
COMPLEXITY MEASURES FOR ASSEMBLY SEQUENCES

a dissertation

submitted to the department of computer science

and the committee on graduate studies

of stanford university

in partial fulfillment of the requirements

for the degree of

doctor of philosophy

By

Michael Goldwasser

June 1997

c
 Copyright 1997 by Michael Goldwasser

All Rights Reserved

ii

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a dis-

sertation for the degree of Doctor of Philosophy.

Rajeev Motwani

(Principal Adviser)

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a dis-

sertation for the degree of Doctor of Philosophy.

Leonidas Guibas

I certify that I have read this dissertation and that in my

opinion it is fully adequate, in scope and in quality, as a dis-

sertation for the degree of Doctor of Philosophy.

Jean-Claude Latombe

Approved for the University Committee on Graduate Studies:

Dean of Graduate Studies

iii

Abstract

Our work focuses on various complexity measures for two-handed assembly sequences. For

many products, there exist an exponentially large set of valid sequences, and a natural goal

is to use automated systems to select wisely from the choices. Since assembly sequencing

is a preprocessing phase for a long and expensive manufacturing process, any work towards

�nding a better assembly sequence is of great value when it comes time to assemble the

physical product in mass quantities. Although there has been a great deal of algorithmic

success for �nding feasible assembly sequences, there has been very little success towards

optimizing the costs of sequences. We attempt to explain this lack of progress, by proving

the inherent di�culty in �nding optimal, or even near-optimal, assembly sequences.

We begin by introducing a formal framework for studying the optimization of complex-

ity measures for assembly sequencing. Based on the previous work of both researchers and

practitioners, we collect a list of various cost measures, goals, and restrictions that others

have considered desirable. Together with this, we de�ne a graph-theoretic problem that is a

generalization of assembly sequencing, focusing on the combinatorial aspect of the family of

feasible assembly sequences, while temporarily separating out the speci�c geometric assump-

tions inherent to assembly sequencing. In this virtual assembly sequencing model, we are still

able to explain the success of previous algorithms in �nding feasible sequences e�ciently.

At this point, we begin to consider the approximability of the various cost measures for

sequencing, and we examine the lack of success in optimizing the costs. We examine several

intuitive, yet unsuccessful, heuristics for optimizing the cost of sequences, giving constructions

which result in worst case performance, while also testing these heuristics experimentally on

several products, previously used as a test bed for research in assembly sequencing. Because

of this lack of success in designing approximation algorithms, we continue by examining the

source of di�culty in these problems. We show how these problems capture the combined

di�culty of several covering, scheduling, and sequencing problems from the literature. We

iv

use techniques common to the theory of approximability to prove the hardness of �nding

even near{optimal sequences for most cost measures in our generalized framework. Our

strongest lower bounds prove that �nding any solution within a 2log
1�
 n-factor of the optimal

cost solution is quasi-NP-hard for any
 > 0. As a special case, we prove similar, strong

inapproximability results for the problem of scheduling with and/or precedence constraints.

Of course, hardness results in our generalized framework do not immediately carry over to

the original geometric problems. It may be that hard instances of our graph-theoretic problem

do not arise from the geometric settings originally part of the assembly sequencing problems.

Therefore, we re-introduce the geometry, and continue by realizing several of these hardness

results in rather simple geometric settings. We are able to show strong inapproximability

results in far simpler settings than the domain of most assembly sequencers, for example

using an assembly consisting solely of unit disks in the plane.

In the face of our results, the overwhelming open problem is to design any non-trivial

approximation algorithms for minimizing the cost of assembly sequencing. In our general

setting, we give strong lower bounds, however there is still a gap between the trivial upper

bound, and so it would be interesting to develop an algorithm that is able to match the lower

bounds. Furthermore, it would be quite valuable to identify any practical geometric settings

not considered by us, that would allow for approximation-algorithms which are able to break

our generalized lower bounds.

v

Acknowledgments

I dedicate this dissertation to my parents, Marilyn and Bob, as they deserve the credit for the

person whom I have become. Their parenting has instilled in me a sense of accomplishment,

a sense of caring, a sense of responsibility, a sense of morality, and a sense of curiosity. When

I become a parent myself, I only hope I can continue in their style. Additionally, I would

like to thank my siblings for encouraging my intellectual curiosity, beginning with early math

lessons on the blackboard in our basement, and continuing with endless hours spent playing

game after game while growing up.

To my �anc�e, Susan, I wish to express my heartfelt gratitude for her constant support

in my life. In many ways, the completion of this thesis symbolizes an end to a period in my

life; however a new chapter is about to begin with our marriage next month. I look forward

to a life with Susan as my partner.

In my academic life, I wish to acknowledge not only those whose help has been so bene�cial

to by thesis, but also those who have been a part of my life over the years. With four years

at Brown, followed by six years at Stanford, the list has grown quite rapidly.

To begin with, I would like to thank all the members of my reading committee. Always

with an open door, Rajeev Motwani has served as both my advisor and also as a role model.

Rajeev's enthusiasm for research seemed unlimited, and his commitment to quality teaching

was remarkable. I often found myself sitting in his classes, admiring his organization, pre-

paration and explanations; these lessons I take with me as I become a teacher myself. Leo

Guibas, who served as my �rst advisor, has been enlightening, with both his vision of the

�eld as well as his ability to explain his ideas to others. I would also like to thank Leo for

the many times I found myself enjoying dinner, being entertained by personal stories about

vi

the history of computer science, the people involved, and about life in general. Finally, Jean-

Claude Latombe has been instrumental in the creation of this thesis. His work in assembly

planning is what brought me to studying this problem.

In the same regard, I would like to acknowledge all of the members of the Stanford as-

sembly planning group, namely Leo Guibas, Jean-Claude Latombe, Danny Halperin, Cyprien

Godard, G. Ramkumar, and Bruce Romney. In particular, I am especially grateful for my

frequent meetings with Danny Halperin while at Stanford, as his interactions were invaluable.

Additionally, there were several other people in the assembly planning community whom I

have met over the years. Randy Wilson's thesis has been the springboard for a good deal of

this work. Although he graduated from Stanford shortly after my arrival, continued conver-

sations with Randy have been a key in shaping my thesis. Additionally, I would like to thank

both Randy, Jack Snoeyink, and Russell Brown, for sharing various models of assemblies for

use in the experiments of Section 4.5. Finally, I would like to thank both Ken Goldberg and

Jan Wolter for several interesting conversations in the halls of robotics conferences.

A large part of my experience as a student has been in learning to be a teacher. A

signi�cant part of this lesson has been my exposure to the styles and techniques of so many

di�erent professors for whom I have served as a teaching assistant. These relationships

have provided me with many ideas and thoughts in shaping my own style and image as a

teacher. For this reason I would like to thank, Andrei Broder, Todd Feldman, Leo Guibas,

Philip Klein, Leora Morgenstern, Vaughn Pratt, Lyle Ramshaw, Roberto Tamassia, and Je�

Vitter.

The computer science students at Stanford have been such a constant part of my life for

so long, it is di�cult to thank each of them properly. but I would like to thank the following

for the role they have played in my daily life at work: Donald Aingworth, Julien Basch, Craig

Becker, Jerry Cain, Moses Charikar, Chandra Chekuri, Scott Cohen, Steve Cousins, Harish

Devarajan, Kathleen Fisher, Cyprien Godard, Ashish Goel, Sudipto Guha, Piotr Indyk,

David Karger, Robert Kennedy, Sanjeev Khanna, Daphne Koller, AndrewKosoresow, Je�rey

Oldham, Steven Phillips, G. Ramkumar, Bruce Romney, Craig Silverstein, Eric Torng, Eric

Veach, and Suresh Venkatasubramanian.

I am also quite grateful to have kept in such close contact, even to this day, with friends

from Brown, most notably, Ken Avenoso, David Luks, and David Pawson. It is a testament

to the value of email, that I feel as if these people are still just down the hall fromme. Finally,

I would like to thank those who helped me so much in enjoying the time, while delaying my

vii

thesis. My bridge playing has improved, much in thanks to Greg Crawford, Jesse David,

Rajendra Gangadean, Brian Murphy, and Jason Scott.

Financial support for this work has been given by a grant from the Stanford Integ-

rated Manufacturing Association (SIMA), by NSF/ARPA Grant IRI-9306544, by NSF Grant

CCR-9215219, by ARO MURI Grant DAAH04-96-1-0007 and by NSF Award CCR-9357849,

with matching funds from IBM, Mitsubishi, Schlumberger Foundation, Shell Foundation, and

Xerox Corporation.

viii

Contents

Abstract iv

Acknowledgments vi

1 Introduction 1

1.1 Presentation Overview : 3

1.2 De�nition of Assembly Sequencing : 4

2 Background 6

2.1 Assembly Sequencing : 6

2.1.1 A Review of Non-Directional Blocking Graphs : : : : : : : : : : : : : 8

2.2 Approximation Theory : 10

2.3 Computational Geometry : 13

3 Virtual Assembly Sequencing (vas) 15

3.1 Introduction : 15

3.2 De�nition of vas : 16

3.2.1 Possible Goals : 17

3.2.2 Possible Restrictions : 18

3.2.3 Possible Complexity Measures : 19

4 Algorithms, Heuristics and Experiments 21

4.1 Introduction : 21

4.2 Immediate Observations : 22

4.3 Greedy Heuristics : 26

4.4 Computing the Optimal Sequence : 29

ix

4.5 Experiments : 31

4.5.1 The Model Assemblies : 31

4.5.2 Experiment Setup : 32

4.5.3 Experiment Timing : 34

4.5.4 Experiment Results : 34

4.5.5 Experiment Conclusions : 34

5 and/or Scheduling 36

5.1 Introduction : 36

5.2 Notation and De�nitions : 38

5.3 Previous Work : 38

5.4 Inapproximability of and/or Scheduling : 39

5.4.1 Our Results : 39

5.4.2 Proofs : 40

5.5 Open Problems : 45

5.5.1 Alternating and/or Levels : 45

5.5.2 Summary of Open Problems : 46

6 Inapproximability of Virtual Assembly Sequencing 48

6.1 Introduction : 48

6.2 Our Results : 49

6.3 Useful Gadgets : 49

6.4 Reductions Between Variants of vas : 54

6.4.1 Our Results : 54

6.4.2 Proofs : 55

6.5 Hardness Results : 62

6.6 Open Problems : 65

7 Inapproximability of Geometric Settings 67

7.1 Introduction : 67

7.2 Graph Properties in Geometric Settings : 68

7.3 A Special Case of Set Cover : 71

7.4 Finding a Common Supersequence : 73

7.5 The Disks Problem : 75

x

7.6 Open Problems : 78

8 Conclusions and Open Problems 80

A Tables of Experimental Results 83

A.1 Number of Steps for Removing a Part with Linear Restriction : : : : : : : : 83

A.2 Number of Re-orientations for Removing a Part with No Restrictions : : : : 87

B Questioning the Claims of [20, 79] 91

B.1 Cost Measure : 92

B.2 Motion Class : 92

B.3 \Total Ordering" : 93

B.4 Counterexample : 95

Bibliography 97

xi

List of Figures

1.1 Assembly tree for a simple product : 5

2.1 A simple assembly and two dbg's for in�nitesimal translation : : : : : : : : 9

4.1 Bad Inputs for a Greedy Algorithm : 27

5.1 Reductions between variants of and/or scheduling : : : : : : : : : : : : : : 40

5.2 Label Cover as and/or scheduling with internal-tree precedence : : : : : 42

6.1 Useful Gadgets : 53

6.2 Reductions between variants of vas : 56

6.3 Separating a pair reduces to removing a part : : : : : : : : : : : : : : : : : : 58

6.4 Reduction from Loading Time Scheduling Problem : : : : : : : : : : : : : : 64

7.1 A peg in a base : 71

7.2 Example construction for SCS reduction : 73

7.3 Overview of Disks construction : 75

7.4 Internal node mechanisms : 76

7.5 Leaf node mechanism : 77

7.6 A complete Disks construction : 78

B.1 Freedom for In�nitesimal Translational : 92

B.2 An example given by Woo and Dutta : 94

B.3 Our counterexample for optimal disassembly : : : : : : : : : : : : : : : : : : 95

B.4 The resulting DT for our counterexample : 96

xii

Chapter 1

Introduction

Given a set of parts and a geometric description of their relative positions in a product, the

assembly sequencing problem is to devise a sequence of collision-free operations that results

in the assembly of the product from the individual parts. E�cient algorithms have been

developed, for many classes of motions, which guarantee to �nd a valid assembly sequence

when one exists. The IEEE Technical Committee on Assembly and Task Planning summar-

ized the current state of assembly sequencing by explaining [28], \after years of work in this

�eld, a basic planning methodology has emerged that is capable of producing a feasible plan

: : :The challenges still facing the �eld are to develop e�cient and robust analysis tools and

to develop planners capable of �nding optimal or near{optimal sequences rather than just

feasible sequences." Indeed, better understanding the inherent complexity of assembling a

product is critically important for bringing assembly planning systems into industrial use.

When the resulting assembly sequence is used in manufacturing, it will be performed in mass

quantities, and so the cost of the sequence is of great importance. In cases where we �nd

that the optimal cost assembly sequence is quite expensive, this information can be used by

engineers in redesigning the product in a design-for-assembly feedback loop. Additionally, the

e�ciency of such algorithms for �nding these assembly sequences is of critical importance,

as modern products are being designed with hundreds or thousands of parts, or more.

Unfortunately, there has been little algorithmic success in optimizing the cost of assembly

sequences. Our work explains this lack of progress by formally proving the hardness of

approximating the optimal cost sequence in a variety of settings. We attempt to classify the

approximability of many variants of assembly sequencing, based on the desired cost measure,

the speci�c goal required, and other restrictions placed on the sequence. Besides considering

1

CHAPTER 1. INTRODUCTION 2

the standard goal of fully assembling a product from its individual parts, we consider several

motivated partial disassembly tasks such as removing a key part from an assembly. Our list

of possible cost measures includes many measures suggested by both industry and previous

researchers. Examples include minimizing the number of distinct directions of motion used

during a sequence, minimizing the number of steps in a sequence, or minimizing the number

of re-orientations of the assembly.

We begin by studying a graph-theoretic generalization of assembly sequencing which we

term virtual assembly sequencing (vas). Much of the success in �nding feasible sequences has

been a result of the introduction of the non-directional blocking graph [74, 76]. For a given

direction of motion, the geometric model of the product can be analyzed to construct a graph

that represents the blocking relationships among the parts. Once a set of such graphs has

been computed, it can be analyzed to compute a feasible (dis)assembly sequence, when one

exists. This setting is responsible for much of the recent success in �nding valid assembly

sequences for a variety of settings. Our generalized model considers this set of blocking

graphs as the original input to the problem, and we examine whether these graphs can be

used to �nd near-optimal sequences, rather than simply feasible sequences.

In this model, we can make some immediate observations that explain the past success

in �nding feasible assembly sequences, as well as �nding optimal sequences for a few limited

situations. Unfortunately, for most desired cost measures, such immediate ideas are not

successful. We consider several intuitive heuristics, and present counterexamples to show

that in the worst case, these heuristics produce an assembly sequence with a cost that is

not signi�cantly better than the cost of the worst possible sequence. We feel that these

counterexamples are not at all pathological, and that the failure of these heuristics is quite

common. To justify this view, we provide experiments showing the results of these heuristics

on a collection of products used previously, as a test bed of examples for previous research

in assembly sequencing.

Facing the lack of success in optimizing assembly sequences, we consider the source of the

di�culty. We �nd that the problem of optimizing assembly sequences in our model captures

the di�culty of several known covering, scheduling, and supersequencing problems. This

allows us to formally prove the hardness, not only for �nding the optimal cost solution, but

even for �nding any near-optimal solutions. For many of the variants, our strongest results

show that it is hard to �nd any sequence whose cost can be bounded to within a 2log
1�
 n-

factor of the optimal cost sequence for any
 > 0. As a special case, when sequences are

CHAPTER 1. INTRODUCTION 3

restricted to move only one part at a time, this problem can be modeled as an instance of

scheduling with and/or precedence constraints1. We prove similar inapproximability results

for this scheduling problem. A more complete summary of our exact results is given later, in

Tables 6.1{6.3.

Finally, since our virtual assembly sequencing model is a generalization, our lower bounds

do not necessarily apply to the original problem as we no longer assume that the set of input

graphs is the result of any original geometric setting. We continue by showing that many

of our lower bounds can, in fact, be realized geometrically, thereby proving the hardness of

the true assembly sequencing problems. As an example, we consider a setting consisting

entirely of unit disks in the plane, and we look at the task of removing a given disk from the

rest of the assembly using only individual translations to in�nity. We prove that achieving a

2log
1�
 n-approximation to minimizing the total number of disks which must be removed to

access the given disks is hard for any
 > 0.

Much of this work has appeared previously in [26, 27, 67].

1.1 Presentation Overview

This paper proceeds as follows. In the following section, we de�ne the assembly sequencing

problem and introduce several terms and de�nitions used throughout the paper. Chapter 2

discusses previous work in the areas of assembly sequencing, approximation theory, and com-

putational geometry, which relate to our work. We introduce the virtual assembly sequencing

problem in Chapter 3, as we formalize a list of possible goals, restrictions, and cost measures

for assembly sequencing.

Following this, we approach the problems of how well the choice of sequences can be

optimized over such cost measures. Chapter 4 discusses those problems which can be solved

successfully from examining the set of blocking graphs, as well as other problems which do

not seem to a�ord the same success. In this chapter we consider several possible heuristics,

showing poor performance in the worst case, and we report on experiments using these

heuristics on a test bed of products. Chapter 5 discusses the problem of scheduling with

and/or precedence constraints, a special case of virtual assembly sequencing, as we prove

the inapproximability for this problem. We use this result in Chapter 6, along with many

1N.B.: this is not to be confused with the and/or tree used by Homem de Mello and Sanderson for

representing all feasible assembly sequences[36, 38]

CHAPTER 1. INTRODUCTION 4

reductions between di�erent variants of the vas problem, to prove the inapproximability

of most variants of the virtual assembly sequencing problems. Finally, we re-introduce the

geometry in Chapter 7, proving the inapproximability for several cost measures, even in

the original geometric settings. Conclusions and future directions of research are given in

Chapter 8.

1.2 De�nition of Assembly Sequencing

In general terms, the input to an assembly sequencer is a product, consisting of a set of

parts and described by a geometric model of the parts and their relative positions, as well

as a family of allowable motions. For example, an assembly may consist of a collection of

unit disks in the plane, and the family of allowable motions may be translations to in�nity.

The classic goal is to produce a sequence of operations resulting in the construction of the

product from its individual parts. Each operation combines a set of subassemblies, using

motions from the allowable family.

In the assembly sequencing problem, we will concern ourselves only with �nding a feasible

sequence of collision-free motions. We are not concerned with grasping the objects, the

forces involved, or the stability of the subassemblies; rather we will think of our parts as

free-
oating objects. Additionally, we assume that the product is made of rigid parts, we

assume that each operation is binary, that is, combines exactly two subassemblies, and we

consider only monotone assembly sequences, that is, when an operation has placed a part

in a subassembly, that part may no longer be moved relative to the subassembly. Although

restrictive, these assumptions are common in assembly sequencing and can be applied to a

majority of products.

We may think of devising an assembly sequence by constructing a disassembly se-

quence and then reversing the entire sequence. In general, these tasks are not necessarily

symmetric, for instance when considering
exible parts which may be deformed during as-

sembly (e.g., snap-�t parts), or when considering stability, insertion forces or �xturing [55].

However, under our assumptions, these two tasks are indeed symmetrical. The advantage

of the assembly-by-disassembly approach is that the �nal assembled product is usually much

more constrained than the initial con�guration of parts, and so infeasible plans can be more

quickly eliminated in this way. Additionally, there are several jobs related to maintenance or

recycling of products that require a partial disassembly of a complete product.

CHAPTER 1. INTRODUCTION 5

Figure 1.1: Assembly tree for a simple product

With this in mind, the goal of a binary, monotone assembly sequencer is to start with the

fully assembled product, and partition the set of parts into two groups that can be separated

by a collision-free motion. Once this is done, each of the resulting subassemblies can be

disassembled in a similar manner. The structure of this decomposition can be represented

naturally as a binary assembly tree. Figure 1.1 gives an example of such an assembly tree,

taken from [76], for a simple two-dimensional product. The root of the tree represents the

fully assembled product, and the children of an internal node represent two subassemblies

that can be combined together to produce the larger subassembly represented by the parent.

Note however, that the assembly tree only represents the structure of the decomposition, but

not the desired sequence in which the operations are performed.

Chapter 2

Background

2.1 Assembly Sequencing

The use of automation in assembly sequencing has increased rapidly over the years [7, 21, 35,

37, 38, 52, 56, 74, 77, 78]. Progressing fromdays when assembly sequencing was purely a craft

of the human designers, computers have become a powerful tool in the sequencing process.

Early systems resulted in potentially exponential time generate-and-test sequencers, operating

by generating candidate operations and testing their feasibility [38, 77]. The problem of

�nding a valid assembly sequence was later shown to be intractable in many general settings

[39, 47, 48, 63, 75, 78]. This led some researchers to consider restricted, but still interesting,

versions of the problem, for instance requiring monotone sequences, where each operation

generates a �nal subassembly, two-handed sequences, where every operation merges exactly

two subassemblies. For many classes of motions parameterized by a constant number of

degrees of freedom, polynomial algorithms were then developed to �nd a binary, monotone

assembly sequence when one exists [30, 33, 74, 76]. A good deal of this success was achieved

within the framework of non-directional blocking graphs [32, 74, 76]. As our work is intricately

related to this approach, in the following section, we will review in greater detail the concept

of non-directional blocking graphs and the subsequent results. Other techniques allow for the

enumeration of all possible assembly sequences in time proportional to the number of such

sequences [21], however for most products, there will be exponentially many such sequences.

The assembly-by-disassembly approach for assembly sequencing has become quite popular.

When considering non-rigid parts, stability, �xturing, and insertion forces, assembly and

disassembly sequences are no longer symmetric [55]. However, even under our assumptions,

6

CHAPTER 2. BACKGROUND 7

when there is a symmetry, there are several important problems, such as removing a given part

for service, which arise as partial disassembly problems. For this reason, some researchers

have focused on models for disassembly [54, 57, 68, 69, 72].

With the ability to �nd feasible sequences e�ciently, researchers have noted the import-

ance of evaluating the inherent complexity of a product in terms of the optimal cost for

assembly. In fact, in 1994, the IEEE Technical Committee on Assembly and Task Planning

summarized the current state of assembly sequencing by explaining [28], \after years of work

in this �eld, a basic planning methodology has emerged that is capable of producing a feasible

plan : : :The challenges still facing the �eld are to develop e�cient and robust analysis tools

and to develop planners capable of �nding optimal or near{optimal sequences rather than

just feasible sequences." This focus on evaluating the cost of assembly sequences has grown

[55, 72, 76, 78, 79].

The �rst issue for �nding low cost sequences, of course, is that there are many possible

ways to de�ne the cost of a sequence, depending on how the sequence will be used in a

manufacturing system. Based on a great deal of work with industrial applications, Boothroyd

et al. suggest several empirical measures that e�ect the cost of assembly for a product [10, 11].

More formal complexity measures have been de�ned by both Wilson and Latombe [76], as

well as Wolter [78]. A collection of cost measures for assembly planning gathered by Jones

and Wilson is included in [42].

Once a cost measure has been chosen, the question becomes how to �nd a low cost as-

sembly sequence. As we mentioned, it is possible to generate all possible sequences, and thus

evaluate the cost of each, choosing the best. However, as there may be exponentially many

such valid sequences, this approach becomes impractical for increasingly complex assemblies.

Several people have looked at practical ways for grouping parts of an assembly in a way, so

as to reduce the e�ective number of parts in an assembly, thus allowing a quicker search for

the optimal sequence. A hierarchical approach is used by Chakrabarty and Wolter to identify

common subassemblies in products, such as the many passenger chairs in an airplane [13].

Moradi et al. consider the automatic identi�cation of groups of parts that either can be or

must be assembled together, again reducing the e�ective number of sequences to consider

[61]. Although both of these techniques are quite practical for reducing the e�ective size of

the problems, they simply delay the exponential computation required to overcome increas-

ingly large data sets, and thus the need for better automated reasoning for �nding low cost

sequences.

CHAPTER 2. BACKGROUND 8

Others have looked at general heuristics that attempt to minimize the cost of assembly

sequences. Millner et al. consider using simulated annealing in selecting least-cost assembly

sequences [60], and Caselli and Zanichelli consider the use of petri nets for �nding assembly

sequences [12]. Both of these techniques su�er either in requiring possibly exponential time

in �nding the optimal sequence or else in quickly �nding a sequence without any provable

guarantee as to its quality.

For a restricted class of inputs that have a so-called \total ordering" property, a greedy

algorithm is given that claims to produce the minimal length sequence to remove any give

part [20, 79], however the required input property does not have a clear de�nition. For

the general setting, our results in Section 7.5 will prove not only the di�culty of �nding

an optimal sequence by this cost measure, but even a near-optimal solution. We directly

question these previous claims in Appendix B.

Finally, several software systems o�er the user the option of optimizing the sequence over

a choice of complexity measures [46, 67, 78], however these systems must rely on current

techniques and thus either require possibly exponential search techniques to �nd the true

optimal, or else polynomial heuristics with no performance guarantees on the cost of the

resulting sequence.

2.1.1 A Review of Non-Directional Blocking Graphs

A key concept in understanding current techniques in assembly sequencing is that of a dir-

ectional blocking graph (dbg). For a speci�c motion, a dbg can be de�ned as a directed

graph with a node for each part of the assembly, and an edge A! B, if part A collides with

part B when that motion is applied to A, while B remains stationary. Figure 2.1 gives an

example of a two-dimensional product as well as two dbgs for in�nitesimal translation [76].

The blocking graph for a given motion provides a compact representation of all collision-free

operations for that motion, as each directed cut between some subset S and subset T in a

dbg corresponds to a collision-free partition. Since a dbg represents all possible operations

for a single direction of motion, by constructing a dbg for each possible motion, we can

fully represent all possible operations. Unfortunately, there may be in�nitely many di�erent

motions.

The key insight is that many distinct motions may be represented by the identical dbg,

since slight changes in a direction may not e�ect the blocking relationships between any of the

parts. This fact led to the development of the non-directional blocking graph (ndbg) [74, 76].

CHAPTER 2. BACKGROUND 9

P1 P2

P3 P4

P1 P2

P3 P4

P1 P2

P3 P4

d1 d2

Figure 2.1: A simple assembly and two dbg's for in�nitesimal translation

During the construction of an ndbg, the space of motions are divided into equivalence classes

based on the blocking graphs, and the resulting ndbg consists of a single dbg for each

equivalence class. Thus the ndbg completely captures the necessary geometric information

for identifying all valid operations for those motions. The only issue remaining is the number

of equivalence classes and how to compute them.

In the original work [74], they show that the number of such equivalence classes is poly-

nomially bounded in the complexity of the input, for three-dimensional polyhedra, when

the operations involved are either in�nitesimal translations, in�nitesimal translations with

rotations, or translations to in�nity. In a series of work since then, geometric algorithms

have been developed and improved for building the ndbg when the motion class allowed

includes, in�nitesimal translations [76], extended translations (i.e., to in�nity) [76], multiple

step translations in the plane [33], and in�nitesimal generalized motions (i.e., rigid body

motions) [30, 76]. As a general rule, it seems that a family of motions with a constant num-

ber of degrees of freedom leads to a polynomial number of distinct equivalence classes. A

more recent survey presents a uni�ed framework for understanding the collection of work

surrounding the non-directional blocking graphs [32].

For each of these families of motions, the ndbg framework immediately provides a poly-

nomial time algorithm for constructing a feasible assembly sequence, if one exists. After

constructing a polynomial set of dbg's, an arbitrary assembly sequence is found by taking

any legal separation using any of the directions, and then recursing on the resulting sub-

assemblies. Since the removal of parts can only reduce the blocking relationships, there will

be no false dead ends and this procedure will result in either producing an entire assembly

tree, or else will reach a subassembly which cannot be partitioned by any of the motions,

thereby proving that no assembly sequence exists. This algorithm runs in polynomially time,

is quite simple, and has been implemented in assembly sequencing systems for many of the

above motion classes [30, 46, 67, 74]. As we will see, searching for a \good" sequence in this

way is not quite so simple.

CHAPTER 2. BACKGROUND 10

2.2 Approximation Theory

For most variants, �nding the optimal cost assembly sequence will turn out to be NP-hard.

As the number of parts and complexity of products keeps increasing, it quickly becomes

infeasible to rely on an exponential time search to �nd the best possibilities. Unless P=NP,

there is little hope of e�ciently �nding the true optimal solution, however this does not rule

out the possibility of �nding near-optimal solutions e�ciently. Since assembly sequencing is

a preprocessing phase for a long and expensive manufacturing process, any work towards

�nding as good of an assembly sequence as possible is of great value when it comes time

to assemble the physical product in mass quantities. There is nothing particularly magical

about the exact best solution from an industrial point of view; if an e�cient algorithm could

guarantee that it could �nd a sequence whose cost was, for example, within 1% of the optimal

sequence, this would probably be quite adequate.

Research in the theory of approximability has consider exactly this issue for other NP-hard

optimization problems [4, 23, 41, 62]. Since we cannot expect to �nd the optimal solution

in polynomial time, the goal is to develop a polynomial time approximation algorithm that

returns a solution whose cost can be bounded by some function of the true optimal cost. A

standard measure for the quality of an approximation algorithm is the approximation ratio,

comparing the cost of the solution returned by the algorithmversus the cost of the true optimal

solution. Although all NP-complete decision problems can be reduced to one another, the

approximability of such problems can be quite di�erent, ranging from those which can be

approximated arbitrarily closely to the optimal, to those for which getting even a very rough

approximation is already NP-hard.

Many researchers have worked towards classifying the approximability of di�erent NP-

hard problems [4, 5, 15, 64]. We will consider four broad classes de�ned in [4], which group

problems based on the strength of the inapproximability results that have been proven. Class

I includes all problems for which approximating the optimal solution to within a factor of

(1 + �) is NP-hard for some � > 0. The canonical problem for this class is Max-3Sat,

and the class includes all Max-SNP-complete problems [64], for example Vertex Cover,

Metric tsp,Max Cut, and others. Class II groups those problems for which it is quasi-NP-

hard1 to achieve an approximation ratio of c � logn for some c > 0. The typical such problem

in this class is Set Cover, for which the threshold of approximability has been placed at

1that is, this would imply NP � DTIME(npoly(log n)). \A proof of quasi-NP-hardness is good evidence
that the problem has no polynomial-time algorithm." [4]

CHAPTER 2. BACKGROUND 11

Class Factor of Approximation that is hard Representative Problems

I 1 + � Max-3Sat

II O(logn) Set Cover

III 2log
1�
 n Label Cover

IV n� Clique

Table 2.1: The four classes and their representative problems [Arora/Lund]

lnn(1 + o(1)) [22]. For problems in Class III, it is quasi-NP-hard to achieve a 2log
1�
 n

factor2 approximation for any
 > 0. Label Cover is the canonical problem in this class

[3], although the class contains several other natural problems such as Longest Path [45]

and Nearest Lattice Vector [3]. Finally, Class IV consists of the hardest problems,

namely those for which it is NP-hard to achieve an n� approximation factor for some � > 0.

This class includes problems such as Clique [34] and Coloring [58].

Because we will use these problems in several reductions, we give both de�nitions and

notation for the Set Cover and Label Cover problems. For the Set Cover problem, we

are given a ground set U of items, and a collection of subsets of these items, S1; S2; : : : ; Sn.

The output is a subcollection of subsets so that every item of U is contained in at least one

of the chosen subsets. The goal is to minimize the number of chosen subsets.

The Label Cover problem is de�ned as follows. The input is a regular, bipartite graph,

G = (U; V; E), a set of labels f1; 2; : : : ; Ng, and for each edge e 2 E, a partial function

�e : f1; 2; : : : ; Ng �! f1; 2; : : : ; Ng. A labeling associates a non-empty set of labels with

every vertex in U [V , and is said to cover an edge e = (u; v), if for every label b assigned to

v, there is some label a assigned to u such that �e(a) = b. The goal of Label Covermin is

to give a labeling that covers all edges, while minimizing the total number of labels assigned

to nodes of U .

Finally, we need to de�ne our notion of approximation-preserving reductions [62, 64].

Classical reductions, for instance those equating all NP-complete problems, show that �nding

the optimal solution for one problem can be used to �nd the optimal solution for another prob-

lem. Unfortunately, such reductions do not guarantee anything about the relation between

2This factor, 2log
1�
 n, lies between polynomial and polylogarithmic in that 2log

1�
 n = o(n�) for any

� > 0, and 2log
1�
 n = !(logc n) for any constant c.

CHAPTER 2. BACKGROUND 12

approximate solutions, and this, in part, explains the vast di�erence between the approximab-

ility of various NP-complete problems. Therefore, to compare the approximability of di�cult

problems, it is necessary to use such approximation-preserving reductions that show not only

that �nding the optimum of one problem can be used to �nd the optimum of the other, but

also that an approximate solution of one can be translated to an approximate solution of the

other, with a similar performance ratio.

Throughout this paper, we will use two types of reductions. For our purposes, we say that

problem A reduces to problem B if a polynomial-time algorithm for B which achieves an

f(n)-approximation can be used to give a polynomial-time algorithm for problem A which

achieves a (1+ c) � f(O(n))� approximation for some constant c. Notice that this allows us

to introduce a certain amount of additive error in the approximation. Secondly, we say that

problemA reduces to problem B with a polynomial blowup if a polynomial-time algorithm

for B which achieves an f(n)-approximation can be used to give a polynomial-time algorithm

for problemA which achieves a (1+c) �f(poly(n))-approximation. Such a reduction generally
results from a construction in which the problem size undergoes a polynomial blowup. In

this sense, even if the absolute ratio of the approximation remains the same through the

construction, the ratio as a function of n may become worse as the value of n has increased.

If problemA is known to lie in one of the four particular approximation classes above, and

if we shows that problem A can be reduced to problem B by either of the above reductions

types, this shows that problemB also lies in that same approximation class3. Both the additive

error and the polynomial blowup do not e�ect the class in which a problem lies; they merely

e�ect the exact constants shown in the hardness result. The reason that we di�erentiate

between a reduction with or without a polynomial blowup is because of the e�ect that it has

on trying to use these reductions to prove upper bounds. In a sense, a reduction from A to

B implies that B is \at least as hard" as A, however this intuition may be a bit misleading.

If we were able to �nd a non-trivial approximation algorithm for B, we may assume that this
also results in a non-trivial approximation for A, yet this is not necessarily the case with a

polynomially blowup. For example, if we exhibit an n1=2-approximation for B, our reduction
provides us with an na-approximation for A, however we would have no guarantee that a < 1,

and hence this result may not beat the trivial n-approximation for our problems.

3Actually, to place a problem into Class I through this type of reduction, it is necessary to show that the

additive error can be made arbitrarily small.

CHAPTER 2. BACKGROUND 13

2.3 Computational Geometry

Assembly sequencing is an intriguing combination of a combinatorial and geometric prob-

lem. Quite naturally, research from computational geometry relates very closely to assembly

sequencing.

The separability of objects received increasing attention in the geometric community

beginning in the mid 1980's. If we consider a collection of convex parts in two dimensions,

a classic result of Guibas and Yao from 1983 states that for any given direction, there will

always exist some part that can be translated to in�nity in that direction without disturbing

the others, and thus the single direction of translation can be used to repeatedly remove parts

one at a time [31]. For convex parts in three dimensions, a theorem of Dawson from 1984

shows that for a collection of n balls in d-dimensions, there must exist at least min(n; d+ 1)

balls that can each be individually translated to in�nity without disturbing any other balls,

while at the same time he provides a construction of convex parts in three dimensions for

which no individual part can be translated to in�nity [16]. Almost a decade later, Snoeyink

and Stol� were able to settle an open question by providing a collection of convex polyhedra

in three dimensions for which no subset of parts could be separated from the remaining

set, using either translations or combined translations and rotations. Similar issues on the

separability of polygons were studied by Toussaint in 1985 for more general classes of shapes

in two dimensions, such as monotone or star-shaped polygons [73]. Constructing a sequence

for the individual removal of polygons from a collection in two dimensions was studied by

Dehne and Sack in 1987 [19]. In this work, they introduce what the term the movability

wheel, which can be though of as a very preliminary version of the ndbg. As a special case of

separability, a sequence that removes objects one at a time, using translations in a common

direction, is known as a depth order (such as in the result of Guibas and Yao). More recent

work has looked at the e�ciency of computing and verifying depth orders [14, 18], and a very

complete discussion of depth orders is given by de Berg [17].

Related to our work in a general sense, there is a good deal of research regarding the

approximation of problems in geometric settings. A surprising element of our results is that

some of our general lower bounds given in Chapter 6.5, are realized in Chapter 7, for a

simple geometric setting consisting of a collection of unit disks in the plane. More often

than not, an optimization problem becomes signi�cantly easier when its input is restricted

CHAPTER 2. BACKGROUND 14

to a geometric setting. For example, there exists some c > 0 for which achieving a (1 + c)-

approximation for theMetric tsp problem is NP-hard [65], however in the Euclidean plane,

TSP can be approximated to within (1 + �) for all � > 0 [2]. Similarly, achieving an n�-

approximation forMinimum Independent Set is NP-hard [34], however for planar graphs,

Minimum Independent Set can be approximated to within (1 + �) [6]. Similar results

hold for most optimization problem when restricted to planar graphs [49]. There exists

a (1 + o(1)) lnn lower bound for approximating the Set Cover problem [22], however the

Rectangle Cover problem, covering a set of axis-aligned rectangles with minimum number

of points, has no such inapproximability results [62]. Our lower bounds provide some of the

strongest such inapproximability results for a natural, combinatorial, geometric problem.

Similar lower bounds have been shown for the Nearest Lattice Vector problem [3],

however this problem is not combinatorial, and although it shares the same lower bound as

our problem, we cannot directly relate the hardness of the two problems.

Chapter 3

Virtual Assembly Sequencing (vas)

3.1 Introduction

In this chapter, we introduce a formal framework for studying the cost of assembly sequences.

Our model is a generalization based on the previous success of using non-directional blocking

graphs (ndbg's) for constructing valid assembly sequences. We assume that our problem

begins as we are handed the complete, representative set of directional blocking graphs, and

our goal is to use these graphs to design a binary, monotone assembly sequence that optimizes

some cost measure. Because of our strong reliance on the previous work with ndbg's, the

reader is encourages to review Section 2.1.1 before proceeding.

Our reason for considering the graphs as the input to the problem is that this
ow of

control has been used in all geometric settings for which the ndbg framework has been

successfully. The existing algorithms for di�erent settings are specialized only in the use of

geometric techniques for constructing the full set of blocking graphs. Once these graphs have

been built, the algorithms succeed purely through the analysis of the graphs. The fundamental

property is that the set of graphs represents the blocking conditions for all possible motions.

Therefore, the graphs themselves contain all of the information necessary for identifying any

feasible assembly sequences.

We de�ne the virtual assembly sequencing problem (vas), as this graph-theoretic general-

ization of the original assembly sequencing problem. We ignore the underlying geometry for

this problem, by considering the sole input to be an arbitrary set of directed blocking graphs.

It is important to understand that vas is truly more general than the original problem, and

this is precisely because we do not make any assumptions about the structure of the individual

15

CHAPTER 3. VIRTUAL ASSEMBLY SEQUENCING (VAS) 16

graphs, or their interdependence on each other. For this reason, any positive algorithms for

vas will immediately apply to all settings for which the ndbg can be computed e�ciently.

Negative results for this model, however, do not immediately apply to the geometric

settings. In reality, when an ndbg is constructed from a geometric description of a product,

the resulting set of blocking graphs may have some hidden structure. It is conceivable that

this structure would allow for additional success in devising assembly sequences, and therefore

vas may indeed be a strictly harder problem than the original assembly sequencing problem.

We will consider the original geometric settings in Chapter 7.

After de�ning the problem formally, the remainder of this chapter addresses the fact that

there are many variants of the problem that are useful for assembly sequencers, but that

may require very di�erent techniques to solve. Most obvious is that there is not a single,

unanimous cost measure that all people will hope to optimize. Some applications will desire

a sequence with as few steps as possible, whereas others may desire a sequence that uses

as few distinct directions of motion as possible. In similar spirit, there are several di�erent

tasks that an assembly sequence can accomplish. The most common task is to completely

disassemble a product into its individual parts, however there are other well-motivated tasks.

As an example, the maintenance of a product may require a sequence that e�ciently removes

a certain part from the fully assembled product. Finally, we consider additional restrictions

that may be placed on the structure of the input or output.

We create a catalog of variants by categorizing them according to the combination of the

desired goal, the various restrictions, and the relevant cost measure. In this way, we build

the groundwork for analyzing the approximability of the various cost measures in di�erent

settings. The majority of these variants have been discussed previously in the assembly

sequencing literature, and so whenever possible, we cite previous research in which the various

goals, restrictions, and cost measures have been studied.

3.2 De�nition of vas

We de�ne the vas problem as follows.

Input: A set, P of n items.

A family, F , of directed graphs on n nodes, with jFj = poly(n).

Output: An assembly sequence using only \legal" operations.

CHAPTER 3. VIRTUAL ASSEMBLY SEQUENCING (VAS) 17

We will conventionally call each member of the set, P , a \part," and we will call each

member of the family, F , a \direction." We inherit the de�nition of \legal" operations from

the notion of directed blocking graphs. An edge from part A to part B in a particular graph

signi�es that if part A is moved using the associated motion, while partB remains stationary,

then part A will collide with part B. Given a subassembly consisting of parts P 0 � P , it
follows that a direction d 2 F can be used to partition P 0 into sets S1 and S2 if the graph

d has no edges directed from a part in S2 to a part in S1. In graph-theoretic terms, an

operation is legal if the partition provides a directed cut on the subgraph of d induced by the

set P 0.

3.2.1 Possible Goals

Originally, we said that the goal of an assembly sequencer is to produce a disassembly se-

quence that completely decomposes the original product into its individual parts. Although

this is a common task, there are other variants that are highly motivated by industrial ap-

plications. The following contains a list of possible goals, along with their motivations. Each

of these goals is de�ned based on the structure required of the resulting assembly tree (see

Section 1.2).

G1 Full disassembly.

This is the classical problem. The goal is to �nd a sequence of operations that be-

gins with the fully assembled product, and results in the complete decomposition into

individual parts. Each leaf of the assembly tree must consist of an individual part.

G2 Remove a key part. Instead of disassembling the entire product, it is often desirable

to quickly remove a single, key part from an assembly without necessarily disassembling

the entire product. The motivation for this stems from issues of maintenance and

recycling. The classic maintenance example is to replace a spark plug without taking

the entire car apart. A classic recycling example is to strip down old computers for

valuable parts while throwing out the rest.

For this variant, we assume that we are given a product as well as the label for one

key part that is to be removed. In the resulting assembly tree, the key part must be

isolated at a leaf, however other leaves may represent many parts, since there is no

need to further decompose subassemblies that do not contain the desired part.

CHAPTER 3. VIRTUAL ASSEMBLY SEQUENCING (VAS) 18

G3 Remove a given set of parts.

Rather than removing a single part, we may be asked to remove an arbitrary subset

of parts. In this variant, each of the requested parts must be isolated at a leaf of the

assembly tree. When only one part is requested, this is identical to goal G2, and if the

entire set is requested, this is identical to goal G1.

G4 Separate a given pair.

Given a key pair of parts, the goal in this variant is to decompose the fully assembled

product until the two parts lie in di�erent subassemblies. This task is motivated by

products for which it is important to identify the �rst operation that requires both of

the key parts to be brought together. This may be important in situations where the

two parts are manufactured at di�erent locations, or for sensitive materials that need

to be treated specially when they are brought together.

For this variant, the two key parts must be located in di�erent leaves in the resulting

assembly tree. Note that the two parts need not be completely isolated from the entire

assembly, simply separated into components that do not include the other key part.

G5 Separate a given set.

Rather than a pair of parts, a set of parts is given here, and the goal is to decompose

the assembly so that no two of the key parts are in the same subassembly. When the

key set consists of two parts, this is exactly goal G4, and when the set consists of all

parts, this is identical to goal G1.

3.2.2 Possible Restrictions

Often, manufacturing systems impose additional constraints on assembly sequences other

than simply geometric feasibility. We consider a few such restricted versions of the assembly

sequencing problem.

R1 Linear Sequence. [67, 76]

A linear assembly sequence is one in which each operation brings together a single part

with an existing subassembly. Such sequences are reminiscent of a classical assembly

line, in which each station is responsible for adding one part. Although not all products

can be assembled linearly, such sequences are used in manufacturing for several reasons.

The organizational level of a linear assembly line is much simpler than for a sequence

CHAPTER 3. VIRTUAL ASSEMBLY SEQUENCING (VAS) 19

that requires building many subassemblies in parallel. Also, the fact that one of the

subassemblies is a single part greatly reduces the �xturing costs.

Therefore, we consider the additional problem of choosing the best such sequence for a

product, when restricted to linear assembly sequences. Note that, even when restricted

to linear sequences, there still may be exponentially many valid sequences for a given

product.

R2 Constant Size Family of Motions. [1]

Originally, our only assumption was that the number of blocking graphs is polynomially

bounded in the number of parts. Nowwe consider instances where the number of graphs

in bounded by some constant, k.

For automated assembly systems, each motion type or direction may require a special-

ized robot, and thus manufacturing systems may be constrained to use only a small set

of pre-de�ned motions based on the existing robotics system. For example, a system

may be constrained to using axis-aligned translations.

When constrained to a small number of input graphs, it may be possible that there

exist better sequencing algorithms than for the more general problem.

3.2.3 Possible Complexity Measures

How do we decide which of two assembly sequences is the better one for a given product?

Of course, every person asked will give a di�erent de�nition of which is better for that

application. Furthermore, the truest measure of cost-e�ciency may be a combination of

many di�erent factors. We begin the study of cost measures for assembly sequencing by

introducing a collection of primitive complexity measures, motivated by speci�c aspects of

industrial applications. Our view is that success with these basic measures is a necessary

�rst step before examining specialized combinations of complexity measures.

C1 Fewest Number of Directions. [67, 76, 78]

The cost of an assembly sequence is equal to the number of directions of F that are used.

Once a direction has been used, future uses of the same direction are free of charge.

The motivation here is that in manufacturing, each direction requires a di�erent type

of movement for a robot, and it is more e�cient to have robots that have as few degrees

CHAPTER 3. VIRTUAL ASSEMBLY SEQUENCING (VAS) 20

of freedom as possible. Note that this di�ers from restriction R2, in that we are not

told which directions to use in restricting our search.

C2 Fewest Re-orientations. [46, 55, 78]

The cost of an assembly sequence is equal to the number of operations that use a

direction that is di�erent from the previous operation (we will also charge the very

�rst operation). In many manufacturing situations, the main cost of a robot is in

orienting it to perform a type of motion, yet once it is oriented, it is fairly inexpensive

to perform several motions of that type. Similarly, in some manufacturing systems

all parts must be physically inserted from above and thus an operation in a di�erent

direction is performed by re-oriented the subassembly on the assembly line so that

the desired direction is aligned vertically. This is typically slow and might require

additional expensive �xtures. In both of these cases, using an orientation that was

encountered earlier in the process is of no advantage unless the product is still in that

orientation.

C3 Fewest Number of Non-Linear Steps. [76]

An operation is linear if one of the two subassemblies is a single part. The cost of an

assembly sequence is equal to the number of non-linear operations. The motivations for

this measure are similar to those for the R1 restriction, however rather than absolutely

requiring that all steps are linear, we simply attempt to minimize the use of non-linear

operations.

C4 Fewest Number of Steps. [79]

The cost of an assembly sequence is equal to the total number of operations used.

Notice that for goal G1, full disassembly, every possible binary assembly sequence will

require exactly (n � 1) steps. Therefore, this cost measure is only meaningful for the

partial disassembly problems.

C5 Minimum Depth of an Assembly Sequence. [76]

The cost of an assembly sequence is equal to the depth of the corresponding tree. The

motivation here is that in many assembly environments, parallelism in production is

helpful, and the minimum depth tree has the quickest throughput, in a sense. As a

special case, when the goal is to either remove a key part or separate a key pair, then

this cost is exactly equal to the number of steps taken, and thus equivalent to C4.

Chapter 4

Algorithms, Heuristics and

Experiments

4.1 Introduction

Having formalized in Chapter 3 several problems of interest involving cost measures in as-

sembly sequencing, the natural question is how well we can design algorithms that �nd good

assembly sequences. As was mentioned in Section 2.1, there has been a great deal of success

for �nding feasible assembly sequences in many settings. There are two di�erent software

systems for assembly sequencing based on the ndbg framework, which are quite robust

[46, 67]. Both of these packages are complete in �nding feasible assembly sequences when

they exist. Additionally, both of these systems o�er their users the opportunity to optimize

sequences over several of the cost measures that we consider. Unfortunately, these systems

do not have e�cient algorithms for optimizing most of these cost measures, and so they must

either provide the user with a solution whose cost is not bounded versus the optimal cost, or

else they must rely on exponential search algorithms for �nding the true optimal solution.

In this chapter, we make a preliminary examination of what can be done algorithmically

for the vas problemdescribed in the previous chapter. In Section 4.2 wemake some immediate

observations to explain the success had by current systems in �nding feasible sequences, and

in �nding low cost solutions in certain settings. Some of our later observations present new

results for �nding near-optimal cost sequences for some of the variants of vas. Following

this, in Section 4.3, we examine some natural greedy algorithms for these problems and show

why they are unsuccessful. Our constructions give examples of products for which the greedy

21

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 22

algorithm performance quite badly. Not only are these algorithms bad in the worst case, but

we feel that they perform badly even on common products for assembly sequencing. For this

reason, in Section 4.5 we describe experiments we perform using a set of products, previously

used as a test bed for the existing assembly sequencing software packages. We show how

these common heuristics exhibit poor performance, even for these examples. In Section 4.4,

we also consider the e�ciency of computing the exact optimal solution, although this requires

exponential time.

4.2 Immediate Observations

In this section, we look at variants of vas which can be solved through fairly immediate

observations from the de�nitions in Chapter 3. The �rst several of these observations explain

the success of the ndbg framework for solving the decision problem of �nding feasible as-

sembly sequences. We review these results, however we use the terminology of vas in order

to acclimate the reader. The latter observations describe some variants that o�er polynomial

solutions or approximations for minimizing cost measures.

Observation 1 A graph admits a legal operation on a subassembly if and only if there exists

a directed cut on the node-induced subgraph for the parts in that subassembly. The existence

of a directed cut is equivalent to the fact that the subgraph is not strongly connected. This

condition can be checked for each graph in polynomial time.

Observation 2 The removal of additional parts can never invalidate an action. That is, if

an action using direction d is legal on the current subassembly, then the corresponding action

will still be legal on the induced graph remaining after any number of intermediate actions

take place.

The proof of this property is evident from the de�nition of directed cuts. If there are no

edges going from some set S1 to a set S2, then removing nodes will certainly not invalidate

the cut. This monotonicity is quite important, as we will see momentarily, in the ability to

successfully �nd legal assembly sequences. It also has important consequences for approx-

imations in that the \penalty" for making a wrong move at any point is somewhat minimal,

in that the cost of the wasted move must be paid for, but the correct continuation is still

available.

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 23

Observation 3 In polynomial time, we can check whether the set of graphs admits a feasible

sequence for any of our goals. We are able to �nd a legal operation, if one exists, which

decomposes our problem into two subassemblies, and then recurse. No operation is a mistake

in terms of feasibility due to Observation 2, as the removal of parts can only decrease the

blocking relationships of future moves.

Observation 4 A graph admits a valid linear operation to remove part p, if and only if

part p has no outgoing (incoming) edges. This can be checked in polynomial time.

Observation 5 In polynomial time, we may check whether a set of graphs admits a feasible

linear sequence for any of our goals. This is a result of Observations 4 and 2.

Observation 6 For all of our variants, we can approximate the minimum cost solution

within a factor of (n� 1) in polynomial time. For approximating the minimum depth for full

disassembly, it is possible to achieve an n�1
dlog2 ne

approximation.

Proof: This is actually a trivial result of two facts. The �rst of which is that we are always

able to determine some feasible solution in polynomial time, if it exists. The second fact is

that for all of our cost measures, the best possible sequence has cost at least 1, and the worst

possible solution has cost at most n � 1. This can be veri�ed for each cost measure, but

in general it can be seen that for an assembly of n parts, any binary, monotone assembly

sequence will require at most n� 1 operations for any of our goals.

When minimizing the depth for full disassembly, the worst possible cost is still n � 1,

however we know that the best possible depth for any full tree must be at least dlog2 ne.

Observation 7 A stack assembly is de�ned in [76] as a product that can be completely

(dis)assembled using translations along a single direction. They observe that a product

admits a stack assembly sequence, if and only if one of the blocking graphs is acyclic, and

that this can be checked in polynomial time.

Observation 8 When the family of graphs has constant size, we can �nd the minimum

number of directions required for any of the �ve goals in polynomial time (R2/C 1). This is

true with or without the linear restriction.

With a constant number of graphs, there are a constant number of possible subsets

of directions, and so we may simply try each possibility and check the feasibility of the

problem with those graphs. Each such feasibility check can be done in polynomial time due

to Observation 3 or Observation 5.

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 24

Observation 9 When jFj = 2, we can �nd the optimal solution in polynomial time, for

minimizing the number of re-orientations for any of the �ve goals (R2/C 2). This is true with

or without the restriction to linear operations.

Proof: When minimizing the number of re-orientations, once we use a graph for an op-

eration, Observation 2 assures us that we may as well greedily continue using that same

direction until all legal actions have been exhausted. At that point, since there are only two

graphs, the only way to make progress will be to switch to the second graph and continue.

The only di�culty in �nding the optimal solution is to know which graph to start with at

the beginning. However it is easy to compute the sequence that results for either of the two

choices, and to use the best. This is guaranteed to have optimal cost.

Observation 10 In polynomial time, we are able to �nd an (jFj � 1)-approximation for

minimizing the number of re-orientations, for any of our �ve goals. This is true with or

without the restriction to linear operations.

Proof: Our algorithm proceeds in stages as follows. If there is currently a direction that

allows us to meet the �nal goal, then we use that direction. Otherwise, we compile a list of

all directions that allow progress, and order them arbitrarily. Now we proceed through the

list, for each direction exhausting all possible actions before re-orienting. After processing

the entire list of candidates, we repeat this algorithm.

We claim that this achieves an (jFj�1)-approximation. Our �rst claim is that the number

of stages of our algorithm is equal to at most the cost of the optimal solution. We prove this

by induction on the number of stages. If our algorithm needs only one stage, then it found

a move to solve the problem, and only used one step. If our algorithm used many stages,

consider the optimum cost solution on the original subassembly. We claim that by the end of

the stage, the optimum cost solution from that point on will be at least one less than for the

original problem. This is a direct consequence of Observation 2. The optimal solution from

this point must choose some useful direction for the next step, and that direction will be in

our stage's list of candidates. Therefore our algorithm has at most OPT stages.

Now we prove the (jFj � 1)-approximation. Other than possibly the �rst stage, we note

that there will be at most (jFj � 1) candidates in each stage. The direction that ended our

previous phase will not be a candidate since we just exhausted all legal operations for that

graph. In the �rst stage we may have all (jFj) candidates, however in our last stage, we are

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 25

assured to use only one candidate. If the optimal solution using only one re-orientation, we

are assured that our algorithm will also have cost one. Otherwise, our algorithm is assured

to give us a solution with cost at most:

(jFj � 1)(OPT� 2) + 1 + jFj = (jFj � 1)(OPT)� 2(jFj� 1) + 1+ jFj
= (jFj � 1)(OPT) + jFj � 3 � (jFj � 1)(OPT)

The techniques we have used in this proof are very similar to those used for approximating

the Shortest Common Supersequence problem [8]. For more discussion of the relation

between re-orientations and supersequences, see the proofs of Theorems 31 and 33.

Observation 11 For the goals G2 and G4, the following relationship is true:

OPTC2 � OPTC4 � 2 �OPTC2
where OPTC2 is the minimum number of re-orientations required, and OPTC4 is the min-

imum number of steps required.

Proof: The left inequality is trivial, in that if there is a solution with S steps, then clearly

that same solution has at most S re-orientations. The right inequality is a more subtle fact,

in that we show that if there exists a solution with R re-orientations, then there also exists a

solution with at most 2R steps.

For the goal of removing a key part, the optimal assembly tree has a structure such that

there is only one operation at each level. In more intuitive terms, there is always one \main"

subassembly that contains the key part, and each operation removes some set of parts away

from the current main subassembly. Once a set of parts has been removed, there is no need

to further decompose them, since this does not e�ect the goal of removing the key part.

The same structure is true for the goal of separating two parts from each other, as the main

subassembly contains both parts, and the �rst time the two parts are separated into di�erent

subassemblies, the goal is complete.

Based on Observation 2, we have repeatedly notice that if trying to minimize the number

of re-orientations, once an operation has been made using a speci�c graph, then without loss

of generality, we may as well continue to use that same graph free of charge until it a�ords no

legal operation. Considering the graph-theoretic de�nition of legal moves, we �nd that this

greedy approach will result in reducing the main subassembly down to the strongly connected

component containing the key part (or key pair).

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 26

However, it is always possible to reduce to this strongly connected component in at most

two steps, since there exists a partial order on the strongly connected components. In the

�rst move, we are able to remove the collection of all strongly connected components that

have no edges to our key component, since this will be guaranteed to provide a directed cut.

After this step, a second step will always allow us to remove the key component from the

remaining subassembly. In this way, we can use the optimal solution for re-orientations to

create a solution that uses two steps for each re-orientation. This solution provides our upper

bound on the optimal solution for minimizing the number of steps.

Observation 12 For the goals G2 and G4, there exists a polynomial time approximation

algorithm, which achieves a factor of 2(jFj � 1) for minimizing the number of steps.

Proof: In the proof of Observation 10 we saw how to �nd a solution which uses at most

(jFj � 1) � OPTC2 re-orientations, and from the proof of Observation 11 we see how each

re-orientation can be replaced by at most two steps, giving us a solution with at most

2(jFj � 1) �OPTC2 � 2(jFj� 1) �OPTC4 steps.

4.3 Greedy Heuristics

In trying to develop reasonable approximation algorithms for these problems, one of the

�rst ideas is to try a greedy algorithm in some respect. That is, we can assign some easily

computable measure of goodness for the result of each possible option, and then always select

the option that appears to be best. This type of algorithm could take many forms. To be

more concrete, we will consider a speci�c setting, namely removing a key part.

Consider the goal of removing a part using as few steps as possible (G2/C4). We start

with the complete assembly, and if it is possible to simply remove the key part in a single

step, we can of course do that right away. Otherwise, we will have to choose some operation

that will strip some set of parts away from the subassembly containing the key part. Those

other parts are no longer relevant, and we simply have the same problem again on a smaller

subassembly. In this setting, we know that there will be at most n � 1 steps in a feasible

solution, since at least one part is removed in each step. A natural greedy algorithm to

consider is that which chooses the operation at each step that removes the most parts.

Unfortunately, this algorithm can have a performance ratio of
(n), even on an input with

four graphs. Imagine that our goal is to remove part 1, and that we have n parts overall with

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 27

Figure 4.1: Bad Inputs for a Greedy Algorithm

n even. We create the following four graphs. GA is a star graph with node 2 as the center,

that is, it has edges (k; 2) and (2; k) for all nodes k 6= 2. Notice that if part 2 was gone, this

graph would allow for the complete disassembly and thus also the removal of part 1, however

with part 2 there, it is strongly connected and thus useless. Our second graph GB is a clique

on all nodes except node 2, and thus it allows node 2 to be removed by itself, but otherwise

is useless1. Notice that these two graphs alone would allow a solution for removing part 1

in two steps, the �rst of which removes part 2. However we can easily distract a greedy

algorithm with the addition of two more graphs. We de�ne GC to have edge (i; j) for all

nodes i < j, and additionally edge (k; 1) for all nodes with k = 0; 1 mod 4. Similarly, we

de�ne GD to also have edge (i; j) for all nodes i < j, and additionally edge (k; 1) for all

nodes with k = 2; 3 mod 4. These new graphs have the following properties. At any point,

one of the these two new graphs will allow a step that removes the two parts with the largest

labels. Once those parts are gone, the other new graph will allow the next two parts to be

removed, and so on.

Given this input, the greedy algorithm will choose to remove the two highest labeled

parts at each step, and thus will use roughly n
2
steps to remove part 1, even though the

optimal solution has cost two. This same construction provides an
(n) lower bound on the

performance of this algorithm for minimizing the number of re-orientations.

This may seem like a somewhat arti�cial trick, however the construction can easily be

realized geometrically, with polygons in two dimensions, as shown in the left side of Figure 4.1.

In fact, such a worst case input is not at all pathological for assembly sequencing. Products

1These gadgets, and others, are formalized in Section 6.3, where GA = STAR(2) and GB = RELEASE(2).

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 28

designed by engineers do not at all resemble sparsely �lled parts in general positions, rather

they are extremely compact and often quite intentionally include many such gadgets as the

one we have used.

Other Greedy Metrics

There are many other possible intuitive ideas for a greedy algorithm. We can think of the

general framework for a greedy algorithm, based on a goodness function that it computes

for all possibilities. That is, the function can compute all choices for the next choice, and the

resulting subassembly for each choice. In the previous section, we considered our measure

of goodness to be minimizing the number of parts in the resulting subassembly, however

there are an endless number of other ways to de�ne the concept of goodness. In general it

seems rather easy to construct similar counter examples for each of them. In this section, we

consider one more such algorithm.

The intuitive problem with our previous greedy algorithm is that there is a strongly

connected graph, GA, that seems useless, but of course becomes quite useful if only part 2 is

removed. A natural intuition is to instead consider the goodness measure of a subassembly

to be the number of edges in the sparsest of the graphs. Notice this goodness metric also

incorporates the size of the subassembly in some respect, because if many parts are removed,

then many edges will also disappear. However this goodness function has the additional

intuitive advantage in that it will always make progress on breaking these more sparse graphs

if possible. At least in the exact counter example we gave for the previous greedy algorithm,

this new algorithm will succeed.

Unfortunately, it is possible to modify our previous construction in order to defeat this

new greedy algorithm. Originally, we made graph GA to be a star on node 2, and thus it

was a sparse graph, and easily seen to be potentially useful. We can replace graph GA by

a graph that is a clique on all parts except for 1, and then has the edges (1; 2) and (2; 1)

connecting our key part to the clique. In this new construction, the most sparse graphs will

always be one of GC or GD, and the greedy choice will always to be to remove one of the

pairs of extraneous parts.

Greedy with Lookahead

From an intuitive standpoint, the pitfall in the previous constructions should be easy to

locate. In a sense it is very clear looking at graph GA that the removal of part 2 would

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 29

be extremely advantageous, and for this reason an algorithm may determine that it should

remove that single part rather than follow the immediate greedy choice.

We can consider a modi�ed greedy framework that uses a lookahead of t steps as follows.

Originally, the algorithm �rst constructed a list of all possible immediate choices, computed

the resulting subassembly for each, and then evaluated the goodness for each result, choos-

ing the best. Instead of considering a single choice, we could instead consider all possible

sequences of the next t choices, compute the result of each such sequence, and then evaluate

the goodness and choose the best sequence. So long as t is a constant, this too can be done

in polynomial time, although the degree of the polynomially depends heavily on t.

Unfortunately, we can modify our counter example construction quite easily to defeat any

constant size lookahead as follows. For example, if t = 2, rather than allow the immediate

release of the gadget part 2, we could instead modify graph GB so that part 3 is used to

glue part 2 to the rest of the assembly. Then we could introduce a new graph which allows

for the immediate release of part 3. Now the optimal solution would require only three steps,

but a lookahead of two steps would not provide any reason to choose that path. Again, we

are able to realize this modi�cation geometrically, as seen in the right side of Figure 4.1.

4.4 Computing the Optimal Sequence

Currently, assembly sequencing systems that o�er the user the option of optimizing a cost

measure must rely on either heuristics with no performance guarantees on the cost of the

resulting sequence, or else on possibly exponential search techniques to �nd the true optimal.

For our experiments in Section 4.5, we will be interested in the cost of the optimal solutions, in

comparison with the cost of solutions produced by e�cient heuristics, and so in this section,

we discuss a bit about our experience in attempting to compute optimal solutions \e�ciently."

We were able to compute optimal sequences for many sample assemblies, reaching the limits of

our resources for sequences requiring 10{15 steps, for an assembly of 30{40 parts. Of course,

our resources can always be increased to extend the depth of our results further, however

the exponential growth of both time and memory quickly becomes limiting for assemblies of

reasonable complexity.

The techniques developed for pruning any search depend greatly on the exact variant of

the problem, and the cost measure being minimized. We concentrate on the goal of removing

a key part using the minimal number of steps. The �rst algorithm for �nding the optimal is

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 30

to do a (clever) brute force search through the space of possible sequences for removing the

part, until a successful sequence is found. By exploring the possible sequences with a breadth

�rst search, we can be sure that the �rst successful sequence that removes the desired part

will be that of minimal cost.

More importantly, we can generally restrict a large part of the search space by only

considering subassemblies which arise through valid operations. For instance we can start by

computing all valid operations that can be performed on the original assembly, and then again

consider all valid operations on each of those results. A data structure for representing all the

feasible subassemblies has been suggested in [36], where the and/or graph is introduced2.

The advantage of this approach is that, rather than examining all of the potential 2n subsets

of the parts, time can be saved by only considering those subassemblies which arise naturally.

However the disadvantage is that the size of an and/or graphs is exponentially, and thus the

memory required to restrict ourselves only to feasible subassemblies quickly becomes limited.

In our experiments, the memory usage for an assembly of 42 parts had exhausted over 500M

of swap space after computing only sequences of length 12 steps or less. Alternatively, it

is possible to forego restricting the search to only valid subassemblies, and instead use a

memory-less algorithm that simply performs a breadth-�rst search on all possible sequence

of operations, however in this case the computation time becomes a limiting factor much

earlier.

Finally, searches through exponential spaces can often be improved computationally using

branch-and-bound search techniques. An important requirement for this success is to be able

to compute e�ciently a reasonable lower bound on the optimal cost solution from various

points, in order to bound the search down certain paths of the space. For this reason,

we investigate how well we can e�ciently compute reasonable lower bounds on the optimal

cost solutions in our experiments. For this work, we again consider removing a key part,

however we restrict ourselves to linear operations, and consider the number of steps required.

Equivalently, in this setting we are minimizing the number of parts removed in accessing the

key part. We consider the following technique for constructing a lower bound on the cost of

a solution.

A simple lower bound for the removal of a given part is the minimum number of others

parts blocking it, over all possible directions of motion. That is, if a part is blocked by 5

2Not to be confused in any way with the model of scheduling with and/or precedence constraints in
Chapter 5.

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 31

parts in all directions, then a solution for removing that part certainly will require at least

6 linear moves overall. This provides us with a lower bound, but it will not necessarily be

a very good lower bound. For example, we can imagine our part being blocked in some

direction only by a single part, yet one which is very di�cult to remove in its own right.

However, we can extend this type of lower bound to produce stronger and stronger lower

bounds, at the expense of more and more computation. If we consider this �rst lower bound

as having lookahead of 1, we can consider a lower bound with lookahead 2 as follows. For a

single direction, we compute the parts that block our key part. We know that if we use that

direction eventually, then this will require the prior removal of all of these blocking parts.

Additionally, we can now consider one of these blocking parts, and recursively compute our

lower bound on the number of additional parts that would have to be removed, in order to

�rst remove this blocking part. If we choose the lower bound for the worst such blocking part,

then we get a stronger lower bound for the removal of the keypart in this direction. Next,

we can be assured that the minimum, over all possible original directions, of this new lower

bound is a true lower bound for the removal of our key part. This technique can naturally

be extended to an arbitrary level of lookahead, recursively, providing better and better lower

bounds. A rough estimate of the computational time for computing this lower bound with

lookahead t, is equal to �((nF)t).

4.5 Experiments

We have seen how several simple algorithms can be made to perform quite badly on particular

inputs. Our feeling is that the gadgets used in our construction are not at all pathological,

and that these simple heuristics should perform quite badly on various products. For this

reason, we performed experiments using input drawn from various sources. This section

described these experiments, including the results and our conclusions.

4.5.1 The Model Assemblies

For our experiments, we consider several model assemblies that have been used as a test

bed by previous research on assembly sequencing [46, 67, 74]. These models consist of

three dimensional polygonal parts, and we consider their disassembly using in�nitesimal

translations to separate parts. The ndbg's for products have been constructed using either

the STAAT [67] or ARCHIMEDES [46] assembly sequencers. Redundant blocking graphs

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 32

were then removed, and the remaining family of blocking graphs is used as input for our

experiment.

Description: An electric bell, modeled with varying levels of detail [74].

Courtesy of Randy Wilson.

Description: A model aircraft engine, modeled with varying levels of detail [74].

Courtesy of Randy Wilson.

Description: Snoeyink and Stol� describe a model of a 30 part assembly of convex parts in

three dimensions, for which there is no legal separation [70]. We have deleted one of the

pieces to provide an interesting model that may be disassembled.

Courtesy of Jack Snoeyink.

File jPj jFj
bell9 9 5

bell17 17 5

bell22 22 5

eng12 12 5

eng23 23 12

eng30 30 13

eng42 42 13

sno29 29 1250

4.5.2 Experiment Setup

In our experiments, we consider two scenarios. The �rst is to minimize the number of total

steps for removing a key part when restricted to linear operations (G2/R1/C4). We use

the models from Section 4.5.1 for our input, however we enforce the restriction to linear

operations.

When restricted to linear moves, the greedy heuristic for minimizing the size of the

subassembly is irrelevant, as every step removes exactly one part. Minimizing the number

of edges in a connected component is no longer relevant, as we are not allowed to remove

a large subset, even if it were unconnected from the key part. We study the algorithm that

chooses a move uniformly at random. We also compute several lower bounds for the optimal

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 33

cost, as described in Section 4.4. For the removal of each individual part, we compute the

following:

� OPT-lin { This is the cost of the optimal linear sequence. It was computed using

techniques described in Section 4.4.

� lb1, lb2, lb3, lb4 { These are the lower bounds on the optimal cost, computed with

lookahead of 1 through 4 using the techniques described in Section 4.4.

� rand1 { We consider the randomized algorithm that computes all possible choices, as

before, but then picks a choice at random. For each experiment, we report the average

cost of 1000 random trials.

� rbest { The cost of the best solution found in the 1000 random trials used above.

The second scenario we consider is to minimize the number of re-orientations while re-

moving a key part (G2/C2). For each of our models, we considered the removal of each part

individually, and computed the following.

� OPT { This is the cost of the optimal sequence. It was computed using techniques

described in Section 4.4.

� size1 { This is the greedy algorithm described in Section 4.3. This greedy algorithm

considers all possible choices of direction, and then chooses the direction that will

minimize the resulting number of parts left in the subassembly containing the key part

after all legal actions for that direction are exhausted.

� size2 { This is the same algorithm as the previous, except that it uses a lookahead of

two, as described in Section 4.3.

� edges1 { This is the greedy algorithm described in Section 4.3, with lookahead of one.

� edges2 { This is the greedy algorithm described in Section 4.3, with lookahead of two.

� rand1 { We consider the randomized algorithm that computes all possible choices, as

before, but then picks a choice at random. For each experiment, we report the average

cost of 1000 random trials.

� rbest { The cost of the best solution found in the 1000 random trials used above.

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 34

4.5.3 Experiment Timing

For all of our experiments, we measured the timing of our computations by counting the

number of calls to some core procedure, such as the procedure which given a direction and

a subassembly, checks whether there is a valid operation using that direction for partitioning

the subassembly.

4.5.4 Experiment Results

In this section, we report the results of our experiments. First we show the results for the

�rst scenario, with the linear restriction. Following this we report the results of the second

scenario, which did not have the linear restriction. For each of the models in Section 4.5.1,

we computed the various results for the removal of each individual part. Many parts for each

subassembly can be removed in the �rst step, and hence do not provide interesting results

since all of our heuristics �rst check to see whether the goal can be reached before trying

other options. We have chosen to report the results for all parts that require two or more

steps in the optimal sequence. At the bottom of each table, the time we report is the average

over all parts listed in the table, using the timing units as discussed in Section 4.5.3. We

provide the actual tables in Appendix A.

4.5.5 Experiment Conclusions

We discuss our results for the two scenarios separately. We will start by examining the second

scenario in our experiment, that without the restriction to linear moves. Unfortunately, for

the most part, it seems our models are not very challenging. Except for the `sno29' assembly,

the removal of a part never required more than three re-orientations in the optimal sequence.

Although they do not always �nd the exact optimal sequence, the heuristics generally are

at most a few steps away from the optimal cost. However, this is also an e�ect of the

limited choices given to each heuristic, as we �rst remove all clearly dominated choices. To

begin with, most of these examples only have 5 to 12 graphs, and so at each step there

are relatively few graphs to which we can re-orient. This would help explain the very good

success of the randomized heuristic that is given the same choices at each point, and simply

chooses uniformly at random which move to follow. The `sno29' assembly, however, provides

quite a di�erent image. Recall, this is very interlocked assembly, and as we can see, even the

optimal sequences for removing many parts require a signi�cant amount of re-orientations,

CHAPTER 4. ALGORITHMS, HEURISTICS AND EXPERIMENTS 35

given the relatively small number of parts. As we get a more rich example, we see that the

gap between the optimal solution and some of the heuristics has begun to grow. Also, there

are some cases where it seems that the greedy heuristics do fall into so-called \traps." For

example, for removing part 14 from this product, we see that the optimal solution requires

4 re-orientations, however the greedy algorithm, size1, uses 13 re-orientations. However, as

soon as the lookahead is increased to two, the algorithm, size2, �nds the true optimal cost

solution. Also, we see that the random choices are no longer doing quite as well.

If we consider the �rst scenario, which has a restriction to linear operations, these same

products seem to provide us with a much richer test bed, in that there are a wide range

of values for the optimal sequence for removing various parts. We see that the randomized

algorithm performed quite poorly in these trials. When restricted to linear operations, there

may still be many more choices at each point, even with few graphs, because a large number

of the parts may be removable. In this sense, it is not surprising that choosing a random

part to remove is not successful, as the solution can often be only steps away, while randomly

chosen moves may remove parts in a completely di�erent area of the product. We often see

trials for which the optimal sequence only requires two or three steps, yet the random trial

removes over half of the parts on average.

The more interesting result here is that the lower bound technique seems to converge quite

well towards the optimal cost. We see that by the time we have applied our lower bound

technique with a lookahead of three of four steps, we are rarely very far away from the true

cost of the optimal solution. Unfortunately, computing these lower bounds with lookahead

becomes quite expensive, and as we see, rarely is the time required for computing these

best lower bounds very far away from the time spent for �nding the true optimal solution.

In general, these experiments con�rm our intuitions, in that there are no readily available

e�cient heuristics that perform well as the complexity of products increases. Continuing to

rely on exponential time procedures is quite restrictive, as we hope to be successful on larger

and more complex products.

Chapter 5

and/or Scheduling

5.1 Introduction

In this chapter, we will focus entirely on vas when restricted to linear sequences (R1),

and when the cost measure is equal to the minimum number of steps required (C4). In this

setting, we can view the vas problem in a more simple manner by modeling it as a scheduling

problem. We consider the removal of each part as a task that can be scheduled, and the linear

disassembly sequence is simply a schedule for the order of removal. The cost of the solution

is exactly equal to the number of tasks that are scheduled1.

Of course, our tasks have certain precedence constraints relating their order of removal.

That is, it may be the case that a certain part cannot be removed until after some other parts

are removed. What distinguishes this setting from more traditional scheduling is the form of

the precedence constraints. Commonly, a task may have what we term an and-precedence

constraint, in that it has an associated set of tasks, all of which must be scheduled before

that task [23]. Unfortunately, this is not the case in our assembly sequencing problem. When

considering a single direction, if a part is to be removed, then indeed there is a clear set of

associated parts that block the removal, and thus all of these parts must be removed prior to

removing our part in that direction. However, we may choose to remove that same part in

some other direction, in which case a di�erent set of parts may block the removal.

For this reason, we must consider another model for the structure of the precedence

constraints. The blocking relationships for linear disassembly sequences can be modeled

directly using what one may choose to call dnf scheduling, where the precedence constraint

1Much of this chapter involves work done in collaboration with Chandra Chekuri and Sanjeev Khanna.

36

CHAPTER 5. AND/OR SCHEDULING 37

for the removal of a part consists of a disjunction, with one disjunct for each distinct direction

of removal, and where each disjunct is a conjunction of the parts that block the removal in

the given direction. For example, it may be that the removal of some part F may have a

precedence constraint of the form (A^ B) _ (A^ C ^D).

We will choose, however, to examine a more speci�c model, namely that of and/or

precedence constraints. In this model, the precedence constraints for a given task must

either be a disjunction or a conjunction. Notice that and/or scheduling is simply a special

case of dnf scheduling. We choose to consider the and/or scheduling problem for several

reasons, most notably because we will use this problem as the base of a reduction to prove

hardness of a geometric setting in Chapter 7. However and/or scheduling is an interesting

problem in its own right, and has been studied some in previous literature. Theorem 25,

in Chapter 6, will speci�cally address the issues of modeling vas using and/or precedence

constraints (as opposed to dnf constraints).

We have not yet mentioned the exact goal for this scheduling problem. For the remainder

of this chapter, we will assume that we are interested in removing a key part (G2), and

therefore the goal of the scheduling problem is simply to schedule a key task. However, the

other goals from Section 3.2.1 may also be translated naturally to the scheduling model.

The remainder of this chapter proceeds as follows. In Section 5.2, we give a formal de�ni-

tion of the and/or scheduling problem, as well as some associated notation and terminology.

Previous work concerning this scheduling problem is reviewed in Section 5.3. Our main

results of this chapter are strong inapproximability results for several variants of and/or

scheduling, given in Section 5.4. We show that scheduling a key task, while approximating

the minimum number of scheduled tasks falls into Class III of the Arora/Lund approximation

hierarchy (see Section 2.2), and thus approximating the cost within a factor of 2log
1�
 n for

any
 > 0 is quasi-NP-hard. We also show these hardness results for several constrained

versions of the problem that will be used in proving hardness results in Chapters 6 & 7.

Finally, we feel that the problem of scheduling with and/or precedence constraints raises

several important complexity issues, of considerable interest in their own right. This form

of precedence constraints is a fairly natural extension to the traditional scheduling problem,

yet our results show that the e�ect of this change on the di�culty of the problem is quite

dramatic. We pose a series of open directions of research, in Section 5.5, related to the theory

of approximability and where this problem �ts in relation to several standard problems.

CHAPTER 5. AND/OR SCHEDULING 38

5.2 Notation and De�nitions

We de�ne the problem of scheduling with and/or precedence constraints as follows.

The input contains a set of tasks, T . Each task, ti 2 T , is labeled as either an and-task

or an or-task. Each task, ti 2 T , has an associated set of tasks, Pi, as direct predecessors;
we refer to jPij as the degree of the task. An and-task, ti, cannot be scheduled until after

all tasks in Pi. An or-task, tj , cannot be scheduled until after at least one task of Pj . The

max and-degree of an instance is the maximum size jPij over all and-tasks ti. The max

or-degree of an instance is the maximum size jPj j over all or-tasks tj .
The constraints can be represented by a precedence graph, with a node for each task,

ti, and a directed edge from ti to tj whenever tj 2 Pi, is a direct predecessor of ti
2. A

leaf-task is one with Pi = ;, and thus no outgoing edges. Such a task can be scheduled

at any time. We say that an instance of and/or scheduling has partial-order precedence

constraints if there are no cycles in the precedence graph. We say an instance of and/or

scheduling has internal-tree precedence constraints if there are no cycles, and if all non-leaf

nodes have at most one incoming edge.

The goal for this problem is to successfully schedule a speci�c task, and the cost is equal

to the total number of tasks which must be scheduled. We consider a single processor and

unit processing time for all tasks.

Additionally, we will consider the problem of minimizing the number of scheduled leaves,

when constrained to internal-tree precedence constraints. Notice that internal-tree precedence

constraints de�ne a monotone, boolean formula on the leaf nodes, in which setting a leaf's

variable to \one" signi�es that the leaf will be scheduled. Minimizing the number of scheduled

leaves is equivalent to satisfying a monotone, boolean formula with the minimum number

of ones. We are unaware of any previous results for this exact approximation problem.

Minimizing the number of ones in satisfying a 3CNF formula is known to be n0:5��-hard to

approximate [44], and related minimization problems are studied in [50].

5.3 Previous Work

Although the topic of scheduling with precedence constraints has a long and rich history

[23, 29, 53], there has been relatively little research focusing on models such as and/or

2We choose, in this situation, to direct an edge from ti to tj, to be consistent with the notion of edges in
a directed blocking graph. Often the meaning of the directed edge is reversed in scheduling literature.

CHAPTER 5. AND/OR SCHEDULING 39

precedence constraints. However, a series of papers by Gillies et al, study several variants of

scheduling with and/or precedence constraints [24, 25].

Our model for this problem was chosen to be similar to [24, 25], however with one key

di�erence. As mentioned in Section 5.2, the precedence constraints for an instance can be

represented as a directed graph. In this previous work, only the case of partial order preced-

ence constraints is considered. Notice that in traditional scheduling, with and-precedence

constraints, the existence of a cycle in the precedence constraints makes the scheduling prob-

lem infeasible, and thus a partial order is a standard assumption. With and/or constraints,

this absence of cycles is no longer a necessary condition for the existence of a valid solution.

In fact, cycles will often exist in instances drawn from assembly sequencing, as it may be

the case that part A blocks part B in one direction, part B blocks part C in another, and

part C blocks part A in a third direction. For this reason, we make no apriori assumptions

about the structure of the precedence constraints.

The work of [24, 25] studies a larger variety of settings, including multiple processors,

deadlines, and individual processing times. They prove the NP-hardness of �nding feas-

ible schedules in many settings that are polynomially solvable with more traditional and-

precedence constraints, however they do not consider the approximability of the correspond-

ing optimization problems. Additionally, they present several priority-driven heuristics that

extend several multi-processor results from traditional precedence constraints to and/or

precedence constraints. In their terminology, our setting is equivalent to minimizing the

completion time of an and/or/skipped task system, with one processor, and unit processing

times.

5.4 Inapproximability of and/or Scheduling

5.4.1 Our Results

It is worth noting that with classical and precedence constraints, the problem of minimizing

the number of scheduled tasks can be solved exactly, in polynomially time, by computing

a depth order. Every task that blocks the goal must be scheduled, as does every task that

blocks one of those tasks, and so on. As we will see, the situation is quite di�erent with

and/or precedence constraints.

In this section, we prove a series of results to show that it is quasi-NP-hard to �nd a

solution to any of the following problems that is within a factor of 2log
1�
 n of the optimal

CHAPTER 5. AND/OR SCHEDULING 40

And/Or Scheduling

And/Or Scheduling

And/Or Scheduling

Label Cover

Internal-treeInternal-tree
max-Degree = 2

DNF Scheduling

(polynomial blowup)

(polynomial blowup)

Figure 5.1: Reductions between variants of and/or scheduling

solution, for any
 > 0.

� Minimize the number of scheduled leaves, for an instance of and/or scheduling with

internal-tree precedence constraints.

� Minimize the number of scheduled leaves, for an instance of and/or scheduling with

internal-tree precedence constraints, and max-degree bounded by two.

� Minimize the number of scheduled tasks, for an instance of and/or scheduling.

� Minimize the number of scheduled tasks, for an instance of and/or scheduling with

max-degree bounded by two.

� Minimize the number of scheduled tasks, for an instance of dnf scheduling.

5.4.2 Proofs

We begin by considering the and/or scheduling problem when restricted to internal-tree

precedence constraints, as de�ned in Section 5.2. We will look at the problem where we only

CHAPTER 5. AND/OR SCHEDULING 41

charge an algorithm for the leaves that it schedules. We show the inapproximability of this

problem by showing that the Label Covermin problem ([3, 4]) is a special case. Following

this, we show that the lower bound applies even when we further restrict the and/or problem

to have degree bounded by two. Finally, we convert this bound on the number of leaves

scheduled into a bound on the total number of scheduled nodes for the general and/or

scheduling problem. This also proves the hardness of dnf scheduling, as and/or scheduling

is simply a special case. An overview of the reductions is given in Figure 5.1.

Theorem 13 The Label Covermin problem is simply a special case of minimizing the

number of leaves scheduled in an instance of and/or scheduling with internal-tree precedence

constraints.

Proof: Given an instance of Label Covermin, de�ned in Section 2.2, we express it as

an instance of and/or scheduling with internal-tree precedence constraints, as shown in

Figure 5.2. The and/or instance has �ve levels, which alternate between and-nodes and

or-nodes. The highest level contains solely the root of the internal-tree, and the lowest level

contains exactly the leaves. The tasks at the �ve levels are as follows:

� The �rst level has a single and-node, which is the root of the internal-tree. This task

enforces that every node in V must have a non-empty set of labels.

� The second level has an or-node for each vertex in V . This node requires that for a

given node v to have a non-empty label set, at least one label must be assigned to it.

� The third level has an and-node for each pair hv; l0i, where v 2 V , and l0 2 f1; : : : ; Ng.
This node signi�es that for label l0 to be assigned to vertex v, it must be the case that

for each edge e = (u; v) incident to v, the mapping �e on that edge, must respect the

labeling.

� The fourth level has an or-node for each pair he; l0i, where e = (u; v) is an edge, and l0

is a label. If l0 is to be assigned to v, then edge e cannot be covered unless one of the

pre-images of l0 from mapping �e is assigned to u.

� The �fth level has a leaf for each pair hu; li, and corresponds to label l being assigned

to vertex u.

This completes the construction. It can be seen that there is a one-to-one correspondence

between valid labeling in the Label Covermin instance and valid solutions to the and/or

CHAPTER 5. AND/OR SCHEDULING 42

AND

OR OR OR

ANDAND

OROROR

AND

OR

<b,1> <b,2> <b,3><a,1> <a,2> <a,3>

For each node of V,

For each incoming edge,

Choose a preimage which

assign labels to U

Choose a label.

maps to the label.

Figure 5.2: Label Cover as and/or scheduling with internal-tree precedence

scheduling instance, where the number of labels used is exactly equal to the number of

leaves scheduled. It is easy to verify that the and/or instance has internal-tree precedence

constraints. Notice that the number of non-leaf tasks in this construction is polynomially

bounded in the size of the Label Covermin instance (namely, in jU j, jV j and N), and thus

any polynomial time approximation algorithm for this and/or scheduling problem, also

serves as a polynomial time algorithm for Label Covermin.

Corollary 14 It is quasi-NP-hard to approximate the number of leaves scheduled in an

instance of and/or scheduling with internal-tree precedence constraints, to within a factor

of 2log
1�
 n for any
 > 0.

Proof: Approximating the Label Covermin problem within a factor of 2log
1�
 n is quasi-

NP-hard for any
 > 0 [4]. Combining this lower bound with Theorem 13 proves our result.

Theorem 15 Even if both the and-degree and or-degree are bounded by two, it is quasi-

NP-hard to approximate the number of leaves scheduled in an instance of and/or scheduling

with internal-tree precedence constraints, to within a factor of 2log
1�
 n for any
 > 0.

Proof: We give an approximation-preserving reduction from the problem of and/or

scheduling with internal-tree precedence constraints but unbounded degree, to the same prob-

lem with max-degree bounded by two. Combining this reduction with Corollary 14 proves

our result.

CHAPTER 5. AND/OR SCHEDULING 43

Given an instance with unbounded degree, we can bound the degree in the obvious way,

by replacing each internal node with a tree of bounded degree nodes. Assume there were

originally I internal nodes and L leaves, and that I is polynomially bounded in L. The

maximum degree for any node is at most (I + L), and thus that node can be replaced by a

tree of at most (I + L) nodes, each with degree two. Notice that the cost of the solutions

has remained unchanged, as we are only charged for the number of leaves that are scheduled.

The new instance has at most I(I + L) internal nodes, which is still polynomially-bounded

in L, and thus our reduction runs in polynomial time.

Lemma 16 If there exists an algorithm that achieves an f(n)-approximation to the number

of tasks scheduled in an instance of and/or scheduling, then there exists an algorithm that

achieves a (1+ �)f(poly(n))-approximation for any � > 0 for the number of leaves scheduled

in an instance of and/or scheduling with internal-tree precedence constraints. This remains

true even if both the and-degree and or-degree are bounded by two for each problem.

Proof: Assume we are given an algorithm, A, for the general and/or scheduling prob-

lem that achieves an approximation ratio of f(n). We show how to use this algorithm to

approximately solve an instance of minimizing the number of scheduled leaves for and/or

scheduling with internal-tree precedence constraints. The di�culty of attempting to minimize

the number of scheduled leaves, using an algorithm that minimizes the number of scheduled

nodes is that the overhead of the internal nodes may have a signi�cant cost, changing the

quality of the approximation. This can be remedied quite easily, by arti�cially increasing the

cost of scheduling a leaf.

Assume we have a hard instance of internal-tree scheduling from Theorem 15, with I

internal nodes and L leaves. We convert this to a general instance of and/or scheduling

by replacing each leaf with a chain of �I new nodes, for some constant �. Notice that both

the and-degree and the or-degree remain unchanged, although this new instance no longer

has internal-tree precedence constraints. This new instance has a total of I + �IL nodes.

Relying on the fact that I is polynomially bounded by L, we see that the new size is also

polynomially bounded by L.

We rely on two useful facts in our construction. First, if the optimal solution of the

original problem scheduled a total of OPTorig leaves, we are assured that

OPTnew � � � I �OPTorig + I:

CHAPTER 5. AND/OR SCHEDULING 44

Secondly, given any solution to the new problem that schedules t total nodes, we can create

a solution to the original problem such that its cost is at most t�I
�I

. This is done by simply

choosing to schedule those leaves for which the associated chain was completely scheduled.

Combining these facts, we now analyze the approximation ratio of running algorithm A on

our newly constructed instance.

Let Anew be the number of nodes scheduled by algorithm A for this new instance, and

let Aorig be the number of leaves scheduled by our solution to the original problem that we

can construct from the solution to the new problem.

Aorig � Anew � I

�I
� Anew

�I
� f(poly(L)) �OPTnew

�I

�
f(poly(L)) �

h
� � I �OPTorig + I

i
�I

= f(poly(L)) �OPTorig +
f(poly(L))

�

= OPTorig

f(poly(L))(1+

1

� �OPTorig
)

!

� OPTorig

�
f(poly(L))(1+

1

�
)

�

By choosing � appropriately, we see that we have constructed an algorithm for the original

problem that achieves a (1 + �)f(poly(n))-approximation. Since the new problem has size

that is polynomial in the original problem, our new algorithm runs in polynomial time.

Theorem 17 It is quasi-NP-hard to approximate the number of tasks scheduled in an in-

stance of and/or scheduling, to within a factor of 2log
1�
 n for any
 > 0. This remains

true even if both the and-degree and or-degree are bounded by two.

Proof: We combine the reduction of Lemma 16, with the result of Theorem 15. If there

did exist a 2log
1�
 n-approximation algorithm for this problem for some
 > 0, then by

Lemma 16, there would exist an approximation algorithm for the case of internal-tree pre-

cedence constraints that achieves a factor of (1 + �)2log
1�
 poly(n). However, this provides a

2log
1�
0 n-approximation for any 0 <
0 <
, which is quasi-NP-hard by Theorem 15.

Corollary 18 It is quasi-NP-hard to approximate the number of tasks scheduled in an in-

stance of dnf scheduling, to within a factor of 2log
1�
 n for any
 > 0.

CHAPTER 5. AND/OR SCHEDULING 45

Proof: Since general and/or scheduling is a special case of dnf scheduling, this corollary

follows directly from Theorem 17.

5.5 Open Problems

5.5.1 Alternating and/or Levels

In Section 5.4, many of our results involve the special case of and/or scheduling with

internal-tree precedence constraints. We looked at the problem of minimizing the number of

leaves that are scheduled in order to successfully complete the root of such a tree. As we

pointed out in Section 5.2, this problem is equivalent to minimizing the number of ones that

are used in satisfying a monotone, boolean formula. An interesting series of open questions

involves the structure of this problem as we vary the depth of the tree.

Without loss of generality, we can assume that the root of our tree is an and-node, and if

we do not have a bound on the out-degree of the internal nodes, we can always collapse the

internal nodes into alternating levels of and-nodes followed by or-nodes, eventually followed

by a single level of leaves. Now we can consider the complexity of the problem based on the

number of alternating levels.

If we consider one full alternation, an and-node at the root, followed by a level of or-

nodes, followed by a level of leaves, this problem is exactly equivalent to the Set Cover

problem. Every instance of Set Cover can be written as a suitable scheduling instance and

vice versa. To see the connection, we equate each leaf with a subset, and each or-node with

an item in the universe. The precedence constraint for each or-node enforces that one of the

subsets containing the associated element must be chosen.

If we consider two full alternations, as we saw in Theorem 13, we can already express

Label Covermin. However it is not at all clear whether or not this problem is equivalent to

Label Covermin, and we conjecture that it is strictly more expressive. If we attempt to use

our intuition of and/or scheduling fromFigure 5.2, in creating an instance of Label Cover,

we run across two obstacles. The �rst obstacle may be the more technical issue, namely that

the bipartite graph used in Label Covermust be regular. If we attempt to create a bipartite

graph based directly on the precedence constraints, there is no guarantee that all of the tasks'

degrees in a given level will be the same. It may be possible to pad an instance to arti�cially

enforce the regularity condition, however the second obstacle may be a more serious issue.

If we are to think about the leaves as corresponding to (node,label) pairs, then there will be

CHAPTER 5. AND/OR SCHEDULING 46

a natural structure partitioning the leaves into groups based on the corresponding node of

the pair. That is, by the \natural" interpretation, no node will ever depend on leaves from

more than one group of this underlying partition, since that node is enforcing the covering

of a speci�c edge. We leave it as an open question to decide whether or not two alternating

levels is strictly more expressive than Label Covermin.

Furthermore, what happens when we go to three full alternations, or to an arbitrary

depth internal-tree? Does this hierarchy collapse at some point, and if so when? Can the

inapproximability bounds be strengthened for any of these depths? What if we consider the

general problem without internal-tree precedence constraints?

There are several areas of research that may prove bene�cial in answering some of these

questions. The �rst is a study of constraint satisfaction problems, in which they consider the

the problem of minimizing the number of ones required to satisfy a collection of constraints

on boolean variables [50]. Their main result is that there are a �nite number of distinct levels

of approximability for minimizing the number of ones needed in satisfying such constraint

systems. These results, however do not apply to this problem as their constraint systems

must be expressible using constraints that are bounded arity functions on the �nal variables.

However, their work may relate to our problem when both the depth and max degree are

bounded by a constant, a case we have not considered.

Secondly, there is a great deal of previous work related to the size and depth of boolean

circuits, including those for monotone boolean formulae [51, 66, 80]. It is clear than an

arbitrarily complex formula on n leaves can be collapsed into an and/or tree with a single

alternating level, where the top choice is of picking one of the satisfying assignments, and for

each satisfying assignment, you must schedule all of the leaves that correspond to variables

set to one. The problem here is that the number of internal nodes in this representation

is no longer polynomial in the number of leaves, and this condition was necessary for our

reductions. It may be possible to use some of the previous work in circuit complexity to

strengthen some of our inapproximability results for and/or scheduling.

5.5.2 Summary of Open Problems

In Section 5.4, we consider several versions of this scheduling problem, giving reductions from

one to another, and then proved a lower bound of 2log
1�
 n against the approximability of all of

these problems by showing that the easiest of these versions captures the Label Covermin

problem as a special case. It is open to determine a separation between any of the steps of

CHAPTER 5. AND/OR SCHEDULING 47

the series of reductions. That is, the Label Covermin results provide our strongest results

even for the most general and/or scheduling problem, yet there is reason to believe this

may be an even more di�cult problem. It is already conjectured that Label Cover is

truly n�-hard to approximate for some � > 0 [4], a result that would carry over through all

of our reductions. However it may be possible to strengthen the lower bounds for and/or

scheduling without necessarily settling the Label Cover conjecture.

Secondly, we o�er no non-trivial (i.e. o(n)) approximation algorithms for any of these

problems. It so happens that there is no known, non-trivial approximation algorithm for

Label Cover the \easiest" of our problems. However our reductions are a bit misleading

in this respect, because of the polynomial blowup in the input size. It may be possible to

achieve a non-trivial upper bound for many of our variants of and/or scheduling, without

providing such an upper bound on Label Cover. For example, the existence of an n�-

approximation for some � < 1 for minimizing the number of scheduled tasks in a general

instance of and/or scheduling problem, would guarantee through our reductions, an n�-

approximation for Label Covermin, however it may be that � > 1, in which case the

approximation would be trivial.

In summary, for each of the following variants, it is open to present an n�-approximation

algorithm for some � < 1. Also it is open to prove that approximating any of these problems

is n�-hard for some � > 0.

� The number of scheduled tasks for an instance of and/or scheduling

� The number of scheduled tasks for an instance of and/or scheduling with bounded

depth

� The number of scheduled leaves for an instance of and/or scheduling with internal-tree

precedence constraints

� The number of scheduled leaves for an instance of and/or scheduling with internal-tree

precedence constraints and bounded degree

Chapter 6

Inapproximability of Virtual

Assembly Sequencing

6.1 Introduction

In this chapter, we present our core results regarding the vasmodel, as we prove the di�culty

of �nding optimal or even near-optimal solutions for the many variants of vas de�ned in

Chapter 3. These problems can be shown to encompass the combined di�culty of many

previously studied sequencing and covering problems.

In many cases, these problems can be shown to be NP-complete, proving that it is unlikely

that an e�cient algorithm will be able to �nd the best assembly sequencing for a given input.

However, as we discussed in Section 2.2, we are also interested in how well an algorithm is

able to �nd a solution that can be shown to have a cost near to the optimal solution's cost.

A company using the result of an assembly sequence in practice may not care about the

mathematical problem of whether they have the absolute best sequence, so long as they can

be assured that they have found a sequence, more quickly, whose cost is almost the same.

Unfortunately, we show that for most variants of vas, �nding an e�cient algorithm that can

guarantee to produce even a near-optimal sequence is di�cult. Throughout this chapter, we

consider the approximability of the problems that we study.

This chapter proceeds in two phases. First, we attempt to relate the many di�erent

variants of vas to each other, so that we can determine whether certain problems are easier

or more di�cult than others, thereby pointing the direction of research towards attacking the

easier problems. Section 6.4 presents this series of reductions which relates variants of vas to

48

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 49

each other. Secondly, we establish inapproximability results, even for many of the \easiest"

of these problems, by showing that they capture several previously studied, di�cult problems

from the literature. These hardness results are proven in Section 6.5. Before demonstrating

the full reductions, we present an overview of our inapproximability results in Section 6.5,

and we attempt to give some intuition in Section 6.3, with hands on practice for working with

examples of the vas problem and presenting several useful gadgets to be used later in the

chapter.

6.2 Our Results

The following three tables give a summary of the lower bounds we prove in this chapter

against the approximability of vas in various settings. Table 6.1 summarizes the hardness

of the problem of removing a key part from the rest of the assembly. Table 6.2 summarizes

the hardness of the problem of separating a key pair of parts from each other. Table 6.3

summarizes the hardness of the full disassembly problem.

6.3 Useful Gadgets

In this section, we introduce several arti�cial graphs which provide useful gadgets for design-

ing constructions involving vas later in this chapter. As a side bene�t, examining these

graphs gives us our �rst, true practice at interpreting graphs as directional blocking graphs

and understanding their e�ects on the separability of the parts. We will see how these gadgets

can be used to create various behaviors such as releasing a part from the rest of an assembly,

or in locking two parts together. Also, we will see that the operations allowed by such graphs

change when restricted to certain subassemblies.

As a second bene�t, this chapter provides us with our �rst intuition regarding the dif-

ference between virtual assembly sequence and true, geometric assembly sequencing. Later

in this chapter, we prove many very strong inapproximability results, largely because we are

always able to add a specially designed graph into the family of motions, giving us a desired

behavior. When we consider geometric settings in Chapter 7, inserting a particular graph

into the family of motions is not always possible. These graphs represent the blocking rela-

tionships between the parts, and are determined by the geometric description of all the parts.

In certain situations, there are graphs which quite simply, are not realizable geometrically. In

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 50

Table 6.1: Inapproximability of removing a key part

G
2
/
R
1
R
2

C
o
n
st
a
n
t
F
a
m
il
y

&
L
in
ea
r

so
lv
a
b
le

O
b
se
rv
a
ti
o
n
8

jF
j
=
2
:
so
lv
a
b
le

(j
F
j�
1
)-
a
p
p
ro
x
im
a
b
le

O
b
se
rv
a
ti
o
n
s
9
&
1
0

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

3
1

fr
o
m
lt
sp

n
.a
.

jF
j
�
2
:

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
4

fr
o
m
a
n
d
/
o
r
w
it
h

m
a
x
d
eg
=
2

G
2
/
R
2

C
o
n
st
a
n
t
F
a
m
il
y

so
lv
a
b
le

O
b
se
rv
a
ti
o
n
8

jF
j
=
2
:
so
lv
a
b
le

(j
F
j�
1
)-
a
p
p
ro
x
im
a
b
le

O
b
se
rv
a
ti
o
n
s
9
&
1
0

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

3
1

fr
o
m
lt
sp

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

2
6

fr
o
m
G
2
/
R
2
/
C
4

2
(j
F
j
�
1
)-
a
p
p
ro
x

O
b
se
rv
a
ti
o
n
1
2

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

3
1

fr
o
m
lt
sp

G
2
/
R
1

L
in
ea
r

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
2

fr
o
m
G
2
/
R
1
/
C
4

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
2

fr
o
m
G
2
/
R
1
/
C
4

n
.a
.

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
4

fr
o
m
a
n
d
/
o
r

G
2

N
o
re
st
ri
ct
io
n
s

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
2

fr
o
m
G
2
/
R
1
/
C
4

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
2

fr
o
m
G
2
/
R
1
/
C
4

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
6

fr
o
m
G
2
/
C
4

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
2

fr
o
m
G
2
/
R
1
/
C
4

D
ir
ec
ti
o
n
s

C
1

R
e-
o
ri
en
ta
ti
o
n
s

C
2

N
o
n
-L
in
ea
r
S
te
p
s

C
3

S
te
p
s

C
4
o
r
C
5

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 51

Table 6.2: Inapproximability of separating two parts from each other

G
4
/
R
1
R
2

C
o
n
st
a
n
t
F
a
m
il
y

&
L
in
ea
r

so
lv
a
b
le

O
b
se
rv
a
ti
o
n
8

jF
j
=
2
:
so
lv
a
b
le

(j
F
j�
1
)-
a
p
p
ro
x
im
a
b
le

O
b
se
rv
a
ti
o
n
s
9
&
1
0

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

3
1

fr
o
m
lt
sp

n
.a
.

jF
j
�
4
:

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

1
9

fr
o
m
G
2
/
R
1
R
2
/
C
4

G
4
/
R
2

C
o
n
st
a
n
t
F
a
m
il
y

so
lv
a
b
le

O
b
se
rv
a
ti
o
n
8

jF
j
=
2
:
so
lv
a
b
le

(j
F
j�
1
)-
a
p
p
ro
x
im
a
b
le

O
b
se
rv
a
ti
o
n
s
9
&
1
0

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

3
1

fr
o
m
lt
sp

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

2
6

fr
o
m
G
4
/
R
2
/
C
4

2
(j
F
j
�
1
)-
a
p
p
ro
x

O
b
se
rv
a
ti
o
n
1
2

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

3
1

fr
o
m
lt
sp

G
4
/
R
1

L
in
ea
r

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

1
9

fr
o
m
G
2
/
R
1
/
C
1

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

1
9

fr
o
m
G
2
/
R
1
/
C
2

n
.a
.

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

1
9

fr
o
m
G
2
/
R
1
/
C
4

G
4

N
o
re
st
ri
ct
io
n
s

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

1
9

fr
o
m
G
2
/
C
1

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

1
9

fr
o
m
G
2
/
C
2

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
6

fr
o
m
G
4
/
C
4

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

1
9

fr
o
m
G
2
/
C
4

D
ir
ec
ti
o
n
s

C
1

R
e-
o
ri
en
ta
ti
o
n
s

C
2

N
o
n
-L
in
ea
r
S
te
p
s

C
3

S
te
p
s

C
4
o
r
C
5

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 52

Table 6.3: Inapproximability of complete disassembly

G
1
/
R
1
R
2

C
o
n
st
a
n
t
F
a
m
il
y

&
L
in
ea
r

so
lv
a
b
le

O
b
se
rv
a
ti
o
n
8

jF
j
=
2
:
so
lv
a
b
le

(j
F
j�
1
)-
a
p
p
ro
x
im
ab
le

O
b
se
rv
a
ti
o
n
s
9
&
1
0

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

3
1

fr
o
m
lt
sp

n
.a
.

n
.a
.

G
1
/
R
2

C
o
n
st
a
n
t
F
a
m
il
y

so
lv
a
b
le

O
b
se
rv
a
ti
o
n
8

jF
j
=
2
:
so
lv
a
b
le

(j
F
j�
1
)-
a
p
p
ro
x
im
ab
le

O
b
se
rv
a
ti
o
n
s
9
&
1
0

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

3
1

fr
o
m
lt
sp

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
jF
j�
-h
a
rd

T
h
eo
re
m

2
1

fr
o
m
G
2
/
R
2
/
C
3

n

dl
o
g
2

n

e
-a
p
p
ro
x
im
a
b
le

O
b
se
rv
a
ti
o
n
6

G
1
/
R
1

L
in
ea
r

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
1

fr
o
m
G
2
/
R
1
/
C
1

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
1

fr
o
m
G
2
/
R
1
/
C
2

n
.a
.

n
.a
.

G
1

N
o
re
st
ri
ct
io
n
s

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
1

fr
o
m
G
2
/
C
1

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
1

fr
o
m
G
2
/
C
2

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
1

fr
o
m
G
2
/
C
3

n

d
lo
g
2

n

e
-a
p
p
ro
x
im
a
b
le

O
b
se
rv
a
ti
o
n
6

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

2
3

fr
o
m
G
2
/
R
1
/
C
5

D
ir
ec
ti
o
n
s

C
1

R
e-
o
ri
en
ta
ti
o
n
s

C
2

N
o
n
-L
in
ea
r
S
te
p
s

C
3

D
ep
th

C
5

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 53

STAR(i) RELEASE(i) LOCK(i,j) UNLOCK(i,j)

Figure 6.1: Useful Gadgets

other situations, even though a graph may be realizable, altering the parts in order to create

this graph will change graphs for many other motions as a side e�ect.

Now we examine the four graphs pictured in Figure 6.1. The �rst graph, de�ned for every

part i, we have named Star(i). This graph on n nodes, includes the edges (i; a) and (a; i)

for all nodes a 6= i. It is clear that this graph is of no use on the fully assembled product,

as it is strongly connected, and thus allows no legal operations. In fact the graph remains

strongly connected for any subassembly which happens to contain the part i. However, for

any subassembly which does not contain part i, we see that this graph will become quite

useful, allowing all possible operations.

The second graph, also de�ned for every part i, we call Release(i). This graph is exactly

the complement of Star(i), and includes edges (a; b), for all i 6= a 6= b 6= i. This graph has a

very clear behavior as it is a clique on (n�1) nodes. For any subassembly which includes the

part i, this graph allows a single linear operation, namely to remove part i from the rest of

the subassembly. For any subassembly without part i, this graph will be strongly connected.

Therefore, this graph will either be ignored or used exactly once, for any legal assembly

sequence.

A third graph, Lock(i; j), we de�ne for any pair of nodes i and j, to consist simply of the

two edges (i; j) and (j; i). This graph will allow all actions, other than those actions which

separate i from j. The complement of this graph, Unlock(i; j), has quite a di�erent behavior.

On just about all subassemblies, this graph will be strongly connected, and thus of no use.

In fact, the only assembly for which this graph will be helpful is if parts i and j are together

in a subassembly with no other parts. In this speci�c two-part subassembly, this graph will

allow the two parts to be separated.

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 54

6.4 Reductions Between Variants of vas

In this section, we examine the relationships between many of the possible goals, restrictions,

and cost measures given in Section 3. We give several approximation-preserving reductions

which demonstrate that certain variants are at least as hard to approximate as others. Because

of the su�ciently strong lower bounds we will prove in Section 6.5, we allow our reductions

to have an additive error in the approximation factor, and where noted, we will allow a

polynomial blowup of the input size. For a review of the reduction de�nitions, see Section 2.2.

An overview of the reductions is given in Figure 6.2, albeit without reference to the

applicable cost measures and restrictions for each reduction.

6.4.1 Our Results

Theorem 19 [G2 =) G4] (optionally C1, C2, C3, C4, C5, R1, R2, R1R2)

For all �ve cost measures, the problem of removing a key part from the rest of the assembly

can be reduced to the problem of separating a key pair of parts from each other. This reduction

also holds when restricted to linear steps, to a constant size family, or to both.

Theorem 20 [G4 =) G2] (optionally C1, C2, C3, C4, C5, R1, R2, R1R2)

For all �ve cost measures, the problem of separating a key pair of parts from each other can

be reduced to the problem of removing a key part from the rest of the assembly. This reduction

also holds when restricted to linear steps, to a constant size family, or to both.

Theorem 21 [G2 =) G1] (optionally C1, C2, C3, R1, R2, R1R2)

For minimizing the number of directions, re-orientations, or non-linear steps, the problem

of removing a key part can be reduced to the problem of fully disassembling a product. This

reduction also holds when restricted to linear steps, to a constant size family, or to both.

Theorem 22 [G2/R1/C4
poly
=) G2] (optionally C1, C2, C4, C5, R1)

Minimizing the number of steps for removing a key part when restricted to linear moves can

be reduced, with polynomial blowup, to minimizing either the number of directions, number

of re-orientations, depth, or number of steps for the problem of removing a key part, with or

without a restriction to linear steps.

Theorem 23 [G2/R1/C5
poly
=) G1/C5]

Minimizing the number of steps for removing a key part when restricted to linear moves can

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 55

be reduced, with polynomial blowup, to minimizing the depth for full disassembly without the

linear restriction.

Theorem 24 [and/or =) G2/R1/C4] (optionally R2)

An instance of the and/or scheduling problem can be written directly as a special case of

the problem of minimizing the number of steps while removing a key part when restricted to

linear moves. The number of graphs is exactly equal to the max or-degree of the scheduling

problem.

Theorem 25 [G2/R1/C4
poly
=) and/or]

Minimizing the number of steps while removing a key part, when restricted to linear moves,

can be reduced with a polynomial blowup to the problem of and/or scheduling. The number

of tasks in the scheduling problem is bounded by (n+ 1)jFj, and the max or-degree is equal

to jFj.

Theorem 26 [C4 =) C3] (optionally G2, G3, G4, G5, R1, R2, R1R2)

Minimizing the total number of steps can be reduced to minimizing the number of non-linear

steps. This is true for all applicable cost measures and all restrictions.

Theorem 27 [G3 =) G2, G3 =) G1]

The problem of removing a set of parts reduces to the problem of removing a single key part.

Similarly, the problem of removing a set of parts reduces to the problem of fully disassembling

a product. This is true for all cost measures and all restrictions.

Theorem 28 [G5 =) G4, G5 =) G1]

The problem of separating a set of parts from each other reduces to the problem of separating

a pair of parts. Similarly, the problem of separating a set of parts from each other reduces

to the problem of fully disassembling a product. This is true for all cost measures and all

restrictions.

6.4.2 Proofs

Proof of Theorem 19:

The intuition for this reduction is simple. We take an instance of the problem of removing a

key part k, and construct an instance of the problem of separating two parts by introducing

a part k0 which is \glued" to k unless all other parts are separated from k.

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 56

Remove Set Separate Set

Full Disassembly

Remove Part Separate Pair

And/Or SchedulingRemove Part
Linear

(G3) (G5)

(G2) (G4)

(G1)

(G2,R1,C4)

poly

Figure 6.2: Reductions between variants of vas

To implement this idea, we modify each graph in F by introducing part k0 and adding

edges (k; k0) and (k0; k). Therefore, no legal operation using one of these graphs can separate

k and k0 into di�erent subassemblies. Finally, we add one new graph, Unlock(k; k0). If k and

k0 are the only parts in a subassembly, then this new graph will allow for their separation,

however, it is useless for any other operations.

If we are not restricted to linear moves, we claim that there is a one-to-one correspondence

between solutions of the two instances. Any solution for removing part k in the original

problem, can be mimicked in the new problem to separate k and k0 from the rest of the

problem, and then one �nal operation using the extra graph can separate k and k0. Similarly,

any solution to separate k from k0 must end with such a move, and thus the rest of the

sequence can be mimicked for the �rst problem. The input size for the reduction is increased

by one part and one graph, and for all cost measures, the costs of the corresponding solutions

di�er by at most an additive error of one.

If we are restricted to using linear steps, however, there is a technical di�culty. In the

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 57

original problem, the very last step in isolating part k will always be a linear step in which

one of the subassemblies is the single part k. By the construction given above, k0 would be

glued to k, and we would replace the removal of k by the removal of the two-part subassembly,

k and k0.

Therefore, if we are restricted to linear steps, we alter our reduction as follows. We

replace each of the original graphs by two new graphs on (n+ 1) nodes. The �rst is exactly

the same as the original reduction, where we add edges (k; k0) and (k0; k). In the second new

graph, we add all edges (a; b) for a 6= k 6= b, thereby creating a clique on the n nodes other

than k, along with the original edges that connected k to other nodes. We claim that this

graph will allow part k to be removed by a linear step, exactly when part k could have been

removed by a linear step in the original graph, and that no other legal steps will exist. The

only possible directed cut on this graph would be between k and the rest of a subassembly,

and we claim this happens only if all of the outgoing (incoming) neighbors for part k are

gone. This is exactly the case in which k could have originally been removed with a linear

step, and this results in the separations of k from k0.

For this new reduction, the input size has again increased by one part, and the number

of graphs has doubled. Again, we claim that for all cost measures and combinations of

restrictions, the costs of corresponding solutions for the original and new problems di�er by

at most an additive error of one. This completes the reduction.

Proof of Theorem 20:

We take an instance of the problem of separating parts k1 and k2, and we construct an

instance of simply removing part k1. We will create a new graph which allows k1 to be

separated from everything, so long as it had previously been separated from k2.

In this reduction, we take each graph in F without modi�cation, and we create one new

graph with edges (k1; k2) and (k2; k1) along with edges (k1; a) and (a; k2) for all other parts

a. This graph is shown in Figure 6.3. It is easy to verify that if both k1 and k2 are in a

subassembly, then this graph is strongly connected and so no legal operations can be done.

However, if k1 has been previously separated from k2, than this graph will allow k1 to be

separated from everything else in a single, linear step.

Again, any solution to one of these problems can be translated into a solution to the other

with error of at most one for any of the cost measures, and the input has increased by one

graph.

Proof of Theorem 21:

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 58

k1 rest k 2

Figure 6.3: Separating a pair reduces to removing a part

Again, we give a very simple modi�cation to translate an instance of the problem of removing

a key part k, into an instance of fully disassembling a product. For this reduction, we simply

create one additional graph which allows the entire product to fall apart if the key part is

missing.

Speci�cally, we take each graph in F without modi�cation, and insert one new graph,

Star(k). For all subassemblies not containing k, this graph will allow complete disassembly

with additional cost one, in terms of the number of directions, number of re-orientations or

number of non-linear steps1. Furthermore, this graph is strongly connected, and hence of no

use, for any subassembly which contains k.

This gives us an approximation-preserving reduction for these cost measures. Clearly, any

solution to the new full disassembly instance can be translated to a solution to the original

keypart problem with at least as low of a cost. Furthermore, the optimal solution for the full

disassembly problem has cost at most one more than the optimal solution for removing the

key part, namely using the new graph to �nish the disassembly with additive cost one.

Proof of Theorem 22:

Assume we are given an instance of minimizing the number of steps for removing a key part

when restricted to linear operations. We construct a new instance of removing a key part,

where we no longer require the restriction to linear operations.

We keep the same set of n parts, and we create a new family of njFj graphs. Since

jFj = poly(n), so is njFj. For each pair hp; di, with part p 2 P and direction d 2 F , we
create a new graph which is a clique on the n � 1 parts (P � p), and which has edges (p; a)

or (a; p) for each part a whenever the respective edge exists in d. This graph is identical to

the graph we introduced in the second part of the proof of Theorem 19. We claim that the

only possible action allowed by this graph is to remove the single part p from a subassembly,

1Notice that for Cost C5, there may be a logarithmic increase in the depth. This problem is handled

separately in Theorem 23.

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 59

and that this one action is possible if and only if there is a linear operation which removes

part p from the same subassembly using direction d. That is, the set of outgoing (incoming)

edges of d must be broken in order to remove p in our new graph.

With this claim, we immediately get our result, as there is a one-to-one correspondence

between solutions of the original problem and solutions of the new problem with identical

costs. Every linear move in the original problem has a unique graph in the new problem that

allows the identical part to be removed, and vice versa. Therefore, the number of steps in a

solution to the original problem is exactly equal to the number of steps in a solution to the

new problem. Furthermore, since each graph is useful for at most one linear move in our

new instance, then the number of steps in the original solution is also equal to the number of

steps, number of directions, or number of re-orientations used in the new instance.

Since all valid moves in our new instance happen to be linear, it makes no di�erence in

the result whether the new instance is restricted to linear moves or not. Note that because

our construction increased the number of graphs by a factor of n, we cannot make any such

claim for problems with a constant size family of graphs (R2).

Proof of Theorem 23:

The proof of this theorem is a simply combination of the techniques from the proofs of

Theorems 21 and 22. In the proof of Theorem 21, we reduced the problem of removing a part

to the full disassembly problem, by adding in one additional graph which was a star on the

key part. In this way, once the key part is removed, this new graph can be used to complete

the rest of the disassembly. The problem when considering the minimum depth cost measure

was that the completion may still require an additional logarithmic increase in the depth.

We will remedy this by arti�cially increasing the cost of the original moves, so as to make

this �nal logarithmic additive cost inconsequential. To do so, we must go back and reconsider

the problem of removing a key part while restricted to linear operations, and so we assume

we are given such an instance. We construct a new instance of minimizing the depth for full

disassembly as follows.

We start by replacing every part a with n new parts f a1; : : :an g. In each graph, for any

original edge (a; b), we introduce all possible edges (ai; bj). Additionally, we introduce all

edges (aj; ai) such that i < j. If we are still restricted to linear moves, this has the e�ect that

a2 cannot possibly be removed until after a1, and so on. However, if it was originally the

case for a subassembly that part a would be immediately removable, in this current instance,

it would be the case that a1 could be immediately removed, followed in turn by a2 and

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 60

similarly the entire sequence of a's. Therefore, the overall e�ect of this replacement is simply

to increase the cost of each original linear operation from 1 step to a sequence of depth n.

At this point, we continue in our construction as we did in Theorem 22, by relaxing the

restriction to linear steps while arti�cially assuring that no non-linear steps will be possible.

This results in an instance of the general problem of removing a key part, where the cost

of our steps is still arti�cially replaced by a sequence of depth n. Now we can again add in

one �nal new graph which is a start graph on part kn, where k was the original key part

for removing. Therefore, once kn has been removed, this new graph allows for the complete

disassembly of the remaining parts in depth logarithmic in the total number of parts. Our

total number of parts has become n2, and so the additive cost on the depth for this �nal

group of steps is at most logn2 = 2 logn. However, all of our steps for the original problem

have been replaced by a sequence of n steps, making the e�ect of this �nal step insigni�cant,

and thus we have an approximation preserving approximation, with a polynomial blowup in

the size of the problem.

Proof of Theorem 24:

Given an instance of and/or scheduling, we realize it as an instance of removing a given

part, restricted to linear moves, while minimizing the number of steps. We create one part

for each task in the scheduling problem. The number of graphs in our family of motions is

exactly equal to the max or-degree of the scheduling problem. By default, each of the graphs

is complete, however we will delete the following edges. For an and-task, ti, we will modify

the �rst graph by deleting edges (ti; a) for all a 62 Pi. In this way, part ti can be removed

using this graph, if and only if all of its corresponding predecessors have been previously

removed. For an or-task, tj , with degree �, we will modify the �rst � graphs as follows.

For each a 2 Pj , we will modify one of the graphs by deleting all edges (tj ; b) for all b 6= a.

In this way, part tj can be removed using this graph so long as part a is priorly removed.

Therefore, if any one of the predecessors has been removed, then there will be some graph

which allows for the removal of tj with a linear move. This vas instance is exactly the

original and/or scheduling instance, where the number of (linear) steps required is equal to

the number of scheduled tasks.

Proof of Theorem 25:

Given an instance of removing a key part with linear steps, we create an instance of and/or

scheduling as follows. Our intuition is to equate the removal of a part with the scheduling

of two tasks, namely one task which says \I am prepared to remove part p in direction d"

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 61

and a second task which says \part p has been removed." We implement this as follows. For

each part p we create task tp, and for each pair (p; d), with part p 2 P and direction d 2 F ,
we create task t̂(p;d). We equate task tp with the statement, \part p has been removed" and

so we make it an or-task with task t̂(p;d) in its predecessor set for each direction d (we must

�rst be prepared to remove the part in at least one direction). We equate task t̂(p;d) with the

statement \I am prepared to remove part p in direction d," and thus we make it an and-task

with task ta in its predecessor set for every outgoing2 edge (p; a) 2 d.

For this construction, any solution to the scheduling problem can be translated to a

solution of the vas problem with the number of removed parts at most half of the number

of scheduled tasks. Similarly every solution to the vas problem can be translated directly

to a solution to the scheduling problem with the number of scheduled tasks exactly twice

the number of removed parts. Therefore, our absolute approximation ratio is preserved.

However, our construction requires a polynomial blowup in the problem size, therefore what

we have shown is that an f(n)-approximation algorithm for and/or scheduling gives us an

f(poly(n))-approximation algorithm for this vas variant3.

Proof of Theorem 26:

Given an instance of vas where the goal is to minimize the total number of steps, we wish

to transform this instance into a new problem where we charge for the number of non-linear

steps. The only di�culty is that when charging only for non-linear steps, any linear steps

may be done for free. Our solution to this is quite simple. If we turn every part into two

parts which are glued together, then an original linear step is no longer linear, and thus will

be charged accordingly.

We implement this as follows. For every part a we create a new part a0. For every graph

in F we add edges (a; a0) and (a0; a) for all parts, thereby gluing the new part to the original

part. Finally we add one additional graph to the family of motions, de�ned as follows. This

graph is a bi-directional clique on the entire set of nodes, with the edges (a; a0) and (a0; a)

deleted for all parts a. For any subassembly which contains two original parts, such as a and

b, we claim that this graph will be strongly connected, and thus of no use. However, for any

two part subassembly such as a and a0, this graph will allow the two parts to be separated.

2Actually, this only accounts for the possibility of removing part p away from the rest of the subassembly

in this direction. As we can consider the \reverse" operation of removing the rest of the subassembly away

from p, we should really construct two parts for each such pair, where the second checks for all incoming

edges.
3If the family of graphs has constant size, then this construction simply requires a linear increase in size.

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 62

Notice that this separation can be done with a linear move, and thus in our new setting, we

will not be charged for such an operation.

For any of the goals, we claim that there is a one-to-one correspondence between solution

of the original setting, and solutions of the new setting which speci�cally use the new graph

only at the end. Furthermore, we note that the costs of the corresponding solutions in their

respective settings will be exactly the same, as all steps in the original setting, both linear

and non-linear, have been turned into non-linear steps, and any steps using the newest graph

are linear, and thus do not a�ect the cost.

Proof of Theorem 27:

Both of these problems are simply special cases of removing a set of parts, as mentioned in

Section 3.2.1.

Proof of Theorem 28:

Both of these problems are simply special cases of separating a set of parts from each other,

as mentioned in Section 3.2.1.

6.5 Hardness Results

In the previous section, we gave reductions which related various versions of vas to each

other, in terms of the level of their inapproximability. Now we will rely on the hardness of

some other problems to establish true inapproximability results for most variants of vas. Our

�rst set of results will be a direct consequence of the hardness of and/or scheduling shown

in Chapter 5. Our second set of results will show weaker inapproximability results for a case

not covered by our other reductions, namely minimizing the number of re-orientation when

the family of motions is restricted to be of constant size. These results come from a natural

reduction from the Loading Time Scheduling Problem [8].

Theorem 29 It is quasi-NP-hard to achieve a 2log
1�
 n-approximation for any
 > 0, for

the problem of minimizing the number of steps while removing a key part when restricted to

linear operations. This result applies even when jFj = 2. (For one graph, this problem is

polynomially solvable.)

Proof: This is a direct result of Theorem 17, combined with Theorem 24.

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 63

Corollary 30 It is quasi-NP-hard to achieve a 2log
1�
 n-approximation for any
 > 0, for

minimizing the cost of many other variants of vas. A summary of the results are given in

Tables 6.1{6.3.

Proof: These results are a combination of Theorem 29, together with the many reductions

given in Section 6.4. See Tables 6.1{6.3 for the full results. Each table entry additionally

refers to the relevant problem that is used to establish the lower bound as well as the theorem

containing that reduction.

Theorem 31 We consider minimizing the number of re-orientations, when the family of

motions is restricted to be of constant size, (R2/C2). For any of the �ve goals, we prove the

following two results, (i) for jFj = 3, this problem is NP-complete; (ii) for jFj � 4, there

exists an � > 0, such that achieving an jFj�-approximation is NP-hard. Both of these facts

hold with or without the linear restriction, R1. Furthermore these same lower bounds can be

shown for minimizing the number of steps (R2/C4) for all applicable goals.

Proof: We begin by proving this result for the goal of removing a key part from the

assembly. We will give a reduction from the Loading Time Scheduling Problem, de�ned as

follows [8]. There is a set of n jobs, and � machines, and each job, j, can only be performed

by some subset of the machines, M(j). An algorithm pays for loading a machine, but once

that machine is loaded, it may perform any available operations at no additional cost. Finally,

the jobs have (standard) precedence constraints, represented by a directed acyclic graph G.

The overall cost is the sum of the machine loading times for the sequence. They consider a

weighted version where each machine mi has loading time l(mi).

We give a reduction from the ltsp problem when all loading times are equal to 1, to the

vas problem of removing a key part (with or without the linear restriction), while minimizing

the number of re-orientations. Given an instance of ltsp we create an instance of vas with

a part for each job in the ltsp instance, and one additional part, key, whose removal will be

our goal. For each machine m, we create a graph Gm 2 F . The graph will be a superset of

the precedence graph, G, given in the ltsp instance4, augmented with the edge (key; i) for

all jobs i, as well as the edge (j; key) for any job, j, such that m 62 M(j). An example of

such a graph is given in Figure 6.4.

4actually, we reversal all edges of G, as [8] de�nes an edge from x to y as signifying that y cannot be run

until after x.

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 64

key

graph G

Figure 6.4: Reduction from Loading Time Scheduling Problem

We begin by considering the problem when restricted to linear moves, and we associated

the removal of a part with the scheduling of a job in the ltsp instance. We claim that our

graph Gm allows for the immediate removal of part j by a linear step, if and only if job j

can be immediately scheduled on machine m. Assume that job j can currently be scheduled

on machine m. In this case it must be that m 2 M(j) and that all predecessors of j have

already been scheduled. But in this case we claim that vertex j has no outgoing edges in

graph Gm, and thus can legally be removed using that graph. Since m 2M(j), then vertex j

does not have an edge to key, and since all of the predecessors of job j have been previously

scheduled, then vertex j does not have any outgoing edges remaining from the original graph

G. Similarly, if job j cannot be immediately scheduled, then it must be either because

m 62M(j) or else one of the predecessors of j has not yet been scheduled. If m 62M(j), then

both edges (key; j) and (j; key) exist and hence j and key cannot be separated. Instead, if

one of the predecessors of j, call it b, has not yet been scheduled, than the edges (key; j), and

(j; b) will exists, and thus node j has both an incoming and outgoing edge, and thus cannot

be removed with a linear operation. For this reason, we claim that any solution to the ltsp

instance can be translated to a solution with equal cost for removing the key part, and vice

versa, and thus we have an approximation preserving reduction. At this point, we rely on

results shown in [8] combined with a result of [59], to prove our claims, where the number of

machines for ltsp corresponds to jFj.

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 65

Notice that this exact construction, proves the result for the full disassembly problem,

as our product will be fully disassembled exactly when all parts have been removed from

the key. For the problem of separating a pair, we can use a trick similar to Theorem 19, by

creating one new part, k0, which is to be separated from k. In each of our existing graphs,

we add the edge (k; k0), and edges (k0; a) for all nodes a 6= k. In this way, part k0 behaves as

would a job that could be scheduled on any machine, but which has precedence constraints

that require that all other jobs are scheduled before it. Therefore, the identical results hold

for the problem of separating two parts.

This concludes the proof for all the cases when restricted to linear moves. If we allow non-

linear moves, this construction still holds for the number of re-orientations. The fundamental

observation is that if a single graph in our construction allows for a set of parts to be removed

through a sequence of linear operations, then that graph also allows for the removal of all

of those parts at once in a single operation. This is because there cannot be an edge going

from one of these parts to one of the parts in the remaining subassembly, as if this were the

case than the part with such an outgoing edge could not possibly have been removed with a

linear step. This proves our result for re-orientations without the restriction to linear steps.

Because all of the progress of each re-orientation can be made using a single step, the optimal

number of steps is exactly equal to the optimal number of re-orientations. In this way, we get

similar lower bounds for variant R2/C4, when applied to all goals except full disassembly.

6.6 Open Problems

The foremost open problems for this chapter are to improve any of the lower bounds given

in Tables 6.1{6.3. We will discuss several of the variants speci�cally.

� The most dramatic improvement would be to extend the current lower bounds of

2log
1�
 n to instead achieve n� lower bounds for the hardest variants.

� Is it possible to produce lower bounds for minimizing the number of non-linear steps or

the overall number of steps, when restricted to a constant size family of graphs (R2/C3

and R2/C4)? The di�culty is the following. Our initial hardness results relied on

the problem G2/R1R2/C4 where the problem was restricted to linear steps, and two

graphs. In the proof of Theorem 22, we arti�cially enforced the restriction to linear

CHAPTER 6. INAPPROXIMABILITY OF VIRTUAL ASSEMBLY SEQUENCING 66

moves, so that we were able to lift the restriction from the problem de�nition. However,

our reduction required that we replaced each graph with linearly many new graphs, and

therefore we were no longer able to restrict our problem to a constant size family of

graphs. For this reason, we were not able to give any lower bounds for these variants.

� For problem G4/R1R2/C4 our reductions required that jFj � 4 for the goal of separ-

ating a pair, even though the results for the corresponding problem when removing a

key part applied for jFj = 2. What can be said about G4/R1R2/C4 when jFj = 2 or

jFj = 3?

� Can any lower bounds be proven for minimizing the depth for the full disassembly

problem with a constant size family of graphs? Is the problem NP-hard?

Chapter 7

Inapproximability of Geometric

Settings

7.1 Introduction

While the inapproximability results of Chapter 6 give strong evidence that minimizing the

cost of assembly sequences is quite di�cult, it does not prove so conclusively. The reductions

which we gave in our general vas model do not automatically apply to the original geometric

assembly sequencing problems. This includes the inapproximability proofs and similarly all

of the reductions relating the hardness of di�erent variants of our problem to each other.

The reason these results do not apply is that a hard instance of the general problem may

not be realizable using geometric input. It is possible that, by generalizing the original

problem, we may have made it much more di�cult. In fact, there are many general problems

in the literature which have proven signi�cantly easier to approximate, once restricted to a

geometric setting (see Section 2.3).

For these reasons, we consider the di�culty of these same assembly sequencing problems,

in this chapter, when restricted to various geometric settings. We prove lower bounds against

the approximability of three di�erent complexity measures, using three di�erent geometric

settings. We begin by studying the minimum number of directions needed for any of the �ve

goals, in a setting of three-dimensional polyhedral assemblies, when the allowable motions

are either in�nitesimal or in�nite translations. Secondly, we consider minimizing the number

of re-orientations for any of the �ve problem goals, when restricted to linear moves. We

give a lower bound construction using a two-dimensional polygonal assembly, showing the

67

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 68

inapproximability when restricted to removing one part at a time. Finally, for minimizing the

number of steps needed in removing a key part or separating a key pair, we give our strongest

inapproximability results. We prove a 2log
1�
 n lower bound for the approximability, using

an assembly consisting entirely of unit disks in the plane, where disks are removed using

translations to in�nity. This result, surprisingly, matches our strongest known lower bounds

for the identical problem variants in the general vas framework.

We present the following three theorems in this chapter, with the proofs given in the

following sections. The results for all goals are summarized in Table 7.1.

Theorem 32 We consider minimizing the number of directions used (C1), for a polyhedral

assembly in three-dimensions, restricted to either in�nitesimal or in�nite translations. In

this setting, it is NP-hard to minimize the number of distinct directions for any of the goals

(G1, G2, G3, G4, G5). This is valid with or without the linear restriction, R1.

Theorem 33 We consider minimizing the number of re-orientations used when restricted to

linear steps (R1/C2), for a polyhedral assembly in two-dimensions, using either in�nitesimal

or in�nite translations. For all �ve goals, we prove,

(i) When jFj = 3, minimizing the number of re-orientations is NP-complete.

(ii) When jFj = 4, achieving a (1 + c)-approximation is NP-hard for some c > 0.

(iii) In general, achieving a log� n-approximation is quasi-NP-hard, for some � > 0.

Theorem 34 We consider an assembly consisting solely of disks of unit radius, whose cen-

ters lie on a polynomial-sized grid in the plane. Our goal is to remove a key disk, and we

allow disks to be removed individual by translations to in�nity. For this setting, it is quasi-

NP-hard to approximate the minimum number of steps within a factor of 2log
1�
 n for any

 > 0. This bound also applies if we consider only translations along the positive X-axis

and Y -axis. Additionally, this construction generalizes to axis-aligned unit squares, and to

higher dimensions.

7.2 Graph Properties in Geometric Settings

Once restricted to a geometric setting, there should be a great deal more enthusiasm for

our ability to �nd low cost assembly sequences in various settings. Instances of vas drawn

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 69

Table 7.1: Inapproximability in geometric settings

R
1
R
2

C
o
n
st
a
n
t
F
a
m
il
y

&
L
in
ea
r

so
lv
a
b
le

b
y
co
m
p
u
ti
n
g
d
b
g
's

jF
j
=
2
:
so
lv
a
b
le

(j
F
j�
1
)-
a
p
p
ro
x
im
a
b
le

O
b
se
rv
a
ti
o
n
s
9
&
1
0

2
D
-p
o
ly
g
o
n
s

(G
1
,
G
2
,
G
3
,
G
4
,
G
5
)

jF
j
=
3
:
N
P
-c
o
m
p
le
te

jF
j
�
4
:
(1
+
c
)-
h
a
rd

T
h
eo
re
m

3
3

D
is
k
s
se
tt
in
g

(G
2
,
G
3
,
G
4
,
G
5
)

jF
j
�
2
:

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

3
4

R
2

C
o
n
st
a
n
t
F
a
m
il
y

so
lv
a
b
le

b
y
co
m
p
u
ti
n
g
d
b
g
's

jF
j
=
2
:
so
lv
a
b
le

(j
F
j�
1
)-
a
p
p
ro
x
im
a
b
le

O
b
se
rv
a
ti
o
n
s
9
&
1
0

2
(j
F
j
�
1
)-
a
p
p
ro
x

O
b
se
rv
a
ti
o
n
1
2

R
1

L
in
ea
r

3
D
-p
o
ly
g
o
n
s

(G
1
,
G
2
,
G
3
,
G
4
,
G
5
)

N
P
-h
a
rd

T
h
eo
re
m

3
2

2
D
-p
o
ly
g
o
n
s

(G
1
,
G
2
,
G
3
,
G
4
,
G
5
)

lo
g
�

n

-h
a
rd

T
h
eo
re
m

3
3

D
is
k
s
se
tt
in
g

(G
2
,
G
3
,
G
4
,
G
5
)

2
lo
g
1
�

n

-h
a
rd

T
h
eo
re
m

3
4

N
o
re
st
ri
ct
io
n
s

3
D
-p
o
ly
g
o
n
s

(G
1
,
G
2
,
G
3
,
G
4
,
G
5
)

N
P
-h
a
rd

T
h
eo
re
m

3
2

D
ir
ec
ti
o
n
s

C
1

R
e-
o
ri
en
ta
ti
o
n
s

C
2

S
te
p
s

C
4

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 70

from a geometric setting should have a great deal more structure, of which we can take

advantage. In order to have additional success for a particular setting, there are two issues

which must be handled. The �rst is to determine what additional properties exist in the

family of blocking graphs due to geometry. The following issue is how those properties can

be utilized algorithmically to better approximate the optimal cost of assembly sequencing.

We consider some of the related work in computational geometry discussed in Section 2.3.

For a collection of convex parts in two dimensions, Guibas and Yao show that for any given

direction, there will always exist some part which can be translated to in�nity in the direction

without disturbing the other parts [31]. This fact has an immediate impact for assembly

sequencing. For any given direction, this implies that the blocking graph will not contain any

directed cycles. This is an example of identifying additional structure on blocking graphs

from a geometric setting. Furthermore, this property can be readily used in �nding good

assembly sequences. Since each graph is acyclic, there exists a stack assembly sequence in

any direction, based on Observation 7. Therefore, if we wish to minimize the number of

directions for disassembling such a collection, we can be assured that a single direction is

su�cient, and thus we have the optimal cost solution. Similarly, this provides the optimal

solution for minimizing the number of re-orientations, and we can be sure to �nd the optimal

number of steps required which will be either one or two, based on Observation 11.

For convex parts in three dimensions, there certainly may exist cycles in the associated

blocking graphs. However, for instance, with balls in d dimensions, the result of Dawson

states that at least min(n; d+ 1) balls can be translated individually to in�nity. This fact

alone, does not necessarily tell us anything for a speci�c blocking graph, rather it gives us a

property for the family of graphs, namely that there must be at least min(n; d+ 1) distinct

parts, which have no outgoing edges in at least one blocking graph.

Similar results on the separability of objects may provide us with additional properties,

however they do not provide any immediate algorithmic results. For example, Toussaint

shows that for any two star-shaped polygons in two dimensions, there must exist some dir-

ection of translations which separates the two [73]. In terms of our graphs, this tells us that

there must be at least one blocking graph where the corresponding edge between two parts

is missing. Whether this property is helpful for assembly sequencing is not clear. Similarly,

he shows a very interesting property, namely that for a collection of general polygons in two

dimensions, if a given direction does not o�er a depth order, then it must be the case that

there exist two polygons which are interlocked (cannot be separated from each other) in that

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 71

P

Part Geometry Translation Freedom for Peg

Figure 7.1: A peg in a base

direction. As a graph property, this tells us that for any cycle in our blocking graphs, there

must actually exist two nodes which have a two-cycle. This too seems like a very relevant

property for assembly sequencing, but whether it can be used algorithmically is not clear.

7.3 A Special Case of Set Cover

Consider the following scenario in three-dimensions. Imagine a large,
at rectangle as the

base of an assembly, with the remainder of the parts as polygonal pegs which are embedded

into the base. Each peg will naturally have some speci�c region of directions, by which it can

be translated away from the base. An example of a single such peg is shown in Figure 7.1,

modi�ed from [67]. Now we consider the minimum number of directions which must be used

to remove all the pegs from the base. As pointed out in [78], this instance looks very much

like a Set Cover problem, in that we must choose a minimum number of directions, where

each direction allows for the removal of some set of pegs. Unfortunately, it does not seem

possible to realize an arbitrary instance of Set Cover in this way, so the lower bounds

for Set Cover do not apply. Instead, we examine a special case of Set Cover which we

call Convex Polygon Cover, which we are able to realize geometrically. We de�ne the

Convex Polygon Cover problem as follows,

Input: A collection, R, of (possibly degenerate) convex polygons in the plane.

Output: A set of points P , such that every polygon of R contains at least one point of P .
Cost: The number of points, jPj.

A similar, even more restricted problem, Rectangle Cover is de�ned in [62], where

all polygons are axis-aligned rectangles. It is not known whether Rectangle Cover is

NP-hard.

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 72

Lemma 35 We are able to realize any instance of Convex Polygon Cover using a

three-dimensional, polygonal assembly, where the goal is to remove a key part using as few

directions of translation as possible.

Proof: Given a set of polygons in the plane, we will consider the corresponding homogeneous

coordinates to project them onto the upper hemisphere [71]. Given a single such projection,

we can design a peg which can be removed from the base using exactly those directions

represented by the polygon. We simply create a peg which is embedded into the base, with

the shape of the polyhedral cone de�ning the projected polygon (for example, if the polygon

were a square centered around the origin, our corresponding peg would be a four-sided

pyramid embedded upside down with its tip in the base). For degenerate polygons, we may

use parallel planes with an arbitrarily small separation to de�ne our pegs. Each peg can be

made arbitrarily small, and so we may lay out many such pegs in the base, far enough apart

so that they will not interfere with each other's removal. This completes the construction.

To remove any given peg, we must at some point use a direction of translation which lies in

the corresponding polygonal region. Therefore, any assembly sequence which removes all the

pegs will provide a solution to the Convex Polygon Cover problem, where the number

of directions used is equal to the cost of the solution.

Lemma 36 The Convex Polygon Cover problem is NP-hard.

Proof: We will base this result on a reduction from the problem of Planar Ver-

tex Cover, which is known to be NP-complete [23]. Given an instance of Planar Ver-

tex Cover, we can simply let each edge of the graph be represented by a degenerate

polygon, and we consider this input to the Convex Polygon Cover problem. Without

loss of generality, there is no need to pick any point that is not at a vertex of the graph, in

covering the polygons. Therefore, there is a one-to-one correspondence between such solutions

to the Convex Polygon Cover instance and solution to the Planar Vertex Cover

instance. This completes the reduction, and thereby proves that Convex Polygon Cover

is NP-hard.

Proof of Theorem 32: For the goal of removing a keypart, this theorem is a result of

Lemmata 35 & 36. Using this exact construction, the product is fully disassembled exactly

when all pegs have been removed from the base, and so this proves the hardness for goal G1.

For the goal of separating two parts, we can split the base into two pieces, cutting it parallel to

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 73

A

C

B

C

B

C

A

C

A

A

B

C

A

S = {ABAC, CACA, ACBCB}

Figure 7.2: Example construction for SCS reduction

its top surface, so that all the pegs completely penetrate the �rst piece, and are embedded into

the second. The two parts of the base will be stuck to each other until all of the remaining

pegs share a common direction for removal, and hence separating the two key parts will

require the same number of directions as the original problem, proving the result for goal G4.

The goals G3 & G5, are generalization of the others, and thus the hardness results also apply.

7.4 Finding a Common Supersequence

Proof of Theorem 33: When constrained to using linear moves, we give a construction

which reduces the problem of �nding a common supersequence [23], to the problem of fully

disassembling an assembly consisting of polygons in two-dimensions. A string T is a super-

sequence of a string S, if S can be obtained by erasing zero or more symbols of T . Given

a �nite set of strings over alphabet �, a common supersequence is a string T which is a

supersequence for each string in the set. Given a set of s strings, with combined length n,

over an alphabet of size j�j = k, we build the following instance of removing a part from

an assembly. The base is a long,
at rectangle, and each sequence will be represented as a

tower of \square" blocks stacked on the base, with the towers spaced su�ciently far away

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 74

from each other. Each block will represent a symbol in a string, and will be attached to

the piece below it with a small \peg" inserted so as to restrict the separation to a single

direction of motion. Each alphabet symbol will be assigned a unique angle of separation for

the associated pegs. All of the directions will be chosen to lie in a su�ciently small cone so

as to prevent the individual towers from interfering with each other. A (modi�ed) example

is given in Figure 7.2.

If we assume that none of the input sequences contains consecutive occurrences of the

same character, then we claim that any solution for fully disassembling the product provides

us with a supersequence whose length is equal to the number of re-orientations, and vice versa.

If the supersequence input does have consecutive occurrences of the same character, we can

remedy this by doubling the size of the alphabet, replacing each occurrence of character a by

the sequence a1a2.

The problem of �nding the shortest common supersequence is known to be NP-hard

[23], and more recently it was shown to be Max-SNP-hard, even over a binary alphabet [9].

Therefore, by doubling the alphabet as above, we get that our problem of removing a part is

Max-SNP-hard, when jFj � 4. Also, it was shown in [40] that there exists a constant � > 0,

such that it is quasi-NP-hard to approximate the shortest common supersequence to within

a factor of log�n. Finally, even if strings have consecutive occurrences of the same symbol,

it was shown that for an alphabet of size j�j = 3, that �nding a common supersequence with

the minimum number of runs is NP-complete [59]. A run is de�ned as a group of consecutive

occurrences of the same symbol, and hence the number of runs is exactly equal to the number

of re-orientation in our problem. For this reason, minimizing the number of re-orientations

is NP-complete when jFj = 3. This proves our theorem for the full disassembly goal.

We can extend this construction to the case of removing a key part or separating a key

pair as follows. We introduce two extra parts, as shown in Figure 7.2, which are interlocked,

and which are attached to the bottom of the base with pegs which span the range of angles

used by the alphabet symbols. Because we are restricted to using linear operation, if we now

request for the base to be removed as the key part, this will require exactly the same number

of re-orientations as the original construction. Furthermore, if we request the separation

of the original base from one of the two new parts, this too requires the same number of

re-orientations. In this way, our reduction remains valid for all �ve of the possible goals.

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 75

Leaf Nodes

Internal Nodes

Figure 7.3: Overview of Disks construction

7.5 The Disks Problem

Proof of Theorem 34: Our proof is based on a reduction, with polynomial blowup, from

and/or scheduling with internal-tree precedence constraints, and with or-degree bounded

by two. (We do not require such a bound on the and-degree.) Given a hard instance from

Corollary 13, we construct an instance of the Disks problem. We assume, without loss of

generality, that or-nodes rely only on internal nodes.

Our scene consists entirely of disks with radius one, whose centers lie on a polynomially-

sized, integer grid. We prove this result directly for the case where only two directions of

translations are allowed, namely North and East. We place a wall of width 2W around the

perimeter of our working area which we consider immovable. We will place some holes in

the wall, described later, which allow a clear path out for some disks. We consider our main

working area as two sections, one for the mechanisms involving the interior nodes, and the

second section for the leaf node mechanisms. The overview of the construction is given in

Figure 7.3.

First we describe the mechanism involving the internal nodes. Since the internal-tree

de�nes a partial order on these nodes, we can number the internal nodes, T1; : : : ; TI so that

if an internal node depends on another internal node, it will have a higher index. For each

internal node, Ti, we create a disk,Di, centered at (6i; 6i). We de�ne the wall to the North by

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 76

1
2

A

1
3

A

D
1

AND-node 1, depends on (2,3)

D
3

D
2

1
3

O

1
2

O

D
1

OR-node 1, depends on (2,3)

D
2

D
3

Figure 7.4: Internal node mechanisms

placing a column of W disks with x-coordinates centered at 6i+2 for each disk Di, assuring

us that the disk itself has an \escape route" to the North. For the East wall, we place a row

of disks centered at y-coordinate 6i+2 in the case that disk Di is an or-disk, or else at 6i+1

in the case that disk Di is an and-disk. In this way, we assure an additional escape passage

to the East for an or-disk, but not for an and-disk.

Next, we add in additional disks to enforce the precedence constraints. For and-node,

Ti, blocked by node Tk 2 Pi (and thus i < k), we add a disk Ak
i centered at (6i+ 1; 6k� 1),

which will be forced to the East by our previous placement of the walls. For an or-node, Ti,

which depends on 2 nodes, Tk and Tl, we create two new disks, Ok
i located at (6i+1; 6k�1),

which will be forced East by our walls, and Ôl
i located at (6l�1; 6i+1), which will be forced

North. The entire internal node mechanisms are contained in a (6I + 1)� (6I + 1) square.

Examples are given in Figure 7.4.

The section for the leaf mechanisms begins at height 6(I + 1) so as to be higher than the

internal mechanisms. We can number the leaf nodes in any order, and we create a separate

mechanism for each leaf in a strip of height 2I . For a given leaf, La, we create what we term

a blockade, to the right of this strip. The blockade consists �rst of a diagonal chain of to the

Northeast of height 2I , followed by a horizontal chain of B disks to the East of the end of

the �rst chain (where B is determined later). The disk beginning the blockade is centered

at (6(I + 1); 6(I + 1) + Ia). The wall to the East of the blockade is removed, allowing the

disks of the blockade an escape. For any disk located in the horizontal strip associated with

La, escaping to the East will require an additional cost of at least B to break through the

blockade. However this cost is only charged once per blockade, after which any disks in the

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 77

Internal nodes 1,2,3 depend on Leaf a

B disks

L 1
a

L

L 3
a

a
2

Figure 7.5: Leaf node mechanism

horizontal strip may escape. Now, for every internal node Ti which depends on leaf La, we

create a disk Li
a, located at (6i+ 1; 6(I + 1) + Ia + 2i), which is forced East by the walls.

Figure 7.5 shows an example of a leaf mechanism.

To complete the construction, we set the blockade value, B = 4I(L+ I), to be greater

than the total number of disks in the remainder of the internal and leaf mechanisms combined.

In this way, the number of blockades removed dominates any additive costs in the rest of the

construction. Finally, we assign W = B(L + 1), so that the cost of removing all non-wall

disks is less than the cost of digging a single new hole through any part of the wall. For this

reason, we may assume without loss of generality that any solution to this Disks instance

has cost at most W . Finally, we note that the wall has perimeter which is O(BL), and hence

the total number of disks in our construction is polynomially bounded. An example of the

�nal construction is given in Figure 7.6.

It is not hard to verify that for this Disks instance, a solution for removing the root disk

with cost at most kB can be translated to an and/or solution of cost at most k. Similarly,

an and/or solution of cost k can be translated to a Disks solution with cost less than

(k+1)B. Therefore, approximating the Disks problem to within a factor of 2log
1�
 n for any

 > 0 is quasi-NP-hard, as the additive error and the polynomial increase of the input size

disappear by adjusting
.

Our proof shows the hardness of the Disks problem when translations are limited to the

North and East. If we allow translations in arbitrary directions, the theorem holds using

this same construction. Furthermore, even if we are not restricted to linear moves, we could

prove the same lower bound for minimizing the number of disks removed.

It is also easy to see that the disks can be replaced by axis-aligned, 2 � 2 squares and

the construction still holds. For higher dimensions, the walls can be extended to block any

useful motions in other dimensions, while still using polynomially many disks.

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 78

Figure 7.6: A complete Disks construction

7.6 Open Problems

The overwhelming open problem is to better understand the approximability of various cost

measures in di�erent geometric settings. Although we have given several lower bounds for

geometric settings, in many cases these bounds are far weaker than the corresponding bounds

for vas. However, even despite this, we have not been able to give any new non-trivial upper

bounds which take advantage of the geometric settings, and so the gaps between the upper

and lower bounds are enormous. Besides those discussed in this chapter, there are many

other interesting geometric settings to study. We leave these studies for future research.

Finally, we list several open questions which are more closely related to the settings of

this chapter.

� Can the NP-completeness of Convex Polygon Cover be strengthened to achieve

stronger inapproximability results for the minimum number of directions?

� In regard to the minimum number of re-orientations, can the two-dimensional con-

struction from Shortest Common Supersequence be modi�ed to handle the case

CHAPTER 7. INAPPROXIMABILITY OF GEOMETRIC SETTINGS 79

without the linear restriction? (As is, without the restriction, one would be able to

remove the towers from the base without taking them apart).

� If three dimensions are used, can the construction from Shortest Common Super-

sequence be modi�ed to handle the case without the linear restriction?

� Is it possible to develop an n� approximation algorithm for removing an axis-aligned

unit disk with linear operations, while minimizing the number of steps? What about if

restricted to positive X and Y axes? What if we consider unit squares instead?

� Does there exists a collection of unit-squares which requires !(
p
n) steps to remove a

given square, when all directions of in�nite translations are allowed?

Chapter 8

Conclusions and Open Problems

We explain the lack of progress in �nding optimal or near-optimal assembly sequences by

formally proving the inapproximability for minimizing the cost of an assembly sequence for a

variety of desired cost measures. We look at several variants of the problem based on either

full or partial (dis)assembly, and we classify the approximability of the problems based on

the desired cost measure and additional restrictions placed on the allowed sequences.

For a graph-theoretic generalization of these problems, we show that achieving an approx-

imate solution within a factor of 2log
1�
 n of optimal, for any
 > 0, is di�cult for many of

the cost measures we consider. As a special case, we prove similar hardness results for the

problem of scheduling with and/or precedence constraints. Finally, as our graph-theoretic

problem is a generalization, we prove hardness results for several complexity measures in

simple geometric settings. For minimizing the number of parts which must be removed to

access a key part, we match our strongest inapproximability results, even for a setting con-

sisting entirely of unit disks in the plane, while using simple translations to in�nity to remove

parts. For minimizing the number of directions used or the number of re-orientations, our

geometric lower bounds are far weaker than their graph-theoretic counterparts.

Our hope is that our work can be used to better understand the source of the di�culties,

possibly leading the way to successful approximation algorithms, or else in redirecting future

e�orts into identify other structure or properties of industrial assembly sequencing instances

which would allow for better approximations.

The overwhelming open problem which remains is to develop non-trivial approximation

algorithms for any of the settings which we study. The importance of our graph-theoretic

model is that it captures techniques that are currently used for �nding feasible sequences

80

CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS 81

for a great deal of geometric settings. Achieving any positive results in this model would

immediately apply to all of these geometric settings. Although our lower bounds show that

success in this model is limited, achieving something such as a
p
n-approximation would still

be of great practical value. Automated assembly sequencers are beginning to have more

impact in industrial use, and for a manufacturer, it is of no comfort to simply say that a

problem is di�cult. The product is going to have to be manufactured one way or another,

and so any improvement to the cost is quite valuable.

Alternatively, it may be the case that by studying di�erent geometric settings individually,

much better approximations can be achieved by taking advantage of additional structure in the

problem. Although we have shown that in some cases, the geometric problem is indeed quite

hard, many of our geometric lower bounds are far weaker than the general bounds. These

geometric problems are the true motivation for this work and so future research should either

provide approximation algorithms for these settings, or else improve the geometric lower

bounds to justify the lack of progress. Speci�c open questions, closely related to our work,

have been listed at the end of relevant chapters, in Sections 5.5, 6.6 and 7.6.

Finally, there are many additional variations which can be added to our original model

of virtual assembly sequencing, de�ned in Chapter 3. For example, although we tried to

compile a relatively complete list of cost measures which have been considered by previous

research, there are many other natural measures which may be interesting in practice. For

example many of our cost measures can be re-de�ned as weighted version. For instance,

rather than charge a sequence for the number of steps, it may be useful to assign weights to

the di�erent members of the family of motions, so that more complicated motion types can

be allowed, but with higher cost.

Other restrictions can also be added to our graph-theoretic model quite naturally. One in-

teresting constraint that has been considered quite often in assembly sequencing is to require

that all subassemblies which are used during the construction of a product are connected sub-

assemblies [32, 47, 74]. Generally, unconnected subassemblies require additional expensive

�xturing, and are more troublesome in terms of stability and maneuverability. The additional

connectedness restriction can easily be modeled as a part of vas. We include one additional,

undirected graph, the connection graph GC , which has a node for each part in the assembly,

and a directed edge between two parts if they are in contact in the �nal assembly. With

this additional restriction, even the question of �nding a feasible assembly sequence is an

issue, as the standard algorithm is no longer correct. For �nding a feasible sequence for

CHAPTER 8. CONCLUSIONS AND OPEN PROBLEMS 82

the original problem, Observation 2 assured us that the removal of a part could not pos-

sibly disallow a future possible operation and thus any valid partitioning could be used with

the subassemblies handled recursively, however this observation is not valid anymore with

connectedness required. As a special case, when all graphs in the family F are subsets of

the connection graph, �nding a feasible assembly sequence can be done in polynomial time,

however it remains an open question for the general case, whether a feasible sequence can be

�nd in polynomial time with this connectedness requirement [32]. Other additional restric-

tions, common to assembly planning, are surveyed in [42, 43], where they show that several

of the constraints can be naturally integrated into the ndbg approach.

Appendix A

Tables of Experimental Results

These tables contain the results of the experiments described in Section 4.5.

A.1 Number of Steps for Removing a Part with Linear Re-

striction

bell9-linear (9 parts, 5 graphs)

Part lb1 lb2 lb3 lb4 OPT-lin rbest ravg

1 2 2 2 2 2 2 3.4

4 3 3 4 4 4 4 6.9

6 2 2 2 2 2 2 4.9

TIME 10 203 3440 14780 303 23

bell17-linear (17 parts, 5 graphs)

Part lb1 lb2 lb3 lb4 OPT-lin rbest ravg

1 2 2 2 2 2 2 5.2

6 2 2 2 2 2 2 7.4

7 2 2 2 2 2 2 7.5

9 2 3 3 3 3 3 9.9

10 3 3 4 4 4 4 11.7

11 2 2 2 2 2 2 5.3

14 2 2 2 2 2 2 7.9

TIME 10 193 3716 13849 1816 36

83

APPENDIX A. TABLES OF EXPERIMENTAL RESULTS 84

bell22-linear (22 parts, 5 graphs)

Part lb1 lb2 lb3 lb4 OPT-lin rbest ravg

1 2 2 2 2 2 2 5.4

6 2 2 2 2 2 2 7.9

7 2 2 2 2 2 2 8.2

9 2 3 3 3 3 3 11.4

10 3 3 4 4 4 4 15.7

11 2 2 2 2 2 2 5.7

14 2 2 2 2 2 2 9.2

16 3 3 4 5 5 7 17.7

17 2 2 2 2 2 2 8.0

19 2 2 2 2 2 2 8.2

20 2 2 3 3 3 3 14.2

21 2 2 2 2 2 2 8.4

TIME 10 182 3907 15853 6447 46

eng12-linear (12 parts, 5 graphs)

Part lb1 lb2 lb3 lb4 OPT-lin rbest ravg

0 3 3 4 4 4 4 7.8

2 2 2 3 3 3 3 7.0

3 2 2 2 2 2 2 4.8

4 2 3 3 3 3 3 7.6

5 2 3 3 3 3 3 7.6

7 2 2 2 2 2 2 4.2

8 2 2 2 2 2 2 3.2

TIME 10 201 4164 14863 536 27

APPENDIX A. TABLES OF EXPERIMENTAL RESULTS 85

eng23-linear (23 parts, 12 graphs)

Part lb1 lb2 lb3 lb4 OPT-lin rbest ravg

0 2 2 3 3 3 3 14.0

1 2 2 2 2 2 2 8.9

2 2 3 3 3 3 3 14.0

3 2 3 3 3 3 3 14.0

5 3 3 5 5 5 7 18.2

7 2 2 2 2 2 2 7.8

8 2 2 2 2 2 2 5.9

10 4 5 6 6 7 9 19.1

11 3 4 4 4 4 4 15.8

12 2 2 2 2 2 2 9.1

15 2 2 2 2 2 2 9.5

TIME 24 1545 103669 585807 196269 139

eng30-linear (30 parts, 13 graphs)

Part lb1 lb2 lb3 lb4 OPT-lin rbest ravg

0 4 4 5 5 5 6 21.2

1 2 2 2 2 2 2 11.1

2 2 3 3 3 3 3 18.2

3 2 3 3 3 3 3 18.2

5 3 5 7 7 7 14 25.4

7 2 2 2 2 2 2 10.0

8 2 2 2 2 2 2 7.3

10 6 7 9 9 10 17 25.6

11 3 4 4 4 4 4 20.6

12 2 2 2 2 2 2 11.8

15 2 2 2 2 2 2 12.0

17 2 2 2 2 2 2 12.0

18 2 2 2 2 2 2 11.7

25 2 2 2 2 2 2 9.3

TIME 26 2009 164994 1004465 234225 191

APPENDIX A. TABLES OF EXPERIMENTAL RESULTS 86

eng42-linear (42 parts, 13 graphs)

Part lb1 lb2 lb3 lb4 OPT-lin rbest ravg

0 8 8 9 9 9 17 35.3

1 2 4 6 6 6 9 32.2

2 2 3 4 5 7 16 35.1

3 2 3 4 5 7 15 35.2

5 4 5 5 5 5 6 26.9

14 6 10 13 15 - 31 38.3

16 2 2 2 2 2 2 14.5

17 2 2 2 2 2 2 10.6

19 6 10 11 12 - 36 36.5

22 3 4 4 4 4 7 27.6

23 2 2 2 2 2 2 16.9

26 2 2 2 2 2 2 16.9

28 2 2 2 2 2 2 16.5

29 2 2 2 2 2 2 16.7

36 2 2 2 2 2 2 13.4

41 2 6 10 10 10 25 37.9

TIME 26 2865 271154 2652067 { 324

APPENDIX A. TABLES OF EXPERIMENTAL RESULTS 87

sno29-linear (29 parts, 1250 graphs)

Part lb1 lb2 lb3 lb4 OPT-lin rbest ravg

0 3 4 5 6 11.7

2 3 4 9 10 16.4

3 2 4 9 11 17.9

6 3 4 9 10 17.5

7 3 5 10 11 17.4

8 2 3 6 7 13.7

9 2 3 8 11 18.2

10 3 5 8 9 16.8

11 2 3 6 6 12.8

12 2 4 7 7 16.7

13 2 3 4 4 8.4

14 3 4 4 4 6.7

15 3 4 7 9 13.5

16 2 3 3 3 5.8

17 2 2 2 2 3.5

18 4 4 6 6 12.0

19 3 4 8 10 17.4

20 2 3 3 3 5.8

21 3 4 9 11 18.1

22 2 2 2 2 3.6

23 3 4 7 7 15.1

24 3 4 8 10 17.7

25 3 4 6 6 12.4

26 2 3 4 4 8.3

27 3 4 5 5 8.7

TIME 2500 29004200 207372 14999

A.2 Number of Re-orientations for Removing a Part with No

Restrictions

bell9 (9 parts, 5 graphs)

Part OPT size1 size2 edges1 edges2 rbest rand1

4 3 3 3 3 3 3 3

6 2 3 2 3 2 2 2.6

TIME 20.0 15.0 17.5 15.0 17.5 13.9

APPENDIX A. TABLES OF EXPERIMENTAL RESULTS 88

bell17 (17 parts, 5 graphs)

Part OPT size1 size2 edges1 edges2 rbest rand1

10 3 3 3 3 3 3 3

14 2 3 2 3 2 2 2.6

TIME 20.0 15.0 17.5 15.0 17.5 13.9

bell22 (22 parts, 5 graphs)

Part OPT size1 size2 edges1 edges2 rbest rand1

10 3 3 3 3 3 3 3

14 2 2 2 2 2 2 2.4

16 2 2 2 2 2 2 2

17 2 2 2 2 2 2 2

TIME 15.0 11.3 13.8 11.3 13.8 11.8

eng12 (12 parts, 5 graphs)

Part OPT size1 size2 edges1 edges2 rbest rand1

0 2 2 2 2 2 2 2

2 2 2 2 2 2 2 2

4 2 3 2 2 2 2 2.8

5 2 3 2 2 2 2 2.8

TIME 15.0 12.5 15.0 12.5 15.0 12.0

eng23 (23 parts, 12 graphs)

Part OPT size1 size2 edges1 edges2 rbest rand1

0 2 2 2 2 2 2 2

2 2 3 2 3 2 2 2.9

3 2 3 2 3 2 2 2.9

5 2 2 2 2 2 2 2

10 3 4 4 4 4 3 3.8

11 2 4 2 4 2 2 3.7

15 2 2 2 2 2 2 2

TIME 44.6 34.3 42.9 34.3 42.9 33.2

APPENDIX A. TABLES OF EXPERIMENTAL RESULTS 89

eng30 (30 parts, 13 graphs)

Part OPT size1 size2 edges1 edges2 rbest rand1

0 3 3 3 3 3 3 3

2 2 3 2 3 2 2 3.3

3 2 3 2 3 2 2 3.3

5 2 2 2 2 2 2 2.4

10 3 4 4 4 4 3 3.8

11 2 4 2 4 2 2 3.7

18 2 2 2 2 2 2 2

25 2 2 2 2 2 2 2

TIME 58.5 39.0 53.6 37.4 53.6 38.2

eng42 (42 parts, 13 graphs)

Part OPT size1 size2 edges1 edges2 rbest rand1

0 3 3 3 3 3 3 3

2 2 3 2 3 2 2 3.1

3 2 3 2 3 2 2 3.1

14 3 3 3 3 3 3 3.1

19 3 5 4 5 4 3 4.5

22 2 4 2 4 2 2 3.9

29 2 2 2 2 2 2 2

36 2 2 2 2 2 2 2

TIME 63.4 40.6 55.3 40.6 55.3 40.1

APPENDIX A. TABLES OF EXPERIMENTAL RESULTS 90

sno29 (29 parts, 1250 graphs)

Part OPT size1 size2 edges1 edges2 rbest rand1

0 5 9 10 13 8 5 10.7

2 9 13 13 14 11 9 13.3

3 9 11 12 12 10 10 14.0

6 9 11 12 14 12 10 13.8

7 9 14 13 14 12 10 14.0

8 6 11 10 10 10 7 12.1

9 8 11 14 12 9 9 13.5

10 7 14 14 14 10 7 13.7

11 6 11 9 9 8 6 11.3

12 7 10 14 14 10 8 13.3

13 4 7 6 5 6 4 7.8

14 4 13 4 7 4 4 6.0

15 7 12 12 13 10 8 11.7

16 3 4 4 4 4 3 5.3

17 2 3 2 3 2 2 3.3

18 6 13 10 13 8 6 10.9

19 8 11 14 13 9 9 13.6

20 3 4 4 4 4 3 5.2

21 9 11 12 13 11 10 14.3

22 2 3 2 3 2 2 3.1

23 7 10 10 10 10 7 12.8

24 8 12 12 11 12 10 14.3

25 6 9 10 13 9 6 11.1

26 4 7 6 5 6 4 7.7

27 5 10 6 7 6 5 8.2

TIME 116900 12200 26700 12500 25700 13255.5

Appendix B

Questioning the Claims of [20, 79]

In a sequence of two journal articles, Woo and Dutta present an algorithm for the removal

of a part (or multiple parts) from a product made of polyhedral parts in either two or three

dimensions [20, 79]. They allow for parts to be removed, one at a time, using translations

to in�nity. In their work, they claim that for products which have what they term the \total

ordering" property, their algorithm is guaranteed to produce the minimal cost assembly

sequence, when trying to minimize either the number of steps required or minimize the

number of adjacent parts removed. For these totally ordered products, this claim ammounts

to solving the (G2/C4/R1) variant for which we proved a 2log
1�
 n lower bound, even in the

Disks setting.

This potential contradiction leads us to reconsider the claims of optimality made in [20,

79], and the assemblies to which the algorithm applies. Unfortunately, we feel that their

presentation su�ers from being inconsistent and vague, and thus their claims are in question.

For starters, the description of their algorithm, the de�nition of the totally ordered properties,

and their claims for optimality are not well speci�ed. Furthermore, in the explanation of these

issues, there are signi�cant inconsistencies between the two versions of their papers. We will

begin by addressing their de�nitions and claims which we feel are not su�ciently clear.

Following this, we will give an example of a product very similar to an example they give,

for which their optimality claim does not hold.

91

APPENDIX B. QUESTIONING THE CLAIMS OF [20, 79] 92

a1

a2

Figure B.1: Freedom for In�nitesimal Translational

B.1 Cost Measure

The �rst issue for us is to understand what cost measure they claim to be optimizing. In

their �rst paper in 1991, they claim in Section 3.1 that \the DT thus constructed yields a

minimum number of removals (motions) in order to access a certain component" [79]. In the

1995 paper, they claim to remove a part while minimizing the number of adjacent parts which

are removed. In fact, in this second paper, they claim to be able to solve this task, even

when asked to remove an arbitrary set of parts. In any event, our example in Section B.4,

will serve as a counterexample to the optimality of both of these cost measures.

B.2 Motion Class

A second issue is understanding what motion class they allow in their setting. They are

very clear in that they consider strictly translational, one-step motions. In terms of whether

they wish to consider in�nitesimal translations versus translations to in�nity, they explicitly

express on the �rst page of [79] that there are several criteria for \clearing" a part from a

subassembly, and that they choose to adopt the criterion which requires that \the component

can be translated to in�nity." However, the subroutine which they present for checking for

the removability of a given part clearly checks only for in�nitesimal motion. The algorithm

Disassemblablewhich they present for computing the freedom of a part from a subassembly

is based entirely from examining the contact faces which the part in question shares with

adjacent parts [79]. As an example, if their algorithm were run on the two part assembly

which they provide in �gure 1.3(a) of [79], (our Figure B.1), it would determine that part

a1 can be successfully removed along the positive X-axis, when clearly this is not possible if

the part must be cleared to in�nity.

Based on their explicit description of the check for removability, we seem to have no choice

but to assume that they are considering only the local freedom for in�nitesimal translations.

APPENDIX B. QUESTIONING THE CLAIMS OF [20, 79] 93

This decision is also consistent with the fact that in their algorithm for disassembly, when

trying to �nd the e�ects of the removal of one part on the removability of other parts, they

only recheck the removal of those parts which are adjacent to the �rst part removed.

B.3 \Total Ordering"

The real issue in question is understanding the total ordering property which they de�ne for

a product. Their claims are simply that their algorithms are guaranteed to �nd the optimal

sequence for products which exhibit this special property, and so in order to refute such

claims, we must understand this property.

Originally, they de�ne this property in De�nition 1.3 of [79] as follows:

\An assembly is partially ordered if the disassembly of a component requires

an immediate prior disassembly of k components. If k < 2, the assembly is

totally ordered."

The concept is de�ned in a similar manner in [20], although the word immediate is no

longer present when they de�ne total ordering in Section 2.1 as:

\A sequential assembly S is partially ordered if the removal of a compon-

ent in the assembly requires the prior disassembly of k (> 1) components.

Otherwise, S is totally ordered."

These de�nitions now hinge on the concept of a part's removal \requiring the prior dis-

assembly" of k other parts. Unfortunately, this concept is never formalized in either paper,

although it is used repeatedly. Consider the statement that the removal of some part, call it

a requires the prior removal of k parts. We imagine two logical interpretations we may give

to this phrase. The �rst interpretation is that no matter how one tries to remove part a, any

valid sequence will always require at least k other parts to be removed before a (however,

the set of blocking parts may be di�erent for di�erent possible solutions). The second inter-

pretation is that there are k speci�c parts, which absolutely must be removed before a can

be removed, in any possible disassembly sequence.

If we take the �rst interpretation, simply that any valid sequence must �rst remove some

number of parts, then the notion of a totally ordered product is quite trivial, as it would

mean that every part of the product can be removed in either one or two steps. If this is

indeed the intended concept of total ordering, then their claims of optimality are quite trivial.

If every part requires either one or two steps for removal, it is quite simple to identify those

APPENDIX B. QUESTIONING THE CLAIMS OF [20, 79] 94

a

b

c

d e

Figure B.2: An example given by Woo and Dutta

parts which can be removed in one step from the full assembly. For all other parts, it must

be that the removal of some single other part must create the freedom for removing this part.

In fact, at one point, it seems that maybe this is the interpretation which they intend, as

they describe, in Section 3.3 of [20], a scenario in which \: : :the removal of each component

is possible after the removal of at most one other component and the assembly is totally

ordered. Clearly, then the height of DT is � 2 : : :" However, in this case, they still claim to

be able to produce the optimal sequence for removing a set of multiple parts minimally, and

it cannot possibly be accomplished to remove a large set of components, one at a time, using

at most two steps overall. Also, this interpretation would be somewhat surprising, given that

the examples they give of their algorithm in action (Figure 3.3 of [79] and Figure 4 of [20])

both result in trees with heights greater than two.

If we take the second interpretation, namely that a parts removal may rely on the prior

removal of some speci�c other part, this seems a more natural view for the concepts of de�ning

a partial order or total order. Unfortunately, if this is the interpretation, it is not clear at

a glance how to tell whether a given product has this required property or not. Also, in

this respect, their use of the phrase is quite puzzling, as they give an example in [20], of an

assembly which we show in Figure B.2. For this assembly, they consider removing the multiple

set of parts fd; eg, and they make the following statement in the �fth paragraph of Section 3.2:
\By inspection, we can verify that it is necessary and su�cient to remove component a for

disassembling component d and e." It is clear that the removal of a is certainly su�cient for

allowing the removal of parts d and e, however it is not at all necessary. One could remove

APPENDIX B. QUESTIONING THE CLAIMS OF [20, 79] 95

a

b

c

e fd

Figure B.3: Our counterexample for optimal disassembly

parts in the following order, b; c; d; e, and thus remove both d and e without removing a.

B.4 Counterexample

In [20], they consider the product which we showed in Figure B.2, and they walk through

the execution of their algorithm on this example, and show the resulting sequences which are

optimal. Here, we make a minor modi�cation to the identical product, breaking the original

part e into two parts e and f . Our new product is given in Figure B.3. If we now use the

same reasoning to walk through the execution of the algorithm on this new input, we get the

result of the DT pictured in Figure B.4. The algorithm would �rst determine that parts a,

b, or c may be removed at the top most level. The removal of part b or part c alone, does

not allow for any additional progress to be made. However, the removal of part a allows for

the new removal of part f , which in turn will now allow for the removal of part e, and this

in turn frees part d.

If we are interested in the removal of part d, this algorithm results in the sequence of

removals, a ! f ! e ! d. From their claims, it seems that we should be able to conclude

that this sequence is optimal for the removal of d, but clearly this is not the case. If our cost

measure is the total number of prior removal to access d, then this sequence has cost 3, and

similarly, if the cost measure is the number of adjacent parts removed, we �nd that the cost

is still equal to 3, as all parts in this assembly are adjacent to d. Clearly, for either of these

cost measures, the optimal sequence is �rst to remove b, followed by c, and then d, requiring

APPENDIX B. QUESTIONING THE CLAIMS OF [20, 79] 96

a b c

f

e

d

A

Figure B.4: The resulting DT for our counterexample

cost 2 by either metric.

Bibliography

[1] P. Agarwal, M. de Berg, D. Halperin, and M. Sharir. E�cient generation of k-directional

assembly sequences. In Proc. 7th ACM Symp. on Discrete Algorithms, pages 122{131,

1996.

[2] S. Arora. Polynomial-time approximation schemes for Euclidean TSP and other geomet-

ric problems. In Proc. 37th Symp. on Found. Comput. Sci., pages 1{11, 1996.

[3] S. Arora, L. Babai, J. Stern, and Z. Sweedyk. The hardness of approximate optima in

lattices, codes and linear equations. In Proc. 34th Symp. on Found. Comput. Sci., pages

724{733, 1993.

[4] S. Arora and C. Lund. Hardness of approximations. In D. Hochbaum, editor, Approx-

imation Algorithms for NP-Hard Problems. PWS Publishing Company, Boston, MA,

1996.

[5] S. Arora, C. Lund, R. Motwani, M. Sudan, and M. Szegedy. Proof veri�cation and

intractability of approximation problems. In Proc. 33rd Symp. on Found. Comput. Sci.,

pages 13{22, 1992.

[6] B. Baker. Approximation algorithms for NP-complete problems on planar graphs. J.

ACM, 41(1):153{180, 1994.

[7] D. Baldwin. Algorithmic methods and software tools for the generation of mechanical

assembly sequences. M.Sc. thesis, MIT, Cambridge, MA, 1990.

[8] R. Bhatia, S. Khuller, and J. Naor. The loading time scheduling problem. In Proc. 36th

Symp. on Found. Comput. Sci., pages 72{81, 1995.

97

BIBLIOGRAPHY 98

[9] P. Bonizzoni, M. Duella, and G. Mauri. Approximation complexity of longest common

subsequence and shortest common supersequence over �xed alphabet. Technical Report

117/94, Universita degli Studi di Milano, 1994.

[10] G. Boothroyd. Assembly Automation and Product Design. Marcel Dekker, Inc., New

York, NY, 1991.

[11] G. Boothroyd, P. Dewhurst, and W. Knight. Product Design for Manufacture and

Assembly. Marcel Dekker, Inc., New York, NY, 1994.

[12] S. Caselli and F. Zanichelli. On assembly sequence planning using petri nets. In Proc

IEEE Int. Symp. on Assembly and Task Planning, pages 239{244, 1995.

[13] S. Chakrabarty and J. Wolter. A hierarchical approach to assembly planning. In Proc.

IEEE Int. Conf. on Robotics and Automation, pages 258{263, 1994.

[14] B. Chazelle, H. Edelsbrunner, L. Guibas, R. Pollack, R. Seidel, M. Sharir, and

J. Snoeyink. Counting and cutting cycles of lines and rods in space. Computational

Geometry: Theory and Applications, 1(6):305{323, 1992.

[15] P. Crescenzi and V. Kahn. A compendium of NP optimization problems. Technical

Report SI/RR-95/02, Dipartimento di Scienceze dell'Informazione. Universit�a di Roma

\La Sapienza", 1995.

[16] R. Dawson. On removing a ball without disturbing the others. Mathematics Magazine,

57(1):27{30, 1984.

[17] M. de Berg. Ray Shooting, Depth Orders and Hidden Surface Removal. Springer-Verlag,

Berlin, Germany, 1993.

[18] M. de Berg, M. Overmars, and O. Schwarzkopf. Computing and verifying depth orders.

SIAM J. Comput., 23(2):432{446, 1994.

[19] F. Dehne and J.-R. Sack. Translation separability of polygons. Visual Computer,

3(4):227{235, 1987.

[20] D. Dutta and T. Woo. Algorithm for multiple disassembly and parallel assemblies. J.

Engineering for Industry, 117(1):102{109, 1995.

BIBLIOGRAPHY 99

[21] T. De Fazio and D.Whitney. Simpli�ed generation of all mechanical assembly sequences.

IEEE Trans. on Robotics and Automation, 3(6):640{658, 1987.

[22] U. Feige. A threshold of lnn for approximating set cover. In Proc. 28th ACM Symp.

Theory Comput., pages 314{318, 1996.

[23] M. Garey and D. Johnson. Computers and Intractability: A Guide to the Theory of

NP-Completeness. W. H. Freeman, New York, NY, 1979.

[24] D. Gillies. Algorithms to Schedule Tasks with AND/OR Precedence Constraints. Ph.D.

thesis, University of Illinois, Urbana, IL, 1993.

[25] D. Gillies and J. Liu. Scheduling tasks with AND/OR precedence constraints. SIAM J.

Comput., 24(4):797{810, 1995.

[26] M. Goldwasser, J.-C. Latombe, and R. Motwani. Complexity measures for assembly

sequences. In Proc IEEE Int. Conf. on Robotics and Automation, pages 1581{1587,

1996.

[27] M. Goldwasser and R. Motwani. Intractability of assembly sequencing: Unit disks in the

plane. In Proc. of the Workshop on Algorithms and Data Structures, page To appear,

1997.

[28] S. Gottschlich, C. Ramos, and D. Lyons. Assembly and task planning: A taxonomy.

IEEE Robotics and Automation Magazine, 1(3):4{12, 1994.

[29] R. Graham. Bounds on multiprocessing timing anomalies. SIAM J. Appl. Math., 17:416{

426, 1969.

[30] L. Guibas, D. Halperin, H. Hirukawa, and J.-C. Latombe R. Wilson. A simple and

e�cient procedure for polyhedral assembly partitioning under in�nitesimal motions. In

Proc IEEE Int. Conf. on Robotics and Automation, pages 2553{2560, 1995.

[31] L. Guibas and F. Yao. On translating a set of rectangles. In F. Preparata, editor,

Computational Geometry, Advances in Computing Research, pages 61{77. JAI Press

Inc., 1983.

[32] D. Halperin, J.-C. Latombe, and R. Wilson. A general framework for assembly planning:

The path space approach. Manuscript, 1997.

BIBLIOGRAPHY 100

[33] D. Halperin and R. Wilson. Assembly partitioning along simple paths: the case of

multiple translations. In Proc. IEEE Int. Conf. on Robotics and Automation, pages

1585{1592, 1995.

[34] J. H�astad. Clique is hard to approximate within n1��. In Proc. 37th Symp. on Found.

Comput. Sci., pages 627{636, 1996.

[35] R. Ho�man. A common sense approach to assembly sequence planning. In Computer-

Aided Mechanical Assembly Planning, pages 289{314. Kluwer Academic Publishers, Bo-

ston, 1991.

[36] L. Homem de Mello and A. Sanderson. AND/OR graph representation of assembly

plans. IEEE Trans. on Robotics and Automation, 6(2):188{199, 1990.

[37] L. Homem de Mello and A. Sanderson. Computer-Aided Mechanical Assembly Planning.

Kluwer Academic Publishers, Boston, 1991.

[38] L. Homem de Mello and A. Sanderson. A correct and complete algorithms for the

generation of mechanical assembly sequences. IEEE Trans. on Robotics and Automation,

7(2):228{240, 1991.

[39] J. Hopcroft, J. Schwartz, and M. Sharir. On the complexity of motion planning for

multiple independent objects: P-space hardness of the \Warehouseman's Problem". Int.

J. Robotics Research, 3(4):76{88, 1984.

[40] T. Jiang and M. Li. On the approximation of shortest common supersequences and

longest common subsequences. In Automata, Languages and Programming (Proc. 21st

ICALP), volume 820 of Lecture Notes in Computer Science, pages 191{202. Springer-

Verlag, 1994.

[41] D. Johnson. Approximation algorithms for combinatorial problems. J. Comput. Systems

Sci., 9:256{278, 1974.

[42] R. Jones and R. Wilson. A survey of constraints in automated assembly planning. In

Proc IEEE Int. Conf. on Robotics and Automation, pages 1525{1532, 1996.

[43] R. Jones, R. Wilson, and T. Calton. Constraint-based interactive assembly planning.

In Proc IEEE Int. Conf. on Robotics and Automation, page To appear, 1997.

BIBLIOGRAPHY 101

[44] V. Kann. Polynomially bounded minimization problems which are hard to approximate.

In Automata, Languages and Programming (Proc. 20th ICALP), volume 700 of Lecture

Notes in Computer Science, pages 52{63. Springer-Verlag, 1993.

[45] D. Karger, R. Motwani, and G. Ramkumar. On approximating the longest path in a

graph. In Proc. of the Workshop on Algorithms and Data Structures, volume 709 of

Lecture Notes in Computer Science, pages 421{432, 1993.

[46] S. Kaufman, R.Wilson, R. Jones, T. Calton, and A. Ames. The Archimedes 2 mechanical

assembly planning system. In Proc IEEE Int. Conf. on Robotics and Automation, pages

3361{3368, 1996.

[47] L. Kavraki and M. Kolountzakis. Partitioning a planar assembly into two connected

parts is NP-complete. Information Processing Letters, 55(3):159{165, 1995.

[48] L. Kavraki, J.-C. Latombe, and R. Wilson. Complexity of partitioning an assembly. In

Proc. 5th Canad. Conf. Comput. Geom., pages 12{17, Waterloo, Canada, 1993.

[49] S. Khanna and R. Motwani. Towards a syntactic characterization of PTAS. In Proc.

28th ACM Symp. Theory Comput., pages 329{337, 1996.

[50] S. Khanna, M. Sudan, and L. Trevisan. Constraint satisfaction: The approximability of

minimization problems. In Proc. 12th IEEE Comput. Complexity Conference, 1997.

[51] M. Klawe, W Paul, N. Pippenger, and M. Yannakakis. On monotone formulae with

restricted depth. In Proc. 16th ACM Symp. Theory Comp., pages 539{550, 1984.

[52] S. Krishnan and A. Sanderson. Path planning algorithms for assembly sequence plan-

ning. In Proc. Int. Symp. on Intelligent Robotics, pages 428{439, 1991.

[53] E. Lawler, J. Lenstra, H. Rinnooy Kan, and D. Shmoys. Sequencing and scheduling:

algorithms and complexity. In Handbooks in Operations Research and Management

Science, Vol. 4, pages 445{522. North-Holland, 1993.

[54] K. Lee and R. Gadh. Computer aided design for disassembly: a destructive approach.

In Proc. IEEE Int. Sym. on Electronics and the Environment, pages 173{178, 1996.

[55] S. Lee. Backward assembly planning with assembly cost analysis. In Proc IEEE Int.

Conf. on Robotics and Automation, pages 2382{2391, 1992.

BIBLIOGRAPHY 102

[56] S. Lee and Y. Shin. Assembly planning based on geometric reasoning. Computers and

Graphics, 14(2):237{250, 1990.

[57] A. Lowe and S. Niku. Methodology for design for disassembly. In ASME Publication

#DE, volume 81, pages 47{53, 1995.

[58] C. Lund and M. Yannakakis. On the hardness of approximating minimization problems.

J. ACM, 41(5):960{981, 1994.

[59] M. Middendorf. Supersequences, runs, and CD grammar systems. In J. Dassow and

A. Kelemenova, editors, Developments in Theoretical Computer Science, volume 6 of

Topics in Computer Science, pages 101{114. 1994.

[60] J. Millner, S. Graves, and D. Whitney. Using simulated annealing to select least-cost

assembly sequences. In Proc IEEE Int. Conf. on Robotics and Automation, pages 2058{

2063, 1994.

[61] H. Moradi, K. Goldberg, S. Lee, and R. Wilson. Geometry-based part grouping for

assembly planning. Manuscript, 1997.

[62] R. Motwani. Approximation algorithms. Stanford Technical Report STAN-CS-92-1435,

1992.

[63] B. Natarajan. On planning assemblies. In Proc. 4th ACM Symp. on Computational

Geometry, pages 299{308, 1988.

[64] C. Papadimitriou and M. Yannakakis. Optimization, approximation, and complexity

classes. J. Comput. Systems Sci., 43(3):425{440, 1991.

[65] C. Papadimitriou and M. Yannakakis. The traveling salesman problem with distances

one and two. Mathematics of Operations Research, 18(1):1{11, 1993.

[66] R. Raz and A. Wigderson. Monotone circuits for matching require linear depth. J. ACM,

39(3):736{744, 1992.

[67] B. Romney, C. Godard, M. Goldwasser, and G. Ramkumar. An e�cient system for

geometric assembly sequence generation and evaluation. In Proc. ASME Int. Computers

in Engineering Conference, pages 699{712, 1995.

BIBLIOGRAPHY 103

[68] N. Shyamsundar and R. Gadh. Selective disassembly of virtual prototypes. In Proc.

IEEE Int. Conf. on Systems, Man, and Cybernetics, volume 4, pages 3159{3164, 1996.

[69] N. Shyamsundar and R. Gadh. Geometric abstractions to support disassembly evalu-

ation. In Proc. 23rd Design Automation Conference, page To appear, 1997.

[70] J. Snoeyink and J. Stol�. Objects that cannot be taken apart with two hands. In Proc.

ACM Symp. on Computational Geometry, pages 247{256, 1993.

[71] J. Stol�. Oriented Projective Geometry: A Framework for Geometric Computations.

Academic Press, 1991.

[72] A. Subramani. Development of a Design for Service Methodology. Ph.D. thesis, Dept.

Industrial and Manufacting Eng., U. Rhode Island, Kingston, RI, 1992.

[73] G. Toussaint. Movable separability of sets. In G. Toussaint, editor, Computational

Geometry, pages 335{375. North-Holland, Amsterdam, Netherlands, 1985.

[74] R. Wilson. On Geometric Assembly Planning. Ph.D. thesis, Dept. Comput. Sci., Stan-

ford Univ., Stanford, CA, 1992. Stanford Technical Report STAN-CS-92-1416.

[75] R. Wilson, L. Kavraki, J.-C. Latombe, and T. Lozano-P�erez. Two-handed assembly

sequencing. Int. J. of Robotics Research, 14(4):335{350, 1995.

[76] R.Wilson and J.-C. Latombe. Geometric reasoning about mechanical assembly. Arti�cial

Intelligence, 71(2):371{396, 1994.

[77] R. Wilson and J. Rit. Maintaining geometric dependencies in and assembly planner. In

Proc. IEEE Int. Conf. on Robotics and Automation, pages 890{895, 1990.

[78] J. Wolter. On the Automatic Generation of Plans for Mechanical Assembly. Ph.D.

thesis, University of Michigan, 1988.

[79] T. Woo and D. Dutta. Automatic disassembly and total ordering in three dimensions.

J. Engineering for Industry, 113(2):207{213, 1991.

[80] A. Yao. A lower bound for the monotone depth of connectivity. In Proc. 35th Symp. on

Found. Comput. Sci., pages 302{308, 1994.

