
1

Towards Interoperability in Digital Libraries
Overview and Selected Highlights of the

Stanford Digital Library Project

Andreas Paepcke, Steve B. Cousins, Hector Garcia-Molina,
Scott W. Hassan, Steven P. Ketchpel, Martin Röscheisen,

 Terry Winograd

Stanford University

Abstract

We outline the five main research thrusts of the Stanford Digital
Library project, and we describe technical details for two specific efforts
that have been realized in prototype implementations. First, we describe
how we employ distributed object technology to cope with interopera-
bility among emerging digital library services. In particular, we describe
how we use CORBA objects as wrappers to handle differences in ser-
vice interaction models, and we sketch an information access protocol
that takes advantage of distributed object environments. The second
effort we cover is InterPay, a framework and protocol for payment
among autonomous services. The framework addresses interoperability
problems in online payment by cleanly separating information access
protocols , payment and charging policies, and the actual mechanics of
individual financial transactions.

Descriptors: Digital libraries, distributed objects, CORBA, ILU, client-
server architecture, interoperability, protocol transformation, Z39.50,
electronic payment, electronic commerce, InterPay, InfoBus, annota-
tions, SOAPs, third-party ratings.

2

Introduction

Information repositories are just one of many services emerging for digital
libraries of the future. Other services include automated news summariza-
tion, topic trend analysis across newspaper repositories, or copyright-
related facilities. Traditional library services such as archiving and collec-
tion building continue to be relevant in the digital medium as well.
Archiving, for example, remains an issue in the digital world because of
problems with ’dangling’ hyperlinks and because of storage media obsoles-
cence.

This emerging distributed collection of services carries an enormous poten-
tial for helping users in their information intensive tasks. It could also turn
into a confusing, frustrating annoyance because programmers and end
users need to learn too many different interfaces, cannot find the resources
they need or are confronted with the bewildering details of for-pay services
that were previously only accessible to professional librarians.

We begin by sketching the overall approach taken by the Stanford Digital
Library project to help with these issues. Then we focus on the problem of
interoperability, which is particularly important because digital library ser-
vices are developing rapidly with standardization lagging far behind. In par-
ticular, we describe how we use CORBA-based distributed objects to
implement information access and payment protocols. The protocols pro-
vide the interface uniformity necessary for interoperability, while leaving
implementors a large amount of leeway to optimize performance and to
provide choices in service performance profiles.

The Stanford Digital Library Project: Five Areas of Contribution

Figure 1 shows how the development of our recently started digital library
testbed is driven along five thrusts. The prototype services and protocols
developed by the thrusts will be demonstrated on a testbed comprising a
variety of computing literature sources, including ones at Knight-Ridder’s
Dialog, MIT Press, ACM, the Web, and the Stanford University Libraries.

Research on information interfaces is geared towards easing interaction
with information of diverse formats and with digital library services present-

3

ing varying interaction models. Work in this thrust also explores uses of
digital libraries as a place for users to communicate about documents.

For example, we have built the prototype of a wide-area annotation service
[1,2]. It allows users to annotate pages on the World-Wide Web without
modifying the original documents. Annotations are organized into sets,
each with its own permission facility. Annotation sets may be located on
servers other than the ones housing the documents the annotations are
associated with. Users may choose to view documents with no annota-
tions, or with annotations from any of the sets they have permission to
access. The many uses of this facility include independent product reviews
and document content ratings: users can view the ratings produced by the
organization they happen to trust and rely on for guidance.

The second thrust of the project is concerned with technologies for locating
appropriate library services and information relevant to user tasks. For
example, we have prototyped GlOSS, a service which efficiently maintains
enough meta-information about a set of repositories that it can point users
to the sources most promising for a particular query [3]. The SIFT service
is a prototype that explores efficient algorithms for matching large numbers
of user interest profiles with large numbers of documents [4]. Other efforts
address the problem of query integration across multiple services.

Computing
Literature

Information
Finding

Economic
Perspective

Infrastructure
and Models

Information
Interfaces

TESTBED

Agents

Figure 1: Stanford's Approach to Digital Library Development

4

Technologies supporting the evolving economic aspects of digital libraries
are at the core of the third project thrust. Our SCAM and COPS efforts
develop algorithms and a prototype for the efficient comparison of a text
document against a large number of reference documents to detect partial
overlap [5]. This service can be used to protect authors against illegal use
of their intellectual property. Another effort in this third thrust is the develop-
ment of an architecture to manage interaction with the many emerging pay-
ment schemes. We will describe this effort in more detail below.

The fourth thrust is developing models and a supporting infrastructure for
the interaction with documents and services. These models form the basis
for the protocols and architecture of our testbed. They include the models
for meta-information about documents and repositories, to be used for
search and the visualization of results. They also include protocols for the
effective use of client-server models when potentially large amounts of
information need to be moved among sites. The access protocol described
below is part of this effort.

The fifth thrust, finally, examines how agent technology can be employed to
help operations throughout the system. We use very simple agent technol-
ogy to help monitor online payment transactions. More substantial agent
technologies are being used to retrieve information from the World-Wide
Web based on user interest profiles that are successively refined [6].

We now focus on the problem of interoperability, presenting our use of
technologies and architectural design.

Digital Libraries Thrive on Distributed Object T echnology

How do different clients and service providers interact in a Digital Library?
In an ideal world, clients and services would be created independently, on
the basis of implementation choices the respective consumers and provid-
ers deemed appropriate. Then each would plug their different components
into a “virtual (software) bus” that would take care of all the protocol-level
interoperability issues. Within this “information bus” (InfoBus), library ser-
vices would transparently accomplish tasks such as format translation, the
brokering of required services or financial transaction support. If all the ser-

5

vices conformed to one standard, this vision could easily be realized.
Unfortunately, such convergence has not occurred even in the long-stand-
ing area of information retrieval. In this section we discuss how distributed
object technology may help achieve the long-term goal of such an “Info-
Bus” without the need for all participants to agree on a single standard
mode of interaction.

Interoperating Across Protocol Domains

To understand how this vision might be achieved, we start with a very sim-
ple example. Figure 2 shows three protocol domains. The top is an exam-

ple for a local network used by a provider of new information services. This
might be a company, university, or an individual wishing to use a Digital
Library, and, maybe, to add their own services. The service interaction pro-
tocols used in this domain are under local control.

The Telnet protocol in the second domain allows clients to log into remote
machines. The third is the Web’s HTTP protocol; servers running Z39.50
would be another example [7]. All three domains in the figure are populated
with services accessible through the respective protocols. Knight-Ridder’s
Dialog Information service is an example for a telnet-based information

Figure 2: Interoperating Across Protocol Domains

‘Local’ Domain

Multi Copy
DetectionSearch

Program

Telnet

Info
Provider

Interactive

Translator

Indexing

HTTP

Service

Translator

6

provider. The WebCrawler is an example for an indexing service available
via HTTP. It indexes documents on the World-Wide Web and returns their
URLs in response to queries.

For the purpose of illustration, we will use the Dialog and WebCrawler
information repositories as our example below because information reposi-
tories are the best-known kind of digital library service. We anticipate that
many services will eventually conform to some of the emerging standards,
such as HTTP, Z39.50 or SQL, or to new ones yet to be developed. We use
Dialog’s current minimally standardized human-oriented teletype interface
to illustrate the breadth of diversity that remains today.

The multisearch program in the local domain of Figure 2 illustrates why
interoperability is a base requirement for the development of Digital Library
services. It accepts a query and multiplexes it to several information
sources. The copy detection service shown in the figure accepts docu-
ments and checks them for substantial overlap with a database of other
documents. The multisearch program uses it to eliminate near-duplicates.
Without an interoperability infrastructure, the multisearch program would
be very cumbersome to write. The programmer would have to learn the
interaction models and search languages of both Dialog and the Web-
Crawler. To avoid this, two translators are needed to link the local domain
to the two remote ones.

Exploring translators

For illustration, Figure 3 shows a very simplified view of interactions with
both Dialog and the WebCrawler. The Dialog service presents a teletype
interface with which a human user is intended to interact through a Telnet
session. The user is led through a standard login sequence (Please

logon:). This is usually followed by the user selecting one of the many
databases offered through Dialog (begin 245). After some queries
through a proprietary query language (select Library/ti) and the
examination of the results, the session is terminated (logout). Figure 3
shows one possible abstraction of this process. The abstraction combines
several operations. An open session operation is followed by open

database , search , and quit . For a full-scale system, this abstraction
would, of course, be more elaborate. Parts of the Z39.50 protocol or vari-

7

ants of other related resources could, for instance, be used [8,9].

Now we look at the lower part of Figure 3. It shows an interaction with the
WebCrawler. Its model is at the surface very different from that of Dialog.
The user finds the service’s home page, clicks at the appropriate place to
open a search form, fills it out, views the results and eventually leaves the
service’s home page. As shown in Figure 3, the same abstraction can be
used for this interaction model as for Dialog. If a programmatic interface
could be created which presented this common abstraction, the job of writ-
ing the multisearch program would be significantly easier. It turns out that
object technology is ideally suited for this purpose.

Objects for interface unification

Polymorphism in object-oriented programming systems can be used to
present a unified interface like the abstraction of Figure 3 for different ser-
vices. A library service proxy object (LSP) is created for each kind of ser-
vice. The client invokes each interface element, open-session , open-

database , etc., by means of a method call on one of the LSPs. The imple-

telnet dialog.com
Please logon:
.....
begin 245
select Library/ti
logout

DIALOG

WebCrawler

......

.....

.....

Search Form

Search

Open session

Search

Quit

Back

Open database

Open session

Search

Quit

Open database

Telnet

HTTP

Figure 3: Unification of Simplified Service Interaction Models

8

mentation of each method performs the appropriate operation on the corre-
sponding service. For example, the open-session method for a Dialog
LSP starts a Telnet session and logs into the Dialog service. The imple-
mentation of the same method for the WebCrawler LSP instead contacts
an HTTP demon with the proper URL.

Figure 4a shows how library service proxies can be used as the building
blocks for the translators in Figure 2. The translator ‘clouds’ are filled with

library service proxies, each of which represents one service. A common
interface thus makes two very different services accessible from the local
domain. The effect of this arrangement for a programmer of digital library
services is shown in Figure 4b. The proxy objects and their polymorphic
implementations act as a wrapper which provides the programmer of the
multisearch program with the beginnings of an InfoBus abstraction.

One problem with using the concept of library service proxies as presented
so far is that an LSP must be built for each service. For the rapid growth of

Figure 4: (a)Service Proxy Objects Implement Translation
 (b)Programmers Experience the Illusion of an InfoBus

HTTP

Copy
Detection

Search
Program

Multi

Web

Open DB

S
earch

Crawler
LSP

Qui
tOpen

Session

Crawler

T

‘Local’ Domain

... URL-Getter

C
al

lG
etPut

Dialog

Telnet

Open
Session

Dialog

LSP
...

Qui
t

...

T

Crawler

Web

Dialog

OpenSession(DialogLSP);

OpenSession(CrawlerLSP);

Search(DialogLSP, Query);

Search(CrawlerLSP,Query);
...

Client
Interface

9

domains like the World-Wide Web the construction of proxies will always
lag behind. That is why Figure 4a shows a URL-Getter object. This is a
very simple proxy which presents methods, not for a particular service, but
for the WWW domain interaction model itself. A program in the local
domain can use it to navigate the Web programmatically by calling object
methods (GET, POST, etc.). This is not as comfortable as interacting with a
service proxy, but it is better than having to assemble and send HTTP com-
mands across a raw TCP/IP connection. The URL-Getter object thus offers
a pure bridge functionality and thereby represents the low end of a graceful
translation service degradation spectrum enabled by this approach.

Requirements for information flow

Our example has illustrated how object technology can help provide exten-
sible interfaces for information access. However, for each method a proxy
or service provides, there are several important “information flow” issues
that need to be resolved. To be specific, consider the search method dis-
cussed earlier. Some services may implement a single interaction model:
the client calls the search method once (including a query as a parame-
ter) and waits; when the server has assembled the result set, it returns the
complete answer. On the other hand, a system that delivers information
piecemeal may be preferable: here the user would quickly begin to receive
a steady stream of information that slowly builds up, rather than seeing the
complete set after a longer wait. This produces the perception of faster
response time and allows users to overlap their work with the ongoing
retrieval. (An example of this can be observed in some Web browsers
when pictures are being loaded. The picture appears first in coarse granu-
larity and is refined slowly as more information arrives.)

Since we cannot dictate how clients and services wish to operate, we
would like the search method on library service proxies to be as general-
purpose as possible. A client that wishes to wait for complete results
should be able to do that. If the information service (or its proxy) can give
piecemeal information, and the client can handle it, then the search

method should support that too.

There are other dimensions along which we would like to have flexibility:

10

• Services may wish to cache result sets of searches for possible future
use. The client may in addition or instead wish to cache some of the
information. Our search method should cover all these possible modes
of interaction.

• It should be possible to instantiate and materialize the objects in a result
set (e.g., documents) at various points in time and at various locations.
For instance, a pre-fetching strategy may materialize documents at the
client side before their contents are requested. An on-demand scheme
would wait until an application program asks for the contents of a given
document.

• The method should also allow related processing tasks to be off-loaded
to other machines, including the client computer.

• If we are operating across a slow link, we should have the ability to min-
imize the number of message exchanges.

Existing information access protocols typically do not provide flexibility
across all these dimensions. As an example, consider Z39.50, one of the
best-known protocols used for information access. The protocol requires
that result sets for searches are maintained at the server side and are
delivered to clients on request. Thus, Z39.50 makes and fixes particular
choices for the first two dimensions listed above. For interoperability, we
would prefer a protocol that does not fix these choices, allowing for exam-
ple a provider to asynchronously and incrementally push information and
associated management responsibility to the client. In the next section we
will sketch a protocol that uses the distributed object infrastructure to pro-
vide the desired flexibility.

Before describing the protocol, we briefly discuss object instantiation and
materialization. Instantiation is the act of creating the empty object. Materi-
alization is the act of filling it with information from the provider. When and
where these activities occur can impact efficiency. This is an aspect of pro-
tocol design that arises specifically in a distributed object environment as
we described it because in these systems documents are generally pack-
aged into objects as well. The alternative would be to maintain documents
as strings. One advantage of the object approach is that document struc-
ture which is often painstakingly provided by repositories, can more easily
be preserved and accessed when documents are turned into objects
before the client program accesses them. Methods on document objects,

11

such as title , author or abstract , for instance, can be used to extract
the corresponding document pieces. The implementations for those meth-
ods encapsulate the respective work, such as necessary searches for
tagged fields. For example, in the case of SGML documents, client pro-
grams do not need to contain code for parsing out pieces of marked up
text.

This presents a clean interface to programmers, but it raises the question
of when and where these document objects are instantiated and material-
ized. A simple-minded protocol would have the library service proxy instan-
tiate and materialize document objects for all the documents contained in a
result set. Clients would reach these documents through remote method
calls. This would be wasteful because users often throw away the results of
their queries until they have narrowed their search sufficiently, and
because local method calls are cheaper than remote ones. A protocol that
takes advantage of the capabilities of an object-based architecture should
allow implementations to determine when a document is needed, to shift
the corresponding raw information to the site where it will be used most,
and then to ’cast’ it into an object.

Sketch of an example protocol

We now describe a protocol that provides a uniform search interface, while
preserving flexibility for implementors. This protocol has been developed in
cooperation with researchers at the Universities of Illinois and Michigan.
Several variants have been implemented in our testbed, and it will be ini-
tially used to exchange information between those universities and Stan-
ford.

Figure 5 shows how we present the process of querying to programmers
of clients. The process includes three steps: the programmer creates a
query object that contains the query string and any other search specifica-
tion details1.The second step is to create a local result collection object,
specifying the query object and the intended service proxy (indicated by

1. The query string could be of a form native to one source, or it could be of a more stan-
dard form that is later translated to a native form. We are not concerned with this aspect
of interoperability in this example.

12

the dashed lines in the Figure). The client program’s subsequent interac-
tions are with this result collection, as if the result collection was immedi-
ately filled with document objects. For example, the client may invoke the
howMany method to find out how many documents are in the result, or the
getDoc method to fetch a particular document. When these methods are
called, the Result Collection may or may not have the necessary informa-
tion, so the client calls may be blocked.

Before of after the client tries to get its information, the Result Collection
gets the necessary information from the proxy on the server side (LSP).
The protocol for this is illustrated in Figure 6, and consists of the following
four steps. These steps are described in more detail below. We use the
term client collection to refer to the Result Collection object on the client
side; the server side may choose to create a server collection object to
assist in the processing.

1. Client collection asynchronously requests query execution.

2. Service asynchronously delivers document references, either as they
arrive, or all in one method call.

3. Client collection repeatedly requests more document references
(optional).

4. Client collection asynchronously requests document contents, using the
references of steps 2/3. (optional). If necessary, object documents are

Client
Service

Library
Service
Proxy

Program

Site 1 Site 2

Query Object

Result Collection

2

 Hides protocol complexities

3
getDoc()
getDocProperties()
howMany()

1

...

Figure 5: Clients Program to a Very Simple Interface

13

instantiated on the server or client side.

In step 1, the client collection initiates the query in an asynchronous LSP
method invocation, passing its own object identifier as the return address
for the query results. It also indicates how many result documents it wants
to be able to access initially. As in the Z39.50 protocol, the LSP may be
requested to return selected “teaser” fields from some number of the result-
ing documents. For example, the title and author fields, or the costs of the
first 20 documents might be requested initially to help the user decide
which documents to request. This allows earliest-possible delivery of some
useful information, without having to transfer the entire document bodies.
In contrast to Z39.50, the client does not need to wait for the server to com-
plete its result collection because of the call’s asychronicity.

In response, the LSP causes execution of the query in its associated ser-
vice. When it receives the results, it may delegate further handling of
related requests to its own (server) collection object which has the same
capabilities as the client collection object. In the case of a session-based
service, the server collection object can continue to maintain a session with
the service in anticipation of requests for documents, or it can pull docu-
ments out of the service and cache them itself (Figure 6). Note that since

Figure 6: Moving Information

Client
Service

Library
Service
Proxy

Program

Doc1

Result Collection
2a

3a

2b

3b

1: Initiate query, specify ‘teasers’ to return
2a,b: Push teasers, OID for more info, and document access capabilities
3a,b: Request document contents using cookies

1

4: Asynchronously receive document contents (not shown)

Service

Collection
Result

14

distributed objects may be created anywhere, this server collection object
may be located on a different machine, freeing the LSP machine to handle
more requests. Alternatively, the LSP can decide not to create the server
collection object and continue to manage follow-up requests for docu-
ments.

Depending on whether the delivery of results was thus delegated or not,
the next step, is executed by the proxy (2a), or by the server result collec-
tion object (2b). The purpose of step 2 is to deliver the number of docu-
ments found, some or all of the teasers, and document access capabilities
(document references) that enable the client to obtain full contents of the
result documents. Step 2 can be repeated many times as the proxy or
server collection accumulates result information. This way the implementa-
tion can deliver access to documents before it has found all the documents
requested in step 1. We explain some of the implementation details of
step 2 below. The key elements are:

• Step 2 method calls are asychronous and return contact information for
the client to use for requesting access to more documents than were
indicated in the original request. This is how the delegation to server
collection objects is accomplished.

• When the LSP or server collection returns teasers for a document, it
includes the document’s access capability. It describes how the full doc-
ument can be found. Each capability is made up of one or more access
options, each specifying one alternative way to get the document.

The server side objects send information to the client side via “callback”
methods on the client collection. Each of these callbacks includes the
object id of the server side object to contact for additional information.
Thus, at any time, a server object (e.g., the LSP) can delegate the respon-
sibility of future interactions with this client collection to other objects (e.g.,
the server collection). Similarly, each document access option received by
the client collection contains the id of the server object to contact to obtain
that document.

As we have stated, access capabilities may contain several options for
actually getting a document. Each option contains the id of the object to
contact to get the document, plus a “cookie” that identifies the document.

15

From the point of view of the client, a cookie is simply an uninterpreted bit
string that must be given to the server object from which the document is
being fetched. From the server object’s point of view, the cookie contains
information necessary for accessing the document to deliver. For example,
a cookie could be an index into a memory cache where the document was
placed earlier; it could be a file name for a local file containing the docu-
ment; it could be a call number in some information retrieval system, or it
could be a permanent document handle as described in [10].

The reason for allowing multiple access options within a capability is that
the mechanisms for getting a document may vary over time. For example,
consider a search over the Dialog Information Service. While the LSP (or
the server collection) maintains an open session with the service, it can
refer to a particular document by an index into a Dialog-generated result
set. Thus, one possible cookie for an access option would be the result set
identifier and the index. However, once a session with Dialog is terminated,
this access mechanism no longer works. Instead, the document’s unique
record identifier needs to be used as the cookie. By providing both options
in the access capability, the LSP is free to serve document contents quickly
while sessions with the service are open, but to close down sessions with-
out losing the ability to deliver documents for which it handed out access
capabilities. The holder of an access capability tries the easier options first.
As they fail, it tries more expensive ones.

As the client’s collection object receives document access capabilities, it
has several choices: it can instantiate all the corresponding documents
locally, or it can wait until the client program actually requests them. If it
instantiates, it can fill in any teaser fields it received, but can wait to materi-
alize the rest on-demand, or it can begin to materialize immediately in
anticipation of impending demand. The decision may, for example, be
made dependent on statistical user behavior, or it may be based on an
evaluation of the likelihood that the remote site will crash or disconnect.

If the client result collection needs teasers and access capabilities for more
documents than it initially requested in step 1, it initiates step 3, using the
contact information received in step 2. The client collection has no knowl-
edge of whether this request for additional information is handled by the

16

proxy, by the server result collection, or by any other helper object. The
result of this request is another round of step 2a/b activity which delivers
the teasers and capabilities.

We have implemented an experimental version of the access protocol we
have sketched, including proxy objects for Dialog, various Web information
sources, Z39.50 servers, Oracle’s ConText summarization tool, and others.
The standard we follow for our distributed object infrastructure is CORBA
[11]. Our implementation is based on Xerox PARC’s Inter-Language Unifi-
cation facility (ILU), a public-domain implementation that tracks CORBA
[12]. It is supported on common platforms, such as SUN, IBM RS/6000,
HP, SGI, Linux and Windows 3.1/NT. Language bindings include C, C++,
CommonLisp, Python and Modula3. We are using several of these vendor
platforms and languages in our experiments.

Our initial experience indicates that a distributed object framework, and our
access protocol in particular, do give clients and servers flexibility to man-
age their communication and processing resources in an effective way. If
we are trying to access existing services, we can write proxies for them
without changing the way they operate, e.g., without changing the way they
manage state information or cache documents. However, it is important to
note that the example protocol sketched here only provides base-level
functionality for searching over diverse information services. It thereby
addresses only one of the many aspects of interoperability. In the following
section we describe how we use our architecture for other digital library
interoperability problems.

Fee-For-Service as an Interoperability Problem

As the number of potential customers for online information and services
grows, so does the need of providers for effective means of collecting fees.
Several online payment mechanisms have been suggested, and some are
beginning to be deployed [13,14,15]. For the user of a digital library which
includes some for-pay services, the differences in payment scheme are
one more potential source of frustration. Our InterPay architecture is
designed to ease this problem [16]. A prototype has been implemented
which allows access to several services, each with a different payment
scheme.

17

The InterPay Architecture

Figure 7 shows our InterPay architecture. It is structured into three layers:

the services layer, the payment policy layer and the payment mechanisms
layer. The user’s task-related interactions with services occur at the ser-
vices layer. For information services, these include activities such as log-
ging in, submitting a query, transmitting results, etc. The activities of the
protocol described in the previous section occur at this layer.

The payment policy layer controls and enforces payment-related prefer-
ences and rules. The policies are implemented by payment agents on the
payer side, and collection agents on the payee side. For example, a pay-
ment agent may enforce a policy such as “pay charges of $1 or less without
conferring with the human operator, but notify the operator when total
charges exceed $30”. On the service side, a collection agent may include
rules about delayed payment for trusted clients, or limitations on the use of
particular payment mechanisms for small transactions (as is customary in
many stores regarding the use of credit cards).

Client

Payment
Agent

Collection
Agent

PC1
PC2

CC1
CC2
CC3

Service

Dialog

VISA Digi
Cash

Services
Layer

Payment
Policy Layer

Payment
Mechanisms
Layer

Figure 7: The InterPay Architecture

18

The payment mechanisms layer comprises elements that implement the
mechanics of particular payment schemes. On the payer side, these are
payment capabilities; on the payee side, they are collection capabilities.
Each payment capability is programmed to interact with one particular pay-
ment agency or payment scheme. Each collection capability is pro-
grammed to verify receipts or otherwise interact with one agency or
scheme. New payment capabilities can easily be added to the system
because all elements of InterPay are objects. A new payment scheme is
added by implementing a payment and collection capability pair which may
even be installed and removed dynamically.

Figure 8 shows how InterPay components interact in a typical transaction.

The transaction is executed through six major phases:

1. Set up the session and make a request
2. Initiate a charge
3. Send an invoice
4. Validate the invoice and agree on a payment mechanism
5. Initiate the fund transfer

Query

Payment
Agent

Collection
Agent

Visa F.V.
Visa
Acct

Dialog

Dialog

VISA

Services
Layer

Payment
Policy Layer

Payment
Mechanisms
Layer

Interface Proxy
1

23
4

5

6Check

Figure 8: Interactions Among InterPay Components

19

6. Verify the payment and complete the transaction

Step one is an interaction between the client entity and a service entity,
such as the submission of a query. In the example of Figure 8 the client
entity is a query interface program and the service entity is a library service
proxy as described earlier. The client’s payment agent is passed as one
piece of information during this step. Depending on the particular service,
charges might be initiated immediately, after a search is done or at the end
of a session. Once the service decides to charge, it delegates this task to
its collection agent (step two).

In step three, the collection agent contacts the payment agent specified
during step one, sending an invoice which identifies the service and the
charge and which lists the payment mechanisms acceptable to the service.
In step four, the payment agent verifies the legitimacy of the charge and
picks one of the payment mechanisms offered by the collection agent. Dur-
ing step five the payment agent delegates the mechanics of payment to the
proper payment capability. The capability interacts with the respective
financial service and the server-side collection capability to accomplish
transfer of funds and the receipt. In case of an account-based service, the
currency tendered could simply be the user’s account number. Finally, the
collection capability verifies payment and notifies the collection agent
which in turn notifies the service proxy. The proxy may then release infor-
mation to the client.

Third-Party Payment

One activity an architecture like InterPay needs to accommodate is pay-
ment through third parties. For example, research libraries generally have
bulk discount accounts at commercial information providers. When patrons
of the library’s local community access these providers, they do it under the
library’s bulk contract, with expenses sometimes billed to the patron’s
department. Figure 9 sketches an example of how third-party payment is
accomplished in InterPay. The client uses the corporate library as its ser-
vice. The library in turn delegates the request to the outside service. The
currency tendered to the corporate library could be an employee number.
The currency used between the library and the service could be the
library’s account number which is billed once a month.

20

Opportunities for Extensions and Optimizations

While distributed object technology adds some overhead, it also helps
organize parallelism. We believe that such parallelism helps recoup some
of the cost of payment-related overhead. In some cases the service could,
for example, initiate the charging procedure before beginning work on the
service request. The payment interactions could then proceed in parallel
with the service’s work on filling the request. This is an example for flexibil-
ity that enables benefits to be gained in the presence of trust: the service
expects that payment will be forthcoming and therefore proceeds without
delay. A similar speed-up can be gained by the collection agent accumulat-
ing charges for trusted clients until they have reached a threshold amount.
Only then would it proceed with the charging protocol. Yet another trust-
based optimization can be obtained by the client passing information such
as a credit card number to the respective collection capability. Fund trans-
fer would then be initiated at the service side. The standard protocol has
this occur on the client side to avoid the revelation of sensitive information
such as credit card numbers to untrusted services.

There are many places in the architecture where security facilities can be
employed. The object system can provide very low-level security and pri-
vacy to ensure the integrity of messages passed among objects. Authoriza-

Query

Payment
Agent

Collection
Agent

Visa Acct

Dialog

Dialog

Interface Proxy

Req

Payment
Agent

Visa
Check

Collection
Agent

Req

Acct

Corporate
Lib Proxy

Figure 9: Example for Third-Party Payment

21

tion schemes can be used in virtually all the steps of Figure 8. Digital
signatures can be used when passing receipts during step five [17,18].

We have implemented a first prototype of InterPay that accesses various
services and levies charges for them. In this implementation, the payment
agent is given simple rules indicating when it needs to contact a human for
approval. Pop up dialog boxes are used for such approval. In addition, the
payment agent keeps the user informed of accumulating charges through a
“taxi meter” interface. We have found that indeed the InterPay modularity
makes it easy for the implementor to separate payment policy issues from
search issues. This also positively affects the end user who, because of the
different interfaces for search and payment issues, can focus attention to
the appropriate task. As we add new payment capabilities, modularity is
proving to be a big help as well. We are finding that the three-tiered
approach speeds our exploration of extensions for exploiting trust between
clients and services.

Conclusion

We explained how distributed object technology helps us deal with some of
the interoperability problems that arise in a digital library comprised of
numerous independent services, each potentially presenting a different
interface and interaction model. And we demonstrated how this technology
can be used to help with the specific heterogeneity problem of multiple
online payment schemes.

All five thrusts of the Stanford Digital Library project’s work leave room for a
wide variety of future work, some of which is currently in preliminary
stages. At the user interface level we are working on the problem of inter-
actively configuring the use of library services to accomplish a task, and of
re-using and sharing the results of such efforts. In the information finding
thrust, current work focuses on the problem of users needing to query mul-
tiple services for the same information, without having to contend with dis-
parate query languages and result schemata. In the area of support for
economic activity, problems of security and privacy are being considered.
In the infrastructure thrust we continue to develop protocols that allow
highly flexible distribution of information among machines, while providing
satisfactory response time. Agent work is being pursued in the area of pro-

22

file-based information filters.

References

1.Röscheisen, M., C. Morgensen, and T. Winograd, Platform for Third-Party Val-
ue-Added Information Providers: Architecture, Protocols, and Usage Examples.
Technical Report http://www-diglib.stanford.edu/diglib/pub/reports/commen-
tor.html. November 1994, Stanford University.

2.Röscheisen, M., C. Mogensen, and T. Winograd, Interaction Design for Shared
World-Wide Web Annotations, in Proceedings of the Conference on Human Fac-
tors in Computing Systems, CHI'95. 1995.

3.Gravano, L., H. Garcia-Molina, and A. Tomasic, The effectiveness of GlOSS for
the text-database discovery problem, in Proceedings of the 1994 ACM SIGMOD
Conference. 1994.

4.Yan, T.W. and H. Garcia-Molina, SIFT--- A Tool for Wide-Area Information Dis-
semination, in USENIX Technical Conference. 1995.

5.Shivakumar, N. and H. Garcia-Molina, SCAM: A Copy Detection Mechanism for
Digital Documents, in Proceedings of the Second Annual Conference on the Theory
and Practice of Digital Libraries. 1995.

6.Balabanovic, M., Y. Shoham, and Y. Yun, An Adaptive Agent for Automated Web
Browsing. Journal of Visual Communication and Image Representation, December
1995. 6(4).

7.Information Retrieval: Application Service Definition and Protocol Specification.
April 1995, ANSI/NISO.

8.Rao, R., B. Janssen, and A. Rajaraman, GAIA Technical Overview. Technical Re-
port December 1994, Xerox PARC.

9.Negus, A.E., Development of the EURONET-Diane Common Command Lan-
guage, in Proceedings of the Intl. Online Meeting. 1979.

10.Kahn, R. and R. Wilensky, A Framework for Distributed Digital Object Servic-
es. 1995. (http://www.cnri.reston.va.us/home/cstr/arch/k-w.html).

11.The Common Object Request Broker: Architecture and Specification. December
1993, ftp://omg.org/pub/CORBA: Object Management Group.

23

12.Cutting, D., et al., ILU Reference Manual. December 1993, http://www.xe-
rox.com/PARC/ilu/index.html: Xerox Palo Alto Research Center.

13.DigiCash Brochure. 1994.

14.Neuman, B.C. and G. Medvinsky, Requirements for network Payment: The
NetCheque perspective, in Proceedings of IEEE COMPCON'95. March 1995.

15.First Virtual, Inc., Introducing the First Virtual Internet Payment System for In-
formation Commerce. 1994, http://www.fv.com/.

16.Cousins, S., et al., InterPay: Managing Multiple Payment Mechanisms in Digi-
tal Libraries, in Proceedings of the Second Annual Conference on the Theory and
Practice of Digital Libraries. 1995.

17.Hickman, K.E.B., The SSL Protocol. Technical Report http://
home.netscape.com/info/SSL.html. February 1995, Netscape Communications
Corp.

18.Rescorla, E. and A. Schiffman, The Secure HyperText Transfer Protocol.
December 1994, http://www.eit.com/projects/s-http/shttp.txt: Enterprise Integra-
tion Technologies.

