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Information Sources (Extended Version)
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Abstract

Searching over heterogeneous information sources is di�cult because of the non-uniform query languages. Our approach is to allow a

user to compose Boolean queries in one rich front-end language. For each user query and target source, we transform the user query into a

subsuming query that can be supported by the source but that may return extra documents. The results are then processed by a �lter query

to yield the correct �nal result. In this paper we introduce the architecture and associated algorithms for generating the supported subsuming

queries and �lters. We show that generated subsuming queries return a minimal number of documents; we also discuss how minimal cost

�lters can be obtained. We have implemented prototype versions of these algorithms and demonstrated them on heterogeneous Boolean

systems.
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Boolean queries, query translation, information retrieval, heterogeneity, digital libraries, query subsumption, �ltering.

I. Introduction

Emerging Digital Libraries can provide a wealth of information. However, there are also a wealth of search engines

behind these libraries, each with a di�erent document model and query language. Our goal is to provide a front-end to

a collection of Digital Libraries that hides, as much as possible, this heterogeneity. As a �rst step, in this paper we focus

on translating Boolean queries [17][5], from a generalized form, into queries that only use the functionality and syntax

provided by a particular target search engine. We initially look at Boolean queries because they are used by most current

commercial systems; eventually we will incorporate other types of queries such as vector space and probabilistic-model

ones [17][5]. The following example illustrates our approach.

Example I.1 Suppose that a user is interested in documents discussing multiprocessors and distributed systems. Say

the user's query is originally formulated as follows:

User Query: Title Contains multiprocessor AND distributed (W) system

This query selects documents with the three given words in the title �eld; furthermore, the (W) proximity operator

speci�es that word "distributed" must immediately precede "system."

Now assume the user wishes to query the INSPEC database managed by the Stanford University Folio system.

Unfortunately, this source does not understand the (W) operator. In this case, our approach will be to approximate

the predicate "distributed (W) system" by the closest predicate supported by Folio, "distributed AND system."

This predicate requires that the two words appear in matching documents, but in any position. Thus, the native

query that is sent to Folio-INSPEC is
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Fig. 1. The architecture of the front-end system illustrating query translation and post-�ltering. The dashed boxes are target-speci�c

metadata de�ning the target's syntax and capabilities.

Native Query: Find Title multiprocessor AND distributed AND system

Notice that now this query is expressed in the syntax understood by Folio. The native query will return a

preliminary result set that is a super-set of what the user expects. Therefore, an additional post-�ltering step is

required at the front-end to eliminate from the preliminary result documents that do not have words "distributed"

and "system" occurring next to each other. In particular, the �lter query that is required is:

Filter Query: Title Contains distributed (W) system 2

Figure 1 shows the main components of the proposed front-end system. The user submits (lower left) a query in a

powerful language that provides the combined functionality of the underlying sources. The �gure shows how the query

is then processed before sending to a target source; if the query is intended for multiple sources, the process can be

repeated. First, the incoming query is parsed into a tree of operators. Then the operators are compared against the

capabilities and document �elds of the target source. The operators are mapped to ones that can be supported and

the query tree is transformed (by a process we will describe here) into the native query tree and the �lter query tree.

Using the syntax of the target, the native query tree is translated into a native query and sent to the source. After the

documents are received and parsed according to the syntax for source documents, they are processed against the �lter

query tree, yielding the �nal answer.

Even though heterogeneous search engines have existed for over 20 years, the approach we advocate here, full search

power at the front-end with appropriate query transformations, has not been studied in detail. The main reason is that

our approach has a signi�cant cost, i.e., documents that the end user will not see have to be retrieved from the remote

sites. This involves more work for the sources, the network, and the front-end. It may also involve higher dollar costs if

the sources charge on a per document basis.
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Because of these costs, other alternatives have been advocated in the past for coping with heterogeneity. They

generally fall into three categories:

1. Present inconsistent query capabilities speci�c to the target systems with no intention to hide the heterogeneity and

have the end user write queries speci�cally for each;

2. Provide a "least common denominator" front-end query language that can be supported by all sources;

3. Copy all the document collections that a user may be interested to a single system that uses one search engine and

one language.

While these alternatives may be adequate in some cases, we do not believe they scale well and are adequate for

supporting a truly globally distributed Digital Library. End users really require powerful query languages to describe

their information needs, and they do require access to information that is stored in di�erent systems. At the same

time, increasing computer power and network bandwidths are making the full front-end query power approach more

acceptable. Furthermore, many commercial sources are opting for easy-to-manage broad agreements with customers

that provide unlimited access. Thus, in many cases it may not be that expensive to retrieve additional documents for

front-end post �ltering. And even if there is a higher cost, it may be worth paying it to get the user the required

documents with less e�ort on his part.

In summary, given the bene�ts of full query power, we believe that it is at least worth studying this approach

carefully. A critical �rst step is understanding how query translation actually works, since there are many di�erent

operators provided by Boolean systems, and it is challenging to determine what other weaker operators can provide a

super-set of results. Furthermore, as we will see, the transformation process also needs to consider the structure of the

query tree, not just the individual operators.

In this paper we only study the central query transformation algorithms (Query Capability Mapping box in Figure 1).

Some of the details (e.g., predicate rewriting) is discussed in [1]. Also, there are several important issues that are not

covered here. First, we only focus on the feasibility of the translations, not their cost. Some feasible translations may

be too expensive to execute, so a system component (not discussed here) must inform the user that their query cannot

be translated with a reasonable cost. (In such cases, the user will have to reformulate the query.) Second, we do not

consider semantic mapping issues (e.g., how to know whether "author" on one system is really the same as "author" on

another.) Here we simply assume we are given tables (and possible transformation functions) that specify how �elds or

attributes map to each other. Third, we do not discuss the implementation of the algorithms. However, we do note that

the algorithms presented here have been implemented and used to transform queries for three systems, Knight-Ridder's

DIALOG, Stanford's Folio, and AltaVista (Digital Equipment Corporation), each with di�erent Boolean query syntax

and functionality. We are in the process of extending our query transformation system to other Boolean sources.

We start by briey reviewing the alternative approaches suggested for access to heterogeneous search engines. In

Section III we provide a brief overview of the Boolean query languages, while in Section IV we discuss the preliminary

steps that are required for query transformation. Section V then describes the central algorithms that yield the query

for the target source and the �lter query.

II. Related Work

The problem of multiple and heterogeneous on-line information retrieval (IR) systems has been observed since the

early 1970's. In 1973, T.H. Martin made a thorough comparative feature analysis of on-line systems to encourage



4

the uni�cation of search features [10]. Since then, many solutions have been proposed to address the heterogeneity of

IR systems. Obviously, one solution is standardization, as suggested by the development of the Common Command

Language (CCL) done by Euronet [14], Z39.58 [13], and ISO 8777 [7]. However, none of them has been well-accepted as

an IR query standard.

Another approach for accessing multiple databases transparently is through the use of front-ends or intermediary

systems, which is also the approach what we advocate. Reference [21] and [6] provide overviews of these systems. Like

ours, these front-end systems provide automated and integrated access to many underlying sources. However, unlike

ours, none of them tried to support a uniform yet comprehensive query language by post-�ltering. As we mentioned in

the previous section, their approaches generally fall into three categories.

The �rst approach is to present non-uniform query capabilities speci�c to the target services. As the user moves from

one service to another, the capabilities of the system are modi�ed automatically to reect speci�c limitations. Examples

of such systems are TSW [16], OCLC's Intelligent Gateway Service [22], and the more recent internet search services

such as the All-in-One Search [2]. This kind of system actually does not provide transparent access to multiple sources.

The user must be aware of the capability limitation of the target systems and formulate queries for each. It is therefore

impossible to search multiple sources in parallel with a single query, since it may not be interpretable by all of them.

The second approach is to provide a simple query language, the least common denominator, that can be supported by

all sources. Most front-end systems adopt this approach. Examples include CONIT [9], OL'SAM [19], and FRED [3].

These systems unify query functionality at the expense of masking some powerful features available in speci�c sources.

To use particular features not supported in the front-ends, the user must issue the query in the "pass-through" mode,

in which the query is sent untranslated. This again compromises transparency.

Finally, there are systems that actually manage numbers of collections and do the search by themselves. For example,

Knight-Ridder's DIALOG system manages over 450 databases from a broad scope of disciplines. Clearly, this centralized

approach does not scale well as the amount of information keeps increasing.

The closest works to ours are the recent development of meta-searcher on the internet such as MetaCrawler [18] and

SavvySearch [4]. These services provide a single, central interface for Web document searching. They represent the

meta-searchers which use no internal databases of their own and instead rely on other existing search services (e.g.,

WebCrawler, Lycos) to provide information necessary to ful�ll user queries. Like ours, they also do query mapping and

(optional) post-�ltering. However, they provide relatively simple front-end query languages that are only slightly more

powerful than the least common denominator supported by the external sources. For example, they support a subset of

Boolean queries instead of arbitrary ones.

III. Boolean Query Languages

In Boolean retrieval systems, queries are Boolean expressions consisting of predicates connected by the Boolean

operators OR, AND, and NOT. A document is in the result set of a query if and only if the query evaluates to True for

the document.

In Boolean systems, a document consists of a set of �elds, each representing a particular kind of information such as

Title, Author, and Abstract. In general a predicate consists of three components: a predicate operator, a �eld designation,

and a value expression. For example, the predicate Contains(Title, cat*) evaluates to True for a document if it

contains a word starting with the letters "cat" in its Title �eld. The predicate Equals(Author, "Joe Doe") is satis�ed
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if the Author �eld is exactly equal to the string "Joe Doe." As seen in Example I.1, value expressions can be compound,

formed by connecting expressions by AND, OR, and proximity operators. For processing, we represent a predicate as a

syntax tree, where the root is the predicate operator, the left child is the �eld designation, and the right child is a subtree

representing the value expression. The predicates of a query are then combined into a query tree with the appropriate

AND, OR, NOT operators; see Figure 2(a).

Boolean systems mainly di�er in how they process predicates. First, they may have di�erent �elds in their documents,

and may disallow searches over some �elds (e.g., because they have not built an index). Second, they may support

di�erent types of operators and value expressions. For example, systems may support various kinds of proximity

expressions and operators for them. In the DIALOG language, the "(nW)" proximity operator speci�es that its �rst

operand must precede the second and no more than n words apart. The "(W)" operator is used when the distance

is implicitly zero. If the order does not matter, operators "(nN)" and "(N)" may be used instead. However, these

operators may not available in other systems, e.g., Folio supports none of these. Other features where systems di�er

include truncation, stemming [15][8], stopwords, etc. [17][5].

To illustrate, Table III provides feature comparison from our survey of several Boolean query languages. For example,

all the systems de�ne their own sets of stopwords, except AltaVista in which all words are indexed. For systems having

stopwords, if given a query containing stopwords, the systems may reject the query, ignore the stopwords, or simply

return no hits. There are also languages that provide some way to override stopwords and make them searchable.

In this paper we assume that all target systems support the Boolean operators AND, OR, and NOT. That is, if the

source supports predicates P1 and P2 then it supports P1 AND P2, P1 OR P2, and so on. We surveyed most commercial

Boolean search engines and found this to be true, with one exception: Most systems do not support the proper but

degenerate query True. (We discuss the implications of this exception in Section V.)

IV. Query Capability Mapping

As discussed in the introduction, our goal is to transform a user query into a native query that can be supported

by the target source. Furthermore, we would like the native query to return as few "extra" documents as possible. In

this case, we say that the native query minimally subsumes the user query with respect to the target language. The

following de�nitions formalize these concepts. Notice that the notation hQi represents the result set of a query Q.
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TABLE I

Feature comparison of query languages supported at various information sources.

Z39.58

CCL

Stanford

Folio

U.C.

Melvyl

Knight-Ridder's

DIALOG

DEC's

AltaVista

CNIDR's

freeWAIS

Boolean operators
p p p p p p

fielded search
p p p p p p

proximity operator:

(nN)
p

X X
p

only (10N) X

(nW)
p

X X
p

X X

same field X X X
p

X X

sentence/paragraph X X X X X X

truncation:

open right (wom*)
p p p p p p

controlled right (wom??)
p

X X
p

X X

internal (wom?n)
p

X X
p

X X

stemming X X X X X
p

synonym expansion X X X X X
p

Soundex/Phonex X X X X X
p

stopwords can be

override

ignore reject no hits no

stopwords

no hits

De�nition IV.1 (Query Subsumption) A query Q0 subsumes query Q (Q0 � Q) if hQ0i � hQi regardless of the

contents of the collection. If hQ0i � hQi, then Q0 properly subsumes Q (Q0 � Q). 2

De�nition IV.2 (Minimal Subsuming Query) A query QS is the minimal subsuming query of query Q, or QS

minimally subsumes Q, w.r.t. the target system T , if

1. QS is supported by T ,

2. QS subsumes Q, and

3. there is no query Q0 that also satis�es 1 and 2, and is properly subsumed by QS .

2

We will use the symbol QS to represent the minimal subsuming query of Q w.r.t. some target system that is clear

from the context. After retrieving the results of a native query, we need a �lter for locally removing the unnecessary

answers.

De�nition IV.3 (Filter) A query F is a �lter for a query Q given its subsuming query Q0, if Q � Q0 ^ F . 2

A �lter always exists given that the native query subsumes the user query. To see this, note that the user query itself

is always a correct �lter. At the other extreme, F = True is also a possible �lter when Q � QS . (In this case no

�ltering is necessary.) In general, there may be more than one �lter possible, and we are interested in one that requires

the least processing e�ort.

De�nition IV.4 (Optimal Filter) A query F is the optimal �lter, w.r.t some processing cost de�nition, for a query

Q with subsuming query Q0, if F is a �lter for Q and Q0, and there is no query F 0 which is also a �lter for Q and

Q0, and costs less than F under the cost de�nition. 2
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A. Overview of the Capability Mapping Process

The main steps for transforming a query (Query Capability Mapping box in Figure 1) into its native query and �lter

are as follows. These steps will be described in more detail in the following subsections.

1. Predicate atomization. Starting from the query tree Q, this step outputs a logically equivalent query tree Qa where

all predicates are atomic. Tree Qa is obtained by decomposing non-atomic predicates using the distributive law.

2. Query normalization. The tree Qa is transformed into Disjunctive Normal Form (DNF), Qd, so that it is ready for

step 4 below. (Notice that this and the previous step are target-independent and therefore need only be done once if

translations to multiple target languages are requested.)

3. Predicate rewriting. For each predicate P in Qd, we rewrite it into its negative or positive subsuming form (or both)

depending on whether it is negative, positive, or mixed in Qd.

4. Logic mapping. Given the DNF of the query, Qd, and the subsuming forms of the predicates, this step constructs the

minimal native query and derives the optimal �lter.

B. Step 1- Predicate Atomization

Predicates are the basic constructs of queries and hence the basis of query mapping. Sometimes a predicate con-

tains logical conjunctions or disjunctions within it, and it is more e�ective to break it into simpler atomic predicates.

For example, consider the predicate Contains(Title, multiprocessor AND distributed (W) system). It is equiv-

alent to the conjunction of the following two predicates: Contains(Title, multiprocessor) AND Contains(Title,

distributed (W) system). This atomization lets us separate predicates that may be unsupported at a target from

those that are and hence leads to better native queries. Also, it makes it easy to determine the �ltering that is required

for each predicate in a query: if the atomic predicate is supported at the target, then no �ltering is needed; if it is not,

then the predicate itself (in its entirety) must be the �lter.

A predicate P = �(F;E), where � is a predicate operator (e.g., Equals or Contains), F is a �eld designation,

and E is a value expression, is atomic if there are no AND or OR operators in E that can be "pulled out" of the

predicate. To decompose a predicate into its atomic terms, we apply the distributive law to the operator tree that

de�nes the predicate. However, we have to be careful because AND cannot be distributed over certain operators (OR

always can) [12]. For example, the predicate Contains(Title, multiprocessor (W) (distributed AND system))

is not equivalent to Contains(Title, multiprocessor (W) distributed) AND Contains(Title, multiprocessor

(W) system). For additional details, see [1].

C. Step 2- Query Normalization

The next step is to transform the query into Disjunctive Normal Form (DNF) (see Figure 2(c)). A Boolean expression

is in DNF if it is the logical OR of clauses, which are the logical AND of normal or negated predicates. That is,

Q =

mX

i=1

Ci;

where Ci =
Q ~Pj, and ~Pj 2 fPj; �Pjg. ( �Pj is the negation of Pj, i.e., :Pj.) Ci's are conjunction terms of some but not

necessarily all (atomic) predicates Pj's de�ned in Q. Notice that the DNF representation is not canonical, that is, there

may be more than one DNF's for a given query. As there are well-known algorithms for DNF transformations [11], we

will not discuss the transformation here.
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The normalization is in preparation for the ensuing steps. First, for Step 3, it is required that we know whether a

predicate is negative, positive, or mixed in a query. In a DNF query (Figure 2(c)) it is clear what predicates are negated.

Second, for Step 4, it is required that the query be expressed in DNF trees so we can guarantee the minimality of the

native query.

D. Step 3- Predicate Rewriting

The mapping of single predicates is the basis for query mappings as it ensures that the translated queries are at least

doable by the target systems. A predicate is unsupported by a target system T if there are any operators not supported

by T appearing in the predicate subtree. Considering individual predicates as simple queries, for each unsupported

predicate, we must �nd its subsuming queries and the �lter. As stated earlier, �nding the �lters for atomic predicates

is straightforward.

The rewriting of unsupported predicates is a systematic procedure of replacing unsupported operators by supported

ones. The proper substitutes are those supported operators that are weaker or stronger in the sense of selectivity and

are as close to the unsupported operators as possible. The readers may refer to [1] for the details of predicate rewriting.

Due to the space limitation, we illustrate the idea by the following example.

Example IV.1 (Predicate Rewriting) Consider the predicate P = Contains(Title, color (5W) printer)which

means the Title must have the two words appearing no more than 5 words apart and in that order. Assume the only

proximity operator available in the target system is the immediate adjacency operator "(W)" in which the distance

is always implicitly zero. In this case, we would substitute "(5W)" by "AND" since "AND" is its closest weaker

substitute. The substitution results in PS = Contains(Title, color AND printer). Notice that P � PS.

Next, consider what happens if P is negated in the query. In this case, it is not correct to replace :P by :PS

since :P 6� :PS. Indeed, the subsumption relationship is reversed by the negation, i.e., :P � :PS . It is thus

possible that some answers of :P may be lost in :PS. This suggests that the unsupported operators in negated

predicates should be replaced by its closest stronger substitute, i.e., "(5W)" should be replaced by "(W)" in this

case. Therefore, we obtain the negative form of the predicate, P� = Contains(Title, color (W) printer). We

see that :P � :P� and hence we can replace :P in our query by :P� and get a broader result set. 2

As suggested in Example IV.1, we need di�erent subsuming forms for positive or negative predicates. Formally, a

query PS is the positive subsuming form of the predicate P w.r.t. the target system T , if PS minimally subsumes

P w.r.t. T . Similarly, a query P� is the negative subsuming form of the predicate P w.r.t. the target system T , if

:P� minimally subsumes :P w.r.t. T . Notice that we have PS � P � P�. In some extreme cases, it is possible

that there is no non-trivial rewriting for either the positive or negative subsuming forms, in which case PS = True or

P� = False. Furthermore, if a predicate P is logically equivalent to P 0 expressible in T , then P 0 is both the positive

and negative subsuming form of P , which we call the equivalent subsuming form of P , i.e. P � P 0. Note that P

and P 0 are not necessarily identical. For example, Contains(Title, text*) is logically equivalent but di�erent from

Contains(Title, text OR textual OR...).

Notice that in some cases (non-trivial) subsuming predicates may be hard to obtain or may be unwieldy. For example,

say the front-end query requests a "soundex" search for documents with the word "right." (This is a search for terms

that sound like "right," e.g., "write," "wrt.") If the target source does not support this feature, the subsuming predicate

must include a disjunction of all words that sound alike and the source might have. If the front end does not have access
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to the source's vocabulary, then this cannot be done, so the subsuming predicate will be True. Even if the source's

vocabulary is available, the list of like-sounding terms may be large.

V. Logic Mapping Algorithms

A. Minimal Native Query Construction

By replacing predicates by their positive or negative subsuming forms (depending on whether they are negated or

not) we obtain a native query that is executable by the target source. (By construction, the subsuming predicates are

executable at the target. By our Section III assumption, the target can execute Boolean expressions of the supported

predicates.) We can also show that the native query is correct (it subsumes the original query). This is because the

AND/OR operators are monotonic in the sense that successively increasing operands yield non-decreasing results [20,

Ch. 3, pp. 121{122]. (The fact that NOT operators have been pushed below the top level of the query by some sort of

normalization, Figure 2(b)(c), is critical here. Otherwise, they could cause the subsumption relationship to be "reversed"

when we consider the full query.)

In general, a constructed native query could be correct but not minimal. We illustrate this non-minimality in Example

V.1.

Example V.1 (Native Query Construction) Consider the queries Q1 = (P1+P2)( �P1+P3) and Q2 = P1P3+ �P1P2

where P1, P2, and P3 are predicates. Notice that Q1 and Q2 are logically equivalent to each other and both of them

are normalized, i.e., Q1 is in CNF and Q2 is in DNF. Now assume that P2 and P3 are supported in the target, while

P1 is not. Suppose that PS

1
is some arbitrary query and P�

1
= False. Substitution of the unsupported predicates

yields QS

1
= PS

1
+ P2, and QS

2
= PS

1
P3 + P2. Clearly Q

S

1
is not minimal because it at least subsumes QS

2
. 2

The reason that QS

1
fails to be minimal is that, being a conjunction term, Q1 does not satisfy the property of inferential

completeness. Intuitively, notice that any answers satisfying Q1 must also satisfy (P2 + P3), a condition we denote as

X. That is, from Q1 one can infer X. Because P2 and P3 are supported by T , so is X. Moreover, although X is implied

by Q1, it is not implied by QS

1
, which means that X can be conjuncted with QS

1
to yield a smaller native query. That

is, QX

1
= QS

1
X is smaller than QS

1
. In fact, it can be shown that QX

1
is logically equivalent to QS

2
. In summary, the

existence of the condition X makes Q1 fail to be inferentially complete, as de�ned below.

De�nition V.1 (Inferential Completeness of Conjunction) A conjunctive query Q = Q1Q2 : : :Qn is inferentially

complete w.r.t. the target system T if, for any query X that can be inferred fromQ (in which case X � Q1Q2 : : :Qn),

the minimal subsuming query of X w.r.t. T can also be inferred from the conjunction of the minimal subsuming

queries of Qi's w.r.t. T (in which case XS � QS

1
QS

2
: : :QS

n
). 2

The importance of inferential completeness is that it is both a necessary and su�cient condition for minimality to

be preserved over AND operators. We formally state this in Theorem V.1 . For OR operators, this property is not

required, as stated in Theorem V.2.

Theorem V.1 (Minimality Preserving over Conjunction) For a conjunctive query Q = Q1Q2 : : :Qn, where Qi's

are the sub-queries of Q, the minimal subsuming query of Q w.r.t. the target system T is the conjunction of the

minimal subsuming queries of Qi's w.r.t. T , i.e. QS = QS

1
QS

2
: : :QS

n
, if and only if Q1Q2 : : :Qn is inferentially

complete w.r.t. T . 2

Proof: Let's denote QS

1
QS

2
: : :QS

n
by Qm.
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Fig. 3. Venn diagram illustration of a simple case of Theorem V.1. The regions represent the result sets of various queries.

First, notice that Qm subsumes Q, since for i 2 [1 : : :n], QS

i
subsumes Qi (by De�nition IV.2) and operator AND

is monotonic (as just explained).

Next, we show that Qm is minimal. Refer to Figure 3 for the components of the proof illustrated with Venn

diagrams in terms of the result sets of the queries. For simplicity, the diagram only shows a simple case of two

sub-queries (i.e., Q = Q1Q2 and Qm = QS

1
QS

2
.) Notice that parts (a) and (b) of Figure 3 illustrate the \if" and

\only if" parts of the proof, respectively.

(if) Suppose Q1Q2 : : :Qn is inferentially complete but QS 6= Qm. By De�nition IV.2, there exists a query Q0 (which

could be QS) supported by T , s.t. Qm � Q0 � Q = Q1Q2 : : :Qn. By De�nition V.1, the conjunction Q1Q2 : : :Qn

is not inferentially complete as Q0 can be inferred from it but not from Qm, a contradiction. Figure 3(a) illustrates

a simple case of two sub-queries.

(only if) Suppose QS = Qm but Q1Q2 : : :Qn is not inferentially complete. By De�nition V.1, there exists a query

X s.t. X can be inferred from Q (i.e., X � Q1Q2 : : :Qn) but X
S cannot be inferred from Qm. Therefore, QmXS

subsumes Q and is properly subsumed by Qm. By De�nition IV.2, Qm is not the minimal subsuming query of

Q, a contradiction. Again, Figure 3(b) illustrates a simple case of two sub-queries.

2

Theorem V.2 (Minimality Preserving over Disjunction) For a disjunctive query Q = Q1+Q2+ � � �+Qn, where

Qi's are sub-queries of Q, the minimal subsuming query of Q is the disjunction of the minimal subsuming queries of

Qi's, i.e., Q
S = QS

1
+QS

2
+ � � �+QS

n
. 2

Proof: Let's denote QS

1
+ QS

2
+ � � �+ QS

n
by Qm.

First, notice that Qm subsumes Q, since for i 2 [1 : : :n], QS

i
subsumes Qi (by De�nition IV.2) and operator OR

is monotonic.

Next, we prove that Qm is minimal. Please refer to Figure 4 for the illustration of a simple case of two sub-queries.

Suppose Qm 6= QS. By De�nition IV.2, there exists a query Q0 (which could be QS) supported by T , s.t.

Qm � Q0 � Q (see Figure 4). Therefore, there exists some Qi (i 2 [1 : : :n]) s.t. QS

i
is not subsumed by Q0 (if such

Qi does not exist, then it cannot be true that Qm subsumes Q0.) As both QS

i
and Q0 subsumes Qi, so does QS

i
Q0.
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Q
S
2〈 〉Q

S
1〈 〉

Q2〈 〉Q1〈 〉

Q'〈 〉

Q
m〈 〉 Q

S
1〈 〉 Q

S
2〈 〉∪=

Q〈 〉 Q1〈 〉 Q2〈 〉∪=

Fig. 4. Venn diagram illustration of a simple case of Theorem V.2. The regions represent the result sets of various queries.

Furthermore, QS

i
Q0 is properly subsumed by QS

i
. By De�nition IV.2, QS

i
is not the minimal subsuming query of Qi,

a contradiction. 2

These results motivate our use of DNF to represent queries (Figure 2(c)). If a query Q is in DNF, and we substitute

each predicate by its minimal subsuming form, we obtain the minimal subsuming query for Q, provided that each

conjunction term is inferentially complete. Since conjunction terms are made up of atomic predicates, we argue that

this holds in the vast majority of cases. For inferential completeness not to hold, the predicates would need to be

"interrelated" and this is hard to achieve with atomic predicates. As a matter of fact, the only examples we can come

up with are ones that no reasonable user would pose. (Example: Q = P1P2, where P1 is Equals(Title,"Distributed

System") and P2 is Equals(Title, "Color Printer"). Given that a document can have only one title, the minimal

subsuming query is False, which may not be obtained by PS

1
PS

2
.) Checking inferential completeness of conjunction

terms depends not only on the semantics of the predicates but also on the target system under consideration. Thus, we

doubt there is a computationally feasible way of checking, and even if there were, it would not be worth the e�ort since

cases where it does not hold are so rare.

To summarize our discussion, we present our algorithm that generates native queries.

Algorithm V.1 (DNF-Based Minimal Native Query Construction) Given a front-end query Q in DNF, with

respect to the target system T , �nd the minimal subsuming query, RESULT .

� Initially, RESULT = Q.

� For each conjunction term Ci in RESULT and for each normal or negated predicate ~Pj in Ci,

1. if ~Pj = Pj , i.e., Pj is positive in Ci, substitute Pj by P
S

j
, the positive subsuming form of Pj w.r.t. T ; otherwise,

2. if ~Pj = �Pj, i.e., Pj is negative in Ci, substitute Pj by P�

j
, the negative subsuming form of Pj w.r.t. T .

2

Notice that if we apply Algorithm V.1 to the query of Example V.1, we obtain QS

2
, the minimal subsuming query.

Given our earlier results, we can now state the conditions under which the algorithm yields an optimal result:

Theorem V.3 (Minimality of Algorithm V.1) For any query Q, the native query given by Algorithm V.1 is the

minimal subsuming query of Q w.r.t. the target system, provided that every conjunction term in the DNF of Q
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satis�es inferential completeness. 2

B. Optimal Filter Derivation

The logic mapping of the front-end queries is not complete without the derivation of the �lters. Given a query Q

and its native query QS , any query F satisfying De�nition IV.3 is a correct �lter. There may be more than one such

�lters that are not logically equivalent. Thus, we wish to choose the "best" one. At �rst glance one may think that the

broadest �lter, i.e., the one that subsumes the others, would be the best. However, since all valid �lters will produce

exactly the same result set (from the result of the native query), this is not the right metric to focus on. Instead, we

would like the �lter with the simplest Boolean expression, which will involve the smallest computational e�ort.

Example V.2 (Filters) Consider the query Q = P1 + P2 �P3. Suppose P1 and P2 are supported by the target, and

P�

3
= False. Algorithm V.1 gives QS = P1+P2. Given Q and QS , the correct �lters include F1 = P1+ �P2+ �P3, and

F2 = P1 + �P3. Both �lters are valid since Q = QSF1 and Q = QSF2. Filter F1 is broader than F2, as it subsumes

F2. However, it is clear that F2 is a better choice because it has a simpler expression which implies less processing

cost under any normal cost de�nition. 2

Correct �lters are not di�cult to derive. Intuitively, given a query Q and QS , if we can �nd all the necessary conditions

that Q must imply, a �lter can be composed as the conjunction of those necessary conditions that are not implied by

QS . We refer to the not-implied conditions as the residue conditions. One way to �nd the necessary conditions that Q

implies is to transform it into Conjunctive Normal Form (CNF). Written in CNF,

Q =

mY

i=1

Di;

where Di =
P ~Pj, and ~Pj 2 fPj; �Pjg. Di's are disjunction terms of some predicates Pj 's de�ned in Q. Since the Di's

are conjuncted in Q, they are the necessary conditions that Q must satisfy. Any Di containing unsupported predicates

is a necessary condition that cannot be implied by QS , and therefore a residue condition. Consequently, a �lter can be

composed as the conjunction of those residue Di's.

To illustrate this procedure, consider query Q of Example V.2. Written in CNF, Q = (P1 + P2)(P1 + �P3). Since

P�

3
= False, the second disjunction term is a residue (the only one), and hence the �lter is F = P1 + �P3. In this case

we obtained the optimal �lter, but this is not always the case, as the following example illustrates.

Example V.3 (Filter Derivation) Consider the query Q = P1 �P2P3 + P2 �P3, and QS = P1P3 + �P3 which is resulted

from Algorithm V.1 by assuming PS

2
= True and P�

2
= False. Writing Q in the (minimal) CNF as (P2 + P3)( �P2 +

�P3)(P1+P2), we �nd that the three disjunction terms all contain the unsupported predicate P2. Therefore, the �lter

composed from the residue conditions is F1 = (P2 + P3)( �P2 + �P3)(P1 + P2). However, F1 is not optimal; the reader

may easily verify that F2 = (P2 + P3)( �P2 + �P3) is also correct, and is simpler than F1. 2

By comparing a query Q to its subsuming query QS , one can �nd a unique yet incomplete speci�cation for the family

of all the correct �lters. If further constrained by the cost de�nition, the optimal �lter can be formulated uniquely.

Therefore the optimal �lter derivation is a two-step procedure: �lter speci�cation and expression formulation. As the

latter is a well-studied problem in Boolean logic, we will discuss �lter speci�cation in detail and direct the readers to

existing literatures for expression formulation [11].

Our algorithm for determining the �lter speci�cation is given below. Before presenting the formal algorithm, we �rst

illustrate the process by redoing Example V.3. In the example, the user query is Q = P1 �P2P3 + P2 �P3, in which P1 and
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P3 are supported by the target but P2 is not. Suppose PS

2
and P

�

2
are some arbitrary native predicates given by the

predicate rewriting process, which are not necessarily rewritten trivially to True or False. Therefore, we obtain

QS = P1
�
P�

2
P3 + PS

2
�P3:

Our goal is to derive the optimal �lter given the pair Q and QS . However, in deriving the optimal �lter, it is not

necessary to know how unsupported (atomic) predicates are rewritten. As noted in Section IV-B, an unsuported atomic

predicate must be applied in post-�ltering in its entirety regardless of how it is actually rewritten. Consequently, for

simplicity, to derive �lters we can assume that unsupported predicates are rewritten trivially, i.e., in this example

PS

2
= True and P�

2
= False. The (simpli�ed) native query is therefore given as

QS = P1P3 + �P3

To construct the optimal �lter, we �rst derive its speci�cation by comparing the \di�erences"' between Q and QS ,

which is explained below. Considering a Boolean query as a function where the input variables are predicates, one can

specify the function canonically by means of a truth table (also called table of combination) [11]. A truth table is a

listing of all the combinations of the truth values of the input variables and the corresponding function values. The

truth table speci�cations of Q and QS are illustrated in Table II. For notational convenience, in the table we use 1 and

0 for True and False respectively.

TABLE II

Truth table specification of the Boolean functions Q, QS (specified in Example V.3), and the corresponding filter F .

P3 P2 P1 Q QS F

0 0 0 0 0 1 0
1 0 0 1 0 1 0
2 0 1 0 1 1 1
3 0 1 1 1 1 1
4 1 0 0 0 0 d

5 1 0 1 1 1 1
6 1 1 0 0 0 d

7 1 1 1 0 1 0

Based on the correctness requirement (Q = QSF ), the speci�cation of the correct �lters can be obtained by comparing

the truth tables of Q and QS . Referring to Table II, for each row of the truth table,

� if Q = 0 and QS = 1, then F = 0. This kind of rows represents the extra answers presented in the preliminary result

set that should be �ltered out.

� if Q = 0 and QS = 0, then F = d. The symbol d stands for don't-care meaning that the value can be either 0 or 1.

This kind of rows represents the extra answers that have already been �ltered out by the native query. Notice that, as

no answers of this kind can appear in the preliminary result set, it is unimportant whether the �lter output equals 0 or

1.

� if Q = 1 and QS = 1, then F = 1. This kind of rows represents the actual answers that have to be retained after

�ltering.

Notice that the situation in which Q = 1 and QS = 0 is not possible because QS subsumes Q, by de�nition. The

resultant speci�cation of the �lter F is listed in Table II.
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However, rather than comparing the truth tables row by row, it is simpler to work on the decimal speci�cations

instead. A decimal speci�cation is a concise means of specifying the truth table which lists the numbers of the rows for

which the function value is to equal 1, 0, or don't-care, if any. We denote the sets of the row numbers in the truth table

whose values are 1, 0, and d by 1-Set, 0-Set, and d-Set respectively. The decimal speci�cations of Q, QS , and F are

Q = 1-Set(2; 3; 5)+ 0-Set(0; 1; 4; 6; 7)

QS = 1-Set(0; 1; 2; 3; 5; 7)+ 0-Set(4; 6)

F = 1-Set(2; 3; 5)+ 0-Set(0; 1; 7) + d-Set(4; 6)

The following algorithm formalizes the �lter derivation process we have illustrated by our example.

Algorithm V.2 (Filter Speci�cation) Given a front-end query Q in DNF, �nd the decimal speci�cation of the

correct �lters for Q and its minimal subsuming query with respect to the target system T .

1. Run Algorithm V.1 with input Q, assuming that all the predicates that do not have equivalent subsuming forms

are rewritten trivially, i.e., any such predicate P has PS = True and P� = False. The output is QS .

2. Compute the decimal speci�cations of Q and QS.

3. The decimal speci�cation of any correct �lter F can then be formed by the following rules. Notice that the

notation 1-Set[X] (0-Set[X] and d-Set[X], resp.) stands for the 1-Set (0-Set and d-Set, resp.) of Boolean function

X.

� 1-Set[F ] = 1-Set[Q]

� 0-Set[F ] = 0-Set[Q]� 0-Set[QS ]

� d-Set[F ] = 0-Set[QS ]

2

It is easy to see that if we apply Algorithm V.2 to our example, we get the same �lter as before.

Given the speci�cation, the second step is to actually formulate the optimal �lter expression. Notice that there are

potentially more than one �lter expressions that can be formulated based on the decimal speci�cation. For example,

the expressions F1 and F2 given in Example V.3 are both possible formulations of the above speci�cation. The identical

problem has been studied in detail in the area of combinational circuit design. Some formal algorithms have been

presented to formulate the most cost-e�ective expression uniquely given the function speci�cation and the cost de�nition.

The interested readers may refer to [11, Ch. 6] for the techniques.

Our �nal theorem below combines the results we have presented. Theorem V.3 has shown that a front-end query can

be transformed into a minimal, subsuming native query. Furthermore, given a query Q, it is not hard to see that its

minimal subsuming query is unique (if Q1 and Q2 are both minimal w.r.t. the target system T , then their conjunction,

Q0 = Q1Q2, must also be executable by T and is still smaller than both Q1 and Q2, a contradiction). For the �lters, we

presented the algorithm for their speci�cation. As we just mentioned, the optimal �lter is also unique under some cost

de�nition.

Theorem V.4 (Query Capability Mapping) Given a query Q, the target system T , and the cost de�nition for

post-�ltering, the minimal subsuming query of Q w.r.t. T and the optimal �lter w.r.t. the cost de�nition can always

be found uniquely. 2
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Keep in mind that Theorem V.4 only addresses the existence of a native query and �lter, not its practicality or cost.

As a matter of fact, we will be unable to run some native queries because of "quirks" of real systems. For instance, we

mentioned earlier that some systems do not accept the valid query True. This means that if our algorithm generates

that as the minimal subsuming query for some user query Q, then it will be impossible to answer Q. Similarly, some

systems may not export certain �elds in their documents. So if a �lter wishes to search locally one of those "hidden"

�elds, it will fail. In all these cases, as well as those where the native query is too expensive, the user will have to

reformulate his query or access the source directly.

VI. Conclusion

This paper gave an overview of the query translation process and focused on the logic mapping algorithms. As pointed

out earlier, there are situations in which our approach has a number of drawbacks or even fails. For one, in some cases

translation can turn out to be too expensive. For example, the approach may create too much network tra�c, or they

may create queries that contain too many terms. The latter can happen, for instance, when truncation is approximated

by enumerating terms over a source's vocabulary. Another failure mode can be that a source simply does not provide

the information the algorithms need. For example, it may not be possible to obtain a source's vocabulary in order to

provide approximations to truncation. Similarly, a source with a large corpus is generally not able to return all of its

contents which the algorithms can in some cases call for when query translation produces True as the native query. In

this case, the query cannot be executed.

In general, our algorithms for rewriting predicates, as briey discussed in Section IV, require the following from the

underlying search engines to perform a complete translation (this is the contents of the "Target Capability & Schema

De�nition" box in Figure 1.):

1. the schema de�nition: the set of searchable �elds, and the indexing scheme of each �eld.

2. the supported operators in addition to Boolean operators.

3. the stopword list.

4. the vocabulary: the word vocabulary, and the phrase vocabularies for phrase-indexed �elds.

5. the details of expansion features, e.g., for stemming: the algorithm used; for truncation, the supported truncation

patterns.

Among these, items 1, 2, 3, and the truncation patterns are usually documented for the end users to search the

sources. The others are presently harder to obtain.

There are several factors which mitigate the drawbacks we have discussed. To reduce the cost for retrieving and

post-�ltering the entire preliminary result set, we may instead process the result incrementally. That is, if the user

wishes to see, say a screenfull of documents, only some of the source's documents must be retrieved and �ltered. As the

user requests more documents, more are processed.

We found that in many practically interesting cases a translation is possible. For example, our study shows that

predicate rewrites to True are actually unlikely in practice. Moreover, notice that trivial rewriting of a predicate does

not necessarily imply that the entire native query becomes True. For example, when a query contains conjunctions

of which one translates to True, the remaining terms are used to maintain reasonable selectivity. The native query

degenerates to True only when there are no other components left. To be precise, the query translator generates True

as the native query for a user query if and only if all predicates forming an implicant (a conjunction of predicates that
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implies the query) become True. For example, query Q = P1P2 + P2P3 translates to True only when both P1 and P2,

or P2 and P3 are rewritten to True.

For cases where translations produce excessively large queries, approximations can be applied. For the truncation

emulation example, an implementation could decide not to expand to all possible terms. This would not yield a

complete result. But depending on the user's task, a partial solution may be acceptable if it still produces "enough"

documents. If some required metadata is not available, we believe that approximations can also help out. For example, a

common vocabulary, such as the set of words from a dictionary can be used to approximate the emulation of truncation.

Although this does not guarantee a precise translation, it might not be a fatal drawback given the inherent uncertainty

in information retrieval. The approximation of using a common dictionary also greatly helps our approach to scale.

When a translation is truly impossible, our approach still provides a bene�t. As shown in Figure 1, we provide a

feedback loop to the user. When a translation failure is detected, the user can be informed about precisely which part

of the query is problematic. The user can then reformulate just that part.

As discussed in Section II, query uni�cation has been attempted in various forms over the years. We believe that the

increased power of search engines and machines available locally to users, combined with increased network bandwidth

and changing information access economics, call for a re-examination of this area. In many cases it is now feasible to

compensate for lacking retrieval features by extracting more information, and �ltering it locally. This paper sketched

our e�orts in beginning such a re-examination.

Our initial prototype implementations are very encouraging. We have transformed the kinds of queries shown in this

paper and have successfully executed them on very di�erent search engines. Future work will involve schema uni�cation

(which we did not discuss here) and extensions for non-Boolean queries.
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