown in Figure 4.7, utilizes two data structures for
determining whether a cell should be expanded: mx[x] is the minimum cost of
any cell in row x (of the original search grid), while my is the minimum cost of
any cell in the current column. The subroutine update updates the path to the
match [�; y] if the path through [�p; yp] is better than any path seen previously;
it also maintains mx.

Lines 1-7 initialize the ' and mx arrays, whilemy is initialized in line 9. The
heart of the algorithm is executed in lines 11-19, which are repeated for every
cell [�p; yp] in the ' array. Each cell is expanded to its adjacent following match
at the same disparity in line 11. Then, if the cell is one of the best in its column,
it is expanded in lines 13-15 to all the cells following a left occlusion, provided
that the depth-discontinuity pixel y+��1 lies to the left of an intensity gradient.
Finally, if the cell has the lowest cost among all the cells in its row, and if the
depth-discontinuity pixel yp + 1 lies to the right of an intensity gradient, then
the cell is expanded in lines 17-19 to all the cells following a right occlusion.
The formula in line 18 is easily understood if one notices that a right occlusion
occurs when x = xp + 1, and that x = y + � and xp = yp + �p.
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Faster Algorithm

1 for �  0 to �
2 '[�; 0] d(�; 0)
3 for y  1 to n� 1
4 for �  0 to �
5 '[�; y] 1
6 for x 0 to n� 1
7 mx[x] 1
8 for yp  0 to n� 2
9 my  minf'[0; yp]; '[1; yp]; : : : ; '[�; yp]g

10 for �p  0 to �
11 update(�p; yp; �p; yp + 1)
12 if '[�p; yp] � my then

13 y  yp + 1
14 for �  �p + 1 to �
15 if gL[y + � � 1] then update(�p; yp; �; y)

16 if '[�p; yp] � mx[�p + yp] and gR[yp + 1] then
17 for �  0 to �p � 1
18 y  yp + �p � � + 1
19 update(�p; yp; �; y)

update(�p; yp; �; y)

20 '0  '[�p; yp] + d(y + �; y) � �r + �occ � (� 6= �p)
21 if '0 < '[�; y] then

22 '[�; y] '0

23 �[�; y] [�p; yp]
24 mx[y + �] minfmx[y + �]; '0g

Figure 4.7: Faster Algorithm.
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Chapter 5

Experimental Results

In this section we present the results of the Faster Algorithm on �ve di�er-
ent stereo image pairs. Our goal is to ascertain the algorithm's strengths and
weaknesses by closely examining the validity of its output.

Figures 5.3 through 5.7 show �ve stereo image pairs, displayed for cross-eyed
fusion, and the resulting disparity map and depth discontinuities of each. The
latter two are displayed with respect to the left image. No postprocessing was
performed on the output of the algorithm.

The output on these images demonstrates the e�ectiveness of the algorithm
at reconstructing a piecewise disparity map and, more importantly, accurate
depth discontinuities. The algorithm correctly places the depth discontinuities
along the object contours, even when the background wall has roughly constant
intensity. In particular, notice that near the bottom center of Figure 5.4(d)
the depth discontinuities are placed along the edges of the table support rather
than along the edge of the door, even though there is no texture on either the
support or the door. Similarly, in Figure 5.6(d) the depth discontinuities are
placed along the table support even though the only real intensity variation on
the background is near the left and right ends of the scanlines.

One immediately obvious limitation of the algorithm is the fact that it pro-
cesses the scanlines independently, which causes the horizontal streaks in the
disparity map. The other modes of failure result from breakdowns in the as-
sumptions of Chapter 2. We will examine each assumption in turn:

A1. Each point looks identical in the two images. To help ensure the validity
of this assumption, we carefully took our stereo images by using a sin-
gle camera and translating roughly in the direction of the scanlines. In
addition, we slightly defocused the lens to eliminate aliasing.

The breakdown in this assumption can be readily seen in Figure 5.3, where
specular re
ections occur on the wine bottle, on the right Clorox bottle,
and on the shiny surface of the table. Since the camera translated a small
amount between frames, the disparities of the re
ections are almost the
same (within one pixel) as the disparities of the corresponding objects.
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Figure 5.1: The blending of intensities across depth discontinuities. (a) Right
image. (b) Left image. (c) and (d) Intensity plots of a scanline pair (row 205)
containing the lid of the Splash can. Notice that the two smaller peaks di�er
from each other by 40 gray levels.

Therefore, the algorithm is able to assign a constant disparity to most
objects in spite of the re
ections.

Another breakdown occurs as a byproduct of defocusing the lens. Shown
in Figure 5.1 is a blowup of the area surrounding the top right corner of
the Splash can of Figure 5.3, which partially occludes the \C" on the right
Clorox bottle. Defocusing the lens mixes the intensities of the Splash can
lid and the \C" so that the intensities of the \C" are much higher in the
right image than in the left, in the rows containing the lid. This type of
situation, however, requires there to be a large intensity variation on the
far object near a depth discontinuity and is therefore rare in our images.

Even when the image has little intensity variation, the dissimilarities be-
tween the pixels can sometimes guide the search to the correct disparity.
For example, the bottom �fty scanlines of Figure 5.7 contain almost no in-
tensity variation, and yet their disparities are nearly correct. Sometimes,
as in the case of the region to the right of the lamp in Figure 5.4, the
disparity is correctly changed from the object (in this case the lamp) to
a lower value, although that value itself is incorrect. However, as is seen
in the four streaks near the top of this same �gure, sometimes the sum
of the dissimilarities of the pixels over a large untextured region is not a
minimum at the correct disparity, and is even large enough to declare an
occlusion.

A2. The depth of the scene is piecewise constant. In the �rst four images, this
assumption holds because the minor variation in depth within each object
is below the resolution of the disparity map. One exception occurs on the
door of Figure 5.5. The left door edge between the knobs is found to be

28



a depth discontinuity, when in fact it is a surface-normal discontinuity. It
could be argued that the algorithm's decision is not a complete failure,
however, because a small amount of camera motion in the proper direction
would make this edge a depth discontinuity. Thus, in some sense, the edge
is \almost" a depth discontinuity.

Even when the assumption is intentionally violated, the algorithm per-
forms surprisingly well. For example, in Figure 5.7, even though the
Clorox box varies considerably in depth, the algorithm assigns a constant
disparity to the object (in most of the scanlines) and therefore correctly
detects many of the depth discontinuities along both of its edges. The
algorithm also works well on the Graebel box, which straddles two dispar-
ities. Although depth discontinuities are falsely declared within the box,
they are declared independently for each scanline and therefore exhibit no
coherence between scanlines. (For a more principled approach to handling
sloping surfaces, see [3].)

A3. Intensity gradients accompany depth discontinuities. In general, this as-
sumption holds. One exception occurs in Figure 5.3 along the right edge
of the left Clorox bottle, just above the lettering. The algorithm assumes
that the triangular wedge belongs to the Simulink box instead. Another
exception occurs along the left side of the cap of the spray paint can.

The power of this assumption is seen in Figure 5.4, where a reasonable
disparity map is constructed from a pair of images that has sparse intensity
variation. To see the reasoning of the algorithm, look at scanline 250. The
edges of the lamp are easily determined to be one disparity, while the edge
of the door (the dark vertical stripe) is easily determined to be a di�erent
disparity. Because of our assumption, we know that a depth discontinuity
cannot occur along the bland wall between them. So either the door edge
or the lamp edge is a depth discontinuity, which means that the wall is
either part of the door or part of the lamp. But the wall cannot be part
of the lamp, because if it were, then the lamp would extend to the edge
of the door, which would cause the door edge to be at the same disparity
as the lamp. Since the door edge is at a smaller disparity (implying larger
depth), the bland wall must belong to the door. Therefore, the edge of
the lamp is a depth discontinuity. So we see that high-level, powerful
reasoning is achieved by a simple, local test for intensity variation.

A4. Every object contains intensity variation. This is an important assump-
tion. It explains many of the algorithm's successes and failures on these
images, since the background wall has little intensity variation. For ex-
ample, consider the black table support near the bottom center of Figure
5.4(a). The depth discontinuities along the left edge of the support are
correctly found, due to the dark vertical stripe caused by the left edge
of the door. In contrast, the depth discontinuities along the right edge
are correctly found only along the scanlines which contain the door hinge;
along the other scanlines there is not enough intensity variation on the wall
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for the algorithm to correctly detect the disparity of the wall, and hence it
cannot detect the depth discontinuities. As another example, the cavity of
the lamp (where the lamp head meets the neck) in Figure 5.4 is not found
because the region of the wall inside has nearly constant intensity. More
strikingly, the middle Clorox bottle entirely disappears from the disparity
map of Figure 5.6 because there is not enough intensity variation on the
wall for the algorithm to realize that there is a wall between the three ob-
jects. Finally, notice in Figure 5.3(a) that the dark vertical stripe caused
by the edge of the door is conveniently placed between the Simulink box
and the Clorox box, with the result that the depth discontinuities along
the edges of the two objects are correctly detected.

A5. The monotonic ordering assumption. In these images, this assumption is
always valid.

A6. The true disparity of any pixel is not larger than �. After taking the
images, we chose � so that this assumption would hold.

A7. Every object can be seen by both cameras. In these images (and in fact in
most real images), this assumption is always valid.

5.1 Sensitivity to Parameters

We have found our algorithm to be insensitive to the choice of �, as long as
it is larger than the actual maximum disparity. As � varies from 14 to 50,
almost none (fewer than 0:3%) of the pixels in the disparity map change value.
Of course, if � is below the actual maximum disparity (which in these images
ranges from 8 to 13), then the algorithm's performance degrades substantially.

On the other hand, we have found the algorithm to be moderately sensitive
to the occlusion penalty �occ and the match reward �r. As mentioned in Section
3.1, we empirically chose �occ = 25 and �r = 5 for all of the results presented
in this report. Fewer than 5% of the pixels in the disparity map change as �occ
varies from 18 to 35, and fewer than 1:5% of the pixels change as �r varies from
3 to 8. These results were obtained from the images of Figures 5.3 and 5.4,
with � set to 14. If �r is less than 3, then performance degrades as � increases
because the algorithm is allowed to declare large occlusions without incurring
large penalties.

5.2 Computing Time

The algorithm was implemented in C and compiled using cc with maximum
optimization. For the results presented in this report, we set � to 14, which
yields a computing time of about nine seconds on these 630� 480 images using
a Silicon Graphics Indy workstation, which is an average machine. On a Silicon
Graphics Indigo 2 Extreme workstation, which is a faster machine, the algorithm
takes about �ve seconds.
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Figure 5.2: Computing time vs. � of the Backward-Looking (dashed) and
Faster (solid) Algorithms, on a Silicon Graphics Indy workstation.

Of course, the computing time depends on the value of �. Figure 5.2 demon-
strates that our algorithm is signi�cantly faster than the standard dynamic pro-
gramming algorithm, especially for large �. From the data in the �gure, the
running time of our algorithm seems to be proportional to n�log�.
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Figure 5.3: (a) Right image. (b) Left image. (c) Disparity map. (d) Depth
discontinuities.
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Figure 5.4: (a) Right image. (b) Left image. (c) Disparity map. (d) Depth
discontinuities.
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Figure 5.5: (a) Right image. (b) Left image. (c) Disparity map. (d) Depth
discontinuities.
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Figure 5.6: (a) Right image. (b) Left image. (c) Disparity map. (d) Depth
discontinuities.
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Figure 5.7: (a) Right image. (b) Left image. (c) Disparity map. (d) Depth
discontinuities.
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Part II

Propagating Information

Between Scanlines
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Chapter 6

Postprocessing the

Disparity Map

In an image, the intensity values of pixels from di�erent scanlines are not in-
dependent. Similarly, the true disparities of a pair of stereo images are not
independent from one scanline to the next. Thus, while processing scanlines
independently, as we did in Part I, is computationally attractive and straight-
forward to formulate, it does not take full advantage of all the information in
the images. Thus, we seek a way to incorporate this information.

A common approach is to extend the one-dimensional cost function (such
as Equation 3.1) to a two-dimensional cost function, which is then minimized.
However, minimizing such a function in a computationally e�cient manner is
not a straightforward task. In the extension from 1D to 2D, it is not uncommon
for the computing time to increase by 600% or more [2, 12]. As a result, some
approaches avoid the extension altogether [7, 8]. Moreover, we cannot rely on
techniques that look only at pairs [1] or triplets [2] of adjacent scanlines at
a time, since our initial disparity maps contain errors over large regions. For
example, incorrect disparities are found in Figure 5.4 in the concavity of the
lamp, in the region to the right of the lamp, and in the region in the bottom-
right-hand corner of the image.

In light of these observations, we have devised a method for postprocessing
the disparity map by propagating reliable disparity values into regions of un-
reliable disparity values. This postprocessing is rather global in nature and is
quite e�ective at propagating the background disparities into regions with little
intensity variation. Moreover, it is fast, taking only a couple of seconds on a
workstation.

Figure 6.1 shows a schematic of the information 
ow. The algorithm of Part
I takes the two original images and two binary images of intensity gradients
and computes a disparity map. The postprocessing uses this disparity map and
the intensity gradients of the left image to compute a �nal disparity map. The
original images are not available to the postprocessor.
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After postprocessing, depth discontinuity pixels are labelled as those pixels
that lie on the far object and that border a change of at least two disparity
levels. This threshold of two allows for some disparity variation within an object
and helps to prevent depth discontinuities from being declared within slanted
objects.

The speed of the postprocessing is due to the alternation between indepen-
dent rows (scanlines) and independent columns. More speci�cally, after the
algorithm of Part I processes the rows independently, the following steps are
performed:1

S1. Obvious errors in the disparity map are removed.

S2. In the y direction:

(a) Intensity gradients are computed.

(b) \Isolated" intensity gradients are removed.

(c) Stable regions are propagated.

S3. Step S2 is repeated in the x direction.

S4. The disparity map is mode-�ltered in the y direction.

S5. The disparity map is mode-�ltered in the x direction.

These steps are now explained in more detail:

S1. Isolated disparity values are removed by checking each pixel's two neigh-
bors: the pixel above and the pixel below. If these neighbors have the
same disparity as each other but a di�erent disparity from the pixel itself,
then the disparity of the pixel is changed to that of its neighbors. This
step has little e�ect on the disparity map but corrects obvious errors.

1
For the rest of this report, the term \x direction" refers to the direction along the rows,

while the \y direction" is along the columns.
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S2. In the y direction, the following steps are performed:

(a) A binary map of the intensity gradients is constructed by centering
3�1 vertical windows around every pixel in the image. If the intensity
variation within a window is at least �ve gray levels, then all of the
pixels within the window are labelled as intensity gradients.

(b) Since the intensity gradients are obtained by processing each column
independently, we remove, along any particular row, every gradient
for which three adjacent columns do not agree.

(c) This step is the heart of the postprocessing and is by far the most
di�cult to explain. The basic idea, however, is simply to propagate
reliable regions into unreliable regions and into regions with higher
disparity, until an intensity gradient is encountered. Reliability is
de�ned for each pixel within a given column as the number of con-
tiguous rows that agree on the pixel's disparity. For example, if the
disparities in a column are:

[5 7 7 7 8 8 2 7 7 7 7 7]T ;

then the reliabilities of the pixels are:

[1 3 3 3 2 2 1 5 5 5 5 5]T :

(The superscript T denotes transpose, indicating that these are col-
umn vectors.)

We use three thresholds for reliability. A highly reliable region is a
set of contiguous pixels whose reliability is at least th, a moderately

reliable region is at least tm, and a slightly reliable region is at least
ts. Since we enforce th > tm > ts, each of these de�nitions subsumes
the previous one. A region whose reliability is less than ts is called
unreliable. In general, highly and moderately reliable regions are
o�ensive in propagating their values into neighboring regions, while
slightly reliable regions are defensive in maintaining their values.

A highly reliable region propagates its disparity along its column,
changing the disparity of the neighboring pixels. Propagation stops
when it reaches an intensity gradient or a slightly reliable region
with a lower disparity. Regions with a higher disparity are overrun
no matter what their reliability. The reason for this is that reliability
is not a good indication that the disparities are correct when the
background has little intensity variation, i.e., when Assumption A4
of Chapter 2 is violated. Thus, in the cavity of the lamp of Figure
5.4, all of the rows agree on the incorrect disparity because there is
little intensity variation on the background.

A moderately reliable region acts exactly like a highly reliable region,
with one exception: It cannot propagate into a slightly reliable region
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that is only one disparity level away. This rule enables some sloping
surfaces to remain intact. For example, the farthest region of the
table top of Figure 8.2 is prevented from propagating into the nearer
regions.

Objects that have nearly horizontal borders cause a problem. Due
to the independence of the scanlines resulting from the algorithm of
Part I, a particular scanline that straddles the background and the
object may assign the background disparity to the object. Then the
background disparity will be propagated into the object, and possibly
over a large portion of it. This is the case of the top edge of the table,
near scanline 300 of Figure 5.4. Therefore, we make one exception
to the propagation described in the previous two paragraphs. Before
a region is allowed to propagate up, it checks whether the region
just above its top pixel is slightly reliable, and whether there is an
intensity gradient within a certain number (tg) of pixels below its
top pixel. If these two tests are true, then instead of the region
propagating up, the slightly reliable region propagates down to the
intensity gradient. A similar procedure is performed before a region
is allowed to propagate down.

S3. Propagation occurs in the x direction, in a manner symmetric to that
described in Step S2.

S4 and S5. These two steps perform mode �ltering with a 5� 1 vertical and a 1 � 5
horizontal �lter, respectively. That is, all of the pixels within the �lter are
allowed to vote, and the middle pixel is labelled with the majority decision.
By �ltering in the two directions sequentially, we preserve corners.

We have now described in detail the postprocessing computation. Although
some of the steps are rather ad hoc, it must be kept in mind that the compu-
tation is fast and achieves acceptable results for a set of �ve images. Moreover,
these images were taken and selected before the postprocessing procedure was
developed, and they contain a wide range of situations: textured and untex-
tured objects, textured and untextured backgrounds, specular and matte sur-
faces, planar and curved surfaces, and fronto-parallel and slanted (in both the
x and y directions) surfaces. The next chapter gives some indication of the
generalizability of this computation to other images.

41



Chapter 7

Assumptions

To get a feel for what type of image is amenable to the postprocessing computa-
tion described in the previous chapter, we will attempt to list the assumptions
that it makes, in a manner similar to that of Chapter 2. This list, however, is
not nearly as rigorous, since the postprocessing computation consists of several
alternating steps. The numbering system continues from Chapter 2:

A8. Intensity gradients accompany changes in disparity along columns and
rows.

A9. In any row or column, if fewer than ts contiguous pixels agree on a dis-
parity, then the disparity of those pixels is completely unreliable.

A10. If a change in disparity is not accompanied by an intensity gradient, and
if the region with the lower disparity contains at least tm pixels, then
the improper placement of the disparity change was due to a violation of
Assumption A4 of Chapter 2, that is, the background along a particular
row or column did not contain any intensity variation.

A11. Each object (including the background) falls into one of two categories:

(a) either the object is nearly fronto-parallel, meaning that the object
straddles at most two disparities,

(b) or the object's slant is at least 1

tm
disparity levels per pixel but still

small enough and textured enough that the interior of the object can
be labelled with successive disparities.

A12. Every depth discontinuity is accompanied by a change of at least two
disparity levels.

A13. Each background pixel is reachable from a moderately reliable region of
the background by moving �rst in the y direction, then in the x direction.
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Surprisingly, these assumptions do not appear to be very restrictive. As-
sumption A8 is similar to A3 except that intensity gradients now must lie in the
y direction as well as the x direction. Also, the notion that the intensity gradient
has the same disparity as the near object is no longer used. This assumption
seems to be validmuch of the time, but our current postprocessor does not easily
recover from its violations { a more powerful approach is needed. Assumption
A9 seems fairly reasonable, as long as the scene does not contain very small
or thin objects. The assumption implicit in A10 is that A8 is never violated
for more than tm � 1 contiguous pixels. In other words, the disparity of a far
object is not allowed to leak into a near object for more than tm � 1 contiguous
pixels. This assumption, which is invalid only in the images of Figure 5.5, leads
to the powerful heuristic used in Step S2(c) that smaller disparities win over
larger disparities. Assumption A11, coupled with A12, allows for a wide range
of objects in the scene, at the expense of losing some true depth discontinu-
ities; the threshold for declaring depth discontinuities is the smallest number
available that still allows some variation in disparity within an object. Finally,
Assumption A13 seems fairly safe and always holds in our images. It would be
violated, for example, in the presence of an object shaped like in which the
interior of the object is only reachable by more complicated propagation. As
another example, it would be violated in Figure 5.4 if the top of the lamp were
near the top of the image, in which case the correct disparities from the vertical
stripe on the wall could not propagate to the right side of the lamp.
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Chapter 8

Experimental Results

Figures 8.1 through 8.5 show the results of postprocessing the disparity maps
of Chapter 5. The resulting disparity maps and depth discontinuities are signif-
icantly cleaner and more accurate. Since depth discontinuities are detected in
the vertical as well as the horizontal direction, they tend to outline the objects.

These results show the tradeo� that the algorithm and postprocessor make.
The values of the disparity maps are only approximate, which is obvious from
the fact that objects tend to be labelled with either a single disparity or with
two disparities that alternate in somewhat random locations. See, for example,
the bottles in Figure 8.4. However, because no windows were used for matching,
and because no pre�ltering (such as taking the Laplacian of Gaussian) was per-
formed on the images, the boundaries of objects are crisp. Therefore, although
there are gross errors, such as the triangular wedge that is cut out of the left
Clorox bottle in Figure 8.1, the depth discontinuities are, for the most part, lo-
cated precisely on the boundaries of the objects. Especially noteworthy are the
results in Figures 8.2 and 8.5, in which the depth discontinuities are approaching
perfect. Even the tiny light bulb inside the lamp is almost discernable.

For the results presented in this chapter, the thresholds were set as follows:
th = 25, tm = 15, ts = 12, and tg = 10. These values were used for all of the
images.

The postprocessor takes about two seconds on a Silicon Graphics Indy work-
station to postprocess these images, with � set to 14. The computation is at
most linearly related to � and takes about four seconds when � is set to 50.

We will now examine each of the assumptions in turn:

A8. Intensity gradients accompany depth discontinuities. This assumption is
valid much of the time and is crucial to the success of the approach. It
allows us to remove a lot of the false disparities from the algorithm of Part
I, and it allows us to deal with scanlines along which the background has
little intensity variation.

Unfortunately, when this assumption is violated, performance degrades
drastically. Thus the location of the object boundaries, or depth discon-
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tinuities, can be o� by 75 pixels or more. This is evident in Figure 8.1
along the top of the left Clorox bottle, the triangular wedge of the same
bottle, and the neck of the wine bottle. The problems on the Clorox top
and the wine neck actually disappear after Step S2 but reappear after the
values are propagated in the x direction in Step S3.

A9. Small regions are unreliable. This assumption holds in our images. Even
the little pencil in Figure 8.1 is at least 12 pixels thick.

A10. Smaller disparities win over larger disparities. This assumption is ex-
tremely powerful and is responsible for the good results of Figure 8.2.
However, when the assumption is violated, the consequences could poten-
tially be far-reaching. In Figure 8.3, for example, near row 70 and column
250, the far object leaks into the near object in 20 consecutive rows. Were
it not the case that the disparities of the objects di�er by only one, the
near object would be completely wiped out.

A11. Objects are either fronto-parallel or signi�cantly slanted. Surprisingly,
some objects that we consider slanted are not considered slanted by this
assumption. For example, both of the boxes of Figure 8.5 straddle at
most two disparity levels and are thus considered \fronto-parallel" by the
algorithm. The second part of this assumption is crucial in preserving the
slanted nature of the table in Figures 8.2, 8.4, and 8.5.

A12. Depth discontinuities are accompanied by changes of at least two disparity

levels. This assumption is very powerful in that it allows us to handle
slanted surfaces without explicitly detecting them or dealing with them.
Some true depth discontinuities are lost, however, as can be seen from
the Splash can of Figure 8.1, the back of the table in Figure 8.2, and the
middle Clorox bottle of Figure 8.4.

A13. Background pixels are reachable. This assumption is valid in our images.
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Figure 8.1: (a) Disparity map. (b) Depth discontinuities.
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Figure 8.2: (a) Disparity map. (b) Depth discontinuities.
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Figure 8.3: (a) Disparity map. (b) Depth discontinuities.
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Figure 8.4: (a) Disparity map. (b) Depth discontinuities.
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Figure 8.5: (a) Disparity map. (b) Depth discontinuities.
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Chapter 9

Conclusion

A simple and fast stereo algorithm for the purpose of detecting depth disconti-
nuities has been presented. The algorithm explicitly matches the pixels in one
scanline with the pixels in the corresponding scanline while leaving occluded
pixels unmatched. Depth discontinuities are precisely located, since the images
are not pre�ltered and since no windows are used for matching.

The contributions of the algorithm are threefold. First, it uses a measure of
pixel dissimilarity that is provably insensitive to sampling. Thus we are spared
the computationally expensive solution of matching at subpixel resolution or
over windows. Second, it handles large untextured regions by making the as-
sumption that intensity gradients always accompany depth discontinuities. This
assumption seems to be valid much of the time, since our threshold for declar-
ing intensity gradients is low. Finally, the algorithm is signi�cantly faster than
stereo algorithms that use standard dynamic programming, because it prunes
bad nodes during the search.

After the scanlines are processed independently, a simple and fast postpro-
cessing step propagates disparity information between scanlines to produce a
more re�ned disparity map. Depth discontinuities are then detected in the
horizontal and vertical directions as signi�cant changes in the disparity map.
Results on �ve pairs of stereo images show that, with little computational e�ort,
a rough disparity map can be constructed, and many of the depth discontinu-
ities can be accurately located. These images contain surfaces that are both
fronto-parallel and slanted, textured and untextured, planar and curved, and
matte and specular.

By explicitly laying down the assumptions behind both the algorithmand the
postprocessor, we have tried to get a feel for how generally applicable they are.
We suspect that they will work on many high-quality indoor images obtained
with a slightly defocused lens and with cameras having a small baseline. In
addition, for good performance the objects should be reasonably outlined by
intensity gradients.

The postprocessor, while e�ective on these images, has limitations. For
one, the approach seems to be rather brittle in the sense that the violation of
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an assumption has the potential of creating large errors in the output. The
output of the postprocessor has obvious errors, such as boundaries terminating
freely in space, jagged boundaries, and tiny, disconnected boundaries. Also, the
postprocessor should take advantage of the information available in the original
images; it could use heuristics such as the smoothness of boundaries; and it must
be more robust to the absence of intensity gradients at boundaries. Finally, the
postprocessor described in this report is somewhat ad hoc, contains several
thresholds (but what vision algorithm does not?), and should be replaced by a
more principled approach.

Beyond the immediate limitations there remain open questions, as always.
How well would the method perform on a real stereo rig with two cameras taking
images of a dynamic scene? Would the results be reasonable, or would the
computation be too brittle? And could it be implemented in real time without
specialized hardware? Looking beyond, is there a way to provide consistency
between time instants, so that a sequence of stereo pairs can be processed faster
and more accurately than if each pair is processed independently? How would
we detect depth discontinuities from an unconstrained image sequence in which
the epipolar geometry is not known? These are some of the questions that we
feel future research should address.
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Appendix A

Theorems and Proofs of

Pixel Dissimilarity Measure

In Section 3.1 we proposed the followingmeasure for computing the dissimilarity
d between a pixel x in the left scanline and a pixel y in the right scanline:

d(x; y) = minf �d(x; y; IL; IR); �d(y; x; IR; IL)g; (A.1)

where
�d(x; y; IL; IR) = min

y� 1

2
�y0

�y+ 1

2

jIL(x)� ÎR(y
0)j; (A.2)

IL(x) is the intensity of pixel x in the left scanline, and ÎL(x) is the linearly
interpolated intensity at position x in the left scanline. Similar notation holds
for the right scanline. Since x and y are measured in pixels, the expression
y � 1

2
� y0 � y + 1

2
requires y0 to be within half a pixel of y on either side.

Let iL and iR denote the continuous intensity functions incident upon the
left and right scanlines, respectively, prior to sampling. We assume that our
cameras are ideal samplers, and that there is neither photometric nor geometric
distortion or shift between the two intensity functions, so that iL = iR = i.
Keep in mind that this restriction is only required in a very small neighborhood
surrounding each pixel. In the following two theorems, we show that the dissim-
ilarity measure de�ned in Equation A.1 is insensitive to sampling if i satis�es a
certain condition.

Theorem 1 Let i be either convex or concave on an interval A, and let x and

y be su�ciently inside A so that [x� 1

2
; x+ 1

2
] � A and [y � 1

2
; y + 1

2
] � A. If

jx� yj � 1

2
, then d(x; y) = 0.

This theorem states that if the sampling points x and y are closer to each
other than they are to any other sampling points (thereby implying that cor-
respondence should be established between them), then the dissimilarity of the
two pixels is zero, as measured by Equation A.1. This theorem holds as long
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as the continuous intensity function is either concave or convex in the vicinity
of the two pixels. By \convex" we mean \weakly convex", and similarly for
\concave".

When the continuous intensity function is linear, it is by de�nition both
convex and concave, and therefore satis�es Theorem 1. In addition, a stronger
statement can be made in this case.

Theorem 2 Let i be linear and have nonzero slope on an interval A, and let x

and y be su�ciently inside A so that [x� 1

2
; x+ 1

2
] � A and [y � 1

2
; y+ 1

2
] � A.

Then d(x; y) = 0 if and only if jx� yj � 1

2
.

These two theorems state that, using the dissimilarity measure of Equation
A.1, sampling will not prevent two pixels from being matched whenever the
continuous intensity function is convex or concave; in addition, sampling will
not cause two pixels to be be incorrectly matched when the intensity function
is linear with nonzero slope. Although, strictly speaking, these criteria do not
hold near in
ection points, in practice the regions surrounding in
ection points
look and behave almost like linear regions as long as the intensity function varies
smoothly. Slightly defocusing the lens helps to ensure this condition.

In order to prove these two theorems, we will use the following lemma.

Lemma 1 Consider a function g de�ned on an interval A of the real line. If

g is convex and if x; y; z 2 A satisfy x � y � z, then either g(y) � g(x) or

g(y) � g(z), or both.

Proof Suppose, for the purpose of contradiction, that g(y) > g(x) and g(y) >
g(z). Consider the case in which g(x) � g(z); by multiplying both sides of this
inequality by the number � = z�y

z�x
, adding g(z) to both sides, and rearranging

terms, we obtain the following:

g(z) � �g(x) + (1 � �)g(z);

which, since g(y) > g(z) and y = �x+ (1� �)z, contradicts the statement that
g is convex:

g(�x+ (1� �)z) � �g(x) + (1� �)g(z) 8� 2 [0; 1]:

(Note that � 2 [0; 1] because x � y � z.) The case in which g(z) � g(x) leads
us to a similar contradiction using the fact that g(y) > g(x). Therefore, either
g(y) � g(x) or g(y) � g(z). 2
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ÎR(y
�

)

i(y�)
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ÎR

i

Figure A.1: The proof of Theorem 1.

Proof of Theorem 1 We will prove only the case in which i is convex; the
other case can be proved similarly. In order to show that d(x; y) = 0, we need
to show that either �d(x; y) = 0 or �d(y; x) = 0, since �d is nonnegative.1

Let y� � y � 1

2
and y+ � y + 1

2
, as shown in Figure A.1. Then jx� yj � 1

2

implies that either i(x) � i(y�) or i(x) � i(y+), by Lemma 1. Suppose for the
moment that i(x) � i(y�). By assuming that IR(y) � IL(x), we will show that
�d(x; y) = 0. (If we instead assume that IL(x) � IR(y), we can use a similar
procedure to show that �d(y; x) = 0.) With these assumptions, we have the
following:

ÎR(y) = IR(y) � IL(x) = i(x) � i(y�);

where we have used the fact that i(w) = Is(w) = Îs(w) for any w which is a
sampling point of camera s. Since i is convex, i(y�) � ÎR(y�). Therefore,

ÎR(y) � IL(x) � ÎR(y
�):

Since ÎR is continuous on the interval [y�; y], then by the Intermediate Value
Theorem2 there exists a y0 2 [y�; y] such that ÎR(y0) = IL(x). Similarly, if we
had assumed that i(x) � i(y+) we would have concluded that there exists a
y0 2 [y; y+] such that ÎR(y0) = IL(x). In either case, this y0 is between y� and
y+ , and therefore �d(x; y) = 0, which makes d(x; y) = 0. 2

1
We adopt the shorthand notation of �d(x; y) for �d(x; y; IL; IR), and �d(y; x) for

�d(y; x; IR; IL).
2
The IntermediateValue Theorem states: If a function g is continuous on the interval [a; b],

and if c is a number between g(a) and g(b), inclusive, then there exists at least one number x

between a and b, inclusive, such that g(x) = c.
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Figure A.2: The proof of Theorem 2.

Proof of Theorem 2. We will prove only the case in which i is increasing;
the case in which i is decreasing can be proved similarly.

\if": If y� � x � y+ , then i(y�) � i(x) � i(y+), since i is increasing.
Because i is linear, its linear interpolation is itself: ÎR = i. Therefore, ÎR(y�) �
i(x) � ÎR(y+). As a result of the Intermediate Value Theorem, there exists
a y0 2 [y�; y+] such that ÎR(y0) = i(x), and therefore �d(x; y) = 0, making
d(x; y) = 0.

\only if": if x > y+, then IL(x) > ÎR(y0) for all y0 < y+, since i is increasing;
therefore there is no number y0 2 [y�; y+] such that ÎR(y0) = IL(x), which
makes �d(x; y) > 0. A similar argument leads us to conclude that �d(y; x) > 0,
and therefore d(x; y) > 0. By symmetry, if x < y� then d(x; y) > 0. Therefore,
if it is not the case that y� � x � y+, then d(x; y) 6= 0. 2
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