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Abstract

A data warehouse stores views derived from data that may not reside at the warehouse.

Using these materialized views, user queries can be answered quickly because querying

the external sources where the base data reside is avoided. However, when the sources

change, the views in the warehouse can become inconsistent with the base data and must

be maintained. A variety of approaches have been proposed for maintaining these views

incrementally. At the one end of the spectrum, the required view updates are computed

without restricting which base relations can be used. View maintenance with this approach

is simple but can be expensive, since it may involve querying the external data sources. At

the other end of the spectrum, additional views are stored at the warehouse to make sure

that there is enough information to maintain the views without ever having to query the data

sources. While this approach saves on external source access, it may require a large amount

of information to be stored and maintained at the warehouse. In this thesis, we propose

an intermediate approach to warehouse maintenance based on what we call Runtime View

Self-Maintenance, where the views are incrementally maintained without using all the base

relations but without requiring additional views to facilitate maintenance. Under limited

information, however, maintaining a view unambiguously may not always be possible. Thus,

the main questions in runtime view self-maintenance are:

� View self-maintainability. Under what conditions (on the given information) can a

view be maintained unambiguously with respect to a given update?

� View self-maintenance. If a view can be maintained unambiguously, how do we main-

tain it using only the given information?

The information we consider using for maintaining a view includes:

� At least the contents of the view itself and the update instance

� Optionally, the contents of other views in the warehouse, functional dependencies the

base relations are known to satisfy, a subset of the base relations, and partial contents

of a base relation.

Developing e�cient complete solutions for the runtime self-maintenance of conjunctive-

query views is the main focus and the main contribution of this thesis.
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Chapter 1

Introduction

1.1 Data Warehousing Environments

In the past three years, TMart, a large retail chain, has been using a data warehouse to

consolidate vast amounts of information pertaining to the retailer's business such as sales,

customers, suppliers, and inventories. For TMart, this information has many uses that

range from mundane report generation to sophisticated marketing analyses that help the

company design sales promotion, decide on which popular merchandises to carry, discover

new market segments, and make long term plans for expansion. As illustrated in Figure 1.1,

the raw data that the warehouse depends on comes from a variety of sources, including

the point-of-sales databases used in the local TMart stores. Currently, the source data

is collected, processed, and loaded into the warehouse on a weekly basis. But plans are

already in place to have the warehouse refreshed more frequently, because TMart believes

the information the warehouse provides is valuable and has contributed to help the company

gain a competitive advantage in the retail business.

In a typical data warehouse architecture, the data that is subject to analysis is decoupled

from the data produced at the sources. This decoupling provides the following bene�ts:

� Information can be organized in a form that makes it easy to use for applications. The

transformation of raw source data, called base data, into highly organized information,

called views, can range from simple data replication to arbitrarily complex processing.

� Information is available independently of the availability of the sources, since it is

stored at the warehouse. The views are said to be materialized.

� Information can be structured and stored so as to optimize processing of queries

against the warehouse. Both information availability and query performance are im-

portant because the queries generated by the applications performing analysis are

complex and typically take hours and even days to complete.

� Only minimal cooperation is required from the sources to keep the warehouse in sync

when the sources change. The warehouse has the burden to keep itself up to date,

1
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Figure 1.1: TMart's data warehouse.

and the sources merely notify the warehouse of their changes. Minimal involvement

of the sources in maintaining the views in the warehouse is critical for many reasons.

These sources can be operational databases engaged in recording high-volume business

activities. Imposing additional load on them is not desirable. More importantly, data

can also be fed from outside sources over which we have little control.

To appreciate the data warehouse architecture, it is useful to contrast it with traditional

architectures and to see why these architectures are no longer su�cient to meet the demands

imposed by modern information environments. Let us take a brief look at two of these

traditional architectures: the query mediation architecture and the monitor architecture.

In the query mediation architecture, views that derive from base data are provided for

answering user queries. However, these views are virtual ([Sto75]), i.e., they are not materi-

alized as in the case of a warehouse. A user query must be decomposed into subqueries that

are executed by the data sources. An example system that follows this research paradigm

is the Stanford TSIMMIS system ([Pap96, GM*95]) for information integration. The query
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mediation architecture is depicted in Figure 1.2. As a positive consequence, answers to user

queries are always based on current data. But as a negative consequence, query perfor-

mance may be severely degraded, especially if the data needed to answer the user query are

scattered across several sites. In the extreme case where a source holding the needed data

is not accessible, the query just cannot be completely processed.

In the monitor architecture, views are materialized just like the case of a warehouse. As

the base data changes over time, these views can also become out of sync with the base

data. Thus, the need for view maintenance is common to both the monitor architecture

and the warehouse architecture. But their main di�erence lies in where view maintenance

is performed. In the monitor architecture, this responsibility rests with the sources, where

additional software modules called monitors are installed to detect base data changes and to

determine how the views are a�ected. Example systems that follow this research paradigm

include an extension of the IBM Starburst system to maintain materialized views ([CW91,

WCL91]) and a view monitoring service in the ConceptBase system ([SJ96]) that is used to

refresh views materialized at a lightweight client. As a positive consequence, the sites that

manage the views have little work to do to refresh the views. But the negative consequence

is that additional work load is imposed on the data sources to maintain the externally

materialized views, which is not desirable as mentioned before.

While data warehouses are conceived to better meet the needs in modern information

environments and to deliver higher query performance than the traditional architectures

can, they also create new challenges we must face now: how can we e�ciently maintain

the views at the warehouse? Note that although the view maintenance problem has been

considered in the past, traditional work assumes a very di�erent cost pro�le. In these work,

base data access is no more expensive than view access. In the data warehouse architecture

by contrast, we assume that accessing the base data in the sources is more expensive than

accessing the views in a warehouse.

Let us now explain the major approaches to view maintenance in data warehouses.

Full Recomputation: The warehouse is taken down periodically (typically nightly or even

weekly) for scheduled maintenance. During maintenance downtime, all the views are

rederived from scratch from the data sources. This approach is the used by most of to-

day's data warehouses. It is simple to implement, and changes made to the base data

during the operation hours require no processing. However, this approach assumes

that it is acceptable to use stale data (say yesterday's data). Further, recomputing

the views from scratch when only a small fraction of the base data changes is po-

tentially wasteful. Finally, the approach assumes a scheduled downtime long enough

to complete the maintenance process. This assumption may no longer be valid when

users (say across the world) expect the warehouse to be in full operation all the time

or when some data source becomes inaccessible for an extended period of time.

Incremental Maintenance: Instead of recomputing every view from scratch, only the

parts of the warehouse that change are computed. This approach has one of two

avors. First, maintenance can be deferred. The warehouse is scheduled for periodic
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maintenance like before, but the views are incrementally maintained rather than red-

erived from scratch. This method requires all changes made to the data sources during

the operation hours to be logged. Compared to the full recomputation approach, this

method can reduce drastically the time required to complete the maintenance process.

Second, maintenance can be dynamic. The views are updated to reect the changes

made to the sources as soon as they are reported. This method has the advantage

that the views provided by the warehouse are based on fresh data.

These approaches to view maintenance in data warehouses are summarized in Figure 1.3.

While the approach based on full recomputation is adequate in current data warehousing

environments, it may no longer meet the need for higher warehouse update performance

in future environments. According to [RedBrick White Paper 96], there is a trend toward

demand for 24x7 availability and for more frequent refresh (say daily or even hourly). Also,

with data warehouses rapidly growing in size ([Information Week 9/96] estimates more than

a few dozens terabyte-sized warehouses currently deployed, and this number is growing fast),

a warehouse maintenance approach based on full recomputation just does not scale.

In this thesis, we will focus on the approach to warehouse maintenance based on incre-

mental view maintenance. Except for the very simple views that derive from single base

relations, determining the incremental changes to views that combine more than one base

relation can be expensive, since the computation may involve looking up the base relations.

As mentioned before, base access from the data warehouse can be expensive. Thus, the

problem of incremental view maintenance in the data warehouse context is how to make

the maintenance process e�cient.
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1.2 Approaches to Incremental View Maintenance

There are essentially three approaches to incremental view maintenance for data warehouses:

� Unrestricted Base Access.

� Self-Maintainable Warehouses.

� Runtime Warehouse Self-Maintenance.

The third approach, Runtime Warehouse Self-Maintenance, is the focus of this thesis.

This section provides the motivation and a better understanding of our approach by way

of contrasting it with the other two prevailing approaches to incremental view maintenance

for data warehouses. We will close this section with a sketch of how the three approaches

should play together in an overall strategy for e�cient warehouse maintenance.

1.2.1 Unrestricted Base Access

This approach essentially places no restriction on the use of base relations, when a view is

incrementally maintained in response to an update to some base relation.

EXAMPLE 1.2.1 Consider a data warehouse that consists of only view V , as shown in

Figure 1.4. View V is de�ned to be the join 1 R 1 S 1 T of base relations R, S, and T .

Suppose a set of tuples �R is inserted into base relation R. To maintain V , we compute the

increment to V by taking the join �R 1 S 1 T , and we insert the result into V . 2

The advantages of this approach are:

� View maintenance is conceptually simple.

� E�cient methods for computing the view increment have been well studied in the

literature [Kuc91, GMS93, GM95, SJ96] for a large class of view de�nitions.

The approach has the following drawbacks:

� To maintain V in response to an insertion to R requires accessing base relations S

and T . These external accesses can be expensive.

� Despite its simplicity, a naive way of applying this approach to maintain views for

data warehouses may lead to erroneous results. This problem is referred as the View

Update Anomaly Problem. For instance, relations S and T in the example above can

be accessed in a state that is di�erent from the state they were in when the change

was made to R, because of intervening changes made to S and T . In some cases,

incorrect updates to V might result.

This approach to warehouse maintenance is being actively pursued by [Z*95, ZWG97]

in which methods for dealing with the view update anomaly problem are proposed.

1We assume the reader is familiar with the relational algebra notation. For more details, we refer the
reader to [Ull89]. But briey, a join is an operator that essentially looks for combinations of tuples with

matching values in designated attributes.
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Notify Request Request

S T�R

V = R 1 S 1 T

�V = �R 1 S 1 T

Figure 1.4: View maintenance with unrestricted source access.

1.2.2 Self-Maintainable Warehouses

The basic idea here is to maintain the views in the warehouse without using any base

relations. With this approach, expensive external access can be eliminated altogether, and

the view update anomaly problem avoided. However, as a result of not using all the base

relations, there may be situations where there is not enough information to maintain a view

unambiguously. Consider for instance the scenario from Example 1.2.1. Clearly, there is no

maintenance expression that is a function of only V and �R and that can always maintain V

correctly. Such situations never arise in traditional work on materialized view maintenance

[Kuc91, GMS93, GM95, SJ96] where all the base data is assumed to be available.

Let us now clarify the notion of view self-maintainability upon which this entire approach

is based.

De�nition 1.2.1 (Compile-Time Self-Maintainability) A collection of views is said

to be (compile-time) self-maintainable under a class of base updates if the views can al-

ways be maintained using only the views themselves and the base update. Note that self-

maintainability is guaranteed independently of the actual contents of the view instance and

of the base update instance. 2

This notion of compile-time self-maintainability was pioneered in [TB88, BCL89, GJM96].

The gist of the self-maintainable warehouse approach is this: if the given views in a ware-

house are not self-maintainable (under a class of updates), we can always materialize aux-

iliary views that make the �nal view collection self-maintainable.

EXAMPLE 1.2.2 Consider the same data warehouse as in Example 1.2.1 and consider

insertions of �R to R. As mentioned before, using only V and �R, we cannot always maintain

V in response to �R. But suppose in addition to V , we also materialize Vaux = S 1 T . Then,

we can always propagate �R to view V by simply inserting �V = �R 1 Vaux, as illustrated
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R S
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�V = �R 1 Vaux

Vaux = S 1 T

V = R 1 S 1 T

Figure 1.5: Making a warehouse self-maintainable.

in Figure 1.5. View Vaux itself is not a�ected by �R. Thus, the data warehouse, augmented

with the auxiliary view Vaux, is now self-maintainable under insertions to R. Note that we

have assumed S and T do not change. If we allow any of R, S, or T to change, we would

need to materialize all the base relations for the warehouse to be self-maintainable. 2

Materializing all the base relations always makes the warehouse self-maintainable, but

can be wasteful. Thus, the main issue in this approach is to minimize the amount of

auxiliary views to materialize at the warehouse to facilitate self-maintenance.

The self-maintainable warehouse approach has the main advantage of providing for

e�cient maintenance, since:

� Base access is totally eliminated.

� At runtime, there is no need to determine whether or not a view is self-maintainable,

since all the views are self-maintainable by design.

The drawbacks of this approach are:

� A given collection of views that facilitates query evaluation has no reason to be self-

maintainable. Auxiliary views that facilitate maintenance must be added, at the

expense of extra storage and maintenance costs.

� In the absence of additional information on the base relations (e.g. integrity con-

straints), if we allow changes to be made to any base relation, then making the

warehouse self-maintainable could amount to materializing every base relation. In

general, the more kinds of updates to the base data we allow, the more views need to

be materialized.

Thus, the key research issue in the self-maintainable warehouse approach is how to

minimize the auxiliary views that must be materialized, with some appropriately de�ned
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notion of minimality. The design problem must take advantage of all the views that are

already materialized, the types of base updates that are allowed, and the constraints satis�ed

by the base relations. For example, based on the views that are materialized to satisfy

queries from users of the warehouse, the fact that some base relations never change or are

append only, and the knowledge of the data dependencies that hold in the base data, what

is a minimal auxiliary materialization needed in order to make the resulting warehouse

self-maintainable? The self-maintainable warehouse approach is taken by [Q*96, Qua97],

which studied the optimal design problem only with the knowledge of key constraints and

inclusion dependencies.

1.2.3 Runtime Warehouse Self-Maintenance

The compile-time notion of self-maintainability used in the previous approach is often too

conservative. There, the guarantee that a view be self-maintainable under some update

class is provided for every possible instance of the view and of the base update. Yet, the use

of such a strong guarantee cannot be avoided in the self-maintainable warehouse approach,

since we do not know the exact contents of the view and of the update at design time.

The approach we are about to describe, which we take in this thesis, is based on a

weaker notion of self-maintainability, called runtime self-maintainability, in which the self-

maintainability guarantee is provided only for a speci�c instance of the view and of the base

update.

De�nition 1.2.2 (Runtime Self-Maintainability) Consider a collection of views to

maintain. An instance of the views is said to be (runtime) self-maintainable under a base

update instance if the view instance can be maintained using only the views themselves and

the base update. Note that self-maintainability is guaranteed only for a speci�c instance of

the views and the base update. 2

EXAMPLE 1.2.3 Consider the same data warehouse as in Example 1.2.1 and consider

insertions of �R to R. In order to explain how runtime self-maintenance works, we need

to be more speci�c about the relation schemas used. So suppose we have the following

schemas: V (X;Y;Z), R(X;Y ), S(X;Z), and T (Y;Z). Even though we cannot guarantee

self-maintainability of V under �R for all instances of V and �R, we can still guarantee it

for certain instances of V and �R, namely those instances such that �Y �R
2 is contained in

�Y V . To maintain view V , insert �V = �R 1 �Y ZV . Figure 1.6 illustrates this approach.

2

Thus, this approach is the more aggressive one since it may succeed in maintaining a

view where an approach based on the compile-time notion of self-maintainability may fail.

The notion of runtime view self-maintainability originates with [TB88, GB95]. However,

without extensions, using the original notion (as de�ned in [TB88, GB95]) in the runtime

warehouse self-maintenance approach would limit the practicality of the approach. For

2� is an operator in relational algebra that retains only the values in the speci�ed attributes.
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Notify
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R(X; Y ) T (Z; U)

V (X; Y; Z) = R 1 S 1 T

Add �V = �R 1 �Y ZV

If �Y �R � �Y V

S(Y; Z)

Figure 1.6: Runtime warehouse self-maintenance.

instance, when we determine that a view cannot be maintained using only the views in the

warehouse, we must consider using some of the base relations (but not necessarily all of

them). Only when we fail at maintaining the view using only subsets of the base relations

do we resort to using all the base relations. Thus, part of our contribution in this thesis is

to generalize the notion of runtime view self-maintainability.

The advantages of the runtime warehouse self-maintenance approach are as follows:

� The approach deals with the views in the warehouse as given, without requiring aux-

iliary views to be materialized.

� The approach totally avoids base access, or minimizes it otherwise.

The approach has its own drawbacks:

� We must decide self-maintainability at runtime. Such tests were not needed in the

previous approaches.

� Self-maintainability tests may be complex.

1.2.4 How Runtime VSM complements the other approaches

The three approaches to incremental warehouse maintenance we just described do not ex-

clude each other. In fact, a comprehensive package for e�cient warehouse maintenance

should includes all three approaches.

Assume for a moment we would like to design a self-maintainable warehouse. But

because of cost constraints, we may end up with a warehouse that is only partially self-

maintainable: some views remain non-self-maintainable (in the compile-time sense), and

materializing additional views is not an option. But how do we maintain these non-self-

maintainable views? One option is to use the �rst approach, that is, to maintain them using
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Figure 1.7: A comprehensive package for e�cient warehouse maintenance.

all the base relations. While this option is certainly valid, it may be wasteful, especially if

the views in question are in a state that makes them self-maintainable in the runtime sense.

Thus, the runtime warehouse self-maintenance approach can be used to �ll the gap between

the other two approaches, as illustrated in Figure 1.7.

1.3 The Problem of Runtime View Self-Maintenance

In this section, we formally de�ne the problem of runtime view self-maintenance (abbre-

viated VSM hereafter). We �rst lay out the fundamental questions in runtime view self-

maintenance. We then describe each of the three dimensions of the problem space.

A warehouse is modeled as a collection of views. Each view is de�ned by a query over

some database D. These view de�nitions are available to the warehouse. Other pieces

of information may also be available to the warehouse, such as integrity constraints that

database D satis�es.

Initially, the views are assumed to be consistent with database D. When database D
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is modi�ed, the base update U is sent to the warehouse. Since the views may become

inconsistent with the new database U(D), the main task of the warehouse manager is to

update the views so that they become consistent with the new database.

1.3.1 The Main Questions in View Runtime Maintenance

To maintain a view V incrementally, the information we are given includes at least the

following:

� A query Q that de�nes the view V .

� The instance V of the view itself.

� The update instance U .

Other information, denoted I, may also be given.

View Self-Maintainability

In traditional incremental view maintenance settings, the full contents of database D is

assumed to be available. Since this assumption no longer holds in our problem, a new

question that was never raised before must be addressed now: whether or not we have

su�cient information to bring a view up to date unambiguously. We call this the view

self-maintainability question.

De�nition 1.3.1 (Self-Maintainability) Given Q, V , U and I, view V is said to be

self-maintainable under U if Q(U(D)) does not depend on D, provided that D is consistent

with V and I. More formally:

(8D1;D2) Q(D1) = Q(D2) = V ^ [D1 and D2 consistent with I]) Q(U(D1)) = Q(U(D2))

2

This de�nition is depicted in Figure 1.8.

The following terminology will be used throughout the thesis: we say that two databases

D1 and D2 derive di�erently after the base update U when Q(U(D1)) 6= Q(U(D2)). Alter-

natively, we say that D1 derive di�erently from D2 after update. Note that in the phrase

\derive di�erently", the query through which the databases derive is understood to be the

query that de�nes the view we would like to maintain (Q in this case). When we use the

phrase, it should be clear from context which view we are trying to maintain and conse-

quently which query we have in mind.

Thus, in runtime view self-maintenance, view self-maintainability is a function of not

only the view de�nition Q, but also the view instance V , the update instance U , and any

additional information I.

Self-maintainability of a view has the following signi�cance:
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Figure 1.8: View self-maintainability.

� Given information I, if a view V is self-maintainable under update U , we are guaran-

teed that there is a unique new state for the view that is consistent with the updated

database. However, the answer does not directly tell us how to compute the new state

for the view.

� If a view V is not self-maintainable under update U , we are no longer guaranteed

that a unique new state exists, to the extent of our knowledge. Note that the previous

statement does not mean that a unique state for the view does not exist. It merely

states that there are di�erent cases with a di�erent new state for the view, and that

there is not su�cient information in I to make the distinction.

View Maintenance

Only when a view V is self-maintainable under an update U does it make sense to ask the

question of how to bring view V up to date.

De�nition 1.3.2 (Maintenance Expression) Given Q, V , U and I, assume V is self-

maintainable under U . A maintenance expression M is a program that makes view V

consistent with the modi�ed database. In other words:

(8D) Q(D) = V ^ [D consistent with I])M(V ) = Q(U(D))

2

Note that the maintenance expression we need to �nd is a function of Q, V , U and I.

View Independent of Updates

A special case of view self-maintainability is when a view, consistent with some database

prior to an update, remains consistent with the database after the update. In other words,

the base update does not a�ect the view, and the view does not require any update.
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De�nition 1.3.3 (View Independent of Update) Given Q, V , U and I, view V is said

to be independent of update U if:

(8D) Q(D) = V ^ [D consistent with I]) Q(U(D)) = V

2

First, note that since the view-independent-of-update question is a special case of the

self-maintainability question, we do not absolutely need to address it in order to maintain

the views in a data warehouse. We mention it here only for the sake of completeness and

because having e�cient methods to decide it may be valuable from a practical standpoint.

Therefore, the view-independent-of-update question will not be explicitly addressed in this

thesis, except that we will mention some of our own work that is closely related.

1.3.2 The Problem Dimensions in Runtime View Self-Maintenance

The problem of runtime view self-maintenance, as de�ned previously, has several parameters

that can be classi�ed into roughly three dimensions:

� Complexity of query Q that de�nes the view V to maintain, and of the queries that

de�ne any other views in the warehouse that are useful in the maintenance of V .

� Nature of the update U on the base relations sent by the data sources to the warehouse.

� Information available to the warehouse that can be used to perform its own mainte-

nance. As mentioned before, we assume this information includes at the very least

the instance of the view to maintain, its de�nition, and the update instance. In the

following, we will only describe the additional information.

Complexity of View De�nitions

Complexity of queries that de�ne the views has a direct impact on the solution complexity.

In this thesis, we mainly focus on the class of conjunctive queries, and will also touch on

unions of conjunctive queries. Below, we give a brief description of these query classes. For

a more detailed de�nition of these query classes and other relevant classes, we refer the

reader to [Ull89]. In Section 2.1, we will also provide a more detailed description of these

query classes.

Given a set of relations, a conjunctive query essentially looks for a particular pattern of

tuple combinations that are present among the relations. In relational algebra terminology, a

conjunctive query is a Select-Project-Join query where the selection conditions are restricted

to equality comparisons and the joins are restricted to equijoins. Consider for example a

database with the following three relations used by our retail chain TMart:

sales(C; I) : indicates customer C bought merchandise item I

cust(C;A) : indicates customer C resides in area A

carry(M; I;A) : indicates competitor M carries merchandise item I in area A:
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Consider the conjunctive query that asks for customers who bought products that are also

carried by vmart (a competitor of tmart) in the same area as the customer's residence. In

relational algebra notation, we write the query as

�C (sales 1 cust 1 �M=vmart carry)

Let us now use this example query to introduce the Datalog rule notation, which we will

use throughout this thesis. In Datalog, we write the query as the following single rule:

v(C) :{ sales(C; I) & cust(C;A) & carry(vmart; I; A)

where v(C) is called the rule's head, and sales(C; I), cust(C;A), and carry(vmart; I; A)

the rule's subgoals. The body of the rule refers to all the subgoals. The predicates that

appear in the subgoals, namely sales, cust, and carry, represent the base relations. The

predicate that appears in the head, v, is called the query predicate. The rule is also said

to de�ne predicate v. Note that the query predicate, which is used to return the answer to

the query, is distinct from the predicates used in the rule's body. By convention, predicate

names and constant values (e.g.. vmart) are written in lower case, and variables are written

with their initial in upper case (e.g., C, I, and A). A subgoal speci�es a set of tuples

in the relation for the subgoal's predicate we are looking for. For instance, the subgoal

carry(vmart; I; A) looks for all tuples in the carry relation with value vmart in their M

component. A variable that appears in two di�erent subgoals represents an equijoin. For

instance, the two occurrences of C among subgoals sales(C; I) and cust(C;A) indicate the

requirement that the C component of a sales tuple must agree with the C component of a

cust tuple. Finally, any variable in the rule's head must appear in the rule's body. A rule

with this property is said to be safe.

The following lists additional restrictions on conjunctive queries that are sometimes

applied in the thesis. These restrictions are important since we can often exploit them to

�nd e�cient solutions to the runtime view self-maintenance problem.

� No Self-joins: a conjunctive query has self-joins when more than one subgoal in the

query's body use the same predicate. For instance, in the following query that asks

for pairs of customers living at the same address, predicate cust is used more than

once:

v(C;C 0) :{ cust(C;A) & cust(C 0; A)

� No Projections: a conjunctive query has projections when some variable in the query's

body does not occur in the query's head. For instance, variableA in the previous query

is projected out from the head of the query.

A query that is a union of conjunctive queries can be represented in the Datalog notation

by a collection of one or more rules that de�ne the query predicate. For instance, The

following query, which asks for customers who either bought a television set or bought

merchandise that \vmart" also carries, is an example of a union of conjunctive queries:

v(C) :{ sales(C; I) & carry(vmart; I; A)

v(C) :{ sales(C; television)
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Nature of Base Updates

In this thesis, we only consider changes to the contents of the base data, even though changes

to the base data schema also occur in practice. Further, the base updates are assumed to

be ground, that is, updates consist of ground facts that are to be deleted from or inserted

to the base relations. Base updates can be one of the following:

� Single updates (deletions or insertions).

� Multiple updates to a single base relation (deletions, insertions, or both).

� Updates to multiple base relations.

While single updates are easier to handle than multiple updates, multiple updates are

important because there are situations in which a view can be maintained under multiple

updates but not under each individual update.

In the following, we describe the various kinds of information that is available besides

the de�nition and the instance of the view to maintain. Generally, information helps self-

maintainability: the more information we can use to maintain a view, the more situations

the view can be maintained. But using additional information may make the solution

derivation and the solution itself more complex.

Integrity Constraints on the Base Relations

Base relations may be expensive to use for maintaining the views in a warehouse, but in-

tegrity constraints on the base relations are virtually free and often available. The following

lists integrity constraints that are commonly found in database systems:

� Key constraints: given a relation, a key constraint on the relation speci�es a set of

attributes over which any pair of di�erent tuples must disagree. In other words, the

values of the attributes in the set uniquely identi�es tuples in the relation.

� Functional dependencies: given a relation, a functional dependency, written as �! �,

speci�es two sets of attributes, � and beta, such that any pair of tuples that agree over

� must also agree over �. Clearly, a key constraint is the special case of a functional

functional where � represents all the attributes for the relation.

� Inclusion dependencies: given two relations, an inclusion dependency speci�es two

sets of attributes, one for each relation, such that for any tuple in the �rst relation,

there must be a tuple in the second relation such that the both tuples agree over their

respective sets of attributes.

This thesis only considers functional dependencies, which subsume the key constraints.

Surprisingly, despite the local nature of functional dependencies (i.e., they only apply to

individual relations), they do help in the view self-maintenance problem.
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Single vs. Multiple Views

Data warehouses rarely consist of only one view. Further, given a view to maintain, it is

often the case that there is another \related" view in the warehouse. Two views are related

if either they derive from a common base relation or there is a third view related to both

views. Related views should in principle help in maintaining the original view, since it may

tell us more about the base relations.

Thus, even though single views (i.e., views that are not related to any other views in

the warehouse) are simpler to deal with, it is important to also consider the case of multiple

views since they are available locally at the warehouse for use in maintenance.

No Base Relations vs. Some Base Relations

Without using all base relations, there is no guarantee that a view will always turn out to

be self-maintainable under some update. In fact, a view may not be self-maintainable even

if we use all the information that is cheaply available to us, including for instance integrity

constraints and additional views.

While base access should be avoided as much as possible, we must also have provisions

for allowing access of base relations for view maintenance. Thus, any subset of the base

relations is an additional piece of information we can use to maintain the warehouse.

Partial Copies

One form of partial knowledge of the base data is to have a subset of the base relations

available. Another form of partial knowledge is when the contents of a given relation are

not totally known: certain tuples are known to be in the relation and other tuples not to

be in. Such information can be easily obtained from a log of the most recent changes to the

base relations we keep at the warehouse. Since the contents of the base relations may not be

entirely known, the information we have about them is called partial copies. For instance,

suppose the following sequence of most recent changes to relation R can be extracted from

the log:

insert R(2); insert R(3);delete R(2):

We do not know the exact contents of R, but we can be sure that:

� (2) 62 R

� (3) 2 R.

Figure 1.9 summarizes the dimensions that are important to consider in the problem of

runtime view self-maintenance for a data warehouse.
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Figure 1.9: Multidimensional problem space in runtime view self-maintenance.

1.4 Contribution of this Thesis

1.4.1 Desiderata

Driven by both practical considerations and theoretical interests, we are looking for solutions

to the runtime view self-maintenance problem that have the following desirable properties,

which we de�ne shortly:

� Solutions must be sound and complete.

� Solutions are generated at compile-time if possible.

� Solutions are in declarative form.

� Solutions must be as e�cient as possible.

These constraints make the problem considerably more challenging. However, satisfying

them all may not always be possible. The emphasis in this thesis is on retaining solution

completeness, as de�ned below.

Solutions that are Sound and Complete

The main goal of view maintenance is to keep the views in the warehouse consistent with

the base relations from the data sources. Thus, applying a solution to the problem must

always result in correctly updating the views. In the following, we describe the speci�c

requirement for answering each of the main questions:
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� Self-Maintainability: a self-maintainability test that evaluates to true must guarantee

that a view is indeed self-maintainable. Otherwise, we would be led to believe it is

safe to apply a maintenance procedure to the view, and this application may result in

incorrectly updating the view even though the maintenance procedure itself is correct

when the view is self-maintainable.

� Maintenance: a maintenance procedure, when applicable (e.g., when the view is self-

maintainable), must always result in correctly updating the view. That is, the result-

ing view should not contain more tuples than it ought to, or less.

� View independent of update: a test that is not sound would erroneously conclude that

the view remains consistent with the new database state. And since no maintenance

action follows, the view may become inconsistent with the new database state.

Solution completeness, by contrast, only applies to the self-maintainability and view-

independent-of-update questions. When a complete test evaluates to false, we can be as-

sured that the view is not self-maintainable and, without additional information, there is no

way to maintain the view correctly. While the use of an incomplete test is not catastrophic,

it may lead us to miss situations where a view is actually self-maintainable and to consume

additional resources unnecessarily when trying to maintain the view (e.g. by accessing the

base data).

Let us emphasize that the notion of completeness is relative to I, the information we

have available to maintain the views. The more information we have, the more situations

we should be able to detect where a view is self-maintainable. If we choose to ignore some

additional information, an incomplete test may result, even though the test itself is complete

in the absence of the additional information.

To some extent, the notion of completeness is also relative to where we are along the

dimensions other than the information dimension. For instance, a self-join can be viewed

as joining di�erent relations that have similar contents. Ignoring self-joins (i.e., treating

di�erent occurrences in a view de�nition of the same predicate as di�erent predicates)

amounts to ignoring this similarity constraint, and may lead to an incomplete solution. Also,

to determine self-maintainability under a batch update by determining self-maintainability

under individual updates may lead to an incomplete solution. In fact, as we show later in

the thesis, there are situations where a view is self-maintainable under a batch update but

not under some constituent update.

Solutions Generated at Compile Time

Runtime view self-maintenance does not mean that determining self-maintainability of a

view or that determining how to maintain the view must be entirely performed at runtime.

In fact, we can conceive of generating, at compile time, a view self-maintainability test

and a view maintenance expression. This generation is based on which view we would like

to maintain, its de�nition, an update type, and any additional information available at

compile time such as constraints on the base relations, which other views will be available,
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Figure 1.10: Separating test generation from test evaluation.

and which base relations we plan to use. Figure 1.10 illustrates this concept of compile-time

generation of runtime solution for the problem of deciding self-maintainability.

While both the solutions in both approaches may have the same theoretical runtime

complexity, the practical advantages of generating the solution at compile time are that:

� The same solution can be reused across multiple invocations of incremental view

maintenance, instead of being rederived at every invocation.

� Expensive optimization can be applied to the solution at compile time, thereby min-

imizing the amount of work that needs to be performed at runtime to evaluate the

solution.

Solutions in Declarative Form

E�ciency of runtime view self-maintenance can be further enhanced if the solutions can be

expressed in declarative form, rather than in procedural form. Thus, the main practical

bene�ts of having self-maintainability tests and maintenance expressions in the form of

queries are that:

� We have more opportunities to simplify and optimize the solutions using known query

optimization techniques.

� Not only we can take advantage of indexes de�ned on the views to speed up evaluation

of the solution, but also we can use conventional query evaluation engines to execute

the self-maintainability tests and the maintenance expressions.

E�cient Solutions

Finally, in order to justify using runtime view self-maintenance as a better alternative

approach to maintaining data warehouses than using full base relations lookup, the solutions

must be e�cient: they must be e�cient to generate and, even more importantly, e�cient

to evaluate at runtime.



1.4. CONTRIBUTION OF THIS THESIS 21

1.4.2 Exclusions

This thesis works through only an important slice of the runtime view self-maintenance

problem. Many other slices simply fall outside the scope of the thesis. In the following, we

briey describe some of the possibilities and issues we are not directly addressing in this

thesis.

Warehouse Design for Self-Maintainability

Our work focuses directly on the problem of maintaining a given warehouse rather than

the problem of designing a warehouse for better self-maintainability. To some extent, the

results presented in this thesis can be applied to the design problem in a few cases:

� By analyzing the self-maintainability conditions we obtain for di�erent view de�ni-

tions, we can formulate simple design principles such as: when de�ning a view, avoid

projecting out certain attributes without also projecting out certain other attributes

(see Chapter 3).

� We can minimize views to be materialized at the warehouse by comparing self-

maintainability conditions obtained for a given view collection and for a smaller col-

lection. If the two sets of conditions are equivalent, then the smaller collection of

views is as self-maintainable as the larger one.

� We may be able to compare two warehouse designs (i.e., views in the warehouse) by

comparing their self-maintainability conditions. If the �rst set of conditions subsumes

the second set, then the �rst design is de�nitely more self-maintainable than the

second design.

Even though our results can be used to help make design decisions in some cases, more

powerful analytical tools are needed. For instance, if two self-maintainability conditions

are not comparable (i.e., no one subsumes the other), we currently do not have a way to

quantify the degree of self-maintainability of a view collection.

Which Base Relation Subset to Use

When we allow the warehouse maintenance system to draw on the external sources to

maintain the views at the warehouse, the question as to which subsets of the base relations

to consider can be raised. This question is not addressed in the thesis. A good heuristics

may consist of considering those base relations with the lowest access cost �rst. However,

�nding an optimal plan for choosing di�erent subsets of base relations to consider next

is a more di�cult problem. To implement it properly may also require some measure of

con�dence that a given subset of base relations would give us enough information to succeed

at the next round.
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Trading O� Completeness for E�ciency

Requiring completeness in the solutions assures us that we will not miss any opportunity

to maintain a view successfully. As we mentioned earlier, the consequence of missing some

self-maintainable situations may force us to fetch more information from the external data

sources, and to incur higher costs. But without being able to quantify the costs associ-

ated with these external accesses, we cannot understand how to trade o� completeness of

self-maintainable tests for their execution speed. Further, we also need to more precisely

measure how close from completeness a given test is.

Intensional Updates

In this thesis, we assume the updates that the data sources send to the warehouse are

ground. That is, these updates consist of ground tuples to be deleted from or inserted into

the base relations. While this situation is very common in practice, there are cases where

the tuples to be deleted or inserted can be more naturally and more concisely speci�ed as

a query. We call such updates intensional updates.

Concurrency Control

If we allow the warehouse maintenance system to access some of the base relations either

in evaluating self-maintainability of a view or in applying a maintenance expression to a

view, we must be careful if we also allow other modi�cations to the base relations to be

made concurrently. For instance, we already mentioned the view update anomaly problem

associated with the approach of view maintenance with unrestricted source access, and

work ([Z*95]) that deals with this problem. However, it is still not clear how to extend the

techniques from [Z*95] to adjust the self-maintainability decision.

1.4.3 Related Work

The traditional problem of incremental view maintenance, that is, with unrestricted access

to the base relations, has been well studied. We briey describe only a few of the key

papers. [BC79, QW91, CW91, GLT97] studied the incremental view maintenance prob-

lem for views de�ned by nonrecursive queries. The problem for �rst-order queries and

recursive queries was considered in [DS92, DT92]. [Kuc91, HD92, UO92, GMS93] studied

the maintenance of recursive views, and [SJ96] considered the same problem but with-

out using the materialized views. Concurrency issues in view maintenance are treated in

[Z*95, ZWG97]. Techniques for incremental view maintenance based on counting were devel-

oped in [SI84, BLT86, GKM92, GMS93], and techniques based on algebraic di�erentiation

of view expressions can be found in [Pai84, QW91, SJ96, GLT97].

By contrast, limiting base data access opens up new dimensions to the maintenance

problem which still remain largely unexplored. [GM95] gave an excellent taxonomy for the

di�erent types of information available for view maintenance.
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Since the notion of runtime view self-maintainability is at the heart of this thesis work,

we will �rst describe related work based on this notion. Although the notion of compile-time

view self-maintainability is not directly relevant to our work, it can provide us with a better

understanding of the runtime notion. For this reason, we will also mention work based on

the compile-time notion. Finally, we describe work on checking global integrity constraints

in distributed databases and discuss how it relates to the problem of view self-maintenance.

Work Based on Runtime Self-Maintainability

The problem of incrementally maintaining a view without using any base relations was

�rst studied in [TB88, BCL89], which addressed the question of detecting conditionally

autonomously computable updates. The e�ect of an update on a view is said to be condi-

tionally autonomously computable if there exists a function that depends only on the view

instance, the update instance, and the view de�nition, and that computes the new state

of the view from its current state regardless of the underlying database. Clearly, a view is

runtime self-maintainable under an update if the e�ect of the update on the view is condi-

tionally autonomously computable. The converse, however, is not known to hold in general

for arbitrary view de�nitions. While it is not clear to what extent the notion of runtime of

view self-maintainability is more general than the notion of conditional autonomous com-

putability, we would like to point out that at least within the scope of this thesis (where the

view de�nitions are restricted to unions of conjunctive queries with arithmetic comparisons),

the two notions can be shown to be equivalent.

The problem of runtime view self-maintenance considered in [TB88] has the following

restrictions:

� Views are de�ned by conjunctive queries with arithmetic comparisons but no self-joins.

� Updates are either tuple insertions or deletions to a single relation. Arbitrary updates

to multiple relations are not considered.

� No additional information besides the view itself and the update is used in maintain-

ing the view. In particular, their work did not consider exploiting multiple views,

dependencies on base relations, or a subset of the base relations.

The solution for the self-maintainability question, given in [TB88], consists of building,

at runtime, a formula for the self-maintainability condition. As given, the solution has the

following drawbacks:

� The issue of how to check the validity of the formula and the complexity of the problem

were not addressed.

� The formula is an expression that uses the contents of the view instance. The size

of the formula is thus a function of the size of the view instance, which makes its

practical implementation di�cult.

� The solution did not show how to maintain the view when the view is self-maintainable.
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[GB95] later found the solution given in [TB88] to be incorrect and subsequently cor-

rected it. However, the solutions given in [GB95, TB88] remain di�cult to implement

e�ciently, and their method cannot be extended easily to take advantage of multiple views,

dependencies on base relations, and partial base access. Our own work on runtime view

self-maintenance can be found in [Huy96a, Huy96b, Huy96c, Huy97b]: [Huy96a] consid-

ered the problem for single CQ views with no self-joins; [Huy96b] extended the results to

the class of CQ views with a restricted form of self-joins; [Huy96c] studied the problem in

the presence of functional dependencies; and [Huy97b] treated the general problem for CQ

views in the presence of FD's and under arbitrary ground updates.

Work Based on Compile-Time Self-Maintainability

The notion of compile-time self-maintainability also has its root in [BLT86, TB88, BCL89]

where they called it Unconditional Autonomous Computability. [BCL89] essentially shows

that most views, except for the very simple ones that do not use joins, are not self-

maintainable under insertions. The signi�cance of this result is that without considering

using additional information such as integrity constraints on the base relations, the compile-

time self-maintainability notion has very limited applicability. Subsequently, [GJM96]

showed that compile-time self-maintainability can be improved when key constraints on

the base relations are considered. [JMS95] studied the self-maintenance problem where all

the base relations are available except the ones that are being updated. More recently,

[Q*96, Qua97] tackled the warehouse maintenance problem from a new angle, that of mak-

ing a view self-maintainable by materializing a set of auxiliary views that facilitate self-

maintenance. [Q*96] took advantage of key constraints and referential integrity constraints

on the base relations to keep the auxiliary views small. However, they did not address the

problem of making the warehouse self-maintainable starting from a warehouse with multiple

materialized views.

View Independent of Update

As mentioned earlier, one of the core questions in runtime view self-maintenance is the

question of view independent of update: given a view instance and a base update instance,

does the view remain consistent with the updated base relations? This question turns out

to be a special case of a known problem, the problem of checking global integrity constraints

in distributed databases.

In this problem, we are given a collection of relations, an integrity constraint on the

relations, and an update on the relations. If the relations are known to satisfy the constraint

before the update, how can we guarantee that they continue to satisfy the constraint after

the update? The problem becomes nontrivial when not all the relations are available for

use.

EXAMPLE 1.4.1 Consider a university information system with the following three re-

lations distributed across di�erent sites:



1.4. CONTRIBUTION OF THIS THESIS 25

enroll(Student; Course)

prerequisite(Course; Course)

took(Student; Course):

The enrollment policy that a student may enroll in a course only if he has taken all the

prerequisites for that course, can be expressed by the following integrity constraint:

:{ enroll(S;C) & prerequisite(C;C 0) & :took(S;C 0)

Suppose we would like to enroll Smith in CS420. Without looking at the relation for

prerequisite, how can we be sure that Smith's enrollment in CS420 will not violate the

enrollment policy? The answer is to make sure there is a least one student who has enrolled

in CS420 successfully, and Smith has taken any course that each and every such student

has taken. This solution is the most general possible and can be derived from the method

developed in [Huy97a, Huy97c]. 2

Given a view V , a query Q over database D that de�nes the view, and a base update U ,

the question of view independent of update in runtime view self-maintenance can be casted

as a question of checking global integrity constraints in distributed databases if we treat the

relationship Q(D) = V as an integrity constraint between the view relation V and the base

relations in D. Thus, the fact that view V remains consistent with the updated database is

just another way of saying that V and U(D) satisfy the integrity constraint Q(U(D)) = V .

Integrity constraints generally can be expressed as queries for violations. In this nota-

tion, the enrollment policy in the example above is written as the query:

panic :{ enroll(S;C) & prerequisite(C;C 0) & :took(S;C 0)

where panic is a special 0-ary predicate. This query asks for the existence of integrity-

constraint violations. In the following discussion, the class of a constraint refers to the class

of the query representing the constraint in this notation.

[G*94] solves the integrity constraint checking problem

� For the class of constraints that are unions of conjunctive queries with arithmetic

comparisons,

� For insertions into single relations, and

� When the updated relation is available for use in the check.

Now consider the question of view independent of update in which:

� Q is a union of conjunctive queries with arithmetic comparisons,

� U is a set of insertions into some base relation,

� The updated base relation is available for use in answering the question.



26 CHAPTER 1. INTRODUCTION

This question can be rephrased as that of checking constraintQ(D) = V . But sinceQ is a

monotonic function of the base relations, this constraint can be reduced to Q(D) � V , which

is essentially a union of conjunctive queries with arithmetic comparisons (since negation

applies only to the predicate for the view relation whose instance is available). The results

from [G*94] can thus be adapted to answer the view independent of update question.

However, when we consider deletions to the base relations, the constraint we must enforce

becomes Q(D) � V , which contains negation that applies to relations whose instances may

not be available. To answer the question of view independent of deletion using the constraint

checking method requires treatment of constraints involving negation. Such treatment can

be found in [Huy97a, Huy97c], in which we solved the integrity constraint checking problem

� For the class of constraints that are conjunctive queries with negation,

� Under arbitrary sets of insertions or sets of deletions,

� And where the updated relation is available for use in the check.

The following is an example of the view independent of deletions problem that can be

resolved using the results from [Huy97a].

EXAMPLE 1.4.2 Consider a view V de�ned by

v(X) :{ a(X) & b(X)

v(X) :{ b(X) & c(X)

where A, the relation for a, is the only base relation available for use in testing whether

V remains consistent after a tuple is deleted from A. Since no changes are made to the

relation for b, the problem of determining whether the view is not a�ected by a deletion to

A reduces to checking if a deletion to A preserves consistency under the constraint:

panic :{ v(X) & :a(X) & :c(X)

whose solution consists of checking if the tuple to be deleted is not present in both V and

A. This test is both sound and complete, and can be obtained from the general results from

[Huy97a]. 2

Before closing this section on related work, we would like to mention work on query-

independent-of-update, a problem closely related to the question of view-independent-of-

update. In this problem, we are given a query and a base update. We would like to decide

whether or not the query gives the same answer both before and after the update, for all

instances of the base relations. Since the contents of the answer to the query prior to the

update are not used in the decision, this problem can be viewed as the compile-time analog

of the view independent of updates problem.

The query-independent-of-update problem was originally considered in [BC79, BLT86,

TB88, BCL89]. The problem was called detecting irrelevant updates in [BCL89], and was

solved there for the class of conjunctive queries with no self-joins. [Elk90] later extended
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the results to queries that are nonrecursive Datalog programs where the updated predicate

is not repeated. More recently, [LS93] solves the query-independent-of-update problem for

queries that are recursive Datalog programs with arithmetic comparisons and strati�ed

negation.

1.4.4 Results

Figure 1.11 summarizes the results achieved in this thesis work. In Figure 1.11, the num-

bers in the table cells correspond to the number of the chapters where the results will be

presented. The three levels of shading denote the di�erent levels of runtime complexity of

our solutions: the dark shaded solutions are exponential in the size of the view instance,

the medium shaded ones are polynomial, and the light shaded ones are linear.

1.5 Outline of The Thesis

Chapter 2, Preliminaries, begins with a description of the notational conventions used

throughout this thesis. We then present some of the basic concepts and properties

that are useful in developing solutions for the runtime view self-maintenance problem

in the subsequent chapters: canonical databases and database consistency. Finally, we

introduce the notion of instance speci�c query containment and the problem of trans-

lating a query containment decision to a query, which underlie the general technique

used in Chapter 5 to solve the generalized view self-maintenance problem.

Chapter 3, Strict View Self-Maintenance, gives a full treatment of the runtime view

self-maintenance problem for single views de�ned by conjunctive queries with no self-

joins. We call self-maintenance in this case strict because we use no information

besides the view to maintain and the base update. We show that strict view self-

maintenance admits very e�cient solutions.

Chapter 4, Exploiting Functional Dependencies, considers using functional depen-

dencies in helping self-maintain views in the absence of additional information. We

show that these dependencies generally can be used to improve view self-maintainability.

Even under general functional dependencies, we can obtain a simple characterization

of the solutions for maintaining, under single insertions, single views de�ned by con-

junctive queries with no self-joins.

Chapter 5, Generalized VSM for Views with no Projections, generalizes strict

VSM (view self-maintenance) to include using a combination of the following fea-

tures: multiple views, functional dependencies, and arbitrary updates. To solve the

generalized view self-maintenance problem, we develop a method based on the notion

of instance speci�c query containment explained earlier in Chapter 2. This chapter

addresses the problem for views de�ned as conjunctive queries with no projection.

Chapter 6, Extensions, discusses extending the results from Chapter 5 to cover the use

of projections and unions in the view de�nitions, and the additional use of subsets and
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partial copies of the base relations in solving the generalized view self-maintenance

problem.

Chapter 7, Conclusion, summarizes the main contribution of the thesis and discusses

possible avenues for future work on runtime view self-maintenance.
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Chapter 2

Preliminaries

In this chapter, we describe the notation, state the general assumptions, and de�ne the

basic concepts and techniques that will be used throughout this thesis. This chapter is

organized as follows:

Section 2.1, Notation and Assumptions, describes the Datalog notation we use in this

thesis to represent the queries involved in the view de�nitions, self-maintainability

conditions, maintenance expressions, and also in the process developing the solutions.

Section 2.2, Canonical Databases, de�nes a concept that is fundamental in the prob-

lem of view self-maintenance.

Section 2.3, Database Consistency, de�nes consistency of database instances relative

to a given view instance and describes consistency of canonical databases based on

the assumption that the given view is realizable.

Section 2.4, Rectifying Conjunctive-Query Views With No Self-Joins, describes a

very important property for the special case of views de�ned as conjunctive queries

with no self-joins that allows us to �nd simple solutions to the view self-maintenance

problem.

Section 2.5, Query Containment, describes the query containment problem, which will

serve as the basis for our method for solving the view self-maintenance problem in

the more general cases. In particular, we describe the concept of expressing instance-

speci�c query containment as an e�cient query.

2.1 Notation and Assumptions

In this thesis, we assume a relational database framework in which views are de�ned by

relational queries over base relations. Set semantics is also assumed. Thus, the answer to a

query is a set of tuples.

31
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We will use the notation of Datalog [Ull89] both for de�ning views and for representing

the queries involved in our algorithms. This choice is by convenience, even though any

other relational languages could be used. Thus, the view de�nition Q for view V from

Example 1.2.3 is written in the Datalog rule notation as the following single rule:

v(X;Y;Z) :{ r(X;Y ) & s(X;Z) & t(Y;Z)

where v(X;Y;Z) is called the rule's head and r(X;Y ), s(X;Z), and t(Y;Z) are the rule's

subgoals. By convention, relation names are written in upper case (e.g., V , S, and �R) and

their predicate in lower case (e.g., v, s, and �r). The extension of a predicate is the instance

of the relation for the predicate. In general, a predicate is called an IDB predicate if it

appears in the head of some rule, an EDB predicate otherwise. A particular IDB predicate

that is used to return the answers to the query is called the query predicate. Thus, in query

Q above, predicates r, s, and t are the EDB predicates, and v the query predicate. A query

de�ned by a single rule whose body contains only EDB subgoals, such as Q above, is called

a conjunctive query (see [CM77]). In relational algebra, conjunctive queries correspond to

Select-Project-Join (or SPJ in short) queries with only equality comparisons.

In rule notation, we generally write a conjunctive query as

H :{ G1 & : : : & Gn

where constant symbols and variables are not explicitly spelled out. Constant symbols may

appear anywhere in the rule, and we generally assume that each variable in the rule's head

also appears in the rule's body. Such rule is said to be safe (de�ned based on [Zan86]).

In general, variables used in a conjunctive query's body do not need to appear in the

query's head. A variable that does not appear in the head is said to be hidden. A variable

that appears in the head is said to be exposed.

Conjunctive queries with no projections turn out to be an important class of queries in

our thesis work. A conjunctive query is said to have no projections when all the variables

in the query are exposed.

Another important subclass of conjunctive queries consists of conjunctive queries with

no self-joins. A self-join is a pair of subgoals in the rule's body with the same predicate.

There will be occasions where queries more complex than conjunctive queries are used,

albeit without recursion.

A union of conjunctive queries (see [SY80]) is like a conjunctive query except that we

have several rules de�ning the query predicate. We will use H :{ A j B as a shorthand

for the two rules H :{ A and H :{ B.

A conjunctive query with negation (see [LS93] for example) is de�ned by a rule that

has at least one negated subgoal. We assume that each variable used in a negated

subgoal also appears in some non-negated subgoal. Such a rule is said to be safe (see

[Zan86]).
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A conjunctive query with arithmetic comparisons (see [Klu88]) is de�ned by a rule

that has, besides ordinary subgoals (i.e., subgoals with a predicate), other subgoals of

the form � op � where � and nu are variables or constant symbols, and op is one of

the operators <, �, >, �, and 6=. These subgoals are called arithmetic comparisons.

We generally assume that a rule with arithmetic comparisons is safe, that is, each

variable used in an arithmetic comparison also appears in some ordinary (non-negated)

subgoal.

A nonrecursive Datalog query with negation (see [LS93] for example) is de�ned by

a collection of rules that may have negated subgoals in their body and such that no

predicate depends on itself. A predicate p is said to depend on predicate r (which may

or may not be identical to p) if either p is de�ned by a rule whose body uses predicate

r or p is de�ned by a rule whose body uses some predicate q that depends on r. This

class of queries corresponds to the entire class of relational algebra queries.

For more details on the Datalog notation and other classes of queries, see [Ull89, AHV95].

There will be numerous occasions where the variables used in a rule need to be made

explicit. In the following rule for instance,

v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z);

we use �X
0
, �Y

0
, �Z

0
, �X , �Y , and �Z to denote ordered sets or vectors of variables. We often refer

them as sets, with the implicit assumption that the elements are ordered. In the rule body,

S( �Y ; �Z) denotes either a single subgoal or a conjunction of subgoals that uses variables �Y

and �Z. In any case, we will always specify what S represents to avoid confusion. We will

also make the relationships between di�erent sets of variables explicit, as the need arises.

For instance, if the rule above represents a conjunctive query, we may specify that �X , �Y ,

and �Z represent disjoint sets of variables. Furthermore, to express the fact that the rule

is safe, we will say that �X
0
, �Y

0
, and �Z

0
are subsets of �X, �Y , and �Z respectively. Unless

indicated otherwise, for any capital letter X, we will use �X
0
to denote a subset of �X , as a

convention. Note that the use of this set-of-variable notation does not imply a particular

order of occurrence of the variables in the subgoals, but only some �xed order. Nor does it

imply that each variable in a set only occur once in a subgoal, a conjunction of subgoals,

or in the head. Finally, the absence of constant symbols in this notation does not preclude

the use of constant symbols in the rule.

Suppose r is the predicate for relation R to which we would like to insert some tuple. We

say for example that we want to insert r(�a;�b). In this notation, for any lower-case letters

a and b, �a and �b denote vectors of constants that match the vectors �X and �Y respectively.

Also, for any lower-case letters u and v and for any capital letter X, given two vectors of

constants �u and �v and a set �X of variables, we will use �u = �X �v to denote the fact the two

constant vectors agree over the variables speci�ed by �X . �u 6= �X �v denotes the fact that they

disagree.
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2.2 Canonical Databases

In this section, we consider a simple view self-maintenance problem where:

� We are given only one view to maintain and to use.

� The view is de�ned by a conjunctive query over the base relations.

and de�ne the concept of canonical databases in this simple context. In later chapters, this

concept will be generalized for more complex contexts. However the basic idea remains the

same.

De�nition 2.2.1 (Canonical Database) Let V be a view, and let Q be the conjunctive

query that de�nes V . The canonical database, denoted D̂, consists of all the tuples ob-

tained as follows: for each tuple in V , the matching of the tuple with Q's head provides

a substitution for the variables in Q's body that appear in the head; this substitution is

extended to the remaining variables by binding each of them to a new symbol; the ground

atoms obtained after making this extended substitution into Q's body are included in D̂.

2

In this de�nition, it is important to note the following:

� Canonical databases are de�ned relative to both the view de�nition and the view

instance.

� We have assumed that every tuple in the view matches the head of the rule de�ning

the view. This property follows from the view-realizability assumption we will describe

in the next section.

� Strictly speaking, canonical databases are not unique. But since they are all isomor-

phic to each other (i.e., identical up to renaming of the new symbols), we will use

\the" canonical database to loosely denote an arbitrary one among all the isomorphic

canonical databases.

� In the context of a single view V , we will also use Q�1(V ) to denote the canonical

database D̂.

EXAMPLE 2.2.1 Consider the view de�nition

v(X;Z) :{ s(X;Y ) & s(Y;Z)

Consider the instance V = f(a1; c1); (a2; c2)g, shown in Figure 2.1. Since each tuple in V

provides a substitution only for variables X and Z, the substitution must be extended to

all variables by binding Y to a new symbol, i.e., a symbol that does not occur in the view

de�nition or the view instance. Note that new symbols are created for Y for each tuple

in V . In Figure 2.1, Y gets y1 for the �rst V -tuple and y2 for the second V -tuple. The

canonical database D̂ consists of S = f(a1; y1); (y1; c1); (a2; y2); (y2; c2)g. 2
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v(X;Z) s(X;Y ) s(Y;Z)

a1; c1 a1; y1 y1; c1
a2; c2 a2; y2 y2; c2

Figure 2.1: A view instance and the associated canonical database.

Conceptually, we are trying to reconstruct the underlying database from a given view in-

stance. But since it is generally not possible nor desirable to reconstruct the full database, we

use the canonical database to capture su�cient information about the underlying database

to allow us to analyze self-maintainability of the view.

As we will see in a moment, there are many cases where the canonical database is

consistent with the view instance (at the end of this section, we will give an example

showing that it is possible for a canonical database not to be consistent with the view). In

such cases, we mainly use the canonical database as a reference database to compare the

e�ect of updates on the view with other databases that are consistent with the view.

In practice, we do not intend to actually compute the canonical database. Instead, we

use the de�nition of a canonical database as a tool to analyze the self-maintenance problem.

In the simplest case, canonical databases are only used in proving the correctness of the

solution. They do not appear in the solution itself.

2.3 Database Consistency

A view is de�ned by a query over a collection of base relations. These base relations are

collectively referred to as the underlying database. Given an instance of the view, we are

only interested in those database instances whose answers to the query are exactly the tuples

in the view instance. These databases are said to be consistent with the view instance, as

stated in the following de�nition.

De�nition 2.3.1 (Database consistent with a view) Given a query Q that de�nes a

view V in terms of a database D. A database (instance) D is said to be consistent with

view (instance) V if Q(D) = V . 2

Throughout this thesis, we assume that a given view instance V is the result of querying

some database. In other words, we rule out any view instance that cannot be the result of

querying any database. This situation may arise in practice if the view has been erroneously

updated. This assumption is stated as follows:

De�nition 2.3.2 (View Realizability Assumption) Given a query Q that de�nes a

view V in terms of a database D. A view instance V is said to be realizable if there is a

database instance D consistent with V , i.e., V = Q(D). 2
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Under this assumption, we �rst state a lemma that relates a view with the canoni-

cal database, and then show two cases where the canonical database is guaranteed to be

consistent with the view.

Lemma 2.3.1 Let V be a view de�ned by a conjunctive query Q over some database. Let

Q�1(V ) be the canonical database. Then Q(Q�1(V )) always contains V . 2

Proof: By construction of the canonical database, for every tuple t in V , there is a sub-

stitution that turns Q's head into t and Q's body into tuples that are in the canonical

database D̂. In other words, t 2 Q(D̂).

We now show a situation where the canonical database is guaranteed to be consistent

with the view.

Theorem 2.3.1 Let V be a view de�ned by a conjunctive query Q over some database. Let

Q�1(V ) be the canonical database. If Q has no projection, then Q�1(V ) is consistent with

V . 2

Proof: Let D be the actual underlying database. When Q has no projection, Q�1(V ) uses

only constants from V and the tuples in Q�1(V ) represent the ground facts that must be

true of D in order to explain the tuples in V . In other words, Q�1(V ) � D. Since Q is

monotonic, it follows that Q(Q�1(V )) is contained in Q(D), which is V . Since we also have

V � Q(Q�1(V )) (following Lemma 2.3.1), we conclude that Q(Q�1(V )) = V .

We now show another situation where the canonical database is also guaranteed to be

consistent with the view.

Theorem 2.3.2 Let V be a view de�ned by a conjunctive query Q over some database. Let

Q�1(V ) be the canonical database. If Q has no self-joins, then Q�1(V ) is consistent with

V . 2

Proof: Let D be the actual underlying database. First, to show that Q(Q�1(V )) � V , we

will show that any tuple in Q(Q�1(V )) is also a tuple in Q(D). First, let us write Q as

H :{ G1; : : : Gn, and let us use the layout of the canonical database shown in Figure 2.2 for

the rest of the proof. Figure 2.2 shows a view instance that consists of the tuples t1; : : : ; tm
and the associated canonical database that contains the Aij atoms. The atoms in each

row corresponds to the view tuple in the same row. When the view de�nition uses no self-

joins, di�erent columns do not share atoms since atoms from di�erent columns use di�erent

predicates.

Now, let t 2 Q(Q�1(V )). There is a variable substitution � such that t = �(H) and

�(Gj) 2 Q�1(V ) for every j. In the absence of self-joins in the view de�nition, if follows

that � maps Gj to some atom in the same column as Gj. That is, �(Gj) = Aijj for some

ij , and furthermore:

� : Hidden variables �! New symbols

Exposed variables �! View constants
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H G1 : : : Gj : : : Gn

t1 A11 : : : A1j : : : A1n

...
...

...
...

ti Ai1 : : : Aij : : : Ain

...
...

...
...

tm Am1 : : : Amj : : : Amn

Figure 2.2: Canonical database for a view with no self-join.

Further, for each tuple ti 2 V , there must be some atoms in D that explain it. In other

words, there is a symbol mapping hi

� That maps the new symbols created in row i of the canonical database to some

constants from D,

� That maps other non-new symbols to themselves,

� And such that hi(Aij) 2 D.

Finally, consider a variable substitution �0 we construct from � and the hi's as follows:

�0 : Hidden variables
�
�! New symbols

Some hi
�! Constants in D

Exposed variables
�
�! View constants

It is easy to verify that for every j, �0(Gj) = hij (�(Gj). But hij (�(Gj) = hij (Aijj) 2 D.

It follows that �0(Gj) 2 D and �0(H) = �(H) = t since H has no hidden variables.

Therefore, t 2 Q(D) = V , and Q(Q�1(V )) � V . But since Q(Q�1(V )) � V (following

Lemma 2.3.1), we conclude that Q(Q�1(V )) = V .

EXAMPLE 2.3.1 Consider the view de�nition

v(X;Y ) :{ r(X;Y ) & s(Y;Z)

and the instance V = f(a1; b); (a2; b)g. The view de�nition has no self-joins. The canonical

database is shown in Figure 2.3. Even though r(a1; b) joins with s(b; z
0), and r(a2; b) joins

with s(b; z), only v(a1; b) and v(a2; b) can be derived. We cannot derive tuples other than

those already in V . In other words, the canonical database is consistent with the view

instance. 2

However, when the conjunctive query that de�nes the view has both self-joins and

projections, the converse of Lemma 2.3.1 is not true in general. As a result, the canonical

database is not necessarily consistent with the view instance in general. The following

example shows a view instance and a conjunctive query for which the canonical database is

not consistent with the view.
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v(X;Y ) r(X;Y ) s(Y;Z)

a1; b r(a1; b) s(b; z)

a2; b r(a2; b) s(b; z0)

Figure 2.3: Canonical database consistent with the view from Example 2.3.1.

EXAMPLE 2.3.2 Consider the view de�nition

v(X) :{ s(X;Y ) & s(Y;X)

Note that this query uses the same predicate s twice in the query's body. Moreover variable

Y does not appear in the query's head. Consider the instance V = f(a)g. The canonical

database consists of S = f(a; y); (y; a)g where y is a symbol other than a. Applying the

query to this database results in f(a); (y)g. The canonical database is not consistent with

the view instance. 2

2.4 Rectifying Conjunctive-Query Views With No Self-Joins

When a view is de�ned by a conjunctive query with no self-joins, we claim that no generality

is lost if we assume:

� The query uses no constants either in the head or the body.

� Within each subgoal in the query's body, variables occur only once.

In other words, constants and variable repetition within subgoals in the view de�nition play

no role in the problem of view self-maintenance. We can then justify using a representation

of the view de�nition, called the recti�ed representation, where only the pattern of variable

sharing between the subgoals and the head matters. Thus, throughout the remaining of

this thesis, a view de�nition with no self-joins will be represented as follows:

v( �X) :{ r1( �X1) & r2( �X2) & : : : & rn( �Xn)

where v is the predicate for the view and for each i = 1; 2; : : : ; n, ri is the predicate for base

relation Ri. In this representation, �X; �X1; �X2; : : : ; �Xn denote sets of variables, and �X is a

subset of the union of the �Xi's.

Thus, the purpose of this section is to validate the claim that constants and variable

repetition play no role in the view self-maintenance problem. Another purpose of this

section is to show how straightforward it is to adapt the solutions to the self-maintenance

problem given later in this thesis to arbitrary view de�nitions with no self-joins.

Let us �rst de�ne, for a view de�nition with no self-joins, its recti�ed representation.
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De�nition 2.4.1 (Recti�ed Representation) Let view V be de�ned by conjunctive

query Q : H :{ G1 & : : : & Gn, where H is the head with predicate v that uses vari-

ables �X , and for every i = 1; : : : ; n, Gi is a subgoal with predicate ri that uses variables
�Xi. Constant symbols may be used in Q, and within each literal in Q, variables may occur

more than once. The recti�ed representation of (v;Q; r1; : : : ; rn) is (v
0; Q0; r01; : : : ; r

0
n), where

the view predicate v0 and the query Q0 are de�ned as follows:

� View instance V 0 is de�ned in terms of V by: v0( �X) = H.

� View predicate v0 is de�ned by query Q0 : v0( �X) :{ r01(
�X1) & : : : & r0n(

�Xn).

2

In the recti�ed representation de�ned above, it is important to note the following:

� The insertion (resp. deletion) of a tuple t into (resp. from) Ri is represented by the

insertion (resp. deletion) of a tuple t0 into (resp. from) R0i if Gi matches ri(t). In this

case, t0 consists of the constants in the bindings produced by the successful match.

� In query Q0, although a variable occurs at most once within each subgoal, it may occur

in more than one subgoal.

The following example illustrates the relationship between the original representation

and the recti�ed representation in the view self-maintenance problem.

EXAMPLE 2.4.1 Consider a view V de�ned by

v(a; Y; Y;X;Z) :{ r(b; Y;X) & s(Y; c; Y; Z)

and consider an update that consists inserting tuples s(d; c; e; g), s(e; d; e; h), and s(f; c; f; i).

In the recti�ed representation, we have a view V 0 = f(X;Y;Z) j (a; Y; Y;X;Z) 2 V g and

V 0 is de�ned by

v0(X;Y;Z) :{ r0(X;Y ) & s0(Y;Z)

Note that the constants a, b, and c in the de�nition of v are eliminated, and variable Y

is no longer repeated in the head or the second subgoal. Furthermore, the update in the

recti�ed representation consists of inserting only s0(f; i), since the other insertions do not

match the subgoal s(Y; c; Y; Z).

Thus, the self-maintenance problem of V 0 under the insertion of s0(f; i), where V 0 is

de�ned by v0(X;Y;Z) :{ r0(X;Y ) & s0(Y;Z), can be studied instead of the original problem.

As we will see in the next chapter, this problem has the following solution:

� View V 0 is self-maintainable under the insertion of s0(f; i) if and only if V 0 has a tuple

of the form (�; f;�).

� To maintain V 0, add all tuples (x; f; i) where V 0 has some tuple of the form (x; f;�).

This solution can be translated back to the original problem as follows:
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� View V is self-maintainable under the insertion of s(d; c; e; g), s(e; d; e; h), and s(f; c; f; i)

if and only if V has a tuple of the form (a; f; f;�;�).

� To maintain V , add all tuples (a; f; f; x; i) where V has some tuple of the form

(a; f; f; x;�).

2

The following theorem substantiates our claim that the recti�ed representation is an

equivalent representation for deciding view self-maintainability.

Theorem 2.4.1 Consider a view V de�ned by a conjunctive query Q with no self-joins, and

let V 0 and Q0 be the corresponding view and query in the recti�ed representation. Consider

an update U that consists of insertions and deletions to the base relations. Let U 0 be the

corresponding update in the recti�ed representation. Then V is self-maintainable under U

if and only if V 0 is self-maintainable under U 0. 2

Proof:

It is easy to see that there is a one-to-one correspondence between the tuples in V and

V 0.

IF: Assume V 0 is self-maintainable under U 0. To show that V is also self-maintainable

under U , let (I1; : : : In) and (J1; : : : Jn) be two instances of the base relations R1; : : : ; Rn

that are both consistent with V . For each i = 1; : : : ; n, let us de�ne Îi (resp. Ĵi) to consist

of those tuples in Ii (resp. Ji) that match subgoal Gi. It is easy to verify that (Î1; : : : În)

and (Ĵ1; : : : Ĵn) are also consistent with V .

For each i, let us now de�ne I 0i to be the instance of relation R
0
i that is the result of apply-

ing query Gi to Îi. Note that there is a one-to-one correspondence between the tuples in I 0i
and Îi. J

0
i is similarly de�ned. This situation is illustrated in Figure 2.4. It is easy to verify

that the two instances (I 01; : : : ; I
0
n) and (J 01; : : : ; J

0
n) are consistent with V

0. Since we assume

that V 0 is self-maintainable under U 0, it follows that Q0(U 0(I 01); : : : ; U
0(I 0n)) is identical to

Q0(U 0(J 01); : : : ; U
0(J 0n)). Since for every i, there is a one-to-one correspondence between the

tuples inserted to or deleted from Îi (resp. Ĵi) and the tuples inserted to or deleted from

I 0i (resp. J
0
i), we conclude that Q(U(Î1); : : : ; U(În)) is identical to Q(U(Ĵ1); : : : ; U(Ĵn)). In

other words, Q(U(I1); : : : ; U(In)) is identical to Q(U(J1); : : : ; U(Jn)), which completes the

proof that V is self-maintainable under U .

ONLY-IF: Conversely, assume V is self-maintainable under U . Let (I 01; : : : I
0
n) and

(J 01; : : : J
0
n) be two instances of the relations R01; : : : ; R

0
n that are consistent with V 0. For

each i = 1; : : : ; n, let us de�ne an instance Ii for relation Ri as follows: each tuple t in Ii is

obtained from some tuple t0 in I 0i by padding t0 with the appropriate constants, if any, that

occurs in subgoal Gi, and by duplicating those components in t0 that correspond to those

variables in Gi that are repeated. Ji is similarly de�ned.

Since there is a one-to-one correspondence between the tuples in Ii and I
0
i on the one

hand, and between the tuples in Ji and J
0
i on the other hand, it is not hard to see that the

two instances (I1; : : : In) and (J1; : : : Jn) are consistent with V . And since we assume that V



2.5. QUERY CONTAINMENT 41

V 0

V Ii

Tuples not matching Gi.

Îi

I 0i

Instance of base relation Ri.View Instance.

1-to-1

1-to-1
correspondence

correspondence

Tuples matching Gi.

Figure 2.4: Correspondences in the recti�ed representation.

is self-maintainable under U , Q(U(I1); : : : ; U(In)) must be identical to Q(U(J1); : : : ; U(Jn)).

For a reason similar to the one given in the IF: proof, it follows that Q0(U 0(I 01); : : : ; U
0(I 0n))

is identical to Q0(U 0(J 01); : : : ; U
0(J 0n)). Thus, V

0 is self-maintainable under U 0.

2.5 Query Containment

We will encounter a particular implication problem known in the database literature as the

query containment (abbreviated QC) problem [Ull89]. Given two Datalog queries P and Q

using EDB relations E1; : : : ; En as input, we say that P is contained in Q, denoted

P � Q;

if the answer to P is a subset of the answer to Q, for every instance of E1; : : : ; En.

When the constant symbols used in the queries we want to compare represent known

values, the decision of P � Q will be either true or false, assuming that the containment is

decidable. For instance, if the queries P and Q are de�ned by:

P : a(X) :{ r(1;X; 2)

Q : a(U) :{ r(U; V; U)

then, since 1 and 2 are not equal, we can always �nd an instance of R (e.g. consisting

of the single tuple (1; 3; 2)) such that P returns a tuple not in the answer to Q, and the

containment is false.
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However, when some constant symbols used in the queries represent parameters whose

value is unknown, the containment decision will be conditional, that is, will depend on

the actual value of the parameters. If the containment can be decided, we can think of

generating a procedure that takes these parameters as input and returns true or false. In

simpler cases, we can even think of a logical expression of the parameters that can always

be veri�ed. For instance, if P and Q are de�ned by:

P : a(X) :{ r($1;X; $2)

Q : a(U) :{ r(V;U; V )

where the constant symbols $1 and $2 represent parameters, then the most general condition

on $1 and $2 that guarantees P � Q is simply $1 = $2.

In this thesis, we will encounter a variation of the containment problem where the

instance of some of the input EDB relations is also given. In this case, the query containment

is said to be Instance-Speci�c, and we call the containment problem \instance-speci�c query

containment." When there is no confusion as to which EDB relations is given, we may omit

\instance-speci�c." Given two queries P and Q using EDB relations E1; : : : ; En; F1; : : : ; Fm
as input, and given an instance of F1; : : : ; Fm, we say that

P �F1;:::;Fm Q

if the answer to P is a subset of the answer to Q for all instances of E1; : : : ; En. The EDB

predicates fi, whose extension is given, are called constant predicates. The EDB predicates

ei are called variable predicates.

When the extension of the constant predicates is known, we can always reformulate

an instance-speci�c QC problem to a QC problem by eliminating any constant predicate

f as follows: replace any subgoal :f( �X) with
V
�x(

�X 6= �x) and any subgoal f( �X) withW
�x(

�X = �x), where �x ranges over the tuples in f 's extension. Consider for example the

containment between the following queries:

P : a(X) :{ r(X;Y ) & s(Y )

Q : a(U) :{ r(U; V ) & :t(V )

where predicate r is variable, and predicates s and t are constant, say with extensions

S = f1; 2g and T = f2; 3g. The queries above can be expanded into the following queries:

P : a(X) :{ r(X;Y ) & Y = 1

a(X) :{ r(X;Y ) & Y = 2

Q : a(U) :{ r(U; V ) & V 6= 2 & V 6= 3

where all the input predicates are variables. Thus, we have reduced the original instance-

speci�c containment problem to a normal containment problem.

However, there are situations where the extension of some constant predicates is not

known. These constant predicates are just placeholders or parameters to the problem.
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Then, it would not make much sense to eliminate these predicates. But, to parallel the

case of normal query containment with parameter constants, we may want to generate a

procedure thats take these constant predicates as inputs and decides containment. It may

even be possible to generate a logical expression of the constant predicates that can be

e�ciently veri�ed when the extensions of these predicates are available. In this thesis, we

will be interested in those logical expressions that are e�cient queries. Therefore, given

an instance-speci�c query containment problem using constant predicates f1; : : : ; fm, an

interesting question is whether the containment problem can be expressed as a (boolean)

query over the input predicates f1; : : : ; fm. Consider for example the containment between

the following queries:

P : a(X) :{ r(X;Y ) & s(Y )

Q : a(U) :{ r(U; V ) & :t(V )

with variable predicate r and constant predicates s and t. The query containment in this

example can be expressed as the following query:

(8Y ) s(Y )) :t(Y )

which simply asks whether or not relations S and T are disjoint.

We will come back to this notion of instance-speci�c query containment and its trans-

lation to a query later in Chapter 5.

Finally, let us give a brief description of the state of the art on query containment.

Containment of CQ's was �rst studied in [CM77] and a well known technique for testing

containment is based on the notion of containment mapping. Given two CQ's P and Q, a

containment mapping for the problem of testing P � Q is a function that (1) maps variables

in Q to constants in P , (2) maps constants to themselves, (3) turns Q's head to P 's head,

and (4) turns each subgoal in Q's body to some subgoal in P . While the problem of deciding

containment of CQ's is NP-complete ([CM77]), there are special cases of CQ's for which the

problem has polynomial-time solutions ([ASU79a, ASU79b, JK83, CR97]). Containment of

unions of CQ's was considered in [SY80] and containment mappings can be used to test the

containment. Deciding containment of unions of CQ's is �
p
2-complete. Containment of CQ's

with arithmetic comparisons was originally studied in [Klu88] and a technique based on the

use of containment mappings for containment testing appears in [GU92, G*94, Gup94]. Part

of our thesis will be based on this technique (see Appendix A), where query containment is

expressed as a logic expression whose truth decides containment. [Mey92] recently showed

deciding containment of CQ's with arithmetic comparisons to be �p
2-complete. Containment

of unions of CQ's with negation was considered in [Sag87] and a technique based on testing

a �nite (but exponential) number of databases for deciding containment appears in [LS93].

While the containment for some restricted classes of nonrecursive Datalog queries with

negation can be decided e�ciently ([SY80]), the complexity of containment for this class

in general is not known. Another dimension to the problem is to consider the presence of

dependencies in deciding containment, and techniques for testing containment of CQ's based

on chasing the dependencies over the queries appear in [Sag87, ASU79a, ASU79b, JK84,
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RSUV89, RSUV93]. Finally, to the best of our knowledge, the complexity of deciding

instance-speci�c query containment and the problem of whether instance-speci�c query

containment is expressible as a query (in terms of the constant predicates) have not been

studied in the literature.



Chapter 3

Strict View Self-Maintenance

We start with the strict view self-maintenance problem, i.e., the view self-maintenance

problem where:

� No auxiliary views are used,

� No base relations are used, and

� No dependencies on the base relations are used.

In this chapter, we consider the problem of maintaining views

� De�ned by conjunctive queries with no self-joins,

� Under updates to a single base relation.

We will show that for this simple case, strict view self-maintenance admits solutions in

simple query forms.

Throughout this chapter, the view to maintain is de�ned by a conjunctive query Q

represented as follows:

v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z) (3.1)

where �X , �Y and �Z denote disjoint sets of variables, �X
0
, �Y

0
and �Z

0
denote subsets of �X , �Y

and �Z respectively, r is the predicate for the updated relation, and S denotes a conjunction

of subgoals whose relations are not updated.

Let us de�ne the terminology used:

� The variables in �X and �Y are called the updated variables.

� The variables in �Y are called the join variables.

� The variables in �Z are called the private variables.

� A variable from �X, �Y , or �Z is said to be exposed if it appears in the head of Q, i.e.,

if it is in �X
0
, �Y

0
, or �Z

0
. It is hidden otherwise.

45
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Section 3.1, Deletions, presents solutions to the view self-maintenance problem for views

de�ned by conjunctive queries without self-joins, under single deletions and multiple

deletions from a single relation.

Section 3.2, Insertions, solves the view self-maintenance problem under single insertions

and multiple insertions into a single relation.

Section 3.3, Mixing Insertions with Deletions, considers the view self-maintenance

problem under both insertions and deletions to a single relation.

Section 3.4, Summary, summarizes the results in this chapter and points out di�culties

when considering self-joins in the view de�nitions or updates across more than one

base relation.

3.1 Deletions

We consider deletions �rst since they are simpler to deal with than insertions. Insertions

will be handled in the next section.

Referring to the generic view de�nition (3.1), we consider the following three nonover-

lapping cases successively:

� All updated variables are exposed: �X
0
= �X and �Y

0
= �Y .

� Some updated variables are hidden, but all join variables are exposed: �X
0
� �X and

�Y
0
= �Y .

� Some join variables are hidden: �X
0
� �X and �Y

0
� �Y .

3.1.1 All Updated Variables Exposed

Theorem 3.1.1 Let view V be de�ned by v( �X; �Y ; �Z
0
) :{ r( �X; �Y ) & S( �Y ; �Z), where �Z

0
�

�Z. V is always self-maintainable under the deletion of r(�a;�b). To maintain it, delete all

tuples of the form V (�a;�b;�). 2

Proof: The tuples in V that only depend on r(�a;�b) are exactly those of the form V (�a;�b;�),

since all the updated variables are exposed.

3.1.2 Some updated variables hidden but all join variables exposed

Referring to the generic view de�nition (3.1), this subsection deals with the case where
�X
0
� �X and �Y

0
= �Y . To emphasize the fact that �X

0
is a strict subset of �X in this

subsection, we will use �X
00
instead of �X

0
. This notation serves no other purposes than a

syntactic reminder that there are variables in �X that are not in �X
00
.
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Theorem 3.1.2 Let view V be de�ned by v( �X
00
; �Y ; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z), where �X

00
�

�X and �Z
0
� �Z. V is self-maintainable under the deletion of r(�a;�b) if and only if it has no

tuples of the form v(�a00;�b;�). We use �a00 to denote the �X
00
components of �a. Furthermore,

in this situation, V is not a�ected by the deletion of r(�a;�b). 2

Proof:

IF: If there is no v(�a00;�b;�), then no V -tuples depend on r(�a;�b). So the deletion of

r(�a;�b) does not a�ect V .

ONLY-IF: Assume there is some v(�a00;�b;�). We will construct two databases D1 and

D2 that are both consistent with V before the deletion, but that derive di�erently 1 after

the deletion.

First, D1 is taken to be the canonical database, which is constructed from V in the

usual way. We already know that D1 is consistent with V . Furthermore, since the subgoal

r( �X; �Y ) has at least one hidden X-variable, D1 cannot contain r(�a;�b). Thus, the deletion

of r(�a;�b) has no e�ect on V . Furthermore, as will be clear in a moment, even if we include

r(�a;�b) in D1, the resulting database is still consistent with V , and the deletion still has no

e�ect on V . Thus, knowing that r(�a;�b) is in the underlying database will not a�ect the

completeness of our result.

To construct D2, it is useful to layout the tuples in D1 as shown in Table 3.1. In this

layout, V is partitioned into V1 and V2, where V1 contains all the V -tuples that agree with �a

over �X
00
and with �b over �Y , and V2 contains those tuples (�x

00; �y; �z0) such that (�x00; �y) 6= (�a00;�b).

For each tuple (�x00; �y; �z0) in V , we construct the corresponding tuple (�x00+; �y) in R by

extending �x00 to the remaining hiddenX-variables with new symbols, and the corresponding

tuples (�y; �z0�) in S by extending �z0 to the remaining hidden Z-variables with new symbols.

The new symbols are created for each new line in the table. Also, we use \�" to denote

zero or more new symbols and \+" to denote one or more new symbols. Thus, database

D1 consists of M [O [N [ P .

Database D2 is obtained from D1 by substituting M 0 = fr(�a;�b)g for M . Since M and

O are disjoint because (�x00; �y) 6= (�a00;�b), the substitution does not a�ect O. In other words,

D2 =M 0 [O [N [ P , as depicted in Table 3.1.

The following about database D2 holds:

� Q(D2) � V :

{ As in D1, V2 can be derived from O and P .

{ Each line in V1 can be derived by joining M 0 (consisting of r(�a;�b)) with the

corresponding line in N over �Y (whose components have value �b).

� Q(D2) � V :

{ Suppose r(�a;�b) joins with some set T 0 of tuples from N [P to derive some tuple

t that is not in V . Since the join is over �Y , then in D1, any tuple from M would

have joined with T 0 to derive t, which is impossible since Q(D1) � V .

1Recall from Section 1.3 the phrase \derive di�erently" used here to mean that after the deletion, D2

derives, through the query de�ning V , a view that is di�erent from what D1 derives after the deletion.
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v( �X
00
; �Y ; �Z

0
) r( �X; �Y ) S( �Y ; �Z)

...
...

...

V1 �a00;�b; �z0 M �a00+;�b N �b; �z0�
...

...
...

...
...

...

V2 �x00; �y; �z0 O �x00+; �y P �y; �z0�
...

...
...

Canonical database D1 =M [O [N [ P .

v( �X
00
; �Y ; �Z

0
) r( �X; �Y ) S( �Y ; �Z)

...
...

V1 �a00;�b; �z0 M 0 �a;�b N �b; �z0�
...

...
...

...
...

V2 �x00; �y; �z0 O �x00+; �y P �y; �z0�
...

...
...

Database instance D2 =M 0 [O [N [ P .

Table 3.1: Counterexample in the proof of Theorem 3.1.2.

{ As in D1, when joined with N [ P , O can only derive tuples in V .

� V1 is not supported by O: A tuple in O can only derive a V -tuple whose �X
00
component

is not �a00 or whose �Y component is not �b. Thus the derived V -tuple cannot be in V1.

So D2 is consistent with V and the deletion of r(�a;�b) from D2 causes V to loose all its

V1-tuples. Thus Q(D2 � r(�a;�b)) = V2, Q(D1 � r(�a;�b)) = V , and V2 � V . In other words,

Q(D1 � r(�a;�b)) 6= Q(D2 � r(�a;�b)).

EXAMPLE 3.1.1 Consider the view de�nition

v(U; Y;W;Z) :{ r(X;U; Y;W ) & p1(U; Y ) & p2(Y;Z) & p3(W;Z) & p4(T )

and consider the deletion of r(x; a; b; c). In this view de�nition, the join variables U , Y , W

are all exposed, but the updated variable X is hidden. Applying Theorem 3.1.2, a given

instance V is self-maintainable under the deletion if and only if V has no tuples of the form
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v(U; Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

a; b; c; z0 x1; a; b; c a; b b; z0 c; z0 t1
a; b; c; z00 x2; a; b; c � b; z00 c; z00 t2
a0; b; c; z0 x3; a

0; b; c a0; b � � t3
a0; b; c; z00 x4; a

0; b; c � � � t4
Nothing deleted. Delete x; a; b; c

Canonical database D1.

v(U; Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

a; b; c; z0 x; a; b; c a; b b; z0 c; z0 t1
a; b; c; z00 � � b; z00 c; z00 t2
a0; b; c; z0 x3; a

0; b; c a0; b � � t3
a0; b; c; z00 x4; a

0; b; c � � � t4

a; b; c; z0 and a; b; c; z00 deleted. Delete x; a; b; c

Database instance D2 derives di�erently from D1 after the deletion.

Figure 3.1: A non-self-maintainable view instance from Example 3.1.1.

(a; b; c;�). Furthermore, if V satis�es this condition, then the deletion does not a�ect the

view.

In fact, any view instance V that has no (a; b; c;�) tuples cannot possibly have any

tuple that depends on r(x; a; b; c). Thus, V is not a�ected by the deletion of r(x; a; b; c).

Conversely, consider an instance of V that contains some (a; b; c;�) tuples, as shown in

Figure 3.1, where the �rst table shows a database instance D1 and the view, before and

after the deletion, and the second table shows another database instance D2 and the view,

before and after the deletion.

The base instances D1 and D2 are a counterexample showing that the view instance is

not self-maintainable under the deletion of r(x; a; b; c). Even though there may be other

counterexamples, we choose this one to follow the general construction method presented

in the proof and shown in Table 3.1. 2

3.1.3 Some join variables hidden

Referring to the generic view de�nition (3.1), this subsection deals with the case where
�Y
0
� �Y . To emphasize the fact that �Y

0
is a strict subset of �Y in this subsection, we will use

�Y
00
instead of �Y

0
.
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Theorem 3.1.3 Let view V be de�ned by v( �X
0
; �Y

00
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z), where �X

0
�

�X, �Y
00
� �Y , and �Z

0
� �Z. V is self-maintainable under the deletion of r(�a;�b) if and only if

it has no tuples of the form v(�a0;�b
00
;�). We use �a0 to denote the �X

0
components of �a, and

�b
00
the �Y

00
components of �b. Furthermore, in this situation, V is not a�ected by the deletion

of r(�a;�b). 2

Proof:

IF: If there is no v(�a0;�b
00
;�), then no V -tuples depend on r(�a;�b). So the deletion of

r(�a;�b) does not a�ect V .

ONLY-IF: Assume V contains tuple (�a0;�b
00
; �c0), for some �c0. We will construct a coun-

terexample with two databases D1 and D2 that are both consistent with V before the

deletion but that derive di�erently after the deletion.

Again, D1 is taken to be the canonical database and D1 is consistent with V . Fur-

thermore, since the subgoal r( �X; �Y ) has at least one hidden Y -variable, D1 cannot contain

r(�a;�b). Thus the deletion of r(�a;�b) has no e�ect on V . Furthermore, as will be clear in a

moment, even if we include r(�a;�b) in D1, the resulting database is still consistent with V ,

and the deletion still has no e�ect on V . Thus, knowing that r(�a;�b) is in the underlying

database will not a�ect the completeness of our result.

Before we present the particular layout for D1 that will be used to construct D2, we

need to partition the subgoals S( �Y ; �Z) into S1( �Y 1; �Z1) and S2( �Y 2; �Z2), de�ned as follows:

� Initially S1 contains all subgoals in S that have a hidden Y -variable. There is at least

one such subgoal.

� Any remaining subgoal in S that shares a hidden Z-variable with some subgoal cur-

rently in S1 will be assigned to S1.

� Any subgoal in S that remains unassigned is assigned to S2.

We observe the following properties about S1 and S2:

� All hidden Y -variables are in S1, i.e., �Y 1 �
�Y � �Y

00
.

� All Y -variables in S2 are exposed, i.e., �Y 2 �
�Y
00
.

� No hidden Z-variables are shared between S1 and S2, i.e., ( �Z1 �
�Z
0
)\ ( �Z2 �

�Z
0
) = ;.

Figure 3.2 shows how variables are shared among the subgoals.

To construct D2, we arrange the tuples in D1 as shown in Table 3.2. In this layout, V is

partitioned into V1 and V2, where V1 contains all tuples v(�a
0;�b

00
; �z0) that agree with �c0 over

�Z1, and V2 contains those tuples (�x
0; �y00; �z0) such that either �x0 6= �a0, �y00 6= �b

00
or �z0 does not

agree with �c0 over �Z1. Note that each line in N agrees with �b
00
over �Y 2 and with �c01 over

�Z1 \
�Z2. Database D1 thus consists of M [O [N [ P .

D2 is obtained from D1 by substitutingM
0 = fr(�a;�b); S1(�b1; �c

0
1�)g forM . This substitu-

tion does not a�ect O since M and O are disjoint because the hidden variables on di�erent
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r( �X; �Y )

�X
0 �Y

00 �Z
0

�X �Y �Z

S1( �Y 1; �Z1)

S2( �Y 2; �Z2)
�Y
00

2

�Y
00

1 �Z
0

1

�Z
0

2

Figure 3.2: Subgoals and variables used in a view de�nition with hidden join variables.

lines are assigned di�erent values. In other words, D2 = M 0 [ O [ N [ P , as depicted in

Table 3.2.

Database D2 has the following properties:

� Q(D2) � V :

{ As in D1, V2 can be derived from O and P

{ Each line in V1 can be derived by joining M 0 with the corresponding line in N

over �Y 1 \
�Y 2 (whose components all agree with �b

00
) and over �Z1 \

�Z2 (whose

components all agree with �c0). See Figure 3.2.

� Q(D2) � V :

{ First, note that r(�a;�b) can only join with the S1-tuples from M 0. Now, suppose

M 0 joins with some set T 0 of tuples from N [ P to derive some tuple t that is

not in V . Since the join is over a subset of �Y
00
( �Y 1 \

�Y 2) and on a subset of �Z1

( �Z1 \
�Z2), then any line from M would have joined with T 0 to derive t, which is

impossible since Q(D1) � V .

{ Also, any tuple �x0�; �y00+ from O can only join with the S1-tuples on the same

line and thus can only derive tuples in V .

� O cannot contribute to V1: As mentioned above, any tuple �x0�; �y00+ from O can only

join with the S1-tuples on the same line. So any tuple v(�x0; �y00; �z0) that O can derive

is not in V1, since we already know either �x0 6= �a0, �y00 6= �b
00
, or �z0 disagrees with �c0 over

�Z1.

So D2 is consistent with V , and the deletion of r(�a;�b) causes V to loose all its V1-tuples.

In other words, Q(D2 � r(�a;�b)) has strictly fewer tuples than Q(D1 � r(�a;�b)).



52 CHAPTER 3. STRICT VIEW SELF-MAINTENANCE

v( �X
0
; �Y

00
; �Z

0
) r( �X; �Y ) S1( �Y 1; �Z1) S2( �Y 2; �Z2)

...
...

...
...

V1 �a0;�b
00
; �z0 M �a0�;�b

00
+ �b

00

1+; �c
0
1� N �b

00

2; �z
0
2�

...
...

...
...

...
...

...
...

V2 �x0; �y00; �z0 O �x0�; �y00+ �y001+; �z
0
1� P �y002 ; �z

0
2�

...
...

...
...

Canonical database D1 =M [O [N [ P .

v( �X
0
; �Y

00
; �Z

0
) r( �X; �Y ) S1( �Y 1; �Z1) S2( �Y 2; �Z2)

...
...

V1 �a0;�b
00
; �z0 M 0 �a;�b �b1; �c

0
1� N �b

00

2 ; �z
0
2�

...
...

...
...

...
...

V2 �x0; �y00; �z0 O �x0�; �y00+ �y001+; �z
0
1� P �y002; �z

0
2�

...
...

...
...

Database instance D2 =M 0 [O [N [ P .

Table 3.2: Counterexample in the proof of Theorem 3.1.3.

EXAMPLE 3.1.2 Consider the view de�nition

v(Y;W;Z) :{ r(X;U; Y;W ) & p1(U; Y ) & p2(Y;Z) & p3(W;Z) & p4(T )

and consider the deletion of r(x; a; b; c). In this view de�nition, the join variable U is hidden.

Applying Theorem 3.1.3, a given instance V is self-maintainable under the deletion if and

only if V has no tuples of the form (b; c;�). Furthermore, if V satis�es this condition, then

the deletion does not a�ect the view. In fact, consider an instance of V that contains some

(b; c;�) tuples, as shown in Figure 3.3, where the �rst table shows a database instance D1

and the view, before and after the deletion, and the second table shows another database

instance D2 and the view, before and after the deletion.

The base instances D1 and D2 are a counterexample showing that the view instance is

not self-maintainable under the deletion of r(x; a; b; c). Even though there may be other

counterexamples, we choose this one to follow the general construction method presented

in the proof and shown in Table 3.2. 2
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v(Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

b; c; z0 x1; a1; b; c a1; b b; z0 c; z0 t1
b; c; z00 x2; a2; b; c a2; b b; z00 c; z00 t2
b; c0; z000 x3; a3; b; c

0 a3; b b; z000 c0; z000 t3
Nothing deleted. Delete x; a; b; c

Canonical database D1.

v(U; Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

b; c; z0 x; a; b; c a; b b; z0 c; z0 t1
b; c; z00 � � b; z00 c; z00 t2
b; c0; z000 x3; a3; b; c

0 a3; b b; z000 c0; z000 t3

b; c; z0 and b; c; z00 deleted. Delete x; a; b; c

Database instance D2 derives di�erently from D1 after the deletion.

Figure 3.3: A non-self-maintainable view instance from Example 3.1.2.

3.1.4 Multiple Deletions

All Updated Variables Exposed

Theorem 3.1.4 Let view V be de�ned by v( �X; �Y ; �Z
0
) :{ r( �X; �Y ) & S( �Y ; �Z), where �Z

0
�

�Z. Let U be an update that consists of the deletion of r(�x1; �y1); : : : ; r(�xn; �yn). V is always

self-maintainable under U . To maintain it, delete all tuples of the form V (�xi; �yi;�), for for

i = 1; : : : ; n. 2

Proof: Any V -tuple that depends on tuple r(�xi; �yi) must be of the form (�xi; �yi;�). Con-

versely, any V -tuple of the form (�xi; �yi;�) not only depends on r(�xi; �yi), but also cannot

depend on r-tuples other that r(�xi; �yi).

Some Updated Variables Hidden

Theorem 3.1.5 Let view V be de�ned by v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z), where ei-

ther �X
0
� �X, �Y

0
� �Y , or both. Let U be an update that consists of the deletion of

r(�x1; �y1); : : : ; r(�xn; �yn). V is self-maintainable under U if and only if for every i = 1; : : : ; n,

V has no tuples of the form v(�x0i; �y
0
i;�). Furthermore, in this situation, V is not a�ected

by U . 2

Proof:

IF: No V -tuples depend on any r(�xi; �yi). Thus, removal of all the r(�xi; �yi) does not

a�ect V .
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ONLY-IF: Proof by constructing counterexamples very similar to the case of single

deletions.

3.2 Insertions

In the previous section, the problem of view self-maintenance under deletions has a solu-

tion that is simple to characterize: for views de�ned by v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z)

and under the deletion of r(�a;�b), the solution can be expressed independently of how the

variables are distributed among the subgoals in S( �Y ; �Z).

By contrast, as will be clearer in a moment, the solution to the problem under insertions

cannot be expressed independently of the internal structure of S( �Y ; �Z). The following

example illustrates this point.

EXAMPLE 3.2.1 Consider the following two di�erent view de�nitions:

Q1 : v(X;Y ) :{ r(X;Y ) & t(X;Y )

Q2 : v(X;Y ) :{ r(X;Y ) & t1(X) & t2(Y ):

Consider the insertion of r(a; b) and the problem of maintaining a view V de�ned by either

Q1 or Q2. One can easily verify that while V is self-maintainable under the insertion

if and only if V (a; b) holds in the �rst case, this condition is no longer necessary for self-

maintainability of V in the second case. In fact, it is not di�cult to verify that in the second

case, a necessary and su�cient condition for V 's self-maintainability under the insertion is

that V (a;�) ^ V (�; b) holds. The latter condition strictly subsumes the former. 2

This example suggests that in order to express the solution to the self-maintenance prob-

lem under insertions, we need some way to characterize syntactically the internal structure

of S( �Y ; �Z).

In this section, we �rst de�ne the concept of subgoal partitioning, a concept that is

adequate to capture the structure of the view de�nition for the purpose solving the self-

maintenance problem. We then use the concept to present the solution for the special

case where all variables are exposed. This solution extends to the general case where all

join variables are exposed. The case where some join variables hidden is considered next.

Finally, we consider the problem of self-maintenance under multiple insertions into a single

base relation.

3.2.1 Subgoal Partitioning

The concept of subgoal partitioning will be applied to organize into groups the subgoals in

the body of a view de�nition with nonupdated relations. But, regardless of the use context,

the concept can be de�ned as follows.

De�nition 3.2.1 (Subgoal Partitioning) Let S( �U ) be a set of subgoals with distinct

predicates, where �U represents the set of variables used in the subgoals. Let �V be a subset
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p1
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PART (fp1; p2; p3; p4g; fTg)

p2

PART (fp1; p2; p3; p4g; fZ; Tg)

p1

p1

p3 p4

p3 p4p2

Figure 3.4: Examples of subgoal partitioning.

of �U . We de�ne PART(S( �U); �V ) to be the �nest partition of S( �U) into groups S1( �U1),

S2( �U 2), : : :, such that no two groups share some �V -variables. 2

We can equivalently de�ne PART(S( �U ); �V ) as follows. Consider a graph whose nodes

correspond to the subgoals in S( �U) and where two nodes are connected if the corresponding

subgoals share some �V -variable. Then the connected components in the graph correspond

to the groups S1( �U1), S2( �U 2), : : :.

EXAMPLE 3.2.2 Consider the set S of subgoals:

p1(U;Z); p2(Y;Z); p3(Z; T ); p4(W;T )

PART(S; fZ; Tg) consists of a single group that includes all the subgoals, since a group that

contains p3(Z; T ) shares either Z or T with any other subgoal. By contrast, PART(S; fTg)

consists of the three groups fp1(U;Z)g , fp2(Y;Z)g , and fp3(Z; T ); p4(W;T )g. Figure 3.4

illustrates these two cases in a connection hypergraph notation. In Figure 3.4, the variables

in the second parameter of PART(:; :) are shown in boldface. These variables behave like

glue that holds the subgoals together while we are trying to split them apart. 2

Algorithm for computing PART(S( �U ); �V )

There is a simple one-pass algorithm that computes the groups in PART(S( �U ); �V ). Scan the

given list S of subgoals and consider each subgoal in turn. If the subgoal has no �V -variable,

assign it to a new group. Otherwise, look for an existing group that shares some �V -variable

with the subgoal. If none can be found, assign the subgoal to a new group. Otherwise,

merge all such groups and assign the subgoal to the result.

Partitioning the subgoals that use nonupdated relations

Consider a view V de�ned by
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v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z)

where r is the updated relation and S( �Y ; �Z) represents the subgoals that use nonupdated

relations. We are mainly interested in partitioning the latter subgoals as follows:

PART(S( �Y ; �Z); �Z):

Let us �rst introduce some notation we will be using to describe the groups in the

partition. PART(S( �Y ; �Z); �Z) partitions S( �Y ; �Z) into groups of subgoals. We use g to

denote a particular group, �Y g to denote the �Y -variables used in group g, and �Zg to denote

the �Z-variables used in group g. The set of subgoals in group g is written as Sg( �Y g; �Zg).

The following properties of PART(S( �Y ; �Z); �Z) may be obvious to the reader. We em-

phasize them here because we will be using them in showing the results we present later.

� No two groups share any �Z-variable. Consequently, given a constant �b (of the same

arity as �Y ), we can always decompose the query

f�z : S(�b; �z)g

into independent queries, one for each group g, as follows:

f�zg : Sg(�bg; �zg)g

where �bg denotes the �Y g components of �b, and �zg denotes the �Zg components of �z.

� Any group having no �Z-variables consists of a single subgoal.

� Any group having some �Z-variables consists of subgoals that are all \connected" by
�Z-variables. Consequently, suppose a database instance contains a set T of tuples, one

tuple for each nonupdated relation , that satis�es S( �Y ; �Z). Suppose the �Z components

in T 's tuples are unique, i.e., they do not appear anywhere else in the database

instance. Then if the satisfaction of S( �Y ; �Z) involves some tuple from T , it will

involve all tuples from T .

Referring to the generic view de�nition (3.1), the next three subsections consider the

following three nonoverlapping cases respectively:

� All join variables are exposed: �Y
0
= �Y .

� No Group has both Hidden Join and Exposed Private Variables: �Y
0
� �Y and for

every group g in PART(S( �Y ; �Z); �Z), either �Y g �
�Y
0
or �Zg \

�Z
0
= ;.

� Some Group has both Hidden Join and Exposed Private Variables: �Y
0
� �Y and there

is a group g in PART(S( �Y ; �Z); �Z) such that either �Y g 6�
�Y
0
and �Zg \

�Z
0
6= ;.
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3.2.2 All Join Variables Exposed

Theorem 3.2.1 Let view V be de�ned by v( �X
0
; �Y ; �Z

0
) :{ r( �X; �Y ); S( �Y ; �Z), where �X

0
� �X

and �Z
0
� �Z. V is self-maintainable under the insertion of r(�a;�b) if and only if the following

holds: ^
g2PART(S( �Y ; �Z); �Z)

(9 �Y )V (�; �Y ;�) ^ �Y = �Yg
�b (3.2)

To maintain V (when it is self-maintainable), insert all tuples (�a0;�b; �z0) where �z0g, the
�Zg

components of �z0, is obtained from the query

f�z0g j (9
�Y ; �Z

0
)V (�; �Y ; �Z

0
) ^ �Y = �Yg

�b ^ �Z
0
= �Zg

�z0gg

2

Proof:

Let us use
V
g �g as a shorthand for condition (3.2).

IF: Assume that condition (3.2) holds. Let D be an arbitrary database instance consis-

tent with V . We need to show that Q(D [ r(�a;�b)) is independent of D.

Q(D [ r(�a;�b))

= Q(D) [ f(�a0;�b; �z0) j S(�b; �z0) 2 Dg

= V [ f(�a0;�b)g � f(�z0) j
V
g2PART(S( �Y ; �Z); �Z) Sg(

�bg; �zg) 2 Dg

For each group g, we now show that f�z0g j Sg(
�bg; �zg) 2 Dg does not depend on D. The key

is to show the following containment:

f�z0g j Sg(
�bg; �zg) 2 Dg � f�z0g j (9

�Y ; �Z
0
)V (�; �Y ; �Z

0
) ^ �Y = �Yg

�b ^ �Z
0
= �Zg

�z0gg

Since �g holds, V has some tuple (�x0; �y; �t0), such that �y =�Y g

�b. SinceD is consistent with

V , D must contain some set T of tuples r(�x0�; �y) and Sh(�yh; �t
0

h�), where Sh(
�Y h; �Zh) denotes

the set of subgoals in S other than those in Sg, �x
0� denotes some extension of �x0 to the

hidden components in �X , and �t0h� denotes some extension of �t0h to the hidden components in
�Zh. Then, any tuples Sg(�bg; �z

0
g�) would have joined with T to derive a V -tuple that agrees

with both �b over �Y g and �z0g over
�Z
0

g, as depicted in Table 3.3.

Conversely, any V -tuple (�x0; �y; �z0g�) such that �y = �Yg
�b implies the presence in D of some

tuples Sg(�bg; �z
0
g�). In other words, the inverse containment also holds:

f�z0g j (9
�Y �Z

0
)[V (�; �Y ; �Z

0
) ^ �Y = �Yg

�b ^ �Z
0
= �Zg

�z0g]g � f�z0g j Sg(
�bg; �zg) 2 Dg

Thus, we have shown not only that f�z0g j Sg(
�bg; �zg) 2 Dg does not depend on D, but

also that we can rewrite Q(D [ r(�a;�b)) as:

Q(D [ r(�a;�b))

= V [ f(�a0;�b; �z0) j
V
g2PART(S( �Y ; �Z); �Z)(9

�Y ; �Z
0
)V (�; �Y ; �Z

0
) ^ �Y = �Yg

�b ^ �Z
0
= �Zg

�z0gg
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v( �X
0
; �Y ; �Z

0
) r( �X; �Y ) Sh( �Y h; �Zh) Sg( �Y g; �Zg)

...
...

...
...

�x0; �y; �t0 �x0�; �y �yh; �t
0

h�
�bg; �t

0

g�

V
...

...
...

...

�x0; �y; �z0gj�t
0

h

...
... �bg; �z

0
g�

...
...

...
...

Table 3.3: View exposing �z0g for any Sg(
�bg; �z

0
g�) in D.

which tells us precisely how to compute the set of tuples to be inserted into the view in

order to keep it up to date.

ONLY-IF:

Assume condition (3.2) is false. We need to construct two database instances D1 and

D2 that are both consistent with V but such that Q(D1 [ r(�a;�b)) 6= Q(D2 [ r(�a;�b)).

For D1, we use the canonical database instance, which we know is consistent with V .

To construct D2, we add to D1 a set � of new tuples (i.e., tuples not already in D1)

as follows. Since condition (3.2) is not satis�ed, some �g's are false. Then new tuples are

included in � only for those groups g such that �g is false. For each such group g, the

following speci�es how new tuples are added:

Type A If the group has no private variable (i.e. �Zg = ;), it consists of a single subgoal, say

Sg( �Y g). It is not di�cult to see that by construction of the canonical instance, D1

could not possibly contain Sg(�bg). Therefore we include Sg(�bg) in �.

Type B If the group has some private variable (i.e. �Zg 6= ;), Consider Sg(�bg; �z
new
g ) where

�znewg
2 is a vector of new constants with the same arity as �Zg. Since every atom

in Sg(�bg; �z
new
g ) contains a new constant, it cannot be in D1. We therefore include

Sg(�bg; �z
new
g ) in �.

This construction of � is illustrated in Table 3.4.

Now that we have speci�ed D2, we need to verify that it is indeed consistent with V .

Since D1 � D2 and Q is monotonic, we only need to make sure that Q cannot generate any

new tuple when � is added to D1. Any new tuple Q generates must use some tuple t 2 �

which falls into one of the two cases:

� Group g is of type A: t uses �bg for its �Y g components, but r has no tuples that agree

with �b over �Y g (recall this is a consequence of �g false). Thus, using t, Q cannot

generate any V -tuple.

2In the remainder of this chapter, we will use the same convention that �znewg denotes a vector of constants

that appear nowhere else.
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g of type A g of type B g where

�g false �g false �g true

D1 Sg(�bg) is

absent.

Some

Sg(�bg; �zg)

present

� Add Sg(�bg) Add

Sg(�bg; �z
new
g )

No tuples

added.

Table 3.4: Counterexample database D2 = D1 [� in the proof of Theorem 3.2.1.

� Group g is of type B: using some tuple t from Sg(�bg; �z
new
g ) forces us to use all tuples

from Sg(�bg; �z
new
g ). But r has no tuples that agree with �b over �Y g. So again, using t,

Q cannot generate any V -tuple.

Finally, to verify that Q(D1 [ r(�a;�b)) 6= Q(D2 [ r(�a;�b)), we need to �nd a tuple in

Q(D2[ r(�a;�b)) that is not in Q(D1[ r(�a;�b)). Consider the tuple t
0 that results from joining

the following tuples from Q(D2 [ r(�a;�b)):

� r(�a;�b),

� All tuples from �,

� For each group g such that �g holds, there is some value �zg that satis�es Sg(�bg; �zg).

We use all the tuples in Sg(�bg; �zg). Note that these tuples are in both D1 and D2.

Let g be a group such that �g is false.

� If some private variables in g are exposed, then t0 cannot be in Q(D1 [ r(�a;�b)) since

the �Zg components of t0 are new constants that do not occur anywhere in D1.

� If all private variables in g are hidden, then D1 cannot possibly contain Sg(�bg;�)

since �g is false. And since t0 agrees with �b over the �Y g components, t0 cannot be in

Q(D1 [ r(�a;�b)).

EXAMPLE 3.2.3 Consider the view de�nition

v(U; Y;W;Z) :{ r(X;U; Y;W ) & p1(U; Y ) & p2(Y;Z) & p3(W;Z) & p4(T )

and consider the insertion of r(x; a; b; c). In this view de�nition, the join variables U ,Y ,W

all appear in the head. The subgoals with predicates p1, p2, p3, and p4 are partitioned into
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v(U; Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

a; b; c0; z0 a; by t
yy

1

a0; b; c; z00 x1; a
0; b; cz a0; bzz

a00; b; c; z000

Figure 3.5: A self-maintainable view instance from Example 3.2.3.

.

three groups: fp1(U; Y )g, fp2(Y;Z); p3(W;Z)g, and fp4(T )g. Applying Theorem 3.2.1, a

given instance V is self-maintainable under the insertion if and only if:

V (a; b;�;�) ^ V (�; b; c;�) ^ V (����)

Note that the last conjunct, which says V must be nonempty, can be dropped since it is

implied by the other two conjuncts. To maintain an instance V that is self-maintainable,

insert the following tuples:

f(a; b; c; z) j V (�; b; c; z)g

Let us illustrate how things work with two instances of V .

First, consider an instance of V that has tuples of both forms (a; b;�;�) and (�; b; c;�),

as shown in Figure 3.5.

In Figure 3.5, the �rst column represents the tuples in the instance of V . The remaining

columns represent what can be inferred about the base relations R, P1, P2, P3, and P4. Note

that the subscripted symbols, such as x1 and t1, represent constants that exist but whose

value is not known exactly. We only show the minimum amount of information inferred

that is su�cient to determine the required insertions to V . To see how we can answer the

following query unambiguously:

Find all Z: p1(a; b) ^ p2(b; Z) ^ p3(c; Z) ^ p4(�)

we use y and yy from Figure 3.5 to satisfy the �rst and last conjuncts. Furthermore, any

tuples that satisfy the second and third conjuncts would have joined with z, zz and yy to

derive the V -tuple (a0; b; c; Z). Conversely, the presence of any V -tuple (�; b; c; Z) implies

the presence of tuples in relations P2 and P3 that satisfy the second and third conjuncts.

Thus, the following query can be used to exactly determine the required insertions to V :

Find all Z: v(�; b; c; Z)

In other words, the view instance given in Figure 3.5 is self-maintainable under the insertion

of r(x; a; b; c) and to maintain V , insert tuples (a; b; c; z00) and (a; b; c; z000).

We now consider another instance of V that has tuples of the form (a; b;�;�) but not

(�; b; c;�), as shown in Figure 3.6, where the �rst table shows a database instance D1

and the view, before and after the insertion, and the second table shows another database

instance D2 and the view, before and after the insertion.
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v(U; Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

a; b; c0; z x1; a; b; c
0 a; b b; z c0; z t1

Nothing added. Add x; a; b; c

Canonical database D1.

v(U; Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

a; b; c0; z x1; a; b; c
0 a; b b; z c0; z t1

b; z1 c; z1
a; b; c; z1 added. Add x; a; b; c

Database instance D2 derives di�erently from D1 after the insertion.

Figure 3.6: A non-self-maintainable view instance from Example 3.2.3.

.

The base instances D1 and D2 are a counterexample showing that the view instance is

not self-maintainable under the insertion of r(x; a; b; c). Even though there may be other

counterexamples, we choose this one to follow the general construction method presented

in the proof. In particular, D1 is the canonical database, and D2 is obtained by adding

to D1 the tuples p2(b; z1) and p3(c; z1), which correspond to the group with the missing

v(�; b; c;�), as Table 3.4 shows. 2

3.2.3 No Group has both Hidden Join and Exposed Private Variables

Referring to the generic view de�nition (3.1), this subsection deals with one of the two cases

where �Y
0
� �Y . To emphasize the fact that �Y

0
is a strict subset of �Y in this subsection, we

will use �Y
00
instead of �Y

0
.

Theorem 3.2.2 Let view V be de�ned by v( �X
0
; �Y

00
; �Z

0
) :{ r( �X; �Y ); S( �Y ; �Z), where �X

0
�

�X, �Y
00
� �Y , and �Z

0
� �Z, and where no group in PART(S( �Y ; �Z); �Z) has both hidden join

variables and exposed private variables. Then V is self-maintainable under the insertion of

r(�a;�b) if and only if V has some tuple (�a0;�b
00
;�). Furthermore, in this situation, V is not

a�ected by the insertion of r(�a;�b). 2

Proof:

When some join variables are hidden, it is useful to classify each group g in

PART(S( �Y ; �Z); �Z) according to whether or not

� It has private variables: �Zg = ;.

� All its private variables are hidden: �Z
0

g = ; (where �Z
0

g denotes
�Zg \

�Z
0
).
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Type of group g Syntactic characterization

A1
�Zg = ;, �Y g 6= ;, �Y g 6�

�Y
00

A2
�Zg = ;, �Y g 6= ;, �Y g �

�Y
00

AB �Y g = ;

B1
�Zg 6= ;, �Y g 6= ;, �Z

0

g 6= ;, �Y g 6�
�Y
00

B2
�Zg 6= ;, �Y g 6= ;, �Z

0

g 6= ;, �Y g �
�Y
00

B3
�Zg 6= ;, �Y g 6= ;, �Z

0

g = ;, �Y g 6�
�Y
00

B4
�Zg 6= ;, �Y g 6= ; �Z

0

g = ;, �Y g �
�Y
00

Table 3.5: Group types for a view de�nition with hidden join variables.

� It has join variables: �Y g = ;.

� All its join variables are exposed: �Y g �
�Y
00
.

Table 3.5 shows the classi�cation of groups into seven types: A1, A2, AB, B1, B2, B3, or

B4. This classi�cation will be used later in the proofs.

In this proof, since no group has both hidden join variables (i.e., �Y g 6�
�Y
00
) and exposed

private variables (i.e., �Z
0

g 6= ;), we will not be using type B1.

IF: Assume V has some (�a0;�b
00
;�) tuple. Let D be an arbitrary database instance

consistent with V . We need to show that Q(D [ r(�a;�b)) does not depend on D.

Q(D [ r(�a;�b))

= Q(D) [ f(�a0;�b
00
; �z0) j S(�b; �z) 2 Dg

= V [ f(�a0;�b
00
)g � f(z0) j

V
g Sg(

�bg; �zg) 2 Dg

We observe that only groups of type B2 or AB can contribute any value to the exposed
�Z-variables, since �Z

0

g = ; for all other groups g. To reect this observation, let G denote

all the groups of type B2 or AB, and H the remaining groups. SG( �Y G; �ZG) denotes the set

of subgoals in G, and SH( �Y H ; �ZH) the remaining subgoals. Note that �Z
0
� �ZG, �Y G �

�Y
00
,

and �ZH \ �Z
0
= ;. We then rewrite Q(D [ r(�a;�b)) as:

V [ f(�a0;�b
00
)g � f(�z0) j SG(�bG; �zG) 2 Dg � f() j SH(�bH ; �zH) 2 Dg

The last factor in the cross-product represents a condition (boolean query) that can be

either true or false, depending on the actual instance of D. However, it does not matter

whether the condition is true or false, since we will show that the following is contained in

V , and hence that Q(D [ r(�a;�b)) = V , regardless of D:

f(�a0;�b
00
)g � f(�z0) j SG(�bG; �zG) 2 Dg (3.3)

In fact, since V has some (�a0;�b
00
;�) tuple by hypothesis, this tuple must be derived from

some set of tuples in D, each of which agrees with �b
00
. Call this set T . We claim that any
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v( �X
0
; �Y

00
; �Z

0
) r( �X; �Y ) SH( �Y H ; �ZH) SG( �Y G; �ZG)

...
...

...
...

�a0;�b
00
; �t0 �a0�;�b

00
+ �b

00

H+; �t
0

H�
�b
00

G; �t
0

G�

V
...

...
...

...

�a0;�b
00
; �z0Gj�t

0

H

...
... �b

00

G; �z
0
G�

...
...

...
...

Table 3.6: View exposing �z0G for any SG(�bG; �z
0
G�) in D.

set of tuples SG(�bG; �zG) in D would join with T to derive a V -tuple (�a0;�b
00
; �z0), where �z0

agrees with all the �zg's. This situation is depicted in Table 3.6.

In other words, the following containment holds:

f(�z0) j SG(�bG; �zG) 2 Dg � f(�z0) j V (�a0;�b
00
; �z0)g

and consequently, (3.3) is contained in V .

We conclude that Q(D [ r(�a;�b)) = V , and Q(D [ r(�a;�b)) is independent of D. View

V is self-maintainable under the insertion of r(�a;�b) simply because no change is needed to

bring it up to date.

ONLY-IF: Assume V has no tuples of the form (�a0;�b
00
;�). We need to construct two

database instances D1 and D2 that are both consistent with V prior to inserting r(�a;�b) but

that derive di�erently after the insertion.

We can assume V 6= ;, since otherwise, a trivial counterexample can be constructed.

Let D1 be the canonical database. D1 is consistent with V . Furthermore, since �Y
00
� �Y ,

D1 has no S(�b;�). As a consequence, the newly inserted r(�a;�b) cannot join with S, and

therefore Q(D1 [ r(�a;�b)) = Q(D1).

To construct D2, a set � of new tuples is added to D1. � is speci�ed in Table 3.7.

Note that type B1 is omitted since there are no groups of this type, as mentioned at the

beginning of the proof.

To show that D2 is consistent with V , we show that no tuple in Q(D2) can be derived

using some tuple t 2 �. The following considers all possible cases tuple t can be in:

� Type A1. D1 has no r(�;��bg�) since �Y g is not completely exposed. Therefore t

cannot join with any tuple from r.

� Type A2. D1 has no r(�;��bg�) since V has no (�;��bg�;�). Therefore t cannot

join with any tuple from r.

� Type B2. D1 has no r(�;��bg�) since V has no (�;��bg�;�). Using any tuple t from

Sg(�bg; �z
new
g ) forces all tuples from Sg(�bg; �z

new
g ) to be used. So Sg generates exactly the

tuple (�bg; �z
new
g ), which cannot join with any tuple from r.
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Type A1 Type A2 Type AB

D1 Sg(�bg) absent Some Sg(�) already present

� Add Sg(�bg) Add Sg(�bg) if no V (�;��bg�;�) No tuples added

Type B2 Type B3 Type B4

D1

� Add Sg(�bg; �z
new
g ) Add Sg(�bg; �z

new
g ) Add Sg(�bg; �z

new
g )

if no V (�;��bg�;�) if no V (�;��bg�;�)

Table 3.7: Counterexample database D2 = D1 [� in the proof of Theorem 3.2.2.

� Type B3. D1 has no r(�;��bg�) since �Y g is not completely exposed. Using any tuple

t from Sg(�bg; �z
new
g ) forces all tuples from Sg(�bg; �z

new
g ) to be used. So Sg generates

exactly the tuple (�bg; �z
new
g ), which cannot join with any tuple from r.

� Type B4: same arguments as for type B2.

Finally, to show that D1 and D2 derive di�erent views after the insertion of r(�a;�b), we

will �nd a tuple t0 2 Q(D2 [ r(�a;�b)) that is not in V . Consider the tuple t0 = (�a0;�b
00
; �z0)

derived by joining the following tuples from Q(D2 [ r(�a;�b)):

� r(�a;�b),

� All tuples from �,

� For each group g that contributes no tuples to �, there is some value �zg that satis�es

Sg(�bg; �zg). We use all the tuples in Sg(�ag; �zg). Note that these tuples are in both D1

and D2.

Now, t0 cannot possibly be in V since by hypothesis, V has no tuples of the form

(�a0;�b
00
;�).

EXAMPLE 3.2.4 Consider the view de�nition

v(Y;W;Z) :{ r(X;U; Y;W ) & p1(U; Y ) & p2(Y;Z) & p3(W;Z) & p4(T )

and consider the insertion of r(x; a; b; c). Note this view de�nition is almost similar to

that in Example 3.2.3, with the only exception that the join variable U is projected out

of the head. The nonupdated subgoals are partitioned into three groups: fp1(U; Y )g,

fp2(Y;Z); p3(W;Z)g, and fp4(T )g. The �rst group has a hidden join variable (namely

U), but has no private variables. In the second group, all the join variables are exposed

(namely Y and W ). The third group has no join variables. Applying Theorem 3.2.2, a

given instance V is self-maintainable under the insertion if and only if:

V (b; c;�)
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v(Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

b; c0; z0

b; c; z00 x1; a1; b; c
y a1; b

yy t
yyy

1

b; c; z000

Figure 3.7: A self-maintainable view instance from Example 3.2.4.

.

and in this situation, V is not a�ected by the insertion.

First, consider an instance of V that has tuples of the form (b; c;�), as shown in Fig-

ure 3.7. To determine the required insertions to V , we consider the following query:

Find all Z: p1(a; b) ^ p2(b; Z) ^ p3(c; Z) ^ p4(�)

Like the self-maintainable case in Example 3.2.3, the last conjunct is satis�ed by y y y (that

is, the presence of tuple p4(t1)) from Figure 3.7. And also like Example 3.2.3, all the values

of Z that satisfy the second and third conjuncts can be found in the view instance, namely

z00 andz000. But unlike Example 3.2.3, we cannot determine whether the �rst conjunct is

satis�ed or not. Relation P1 might or might not contain (a; b), and both cases are consistent

with the given view instance. Fortunately, this does not matter because in either case, we

are not inserting anything new into V : if (a; b) is not in P1, we are not inserting anything

into V ; if (a; b) is in P1, we insert into V at most (b; c; z00) and (b; c; z000); but these tuples are

already in V . Therefore, the view instance shown in Figure 3.7 is self-maintainable under

the insertion of r(x; a; b; c) simply because the view is not a�ected by the insertion.

We now consider another instance of V that does not have tuples of the form (b; c;�),

as shown in Figure 3.8.

This counterexample mirrors the general construction method presented in the proof.

In particular, the three groups fp1(U; Y )g, fp2(Y;Z); p3(W;Z)g, and fp4(T )g are of type

A1, B2, and AB respectively. According to Table 3.7, D2 is obtained from D1 by adding

only tuples for groups of type A1 (namely r(a; b)), and tuples for groups of type B2 (namely

p2(b; z1) and p3(c; z1)). 2

3.2.4 Some Group has both Hidden Join and Exposed Private Variables

Referring to the generic view de�nition (3.1), this subsection deals with one of the two cases

where �Y
0
� �Y . To emphasize the fact that �Y

0
is a strict subset of �Y in this subsection, we

will use �Y
00
instead of �Y

0
.

Theorem 3.2.3 Let view V be de�ned by v( �X
0
; �Y

00
; �Z

0
) :{ r( �X; �Y ); S( �Y ; �Z), where �X

0
�

�X, �Y
00
� �Y , and �Z

0
� �Z, and where some group in PART(S( �Y ; �Z); �Z) has both hidden join

variables and exposed private variables. Then V is not self-maintainable under the insertion

of r(�a;�b). 2
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v(Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

b; c0; z x1; a1; b; c
0 a1; b b; z c0; z t1

Nothing added. Add x; a; b; c

Canonical database D1.

v(Y;W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

b; c0; z x1; a1; b; c
0 a1; b b; z c0; z t1

a; b b; z1 c; z1
b; c; z1 added. Add x; a; b; c

Database instance D2 derives di�erently from D1 after the insertion.

Figure 3.8: A non-self-maintainable view instance from Example 3.2.4.

.

Proof:

We need to show we can always �nd two database instances D1 and D2 that are both

consistent with V before the insertion of r(�a;�b) but that derive di�erently after the insertion.

We can assume V 6= ;, since otherwise a trivial counterexample can be constructed.

Let D1 be the canonical database. D1 is consistent with V . Since �Y
00
� �Y , D1 has no

r(�;�b) and no S(�b;�). As a consequence, the newly inserted r(�a;�b) cannot join with S,

and therefore Q(D1 [ r(�a;�b)) = Q(D1).

To construct D2, a set � of new tuples is added to D1. � is speci�ed in Table 3.8.

To show that D2 is consistent with V , we show that no tuple in Q(D2) can be derived

using some tuple t 2 �. The following considers all possible cases tuple t can be in:

Type A1 Type A2 Type AB

D1 Sg(�bg) absent Some Sg(�) already present

� Add Sg(�bg) Add Sg(�bg) if no V (�;��bg�;�) No tuples added

Type B1 Type B2 Type B3 Type B4

D1

� Add Sg(�bg; �z
new
g ) Add Sg(�bg; �z

new
g ) Add Sg(�bg; �z

new
g ) Add Sg(�bg; �z

new
g )

if no V (�;��bg�;�) if no V (�;��bg�;�)

Table 3.8: Counterexample database D2 = D1 [� in the proof of Theorem 3.2.3.
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� Type A1. D1 has no r(�;��bg�) since �Y g is not completely exposed. Therefore t

cannot join with any tuple from r.

� Type A2. D1 has no r(�;��bg�) since V has no (�;��bg�;�). Therefore t cannot

join with any tuple from r.

� Type B1. D1 has no r(�;��bg�) since �Y g is not completely exposed. Using any tuple

t from Sg(�bg; �z
new
g ) forces all tuples from Sg(�bg; �z

new
g ) to be used. So Sg generates

exactly the tuple (�bg; �z
new
g ) which cannot join with any tuple from r.

� Type B2. D1 has no r(�;��bg�) since V has no (�;��bg�;�). Using any tuple t from

Sg(�bg; �z
new
g ) forces all tuples from Sg(�bg; �z

new
g ) to be used. So Sg generates exactly the

tuple (�bg; �z
new
g ) which cannot join with any tuple from r.

� Type B3: same arguments as for type B1.

� Type B4: same arguments as for type B2.

Finally, to show that D1 and D2 derive di�erent views after the insertion of r(�a;�b), we

will �nd a tuple t0 2 Q(D2 [ r(�a;�b)) that is not in V . Consider the tuple t0 = (�a0;�b
00
; �z0)

derived by joining the following tuples from Q(D2 [ r(�a;�b)):

� r(�a;�b),

� All the new facts from � (there is a least one such fact, since there is at least a group

of type B1),

� For each group g that contributes no tuples to �, there is some value �zg that satis�es

Sg(�bg; �zg). We use all the tuples in Sg(�bg; �zg). Note that these tuples are in both D1

and D2.

Now, t0 cannot possibly be in V since it is derived from some tuples added under type

B1, and hence must have components with new values (recall that a group of type B1 has

some �Z-variables exposed).

EXAMPLE 3.2.5 Consider the view de�nition

v(W;Z) :{ r(X;U; Y;W ) & p1(U; Y ) & p2(Y;Z) & p3(W;Z) & p4(T )

and consider the insertion of r(x; a; b; c). Note this view de�nition is almost similar to that

in Example 3.2.4, with the only exception that an additional join variable, Y , is projected

out of the head. The nonupdated subgoals are partitioned into three groups: fp1(U; Y )g,

fp2(Y;Z); p3(W;Z)g, and fp4(T )g. The second group has a hidden join variable (namely

Y ) but also an exposed private variable (namely Z). Applying Theorem 3.2.3, no instance

of V is self-maintainable under the insertion.

In the following, we explain why updating view V is inherently ambiguous, no matter

what its contents are.
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v(W;Z) r(X;U; Y;W ) p1(U; Y ) p2(Y;Z) p3(W;Z) p4(T )

...
...

...
...

...
...

V w; z D1 x0; u0; y0; w u0; y0 y0; z w; z t0

...
...

...
...

...
...

� a; b b; z0 c; z0

Figure 3.9: No instance of view as de�ned in Example 3.2.5 is self-maintainable under the

insertion of r(x; a; b; c).

Figure 3.9 shows a counterexample for an arbitrary view instance. In the �gure, x0,

u0, y0, and t0 represent new symbols that are created for each line, and z0 is another new

symbol. Since no R-tuple can have b in its Y component, � cannot contribute to the view,

and D2 is consistent with V . Furthermore, adding r(x; a; b; c) to D1 does not a�ect the

view since D1 has no p1(a; b). But adding r(x; a; b; c) to D2 contributes at least the tuple

(c; z0) to V . Thus, we can always �nd a counterexample, no matter what the contents of V

are and no matter what tuple is inserted into R.

Note that the counterexample is based on the general construction method presented

in the proof. In particular, the three groups fp1(U; Y )g, fp2(Y;Z); p3(W;Z)g, and fp4(T )g

are of type A1, B1, and AB respectively. According to Table 3.9, D2 is obtained from D1

by only adding tuples for groups of type A1 (namely p1(a; b)), and tuples for groups of type

B1 (namely p2(b; z
0) and p3(c; z

0)). 2

3.2.5 Multiple Insertions

Theorem 3.2.4 Let view V be de�ned by v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z), where �X

0
�

�X, �Y
0
� �Y , and �Z

0
� �Z. Let U be a base update that consists of the insertion of tuples

r(�x1; �y1); : : : ; r(�xn; �yn). Then V is self-maintainable under U if and only if for every i =

1; : : : ; n, V is self-maintainable under the insertion of r(�xi; �yi). Furthermore, if V is self-

maintainable under U , to maintain V under U , maintain V under the insertion of r(�xi; �yi)

for each i. 2

Proof:

Let Q denote the conjunctive query de�ning view V . Recall that we assume no predicate

is repeated in Q.

IF: If V is self-maintainable under the insertion of r(�xi; �yi), then Q(D [ r(�xi; �yi)) does

not depend on D. Since Q has only one subgoal with predicate r (that is, r does not occur

in S), it follows that Q(D[U) =
S
iQ(D[r(�xi; �yi)). Therefore, Q(D[U) does not depend

on D.

ONLY-IF: We need to consider two cases: the case where all join variables are exposed,

and the case where some join variables are hidden.
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In the �rst case, the view is de�ned by v( �X
0
; �Y ; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z). Suppose V

is not self-maintainable under the insertion of r(�xk; �yk), for some k. Then there must be

two instances D1 and D2, both consistent with V , and some value �z0 such that (�x0k; �yk; �z
0)

is in Q(D1 [ r(�xk; �yk)) but not in Q(D2 [ r(�xk; �yk)). There is no �z that extends �z0 to the

remaining components in �Z such that S(�yk; �z) is in Q(D2 [ r(�xk; �yk)). This fact remains

true inD2[U , since U only a�ects relation R. Therefore (�x0k; �yk; �z
0) cannot be in Q(D2[U),

while it is still in Q(D1 [ U). So Q(D1 [ U) 6= Q(D2 [ U).

In the second case, we prove non-self-maintainability by constructing a counterexample

in a manner analogous to the case of single insertions.

3.3 Mixing Insertions with Deletions

In this section, we consider updates that consist of both insertions and deletions to the

same base relations. We de�ne an update as a set of tuples to be inserted and another set

of tuples to be deleted. For an update thusly de�ned to be meaningful, we assume that

no tuples get both inserted and deleted. No generality is lost in practice because we can

always convert a sequence of insertions and deletions with the same tuple repeated many

times to a set of insertions and a set of deletions that are disjoint.

So, consider an update U = �+r [ ��r, and assume �+r and ��r are disjoint. Then for

any database D, U(D) is uniquely de�ned and can be written either as (D [ �+r)� ��r or

as (D � ��r) [ �+r.

3.3.1 All Updated Variables Exposed

Theorem 3.3.1 Let view V be de�ned by v( �X; �Y ; �Z
0
) :{ r( �X; �Y ) & S( �Y ; �Z), where �Z

0
�

�Z. Let U be an update that consists of �+r [ ��r. Then V is self-maintainable under U

if and only if it is self-maintainable under �+r, To maintain V , insert tuples according to

maintenance under the insertion of each tuple in �+r, and delete all tuples in V that join

with ��r. The order of deletions and insertions to V is immaterial. 2

Proof:

IF: Assume V is self-maintainable under �+r. To show V is self-maintainable under

U , consider two arbitrary instances D1 and D2 that are consistent with V . Since V is

self-maintainable under �+r, Q(D1 [ �
+r) and Q(D2 [ �

+r) are identical. Let V 0 be this

common view. But any view instance is self-maintainable under ��r, in particular V 0. In

other words, Q((D1 [ �
+r) � ��r) is identical to Q((D2 [ �

+r) � ��r). This situation is

depicted in Figure 3.10.

V 0 is obtained from V by adding tuples according to the maintenance plan for each

and every insertion in �+r. Note that every tuple added to V joins �+r. The �nal view

is obtained from V 0 by deleting all tuples that join with ��r. Since we assume �+r and

��r are disjoint, the set of tuples added to V and the set of tuples deleted from V are also

disjoint. Thus, to determine the �nal view from V , the order of insertions and deletions is

not important.
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V D2D1

D00
2

Q Q

�+r�+r

��r ��r

D0

1 D0

2V 0

=D00
1

Figure 3.10: Self-maintainability under insertions and deletions when all updated variables

are exposed.

ONLY-IF: Let �+r = fr(�x1; �y1); : : : ; r(�xn; �yn)g. Assume V is not self-maintainable

under �+r. Then there are two databases D1 and D2, both consistent with V , and some

k and �z0 such that (�xk; �yk; �z
0) 2 Q(D1 [ �+r) but 62 Q(D2 [ �+r). On the one hand,

(�xk; �yk; �z
0) 2 Q((D1 [ �

+r) � ��r): since the only e�ect ��r has over Q(D1 [ �
+r) is to

delete (�x; �y;�) such that (�x; �y) 2 ��r, and since �+r and ��r are disjoint, (�xk; �yk; �z
0) cannot

be deleted. On the other hand, (�xk; �yk; �z
0) 62 Q((D2 [ �

+r) � ��r), since Q is monotonic.

Thus, Q(U(D1) 6= Q(U(D2).

3.3.2 Some Updated Variables Hidden

Theorem 3.3.2 Let view V be de�ned by v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z), where �X

0
�

�X, �Y
0
� �Y , and �Z

0
� �Z. Further, assume that either �X

0
6= �X or �Y

0
6= �Y . Let U be

an update that consists of �+r [ ��r. Then V is self-maintainable under U if it is self-

maintainable under each of �+r and ��r. 2

Proof:

Assume V is self-maintainable under each of �+r and ��r. To show V is self-maintainable

under U , let D1 and D2 be consistent with V . Since V is self-maintainable under ��r, it

follows from Theorem 3.1.5 that Q(D1 � ��r) = Q(D2 � ��r) = V . And since V is self-

maintainable under �+r, Q((D1��
�r)[�+r) = Q((D2��

�r)[�+r) follows. This situation

is depicted in Figure 3.11.

However, while the converse also holds in certain cases, it does not generally hold, as

stated in the following theorem.

Theorem 3.3.3 Let view V be de�ned by v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z), where �X

0
�

�X, �Y
0
� �Y , and �Z

0
� �Z. Furthermore, either �X

0
6= �X or �Y

0
6= �Y . Let U be an update that

consists of �+r [ ��r. If the projection of �+r over �X
0
and �Y

0
and the projection of ��r
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V D2D1

�+r

Q Q

D0

1 D0

2

=D00
1 D00

2

��r ��r

V

�+r

Figure 3.11: Self-maintainability under insertions and deletions when some updated vari-

ables are hidden.

View V

Tuples inserted Tuples deleted

from V due to ��rto V due to �+r

Figure 3.12: Insertions and deletions have independent e�ects on the view.

over �X
0
and �Y

0
do not share any tuple, then V is self-maintainable under U only if it is

self-maintainable under each of �+r and ��r. However, this implication does not generally

hold if the projections share some tuples. 2

Proof:

Suppose the projection of �+r over �X
0
and �Y

0
and the projection of ��r over �X

0
and

�Y
0
do not share any tuple. Then the e�ect of �+r on the view and the e�ect of ��r on the

view are independent, since any tuple that can be potentially added to the view must agree

with some tuple from �+r over �X
0
and �Y

0
, and any tuple that can be potentially deleted

from the view must agree with some tuple from ��r over �X
0
and �Y

0
. Thus, if V is not

self-maintainable under either �+r or ��r, it cannot be self-maintainable under �+r [ ��r.

This situation is depicted in Figure 3.12.

To show that the implication does not generally hold when the projections have some

tuples in common, we need to �nd a view de�nition, an instance of V , and an instance of

�+r and ��r, such that V is self-maintainable under �+r [ ��r but not self-maintainable

under either �+r or ��r.

We �rst consider a view de�nition that has some hidden join variables:

v(Z) :{ r(X;Y;Z) & s(Y;Z)
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Consider the view instance V = f(c)g, the insertion of r(a0; b; c), and the deletion of r(a; b; c).

V is clearly not self-maintainable under the insertion of r(a0; b; c) (in fact no view instance is

self-maintainable under insertions to R) or the deletion of r(a; b; c). But we claim that V is

self-maintainable under both the insertion and deletion. To see why, consider the following

cases:

� If s(b; c) holds, since the �nal database contains r(a0; b; c), the view is guaranteed to

remain unchanged.

� If s(b; c) does not hold, the database must contain some tuples r(x; y; c) and s(y; c)

where y 6= b. Since the presence of these tuples is not a�ected by the update, the view

is guaranteed to remain unchanged.

We how consider another example that shows that even if all the join variables are

exposed, the implication still does not hold in general. Consider the view de�nition:

v(Y;Z) :{ r(X;Y;Z) & s(Y;Z)

Consider the view instance V = f(b; c)g, the insertion of r(a0; b; c), and the deletion of

r(a; b; c). V is clearly not self-maintainable under the deletion of r(a; b; c). But it is self-

maintainable under both the insertion and deletion:

� On the one hand, we can infer s(b; c) holds.

� On the other hand, the �nal database contains r(a0; b; c). Therefore, the view is

guaranteed to remain unchanged.

3.4 Summary

� View self-maintenance under single insertions and single deletions has a simple so-

lution: self-maintainability tests and self-maintenance expressions are simple queries

whose size is linear in the size of the view de�nition. Table 3.9 summarizes these

results. The runtime of these queries is linear in the size of the view instance. If the

view has the appropriate indexes de�ned, we can even obtain a constant runtime.

� We then studied the problem of view self-maintenance under sets of updates. The

interesting question there is whether or not we loose information if we were to treat

the individual updates separately. We showed that for sets of deletions from a single

relation, sets of insertions into a single relation, and certain sets of insertions and

deletions to a single relation, there is no advantage to treating the updates as a set.

However, we also showed certain sets of insertions and deletions to a single relation

under which a view a self-maintainable, while it is not so under individual insertions

and deletions. In such cases, there is de�nite advantage to treating the updates as
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Case Self-maintainability test Maintenance expression
�X
0
= �X and �Y

0
= �Y TRUE Delete all (�a;�b;�) from V .

�X
0
� �X or �Y

0
� �Y No V (�a0;�b

0
;�). No update needed.

Under the deletion of r(�a;�b).

Case Self-maintainability test Maintenance expression
�Y
0
= �Y

V
g(9

�Y )[V (�; �Y ;�) ^

�Y = �Yg
�b].

Insert (�a0;�b; �z0) where the �Zg-

components of �z0 are obtained

as f�z0g j (9 �Y ; �Z
0
)V (�; �Y ; �Z

0
) ^

�Y = �Yg
�b ^ �Z

0
= �Zg

�z0gg

(8g) �Y g �
�Y
0
_ �Zg \

�Z
0
= ; V (�a0;�b

0
;�). No update needed.

(9g) �Y g 6�
�Y
0
^ �Zg \

�Z
0
6= ; FALSE. Not applicable.

Under the insertion of r(�a;�b).

Table 3.9: Summary of self-maintenance of view v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & S( �Y ; �Z) .

a set. Furthermore, when the set consists of updates across multiple relations, the

bene�t of treating the updates as a set becomes even more obvious, as the following

example shows. Consider a view de�ned by:

v() :{ r(X) & s(X)

and consider the insertion of r(a) and s(a). While the view instance V = ; is clearly

not self-maintainable under either insertion, we can determine the new state of the

view unambiguously when both insertions are considered: V = f()g. We will show

how to deal with arbitrary mixes of insertions and deletions to multiple base relations

in Chapter 5.

� In this chapter, we consider views de�ned by conjunctive queries with no self-joins.

This restriction allows us to �nd e�cient solutions to the view self-maintenance prob-

lem. We are naturally led to wonder whether e�cient solutions exist if we allow

self-joins in the view de�nitions. While we cannot answer this question in general,

we have identi�ed a class of self-joins that admit e�cient solutions, called exposed

self-joins. A self-join is said to be exposed if all subgoals in the self-join use only join

variables that are exposed.

For instance, consider the view de�nition

v(X;Y; T ) :{ r(X;Y; T ) & s(X;Y;X) & s(Y; 1; Y ) & t(X;Z) & u(T;Z)
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and assume r is the updated predicate. Since the subgoals with predicate s only

use variables X and Y which appear in both the head and the r subgoal, the view

de�nition has only exposed self-joins.

The following theorem tells us how to self-maintain, under insertions into a single base

relation, a view de�ned by a conjunctive query where the updated predicate is not

repeated and all of whose self-joins are exposed.

Theorem 3.4.1 Consider a view V de�ned by

v( �X
0
; �Y

0
; �Z

0
) :{ r( �X; �Y ) & M( �U) & S( �V ; �Z):

where �X, �Y , and �Z are disjoint sets of variables, �X
0
� �X, �Y

0
� �Y , �Z

0
� �Z, �U[ �V = �Y ,

�U � �Y
0
, M is a conjunction of subgoals whose predicate is repeated, and S is a

conjunction of subgoals with unique predicates. Consider the insertion of r(�a;�b). Let

us de�ne ��b to be the boolean query

��b :{ M( �U ) & �Y = �b

M( �U ) :{ v( �X
0
; �Y

0
; �Z

0
)

(1) If �Y = �Y
0
, V is self-maintainable under the insertion if and only if:

��b ^
^

g2PART(S( �V ; �Z); �Z)

(9 �Y )V (�; �Y ;�) ^ �Y = �Vg
�b

To maintain V , insert all tuples (�a0;�b; �z0) where �z0g, the
�Zg components of �z0, is

obtained from the query

f�z0g j (9
�Y ; �Z

0
)V (�; �Y ; �Z

0
) ^ �Y = �Vg

�b ^ �Z
0
= �Zg

�z0gg

(2) If no group in S has both hidden join variables and exposed private variables,

then V is self-maintainable under the insertion if and only if:

��b ^ V (�a0;�b
0
;�)

and V is not a�ected by the insertion.

(3) Otherwise, V is not self-maintainable under the insertion.

2

EXAMPLE 3.4.1 Consider a view V de�ned by

v(X;Y; T ) :{ r(X;Y; T ) & s(X;Y;X) & s(Y; 1; Y ) & t(X;Z) & u(T;Z)

and let us insert r(1; 2; 3). Applying Case (1) of Theorem 3.4.1, V is self-maintainable

if and only if v(1;�; 3) ^ �1;2;3 holds, where �1;2;3 is de�ned by the program
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�1;2;3 :{ s(1; 2; 1) & s(2; 1; 2)

s(X;Y;X) :{ v(X;Y; T )

s(Y; 1; Y ) :{ v(X;Y; T )

and rewritten as v(1; 2;�)^[v(2; 1;�)_v(�; 2;�)], which further simpli�es to v(1; 2;�).

In other words, the view self-maintainability test is v(1;�; 3) ^ v(1; 2;�). 2

Thus, for the special class of conjunctive-query views with only exposed self-joins,

the solutions to the view self-maintenance problem are unions of conjunctive queries,

where the subgoals are independent from each other. These queries can be executed in

time linear in the size of the view instance and even constant time if the appropriate

indexes are maintained at the warehouse. Conjunctive-query views with only exposed

self-joins are the largest subclass of CQ views we know how to handle e�ciently. We

will provide solutions to the general case of CQ views in Chapters 5 and 6, which are

unfortunately much less e�cient than the results of this chapter.
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Chapter 4

Exploiting Functional

Dependencies

In Chapter 3, we addressed the strict view self-maintenance problem, that is, the view self-

maintenance problem where no base relations and no base dependencies are used. There,

we avoided using the base relations because their access can be expensive. We may not

have complete knowledge of the base relations, but the next-best form of knowledge that

is often available for free is integrity constraints the relations satisfy. A type of constraints

that is commonly found in database systems is functional dependencies (abbreviated FD's).

The main questions we address in this chapter are whether the use of FD's helps in view

self-maintenance and, if a�rmative, how easily we can derive the solutions.

We begin with a simple example to demonstrate that the use of functional dependencies

does a�ect view self-maintainability. The self-maintainability tests are shown in the example

without full explanation, but will be more formally rederived in later sections. While this

example conveys the salient points of the work, it does not reect the full complexity of the

problem of e�cient view self-maintenance under general FD's.

EXAMPLE 4.0.2 In its new marketing strategy to promote customer loyalty, TMart, our

large retail chain, uses a data warehouse to collect customer purchase information, drawing

on external data sources that may be its own operational databases or may belong to outside

information brokers. The following source relations are used:

� sales(Customer ; Item ;Store) contains sale transactions collected from local branches.

� cust(Customer ;Area ;Bankcard ) contains information about customers' place of resi-

dence and credit cards they possess, and is provided by a credit bureau.

� comp(Rival ; Item;Area) indicates the presence of competing retailers in some geo-

graphic area together with the products they carry. This information resides in a

customized database provided by an outside broker.

77
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A view V , materialized at the warehouse, is de�ned by the query:

v(C;A;B; S; I;R) :{ sales(C; I; S) & cust(C;A;B) & comp(R; I;A)

asking for customers who purchased some merchandise from the chain while the same mer-

chandise can be bought from a competitor that has a presence in their residence area.

A new transaction sales(cindy ; igloo; spring�eld ) is reported in. Since relations cust and

comp can be accessed only for a fee, the question is whether V can be updated without

using these relations at all, that is, whether V is self-maintainable (SM). Suppose for a

moment that we are totally ignorant about these relations; that is, no dependencies are

known to hold among them. In this case, the most general condition that guarantees V to

be SM (ref. Section 3.2) is

v(cindy ;�;�;�; igloo ;�)

denoting the presence of some tuple in the view with the speci�c constants cindy and

igloo in the C and I components respectively. Essentially, the presence of such tuple pre-

vents the \adversary" from inventing a new area x that satis�es both cust(cindy ; x;�) and

comp(�; igloo ; x), thus forcing V 's update to depend on cust and comp by making it include

tuple (cindy ; x;�; spring�eld ; igloo;�).

Now suppose the data source guarantees that Customer ! Area holds in cust . Intu-

itively, if we know cindy 's residence area, the adversary is no longer free to invent a di�erent

residence area for cindy , and the occurrence of both cindy and igloo in the same V tuple

does not seem to be needed to guarantee V 's self-maintainability. Indeed, consider this

particular view instance:

V = f (cindy ; a; b; s; ice ; r) ; (carl ; a; b0; s0; igloo; r0) g

On the one hand, to update V , we need to include at least (cindy ; a; b; spring�eld ; igloo; r0)

in the insertion, since both cust(cindy ; a; b) and comp(r0; igloo ; a) can be inferred to hold.

On the other hand, for any tuple (cindy ; A;B; spring�eld ; igloo; R) to be in V 's update, A

had better be a, or else cindy would have had two di�erent places of residence. Furthermore,

B had better be b, or else cust(cindy ; a; B) would have hold, and V would have contained

(cindy ; a; B; s; ice; r) prior to the update. Similarly, R is identi�ed with r0. Hence, the

required view updates can be determined exactly without knowing the exact content of the

base relations, and condition v(cindy ;�;�;�; igloo ;�) is no longer necessary for the view

to be SM. By ignoring functional dependencies, we have missed opportunities for saving

base data accesses that may be costly. When the FD is taken into consideration, condition

v(cindy ;�;�;�; igloo ;�) can be replaced by the weaker condition

(9A) v(cindy ; A;�;�;�;�) ^ v(�; A;�;�; igloo ;�)

which turns out to be the most general condition for SM given this FD. 2

Example 4.0.2 shows that even simple functional dependencies can a�ect view self-

maintainability. Moreover, we note that self-maintainability conditions under FD's now
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involve joins, which do not appear when no FD's are considered. But how much more

complex can the view self-maintenance solutions get under general functional dependencies?

In this chapter, we consider the view self-maintenance problem for a single view where:

� No base relations are used, but functional dependencies are given.

� The view to maintain is de�ned by a conjunctive query with no self-joins and no

projections.

� Base updates are single insertions.

The rest of this chapter is organized as follows.

Section 4.1, View Self-Maintenance under FD's, makes the de�nition of view self-

maintenance more precise, now that functional dependencies are taken in considera-

tion. In particular, the notion of database consistency is extended and we show that

the canonical database is still consistent under this new notion.

Section 4.2, Rectifying View De�nitions, extends the notion of recti�ed representa-

tion of view de�nitions originally de�ned in Section 2.4. We show that under FD's,

constants and variable repetitions within each subgoal of the view de�nition can be

ignored with no loss of generality.

Section 4.3, Key Concepts, introduces two key concepts that will be used in solving

the problem of view self-maintenance in the presence of functional dependencies:

well-founded DAG, a graph abstraction that captures the e�ect of FD's on self-

maintainability; and subgoal partitioning, a re�nement of a similar concept introduced

in Section 3.2, that takes FD's into consideration.

Section 4.4, Deriving Self-Maintainability Tests for Insertions, shows three situa-

tions where view self-maintainability under an insertion is guaranteed: two conditions

for Forced-Exclusion and a condition for Forced-Exposure. The �rst two conditions

guarantee that the view is not a�ected by the insertion. The third condition guaran-

tees uniqueness of the view's new state and a maintenance expression is given. Most

importantly, we show that together these three conditions completely characterize

view self-maintainability.

Section 4.5, Summary, summarizes the results we obtain for view self-maintenance un-

der insertions in the presence of functional dependencies and suggests possibilities for

further simpli�cations of the solutions.

4.1 View Self-Maintenance under Functional Dependencies

To maintain a materialized view V , we are given:
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� A query Q that de�nes V in term of some database D. Let us emphasize again that

in this chapter, Q is a conjunctive query with the restrictions of no self-joins and no

projections.

� The instance V of the view itself.

� A tuple t to be added to D.

� A set F of functional dependencies that the relations in D satisfy. We use SAT(D;F)

to denote this fact.

We further assume:

� D is consistent with both V and F . This assumption extends the view realizability

assumption introduced in Section 2.3.

� Not only SAT(D;F) holds, but also the insertion does not violate any dependencies

in F . We write this assumption as SAT(D [ ftg;F).

In general, a database D is said to be consistent with V , t, and F if Q(D) = V and

SAT(D [ ftg;F).

De�nition 4.1.1 (Self-Maintainability in the Presence of FD's) View V is said to

be self-maintainable under the insertion of t if Q(D [ ftg) does not depend on D, as long

as D is consistent with V , t, and F . More formally:

(8D1;D2) [ Q(D1) = Q(D2) = V ^ SAT(D1 [ ftg;F) ^ SAT(D2 [ ftg;F)

) Q(D1 [ ftg) = Q(D2 [ ftg)]

2

Recall the notion of canonical database, Q�1(V ), de�ned earlier in Section 2.2. Since

Q is restricted in this chapter to a conjunctive query with no projections, the exact same

de�nition can be used here since it does not depend on functional dependencies. In addition,

the following property, which does relate to functional dependencies, holds for Q�1(V ).

Theorem 4.1.1 Let V be a view de�ned by a conjunctive query Q over some database D.

Let F be a set of functional dependencies that hold in D. Let t be a tuple whose insertion

to D does not violate F . Assume Q has no projection, and let Q�1(V ) be the canonical

database. Then Q�1(V ) is consistent with V , t, and F . 2

Proof: The fact that Q(Q�1(V )) = V follows from Theorem 2.3.1. Furthermore Q�1(V ) is

contained in any database that is consistent with V , and D in particular. Since we assume

D [ ftg satis�es F , it follows that F holds for any subset of D [ ftg, and Q�1(V ) [ ftg in

particular.

The fact that Q�1(V ) is consistent with V , t, and F will be used later in �nding coun-

terexamples for the completeness proof in Section 4.4. Its importance will not be apparent
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until Chapter 5, when we develop a general method to solve the view self-maintenance

problem.

For views de�ned by conjunctive queries with no self-joins and no projections, self-

maintainability can be made simpler if we can ignore certain functional dependencies. In

fact, the following theorem states that FD's on the updated relation can be ignored safely.

In this theorem, we assume that the view de�nition is recti�ed as de�ned in Section 2.4.

Theorem 4.1.2 Let V be a view de�ned by a conjunctive query with no self-joins and no

projections. Let F be a set of functional dependencies that hold in the base relations. Let

t be a tuple to be inserted into some base relation R, and let F 0 be the dependencies in F

over base relations other than R. Under the insertion of t, V is self-maintainable in the

presence of F if and only if it is self-maintainable in the presence of F 0. 2

Proof: We give only an informal proof here. A formal proof can be found later, in Chap-

ter 5. Intuitively, dependencies over R can only be used to exclude certain tuples from

R, based on the inserted tuple which we assume does not violate the dependencies. But

since an instance of V is given, this information on R cannot constrain the possible con-

tents of the nonupdated relations, which are used to determine the required update to V .

Therefore, knowing the dependencies over R does not help determining whether or not V

is self-maintainable.

Note that Theorem 4.1.2 remains valid if we lift the assumption that the view de�nition

is recti�ed. In fact, the next section shows that rectifying the view de�nition does not

a�ect generality. As a corollary, the de�nition of self-maintainability in De�nition 4.1.1 is

equivalent to the following:

(8D1;D2) [Q(D1) = Q(D2) = V ^SAT(D1;F)^SAT(D2;F)) Q(D1[ftg) = Q(D2[ftg)]

where we no longer require D1 and D2 to continue to satisfy F after the insertion.

Theorem 4.1.2 will be used later in this chapter to simplify the representation of func-

tional dependencies in our problem.

4.2 Rectifying View De�nitions

In Section 2.4, we showed that for conjunctive-query views with no self-joins, constants and

variable repetitions within subgoals in the view de�nition play no role in the strict view

self-maintenance problem. In this section, the same observation applies when functional

dependencies are considered. This observation allows us to use the recti�ed representation

for our view de�nition in the view self-maintenance problem.

We �rst extend the recti�ed representation introduced in Section 2.4 to take FD's into

consideration. We then show that no generality is lost if we solve the view self-maintenance

using this recti�ed representation.

De�nition 4.2.1 (Recti�ed Representation in the Presence of FD's) Let view V be

de�ned by conjunctive query Q : H :{ G1 & : : : & Gn, where H is the head with predicate
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v that uses variables �X, and for every i = 1; : : : ; n, Gi is a subgoal with predicate ri that uses

variables �X i. Constant symbols may be used in Q, and within each literal in Q, variables

may occur more than once. Let F be a set of functional dependencies that hold in relations

R1; : : : Rn. The recti�ed representation of (v;Q;F ; r1; : : : ; rn) is (v
0; Q0;F 0; r01; : : : ; r

0
n), where

the view predicate v0, the query Q0, and the FD's F 0 are de�ned as follows:

� View instance V 0 is de�ned in terms of V by: v0( �X) = H.

� View predicate v0 is de�ned by query Q0 : v0( �X) :{ r01(
�X1) & : : : & r0n(

�Xn).

� The set F 0 of FD's that hold in relations R01; : : : R
0
n is constructed as follows. For

every subgoal g in Q, the following rules determine, for every FD �! � 1 (in F) on

the predicate of g, the FD (in F 0) on the predicate for the corresponding g0 in Q0:

Case 1 If � is equated in g to a constant, or if � and some attribute in � are equated in

g, ignore �! �.

Case 2 Otherwise, eliminate any attribute in � that is equated to a constant in g and

combine any pair of attributes that are equated in g.

2

In the recti�ed representation de�ned above, it is important to note the following:

� The insertion of tuple t into Ri is represented by the insertion of a tuple t0 into R0i if

Gi matches ri(t). In this case, t0 consists of the constants in the bindings produced

by the successful match.

� In query Q0, although a variable occurs at most once within each subgoal, it may occur

in more than one subgoal.

The following theorem states that view self-maintainability can be equivalently decided

using the recti�ed representation.

Theorem 4.2.1 Let V be a view de�ned by a conjunctive query Q with no self-joins and

no projections. Let F be a set of functional dependencies that hold in the base relations. Let

V 0, Q0, and F 0 be the corresponding view, query, and functional dependencies in the recti�ed

representation. Let t be an insertion into some base relation and let t0 be the corresponding

insertion in the recti�ed representation. Then V is self-maintainable under the insertion of

t in the presence of F if and only if V 0 is self-maintainable under the insertion of t0 in the

presence of F 0. 2

Proof: Here, we extend the proof of Theorem 2.4.1 to take functional dependencies into

consideration. We will be referring to this proof in the following.

1In the remainder of this chapter, we assume, without loss of generality, that any FD �! � has single-

attribute right hand side, i.e., � is a single attribute.



4.3. KEY CONCEPTS 83

IF: In the proof of Theorem 2.4.1, we started with an instance I = (I1; : : : ; In) of the

base relations R1; : : : ; Rn that is consistent with V and we used this instance to construct

an instance I 0 = (I 01; : : : ; I
0
n) of the base relations R01; : : : ; R

0
n. We then showed that I 0 is

consistent with V 0.

Here, the additional fact we need to show is that if I [ ftg satis�es F , then I 0 [ ft0g

also satis�es F 0. To see why, consider a functional dependency �0 ! �0 2 F
0, and let t01

and t02 be two tuples from the same relation in I 0 [ ft0g. Tuples t01 and t
0
2 derive from some

tuples t1 and t2 respectively from I [ftg. Also, since only Case 2 (ref. De�nition 4.2.1) can

generate FD's for D0, �0 ! �0 must derive from some FD �! �0 from F . Assume that t01
and t02 agree over �

0. It follows that t1 and t2 also agree over �. Since I [ ftg satis�es F ,

t1 and t2 must agree over �
0. Hence, t01 and t

0
2 agree over �

0.

ONLY-IF: Similarly, in the proof of Theorem 2.4.1, we started with an instance I 0 =

(I 01; : : : I
0
n) of the base relations R01; : : : ; R

0
n that is consistent with V 0 and we used this

instance to construct an instance I = (I1; : : : In) of the base relations R1; : : : ; Rn. We then

showed that I is consistent with V .

Here, the additional fact we need to show is that if I 0[ft0g satis�es F 0, then I [ftg also

satis�es F . For functional dependencies in F that fall into Case 2 (ref. De�nition 4.2.1),

the proof is analogous to the IF part above, and is not shown here. We are only left with

the task of showing that I [ ftg also satis�es those dependencies that fall into Case 1. So,

let t1 and t2 be two tuples from the same relation (call it Rk) in I [ ftg, let � ! � be

an FD over Rk, and let g be the corresponding subgoal in Q. For the subcase (in Case 1)

where � is equated in g to a constant, all tuples from Rk, and t1 and t2 in particular, have

that constant for their � components. For the subcase where � and some attribute in � are

equated in g, if t1 and t2 agree over �, then they must also agree over � since they both

satisfy g.

Consequently, the query de�ning the view V to maintain will be represented in the

remainder of this chapter exactly as in Chapter 3, that is:

Q : v( �X; �Y ; �Z) :{ r( �X; �Y ) & S( �Y ; �Z):

where r is the updated predicate and S a conjunction of subgoals with nonupdated predi-

cates. Under the insertion of r(�a;�b), we are interested in evaluating the query f �Z : S(�b; �Z)g

in order to determine the required insertions to the view.

4.3 Key Concepts

In this section, we introduce the key concepts that will be used in the next section to

derive the solutions for the problem view self-maintenance in the presence of functional

dependencies. These concepts assume a recti�ed representation for the view de�nition.

4.3.1 The Well-Founded DAG

Functional dependencies normally relate the attributes of a predicate. But since the subgoals

in Q are recti�ed, we can think of the FD's as relating the variables in Q, by further



84 CHAPTER 4. EXPLOITING FUNCTIONAL DEPENDENCIES

ignoring which predicates the original FD's apply to. Also note that the FD's originating

from r can be ignored, since they have no e�ect on view self-maintainability (following

Theorem 4.1.2, which takes advantage of the no-self-join and no-projection restrictions on

the view de�nition). The set of FD's on query variables can thus be represented by an

AND/OR graph called the dependency AND/OR graph, constructed as follows:

� Each variable in Q is associated with a node in the graph.

� For each FD �! � (where � represents a set of variables inQ and � a single variable),

there is an arc from each variable in � to �. The arcs from the variables in � to �

form a set of AND-arcs.

Of special interest are those connected AND subgraphs

� That are acyclic,

� That have a single sink node,

� All of whose source nodes correspond to updated variables, and

� All of whose interior nodes correspond to private variables.

We call these subgraphs well-founded derivation DAG's. The single sink node of a well-

founded derivation DAG is also called the root. With functional dependencies represented

as such, the private variables are further categorized into determinable or nondeterminable.

A private variable is said to be determinable when it corresponds to the root of some well-

founded derivation DAG, nondeterminable otherwise.

EXAMPLE 4.3.1 Consider the view de�nition:

v(X;Y;Z; T; U) :{ r(X;Y;Z) & p(X;T;U) & q(X;Y;Z; T ):

and the FD's XU ! T and T ! X on p, and X ! T and Y Z ! T on q. Using the notion

of FD's on the view query variables, we simply say that X is determined by T , and T by

either XU or Y Z or X. The AND/OR graph that represents the dependencies between

variables is depicted in Figure 4.1(a). Now, suppose r is the updated predicate. X, Y and

Z are the updated variables, T and U private. All three well-founded derivation DAG's

are shown in Figure 4.1(b), where the AND-connector that links an AND-node's incoming

arcs is not shown. T is the only determinable variable, and U is nondeterminable. Updated

nodes (nodes with an updated variable) are shown in Figure 4.1 in black, determinable

nodes in grey, and nondeterminable nodes in white. 2

Intuitively, determinable variables are those �Z-variables in query S( �Y ; �Z) whose values

are uniquely determined once the values of �Y are �xed, provided that the tuples that

\instantiate" certain dependencies are known to be present in the base relations. We say

that the presence of these tuples forces the determinable variables in the query S( �Y ; �Z) to

agree on some speci�c values, making the query more speci�c. Also, we would like to point
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(a) Dependency AND/OR graph

T

X U Y Z

(b) Well-founded derivation DAG's
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T

Y Z

T

X

Figure 4.1: Graphs of dependencies between query variables.

out that there are only a �nite number of well-founded derivations DAG's, and there are

algorithms (e.g. depth �rst) to extract them all.

Since the FD's over the query variables are in fact functional dependencies that the view

must satisfy, each well-founded derivation DAG corresponds to a chase (see [Ull89, AHV95])

of the view relation with these FD's that infers the functional dependence of a particular

view attribute (corresponding to the DAG's root node) on a particular set of attributes

(corresponding to the DAG's source nodes). One may wonder whether the complexity of

a full DAG is really needed (since the DAG represents all the intermediate steps of the

chase) and whether it is su�cient to keep only the source nodes and the root node (which

correspond to the FD inferred by the chase). It turns out that as far as the view self-

maintainability problem is concerned, it is generally not possible to abstract the DAG into

just the source nodes and the root node, without losing completeness of the solution to the

self-maintainability problem. This point will be substantiated in Example 4.4.5.

4.3.2 Generalizing the Subgoal Partitioning Concept

Recall from Chapter 3 the terminology we use to categorize the variables in the view de�-

nition:

� Variables in �X and �Y are called the updated variables.

� Variables in �Y are called the join variables.

� Variables in �Z are called the private variables.

In the presence of functional dependencies, we introduce the following notation that

further re�nes the notion of private variables:

� Private variables �Z will also be written as �D; �N , where

� �D represents the determinable variables, and

� �N represents the nondeterminable variables.
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The partition operator PART(�;�) was introduced in Section 3.2 to partition the sub-

goals with nonupdated predicates as follows:

PART(S( �Y ; �Z); �Z):

With functional dependencies, we still use the same operator but in the following more

re�ned partitioning of the subgoals with nonupdated predicates:

PART(S( �Y ; �D; �N ); �N):

In other words, we now use the nondeterminable variables �N as \glue", rather than all

the private variables �Z.

EXAMPLE 4.3.2 Continuing from Example 4.3.1, with the given functional dependen-

cies, U is the only nondeterminable variable. Thus, in contrast to the case with no depen-

dencies, we consider the partitioning PART(fp; qg,fUg) rather than PART(fp; qg,fT;Ug).

The former is more re�ned than the latter since it consists of two groups (fpg and fqg in

the former partitioning) instead of only one (fp; qg in the latter partitioning). 2

Intuitively, we will be looking for certain matching tuples in V that \conform" to the

extended subgoal partitioning. This notion of \conform" will be made precise in a moment,

but essentially the presence of such tuples assures that all required view updates can be

computed from the view itself independently of the base relations.

4.4 Deriving Self-Maintainability Tests for Insertions

There are many ways a view can be self-maintainable under a given insertion. Perhaps

the simplest is when the view is not a�ected by the insertion. So we begin looking for a

condition on the view instance that guarantees no tuples in the base relations can join with

the inserted tuple r(�a;�b).

4.4.1 The Forced-Exclusion Conditions

Forced exclusion is a situation in which the presence of S(�b; �Z), the tuples that join with

r(�a;�b), must be excluded in order to avoid conicts due to the dependencies. The idea is

to look for certain tuples in V that \instantiate" the dependencies in some well-founded

derivation DAG.

EXAMPLE 4.4.1 Avoiding Conicts over Updated Variables. Consider the view

V and FD's in Example 4.3.1, and consider the insertion of r(a; b; c). To update V on the one

hand, any inserted tuple t1 must be of the form (a; b; c; T; U). On the other hand, consider

the set of dependencies fY Z ! T; T ! Xg that de�nes the well-founded derivation tree

rooted at updated node X as shown in Figure 4.1(b), and suppose V contains some tuples

t2 = (�; b; c; t;�) and t3 = (a0;�;�; t;�) that \instantiate" these dependencies, where
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a0 6= a. If the updated view contains t1, then in chasing the dependencies in the derivation

tree bottom up, Y Z ! T forces t1 and t2 to agree on T = t, which in turn leads T ! X

to force t1 and t3 to agree on a = a0, hence leading to a contradiction. Thus the presence

of both t2 and t3 in V excludes the presence of t1, or else a conict would be created over

updated variable X, as illustrated in Figure 4.2(a). 2

X Y Z T U
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a b c ? ?

�
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Figure 4.2: Di�erent conditions that guarantee V 's updates to be independent of base

relations.

Generalizing from Example 4.4.1, for each well-founded derivation DAG that is rooted at

some updated node, we are looking for a set of tuples in V , one tuple for each dependency

in the DAG, that instantiates the dependencies as follows: any tuple in the set agrees

with the inserted tuple over the updated variables on the left hand side of its dependency;

any pair of these tuples agrees over the determinable variables their dependencies may

have in common; and the tuple for the root dependency disagrees with the inserted tuple

over the root variable. Then CUPD, the disjunction of such conditions over all derivation

DAG's rooted at some updated node, expresses the condition of forced exclusion that avoids

conicts over updated variables. The following formally de�nes CUPD.

De�nition 4.4.1 (Condition of forced exclusion based on avoiding conicts over

updated variables) Consider the insertion of r(�a;�b). Let D a well-founded derivation

DAG whose root node (the sink of the DAG) is a updated variable. Let �D ! �D be the

FD at the root node, �DD denote the variables at the internal nodes, and DEPD denote the

set of FD's at all D's internal nodes. We de�ne CUPD to be the following formula:

_
D

(9 �DD) [ (9 �X; �Y ; �Z)(v( �X; �Y ; �Z) ^ �Z =�D
�DD ^

�Y =�D
�b ^ �Y 6=�D

�b)

^
^

�!�2DEPD

(9 �X; �Y ; �Z)(v( �X; �Y ; �Z) ^ �Z =�
�DD ^

�Y =�
�b ^ �Y =�

�b)]
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Figure 4.3: A derivation-DAG view of computing the required view updates.

where the disjunction ranges over all DAG's with an updated root. 2

Essentially, CUPD looks for a well-founded derivation of a value for some updated variable

that disagrees with �b over that variable. We claim that when evaluated to true, this condition

guarantees not only that the required update to the view does not depend on the base

relations, but also that view does not require any update. The claim is stated in the

following theorem.

Theorem 4.4.1 Let V be a view, F a set of FD's over the base relations, and r(�a;�b) the

inserted tuple. Let CUPD be the condition as de�ned in De�nition 4.4.1. If CUPD holds, the

insertion has no e�ect on the view. 2

Proof: Let us rewrite CUPD as
W
D(9

�DD)�D( �DD). Intuitively, when there is a derivation

DAG D and a constant value �dD that satisfy �D( �DD), there are no other values that also

satisfy the latter condition since all the nodes' values are uniquely determined by the source

nodes of the D. Furthermore, �D( �DD) assures the presence of certain tuples in the base

relations that force the variables �DD � �D in query S(�b; �D; �N) to agree with �dD and also

force disagreement at the root node, as depicted in Figure 4.3. Thus, the query S(�b; �D; �N )

has no possible answer.

There is yet another situation in which the view cannot gain any new tuples, but based

on conicts over determinable variables.

EXAMPLE 4.4.2 Avoiding Conicts over Determinable Variables. Continuing

from Example 4.4.1, now consider the tuples t4 = (a;�;�; t;�) and t5 = (�; b; c; t0;�)

where t 6= t0, that instantiate the dependencies de�ning the two derivation trees commonly

rooted at determinable node T shown in Figure 4.1(b). If the updated view contains t1,

then in chasing the dependencies in both trees, t1 and t4 are forced to agree on T = t, and
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t1 and t5 to agree on T = t0, leading to a contradiction again. Thus the presence of t4
and t5 in V also excludes the presence of t1, but this time in order to avoid a conict over

determinable variable T (Figure 4.2(b)). 2

Similarly, we can generalize from Example 4.4.2 to obtain CDET, the condition of forced

exclusion that avoids conicts over determinable variables, as follows: for each pair well-

founded derivation DAG's that are commonly rooted at some determinable node, we look

for tuples in V that instantiate the dependencies separately in each DAG, and such that the

two tuples corresponding to the root dependencies disagree over the common root variable.

The following formally de�nes CDET.

De�nition 4.4.2 (Condition of forced exclusion based on avoiding conicts over

determinable variables) Consider the insertion of r(�a;�b). LetD1 and D2 two well-founded

derivation DAG's whose root node is a determinable variable. Let �D1
! �D1

be the FD at

the root node of D1. Let �DD1
denote the variables at the internal nodes of D1, and DEPD2

the set of FD's at all internal nodes of D1. A similar notation is used for D2. We de�ne

CUPD to be the following formula:

_
(D1;D2)

(9X1;X2) [ (9 �DD1
)[(9 �X; �Y ; �Z)(v( �X; �Y ; �Z) ^ �Z =�D1

�DD1
^ �Y =�D1

�b ^ �Z =�D1
X1)

^
^

�!�2DEPD1

(9 �X; �Y ; �Z)(v( �X; �Y ; �Z) ^ �Z =��
�DD1

^ �Y =�
�b)]

^(9 �DD2
)[(9 �X; �Y ; �Z)(v( �X; �Y ; �Z) ^ �Z =�D2

�DD2
^ �Y =�D2

�b ^ �Z =�D2
X2)

^
^

�!�2DEPD2

(9 �X; �Y ; �Z)(v( �X; �Y ; �Z) ^ �Z =��
�DD2

^ �Y =�
�b)]

^X1 6= X2]

where the disjunction ranges over all pairs of DAG's sharing the same determinable root.

2

Essentially, CDET looks for two di�erent well-founded derivations for some determinable

variable that yield di�erent values. We claim that when evaluated to true, this condition

guarantees not only that the required update to the view does not depend on the base

relations, but also that view does not require any update. The claim is stated in the

following theorem.

Theorem 4.4.2 Let V be a view, F a set of FD's over the base relations, and r(�a;�b) the

inserted tuple. Let CDET be the condition as de�ned in De�nition 4.4.2. If CDET holds, the

insertion has no e�ect on the view. 2

Proof: Intuitively, the condition assures the presence of certain tuples in the base relations

that forces some determinable variable in the query S(�b; �D; �N ) to agree with two conicting

values, each derived through a di�erent derivation, as depicted in Figure 4.4. Hence, the

query S(�b; �D; �N ) has no possible answer.
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Figure 4.4: Two derivation DAG's disagreeing on their common root.

4.4.2 The Forced-Exposure Condition

We now turn to the case where view V may gain new tuples as a result of inserting r(�a;�b).

Forced exposure is a situation in which the query S(�b; �Z) is forced to reveal the values for

its private variables �Z through the view, thus making the required updates to the view

entirely computable from the view itself. Two key ideas come into play here. First, in the

absence of FD's, the partition PART(S, �Z) allows us to generate the most general condition

on V that forces all �Z-values in S(�b; �Z) to show up in the view (ref. Section 3.2), where

PART(S, �Z) essentially treats �Y as the only \bound" variables. Second, in the presence of

FD's, this idea generalizes in a surprisingly simple way: treat all determinable variables in
�Z as bound, in addition to the �Y -variables. In other words, we consider the �ner partition

PART(S, �N ), where �N denotes the nondeterminable variables in �Z. Interestingly, the only

aspect of FD's that counts is whether or not a variable is determinable.

EXAMPLE 4.4.3 Consider the view V and FD's in Example 4.3.1, and consider the

insertion of r(a; b; c). As in Example 4.4.1, any update to V is a tuple t1 of the form

(a; b; c; T; U). As shown in Example 4.3.2, PART(fp(X;T;U); q(X;Y;Z; T )g,fUg) contains

two groups fpg and fqg. Corresponding to the �rst group, consider looking for some tuple

in V that agrees with the inserted tuple over the group's updated variables, that is, t6 =

v(a;�;�; t;�). Similarly for the second group, consider tuple t7 = v(a; b; c; t;�). Note

that t6 and t7 are also required to agree over the determinable variable(s) their groups may

share, T in this case. While the presence of either t6 or t7 in V forces t1 to agree on T = t,

their simultaneous presence assures that t1's remaining unknown U can be determined by

looking up v(a;�;�; t; U) (see Figure 4.2(c)), independently of relations p and q: when

t6 2 V , (a; t; U) 2 p if and only if (a;�;�; t; U) 2 V , and when t7 2 V , (a; b; c; t) 2 q. The
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alert reader may notice that in this case, the tuples to be inserted into V are already in the

view, but this fact does not hold in general. 2

Generalizing from Example 4.4.3, the presence of tuples that \conform" to PART(S, �N ),

such as t6 and t7 in Example 4.4.3, can be formalized in the following de�nition.

De�nition 4.4.3 (Condition of Forced Exposure) Consider the insertion of r(�a;�b).

The condition of forced exposure, CA, is de�ned by the following formula:

(9 �d)
^

g2PART(S( �Y ; �D; �N); �N)

(9 �Y ; �Z) v(�; �Y ; �Z) ^ �Y = �Yg
�b ^ �Z = �Dg

�d

where �Y g (resp. �Dg) denotes the updated (resp. determinable) variables used in group g,

and �d a vector of constants with the same dimension as �D. The fact that two vectors of

constants �u and �v agree over variables �W is denoted by �u = �W �v. 2

The following theorem shows that the condition of forced exposure is another way to

guarantee view self-maintainability. Note how this theorem generalizes Theorem 3.2.1 for

the case without functional dependencies.

Theorem 4.4.3 Let CA be the condition of forced exposure as de�ned in De�nition 4.4.3

for a view V , a set of FD's, and the insertion of r(�a;�b). If CA is satis�ed (say with constant
�d), then the required updates to V exactly consist of inserting all tuples (�a;�b; �d; �n) such that

the �ng component of �n is determined by

f�ng j (9 �Y ; �Z) v(�; �Y ; �Z) ^ �Y = �Yg
�a ^ �Z = �Dg

�d ^ �Z = �Ng
�ngg:

2

Proof: First, when CA is satis�ed with some constant value �d for variable �D, there are

no other values that would satisfy it, since any value for �D is uniquely determined by �b.

This claim can be substantiated by considering every derivation DAG rooted at some deter-

minable node and by showing that all interior nodes in the DAG are uniquely determined

(starting from the deepest node and ending at the root node).

Furthermore, CA assures the presence of certain tuples in the base relations that forces �D

in query S(�b; �D; �N) to agree with �d. This statement can be shown using arguments similar

to showing the uniqueness of �d. The situation is illustrated in Figure 4.5.

So let �d be the unique value that satis�es CA. We show that the query P( �N ) :

f �N j S(�b; �d; �N )g, which determines the required updates to the view, can be computed from

the view alone, regardless of the base relations. Consider the partition PART(S( �Y ; �D; �N), �N ).

Since the groups in the partition do not share any N -variables, P( �N ) is entirely determined

if Sg(�bg; �dg; �Ng) can be computed for every group g. Now we claim that

f�ng j Sg(�bg; �dg; �ng)g = f�ng j (9 �X; �Y ; �Z) v( �X; �Y ; �Z) ^ �Y = �Yg
�b ^ �Z = �Dg

�d ^ �Z = �Ng
�ngg
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Figure 4.5: A subgoal-partition view of computing required view updates.

The \�" part of the claim is obvious since the only way to explain the presence in V

of a tuple that agrees with �b, �d, and �ng over variables �Y g, �Dg, and �Ng respectively, is the

necessary presence of all the atoms in Sg(�bg; �dg; �ng).

For the \�" part of the claim, the satisfaction of (9 �X; �Y ; �Z)v( �X; �Y ; �Z)^ �Y = �Yg
�b^ �Z = �Dg

�d assures the presence of a set of tuples (one in each base relation not used in Sg) that join

with Sg(�bg; �dg; �ng), for any �ng. The result of this join will appear among the tuples in the

view that agree with �b, �d, and �ng over variables �Y g, �Dg, and �Ng respectively. In other

words, any �ng that satis�es Sg(�bg; �dg; �ng) will appear in the set on the right hand of the

equality we are trying to prove.

4.4.3 Complete Characterization of Self-Maintainability

Each of the three conditions CA, CUPD and CDET guarantees view self-maintainability. But

are there other conditions that also provide that guarantee? In the following theorem, we

claim that together, these three conditions completely characterize self-maintainability.

Theorem 4.4.4 Let CUPD and CDET be the two conditions of forced exclusion, and CA

the condition of forced exposure as de�ned above for a given view, a given set of FD's

and a given insertion. The view is self-maintainable under the insertion if and only if

(CUPD _ CDET _ CA). 2

Proof:

IF: This part follows from Theorems 4.4.1, 4.4.2 and 4.4.3.

ONLY-IF: Assume CA, CUPD and CDET are all false. We need to �nd a counterexample

that consists of two valid databases D1 andD2 that derive di�erent views after the insertion.

Essentially, we choose D1 to be Q�1(V ), and D2 to be D1 augmented with some set of

tuples � constructed as follows. � initially includes some selected subset of S(�b; �D; �N ), the

choice being based on how CA is falsi�ed. The tuples in � may include variables. In chasing

the FD's over D2, some of these variables may be bound. The falsity of both CUPD and
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CDET assures that the chase process terminates without encountering a contradiction. Any

variable that remains unbound is replaced with some new constant, and some selected tuples

are removed from �. The falsity of CA assures that D2 is valid and that Q(D2[fr(�a;�b)g) 6=

Q(D1 [ fr(�a;�b)g).

More precisely, we will consider the partitioning of S( �Y ; �D; �N) at various levels of gran-

ularity: the coarser partition PART(S, �D [ �N), the �ner partition PART(S, �N ), and some

partition in between to be speci�ed later. The coarser partition decomposes S into groups

gi : Si( �Y i; �Di; �N i). The �ner partition can be alternatively viewed as decomposing each gi
into the smaller groups gij : Sij( �Y ij; �Dij; �N ij). In this notation, we write CA as

^
i

(9 �di)
^
j

(9 �X; �Y ; �Z) v( �X; �Y ; �Z) ^ �Y = �Yij
�b ^ �Z = �Dij

�di

Note that CA, the condition that guarantees the presence of tuples that \conform" to

PART(S, �N ), subsumes the condition that guarantees the presence of tuples that \con-

form" to the coarser partition PART(S, �D [ �N). The latter condition can be written asV
i(9

�X; �Y ; �Z) v( �X; �Y ; �Z) ^ �Y = �Yi
�b.

We show the claim by contradiction. So assume that CA, CUPD, CDET are false. We

construct two databases D1 and D2 = D1 [ � that are both valid prior to the insertion

r(�a;�b) (i.e., Q(D1) = Q(D2) = V , and both D1 and D2 satisfy the given FD's), but that

derive di�erent views after the insertion (i.e., Q(D1 [ r(�a;�b)) 6= Q(D2 [ r(�a;�b))).

D1 is taken to be the canonical database Q�1(V ) which is already known to be valid.

� is constructed as follows:

1. Since CA, written as
V
i(9

�Di)'i( �Di) for shorthand, is false, there must be some i such

that (9 �Di)'i( �Di) is false. Initially, for each such i, we include Si(�bi; �Di; �N i) in �. In

the rest of the construction, any mention of i will refer to these groups.

2. We use the FD's to chase D1 [� until quiescence. Conicts do not arise since both

CUPD and CDET are false. After quiescence, D1 [� essentially satis�es all the FD's.

3. During the chase, some variables in �Di (say �Ei) are bound (to say �ei), some other

(say �F i) remain unbound. Consider the partition PART(Si, �F i [
�N i) into groups

gij . Note that this partition is coarser than PART(Si, �N i) used in CA, but �ner than

PART(S, �D [ �N). Let  ij denote (9 �Y ; �Z)[v( �Y ; �Z) ^ �Y = �Yij
�b ^ �Z = �Eij

�ei].

4. Remove from � all those Sij(�bij ; �eij; �F ij; �N ij) such that  ij is true, and bind all

remaining unbound variables (i.e. �F ij and �N ij) to new constants.

We claim that Q(D2 [ r(�a;�b)) 6= Q(D1 [ r(�a;�b)). It is easy to see that Q(D2 [ r(�a;�b))

contains some tuple (�a;�b;�), by construction of �. If at least a variable remains unbound

when the chase reached quiescence, its value (a new constant) will show up in some tuple

(�a;�b;�) from Q(D2 [ r(�a;�b)). This tuple (�a;�b;�) cannot be in Q(D1 [ r(�a;�b)) (because of

the new constants). If all variables are bound by the chase, then necessarily both �F ij and
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Figure 4.6: � cannot contribute to the view.

�N ij are empty. Furthermore Q(D1 [ r(�a;�b)) cannot have any (�a;�b;�) since otherwise, any

Sij(�bij; �eij) would have hold in D1, contradicting the hypothesis that some  ij is false.

We now claim that Q(D2) = V . To prove our claim, we need to show that no tuples from

� can contribute to the view (prior to insertion). Recall that only those groups gij such

that  ij is false do have tuples in �. If a �{tuple from a group gij contributes to the view,

then all �{tuples from gij would also do so. Hence we can talk about group contribution

instead of tuple contribution to the view. For each group gij such that  ij is false, consider

the set Tij of D1{tuples from Sij that participate in the chase. Let fgij j j 2mig be all the

groups in the partition of Si. Suppose the �{tuples from some of these groups that have

 ij false were to contribute to the view. Let ni (a subset of mi) denote these groups. Then

D1 must contain the following matching tuples:

� Tuples Sik(�yik; �e
0
ik;

�f ik; �nik) for all k 2 (mi�ni): �yik agrees with
�b over �Y ij for j 2 ni,

�e0ik agrees with �ei over �Eij for all j 2 ni, all remaining constants in �yik and �e0ik agree

across groups over the same variables.

� Tuple r(�a; �y): �y agrees with �b over �Y ij for all j 2 ni and with all the �yik.

Since D1 contains tuple r(�a; �y), the view must have some tuple v(�a; �y; �z). The tuples

Sik(�yik; �e
0
ik;

�f ik; �nik) for all k 2 (mi � ni), together with Tij for all j 2 ni, should force �z to

agree with �ei over �Eij for all j 2 ni. Hence,  ij must hold for all j 2 ni, which contradicts

the fact that all groups gij , i 2 ni, have  ij false. In conclusion, no tuples from � can

contribute to the view.

In the following example, we apply Theorem 4.4.4 to �nd a complete self-maintainability

test for the running example used in this chapter.

EXAMPLE 4.4.4 Consider the view and FD's in Example 4.3.1. A necessary and suf-

�cient condition for the view to be SM under the insertion of r(a; b; c) is obtained by
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combining the conditions that characterize the presence of t2 and t3, t4 and t5, t6 and t7
introduced in Examples 4.4.1, 4.4.2 and 4.4.3:

(9T ) [v(�; b; c; T;�)^v(6a;�;�; T;�)]_(9T ) [v(�; b; c; T;�)^v(a;�;�; 6T;�)]_v(a; b; c;�;�)

where 6 a denotes any value but a. The �rst and last disjuncts combine to simplify to

v(�; b; c;�;�) which completely subsumes the second disjunct. Hence the view is SM if

and only if v(�; b; c;�;�). 2

The following example illustrates a point made in Section 4.3 that we may loose gen-

erality if the well-founded derivation DAG is simpli�ed into a representation that retains

only the source nodes and the root node.

EXAMPLE 4.4.5 Consider the view de�nition

v(X;Y;Z; U) :{ r(X;Y;Z) & s(Y;Z; U) & t(X;U)

with the FD's Y U ! Z on s and X ! U on t. Consider the self-maintainability of the

view instance V = f(a; b0; c; u); (a0; b; c0; u)g under the insertion of r(a; b; c). CA, expressed

as (9U) v(�; b; c; U) ^ v(a;�;�; U), evaluates to false in the view instance. So the SM

test degenerates to the conditions of forced exclusion. There are only two well-founded

derivation DAG's, namely the trees represented by fY U ! Z;X ! Ug and fX ! Ug

respectively. Thus, CDET evaluates to false and CUPD to true in our view instance, and

the view is self-maintainable. However, had we collapsed the tree fY U ! Z;X ! Ug

into the simpler tree fXY ! Zg, and used the latter tree to de�ne CUPD, the simpli�ed

condition would have consisted of looking for tuples of the form V (a; b; 6c;�). Obviously, this

simpli�ed condition evaluates to false in our view instance, showing that it is not necessary

for self-maintainability. 2

Finally, we apply Theorem 4.4.4 to rederive the self-maintainability test that was given

without proof in Example 4.0.2 at the beginning of this chapter.

EXAMPLE 4.4.6 Consider the view de�ned in Example 4.0.2 with FD Customer !

Area , and consider the insertion of sales(cindy ; igloo; spring�eld ). As there is only one

derivation tree and its root A is determinable, the SM test degenerates to

(9A) v(cindy ; A;�;�;�;�) ^ v(�; A;�;�; igloo ;�)

since both CUPD and CDET are vacuously false. 2

4.5 Summary

In this chapter, we studied the problem of view self-maintenance under single insertions

in the presence of functional dependencies. We considered the class of views de�ned by

conjunctive queries with no self-joins and no projections.

We showed that view self-maintainability can be expressed by a boolean query that is

a union of conjunctive queries with 6= comparisons.
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� The number of conjunctive queries in the union is bounded by

Y
Determinable variable Z

(number of FD's with Z on the right side)

Thus, for a given view de�nition, this number is a polynomial function of the number

of functional dependencies.

� The number of conjuncts in the conjunctive queries by either the number of conjuncts

or the number of determinable variables in the view de�nition. Thus, this number is

linear in the size of the view de�nition.

In practice, there are additional steps we can take to minimize the solution complexity.

� The given functional dependencies may have redundancy among themselves. This

redundancy can be removed using for example the technique for computing a minimal

cover, as de�ned in [Ull89].

� There are techniques for optimizing union queries involving 6= comparisons that can

be applied to simplify our solution. For example, with any query P and constant �a:

P (�a) _ (9 �X) [P ( �X) ^ �X 6= �a] simpli�es to (9 �X) P ( �X):

And with any queries P and Q:

(9 �X) [P ( �X) ^Q( �X)] _ (9 �X; �X
0
) [P ( �X) ^Q( �X

0
) ^ �X 6= �X

0
] simpli�es to

(9 �X; �X
0
) [P ( �X) ^Q( �X

0
)]:

These techniques can be used in conjunction with traditional techniques for minimiz-

ing conjunctive queries (see [Ull89]).

� It is easy to see that the dependencies over the variables in the view de�nition are

in fact dependencies that hold in the view relation. Since the solutions are unions

of conjunctive queries on the view relation, they can be optimized using known tech-

niques for query optimization under dependencies. Such techniques can be found in

[ASU79b, JK84, Sag87].

Finally, there are nontrivial special cases where the view self-maintenance admits very

simple solutions. For example, when only key constraints are considered, if the updated

relation does not join with any other relation on its key, then the key constraints play

no role in view self-maintenance. To see why, consider the more general case where no

functional dependency has all join variables on its left side. In this case, there are no well-

founded derivation DAG's, and all private variables are nondeterminable. Therefore, this

case degenerates to the case with no functional dependencies.



Chapter 5

Generalized VSM for Views with

no Projections

The previous two chapters concentrate on the special cases of the view self-maintenance

problem where:

� A single view is considered.

� The conjunctive query that de�nes the view has no self-joins.

� The types of updates allowed are restricted to updates to single relations, and to single

insertions when functional dependencies are considered.

We took advantage of the restrictions on the problem to obtain solutions that are e�cient

and simple. The specialized methods we developed there are appealing both because they

yield simple solutions and because they are direct and intuitive. For future work, it is

therefore important to develop specialized methods that extend to more general cases or

cover other special cases.

By contrast, in this chapter and the next, we emphasize on developing a general method

that can be extended easily to cover di�erent parts of the problem space. The following are

the main motivating factors behind our desire to develop a general method:

� Developing specialized methods for di�erent problem parameters often requires much

e�ort and sometimes can be very di�cult.

� There are problem parameters (such as the use of self-joins in the view de�nition)

that, while simple on the surface, introduce complexity in the solution that is di�cult

to capture using specialized methods.

The following example illustrates the latter point.

EXAMPLE 5.0.1 Consider a view V de�ned by the following query

v(X;Y;Z) :{ r(X;Y ) & t(X;Z) & t(Y;Z)

97
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where predicate t is repeated in the body. Consider the insertion of r(a; b). Consider for

a moment a query obtained from the above by changing one of the occurrences of t to an

unrelated predicate, say t0. Based on the results from Chapter 3, a self-maintainability

condition for this modi�ed query is given by:

v(a; b;�)

This condition, however, is not necessary for the original view to be self-maintainable.

It turns out that the following condition is both su�cient and necessary for V 's self-

maintainability under the insertion of r(a; b):

v(a; b;�) _ v(b; a;�)_

[v(a; a;�) ^ v(b; b;�)]_

[v(a; a;�) ^ (8Z)(v(a; a; Z)) pb(Z))]_

[v(b; b;�) ^ (8Z)(v(b; b; Z)) pa(Z))]

where py(Z) is de�ned to be

v(�; y; Z) _ v(y;�; Z)_

(9X)[(v(X; y;�) _ v(y;X;�))^

(v(X;�; Z) _ v(�;X; Z))]

This self-maintainability condition cannot be simpli�ed much further. We have not found

a method that is both intuitive and simple that can explain the complexity of this self-

maintainability condition. 2

In the remainder of this thesis, we will be using \generalized view self-maintenance" as

a generic term to denote any part of the problem space that goes beyond what the two

previous chapters already covered. This chapter considers the problem of generalized view

self-maintenance with the following parameters:

� Multiple views are given.

� The views are de�ned by conjunctive queries with no projections (but with arbitrary

self-joins).

� Functional dependencies over the base relations are given.

� A base update may be any mix of insertions and deletions.

For this problem, with the notable restriction of no projections in the views, we show

how to derive a polynomial-time solution. This restriction will be lifted in the next chapter,

but the solution will no longer be polynomial. The next chapter also shows how to extend

the polynomial-time solution to cover the use of other additional information in maintenance

(for views with no projections), and discusses other cases where the method leads to more

complex solutions.

The rest of this chapter is organized as follows.
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Section 5.1, Generalized View Self-Maintenance, gives a precise de�nition of the gen-

eralized view self-maintenance problem we consider in this chapter.

Section 5.2, Canonical Databases, extends the notion of database consistency and shows

that, under this extended notion, canonical databases are consistent. Consistency of

canonical databases is a key property underlying the general method we develop in

this chapter.

Section 5.3, Deriving Maintenance Expressions, derives view maintenance expres-

sions in the form of queries, based on canonical databases. The solution assumes

that the given view is self-maintainable.

Section 5.4, Deriving Self-Maintainability Tests, reduces the self-maintainability prob-

lem to a problem of query containment. This reduction is based on canonical databases.

While the query containment problem can be solved at runtime using known tech-

niques, we take a step further: we show that we can translate the query containment

problem to a boolean query in nonrecursive Datalog that decides self-maintainability

at runtime.

5.1 Generalized View Self-Maintenance

Let V1; : : : ; Vm be the views in the warehouse, and let Vk be one of the view we would like

to maintain. In addition to an instance of these views, we are given:

� For each i = 1; : : : ;m, a query Qi that de�nes Vi in terms of some database D. D

consists of the base relations R1; : : : ; Rn. Each Qi is a conjunctive query with no

projections, but arbitrary self-joins are allowed.

� A set F of functional dependencies that holds in relations R1; : : : ; Rn. We use

SAT (D;F) to denote this fact.

� An update U to database D that consists of �R�1 , �R
+
1 , �R

�

2 , �R
+
2 , . . . , �R

�
n , �R

+
n ,

where �R�j (resp. �R+
j ) is the set of tuples to be deleted from (resp. inserted to)

relation Rj. U(D) denotes the updated database.

We assume that database D is consistent with views V1; : : : ; Vm, update U , and F , that

is:

� D is consistent with F (i.e., SAT (D;F)) and with each Vi (i.e., Qi(D) = Vi). This

assumption extends the view realizability assumption introduced in Section 2.3.

� Update U does not violate any dependencies in F . We write this assumption as

SAT(U(D);F).

We further assume:
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F F

F F

D1 Qm
D2

U U

U(D1) U(D2)
?
=

Qk Qk

...
V1

Q1 Q1

Qm
Vm

Figure 5.1: Generalized view self-maintainability.

� Update U is meaningful, that is, the sets �R�j and �R+
j have no tuples in common

for any j. In practice, any sequence of insertions and deletions can be represented as

disjoint sets of insertions and deletions.

The following formalizes self-maintainability in the presence of the given information.

Figure 5.1 shows how the parameters relate to each other in determining view self-maintain-

ability.

De�nition 5.1.1 (Generalized Self-Maintainability) Let V1; : : : ; Vm be views, and for

i = 1; : : : ;m, let Qi be the conjunctive query that de�nes Vi in terms of some database D.

Let F be a set of FD's that hold in D. View Vk is said to be self-maintainable under a base

update U if Q(U(D)) does not depend on D, as long as D is consistent with each Vi, U ,

and F . More formally:

(8D1;D2) [
^
i

Qi(D1) = Qi(D2) = Vi

^ SAT(D1;F) ^ SAT(D2;F) ^ SAT(U(D1);F) ^ SAT(U(D2);F)

) Q(U(D1)) = Q(U(D2))]

2

Thus, self-maintainability of Vk is a function of U and V1; : : : ; Vm (it is also a function

of the view de�nitions Qi and functional dependencies, but that is understood). Note the

requirement that D be consistent with all the views, and not just with the view to maintain

as in single-view self-maintainability.

When Vk is self-maintainable, the maintenance expression for Vk we are looking for is

also a function of U and V1; : : : ; Vm (not just Vk as in single-view self-maintenance).

At �rst, the view self-maintainability condition as speci�ed in De�nition 5.1.1 does

not appear to lend itself to a query containment formulation which typically uses only

one quanti�ed database variable instead of two. A key idea is to eliminate one of the

two database variables by replacing it with some known database. This database, which
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v1(X;Y;Z) r(X;Y ) s(Y;Z) t(Z)

a1; b1; c1 a1; b1 b1; c1 c1
a1; b1; c2 a1; b1 b1; c2 c2

v2(Y;Z) s(Y;Z)

b1; c1 b1; c1
b; c2 b; c2
b1; c2 b1; c2

Figure 5.2: Two views and the associated canonical database.

will serve as a reference against which all consistent databases will be compared, must be

consistent itself. Also, if we know such a reference database, we can use it to propagate

the e�ects of the update to the view we want to maintain, if the view is self-maintainable

under the update. But how can we �nd such a reference database? The answer lies in the

canonical database.

5.2 Canonical Databases

Recall the de�nition of a canonical database given in Section 2.2 for the view self-maintainable

problem that involves a single view. When several views are given, the de�nition can be

extended by simply taking the union of all Q�1
i (Vi).

De�nition 5.2.1 (Canonical Database for Multiple Views) Let V1; : : : ; Vm be views,

and for i = 1; : : : ;m, let Qi be the conjunctive query (with no projection) over relations

R1; : : : ; Rn that de�nes Vi. The canonical database, denoted D̂, consists of all the tuples

obtained as follows: for each view Vi, every tuple in Vi that matches Qi's head provides a

substitution that grounds all the atoms in Qi's body; include all these ground atoms in D̂.

More precisely, D̂ is
S
iQ

�1
i (Vi), where Q

�1(V ) was de�ned in 2.2 for a view V de�ned by

a CQ Q with no projection. 2

EXAMPLE 5.2.1 Consider views V1 and V2 de�ned by:

v1(X;Y;Z) :{ r(X;Y ) & s(Y;Z) & t(Z)

v2(Y;Z) :{ s(Y;Z)

Suppose V1 = f(a1; b1; c1); (a1; b1; c2)g and V2 = f(b1; c1); (b; c2); (b1; c2)g. The canonical

database D̂ in this view instance consists of R = f(a1; b1)g, S = f(b1; c1); (b1; c2); (b; c2)g,

and T = f(c1); (c2)g. The canonical database is shown in Figure 5.2 in table format. 2

Intuitively, we are trying to reconstruct the base relations minimally from all the given

views. When each Qi has no projection, there is a unique minimal reconstruction, which is
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the canonical database D̂. The following theorem states the key property of D̂ that allows

us to use it to maintain the views.

Theorem 5.2.1 Let V1; : : : ; Vm be views, and for i = 1; : : : ;m, let Qi be the conjunctive

query (with no projection) over some database D that de�nes Vi. Let F be a set of functional

dependencies that holds in D. Let U be an update to D that consists of arbitrary deletions

and insertions and that does not violate F . Then the canonical database D̂ is consistent

with V1; : : : ; Vm, U , and F . 2

Proof: For each i = 1; : : : ;m, the proof that Qi(D̂) = Vi is analogous to the proof of

Theorem 2.3.1. The proof that D̂ satis�es F is analogous to the proof of Theorem 4.1.1: it

follows from the facts that D̂ � D and that D satis�es F . Similarly, to show that U(D̂)

satis�es F , we use the facts that U(D̂) � U(D) and that U(D) satis�es F .

5.3 Deriving Maintenance Expressions

In this section, we address the question of how to bring a view up to date if the view is

known to be self-maintainable. Note that if a view is not self-maintainable, there is no

unambiguous way to maintain the view correctly without using additional information.

We use a very simple idea. If a view is self-maintainable, we do not need to know

what the actual database really is to maintain the view, since we can use any database

that is consistent with all the views, the functional dependencies, and the given update, to

propagate the update to the view. We can use the canonical database in particular. The

following example illustrates how to maintain a view using the canonical database.

EXAMPLE 5.3.1 Continuing from Example 5.2.1, now consider inserting (a; b) to rela-

tion R. If V1 is self-maintainable under the insertion (and with respect to the given view

instance), we know we can obtain the same result for the new state of V1 no matter which

database we use to propagate the insertion, as long as it is consistent with the views, the

functional dependencies, and the given update. We can use D̂ in particular. So to com-

pute the tuples gained by V1, we simply join r(a; b) with S = f(b1; c1); (b1; c2); (b; c2)g and

T = f(c1); (c2)g to obtain (a; b; c2). 2

The following theorem formalizes the use of D̂ to maintain the views.

Theorem 5.3.1 Let V1; : : : ; Vm be views, and for i = 1; : : : ;m, let Qi be the conjunctive

query (with no projection) over some database D that de�nes Vi. Let F be a set of functional

dependencies that holds in D. Let U be an update to D that consists of arbitrary deletions

and insertions and that does not violate F . If view Vk is self-maintainable under U , then

the new state for Vk is Qk(U(D̂)), where D̂ is the canonical database. 2

Proof: The proof is illustrated is Figure 5.3. When view Vk is self-maintainable under up-

date U , its new state is uniquely de�ned. Any database D that is consistent with V1; : : : ; Vm,

F , and U will derive, after the update is made, the same view as D̂.
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F F

F F

U

=

U

Qk Qk

...
V1

Q1 Q1

Qm
Vm

Qm
D

U(D)

D̂

U(D̂)

Figure 5.3: View maintenance with the canonical database.

Note that based on Theorem 5.3.1, Qk(U(D̂)), the new state of view Vk we want to

compute, makes no reference to any functional dependencies. While functional dependencies

are not directly part of the maintenance expression, they de�nitely a�ect self-maintainability

of Vk. Also, note that since D̂ is a function of (or more precisely, a simple query over)

V1; : : : ; Vm, the maintenance expression Qk(U(D̂)) is only a function of U and the Vi's.

Finally, while Theorem 5.3.1 tells us how to compute the new state of Vk unambiguously,

we actually do not want to recompute the entire view from scratch. In the following, we

give an algorithm to compute the incremental maintenance expressions.

Algorithm 5.3.1 (Generate multiple-view self-maintenance queries)

Input: Q1; : : : ; Qm, where each Qi is a conjunctive query (with no projection) that de�nes

vi using r1; : : : ; rn as input, and is written as Hi :{ Gi1 & : : : & Gini .

Output: Queries for incrementally maintaining Vk, using v1, . . . ,vm, �r
�

1 ; �r
+
1 ; : : : ; �r

�
n ; �r

+
n

as input.

Method:

1. Generate the following rules that de�ne the predicates r̂1,...,r̂n for the canonical

database, for i = 1; : : : ;m and j = 1; : : : ; ni:

(Aij) : Ĝij :{ Hi

whereHi is the head ofQi and Ĝij is the subgoalGij inQi's body whose predicate

rl is replaced by predicate r̂l.

2. Generate queries that incrementally maintain Vk, using predicates vk, r1; : : : ; rn,

�r�1 ; �r
+
1 ; : : : ; �r

�
n ; �r

+
n as input. Call this set of rules M .

3. Let M̂ be obtained from M where every occurrence of rj is replaced by r̂j, for

j = 1; : : : ; n.

4. Return M̂ [ f(Aij); i = 1; : : : ;m; j = 1; : : : nig.
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Step 1 in Algorithm 5.3.1 essentially computes the canonical database D̂. Step 2 gen-

erates queries that incrementally maintain view Vk, i.e., that update Vk to the new state

Qk(U(D)) using Vk and all the base relations Ri's (the instance of these base relations is

actually taken from the canonical database, which is the purpose of Step 3). Many known al-

gorithms exist in the view-maintenance literature ([Kuc91, SJ96]) that can generate queries

for incrementally maintaining a view using both the view and all the base relations, for

example based on algebraic techniques for di�erentiating query expressions. Using for in-

stance [SJ96] in Step 2, Algorithm 5.3.1 generates the queries that compute the required

insertions to and deletions from a view, in time linear in the size of the view de�nitions. In

practice, if these queries are optimized, we may not need to construct the entire canonical

database as Step 1 would suggest.

EXAMPLE 5.3.2 Consider the view de�nitions for V1 and V2 from Example 5.2.1. Con-

sider an update that consists of �r�; �r+; �s�; �s+; �t�; �t+. The order in which individual

updates are applied to the base relations is immaterial, since we assume that for each rela-

tion, the set of tuples to be deleted is disjoint from the set of tuples to be inserted. Let �v+1
(resp. �v�1 ) be the predicate for the set of insertions (resp. deletions) that must be applied

to to V1. Step 1 of Algorithm 5.3.1 generates the following rules for the canonical database:

r̂(X;Y ) :{ v1(X;Y;Z)

ŝ(Y;Z) :{ v1(X;Y;Z)

ŝ(Y;Z) :{ v2(Y;Z)

t̂(Z) :{ v1(X;Y;Z)

Using [SJ96] and exploiting the fact that V1 is de�ned with no projection, Step 2 of

Algorithm 5.3.1 generates the following rules for �v+1 and �v�1 , using r̂, ŝ, t̂, �r
�, �r+, �s�,

�s+,�t�, �t+ as input (by di�erentiating the query expression that de�nes view V1):

�v�1 (X;Y;Z) :{ �r
�(X;Y ) & ŝ(Y;Z) & t̂(Z)

�v�1 (X;Y;Z) :{ r̂(X;Y ) & �s�(Y;Z) & t̂(Z)

�v�1 (X;Y;Z) :{ r̂(X;Y ) & ŝ(Y;Z) & �t�(Z)

r̂new(X;Y ) :{ r̂(X;Y ) & :�r�(X;Y )

r̂new(X;Y ) :{ �r
+(X;Y )

ŝnew(Y;Z) :{ ŝ(Y;Z) & :�s�(Y;Z)

ŝnew(Y;Z) :{ �s
+(Y;Z)

t̂new(Z) :{ t̂(Z) & :�t�(Z)

t̂new(Z) :{ �t
+(Z)

�v+1 (X;Y;Z) :{ �r
+(X;Y ) & ŝnew(Y;Z) & t̂new(Z)

�v+1 (X;Y;Z) :{ r̂new(X;Y ) & �s+(Y;Z) & t̂new(Z)

�v+1 (X;Y;Z) :{ r̂new(X;Y ) & ŝnew(Y;Z) & �t+(Z)

2
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If a view is not self-maintainable, applying the maintenance queries generated by Al-

gorithm 5.3.1 may incorrectly update the view. Thus, before applying them to maintain a

view, it is important to make sure the view is self-maintainable. The next section provides

a decision method.

5.4 Deriving Self-Maintainability Tests

As mentioned at the beginning of this chapter, up to now, we have solved the view self-

maintainability problem only with the following parameters: single views with no self-joins

and functional dependencies under single insertions. We do not yet have a solution for the

problem that combines the following parameters: multiple views with self-joins, functional

dependencies, and arbitrary mixes of base insertions and deletions. In this section, we

develop a method that solves the view self-maintainability problem with such parameters.

To solve the self-maintainability problem, we reduce it to a problem of query containment

that can be solved using known techniques. This reduction is based on the existence of a

database we know how to build out of the contents of the views and that is consistent with

all the views, functional dependencies, and the given update. Again, the canonical database

can be used for this purpose. The following example illustrates this reduction.

EXAMPLE 5.4.1 Consider views V1 and V2 as de�ned in Example 5.2.1 and consider

the insertion of r(a; b). To determine whether view V1 is self-maintainable under the in-

sertion, the main idea is to compare the e�ect of the insertion on V1 when using D̂ with

the e�ect when using any database consistent with both V1 and V2. First consider the

view instance where V1 = f(a1; b1; c1); (a1; b1; c2)g and V2 = f(b1; c1); (b; c2); (b1; c2)g. V1 is

self-maintainable in this view instance because inserting r(a; b) into any consistent database

exactly causes (a; b; c2) to be added to V1, which is precisely the same e�ect on V1 as the in-

sertion into D̂ (as determined in Example 5.3.1). Now consider another view instance where

V1 = f(a1; b1; c1)g and V2 = f(b1; c1); (b; c2)g. D̂ in this case consists of R = f(a1; b1)g,

S = f(b1; c1); (b; c2)g, and T = f(c1)g. V1 is not self-maintainable in this view instance

since while the insertion into D̂ has no e�ect on V1, there is a consistent database (namely

R = f(a1; b1)g, S = f(b1; c1); (b; c2)g, and T = f(c1); (c2)g) where the insertion of r(a; b)

causes V1 to gain (a; b; c2). 2

5.4.1 Solving Self-Maintainability with Query Containment

Example 5.4.1 suggests that self-maintainability of a view under a given update can be

characterized completely as the following implication problem: for every database D, if D

is consistent with the views, the functional dependencies, and the given update, then D

derives the same view as D̂ after the update. This implication has the form of a query

containment problem where the queries to compare are boolean queries. This reduction of

self-maintainability to query containment is illustrated in Figure 5.4 and formalized in the

following theorem.
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Figure 5.4: Reduction of view self-maintainability.

Theorem 5.4.1 Let V1; : : : ; Vm be views, and for i = 1; : : : m, let Qi be the conjunctive

query (with no projection) over some database D that de�nes view Vi. Let F be a set of

functional dependencies that holds in D. Let U be an update to D that consists of arbitrary

deletions and insertions and that does not violate F . Let D̂ be the canonical database. Then

Vk is self-maintainable under U if and only if for every database D, Qk(U(D)) 6= Qk(U(D̂))

implies Qi(D) 6= Vi for some i, :SAT(D;F), or :SAT(U(D);F). 2

Proof:

IF: Assume Qk(U(D)) = Qk(U(D̂)) holds for every database D that is consistent with

all Vi's, F , and U . Let D1 and D2 be two databases that are consistent with all Vi's, F ,

and U . It follows that Qk(U(D1)) = Qk(U(D̂)) and Qk(U(D2)) = Qk(U(D̂)). We conclude

Qk(U(D1)) = Qk(U(D2)), thus showing that Vk is self-maintainable under U .

ONLY-IF: Conversely, assume Vk is self-maintainable under U . Let D be a database

that is consistent with all Vi's, F , and U . Since D̂ is also a database consistent with all

Vi's, F , and U (ref. Theorem 5.2.1), it follows that D and D̂ derive the same view after

update U is applied.

Note that in Theorem 5.4.1, we use the implication \di�erent-e�ect implies inconsis-

tency" instead of \consistency implies same-e�ect". While both forms are equivalent,

the queries to compare in the �rst one are slightly simpler. In the following, we use

DIFF ) INCON or DIFF � INCON to denote this implication. Theorem 5.4.1 allows

us to solve the self-maintainability problem using known techniques for deciding whether

a query is contained in another query. What is the nature of these queries? Let us write

query Qi, for each i = 1; : : : ;m, as

Hi :{ Gi1 & : : : & Gini

Using this notation, queriesDIFF and INCON from Theorem 5.4.1 can be elaborated. They

are summarized in Table 5.1, where the rules correspond to the elements in Theorem 5.4.1

as follows:

� Rules (Aij) compute D̂, the canonical database.
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Rules Range DIFF INCON

(Aij) i = 1; : : : ;m

j = 1; : : : ; ni

Ĝij :{ Hi

(Bi) i = 1; : : : ;m panic :{ Gi1 & : : : & Gini &

:Hi

(Cij) i = 1; : : : ;m

j = 1; : : : ; ni

panic :{ Hi & :Gij

(Dj) j = 1; : : : ; n r0j :{ rj & :�r�j , r
0

j :{ �r
+

j r0j :{ rj & :�r�j , r
0

j :{ �r
+

j

(Fj) j = 1; : : : ; n r̂0j :{ r̂j & :�r�j , r̂
0

j :{ �r
+

j

(Hk) Ĥ 0

k :{ Ĝ0

k1 & : : : & Ĝ0

knk

(Ik) panic :{ G0

k1 & : : : & G0

knk
&

:Ĥ 0

k

(Jkj) j = 1; : : : ; nk panic :{ Ĥ 0

k & :G0

kj

(Lj��) j = 1; : : : ; n

FD �! � on rj

panic :{ rj( �X) & rj( �X
0
) &

�X =�
�X
0
& �X 6=�

�X
0

(Mj��) j = 1; : : : ; n

FD �! � on rj

panic :{ r0j(
�X) & r0j(

�X
0
) &

�X =�
�X
0
& �X 6=�

�X
0

Notation: Hi :{ Gi1 & : : : & Gini is the rule de�ning Vi; Ĝij is the subgoal Gij whose

predicate rl is replaced by predicate r̂l; Ĥ
0

k is the head Hk whose predicate vk is replaced

by v̂0k; Ĝ
0

kj is the subgoal Gkj whose predicate rl is replaced by r̂0l; G
0

kj is the subgoal Gkj

whose predicate rl is replaced by r0l.

Table 5.1: Rules generated for queries whose containment decides self-maintainability of

Vk.

� Rule (Bi) expresses the fact that Qi(D) 6� Vi.

� Rules (Cij) express the fact that Vi 6� Qi(D).

� Rule (Dj) de�nes predicate r
0
j for relation Rj in U(D).

� Rule (Fj) de�nes predicate r̂
0
j for relation Rj in U(D̂).

� Rule (Hk) de�nes predicate v̂
0
k for Qk(U(D̂)), the new state of view Vk that derives

from D̂ after the update.

� Rule (Ik) expresses the fact that Qk(U(D)) 6� Qk(U(D̂)).

� Rules (Jkj) express the fact that Qk(U(D̂)) 6� Qk(U(D)).

� Rule (Lj��) expresses the fact that relation Rj violates functional dependency �! �.

� Rule (Mj��) expresses the fact that relation U(Rj) violates functional dependency

�! �.
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The following algorithm, based on Theorem 5.4.1, decides self-maintainability of a view

under an arbitrary update and in the presence of other views and functional dependencies.

Algorithm 5.4.1 (Decide generalized view self-maintainability)

Input: Views V1; : : : ; Vm, and for i = 1; : : : ;m, Qi, a conjunctive query (with no pro-

jection) that de�nes vi using r1; : : : ; rn as input, a set F of functional dependencies

satis�ed by the ri's, and an update U = �R�1 ; �R
+
1 ; : : : ; �R

�
n ; �R

+
n . Query Qi is written

as Hi :{ Gi1 & : : : & Gini .

Output: A decision whether Vk is self-maintainable under U in the given view instance

V1; : : : ; Vm.

Method:

1. Generate rules for the boolean queries DIFF and INCON as shown in Table 5.1.

Both queries use the 0-ary predicate panic for their query predicate.

2. Return the decision whether DIFF � INCON for every instance of R1; : : : ; Rn.

Referring to Table 5.1, each of DIFF and INCON is a Datalog query that can be

transformed, after expanding rules (Dj) and eliminating all constant predicates, to a union

of conjunctive queries. These queries involve negation and 6= comparisons, and use r1; : : : ; rn
as input. Note that negation applies to these input predicates. The [LS93] algorithm can

decide containment of unions of such queries in time exponential in the size of the views. As

long as we use the reduction from Theorem 5.4.1, this complexity is probably the best that

can be achieved, since the queries to compare use negation and use a number of constant

symbols the size of the views. In the next section, we will give a more re�ned reduction that

eliminates the use of negation, thus allowing more e�cient containment checking algorithms

to be used and, most importantly, self-maintainability to be decided in polynomial time.

5.4.2 Determining Self-Maintainability by Querying the View

Previously, we reduced self-maintainability to testing containment of queries, which involve

negation that applies to the input predicates. This type of negation is the main source

of complexity in the solution. We now show that this undesirable type of negation can be

eliminated and that a more re�ned reduction can be obtained that results in simpler queries

to compare.

Previously, self-maintainability of Vk under update U essentially reduces to checking

whether after the update is made, every database D that is consistent with the views,

dependencies, and update, derives the same relation as Qk(U(D̂)). The key observation

here is that instead of checking all databases, we only need to check those that contain the

canonical database D̂. The simple reason is that any database that does not contain D̂

cannot be consistent with the views, as formalized in the following lemma.
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Figure 5.5: A better reduction of view self-maintainability.

Lemma 5.4.1 Let V1; : : : ; Vm be views, and for each i = 1; : : : ;m, let Qi be the conjunc-

tive query (with no projection) that de�nes Vi over some database D. If a database D is

consistent with all the views, then D � D̂, where D̂ is the canonical database. 2

Proof: Let D be a database that is consistent with all the views. When each of the Qi's is

a conjunctive query without projection, each tuple in D̂ is needed in order to explain the

presence of some tuple in some view. In other words, every tuple in D̂ must be present in

D.

The following example informally explains how checking self-maintainability can be im-

proved.

EXAMPLE 5.4.2 Consider the same views as de�ned in Example 5.4.1, the view instance

where V1 = f(a1; b1; c1); (a1; b1; c2)g and V2 = f(b1; c1); (b; c2); (b1; c2)g, and the insertion

of r(a; b). The new view V 0
1 that results from updating the canonical database has the

additional tuple (a; b; c2) besides those already in V1. Previously, in order to determine if

V1 is self-maintainable under the insertion, we considered every database D and checked

whether D exactly derives both V1 and V2 before the insertion and whether D exactly

derives V 0
1 after. Improving upon the previous method, instead of considering all databases,

now we consider only those that contain D̂. Not only fewer databases need to be considered,

their checks become considerably simpler, since a database that contains D̂ must derive at

least V1 and V2 before the update and at least V 0
1 after the update, and therefore these

checks are not needed. 2

The new reduction is depicted in Figure 5.5 and formalized in the following theorem,

where D [ D̂ represents an arbitrary database that contains D̂. The use of \set union"

makes sense since a database is a set of tuples. Note that in order to represent a superset

of D̂, we do not use an arbitrary database D subject to the constraint D � D̂, precisely

because this constraint gives rise to the undesirable type of negation mentioned above.
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Theorem 5.4.2 Let V1; : : : ; Vm be views, and for i = 1; : : : ;m, let Qi be the conjunctive

query (with no projection) over some database D that de�nes Vi. Let F be a set of functional

dependencies that holds in D. Let U be an update to D that consists of arbitrary deletions

and insertions and that does not violate F . Let D̂ be the canonical database. Then Vk is

self-maintainable under U if and only if for every database D, Qk(U(D [ D̂)) 6� Qk(U(D̂))

implies Qi(D[D̂) 6� Vi for some i, :SAT(D[D̂;F), or :SAT(U(D[D̂);F). Furthermore,

the boolean queries in the containment equation can be expanded to unions of conjunctive

queries with negation that only applies to constant EDB predicates. 2

Proof: Following Theorem 5.4.1, Vk is self-maintainable under U if and only if Qk(U(D)) =

Qk(U(D̂)) for every database D that is consistent with the views, F , and U . Applying

Lemma 5.4.1, the validity of the latter statement does not change if we substitute \every

superset of D̂" for \every databaseD". Since a superset of D̂ can be equivalently represented

as D̂ [D for some D, it follows that Vk is self-maintainable under U if and only if:

(8D)
^
i

(Qi(D[D̂) = Vi)^SAT(D[D̂;F)^SAT(U(D[D̂);F)) Qk(U(D[D̂)) = Qk(U(D̂))

(5.1)

Furthermore, for every i, since Qi is monotonic and Qi(D̂) = Vi, Qi(D[ D̂) � Vi always

holds. Thus, the Qi(D[D̂) = Vi equality in (5.1) is equivalent to Qi(D[D̂) � Vi. Similarly,

since both Qk and U are monotonic, Qk(U(D [ D̂)) � Qk(U(D̂)) always holds. Thus, the

last equality in (5.1) is equivalent to Qk(U(D [ D̂)) � Qk(U(D̂)).

To complete the proof, the boolean queries DIFF and INCON , whose containment

decides self-maintainability of Vk, are listed in Table 5.2. In rules (B0
i) and (Ik), negation

only applies toHi and Ĥ
0
k, which are both de�ned entirely in terms of the constant predicates

v1; : : : ; vm. Negation also appears when expanding the subgoals G0
kj in rule (Ik), but it only

applies to the constant predicates �r�j .

Table 5.2 lists the rules that de�ne the boolean queries DIFF and INCON , whose

containment decides self-maintainability of Vk in Theorem 5.4.2. The di�erences between

this table and Table 5.1 can be highlighted as follows:

� Rules (Cij) and (Jkj) from Table 5.1, which introduced negated subgoals with some

variable predicate, have been eliminated.

� Rule (Kj) de�nes predicate r
00
j for relation Rj in D [ D̂.

� Rule (B0
i) expresses the fact that Qi(D [ D̂) 6� Vi. This rule replaces rule (Bi) from

Table 5.1.

� Rule (D0
j) de�nes predicate r

0
j for relation Rj in U(D [ D̂). This rule replaces rule

(Dj) from Table 5.1.

� Rule (Ik) is unchanged from Table 5.1, but has a di�erent meaning. It expresses the

fact that Qk(U(D [ D̂)) 6� Qk(U(D̂)).
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Rules Range DIFF INCON

(Aij) i = 1; : : : ;m

j = 1; : : : ; ni

Ĝij :{ Hi Ĝij :{ Hi

(Kj) j = 1; : : : ; n r00j :{ rj , r
00

j :{ r̂j r00j :{ rj , r
00

j :{ r̂j
(B0

i) i = 1; : : : ;m panic :{ G00

i1 & : : : & G00

ini
&

:Hi

(D0

j) j = 1; : : : ; n r0j :{ r
00

j & :�r�j , r
0

j :{ �r
+

j r0j :{ r
00

j & :�r�j , r
0

j :{ �r
+

j

(Fj) j = 1; : : : ; n r̂0j :{ r̂j & :�r�j , r̂
0

j :{ �r
+

j

(Hk) Ĥ 0

k :{ Ĝ0

k1 & : : : & Ĝ0

knk

(Ik) panic :{ G0

k1 & : : : & G0

knk
&

:Ĥ 0

k

(Lj��) j = 1; : : : ; n

FD �! � on rj

panic :{ rj( �X) & rj( �X
0
) &

�X =�
�X
0
& �X 6=�

�X
0

(Mj��) j = 1; : : : ; n

FD �! � on rj

panic :{ r0j(
�X) & r0j(

�X
0
) &

�X =�
�X
0
& �X 6=�

�X
0

Notation: Ĝij is Gij whose predicate rl is replaced by r̂l; G
00

ij is Gij whose predicate rl is

replaced by r00l ; Ĥ
0

k is Hk whose predicate vk is replaced by v̂0k; Ĝ
0

kj is Gkj whose predicate

rl is replaced by r̂0l; G
0

kj is Gkj whose predicate rl is replaced by r0l.

Table 5.2: Rules generated for the queries to compare in the new reduction.

Theorem 5.4.2 improves on Theorem 5.4.1 in eliminating the uses of 6� which were the

main source of exponential complexity in Algorithm 5.4.1: 6� introduced negation that ap-

plies to the variable EDB predicates r1; : : : ; rn. While negation still remains, it only applies

to constant EDB predicates, which can be eliminated. In other words, the queries to com-

pare are essentially unions of conjunctive queries with only 6= comparisons, which are much

simpler to deal with. We could have solved DIFF � INCON directly by using known algo-

rithms in the literature ([G*94, Klu88]) for deciding containment of unions of conjunctive

queries with arithmetic comparisons. Even though these algorithms are more e�cient than

those for deciding containment of queries with negation, a naive way of applying them would

require eliminating all constant EDB predicates. Unfortunately, the resulting complexity

would still have been exponential in the size of the views, because the expanded queries

have exponential size.

The next theorem is very important, since it gives us a polynomial-time solution to the

self-maintainability problem. The key is to solve DIFF � INCON without eliminating the

constant EDB predicates and to translate it into a logical expression that involves these

constant predicates rather than their extension. This expression is then rewritten as a

query, which can be evaluated in time polynomial in the size of their extension.

Theorem 5.4.3 Let DIFF and INCON be the two boolean queries in Theorem 5.4.2. There

is a boolean query TEST that decides DIFF � INCON. TEST is a nonrecursive Datalog

query with negation and 6= comparisons that only uses constant predicates as input. 2
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Proof: Essentially, we �rst show that DIFF � INCON can be characterized completely

by a logical expression. We then show that this logical expression can be rewritten as a safe

query. The full proof can be found in Appendix A.

The following algorithm, based on Theorems 5.4.2, and 5.4.3, generates a boolean query

that takes an instance of the views and an instance of the update as input, and determines

whether or not a view is self-maintainable under an arbitrary update and in the presence

of other views and functional dependencies.

Algorithm 5.4.2 (Generate generalized view self-maintainability test)

Input: Q1; : : : ; Qm, where each Qi is a conjunctive query (with no projection) that de�nes

vi using r1; : : : ; rn as input, and a set F of functional dependencies satis�ed by the

ri's. Query Qi is written as Hi :{ Gi1 & : : : & Gini.

Output: A query that decides whether Vk is self-maintainable under U , using predicates

v1; : : : ; vm and �r�1 ; �r
+
1 ; : : : ; �r

�
n ; �r

+
n as input.

Method:

1. Generate rules for the boolean queries DIFF and INCON as shown in Table 5.2.

Both queries use the 0-ary predicate panic for their query predicate.

2. Generate a query TEST that decides whether DIFF � INCON . Return TEST.

More details on how Step 2 in Algorithm 5.4.2 can be implemented can be found in

Appendix A.

Thus, in contrast to Algorithm 5.4.1 which decides self-maintainability at runtime, Al-

gorithm 5.4.2 translates, at view-de�nition time, self-maintainability to a query test that

can be evaluated against the views and the update instance at runtime. As such, not only

can we test self-maintainability in polynomial time, but also we can optimize and com-

pile the test more e�ectively than a test in procedural form such as Algorithm 5.4.1. The

running time of Algorithm 5.4.2 and the size of the query test it generates do not depend

on the instance of the views and update. They are exponential in the size of the view

de�nitions. This complexity is not surprising, in light of the NP-completeness of checking

query containment [CM77]. While the complexity of test generation is not as critical as

the complexity of test execution, the availability of good query optimization techniques can

help simplify the tests and further improve their execution speed.

EXAMPLE 5.4.3 Consider the de�nition of views V1 and V2 from Example 5.2.1 and

consider the problem of testing self-maintainability of V1 under the insertion of r(a; b).

Algorithm 5.4.2 generates a test which simpli�es to the following query (using the 0-ary

predicate maintainable as the query predicate):
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p(Z) :{ v1(X;Y;Z)

q(Z) :{ v2(Y;Z) & v1(X;Y;Z
0)

depend :{ v2(b; Z) & :p(Z) & :q(Z)

maintainable :{ :depend

2

5.5 Summary

In this chapter, we developed a general method for solving the generalized view self-

maintenance problem in the presence of multiple views and functional dependencies, and

under arbitrary sets of insertions and deletions, when the views do not have projections.

We obtained the following results:

� When a view is self-maintainable, the problem of how to maintain the view without

using any base relations can be reduced to a traditional view maintenance problem

where the instance of all the base relations is available. The canonical database is

used for such an instance.

� We reduced the view self-maintainability question to a question of query containment

which we expressed as a boolean query against the views and the update instance. This

query evaluates to True if and only if the view is self-maintainable. The query that

tests self-maintainability is in nonrecursive Datalog with negation and 6= comparisons.

Thus, self-maintainability can be decided in time polynomial in the size of the view

instance and the update instance. The size of the query itself is exponential in the

size of the view de�nitions in the worst case. But since the query can be generated at

compile-time, it can be optimized.

The method we developed in this chapter to solve the generalized view self-maintenance

problem is based on concepts that are fairly general:

� Canonical databases.

� Reduction of self-maintainability to query containment.

� Expression of query containment as a query.

As will be shown in the next chapter, these concepts, the �rst two in particular, can be

extended easily to handle additional parameters to the view self-maintenance problem that

include tuple updates, partial copies (i.e., partial knowledge of the contents of a base rela-

tion), allowing projections in view de�nitions.

The general method can also serve as a tool that can help answer general questions

that arise in the development of specialized methods for special cases. For example, we can

easily show that functional dependencies on the updated relation play no role in determining

self-maintainability of a view under insertions to a base relation, as stated in the following

theorem.
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Theorem 5.5.1 Let V be a view de�ned by a conjunctive query Q (with no projections)

over some database D. Let r be a base predicate that is not repeated in Q's body. Let F

be a set of functional dependencies that holds in D. Let U be an update to D that consists

of inserting a set �r of tuples to R (the relation for r) and that does not violate F . Let

F
0 be the dependencies in F over base relations other than R. Then under update U , V is

self-maintainable in the presence of F if and only if it is self-maintainable in the presence

of F 0. 2

Proof: As a special case of Theorem 5.4.2, V is self-maintainable under U if and only if

for every database D,

Q(D [ D̂) � V ^ SAT(D [ D̂;F) ^ SAT(U(D [ D̂);F)) Q(U(D [ D̂)) � Q(U(D̂)) (5.2)

But Q(U(D[D̂)) can be rewritten as Q(D[D̂[�R), which is the union of the following

two relations:

� Q(D [ D̂), which is simply V , under the premise of (5.2).

� Q�r(D [ D̂), where Q�r is the query obtained from Q by replacing r with predicate

�r.

Thus, when we express (5.2) as the containment DIFF � INCON in a way very similar

to Table 5.2, predicate r does not appear in any rule in DIFF . Thus, any rule in INCON

that uses predicate r can be dropped from consideration, since there is no containment

mappings that map it to some rule in DIFF . In particular, any rule that expresses violation

of R's dependencies can be dropped. In other words, self-maintainability of V under F and

self-maintainability of V under F 0 are equivalent.

Theorem 4.1.2, which was stated in Section 4.1 without proof, is just a corollary of

Theorem 5.5.1.



Chapter 6

Extensions

In the previous chapter, we developed a general method for solving a particular view self-

maintenance problem. The purpose of this chapter is to demonstrate the extensibility of

the method under other important view-maintenance situations.

In deriving the results in this chapter, we will reuse or extend the concepts presented in

the previous chapter, and the following in particular:

� Canonical databases.

� Reduction of self-maintainability to query containment.

The rest of this chapter is organized as follows.

Section 6.1, Dealing with Tuple Updates, considers a kind of update that is very

common in database systems, tuple updates. In general, a tuple update is not equiv-

alent to a deletion followed by an insertion. We show a polynomial solution to this

problem.

Section 6.2, Using other additional information, examines how we can exploit other

common types of information such as a history of the most recent base updates, the

assumption that all base updates are e�ective, and the use of a subset of the base

relations. We show that under these situations, the view self-maintenance problem

admits a polynomial solution.

Section 6.3, Beyond CQ Views with no projections, considers other classes of view

de�nition that are important in practice: conjunctive queries with arithmetic compar-

isons, general conjunctive queries (with projection), and unions of conjunctive queries.

For these classes of view, we give a solution to the view self-maintenance problem that

is not polynomial.

Section 6.4, Summary, summarizes the results obtained by extending the method devel-

oped in the previous chapter and discusses future work in this area.
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6.1 Dealing with Tuple Updates

So far we only consider base updates that consist of a set of tuples to be deleted from the

base relations and a set of tuples to be inserted to these relations. However, we have not

considered a kind of updates that is very common in database systems (exempli�ed by the

SQL update command): tuple updates hereafter. A tuple update speci�es two tuples told
and tnew, and has the e�ect of replacing tuple told by tuple tnew if told is in the database.

Note that in this update, the insertion of tnew is conditioned by the presence of told in the

database. In other words, the update has no e�ect on the database if it does not already

contain told.

By contrast, a base update that consists of the unconditional deletion of told and the

unconditional insertion of tnew does not always have the same e�ect on the database. In

particular, tnew is inserted into the database regardless of whether or not told was present.

This di�erence raises the question as to whether or not a tuple update can be treated as

a deletion and an insertion, as far as view self-maintainability is concerned. The following

example con�rms our hunch that a tuple update is generally not equivalent to a deletion

and an insertion.

EXAMPLE 6.1.1 Consider a view V de�ned by

v(X;Y;Z) :{ r(X;Y ) & s(X) & t(Y;Z)

Let U1 consist of the deletion of r(b; a) and the insertion of r(a; b), and let U2 consist of

replacing r(b; a) by r(a; b). Consider the view instance V = f(a; y; z); (x; b; z0)g. Applying

Theorems 3.3.1 and 3.2.1, V is self-maintainable under U1 because it contains some tuples

of both forms (a;�;�) and (�; b;�). However, it is easy to show that V is not self-

maintainable under U2. Figure 6.1 shows two databases that are both consistent with the

view instance prior to the update U2, but that derive di�erent views after the update. 2

In the rest of this section, tuple updates on base relation r( �X) are represented by

predicate r( �X; �Y ). The relation for r contains a set of tuples (�x; �y), each of which

indicates a change of the R-tuple (�x) to the R-tuple (�y). Thus, using predicate r0( �X) for

the updated relation, the e�ect of update r( �X; �Y ) on r can be represented by the following

rules:

dr( �X) :{ r( �X; �Y )

r0( �X) :{ r( �X) & :dr( �X)

r0( �X) :{ r( �Y ) & r( �Y ; �X)

The following can be said about maintaining views under updates that also include tuple

updates:

� The de�nition of canonical databases as in De�nition 5.2.1 requires no change. Theo-

rem 5.2.1, stating that the canonical database is consistent with the views, the update,

and functional dependencies, remains valid. Theorem 5.3.1, the view maintenance

theorem, remains valid.
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v(X;Y;Z) r(X;Y ) s(X) t(Y;Z)

a; y; z a; y a y; z

x; b; z0 x; b x b; z0

No changes. U2 has no e�ect on R

Database D1.

v(X;Y;Z) r(X;Y ) s(X) t(Y;Z)

a; y; z a; y a y; z

x; b; z0 x; b x b; z0

b; a

a; b; z0 added. U2 changes (b; a) to (a; b)

Database D2 derives di�erently from D1 after the tuple update.

Figure 6.1: A non-self-maintainable view instance from Example 6.1.1.

.

� Theorem 5.4.2, the theorem that reduces self-maintainability to query containment,

remains valid, since the update U is still a monotonic function of the database.

� Finally, although new conjunctive queries are added to each of DIFF and INCON , the

resulting logical expressions continue to be in one of the forms speci�ed in Table A.3.

Therefore, Theorem 5.4.3, the theorem that states that DIFF � INCON can be

expressed as a safe query, remains valid.

6.2 Using other additional information

6.2.1 Using Partial Copies

So far, the base updates we considered in the view self-maintenance problem represent

updates that have been applied to the base relations. We made no assumptions as to

whether they represent updates that have been e�ectively applied, that is, whether they

represent net changes to the base relations. For example, deletion of ��r and insertion of

�+r could have resulted in no change to relation R if no tuples of ��r are in R and every

tuple of �+r is in R. In practice, it is conceivable that the changes reported by the data

sources represent net changes. In this case, a net deletion of ��r tells us that relation R

must include certain tuples (namely, those speci�ed by ��r). Similarly, a net insertion of

�+r tells us that R must exclude other tuples (those speci�ed by �+r).

The information that a base relation R include certain tuples and exclude others is

called a partial copy of R. We call it a partial copy to contrast it with the case where the
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contents of R are completely known. Thus, given such additional information, the question

is how we can take advantage of it in the view self-maintenance problem.

Another scenario where partial copies arise in practice is when the warehouse keeps a

log of the most recent base updates. From this log, it is possible to infer some tuples that

are not in the database and some of those that must be in the database.

For each base relation r, let r+ represent a set of tuples that the relation for r must

include and r� a set of tuples that must be excluded. In the presence of this information,

the following can be said about view self-maintenance:

� The de�nition of canonical databases from De�nition 5.2.1 is extended to also include

R+
j for each base relation Rj . In other words

D̂ =
[
i

Q�1
i (Vi) [

[
j

R+
j

Also, the notion of consistency is extended to include the requirement that a database

include and exclude the given tuples. With these extended de�nitions, Theorem 5.2.1,

stating that the canonical database is consistent with the views, the update, and func-

tional dependencies, remains valid. Theorem 5.3.1, the view maintenance theorem,

remains valid.

� Theorem 5.4.2, the theorem that reduces self-maintainability to query containment, is

extended to include additional consistency conditions that database D excludes tuples

from all R�j 's. In other words, view Vk is self-maintainable if and only if for every

database D

SAT(D [ D̂;F) ^ SAT(U(D [ D̂);F) ^ [
^
i

Qi(D [ D̂) � Vi] ^
^
j

D \R�j = ;

implies

Qk(U(D [ D̂)) � Qk(U(D̂))

Note that since D̂ is already known to exclude tuples from all the R�i 's, the additional

consistency conditions are equivalent to the conditions that D[D̂ excludes tuples from

all R�j 's. Also, the condition that D [ D̂ includes all the R+
j is not needed since by

de�nition, D̂ already includes these R+
j .

� In the resulting containment problem DIFF � INCON , we only need to include

additional rules to INCON that express D \ R�j 6= ;. Since these rules have a very

simple form, namely

panic :{ rj & r�j ;

Theorem 5.4.3, the theorem that states that DIFF � INCON can be expressed as a

safe query, remains valid.
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6.2.2 Using Base Relations

So far, we only considered strict self-maintenance, where we attempt to maintain the views

using information that can be obtained strictly locally from the warehouse, namely the

materialized views, the update, and possibly other information that is cheap to obtain. In

particular, base access has been completely avoided.

But how do we proceed if a view turns out to be not self-maintainable in the strict

sense? One possibility to fall back to the \normal" but expensive maintenance mode with

unrestricted access to the base relations, as depicted in Figure 6.2(a). However, instead

of switching to the normal maintenance mode immediately, another possibility is to use

some (but not necessarily all) of the base relations to maintain the view. In fact, there are

many cases where a view is not self-maintainable (in the strict sense) but can be maintained

using some of the base relations. Thus, a more re�ned strategy based on full access to a

subset of the base relations must be considered. Figure 6.2(b) illustrates this strategy. Note

that the choice of which subset of base relations to use at each iteration is important not

only because using di�erent subsets incurs di�erent costs, but also because di�erent subsets

provide di�erent amounts of information relevant to self-maintainability. Thus, a subset

that is expensive to use but that is likely to make a self-maintainability test succeed may

be preferable over one that is cheap to use but that is unlikely to make the test succeed. In

Figure 6.2(b), the choice of which subset of base relations to use next is left open. How to

make the optimal choice is an important area for future research.

In the following, we show how to solve the generalized self-maintenance problem with

full access to a speci�ed subset of the base relations. There is a close resemblance between

allowing access to a base relation and having a copy of the base relation materialized at the

warehouse. In fact, if we assume that:

� The materialized views are simultaneously updated, that is, the required updates to

each view are determined prior to updating any view,

� Update U is e�ective, that is, it represents the net changes to the underlying database,

and

� The base relations are accessed in a state that reects update U but no other later

updates (assuming that the warehouse received updates in the order they are applied

to the database),

then, the generalized self-maintenance problem can be treated as a strict self-maintenance

problem where a copy of the given base relations is available at the warehouse, with the

exception that the actual base relations and the copy only di�er by the update.

EXAMPLE 6.2.1 Consider the problem of maintaining a view V de�ned by

v(X;Y;Z) :{ r(X;Y ) & s(Y;Z) & t(Z)

where we are allowed to access base relation S but not R or T . Consider an update with

�R�, �R+, �S�, �S+, �T�, and �T+. The maintenance expression and maintainability
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Maintain Vk

Yes

Maintain Vk Maintain Vk

Yes No No

No

Yes

Maintain Vk

S = ;

Is Vk

(a) Under strict self-maintenance (b) Under generalized self-maintenance

Rj 's ?

maintainable

any Rj 's
without using

all the Rj 's relations in S
all the Rj 's

not using any

Are

all Ri's in
S ?

Choose
next S

Is Vk

S ?
relations in
using only

maintainable

using using only
using

Figure 6.2: Strategies for e�cient warehouse maintenance.

test for this generalized self-maintenance problem can be obtained as follows. Consider the

problem of maintaining V without accessing any base relation but where a copy of relation

S is maintained at the warehouse as view V 0:

v0(Y;Z) :{ s(Y;Z)

We can derive a solution to this problem that uses predicates v and v0 as input. A solution

to the original problem can be obtained from this solution by replacing every occurrence of

v0 with a new predicate s0 de�ned by the following rules:

s0(Y;Z) :{ s(Y;Z) & :�s+(Y;Z) j �s�(Y;Z)

Predicate s0 represents the state of relation S prior to the given update. 2

Thus, results for the strict self-maintenance problem can be carried over by simply

replacing every reference to the \copy" of a base relation by a reference to its \before

image." In practice, allowing access to a base relation when maintaining a materialized

view must be handled carefully. When a base relation is asynchronously updated by the

source, it may be read by the warehouse in a di�erent state than what is assumed by the

warehouse. This situation may lead to erroneous updates to the warehouse, as reported in

[Z*95]. Thus, a warehouse system that uses generalized self-maintenance must either allow

access only to base relations that change in lock step with the warehouse, or combine our

techniques with the compensation techniques developed in [Z*95].

6.3 Beyond CQ Views with no projections

6.3.1 CQ Views with Arithmetic Comparisons

Consider views de�ned by conjunctive queries with no projections but that allow arithmetic

comparisons of the form (� op �), where op is one of the <, �, >, �, and 6= operators, and

� and � are either constants or variables.
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The following can be said about maintaining CQ views with arithmetic comparisons:

� The de�nition of canonical databases as in De�nition 5.2.1 requires no change. Theo-

rem 5.2.1, stating that the canonical database is consistent with the views, the update,

and functional dependencies, remains valid, since the queries de�ning the views are

still monotonic. Theorem 5.3.1, the view maintenance theorem, remains valid.

� Theorem 5.4.2, the theorem that reduces self-maintainability to query containment,

remains valid, since the update U is still a monotonic function of the database.

� The listings of queries DIFF and INCON as shown in Table 5.2 remain valid. These

queries are unions of conjunctive queries with arithmetic comparisons, and exponential-

time solutions exist in the literature ([G*94, Klu88]) for deciding DIFF � INCON .

However, whether or not DIFF � INCON can be expressed as a nonrecursive Datalog

query is still open. It is also open as to whether or not DIFF � INCON can be solved

in time polynomial in the size of the input relations.

6.3.2 CQ Views with Projection

Consider views de�ned by conjunctive queries where some variables used in a rule's body do

not appear in the rule's head. We call these variables hidden variables. For simplicity, we

will �rst ignore functional dependencies. We will discuss how to extend the results to handle

functional dependencies at the end of this subsection. A view where some attributes have

been projected out looses information, and from an instance of the view, there is no unique

way of minimally reconstructing the underlying database. The notion of canonical database

from Section 5.2 must be revised to capture this nonuniqueness. The following rede�nes

our notion of canonical database (note that the following de�nition is almost identical to

De�nition 2.2.1 with the only exception that a single view is assumed in the latter).

De�nition 6.3.1 (Canonical database for CQ views with projection) Let V1; : : : ; Vm
be views, and for i = 1; : : : ;m, let Qi be the conjunctive query that de�nes Vi. The canonical

database, denoted D̂, consists of all the tuples obtained as follows: for each Vi and for each

tuple t in Vi, the matching of t with Qi's head provides a substitution for the variables

in Qi's body that also appear in the head; this substitution is extended to the remaining

(hidden) variables by paring each of them to a new symbol; the ground atoms obtained

after making this extended substitution into Qi's body are included in D̂. We will use

newsym(D̂; t) to denote the new symbols generated for D̂ due to tuple t, and newsym(D̂)

to denote all the new symbols generated for D̂. 2

EXAMPLE 6.3.1 Consider the view de�nition v(X;Z) :{ s(X;Y ) & s(Y;Z) where Y has

been projected out. Consider the instance V = f(a1; c1); (a2; c2)g. The rede�ned canonical

database D̂ consists of S = f(a1; y1); (y1; c1); (a2; y2); (y2; c2)g, where y1 and y2 are new

symbols. In this example, newsym(D̂; V (a2; c2)) = fy2g and newsym(D̂) = fy1; y2g 2
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A tuple in D̂ that contains a new symbol represents a fact involving some object whose

value is not known. This value could be any of the known constants from the instance of

the views or the update instance, or could be some constant not in any of those instances.

Thus, if we consider all the symbol mappings h that map each of the new symbols to either

one of themselves or a known constant, then D̂ represents not a single database but a class

of possible databases, each of which is obtained by applying some mapping h to D̂. The

following example illustrates the nonuniqueness of canonical databases due to projections

in views.

EXAMPLE 6.3.2 Consider the same view de�nition as in Example 6.3.1, but a di�erent

view instance V = f(d; c)g. Consider the insertion of (a; b) into S. The canonical database

D̂, which consists of S = f(d; y); (y; c)g where y is a new symbol, actually can be interpreted

in �ve possible ways (by mapping y to either y, a, b, d, or c): S = f(d; y); (y; c)g, S =

f(d; a); (a; c)g, S = f(d; b); (b; c)g, S = f(d; d); (d; c)g, or S = f(d; c); (c; c)g. The last two

databases are not consistent with V , since they respectively derive tuples (d; d) and (c; c)

which are not in the view. Among the remaining consistent databases, after the insertion,

the second one derives tuple (d; b) not derived by the �rst one. Thus, view V is not self-

maintainable under the insertion of (a; b) to S. 2

A mapping that gives an interpretation of D̂ that is consistent with all the views is said

to be consistent. But do consistent mappings always exist? Before answering this question,

let us �rst make this notion of mapping more precise, de�ne the notion of isomorphic

databases, and state two lemmas that will be useful to answer the question.

De�nition 6.3.2 (Canonical Mappings) Given a set of views and together with their

de�nitions, let K be a set of symbols that contains symbols used in the views and view

de�nitions. Let D̂ be the canonical database (note that K and newsym(D̂) are disjoint.)

A canonical mapping h is a function from K [ newsym(D̂) to itself that leaves the K

symbols invariant (i.e., h is the identity function on K). A canonical mapping h is said to

be consistent if h(D̂) is consistent with all the views. 2

De�nition 6.3.3 (Isomorphic Databases) Let K be a set of symbols, and let D1 and

D2 be two databases. We say that D1 and D2 are K-isomorphic (written as D1 �K D2) if

there is a one-to-one mapping ' : symbols(D1)! symbols(D2) such that:

1. ' is the identity function on K,

2. ' maps symbols(D1)�K to symbols(D2)�K, and

3. '(D1) = D2.

2

We now state a lemma that relates the answers to the same query over two isomorphic

databases.
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Lemma 6.3.1 Let Q be a conjunctive query, let K be a set of symbols that includes all the

symbols used in Q, and let D1 and D2 be two databases. If D1 �K D2, then Q(D1) �K

Q(D2). 2

Proof: Let Q be de�ned by rule H :{ B: Assume D1 �K D2 and let ' be an associated

isomorphism such that '(D1) = D2. We would like to show '(Q(D1)) = Q(D2). Let t

be a tuple in Q(D1). To show that '(t) 2 Q(D2), we need to �nd a substitution �2 such

that �2(B) � D2 and �2(H) = '(t). Since t 2 Q(D1), there is a substitution �1 such

that �1(B) � D1 and t = �1(H). Consider the substitution �2 = ' � �1. First, �2(B) =

'(�1(B)) � '(D1) = D2. Second, �2(H) = '(�1(H)) = '(t). Thus '(Q(D1)) � Q(D2).

The converse can be shown analogously by using '�1.

Since we will be dealing with databases that are consistent with the views, it is important

to understand their relationship with interpretations of D̂. The following lemma provides

this relationship.

Lemma 6.3.2 Given a set of views, let K be a set of symbols that includes the symbols used

in the views and the conjunctive queries de�ning the views. Let D be a database consistent

with all the views and let D̂ be the canonical database. Then, D contains a database that is

K-isomorphic with h(D̂), for some canonical mapping h. 2

Proof: Since D is consistent with all the views, for each view V (say de�ned by rule

H :{ B) and for each tuple t 2 V , there is a substitution �t that turns B into tuples in D.

Let D0 be the collection of all such tuples (i.e., union of �t(B) over all tuples t from each

view). Similarly, by construction of D̂, for each view tuple t, there is a substitution �̂t that

turns B into tuples in D̂. Clearly, �t and �̂t agree on the variables in B that also appear in

H, and map them to view symbols. Also, �̂t maps the hidden variables to distinct symbols

in newsym(D̂; t). Let ft : newsym(D̂; t) ! symbols(D0) be the function that composes

the inverse of the restriction of �̂t over the hidden variables with �t. Let f be the function

that is the identity function on K and that coincides with ft over newsym(D̂; t) for each

t. Clearly, f(D̂) = D0. Next, we decompose f into two functions, h and ', constructed as

follows:

� For symbols s 2 newsym(D̂ such that f(s) 2 K, then let h(s) = f(s).

� For each symbol s0 2 symbols(D0) �K, consider the set f�1(s0). Let ss0 be a repre-

sentative from that set. Then, for each s 2 f�1(s0), let h(s) = ss0 and '(ss0) = s0.

� ' and h are the identity function on K.

It is easy to verify that:

� f = ' � h.

� h is a function from K [ newsym(D̂) to itself.

� ' is a one-to-one mapping: symbols(h(D̂))! symbols(D0)
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To summarize, we have constructed a database D0
� D and a canonical mapping h such

that D0
�K h(D̂) (with isomorphism ').

We now return to the original question about the existence of consistent canonical

mappings. The following theorem not only states that among all the possible interpretations

of D̂, there is always one that is consistent with all the views, but also makes the relationship

between consistent databases and consistent interpretations of D̂ explicit.

Theorem 6.3.1 Given a set of views, let K be a set of symbols that includes the symbols

used in the views and the conjunctive queries de�ning the views. Let D̂ be the canonical

database. Then, (1) any database D that is consistent with the views contains a database

that is K-isomorphic to h(D̂) for some consistent canonical mapping h, and (2) there is

always a consistent canonical mapping h. 2

Proof: To show (1), let D be a database that is consistent with all the given views. Using

Lemma 6.3.2, there must be some canonical mapping h and some subset D0 � D such that

h(D̂) �K D0. On the one hand, it follows from Lemma 6.3.1 that Qj(h(D̂)) �K Qj(D
0)

for every j, and since Qj(D
0) only uses symbols in K (because � Qi(D) = Vj), it follows

that Qj(h(D̂)) = Qj(D
0) � Qj(D) = Vj . On the other hand, since h(D̂) is one way to

explain the presence of the tuples in all the views, it follows that Qj(h(D̂)) � Vj for every

j. Therefore, Qj(h(D̂)) = Vj and h(D̂) is consistent with all the views. To show (2), we

use the assumption that an underlying database that is consistent with all the views exists.

Then, (2) is a simple corollary of (1).

To maintain a view (if it is self-maintainable), we can use the same idea as in Section 5.3

of �nding a consistent database and using it to propagate an update to the view as if it were

the actual database. A consistent canonical database is such a database, whose existence

is guaranteed by Theorem 6.3.1. Thus, a solution to the maintenance question is to look

for a consistent canonical mapping h and to propagate the given update to the view using

h(D̂) as the underlying database.

For the self-maintainability question, Theorem 5.4.2, the reduction theorem, must be

extended to take into account the nonuniqueness of a canonical database that is consistent

with the views. The following theorem formalizes the new reduction.

Theorem 6.3.2 Let V1; : : : ; Vm be views, and for i = 1; : : : ;m, let Qi be the conjunctive

query that de�nes Vi. Let D̂ be the canonical database and let U be a ground update to the

underlying database. Let K be the set of symbols used in the Vi's, the Qi's, and U . Let

M be the set of consistent canonical mappings from K [ newsym(D̂) to itself. Then Vk
is self-maintainable under U if and only if (1) For every h 2 M , Qk(U(h(D̂))) contains

no symbols from newsym(D̂), (2) For every h1; h2 2 M , Qk(U(h1(D̂))) = Qk(U(h2(D̂)))

holds, and (3) For every h 2 M ,
V
iQi(D) = Vi implies Qk(U(D)) = Qk(U(h(D̂))), for

every database D that contains h(D̂). 2
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Proof:

IF: Let D1 and D2 be two databases that are consistent with the views. To show

Qk(U(D1)) = Qk(U(D2)), we will elaborate on Qk(U(D1)), and Qk(U(D2)) follows simi-

lar reasoning. Since D1 is consistent with the views, it follows from Theorem 6.3.1 that

D1 � D0
1 �K h1(D̂), for some D0

1 and some consistent h1. Since it is always possible to

construct a superset of h1(D̂) that is K-isomorphic to D1, let D̂1 be such a superset. On

the one hand, D̂1 is consistent with all the views since D1 is, and it follows from (3) that

Qk(U(D̂1)) = Qk(U(h1(D̂))). On the other hand, it is easy to see that U(D̂1) �K U(D1),

and it follows from Lemma 6.3.1 thatQk(U(D̂1)) �K Qk(U(D1)). ThereforeQk(U(D1)) �K

Qk(U(h1(D̂))), and it follows from (1) that Qk(U(D1)) = Qk(U(h1(D̂))). Similarly for D2,

we can show that Qk(U(D2)) = Qk(U(h2(D̂))) for some consistent h2. Applying (2), we

conclude that Qk(U(D1)) = Qk(U(D2)) and that Vk is self-maintainable under U .

ONLY-IF: Conversely, assume Vk is self-maintainable under U . To show (1), assume

there is a consistent h such that Qk(U(h(D̂))) contains some symbol s from newsym(D̂).

Consider a database D0 obtained from h(D̂) by replacing s with a new symbol s0. It is easy

to see that not only D0 is consistent with the views (since h(D̂) is), but also Qk(U(D
0))

contains symbol s0. Obviously Qk(U(h(D̂))) cannot be identical to Qk(U(D
0)). Thus, there

are two databases (namely h(D̂) and D0) that are both consistent with the views but that

derive di�erent instances of view Vk after the update, which contradicts the hypothesis

that Vk is self-maintainable under U . Therefore (1) must holds. To show (2), any pair of

databases that are consistent with the views must derive the same view after update, in

particular h1(D̂) and h2(D̂), where h1 and h2 are any consistent mappings. So (2) holds. To

show (3), let h be a consistent mapping and let D be a superset of h(D̂) that is consistent

with the views. Since Vk is self-maintainable under U , D and h(D̂) must derive the same

instance of view Vk after update. In other words, Qk(U(D)) = Qk(U(h(D̂))).

Note that condition (3) in Theorem 6.3.2 not only is decidable, but also can be decided,

for each h 2 M , in time polynomial in the size of the view instance and update instance.

To see why, we use the same idea as in Theorem 5.4.2 of representing any superset of h(D̂)

by D [ h(D̂) (for an arbitrary D), and rewrite the implication as

Qk(U(D [ h(D̂))) 6� Qk(U(h(D̂))))
_
i

Qi(D [ h(D̂)) 6� Vi

Using the same technique based on query containment developed in Section 5.4, this im-

plication can be solved in time polynomial in the size of the view instance and the update

instance.

When we take functional dependencies into account in our problem, the results we obtain

so far for the case without FD's need to be adjusted with the following modi�cations:

� For a canonical mapping h to be consistent, we require not only that h(D̂) be con-

sistent with all the views, but also that both h(D̂) and U(h(D̂)) satisfy the given

FD's.

� Theorem 6.3.2 is extended by requiring the implication in condition (3) to hold for

every database D that not only contains h(D̂) but also satis�es the given FD's both
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before and after the update U is applied. This implication can be checked using the

same technique as in Theorem 5.4.2.

To sum it up, for view maintenance, we can obtain an algorithm similar to Algo-

rithm 5.3.1 except that the algorithm now uses a database h(D̂) that is consistent with

all the views (and with all the functional dependencies if any), instead of just D̂. For decid-

ing view self-maintainability, we can obtain an algorithm that computes all the consistent

h(D̂)'s, compares the e�ect of the base update on the view when applied to the h(D̂)'s, and

tests each of the h(D̂)'s using an algorithm similar to Algorithm 5.4.2.

While the use of projection in CQ views seems to make the problem considerably harder

since the number of consistent canonical mappings h can be exponential in the worst case,

results from Chapter 3 suggest that it does not have to be so. Chapter 3 showed that even

with projection, self-maintainability of a single conjunctive-query view with no self-join can

be e�ciently decided with a simple query. Thus, an important future direction is to further

re�ne our techniques and identify restrictions on the view that allow the problem to be

solved more e�ciently.

6.3.3 Unions of CQ Views

We now consider views that are unions of conjunctive queries which, for simplicity of dis-

cussion, do not have projections. We also ignore functional dependencies. For a view V

de�ned by more than one rule (say bymult(v) many rules), the presence of each tuple in the

view can be explained by more than one set of facts (mult(v) many sets to be exact). Each

canonical database represents a particular way to explain all the facts in the views. Thus,

given an instance of V1; : : : ; Vm, the number d of canonical databases that can account for

the contents of all the views is

mult(v1)
size(V1) � : : :�mult(vm)

size(Vm):

Thus, like projections, unions introduce nonuniqueness of canonical databases. Canonical

databases have the following properties:

� Any database that is consistent with all the views must contain some canonical

database, which is necessarily consistent with all the views (since the queries de�ning

the views are monotonic).

� Among all the canonical databases, there is at least one that is consistent with all the

views (following the view realizability assumption).

� Not every canonical database is consistent with all the views.

The following example illustrates the nonuniqueness of canonical databases due to unions

in views.
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Figure 6.3: The four canonical databases associated with the union views.

EXAMPLE 6.3.3 Consider views V1 and V2 de�ned by

v1(X;Y;Z) :{ r(X;Y ) & s(Y;Z) j s(X;Y ) & t(Y;Z)

v2(X;Y ) :{ r(X;Y ) j t(X;Y )

Consider the view instances V1 = f(a; b; c)g and V2 = f(a; b)g. Figure 6.3 shows the four

canonical databases which are obtained by considering all possible ways to choose a rule for

each view. Among these canonical databases, only D̂1 and D̂2 are consistent with all the

views. Both D̂3 and D̂4 generate (b; c), which is not in V2. 2

To maintain a view Vk, we can apply the same idea as in Section 5.3: propagate the

update to Vk using some canonical database that is consistent with all the views. The choice

of a canonical database is not important.

To answer the self-maintainability question, we must consider all the canonical databases

that are consistent with all the views. Using these databases, the problem can be solved in

a way that parallels the case of views with projections.

Theorem 6.3.3 Let V1; : : : ; Vm be given views, and for i = 1; : : : ;m, let Qi be the union

of conjunctive queries that de�nes Vi. Let D̂1; : : : ; D̂n be all the canonical databases that

are consistent with all the views. Let U be an update to D, Then Vk is self-maintainable

under U if and only if (1) Qk(U(D̂j)) = Qk(U(D̂l)) holds for every pair D̂j and D̂l, and

(2)
V
iQi(D [ D̂j) � Vi implies Qk(U(D [ D̂j)) � Qk(U(D̂j)), for every database D and

for every D̂j. 2

Proof:

IF: Let D1 and D2 be two databases that are consistent with the views. D1 contains

some D̂j and D2 contains some D̂l. Applying (2), we infer that Qk(U(D1)) = Qk(U(D̂j))

and Qk(U(D2)) = Qk(U(D̂l)). Applying (1), we conclude that Qk(U(D1)) = Qk(U(D2)).

Thus, Vk is self-maintainable under U .

ONLY-IF: Conversely, assume Vk is self-maintainable under U . Any pair of databases

that are consistent with the views must derive the same view after update, in particular
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any pair D̂j and D̂l. So (1) holds. To verify (2), let D be a database and D̂j a canonical

database that is consistent with the views. Assume that D[D̂j (call itD
0) is consistent with

the views. Since Vk is self-maintainable under U , it follows that Qk(U(D
0)) = Qk(U(D̂j)).

It it easy to see that Theorem 6.3.3 continues to hold if we consider only those canonical

databases (consistent with the views) that are minimal. That is, we can ignore those

canonical databases that contain some canonical databases consistent with the views.

In summary, to test self-maintainability of views that are unions of conjunctive queries:

� We compute all the minimal canonical databases that are consistent with the views.

� We then determine if updating any one of them has the same e�ect on all the views.

� For each minimal canonical database, we execute a query similar to what Algo-

rithm 5.4.2 generates against the views and the canonical database.

6.4 Summary

In this chapter, we extended the general method developed in the previous chapter to cover a

variety of situations in view self-maintenance. The required extensions were straightforward

and the following results were obtained:

� When tuple updates are considered, and partial copies and subsets of the base relations

are available, self-maintainability can still be tested in time polynomial in the size of

the view instance, the update instance, any the base relation instance (if any). In

particular, the tests are nonrecursive Datalog queries that can be generated at compile

time.

� For views that are de�ned by conjunctive queries with projections or arithmetic com-

parisons, or unions of conjunctive queries, an obvious solution to the self-maintainability

question is obtained and has a runtime complexity that is generally exponential in

the size of the given relation instances.

We also applied the method to cases involving other data dependencies on the base

relations. Testing view self-maintainability in the presence of multivalued dependencies

reduces to testing containment of unions of conjunctive queries with negation (that applies

to variable predicates), which can be solved with known algorithms ([LS93]). However,

when the dependencies are embedded (e.g., inclusion dependencies), the resulting queries

which we want to compare still involve negation but are no longer unions of conjunctive

queries. Whether or not we can decide containment of these queries is still an open problem.

There remain many questions that deserve a closer look:

� Whether or when instance-speci�c containment of conjunctive queries involving arith-

metic comparisons can be formulated as a query?
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� Negation often appears only in the right hand side of the containment equation

DIFF � INCON . There are cases where all the rules involving negation can be

eliminated without a�ecting the result. While containment of such queries is not gen-

erally known to be decidable or to have a polynomial solution, there may be special

cases where the problem is more tractable. The following theorem is an example of

such a special case.

Theorem 6.4.1 Consider a database D that includes relation S. Let P , Q, and R

be queries over D. Let s be S's predicate. Assume the following:

{ P is independent of s or monotonic in s.

{ Both Q and R are independent of s or anti-monotonic in s.

Then P � (Q [ (R & :G)) if and only if P � Q, where G is an atom with predicate

s. 2

Proof: The IF part is trivial. For the ONLY-IF part, assume P 6� Q. There is

a database D and a tuple t such that t 2 P (D) and t 62 Q(D). Obtain D0 by

adding to D enough S-tuples so that t 62 (R & :G)(D0). But since P is monotonic

in s, P (D0) � P (D) and thus, t 2 P (D0). Also since Q is anti-monotonic in s,

Q(D0) � Q(D) and thus, t 62 Q(D0). Therefore P 6� (Q [ (R & :G)).

� When the view de�nitions involve projections or unions, the complexity of the re-

sults stems from the potentially large number of canonical databases and the cost to

compute them. There may be situations where canonical databases come in small

numbers or even unique, in which case a polynomial solution exists.
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Chapter 7

Conclusion

7.1 Contribution of this Thesis

In this thesis, we proposed an approach to e�ciently maintain a data warehouse by minimiz-

ing base access or even avoiding it totally. Such approach makes sense since data warehouses

often have some degree of information redundancy that can be exploited in maintenance,

and since accessing external data sources are usually much more expensive than accessing

the warehouse.

The approach is based on the concept of runtime view self-maintenance, which consists

of dynamically determining, at runtime, whether there is su�cient information to propagate

a base update to a given view to maintain. While the approach is the most aggressive as it

can be, e�ciency of the solution is critical. We obtained the following results:

� We �rst considered maintenance of single CQ views with no self-joins, using no base

relations (we called strict). The solutions are conjunctions of independent queries.

They queries can be generated at compile time (Chapter 3).

� Next, we considered maintenance of single CQ views with no self-joins and no pro-

jections, in the presence of functional dependencies. The solutions are unions of

conjunctive queries that can be generated at compile time (Chapter 4).

� We then considered maintenance of multiple CQ views with no projections under a

wide variety of situations: under arbitrary updates, using functional dependencies,

using partial base copies, and using base subsets. We developed a general method

for this generalized view self-maintenance problem. The solutions are nonrecursive

Datalog queries with negation that can be generated at compile time (Chapters 5 and

6).

� Finally, we considered maintenance of larger classes of views: views de�ned by con-

junctive queries with arithmetic comparisons and projections, and unions of conjunc-

tive queries. Our method provides a solution for the problem, although the solution
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is not in the form of a query that can be generated at compile time. The runtime

complexity is generally exponential in the size of the relation instances (Chapter 6).

7.2 Future Work

In this thesis, we made a promising �rst step toward the practical use of runtime view

self-maintenance in e�ciently maintaining data warehouses. In order to fully realize the

potential of this approach, there are many improvements and remaining issues we need to

address. In the following, we outline �ve directions worth pursuing.

7.2.1 Identifying E�cient Special Cases

The results from Chapters 3 and 4 demonstrate that there are special cases of the view

self-maintenance problem that admit simple and e�cient solutions. More cases need to

be identi�ed and specialized methods to be developed. We are currently looking at views

de�ned by conjunctive queries that are acyclic or have �xed query width (see [CR97]). This

class of queries is interesting because it was shown in [CR97] that their containment can be

decided in polynomial time, while the problem of decided conjunctive queries in general is

known to be NP-complete ([CM77]). There is also another interesting special case we are

studying for which we already obtained some partial results: maintaining CQ views with

no self-joins where some of the base relations are materialized.

7.2.2 View Independent of Update

We mentioned at the beginning of this thesis that this problem can be viewed as special

case of the view self-maintenance problem. As such, it appears to be a simpler problem.

While it is de�nitely worth while to study this problem directly, it is also interesting to see

whether the technical ideas developed in this thesis can be applied.

We also mentioned the close relationship between the view-independent-of-update prob-

lem and the problem of detecting constraint violations in distributed databases. It would be

interesting to exchange results between these problems and to see how methods developed

for one problem can be applied to the other problem.

7.2.3 E�cient solutions for query containment

Query optimization is a ubiquitous problem that underlies much work on information man-

agement. This thesis work is no exception. In particular, the queries that are generated

using such a general technique as query containment tend to be very complex even if they

are equivalent to much simpler queries. More powerful query optimization techniques than

currently available need to be developed to simplify our solutions.

With the general method we developed in Chapter 5, we were often able to avoid the

use of negation in the queries we would like to compare, when the view de�nitions do

not involve negation. Yet, there are cases where negation cannot be totally avoided. The
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problem of deciding containment of queries with negation has unfortunately very limited

results, and even in the cases where the problem is decidable, e�cient solutions are little

known. However, it may be possible to take advantage of the special forms of the queries

we need to compare to come up with an e�cient solution.

Finally, much work is needed to develop techniques for e�ciently solving instance-speci�c

query containment in general and for expressing it as e�cient queries in particular.

7.2.4 Expressiveness of Views

In this thesis, we developed solutions to the view self-maintenance problem for di�erent

classes of views. These solutions may be e�cient enough for their practical use, but it is

also important to understand whether they can be as e�cient as possible from a theoretical

point of view. It is interesting not only to develop complexity lower bound for the view

self-maintenance problem, but also to characterize classes of view de�nitions that do not

admit a solution in the form of queries.

Data warehouses often make use of views that are de�ned with aggregates (e.g., av-

erages), and perhaps with negation to a lesser extent. Maintaining such views poses new

challenges and may require new methods to be developed.

7.2.5 Quantifying Self-Maintainability

The problem of view self-maintenance essentially involves three spaces of interest:

� S1, the space of all possible situations,

� S2, the space of all situations where a view can be unambiguously maintained, and

� S3, the solution space, i.e., the space of those situations we can detect where a view

is self-maintainable.

In this thesis, we emphasized completeness of the solution and required S3 = S2. How-

ever, there may be cases where it is worth trading o� completeness for e�ciency. It is

therefore important to understand how close to S2 S3 can get, relative to S1.

When a warehouse is designed, there are designs that are never self-maintainable (e.g.,

S2 is empty) on the one extreme, and other designs that are always self-maintainable (e.g.,

S2 = S1) on the other extreme. In practice, we are probably concerned with choosing a

design in between, and if the choice is driven by costs, it becomes important to understand

how self-maintainable a given warehouse design is, that is, how close to S1 is S2.

Finally, we focused on solving the view self-maintenance problem when a given subset

of the base relations is available but did not addressed the question of how to select such a

subset. Choosing a good strategy for subset selection may involves evaluating the probability

that a view is self-maintainable using a given subset, given that we have tried other subsets

unsuccessfully.
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Appendix A

Expressing Instance-Speci�c QC as

a Query

In this appendix, we show that the containment DIFF � INCON in Theorem 5.4.2 can be

expressed as a (boolean) query in nonrecursive Datalog using the views and update relations

as input.

Referring to Table 5.2, each of the queries DIFF and INCON can be expanded into a

union of conjunctive queries, by eliminating the IDB predicates r0j and r
00
j . Note that the

constant predicates r̂j and v̂0k do not have to be eliminated and can be treated as EDB

predicates. The resulting containment equation has the form
[
i

Pi �
[
j

Qj (A.1)

where each of the Pi's and Qj 's is a conjunctive query that uses both constant and vari-

able EDB predicates, and where negation only applies to constant EDB predicates. Equa-

tion (A.1) can be reduced further to the conjunction (over i) of the following:

Pi �
[
j

Qj (A.2)

Thus, if for each i, we can express (A.2) as a safe query over the constant predicates,

then the query TEST in Theorem 5.4.3 would be the conjunction over i of all such queries.

Unfortunately, since the individual conjunctive queries contain arithmetic comparisons,

(A.2) is not always equivalent to the union (over j) of Pi � Qj. To express (A.2) as a logical

expression, we will �rst show how to express Pi � Qj. Then, we will show that extending

the result to the full union is not di�cult, even though the extension involves more than

just taking the disjunction.

To study the instance-speci�c query containment P � Q where P and Q are conjunctive

queries with 6= comparisons and negated subgoals with constant predicates, we start with

a theorem from [Gup94] (Theorem A.2.1 therein) that allows us to express containment of

conjunctive queries with interpreted subgoals as a logical expression. We paraphrase it in

the following, where vars(X) denotes the set of variables used in X:
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Theorem A.0.1 [Gup94] Consider the queries

P : panic :{ A & B

Q : panic :{ C & D;

where each of B and D represents a recti�ed conjunction of ordinary subgoals, and each of

A and C represents a conjunction of interpreted subgoals such that vars(A) � vars(B) and

vars(C) � vars(D). Let �U denote vars(B). Let M be the set of containment mappings:

D 7! B. Then P � Q if and only if

(8 �U) [A)
_
h2M

h(C)]: (A.3)

2

Note the following about Theorem A.0.1:

� The condition for containment, given in Theorem A.2.1 from [Gup94] as
W
h2M [A )

h(C)], is wrong. For instance, if A is vacuously false, the containment should hold

whether or not there is a containment mapping, but the condition from [Gup94] eval-

uates to false. In addition to this problem, there is another problem: for conjunctive

queries with nontrivial heads, the condition given in Theorem A.2.1 from [Gup94]

is su�cient but not necessary for the containment to hold. Consider the queries

P : r(0) :{ s(X) & X = 0 and Q : r(Y ) :{ s(Y ) for instance. While P is obviously

contained in Q, the theorem from [Gup94] predicts otherwise since there is no con-

tainment mapping from Q to P . However, for queries with trivial heads, the condition

is both necessary and su�cient.

� The notion of recti�cation used in this theorem and in the remainder of this appendix

is not the same as the one de�ned in Sections 2.4 and 4.2. Here, a conjunction (or a

set) of subgoals is said to be recti�ed when no variables occur more than once among

the subgoals, and no constant symbols are used. By contrast, in Sections 2.4 and 4.2,

we only required that no variables occur more than once within each subgoal, and

using the same variable in two di�erent subgoals is allowed there.

� The predicate used is an interpreted subgoal, called an interpreted predicate, is allowed

to be any boolean function that is computable, as long as the condition given in the

theorem, a formula that uses interpreted predicates, is decidable. For instance, an

interpreted subgoal may represent an arbitrary boolean combination of arithmetic

comparisons over a dense domain.

� In our terminology, the predicates for the ordinary subgoals used in Theorem A.0.1

are variable predicates. Therefore, the theorem is not applicable when the queries

contain subgoals with constant predicates.
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Because of the latter limitation, we cannot apply Theorem A.0.1 to our instance-speci�c

query containment problem. In the following, we will extend Theorem A.0.1 and develop

analogous results for instance-speci�c containment. The rest of this appendix is divided

into two parts. Section A.1, Expressing Instance-Speci�c Query Containment

as a Logical Expression, shows how to reduce instance-speci�c query containment to a

logical expression over the constant predicates. Section A.2, Making Certain Logical

Expressions Safe, shows how to reduce a logical expression obtained in Section A.1 to an

equivalent expression that is safe to evaluate.

A.1 Expressing Instance-Speci�c QC as a Logical Expression

In this section, we �rst show that P � Q, where each of P and Q is a conjunctive query (with

6= and negation) that may use constant EDB predicates and where negation only applies to

constant predicates, can be expressed as a logical expression over the constant predicates.

We will provide logical expressions (see Table A.2) that are precise enough to allow us to

analyze whether or not they are safe to evaluate and to express them as queries in the next

section. We close this section by extending the results for Q's that are conjunctive queries

to Q that are unions of conjunctive queries.

As mentioned before, the main limitation of Theorem A.0.1 is that it does not deal with

subgoals with constant predicates that may be used in the queries. To remove this limita-

tion, the idea is to treat subgoals (negated or not) with constant predicates as interpreted

predicates. In fact, as mentioned in Section 2.5, a positive subgoal g( �X) with a constant

predicate can be treated as the disjunction
W
�x(

�X = �x), and a negated subgoal :g( �X) with

a constant predicate can be treated as the conjunction
V
�x(

�X 6= �x), where �x ranges over

the tuples in the extension of g.

Also note the restriction in Theorem A.0.1 that the variables used in the interpreted

subgoals must also appear among the ordinary subgoals. This restriction was needed to

ensure that an interpreted subgoal uses only range-restricted variables. However, this re-

striction is not necessary if the interpreted subgoal represents a positive ordinary subgoal

with a constant predicate.

We now state a lemma that extends Theorem A.0.1 by partially removing the \range-

restricted variables" restriction for a class of interpreted subgoals (thus making it more

general than Theorem A.0.1) and the requirement that ordinary subgoals be recti�ed. Note

that while the latter extension is useful since it makes the containment condition simpler

to analyze later on, the results in this appendix do not depend on it. Only the former

extension is essential for the development that follows.

Lemma A.1.1 Consider the queries

P : panic :{ A & E & B

Q : panic :{ C & F & D;

where
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� Each of B and D represents a conjunction of ordinary subgoals.

� D is recti�ed but B is not required to be so.

� Each of A and C represents a conjunction of interpreted subgoals.

� E (resp. F ) represents a �nite disjunction of zero or more equalities of the form
�X =<constant> (resp. �Y =<constant>).

� vars(A) � �X [ vars(B) and vars(C) � �Y [ vars(D).

Let �U denote vars(B), �V denote �X � vars(B), and �W denote �Y � vars(D). Let M be the

set of containment mappings: D 7! B. Then P � Q if and only if

(8 �U; �V ) [A ^E )
_
h2M

(9 �W ) h(C ^ F )]:

2

Proof: We �rst show the requirement in Theorem A.0.1 that B be recti�ed is not essential,

and to this end, we refer to the proof of Theorem A.2.1 in [Gup94]. The IF part of the

proof remains valid since it does not rely on the fact that B and D must be recti�ed. In the

ONLY-IF part of the proof, we assume that (A.3) is false, that is, there is a substitution �

such that �(A) is true but �(h(C)) is false for every h 2M . Consider the database D that

consists of the tuples �(B). On the one hand, it is clear that when applied to D, query P

produces an answer. On the other hand, to see why query Q cannot produce any answer

on D, we assume it does. Then, there must be a substitution � such that �(C) is true and

that each tuple in �(D) is in D. As a consequence of the latter fact, since D is recti�ed

(that is, each variable in D only occur once and D has no constant symbols), there must

be a containment mapping h : D 7! B such that � = � � h. Note that unlike the ONLY-IF

proof in [Gup94], the existence of h only requires D to be recti�ed but not B, because there

is no situation where we have to consider mapping a constant symbol in D or mapping a

variable in D with multiple occurrences. Now since �(h(C)) is false (by construction of �),

�(C) is also false, which is a contradiction.

We now show the necessary and su�cient condition in the lemma. To this end, we

use Theorem A.2.2 from [Gup94], an extension of Theorem A.0.1 to unions of conjunctive

queries. We �rst write E as
W
i[
�V = �vi & �T = �ti] (where �T = �X � �V ), and F as

W
j[
�W =

�wj & �Z = �zj ] (where �Z = �Y � �W ). Let Ai (resp. Cj) be obtained from A (resp. C) after

making the substitution �V ! �vi (resp. �W ! �wi). Query P is equivalent to the union (over

i) of the queries

Pi : panic :{ Ai & ( �T = �ti) & B

and query Q is equivalent to the union of the queries

Qj : panic :{ Cj & ( �Z = �zj) & D
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Applying Theorem A.2.1 from [Gup94],
S
i Pi is contained in

S
j Qj if and only if

^
i

(8 �U) [Ai ^
�T = �ti )

_
j

_
h:D 7!B

h(Cj ^ �Z = �zj)]

Since the right hand side of the implication does not depend on i and the containment

mappings: D 7! B do not depend on j, we rewrite the formula as follows, after pushing inV
i and

W
j:

(8 �U) [
_
i

(Ai ^
�T = �ti))

_
h:D 7!B

_
j

h(Cj ^ �Z = �zj)]

Finally, by reintroducing �V and W , we obtain:

(8 �U) [(9 �V ) [A ^
_
i

( �V = �vi ^ �T = �ti)])
_

h:D 7!B

(9 �W ) h(C ^
_
j

( �W = �wj ^ �Z = �zj))]

Let us emphasize again that in Lemma A.1.1, although the interpreted subgoals E and

F in the queries represent a disjunction of equalities, the containment condition uses E and

F rather than their expanded form. We can now apply Lemma A.1.1 to solve the original

containment P � Q, where P (resp. Q) is one of the conjunctive queries from DIFF (resp.

INCON ), by treating the set of positive subgoals with a constant predicate as subgoal E

or F in Lemma A.1.1, and a negated subgoal with a constant predicate as an interpreted

subgoal in A or C in Lemma A.1.1.

Referring to Table 5.2, query P takes the following generic form:

� panic :{ A( �X) & B( �Y ), where A represents a conjunction of subgoals with constant

predicates (negated or not), andB a conjunction of non-negated subgoals with variable

predicates. A uses variables �X and B uses variables �Y , where �X is a superset of �Y .

Query Q takes one of several possible forms, as shown in Table A.1.

The following example illustrates how to apply Lemma A.1.1 to express a containment

as a logical expression.

EXAMPLE A.1.1 Consider the following queries, which are taken from above and Ta-

ble A.1.

P : panic :{ A( �X) & B( �Y )

Q : panic :{ C( �U; �V ) & D( �V ; �W ) & :S( �U; �V ; �W )

where A represents a conjunction of subgoals with constant predicates (negated or not),

C a non-negated subgoal with a constant predicate, :S a negated subgoal with a con-

stant predicate, and each of B and D a conjunction of non-negated subgoals with vari-

able predicates. Also, �X is a superset of �Y , and �U , �V , and �W represent disjoint sets of

variables. To apply Lemma A.1.1 for deciding P � Q, we need to rectify D( �V ; �W ) into

D0( �V ; �W; �T ) & E( �V ; �W; �T ), where �T represents new variables, D0 is recti�ed, and E equates
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Form of Query Q Explanation

panic :{ C( �U; �V ) & D( �V ; �W ) &

:S( �U; �V ; �W )

C is a non-negated subgoal with some con-

stant predicate, D is a conjunction of non-

negated subgoals with variable predicates,

and :S is a negated subgoal with some con-

stant predicate. This query form results

from expanding rules (B0

i) from Table 5.2.

panic :{ D(U; �V ; �W ) & D0(U 0; �V
0
; �W

0
) &

�V = �V
0
& U 6= U 0

Each of D and D0 is a non-negated subgoal

with some variable predicate (in fact, they

use the same predicate, but that is not im-

portant). This query form results from ex-

panding rules (Lj��) from Table 5.2.

panic :{ C(U; �V ) & :C 0(U 0; �V ; �W ) &

D(U 0; �V ; �W ) & U 6= U 0

C is a non-negated subgoal with some con-

stant predicate, :C 0 is a negated subgoal

with some constant predicate, and D is

a non-negated subgoal with some variable

predicate. This query form results from ex-

panding rules (Mj��) from Table 5.2.

panic :{ :C(U; �V ; �W ) & D(U; �V ; �W ) &

:C 0(U 0; �V
0
; �W

0
) & D0(U 0; �V

0
; �W

0
) &

�V = �V
0
& U 6= U 0

Each of :C and :C 0 is a negated subgoal

with some constant predicate and each of

D and D0 is a non-negated subgoal with

some variable predicate. This query form

results from expanding rules (Mj��) from

Table 5.2.

Table A.1: Possible forms of query Q.

a new variable with either a constant or some variable from �V or �W . With all its ordinary

subgoals (with variable predicates) recti�ed, query Q rewrites as follows:

Q : panic :{ C( �U; �V ) & D0( �V ; �W; �T ) & :S( �U; �V ; �W ) & E( �V ; �W; �T )

By treatingA( �X) andC( �U; �V ) as disjunctions of equalities, and :S( �U; �V ; �W ) andE( �V ; �W; �T )

as interpreted subgoals, we can now apply Lemma A.1.1 to obtain the following condition

for P � Q:

(8 �X) [A( �X))
_
h

(9 �U) h(E( �V ; �W; �T ) ^ S( �U; �V ; �W ) ^ C( �U; �V ))]

where h ranges over containment mappings from D0( �V ; �W; �T ) to B( �Y ). 2
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Form of subexpression FQ Explanation

V
h[:Gh( �Y )_

(8 �U) [C( �U; h( �V ))) S( �U; h( �V ); h( �W ))]]

h maps rectify(D) to B, and Gh is a conjunc-

tion of equalities that results from applying

h to the equalities obtained from the recti�-

cation of D.

V
h[h(

�V ) = h( �V
0
)) h(U) = h(U 0)]

h : D & D0 7! B:

V
h[C

0(h(U 0); h( �V ); h( �W ))_

(8U) [C(U; h( �V ))) U = h(U 0)]]

h : D 7! B:

V
h[C(h(U); h(

�V ); h( �W ))_

C 0(h(U 0); h( �V
0
); h( �W

0
))_

h( �V ) 6= (�V
0
) _ h(U) = h(U 0)]

h : D & D0 7! B:

Table A.2: Possible forms of logical subexpression FQ.

The result of applying Lemma A.1.1 to express P � Q as a logical expression in each

of the cases above is summarized in the following theorem. Note that in order to apply

Lemma A.1.1 correctly, the subgoals with variable predicates in Q must be recti�ed. Recti-

fying a set of subgoals simply involves introducing new variables and introducing additional

subgoals that equate the new variables with constants or existing variables. The theorem

is stated without proof.

Theorem A.1.1 Let P (resp. Q) be one of the conjunctive queries from DIFF (resp.

INCON). Using the characterization of P and Q above, the containment P � Q can be

expressed by the logical expression

:(9 �X)[A( �X) ^ FQ]

where FQ is one of the expressions shown in Table A.2, depending on the form Q takes. 2

Finally, Lemma A.1.1 can be extended in the obvious way (much like the way Theo-

rem A.2.2 extends Theorem A.2.1 in [Gup94]) to obtain a logical expression for the con-

tainment of a conjunctive query in a union of conjunctive queries. Based on this extension,

which we do not show here, we can easily extend Theorem A.1.1 to the containment of P

in INCON , as stated in the following theorem.

Theorem A.1.2 Let P be one of the conjunctive queries from DIFF. The containment

P � INCON can be expressed by the logical expression

:(9 �X)[A( �X) ^
^
Q

FQ] (A.4)

where Q ranges over all the conjunctive queries in INCON and FQ is a formula as speci�ed

in Theorem A.1.1. 2
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Form of Query A Finite Query In�nite Query

A( �Y ) : p( �Y ) p( �Y )

A( �Y ) : :p( �Y ) :p( �Y )

A( �Y ) : (8 �U) p( �U; �X)) q( �U; �Y ) (9 �U) q( �U; �Y ) ^ A( �Y ) :(9 �U ) p( �U; �X)

A( �Y ) : (8V ) p(V; �Y )) V = � p(�; �Y ) ^A( �Y ) :(9V ) p(V; �Y )

A(X1; �Y ) : (8V ) p(V; �Y )) V = X1 p(X1; �Y ) ^ A(X1; �Y ) :(9V ) p(V; �Y )

A( �Y ) : (8V ) p(V; �Y )) V = X2 p(X2; �Y ) ^ A( �Y ) :(9V ) p(V; �Y )

A(X1; X2) : X1 6= X2 X1 6= X2

A(X1) : X1 6= � X1 6= �

Notation: p and q are safe queries, �Y represents free variables, �X is a subset of �Y ,

X1 is a free variable not in �Y , X2 is a free variable from �Y , and � is a constant.

Table A.3: Breaking up a query into a �nite query and an in�nite query.

A.2 Making Certain Logical Expressions Safe

In general, logical expressions such as (A.4) are not obviously safe. In fact, some conjuncts

involve disjunction and negation. The queries that represent these conjunctions are not safe

since they have an in�nite number of answers.

In this section, we show that (A.4) can always be rewritten as an expression that is safe.

This expression can be easily written as a safe, nonrecursive Datalog query (with negation

and 6= comparisons). Thus, the truth value of logical expression (A.4) can be determined

in time polynomial in the size of the input.

A general transformation we often use is to rewrite (9 �U; �V )[�( �U )_�( �V )] as the disjunc-

tion of the two formulas (9 �U)�( �U ) and (9 �V )�( �V ). Thus we can eliminate the disjunctions

in (A.4) to obtain a conjunction of formulas, each of which has the following form:

:(9 �Z) [A1 ^A2 ^ : : : ^An] (A.5)

where each of the A's is a query in some variables from �Z that may or may not be safe

and that takes one of many forms. All the di�erent forms of the A's are shown in the �rst

column of Table A.3, where all free variables are drawn from �Z.

We now de�ne the notion of �nite and in�nite queries we will use later:

� A �nite query F in �X , denoted F ( �X), is constructed from p( �X) where p is the predicate

for a safe query, (9 �Y )F 0( �X; �Y ) where F 0 is a �nite query, the conjunction of �nite

queries, or the conjunction of a �nite query with any query in some subset of �X. Thus,

a �nite query always have a �nite answer and can always be evaluated in �nite time.

� An in�nite query I( �X) is constructed from :F ( �X) where F if a �nite query, or from

6= comparisons that involves variables in �X . Thus, there is always an in�nite number

of answers that satisfy an in�nite query, and checking if a given value for �X satis�es

the query can be �nitely evaluated.
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Next, each of the A's is rewritten as a disjunction of a �nite query and an in�nite query.

This rewriting is shown in Table A.3 for each form of the A's. After rewriting each of the

A's from (A.5) and after eliminating the resulting _'s, we obtain a conjunction of formulas,

each of which has the following form:

:(9 �X [ �Y )[
^
i

Fi( �X i) ^
^
j

Ij( �Y j)] (A.6)

where �X =
S
i
�X i and �Y =

S
j
�Y j , the Fi's are �nite queries, and the Ij's are in�nite queries.

It is easy to verify that (A.6) is equivalent to the following safe formula:

:(9 �X)
^
i

Fi( �X i) ^
^
k

Ik( �Y k)

where k ranges over those j such that �Y j �
�X .



144 APPENDIX A. EXPRESSING INSTANCE-SPECIFIC QC AS A QUERY



Bibliography

[AHV95] S. Abiteboul, R. Hull, and V. Vianu. Foundations of Databases, Addison-Wesley,

Reading, MA, 1995.

[ASU79a] A. V. Aho, Y. Sagiv, and J. D. Ullman. Equivalence of relational expressions. In

SIAM J. Computing 8:2, pp. 218{246, 1979.

[ASU79b] A. V. Aho, Y. Sagiv, and J. D. Ullman. E�cient optimization of a class of relational

expressions. In ACM Trans. on Database Systems 4:4, pp. 435{454, 1979.

[BC79] O. P. Buneman and G. K. Clemons. E�ciently monitoring relational databases. In

ACM Trans. on Database Systems 4:3, pp. 368{382, 1979.

[BCL89] J. A. Blakeley, N. Coburn, and P. A. Larson. Updating derived relations: Detect-

ing irrelevant and autonomously computable updates. In ACM Trans. on Database

Systems 14:3, pp. 369{400, 1989.

[BLT86] J. A. Blakeley, P. Larson, and F. W. Tompa. E�ciently updating materialized views.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 61{71, Washington

D. C., 1986.

[C*94] S. Chawathe, H. Garcia-Molina, J. Hammer, Y. Papakonstantinou, J. D. Ullman,

and J. Widom. The TSIMMIS project: Integration of heterogeneous information

sources. In Proc. IPSJ Conf., pp. 7{18, Tokyo, Oct. 1994.

[CM77] A. K. Chandra and P. M. Merlin. Optimal implementation of conjunctive queries

in relation databases. In Proc. 9th Annual ACM Symposium on the Theory of

Computing, pp. 77{90, 1977.

[CR97] A. Chekuri and A. Rajaraman. Conjunctive query containment revisited. In Proc.

6th Int. Conf. on Database Theory, pp. 56{70, Delphi, Greece, 1997.

[CV92] S. Chaudhuri and M. Y. Vardi. On the equivalence of Datalog programs. In Proc.

11th ACM Symp. on Principles of Database Systems, pp. 55{66, 1992.

[CW91] S. Ceri and J. Widom. Deriving production rules for incremental view maintenance.

In Proc. 17th Int. Conf. on Very Large Data Bases, pp. 577{589, 1991.

[DS92] G. Dong and J. Su. Incremental and decremental evaluation of transitive closure by

�rst-order queries. In Technical Report TRCS 92-18, University of California, Santa

Barbara, 1992.

[DT92] G. Dong and R. Topor. Incremental evaluation of datalog queries. In Proc. 4th Int.

Conf. on Database Theory, pp. 282{296, Berlin, Germany, 1992.

145



146 BIBLIOGRAPHY

[Elk90] C. Elkan. Independence of logic database queries and updates. In Proc. 9th ACM

Symp. on Principles of Database Systems, pp. 154{160, 1990.

[G*94] A. Gupta, Y. Sagiv, J. D. Ullman, and J. Widom. Constraint checking with partial

information. In Proc. 13th ACM Symp. on Principles of Database Systems, pp.

45{55, 1994.

[GB95] A. Gupta and J. A. Blakeley. Using partial information to update materialized views.

In Information Systems 20:8, pp. 641{662, 1995.

[GJM96] A. Gupta, H. V. Jagadish, and I. S. Mumick. Data integration using self-maintainable

views. In EDBT, pp. 140{144, Avignon, France, 1996.

[GKM92] A. Gupta, D. Katiyar, and I. S. Mumick. Counting solutions to the view maintenance

problem. In Proc. JICSLP Workshop on Deductive Databases, pp. 185{194, 1992.

[GLT97] T. Gri�n, L. Libkin, and H. Trickey. An improved algorithm for the incremental

recomputation of active relational expressions. In IEEE Trans. on Knowledge and

Data Engineering 9:3, pp. 508{511, 1997.

[GM*95] H. Garcia-Molina, Y. Papakonstantinou, D. Quass, A. Rajaraman, Y. Sagiv, J. D.

Ullman, and J. Widom. The TSIMMIS approach to mediation: Data models and

languages. In 2nd Workshop on Next-Generation Information Technologies and Sys-

tems, Naharia, Israel, 1995.

[GM95] A. Gupta and I. S. Mumick. Maintenance of materialized views: Problems, tech-

niques, and applications. In IEEE Data Engineering Bulletin, Special Issue on Ma-

terialized Views & Data Warehousing 18:2, June 1995.

[GMS93] A. Gupta, I. S. Mumick, and V. S. Subrahmanian. Maintaining views incrementally.

In Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 157{166, Washington

D. C., June 1993.

[GU92] A. Gupta and J. D. Ullman. Generalizing conjunctive query containment for view

maintenance and integrity constraint veri�cation. In Proc. JICSLP Workshop on

Deductive Databases, pp. 195, 1992.

[Gup94] A. Gupta. Partial Information Based Integrity Constraint Checking, Stanford Uni-

versity Technical Report CS-TR-95-1534, Ph.D. Thesis, Stanford, Nov. 1994.

[H*95] J. Hammer, H. Garcia-Molina, J. Widom, W. Labio, and Y. Zhuge. The Stanford

data warehousing project. In IEEE Data Engineering Bulletin 18:2, pp. 41{48, June

1995.

[HD92] J. V. Harrison and S. Dietrich. Maintenance of materialized views in a deductive

database: an update propagation approach. In Proc. JICSLP Workshop on Deductive

Databases, pp. 56{65, 1992.

[Huy96a] N. Huyn. E�cient view self-maintenance. In Proc. Int. Workshop on Materialized

Views: Techniques and Applications, pp. 17{25, Montreal, Quebec, 1996.

[Huy96b] N. Huyn. E�cient self-maintenance of materialized views. Unpublished Technical Re-

port, available as http://www-db.stanford.edu/pub/papers/vsm-2-tr.ps, 1996.

[Huy96c] N. Huyn. Exploiting dependencies to enhance view self-maintainability. Unpub-

lished Technical Report, available as http://www-db.stanford.edu/pub/papers/

fdvsm.ps, 1996.



BIBLIOGRAPHY 147

[Huy97a] N. Huyn. E�cient complete local tests for conjunctive-query constraints with nega-

tion. In Proc. 6th Int. Conf. on Database Theory, pp. 83{97, Delphi, Greece, 1997.

[Huy97b] N. Huyn. Multiple-view self-maintenance in data warehousing environments. In Proc.

23rd Int. Conf. on Very Large Data Bases, pp. 26{35, Athens, Greece, 1997.

[Huy97c] N. Huyn. Maintaining global integrity constraints in distributed databases. In Con-

straints Journal, Special Issue on Constraints and Databases, Kluwer Academic Pub-

lishers, 1998.

[IK93] W. H. Inmon and C. Kelley. Rdb/VMS: Developing the data warehouse, QED Pub-

lishing Group, Boston, Massachusetts, 1993.

[JK83] D. S. Johnson and A. Klug. Optimizing conjunctive queries that contain untyped

variables. In SIAM J. Computing 12:4, pp. 616{640, 1983.

[JK84] D. S. Johnson and A. Klug. Testing containment of conjunctive queries under func-

tional and inclusion dependencies. In J. Computer and System Sciences 28:1, pp.

167{189, 1984.

[JMS95] H. V. Jagadish, I. S. Mumick, and A. Silberschatz. View maintenance issues in the

chronicle data model. In Proc. 14th ACM Symp. on Principles of Database Systems,

pp. 113{124, 1995.

[Klu88] A. Klug. On conjunctive queries containing inequalities. In J. ACM 35:1, pp. 146{

160, 1988.

[Kuc91] V. Kuechenho�. On the e�cient computation of the di�erence between consecutive

database states. In Proc. Int. Conf. on Deductive and Object-Oriented Databases,

pp. 478{502, 1991.

[LS93] A. Levy and Y. Sagiv. Queries independent of updates. In Proc. 19th Int. Conf. on

Very Large Data Bases, pp. 171{181, Dublin, Ireland, 1993.

[Mey92] R. van der Meyden. The complexity of querying inde�nite data about linearly ordered

domains. In Proc. 11th ACM Symp. on Principles of Database Systems, pp. 331{345,

1992.

[Pai84] R. Paige. Applications of �nite di�erencing to database integrity control and

query/transaction optimization. In Gallaire H., Minker J. and Nicolas J. M., edi-

tors, Advances in Data Base Theory, vol. 2, pp. 171{209, Plenum Press, New York,

1984.

[Pap96] Y. Papakonstantinou. Query Processing in Heterogeneous Information Sources.

Ph.D. Thesis, Computer Science Department, Stanford University, 1996.

[Q*96] D. Quass, A. Gupta, I. S. Mumick, and J. Widom. Making views self-maintainable

for data warehousing. In Proc. 4th Int. Conf. on Parallel and Distributed Information

Systems, Miami Beach, FL, Dec. 1996.

[Qua97] D. Quass. Materialized Views in Data Warehouses. Ph.D. Thesis, Computer Science

Department, Stanford University, 1997.

[QW91] X. Qian and G. Wiederhold. Incremental recomputation of active relational expres-

sions. In IEEE Trans. on Knowledge and Data Engineering 3:3, pp. 337{341, 1991.

[RED] Red Brick Systems. Red Brick Warehouse, 1995.



148 BIBLIOGRAPHY

[RSUV89] R. Ramakrishnan, Y. Sagiv, J. D. Ullman, and M. Y. Vardi. Proof-tree transfor-

mations and their applications. In Proc. 8th ACM Symp. on Principles of Database

Systems, pp. 172{182, 1989.

[RSUV93] R. Ramakrishnan, Y. Sagiv, J. D. Ullman, and M. Y. Vardi. Logical query optimiza-

tion by proof-tree transformation. In J. Computer and System Sciences 47:1, pp.

222{248, 1993.

[Sag87] Y. Sagiv. Optimizing datalog programs. In Proc. 6th ACM Symp. on Principles of

Database Systems, pp. 349{362, 1987.

[SI84] O. Shmueli and A. Itai. Maintenance of views. In Proc. ACM SIGMOD Int. Conf.

on Management of Data, pp. 240{255, 1984.

[SJ96] M. Staudt and M. Jarke. Incremental maintenance of externally materialized views.

In Proc. 22nd Int. Conf. on Very Large Data Bases, pp. 75{86, Mumbai, India, 1996.

[Sto75] M. Stonebraker. Implementation of integrity constraints and views by query modi�-

cation. In Proc. ACM SIGMOD Int. Conf. on Management of Data, pp. 65{78, San

Jose, CA, 1975.

[SY80] Y. Sagiv and M. Yannakakis. Equivalences among expressions with the union and

di�erence operators. In J. ACM 27:4, pp. 633{655, 1980.

[TB88] F. W. Tompa and J. A. Blakeley. Maintaining materialized views without accessing

base data. In Information Systems 13:4, pp. 393{406, 1988.

[Ull89] J. D. Ullman. Principles of Database and Knowledge-Base Systems, Volumes 1 and

2, Computer Science Press, Rockville, MD, 1989.

[UO92] T. Urpi and A. Olive. A method for change computation in deductive databases. In

Proc. 18th Int. Conf. on Very Large Data Bases, pp. 225{237, 1992.

[WCL91] J. Widom, R.J. Cochrane, and B.G. Lindsay. Implementing set-oriented production

rules as an extension to Starburst. In Proc. 7th Int. Conf. on Very Large Data Bases,

pp. 275{285, Barcelona, Spain, 1991.

[Z*95] Y. Zhuge, H. Garcia-Molina, J. Hammer, and J. Widom. View maintenance in a

warehousing environment. In Proc. ACM SIGMOD Int. Conf. on Management of

Data, pp. 316{327, San Jose, CA, 1995.

[Zan86] C. Zaniolo. Safety and compilation of nonrecursive Horn clauses. In Proc. 1st Int.

Conf. Expert Database Systems, pp. 167{178, Benjamin-Cummings, Menlo Park, CA,

1986.

[ZWG97] Y. Zhuge, J. Wiener, and H. Garcia-Molina. Multiple view consistency for data ware-

housing. In Proc. 13th Int. Conf. on Data Engineering, pp. 289{300, Birmingham,

UK, 1997.


