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Abstract

Hybrid systems are real-time systems consisting of both continuous and discrete components. This

thesis presents deductive and diagrammatic methodologies for proving point-based and interval-

based properties of hybrid systems, where the hybrid system is modeled in either a sampling se-

mantics or a continuous semantics. Under a sampling semantics the behavior of the system consists

of a discrete number of system snapshots, where each snapshot records the state of the system at

a particular moment in time. Under a continuous semantics, the system behavior is given by a

function mapping each point in time to a system state. Two continuous semantics are studied: a

continuous interval semantics, where at any given point in time the system is in a unique state, and

a super-dense semantics, where no such requirement is needed.

We use Linear-time Temporal Logic for expressing properties under either a sampling semantics

or a super-dense semantics, and we introduce Hybrid Temporal Logic for expressing properties under

a continuous interval semantics. Linear-time Temporal Logic is useful for expressing point-based

properties, whose validity is dependent on individual states, while Hybrid Temporal Logic is useful

for expressing both interval-based properties, whose validity is dependent on intervals of time, and

point-based properties.

Finally, two di�erent veri�cation methodologies are presented: a diagrammatic approach for

verifying properties speci�ed in Linear-time Temporal Logic, and a deductive approach for verifying

properties speci�ed in Hybrid Temporal Logic.
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Chapter 1

Overview

This thesis presents several methodologies for proving properties about hybrid systems, systems with

an intermixing of continuous and discrete components. All analog physical phenomena, controlled by

computer systems, and interacting via sensors and actuators, are hybrid systems. The increasing use

of such systems in safety-critical applications, demands that such systems not exhibit catastrophic

failure. Moreover, due to the ever-growing complexity of such systems, formal methods must be

developed to allow both designers and users of such systems assurance that the systems function

according to their speci�cations. This problem, of verifying that hybrid systems do indeed satisfy

their speci�cation, is the primary question addressed by this thesis.

1.1 Properties

There are two important classes of temporal properties for hybrid systems: point-based properties

and interval-based properties. We will formally de�ne these classes in Chapter 3.4. Informally,

point-based properties are properties whose validity is dependent on individual states. For example,

the temporal property that the variable x is always less than 5, speci�es that each individual state

of the system satisfy the formula x � 5. Interval-based properties are properties whose validity is

dependent on intervals of time. As an example, suppose we have a gas burner which can be in two

states: leak and non-leak. Consider the property which states that in every interval longer than

60 seconds, the cumulative amount of time that the system is in the leak state is only 1/20 of the

length of the interval. To determine the validity of this property we must examine arbitrarily long

(but �nite) sequences of states, where the time from the beginning of the sequence to the end of the

sequence is at least 60 seconds.

Point-based properties are often expressed in Linear-Time Temporal Logic (ltl) [116], a logic

whose models are represented by sequences of states. In Chapter 3.3.1, we de�ne the syntax and

semantics of ltl, and present examples of properties written in ltl.
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2 CHAPTER 1. OVERVIEW

Interval-based properties, in general, are not expressible in ltl. Thus, a more expressive logic

is needed. We use Hybrid Temporal Logic (htl) [70, 91], a logic whose models are represented by

piecewise-smooth functions mapping time points to particular system states. In Chapter 3.3.2, we

de�ne the syntax and semantics of htl, and present examples of properties written in htl. In

Chapter 3.3.2, we compare ltl and htl.

1.2 Models

Orthogonal to the issue of which kind of property we wish to prove is the question of which semantics

best models our system. When analyzing hybrid systems, with their interplay of both discrete and

continuous behavior, two natural semantics emerge: the sampling semantics [48, 133, 118, 99] and the

continuous semantics [70, 114, 10, 125, 91]. We defer the formal de�nitions of these two semantics

and their relative advantages and disadvantages to Chapter 3. For now, we view the sampling

semantics as one where we take snapshots of the state of the system at discrete points in time: a

�nite number of snapshots in a �nite amount of time, and an unbounded number of snapshots as

time progresses. These in�nite traces of system snapshots represent the possible behaviors of the

system. With the continuous semantics, the behaviors of the system are also represented as in�nite

traces of the system, but this time, for every time point, a complete description of the system's state

is given.1

1.3 Veri�cation Methods

Once we have a particular property to prove and have chosen a particular semantics for our hybrid

system, we still have to decide how to do the actual proof. That is, we must decide which method-

ology to use for the veri�cation task. Several methodologies exist in the computer science literature:

deductive approaches [99, 43, 54, 70, 111, 114], algorithmic approaches [9, 39, 95], and more recently,

combinations of deductive and algorithmic approaches [47, 145].

The most widespread family of purely deductive approaches to veri�cation rely on rules for

reducing the task of verifying a temporal property over a system to checking the validity of many

�rst-order veri�cation conditions. Deductive approaches are user intensive, requiring the user to

generate intermediate assertions and lemmas for completing the proof. However, since they use the

wisdom of the user, they are usually applicable to a larger class of problems, at least in theory.

In practice, due to the user-intensive nature of the deductive approach, fairly small examples are

veri�ed.

1For the reader familiar with the super-dense semantics (e.g., Maler, Manna, and Pnueli super-dense seman-

tics [114]), we consider the super-dense semantics a subclass of the continuous semantics. We will come back to the

distinctions between various continuous semantics in Chapter 3.
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Algorithmic approaches, on the other hand, come in three varieties: symbolic model checking,

where some symbolic enumeration of the system's states is done and checked against the speci�cation;

explicit model checking, where all the states are explicitly constructed and then checked against the

speci�cation; and on-the-
y enumerative algorithms, which construct only those states needed to

check whether the property does indeed hold. Algorithmic approaches are computer intensive,

su�ering from the state-explosion problem. However, since they are automatic in nature, they are

easier to apply, at least in theory. In practice, due to the state explosion problem, considerable

massaging of the original problem is needed before it can be passed on to a model checker.

In combined deductive-algorithmic approaches, rules are given to deductively transform the orig-

inal veri�cation problem to a new veri�cation problem, where the new veri�cation problem can

be algorithmically veri�ed. This approach inherits both the advantages and disadvantages of the

purely deductive approach and the purely algorithmic approach: it requires user interaction, but in

a limited way; and it can be computer-intensive if the rules are not carefully applied.

1.4 Road Map

This thesis presents deductive and diagrammatic methodologies to prove both point-based and

interval-based properties of hybrid systems, where the system is modeled in either the continuous

or the sampling semantics. In Figure 1.1, we present an overview of the research papers underlying

this thesis, and the chapters presenting the di�erent methodologies, organized according to the

dichotomy in the type of property we wish to prove and the dichotomy in the type of semantics we

assign to the system. htl is an abbreviation for Hybrid Temporal Logic, a logic for specifying both

point-based and interval-based properties of hybrid systems, which we introduce in Chapter 3.3.2,

and htl veri�cation is a rule-based approach for verifying properties speci�ed in htl.

The rest of this thesis is organized as follows. Chapter 2 introduces hybrid systems and several

examples. Chapter 3 formally de�nes the behaviors of hybrid systems and introduces several logics

for specifying properties about them. Chapter 4 develops a theory of stuttering and shows how

stuttering applies to the veri�cation task. In Chapter 5 we de�ne several transition-based models

for hybrid systems that will be used in the rest of the thesis for presenting veri�cation strategies.

Chapter 6 develops a theory of diagrammatic veri�cation of point-based properties of hybrid systems

when viewed under the discrete semantics, while Chapter 7 extends the diagrammatic approach to

the super-dense (i.e., continuous) semantics. Chapter 8 develops a theory of deductive veri�cation

of point-based and interval-based properties of hybrid systems when viewed under the continuous

semantics. In Chapter 9, we relate our approach to those of the rest of the veri�cation community,

and �nally, in Chapter 10, we conclude with some observations about hybrid systems. Chapters 3{8

each contain a section called Contributions, which brie
y highlight new results presented in this

thesis.
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Chapter 2

Introduction to Hybrid Systems

Hybrid systems are systems with an intermixing of continuous and discrete components. For exam-

ple, analog physical phenomena, controlled by computer systems, and interacting via sensors and

actuators, are hybrid systems. Typically, we view hybrid systems as real-time systems that allow

continuous state changes over time periods of positive duration and discrete state changes in zero

time. It is this interaction of continuous and discrete change that make hybrid systems interesting

and nontrivial targets for formal analysis. While mathematical methods for continuous equations

and for discrete transitions have been studied independently for quite some time, the development

of methods for formal reasoning about hybrid systems is relatively recent; its origin in computer

science can be traced to [140, 114].

2.1 Basic Concepts

All hybrid systems include two important components: a continuous component and a discrete

component. The continuous component includes all variables governed by physical laws. Such

variables typically range over the real numbers. For example, analog devices and the variables

they measure, such as an odometer for measuring speed, an altimeter for measuring altitude, and a

barometer for measuring pressure, are all continuous components of hybrid systems.

The discrete component includes all discrete variables, which typically range over the natural

numbers. For example, computer science data structures such as hash tables and integer arrays,

as well as engineering switches for turning components on or o�, are all representative discrete

components of hybrid systems.

Speci�c components of real-world hybrid systems often include sensors for measuring continuous

variables, actuators for changing the system's modus operandi, channels for communicating between

systems' parts, and a supervisory control for managing the system. In this thesis, we will abstract

away most of these components, and only record their e�ects indirectly. This simpli�cation does not

5
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alter any of the results of the thesis, however, it does make the presentation a bit simpler.

2.2 Examples

In this section, we present several examples of hybrid systems that appear in the computer science

literature. Of these examples, we will use two in particular|the gas burner example of Chaochen,

Hoare, and Ravn [41] and the room-heater example of Nicollin, Sifakis, and Yovine [126]|as our

running examples and present our various veri�cation methodologies on them.

2.2.1 Real World

Real-world hybrid systems are ubiquitous. They range from the relatively simple automobile con-

trollers that have overtaken our lives to the more complicated controllers for rockets, missiles, and

nuclear power plants. In particular, consider an airplane hybrid system. The airplane has many

continuous components including the airplane 
aps, whose position can vary continuously within

some predetermined range, and the engines, whose rotation speed can vary. These components

govern other continuous variables such as velocity, acceleration, altitude, and location, all of which

are measured by various sensors and whose values are displayed in the cockpit. The discrete com-

ponents of the airplane include the myriad of cockpit switches including those that turn an engine

on or o�, raise or lower the landing gear, etc. Notice that it is the interaction between the discrete

and the continuous component that governs the behavior of the system. The two components are

inherently intertwined and can not be decoupled without making gross oversimpli�cations to the

system's behavior.

2.2.2 Gas Burner

We now introduce our �rst running example, a variant of the gas burner example introduced by

Chaochen, Hoare, and Ravn in [41], which we call system gas. We will come back to this example

several times to illustrate various concepts.

Suppose an engineer wishes to design a controller for a gas burner which is used to heat a home

(see Figure 2.1). The gas burner has two switch settings, (switch 2 fO�, Ong), representing O�

and On, respectively. The user of the gas burner expresses his desire to change the switch's setting

through a request variable, R, that also has two possible values, (R 2 fO�, Ong). Unfortunately,

when the switch is on, there is a possibility, due to the mechanics of the system, that some of the

gas leaks. In this hazardous situation, gas leaks at a rate not greater than 1 unit/sec. Moreover,

the controller has no way of determining the rate that gas is actually leaking when the switch is on.

The only guarantee that the controller has is that no gas is leaking when the switch is in the o�

position.
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SWITCH:ON/OFF

GAS BURNER FURNACE

GAS
pilot

light

MY LIVING ROOM

R:ON/OFF

CONTROLLER

USER’S
REQUEST

Figure 2.1: System gas: A typical gas burning furnace found in overpriced California apartments.

The continuous components of this system are the rate at which gas leaks, and the rate at which

time progresses. Time always progresses at a rate of 1. The discrete components are the internal

system-controlled switch (switch) and the external user-controlled request (R).

2.2.3 Room Heater

As our second running example, we consider a variant of the temperature control system introduced

by Nicollin, Sifakis, and Yovine in [126]. The system, which we call RH , consists of a room with

a window and a heater (see Figure 2.2). The window, controlled by some independent agent, may

be opened or closed at will. The heater turns on when the temperature is below the threshold

temperature of 68�F and turns o� when the temperature is above the threshold temperature of

72�F. To prevent mechanical stress, the heater has an embedded clock that prevents it from changing

state within 60 seconds of the last change. Initially, the room temperature is below 60�F and the

environment temperature (i.e. the temperature outside the room) is 60�F. For simplicity, we assume

that the temperature of the environment remains constant at 60�F.

We let H denote the state of the heater, which ranges over the domain fOn;O� g, W denote the

state of the window, which ranges over the domain fOpen;Closed g, T denote the global clock, y

measure the time elapsed since the last switchingOn/O� of the heater, and x denote the temperature

of the room. The general form of the evolution function for x is F x = 60+h=c1+e
��=c1(x�c1�h=c1)

when the heater is on, and F x = 60 + e��=c1(x� c1) when the heater is o�, where � measures the

elapsed time since some initial reading of the temperature, h is a constant depending on the amount
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OPEN/CLOSED

HEATER

CONTROLLER

T:  TEMPERATURE

d: delay

H:ON/OFF

WINDOW

Figure 2.2: An electric heater found in overpriced California homes where the gas furnace fails to
heat the house.

of heat given o� by the heater, and c1 is a constant based on the heat lost due to the window and

depends on whether the window is open or closed. Note that the temperature of the room depends

on an initial temperature reading and the time elapsed since that initial reading. In this thesis, we

will use h = 1=7, c1 = 1=70 when the heater is o�, and c1 = 1=105 when the heater is on. These

assumptions give us the following evolution function for the temperature:

Discrete state of variables Temperature

H = O� ^ W = Closed 60 + e��=105(x� 60)

H = O� ^ W = Open 60 + e��=70(x� 60)

H = On ^ W = Closed 75 + e��=105(x� 75)

H = On ^ W = Open 70 + e��=70(x� 70)

2.2.4 Summary

Many examples of hybrid systems have been analyzed in the computer science literature. Related

work on a gas burner example can be found in [10, 39, 66, 96, 99, 117, 118, 145], while related work

on a water level example can be found in [10, 53, 54, 73, 70, 85, 92, 121, 143, 151].

Heitmeyer, Je�ords, and Labaw [67] introduce a railroad crossing example, in which a group

of trains pass a railroad crossing that is governed by a gate. When the gate is down, trains may

pass safely through without crashing into cars trying to cross at the crossing; when the gate is up,
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cars may pass safely as no trains are allowed to pass. The railroad crossing example has been well

studied in various incarnations [22, 27, 97, 142, 12, 18, 19, 77, 52, 108, 134], with Heitmeyer and

Lynch [68] providing a formal description of the generalized railroad crossing example and clarifying

Heitmeyer, Je�ords, and Labaw's [67] original example.

Ja�e, Leveson, Heimdahl, and Melhart [89] describe a controller for a nuclear reactor, where the

controller's job is to insure that the nuclear reactor temperature stays within some predetermined

range so as to avoid a core meltdown or an emergency shutdown. Subsequent work with this example

is described in [92, 75, 89, 125].

Another well-studied example is the Cat and Mouse example of Maler, Manna, and Pnueli [114],

in which a mouse is trying to avoid getting pounced on by a cat. Subsequent work with this example

is described in [20, 43, 42, 59, 58, 94, 96, 118, 120, 125, 157].



Chapter 3

Speci�cation of Hybrid Systems

In this chapter, we distinguish between several possible semantics for analyzing the behavior of

hybrid systems. We then introduce two temporal logics|linear-time temporal logic and hybrid

temporal logic|for the speci�cation of properties about hybrid systems. For linear-time temporal

logic we introduce two di�erent semantics: a sampling semantics based on Manna and Pnueli [116]

and a continuous semantics based on Maler, Manna, and Pnueli [114]. For hybrid temporal logic we

present a single continuous semantics based on [70, 91]. Finally, we formally introduce the distinction

between point-based properties and interval-based properties.

3.1 Contributions

The contributions of this chapter are

� a new presentation of a super-dense semantics,

� a conservative extension of linear-time temporal logic to our version of the super-dense seman-

tics,

� a continuous interval semantics, and

� a new logic, hyrid temporal logic, interpreted under our continuous interval semantics.

3.2 Behavior of Hybrid Systems

As hybrid systems consist of both discrete and continuous behavior, a natural question is how should

we model their behavior. Several possibilities have emerged over the years, and we discuss each one

in turn. Common among all models is the partition of the set of variables V into discrete variables,

Vd, and continuous variables, Vh. We denote the domain of an arbitrary variable y 2 V as Dy.

10
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3.2.1 Sampling Semantics

Under the sampling semantics [15, 32, 47, 54, 68, 69, 95, 117, 100, 118, 126, 141], the behavior of a

hybrid system is viewed as a set of in�nite sequences of snapshots. Each snapshot records the value

of all the system's variables (i.e., the state of the system), and also the value of some master clock

which records the passage of time (known as the global time clock). Each particular in�nite sequence

of snapshots, which we call a sampled run of the system, represents one possible execution of the

system. Fragments of sampled runs are called sampled run fragments. We denote sampled runs and

sampled run fragments with the letter �, we denote snapshots with the letter s, we denote the global

time clock with the letter T , and we refer to the value of the global time clock at snapshot s as the

time-stamp of s or time(s), where time is a function that extracts the time-stamp of s. Snapshots in

sampled runs have an inherent ordering, denoted by their position in the sampled run. We require

that global time not decrease over the course of a sampled run. In particular, two snapshots may

have the same value of global time (i.e., they have the same time-stamp, but assign di�erent values

to the other variables). We also require that time diverge. That is, for any value t, there is a

snapshot s in the sampled run that has time(s) > t.

For example, let us consider the Room Heater example introduced in Chapter 2.2.3. In Figure 3.1,

we present several possible sampled runs of the system. The reason for the multitude of sampled

runs is:

1. the system may have some inherent nondeterminism in it. That is, at a given point in time,

the system may proceed in several possible ways, and each possible way may lead to a di�erent

set of sampled runs. For example, in system RH , the window may be opened or closed at any

point in time, which alters the evolution of the variable measuring the temperature, namely x;

2. there are many possible points of time at which we may take our snapshot. In fact, as there

are an uncountable number of time points in the real world, we have an uncountable number

of sampled runs of the system.

Often associated with a sampled run is the notion of a sampling rate. The sampling rate is the

rate at which we take system snapshots. For example, in Figure 3.1, �1 has a sampling rate of

1/60 per second, representing the fact that one snapshot is taken every 60 seconds. In this thesis,

we will not require our sampled runs to have a �xed sampling rate. Our only requirement is that

within each �nite period of time, there are only a �nite number of snapshots recorded. As such, it

is possible that the sampled snapshots miss many crucial events that the hybrid system undergoes.

Some researchers [117, 118] work around this problem by introducing the concept of important

events, which are events that the system is required to sample1. Unfortunately, this approach has

severe limitations as Pnueli points out [133]. In particular, even with important events, our sampling

1More accurately, authors require that any sampled run not miss sampling the important event.
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�1: hO�; Closed; 0; 50; 0i; hO�; Closed; 60; 54:35; 60i; hOn; Closed; 60; 63:34; 120i;
hOn; Closed; 120; 68:41; 180i; hOn; Closed; 180; 71:28; 240i;
hO�; Closed; 37:4; 68:4; 300i

�2: hO�; Closed; 0; 50; 0i; hO�; Closed; 50; 53:79; 50i; hO�; Closed; 60; 54:35; 60i;
hOn; Closed; 0; 54:35; 60i; hOn; Closed; 60; 63:34; 120i; hOn; Closed; 120; 68:41; 180i;
hOn; Closed; 180; 71:28; 240i; hOn; Closed; 202:6; 72; 262:6i;
hO�; Closed; 0; 72; 262:6i; hO�; Closed; 37:4; 68:4; 300i;
hO�; Closed; 42:55; 68; 305:15i; hOn; Closed; 0; 68; 305:15i

�3: hO�; Closed; 0; 50; 0i; hO�; Open; 0; 50; 0i; hO�; Open; 50; 55:1; 50i;
hO�; Closed; 50; 55:1; 50i; hO�; Closed; 60; 55:55; 60i; hOn; Closed; 0; 55:55; 60i;
hOn; Closed; 20; 58:55; 80i; hOn; Closed; 50; 62:64; 110i; hOn; Closed; 90; 66:55; 150i

Figure 3.1: Several sampled run fragments of system RH . Each tuple represents one snapshot:
hH;W; y; x; T i. (Values have been rounded to 2 decimal places.)

semantics may miss interesting events. For example, each of the runs in Figure 3.1 does not record

the system when the global clock T is 3.1415. Are we therefore to conclude that because some

sampled runs do not contain a snapshot at 3.1415, the system does not satisfy the property that

eventually the global time of the system is 3.1415? Unfortunately, with the sampling semantics, the

answer is yes, global time is not necessarily ever equal to 3.1415!

3.2.2 Dense and Super-Dense Semantics

Because of the limitations of the sampling semantics, some researchers [114, 8, 32, 40, 78, 72] have

suggested using a dense or super-dense semantics. The di�erence between the dense and super-dense

semantics is that in the super-dense semantics, as in the sampling semantics, two snapshots may

have the same time-stamp, whereas in the dense semantics we require that all snapshots have unique

time-stamps. In this thesis, we will use the super-dense semantics. We �rst give a presentation of a

super-dense semantics based on Maler, Manna, and Pnueli [114]. In the next section, we will re�ne

this semantics slightly when de�ning a super-dense version of temporal logic. This re�nement will

help us formulate veri�cation rules, and resolve some technical problems with [114]'s semantics.

The underlying time domain of the super-dense semantics is the nonnegative real numbers. As

with the sampling semantics, the behavior of a hybrid system is viewed as a set of in�nite sequences

of snapshots, but now there is an additional component f , where f is a tuple of piecewise continuous

functions, one for each variable y 2 V (fy : R
+ 7! Dy). Each particular in�nite sequence of snapshots

is called a super-dense run of the system. The snapshots represent discrete moments in time, while

the interludes between these snapshots represent continuous regions made up of an uncountable

number of continuous moments.2 For each variable y 2 V, the piecewise continuous function fy

denotes the value of y during the continuous regions and we require that the discontinuities only occur

2The concept of moments and the corresponding terminology comes from Maler, Manna, and Pnueli [114].
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at the discrete moments. That is, during any continuous region, say between adjacent snapshots si

and si+1, with time-stamps ti and tj , respectively, we require that the following two properties are

satis�ed:

1. for any discrete variable y 2 Vd, fy is constant over the range [ti; tj) and equal to the value at

discrete moment si.

2. for any continuous variable y 2 Vc, fy is a continuous function over the range [ti; tj). For the

end point ti, it is only required that fy be continuous from the right.

We also require the start of the system (i.e., T = 0) to be one of the sampled points. As before,

we denote super-dense runs and super-dense run fragments with the letter � = h�s; fi, where �s

denotes an in�nite sequence of discrete moments and f is a tuple of piecewise continuous functions.

Once again, time(s) extracts the time-stamp of discrete moment s. Note that the continuous region

between si and si+1 is an open region that includes all the continuous moments from time(si) to

time(si+1), but not including time(si) and time(si+1). The time-structure induced by � is de�ned

as T � = fhi; ti j i 2 IN; t = time(si) _ time(si) < t < time(si+1)g. The set T � is ordered by the

lexicographic ordering

hi; ti � hi0; t0i i� i < i0 or (i = i0 and t < t0) :

This ordering induces an ordering on triples of the form hi; time(s); si and hi; t; f(t)i, where s is a

discrete moment and f(t) is a continuous moment. The ordering is the � ordering where we ignore

the particular (discrete or continuous) moment. We will use these two orderings interchangeably.

For example, let us consider the super-dense runs of the Room Heater example. In Figure 3.2, we

present two possible super-dense runs of the system, which are based on the sampled runs presented

in Figure 3.1. Note that �1 can not be extended to a super-dense run because it violates the

requirement that discrete variables do not change during intervening continuous regions. Thus, we

present only two super-dense runs, �4 and �5 based on �2 and �3, respectively. The only di�erence

for these two runs is that now we also present the value of the variables at continuous regions through

the function f . Since for discrete variables, f is completely determined by its values at the discrete

moments, and fT is exactly the value of time, we present only fx and fy.

The super-dense semantics resembles closely the continuous interval semantics, which we discuss

next.

3.2.3 Continuous Interval Semantics

As with the super-dense semantics, runs in the continuous interval semantics [10, 125, 70, 91] allow

one to recover the precise description of the system at any point in time. With the super-dense

semantics, this is done in two stages: giving the value of variables at discrete moments explicitly and
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�2: hO�; Closed; 0; 50; 0i; hO�; Closed; 50; 53:79; 50i; hO�; Closed; 60; 54:35; 60i;
hOn; Closed; 0; 54:35; 60i; hOn; Closed; 60; 63:34; 120i; hOn; Closed; 120; 68:41; 180i;
hOn; Closed; 180; 71:28; 240i; hOn; Closed; 202:6; 72; 262:6i; hO�; Closed; 0; 72; 262:6i;
hO�; Closed; 37:4; 68:4; 300i; hO�; Closed; 42:55; 68; 305:15i; hOn; Closed; 0; 68; 305:15i

fx(t) =

8<
:

60 + e�t=105(50� 60) 8t 2 [0; 60)

75 + e�(t�60)=105(54:35� 75) 8t 2 [60; 262:6)

60 + e�(t�262:6)=105(72� 60) 8t 2 [262:6; 305:15)

9=
;

fy(t) =

8<
:

t 8t 2 [0; 60)
t� 60 8t 2 [60; 262:6)
t� 262:6 8t 2 [262:6; 305:15)

9=
;

�3: hO�; Closed; 0; 50; 0i; hO�; Open; 0; 50; 0i; hO�; Open; 50; 55:1; 50i;
hO�; Closed; 50; 55:1; 50i; hO�; Closed; 60; 55:55; 60i; hOn; Closed; 0; 55:55; 60i;
hOn; Closed; 20; 58:55; 80i; hOn; Closed; 50; 62:64; 110i; hOn; Closed; 90; 66:55; 150i

fx(t) =

�
t 8t 2 [0; 60)
t� 60 8t 2 [60; 150)

�

fy(t) =

�
t 8t 2 [0; 60)
t� 60 8t 2 [60; 150)

�

Figure 3.2: Two super-dense run fragments of system RH . Each tuple represents one discrete
moment: hH;W; y; x; T i, respectively. (Values have been rounded to 2 decimal places.)

giving a piecewise continuous function to recover the value of variables at the intervening continuous

moments. In the continuous semantics we dispense with the discrete moments and give the value of

all variables through a tuple of piecewise smooth functions. The approach we follow is from Kapur,

Henzinger, Manna, and Pnueli [91].

Time is modeled by the nonnegative real line R+. A (left-closed right-open) interval [a; b), where

a 2 R+, b 2 R+[f1g, and a < b, is the set of points t 2 R+ such that a � t < b. Let I = [a; b) be

an interval. A function f : I ! R is piecewise smooth in I if

� at a, the limit from the right of f exists, and the derivative from the right of f exists;

� at all internal points t 2 (a; b), the limit from the right, the limit from the left, and all left and

right derivatives of f exist;

� at all points t 2 [a; b), f is continuous from the right;3

� if b <1, then the limit from the left of f exists at b, and the left derivative of f exists at b.

A phase P = hI; fi over V is a pair consisting of

3This condition allows one to chop an arbitrary piecewise smooth function into intervals of the form [a; b) that are

continuous from both the left and the right.
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� a nonempty left-closed right-open interval I = [a; b), and

� a type-consistent family f = ffx j x 2 Vg of functions fx : I ! Dx that are piecewise smooth

in I and assign to each point t 2 I a value for the variable x 2 V .

It follows that the phase P assigns to every real-valued time t 2 I a complete description of the

hybrid system. Furthermore, the limit from the right of f at a and the limit from the left of f at b,

if b <1, are de�ned.

The behavior of hybrid systems under the continuous interval semantics is described as a set of

phases, where the interval of time is R+. Each phase that is a possible execution for the hybrid

system is called a continuous run of the hybrid system. For example, in Figure 3.3 we present two

possible continuous run fragments of hybrid system RH . Once again these runs are based on the

sampled runs presented in Figure 3.1 and resemble the super-dense runs presented in Figure 3.2.

Note that in the super-dense semantics, a particular point in time can satisfy two possible snapshots;

however, in the continuous interval semantics this is not possible. Thus, in the continuous semantics,

discrete actions either occur at precisely the same instance and their e�ects are recorded together,

or they occur at distinct points in time.

3.3 Logics

Before presenting our two logics, we introduce some notation common to both. Let V be a �nite

set of typed variables, where the allowed types are boolean, integer, and real. We view the booleans

and the integers as subsets of the reals, where false and true correspond to 0 and 1, respectively. A

state s : V ! R is a type-consistent interpretation of the variables in V (i.e., boolean variables may

only be interpreted as 0 or 1, and integer variables may only be interpreted over the integers). We

write �V for the set of states.

3.3.1 Linear-Time Temporal Logic

In this section we introduce linear-time temporal logic and interpret the logic using two di�er-

ent semantics: the traditional sampling semantics described above (as presented in Manna and

Pnueli [116]) and a more radical super-dense semantics, which is a variant of the super-dense se-

mantics presented earlier. Both semantics are de�ned on the same syntax of the logic.

Syntax

The formulas ' of Linear-Time Temporal Logic (ltl) are de�ned inductively as follows:

' :=  j :' j '1 _ '2 j 0 ' j '1 U'2 j 8x : '
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P2 = [f; [0; 305:15)] where:

fH(t) =

8<
:

O� 8t 2 [0; 60)
On 8t 2 [60; 262:6)
O� 8t 2 [262:6; 305:15)

9=
;

fW (t) =
�
Closed 8t 2 [0; 305:15)

	
fT (t) =

�
t 8t 2 [0; 305:15)

	

fx(t) =

8<
:

60 + e�t=105(50� 60) 8t 2 [0; 60)

75 + e�(t�60)=105(54:35� 75) 8t 2 [60; 262:6)

60 + e�(t�262:6)=105(72� 60) 8t 2 [262:6; 305:15)

9=
;

fy(t) =

8<
:

t 8t 2 [0; 60)
t� 60 8t 2 [60; 262:6)
t� 262:6 8t 2 [262:6; 305:15)

9=
;

P3 = [f; [0; 150)] where:

fH(t) =

�
O� 8t 2 [0; 60)
On 8t 2 [60; 150)

�

fW (t) =

�
Open 8t 2 [0; 50)
Closed 8t 2 [50; 150)

�

fT (t) =
�
t 8t 2 [0; 305:15)

	
fx(t) =

�
t 8t 2 [0; 60)
t� 60 8t 2 [60; 150)

�

fy(t) =

�
t 8t 2 [0; 60)
t� 60 8t 2 [60; 150)

�

Figure 3.3: Two continuous run fragments of system RH . (Values have been rounded to 2 decimal
places.)

where x 2 V and  is any �rst-order formula. The other boolean connectives, such as ^ (conjunc-

tion) and ! (implication), can be de�ned using _ and : in the usual way. We use the standard

temporal logic abbreviations:

1 ' stands for : 0 :'
'=� stands for 0 ('!  ) :

Sampling Semantics

The formulas of linear-time temporal logic under the sampling semantics are interpreted over in�nite

sequences of states, denoted by �. Position i of sequence � is written as (�; i). The �rst position of

the sequence � is (�; 0). A sequence � satis�es the linear-time temporal formula ', denoted � j= ',

i� (�; 0) j= '. For any position i, (�; i) j= ' according to the following inductive de�nition:
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For a �rst-order formula  , (�; i) j=  i� the �rst-order formula  evaluates to true at state

(�; i).

(�; i) j= :' i� (�; i) 6j= '.

(�; i) j= '1 _ '2 i� (�; i) j= '1 or (�; i) j= '2.

(�; i) j= 0 ' i� for all j � i, (�; j) j= '.

(�; i) j= '1 U'2 i� there exists k � i such that (�; k) j= '2 and for all i � j < k, (�; j) j= '1.

(�; i) j= 8x :' i� (�0; i) j= ' for all sequences �0 that di�er from � at most in the interpretation

of x at position i.

Continuous Semantics

Our presentation of a continuous semantics (or more precisely, super-dense semantics) for linear-time

temporal logic di�ers from the approach presented in Chapter 3.2.2. Our reasons for departure from

existing approaches are based on two requirements that we wish our semantics to possess:

1. we want our super-dense semantics to be an extension of the discrete semantics, in the sense

that

{ any run of the discrete semantics can be obtained from some run of the super-dense semantics

by forgetting information or re�ning the super-dense sampling points;

{ any run of the super-dense semantics generates a run of the discrete semantics by forgetting

information or re�ning the super-dense sampling points.

2. we want any logic for the super-dense semantics to preserve the intended meaning of the

standard temporal operators.

Unfortunately, approaches such as Maler, Manna, and Pnueli [114] fail to satisfy the second of these

requirements. In particular, the de�nition of the U operator is problematic. Consider the hybrid

system with one variable x, whose sole behavior is represented as follows:

8t; fx(t) = t :

If we consider any discrete run �d, obtained by sampling the system at some set of points that includes

the start of the system, then �d will satisfy the linear-time temporal formula (x � 10)U (x > 10).

Moreover, intuitively any super-dense run should also satisfy the formula. However, consider the

super-dense run fragment where the discrete moments are at T = 5, T = 10, and T = 15, presented

in Figure 3.4. Does this run fragment satisfy the formula (x � 10)U (x > 10)? Intuitively, we

would like the answer to be yes, since x is continuously less than 10 until �nally it is greater than 10;
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�sd: h5; 5i; h10; 10i; h15; 15i

fx(t) = t;8t 2 [0; 15)

Figure 3.4: Super-dense run fragment. Each tuple represents one discrete moment, and denotes the
value of the variables x and T , respectively.

moreover, the instant after it fails to be less than or equal to 10, it is greater than 10. Unfortunately,

under the semantics presented in Maler, Manna, and Pnueli [114] this formula is not true. The reason

this formula is false is that there is no t such that both the following hold: for all t0 < t, x � 10 is

true at t0 and for all t00 � t, x > 10 is true at t00.4 The problem is that the semantics of 'U given

by [114] is sensitive to whether  holds at the limit from the right or not.5

Our solution requires some new de�nitions and notation, which we now introduce. An atomic

state formula is a formula without any boolean connectives (i.e., without :, ^ , _ , etc.) or temporal

operators. For example, x = 10 is an atomic state formula. The subformulas of a temporal formula

', denoted Sub('), are de�ned inductively as follows:

If ' is an atomic state formula then Sub(') = f'g.

If ' is of the form :'1 then Sub(') = f'g [ Sub('1).

If ' is of the form '1 _ '2 then Sub(') = f'g [ Sub('1) [ Sub('2).

If ' is of the form 0 '1 then Sub(') = f'g [ Sub('1).

If ' is of the form '1 U'2 then Sub(') = f'g [ Sub('1) [ Sub('2).

If ' is of the form 8x : '1 then Sub(') = f'g [ Sub('1).

A ground super-dense run over a quanti�er-free formula ' is a super-dense run where for every

atomic state subformula of ' the truth value of ' is constant throughout every continuous region.

For formulas with quanti�ers we require that under every instantiation of the quanti�ers, the atomic

state subformulas of ' have constant truth value throughout each continuous region in order to

be a ground super-dense run. Note that in general, a super-dense run consists of a sequence of

discrete moments followed by a continuous region. We denote by (�; i) the i+ 1st discrete moment

or continuous region, where i � 0. For example, consider �2 of Figure 3.2. Then (�; 0) is the discrete

moment hO�; Closed; 0; 50; 0i, and (�; 1) is the continuous region over the time interval (0; 60)

where fx(t) = 60 + e�t=105(50� 60), fy(t) = t, and fT (t) = t, 8t 2 (0; 60).

4Altering the semantics of U to require that for all t0 � t ' be true at t0 and for all t00 > t x > 10 be true at t00

makes the formula (x � 10) U (x > 10) valid, however, introduces a similar problem to the formula (x < 10)U (x � 10).
5Lakhnech [98] incorrectly associates the problem to whether or not intervals are open or closed. However, it is

really a problem of whether or not  holds at the limit from the right, and not merely a problem of whether intervals

are open or closed.



3.3. LOGICS 19

A super-dense run �1 = h�s
1; fi is a sampling re�nement of �2 = h�s

2; fi if

� for each discrete moment s2j in �s2 there exists a discrete moment s1i in �s1 such that s1i = s2j .

� for each discrete moment s1i in �s1 with time(s1i ) = ti, either there exists a discrete moment s
2
j

in �s2 such that s1i = s2j or, for each variable x 2 V , s1i (x) = fx(ti).

� the ordering of moments induced by ��1 and ��2 is the same. That is, for (discrete or

continuous) moments m1 and m2 in �1 with m1 ��1 m2, the corresponding moments m
0

1 and

m02 in �2 have m
0

1 ��2 m
0

2.

Intuitively, �1 and �2 describe the same behavior, except that �1 is sampled more often (i.e., some

of the continuous moments of �2 have become discrete moments).

We de�ne the satisfaction relation j=c for a formula ' and its ground super-dense runs � as

follows:

For a �rst-order formula  , (�; i) j=c  i� the �rst-order formula  evaluates to true at (�; i).

(�; i) j=c :' i� (�; i) 6j=c '.

(�; i) j=c '1 _ '2 i� (�; i) j=c '1 or (�; i) j=c '2.

(�; i) j=c 0 ' i� for all j � i, (�; j) j=c '.

(�; i) j=c '1 U'2 i� there exists k � i such that (�; k) j=c '2 and for all i � j < k, (�; j) j=c '1.

(�; i) j=c 8x:' i� (�0; i) j=c ' for all sequences �0 that di�er from � at most in the interpretation

of x at position i.

For a ground super-dense run, � j=c ' i� (�; 0) j=c '. For a formula ' and an arbitrary super-

dense run �, if ' has a ground super-dense run �0 that is a sampling re�nement of �, then � j=c ' i�

�0 j=c '; if no such ground super-dense sampling re�nement exists, then the j=c relation is unde�ned.

The following de�nition shows that the j=c relation does not depend on which ground super-dense

sampling re�nement we consider.

Proposition 1 For any temporal formula ' and super-dense run �, if �0 is a ground super-dense

sampling re�nement of �, then for all �00 that are ground super-dense sampling re�nements of �,

� j=c ' i� �0 j=c ' i� �00 j=c '.

3.3.2 Hybrid Temporal Logic

Under the continuous interval semantics, the behavior of a hybrid system is modeled by a function

that assigns to each time-point a system state. We require that, at each point, the behavior function

has a limit from the left and a limit from the right. Discontinuities are points where the two limits
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di�er. To specify properties of hybrid systems under the continuous interval semantics, we present a

continuous-time interval temporal logic with a chop operator [65], denoted as \;", whose semantics

is a continuous-time extension to Moszkowski's discrete-time chop operator [122].

Syntax

Because we wish to reason about physical phenomena in a natural and formal way, we introduce

a logic that allows derivatives and limits as atomic expressions. Our logic, Hybrid Temporal Logic

(htl), is a variant of the hybrid temporal logic of Henzinger, Manna, and Pnueli [70].6 For a

variable x 2 V , we write  �x for the limit from the right (the right limit), and �!x for the limit from

the left (the left limit) of x. We write
 �

x for the right derivative of x (with respect to time), and
�!

x for the left derivative of x (with respect to time). Note that the terms, right-hand limit and

left-hand limit, are consistent with standard calculus terminology, and that right-hand limits are

applied at the left end of an interval, while left-hand limits are applied at the right end. To avoid

confusion, we will mostly use the terms \limit from the right" and \limit from the left".

A local formula is a formula over the variables in V , their left and right limits, their left and

right derivatives, and function and predicate symbols from a language L. The formulas ' of htl

are de�ned inductively as follows:

' :=  j �n j :' j '1 _ '2 j '1;'2 j 8x : '

where x 2 V ,  is an atomic local formula, and �n is a symbol which we will de�ne below.

A state formula is a �rst-order logic formula over the variables in V (i.e., in which no limits,

derivatives, or chops appear). If  is a state formula, we write
 �
 (and

�!
 ) for the local formula

that results from  by replacing each variable occurrence x in  with its limit from the right  �x

(and limit from the left �!x , respectively).

Semantics

As in our presentation of the continuous interval semantics, time is modeled by the nonnegative real

line R+, intervals are left-closed right-open subsets of the nonnegative real numbers, and phases,

denoted P = hI; fi are pairs consisting of an interval and a type-consistent family of functions. We

write
 �
P = lim

t!a
ff(t) j a < t < bg

for the left-end limit state
 �
P 2 �V of the phase P , and

�!
P = lim

t!b
ff(t) j a < t < bg

6We restrict ourselves to piecewise smooth functions that are always right continuous.
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for the right-end limit state
�!
P 2 �V of P , if b <1.

Let I1 = [a; b) and I2 = [c; d) be two intervals, and let P1 = hI1; fi and P2 = hI2; gi be two

phases. The phase P2 is a subphase of P1 if I2 � I1 and, for all t 2 I2, g(t) = f(t). The phases P1

and P2 are adjacent if b = c. For two adjacent phases P1 = h[a; b); fi and P2 = h[b; c); gi, we denote

by P1� P2 the phase h[a; c); hi such that h coincides with f on t 2 [a; b) and h coincides with g on

t 2 [b; c). The phase P is said to be partitioned by the phases P1 and P2 if P = P1� P2.

The formulas of hybrid temporal logic are interpreted over phases. A phase P = h[a; b); fi satis�es

the hybrid temporal formula ', denoted P j= ', according to the following inductive de�nition:

For a local formula  , we distinguish between two cases.

1. If  does not contain left limits or left derivatives, then

P j=  i� the local formula  evaluates to true, where

{ x is interpreted as the value of fx at a,

x = fx(a)

{  �x is interpreted as the limit from the right of fx at a,
7

 �x = lim
t!a
ffx(t) j a < t < bg

{
 �

x is interpreted as the right derivative of fx at a,

 �

x = lim
t!a
f(fx(t)� �x )=(t� a) j a < t < bg :

2. If  contains left limits or derivatives, then P j=  i� b < 1 and the local formula  

evaluates to true, where we evaluate variables, right limits, and right derivatives as above,

and

{ �!x is interpreted as the limit from the left of fx at b,

�!x = lim
t!b
ffx(t) j a < t < bg

{
�!

x is interpreted as the left derivative of fx at b,

�!

x = lim
t!b
f(fx(t)�

�!x )=(t� b) j a < t < bg :

P j= �n i� b <1.

7The requirement that fx is continuous from the right, guarantees that  �x = fx(a).
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P j= :' i� P 6j= '.

P j= '1 _ '2 i� P j= '1 or P j= '2.

P j= '1;'2 i� there are two phases, P1 and P2, that partition P such that P1 j= '1

and P2 j= '2.

P j= 8x : ' i� P 0 j= ' for all phases P 0 = h[a; b); f 0i that di�er from P at most in the

interpretation f 0x of x.

We will freely use the �rst-order connectives, \^ ", \ ! ", and \9" as they can be de�ned in terms

of the other connectives in the usual way.

Note that because of the dependence of the satisfaction relation on the syntactic occurrence

of left limits and derivatives in local formulas, one should be careful in substitutions of formulas

referring to left limits and derivatives. For example, the formula �!x = �!x is not equivalent to true

because �!x = �!x is false on all in�nite intervals. Also, the formula 9y: 0 (y =
 �

x ) is not always valid.

In particular, any phase in which
 �

x is not continuous from the right will fail to satisfy the formula,

since variables are required to be right continuous, while derivatives are not.

Abbreviations

As in Henzinger, Manna, and Pnueli [70], we de�ne abbreviations for common temporal formulas.

The following abbreviations express that a leftmost subphase, a rightmost subphase, or any subphase

of a phase satis�es the formula ':

�' stands for ' _ ('; true)

�' stands for ' _ (true;')

1 ' stands for (�') _ (�') _ (true;'; true) :

Thus, we can express that all subphases of a phase satisfy ' as 0 ', where:

0 ' stands for :1 :' :

We also introduce the abbreviations:

inf stands for :�n

1 f' stands for 1 (�n ^ ')

0 f' stands for 0 (�n! ')

'=�f stands for 0 f ('!  )

1 i' stands for 1 (inf ^ ')

0 i' stands for 0 (inf! ')

'=�i stands for 0 i('!  ) :
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The formulas 1 f' and 0 f' can be viewed as �nitary versions of 1 ' and 0 ' which restrict our

attention to �nite intervals only.

A phase hI; fi is called continuous if for all v 2 V , fv is continuous at all internal points of I .

The continuity of all variables can be speci�ed by the formula

continuous : :9U:

�
 �
U =

�!
U ^ (

 �
U =

�!
V ); (

 �
V 6=

�!
U )

�
;

where U and V are tuples of variables of the same length. This formula states that it is impossible

to break the phase into two adjacent subphases such that the left limit of the state variables at the

left subphase di�ers from the right limit of the state variables at the right subphase. We distinguish

between two types of variables: rigid and 
exible. Rigid variables have the same value throughout

a phase, whereas 
exible variables can have di�erent values at di�erent points in time.

x 2 C0 stands for 0 ( �x = x) ^ 8u; v 2 Rigid :

�
(�!x = u); ( �x = v) ! u = v

�
:

x 2 C1 stands for x 2 C0 ^ 8u; v 2 Rigid :

�
(
�!

x = u); (
 �

x= v) ! u = v

�
:

The formula x 2 C0 requires that for any partition of a phase P into two subphases, the left and right

limits of x at the point of partitioning coincide. The formula x 2 C1 adds the analogous requirement

for the �rst derivatives of x. Because our intervals are left-closed, we care more about derivatives

from the right. Hence, when we write _x we mean
 �

x . Thus, we will use _x as an abbreviation for
 �

x .

As shown in [70], hybrid temporal logic subsumes many of the real-time temporal logics presented

in Alur and Henzinger [14] and the duration calculus of Chaochen, Hoare, and Ravn [41]. For

example, the following formulas show how to write typical real-time and duration calculus formulas

in htl. In particular, the formula

0 8x 2 C0 :

��
p ^ x = 0 ^ 0 ( _x = 1) ^ �!x > 5

�
! 1 (q ^ x � 5)

�

asserts that every p-state (i.e., a state where p is true) of a phase is followed within 5 time units

either by a q-state or by the end of the phase. The variable x is a \clock" that measures the length

of all subphases starting with a p-state.

The formula

8x 2 C0 :

��
 �x = 0 ^ 0 (p! _x = 1) ^ 0 (:p! _x = 0)

�
! �!x � 10

�

asserts that the cumulative time that p is true in a phase is at most 10. Here the variable x is an

\integrator" that measures the accumulated duration of p-states. The formula

8x; y 2 C0 :

��
x = 0 ^ 0 (p! _x = 1) ^ 0 (:p! _x = 0) ^ y = 0 ^ 0 ( _y = 1)

�
! �!x = �!y

�
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asserts that almost all points of a phase are p-states.

Connection with Linear Temporal Logic

Our desire to reason about point-based properties in htl leads to the obvious question; namely,

when does a temporal formula ' have the \same semantics" as in htl?

The following proposition states that htl subsumes linear-time temporal logic (under both the

sampling semantics and the continuous semantics) without nested temporal operators in a natural

way.

Proposition 2 For any state formula ' and phase P = hI; fi:

1. P j= 1 ' i� 9 t 2 I such that ' holds at t.

2. P j= 0 ' i� 8 t 2 I ' holds at t.

The proof of this proposition follows in a straightforward manner from the de�nitions of the

derived htl operators 0 and 1 .

The following proposition, stated without proof, allows us to use �rst order tautologies as valid

formulas of hybrid temporal logic:

Proposition 3 For any state formula ', if ' is a tautology of �rst order logic then 0 ' is valid.

3.3.3 Other Logics

Numerous other logics have been proposed for the speci�cation of hybrid systems. Duration Calculus,

introduced in Chaochen, Hoare, and Ravn [41] and extended to hybrid systems in Chaochen, Ravn,

and Hansen [43], introduces a duration operator, denoted
R
, that measures the duration of time a

proposition p is true over an interval. Like htl, the duration calculus has a chop operator. The

version of the duration calculus that is extended to hybrid systems [43] allows one to specify values

at the left and right endpoints of a phase, a feature that is not present in the original duration

calculus ([41]). For example in the extended duration calculus, the safety requirement for system

gas would be e.x � b.x � 60 ! 6(e.L � b.L) � e.x � b.x, where e.x � b.x � 60 states that

the length of the interval is less than 60 seconds, and 6(e.L � b.L) � e.x � b.x states that the

accumulated leak time in the given interval is less than 1=6 of the length of the interval. In the

extended duration calculus,
R
is a derived operator. Its encoding in htl is similar to its encoding

in the extended duration calculus, the latter of which can be found in [43].

Real-time logics [2, 12, 15, 14, 24, 69, 72, 90, 112, 137, 141, 142] have also been used with varying

degrees of success. In particular, work in real-time logics has provided a basis for decidability results

for hybrid systems, since real-time clocks are a special type of continuous variable. The interested

reader is referred to [11, 13, 15, 14, 31, 152].
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Lamport is a strong advocate of using \old-fashioned" formalisms for specifying hybrid sys-

tems [3]. He advocates using TLA [100], the temporal logic of actions, for specifying hybrid systems.

TLA is a temporal logic with a restricted next-time operator, and importantly, no built-in primitives

for specifying real-time or hybrid properties. Instead any operators needed for specifying real-time

properties are de�ned using TLA and ordinary mathematics. For example, TLA+, uses TLA and

the standard integral operator to de�ne durations [99].

The interval temporal logic (itl) of Moszkowski [122] uses a discrete semantics involving �nite

intervals consisting of a �nite number of states. This assumption is justi�ed because itl is a logic

for hardware veri�cation, where discretization is both natural and possible. The interval temporal

logic we propose here (i.e., htl) is intended to be used for veri�cation of controllers governing hybrid

systems, which by de�nition have continuous components. Hence, the need for a continuous interval

semantics.

3.4 Properties: Point-Based vs. Interval-Based

We now have enough machinery to formally de�ne point-based and interval-based properties. A

point-based property is a property that can be expressed by an htl formula which has no occurrences

of limits or derivatives. For example, all state formulas express point-based properties. An interval-

based property is a property that can only be expressed by an htl formula that contains limits

or derivatives. For example, ( �x = 1); ( �x = 2) is a point-based property because it can also be

expressed by the equivalent htl formula (x = 1); (x = 2). On the other hand, (�!x = 1); ( �x = 2)

speci�es an interval-based property. For a variable x and a phase P , the semantics of htl assigns

the same value to  �x and x, and so all occurrences of right limits may be replaced by corresponding

variable occurrences. Thus, the presence of right limits in a formula does not preclude it from being

a point-based property.

3.5 Examples

3.5.1 Real World

Let us return to the airplane hybrid system introduced in Chapter 2.2.1. If we were to design a

controller for this plane that could serve as an automatic pilot for when our human pilot wanted to

nap, we would want our controller to satisfy several basic properties:

1. our plane does not crash into another plane or hit the ground;

2. our plane moves closer to its destination;

3. within any minute of time, our velocity does not change by more than 100 mph.
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The �rst two properties are point-based properties. In particular, the �rst property is a safety

property [6, 116], which states that nothing bad ever happens, while the second property is a liveness

property [132, 116]. Finally, the third property is an interval-based property.

3.5.2 Gas Burner

Let us reconsider system gas introduced in Chapter 2.2.2. In the competitive world of gas burner

design, the engineer must meet the following safety requirement:

In any subinterval, if the duration of the subinterval is at least 60 seconds, then the

cumulative leak amount within the subinterval is less than one-sixth of the subinterval

duration. The purpose of this requirement is to prevent an excessive amount of gas from

leaking into my living room and possibly killing me.

We write this property in htl as follows. Letting _L represent the rate at which gas leaks from

the system, and x represent the system's global clock, we can express the property as follows8:

�!x � �x � 60 =�f 6(
�!
L �

 �
L ) � �!x � �x

3.5.3 Room Heater

Finally, we reconsider system RH . We are interested in proving that the room temperature even-

tually falls within the range of 65oF to 75oF, and that once the temperature is in this range, it will

remain in this range forever. This can be written in ltl as follows:

1. 1 (65 � x � 75);

2. (65 � x � 75)=� 0 (65 � x � 75).

3.6 Discussion

Several papers have compared some of the semantics we have discussed in terms of expressive-

ness [114, 133]. Logics based on the various semantics have been developed, and, not surprisingly,

have varying decidability results. The interested reader is referred to Bouajjani, Echahed, and

Sifakis [32], who show that the duration calculus with a sampling semantics is decidable, whereas

the duration calculus with a dense semantics is undecidable. Henzinger, Kopke, and Wong-Toi [79]

present decidability results that depend on the number of clocks and whether such clocks have an

underlying dense or discrete time domain.

8We have dropped the units in the equation, but if _L were measured in lbs/sec, then the constant 6 in the equation

would really be 6sec/lbs, otherwise the units for 6(
�!
L �

 �
L ) and �!x � �x would be di�erent.



Chapter 4

Stuttering Automata

A feature of many interval temporal logics, including htl is that their propositional fragments are

insensitive to stuttering. A language is insensitive to stuttering if whenever it accepts a word w it

accepts any word obtained from w by repeating literals or deleting repeated literals. In this chapter,

we study the underlying theory of insensitivity to stuttering, also known as stuttering invariance.

We develop a theory of regular expressions and automata that are insensitive to stuttering, and give

decision procedures for determining language emptiness and for determining when a particular word

is in a language.

As an application of our theory of stuttering invariance, we study the propositional fragment

of htl. In particular, we give a decision procedure for the �nite propositional fragment of htl|a

fragment which is useful when analyzing the control locations of hybrid automata (which will be

introduced in Chapter 5) and when generating intermediary invariants for proving safety properties

of hybrid systems. For example, two formulas in this fragment are (1) 0 (q; p)=�f 0 p, a valid

formula which states that every �nite interval in which all subintervals have a q-state eventually

followed by a p-state, have p continuously true in the interval; and (2) 0 p=�f 0 (q; p), an invalid

formula which states that every �nite interval which continuously satis�es p has all its subintervals

satisfying q eventually followed by p.

4.1 Contributions

The contributions of this chapter are

� a theory of stuttering regular expressions that captures the notion of stuttering invariance,

� a corresponding theory of stuttering automata that is equivalent in expressive power to stut-

tering regular expressions, and

� a decision procedure for the propositional fragment of hybrid temporal logic.

27
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4.2 Basic Concepts

4.2.1 Stuttering Regular Expressions

Let V be a �xed �nite vocabulary, i.e., V = fx1; : : : ; xng. A �-state over V is a set U � V [ V

(where V = fx1; : : : ; xng and xi = :xi, for all xi 2 V ) such that for all xi 2 V , either xi 2 U or

xi 2 U , but not both. We let � be the set of all �-states over V and write particular �-states as �.

A �-word is a �nite string w 2 ��1. We use � to denote the empty string (i.e., w� = �w = w). We

are really concerned with the theory of non-empty strings, but we use � to make the presentation

a bit cleaner. A �-proposition is a boolean formula over V using the the logical constant true and

the logical connectives _ , ^ , and :.

We say a �-state � satis�es a �-proposition  (denoted � j=  ) according to the following

inductive de�nition:

� j= true

� j= xi i� xi 2 � for any xi 2 V

� j=  1 _  2 i� � j=  1 or � j=  2

� j=  1 ^  2 i� � j=  1 and � j=  2

� j= : 1 i� � 6j=  1

We de�ne the extended regular expressions (eres) as follows:  is an ere for any �-proposition

 . If '1 and '2 are eres, then

'1 + '2 ('1)('2) '+1 '�1 :'1

are all eres.

We de�ne the depth of an ere as follows:

depth( ) = 1

depth(E1 +E2) = max(depth(E1); depth(E2))

depth(E1E2) = depth(E1) + depth(E2)

depth(E+
1 ) = 2 � depth(E1)

depth(E�1 ) = 2 � depth(E1)

depth(:E1) = depth(E1)

1As in the theory of regular expressions, �� denotes the Kleene closure. We freely borrow the notation of regular

expressions, and point out any di�erences between our notation and that of regular expressions. In particular, we use

the standard symbols �, :, and +, and let jwj be the length of a word w.
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Let ��m = fw j w 2 �+ and jwj � mg for m � 1. Thus, for an ere E,

��depth(E) = fw j w 2 �+ and jwj � depth(E)g:

Note that ��1 = �+. We de�ne Sat(E) inductively as follows:

Sat( ) = f� j � j=  g for any �-proposition  

Sat('1 + '2) = Sat('1) [ Sat('2)

Sat('1'2) = fw1w2 j w1 2 Sat('1); w2 2 Sat('2)g

Sat('+1 ) =
S
i�1fw j w 2 Sat('

i
1)g

2

Sat('�1) =
S
i�0fw j w 2 Sat('

i
1)g

Sat(:'1) = �� � Sat('1) for any '1 not a �-proposition

A �-word w conventionally satis�es an ere E, w j=C E, if w 2 Sat(E). Note that � 6j=  for any

�-proposition  . Thus, � 6j=  and � 6j= : .

We are interested in only a small subclass of eres, which represent �-words that are insensitive

to stuttering. Thus, if a word stutteringly satis�es a regular expression, then all stuttering variants

of the word stutteringly satisfy the regular expression.

The class of stuttering-invariant eres (denoted sre) is formed from the following inductive

de�nition:  + is an sre for any �-proposition  . If '1 and '2 are sres, then

'1 + '2 ('1)('2) '�1 :'1

are all sres. Clearly a stuttering-invariant ere is also an ere. We can de�ne the intersection of

two expressions, E1 \ E2, as :(:E1 + :E2). We will freely use \ in the rest of this chapter.

For any two �-words w and w0, we say w0 � w if w0 is a stretching of w (i.e., if w = �1 : : : �n, then

w0 is a stretching i� w0 = �i11 : : : �inn where i1; : : : ; in � 1). Thus, a stretching of w can duplicate

states, but not add any states not already in w nor remove states from w. Note that � 6� w and

� 6� w.

For any �-word w = �1 : : : �n, for any m � 1, let (w)St(m) = �m1 : : : �mn . That is, (w)St(m) is

just like w except every state is stretched out m times. A �-word w stutteringly satis�es a sre E

(denoted w j=S E) according to the following inductive de�nition:

w j=S  
+ i� w j=C  

+

w j=S E1 +E2 i� w j=S E1 or w j=S E2

w j=S E1E2 i� 9v1; v2 such that (w)St(2) = v1v2; v1 j=S E1; v2 j=S E2

w j=S E
�

1 i� either w = � or w j=S E
i
1; for some i � 1

w j=S :E1 i� w 6j=S E1

For any sre E, we denote SSat(E) = fw j w j=S Eg.



30 CHAPTER 4. STUTTERING AUTOMATA

Proposition 4 For any �-proposition  , for any �-state �, either � j=C  or � j=C : .

The proof follows from the de�nition of satisfaction, and can be found in Chapter 4.6.

The next lemma shows that our de�nition of stuttering satisfaction constructs only those lan-

guages that are stuttering invariant. Thus, if w 2 SSat(E), then any word obtained from w by

repeating literals or deleting repeated literals is also in SSat(E). The lemma is proved by induction

on the structure of E, and appears in Chapter 4.6.

Lemma 5 (Stuttering Invariance) For any sre E, for any �-word w,

1. if w j=S E then for all w0 � w, w0 j=S E.

2. if 9 w0 � w such that w0 j=S E, then w j=S E.

The following lemma gives insight into the structure of expressions allowed in the class sre. It

relies only on the de�nition of conventional satisfaction: since our de�nition of stuttering satisfaction

relies on conventional satisfaction, this lemma is useful in understanding when stuttering a state

within a word does not change satisfaction.

Lemma 6 (Depth Expansion) For any sre E, any �-word w, and any �-state �, if w = v1�v2

for some v1; v2 2 �� and w0 = v1�
mv2 j=C E for some m � depth(E), then for all n � depth(E),

w00 = v1�
nv2 j=C E.

Proof of 6:

We prove the lemma by induction on the structure of E.

Case: Base

E is of the form  + for some �-proposition  . Suppose w = v1�v2 for some v1; v2 2 �
� and

some �-state �. Suppose 9 m � depth(E) = 1 such that w = v1�
mv2 j=C E. Fix such an

m. As v1�
mv2 j=C  

+, we have � j=C  . So, for any n � depth(E), w00 = v1�
nv2 j=C  +.

Case: Inductive

Case: E = E1 +E2

Consider an arbitrary w = v1�v2 for some v1; v2 2 �� and some �-state �. Suppose

9 m � depth(E) such that w = v1�
mv2 j=C E1 +E2. Fix such an m.

Then either w0 j=C E1 or w
0 j=C E2. That is, w

0 j=C Ei for either i = 1 or i = 2. Fix

such an i.

By induction hypothesis, as m � depth(E) � depth(Ei), we get for all n � depth(Ei),

v1�
nv2 j=C Ei. So clearly, for all n � depth(Ei), v1�

nv2 j=C E1 + E2. So for all

n � depth(E), v1�
nv2 j=C E1 +E2.

Case: E = E1E2
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Consider an arbitrary w = v1�v2 for some v1; v2 2 �� and some �-state �. Suppose

9 m � depth(E) such that w = v1�
mv2 j=C E1E2. Fix such an m.

Then as v1�
mv2 j=C E1E2, there exist �-words w1 and w2 where w1w2 = v1�

mv2 and

w1 j=C E1 and w2 j=C E2. Fix such w1 and w2.

Case: v1�
m is a substring of w1

Thus, w1 = v1�
mv01 and w2 = v001 , where v2 = v01v

00

1 . Fix such v01 and v
00

1 .

As v1�
mv01 j=C E1 and m � depth(E) > depth(E1), we get for all n � depth(E1),

v1�
nv01 j=C E1, by the induction hypothesis. So, for all n � depth(E), v1�

nv01 j=C

E1. So, for all n � depth(E), w00 = v1�
nv01v

0

2 j=C E1E2.

Case: �mv2 is a substring of w2

Similar to the previous case.

Case: w1 = v1�
i and w2 = �jv2, where i+ j = m

As i + j = m � depth(E) = depth(E1) + depth(E2), either i � depth(E1) or

j � depth(E2).

Case: i � depth(E1)

Then v1�
i j=C E1 and i � depth(E1), so by induction hypothesis, for all

n � depth(E1), v1�
n j=C E1. So consider any k � depth(E) = depth(E1) +

depth(E2).

If j < depth(E2) then k�j � depth(E1). So, v1�
k�j j=C E1 and �

jv2 j=C E2.

So v1�
kv2 = v1�

k�j�jv2 j=C E1E2.

If j � depth(E2) then by induction hypothesis, for all ` � depth(E2), �
`v2 j=C

E2. Let ` = depth(E2). Then k � ` � depth(E1). So v1�
k�` j=C E1 and

�`v2 j=C E2. So v1�
kv2 j=C E1E2.

Thus, in either case v1�
kv2 j=C E1E2. As k was arbitrarily chosen� depth(E),

we get for all n � depth(E), w00 = v1�
nv2 j=C E1E2 as desired.

Case: i < depth(E1)

Then j � depth(E2). Similar to the previous case.

Case: E = :E1

Consider an arbitrary w = v1�v2 for some v1; v2 2 �� and some �-state �. Suppose

9 m � depth(E) such that w = v1�
mv2 j=C :E1. Fix such an m.

Assume that 9 n � depth(E) such that w00 = v1�
nv2 6j=C E. Fix such an n. We will

reach a contradiction.

As w00 = v1�
nv2 j=C E1, by induction hypothesis, for all ` � depth(E1), v1�

`v2 j=C E1.

As m � depth(E) = depth(E1), v1�
mv2 j=C E1. But as v1�

mv2 j=C E, we have

v1�
mv2 6j=C E1. )(

So our assumption is false. For all n � depth(E), w00 = v1�
nv2 j=C E.
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Case: E = E�1

Consider an arbitrary w = v1�v2 for some v1; v2 2 �� and some �-state �. Suppose

9 m � depth(E�1 ) = 2 � depth(E1) such that w = v1�
mv2 j=C E�1 . Fix such an m.

As w 6= �, w = v1�
mv2 j=C Ei1, for some i � 1. Fix such an i.

Note that depth(Ei1) = i � depth(E1) so the induction hypothesis is not applicable.

But we do know that 9w1; : : : wi such that 8`; 1 � ` � i, w` j=C E1. Moreover for

some 1 � k < i, �m is a substring of wkwk+1. Fix such a k. Thus, wk = w0k�
p and

wk+1 = �qw0k+1, where p+ q = m � 2 � depth(E1).

Case: p = 0

Then wk+1 = �mw0k+1 j=C E1. As m � depth(E1) by induction hypothesis we get

8n � depth(E1), �
nw0k+1 j=C E1. So, 8n � 2 � depth(E1), �

nw0k+1 j=C E1. So,

8n � depth(E�1 ), w1 : : : wk�
nw0k+1 : : : wi j=C Ei1. So, 8n � depth(E�1 ), v1�

nv2 j=C

E�1 .

Case: q = 0

Similarly done.

Case: p 6= 0, q 6= 0, p � depth(E1)

This is similarly to the corresponding case for concatenation.

Case: p 6= 0, q 6= 0, p < depth(E1)

Then as p+q = 2�depth(E1), q � depth(E1). This is similarly to the corresponding

case for concatenation.

So by induction the lemma holds.

4.2.2 Decision Procedure for w j=S E

We now present a simple decision procedure for determining if w j=S E for any �-word w and any

sre E. The algorithm is based on a dynamic programming technique as described in [5, 86]. The

essential idea is to construct a table which for each subexpression E0 of E and for each substring

xij of w gives the answer to the question:

Is xij in SSat(E
0)?

where xij represents the substring of w starting from position i and of length j. The correctness of

the algorithm is based on the Stuttering Invariance Lemma (Lemma 5).

Algorithm SSat: Given any �-word w and any sre E, to determine if w j=S E:

1. Enumerate all the subexpressions of E, starting from the simplest. That is, if E0 is a proper

subexpression of E00 then E0 must appear before E00. Let m denote the number of subex-

pressions of E and let En denote the nth entry in the list. Note that Em = E since E is a

subexpression of E and clearly a superexpression of all other subexpressions of E.
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2. Form a three-dimensional table A, where Aijk stores the answer to the question:

Is xij in SSat(Ek)?

The table is constructed as follows:

for j = 1 to jwj

for i = 1 to (jwj � j + 1)

for k = 1 to m

Fill in the entry of Aijk with \yes" or \no" according to the rules below

(a) if Ek is of the form  + for some �-proposition  then,

if 8`, i � ` � j, x`1 j=C  , then \yes" else \no".

(b) if Ek is of the form Ek1 \ Ek2 then,

if Aijk1=\yes" and Aijk2=\yes", then \yes" else \no".

(c) if Ek is of the form Ek1 +Ek2 then,

if Aijk1=\yes" or Aijk2=\yes", then \yes" else \no".

(d) if Ek is of the form :Ek1 then,

if Aijk1=\yes", then \no" else \yes".

(e) if Ek is of the form E�k1 then
3,

for each xi` and x(i+`)(j�`), where 1 � ` < j

if Ai`k1=\yes" and A(i+`)(j�`)k=\yes" then \yes"

if Aijk1=\yes" then \yes"

if Aijk is not �lled with a \yes" via any of the above, then enter \no".

(f) if Ek is of the form Ek1Ek2 then,

for each xi` and x(i+`)(j�`), where 1 � ` < j

if Ai`k1=\yes" and A(i+`)(j�`)k2=\yes" then \yes"

for each xi` and x(i+`�1)(j�`+1), where 1 � ` � j

if Ai`k1=\yes" and A(i+`�1)(j�`+1)k2=\yes" then \yes"

if � 2 SSat(Ek1) and Aijk2=\yes" then \yes"

if � 2 SSat(Ek2) and Aijk1=\yes" then \yes"

if Aijk is not �lled with a \yes" via any of the above, then enter \no".

3. Return the entry of A1jwjm

Since we construct the entry of a Aijk based on its subexpressions and substrings, and we start

from the simplest expressions and substrings, we are guaranteed that the necessary entries are

3Note that a non-empty word is in E�

k1
i� it is in E+

k1
.
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already computed. The correctness of the algorithm is straightforward; the only interesting case

is concatenation, whose correctness relies on the Stuttering Invariance Lemma. The proof can be

found in Chapter 4.6. The algorithm relies on an auxiliary algorithm for determining whether

� 2 SSat(Ek). We present this algorithm below. Once again we use dynamic programming to form

an array B, where Bk stores the answer to the question \Is � in SSat(Ek)?"

for k = 1 to m

Fill in the entry of Bk with \yes" or \no" according to the rules below

1. if Ek is of the form  + for some �-proposition  then \no".

2. if Ek is of the form Ek1 \Ek2 then,

if Bk1=\yes" and Bk2=\yes", then \yes" else \no".

3. if Ek is of the form Ek1 +Ek2 then,

if Bk1=\yes" or Bk2=\yes", then \yes" else \no".

4. if Ek is of the form :Ek1 then,

if Bk1=\yes", then \no" else \yes".

5. if Ek is of the form E�k1 then \yes".

6. if Ek is of the form Ek1Ek2 then,

if Bk1=\yes" and Bk2=\yes", then \yes" else \no".

We now analyze the cost of the above algorithm. We �rst de�ne some measures on the size of

sres and eres. The length of an ere E is de�ned as follows:

length( ) = j j

length(E1 +E2) = length(E1) + length(E2) + 1

length(E1 \ E2) = length(E1) + length(E2) + 1

length(E1E2) = length(E1) + length(E2)

length(E+
1 ) = length(E1) + 1

length(E�1 ) = length(E1) + 1

length(:E1) = length(E1) + 1 for E1 not a �-proposition

The llength of an ere E is de�ned similarly except llength( ) = 1. As the class sre is a subclass of

ere, this de�nes the measures length and llength on sres as well.

The number of entries in the table constructed for Algorithm SSat is O(llength(E)jwj2). Each

entry where Ek is of the form  + for some �-proposition  takes O(j jjwj) time, whereas all

other entries take O(jwj + llength(E)) time. The latter is caused by the fact that concatenation

requires time O(jwj + llength(E)). Thus, each entry is bounded by O(j jjwj + jwj + llength(E)),

which in turn is bounded by O(jwjj j + llength(E)). Finally, the overall algorithm is bounded by
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O(llength(E)jwj2(jwjj j+ llength(E))), which is bounded by O((length(E) + jwj)4).

4.2.3 Stuttering Automata

In this section, we develop a theory of stuttering-invariant automata, which corresponds to the

theory of regular expressions developed in Section 4.2.1.

A stuttering-invariant table T on �, where � is the input alphabet consisting of �-states as

de�ned in Section 2, is a triple T = hS;M; S0i where S is a �nite set of states, S0 � S is the set of

initial states, and M is a function M : S ��! 2S, called the transition function, such that

for all si; sj 2 S, if sj 2M(si; �) then sj 2M(sj ; �) y

(y) is called the stuttering condition.

A stuttering �nite automaton is a quadruple A = hS;M; S0; F i where hS;M; S0i is a stuttering

insensitive table and F � S is the set of �nal states. The automaton is deterministic if jS0j = 1 and

M is deterministic, i.e., jM(sj ; �)j = 1 for all sj 2 S. The size of an automaton, jAj, is the number

of states in S.

For an arbitrary n-tuple ha1; : : : ; ani, the j
th projection pj(ha1; : : : ; ani) = aj , where 1 � j � n.

A tape X of length n � ! on � is a sequence of length n over the alphabet �. X(i) represents the

ith element of X , which we will also write as xi. X(i; j) represents the portion of the tape from

position i to position j�1. Let � be a sequence of length n � ! over some arbitrary set A. We view

� as a function from fi < ng to A, and also denote it by (�(i)). For such a sequence �, we let �(�)

be the last element of � if n < ! and the set of all elements of A which appear in�nitely often in �

if n = !.

Given a table T = hS;M; S0i, a tape X over �, and a state s 2 S, we de�ne an s-run of T on X

as any sequence � = (si) of length 1 + jX j of states such that s0 = s and si+1 2M(si; xi) for every

i < jX j. The set of all s-runs of T on X is written as Rs(T;X), and the set of runs of T on X is

written as R(T;X) =
S
s2S0

Rs(T;X).

The conventional language of a stuttering �nite automaton A = hS;M; S0; F i, denoted LC(A),

is de�ned as fX 2 �� j 9� 2 R(T;X) such that �(�) 2 Fg.

When we de�ne an automaton A, we are interested not only in those runs that are conventionally

accepted by A, but also those runs whose stuttering variants are conventionally accepted by A. That

is, if w is an accepting run and w0 � w or w0 � w, then w0 should be an accepting run. We de�ne

the downward closure of an arbitrary set A, denoted #A, as the smallest set such that (1) A � #A

and (2) if w 2 #A then 8w0 � w, w0 2 #A. We de�ne the stuttering language of an automaton A,

denoted LS(A), as #LC(A).

Lemma 7
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S = fs0; s1; s2g S0 = fs0g F = fs1g

M  : 

s0 s1 s2
s1 s1 s2
s2 s2 s2

Figure 4.1: The deterministic stuttering-invariant �nite automaton for accepting  +

1. If A is deterministic, then LS(A) = LC(A).

2. For any stuttering-invariant automaton, w 2 LS(A) i� (w)St(jAj) 2 LC(A).

3. For any sre E1 and E2, SSat(E1E2) = #(SSat(E1) � SSat(E2)), where � is concatenation of

sets.

From now on we will use this lemma as an alternate de�nition for the stuttering language of

automata. Let DSA(�) be the class of stuttering languages de�ned by deterministic stuttering-

invariant �nite automata. That is,

DSA(�) = fLS(A) j A is a stuttering-insensitive automaton over �g:

For example, the deterministic table in Figure 4.1 de�nes the language  + for some �-proposition

 , and the nondeterministic table in Figure 4.2 de�nes the language  +true+. To be precise, in

Figure 4.1, we would take all � 2 � such that � j=C  and de�ne M(si; �) as the value given for

M(si;  ). That is, we take M(si;  ) = U , for some set U , to be an abbreviation for

8� 2 �;M(si; �) = U:

4.2.4 Closure of Automata

Our twomain goals in this section are (1) to show that the theory of automata that we have previously

de�ned is closed under the operations of union, product, intersection, and complementation; and,

(2) to show that our stuttering-invariant theory of automata is equivalent to our stuttering-invariant

theory of extended regular expressions. We begin with (1).

Theorem 8 (Closure) DSA(�) is closed under complementation, union, intersection, product,

and Kleene closure.
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S = fs0; s1; s2; s3g S0 = fs0g F = fs3g

M  : 

s0 s1 s2
s1 fs1; s3g fs2; s3g

s2 s2 s2
s3 s3 s3

Figure 4.2: The nondeterministic stuttering �nite automaton for accepting  +true+

To prove this theorem we will need a way to take the product of two deterministic stuttering-

invariant automata such that the resulting automaton satis�es the stuttering condition and is deter-

ministic. Note that the traditional construction for product (e.g., Hopcroft and Ullman [86]) results

in a nondeterministic automaton, which can then be determinized using the subset construction.

However, such a construction results in an automaton that violates the stuttering condition4. In-

stead we adapt the approach taken by Choueka in [44], where given a deterministic automaton A

and an automaton B = hT; F 0i we construct a new table T 0 such that hT 0; F 0i accepts the language

L(A)�L(B).

Flag Construction

The 
ag construction takes as input a deterministic stuttering-insensitive automaton A and a (non-

deterministic) stuttering insensitive table T 0 and constructs a new table, called the 
ag-table of A

relative to T 0, 
(A; T 0), which also satis�es the stuttering condition.

The intuition behind the 
ag construction is taken verbatim from Choeuka [44].

Take n+2 copies of T 0 [where n = jT 0j], number them 1 through n+2, connect them

in parallel with A, and add a control unit to the resulting structure. Each copy of T 0

can be either dormant, which means that it ignores the input until it is switched \on"

by a \control unit" C. Once it is switched \on", it remains active and acts according to

table T 0 until it is switched \o�" by C.

The con�guration works as follows. In the initial state of the 
ag table, A is in its

initial state, and all T 0 copies are dormant. At each time t, C checks for all T 0 copies

which are in the same state, and switches them o�, except for the one with the least

index. It then checks A's state to see whether it is a �nal state; if so, it switches on one

of the dormant copies of T 0.

4Furthermore, it does not generalize to in�nite automata.
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Suppose that at some time t, n of T 0 copies are active and in di�erent states, and

that, further, C switches on then one of the dormant copies. At t+1, there will be only

n+ 1 active copies, so that one copy is still available for switching on by C if necessary.

We now formally construct the 
ag table. Given a deterministic stuttering-invariant automaton

A = hS;M; fs0g; F i and a stuttering-invariant table T 0 = hS0;M 0; S00i over � where jS0j = n. We

de�ne the 
ag-table of A relative to T 0 as the table T 00 = 
(A; T 0) = hQ;P; r0i where

� S00 = S0 [ f0g where 0 62 S0 (0 represents the dormant state)

� M 00 is just like M 0 extended on the new state 0 as follows: M 00(0; �) = f0g, for all � 2 �.

� G = (S00)k�(S0)k where k = n+2 (thus G is the set of n+2 tuples with at least one occurrence

of 0).

� Q = S � � � f0; 1; : : : ; kg � G. The S position represents the state A is in, the � position

represents the last input character, the f0; 1; : : : ; kg position represents the copy of T 0 that

was turned on by the last input or 0 if no copy was turned on, and G represents the states

that the n+2 copies of T 0 are in. These latter two positions will help us satisfy the stuttering

condition.

� r0 = (s0; �; 0; 0; : : : ; 0| {z }
n+2 times

) where � is the �rst symbol appearing in the set �.

We could pick any �, but for concreteness we have chosen the �rst � appearing in �.

� In the following, let g and g00 be a k = n + 2 tuple of integers, ga, gb, and gj represent the

a, b, and jth position of g, respectively, g00m and g00j represent the m and jth position of g00,

respectively, and 
; � 2 �. We de�ne M 00 as follows:

1. P (hs; �; 0; gi; 
) = fhM(s; 
); 
; a; g0ig where 8j 2 [1::k], g00j 2M
00(gj ; 
).

(off-condition) g0j = g00j unless 9m < j such that g00j = g00m whence g0j = 0.

This statement says that the off condition does nothing unless

there is a position of g00 smaller than j that is in the same state as

g00j , in which case we shut j down.

(on-condition) if M(s; 
) 2 F then

let a be the least index for which ga = 0

g0a 2
S
t2S0

0

M 00(t; 
)

else a = 0

Notice that when we turn on a copy of T 0, we set the third position of our tuple to the

number of the copy turned on and assume that our next input will also be 
. This ensures

that if our next input is indeed 
, the stuttering condition is satis�ed. If our next input

is not 
, then we will still be able to correctly put the ath copy of T 0 into its correct state

since we have recorded the value of a (see also condition (3)).
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2. P (hs; �; a 6= 0; gi; �) = fhM(s; �); �; b; g0ig where 8j 2 [1::k], g00j 2 M
00(gj ; �). If g

00

a = ga

(i.e., our ath copy of T 0 has stuttered into the same state) then b = a, else b = 0.

(off-condition) g0j = g00j unless 9m < j such that g00j = g00m whence g0j = 0; moreover

if j = a then b = 0.

(on-condition) None

This is where we must ensure that the stuttering condition is satis�ed: � was the last

input as well as the current input. Since A is deterministic and s is the state resulting

from input �, by the stuttering condition M(s; �) = s. As the requirements for turning

on a copy are subsumed by the stuttering condition, we have no on condition.

3. P (hs; 
; a 6= 0; gi; 
 6= �) = fhM(s; 
); 
; b; g0ig where 8j 2 [1::k], j 6= a, g00j 2 M
00(gj ; �);

g00a 2
S
t2S0

0

M(t; 
).

(off-condition) g0j = g00j unless 9m < j such that g00j = g00m whence g0j = 0.

(on-condition) if M(s; 
) 2 F then

let b be the least index for which gb = 0

g0b 2
S
t2S0�M

00(t; 
)

else b = 0

In this case since our current input is di�erent from the last input, our stuttering condition

is trivially satis�ed. However, if we turned on any copy of T 0 (which is represented by

a 6= 0), we must correct the state of this ath copy of T 0 (see the note regarding the �rst

case).

The following terminology is borrowed from [44]. Let X be a tape over � and � 00 2 R(T 00; X),

where T 00 = 
(A; T 0). Given some i < jX j, let � 00(i � 1) = (s; �; a; g) and � 00(i) = (s0; 
; b; g0) We

say that copy j is switched on at i if gj = 0, g0j 6= 0; switched o� if gj 6= 0, g0j = 0; dormant if

gj = g0j = 0; active if gj 6= 0, g0j 6= 0. If copy j is switched o� at i and j0 is the index of the unique

copy which is active at i and is in the same state as copy j, then we say that j has been switched

o� because of j0.

Suppose that copy j0 has been switched on at i0. Its representative at i > i0, relative to i0,

rep(j0; i0; i), is de�ned as follows: rep(j0; i0; i0 + 1) = j0, and rep(j0; i0; i+ 1) = rep(j0; i0; i+ 1) =

rep(j0; i0; i) unless this right-hand copy has been switched o� at i because of j0 in which case

rep(j0; i0; i + 1) = j0. Since rep(j0; i0; i) is a nonincreasing sequence of numbers bounded by j0,

there is some j� � j0 such that ultimately rep(j0; i0; i) is constant and equal to j�. We call j� the

ultimate representative of j0 relative to i0 and denote it by urep(j0; i0). We de�ne the virtual run

of j0 relative to i0 as the sequence v(j0; i0; �
00) = � 0 de�ned by � 0(0) = s0 where s0 is any state for

which pj0(�
00(i0+1)) 2M(s0; xi0), and for i > 0, � 0(i) = pj0(�

00(i+ i0)), where j
0 = rep(j0; i0; i+ i0).

Lemma 9 (Flag) Let A be a deterministic stuttering �nite automaton, T 0 a stuttering-invariant

table, T 00 = 
(A; T 0) and X a �-word. If � 00 2 R(T 00; X), copy j0 is switched on at i0, Y = X(0; i0)
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and Z = X(i0; jX j), then Y is accepted by A, � 0 = v(j0; i0; �
00) 2 R(T 0; Z), and � 0(�) = pj�(�

00(�)).

On the other hand if X = Y Z where Y = X(0; i0) is accepted by A, then for every � 0 2 R(T 0; Z)

there is some � 00 2 R(T 00; X) and some 1 � j0 � k such that �
0 = v(j0; i0; �

00) and � 0(�) = pj�(�
00(�)).

In both cases, j� = urep(j0; i0).

By Lemma 9, we can construct the product of two deterministic stuttering-insensitive automata

A and B as follows: C = h
(A; T 0); F 00i where F 00 = frjfor some 1 � j � n + 2; pj(r) 2 F 0g; if

� 2 LS(B) then C is the desired product automaton, else C [ A is the desired product automaton.

Given two deterministic stuttering-insensitive automata A and B, their union is hT �T 0; ff jp1(f) 2

F or p2(f) 2 Fgi, and their intersection is hT �T
0; ff jp1(f) 2 F and p2(f) 2 Fgi. The complement

of an automaton A = hS;M; s0; F i is hS;M; s0; S � F i. With this lemma in hand we can prove

Theorem 8. The proof appears in Chapter 4.6.

We now show that our automata theory is equivalent to the expression theory developed in

Chapter 4.2.1.

Theorem 10 (Equivalence) DSA(�)=SRE(�).

Theorem 10 is proved in two stages: (1) showing SRE(�)�DSA(�); and (2) showingDSA(�)�

SRE(�).

To prove SRE(�)� DSA(�), note that the basic sre  + can be de�ned using stuttering-

insensitive automata as in Figure 4.1. AsDSA(�) is closed under ordinary negation, ordinary union,

and ordinary Kleene closure, all we need to show is that DSA(�) is closed under sre's de�nition of

concatenation. This fact can be shown using Lemma 7 as follows: let A and B be two deterministic

stuttering-insensitive automata and let E1 and E2 be two sres such that LS(A) = SSat(E1) and

LS(B) = SSat(E2), then LS(A�B) = #(LS(A) � LS(B)) = #(SSat(E1) � SSat(E2)) = SSat(E1E2).

To prove DSA(�)� SRE(�), we show how to construct an sre E given an arbitrary determin-

istic stuttering-insensitive automaton A = hS;M; s0; F i, where S = fs0; : : : ; sng. For 1 � i; j � n

and 0 � k � n de�ne the following sets:

V 0
i;j = fX

+jM(si; X) = sj ; jX j = 1g if i 6= j

V 0
i;j = fX

+jM(si; X) = sj ; jX j = 1g� if i = j

V k+1
i;j = V ki;j + V ki;k+1(V

k
k+1;k+1)

�V kk+1;j

We can show SSat(V ki;j) = LS(A
k
i;j), where Aki;j = hSk;M restricted to Sk; si; sji and

Sk = fs1; : : : ; skg [ fsi; sjg. Setting V =
S
si2F

V ni;i gives us SSat(V ) = LS(A) as desired.

Using the classical techniques of automata [86], we can decide the language emptiness and lan-

guage inclusion problem for DSA(�).

Theorem 11 Given two deterministic stuttering-insensitive automata A and B, we can decide if

LS(A) = ; and L(A) � L(B).
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4.3 From Prop-htl to Stuttering Automata

In this section, we use our theory of stuttering invariance to answer the following questions about

�nite models of propositional-htl.

� Given a �nite phase P over V and an htl formula ', does P j= '?

� Given an htl formula ' over V , is there a �nite phase P such that P j= '? That is, is ' a

satis�able formula of propositional htl restricted to �nite models?

To answer these questions, we de�ne a translation from htl to sre.

The ability to refer to time is present in htl because of its ability to refer to derivatives, which can

express, among other things, clocks and stop-watches. It is important to note that the propositional

fragment of htl is essentially an untimed logic. Thus, the following two �nite models of propositional

htl are equivalent in the sense that each set satis�es precisely the same htl formulas.

� P1 = hI1; f1i where I1 = [0; 10) and (for each xi 2 V ) f
1
xi
(t) = true for all t 2 [0; 5), false

otherwise.

� P2 = hI
2; f2i where I2 = [0; 30) and (for each xi 2 V ) f

2
xi
(t) = true for all t 2 [0; 12), false

otherwise.

We formalize this property below.

We call a phase P = hI; fi (over V = fx1; : : : ; xng) a constant-slope phase if for all xi 2 V ,

either for all t 2 I , fxi(t) = true or for all t 2 I , fxi(t) = false . That is, for each xi, fxi is constant.

For a constant-slope phase we use fxi(I) to denote the value of variable xi throughout the phase.

Two phases P1 and P2 are propositionally stuttering equivalent (denoted P1 =s P2) if there

exist constant slope phases P 1;1 = hI1;1; f1;1i; : : : ; P 1;a = hI1;a; f1;ai and constant slope phases

P 2;1 = hI2;1; f2;1i; : : : ; P 2;a = hI2;a; f2;ai such that

� P1 = P 1;1� � � � � P 1;a and

� P2 = P 2;1� � � � � P 2;a and

� for all i 2 [1::a], for all xj 2 V , f
1;i
xj
(I1;i) = f2;ixj (I

2;i)

Note that if two �nite phase sequences are equivalent (as de�ned by Henzinger et al [70]) then when

each is viewed as a single phase restricted to the propositional variables, the resulting two phases

are propositionally stuttering equivalent. However, in general, the converse is not true. In addition,

note that the precise times of the intervals are ignored when determining propositional stuttering

equivalence.

The following lemma, whose proof appears in Chapter 4.6, formalizes the fact that propositionally

stuttering-equivalent phases satisfy the same formulas and thus are satisfaction indistinguishable.
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Lemma 12 (Satisfaction Indistinguishability) For any propositional htl formula ', for any

two �nite phases P1 and P2, if P1 =s P2 then

P1 j= ' i� P2 j= ':

In the following, �x a �nite vocabulary V = fx1; : : : ; xng of propositional variables. We de�ne

two translation functions: Tf , which is a one-to-one function that translates an arbitrary htl formula

(over V ) into a sre (over V ), and Tm, which is a surjective function that translates an arbitrary

�nite phase of propositional htl (over V ) into a �-word w, where � is the set of all �-states over V .

Let T�f be the inverse of the one-to-one function Tf , de�ned for all star-free sre. In addition, we

de�ne a reverse translation T rm that translates an arbitrary �-word into a phase such that

� For any �-word w, Tm(T
r
m(w)) = w

� For any phase P , P 0 = T rm(Tm(P )) where P
0 =s P .

Our two basic lemmas are:

Lemma 13 (Soundness) For any htl formula ' and any phase P ,

P j= ' i� Tm(P ) j=S Tf ('):

Lemma 14 (Completeness) For any star-free sre E and any �-word w,

w j=S E i� T rm(w) j= T�f (E):

We now de�ne the actual translation functions.

De�nition: Tf : htl ! sre

Tf ( ) =  +true+ for any boolean proposition  

Tf ('1 _ '2) = Tf ('1) + Tf ('2)

Tf ('1 ^ '2) = Tf ('1) \ Tf ('2)

Tf ('1;'2) = Tf ('1)Tf ('2)

Tf (:'1) = :Tf ('1)

De�nition: Tm: Phases ! �-words

Any �nite phase P of propositional htl can be partitioned into constant-slope subphases P1; : : : ; P`.

In addition, there is a unique maximal such partition, such that for no i 2 [1::` � 1] do we have

8xj 2 V , f
i
xj
(I i) = f i+1

xj
(I i+1). We call this partition the maximal constant-slope partition.

We de�ne Tm(P ) = �1 : : : �`, where (for each i 2 [1::`])

�i = (fxj j f
i
xj
(I i) = trueg [ fxj j f

i
xj
(I i) = falseg):
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De�nition: T rm: �-words ! Phases

For w = �1 : : : �`, we de�ne Pi = hI
i; f ii as follows:

I i = [i� 1; i)

f ixj = true i� �i j= xj

f ixj = false i� �i j= xj

T rm(w) = P1� � � � � P`.

The soundness and completeness proofs can be found in Chapter 4.6. Thus, questions of satis-

�ability and validity of htl formulas can be answered by translating the formulas into the theory

of sre and using the decision procedures established for the theory of sre. In particular, given an

sre E to determine if E is satis�able, check if the deterministic stuttering automaton for Tf (E) is

empty: if the automaton is empty, then E is not satis�able, otherwise it is satis�able. To determine

if E is valid check if the deterministic stuttering automaton for Tf (:E) is empty: if the automaton

is empty, then E is valid, otherwise it is not valid.

4.4 Application to Veri�cation

The primary application of stuttering regular expressions and stuterring automata to veri�cation is

in determining validity and satis�ability questions of htl formulas. We will see in Chapter 8 that

determining the validity of htl formulas will be necessary for determining when an htl property

holds for a particular hybrid system. In this chapter, we have only dealt with the propositional

fragment of htl. In Chapter 8.6, we present an additional method for proving htl properties.

4.5 Summary

Much work has been done in the area of regular expressions and automata. For an overview of

automata and regular expressions, we refer the reader to Hopcroft and Ullman [86]. Stuttering

closure has been studied for ltl by Peled, Wilke, and Wolper [130]. Choueka [44] was the �rst to

give a 
ag construction for computing the product of two automata. Our construction is modi�ed so

that the resulting 
ag table also obeys the stuttering condition. Our decision procedures forDSA(�)

and SRE(�) are based on the classical decision procedures for automata and regular expressions,

which are presented in [86] and Stockmeyer's thesis [147].

The downward closure of a set is used by Chaochen, Hansen, and Sestoft in [40] to prove that

the propositional fragment of the duration calculus (cod) is decidable. The logics cod and htl are

similar in that both are used for the speci�cation and veri�cation of hybrid systems, and that both

have propositional fragments that are insensitive to stuttering. However, the two logics are di�erent

in other respects. For example, htl is a local logic5, whereas cod is a non-local logic. Among the

5A logic is local if each propositional variable p is true of an interval s0 : : : sn i� p is true of the �rst state s0.
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interval temporal logics, Ramakrishna et al's Future Interval Temporal Logic [136] is insensitive to

stuttering. However, it di�ers from our work here in that it does not have a chop operator.

Note that although the logics cod and htl are de�ned on continuous, dense time domains, their

propositional fragments are discretizable. Interval logics that do not su�er from non-elementariness

do so by eliminating the chop operator (e.g., [136]). In fact, it is the interplay of negation and

chop that result in the non-elementariness of these logics [147, 60, 136]. In practice however, the

nesting of negations and chop operators can be controlled (e.g., typical safety properties are of the

form 0 '1; 0 '2; 0 '3 where each 'i is chop-free). Thus, this is not as severe a limitation as the

theoretical results suggest.

4.6 Proofs

In this section we give the proofs of several Chapter 4 theorems. We restate the theorems for

convenience.

Proposition 4 For any �-proposition  , for any �-state �, either � j=C  or � j=C : .

Proof of 4:

Consider an arbitrary �-proposition  and an arbitrary �-state �.

Case:

If � j=C  then we are done.

Case:

If � 6j=C  then � 6j=  , by de�nition of j=C .

So � j= : , by de�nition of j=. So � j=C : .

Thus, either � j=C  or � j=C : .

Lemma 5 (Stuttering Invariance) For any sre E, for any �-word w,

1. if w j=S E then for all w0 � w, w0 j=S E.

2. if 9 w0 � w such that w0 j=S E, then w j=S E.

Proof of 5:

We proceed by induction on the structure of E.

Case: Base

Consider an arbitrary sre E of the form  + and an arbitrary �-word w = �1 : : : �n.
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1. Suppose w j=S E. Then by de�nition of j=S , w j=C  +. Consider any arbitrary �-word

v � w. As w j=C  +, 8i 2 [1::n], �i j=C  . As v = �i11 : : : �inn (for some i1; : : : ; in), we

have v j=C  
+. So v j=S  

+.

2. Suppose 9 w0 � w such that w0 j=S E. Fix such a w0. Thus, w0 = �i11 : : : �inn for some

i1; : : : ; in � 1. Fix such i1; : : : ; in. Then, by de�nition of j=S , w
0 j=C  +. So 8i 2 [1::n],

�i j=  . So w = �1 : : : �n j=C  +, whence w j=S  
+.

Case: Inductive

Case: E = E1 +E2

Consider an arbitrary �-word w.

1. Suppose w j=S E1 +E2. By de�nition of j=S for +, either w j=S E1 or w j=S E2.

Case: w j=S E1

Consider any w00 � w. As w j=S E1, by part one of the induction hypothesis,

8w0 � w, w0 j=S E1. In particular w00 j=S E1. So w
00 j=S E1 + E2. As w

00 was

arbitrarily chosen, we get 8w00 � w, w00 j=S E1 +E2 as desired.

Case: w j=S E2

Similarly done.

2. Suppose 9w0 � w such that w0 j=S E1 + E2. Fix such w0. Either w0 j=S E1 or

w0 j=S E2.

Case: w0 j=S E1

By induction hypothesis, w j=S E1, whence w j=S E1 +E2.

Case: w0 j=S E2

By induction hypothesis, w j=S E2, whence w j=S E1 +E2.

Case: E = :E1

Consider an arbitrary �-word w.

1. Suppose w j=S :E1. Assume 9w
0 � w such that w0 6j=S :E1. Fix such a w0. Thus,

w0 j=S E1. By part two of the induction hypothesis applied to E1, we get w j=S E1.

)(

So our assumption is false, and 8w0 � w, w0 j=S :E1 as desired.

2. Suppose 9w0 � w such that w0 j=S :E1. Fix such w0. Assume w 6j=S :E1. Thus,

w j=S E1 and by part one of the induction hypothesis, w0 j=S E1. )(

So our assumption is false, and w j=S :E1 as desired.

Case: E = E1E2

Consider an arbitrary �-word w.

1. Thus, w = �1 : : : �n for some �-states �1; : : : ; �n. Fix such �'s. Suppose w j=S

E1E2. So by de�nition of j=S for concatenation, there exist �-words v1 and v2 such

that (w)St(2) = v1v2, v1 j=S E1, and v2 j=S E2. Fix such v1 and v2.
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Thus v1 = �21 : : : �
2
k�1�

`
k and v2 = �2�`k �2k+1 : : : �

in
n for some ` and k such that

1 � k � n, 0 � ` � 2, jv1j � 1, and jv2j � 2. Fix such k and `.

Consider any w0 = �
j1
1 : : : �jnn � w. To show: w

0 j=S E1E2.

Let v01 =

8>><
>>:

�
2j1
1 : : : �

2jk�1
k�1 if ` = 0

�
2j1
1 : : : �

2jk�1
k�1 �

jk
k if ` = 1

�
2j1
1 : : : �

2jk
k if ` = 2

Let v02 =

8>><
>>:

�
2jk
k : : : �2jnn if ` = 0

�
jk
k �

2jk+1
k+1 : : : �2jnn if ` = 1

�
2jk+1
k+1 : : : �2jnn if ` = 2

Claim: v01 j=S E1 and v
0

2 j=S E2

Proof:

As v01 � v1 and v1 j=S E1, by part one of the induction hypothesis, v01 j=S E1.

Similarly v02 j=S E2.

So (w0)St(2) = v01v
0

2 is such that (w0)St(2) = v01v
0

2, v
0

1 j=S E1, and v
0

2 j=S E2. So by

de�nition of j=S for concatenation, w0 j=S E1E2 as desired.

2. Suppose 9w0 � w such that w0 j=S E1E2. Fix such w0. Thus w0 = �i11 : : : �inn ,

for some i1; : : : ; in � 1. Fix such i1; : : : ; in. As w0 j=S E1E2, by de�nition of

j=S for concatenation, there exists v01 and v02 such that (w0)St(2) = v01v
0

2, v
0

1 j=S

E1, and v02 j=S E2. Fix such v01 and v02. So v01 = �2i11 : : : �
2ik�1
k�1 �`k and v02 =

�2ik�`k : : : �
2ik+1
k+1 �inn , for some ` and k such that 1 � k � n, 0 � ` � 2ik, jv

0

1j � 1,

and jv02j � 2. Fix such k and `.

Let v1 =

8>><
>>:

�21 : : : �
2
k�1 if ` = 0

�21 : : : �
2
k�1�k if 1 � ` < 2ik

�21 : : : �
2
k if ` = 2ik

Let v02 =

8>><
>>:

�2k : : : �
2
n if ` = 0

�k�
2
k+1 : : : �

2
n if 1 � ` < 2ik

�2k+1 : : : �
2
n if ` = 2ik

Then v01 � v1 and v02 � v2, so by part two of the induction hypothesis, v1 j=S E1

and v2 j=S E2. As (w)
St(2) = v1v2, we get w j=S E1E2 as desired.

Case: E = E�1

Consider an arbitrary �-word w.

1. Suppose w j=S E
�

1 . By de�nition of j=S for �, either w = � or w j=S E
i
1 for some

i � 1.

Case: w = �

Then trivially, 8w00 � w, w00 j=S E
�

1 as desired.

Case: w j=S E
i
1, for some i � 1
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Fix such an i. Consider any w00 � w. Then by induction hypothesis, 8w0 � w,

w0 j=S Ei1. In particular w00 j=S Ei1. So w00 j=S E�1 . As w00 was arbitrarily

chosen, we get 8w00 � w, w00 j=S E
�

1 as desired.

2. Suppose 9w0 � w such that w0 j=S E�1 . Fix such w0. As w0 6= �, w0 j=S Ei1, for

some i � 1. Fix such an i. So by induction hypothesis, w j=S E
i
1. So w j=S E

�

1 as

desired.

So by induction the lemma holds.

Proof of Correctness of Algorithm SSat:

We show

xij 2 SSat(Ek) i� entry Aijk =\yes".

Consider an arbitrary word w = �1 : : : �n and sre E. We proceed by induction on the structure

of E.

Case: Base

Ek is of the form  +.

xij 2 SSat(Ek) i� 8`; i � ` � j; �` j=C  

i� Aijk =\yes"

Case: Inductive

Case: Ek = Ek1 +Ek2 , for k1; k2 < k

xij 2 SSat(Ek) i� xij 2 SSat(Ek1) or xij 2 SSat(Ek2)

i� Aijk1 =\yes" or Aijk2 =\yes"

i� Aijk =\yes"

Case: Ek = Ek1 \ Ek2 , for k1; k2 < k

xij 2 SSat(Ek) i� xij 2 SSat(Ek1) and xij 2 SSat(Ek2)

i� Aijk1 =\yes" and Aijk2 =\yes"

i� Aijk =\yes"

Case: Ek = :Ek1 , for k1 < k

xij 2 SSat(Ek) i� xij 62 SSat(Ek1)

i� Aijk1 =\no"

i� Aijk =\yes"

Case: Ek = Ek1Ek2 , for k1; k2 < k

Case: )

Suppose xij 2 SSat(Ek). Then 9v1; v2 such that (xij)
St(2) = v1v2, v1 2 SSat(Ek1),

and v2 2 SSat(Ek2). Fix such v1 and v2.

Case:
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For some `, v1 = �2i : : : �
2
i+`�1 and v2 = �2i+` : : : �

2
i+j�1. Then v1 � xi`

and v2 � x(i+`)(j�`). So by part two of Lemma 5, as v1 2 SSat(Ek1)

and v2 2 SSat(Ek2), we get xi` 2 SSat(Ek1) and x(i+`)(j�`) 2 SSat(Ek2).

Thus, by induction hypothesis, Ai`k1 =\yes" and A(i+`)(j�`)k2 =\yes", whence

Aijk =\yes".

Case:

v1 =

(
�i if ` = 1

�2i : : : �
2
i+`�2�i+`�1 for some `, 1 < ` � j

v2 =

(
�i+`�1�

2
i+` : : : �

2
i+j�1 for some `, 1 � ` < j

�i+j�1 if ` = j

Then v1 � xi` and v2 � x(i+`)(j�`). So by part two of Lemma 5, as v1 2

SSat(Ek1) and v2 2 SSat(Ek2), we get xi` 2 SSat(Ek1) and x(i+`)(j�`) 2

SSat(Ek2). Thus, by induction hypothesis, Ai`k1 =\yes" and

A(i+`)(j�`)k2 =\yes", whence Aijk =\yes".

So in either case, Aijk =\yes".

Case: (

Suppose Aijk =\yes". So either

� 9`, 1 � ` < j such that Ai`k1=\yes" and A(i+`)(j�`)k2=\yes";

� or 9`, 1 � ` � j, such that Ai`k1=\yes" and A(i+`�1)(j�`+1)k2=\yes";

� or � 2 Ek1 and Aijk2=\yes";

� or � 2 Ek2 and Aijk1=\yes".

Case:

Suppose there exists 1 � ` < j such that Ai`k1=\yes" and A(i+`)(j�`)k2=

\yes". Fix such an `. By the induction hypothesis, xi` 2 SSat(Ek1) and

x(i+`)(j�`) 2 SSat(Ek2). By Lemma 5 part one, (xi`)
St(2) 2 SSat(Ek1) and

(x(i+`)(j�`))
St(2) 2 SSat(Ek2). As (xij)

St(2) = (xi`)
St(2)(x(i+`)(j�`))

St(2), we

get xij 2 SSat(Ek) as desired.

Case:

Suppose there exists 1 � ` � j such that Ai`k1=\yes" and A(i+`�1)(j�`+1)k2=

\yes". Fix such an `. By the induction hypothesis, xi` 2 SSat(Ek1) and

x(i+`�1)(j�`+1) 2 SSat(Ek2). By Lemma 5 part one, (xi(`�1))
St(2)x(1+`�1)1 2

SSat(Ek1) and x(i+`�1)(x(i+`)(j�`))
St(2) 2 SSat(Ek2). So, xij 2 SSat(Ek) as

desired.

Case:

Suppose � 2 Ek1 and Aijk2=\yes". By the induction hypothesis, xij 2

SSat(Ek2). By Lemma 5 part one, (xij )
St(2) 2 SSat(Ek2) and (�)St(2) 2

SSat(Ek1). So, as (xij)
St(2) = (�)St(2)(xij)

St(2), we get xij 2 SSat(Ek) as
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desired.

Case:

Suppose � 2 Ek2 and Aijk1=\yes". By the induction hypothesis, xij 2

SSat(Ek1). By Lemma 5 part one, (xij )
St(2) 2 SSat(Ek1) and (�)St(2) 2

SSat(Ek2). So, as (xij)
St(2) = (xij)

St(2)(�)St(2), we get xij 2 SSat(Ek) as

desired.

Thus, by induction Algorithm SSat is correct.

Theorem 8 (Closure) DSA(�) is closed under complementation, union, intersection, product,

and Kleene closure.

Proof of 8:

We prove the lemma by induction on the operations of automata.

Case: Complementation

Suppose V = L(A) where A = hT; F i. Then V = T (A0) where A0 = hT; F i and F = S �F .

Claim: w 2 L(A) i� w 62 L(A0).

Proof:

If w 2 L(A) then (w)St(jA) 2 LC(A). Thus, there is a run from s0 to some sj where

sj 2 F . As A is deterministic, sj 62 F . So (w)
St(jA) 62 LC(A

0). Hence w 62 L(A).

Similarly, we can show if w 62 L(A0) then w 2 L(A).

Case: Union

Suppose Vj = T (Aj) for 1 � j � n, where Aj = hTj ; Fji. Then
S
j Vj = A = hT; F i

where T =
Q
j Tj and f 2 F i� pj(f) 2 Fj for some 1 � j � k. The product table can be

easily shown to satisfy the stuttering condition since it is de�ned componentwise and each

component satis�es the stuttering condition.

Case: Intersection

As complementation can be expressed in terms of union and intersection, by the two previous

cases we have closure under intersection.

Case: Product

Suppose that U = L(A) and V = L(B), where A = hT; F i and B = hT 0; F 0i has n states.

Assume that the empty word, �, is not in L(B). Thus the initial state of T 0 is not in

F 0. Let C = hT 00; G0i where T 00 = 
(A; T 0) and g0 2 G0 i� pj(g
0) 2 F 0 for some 1 � j � n+2.
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By Lemma 9, we have the following:

w 2 L(C) i� (w)St(jCj) 2 LC(C)

i� 9w1; w2 such that

w1 2 LC(A); w2 2 LC(A); and (w)St(jCj) = w1w2 :

Case: Kleene closure

Suppose that V = L(A), where A = hT; F i has n states. Take k = n + 2 copies of T and

let the control unit switch on a dormant copy every time any one of the T copies is in a

�nal state of A. In the initial state, the �rst copy is in the initial state of T while all other

copies are dormant. Call the resulting table for such a systm T 00 and de�ne C = hT 00; G0i,

where g0 2 G0 i� pj(g
0) 2 F for some 1 � j � k. By Lemma 9, for any X 6= �, X 2 L(C) i�

X = X1 � � �Xm where Xi 2 V and Xi 6= �. (This can be seen as follows: suppose X 2 L(C)

and let j0 be the copy which is in a �nal state at the end of X . If j0 was last switched on

at i0 then X(i0; jX j) 2 V . So some copy is in the �nal state at i0. Call this copy j1. If j1

was switched on at i1 < i0 then X(i1; i0) 2 V . After a �nite number of steps, we arrive at a

splitting of X as a �nite product of nonempty tapes from V . Conversely, if X = X1 � � �Xm

where Xi 2 V , then by induction on r some copy is in a �nal state at the end of X1 � � �Xr

for each 1 � r � m; whence X 2 L(C).) Taking B to be the automaton which de�nes

L(C) [ f�g, we get L(B) = V � as desired.

Lemma 12 (Satisfaction Indistinguishability) For any propositional htl formula ', for any

two �nite phases P1 and P2, if P1 =s P2 then

P1 j= ' i� P2 j= ':

Proof of 12:

We prove the lemma by induction on the structure of '.

Case: Base

Suppose ' is a boolean formula. Let P1 and P2 be �nite phases such that P1 =s P2.

Thus there exist constant slope P 1;1 = hI1;1; f1;1i; : : : ; P 1;a = hI1;a; f1;ai and constant slope

P 2;1 = hI2;1; f2;1i; : : : ; P 2;a = hI2;a; f2;ai such that

� P1 = P 1;1� � � � � P 1;a and

� P2 = P 2;1� � � � � P 2;a and

� 8i 2 [1::a], 8xj 2 V , f
1;i
xj
(I1;i) = f2;ixj (I

2;i).

Fix such P 's. Then I1;1 = [t1; t2) for some t1; t2 2 R and I2;1 = [t3; t4) for some t3; t4 2 R.

Then,
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P1 j= ' i� ' holds at t1

i� ' holds throughout I1;1 since the interpretation of all variables is

constant throughout I1;1

i� ' holds throughout I2;1 since for all xj 2 V , f
1;1
xj

= f2;1xj

i� ' holds at t3 since the interpretation of all variables is

constant throughout I2;1

i� P2 j= '

Case: Inductive

Case: ' = '1 _ '2

Suppose P1 =s P2. Then,

P1 j= ' i� P1 j= '1 or P1 j= '2

i� P2 j= '1 or P2 j= '2 by induction hypothesis

i� P2 j= '

Case: ' = :'1

Suppose P1 =s P2. Then,

P1 j= ' i� P1 j= :'1

i� P1 6j= '1

i� P2 6j= '1 by induction hypothesis

i� P2 j= :'1

i� P2 j= '

Case: ' = '1;'2

Suppose P1 =s P2. Suppose P1 j= '1;'2. Then 9 P
A
1 ; P

B
1 such that P1 = PA1 � P

B
1 and

PA1 j= '1 and P
B
1 j= '2. Fix such PA1 and PB1 .

As P1 =s P2, there exist constant slope P
1;1 = hI1;1; f1;1i; : : : ; P 1;a = hI1;a; f1;ai and

constant slope P 2;1 = hI2;1; f2;1i; : : : ; P 2;a = hI2;a; f2;ai such that

� P1 = P 1;1� � � � � P 1;a and

� P2 = P 2;1� � � � � P 2;a and

� 8i 2 [1::a], 8xj 2 V , f
1;i
xj
(I1;i) = f2;ixj (I

2;i).

Fix such P 's.

Either for some k, PA1 = P 1;1� � � � � P 1;k or there is a least k such that PA1 is a left

subphase of P 1;1� � � � � P 1;k.

In the latter case, we may partition P 1;k into P 1;k1 and P 1;k2 such that PA1 =

P 1;1� � � � � P 1;k1 and PB1 = P 1;k2 � � � � � P 1;a. In addition, we may then partition P 2;k

into two equal segments P 2;k1 and P 2;k2 .

So, without loss of generality, consider the case where PA1 = P 1;1� � � � � P 1;k and

PB1 = P 1;k+1� � � � � P 1;a. Let PA2 = P 2;1� � � � � P 2;k and PB2 = P 2;k+1� � � � � P 2;a. As

8i 2 [1::a], 8xj 2 V , f
1;i
xj
(I1;i) = f2;ixj (I

2;i), PA1 =s P
A
2 , and P

B
1 =s P

B
2 . So, by induction

hypothesis PA2 j= '1 and P
B
2 j= '2, whence P2 j= '1;'2.
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Similarly, we can show if P2 j= '1;'2 then P1 j= '1;'2.

So, by induction the lemma holds.

Lemma 13 (Soundness) For any htl formula ' and any phase P ,

P j= ' i� Tm(P ) j=S Tf ('):

Proof of 13:

We prove the lemma by induction on the structure of '.

Case: Base

Suppose ' is a boolean formula. Consider any phase P and let P 1; : : : ; P a be the corre-

sponding unique maximal constant-slope partition, where P 1 = h[t1; t2); f
1i. Then Tm(P ) =

�1 : : : �a, where (for each i 2 [1::a])

�i = (fxj j f
i
xj
(I i) = trueg [ fxj j f

i
xj
(I i) = falseg)

and Tf (') = '+true+.

Case: P j= '

Then ' holds at t1, so ' holds throughout I1. So �1 j= '. Thus �21 j=C '+. As

�22 : : : �
2
a j=C true+, we get �21 : : : �

2
a j=C '+true+. Hence �1 : : : �a j=S '

+true+. Thus,

Tm(P ) j=S Tf (').

Case: Tm(P ) j=S Tf (')

So �1 j= ', whence ' holds throughout I1. Thus, ' holds at t and P j= ' as desired.

Case: Inductive

Case: ' = '1 _ '2

Consider an arbitrary phase P .

P j= ' i� P j= '1 or P j= '2

i� Tm(P ) j=S Tf ('1)

or Tm(P ) j=S Tf ('2)

by induction hypothesis

i� Tm(P ) j=S Tf ('1) + Tf ('2) by de�nition of j=S for +

i� Tm(P ) j=S Tf ('1 _ '2) by de�nition of Tf

Case: ' = :'1
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Consider an arbitrary phase P .

P j= ' i� P j= :'1

i� P 6j= '1

i� Tm(P ) 6j=S Tf ('1) by induction hypothesis

i� Tm(P ) j=S :Tf ('1) by de�nition of j=S for :

i� Tm(P ) j=S Tf (:'1) by de�nition of Tf

Case: ' = '1;'2

Consider an arbitrary phase P .

Case: P j= '1;'2

Thus, there exist P1 and P2 partitioning P such that P1 j= '1 and P2 j= '2. Fix

such P1 and P2.

By induction hypothesis, Tm(P1) j=S Tf ('1) and Tm(P2) j=S Tf ('2). There exist

�'s such that Tm(P1) = �1 : : : �`, where �` 6= �`�1, and Tm(P2) = �`+1 : : : �a,

where �`+1 6= �`+2.

Case: �` = �`+1

Then �21 : : : �
2
`�1�` j=S Tf ('1) and �

2
`�

2
`+1 : : : �

2
a j=S Tf ('2). So by de�nition

of j=S for concatenation, Tm(P ) = �1 : : : �`�`+2 : : : �a j=S Tf ('1)Tf ('2).

Case: �` 6= �`+1

Then �21 : : : �
2
` j=S Tf ('1) and �

2
`+1 : : : �

2
a j=S Tf ('2). So by de�nition of j=S

for concatenation, Tf (P ) = �1 : : : �a j=S Tf ('1)Tf ('2).

In either case, we have shown Tm(P ) j=S Tf ('1;'2).

Case: Tm(P ) j=S Tf ('1;'2)

There exist �'s such that Tm(P ) = �1 : : : �a. Thus, �1 : : : �a j=S Tf ('1;'2). So by

de�nition of j=S for concatenation, there exists an ` such that either

�21 : : : �
2
`�1�` j=S Tf ('1) and �`�

2
`+1 : : : �

2
a j=S Tf ('2)

or �21 : : : �
2
` j=S Tf ('1) and �

2
`+1 : : : �

2
a j=S Tf ('2)

Case: �21 : : : �
2
`�1�` j=S Tf ('1) and �`�

2
`+1 : : : �

2
a j=S Tf ('2)

Thus, �1 : : : �` j=S Tf ('1) and �` : : : �a j=S Tf ('2). So there exist partitions

P1 and P2 such that Tf (P1) = �1 : : : �` and Tf (P2) = �` : : : �a and P = P1;P2.

This is possible since the last constant-slope subphase of P1 equals the �rst

constant-slope subphase of P2.

Case: �21 : : : �
2
` j=S Tf ('1) and �

2
`+1 : : : �

2
a j=S Tf ('2)

Thus, �1 : : : �` j=S Tf ('1) and �`+1 : : : �a j=S Tf ('2). So there exist partitions

P1 and P2 such that Tf (P1) = �1 : : : �` and Tf (P2) = �` : : : �a and P = P1;P2.

So by induction the lemma holds.
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Lemma 14 (Completeness) For any star-free sre E and any �-word w,

w j=S E i� T rm(w) j= T�f (E):

Proof of 14:

We prove the lemma by induction on the structure of E. Recall, that we only consider the

star-free sre.

Case: Base

Suppose E is of the form  +true+ for some propositional formula  . Consider an arbitrary

word w = �1 : : : �a. Then T
r
m(w) = P1� : : : � Pa.

Case: w j=S  
+true+

As w j=S E, �1 j=C  , whence  holds throughout P1. So by de�nition of j= in htl

T rm(w) j=  = T�f ( 
+true+).

Case: T rm(w) j= T�f (E)

Thus, P1 j=  . As P1 is a constant-slope phase, we get  holds throughout P1, whence

�1 j=C  (as P1 = T rm(�1)). So w j=S  
+true+ as desired.

Case: Inductive

Case: E = E1 _ E2

Consider an arbitrary �-word w.

w j=S E i� w j=S E1 or w j=S E2

i� T rm(w) j= T�f (E1)

or T rm(w) j= T�f (E2)

by induction hypothesis

i� T rm(w) j= T�f (E1) + T�f (E2) by de�nition of j= for +

i� T rm(w) j= T�f (E1 _ E2) by de�nition of T�f

Case: E = :E

Consider an arbitrary �-word w.

w j=S E i� w j=S :E1

i� w 6j=S E1

i� T rm(w) 6j= T�f (E1) by induction hypothesis

i� T rm(w) j= :T
�

f (E1) by de�nition of j= for :

i� T rm(w) j= T�f (:E) by de�nition of T�f

Case: E = E1E2

Consider an arbitrary �-word w = �1 : : : �a. Then T
r
m(w) = P1� : : : � Pa for appropriate

P1; : : : ; Pa.

Case: w j=S E

Then there exists an ` such that (w)St(2) = v1v2 and either
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v1 = �21 : : : �
2
` and v2 = �2`+1 : : : �

2
a.

or v1 = �21 : : : �
2
`�1�` and v2 = �`�

2
`+1 : : : �

2
a.

Case: v1 = �21 : : : �
2
` and v2 = �2`+1 : : : �

2
a

So, �1 : : : �` j=S E1 and �`+1 : : : �a j=S E2. Then T
r
m(�1 : : : �`) j= T�f (E1) and

T rm(�`+1 : : : �a) j= T�f (E2). T
r
m(�1 : : : �`)T

r
m(�`+1 : : : �a) j= T�f (E1);T

�

f (E2),

whence T rm(w) = T rm(�1 : : : �a) j= T�f (E1);T
�

f (E2) = T�f (E1E2).

Case: v1 = �21 : : : �
2
`�1�` and v2 = �`�

2
`+1 : : : �

2
a

So, �1 : : : �` j=S E1 and �`+1 : : : �a j=S E2. Then T
r
m(�1 : : : �`) j= T�f (E1) and

T rm(�` : : : �a) j= T�f (E2). So, T rm(�1 : : : �`)T
r
m(�` : : : �a) j= T�f (E1);T

�

f (E2),

in which case P1� : : : � P`� P`� : : : � Pa j= T�f (E1);T
�

f (E2). As

P1� : : : � P`� P`� : : : � Pa =s P1� : : : � Pa = T rm(w), T
r
m(w) j= T�f (E1);T

�

f (E2).

Thus, T rm(w) j= T�f (E1E2) as desired.

Thus, in either case T rm(w) j= T�f (E1E2).

Case: T rm(w) j= T�f (E1E2)

Then P1� : : : � Pa j= T�f (E1);T
�

f (E2). So there exists ` such that either

P1� : : : � P` j= T�f (E1) and P`+1� : : : � Pa j= T�f (E2)

or P1� : : : P` j= T�f (E1) and P`� : : : Pa j= T�f (E2)

Case: P1� : : : � P` j= T�f (E1) and P`+1� : : : � Pa j= T�f (E2)

So by induction hypothesis, T rm(�1 : : : �`) j= T�f (E1) and T rm(�`+1 : : : �a) j=

T�f (E2). So �1 : : : �` j=S E1 and �`+1 : : : �a j=S E2. So (�1 : : : �`)
St(2) j=S E1

and (�`+1 : : : �a)
St(2) j=S E2, whence w = �1 : : : �a j=S E1E2.

Case: P1� : : : � P` j= T�f (E1) and P`� : : : � Pa j= T�f (E2)

So by induction hypothesis, T rm(�1 : : : �`) j= T�f (E1) and T rm(�` : : : �a) j=

T�f (E2). So �1 : : : �` j=S E1 and �` : : : �a j=S E2. So (�1 : : : �`�2)
St(2)�` j=S

E1 and �`(�`+1 : : : �a)
St(2) j=S E2, whence w = �1 : : : �a j=S E1E2.

Thus, in either case w j=S E1E2.

So by induction the lemma holds.



Chapter 5

Transition Systems

In this chapter, we formally introduce models for hybrid systems. These models will serve as a

basis for forming veri�cation rules in the rest of the thesis. Each model is a formal representation

of hybrid systems under one of the three semantics introduced in Chapter 3. We introduce two

transition system approaches to modeling hybrid systems: phase transition systems and concrete

phase transition systems. As was the case for linear-time temporal logic, phase transition systems

have two associated semantics: a sampling semantics based on [114, 93, 47] and a super-dense

semantics. Concrete phase transition systems have only a single semantics, namely a continuous

semantics based on Kapur, Henzinger, Manna, and Pnueli [91].

5.1 Contributions

The contributions of this chapter are

� an extension of the phase transition system model of [114, 93] to our super-dense semantics

introduced in Chapter chap-spec, and

� the concrete phase transition system model, which formally models the behavior of hybrid

systems under the continuous interval semantics.

5.2 Phase Transition Systems

We �rst introduce phase transition systems (pts) [114, 93, 47]. A pts is a transition system that

allows continuous state changes over time periods of positive duration as well as discrete state

changes in zero time. The model considers the solutions of the di�erential equations that govern

the continuous evolution of the system as given, separating the concerns of solving the di�erential

56
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equations from those of studying the temporal properties of the system. A pts S = (V ; �; T ;�;A)

consists of the following components:

1. A set V of typed state variables, partitioned into the set Vd of discrete variables, the set Vc

of clock variables, and the set Vh of hybrid variables. Clock variables have type R+ (i.e., the

set of non-negative real numbers) and hybrid variables have type R. We distinguish a special

clock variable T 2 Vc, representing a master clock that measures the amount of time elapsed

during the system behavior. The state space S consists of all type-consistent interpretations

of the variables in V ; we denote by s[[x]] the value at state s 2 S of variable x 2 V . We de�ne

V
0 as the set V 0 = fx0 j x 2 Vg.

2. An assertion � over V , which de�nes the set fs 2 S j s j= �g of initial states.

3. A �nite set T of transition assertions over V , V 0 representing the discrete state changes. Each

assertion � 2 T represents the transition relation f(s1; s2) j (s1; s2) j= �g, where (s1; s2)

interprets x 2 V as s1[[x]] and x
0 2 V

0 as s2[[x]]. For all � 2 T , we require that the implication

� ! T = T 0 holds. This implies that discrete transitions occur in zero time.

4. A time-progress assertion � over V , used to specify a restriction on the progress of time. The

time-progress assertion, introduced by Nicollin, Olivero, Sifakis, and Yovine in [125]1, is often

used to express di�erent scheduling policies for executing transitions. For example, to express

a synchronous scheduling policy, where a transition � must be taken once it is enabled, our

time-progress assertion becomes :Enabled (�), where Enabled(�) is a predicate denoting when

� is enabled. Alternative scheduling policies can also be expressed using the time-progress

assertion, and we refer the reader to [125] where such alternatives are discussed and compared.

The time progress assertion was originally introduced [125] to show the generality of the

transition system model. By abstracting away scheduling policies into �, general veri�cation

rules can be developed that work for a wide-array of hybrid systems.

5. A �nite set A of activities representing the continuous state changes. Each activity a 2 A

consists of an enabling assertion Ca over Vd and of an evolution function Fa : S �R 7! S. At

every s 2 S there must be exactly one a 2 A such that s j= Ca. If at time t the system is at a

state s j= Ca, at time t+� the system will be at state Fa(s;�). For every a 2 A, the function

Fa must satisfy the equations

8x 2 Vd : Fa(s; t)[[x]] = s[[x]] Fa(s; 0) = s (5.1)

8x 2 Vc : Fa(s; t)[[x]] = s[[x]] + t Fa(s; t) = Fa(Fa(s; t
0); t� t0) (5.2)

1In [125], the time-progress assertion is called the \time can progress" predicate.
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for every s j= Ca, t � 0 and 0 � t0 � t. The function Fa is represented by the set of terms

fF xa gx2V over V[f�g, where the term F xa gives the temporal evolution of the value of x as a

function of the elapsed time �.

To de�ne the set of computations of a pts, we introduce the assertions fticka[�]ga2A, where each

ticka[�] is an assertion over V[V 0 and over the parameter �, whose domain is the set R+ of non-

negative real numbers. Assertion ticka[�] describes a state change of the system caused by activity

a when an amount of time � � 0 elapses and is given by:

Ca ^
� ^
x2V

(x0 = F xa [�])
�
^ 8t :

�
0 � t < �! �

h
F xa [t]=x

i
x2V

�
:

In the above formula, �[F xa [t]=x]x2V denotes the result of simultaneously replacing each occurrence

of x in � with F xa [t], for all x 2 V . The form of the assertion ticka[�] insures that the progress

constraint � holds at every moment of a time-step, except possibly for the �nal one. As discussed in

Kesten, Manna, and Pnueli [93], if � is used only to encode upper bounds on the transition waiting

times, assertion ticka[�] can be rewritten without quanti�ers.

Sampling Semantics

In this subsection, we de�ne the behavior of a pts in the sampling semantics, in which a computation

of the system consists of an enumerable sequence of system states.

A sampling computation of a pts S = (V ; �; T ;�;A) is an in�nite sequence � : s0; s1; s2; : : : of

states of S that satis�es the following conditions:

Initiality: s0 j= �.

Consecution: for each i � 0, one of the following holds:

1. there is a transition � 2 T such that (si; si+1) j= �;

2. there is an activity a 2 A such that (si; si+1) j= 9� � 0 : ticka[�].

Time progress: for each t 2 R there is i 2 IN such that si(T ) � t.

We denote by L(S) the set of sampling computations of a pts S.

Continuous Semantics

In this subsection, we de�ne the behavior of a pts in the continuous (i.e., super-dense) semantics,

in which a computation of the system consists of a super-dense run of the system. The relationship

between the sampling semantics and the continuous semantics for hybrid systems has been studied

by de Alfaro and Manna in [48].
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A continuous computation of a pts S = (V ; �; T ;�;A) is super-dense run � = h�s; fi, where �s is

an in�nite sequence of states of S , s0; s1; s2; : : :, and where � satis�es the following conditions:

Initiality: s0 j= �.

Consecution: for each i � 0, one of the following holds:

1. there is a transition � 2 T such that (si; si+1) j= �;

2. there is an activity a 2 A such that (si; si+1) j= 9� � 0 : ticka[�], and for each x 2 V ,

for each t 2 [time(si); time(si+1)), fx(t) = F xa (t).

Time progress: for each t 2 R there is i 2 IN such that si(T ) � t.

We denote by Lc(S) the set of continuous computations of a pts S .

Room-Heater Example

Returning to system RH introduced in Chapter 2.2.3, our pts S = (V ; �; T ;�;A) is de�ned as

follows.

1. Vd = fH;Wg, where H denotes the state of the heater and ranges over domain fOn;O� g,

and W denotes the state of the window and ranges over domain fOpen;Closed g. Vc = fT; yg,

where T is the global clock, and y measures the time elapsed since the last switching On/O�

of the heater. Vh = fxg, where x is the temperature of the room.

2. � : H = O� ^ W = Closed ^ x < 60 ^ y = 0 ^ T = 0.

3. T = f�1; �2; �3g, where �i : Ei ^ Ri for i 2 f1; 2; 3g, and

E1 : H = O� ^ x � 68 ^ y � 60 R1 : H
0 = On ^ y0 = 0

E2 : H = On ^ x � 72 ^ y � 60 R2 : H
0 = O� ^ y0 = 0

E3 : true R3 :W
0 = :W

where :Open = Closed and :Closed = Open. Variables not mentioned in R1, R2, and R3,

respectively, are left unchanged by the transitions.

4. � = :E1 ^ :E2. This condition insures that �1 and �2 are taken as soon as they become

enabled.
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5. A = fa1; a2; a3; a4g, where F
T
ai
= T +�, F yai = y +�, for every i 2 f1; 2; 3; 4g, and Cai and

F xai are de�ned as follows:

Ca1 : H = O� ^ W = Closed F xa1 = 60 + e��=105(x� 60)

Ca2 : H = O� ^ W = Open F xa2 = 60 + e��=70(x� 60)

Ca3 : H = On ^ W = Closed F xa3 = 75 + e��=105(x� 75)

Ca4 : H = On ^ W = Open F xa4 = 70 + e��=70(x� 70) :

5.3 Concrete Phase Transition Systems

Following [70, 114, 126], we model hybrid systems as transition systems. Just as discrete transitions

can be represented as binary relations on states, hybrid transitions can be represented as binary

relations on phases. Phases are characterized by phase invariants, which are presented as asser-

tions (�rst-order formulas) ��(V; _V ) in the two variable tuples V and _V , intended to hold at all

intermediate points t 2 [a; b) of the phase, where the set _V is de�ned as _V = f _x j x 2 V g.

For a given phase invariant �, a phase P = hI; fi over V is said to be a �-phase if P j=

continuous ^ 0 (��(V; _V )).

For example the phase invariant � presented as:

��(V; _V ): 3 � x < 6 ^ _x = 1

characterizes all phases in which x steadily increases at a rate of 1 and always remains within the

interval [3; 6).

A Concrete Phase Transition System (cpts) S = (V;�;�; T ) consists of four components:

1. A �nite set V of state variables.

2. A �nite set � of phase invariants over V . Each phase invariant � 2 � is presented by an

assertion of the form ��(V; _V ), referring to the state variables and their derivatives.

3. An initial condition, �, which is a state formula over V that speci�es the initial value of the

variables at the left end of the �rst phase in computations.

4. A set T of transitions. Each transition � 2 T is associated with an assertion �� (V; V
0), relating

values at the right-end limit state of a phase to the values at the left-end of a successor phase.

A phase sequence is a �nite or in�nite sequence of adjacent phases. For a phase sequence P =

P0; P1; : : :, we denote by P
�

the single phase obtained by the concatenation P0� P1� � � �. An htl-

formula can be interpreted over a phase sequence P by interpreting it over the single phase P
�

.

Two phase sequences P 1 and P 2 are equivalent if P
�

1 = P
�

2. It follows that all equivalence classes

of state sequences are closed under stuttering: if a phase Pi of the phase sequence P is split into two
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phases P 0 and P 00 that partition Pi, the resulting phase sequence

P0; : : : Pi�1; P
0; P 00; Pi+1; : : : Pn

is equivalent to P . Closure under stuttering allows for undersampling and oversampling. That is,

the truth value of a formula over a phase does not change by re�nement or fusion of some of its

subphases.

Let P = P0; P1; P2; : : : be an in�nite phase sequence with Pi = h[ai; ai+1); fii for all i � 0.

The in�nite phase sequence P diverges if ai grows beyond any bound as i increases. A �nite phase

sequence P = P0; : : : ; Pn, with Pi = h[ai; ai+1); fii for all 0 � i � n, diverges if an+1 =1.

A phase sequence is a computation of the cpts S if it is equivalent to a phase sequence P =

P0; P1; : : : ; Pn; : : : that satis�es the following conditions:
2

Initiality: If P0 = [a; b) then � holds at a.

Continuous activities: For all 0 � i < jP j, there is a phase invariant �� 2 � such that Pi is

a �-phase.

Discrete transitions: For all 0 � i < jP j � 1, there is a transition � 2 T such that

�� (
�!
Pi [V ];

 ��
Pi+1[V ]) holds.

Divergence: P is divergent.

A �nite sequence of �nite phases P = P0; P1; : : : ; Pn is called a run fragment of S if it satis�es

the �rst three requirements of a computation but is not required to be divergent. In fact, such a

sequence cannot be divergent. The system S is called a non-Zeno cpts if every run fragment of S

can be extended to a computation of S. From now on we restrict our attention to non-Zeno cpts's.

The cpts S satis�es a hybrid temporal formula ', written S j= ', if all computations of S

satisfy '.

5.4 Hybrid Automata

Many of the standard automata and diagram-based methods for presenting hybrid systems have a

natural representation as cptss. We use hybrid automata [10, 9, 83] to specify cptss. We present

a brief description of our representation of hybrid automata. Details can be found in [10, 9].

A hybrid automaton is a directed labeled graph D = (VD ; L; E;E�;
; �; �) consisting of the

following:

� A �nite set VD of data variables.

2P may be �nite or in�nite. If it is in�nite, then jP j =1.
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� A �nite set L of locations where each location ` 2 L is labeled by

{ a �nite set 
(`) of di�erential equations over the variables VD, and

{ a stay condition �(`), which speci�es the conditions under which the system can stay in

location `.

� A �nite set E of edges between the locations in L. Each edge e is labeled by a guarded

command �(e) : 
 ! �, where 
 is a state formula over the variables in VD (the guard of e)

and � is a conjunction of the form u1 := e1 ^ � � � ^ um := em, where fu1; : : : ; umg is a subset

of VD and e1; : : : ; em are expressions over VD .

� An entry edge, E�, that has no originating location, but an entry location `i 2 L. E� is labeled

by a formula �(E�) of the form v1 = c1 ^ � � � ^ vn = cn, which speci�es initial values for all

the data variables fv1; : : : ; vng = VD .

System gas

An implementation of the gas burner introduced in Section 2.2 is given in Figure 5.4. The system

gas has two environment variables: _L, which represents the rate at which gas leaks from the system

and which varies depending on the switch's setting; and R, which represents the environment's wish

to change the switch's setting. We also have the control variables switch; x; y; and T , where:

� switch represents the setting of the gas burner switch,

� x represents the system's global clock and advances at the rate of 1 at all times,

� y represents a node's local clock, and

� T represents the cumulative time spent in the leaking node `2 since the beginning of the

computation or the most recent period in which switch has been continuously o� for at least

100 time units.

In the �gure, :O� = On and :On = O�. The transition from `1 to itself represents the environment's

changing of the request variable. Similarly, the transition from `0 to `2 represents the environment's

changing of the request variable immediately followed by the system's response which, in our for-

malism, is represented as a single transition. As stated earlier, we wish to prove the following safety

property about system gas:

�!x � �x � 60 =�f 6(
�!
L �

 �
L ) � �!x � �x :

The concrete phase transition system corresponding to the above system is given in Figure 5.2.
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u R = O� ^ T = 0 ^
L = 0 ^ y = 0 ^

-

x = 0 ^ switch = O�

� �
?

(y = 100 ^ R = O�) ! (y := 0 ^ T := 0)

'

&

$

%

`0

f _x = 1; _y = 1;
_L = 0; _T = 0g

�(`0):
R = O� ^
y < 100^
switch = O�

� �
?

R := :R

'

&

$

%

`1

f _x = 1; _y = 1;
_L = 0; _T = 0g

�(`1):
y < 100^
switch = O�

� �
y = 100 ^
R = O� �

6

!

(T := 0 ^ y := 0)

R := On ^ y := 0

�

?

^ switch := On

'

&

$

%

`2

f _x = 1; _y = 1;
_L � 1; _T = 1g

�(`2):
R = On ^
T < 10 ^
switch = On

T < 10 !�

6

� �
R := O� ^ y := 0
^ switch := O�

(y = 100 ^ R = On) !
-

(T := 0 ^ y := 0 ^ switch := On)

�

T = 10 ! (y := 0 ^ switch := O�)

Figure 5.1: System gas|Three state gas burner
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Sgas =
�
V; �; �; T

�
, where:

V = fR; L; T; �; x; y; switchg

� = f�`0 ; �`1 ; �`2g

� : R = O� ^ T = 0 ^ L = 0 ^ y = 0 ^ switch = O� ^ � = `0 ^ x = 0
T = f�h`0;`0i; �h`0;`2i; �h`1;`0i; �h`1;`1i; �h`1;`2i; �h`2;`0i; �h`2;`1ig

�`0 : _x = 1 ^ _y = 1 ^ _L = 0 ^ _T = 0
^ y < 100 ^ R = O� ^ � = `0 ^ switch = O�

�`1 : _x = 1 ^ _y = 1 ^ _L = 0 ^ _T = 0
^ y < 100 ^ � = `1 ^ switch = On

�`2 : _x = 1 ^ _y = 1 ^ _L � 1 ^ _T = 1
^ R = On ^ T < 10 ^ � = `2 ^ switch = O�

�h`0;`0i : y = 100 ^ R = O� ^ � = `0 ^ R0 = R ^ L0 = L

^ T 0 = 0 ^ x0 = x ^ y0 = 0 ^ switch0 = O� ^ �0 = `0
�h`0;`2i : � = `0 ^ R0 = On ^ L0 = L

^ T 0 = T ^ x0 = x ^ y0 = 0 ^ switch0 = On ^ �0 = `2
�h`1;`0i : R = O� ^ y = 100 ^ � = `1 ^ R0 = R ^ L0 = L

^ T 0 = 0 ^ x0 = x ^ y0 = 0 ^ switch0 = O� ^ �0 = `0
�h`1;`1i : � = `1 ^ R0 = :R ^ L0 = L

^ T 0 = T ^ x0 = x ^ y0 = 0 ^ switch0 = switch ^ �0 = `1
�h`1;`2i : R = On ^ y = 100 ^ � = `1 ^ R0 = R ^ L0 = L

^ T 0 = 0 ^ x0 = x ^ y0 = 0 ^ switch0 = On ^ �0 = `2
�h`2;`0i : T < 10 ^ � = `2 ^ R0 = O� ^ L0 = L ^ T 0 = T

^ x0 = x ^ y0 = 0 ^ switch0 = O� ^ �0 = `0
�h`2;`1i : T = 10 ^ � = `2 ^ R0 = R ^ L0 = L ^ T 0 = T

^ x0 = x ^ y0 = 0 ^ switch0 = O� ^ �0 = `1

Figure 5.2: The concrete phase transition system associated with system gas
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V : f�g [ VD
� : �(E�) ^ � = `i where `i is the entry location for E�
� : f�`i j `i 2 Lg where, for each `i 2 L

�`i : �(`i) ^ � = `i ^
�V

 2
(`i)
 
�

T : f�h`i;`ji j h`i; `ji 2 Eg where, for each e = h`i; `ji 2 E such that �(e) : 
 ! �

where � is of the form
Vm
i=1 ui := ei;

�h`i;`ji : 
 ^
�Vm

i=1 u
0

i = ei
�
^ � = `i ^ �0 = `j ^

�V
v2(V�var(�)) v

0 = v
�

Figure 5.3: The concrete phase transition system S = (V;�;�; T ) corresponding to the hybrid
automaton, D = (VD; L; E;E�;
; �; �)

It is not di�cult to construct a cpts S, corresponding to a given hybrid automaton, and in

Figure 5.3 we present this construction. In the �gure, var(�) is the set of variables that get assigned

in � (i.e., fuij1 � i � mg).

From now on, we restrict our attention to non-Zeno hybrid automata, i.e., hybrid automata whose

corresponding cpts's are non-Zeno. As explained in Abadi and Lamport [3], a safety property � is

non-Zeno i� every �nite behavior satisfying � can be exended to an in�nite behavior satisfying � in

which time can progress without any bound.



Chapter 6

Diagrammatic Veri�cation:

Sampling Semantics

In this chapter, we present a methodology for the veri�cation of temporal properties of hybrid

systems. The methodology is based on the deductive transformation of hybrid diagrams, which

represent the system and its properties. The original hybrid system is represented as a one-vertex

diagram and is transformed using a set of rules where the �nal diagram can be algorithmically

checked against the speci�cation. Two classes of rules are presented in this chapter: safety rules

for studying safety properties; and justice, compassion, and pruning rules for studying progress

properties. The resulting methodology is complete for quanti�er-free linear-time temporal logic,

and the proof of completeness is presented. The algorithmic check of a hybrid diagram against its

speci�cation either gives a positive answer to the veri�cation problem or provides guidance for the

further transformation of the diagrams. The transformation rules and the application of guidance

is illustrated on a simple room-heater example.

6.1 Why Diagrams?

Hybrid diagrams are related to the fairness diagrams of de Alfaro and Manna [49] and to the hybrid

automata of [10, 9]. They consist of a graph whose vertices are labeled by assertions and whose

edges are labeled by transition relations. Associated with each diagram are fairness constraints that

encode acceptance conditions similar to those of !-automata. The diagrams represent the system

behavior and the safety and progress properties that have been proved about it: the vertex and

edge labels represent the safety properties; the fairness constraints represent the progress properties.

Hybrid diagrams are su�ciently expressive to encode the phase transition systems of Chapter 5.2,

which will be the hybrid system model adopted in this chapter.

66
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The construction of the proof of a temporal speci�cation begins by representing the system

as a one-vertex diagram, whose single edge encodes the possible state transitions of the system.

This initial diagram can be transformed using a set of rules that preserve the inclusion of system

behaviors, producing a chain of diagram transformations. The aim of this process is to obtain a

diagram that can be shown to satisfy the speci�cation by purely algorithmic means.

After any number of transformations, an algorithmic procedure can be applied to the last di-

agram: it either establishes that the �nal diagram (and, by behavior inclusion, the original pts)

satis�es the speci�cation, or it returns a set of candidate counterexample paths (CCP) in the dia-

gram. The CCPs provide guidance for the extension of the chain of transformations, following the

insights of Sipma, Uribe, and Manna [144]. Additionally, the CCPs can be used to guide the search

for counterexamples, by directing the simulation of the original system along the CCPs.

There are four rules to transform diagrams. The simulation rule modi�es the graph structure of

the diagram, enabling the study of safety properties [49]. The justice and compassion rules prove

progress properties of the diagrams and represent them as additional fairness constraints. The

pruning rule eliminates portions of the diagram that are never traversed by any computation along

which time diverges. These rules generate �rst-order veri�cation conditions that must be proved

to justify the transformation. The justice and compassion rules are one of the main contributions

of this chapter and are at the basis of the completeness results of the methodology. By relying on

ranking and delay functions to measure progress towards given goals, the rules enable the proof of

justice and compassion properties of the systems; these properties are then represented as fairness

constraints which are added to the diagrams.

While the transformation rules have been presented in their full generality, it is possible to

construct libraries that list special cases of the rules that occur frequently in practice and which can

be applied with little user intervention. We present two such special cases and illustrate them on an

example.

6.1.1 Contributions

The advantages of the proposed methodology over the rule-based approach of [117, 93] include

� a visual representation of the proof process,

� the possibility for proof guidance,

� the incremental construction of a proof,

� the ability to prove speci�cations expressed by temporal formulas not in canonical form [115],

and

� completeness of the methodology.
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Diagrams can later serve as documentation for a given system and can be reused when similar proofs

are carried out for similar systems [50]. In addition, incomplete or failed proofs can alert the engineer

to potential counterexamples.

6.2 Hybrid Diagrams

To study the temporal behavior of a pts, we introduce hybrid diagrams, derived from the fairness

diagrams of [49]. A hybrid diagram (diagram, for short) A = (V ; V; �; �; �;J ; C) consists of the

following components.

1. A set V of typed state variables that includes the master clock T . A state is a type-consistent

interpretation of all the variables in V ; the state space S of the diagram is the set of all such

variable interpretations.

2. A set V of vertices.

3. A labeling � that assigns to each vertex v 2 V an assertion �(v) over V. A location of a diagram

is a pair (v; s) such that v 2 V and s j= �(v). It represents an instantaneous con�guration of

the diagram.

4. A labeling � that assigns to each vertex v 2 V an initial assertion �(v) over V . This labeling

de�nes the set of initial locations f(v; s) j v 2 V and s j= �(v)g. For all v 2 V , we require

that �(v) ! T = 0.

5. A labeling � that assigns to each edge (u; v) 2 V �V a transition assertion �(u; v) over V [V 0

and �. For u; v 2 V , assertion �(u; v) represents the possible state changes of the system

when going from vertex u to vertex v by a time-step of duration � 2 R+. We require that the

assertion �(u; v)! T 0 = T +� holds for all u; v 2 V .

6. A set J of justice constraints and a set C of compassion constraints. The elements of J and

C are pairs (R;G) where R � V and G � V � V .

The justice and compassion constraints, collectively called fairness constraints, represent fairness

properties that have been proved about the system. For a constraint (R;G), the set R � V speci�es a

request region. The request is grati�ed when a transition from a vertex u to a vertex v is taken, with

(u; v) 2 G. A justice constraint indicates that a request that is performed without interruptions will

eventually lead to grati�cation; a compassion constraint indicates that a request performed in�nitely

often will be grati�ed in�nitely often [117, 49].

Given an assertion ' over V, we denote by '0 the formula obtained by replacing each free x 2 V

by x0 2 V 0. A run of a diagram is an in�nite sequence of locations (v0; s0), (v1; s1), (v2; s2), . . . ,

satisfying the following conditions:
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Figure 6.1: Hybrid Diagram A0.

Initiality: s0 j= �(v0).

Vertex Labels: for all i � 0, si j= �(vi) (this condition is implied by the fact that (si; vi) is

a location).

Edge Labels: for all i � 0, (si; si+1) j= 9� : �(vi; vi+1).

Time Progress: for each t 2 R there is i 2 IN such that si(T ) � t.

Justice: for each constraint (R;G) 2 J , if there is k 2 IN such that vi 2 R for all i � k, then

there is j � k such that (vj ; vj+1) 2 G.

Compassion: for each constraint (R;G) 2 C, if vi 2 R for in�nitely many i 2 IN, then there

are in�nitely many j 2 IN such that (vj ; vj+1) 2 G.

If � : (v0; s0); (v1; s1); (v2; s2); : : : is a run of A, the sequence of states s0; s1; s2; : : : is a computation

of A. We denote by Runs(A) and L(A) the sets of runs and computations of A, respectively.

We note that the above de�nition of diagram run di�ers slightly from the one presented in de

Alfaro, Kapur, and Manna [47]. Here, we have directly the condition si j= �(vi) for i � 0, instead of

requiring that the diagram satis�es [�(u)^�(u; v)] ! �0(v) for all u; v 2 V (the so-called consecution

requirement). Thus, when a state transition (si; si+1) occurs along a computation, it must satisfy

the formula �(vi) ^ �(vi; vi+1) ^ �
0

i+1. The current choice often enables us to draw diagrams with

edges labeled by simpler assertions, yielding a more concise graphical representation. We de�ne the

abbreviation

b�(u; v) def
= �(u) ^ �(u; v) ^ �0(v)

denoting the possible state changes corresponding to the traversal of edge (u; v).

Every pts can be represented by a one-vertex diagram, as the following construction shows.

Construction 1 Given a pts S = (V ; �; T ;�;A), we de�ne the diagram

hd(S) = (V ; V; �; ~�; �;J ; C) by V = fv0g, �(v0) = true, ~�(v0) = �, J = ;, C = ;, and

�(v0; v0) =

� _
�2T

(� ^� = 0)

�
_

� _
a2A

ticka[�]

�
:

Theorem 15 For a pts S, L(S) = L(hd(S)).
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The proof of Theorem 15 is trivial. In Figure 6.1, we present the initial diagram A0 = hd(RH)

corresponding to system RH . The transitions �1, �2, and �3 are as in RH (with the added conjunct

� = 0), and transitions �4, �5, �6, and �7 are ticka1 [�], ticka2 [�], ticka3 [�], and ticka4 [�], respec-

tively. The single node u0 is marked Init as a reminder that its initial label �(u0) is equal to the

initial condition of the pts.

Hybrid diagrams vs. hybrid automata. Hybrid diagrams are related to hybrid automata, a

formalism widely adopted for the modeling of hybrid systems and for the study of their temporal

properties [10, 35, 9]. While sharing a similar labeled-graph structure, the two formalisms di�er in

some respects.

In a hybrid automaton, the dynamic behavior of the system and the discrete state-transitions are

described by di�erent components: the �rst by di�erential equations labeling the vertices, the second

by transition relations labeling the edges. In a hybrid diagram, both types of system evolution are

described by the traversal of diagram edges. Vertex labels are used to express invariants that hold

along diagram computations.

These di�erences are motivated by the purposes that hybrid automata and hybrid diagrams

serve. Hybrid automata were proposed as a formal model of hybrid systems, to which various formal

veri�cation methods could be applied. Hybrid diagrams, on the other hand, are meant to provide

a deductive representation of a hybrid system and of the safety and progress properties that have

been proved about it. They are suited to the application of the diagram transformation rules that

will be presented next.

6.2.1 Diagram Transformation Rules

The temporal properties of a pts are studied by means of transformation rules [49]. There are four

rules: the simulation rule, used to study safety properties; the justice and compassion rules, used to

study progress properties; and the pruning rule, used to prune portions of a diagram that are never

traversed by runs along which time diverges. If a diagram A can be transformed into a diagram

B by one of these rules, we write A ) B. We indicate by
�

) the re
exive transitive closure of

). The rules preserve language containment: A ) B implies L(A) � L(B). Given a pts S , the

rules are used to construct a chain of transformations hd(S) � A0 ) A1 ) � � � ) An. At any

time, it is possible to check algorithmically whether the last diagram of the chain complies with

the speci�cation. This test, discussed in the next section, provides a su�cient condition for the

diagram to satisfy the speci�cation and returns either a positive answer to the veri�cation problem,

or guidance for the extension of the chain of transformations.

Simulation Rule

The simulation rule, derived from [49], enables the transformation of a diagram into a new one, such

that the second diagram is capable of simulating the �rst one. A simulation relation between two
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Figure 6.2: Hybrid Diagram A1. Edges labeled with false are not shown.

diagrams A1 and A2 is induced by a function � : V1 7! 2V2 from the vertices of A1 to those of A2.

Rule 1 (Simulation) Let A1 = (V; V1; �1; �1; �1;J 1; C1) and A2 = (V ; V2, �2, �2, �2, J 2, C2) be

two diagrams sharing the same variables. If there is a function � : V1 7! 2V2 that satis�es the

conditions below, then A1 ) A2.

1. For all u 2 V1, �1(u) ^ �1(u)!
W
v2�(u)(�2(v) ^ �2(v)).

2. For all u; u0 2 V1 and v 2 �(u),
�b�1(u; u0) ^ �2(v)�! W

v02�(u0) b�2(v; v0).
3. For each (R2; G2) 2 J 2 (resp. 2 C2) there is (R1; G1) 2 J 1 (resp. 2 C1) such that:

(a) for all u 2 V1, if �(u)\R2 6= ; then u 2 R1;

(b) for all (u; u0) 2 G1 and v 2 �(u),

b�1(u; u0) ^ �2(v) !
_

v02H(u0;v)

b�2(v; v0) ;
where H(u0; v) = fv0 j v0 2 �(u0) ^ (v; v0) 2 G2g.

Theorem 16 (soundness of Rule 1) If A1 ) A2 by Rule 1, then L(A1) � L(A2).

The proof of Theorem 16 is straightforward.

By applying the simulation rule to the diagram A0 of Figure 6.1, we obtain the diagram A1

presented in Figure 6.2. The application of the rule is based on the function � de�ned by �(u0) =

fv10 ; v
1
1 ; v

1
2 ; v

1
3g. In Figure 6.2, v10 is the only vertex satisfying the initial condition speci�ed by �.

Simulation Rule: Special Cases

Some instances of simulation transformations are used with particular frequency in proofs and de-

serve special mention. Two special cases of the simulation rule arise in practice: vertex-split, which
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splits a node of the diagram into several nodes enabling us to further analyze the system, and vertex-

strengthen, which strengthens the labeling of a vertex of the diagram, thereby allowing us to prove

a safety property of the system. We �rst present the vertex-split rule.

Rule 2 (Vertex-Split) Let A = (V ; V; �; �; �;J ; C) be a diagram, v 2 V a vertex, U = fu1; : : : ; ung

a set of new vertices (in which we wish to split v), and  1; : : : ;  n a set of formulas over V such thatW
i2[1::n]  i � true. We can transform A into a diagram A0 obtained as follows:

1. Replace vertex v with the set of vertices U , where for each 1 � i � n, ui 2 U is labeled by

�(ui) = �(v) ^  i and �(ui) = �(v).

2. For all i; j 2 [1::n] and z 2 V � fvg, let

�(z; ui) = �(z; v) �(ui; z) = �(v; z) �(ui; uj) = �(v; v) :

For every new edge (w;w0) thus labeled, if b� (w;w0) � false, then set �(w;w0) = false, thereby

eliminating the edge from the diagram.

3. For each constraint (R;G), if v 2 R then replace v with the set U , and for every edge going to

or from v in G, replace the edge with the corresponding new edges going to or from U .

By applying the vertex-split rule twice to the diagram A1 of Figure 6.2, we obtain the diagram

A2 presented in Figure 6.3. The application of the rule is based on splitting v21 by fv22 ; v
2
4g and

splitting v13 by fv23 ; v
2
5g in succession.

The other special case of the simulation rule we consider is the vertex-strengthen rule.

Rule 3 (Vertex-Strengthen) Let A = (V ; V; �; �; �;J ; C) be a diagram, v1; : : : ; vn � V a list of

vertices whose vertex labels we wish to strengthen, and  1; : : : ;  n a set of formulas over V. If for

all i; j 2 [1::n]

�(vi)!  i ( i ^ b� (vi; vj))!  0j ;

then we can transform A into diagram A0 = (V ; V; �0; �; �;J ; C) obtained by de�ning �0(vi) to be

�(vi) ^  i, for all i 2 [1::n] and �
0(u) = �(u) for all u 2 V � fv1; : : : ; vng.

By applying the vertex-strengthen rule to the diagram A2 of Figure 6.3, we obtain the diagramA3

presented in Figure 6.4. The application of the rule is based on  2 =  4 = x � 75�7 �e�y=105^65 �

x ^ 75 for vertices v32 and v34 , and  3 =  5 = x � 60 + 12 � e�y=70 ^ 65 � x ^ 75 for vertices v33 and

v35 .

Progress Rules

The justice and compassion rules add new constraints to the justice or compassion sets of a diagram,

respectively. Since the rules must preserve language containment, it is possible to add a constraint



6.2. HYBRID DIAGRAMS 73

τ
1

τ
2

1τ

τ   , τ   , τ
3 76

 

v
1

y<=60

x<65

H=Off
H=On

, τ
3 4 5

Init

x<650

2v vv2

2
H=On

y<60 3

τ   , τ   , τ
3 54

2
H=Off

y=>60

v4

2
H=On

5

2
H=Off

τ   , τ   , τ
3 76

τ   , τ   , τ
3 54

v

τ   , τ

y=>60 y<60

 2

τ   , τ   , τ
3 76

τ   , τ 
6 7

τ   , τ 
6 7

τ   , τ 
6 7

τ   , τ 
4 5

Figure 6.3: Hybrid Diagram A2. Edges labeled with false are not shown.

only if all runs of the diagram already obey it, implying that the constraint represents a progress

property of the runs of the diagram. To prove that all runs obey the constraint, the rules rely on

ranking and delay functions to measure progress towards its grati�cation. The delay functions are

similar to the mappings of Lynch and Attiya [112]; our results indicate that to achieve completeness

they need to be used in conjunction with ranking functions.

Recall that a well-founded domain is a set D together with a relation > such that there is no

in�nite descending chain d0 > d1 > d2 > � � � of elements in D.

Given a diagram A = (V ; V; �; �; �;J ; C), let loc(A) = f(v; s) 2 V � S j s j= �(v)g denote the

set of locations of A. A ranking function � : loc(A) 7! D for a diagram A is a function mapping

locations of A into elements of a well-founded domain D. A delay function 
 : loc(A) 7! R+ is a

function mapping locations of A into non-negative real numbers. The ranking and delay functions

�, 
 are represented by the families f�(u)gu2V , f
(u)gu2V of terms on V.

To add a constraint (R;G), the justice rule relies on ranking and delay functions �, 
. While in

R, � cannot increase unless an edge in G is taken, and 
 gives an upper bound to the amount of

time before either an edge in G is taken or R is left.

Rule 4 (Justice) Consider a diagram A = (V ; V; �; �; �;J ; C) and a constraint (R;G) such that

R � V and G � V � V . Assume that there are ranking and delay functions �, 
 such that, for all
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u; v 2 R with (u; v) 62 G, the assertion

b� (u; v) ! �(u) > �0(v) _
�
�(u) = �0(v) ^ 
(u) � 
0(v) + �

�
(6.1)

holds. Then, A) A0, where A0 = (V ; V; �; �; �;J[f(R;G)g; C).

A special case that occurs frequently is when, for every location (v; s) with v 2 R, there is an

upper bound tM (v; s) for the time before a G-edge is followed. In this case we can take 
(v; s) =

tM (v; s) and �(v; s) = 0, and assertion (6.1) reduces to

b�(u; v) ! 
(u) � 
0(v) + � : (6.2)

The function � is used to cover the case in which there is no upper bound for the time before a G-edge

is followed. An example where the ranking function � is required is presented below. Consider the

hybrid diagram in Figure 6.5. We wish to add the justice requirement (fv0; v1g; (v1; v2)). While x

measures the length of time that the system can stay in vertex v1 before taking a gratify transition,

it does not measure the amount of time that the system can stay in vertex v0 before taking a gratify

transition since x gets reset to an arbitrary value when going from v0 to v1. Moreover, there is no

global upper bound on how long we can stay in vertex v0 before taking a gratify transition, even
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though there is a local upper bound on how long we can stay in v0 before taking some transition.

Thus, we need to use both a ranking and a delay function to prove the justice requirement. To apply

the rule, we use a ranking function de�ned by �(v0) = 1 and �(v1) = �(v2) = 0 and a delay function

de�ned by 
(v0) = 
(v1) = x and 
(v2) = 0.

Returning to our Room-Heater example, to show that the temperature eventually reaches the

desired range, we apply Rule 4 to the diagram A3 of Figure 6.4, adding the justice constraint

(fv30 ; v
3
1g; f(v

3
1; v

3
2); (v

3
1 ; v

3
4)g). We denote the resulting diagram by A4. This constraint shows that a

run of A3 cannot stay forever in v30 or v31 , and must eventually proceed to either v32 or v34 . The rule

uses a ranking function de�ned by �(v30) = 1 and 8i 2 [1::5], �(v3i ) = 0. The delay function is given

by


(v30) = 60� y ;


(v31) = if x � 60 then 175 + 105 ln((75� x)=49)

else 150 + 70 ln((70� x)=10) ;

8i 2 [2::5]; 
(v3i ) = 0 :

We point out that while we use both a rank and a delay function, it is possible to use the rule with

only a delay function. We chose to use both functions as it makes the presentation simpler.

Theorem 17 (Soundness of Rule 4) If a constraint (R;G) is added by Rule 4 to the justice set

of a diagram A, producing diagram A0, then Runs(A) = Runs(A0) and L(A) = L(A0).

Proof of 17:

Since A0 has more constraints than A, it is immediate that Runs(A0) � Runs(A). To show the

reverse containment, assume towards the contradiction that the conditions of Rule 4 are satis�ed

and that there is a run � : (v0; s0); (v1; s1); (v2; s2); : : : 2 Runs(A) that does not satisfy (R;G).

By de�nition, there is k 2 IN such that vi 2 R, (vi; vi+1) 62 G for all i � k. By Condition (6.1)

the value of �(vi; si) does not increase for i � k. Since the domain of � is well-founded, this

value cannot decrease in�nitely often, and there must be k0 � k such that �(vi; si) is constant

for i � k0. For m � k0, let �m = sm[[T ]] � sk0 [[T ]]. From Condition (6.1) it is easy to prove by
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induction on m � k0 that �m � 
(vk0 ; sk0) � 
(vm; sm). Since limm!1 �m = 1 because of the

divergence of time, we have limm!1 
(vm; sm) = �1, contradicting the non-negativity of 
.

)(

So our assumption is false, and Runs(A) � Runs(A0) as desired.

Rule 5 (Compassion) Given a diagram A = (V ; V; �; �; �;J ; C) and a constraint (R;G) such that

R � V and G � V �V . Assume that there is a ranking function � and a delay function 
 such that,

for every u; v 2 V with (u; v) 62 G, the following conditions hold:

b� (u; v) ! �(u) � �0(v) (6.3)

If u 62 R; v 2 R : b� (u; v) ! �(u) > �0(v) (6.4)

If u 2 R; v 2 R : b� (u; v) ! �(u) > �0(v) _ 
(u) � 
0(v) + � (6.5)

Then A) A0, where A0 = (V ; V; �; �; �;J ; C[f(R;G)g).

Consider the hybrid diagram in Figure 6.6. The diagram represents a system where a request

can be made to do some action, modeled by variable req. This request can be undone at any time,

modeled by entry into vertex v1, and then remade at a later time, modeled by entry into vertex v0.

However, only a �nite number of requests can be made, modeled by variable y.

We would like to prove that if we are in�nitely often in vertex v0, then we will eventually reach

vertex v2, where the edge (v0; v2) represents the grati�cation of the request. That is, we wish to add

the compassion requirement (fv0g; (v0; v2)). To apply the rule, we use a ranking function de�ned by

�(v0) = �(v1) = y and �(v2) = 0, and a delay function de�ned by 
(v0) = x and 
(v1) = 
(v2) = 0.

Theorem 18 (Soundness of Rule 5) If a constraint (R;G) is added by Rule 5 to the compassion

set of a diagram A, producing diagram A0, then Runs(A) = Runs(A0), and therefore L(A) = L(A0).

Proof of 18:

Again, it is immediate that Runs(A0) � Runs(A). To show the reverse containment, assume

towards the contradiction that the conditions of Rule 5 are satis�ed and that there is a run



6.2. HYBRID DIAGRAMS 77

� : (v0; s0); (v1; s1); (v2; s2); : : : 2 Runs(A) that visits in�nitely often R taking only �nitely many

edges in G. Thus, there is k 2 IN such that (vi; vi+1) 62 G for all i � k. By (6.3), the value of �

does not increase along � after k.

If � visits V � R in�nitely often, it must in�nitely often return to R, and by (6.5) the

value of � beyond k decreases in�nitely often, violating the hypothesis that the domain of � is

well-founded. Thus, there is m � k such that � stays in R forever beyond position m. Once � is

con�ned to R, the proof follows that of Theorem 17, because of the similarity between assertions

(6.5) and (6.1).

Pruning Rule

The pruning rule prunes from a diagram a subset of vertices that, because of the presence of a justice

constraint, cannot appear in any run of the system.

Rule 6 (Pruning) Let A1 = (V ; V1; �1; �1; �1;J 1; C1) be a diagram and let U1 � V1 be a subset of

its vertices such that the following two conditions hold:

1. there is (R1; G1) 2 J 1 such that U1 � R1, (U1 � V1)\G1 = ;;

2. for all u 2 U1 and v 2 V1 � U1, b�1(u; v) � false .

Then A1 ) A2, where A2 = (V ; V2; �2; �2; �2;J 2;P2) is obtained as follows:

1. V2 = V1 � U1;

2. �2, �2, �2 are obtained by restricting the domain of �1, �1, and �1 to V2, V2, and V2 � V2,

respectively;

3. for each constraint (R;G) 2 J 1 (resp. 2 C1), we insert the constraint

(R\V2; G\(V2 � V2)) into J 2 (resp. into C2).

This rule can be used in conjunction with Rule 4 to prune from the diagram vertices reached

only by invalid runs along which time does not diverge. The soundness of the rule follows from

the observation that, if the conditions of the rule are satis�ed, no run of the diagram can contain

vertices in U . In fact, if a run entered U , it would not be able to leave it, and by staying forever in

U it would violate at least one justice constraint of the diagram.

6.2.2 Proving Temporal Properties

In this section we present an algorithm to check whether a diagram satis�es a speci�cation written

in the linear-time temporal logic TLs. The formulas of TLs are obtained by combining �rst-order

logic formulas by means of the future temporal operators 0 (always), 1 (eventually), U (until),
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and the corresponding past ones ` , Q and S [117].1 Given a diagram A and a formula ' 2 TLs,

the algorithm provides either a positive answer to A j= ' or information about the region of the

diagram that can contain a counterexample to '. This information can be used as guidance for the

extension of the chain of transformations. The �rst step of the algorithm consists in constructing a

Streett automaton N:' that accepts all the computations that do not satisfy '. The automaton is

a �rst-order version of a classical Streett automaton [139].

A (�rst-order) Streett automaton N consists of the components (V ; (V;E); �;Q;B), where V, � are

as in hybrid diagrams; (V;E) is a directed graph with set of vertices V and set of edges E � V �V ;

Q � V is the set of initial vertices, and B, called the acceptance list, is a set of pairs (P;R) such that

P � V and R � V . A run � of N is an in�nite sequence of locations (v0; s0); (v1; s1); (v2; s2); : : :

such that v0 2 Q, and:

1. for all i � 0, si j= �(vi) and (vi; vi+1) 2 E;

2. for each pair (P;R) 2 B, either vi 2 R for in�nitely many i 2 IN, or there is k 2 IN such that

vi 2 P for all i � k.

If � : (v0; s0); (v1; s1); (v2; s2); : : : is a run of N , the sequence of states s0; s1; s2; : : : is a computation

of N . The set of runs (resp. computations) of a Streett automaton N is denoted by Runs(N) (resp.

L(N)).

To show that no behavior of A satis�es :', the algorithm constructs the graph product A
N:'

and checks that no in�nite path in it corresponds to a computation of both A and N:'. The

construction of the graph product relies on a terminating proof procedure ` for the �rst-order

language used in the speci�cation and in the labels of the diagram. The procedure ` should be

able to prove a subset of the valid sentences that includes all substitution instances of propositional

tautologies. Given a �rst-order formula  , we write `  or 6`  depending on whether ` terminates

with or without a proof of  , respectively.

Construction 2 (Graph Product) Given diagram A = (V; U; �A; �; �;J ; C) and Streett automa-

ton N:' = (V ; (V;E); �N ; Q;B), the graph product A
N:' = (W;Z;H) consists of a graph (W;H)

and of a set of initial vertices Z �W . It is de�ned by:

1. W = f(u; v) 2 U � V j 6` :(�A(u) ^ �N (v))g;

2. Z = f(u; v) 2W j v 2 Q and 6` :(�(u) ^ �N (v))g;

3. H =
n�

(u1; v1); (u2; v2)
�
2W �W

��� (v1; v2) 2 E and

6` :

�b�(u1; u2) ^ �N(v1) ^ �0N (v2)�o:
1This logic di�ers slightly from Manna and Pnueli [117] and our own approach of [47], where the 2 (next) and

� (previous) operators are also used. We omit these two operators since we would like our results in this chapter

to extend to the continuous semantics presented in Chapter 7, and both 2 and � have problematic interpretations

under a continuous semantics.
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To show that there is no in�nite path in the product that corresponds to a computation of both

A and N:', we check that every in�nite path in (W;H), starting from Z, violates either a constraint

of A or a pair in the acceptance list of N:'. To this end, consider a strongly connected subgraph

(SCS) X �W of the graph (W;H). We say that X is admissible if the following conditions hold:

1. for all (R;G) 2 J , if X � R � V then there are (u1; v1); (u2; v2) 2 X such that (u1; u2) 2 G

and ((u1; v1); (u2; v2)) 2 H ;

2. for all (R;G) 2 C, if X\(R�V ) 6= ; then there are (u1; v1); (u2; v2) 2 X such that (u1; u2) 2 G

and ((u1; v1); (u2; v2)) 2 H ;

3. for all (P;R) 2 B, if X 6� (U � P ) then X\(U �R) 6= ;.

The following theorem states that if there are no reachable admissible SCSs in the products, then

A j= '. This check can be done in time polynomial in jW j using e�cient graph algorithms.

Theorem 19 (Diagram Checking) Given a diagram A and a speci�cation ' 2 TLs, let A 


N:' = (W;Z;H). If all SCSs of (W;H) that are reachable in (W;H) from Z are not admissible,

then A j= '.

The proof is based on the classical arguments presented by Manna and Pnueli in [115]. The following

theorem states that the veri�cation methodology presented in this chapter is complete.

Theorem 20 (Completeness for TLs) Given a pts S and a speci�cation ' 2 TLs, if S j= ' then

there is a chain of transformations hd(S)
�

) A such that A j= ' can be proved using Theorem 19.

Proof of 20:

From ', it is possible to obtain a deterministic Streett automatonM' such that L(M') = L(').

By the methods of de Alfaro and Manna [49], M' can easily be translated into a deterministic

diagram hd(M'). Since S j= ', by Theorem 26 it is possible to construct a chain of transforma-

tions hd(S)
�

) hd(M'). It is easy to see that the graph product hd(M')
N:' does not contain

any connected subgraph that is both reachable and admissible.

Note that while this completeness result has been achieved by relying on a terminating and

incomplete proof procedure ` for the construction of the graph product, the proof of the assertions

arising from the transformations requires general �rst-order reasoning.

Obtaining Guidance

The presence of admissible and reachable SCSs in the product graph can be used to guide the

further analysis of the system, following the insights of Sipman, Uribe, and Manna [144]. Given an

admissible and reachable SCS X of (W;Z;H) = A 
N:', let Xr � W be the set of vertices that
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can appear along a path from Z to X in (W;H). Consider the projections Y = fu j (u; v) 2 Xg,

Yr = fu j (u; v) 2 Xrg of X and Xr, respectively, onto the diagram A. We say that Yr and Y

constitute a candidate counterexample path (CCP) in A. The CCPs correspond to regions of the

diagram that can contain counterexamples: if a run � 2 Runs(A) violates ', there must be a CCP

Yr, Y such that � �rst follows Yr until it reaches Y and then remains in Y forever while visiting all

vertices of Y in�nitely often.

The information provided by the CCPs can be used either to guide the search for a counterex-

ample or to extend the chain of transformations to show that no counterexample is contained in the

CCPs.

Search for counterexample. Given a CCP Yr, Y , it may be possible to prove that there is a

behavior shared by the diagram A and the original pts S that follows Yr and then remains in Y

forever, visiting all vertices of Y in�nitely often. The existence of such a behavior would establish

S 6j= '.

Alternatively, the CCPs can be used to guide the simulation of the behavior of S by simulating

S along the CCPs.

Search for proof. The CCPs provide guidance for the extension of the chain of transformations.

The aim of the additional transformations is to show that for every CCP Yr, Y :

� either there is no path in Yr from Z to Y ;

� or, after following Yr, a computation cannot remain in Y forever and visit all the vertices of

Y in�nitely often.

To show that there is no path in Yr from Z to Y , it is possible to use the simulation rule to strengthen

the assertions of the edges and vertices along Yr until the path is interrupted by labeling some edge

or vertex with false . To show that a computation cannot stay in Y forever and visit all vertices of Y

in�nitely often, the simulation rule can be used to strengthen the labels of vertices and split vertices

into new vertices, thus analyzing in more detail the structure of the SCS Y and possibly splitting

it into several SCSs. The justice and compassion rules can be used to show that the system cannot

stay forever in Y or in�nitely often in some subsets of Y .

Using the algorithm presented in this section, it is possible to check that diagram A3 of Figure 6.4

satis�es the speci�cation (65 � x � 75)=� 0 (65 � x � 75).

On the other hand, if we checkA3 against the speci�cation 1 (65 � x � 75), we obtain two CCPs,

corresponding to the SCSs fv30g, fv
3
1g. To prove the speci�cation, we must thus show that either v30

and v31 are not reachable, which evidently is not possible, or that a run cannot be forever con�ned

to v30 or v31 . These conditions can be shown by adding the justice constraint (fv30 ; v
3
1g; f(v

3
1; v

3
2)g).

The diagram-checking algorithm shows that the resulting diagram A4 satis�es 1 (65 � x � 75).



6.3. COMPLETENESS 81

6.3 Completeness

In this section, we present a completeness result that establishes the existence of chains of transfor-

mations from diagrams of ptss to deterministic diagrams, provided that language containment holds

between the two diagrams. This result will be used to establish the completeness of the methodol-

ogy for proving linear-temporal logic speci�cations in which no quanti�er appears in the scope of a

temporal operator.

The completeness results we present for the transformation rules are relative to some assumptions

about the expressive power of the assertion language and to the existence of an oracle that is able

to prove all valid assertions. In particular, following Manna and Pnueli [115] we assume that the

language contains predicate calculus and is powerful enough to represent records of values and

lists of values and records. Moreover, the language includes all interpreted function and relation

symbols that occur in the labeling of diagrams, in addition to the usual mathematical function and

relation symbols (e.g. +; �; exp; : : :) interpreted over the integers. Finally, the language is augmented

with the least and greatest �xpoint operators, necessary to enable the encoding of some auxiliary

assertions [115]. To state the completeness results for Rules 1 and 4, we introduce the following

de�nitions.

Consider a diagram A = (V ; V; �; �; �;J ; C).

1. A run pre�x of A is a �nite sequence (v0; s0); (v1; s1); (v2; s2); : : : ; (vn; sn) of locations of A

satisfying the Initiality, Vertex label, and Edge label conditions of diagram computations.

2. We say that A is non-livelocking if every run pre�x of A can be extended to a run of A.

3. We say that A is globally reachable if for every location (v; s) 2 loc(A) there is a run pre�x

(v0; s0); : : : ; (vn; sn) ending with (vn; sn) = (v; s).

4. We say that A is deterministic if �(u) ^ �(v) $ false and b� (u; v) ^ b� (u;w) $ false for all

u; v; w 2 V .

5. We say that a constraint (R;G) is J-compatible (resp. C-compatible) with a diagram A if

its addition to the justice (resp. compassion) set of A does not change the set of runs of

A. Collectively, J-compatible constraints and C-compatible constraints are called compatible

constraints. The intuition behind this de�nition is that if a constraint is J- or C-compatible

with a diagram, it expresses a progress property obeyed by the diagram.

6.3.1 Justice

Our �rst theorem states that if a diagram is totally reachable and has no constraints, then every

J-compatible constraint can be added with a single application of Rule 4.
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Theorem 21 (Completeness, Justice) If a diagram A = (V ; V; �; �; �;J ; C) is globally reachable,

and (R;G) is J-compatible with A0 = (V ; V; �; �; �; ;; ;), then (R;G) can be added to the justice set

of A with one application of Rule 4.

Proof of 21:

The proof is based on the completeness proofs for veri�cation rules presented in [115]. For

n � 0, we call a �nite sequence of locations (v0; s0); (v1; s1); : : : ; (vn; sn) a j-path if all its vertices

are contained in R and for 0 � i � n, (vi; vi+1) 62 G and (si; si+1) j= 9� : �(vi; vi+1). LeteR = f(v; s) 2 loc(A) j v 2 Rg, and de�ne the relation <� eR� eR by

(v; s) < (v0; s0) i� s0[[T ]]� s[[T ]] � 1 and there is a j-path from (v; s) to (v0; s0).

The relation < is well-founded on eR. To prove < is well founded, assume towards the contra-

diction that there is an in�nite descending chain `0 < `1 < `2 < � � � of locations of eR. Since the
diagram is globally reachable, there is a j-path �0 from an initial location to `0, and for all i 2 IN,

there is a j-path �i+1 from `i to `i+1 of temporal duration at least 1, since `i < `i+1. Thus, the

in�nite path �0; �1; �2; : : : is a run of diagram A1 that stays forever in eR while never following an

edge in G, contradicting the J-compatibility of (R;G). )(

Using the results of [115, 104], we can de�ne from < a ranking function � : eR 7! Ord , where

Ord is the set of ordinals, having the following properties for `; `0; `00 2 eR:
1. ` < `0 ! �(`) > �(`0);

2. if `0 < `00 ! ` < `00 for all `00, then �(`) � �(`0).

If there is a j-path from ` to `0 in eR, then �(`) � �(`0). In fact, let � be the j-path, and

consider any location `00 2 eR. If `0 < `00, there must be a j-path �0 from `0 to `00 of duration at

least 1, and because of the existence of j-path ��0, we have ` < `00. Property 2 then leads to the

desired conclusion.

Given a j-path � = (v0; s0); (v1; s1); : : : ; (vn; sn), we de�ne len(�) = sn[[T ]] � s0[[T ]], and we

say that � is level if �(v0; s0) = �(v1; s1) = � � � = �(vn; sn). Given ` 2 eR, we denote by E(`) the
set of level j-paths from `, and we de�ne


(`) = sup
�2E(`)

len(�) :

To see that 
 : eR 7! R+ is well-de�ned, note that if � : `0; `1; : : : ; `n is a level j-path, then

len(�) < 1, for otherwise `0 < `n, leading to �(`0) > �(`n) by Property 1 above. The functions

�, 
 can then be extended to loc(A) by assigning an arbitrary value to locations not in eR.
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We claim that the functions � and 
 satisfy assertion (6.1) for all u; v 2 R such that

(u; v) 62 G. To see this fact, consider two locations ` = (u; s) 2 eR and `0 = (v; t) 2 eR and

assume that (s; t) j= 9� : �(u; v). Let d = t[[T ]]� s[[T ]] be the value of parameter � that satis�es

the quanti�er. We have �(`) � �(`0), since there is a j-path from ` to `0. If �(`) > �(`0),

assertion (6.1) holds. Else, �(`) = �(`0), and for any � 2 E(`0), the j-path `; � is also level, and

len(`; �) = len(�) + d. Thus, 
(`) � 
(`0) + d and again assertion (6.1) holds.

The functions � and 
 may not be expressible directly in the assertion language available.

However, by using the methods of Manna and Pnueli [115], it is possible to de�ne alternative

functions b� and b
, related to � and 
, respectively, that are expressible in the assertion language.

6.3.2 Compassion

Unlike Rule 4, which is complete for adding J-compatible constraints, Rule 5 is not complete by

itself for adding C-compatible constraints. To prove that the methodology is nonetheless complete

for adding progress constraints, we proceed in two steps. First, we introduce a more complex rule

that is complete by itself for adding C-compatible constraints. Then we show that each application

of this rule can be mimicked by the application of Rule 2 to split some vertices, by the application

of Rule 5 to add the compassion constraint, and by the application of Rule 1 to merge back the

vertices.

The advanced rule requires the use of a family of auxiliary assertions f'(v)gv2V , used to represent

a set of locations f(v; s) 2 loc(A) j s j= '(v)g that plays the same role as R in leading to the goal.

Rule 7 (Compassion, with Auxiliary Assertions) Given a diagram A = (V ; V; �; �; �;J ; C)

and a constraint (R;G) such that R � V and G � V � V . Assume that there are

1. a family of assertions f'(v)gv2V over V , such that '(v) = true for all v 2 R and

2. a ranking function � and a delay function 


such that for every u; v 2 V with (u; v) 62 G, the assertions

b�(u; v) ! �(u) � �0(v) (6.6)

'(u) ^ b�(u; v) ! �(u) > �0(v) _ :'0(v) _ 
(u) � 
0(v) + � (6.7)

:'(u) ^ b�(u; v) ! �(u) > �0(v) _ :'0(v) (6.8)

hold. Then A) A0, where A0 = (V ; V; �; �; �;J ; C[f(R;G)g).

The soundness and completeness of this advanced rule are expressed by the following theorems.
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Theorem 22 (Soundness of Rule 7) If a constraint (R;G) is added by Rule 7 to the compassion

set of a diagram A, producing diagram A0, then Runs(A) = Runs(A0), and therefore L(A) = L(A0).

Proof of 22:

Again, it is immediate that Runs(A0) � Runs(A). To show the reverse containment, assume

towards the contradiction that the conditions of Rule 7 are satis�ed and that there is a run

� : (v0; s0); (v1; s1); (v2; s2); : : : 2 Runs(A) that visits in�nitely often R, taking only �nitely many

edges in G. Thus, there is k 2 IN such that (vi; vi+1) 62 G for all i � k. By (6.6), the value of �

does not increase along � after k.

Let B1 = f(v; s) 2 loc(A) j s j= '(v)g, B0 = loc(A) � B1, and note that no vertices of R

are part of locations of B0. If � visits B0 in�nitely often, it must in�nitely often return to B1 to

visit R, and by (6.8) the value of � beyond k decreases in�nitely often, violating the hypothesis

that the domain of � is well-founded. Thus, there is m � k such that � stays in B1 forever

beyond position m. Once � is con�ned to B1, the proof follows that of Theorem 17, because of

the similarity between the combination of assertions (6.6) and (6.7) and assertion (6.1).

Theorem 23 (Completeness, Compassion) If a diagram A = (V ; V; �; �; �; C;J ) is globally reach-

able and (R;G) is C-compatible with A0 = (V ; V; �; �; �; ;; ;), then (R;G) can be added to the com-

passion set of A with one application of Rule 7.

Proof of 23:

The proof of the theorem is related to the proof of Theorem 21, from which we borrow some

notation. For n � 0, we call a �nite sequence of locations (v0; s0); (v1; s1); : : : ; (vn; sn) a g-

free-path if 8i 2 [1::n � 1], no pair (vi; vi+1) of consecutive vertices is in G and (si; si+1) j=

9� : �(vi; vi+1). A g-free-path is a c-path if it contains at least one vertex in R. De�ne the

relation <� loc(A)� loc(A) by

(v; s) < (v0; s0) i� s0[[T ]]� s[[T ]] � 1 and there is a c-path from (v; s) to (v0; s0).

Since (R;G) is C-compatible with A, relation < is well-founded on loc(A). In fact, reasoning as in

the previous proof, it can be shown that any in�nite descending chain provides a counterexample

to the C-compatibility of (R;G). Again, on the basis of < we can de�ne a ranking function

� : loc(A) 7! Ord . For all locations ` 2 loc(A) let

A(`) = f� j � is a level c-path from `g ;

and de�ne

B1 = f` 2 loc(A) j A(`) 6= ;g B0 = loc(A)�B1 :
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For a location (v; s) 2 loc(A), if v 2 R then (v; s) 2 B1, since A(v; s) contains at least the

single-location c-path (v; s). Thus, (v; s) 2 B1 if and only if either v 2 R or there is a level

c-path from (v; s).

Consider a family of assertions f'(v)gv2V such that

v 2 R ! '(v) = true (v; s) 2 B1 $ s j= '(v) ^ �(v)

for all v 2 V . These assertions characterize B1 and, by complementation, also B0. De�ne the

function 
: loc(A) 7! R+ by


(`) = sup�2A(`) len(�) for ` 2 B1


(`) = 0 for ` 2 B0 :

We claim that the family of assertions f'(v)gv2V , together with the functions � and 
,

satisfy the conditions of Rule 7. In fact, let (u; s) and (v; t) be two locations such that (u; v) 62 G

and (s; t) j= 9� : �(u; v), and consider assertions (6.6), (6.7), and (6.8).

1. Assertion (6.6) is proved by showing that for any ` 2 loc(A), (v; t) < ` implies (u; s) < `.

The conclusion follows from the properties of �.

2. Consider assertion (6.7), and assume (u; s) 2 B1. If �(u; s) > �(v; t), the conclusion follows.

Otherwise, (u; s); (v; t) is a level g-free-path. If A(v; t) = ;, then (v; t) 2 B0, so t j= :'(v)

and the conclusion follows again. Else, let d = t[[T ]]� s[[T ]] be the time elapsed from s to t,

and consider any � 2 A(v; t). Path (u; s); � is a level c-path, so (u; s); � 2 A(u; s); moreover

len((u; s); �) = len(�)+d. By de�nition of 
, 
(u; s) � 
(v; t)+d, and the conclusion follows

once more.

3. Consider assertion (6.8), and assume (u; s) 2 B0. If �(u; s) > �(v; t), the conclusion follows.

Otherwise, (u; s); (v; t) is a level g-free-path. Since A(u; s) = ;, we have A(v; t) = ;. In fact,

the existence of � 2 A(v; t) would imply that (u; s)� 2 A(u; s), contradicting (u; s) 2 B0.

Since A(v; t) = ;, we have (v; t) 2 B0, and thus t j= :'(v), from which the conclusion

follows.

As in the proof of Theorem 21, even though the functions � and 
 may not be representable

directly in the assertion language, it is possible to construct alternative functions b�, b
 that are

expressible, using the methods of [115]. Similarly, it can be shown that the family of assertions

f'(v)gv2V can be constructed on the basis of b�.
The following theorem states that we can mimic an application of Rule 7 with one application

of Rule 5 and two applications of Rule 1.
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Theorem 24 (Simulating Rule 7) Every application of Rule 7 can be mimicked by one applica-

tion of Rule 5 and two applications of Rule 1.

Proof of 24:

Let A = (V ; V; �; �; �;J ; C) be the original diagram, where V = fv1; : : : ; vng. Let (R;G) be

the constraint added by Rule 7, and let �, '1; : : : ; 'n be the ranking function and the auxiliary

assertions used by the rule. First, we use Rule 2 to split each node vi 2 V into two new nodes

ui, wi, where

�(ui) = �(vi) ^ 'i �(wi) = �(vi) ^ :'i

for 1 � i � n, producing diagram A1.

Second, we apply Rule 5 to A1 to add the constraint (R0; G0) de�ned by

R0 = fui j 1 � i � ng

G0 = fxi; yj j x; y 2 fu;wg ^ (vi; vj) 2 G ^ 1 � i; j � ng ;

producing diagram A2. The application of the rule relies on the ranking function de�ned by

�(ui) = �(wi) = �(vi) for 1 � i � n. It can be seen that Conditions (6.6){(6.8) of Rule 7 imply

that the corresponding Conditions (6.3){(6.5) of Rule 5 hold.

Third, we apply Rule 1 to merge nodes ui and wi back into a single node zi, labeled by

�(zi) = �(ui) _ �(wi) = �(vi) ;

for 1 � i � n. The function � corresponding to this merge is speci�ed by �(ui) = �(wi) = �(zi),

for 1 � i � n. The structure of the resulting diagram A3 will be identical to the structure of A,

aside for the names of the vertices, which are di�erent to avoid confusion, and for the presence

of an additional constraint (R00; G00), de�ned by

R00 = fzi j vi 2 Rg G00 = f(zi; zj) j (vi; vj) 2 Gg :

This constraint is the same, except for the vertex names, as the constraint (R;G) added by

Rule 7. When applying Rule 1 to merge the vertices, Condition 3 requires that the presence of

constraint (R00; G00) in A3 be justi�ed in terms of a constraint of A2. By inspection, we see that

the constraint (R0; G0) indeed justi�es (R00; G00), which concludes the proof.

6.3.3 Eliminating Livelocking Locations

The following lemma will be used to transform the diagram obtained from a pts into a non-

livelocking, globally reachable diagram.
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Lemma 25 Given a diagram A with empty justice and compassion sets, it is possible to transform

A into a globally reachable, non-livelocking diagram B having the same set of computations, the

same number of vertices, and empty justice and compassion sets.

Proof of 25:

Let C0 = A = (V ; V; �; �; �; ;; ;) be the original diagram. Let F � loc(C0) be the set of reachable

locations of C0. By the methods of [115], it is possible to construct a family of assertions

f (v)gv2V such that s j=  (v) i� (v; s) 2 F . Using the simulation rule, it is possible to transform

C0 into C1 = (V ; V; ��; �; �; ;; ;), where ��(u) = �(u) ^  (u) for all u; v 2 V .

To obtain a non-livelocking diagram, de�ne the set E � loc(C1) as the set of locations of A1

that appear in some run of A1. Note that if ` 2 loc(C1)�E and `0 2 E, there can be no transition

from ` to `0. Consider a family of assertions f'(v)gv2V such that s j= '(v) i� (v; s) 2 E, for all

v 2 V . To see that these families of assertions exist, we de�ne the relation <� loc(A) � loc(A)

by

(v; s) < (v0; s0) i� s0[[T ]]� s[[T ]] � 1 and there is a path from (v; s) to (v0; s0).

For a location ` 2 loc(C1), we de�ne the predicates T (`) and H(`) by the formulas

T (`) � 8`0 : :(` < `0) (6.9)

H(`) � �Q(`) :
h
T (`) _ 8`0 : (` < `0 ! Q(`0))

i
; (6.10)

where � denotes the least �xpoint operator. It is immediate that H(`) implies ` 62 E, since all

locations of C1 are reachable. Conversely, assume that :H(`). From (6.10), we know that there

is at least one `1 such that :H(`1) and ` � `0 < `1. Continuing in this way, we can construct an

in�nite run ` � `0; `1; `2; : : :, implying ` 2 E. The existence of the family of assertions f'(v)gv2V

is then a consequence of the fact that the relation < and the other constructs of (6.9) and (6.10)

can be expressed in our logic [115].

By a second application of the simulation rule, it is possible to transform C1 into C2 =

(V ; V (1)[V (2); e�; �; e� ; ;; ;), where
1. V (1) = fv(1) j v 2 V g and V (2) = fv(2) j v 2 V g;

2. for v(1) 2 V (1) and v(2) 2 V (2),

e�(v(1)) = ��(v) ^ '(v) e�(v(2)) = ��(v) ^ :'(v)

3. for u(1); v(1) 2 V (1) and u(2); v(2) 2 V (2),

e�(u(i); v(j)) =
(
false if i = 2, j = 1;

�(u; v) otherwise.
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The function � : V 7! V (1)[V (2) is de�ned by �(u) = fu(1); u(2)g for all u 2 V .

Note that the constraint (V (2); ;) is J-compatible with C2, since no run of A2 contains ver-

tices in V (2). By Theorem 21, using Rule 4 we can transform C2 into

C3 = (V ; V (1)[V (2); e�; �; e� ; f(V (2); ;)g). Finally, using Rule 6 we can prune from C3 all the

vertices in V (2), producing B. By construction, B is globally reachable, non-livelocking, and has

empty justice and compassion sets; moreover, it has the same number of vertices as A.

6.3.4 General Completeness

Combining the results of the previous completeness theorems and the lemma, we obtain the following

result that will be used to show the completeness of the veri�cation methodology based on hybrid

diagrams with respect to linear temporal logic speci�cations.

Theorem 26 (Completeness for pts) If S is a pts and A is a deterministic diagram over V

such that L(S) � L(A), Rules 1, 4, 5, and 6 enable the construction of a chain of transformations

hd(S)
�

) A.

Proof of 26:

Let A0 = hd(S) = (V ; fu0g; �(u0) = true; �0; �0; ;; ;) and A = (V ; V; �; �; �;J ; C), where J =

f(R1; G1); : : : ; (Rm; Gm)g and C = f(Rm+1; Gm+1); : : : ; (Rn; Gn)g.

By Lemma 25, A0 can be transformed into a single-vertex, globally reachable, non-livelocking

diagram A1 = (V ; fu1g; �1; �1; �1; ;; ;) such that L(A0) = L(A1).

Since diagram A is deterministic, for every sequence of states � : s0; s1; s2; : : :, there corre-

sponds at most one sequence of locations L(�) = (v0; s0); (v1; s1); (v2; s2); : : : that satis�es the

Initiality requirement of diagram computations and which also satis�es the implicit consecution

requirement. De�ne RunsS (A) = fL(�) j � 2 L(S)g, and let E � loc(A) be the set of locations

that appear in some run in RunsS (A). Again, it is possible to de�ne a family of assertions

f'(v)gv2V such that s j= '(v) i� (v; s) 2 E, for all (v; s) 2 loc(A). Consider the diagram

A2 = (V ; V; �2; �2; �2; ;; ;), where for all v; v
0 2 V :

1. �2(v) = �(v) ^ '(v);

2. �2(v) = �(v) ^ �1(v);

3. �2(v; v
0) = �(v; v0) ^ �1(v; v).

To show that L(A1) = L(A2), we show both L(A1) � L(A2) and L(A2) � L(A1).

1. L(A1) � L(A2). Consider a computation � 2 L(A1). By hypothesis, � 2 L(A), and there is

a run b� 2 RunsS (A) that corresponds to �. By construction, all locations of b� are present

in A2, and all transitions of b� are possible in A2, by de�nition of �2. Thus, b� 2 Runs(A2),

and � 2 L(A2), as was to be shown.
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2. L(A2) � L(A1). Consider a computation b� 2 L(A2) arising from a run � 2 L(A2). By

construction of �2 and �2, we see that every state-transition possible along b� is also possible

in A1. Since the progress set of both diagrams is empty, we conclude that b� 2 L(A1), as

was to be shown.

There is a simulation transformation that transforms A1 into A2, based on the mapping � :

fu1g 7! V . To see this, consider the conditions of Rule 1.

1. Since L(A1) � L(A) and A1 is non-livelocking, we must have �1(u1) !
W
u2V �(u). The

result then follows from the de�nition of �2.

2. Let (u1; s) be a location of A1 from which there is a transition to (u1; s
0), and let (v; s)

be a location of A2 related to (u1; s). By construction of A2, there is a run �0 2 L(A1)

containing (u1; s) that induces a run � 2 L(A2) containing (v; s). Let �; (v; s) be the run

pre�x of A2 leading to (v; s), and let �0; (u1; s) be the corresponding pre�x of �0 leading to

(u1; s). Since there is a transition from (u1; s) to (u1; s
0) and since A1 is non-livelocking,

the run pre�x �0 can be extended to a run �0; (u1; s); (u1; s
0); �0 2 Runs(A1). Since A2 is

deterministic, run �; (v; s) is the only run pre�x of A2 that corresponds to �
0; (u1; s) and since

L(A1) = L(A2), run �; (v; s) can also be extended to a run �; (v; s); (v0; s0); � 2 Runs(A2),

for some (v0; s0) 2 loc(A2) and �. This fact shows that indeed A2 can take a transition from

(v; s) to a location (v0; s0) related to (u1; s
0), as Condition 2 of Rule 1 requires.

3. Immediate, since A2 has empty progress set.

For 1 � i � m, constraint (Ri; Gi) is J-compatible with A2, and for m + 1 � i � n, constraint

(Ri; Gi) is C-compatible with A2. To see this fact, assume towards the contradiction that there is

a run � 2 Runs(A2) that does not satisfy (Ri; Gi) for 1 � i � n, and let b� be the computation of A
arising from �. Since L(A2) = L(A1) = L(S), b� 2 L(S), and since A2 and A are deterministic,

� is the only run of A2 that corresponds to b� 2 L(S). Thus, if � does not satisfy (Ri; Gi),

� 62 Runs(A), and b� 62 L(A), contradicting L(S) � L(A). )(

Thus, by Theorems 21 and 23 we can construct a series of transformations A2 ) A3 ) � � � )

An+2, where:

1. for 1 � i � m, Ai+2 is obtained by adding constraint (Ri; Gi) to the justice set of Ai+1

using Rule 4;

2. for m+ 1 � i � n, Ai+2 is obtained by adding constraint (Ri; Gi) to the compassion set of

Ai+1 using Rules 5 and 1, as described by Theorem 24.

The �nal step consists in proving that there is a simulation transformation based on the identity

mapping between Am+2 and A. This step is a simple consequence of the fact that Am+2 and

A share the same progress set and the labelings of Am+2 are stronger (i.e. they imply) the

corresponding labelings of A.
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6.4 Summary

In this chapter, we have presented a diagram-based methodology for the veri�cation of hybrid system

properties expressed in linear-time temporal logic. The proof of a system property consists of a chain

of stepwise diagram transformations. The visual representation of the system behavior, coupled with

the guidance provided by the algorithm of the previous section, directs the gradual construction of

the proof. Unlike previous approaches, the methodology followed in this chapter is complete (relative

to �rst-order reasoning) with respect to both safety and progress properties, and its application is

not restricted to non-Zeno systems [3].

While we have chosen phase transition systems as our basic system model, the methodology can

be adapted to other models as well, including hybrid automata. In particular, we remark that the

de�nition of a hybrid diagram does not require that the hybrid activities are deterministic, as is the

case for the de�nition of pts. Thus, hybrid diagrams can be used to study systems in which the

dynamic evolution of some hybrid variables is speci�ed only by bounds on their derivatives, rather

than by exact di�erential equations.

We conclude by observing that it is possible to formulate veri�cation rules, in the style of [117, 93],

that correspond to Rules 4, 5, and 6. These rules would also lead to a veri�cation methodology

for hybrid systems complete for TLs. We chose to present the rules in the context of diagram

transformations, rather than premise-conclusion reasoning, because of the perceived advantages of

the diagram-based approach.



Chapter 7

Diagrammatic Veri�cation:

Continuous Semantics

In this chapter, we extend the diagrammatic approach introduced in Chapter 6 to the super-dense

semantics introduced in Chapter 3. Our main motivation for using the super-dense semantics is to

overcome the following problem of the sampling semantics. Suppose we wish to prove the formula

1 (T = 10) for system RH . Intuitively, this property should be true since the master clock proceeds

at a rate of 1, starts at 0, and never gets reset. However, under the sampling semantics, there are

sampling runs which never sample the system at T = 10. For these runs, the formula 1 (T = 10) is

false. Thus, the formula 1 (T = 10) is not a property of the system under the sampling semantics.

As discussed in Chapter 3, our solution is to move to a super-dense semantics for expressing system

behavior and to interpret ltl under this super-dense semantics.

7.1 Contributions

The contribution of this chapter is the extension of the diagrammatic approach introduced in Chap-

ter 6 to prove properties of linear-time temporal logic under our super-dense semantics.

7.2 Preliminaries

We start by noting that the syntax of hybrid diagrams, TLs, and Streett automata does not change.

However, instead of interpreting their behavior under the sampling semantics, we interpret their

behavior under the continuous semantics. For TLs, this semantics is similar to the semantics for

ltl that we presented in Chapter 3. For hybrid diagrams and Streett automata, we present the

semantics below.

91
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A super-dense run of a hybrid diagram is a pair (�̀; f), where �̀ is an in�nite sequence of locations

(v0; s0), (v1; s1), (v2; s2), : : : and f is a tuple of functions, one for each variable x 2 V that satis�es

the following conditions:

Initiality: s0 j= �(v0).

Vertex Labels: for all i � 0, si j= �(vi) (this condition is implied by the fact that (si; vi) is

a location).

Edge Labels: for all i � 0, (si; si+1) j= 9� : �(vi ; vi+1). Fix this � and call it �i. We require

8t 2 [0;�i), either (si; f(t)) j= (�(vi; vi+1) ^ � = t) or (si; f(t)) j= (�(vi; vi) ^ � = t).

Time Progress: for each t 2 R there is i 2 IN such that si(T ) � t.

Justice: for each constraint (R;G) 2 J , if there is k 2 IN such that for all i � k, vi 2 R, then

there is j � k such that (vj ; vj+1) 2 G.

Compassion: for each constraint (R;G) 2 C, if vi 2 R for in�nitely many i 2 IN, then there

are in�nitely many j 2 IN such that (vj ; vj+1) 2 G.

If (�̀; f) is a super-dense run of A, where �̀= (v0; s0); (v1; s1); (v2; s2); : : :, then � = h�s; fi is a super-

dense computation of A where �s = s0; s1; s2; : : :. We denote by Runsc(A) and Lc(A) the sets of

super-dense runs and super-dense computations of A, respectively.

A super-dense run � of a Streett automaton N = (V ; (V;E); �;Q;B), is a pair (�̀; f), where �̀ is

an in�nite sequence of locations (v0; s0), (v1; s1), (v2; s2), : : : such that v0 2 Q and f is a tuple of

functions, one for each variable x 2 V that satis�es the following conditions:

1. for all i � 0, si j= �(vi) and (vi; vi+1) 2 E;

2. there exists a ti 2 [time(si); time(si+1)) such that for all t 2 [time(si); ti), f(t) j= �(vi) and for

all t 2 [ti; time(si+1)), f(t) j= �(vi+1).

3. for each pair (P;R) 2 B, either vi 2 R for in�nitely many i 2 IN, or there is k 2 IN such that

vi 2 P for all i � k.

If (�̀; f) is a super-dense run of N , where �̀= (v0; s0); (v1; s1); (v2; s2); : : :, then � = h�s; fi is a super-

dense computation of N where �s = s0; s1; s2; : : :. The set of runs (resp. computations) of a Streett

automaton N is denoted by Runsc(N) (resp. Lc(N)).

Theorem 27 For a pts S, Lc(S) = Lc(hd(S)), where hd(S) is the hybrid diagram of Contstruc-

tion 1.

The proof of Theorem 27 is trivial.

The simulation rule (Rule 1), the two progress rules (Rule 4 and Rule 5), and the pruning rule

(Rule 6) are all transformation rules for hybrid diagrams under the continuous semantics.
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Theorem 28 (Soundness of Chapter 6 rules)

1. If A1 ) A2 by Rule 1, then Lc(A1) � Lc(A2).

2. If a constraint (R;G) is added by Rule 4 to the justice set of a diagram A, producing diagram

A0, then Runsc(A) = Runsc(A
0) and Lc(A) = Lc(A

0).

3. If a constraint (R;G) is added by Rule 5 to the compassion set of a diagram A, producing

diagram A0, then Runsc(A) = Runsc(A
0) and Lc(A) = Lc(A

0).

The proofs of soundness for the rules are similar to the proofs presented in Chapter 6.

7.3 New Diagram Transformation Rules

In this section, we present two new diagram transformation rules that apply only to the continuous

semantics. These rules will help prove propertis that are valid under the continuous semantics but

not valid under the sampling semantics. They are primarily used to prove progress (e.g., 1 ') and

until (e.g.,  U') properties (capturing the precise instant of time when ' is true).

Motivating Example

Consider the hybrid diagram C1 presented in Figure 7.1. We would like to prove the ltl formula

1 (T = 10). Under the sampling semantics, this formula is not valid for system C1. For example,

the following is a sampling run fragment of C1 that does not satisfy the formula.

�: (v10 ; T = 0); (v11 ; T = 3); (v11 ; T = 9); (v11 ; T = 11); : : :

Note that all extensions of this run fragment will not satisfy the formula as our last snapshot in the

fragment has T > 10 and time can not decrease. This run fragment exhibits two problems:

1. the run � does not sample the system at T = 10, and

2. the system jumps from vertex v11 and T = 9 to vertex v11 and T = 11, bypassing any transition

to v10 and T 2 [10; 11).

Our new rules overcome these problems by allowing us to put upper bounds on �, insuring that the

� transitions do not miss desired locations.

We �rst introduce some notation. Given a hybrid diagram A = (V ; V; �; �; �;J ; C) and a real-

valued expression f over V , � [f ](u; v) is the transition assertion over V [ V 0 where each occurrence

of � is replaced by the real-valued expression f .
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vv0 1

1 1
Even Odd

τ τ

τ

τ

Figure 7.1: Hybrid Diagram C1, where � is the transition T = T +�, Even is the predicate 9n 2 IN : 2n �

T < 2n + 1, and Odd is the predicate 9n 2 IN : 2n+ 1 � T < 2n+ 2.

Rule 8 (Point-Jump) Let A = (V ; V; �; �; �;J ; C) be a hybrid diagram. Let u and v be two

vertices whose corresponding edge we wish to strengthen, and let g be a term on V such that

�(u)! g � 0. If

�(u) ^ � [g](u; v) ^ (�0(u) _ �0(v)) $ false ;

then let A0 be a hybrid diagram just likeA except with the edge from u to v labeled with �(u; v)^� <

g.

Theorem 29 (Soundness of Rule 8) If A) A0 by Rule 8, then Lc(A) � Lc(A
0).

The proof of Theorem 29 is straightforward. The intuition of the rule is as follows. Suppose we

are at a location (u; su) and from vertex u there is an edge going to v. If there is a t0 2 R
+ such

that going from u and any allowable state si j= �(u), we do not reach a state satisfying �(v) or

�(u), then the transition �(u; v) should be restricted to only allow transitions where � < t0. Any

transition taking � > t0 either results in a state that can not be reached in a continuous manner or

results in a state that can be reached in a continuous manner but along a di�erent path (i.e., along

a di�erent sequence of transitions). Our point-jump rule insures that our edge does not jump over

any time-points that do not correspond to legal locations (i.e., locations that can actually appear in

computations).

Rule 9 (Interval-Jump) Let A = (V ; V; �; �; �;J ; C) be a hybrid diagram. Let u and v be two

vertices whose corresponding edge we wish to strengthen, and let g be a term on V such that

�(u)! g � c > 0 for some constant c. If

�(u) ^ � [g](u; v) ^ �0(v) $ false ;

then let A0 be a hybrid diagram just likeA except with the edge from u to v labeled with �(u; v)^� <

g.
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vv0 1

1 1
Even Odd

τ      ∆ <2

τ      ∆ <2

<1 <1τ      ∆ τ      ∆

Figure 7.2: Hybrid Diagram C2, where � is the transition T = T +�, Even is the predicate 9n 2 IN : 2n �

T < 2n+ 1, and Odd is the predicate 9n 2 IN : 2n+ 1 � T < 2n+ 2.

Theorem 30 (Soundness of Rule 9) If A) A0 by Rule 8, then Lc(A) � Lc(A
0).

The proof of Theorem 30 is straightforward. The intuition of the rule is as follows. Suppose we are at

a location (u; su) and from vertex u there is an edge going to v. If there is an interval [t0; t1) � R
+

such that going from u and any allowable state si j= �(u), we do not reach a state satisfying

�(v), then the transition �(u; v) should be restricted to only allow transitions where � < t0. Any

transition taking � > t0 either results in a state that can not be reached in a continuous manner or

results in a state that can be reached in a continuous manner but along a di�erent path (i.e., along

a di�erent sequence of transitions). Our interval-jump rule insures that our edge does not jump over

any interval of time that does not correspond to legal locations.

With these two rules, we can prove additional properties of hybrid diagrams. The construction

of the graph product of a hybrid diagram and a Streett automaton remains the same.

Theorem 31 (Diagram Checking) Given a diagram A and a speci�cation ' 2 TLs, let A 


N�' = (W;Z;H). If all SCSs of (W;H) that are reachable in (W;H) from Z are not admissible,

then A j=c '.

The proof is based on the classical arguments presented by Manna and Pnueli in [115].

Examples

Let us return to the example introduced above. Using Rule 8 on the edge from vertex v10 to itself

with g = 1 allows us to add the requirement � < 1 to the edge from v10 to itself. Using the same g,

we can add the same requirement to the edge from v11 to itself. Finally, using g = 2, we can add the

requirement � < 2 to the edge from v10 to v11 and to the edge from v11 to v
1
0 . The resulting diagram

is shown in Figure 7.2.

Returning to our Room-Heater example, suppose we wish to prove the property 1 (x = 65).

Clearly this formula is valid for system RH under the continuous semantics since the system starts



96 CHAPTER 7. DIAGRAMMATIC VERIFICATION: CONTINUOUS SEMANTICS
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Figure 7.3: Hybrid Diagram A5, where '1 : x � 75�7 � e�y=105 and '2 : x � 60+12 � e�y=70 . Edges labeled

with false are not shown.

at a temperature less than 65 and continuously increases until it reaches a temperature greater than

65. Under the sampling semantics, this formula need not be true since a particular run need not

sample the system at precisely the point where x = 65. Thus, our only hope of proving this property

is by using the point-jump and interval-jump rules.

We �rst use the simulation rule to simplify the diagram. The rule is based on the function �

de�ned as follows:

�(v40) = v50 �(v41) = v51 �(v42) = v52 �(v43) = v53 �(v44) = v52 �(v45) = v53 ;

and the resulting diagram is presented in Figure 7.3. We further re�ne diagram A5 using the

simulation rule and the function � de�ned as follows:

�(v50) = v60 �(v51) = v61 �(v52) = fv
6
2 ; v

6
4 ; v

6
5g �(v53) = v63

to generate diagram A6 presented in Figure 7.4. One last application of the simulation rule to

split vertex v51 gives us the diagram A7 presented in Figure 7.5. We now use two applications

of Rule 8. The �rst application of the point-jump rule is on the edge from vertex v72 to v73 with

g = �70 ln(5=(70� x)). The result is to add the conjunct � < �70 ln(5=(70� x)) to the edge. As

the new b� (v72 ; v73) is false , we can eliminate the edge. The second application of the point-jump rule

is on the edge from vertex v76 to v
7
3 with g = �105 ln(10=(75�x)). The result is to add the conjunct

� < �105 ln(10=(75�x)) to the edge. Once again, as the new b� (v76 ; v73) is false , we can eliminate the
edge. The resulting diagram is presented in Figure 7.6. This diagram with its justice requirements

inherited from diagram A4 can be shown to satisfy the property 1 (x = 65).

7.4 Discussion

The di�erences between the sampling semantics and the continuous semantics become exposed when

trying to prove liveness properties and U properties. Suppose ' and  are state formulas. Under
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Figure 7.4: Hybrid Diagram A6, where '1 : x � 75�7 � e�y=105 and '2 : x � 60+12 � e�y=70 . Edges labeled

with false are not shown.

the sampling semantics, the formula 1 (') is valid only if the run exhibits a snapshot where '

holds. Similarly, under the sampling semantics, the formula  U' is valid only if the run exhibits

a snapshot where ' holds. However, for both these formulas, there is no guarantee that a run will

sample such a point where ' holds. For this reason, we chose to move to a continuous semantics

that records the system's values at every point in time.

Of course, not all 1 properties require moving to the continuous semantics. For example, the

original Room-Heater requirement, 1 (65 � x � 75) is valid under the sampling semantics, and we

were able to prove it using the rules of Chapter 6. However, for the property 1 (x = 65) we had to

move to the continuous semantics. The reason for the di�erence is as follows. System RH satis�es

the formulas

1 (65 � x � 75)

(65 � x � 75)=� 0 (65 � x � 75) ;

which are equivalent to

1 (65 � x � 75) (7.1)
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Figure 7.5: Hybrid Diagram A7, where '1 : x � 75�7 � e�y=105 and '2 : x � 60+12 � e�y=70 . Edges labeled

with false are not shown.

1 (65 � x � 75)! 0 (65 � x � 75) : (7.2)

Under the sampling semantics, even if we fail to sample the �rst occurrence of 65 � x � 75, we know

that by 7.2, all subsequent snapshots satisfy 65 � x � 75. For the formula, 1 (x = 65), we have no

such guarantee. Thus, if we fail to sample the �rst (and possibly only) occurrence of x = 65, our

run may not satisfy 1 (x = 65). Consequently, the formula 1 (x = 65) need not be valid for system

RH under the sampling semantics.
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Figure 7.6: Hybrid Diagram A8, where '1 : x � 75�7 � e�y=105 and '2 : x � 60+12 � e�y=70 . Edges labeled

with false are not shown.



Chapter 8

Deductive Veri�cation: Continuous

Semantics

In this chapter, we present proof rules for proving properties expressed in hybrid temporal logic

(Chapter 3.3.2) over hybrid systems modeled by concrete phase transition systems (Chapter 5.3).

We �rst present the proof rules for point-based properties and then present a proof rule for proving

interval-based properties. We illustrate the rules on system gas introduced in Chapter 2.2.2. We

also introduce an induction axiom for proving htl-validities and system-validities.

8.1 Contributions

The main contribution of this chapter is a veri�cation methodology to prove hybrid temporal logic

properties of concrete phase transition systems.

8.2 Proving Point-Based Properties

To prove point-based invariance formulas of the form 0  where  is a state formula, we use the

rule p-inv given in Figure 8.1. We use the notation  (V ) to emphasize that  is a formula over

the variables V , and  (V 0) to indicate the result of replacing all variables in  (V ) by their primed

versions. The rule uses two auxiliary assertions ' and �. Assertion ' is intended to be a stronger

version of  that is inductive, while assertion � is a weaker version of ' which holds not only at

states within phases but also at the left limits of such states.

Premise PI1 states that ', where ' is a state formula, is initially true. Premise PI3 states that

if � holds at some state, which could be a left limit of states in the computation, and a discrete

transition � is taken, then ' holds in the new state (since, for transitions, V 0 represents the values of

100
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p-inv PI1. �! '(V )
PI2. '(V )!  (V )
PI3. �� (V; V

0) ^ �(V )! '(V 0) 8� 2 T

PI4. ��(V; _V ) ^ �(V )! '(V ) 8� 2 �

PI5. continuous ^ 0 ��(V; _V ) ^ '(V ) =�f �(
�!
V ) 8� 2 �

0  (V )

Figure 8.1: Rule p-inv|Invariance of point-based state formulas

l-inv LI1. �! '(V )
LI2. �(V )!  (V )
LI3. �� (V; V

0) ^ �(V )! '(V 0) 8� 2 T

LI4. ��(V; _V ) ^ �(V )! '(V ) 8� 2 �

LI5. continuous ^ 0 ��(V; _V ) ^ '(V ) =�f �(
�!
V ) 8� 2 �

0  (
�!
V )

Figure 8.2: Rule l-inv|Invariance of left-limit state formulas

the variables in the new state). Premise PI4 states that at internal points of a phase, �(V ) implies

'(V ).

Premise PI5 is the only temporal premise among the �ve. It requires that if ' holds at the left

end of a �-phase, then � holds at the state which is the limit from the left of the phase1.

Premises PI1, PI3, PI4, and PI5 insure that for all time points t, ' holds. By premise PI2,  

also holds at all time points, which can be written as 0  .

For example, using the above rule we can prove the following point-based invariances for system

gas.

� at `0 ! (0 � y < 100 ^ 0 � T < 10 ^ R = O� ^ switch = O�)

� at `1 ! (0 � y < 100 ^ T = 10 ^ switch = O�)

� at `2 ! (0 � y < 10 ^ 0 � T < 10 ^ R = On ^ switch = On)

We prove the �rst of these properties in Chapter 8.5; the others are proved in a similar fashion.

A similar rule, l-inv, presented in Figure 8.2, can be used to prove properties of the form

0  (
�!
V ), where  (

�!
V ) is an assertion in

�!
V .

1To prove temporal entailments such as PI5, we use some known facts based on elementary calculus such as

continuous ^ 0 ( _x = 0)=�f
 �x = �!x .
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i-inv II1. '(V; V 0) !  (V; V 0)

II2. continuous ^ 0 ��(V; _V ) =�f '(
 �
V ;
�!
V ) 8� 2 �

II3. '(V1; V2) ^ �� (V2; V ) ^ continuous ^ 0 ��(V; _V ) =�f '(V1;
�!
V )

8� 2 T

8� 2 �

0 f (
 �
V ;
�!
V )

Figure 8.3: Rule i-inv|Invariance of interval formulas

8.3 Proving Interval-Based Properties

To prove interval-based invariance formulas of the form 0 '(
 �
V ;
�!
V ) where ' is a formula whose

variables appear as left or right limits, we use rule i-inv given in Figure 8.3.

Premise II1 expresses the monotonicity requirements of the rule. The temporal premise II2

states that any �-phase satis�es '. Premise II3 states that if ' is true over a phase P1 and we take

a discrete transition � to another phase P2 on which ' holds, then ' will be true over the phase

P1� P2. Premises II3 and II2 imply that any subphase satis�es ', and with monotonicity, these

conditions guarantee 0 f (
 �
V ;
�!
V ).

In addition we may add any previously derived point invariants p(V ) to the left of any premise

and any previously derived invariants q(
�!
V ) or r(

 �
V ;
�!
V ) to the left of any temporal premise.

Before presenting example interval invariants, we introduce the following notation. For a variable

x 2 V ,

�x stands for �!x � �x

�2
1x stands for x2 � x1

�1x stands for �!x � x1

For example, using the above rule we can prove the following interval-based invariances for system

gas.

�
�!
at `0;1 =�f

�
(�x � �!y ^ �L = 0) _ (�x > �!y ^ �L < �x��!y )

�
� 0 f

�
( 1 _  2 _  3) ^  4

�
where

 1: �L � �T

 2: �L �
�!
T ^ �x �

�!
T + 100

 3: �L � �x� 100 ^ �x >
�!
T + 100 ^ 6(�L) � �x

 4:
��!
at `0;1 ^ �x � 110

�
! �x � 50 +

�!
T + 6(�L�

�!
T )

� �x � 60 =�f 6(�L) � �x

The second property is used to prove the third property using rule i-mon presented in Figure 8.4.
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i-mon IM1. 0 f'1(
 �
V ;
�!
V )

IM2. 0 f'2(
 �
V ;
�!
V )

IM3. '1(
 �
V ;
�!
V ) ^ '2(

 �
V ;
�!
V ) =�f  (

 �
V ;
�!
V )

0 f (
�!
V ;
 �
V )

Figure 8.4: Rule i-mon|Monotonicity of interval invariance formulas

8.4 Soundness of Proof Rules

We now prove the soundness of the rules p-inv and i-inv. The other rules are proved similarly.

Theorem 32 Rule p-inv is sound.

Proof of Soundness of p-inv:

Let S = (V;�;�; T ) be an arbitrary cpts.

Suppose '; �;  are state formulas such that the premises of rule p-inv hold.

We will show that for any computation P of S, that P
�

j= 0 ( ).

Let P 1 be an arbitrary computation of S.

As P 1 is a computation of S, it is equivalent to a phase sequence of the form P 2 = P0; P1; : : :

where:

(1) For each 0 � i < jP j, Pi = h[ai; ai+1); fii

(2) � holds at a0.

(3) For all 0 � i < jP j, there is a phase invariant �� 2 � such that Pi is a �-phase.

(4) For all 0 � i < jP j � 1, there is a transition � 2 T such that �� (
�!
Pi [V ];

 ��
Pi+1[V ]) holds.

(5) P is divergent.

We proceed to prove that ' and  hold at all t 2 [a0;1). The proof is by induction on j,

0 � j < jP j, showing that ' and  hold at all t 2 [aj ; aj+1).

Assume that 8k 2 [0::j � 1], we have already shown that ' and  hold at all t 2 [ak; ak+1).

We will show that ' and  hold at all t 2 [aj ; aj+1).

Case: t = aj and j = 0

By requirement (2) above, � holds at a0. As premise PI1 holds, ' holds at a0. As premise

PI2 holds,  holds at a0.

Case: t = aj and j 6= 0
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By requirement (4) above, there is a transition � 2 T such that

�� (
��!
Pj�1[V ];

 �
Pj [V ]) holds. Fix such a � . By requirement (3) above, there is a phase in-

variant �� 2 � such that Pj�1 is a �-phase. Fix such a phase invariant. Thus Pj�1 j=

continuous ^ 0 ��(V; _V ). By the induction hypothesis, ' and  hold for all t 2 [aj�1; aj).

Thus Pj�1 j= '(V ). So by premise PI5, Pj�1 j= �(
�!
V ). As �� (

��!
Pj�1[V ];

 �
Pj [V ]) holds, by

premise PI3, Pj j= '(
 �
V ). That is, ' holds at aj = t. By premise PI2,  holds at t.

Case: t 2 (aj ; aj+1)

By requirement (3) above, there is a phase invariant �� 2 � such that Pj is a �-phase. Fix

such a phase invariant. Consider the subphase bPj = h[aj ; t); bfi, where bf is the restriction of

f to [aj ; t). Obviously, bPj is also a �-phase. In particular, bPj j= continuous ^ 0 ��(V; _V ).

By the previous two cases, ' holds at aj . As ' is a state formula, we have bPj j= '(V ). So by

premise PI5, bPj j= �(
�!
V ). That is, �(

�!
V ) holds at t. As Pj is continuous and t is an internal

point in [aj ; aj+1), we conclude that �(V ) holds at t. Since t is internal to [aj ; aj+1), ��

holds at t. By premise PI4, ' holds at t. So by premise PI2,  holds at t.

So by induction, ' and  hold for all t 2 [a0;1). Thus 0  (V ) holds by Theorem 2.

Theorem 33 Rule i-inv is sound.

Proof of Soundness of i-inv:

Let S = (V;�;�; T ) be an arbitrary cpts.

Suppose '(V; V 0) and  (V; V 0) are state formulas such that the premises of rule i-inv hold.

We will show that for any computation P of S, P
�

j= 0  (
 �
V ;
�!
V ).

Let P 1 be an arbitrary computation of S and P be an arbitrary �nite subphase of P
�

1. As P is a

�nite subphase of P
�

1, it must be equivalent to a sequence of adjacent phases P1; : : : ; Pn (n � 1)

such that

(1) For each i 2 [1::n], there is a phase invariant �� 2 � such that Pi is a �-phase.

(2) For each i 2 [1::n� 1], there is a transition � 2 T such that �� (
�!
Pi [V ];

 ��
Pi+1[V ]) holds.

We proceed by induction on t 2 [1::n] to show that '(
 �
V ;
�!
V ) holds over the phase P1::t =

P1� P2� � � � � Pt.

Case: Base (t = 1)

By requirement (1) above, there is a phase invariant �� 2 � such that P1 is a �-phase. That

is, P1 j= continuous ^ 0 ��(V; _V ). By premise II2, P1 j= '(
 �
V ;
�!
V ), and since P1::1 = P1,

the induction claim holds for t = 1.

Case: Inductive (from t to t+ 1 � n)
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Let phases P1::t and Pt+1 be given by h[a; b); gti and h[b; c); gt+1i, respectively. Let U1, U2,

and U3 denote the values of
 ��
P1::t[V ],

��!
P1::t[V ] =

�!
Pt [V ], and

 ��
Pt+1[V ], respectively.

By requirement (2) above, there is a transition � 2 T such that

�� (
�!
Pt [V ];

 ��
Pt+1[V ]) holds. By requirement (1) above, there is a phase invariant �� 2 �

such that Pt+1 is a �-phase. Thus, Pt+1 j= continuous ^ 0 ��(V; _V ). By the induction hy-

pothesis, P1::t j= '(
 �
V ;
�!
V ), which implies that '(U1; U2) = true (that is, '(V1; V2) evaluates

to true when we interpret V1 as U1 and V2 as U2). In a similar way, Pt+1 being a � -successor

of Pt implies that �� (U2; U3) = true. Consider now the augmented phase bPt+1: h[b; c); bgt+1i

where bgt+1 agrees with gt+1 on the values of V . That is, bgt+1[V ](r) = gt+1[V ](r) for

each r 2 [b; c) and, in addition, bgt+1 interprets the additional variables V1 and V2 as the

constant values U1 and U2, respectively. It is not di�cult to see that the conjunction

'(V1; V2) ^ �� (V2; V3) ^ continuous ^ 0 ��(V3; _V3) holds over the phase bPt+1.

So by premise II3, bPt+1 j= '(V1;
�!
V ). Since bPt+1[V1] = U1 = P1::t[V ] = P1::t+1[V ] and

��!bPt+1[V ] =
��!
Pt+1[V ] =

����!
P1::t+1[V ], it follows that P1::t+1 j= '(

 �
V ;
�!
V ).

By induction, we conclude that P1::n j= '(
 �
V ;
�!
V ), which by premise II1, leads to P1::n j=

 (
 �
V ;
�!
V ). As P is equivalent to P1::n, we have P j=  (

 �
V ;
�!
V ).

Since P was an arbitrary �nite phase of the computation P 1, we get that

0  (
 �
V ;
�!
V ) is an invariant of S.

8.5 Example

We return to system gas and prove several point-based and interval-based properties.

8.5.1 Proofs of Point-Based Properties

We are interested in proving:

� T � 0

� at `0 ! (0 � y < 100 ^ 0 � T < 10 ^ R = O� ^ switch = O�)

� at `1 ! (0 � y < 100 ^ T = 10 ^ switch = O�)

� at `2 ! (0 � y < 10 ^ 0 � T < 10 ^ R = On ^ switch = On)

We prove the second of these four formulas; the others are proved similarly.

Proof of at `0 ! (0 � y < 100 ^ 0 � T < 10 ^ R = O� ^ switch = O�):

We take:

 ; ': at `0 ! (0 � y < 100 ^ 0 � T < 10 ^ R = O� ^ switch = O�)

�: at `0 ! (0 � y � 100 ^ 0 � T < 10 ^ R = O� ^ switch = O�)
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PI1: � ! '(V )�
R = O� ^ T = 0 ^ y = 0 ^ switch = O� ^ � = `0 ^ : : :

�
!�

at `0 ! (0 � y < 100 ^ 0 � T < 10 ^ R = O� ^ switch = O�)
�

which clearly holds.

PI2: '(V ) !  (V )

As '(V ) and  (V ) are the same formulas, we get '(V ) !  (V ).

PI3: �� (V; V
0) ^ �(V )! '(V 0) for every � 2 T

We only need to consider transitions of the form �h`i;`0i for i 2 f0; 1; 2g since for all other

transitions �0 6= `0, making the antecedent of '(V
0) false. Thus we have three transitions,

�h`0;`0i, �h`1;`0i, and �h`2;`0i, to consider.

�h`0;`0i:2
664
� = `0 ^ R0 = R

^ T 0 = 0 ^ y0 = 0 ^ �0 = `0

^ switch0 = O� ^ : : :

3
775 ^

�
at `0 ! (R = O� ^ : : :)

�

!

"
at0 `0 !

 
0 � y0 < 100 ^ 0 � T 0 < 10

^ R0 = O� ^ switch0 = O�

!#

�h`1;`0i:"
R0 = O� ^ T 0 = 0 ^ y0 = 0

^ switch0 = O� ^ �0 = `0 ^ : : :

#
^ �(V )

!

"
at0 `0 !

 
0 � y0 < 100 ^ 0 � T 0 < 10

^ R0 = O� ^ switch0 = O�

!#

�h`2;`0i:"
R0 = O� ^ T < 10 ^ T 0 = T ^ y0 = 0

^ switch0 = O� ^ �0 = `0 ^ : : :

#
^ �(V )

!

"
at0 `0 !

 
0 � y0 < 100 ^ 0 � T 0 < 10

^ R0 = O� ^ switch0 = O�

!#

The �rst two formulas are valid formulas, while the third formula also requires the

previously established invariant T � 0.

PI4: ��(V; _V ) ^ �(V )! '(V ) for every � 2 �

We only have to consider the phase relation, �`0 , since the other phase relations have � 6= `0,

making the antecedent false.�
y < 100 ^ : : :

�
^

"
at `0 !

 
0 � y � 100 ^ 0 � T < 10

^ R = O� ^ switch = O�

!#

!

"
at `0 !

 
0 � y < 100 ^ 0 � T < 10

^ R = O� ^ switch = O�

!#
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PI5: continuous ^ 0 ��(V; _V ) ^ '(V ) =�f �(
�!
V ) for every � 2 �

We only have to consider the phase relation, �`0 , since the other phase relations have
�!� 6= `0,

making the antecedent false.

continuous ^ 0

2
66664

_y = 1 ^ _T = 0 ^

y < 100 ^ R = O�

^ � = `0 ^

switch = O� ^ : : :

3
77775 ^

2
664

at `0 ! 
0 � y < 100 ^

0 � T < 10 ^ : : :

!
3
775

=�f

"
�!
at `0 !

 
0 � �!y � 100 ^ 0 �

�!
T < 10

^
�!
R = O� ^

���!
switch = O�

!#

Consider an arbitrary phase P . Suppose P j= continuous ^ 0 �`0 ^ '(V ). As continuous ^

0 ( _T = 0)=�f
 �
T =

�!
T , P j=

 �
T =

�!
T , and as 0 � T < 10, P j= 0 �

�!
T < 10. As

0 � y < 100 ^ 0 ( _y = 1), P j= 0 � �!y . As continuous ^ 0 (y < 100), P j= �!y � 100. As

continuous ^ 0 (R = O�), P j=
�!
R = O�. As continuous ^ 0 (switch = O�), P j=

���!
switch =

O�. Thus, P j= �(
�!
V ).

8.5.2 Proofs of Interval-Based Properties

We are interested in proving:

�
�!
at `0;1 =�f

�
(�x � �!y ^ �L = 0) _ (�x > �!y ^ �L < �x��!y )

�
� 0 f

�
( 1 _  2 _  3) ^  4

�
where

 1: �L � �T

 2: �L �
�!
T ^ �x �

�!
T + 100

 3: �L � �x� 100 ^ �x >
�!
T + 100 ^ 6(�L) � �x

 4:
��!
at `0;1 ^ �x � 110

�
! �x � 50 +

�!
T + 6(�L�

�!
T )

� �x � 60 =�f 6(�L) � �x

We prove the second formula below. The proof of the �rst formula is done in a similar manner.

The third formula which is the safety requirement for the gas burner, follows from rule i-mon and

the second formula.

Proof of 0 f

�
( 1 _  2 _  3) ^  4

�
:

We take:

 ; ':
�
( 1 _  2 _  3) ^  4

�
II1: '(

 �
V ;
�!
V ) !  (

 �
V ;
�!
V )

As '(
 �
V ;
�!
V ) and  (

 �
V ;
�!
V ) are the same formulas, we get '(

 �
V ;
�!
V ) !  (

 �
V ;
�!
V ).

II2: continuous ^ 0 ��(V; _V )=�f'(
 �
V ;
�!
V ) for every � 2 �

We must consider all three phase relations.
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�`0:

continuous ^ 0
"

_x = 1 ^ _y = 1 ^ _L = 0 ^ _T = 0 ^

y < 100 ^ R = O� ^ � = `0 ^ switch = O�

#

=�f
�
( 1 _  2 _  3) ^  4

�
As _L = 0, _T = 0, and continuous, we immediately get

�!
L =

 �
L and

�!
T =

 �
T . These

facts make the �rst conjunct in the consequent of '(
 �
V ;
�!
V ) true. By a previously

established point invariant, we get 0 � �!y � 100 and 0 �  �y < 100, so �!y � �y � 100.

As �x = �!y � �y � 100, the second conjunct is also true.

�`1:

continuous ^ 0
"

_x = 1 ^ _y = 1 ^ _L = 0 ^ _T = 0 ^

y < 100 ^ � = `1 ^ switch = O�

#

=�f
�
( 1 _  2 _  3) ^  4

�
As _L = 0, _T = 0, and continuous, we immediately get

�!
L =

 �
L and

�!
T =

 �
T . These facts

make the �rst conjunct in the consequent of '(
 �
V ;
�!
V ) true. As �x = �!y � �y � 100,

the second conjunct is also true.

�`2:

continuous ^ 0
"

_x = 1 ^ _y = 1 ^ _L � 1 ^ _T = 1 ^

R = On ^ T < 10 ^ � = `2 ^ switch = On

#

=�f
�
( 1 _  2 _  3) ^  4

�
As
�!
at `0;1 is false, the second conjunct in the consequent is true. As continuous and

0 ( _L � _T = 1) implies �L � �T , the �rst conjunct in the consequent is true.

II3: '(V1; V2) ^ �� (V2; V ) ^ continuous ^ 0 ��(V;
�!
V ) =�f '(V1;

�!
V ) for every � 2 T and for

every � 2 �.

There are seven cases to consider (one for each transition).

�h`0;`0i; �`0:

As 0 (� = `0) and continuous implies
�!
at `0, we get:

(�1x � �!y ^ �1L = 0) _ (�1x > �!y ^ �1L < �1x��!y )

continuous and 0 (y < 100) implies �!y � 100. continuous and 0 ( _L = _T = 0) implies
�!
L = L = L2 and

�!
T = T = 0.

Case: (�1x �
�!y ^ �1L = 0)

In this case, �1L � 0 =
�!
T and �1x � �!y � 100 �

�!
T +100. So the �rst conjunct

of the consequent holds. As �1x � 100, the second conjunct of the consequent

holds.

Case: (�1x >
�!y ^ �1L < �1x�

�!y )
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subcase: �1x = �!y

In this case, �1x �
�!
T + 100 and �1L � 0 =

�!
T , so the �rst conjunct of the

consequent holds. As �1L � 0, the second conjunct holds.

subcase: �1x >
�!y

subcase: �!y = 100

In this case �1x >
�!
T + 100 and �1L � �1x �

�!y � �1x � 100. Either

�2
1L < 10 or (�2

1L � �2
1x� 100 ^ 6(�2

1L) � �2
1x). In the �rst case, we

get 6(�2
1L) < �1x, and so the �rst conjunct holds. In the second case,

6(�2
1L) � �2

1x � �1x, and so the �rst conjunct holds.

subcase: �!y < 100

If �1x � 100 +
�!
T then the �rst invariant gives

(�2
1x � y2 ^ �2

1L = 0) _ (�2
1x > y2 ^ �2

1L < �2
1x� y2)

As y2 = 100 and x � x1 � 100 = y2, we get �
2
1x � y2. Hence �

2
1L = 0

and �1L = 0 �
�!
T . Thus the �rst conjunct holds.

If �1x > 100 +
�!
T , then �1L � �1x� 100 and 6(�1L) � �1x as in the

subcase �1x = �!y . Thus the �rst conjunct holds.

We still need to show that the second conjunct holds. We consider two cases.

subcase: �1x = 110

In this case �1L = 0 =
�!
T , so the second conjunct holds.

subcase: �1x > 110

If �2
1x < 110 then �2

1L < 10, and so the second conjunct holds. If �2
1x � 110

then �2
1x � 50 + T2 + 6(�2

1L � T2). As
�!
L = L2 and

�!
T = 0, the second

conjunct holds.

Thus in all subcases, both conjuncts of the consequent hold.

�h`0;`2i; �`2:

As
�!
at `0;1 is false, the second conjunct holds. We still need to prove that the �rst

conjunct of the consequent holds. We consider three cases corresponding to the three

disjuncts of the �rst conjunct in the antecedent.

Case: �2
1L � �2

1x

As L = L2 and T = T2, we get L�L1 � T �T1. As continuous and 0 ( _L � _T = 1)

implies
�!
L �L �

�!
T �T , we get �1L =

�!
L �L+L�L1 �

�!
T �T +T �T1 � �1T .

So the �rst conjunct of the consequent holds.

Case: �2
1L � T2 and �2

1x � T2 + 100

As x = x2 and T = T2, x�x1 � T+100. As continuous and 0 ( _x = _T = 1) implies
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�!x � x =
�!
T � T , we get �1x = �!x � x + x� x1 �

�!
T � T + T + 100 �

�!
T + 100.

So the �rst conjunct of the consequent holds.

Case: (�2
1L � �2

1x� 100) and (�2
1x > T2 + 100) and (6(�2

1L) � �2
1x)

By reasoning similar to the previous cases, we get �1x >
�!
T + 100 and �1L �

�1x� 100. We still need to show 6(�1L) � �1x.

As at2 `0 holds, by the previous invariant

(�2
1x � y2 ^ �2

1L = 0) _ (�2
1x > y2 ^ �2

1L < �2
1x� y2)

subcase: �2
1x � y2 ^ �2

1L = 0

As 0 � T < 10, continuous, and 0 ( _L � _T = 1) implies
�!
T �T �

�!
L �L, we get

10 �
�!
L �L � �1L. As �1x > 100, we get 6(�1L) � 60 � 100 � �1x > 100.

subcase: �2
1x > y2 ^ �2

1L < �2
1x� y2

subcase: �2
1x < 110

In this case �2
1L � �2

1x�100 (using the point invariant to give T2 = 10).

So, 6(�1L) = 6(
�!
L � L + L � L1) = 6(

�!
L � L) + 6(L � L1) � 6(�!x �

x) + 6(�2
1x� 100) � (�!x �x) + 5(�1x)� 600 � �1x. The last inequality

follows from the fact that �1x < 120.

subcase: �2
1x � 110

�1x = �!x � x+ x� x1

=
�!
T � T +�2

1x

=
�!
T � T2 +�2

1x

�
�!
T � T2 + 50 + T2 + 6(�2

1L� T2)

�
�!
T + 50 + 6(�2

1L)� 6T2

� 6
�!
T + 6(�2

1L)� 6T2

� 6(
�!
L � L) + 6(�2

1L)

� 6(�1L)

Thus, the �rst conjunct holds.

�h`1;`0i; �`0:

This case is exactly the same as �h`0;`0i; �`0 .

�h`1;`1i; �`1:

This case is exactly the same as �h`0;`0i; �`0 .

�h`1;`2i; �`2:
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As
�!
at `0;1 is false, the second conjunct holds. We still need to prove that the �rst

conjunct of the consequent holds.

As at2 `0 holds, by the previous invariant

(�2
1x � y2 ^ �2

1L = 0) _ (�2
1x > y2 ^ �2

1L < �2
1x� y2)

Case: �2
1x � y2 ^ �2

1L = 0

As L = L2 = L1, T = 0, continuous, and 0 ( _L � _T = 1) implies
�!
T � T �

�!
L �L,

we get
�!
T � �1L. As y2 = 100, we have �2

1x � 100. Together, continuous and

0 ( _x = _T = 1) imply
�!
T �T = �!x �x. Thus, �1x �

�!
T +100. So the �rst conjunct

holds.

Case: �2
1x > y2 ^ �2

1L < �2
1x� y2

This case is identical to the third case of �h`0;`2i; �`2 . Thus the �rst conjunct holds.

�h`2;`0i; �`0:

The proof of the �rst conjunct is very similar to the case �h`0;`0i; �`0 . Instead of
�!
T = T2,

we have 0 �
�!
T � 10. The proof of the second conjunct is very similar to the case

�h`2;`1i; �`1 .

�h`2;`1i; �`1:

We consider three cases corresponding to the three disjuncts of the �rst conjunct in the

antecedent.

Case: �2
1L � �2

1x

In this case �1L � �1T � 10, so both the �rst and second conjunct of the

consequent hold.

Case: �2
1L � T2

In this case �1L �
�!
T � 10, so both the �rst and second conjunct of the consequent

hold.

Case: �2
1L � �2

1x� 100 and �2
1x > T2 + 100

If �2
1x � 110 then as

�!
T = T2 and

�!
L = L2, we get �1x � �2

1x � 50 + T2 +

6(�2
1L�T2) � 50+

�!
T +6(�1L�

�!
T ). So the second conjunct holds. If �2

1x < 110

then �2
1L � 10, and so the second conjunct holds. In either case, �1x � �2

1x �

6(�2
1L) � 6(�1L), so the �rst conjunct holds.

8.6 Computational Induction for htl

Our motivation for introducing an induction axiom for htl is based on the following observation by

Pnueli [131]:
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The invariant [for system gas that] we know how to prove implies:

(�!x � �x ) � 110 ! (
�!
L �

 �
L ) � 10: (8.1)

In particular, this holds if �!x � �x = 110. Consider an interval I of length M , and let

n = b M
110
c, that is, n is the largest integer not exceedingM=110. Then, we can obviously

partition I into n+1 subintervals, each of length not exceeding 110. By the above, (since

L is continuous)
�!
L �

 �
L in the big interval should be the sum of (

�!
L �

 �
L )'s over the

subintervals, which lead to (
�!
L �

 �
L ) � (n+ 1)10 � (1 +M=110)10, from which we get

11(
�!
L �

 �
L ) � (110 +�!x � �x ): (8.2)

Properties (1) + (2) imply the desired property:

(�!x � �x ) � 60 ! 6(
�!
L �

 �
L ) � (�!x � �x ): (8.3)

We would like a convenient way of proving (8.3) directly from (8.1). The induction axiom that we

introduce below will allow us to achieve this goal. For an arbitrary �nite phase P = h[a; b); fi, we

denote jP j = b� a.

Computational Induction Axiom: To prove P j= 0  (x1; : : : ; xm), where P is an arbitrary

�nite phase,  (x1; : : : ; xm) is an htl formula with no temporal operators, fx1; : : : ; xmg are all the

free variables in  , and continuous(fx1; : : : ; xmg) holds, it su�ces to prove:

if for some constant L 2 IN;

(8n 2 IN)

2
66666666664

If (8k 2 IN; k < n)

2
664

for any P 0; P 1; : : : ; P k

where jP 0j � L and jP ij = L (8i 2 [1::k])

P 0� P 1� � � � � P k j=  (x1; : : : ; xm)

3
775

then

2
664

for any P 0; P 1; : : : ; Pn

where jP 0j � L and jP ij = L (8i 2 [::n])

P 0� P 1� � � � � Pn j=  (x1; : : : ; xm)

3
775

3
77777777775

then P j= 0  (x1; : : : ; xm):

The constant L is known as the subinterval-duration-size.

The induction axiom can be used to prove both htl-validities (i.e., statements true for arbitrary

�nite phases) and system-validities (i.e., statements true for all �nite runs of a system). In proving

htl-validities we may only use other htl-validities in our induction proof. For example, we may

readily use the following in any induction proof:
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if

2
66664
P = P 0� P 1� � � � � P k and continuous(fx1; : : : ; xmg) and

(8j 2 [1::m])

"
(8i; 1 � i � k) (P i j= �!xj = uij and P

j j= �xj = vij)

and P 0 j= �!xj = u0j and P
0 j= �xj = v0j

#

where uij , v
i
j , u

0

j , and v
0

j are rigid variables

3
77775

then (8j 2 [1::m]) (8i 2 [1::k � 1])
�
uij = vi+1

j and u0j = v1j
�

(8.4)

If we are proving a system-validity, then we may use any proven invariant of the system in our

induction proof.

Before we give an example induction proof, we need to introduce an axiom relating the length

of an interval with derivatives of variables.

Derivative-Duration Axiom: For all �nite phases P , if jP j = L then P j= 0 ( _x = c) !

(�!x � �x ) = cL.

We illustrate the use of the induction axiom on system gas.

Example: Suppose we wish to prove the safety speci�cation:

0  (x; L) = 0
h
(�!x � �x ) � 60 ! 6(

�!
L �

 �
L ) � (�!x � �x )

i

where x and L are the free variables in  and are known to be continuous.2 Moreover, suppose we

have already established the following invariants:

'0: 0 ( _L � 1)

'1: 0 ( _x = 1)

'2: (�!x � �x ) � 110 ! (
�!
L �

 �
L ) � 10

Proof of (�!x � �x ) � 60 ! 6(
�!
L �

 �
L ) � (�!x � �x ):

Fix the subinterval-duration-size to be 110.

Case: n = 0

We must show that P 0 j= (�!x � �x ) � 60 ! 6(
�!
L �

 �
L ) � (�!x � �x ) where jP 0j � 110.

Suppose �!x � �x � 60. By '1 and the derivative-duration axiom, �!x � �x � 110. So by '2,
�!
L �

 �
L � 10, whence 6(

�!
L �

 �
L ) � 60 � (�!x � �x ) as desired.

Case: n > 0

2Recall, in system gas, x and L are indeed continuous, since they are system variables that never get reset.
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Suppose that for all k < n and arbitrary adjacent phases P 0; P 1; : : : ; P k with jP 0j � L and

jP ij = L (8i 2 [1::k]) we have P 0� P 1� � � � � P k j=  (x; L).

Let P 0; P 1; : : : ; Pn be arbitrary adjacent phases with jP 0j � L and jP ij = L (8i 2 [1::n]).

To show: P 0� P 1� � � � � Pn j=  (x; L).

For all i 2 [1::n], let uix, v
i
x, u

0

x, v
0

x u
i
L, v

i
L, u

0

L, and v
0

L be as in (8.4). Thus our induction

hypothesis yields (un�1x � v0x) � 60 ! 6(un�1L � v0L) � (un�1x � v0x). We must show

(unx � v
0

x) � 60 ! 6(unL � v
0

L) � (unx � v
0

x). As n > 0, we know (unx � v
0

x) � 110 > 60, so

we must show 6(unL � v
0

L) � (unx � v
0

x).

Case: n = 1

As jP 0j � 110, by '0, '1, '2, and the derivative-duration axiom, we get (u0L � v
0

L) �

minf(u0x � v
0

x); 10g. As jP
1j = 110, by '1, '2, and the derivative-duration axiom, we

get (u1L� v
1
L) � 10. Moreover by (8.4), u1L = v0L. So 6(u

n
L� v

0

L) � (unx � v
0

x) as desired.

Case: n > 1

As jP 0� P 1� � � � � Pn�1j � 60, 6(un�1L � v0L) � (un�1x � v0x). As jP
nj = 110, by '1, '2,

and the derivative-duration axiom, we get (unL � v
n
L) � 10. Thus,

6(unL � v
0

L) � 6(unL � v
n
L) + 6(vnL � v

0

L)

= 6(unL � v
n
L) + 6(un�1L � v0L) by (8.4)

� 60 + (un�1x � v0x) by hypothesis and (unL � v
n
L) � 10

� (unx � v
n
x ) + (un�1x � v0x) as (unx � v

n
x ) = 110

= (unx � u
n�1
x ) + (un�1x � v0x) by (8.4)

= (unx � v
0

x)

Thus, 6(unL � v
0

L) � (unx � v
0

x) as desired.

One might wonder why we added induction to our proof system. Induction is not just a matter

of convenience. It is necessary. Our proof rules presented in Chapters 8.2 and 8.3 can only be used

to prove system-properties. Induction is a powerful tool that allows us to prove htl-properties as

well as system-properties. Soundness of the rule is proven below.

Theorem 34 The computational induction axiom is sound.

Proof of Theorem 34:

Let  (x1; : : : ; xm) be an htl-formula with free variables in fx1; : : : ; xmg all of which are contin-

uous. Let L be the subinterval-duration-size.
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Suppose

(8n 2 IN)

2
66666666664

If (8k 2 IN; k < n)

2
664

for any P 0; P 1; : : : ; P k

where jP 0j � L and jP ij = L (8i 2 [1::k])

P 0� P 1� � � � � P k j=  (x1; : : : ; xm)

3
775

then

2
664

for any P 0; P 1; : : : ; Pn

where jP 0j � L and jP ij = L (8i 2 [1::n])

P 0� P 1� � � � � Pn j=  (x1; : : : ; xm)

3
775

3
77777777775

(8.5)

We must show that for any arbitrary �nite phase P , P j=  (x1; : : : ; xm). We will prove that

for any �nite phase P , where rL < jP j � (r + 1)L, P j=  (x1; : : : ; xm). The proof will proceed

by natural number induction on r.

Case: r = 0

Then (8.5) for n = 0 reduces to P 0 j=  (x1; : : : ; xm), where P
0 is an arbitrary �nite phase

such that jP 0j � L. As the duration of a phase is positive, we immediately get P j=

 (x1; : : : ; xm) for any �nite phase P with 0 < P � L.

Case: Inductive Case

Suppose 8s < r, if sL < jP 00j � (s + 1)L, then P 00 j=  (x1; : : : ; xm). We must show that

P j=  (x1; : : : ; xm), where rL < jP j � (r + 1)L. Then (8.5) for n = r reduces to

2
66666666664

If (8k 2 IN; k < r)

2
664

for any P 0; P 1; : : : ; P k

where jP 0j � L and jP ij = L (8i 2 [1::k])

P 0� P 1� � � � � P k j=  (x1; : : : ; xm)

3
775

then

2
664

for any P 0; P 1; : : : ; P r

where jP 0j � L and jP ij = L (8i 2 [1::r])

P 0� P 1� � � � � P r j=  (x1; : : : ; xm)

3
775

3
77777777775

(8.6)

We will show the antecedent of (8.6). By our induction hypothesis, for all s < r, for all P 00

such that sL < jP 00j � (s+ 1)L, we have

P 00 j=  (x1; : : : ; xm): (8.7)

Now consider any k < r and arbitrary adjacent phases P 0; P 1; : : : ; P k such that jP 0j � L

and jP ij = L (8i 2 [1::k]). Then kL < jP 0� P 1� : : : � P kj � (k + 1)L. As k < r by (8.7),

P 0� P 1� : : : � P k j=  (x1; : : : ; xm). Thus the antecedent of (8.6) holds. So by (8.6),

for any P 0; P 1; : : : ; P r;where jP 0j � L and jP ij = L (8i 2 [1::r])

P 0� P 1� � � � � P r j=  (x1; : : : ; xm)
(8.8)
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Now P can be chopped up into P = P 00� P
1
0 � : : : � P

r
0 , for some adjacent phases P

0

0 and P
i
0 ,

where jP 00j � L and jP i0j = L (8i 2 [1::r]). Fix such phases. Then by (8.8),

P = P 00� P
1
0 � : : : � P

r
0 j=  (x1; : : : ; xm)

as desired.

8.7 Summary

Our approach di�ers from that of the duration calculus community ([32, 34, 39, 40, 41, 43, 42, 53,

61, 62, 63, 66, 87, 88, 137, 135, 154, 155, 156]). The duration calculus approach requires that both

speci�cation properties and possible implementation strategies be expressed as duration calculus

formulas. Veri�cation is the process of proving that the implementation implies the speci�cation and

is done using an axiom system for the duration calculus. In our approach, implementation strategies

are expressed using hybrid automata and translated into concrete phase transition systems. It is

our belief that automata o�er a more natural formalism for describing controllers and other hybrid

systems.



Chapter 9

Related Work

9.1 Speci�cation

Over the years, many alternative styles of speci�cation have emerged. In this section, we discuss

those speci�cation styles that are used in hybrid systems as well as those styles that have in
uenced

research in hybrid systems.

9.1.1 Real-Time Logics

Real-time logics [2, 12, 15, 14, 24, 69, 72, 90, 112, 137, 141, 142] have been used with varying

degrees of success when applied to hybrid systems. Research into real-time logics has contributed

signi�cantly into understanding the complexity issues of hybrid systems [11, 13, 15, 14, 31, 152].

This contribution arises from the fact that real-time clocks are a special type of continuous variable

whose slope is either 0 or 1.

In addition, real-time logics have spawned several new logics for specifying duration-like prop-

erties. For example, several researches have used integrator computation tree logic (ictl) [58, 74,

77, 83], which is a branching-time logic that extends timed computation tree logic (tctl) [8, 45]

by adding integrator variables. This logic is used by HyTech [75, 74, 77], a software tool for the

speci�cation and veri�cation of hybrid systems using symbolic model-checking.

Other examples of logics for hybrid systems based on real-time logics include the following:

� duration temporal logic (dtl) of Bouajjani, Echahed, and Sifakis [32], which extends tctl by

adding duration constraints. This logic is useful for expressing interval-based properties.

� duration interval logic (dil) of [34, 98], which corresponds to the propositional fragment of cod

extended with duration variables. These variables are introduced via a reset quanti�cation that

associates with each variable x a state formula whose duration is measured by x. The authors

117
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show how fragments of cod reduce to dil. These fragments further reduce to a class of linear

hybrid automata that is decidable. Like dtl, this logic is useful for expressing interval-based

properties.

� hybrid automata temporal logic (hatl) of [33, 98], which extends temporal logic with hybrid

automata on bounded trajectories. Unlike the previous two logics (i.e., dtl and dil), this

logic is used to express point-based properties. hatl can be translated to a subclass of hybrid

automata that has a decidable emptiness problem.

9.1.2 Duration Calculus

Chaochen et al.'s, Calculus of Durations (cod) [41], designed for the speci�cation and veri�cation

of real-time systems, is the logic most similar to ours. Like htl, cod has a chop operator and is

interpreted over real-time dense intervals. Chaochen, Ravn, and Hansen [43] extend the calculus to

hybrid systems by allowing one to specify values at the left and right endpoints of a phase, a feature

of htl that is not present in the original duration calculus ([41]). Moreover, the original duration

operator that measures the duration of time a proposition p is true over an interval, denoted
R
, is

now a derived operator. Its encoding in the extended duration calculus and htl are similar. The

encoding can be found in [43].

Verifying that a hybrid system satis�es a duration calculus property is done by translating the

system into a set of duration calculus formulas and using a deductive system for the calculus. Much

research has gone into the duration calculus in the form of veri�cation examples and applications [39,

42, 53, 63, 66, 137, 135, 154, 155, 156] and decidability and theory [34, 40, 61, 88].

9.1.3 Temporal Logic of Actions

Lamport is a strong advocate of using \old-fashioned" formalisms for specifying hybrid systems [3].

He advocates using TLA [100], the Temporal Logic of Actions, for specifying hybrid systems. TLA

is a temporal logic with a restricted next-time operator and signi�cantly, no built-in primitives for

specifying real-time or hybrid properties. Instead any operators needed for specifying real-time

properties are de�ned using TLA and ordinary mathematics. For example, TLA+ uses TLA and

the standard integral operator to de�ne durations [99].

Veri�cation in TLA+ is done by writing both the property and the system in TLA+, and then

using a deductive proof system for determining whether the system implies the property. Several

veri�cation examples have been done using TLA, including a steamboiler hybrid system by Lesske

and Merz [106]. Lamport has also extended the work to give a diagrammatic version of TLA,

presented in [101].
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9.1.4 Interval Logics

Interval temporal logics [60, 138, 1, 55, 136] have been used for the speci�cation of concurrent systems

because they provide context-restricting temporal modalities which enable the easy speci�cation of

properties required to hold in these restricted contexts. The advantage of an interval-based logic is

that it provides natural expressions for developments and changes across an arbitrary interval. To

express the same properties in a point-based logic, it is always necessary to introduce additional

auxiliary \freeze" variables which record the state at the beginning of the interval of interest. Since

continuous development over an interval is of principal interest, it is important to be able to express

such properties in the most natural way. In Table 9.1, we compare the salient features of each of

the above logics as well as prop-htl and prop-cod, giving the complexity of the validity question

for each logic.

Logic L/NL C/I 2 ? Stut? Complexity Misc.

itl

[60]
B1 C Y N NL: Undec.

L: Non-elem.
Built on top of linear-time
temporal logic

ptl(U;X;C)
[138]

L C Y N Non-elem. Built on top of linear-time
temporal logic

isl

[55]
L I N N decidable Equivalent to

PTL(Until)

fil

[136]
L I N Y EXPSPACE

complete
Equivalent to
PTL(Until)

prop-cod
[41]

NL C N Y Non-elem.

prop-htl
[91]

L C N Y Non-elem.

Abbreviations:

L: Local NL: Non-local
B: Both local and non-local fragments are de�ned
C: Chop operator present I: Interval operator present
2 ?: Next operator present? Stut?: Stuttering insensitive?
N: No Y: Yes

Abbreviation Logic

itl Interval Temporal Logic
ptl(U;X;C) Choppy Logic
isl Interval Speci�cation Logic
fil Future Interval Logic
prop-cod propositional fragment of Calculus of Durations
prop-htl propositional fragment of Hybrid Temporal Logic

Table 9.1: Comparison of Interval Temporal Logics
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Before describing the logics, we introduce some notation. A logic is local if each propositional

variable p is true of an interval s0 : : : sn i� p is true of the �rst state s0. The chop operator of all

the logics is fairly similarly. The semantics of the chop operator in [60, 138] is �1 : : : �n j= '1;'2

i� 9k 2 [1::n], such that �1 : : : �k j= '1 and �k : : : �n j= '2. The semantics of the chop operator in

prop-cod is similar to the semantics of the chop operator in this prop-htl. Logics with the interval

operator satisfy an interval formula I', where I is an expression representing a sub-interval and '

is an interval formula (i.e., may have occurrences of the interval operator), i� either the sub-interval

I does not exist or I exists and ' holds in the subinterval expressed by I .

One of the earliest interval temporal logics is the Interval Temporal Logic (itl) of [60, 122].

Designed for hardware veri�cation, where discretization is both natural and possible, the logic uses

a discrete semantics involving �nite intervals, each consisting of a �nite number of states. Intervals

are composed using the chop operator, denoted ;. Each occurrence of a propositional literal represents

an occurrence of a distinct event, and thus the logic is not stuttering insensitive.

Rosner and Pnueli's Choppy Logic [138] is a propositional linear-time temporal logic with a chop

operator and has a non-elementary decision procedure based on a tableau construction.

Aaby and Narayana's Propositional Temporal Interval Logic (ptil) [1, 124] is a propositional

temporal logic with a chop operator. However, this logic is di�erent than most interval logics that

have a chop operator. In particular, box and diamond have the same semantics as they have under

linear-time temporal logic, a property not shared by most interval logics. As such, we do not include

it in Table 9.1. Because of the restricted semantics of their chop operator, their logic is expressively

equivalent to ptl(Until). The main application of this logic is the speci�cation and synthesis of

hardware.

Goswami, Bell, and Joseph's Interval Speci�cation Logic (isl) [55] is a logic for the speci�cation of

interval-based properties of real-time systems. Because the logic does not have a chop operator, it is

decidable. Moreover, like ptil, it is expressively equivalent to ptl(Until). Another logic expressively

equivalent to ptl(Until) is Ramakrishna et al.'s Future Interval Logic (fil) [136]. Like isl, it does

not have a chop operator.

9.1.5 Hybrid CC

Hybrid CC of Gupta, Jagadeesan, Saraswat, and Bobrow [59, 58] is a constraint-based speci�cation

language for modeling hybrid systems. Behaviors are speci�ed via constraints and either can be

translated to a hybrid automaton description, which can then be used to verify properties, or can

be interpreted to see the system running (i.e., a simulation of the system). Hybrid CC is expres-

sive enough to encode ictl properties. Thus, both properties and systems can be written in one

framework.

1Both local and non-local versions of itl are de�ned. However, future work, e.g., [123], uses the local version of

the logic.
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9.2 Veri�cation

In this section we discuss the two primary approaches to hybrid system veri�cation used by com-

puter scientists: deductive approaches and algorithmic approaches. Orthogonal to computer science

approaches to veri�cation is the control theory approach to veri�cation [29, 56, 82, 92, 105, 109],

where the central problem is more one of synthesis (e.g., extracting a controller that meets some

speci�cation) than of veri�cation.

9.2.1 Deductive Approaches

Deductive approaches to hybrid system veri�cation can be categorized as either rule-based ap-

proaches or diagrammatic approaches. Deductive approaches have some advantages and some dis-

advantages over algorithmic approaches. In particular, deductive approaches work well with both

�nite and in�nite state systems, yet their strong reliance on user-supplied intermediary assertions

makes them di�cult to use when verifying large systems.

Rule-Based Approaches

Many rule-based approaches have been studied. One such approach is the TLA approach discussed

earlier. Another approach uses timed I/O automata to verify linear hybrid automata, where both

the system and its properties are written using I/O automata [30, 111, 110, 68]. Other approaches

represent the system as a transition system and the properties to verify in some temporal logic [70,

91, 93, 114, 118, 117, 120, 143, 121]. Further approaches are based on proof outlines [54, 141] or

higher-order logics, such as PVS [142, 145, 149, 128, 129].

Diagram-Based Approaches

Diagram-based approaches have been applied to both reactive systems [38, 37, 36, 49, 50, 64, 119]

and hybrid systems [47, 94, 101]. In addition, diagram-based approaches have been used to combine

deductive and algorithmic approaches, as in [144].

9.2.2 Model Checking

Algorithmic approaches come in many 
avors, for example, symbolic model checking, explicit model

checking, and on-the-
y algorithms. Primary work in this area relevant to hybrid systems is the

work by Alur et al. [10, 9], which use a �xed-point computation to prove properties of ictl formulas

over linear hybrid automata. The algorithms have been used in the HyTech system [75, 74, 73, 77,

76, 81, 80, 84, 146]. Numerous examples have been tried.

Other algorithmic approaches include the integration graphs of Kesten, Pnueli, Sifakis, and

Yovine [95], a decidable class of constant slope hybrid systems which restrict how continuous variables



122 CHAPTER 9. RELATED WORK

are compared, and Chaochen's restricted duration calculus approach [39], where linear duration

calculus invariants are algorithmically veri�ed using linear programming techniques.

Numerous tools based on algorithmic techniques have been developed, including kronos [46, 45,

125, 127, 148], based on the �xed-point computation of Henzinger et al [72] and uppaal [24, 23, 103],

based on a constraint-solving model-checker.



Chapter 10

Conclusions

We now summarize what we have accomplished and give insights into future research. We started

our journey by characterizing the behavior of hybrid systems along three distinct semantics: a sam-

pling semantics, a super-dense semantics, and a continuous interval semantics. We then introduced

temporal logics for each of these semantics: two based on linear-time temporal logic and one based

on an interval temporal logic. For the latter logic, we provided a decision procedure for determining

validity questions; such a procedure was not presented for the sampling semantics since validity and

complexity issues have been well-studied. We next proceeded to discuss the types of properties that

we would like to prove for these systems, partitioning the properties into point-based properties

and interval-based properties. Having thus set the groundwork for understanding the behavior of

hybrid systems, we embarked on our quest: to verify both point-based and interval-based properties

of hybrid systems.

We started by presenting a diagrammatic veri�cation methodology for proving point-based prop-

erties under the sampling semantics. We next extended the approach to prove point-based properties

under the super-dense semantics. Finally, we presented a rule-based methodology for proving both

interval and point-based safety properties under the continuous semantics.

10.1 Future Directions

Clearly much work in hybrid system veri�cation remains. Here we highlight work that builds on

this thesis and which may have an impact on the �eld.

Automation: In order for real systems to be veri�ed, tools must be developed to aid the engineer

in proving properties. We believe that tools such as HyTech [75, 74, 77] and STeP [26, 25]

are excellent �rst steps toward automation, but of course, we must do more. Our own work, in

particular the work on diagrams, could be improved by developing algorithms for the automatic

123
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construction of intermediary invariants along the lines of Bjorner, Browne, and Manna [28].

Theorem Proving: While the computational induction axiom and stuttering automata are useful

for proving some htl properties, to fully utilize htl as a speci�cation language, we should

develop a proof system for proving new htl properties from existing htl properties.

Extensions: The work on veri�cation rules for htl concentrated on safety properties. It would be

interesting to examine the role of liveness in interval-based properties and to develop proof rules

for proving liveness properties. In addition, it would be worthwhile to develop diagrammatic

methods for htl, since diagrams tend to be more understandable and also allow for the gradual

construction of proofs.

Completeness: Completeness issues have largely been ignored in the continuous case (for both

the super-dense semantics and the continuous interval semantics). Investigating completeness

issues is another line of research.

It should be obvious that much research remains to make veri�cation practical and to make

its use widespread. Disasters such as the European Space Agency's Ariane 51 only emphasize the

importance of hybrid system veri�cation and stress the need for industry, government, and academia

to work together to provide tools and methods for insuring system correctness and system safety.

1Ariane 5 [107] was a launcher that 40 seconds after take-o� veered o� its 
ight path and exploded. The error was

caused in part by a software bug that resulted in faulty data being sent to the controller. The cost was in the billions

of dollars.
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