
STARTS
Stanford Protocol Proposal for Internet Retrieval

and Search
Last modified: August 28, 1996

Luis Gravano, Kevin Chang, Hector Garcia-Molina, Andreas Paepcke
Digital Library Project

Stanford University

Document sources are available everywhere, both within the internal networks of organizations and on
the Internet. The source contents are often hidden behind search interfaces. These interfaces vary from
source to source. Also, the algorithms with which the associated search engines rank the documents in
query results are often incompatible across sources. Even individual organizations use search engines
from different vendors to index their internal document collections. These organizations could benefit
from unified query interfaces to multiple search engines, for example, that would give users the illusion
of a single combined document source. Building metasearchers (i.e., services that provide such a unified
view of the multiple sources) is nowadays a hard task because different search engines are largely
incompatible and do not allow for interoperability.

Given a query, a metasearcher has to perform (at least) three tasks to provide a unified interface over a
(large) number of document sources:

Choose the best sources to evaluate the query
Evaluate the query at these sources
Merge the query results from these sources

The existing search engines do not help with the three tasks above. In general, text search engines:

Do not export information about the sources (the source-metadata problem)
Use different query languages (the query-language problem)
Rank documents in the query results using secret algorithms (the rank-merging problem)

To improve this situation, the Digital Library project at Stanford coordinated search engine vendors and
other key players to informally design a protocol that would allow basic interactions of sources in the
three areas above. Below is the fourth (and final) draft of our informal "standards" effort. This draft is
based on feedback from people from Excite, Fulcrum, GILS, Harvest, Hewlett-Packard Laboratories,
Infoseek, Microsoft Network, Netscape, PLS, Verity, and WAIS, among others. This draft also
incorporates feedback received from the participants of a workshop on STARTS that we organized at
Stanford on August 1st, 1996.

We first define the architecture that we have in mind throughout the proposal (Section 1). Then, in
Section 2 we specify a query language that is based on a simple subset of the Z39.50-1995 type-101

query language and the GILS attribute set. Section 3 describes what information should accompany the
query results so we can merge the results from different sources in a meaningful way. Section 4 defines
the metadata that each source should export to describe its contents (e.g., for resource discovery) and
capabilities (e.g., for querying). We defer the discussion of syntax and communication issues to Section
5. In all cases, we propose a basic, simple solution that every source should support, and describe how
more sophisticated sources can extend these solutions (Section 6). Finally, Section 7 lists issues that we
decided to ignore in our proposal, mainly to keep our design simple.

1. Architecture, assumptions, and related efforts

In this section we describe the basic architecture underlying our proposal, and the assumptions that we
make. We conclude by mentioning some of the most relevant related efforts.

In our architecture, there is a (potentially large) number of resources. Each resource consists of one or
more sources, and simply exports contact information for its sources. A source is a collection of flat
documents (e.g., we do not consider any nesting of documents) with an associated search engine that
accepts queries from clients and produces results. Sources may be "small" (e.g., the collection of papers
written by some university professor) or "large" (e.g., the collection of WWW pages indexed by a
crawler).

Our protocol is meant for machine-to-machine communication: users should not have to write queries
using the proposed query language, for instance. Also, all communication with the sources is sessionless
in our protocol, and the sources are stateless.

A metasearcher or any end client, in general, would typically issue queries to multiple sources. For this,
a client will perform the following tasks:

Extract the source list from the resources periodically
(to find out what sources are available for querying)
Extract metadata and content summaries from the sources periodically
(to be able to decide, given a query, what sources are potentially useful for the query)

Given a user query:

Issue the query to a source at a resource (Source 1 in the figure below), maybe specifying other
sources at the resource where to also evaluate the query (Source 2 below)
Issue the query to other promising resources
Get the results from the multiple resources, merge them, and present them to the user

Our protocol describes how to query sources and what information the sources export about themselves.
It does not describe an architecture for "metasearching," for example. However, we do describe the
facilities that a metasearcher would need from the sources in order to perform searches. Metasearchers
often have to search across simple sources as well as across sophisticated sources. On the one hand, it is
important to have some agreed-upon minimal functionality that is simple enough for all sources to
comply. On the other hand, it is important to allow the more sophisticated sources to export their richer
features. Therefore, our protocol keeps the requirements to a minimum, while it provides optional
features that fancy sources can use if they wish.

The most relevant standards effort in terms of shared goals is the Z39.50 standard. Z39.50 provides most
of the functionality that we describe below. Our proposal is much simpler, and keeping it simple was
one of our main concerns. There are currently efforts to define a simple profile of the Z39.50 standard
based on STARTS. Other related efforts are Harvest and RDM. Both efforts provide a framework for
querying and indexing multiple sources of documents. We view our effort as complementary in that it
defines the pieces of information that sources should export to gatherers, and the query language and
query-result format that the brokers should support, for example (using Harvest’s terminology).

2. Query language/interface

In this section we describe the basic features of the query language that a source should support. This
query language is based on a simple subset of the type-101 queries of the Z39.50-1995 standard.
Similarly, the basic attribute set is mostly a subset of the GILS attribute set, which in turn includes the
Bib-1 use attribute set. (We discuss syntax and communication issues in Section 5.1.)

A query consists of two parts:

a filter expression, and
a ranking expression.

A filter expression is Boolean in nature and defines the documents that qualify for the answer. The
ranking expression associates a score with these documents and ranks them accordingly.

Example:

Consider the following query with filter expression:

((author "Garcia Molina") and (title "databases"))

and ranking expression:

list((body-of-text "distributed") (body-of-text "databases"))

This query returns documents having "Garcia Molina " as one of the authors and the word
"databases " in their title. The documents that match the filter expression are then ranked according to
how well their text matches the words "distributed " and "databases ."

In principle, a query need not contain a filter expression. If this is the case, we assume that all
documents qualify for the answer, and are ranked according to the ranking expression. Similarly, a query
need not contain a ranking expression. If this is the case, the result of the query is the set of objects that
match the (Boolean) filter expression. Sources might support just one type of expressions. In this case,
they indicate what type they support as part of their metadata (e.g., a source may indicate that it only
supports filter expressions).

Both the filter and the ranking expressions may contain multiple terms. The filter and ranking
expressions combine these terms with operators like "and " and "or " (e.g., ((author "Garcia

Molina") and (title "databases"))). The ranking expressions also combine terms using the
"list " operator, which simply groups together a set of terms (e.g., list((body-of-text

"distributed") (body-of-text "databases"))). Also, the terms of a ranking expression may have
a weight associated with them, indicating their relative importance in the ranking expression. Next we
define the filter and ranking expressions more precisely.

L-strings

An l-string is either a string (e.g., "Garcia Molina "), or a string qualified with its associated language
and, optionally, with its associated country. The language-country qualification follows the format
described in RFC 1766. For example [en-US "behavior"] is an l-string meaning that the string
"behavior " represents a word in American English. To support multiple character sets, the actual string
in an l-string is a Unicode sequence encoded using UTF-8. A nice property of this encoding is that the
code for a plain English string is the ASCII string itself, unmodified.

Atomic terms

A term (e.g., (author "Garcia Molina")) is an l-string modified by an unordered list of attributes. An
attribute is either a field or a modifier. For example, the term (date-last-modified >

"1996-08-01") has field date-last-modified and modifier >. (This term matches documents that
were modified after August 1, 1996.)

We now define the "Basic-1" set of attributes. The attributes not marked with (New) are from the GILS
attribute set (which in turn inherits all of the Z39.50-1995 Bib-1 use attributes). In the Appendix A we
give the numbers associated with these attributes in this attribute set, together with pointers to
definitions of their semantics. (Section 6 explains how to use other attribute sets for databases covering
different domains, for example.)

Fields: What portion of the text is associated with the term (e.g., the author portion, the title
portion, etc.). At most one should be specified for each term. If no field is specified, "Any" is

assumed. Those fields marked with (Req) must be supported. ("Supported" means that the source
must recognize these fields. However, the source may freely interpret them.) The rest of the fields
are optional. (Our fields correspond to the Z39-50 "use attributes.")

Title (Req)
Author
Body-of-text
Document-text (New)
(For relevance feedback)
Date/time-last-modified (Req)
(Formatted according to the International Standard ISO 8601 (e.g., "1996-12-31 "))
Any (Req)
Linkage (Req)
(URL of the document)
Linkage-type

(MIME type of the document)
Cross-reference-linkage

(List of URLs in document)
Language

(The language(s) of the document, as a list of language tags as defined in RFC 1766.)
(For example, a query term (language "en-US") matches a document with value for the
language field "en-US es". This document has parts in American English and in Spanish.)
Free-form-text (New)
(A string, maybe representing a query in some query language not in the protocol, that the
source somehow knows how to interpret)

Modifiers: What values the term represents (e.g., treat the term as a stem , as its phonetics

(soundex), etc.). Zero or more modifiers can be specified for each term. (Our modifiers
correspond to the Z39.50 "relation attributes.")

<, <=, =, >=, >, !=

(If applicable (e.g., for fields like "Date/time-last-modified "), default: =)
Phonetic (soundex)
(Default: no soundex)
Stem

(Default: no stemming)
Thesaurus (New)
(Default: no thesaurus expansion)
Right-truncation

(Default: the term "as is," without right-truncating it)
Left-truncation

(Default: the term "as is," without left-truncating it)
Case-sensitive (New)
(Default: case insensitive)

Complex filter expressions

We use operators to build complex filter expressions from the terms. The "Basic-1"-type filter
expressions use the following operators (which are borrowed from the Z39.50-1995 type-101 queries).
If a source supports filter expressions, it must support all these operators.

and
or
and-not
prox , specifying two terms, the required distance between them, and whether the order of the
terms matters.

Example:

Consider two terms t1 and t2 and the following filter expression:

(t1 prox[3,T] t2)

The documents that match this filter expression contain t1 followed by t2 with at most three words in
between them. "T" (for "true") indicates that the word order matters (i.e., that t1 has to be appear
before t2).

Complex ranking expressions

We also use operators to build complex ranking expressions from the terms. The "Basic-1"-type ranking
expressions use the operators above ("and ," "or ," "and-not ," and "prox ") plus a new operator, list,

which simply groups together a set of terms. (The "Boolean" operators would most likely be interpreted
as "fuzzy-logic"operators by the search engines in order to rank the documents.) If a source supports
ranking expressions, it must support all these operators.

Each term in a ranking expression may have a weight (a number between 0 and 1) associated with it,
indicating the relative importance of the term in the query.

Example:

The following ranking expression indicates that the term "distributed " is more important than the
term "databases ":

list(("distributed" 0.7) ("databases" 0.3))

The default field for both terms is Any , as we explained above.

Global settings

When we query a source, we also specify the following together with the query.

Drop stop words: whether the source should delete the stop words from the query or not. (A
metasearcher knows if it can turn off the use of stop words at a source from the source’s metadata
(Section 4).) (Default: Drop the stop words.)
Default attribute set used in the query (optional, for notational convenience).
(Default: Basic-1.)
Default language used in the query (optional, for notational convenience, and overridden by the
specifications at the l-string level).
(No default.)

Sources (in the same resource) where to evaluate the query in addition to the source where the
query is submitted. (See Section 1.)
(Default: no other source.)
Answer specification:

Fields returned in the query answer
(Default: Title , Linkage)
Fields used to sort the query results, and whether the order is ascending ("a") or descending
("d")
(Default: Score of the documents for the query, in descending order.)
Documents returned:

Minimum acceptable document score
(No default.)
Maximum acceptable number of documents
(Default: 20 documents.)

As we mentioned earlier, we describe the formal syntax and format for the queries in Section 5.1.

3. Merging of ranks

After receiving a query, the source reports the number of documents in the result. Also, since the source
might modify the given query before processing it, the source reports the query that it actually
processed.

Example:

Consider a source that does not support the ranking-expression part of the queries. Consider the query
with filter expression:

((author "Garcia Molina") and (title "databases"))

and ranking expression:

list((body-of-text "distributed") (body-of-text "databases"))

If the source simply ignores the ranking expressions, the actual query that the source processes has
filter expression:

((author "Garcia Molina") and (title "databases"))

and an empty ranking expression. This actual query is returned with the query results.

To merge the query results from multiple sources into a single, meaningful rank, a source should
return the following information for each document in the query result:

The unnormalized score of the document for the query
The id of the source(s) where the document appears
Statistics about each query term in the ranking expression (as modified by the query fields, if
possible):

Term-frequency: the number of times that the query term appears in the document

Term-weight: the weight of the query term in the document, as assigned by the search
engine associated with the source (e.g., the normalized tf.idf weight for the query term in
the document, or whatever other weighing of terms in documents the search engine might
use)
Document-frequency: the number of documents in the source that contain the term (this
information is also provided as part of the metadata for the source)

Also:

Document-size : the size of the document (in bytes)
Document-count : the number of tokens (as determined by the source) in the document

In addition, every source provides the query results for a given sample document collection and a given
set of queries (both provided and designed by Stanford) as part of the metadata for the source. (See
below.) A metasearcher may use these sample results to calibrate document scores from different
sources.

A document may appear in multiple sources at a resource. Therefore, if a query submitted to a source S

requests evaluation at multiple sources, a document in the query result might appear in multiple such
sources. If this is the case, source S can either report such a document multiple times (but using the same
URL to refer to the document in the multiple sources), or it can report it once with merged score,
weights and frequencies.

4. Source metadata

To select the right sources for a query and to query them we need information about their contents and
capabilities. In this section we propose two pieces of metadata that every source is required to export: a
list of metadata attributes, describing properties of the source, and a content summary of the source.
Each piece is a separate object, to allow metasearchers to retrieve just the metadata that they need. Also,
we describe the information that a resource exports. This information identifies the metadata objects for
the sources in the resource. In Sections 5.3, 5.4, and 5.5 we describe the syntax of these objects and how
to retrieve them.

4.1. Source metadata attributes

Each source exports information about itself by giving values to the metadata attributes below. For
example, the value for the metadata attribute "FieldsSupported " is a list of the fields that can be used
for querying the source (e.g., "Linkage-type").

Below we define the "MBasic-1" set of metadata attributes, borrowing from the Z39.50-1995 Exp-1 and
the GILS attribute set. The attributes not marked with (New) are from these two attribute sets. The
attributes marked (Req) are required, and the sources must support them.

FieldsSupported (New) (Req)
(What optional fields are supported in addition to the required ones. Also, each field is optionally
accompanied by a list of the languages that are used in that field in the source. Required fields can
also be listed here with their corresponding language list.)

ModifiersSupported (New) (Req)
(What optional modifiers are supported in addition to the required ones. Also, each modifier is
optionally accompanied by a list of the languages for which it is supported at the source.
(Modifiers like stem are language dependent.))
QueryPartsSupported (New)
(Whether the source supports ranking expressions only ("R"), filter expressions only ("F"), or both
("RF"). Default: "RF.")
ScoreRange (New) (Req)
(This is the minimum and maximum score that a document can get for a query; we use this
information for merging ranks. Valid bounds include -infinity and +infinity , respectively.)
RankingAlgorithmID (e.g., Acme-1) (New) (Req)
(Even when we do not know the actual algorithm used it is useful to know that two sources use the
same algorithm.)
TokenizerIDList (New)
(E.g., (Acme-1 en-US) (Acme-2 es) , meaning that tokenizer Acme-1 is used for strings in
American English, and tokenizer Acme-2 is used for strings in Spanish. Even when we do not
know how the actual tokenizer works, it is useful to know that two sources use the same
tokenizer.)
SampleDatabaseResults (New) (Req)
(The URL to get the query results for a sample document collection; see Section 3.)
StopWordList (New) (Req)
TurnOffStopWords (New) (Req)
(Whether we can turn off the use of stop words at the source or not.)
SourceLanguage

(List of languages present at the source.)
SourceName
Linkage (Req)
(URL where the source should be queried.)
ContentSummaryLinkage (New) (Req)
(The URL of the source content summary; see below.)
DateChanged

(The date when the source metadata was last modified.)
DateExpires

(The date when the source metadata will be reviewed, and therefore, when the source metadata
should be extracted again.)
Abstract (of the source)
AccessConstraints

(A description of the constraints or legal prerequisites for accessing the source.)
Contact

(Contact information of the administrator of the source.)

4.2. Source content summary

Each source exports data about its contents. This data can be used to decide if the source is relevant for a
given query, for example, and includes:

List of words that appear in the source, specifying whether:
The words listed are stemmed or not.

The words listed include stop words or not.
The words listed are case sensitive or not.
The words listed are accompanied by the field corresponding to where in the documents they
occurred (e.g., (title "databases") , (abstract "databases") , etc.).

If possible, the words listed should not be stemmed, and should include the stop words. Also,
the words should be case sensitive, and be accompanied by their corresponding field
information, as shown above.

In addition, the words might be qualified with their corresponding language (e.g.,
[en-US "behavior"]).

Statistics for each word listed, including at least one of the following:
Total number of postings for each word (i.e., the number of times that the word appears in
the source)
Document frequency for each word (i.e., the number of documents that contain the word)

Total number of documents in source

4.3. Resource definition

Each resource exports contact information about the sources that it contains. More specifically, a
resource simply exports its list of sources, together with the URLs where the metadata attributes for the
sources can be accessed and the format of this data. (Currently there is only one format for this
metadata, as Sections 5.3 and 5.4 describe.) Using this information, a metasearcher learns how and
where to contact each of the sources in the resource.

5. Syntax and communication

We represent queries, query results, and metadata using attribute-value pairs in Harvest’s Summary
Object Interchange Format (SOIF). (See Appendix B for the formal definition of SOIF that we use.) The
SOIF objects corresponding to the queries are sent using HTML and the POST method, using a single
tag "SOIF," whose value is the SOIF object representing the query itself. The query results are also
obtained through HTTP. The metadata SOIF objects can be retrieved using HTTP, FTP, or other
protocols, as specified in their associated URLs.

To learn about the sources available at a resource, we just need to know the URL of the SOIF object for
the resource description. As we will see below, this object points to the metadata-attribute SOIF objects
for the sources at the resource. In turn, these objects have information on how and where to query the
sources themselves, as well as pointers to the content summaries of the sources.

5.1. Query language

A query is a SOIF object of template type "SQuery ." (The template type of a SOIF object determines the
SOIF attributes that the object has.)

Example:

Below is a SOIF object for a query. The number in brackets after each SOIF attribute (e.g., "50" after
the FilterExpression SOIF attribute) is the number of bytes of the value for that attribute, to facilitate
parsing.

@SQuery{
Version{10}: STARTS 1.0
FilterExpression{50}: ((author "Garcia Molina") and (title "databases"))
RankingExpression{61}: list((body-of-text "distributed") (body-of-text "databases"))
DropStopWords{1}: T
DefaultAttributeSet{7}: basic-1
DefaultLanguage{5}: en-US
AnswerFields{12}: title author
MinDocumentScore{3}: 0.5
MaxNumberDocuments{2}: 10
}

We now define each attribute for the SQuery template, and give a grammar for the values that may
accompany the attribute.

Attribute Value

Version Alpha-Numeric-String
FilterExpression FILTER
RankingExpression RANKING
DropStopWords Boolean
DefaultAttributeSet ATTRIBUTE-SET
DefaultLanguage LANGUAGE
Sources SOURCE-ID-LIST
AnswerFields FIELD-LIST
SortByFields SORT-FIELD-LIST
MinDocumentScore Number
MaxNumberDocuments Number

We now give a grammar for the attribute values:

FILTER -> TERM | (TERM PROX-OP TERM) |
 (FILTER BOOLEAN-OP FILTER)

RANKING -> TERM | (TERM PROX-OP TERM) |
 list(RANKING-LIST) | list(W-RANKING-LIST)|
 (RANKING BOOLEAN-OP RANKING) |
 (W-RANKING BOOLEAN-OP W-RANKING)

TERM -> L-STRING |
 (FIELD MODIFIER-LIST L-STRING)

L-STRING -> " String " | [LANGUAGE " String "]

RANKING-LIST -> RANKING | RANKING RANKING-LIST

W-RANKING-LIST -> W-RANKING | W-RANKING W-RANKING-LIST

W-RANKING -> (RANKING Number)

BOOLEAN-OP -> and | or | and-not

PROX-OP -> prox[Number , Boolean]

ATTRIBUTE-SET -> basic-1 | ...

FIELD -> BASIC1-FIELD | { basic-1 BASIC1-FIELD } | ...

BASIC1-FIELD -> title | author | body-of-text | document-text |
 date-last-modified | any | linkage | linkage-type |
 cross-reference-linkage | language | free-form-text

FIELD-LIST -> FIELD| FIELD FIELD-LIST

MODIFIER -> BASIC1-MODIFIER | { basic-1 BASIC1-MODIFIER } | ...

BASIC1-MODIFIER -> RELATION | phonetic | stem | thesaurus |
 right-truncation | case-sensitive

RELATION -> < | <= | = | >= | > | !=

MODIFIER-LIST -> | MODIFIER MODIFIER-LIST

LANGUAGE -> LanguageCode | LanguageCode-CountryCode | ...
 (See RFC 1766.)

SOURCE-ID-LIST -> SOURCE-ID | SOURCE-ID SOURCE-ID-LIST

SOURCE-ID -> Alpha-Numeric-String

SORT-FIELD-LIST -> SORT-FIELD | SORT-FIELD SORT-FIELD-LIST

SORT-FIELD -> (FIELD a) | (FIELD d) | (Score d)

5.2. Query results

The results for a query start with a SOIF object of type "SQResults ," followed by a series of SOIF
objects of template type "SQRDocument." Each of the latter objects corresponds to a document in the
query result.

The SQResults object has the following SOIF attributes and associated values:

SOIF Attribute Value

Version Alpha-Numeric-String
ActualFilterExpression FILTER
ActualRankingExpression RANKING
NumDocSOIFs Number

(Number of SQRDocument SOIF objects that follow.)

The SQRDocument objects have the following SOIF attributes and associated values:

SOIF Attribute Value

Version Alpha-Numeric-String
RawScore (*) Number
Sources SOURCE-ID-LIST
FIELD (**) Alpha-Numeric-String
TermStats TERM-STATS-LIST
DocSize Number (of Kilobytes)
DocCount Number (of tokens in document)

where:

TERM-STATS-LIST -> TERM Number Number Number |
 TERM Number Number Number TERM-STATS-LIST

(*) RawScore is the score for the query that was assigned by the source to the document. This score is
not normalized so the best document always has a score of 1, for example.

(**) An object has multiple such field-value pairs, in general.

Example:

A portion of the result for the example query above may look like the following.

@SQResults{
Version{10}: STARTS 1.0
ActualFilterExpression{50}: ((author "Garcia Molina") and
(title "databases"))
ActualRankingExpression{26}: (body-of-text "databases")
/* maybe "distributed" was a stop word */
NumDocSOIFs{1}: 4
}

@SQRDocument{
Version{10}: STARTS 1.0
RawScore{4}: 0.82
Sources{8}: Source-2
linkage{51}: http://www-db.stanford.edu/pub/gravano/1995/vldb.ps
title{44}: Generalizing GlOSS to Vector-Space Databases
author{34}: Luis Gravano, Hector Garcia-Molina
TermStats{89}: (body-of-text "distributed") 10 0.31 190
 (body-of-text "databases") 15 0.51 232
DocSize{3}: 248
DocCount{5}: 10213
}
...
@SQRDocument{
...
}

5.3. Source metadata attributes

The metadata attributes for a source are in a SOIF object of template type "SMetaAttributes ," with the
following SOIF attributes and associated values:

SOIF Attribute Value

Version Alpha-Numeric-String
SourceID SOURCE-ID
FieldsSupported L-FIELD-LIST
ModifiersSupported L-MODIFIER-LIST
QueryPartsSupported Alpha-String
ScoreRange Number Number
RankingAlgorithmID Alpha-Numeric-String
TokenizerIDList TOKENIZER-LIST
SampleDatabaseResults Alpha-Numeric-String
StopWordList Alpha-Numeric-String-List
TurnOffStopWords Boolean

DefaultMetaAttributeSet META-ATTRIBUTE-SET
META-ATTRIBUTES(*) Alpha-Numeric-String

where:

L-FIELD-LIST -> L-FIELD | L-FIELD L-FIELD-LIST

L-FIELD -> FIELD | (FIELD LANGUAGE-LIST)

L-MODIFIER-LIST -> L-MODIFIER | L-MODIFIER L-MODIFIER-LIST

L-MODIFIER -> MODIFIER | (MODIFIER LANGUAGE-LIST)

LANGUAGE-LIST -> LANGUAGE | LANGUAGE LANGUAGE-LIST

TOKENIZER-LIST -> TOKENIZER | TOKENIZER TOKENIZER-LIST

TOKENIZER -> (Alpha-Numeric-String LANGUAGE-LIST)

META-ATTRIBUTE-SET -> mbasic-1 | ...

META-ATTRIBUTES -> MBASIC1-META | (mbasic-1 MBASIC1-META) | ...

MBASIC1-META -> source-language | source-name|
 linkage | content-summary-linkage |
 date-changed | date-expires | abstract |
 access-constraints | contact

(*) An object has multiple such attribute-value pairs, in general.

Example:

@SMetaAttributes{
Version{10}: STARTS 1.0
SourceID{8}: Source-1
FieldsSupported{17}: (basic-1 author)
ModifiersSupported{19}: (basic-1 phonetics)
QueryPartsSupported{2}: RF
ScoreRange{7}: 0.0 1.0
RankingAlgorithmID{8}: Acme-1
...
DefaultMetaAttributeSet{6}: mbasic-1
source-language{8}: en-US es
source-name{18}: Stanford DB Group
linkage{26}: http://www-db.stanford.edu/cgi-bin/query
content-summary-linkage{38}: ftp://www-db.stanford.edu/cont_sum.txt
date-changed{9}: 1996-03-31
}

5.4. Source content summary

The content summary for a source is in a SOIF object of template type "SContentSummary ," with the
following SOIF attributes and associated values:

SOIF Attribute Value

Version Alpha-Numeric-String
Stemming Boolean

StopWords Boolean
CaseSensitive Boolean
Fields Boolean
NumDocs Number

Field FIELD
Language LANGUAGE
TermFreq (*) SIMPLE-TERM-STATS-LIST
DocFreq (*) SIMPLE-TERM-STATS-LIST
TermDocFreq(*) MEDIUM-TERM-STATS-LIST

where:

SIMPLE-TERM-STATS-LIST -> TERM Number |
 TERM Number SIMPLE-TERM-STATS-LIST

MEDIUM-TERM-STATS-LIST -> TERM Number Number |
 TERM Number Number MEDIUM-TERM-STATS-LIST

(*) Only one of the three attribute-value pairs should appear in the record, depending on what statistics
are available. For example, if the source only returns the term frequency for each term, then the SOIF
object contains attribute TermFreq , but not DocFreq or TermDocFreq .

The last five attributes are actually a repeating group: Field and Language apply to all the frequencies
that follow, until the next Field and/or Language attribute.

Example:

@SContentSummary{
Version{10}: STARTS 1.0
Stemming{1}: F
StopWords{1}: F
CaseSensitive{1}: F
Fields{1}: T
NumDocs{3}: 892

Field{5}: title
Language{5}: en-US
TermDocFreq{11023}: "algorithm" 100 53
 "analysis" 50 23
...

Field{5}: title
Language{2}: es
TermDocFreq{1211}: "algoritmo" 23 11
 "datos" 59 12
...

}

5.5. Resource metadata

The metadata attributes for a resource are in a SOIF object of template of type "SResource ," with the
following SOIF attributes and associated values:

SOIF Attribute Value

Version Alpha-Numeric-String
SourceList SOURCE-DESCRIPTION-LIST

where:

SOURCE-DESCRIPTION-LIST -> SOURCE-DESCRIPTION |
 SOURCE-DESCRIPTION SOURCE-DESCRIPTION-LIST

SOURCE-DESCRIPTION -> SOURCE-ID URL METADATA-SYNTAX

METADATA-SYNTAX -> Stanford-1 | ...

where the second component is the URL of the SOIF with the metadata attributes for the source, and the
third component defines how metadata, etc. is packaged and transmitted, to allow for alternatives to be
defined in the future.

Example:

@SResource{
Version{10}: STARTS 1.0
SourceList{83}: Source_1 ftp://www.stanford.edu/source_1 Stanford-1
 Source_2 ftp://www.stanford.edu/source_2 Stanford-1
}

6. Extending the basic features

6.1. Query language

Each source can extend the basic syntax for queries that we described above by adding new fields and
modifiers. To avoid naming these new attributes chaotically, a source has two options:

Use attribute sets that are registered within the Z39.50-1995 standard. For example, a source can
define a new field "editor " by using the Bib-1 attribute "editor ," and referring to it as
{1.2.840.10003.3.1 editor} , where "1.2.840.10003.3.1 " is the object identifier for the
Bib-1 attribute set. (See http://lcweb.loc.gov/z3950/agency/objects/attrbute.html.)
Use attribute sets that are named consistently by each search-engine vendor. For example, Acme
can support a new attribute set called "acme-1 " that includes a modifier "topic ." Then, a query
can refer to this attribute as {acme-1 topic} . (Acme would only need to give a name to such an
extension set so that its search engine recognizes that {acme-1 topic} maps to the right Acme
operator. It should also provide a document describing, formally or not, how to use the extensions,
their allowed operand types, etc.)

The queries can either explicitly refer to the attribute set of each attribute mentioned, or they can define
once and for all the default attribute set used in the query.

A query that uses non-basic attribute sets cannot expect to be evaluated everywhere without being
modified.

6.2. Metadata

Each source can extend the basic set of metadata attributes. To avoid naming these new attributes
chaotically, a source should use attribute sets that are registered with the Z39.50-1995 standard, like
Exp-1 and GILS. For example, a source can support a new metadata attribute "contact-telephone " by
using the corresponding GILS attribute, and referring to it as {1.2.840.10003.3.5

contact-telephone} , where "1.2.840.10003.3.5 " is the object identifier for the GILS attribute set.
(See http://lcweb.loc.gov/z3950/agency/objects/attrbute.html.)

7. Issues that we ignored

In this section we list issues that we deliberately have not addressed, mostly to keep our design simple.
Some of these issues are important ones, and we might consider them in future versions of the protocol.

Allowing for non-textual sources
Allowing for more structured (e.g., nested) documents
Reporting errors
Addressing security issues

Including other query languages into the protocol (e.g., SQL)
Specifying what thesaurus should be used to answer a query
Allowing arbitrary wildcards in the queries
Allowing more complex, non-unary modifiers (e.g., range queries for geographical sources)

Allowing for multiple result formats
Highlighting query terms in the documents in the query results, and other presentation issues

Specifying the stemming algorithms that the sources use
Specifying the tokenization algorithms that the sources use in more detail
Specifying the legal field-modifier combinations at each source
Specifying the fields that are searchable vs. those that are retrieve-only
Specifying the data types associated with the fields more formally
Specifying the available thesauri

Retrieving just pieces of the source content summaries, instead of the entire SOIFs
Implementing a "push" model for the source metadata, instead of just a "pull" model as with the
current design
Implementing sessions

Appendix A.

Mapping some of the Basic-1 attributes to the Z39.50-1995 Bib-1 and GILS
attribute set

We now list each Bib-1 or GILS attribute that we included in the Basic-1 attribute set. The pair of
numbers (in parenthesis) by these attributes are their associated type and value in these attribute sets.
(For the semantics of these attributes please check ftp://ftp.loc.gov/pub/z3950/defs/bib1.txt and
http://www.usgs.gov/gils/prof_v2.html.)

Fields: Our fields correspond to the Z39-50 "use attributes." All of these attributes are from the
GILS attribute set, which in turn inherits all of the Bib-1 use attributes.

Title (1 4)
Author (1 1003)
Body-of-text (1 1010)
Date/time-last-modified (1 1012)
Any (1 1016)
Linkage (1 2021)
(URL of the document)
Linkage-type (1 2022)
(MIME type of the document)
Cross-reference-linkage (1 2047)
(URLs in document)
Language (1 54)
(The language(s) of the document)

Modifiers : Our modifiers correspond to the Z39.50 "relation attributes."
<, <=, =, >=, >, != Bib-1: (2 1 through 6)
Phonetic (soundex) Bib-1: (2 100)
Stem Bib-1: (2 101)
Right-truncation Bib-1: (5 1)
Left-truncation Bib-1: (5 2)

Mapping some of the MBasic-1 attributes to the Z39.50-1995 Exp-1 and GILS
attribute set

We now list each Exp-1 or GILS attribute that we included in the MBasic-1 attribute set. In parenthesis
by these attributes is their associated number in the Exp-1 or GILS attribute sets.

SourceLanguage Exp-1: (2)
SourceName Exp-1: (3)
Linkage GILS: (2021)
DateChanged Exp-1: (10)
DateExpires Exp-1:(11)
Abstract (of the source) GILS: (62)
AccessConstraints GILS:(2004)
Contact Exp-1:(18)

Appendix B. Formal description of SOIF

The SOIF Grammar (as described in the Harvest manual) is as follows:

SOIF -> OBJECT SOIF |
 OBJECT
OBJECT -> @ TEMPLATE-TYPE { URL ATTRIBUTE-LIST }
ATTRIBUTE-LIST -> ATTRIBUTE ATTRIBUTE-LIST |
 ATTRIBUTE
ATTRIBUTE -> IDENTIFIER {VALUE-SIZE} DELIMITER VALUE

TEMPLATE-TYPE -> Alpha-Numeric-String
IDENTIFIER -> Alpha-Numeric-String
VALUE -> Arbitrary-Data
VALUE-SIZE -> Number
DELIMITER -> ":<tab>"

You can also find a description of SOIFs in the W3C draft for Netscape’s Resource Description
Messages (RDM).

The STARTS home page
Luis Gravano
gravano@cs.stanford.edu

