

DISTRIBUTED DEVELOPMENT

OF A LOGIC-BASED

CONTROLLED MEDICAL TERMINOLOGY

A DISSERTATION

SUBMITTED TO THE PROGRAM IN MEDICAL INFORMATION SCIENCES

AND THE COMMITTEE ON GRADUATE STUDIES

OF STANFORD UNIVERSITY

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Keith Eugene Campbell

June 1997

ii

© Copyright by Keith Eugene Campbell 1997
All Rights Reserved

iii

I certify that I have read this dissertation and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Edward H. Shortliffe (Principal Advisor)

I certify that I have read this dissertation and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Glenn Rennels

I certify that I have read this dissertation and that in my opinion it is fully adequate,
in scope and quality, as a dissertation for the degree of Doctor of Philosophy.

Terry A. Winograd

Approved for the University Committee on Graduate Studies:

iv

v

Abstract

A controlled medical terminology (CMT) encodes clinical data: patient's physical signs,

symptoms, medication sensitivities, treatment plans, and diagnoses. Application develop-

ers and data analysts lack a robust CMT and the methodologies needed to coordinate ter-

minology development within and between projects.

In this dissertation, I argue that if a formal terminology model is adopted and integrated

into a change-management process that supports dynamic CMTs, then CMTs can evolve

from being an impediment to application development and data analysis to a new state as a

valuable resource that supports these activities.

My thesis states that such an evolutionary approach can be supported by using semantics-

based methods for managing concurrent terminology development, thereby bypassing the

disadvantages of traditional lock-based approaches common in current commercial data-

base systems. By allowing many developers to work concurrently on any portion of the

terminology while relying on semantics-based methods to resolve the “collisions” that are

vi Abstract

inevitable in concurrent work, a scalable approach to terminology development can be

supported.

This dissertation discusses the overall problem of CMT development in terms of three

research topics:

•

Representation of Clinical Data:

Aggregation of clinical data is a primary reason for

representing clinical data in a processible format. A logically-founded CMT supports

aggregation by ensuring that the semantics of the terminology will be reproducible.

This dissertation demonstrates that a logically-founded CMT can be evolutionarily

developed using a participatory, consensus-driven approach.

•

Concurrency Control:

 CMT development systems must support users who are distrib-

uted geographically, who work with different versions of the master CMT, and who

may spend weeks working on the CMT before releasing their work publicly. The meth-

ods outlined in this dissertation can support such concurrent work. The CMT conflict

detection described in this dissertation depends upon logically-based definitions of all

terms. These definitions are used by a description-logic classifier to detect conflicting

definitions based upon semantic equivalence rather than strictly syntactic equivalence.

These semantics-based concurrency methods were evaluated in an actual development

setting, and were shown to perform acceptably for routine CMT development.

•

Configuration Management:

 This dissertation presents methods to manage CMT con-

figurations using a change-set configuration-management model. These configuration

methods support CMT verification and automated migration from one version of the

CMT to another version. Finally, the configuration management methods minimize the

 vii

“local-update penalty” (the extra work required to migrate to a new version of a source

terminology when local extensions have been added by developers to the previous ver-

sion). The change-set configuration-management model properly supported the seman-

tics-based concurrency-control methods evaluated in this dissertation, thus enabling

distributed, concurrent CMT development.

viii Abstract

ix

Acknowledgments

Work such as this dissertation is not possible without a strong laboratory that provides a

critical mass of faculty, staff, students, and computing resources. Ted Shortliffe, who has

served as my principal advisor since the defense of my proposal, has made this lab possi-

ble. His guidance has provided the path for the successful conclusion of my dissertation,

and has improved the exposition of my ideas. Glenn Rennels was instrumental in solidify-

ing my preliminary ideas into a coherent proposal, and he has worked with me throughout

my dissertation journey. He was readily available and showed enthusiasm for my work at a

critical time in the development of the proposal. Mark Musen has provided important

insights that helped form my early work, and he has introduced me to members of the

informatics community, providing significant professional exposure for my ideas. One of

the key elements in forming my early ideas has been interaction with other students within

the laboratory. I particularly would like to thank Amar Das, Bill Detmer, John Egar, Diane

Oliver, Malcolm Pradhan, Yuval Shahar and Walter Sujansky for valuable discussions and

encouragement of my research.

x Acknowledgments

One of the strengths of the Stanford medical informatics program is its curriculum. Stan-

ford faculty from other departments provide a diverse background as well as exposure to

new ideas. I was fortunate to meet Terry Winograd as part of that initial curriculum. His

philosophy has provided me with a new way to think about how computers fit into the

health-care environment. I am also grateful that he has participated as a member of my

reading committee.

My dissertation project grew beyond the size supportable within an academic department.

Completion of this project would not have been possible without the willingness of Kaiser

Permanente to provide their electronic-medical record projects as a testing ground for my

ideas. In particular, I wish to thank Simon Cohn, John Mattison, Jeff Rose, and John

Dewy. They have been my champions inside Kaiser Permanente, and it is through their

efforts that my dissertation project was funded. The Kaiser Permanente modelers were

patient subjects for my experiment. I thank Bob Dolin, John Fedack, Bruce Fisch and

Aaron Snyder for their participation in my experiment.

In addition to Kaiser Permanente, many people outside this laboratory have contributed to

this work. Eric Mays sponsored me for an “academic visitors’ position” at IBM’s T.J. Wat-

son Research Center, where I completed some early protype extensions to the K-Rep sys-

tem. Bill Jensen sponsored me for the “clinical investigators’ pathway” to eligibility for

the internal medicine board at Santa Clara Valley Medical Center. He has provided an

environment where I could work in alternating months on my dissertation project and on

my internal medicine residency. The ability to combine these two pursuits has been most

rewarding. Alan Rector came to Stanford for a short sabbatical as I neared the completion

 xi

of my original proposal. He has provided valuable insight about how my research relates

to the GALEN project, and an important “reality check.” Mark Tuttle and David Sheretz of

Lexical Technology, Inc., helped to motivate the need for maintenance methods, and they

have provided many examples of problems discovered by their UMLS experiences. Roger

Côté and David Rothwell of the SNOMED editorial board have listened to ideas for

SNOMED with an open mind, and have encouraged my work. John Sowa has generously

given his time as I struggled with the semantics of conceptual graphs. Vimla Patel intro-

duced me to Argumentation Diagrams which I present in Chapter 6. Amy Falkowitz and

John Thomas have provided excellent editorial assistance.

I owe a special debt of gratitude to Susan Castillo. Susan’s experiences with software

development and configuration management at Hughes Aircraft Company, the Stanford

Linear Accelerator Center, and with Apple Computer, convinced me of the need to look

beyond the problems of

representing

 clinical data to the problems of

developing

 such a

representation. The insight provided by her experiences have inspired the focus and con-

tent of this dissertation. I also owe Susan a second, and greater, debt of gratitude. Susan is

my wife, and without her love, support, and encouragement to complete a Ph.D., this work

would not have been possible.

This work was supported in part by the Agency for Health Care Policy and Research under

grants HS06330 and HS08751, by the National Library of Medicine under grants

LM05208, LM07033, and LM08751, and by the Kaiser Foundation Health Plan. I grate-

fully acknowledge this indispensable support.

xii Acknowledgments

xiii

Table of Contents

Abstract . v

Acknowledgments. .ix

List of Figures. .xix

List of Tables . xxiii

Chapter 1
Encoded Clinical Data:
Promises, Perils, and Challenges. 1

1.1 Promises . 2

1.1.1 The Promise of CMTs for Decision Support 3

1.1.2 The Promise of CMTs for Monitoring Quality 5

1.1.3 The Promise of CMTs for Medical Research 6

1.1.4 The Promise of CMTs for Data Acquisition 7

1.2 Perils . 8

1.2.1 Perils of Improper Conclusions from Incomplete Data 9

xiv Table of Contents

1.2.2 Perils of Performance Failures. 10

1.2.3 Perils of Costly Premature Mandates. 13

1.2.4 Perils of Incompatible Terminologies . 14

1.3 Challenges . 15

1.4 CMT Development and Dissertation Overview . 17

1.4.1 Development Setting . 18

1.4.2 Centralized Coordination, Local Control. 19

1.4.3 Logical Representation of Clinical Data . 23

1.4.4 Evolutionary Design . 24

1.4.5 Thesis: Semantics-Based Concurrency Control. 25

1.4.6 Configuration Management . 26

1.5 Technology: Necessary but not Sufficient . 27

1.6 Guide to this Dissertation . 28

Chapter 2
Background:
Classification, Concurrency Control and Configuration Management31

2.1 Clinical Data Classification . 34

2.1.1 Common Terminology Structure . 34

2.1.2 Historical Perspective . 36

2.1.3 A Logical Foundation . 40

2.2 Concurrency Control . 43

2.2.1 Transactions . 44

 xv

2.2.2 Traditional Concurrency Control . 45

2.2.3 Semantics-Based Concurrency Control . 49

2.3 Configuration Management . 52

2.3.1 Configuration Management Models . 54

2.4 Summary . 61

Chapter 3
Representation:
Terminological Definitions, Information Models, and Patient Data 63

3.1 Terminological Definitions and Information Models 64

3.2 Terminological Definitions and Patient Data. 66

3.3 Representation of Terminological Definitions . 68

3.3.1 Concept Definitions . 68

3.4 Derivation of an Information Model. 71

3.5 Foundational Models . 72

3.6 SNOMED International . 74

3.6.1 Migration Path for SNOMED . 78

3.7 Prospects. 79

Chapter 4
Computer Support for Collaborative Development . 81

4.1 CMT Development Assumptions . 82

4.2 CMT Development Examples . 87

4.2.1 Nonunique-definition Conflict . 87

xvi Table of Contents

4.2.2 Multiple-Definition Conflict . 90

4.3 CMT Concurrency Control. 92

4.3.1 CMT Transactions . 92

4.3.2 CMT Transaction Validity . 93

4.3.3 Terminology Change Sets . 94

4.3.4 Terminology-Specific Conflict Resolution Strategies 98

4.3.5 Configuration Management Challenges. 105

4.4 CMT Configuration Management . 106

4.4.1 Custom Configurations . 107

4.4.2 Version Naming . 108

4.4.3 Version Merging. 109

4.4.4 Minimization of Local-Update Penalties . 111

4.4.5 Custom Configuration Examples . 114

4.5 Limitations of Conflict Detection . 120

4.6 Summary and Discussion . 122

Chapter 5
The Galápagos:
Applications to Study Evolutionary Terminology Development.125

5.1 K-Rep: Classification Engine . 126

5.2 Application Support for the Development Cycle . 131

5.2.1 Isabella: Configuration Management and Conflict Identification . 133

5.2.2 K-Rep DE: Terminology Enhancement . 138

 xvii

5.2.3 Cristobal: Filter Changes . 142

5.2.4 Rhabida: Conflict Resolution. 144

5.3 Prototype Application Summary . 147

5.4 Future Needs for CMT Development Applications 149

Chapter 6
Evaluation. 151

6.1 Proof-of-Concept . 152

6.1.1 Conflict Detection . 153

6.1.2 Conflict Review . 154

6.2 Proof-of-Performance. 158

6.2.1 Conflict Resolution and Evolutionary Design 164

6.2.2 Future Research on Conflict-Resolution Methods. 171

6.3 Conclusion . 172

Chapter 7
Conclusion. 175

7.1 Generalizability and Limitations . 176

7.1.1 Logic-Based Approach. 177

7.1.2 Foundational Models . 178

7.1.3 Evolutionary Enhancement . 180

7.1.4 Domain-Specific Conflict Detection and Resolution. 181

7.1.5 Configuration Management: No Free Lunch 183

7.1.6 Evaluation . 184

xix

List of Figures

Figure 1-1. A development scenario where a central body coordinates all changes
to the CMT while local sites retain authority over if and when they will
submit changes to the central body. .21

Figure 2-1. An ICD-9-CM hierarchy and an analogous SNOMED hierarchy,
 showing classification of “pleural effusion” .35

Figure 2-2. Valid serial sequence of transactions. .46

Figure 2-3. A development scenario with no central coordination53

Figure 3-1. Relationships between a terminology model and an information model .65

Figure 3-2. Relationships between a terminology model and a patient (data) model .67

Figure 3-3. An expanded set of terminological concepts. .68

Figure 3-4. SNOMED type hierarchy showing classification of “pleural effusion” . .77

Figure 4-1. Graphical illustration of a nonunique-definition conflict 89

Figure 4-2. Graphical illustration of a multiple-definition conflict91

Figure 4-3. A transaction set equivalent to the changes made by Modeler A94

Figure 4-4. CMT version naming convention .109

Figure 4-5. Possible CMT states .112

xx List of Figures

Figure 4-6. Update path for sites A and C .116

Figure 4-7. Update path for site B .118

Figure 4-8. Update path for site D .119

Figure 5-1. K-Rep Engine components and selected API functions128

Figure 5-2. Classification of terminological definitions. .129

Figure 5-3. Terminology Development Cycle .132

Figure 5-4. Isabella Architecture and representation of selected program functions.134

Figure 5-5. Isabella’s character-based interface. .135

Figure 5-6. Example entry from a conflict report .137

Figure 5-7. K-Rep DE Architecture .139

Figure 5-8. K-Rep DE’s taxonomy view .140

Figure 5-9. Concept viewer displaying the definition of “infectious pneumonia” . .141

Figure 5-10. Representation of Cristobal’s filtering functionality144

Figure 5-11. Rhabida architecture and representation of its functionality.144

Figure 5-12. Rhabida tool demonstrating conflicting definitions 146

Figure 5-13. Representation of the terminology development cycle148

Figure 6-1. Semantically equivalent changes. .154

Figure 6-2. Semantically conflicting changes .154

Figure 6-3. Semantically-conflicting changes from Kaiser Permanente
development .162

Figure 6-4. Semantically-equivalent changes from Kaiser Permanente
development .163

Figure 6-5. Non-unique definition conflicts. .164

Figure 6-6. Argumentation diagram of arguments and conflicting hypotheses
and the conflicting classifications for flexion .167

 xxi

Figure 6-7. Diagram of arguments and revised hypothesis and newly agreed classification
169

Figure 6-8. Semantically conflicting changes between Kaiser Permanente and
SNOMED 3.3 .170

Figure 7-1. A development scenario where a central body directs and coordinates
all changes to the CMT. .196

Figure 7-2. A development scenario with no central coordination199

Figure A-1. Conflict report for “tremor”. .209

Figure A-2. Conflict report for “procedure order form” .210

Figure A-3. Conflict report for “flexion” .211

Figure A-4. Conflict report for “prone body position” .214

Figure A-5. Conflict report for “flaccidity” .217

Figure A-6. Conflict report for “intermalleolar straddle” .219

Figure A-7. Conflict report for “transient paralysis of limb”221

Figure A-8. Conflict report for “Chemoreceptor function” .222

Figure A-9. Conflict report for “extension” .223

Figure A-10. Conflict report for “Cranial nerve XI exam”. .224

Figure A-11. Conflict report for “posture” .226

Figure A-12. Conflict report for “morning stiffness” .230

Figure A-13. Conflict report for “visual acuity testing” .231

Figure A-14. Conflict report for “myalgia” .232

Figure A-15. Conflict report for “eye and eyelid symptom” .232

Figure A-16. Conflict report for “peritoneal dialysis” .234

Figure A-17. Conflict report for “tetany” .235

Figure A-18. Conflict report for “skin rash”. .237

xxii List of Figures

xxiii

List of Tables

Table 3-1. Terms with corresponding definitions . 69

Table 4-1. Change sets S3 and S4 with compensating change sets 100

Table 4-2. Change sets S1 and S2 with compensating Change sets 104

Table 4-3. Change sets to be combined to generate a new CMT reference version 111

Table 4-4. Version 1 and version 2 definitions of infectious-pneumonia and
pulmonary-disease . 114

Table 4-5. Version 1.A.1 definitions, version 2 definitions, and the change sets
required to synchronize version 1.A.1 with version 2 117

Table 4-6. Version 1.B.1 definitions, version 2 definitions, and the change sets
required to synchronize version 1.B.1 with version 2 118

Table 4-7. Version 1.D.1 definitions, version 2 definitions, and the change sets
required to synchronize version 1.D.1 with version 2 120

Table 5-1. Concept forming operators and the terminological axioms of the
K-Rep language . 130

Table 6-1. Statistics for the 5 merges included in the 6 month evaluation period . . 159

Table B-1. Concept forming operators and the terminological axioms of the
Knowledge Representation System Specification 242

xxiv List of Tables

1

Chapter1
Encoded Clinical Data:
Promises, Perils, and Challenges

The health-care industry and government agencies are looking to computer-based tools to

reduce health-care expense, to assess the quality of health-care providers, and to deliver

health-care services more efficiently. A core component of these tools will be a

controlled

medical terminology

 (CMT).

1

 A CMT is used to encode clinical data: patient’s physical

signs, symptoms, medication sensitivities, treatment plans, and diagnoses. It is

controlled

in the sense that a formal process for adding new content to the terminology is followed,

thus ensuring high standards of quality and functionality.

A CMT is more than a simple system component, however, because any tool’s functional-

ity is inseparably linked to a CMT’s ability to represent relevant concepts and to engage

the user in a discourse regarding those concepts. If a CMT fails to represent the concepts

necessary for the tool to operate, the tool will fail. Similarly, if the coupling between the

tool and the user does not facilitate natural interaction (perhaps because of a poorly

1. I use “terminology” rather than “vocabulary” throughout this dissertation to adhere to the recommenda-
tions of the International Standards Organization (1990).

2 Encoded Clinical Data: Promises, Perils, and Challenges

designed interface or ambiguity in the CMT), the tool will again fail. Given this tight cou-

pling between the functionality of a tool and the underlying CMT, the two must be dis-

cussed together. In this chapter, I briefly present the promised benefits and potential perils

of tools that rely on a CMT, and then discuss the unsolved challenges that must be over-

come if one is to develop a CMT to support these tools. I propose an evolutionary-devel-

opment methodology that will answer many of these challenges. It is outlined in this

chapter and refined throughout the document. As will become clear, I believe that effective

creation, use, and sharing of clinical terminology requires a coordinated evolutionary

approach and methods for assuring consistency and for resolving inconsistencies as it

evolves.

My thesis,

2

 states that such an evolutionary approach can be supported using semantics-

based methods for managing concurrent terminology development, bypassing the disad-

vantages of traditional lock-based approaches common in current commercial database

systems. By allowing many developers to work concurrently on any portion of the termi-

nology while relying on semantics-based methods to resolve the “collisions” that are inev-

itable in concurrent work, a scalable approach to terminology development can be

supported.

1.1 Promises

Many health-care applications rely on a clinical terminology to represent data about

patients. The functionality of any data-management application is inseparably linked to its

2. Formally stated in Section 1.4.5.

1.1 Promises 3

underlying terminology. If the terminology cannot represent the distinctions that an appli-

cation needs, that application will fail either because the data acquisition fails to support

an appropriate discourse with the user or because the terminology lacks distinctions neces-

sary for data analysis. The terminology must also have sufficient structure to allow appli-

cation developers to reproducibly apply it, since an application’s promised functions are

enabled by algorithms that process information using an appropriate clinical terminology.

3

Examples of such tools are discussed in the following sections.

1.1.1 The Promise of CMTs for Decision Support

Computer-based decision-support systems are computer programs designed to help the

user make decisions. Shortliffe (1990) classifies tools for clinical decision-support into

three general types: tools for

 information management

, tools for

 focusing attention

, and

tools for

 patient-specific consultation

.

Examples of tools for information management include

hospital information systems

(Wiederhold & Perreault, 1990) and bibliographic-retrieval systems (Siegel, Cummings &

Woodsmall, 1990). These tools aim to improve the quality and to decrease the cost of

medical care by making relevant information available to the health-care provider so that

proper actions can be taken in a timely manner.

Tools for focusing attention include laboratory information systems (Smith & Svirbely,

1990) that flag abnormal laboratory values and define “panic” values that must be immedi-

3. Terminological structures that support reproducible semantics include explicit defining relationships
between terms within the terminological system, and prose definitions of those terms. In this sense, a
terminology should be distinguished from related collections such as lexicons (the linguistic units of a
language that cannot be divided into smaller meaningful parts), word lists, or phrase lists.

4 Encoded Clinical Data: Promises, Perils, and Challenges

ately communicated to the health-care provider. Pharmacy systems may also provide sim-

ilar functions by automatically checking a patient’s list of medications for interactions

(Tatro et al., 1975). Other systems, such as the Regenstrief medical record (McDonald,

Blevins, Tierney & Martin, 1988) and the HELP system (Kuperman, Gardner & Pryor,

1991), provide similar reminders for other aspects of the patient’s care. These reminders

may advise that a patient is due for a routine mammogram or an annual occult-blood test

(McDonald et al., 1984). Such tools promise to prevent mistakes and oversights by helping

providers to filter out the important from the routine and also by reminding them of health-

maintenance protocols.

Tools for patient-specific consultation are the most complex tools in this class and require

the most data to provide proper advice. Some systems, such as those for computer-based

ECG analysis, are widely used (Willems et al., 1991). Some, such as the Quick Medical

Reference (QMR) (Miller, Masarie & Myers, 1986) and ILIAD (Bergeron, 1991) are com-

mercially available. Miller (1994) provides an extensive review of medical diagnostic sys-

tems and predicts that these systems will proliferate. Such tools promise to reduce the

number of overlooked diagnoses and to improve the efficiency of diagnostic workups.

Their ability to suggest overlooked diagnoses has prompted consideration of their use as

tools for quality assurance (Lau & Warner, 1992). Yet their successful use will require a

terminology that represents appropriate diagnoses as well as all the signs and symptoms

associated with these diagnoses. Further, if automated capture of the signs and symptoms

is desired, the terminology within the quality-assurance tool, and the terminology within

the application that originally captures the data (such as a data-acquisition tools discussed

1.1 Promises 5

in Section 1.1.4) must be compatible. A quality-assurance tool can be no better than its

underlying terminology.

1.1.2 The Promise of CMTs for Monitoring Quality

Automated capture of clinical data promises to make risk-adjusted morbidity and mortal-

ity studies a routine part of assessing the quality of care delivered by a health care organi-

zation or an individual provider. Several studies have already tried to assess the quality of

care delivered using existing administrative data (Bowen & Roper, 1987; Luft & Romano,

1993).

Such databases, collected routinely in our current medical system, are very attractive

sources for this purpose (Flood, 1990) because:

•

they cost less than specially collected data sets

•

they allow quality to be examined in a nationwide context

•

they have sample sizes that can measure small differences in effectiveness

•

they can track patients over longer periods and look at the permanence of the effects

being observed, and

•

they can look at factors, other than identity of the provider, that may affect the quality

of care.

As more clinical data are routinely collected, quality surveillance will utilize clinical data-

bases in addition to administrative databases. Clinical databases (databases that expand

upon administrative data by including relevant clinical information not routinely collected

6 Encoded Clinical Data: Promises, Perils, and Challenges

for administrative purposes) promise to improve the reliability and utility of analysis

based strictly on administrative data because clinical data can be used to risk-adjust mor-

tality rates using clinical factors. Hannan and colleagues (1992) have demonstrated that

clinical databases can perform substantially better than administrative databases when one

is evaluating mortality following coronary-artery bypass graft surgery. Clinical databases

can perform better at such tasks because they have an expanded terminology that is able to

represent clinically significant data that an administrative database cannot. Clinical data-

bases require a detailed CMT to represent this clinically significant data.

1.1.3 The Promise of CMTs for Medical Research

The development of large clinical databases promises to provide benefits other in addition

to facilitating nationwide quality surveillance. If the clinical data within these databases

are appropriately detailed and reliable, they will also become valuable resources for retro-

spective clinical research. If data pooling is made possible by uniform use of a CMT, these

databases hold the promise of offering information similar to that obtained by randomized

clinical trials but at much lower cost.

Since databases created by pooling data from routine encounters are not expected to elim-

inate the need for randomized clinical trials, another class of tools is being developed to

support them (Musen, Carlson, Fagan, Deresinski & Shortliffe, 1992; Shortliffe & Hub-

bard, 1989). These tools are designed to determine automatically when patients are eligi-

ble for protocols prospectively and to help physicians follow these protocols after their

patients are enrolled. These tools promise to improve the reliability of clinical trials by

making data collection more complete (Kent, Shortliffe, Carlson, Bischoff & Jacobs,

1.1 Promises 7

1985) and to speed completion of clinical trials by preventing eligible patients from being

overlooked and ensuring that enrolled patients are managed in accordance with protocol

guidelines.

Large clinical databases, protocol-eligibility applications and protocol-management appli-

cations all depend upon CMTs to represent the data they act upon. As with other kinds of

clinical applications, the functionality of these systems is inseparably linked to the robust-

ness of the underlying CMT.

1.1.4 The Promise of CMTs for Data Acquisition

Requirements for documenting health-care encounters are increasing. Some of this

increase is being driven by regulatory and reimbursement requirements. Other factors

include the desire to improve the quality of medical care and to reduce its cost.

Irrespective of the causes for the increase in documentation, application developers are

working to provide solutions that promise to improve the quality and completeness of clin-

ical documentation, as well as to make secondary uses of this documentation (such as

quality assurance and medical research) more efficient and less costly.

Many approaches have been, or are being, developed to capture or analyze computer-pro-

cessible clinical data (Baud et al., 1993; Bell et al., 1992; Benoit et al., 1992; Bernauer,

1991; Johnson, Aguirre, Peng & Cimino, 1993; Kuhn et al., 1993; Lenert & Tovar, 1993;

Naeymi-Rad et al., 1992; Poon, Fagan & Shortliffe, 1996; Rassinoux, Baud & Scherrer,

1992; Rector et al., 1991; Sager et al., 1993; Schröder, 1992). These approaches typically

use menu selection, other types of structured data entry, or natural-language processing to

8 Encoded Clinical Data: Promises, Perils, and Challenges

collect clinical data. Although there are important differences among these approaches,

they all share a common feature: the need for a robust CMT to enable their use. Data

acquisition applications must have a CMT that represents the concepts necessary to docu-

ment an encounter, and, for that data to be useful for secondary uses, their CMT must be

compatible with the terminologies of other applications such as those discussed in Sec-

tions 1.1.1-1.1.3. If the CMT is lacking, the collective promises of informatics applica-

tions may not be realized.

1.2 Perils

The promised benefits of automating access to clinical data are accompanied by serious

perils. Most of these are directly related to an inadequate CMT, and include the following:

•

Improper conclusions

: misleading conclusions can be drawn from easily available but

incomplete data that typically rely upon a limited CMT such as the Current Procedural

Terminology (American Medical Association, 1995) or the International Classification

of Diseases (National Center for Health Statistics, 1995). These terminologies are

designed for limited purposes and are fraught with danger if attempts are made to use

them for inappropriate analyses.

•

Performance failures

: difficulties acquiring data may cause expensive failures. The

failure may be due to an impoverished terminology that providers will not use because

it poorly characterizes their patients; on the other hand, an overly detailed terminology

may be excessively time-consuming to navigate.

1.2 Perils 9

•

Premature mandates

: regulatory pressures may force adoption of an incomplete or

inappropriate CMT that is difficult to maintain and is inadequate for its intended use.

•

Incompatible terminology

: if CMTs are incompatible, sharing of clinical data will

never become a reality.

These four perils are discussed in more detail below.

1.2.1 Perils of Improper Conclusions from Incomplete Data

The studies of the quality of care delivered using administrative or clinical data cited pre-

viously in Section1.1.2 allow only limited conclusions because the data employed were

coded using the International Classification of Diseases, Ninth Revision, with Clinical

Modifications (ICD-9-CM) (National Center for Health Statistics, 1995). These codes

were originally developed to classify causes of death and have been modified subsequently

to track disease prevalence worldwide. They were never intended for assessing the quality

of care delivered at hospitals or clinics. The categories are too broad and there is no reli-

able mechanism for classifying the severity or acuity of a condition. Some studies have

tried to group patients with the same diagnoses into equivalent risk groups based on their

age, sex, and race, but the descriptions are simply too limited to stratify patients properly

so that outcomes can be validly compared (Jollis et al., 1993). Even specially collected

datasets that contain clinical data can have substantial biases, preventing valid inferences

about risk-adjusted quality-of-care measures (Blumberg, 1991). Clearly, the limitations of

the data must be understood. Otherwise improper—and possibly damaging—conclusions

may be made.

10 Encoded Clinical Data: Promises, Perils, and Challenges

Too often, decision makers rely only on easily accessible data. Consider this real example:

an insurance company was rating providers by the fees they charged, with only minor

attention, if any, being paid to quality. Based on cost alone, the insurance company rated

an ophthalmologist as a preferred provider, not knowing that the doctor had been barred

from surgery by the state Medical Disciplinary Board because of using misleading adver-

tising, altering medical records, and operating with negligence (Flores, 1993). This is just

one example of the possible unanticipated consequences of deploying a new technology

imprudently. As deployment proceeds, vigilance for these unanticipated effects is essen-

tial.

1.2.2 Perils of Performance Failures

Although the arguments for CMT-reliant tools are compelling, the financial and organiza-

tional costs associated with achieving acceptable performance from these tools may be

overwhelming. There have been previous costly failures, and current efforts need to be

viewed with appropriate skepticism.

A well known example, developed by Dr. Lawrence Weed, the Problem-Oriented Medical

Information System (PROMIS), failed to achieve long-term acceptance by its intended

users. This system, a computer-based, problem-oriented medical record (Weed, 1969),

was deployed at the Medical Center Hospital of Vermont in the early 1970s. Weed’s work,

which proposed problem-oriented progress notes, has dramatically improved the quality

of documentation in paper-based medical records, and has been widely accepted. Despite

the success of his paper-based system, the computer-based implementation was rejected,

largely because Weed and his coworkers assumed that physicians would be willing to

1.2 Perils 11

adhere to dogmatically applied problem-oriented principles. The inability of the system to

adapt to the desires of its physician users was the most important reason for its failure to

gain acceptance (Fischer, Stratmann, Lundsgarrde & Steele, 1980).

Part of the PROMIS system’s failure was also due to immature interface technology and a

limited understanding of human-computer-interface design at the time of its implementa-

tion in the 1970s. Since then, developers have been incorporating new methods into the

design process to enhance user acceptance and thus increase the chances for success of

their software systems. These include user-centered design, information-flow studies,

increased attention to insights from cognitive psychology, and sociological analysis of the

workplace (Norman & Draper, 1986; Winograd & Flores, 1986). Computer technology

has also evolved to allow users to interact with computers with less effort than had previ-

ously been possible.

Just as there have been previous failures secondary to a poor understanding of human-

computer-interface design, today developers are experiencing failures secondary to poor

understanding of the requirements of terminology-based applications. Such poor under-

standing usually takes one of several forms: underestimating the costs associated with

acquiring data in machine processible form, underestimating the costs associated with the

development and maintenance of the terminology, and failing to validate the appropriate-

ness of the terminology for a particular task.

One project that recently suffered from several such terminology-related problems is the

Uniform Clinical Data Set (UCDS). This is a standardized set of clinical data elements and

associated tools used to collect and analyze them. The Health Care Financing Administra-

12 Encoded Clinical Data: Promises, Perils, and Challenges

tion (HCFA) had planned nationwide implementation of UCDS by 1996, and asked that

all the requested data for medicare patients be collected by manual chart review after the

patient was discharged from the hospital.

The developers of the UCDS promised that its use would improve the accuracy, reliability,

and validity of the Medicare Peer Review Organization (PRO) review process by ensuring

national uniformity. Initial experiments, however, have suggested that UCDS data abstrac-

tion methods would be too costly. The average time to review a chart using the UCDS was

93 minutes, compared to the average of 23 minutes for manual review, indicating an

increase in the cost of labor in the vicinity of 400 percent (Audet & Scott, 1993). In addi-

tion, statistics describing the positive and negative predictive values for detecting quality

problems using UCDS tools are not available. Currently, deployment of the UCDS is on

hold due to the aforementioned problems. Nevertheless, the desire to realize the promises

of automated data analysis remains high. Undoubtedly, future initiatives will be proposed.

Hopefully, a robust CMT will be available to support these applications when they are

deployed.

The limitations of medical terminologies were also painfully apparent during my develop-

ment of IVORY, a clinical data-acquisition tool (Campbell et al., 1993). IVORY was

designed to collect data directly from the health-care provider using structured data entry

for selecting terms from a controlled medical terminology. IVORY produced a structured

SOAP note
4
 for the provider and the patient’s chart as well as a structured representation

4. A progress note structured with sections in the following order: Subjective, Objective, Assessment, and
Plan. The SOAP note structure is from Weed’s problem oriented medical record (Weed, 1969).

1.2 Perils 13

of the clinical data entered by the provider. Despite the successful proof-of-concept, the

inability to identify a suitable controlled medical terminology for IVORY led to significant

difficulties in implementing it in a more demanding setting (Musen, Weickert, Miller,

Campbell & Fagan, 1995). My frustration with this constraint on a system I had built

accounts in part for my interest in addressing the problems of CMT development.

Since current standard representations are not sufficient for the needs of most clinical

applications, developers are forced to create their own terminologies (Campbell & Musen,

1992a). Problems of coordinating local changes with a nationally evolving standard may

overshadow the potential benefits of adopting such a standard. Significant problems, for

example, have been encountered just trying to synchronize different versions of the termi-

nology used by IVORY with the T-Helper decision-support system (Musen et al., 1992).

These local problems will be magnified if development of a national terminology is

attempted.

1.2.3 Perils of Costly Premature Mandates

The sense of urgency to develop CMT standards may prompt premature or poorly consid-

ered actions. The Agency for Health Care Policy and Research (AHCPR), for example,

was given the responsibility to develop standards for the automated medical record by the

Omnibus Budget Reconciliation Act of 1989. These standards were to include uniform

definitions for clinical data and common reporting formats. The Health Care Financing

Administration (HCFA) was not satisfied by the progress of standards development, and

helped draft the Medical and Health Insurance Information and Reform Act of 1992

(which failed to be enacted by the 102nd Congress). This bill would have required that

14 Encoded Clinical Data: Promises, Perils, and Challenges

certain standards be in place by certain dates, and if they were not, would have authorized

the Secretary of Health and Human Services (HHS) to declare the standards and dissemi-

nate them.

Although the Medical and Health Insurance Information and Reform Act of 1992 failed to

become law, a subsequent bill has: the Health Insurance Portability and Accountability Act

of 1996 (United States Congress, 1996). This law has equivalent requirements for stan-

dards, and authorizes the Secretary of HHS to declare the standards and to disseminate

them. If such standards are arbitrarily developed and applied, however, they may not meet

the needs of applications other than those of HHS itself. Further, if standards are devel-

oped without the means to evolve as the needs of HHS change, those standards might not

even meet the needs of HHS.

California provides another example of the rush to develop new clinical-data standards.

The State of California has directed the Office of Statewide Health Planning and Develop-

ment (OSHPD) to prepare an annual report on the quality of care delivered by all of the

state’s hospitals (California Legislature, 1991). OSHPD was directed to examine adminis-

trative and discharge data already collected and to determine if these data were sufficient

to perform valid quality assessments. If the data were found lacking, OSHPD was to rec-

ommend what elements needed to be included in the analysis to make risk adjusted out-

come measurements possible. If all of the states followed California’s example, 50

different state-specific requirements would result, thereby placing an excessive burden on

hospitals and information-system vendors, and the national comparability of such data

would be severely compromised.

1.3 Challenges 15

1.2.4 Perils of Incompatible Terminologies

Premature legislative mandates are not the only way that isolated and incompatible CMTs

come into being. Such incompatibilities unfortunately are typical of most CMT-based

tools. Diagnostic tools, such as QMR (Miller et al., 1986) and Iliad (Bergeron, 1991), for

example, use incompatible CMTs even though the two applications have the same purpose

(to suggest patient diagnoses from an input list of symptoms) and focus on the same

domain (Internal Medicine). Similarly, laboratory systems and pharmacy systems from

different vendors can also be expected to have incompatible CMTs.

Kahn (1993) characterized the information-systems infrastructure of American health-care

providers as one of isolated, one-of-a-kind, and incompatible systems. Not only does this

information system infrastructure threaten to be an ever-increasing maintenance burden, it

is also severely compromising current efforts to provide integrated applications that can

efficiently process data from a variety of sources. Without such integration, users are often

required to re-enter data that already exist on one system (such as a laboratory system)

into another (such as the QMR or Iliad diagnostic tools). This manual data re-entry is

rightly cited as a significant barrier to physician acceptance of clinical decision-support

tools.

1.3 Challenges

Standards capable of representing clinical data do not exist (United States General

Accounting Office, 1993). The Institute of Medicine has recommended that such represen-

tations be developed over the next decade (Dick & Steen, 1991). The urgency of policy

16 Encoded Clinical Data: Promises, Perils, and Challenges

makers’ drive to solve health-care delivery problems, combined with a frequently incom-

plete understanding of current technology, increases the pressure to find immediate solu-

tions.

The initial challenge for the medical informatics profession is to propose limited solutions

that can be applied immediately. These proposals must not ignore these limitations, how-

ever, but incorporate frameworks for evolutionary enhancement to overcome them. Such

frameworks are clearly important for long-term viability, but are also critical for the initial

deployments.

 Winograd and Flores (1986) state that one clear design objective is to “anticipate the

forms of breakdown and provide a space of possibilities for action when they occur” (p.

165). This is important for an initial deployment because any artifact introduced into a

new environment may create unanticipated breakdowns (failure of an artifact to perform

as expected). If these breakdowns follow a recurrent pattern, they can be defined and clas-

sified. Rules for managing these breakdowns must be developed as well.

Therefore, the corollary challenge to proposing immediate solutions is to anticipate their

inevitable breakdowns. Effective anticipation will include the development of mechanisms

to manage them. Since a CMT is the foundation upon which the tools described in

Section 1.1 are built, breakdowns in a CMT will create associated breakdowns in the

dependent tools. Without a mechanism to manage these CMT breakdowns, the utility of

derivative tools will be compromised.

1.4 CMT Development and Dissertation Overview 17

Likely CMT breakdowns include what may be called “errors of omission” as well as

“errors of commission.” The former occur when necessary concepts are not included in a

CMT or when incomplete definitions of the CMT lead to data-aggregation errors. The lat-

ter occur when incorrect statements within a terminological definition cause applications

to retrieve information inappropriate to the aggregated class. In this dissertation, I propose

mechanisms for managing these breakdowns. An overview of the CMT development pro-

cess and how to manage the terminology changes required to address breakdowns follows

immediately in Section 1.4. A detailed description of how to manage terminology

changes, with examples, is provided in Chapter 4.

1.4 CMT Development and Dissertation Overview

This dissertation focuses on a methodology for identifying conflicts in concurrent work by

individuals seeking to develop a CMT. My evaluation of the approach has taken place in

an actual work setting, supported by advances in the application of the principles of con-

figuration management to the development process as well as by a supportive social struc-

ture. This structure made it possible for a meaningful dialog about conflicting design

decisions to take place among developers who were working on competing projects.

Because of the complex relations among the components that form the foundations of my

work, this dissertation is necessarily an experimental effort. It seeks not just to advance a

theory about how distributed terminology development can be realized, but also to evalu-

ate the applicability of that theory to practical environments. Moreover, my work has been

motivated by the need to coordinate terminology development on a national scale. It has

18 Encoded Clinical Data: Promises, Perils, and Challenges

been a sizeable project, therefore, to construct a meaningful evaluation of the performance

characteristics of the thesis of this dissertation as well as to describe the interplay of theo-

retical work with the demands of complex social organizations.

1.4.1 Development Setting

Kaiser Permanente, the nation’s largest health maintenance organization, has several EMR

development and implementation efforts in progress. A robust CMT is critical to the suc-

cess of these EMR efforts. As part of its high-level commitment to have comparable data

across all of its EMR projects, Kaiser Permanente has sought to use methods that I have

developed (Campbell, 1994) to coordinate its CMT work and to allow an evaluation of the

methods employed.

Although Kaiser Permanente has provided a challenging setting, thanks to the perfor-

mance pressures associated with actual development, it has provided an ideal test bed for

evaluating the distributed development ideas I describe in this dissertation. It is not only a

real-world setting, but also is of sufficient scale so that lessons learned during the process

are generalizable to other large-scale settings.

Although Kaiser Permanente is investing centrally in coordinating its CMT work through

its national offices, the actual development work is being undertaken as part of competitive

EMR efforts co-sponsored by Kaiser Permanente and development partners.5 The national

office focuses on coordinating terminology work and on providing an infrastructure that

5. The competitive efforts, while sharing Kaiser Permanente as an intended customer, are competing with
one another in the commercial marketplace. Competitive pressures thus limit the scope of possible col-
laboration to very narrow areas, and require constant vigilance to maintain consensus.

1.4 CMT Development and Dissertation Overview 19

fosters collaboration and exchange. Decisions about the CMT modeling are determined

locally by the needs of the individual EMR development efforts. This organizational struc-

ture can be described as one of “centralized coordination, local control,” the essential

characteristics of which are described in Section 1.4.2.

1.4.2 Centralized Coordination, Local Control

A paradigm of centralized coordination, local control development may be appropriate

whenever several organizations agree to collaborate to develop or maintain a CMT. Each

organization (or development site) may already be developing a CMT for its own internal

uses, but the collaborators recognize the importance of working together toward a com-

mon standard. They may obtain some partial external funding for their collaboration that

will support coordination of efforts, but much of the development cost is likely to be

locally funded, as was the case for Kaiser Permanente.

Under this paradigm, the local sites form a central steering committee that includes repre-

sentatives from each site as well as representatives from a coordinating body. Within Kai-

ser Permanente, this group was known as the CMT Oversight Group and has had

representatives from four of the regions actively participating in CMT development—Col-

orado, Mid-Atlantic, Northern California, and Southern California—as well as representa-

tives from Kaiser Permanente’s national offices.

The steering committee is responsible for defining the objectives of the collaboration. The

resources necessary to develop the CMT are still controlled by each local site, and are sig-

nificantly influenced by the needs of their respective EMR projects. At Kaiser Permanente,

20 Encoded Clinical Data: Promises, Perils, and Challenges

each of the four regions had been working on competing projects, either internally devel-

oped or with EMR-development partners such as IBM, Oceania, and Oacis Healthcare

Systems.

The steering committee seeks to find common goals from these objectives and to share

work so that duplicate efforts are minimized—while assuring that confidential and propri-

etary information inherent in a development project is not compromised and seeing to it

that resources of the collaborative are not unduly aligned with the needs of a specific ven-

dor. Although relationships among the local sites are typically harmonious, inevitably

there are differing priorities at each site. Maintaining clarity and consensus regarding the

collaborative resources and goals is bound to be challenging.

Figure 1-1 illustrates a scenario that embodies the paradigm of centralized coordination,

local control.There are two sites, A and B, in the illustrated collaboration. These sites

begin with a common version of a CMT, version 1. Site A faithfully submits its changes to

a central coordinator that integrates these changes into new reference versions. Site A does

not always immediately incorporate these new reference versions. Changes to the local

terminology may impact existing applications in ways that prevent immediate adoption of

new reference versions. In the case illustrated in Figure 1-1, site A did not incorporate ver-

sion 2 immediately, but instead waited until version 3 was available.

Site B was not been quite as cooperative as site A. Site B initially offered all its local

changes and incorporated the second reference version immediately. Local requirements,

however, demanded that it concentrate next on solving a significant local problem.

Because all efforts were focused on the local problem, no changes were submitted for ver-

1.4 CMT Development and Dissertation Overview 21

sion 3, and only when it came time to create reference version 4 was site B able to contrib-

ute again.

Figure 1-1. A development scenario where a central body coordinates all changes to the
CMT while local sites retain authority over if and when they will submit changes to the
central body, and if and when they will synchronize their local version with new
reference versions. Left-right arrows indicate sharing changes between a local site and
the central coordinator. Boxes below each site indicate serial revisions of a “branch” of
the terminology.

Ti

jT

Branch

Revisions

1.A.2

1.A.1

1.A.0 1.B.0

1.B.1

2.B.0

2.B.1

Version 4

Version 1

1.A.4

1.A.3

3.A.2

3.A.1

3.A.0

2.B.2

2.B.3

2.B.4

Version 2

Version 3

Site A Site B

22 Encoded Clinical Data: Promises, Perils, and Challenges

Under the paradigm of centralized coordination, local control, a central steering commit-

tee recommends an overall direction, but only the local sites make actual commitments,

sometimes to the detriment of the collaboration. The scenario illustrating this paradigm

presents examples of where the collaborators failed to synchronize their work, thus

increasing the complexity of future integration. Although the motives of this scenario are

hypothetical, each of the failures of synchronization described by it actually occurred at

least once during the Kaiser Permanente CMT project, despite the best intentions to have

the participants synchronized at all times.

Clearly then, coordination of tasks between diverse groups can be challenging. Before

such collaborations can be attempted, there must be some initial agreements about the

nature of the terminology that the collaboration is intending to produce. One fundamental

agreement regards the semantics of the underlying representation.

The identification of terminological conflicts is the focus of the thesis that I describe in

this dissertation, and since these conflicts are an inevitable part of any distributed-develop-

ment process, a description logic foundation is proposed to automate their identification.

This foundation supports an enforced consistency within a terminology by providing mod-

elers with a well-defined set of operations they can incorporate into their definitions, and

by allowing the terminologies themselves to be interchangeable within a class of develop-

ment tools that are also founded upon the semantics of description logic (Brachman et al.,

1991; Brachman & Schmolze, 1985; Brill, 1993; Mays et al., 1991; Moser, 1983).

Currently, description logic has not been used extensively for medical terminologies, but

as the demands placed upon these terminologies increase, their lack of formal semantics

1.4 CMT Development and Dissertation Overview 23

will prove an insurmountable burden. CMTs require a logical foundation to live up to the

demands of applications that depend upon them to deliver on the promises of supporting

decisions, monitoring quality, expanding support for medical research, and improving the

quality and reducing the cost of medical documentation.

1.4.3 Logical Representation of Clinical Data

Typical medical terminologies, such as SNOMED International (Côté et al., 1993) and

ICD-9-CM (National Center for Health Statistics, 1995) use a hierarchical structure that

organizes concepts. These kinds of hierarchies, however, have serious limitations (Camp-

bell, Das & Musen, 1994). A simple hierarchical categorization neither sufficiently defines

what a term represents nor tells how one term differs from another. Terminologies that use

only concept hierarchies to categorize terms usually lack formal definitions for the terms

in the system.6

Many research teams have sought to bring increasing formality to medical terminologies,

some by developing logical definitions for the terms in a particular terminology, others by

formalizing linguistically-derived relationships in the terminology (Bernauer, 1991;

Cimino et al., 1994; Evans, Cimino, Hersh, Huff & Bell, 1994; Friedman, Cimino &

Johnson, 1993; Masarie et al., 1991; Rector et al., 1993). I propose the use of description

logics to define individual terms explicitly, thereby formalizing the defining relationships

among these terms.7

6. Limitations of current CMTs as well as issues related to description logic as a foundation for CMTs are
discussed further in Section 2.1.

7. The terminological definitions required and the relationships between those definitions on the one hand
and information models and patient data on the other are presented in Chapter 3.

1.4 CMT Development and Dissertation Overview 25

ers, may be preferable thanks to the broader base of participation in the development pro-

cess and a greater sense of ownership among the modelers.

Evolutionary design can be made more efficient if computer applications are specifically

tailored to support the evolution of a terminology. To make evolutionary design a realistic

option, the first problem that must be overcome is to identify methods to allow modelers to

work concurrently, to identify conflicting design decisions, to resolve these conflicts, and

to disseminate the resolutions. There are two complementary classes of methodologies

that, taken together, can make it possible for applications to support distributed CMT

development: concurrency control and configuration management.

1.4.5 Thesis: Semantics-Based Concurrency Control

Traditional concurrency control schemes, such as those used by banking and airline reser-

vation systems, are unable to support the especially demanding concurrency requirements

of a nationally developed CMT. Specifically, new applications are required that will sup-

port development by users who are distributed geographically, who may be working with

different versions of the master CMT, and who may spend weeks working on portions of

the CMT before releasing their work publicly. Some aspects of this problem relating to use

and enhancement of the Unified Medical Language System (Lindberg et al., 1993), have

been described by Tuttle et al. (1991).8

In this dissertation I present a methodology for using semantics-based concurrency-con-

trol methods to support distributed development of a logically-based CMT. Such seman-

8. Section 2.2 of this dissertation provides a background of relevant concurrency control work.

26 Encoded Clinical Data: Promises, Perils, and Challenges

tics-based methods use the underlying meaning behind terminological definitions to

identify conflicts, and then seek to resolve such conflicts by optimizing the accumulation

of design decisions from individuals working concurrently. By contrast, traditional meth-

ods of concurrency control force the acceptance of one individual’s conflicting work at the

expense of another’s. Semantics-based concurrency-control methods can use an Aristote-

lian type hierarchy 9 to detect terminological conflicts created by concurrent development.

The fundamental thesis of this dissertation is that Aristotelian classification can be used to

identify concurrent-development conflicts within such description-logic systems. Further,

the conflicts so identified are of sufficient frequency and terminological importance to

warrant routine support for conflict-resolution in distributed description-logic develop-

ment environments.10 Implementation of an Aristotelian classification is not sufficient,

however. To successfully manage a distributed CMT development process, the Aristotelian

classification methods must be combined with appropriate configuration-management

methods. Together, they provide a viable framework for supporting distributed CMT

development.

1.4.6 Configuration Management

Configuration management has been defined as “the process of identifying and defining

the items in the system, controlling the change of these items throughout their lifecycle,

recording and reporting the status of items and change requests, and verifying the com-

9. Discussed in Section 2.1.2 of this dissertation and further defined in Section 4.1.

10. Initial sections of Chapter 4 of this dissertation present the methodologies upon which Aristotelian clas-
sification can be used for semantics-based concurrency control.

1.4 CMT Development and Dissertation Overview 27

pleteness and correctness of items” (ANSI/IEEE Standard 729, 1983). The development

of any complex system requires configuration-management techniques to coordinate and

control its construction: many of the basic principles have been developed for hardware

engineering, large building construction, and software systems (Whitgift, 1991).

Concurrency-control methods for managing developmental changes that occur to terms in

a CMT are an essential part of configuration management. Concurrency-control methods,

however, are not sufficient to manage all configuration-management problems. CMT con-

figuration management will also require naming conventions to identify items and ver-

sions of items, methods to verify the completeness and correctness of CMT configura-

tions, and additional methods to create new CMT configurations.

Considerable work has been done developing computer-based tools for managing software

configurations (Feiler, 1991) and hardware configurations (Barker & O’Connor, 1989).

Some of the concepts created for these applications can be directly applied to CMT con-

figuration management. New methods for managing CMT-specific problems are also

needed.11 I will describe how those advanced configuration-management methods can be

combined with semantics-based concurrency control to manage CMT configurations.12

Together, these methods will support CMT verification and automated migration from one

version of the CMT to another.13

11. Section 2.3 of this dissertation presents relevant background work in configuration management.
12. See the discussion in the later sections of Chapter 4 of this dissertation.

13. Chapter 5 of this dissertation presents the prototype applications that incorporate distributed develop-
ment support using a combination of Aristotelian classification as a basis for semantics-based concur-
rency control, and an advanced configuration management methodology. Chapter 6 presents an
evaluation of how these combined prototype applications have performed within the Kaiser Permanente
CMT project.

28 Encoded Clinical Data: Promises, Perils, and Challenges

1.5 Technology: Necessary but not Sufficient

Although there are opportunities for computer-based tools to support the development

process, such technological solutions must fit within an appropriate social framework.

This framework largely determines the development process, and in turn, the quality of the

product depends on the development process.

A real-world development effort will inevitably have more complex motivations, responsi-

bilities, and processes than those found in the scenario illustrated above for the central

coordination, local control paradigm.14 A social framework must be developed for each

effort. The purpose of this framework will be to control formally the problems of compet-

ing priorities, differing perspectives, failed performances, and consensus development.

Laying the appropriate groundwork for the Kaiser Permanente CMT project, including an

agreement on an appropriate approach to development, took about two years and the dedi-

cated effort of many committed individuals (often over the objections of other equally

committed individuals). Undoubtedly, attaining a similar agreement at a state or federal

governmental level will prove even more challenging.

The goal of the methodologies described within this dissertation is to support these social

processes. It is the combination of appropriate technologies in support of a social commit-

ment that will allow the promises of CMT based applications to be realized while the

potential perils are avoided.

14. See Section 1.4.2.

1.6 Guide to this Dissertation 29

1.6 Guide to this Dissertation

This chapter has provided motivation for, and an overview of, this dissertation. The

remainder of this dissertation expands these ideas with concrete examples and specific

methodologies. Chapter 2 provides background. There, I present material necessary to

understand the development tasks and the existing work in other fields that can be applied

to CMT development. This review incorporates a discussion of clinical-data classification,

software-management principles, and concurrency-control and configuration management

methods.

The next two chapters describe my approach for representing clinical data and for devel-

oping a terminology suitable for such a representation. In Chapter 3, I demonstrate exam-

ples of how a CMT can be logically represented using description logic, how a CMT

participates in information models, and how patient data is represented using a combina-

tion of a CMT and an information model. In Chapter 4, I present formal methods for

semantics-based concurrency control and change-set configuration management that can

be applied to support the development of a logical-based CMT. This support includes

methods for resolution of anticipated breakdowns in such a way that an evolutionary con-

servation-of-design development approach is practical.

The subsequent two chapters describe my implementation of semantics-based concur-

rency control and an evaluation of that implementation. Chapter 5 presents the applica-

tions that were used to demonstrate the semantics-based concurrency control and change-

set configuration management. Chapter 6 contains an evaluation of those applications and

how they supported the development process in an actual development setting.

30 Encoded Clinical Data: Promises, Perils, and Challenges

Chapter 7 presents a discussion of this work, including ancillary lessons and directions for

future work, and my concluding remarks.

31

Chapter2
Background:
Classification, Concurrency Control
and Configuration Management

Developing large systems, such as a controlled medical terminology (CMT), is a complex

process. All such projects face two general challenges: to ensure that the proposed system

is technically feasible and to manage development in such a way that acceptable levels of

productivity and quality are maintained. These two challenges are closely related because

a system’s technical aspects will directly affect how easily it can be managed.

For any conceptual framework to be viable, it must be supported by a development envi-

ronment that is cognitively, computationally, and organizationally scalable. A develop-

ment environment is cognitively scalable if it supports the developer by computing

inconsistencies and new relationships that might be otherwise overlooked. It is computa-

tionally scalable if the resources necessary for computation remain readily available as the

size and complexity of the terminology within the classification grow. It is organization-

ally scalable if the management effort necessary to coordinate and integrate the individual

work grows in a manageable way as the number of modelers increases. A description-

logic classifier can preserve computational scalability by using a computationally tractable

32 Background: Classification, Concurrency Control and Configuration Management

sub-language of predicate logic with the properties of decidablilty and completeness. If

efficiently implemented, it can also support cognitive scalability by computing coherence

of concepts and by utilizing a classifier to identify inconsistencies and new relationships.

Implementations of these classifiers have traditionally ignored organizational scalability,

however, and they have had little—if any—support for more than one concurrent modeler,

and none for identifying conflicting design decisions made by individual modelers.

The diversity of developers’ needs and the tight coupling of needs with features in applica-

tions make support for pluralistic design essential. Moreover, since terminologies are

inherently dynamic, computer-based support for their concurrent development will reduce

the cost of migrating to new versions by offering a set of supported processes and tools

that will make such migrations routine.

Several CMTs have long histories. For example, the International Classification of Dis-

eases, was first initiated in 1853 (National Center for Health Statistics, 1995), the Medical

Entities Subject Headings date back to 1960 (National Library of Medicine, 1992), and the

Systematized Nomenclature of Medicine (Côté, Rothwell, Palotay, Beckett & Brochu,

1993) was derived from the Systematized Nomenclature of pathology, which itself began

in 1965 (Wells, 1965). These vocabularies have served diverse needs for many years with-

out having either formal processes for computer-supported distributed development or for-

mal languages for logically defining the relationships of terms contained within one CMT

to those found in the others. These CMTs are becoming more complex as they evolve, and

the demands placed upon them by the pursuit of the Electronic Medical Record (EMR) are

 33

enormous. Existing management infrastructure is inadequate to ensure continued growth

of these important CMTs.

CMTs are becoming increasingly expressive due to increases in size. They are also

becoming increasingly difficult to analyze due to inconsistencies in their use and the com-

plex interrelationships between terms that are often not explicitly defined. To address these

problems, CMTs will need to be enhanced to allow them to be used consistently and to

make it possible to define interrelationships among terms explicitly. Management of this

enhancement will be a complex process, involving the participation of many groups with

competing priorities. Creation of an appropriate management infrastructure for carrying

out CMT enhancement is an accordingly essential first step.

Fortunately, such an infrastructure need not be developed from scratch. General principles

of management can be directly applied to CMT development, and many specialized prin-

ciples of software development can also be adapted and applied.

Many large project-management techniques are surprisingly consistent, as the general

applicability of such management principles as quality control to diverse fields such as

manufacturing, marketing, research and development, and health care demonstrates (Ber-

wick, Godfrey & Roessner, 1990). Although the fields are diverse, they all accomplish

productive work by following an appropriate process. Shewhart (1931) recognized that the

quality of a product is inseparably linked to the quality of the development process, and

therefore recommended that management focus on analyzing and improving the process

rather than focusing exclusively on the product.

34 Background: Classification, Concurrency Control and Configuration Management

2.1 Clinical Data Classification

Collecting clinical data is expensive and time consuming. Currently, only minimal data are

routinely encoded. Any analysis requiring new data elements consumes significant

resources to (1) develop a sampling plan for the data, (2) develop data collection instru-

ments, (3) train the data abstracters, (4) collect the data, and (5) analyze the data.

In today’s cost- and quality-conscious atmosphere, there is increasing interest in routinely

encoding more data, such as that found in admission histories, physical examinations,

progress notes, and discharge summaries. Some researchers have been working on appli-

cations for collecting these data as part of the care process (Bell, Greenes & Doubilet,

1992; Benoit et al., 1992; Campbell, Wieckert, Fagan & Musen, 1993; Kuhn, Zemmler &

Heinlein, 1993; Naeymi-Rad, Almeida & Trace, 1992; Rector, Nowlan & Kay, 1991).

Other researchers have been developing applications for extracting these data from narra-

tive text (Baud et al., 1993; Lamiell, Zbigniew & Isaacks, 1993; Lenert & Tovar, 1993;

Sager, Lynman, Tick, Ngô & Bucknall, 1993). Agencies such as the Health Care Financ-

ing Administration (HCFA) recognize that standardizing and automating the representa-

tion of medical information are essential to increasing their programs’ efficiency (Audet &

Scott, 1993; United States General Accounting Office, 1993). Unfortunately, there is now

no standard that is capable of representing this kind of detailed clinical data.

2.1.1 Common Terminology Structure

Typical medical terminologies, such as SNOMED International and ICD-9-CM (National

Center for Health Statistics, 1995), use hierarchical structures that organize concepts into

2.1 Clinical Data Classification 35

concept hierarchies. As an example, SNOMED and ICD-9-CM classifications of “pleural

effusion” are presented in Figure 2-1.

Concept hierarchies provide a mechanism for organizing a terminology systematically, but

they have significant shortcomings. This form of categorization neither sufficiently defines

what a term represents nor indicates how one term differs from another. Terms that have

the same parents (e.g. asthma and bronchitis may have the same parent: pulmonary dis-

ease) are obviously related, but since they were not given the same termcode, they are also

different from one another in some undefined way. This kind of classification scheme

works well for a hierarchy in which (1) a term needs only one parent, (2) the hierarchy

uses only terminology that can be unambiguously interpreted by anyone using it, and

Figure 2-1. An ICD-9-CM hierarchy (left) and an analogous SNOMED hierarchy
(right), showing classification of “pleural effusion.” The dashed lines represent cross-
references provided by SNOMED. The ICD-9-CM terms have no cross-references.
NOS is an abbreviation for “not otherwise specified.” This abbreviation is used in
SNOMED to indicate that the term is general, and there are children of the term that are
more specific.

460-519
Diseases of the

Respiratory System

511
Pleurisy

511.9
Unspecified

Pleural Effusion

T
Systemic Regional

 and Cellular Anatomy

T-20000
Respiratory
System, NOS

T-29000
Pleura

T-29050
Pleural Cavity

D2-00000
Disease of

Respiratory System

D2-80000
Disease of

Pleura, NOS

D2-80100
Pleural

Effusion, NOS

D
Disease

M-36700
Effusion

M-36000
Accumulation
of Fluid, NOS

M
Morphology

SNOMED TermICD-9-CM Term

36 Background: Classification, Concurrency Control and Configuration Management

finally, (3) minimal automated processing of the terms in the hierarchy is required. In all

other cases, the organizational mechanism has serious limitations. These limitations may

contribute, for instance, to the significant random errors in ICD-9-CM’s classification of

hospital discharge diagnoses. Error rates between 20 and 29 percent have been reported in

the literature (Hsia, Ahern, Ritchie, Moscoe & Krushat, 1992; Smith, 1989; van Walraven,

Wang, Ugnat & Naylor, 1990). If a terminology could be subjected to automated checking

for internal consistency, these errors might be reduced.

The most serious limitation of terminologies that use only concept hierarchies is their lack

of formal definitions (explicit representations of meaning, either in prose or in logic) for

each term. If each term in a terminology were formally defined, it could be used more con-

sistently. Some medical-terminology systems, such as the Medical Subject Headings

(MeSH) (National Library of Medicine, 1992) and Diagnostic and Statistical Manual of

Mental Disorders (DSM-III) (American Psychiatric Association Task Force on Nomencla-

ture and Statistics, 1980), have prose definitions intended for the human reader. If these

definitions could also be processed by a machine, tools could be developed to handle the

processing consistently. Because the current definitions of terms in hierarchies such as

ICD-9-CM and SNOMED are not formalized, each meaning is subject to broad interpreta-

tion by users, and automated tools that could reliably use these terminologies cannot be

developed.

2.1.2 Historical Perspective

Concept hierarchies, similar to the ones used by most medical terminology systems, were

introduced by the ancient Greek philosopher Aristotle around 300 B.C., with his theory of

2.1 Clinical Data Classification 37

categories (Hutchins, 1952). Aristotle also developed a method for defining new types

within the type hierarchy by genus (the category of classification for a term) and differen-

tia (the elements, features, or factors that distinguish one term from another), and for using

deductive arguments to analyze the inheritance of properties of these new types. This kind

of type hierarchy is called Aristotelian. The concept hierarchies in Figure 2-1 already

define the genus of each term by the lines connecting each term to its parent. To make

these concept hierarchies Aristotelian, differentia for each term must be specified. A defi-

nition that contains both the genus and differentia for the term PLEURAL-EFFUSION, for

example, can be represented by the phrase “a pleural effusion is an effusion located in the

pleural cavity and caused by a disease.” The genus is represented by the statement “a pleu-

ral effusion is an effusion” and the differentia is represented by the modifier “located in

the pleural cavity and caused by a disease.”

A little more than 300 years ago, the German philosopher and mathematician Gottfried

Leibniz developed the first system capable of computing the elementary concepts from

which more complex terms are composed. This system, the Universal Characteristic, rep-

resented primitive concepts as prime numbers. It created compound concepts by multiply-

ing primitive concepts together. If PLEURAL were represented by 3 and EFFUSION were

represented by 7, their product, 21, would represent PLEURAL-EFFUSION. Leibniz’s system

was certainly visionary, and led to his development of the first mechanical computer capa-

ble of doing multiplication and division.

The Universal Characteristic was essentially the first mechanical implementation of a mul-

tiple-inheritance type hierarchy. Because it implemented only a type hierarchy and was

38 Background: Classification, Concurrency Control and Configuration Management

not able to represent machine-processible definitions using differentia, it suffered from the

same limitations as other concept hierarchies. The only logical relations permissible in

such a system are conjunctions of primitives. To represent the logical relations necessary

to define a system for medical concept representation, more complex relations are needed,

such as the ability to use defined relations such as AFFECTS and PART-OF relationships.

Although having an expressive language helps us make statements that closely approxi-

mate our understanding of real-world conceptual entities and their relationships to one

another, there is an associated tradeoff in complexity. The more expressive the system, the

greater the chance that statements cannot be proven to be consistent with one another

because proof of theorems in complete first-order logic is, in the worst case, intractable,

that is to say, even the fastest computers combined with the best algorithms may never be

able to answer certain questions. Using an efficient description logic based on a subset of

first-order logic, however, can provide an expressive language with properties of decidab-

lilty and completeness.

Although Leibniz was limited by having only mechanical computers capable of doing

multiplication and division, there are now far fewer current constraints on what can be

computed. Modern computing power makes it possible to implement concept-representa-

tion systems that define terms by genus and differentia, which in turn will allow automated

methodologies to be developed for processing a terminology. As a rule, the more complete

the differentia defined by such a system, the more powerful the tools that can be devel-

oped. The ideal system would allow the differentia to be defined in a complete system of

logic, and would be efficient in its processing abilities. This, however, is a paradoxical

requirement. Since completeness and efficiency cannot be achieved at the same time,

40 Background: Classification, Concurrency Control and Configuration Management

logic.1 All applications stand to benefit if logic is adopted as a common syntactic founda-

tion for representing medical concepts.

2.1.3 A Logical Foundation

Further evolution of controlled medical terminologies is needed so that they become capa-

ble of expressing structured knowledge. They should also provide methods for accessing

and reasoning with that structured knowledge in a principled way. A natural first step is to

formalize the representation of controlled medical terminologies using a description logic.

Description logics are a class of languages used to express knowledge about concepts and

concept hierarchies. They use declarative semantics (they provide statements of meaning

that are independent of any particular method of processing said meaning) with formal

foundations derived from predicate logic (description logics must be faithful to predicate-

logics methods of deriving a conclusion from a set of assumptions). Description logics

allow a terminology modeler to declare a set of primitive concepts (such as DISEASE and

ORGANISM) and relationships (such as CAUSED-BY), and to define new concepts (such as

INFECTIOUS-DISEASE) using existing concepts and relationships supported by a particular

description logic (thus INFECTIOUS-DISEASE can be defined as a DISEASE CAUSED-BY an

ORGANISM).

1. Schubert (1991) appeals to the knowledge representation community to consolidate ideas, discarding arti-
ficial distinctions and inconsistent terminology. He argues that all knowledge representation schemes
which aspire to cope with large, general propositional knowledge bases, such as “frame-based systems,”
“semantic databases,” “blackboard systems,” and “semantic networks” are in fact just a set of first-order
predicate calculus formulas, in a “slightly altered terminological guise,” (p. 99) and therefore are exam-
ples of artificial distinctions derived from individuals who find it “faster to rediscover something within
the framework of one’s colony than to glean it from the writings of another” (p. 96). In his exposition, he
demonstrates first-order logic predicates capable of representing semantic networks.

2.1 Clinical Data Classification 41

Since they are founded on predicate logic, description logics are relevant to any area of

reasoning. They are topic neutral (Spencer-Smith, 1991), that is to say, they can be applied

to problems in any domain with equal validity. In certain fields, such as linguistics and

knowledge representation, practitioners use this kind of logic extensively. Computers use

logic at their lowest level, in circuit switching, at their highest level, in logic programming

languages such as Prolog, and to represent knowledge in expert-system shells such as KL-

ONE (Brachman & Schmolze, 1985). As a class of unifying formalisms, description logics

provide formal underpinnings to frame-based systems, semantic networks, KL-ONE deriv-

ative languages, and object-oriented representations.

Although logical formality forms the basis of the work undertaken in this dissertation,

some previous attempts to use it have been problematic. Early artificial-intelligence sys-

tems ignored logical soundness, in some cases because early researchers were over-

whelmed by problems of syntax and semantics (Sowa, 1984). Other researchers failed to

understand logic properly, confusing it with a particular programming system or syntax

(Hayes, 1977). Today, logic has been making a resurgence, thanks to the acceptance of a

family of newly-defined description-logic languages (Brachman, Fikes & Levesque, 1983;

Brachman, McGuinness, Patel-Schneider, Resnick & Borgida, 1991; Moser, 1983).

In addition to these systems, new standards for interchanging information are based on

logic. These include the Knowledge Interchange Format (KIF) (Genesereth & Fikes,

1992) being developed for the Defense Advanced Research Project Agency (DARPA), the

Information Resource Dictionary Standard (IRDS) developed by the American National

Standards Institute (ANSI) (Perez & Sarris, 1993), and the Knowledge Representation

42 Background: Classification, Concurrency Control and Configuration Management

System Specification (Patel-Schneider, Swartout & KRSS working group of the DARPA

Knowledge Sharing Effort, 1993).

Since, as noted, full first-order logic is computationally intractable in the worst case, it

might seem reasonable to ask why various efforts are adopting an intractable formal sys-

tem to serve as a basis for their standards. Basically, the answer is that despite the worst

scenario, logic has proven its value over time. One prominent example of a well-estab-

lished standard based on first-order logic with set-theoretic extensions (to allow manipula-

tion of collections of elements) is the Standard Query Language (SQL) (Ullman, 1988).

The benefits of having a logically consistent data-modeling and data-retrieval mechanism

far outweigh the problems associated with being able to create a series of relational que-

ries that may not run to completion. Moreover, intractable queries can be eliminated—if

desired—by limiting the expressivity of the query model, while maintaining its properties

of logical soundness and logical completeness (Mays et al., 1996).

Logical notation allows relationships between terms in a system to be formalized, so that

applications can make valid inferences using those relationships (determining that Aspirin

is contraindicated in patients who have ulcers for example). For any system, such as data-

base systems, where these relationships need to be processed, these formal relationships

provide the most powerful argument in favor of using logic. Without this formality, ad hoc

approaches (e.g., “rules of thumb”) must be used that may result in questionable conclu-

sions because the soundness of these methods cannot be proved.

2.2 Concurrency Control 43

Description logics can readily be applied to terminological definitions. Consider the defi-

nition of the term PLEURAL-EFFUSION previously given in Section 2.1.2. It can be stated

using logic as

For all x, x is a pleural effusion if
x is an effusion, and
for some pleural cavity y, and for some disease z,
x is located in y and x is caused by z.

Using predicate calculus notation, the definition is restated as

∀ x PLEURAL-EFFUSION(x) ≡
EFFUSION(x) ∧ ∃ y PLEURAL-CAVITY (y) ∧ ∃ z DISEASE(z) ∧
LOCATED-IN(x,y) ∧ CAUSED-BY(x,z).

This dissertation has employed a a specific description logic, the Knowledge Representa-

tion System Specification (KRSS) (Patel-Schneider et al., 1993), and it is the syntax upon

which the prototype tools to be described in Section 5.1 were based. Using KRSS, the def-

inition of the term PLEURAL-EFFUSION can be restated as follows:

(define-concept PLEURAL-EFFUSION
(and EFFUSION
 (some LOCATED-IN PLEURAL-CAVITY)
 (some CAUSED-BY DISEASE)))

It should be noted that the semantics of the KRSS definition are the same as that of the

predicate calculus definition.

2.2 Concurrency Control

It is inevitable that a CMT will be developed incrementally by multiple developers. This

will require breaking down the actions of individual developers into semantically atomic

units called transactions, each representing a single operation on a CMT term. These will

44 Background: Classification, Concurrency Control and Configuration Management

usually be what might be called long-lived transactions because they will be created over

several weeks by individual developers before they are made public.

Development of advanced-database applications (Barghouti & Kaiser, 1991) able to sup-

port distributed development of a CMT will require improving two current classes of tech-

niques to support long-lived transactions. First, they will need to support merging of long-

lived transactions that are developed concurrently. These concurrency-control techniques

must support the integration of many sets of long-lived transactions in a manner that pre-

serves as much individual work as possible, yet ensures the consistency of the resulting

CMT. Second, they must integrate the concurrency-control techniques with others

designed to assure version and configuration control.

2.2.1 Transactions

All operations are seen by the database, and therefore by the overseeing concurrency con-

trol scheme, as a series of read and write operations. These operations are grouped

together into ordered sets of operations referred to as transactions. Grouping operations

into transactions serves three purposes (Lynch, 1983):

• Operations are grouped together to form a complete task.

• Sequential execution of well-formed transactions preserves the consistency of the data-

base.

• Grouping forms a logical “all” or “none”: executing all, or none of the operations will

preserve the consistency of the database.

2.2 Concurrency Control 45

If a transaction fails after starting execution (either because of a software or hardware fail-

ure) database consistency can be restored by undoing all the operations of transactions that

have not yet been completed.

2.2.2 Traditional Concurrency Control

Traditional schemes for managing consistency are designed to be general purpose. They

lack, therefore, any information about the application or the semantics of the database

operations created by the application. Transactions from multiple users, or multiple trans-

actions from a single user, are executed sequentially according to a schedule. Figure 2-2

shows a serial schedule (one that requires completion of one set of actions before another

set of actions can begin) in which two users can sequentially operate on the same defini-

tion, preserving the consistency of the database. In this example, the serial schedule is

ensured by the locks placed on each term before modification and released after commit-

ting the actions.

Traditional concurrency control schemes (Barghouti & Kaiser, 1991) rely on locking

mechanisms or optimistic nonlocking mechanisms (see descriptions below) to create a

serial schedule of transactions. If a serialization of all transactions cannot be found, one or

more transactions are aborted to allow the others to complete. The work involved in creat-

ing the aborted transactions must be repeated.

Locking Mechanisms

Two-phase locking (Eswaran, Gray, Lorie & Traiger, 1976) is the standard mechanism of

concurrency control in conventional database management systems. Two-phase locking

46 Background: Classification, Concurrency Control and Configuration Management

guarantees the serializability of transactions (ordering of transactions into a sequence of

non-interfering operations where one transaction must complete before another is allowed

to begin) in a centralized database when transactions are executed concurrently. Transac-

tions that utilize two-phase locking are divided into a growing phase and a shrinking

phase. During the growing phase, transactions sequentially lock all of the data elements

that may be read or modified. Once transactions have acquired all the necessary locks, the

data elements are processed. The shrinking phase begins when transactions release the

locks one by one until the transactions are completed. Although this ensures consistency

of the database, a transaction is required to wait until all of the necessary data elements are

released by other transactions.

Locking mechanisms are not appropriate for CMT development because a CMT developer

may work with a set of data elements for weeks before releasing them publicly. During

Figure 2-2. Valid serial sequence of transactions. Valid serialization is assured with lock
and unlock operations.

User A User B

Timej

Timei

Read(INFECTIOUS-PNEUMONIA)

Write(INFECTIOUS-PNEUMONIA)

Modify(INFECTIOUS-PNEUMONIA)

Lock(INFECTIOUS-PNEUMONIA)

Unlock(INFECTIOUS-PNEUMONIA)

Read(INFECTIOUS-PNEUMONIA)

Write(INFECTIOUS-PNEUMONIA)

Modify(INFECTIOUS-PNEUMONIA)

Lock(INFECTIOUS-PNEUMONIA)

Unlock(INFECTIOUS-PNEUMONIA)

2.2 Concurrency Control 47

these long-lived transactions, all other developers would be prevented from working on

that set if locking mechanisms were in place. Another argument against locking mecha-

nisms is their inability to support parallel pilot projects, in which a group may wish to

work on a project until they have proven the merits of their approach (even though reliable

access to a central database is available), and therefore seek to delay the integration of

their work with the concurrently developed work of others until these merits have been

convincingly demonstrated.

Optimistic Nonlocking Mechanisms

Kung and Robinson (1981) proposed a mechanism for optimistic concurrency control that

does not rely on locking mechanisms. Their version of optimistic concurrency control

requires that all transactions have a read phase, in which all data are written to local cop-

ies, and a validation phase, in which the application must show that committing this trans-

action will not violate the serialization of all previously committed transactions (the

application verifies that the data used or modified by this transaction will not interfere with

the data requirements of another transaction and that no other transaction has modified the

data used by this transaction during its duration).

This mechanism can provide concurrency control with less overhead (computer time asso-

ciated with administrative tasks) than two-phase locking requires. It is most useful when

serialization conflicts are uncommon. If a transaction violates serialization, it must be

aborted, and its work must be repeated. Moreover, this mechanism requires that all users

operate on a central database so that serialization of transactions can be validated before a

48 Background: Classification, Concurrency Control and Configuration Management

transaction is allowed to commit (the process of finalizing the transaction and writing the

resulting data to the database).

Kung and Robinson’s mechanism does offer an improvement over locking mechanisms

for CMT development. Because there are no locks, it allows multiple developers to work

with the same data elements. Despite this improvement, it still relies on traditional serial-

ization before allowing a transaction to commit. If serialization is violated, the work

involved in creating the transaction is lost. This is an important consideration because if

developers fear that their work will be lost, they will be reluctant to participate in distrib-

uted development. A better solution would be one that can resolve violations of serializa-

tion after the fact without forcing transactions to abort.

Shortcomings of Traditional Concurrency Control

All traditional database applications implement concurrency control by requiring serial-

ization of transactions—either before the transaction begins (with two-phase locking), or

before the transaction commits (under optimistic concurrency control). In addition, if seri-

alization is violated, the transactions are aborted and must be redone. Practically speaking,

this means the human thought required to create the aborted transaction must be repeated.

There would be several adverse consequences of relying upon traditional concurrency

control for CMT. First of all, it might be necessary to wait months for long-lived transac-

tions to commit, or else applications will require manual recreation of any transactions

that abort because of violations of serialization. Second, CMT applications would need to

be connected to a central database during the creation of transactions. This requirement

2.2 Concurrency Control 49

alone would prevent the creation of local enhancements or using distributed development

in which developers regularly submit their local enhancements for inclusion in a master

CMT.

Traditional concurrency control schemes then do not support long transactions and or

cooperative development among developers. Two developers who want to exchange work

produced independently (i.e., while not connected to a central database) are seeking a

form of cooperative development that Yeh and colleagues (1987) referred to as synergistic

interaction—a process that CMT development should support—but they may very well

have produced contributions that cannot be serialized.

2.2.3 Semantics-Based Concurrency Control

Traditional concurrency control schemes can be improved by using domain-specific

knowledge. If an application is specialized for a domain in which the semantics (the

intended purpose) of the transactions are known, a nonserializable, but consistent, sched-

ule can be constructed for these transactions. For example, if it is known that two transac-

tions are intended to add synonyms to the same concept, those transactions might be

allowed to run concurrently since the addition of one synonym does not invalidate the

other (as long as both synonyms are really synonymous).

Garcia-Molina (1983) observed that the serializability requirements used by concurrency-

control techniques could be replaced by constraints based on requirements of semantic

consistency if an application possesses semantic information about the transactions. He

proposed that a semantically consistent schedule be sought rather than a strictly serializ-

50 Background: Classification, Concurrency Control and Configuration Management

able schedule to preserve the consistency of the database. This scheme allows a class of

semantically consistent (but not serializable) transactions, yet it still suffers from many of

the problems of the traditional concurrency control schemes. Transactions that violate the

constraints of semantic consistency must still be rolled back, and the labor used to create

them must be repeated.

In a later paper, Garcia-Molina and Salem (1987) proposed that long-lived transactions be

organized into what they called sagas (a set of transactions with a known purpose) that

could be interleaved (no serialization is required) with other transactions. The execution of

sagas is managed by a saga execution component (SEC) that uses the application’s tradi-

tional transaction management. The SEC executes the saga transactions one by one, keep-

ing a log of all the actions taken on behalf of the saga. The SEC may sequentially execute

all of the saga’s transactions without error, or it may partially execute a saga, discover

unrecoverable conflicts, and then roll back the saga, by removing all of the saga transac-

tions from the database. The saga is rolled back not by the traditional cascading rollback

of conventional concurrency control systems, but rather by relying on compensating trans-

actions that will restore the database to a semantically consistent state. This has the advan-

tage of not requiring the rollback of other transactions by the database that occurred

during the aborted saga’s execution. The compensating transactions are domain- and task-

specific, and require semantic knowledge about the saga’s transactions to be properly

applied.2

The use of sagas and compensating functions that remove the effects of aborted transac-

tions from databases would solve some of the problems of traditional concurrency control.

2.2 Concurrency Control 51

Their use would prevent databases from unnecessarily rolling back concurrently executing

transactions by applying the compensating functions and by allowing interleaving of

transactions in an order that may not be strictly serializable.

Sagas do not, however, provide conservation-of-design mechanisms.3 Anytime a conflict

is detected, at least one of the competing transactions must be aborted and manually recre-

ated from a new base configuration. A better solution would be to use semantic knowledge

to compensate for conflicts in a way that does not require choosing one transaction at the

expense of another (assuming that there are appropriate enhancements in both transac-

tions). Such a solution, using semantically equivalent sets of transactions (as will be

described in Chapter 4) is preferable because the work involved in creating both transac-

tions can be preserved.

2. The compensating transactions described by Garcia-Molina (1987) are specific to undoing the actions of
an aborted saga. Specifically, if a saga is composed of individual transactions Ti, then for each transaction
there must be a compensating transaction, Ci, that will remove the effects of the transaction from the
database, restoring it to a semantically consistent state. If a saga consisted of the sequence

T1, T2, T3, … Tn.

and for each transaction, a compensating transaction was defined

C1, C2, C3, … Cn.

either the entire saga sequence,

T1, T2, T3, … Tn.

is executed, or the sequence

T1, T2, … Tj, Cj, … C2, C1

for some 0 ≤ j < n will be executed.

3. See Section 1.4.4.

52 Background: Classification, Concurrency Control and Configuration Management

2.3 Configuration Management

Coordinating changes made by multiple developers on a single product can be complex.

Figure 2-3 illustrates such a scenario. Two developers independently modify version 1 of a

product, and periodically swap their changes with each other to create version 2 of the

same product. There are many potential problems under such a scenario. How are changes

to be represented? How are those changes to be exchanged? What if changes by one devel-

oper conflict with, or negate, the changes of another? Without a plan for handling such

problems, it would be risky to allow more than one person at a time to work on a product.

After the locally developed changes are merged into a new reference release, the process is

assumed to start over. Each institution will create new branches from the new reference

CMT, and the cycle will begin again. This cost-free resumption of the development cycle

overlooks one important step, however. All local changes have been successfully merged

into a new reference version, but the local versions have not been synchronized with the

new reference version. The extra effort required to synchronize local and reference ver-

sions is a local-update penalty. If the institution had not created local enhancements, it

would not incur this penalty.

Mechanisms for managing these problems have been devised for software development,

and these mechanisms are continuing to evolve. The concurrency-control mechanisms

described above can broker strict control, often preventing conflicts, but these strict con-

trols are unrealistic for software development. Software is typically developed by teams

working in parallel rather than by individuals working serially. Moreover, software must

often work in different environments in parallel, and so development for these different

2.3 Configuration Management 53

environments is also typically done in parallel. Rather than allowing only one version of a

product to exist, with only one modification allowed at any time, software developers have

chosen to allow multiple versions of a product to exist and have developed configuration

Figure 2-3. A development scenario with no central coordination. Modelers A and B
each begin working with Version 1 of some terminology. Left-right arrows indicate
sharing changes between two modelers. Boxes below each modeler indicate serial
modifications of the terminology.

Ti

jT

Branch

Revisions

1.A.2

1.A.1

1.A.0 1.B.0

1.B.1

1.B.2

1.B.3

Version 2

Version 1

1.A.4

1.A.3

1.A.7

1.A.6

1.A.5

1.B.4

1.B.5

1.B.6

Modeler A Modeler B

54 Background: Classification, Concurrency Control and Configuration Management

management mechanisms to manage product versions. The remainder of this section dis-

cusses three such models.4

2.3.1 Configuration Management Models

Configuration management models have been developed in a variety of disciplines in

which objects must be combined to create a final product. Although these models often

have common underpinnings, there are domain-specific differences as well. These differ-

ences are necessary because domain objects (objects specific to a particular discipline

such as source code for software or a circuit board for electronic hardware) may have dif-

ferent physical and logical characteristics, different procedures for creation and use, and

different lifecycle characteristics (Dart, 1992). Despite these differences, the potential

exists for synergistic sharing of ideas between disciplines. Dart (1992) and Katz (1990)

have described the common themes that are found in software development and computer-

aided design (CAD) environments. CMT development also has concerns that are similar to

those of the software development and CAD environments.

The common link among all disciplines concerned with configuration management is the

cataloging of components that may evolve over time. Some rudimentary means of dealing

with this evolution is present in all configuration management systems. More advanced

systems offer additional functionality. Feiler (1991) examined commercial software con-

figuration-management systems, describing their similarities and differences. The models

he described represented not only the spectrum of system functionality found in commer-

4. The term model is frequently used in the software configuration management literature. In that context, as
well as my use in this dissertation, the term refers to “a description of a system or theory that accounts for
all of its known properties” (from the American Heritage Dictionary, Second College Edition).

2.3 Configuration Management 55

cial systems but also the evolution of configuration management concepts since the devel-

opment of the Source Code Control System (SCCS) (Rochkind, 1975) in the early 1970s.

This section presents three of the models Feiler described: the checkout/checkin model,

the long-transaction model, and the change-set model. These represent the spectrum of

changes in configuration management concepts from the initial checkout/checkin model

for cataloging and storing software versions to the most recent change-set model that cap-

tures changes as identifiable components which can be applied to selected configurations

of other components to create a new configuration.

Checkout/Checkin Model

The checkout/checkin (CO/CI) model is the model most familiar to developers, but is also

the most limited. It is used by the UNIX tool Revision Control System (RCS) (Tichy, 1985)

and many others. CO/CI tools provide a repository where developers can store versions of

software, source code, and documentation. Creation and maintenance of the repository is a

responsibility of the developers who are to check appropriate components into, and out of,

the repository. In addition to repository functions, CO/CI tools typically provide a status

accounting of the components in the repository. Typical accounting functions include a

record of all persons who checked components into or out of the repository, and a binary

“snapshot” of each version checked into the repository. Any previous version of any com-

ponent can be retrieved from these records, with simple library functions serving to pre-

vent two developers from checking out the same component at the same time.

Thanks to these library functions, CO/CI tools can enforce a concurrency control model

that will ensure a serial sequence of changes by requiring that only one developer at a time

56 Background: Classification, Concurrency Control and Configuration Management

can check out a component. The discussion of traditional forms of database concurrency

control (see Section 2.2.2) has described how such serial sequences ensure valid

sequences of transactions (using lock-based techniques or optimistic nonlocking tech-

niques). As noted, however, such serial sequences are too restrictive and will not meet the

requirements of CMT development. Software developers have also known that strict seri-

alization is not acceptable in many situations, and they require the CO/CI tools to allow

multiple developers to check out the same components for concurrent modification. When

this occurs, the tools allow the creation of a version branch, a new version of a component

that will subsequently evolve independently from the original component. Any changes in

the version branch that must later be incorporated into a subsequent version of the original

component must be integrated manually.

The repository component is fundamental to the CO/CI model, but it is not sufficient for

configuration management. It simply creates an audit trail of all the checked-in versions of

components. It has no notion of how these components can be combined to create valid

configurations. Software developers depend on additional tools to specify relationships

between different components of a system, to create valid configurations of components,

and to control the process of building the software application. Typically, developers rely

on tools like UNIX’s make (Feldman, 1979).

Make is a tool that is able to read a file of specifications about a software product and gen-

erate a set of commands that can create a new, valid product configuration. Make generates

these commands from a set of build commands and file dependencies, supplied by the

developer in a file called the makefile. The burden of proper execution is placed on the

2.3 Configuration Management 57

developer. Not only must the developer properly specify all the file dependencies and

build commands to generate a product properly, she must also make sure that all the com-

pilers and linkers specified by the build commands are properly installed and available to

the make tool. The CO/CI model places these burdens on the developer because it does not

provide a complete development environment. The CO/CI then can be seen as a combina-

tion of special-purpose tools targeted at specific problem areas in the process of building

software, but it is not a comprehensive solution. The burden of integrating these tools, and

of providing additional automated solutions where possible, is placed upon the developer,

rather than on the environment.

One reason for the limitations of the CO/CI model is that its tools do not support the pro-

cess of changing a component. CO/CI tools become aware of the existence of modifica-

tions only after a developer commits those changes by checking a file into the repository

or when a changed file has been saved to disk. All file modifications are generated using

tools, such as text editors, that are external to the CO/CI model. Newer configuration man-

agement models, such as the long-transaction and change-set models, seek to have all

component changes occur within a single environment, thus allowing the environment to

provide additional functionality.

Long-Transaction Model.

The long-transaction model focuses on the evolution of an entire system. Any time a

change occurs to a system component, the configuration management environment will

record a corresponding transaction. A system therefore evolves from an initial, or base

configuration to a new state by executing a set of transactions that represent apparently

58 Background: Classification, Concurrency Control and Configuration Management

atomic changes of system components. Often several developers will be working on the

same system. Each of their changes will be represented by transactions that must be

sequentially applied to a base configuration. These transactions are coordinated by a con-

currency-control scheme that is internal to the development environment, rather than

external (as in the CO/CI model’s branching and manual merging).

Environments that support the long-transaction model must provide each developer with a

workspace, a base configuration on which all transactions will be applied, and mecha-

nisms for recording and applying transactions to this configuration. The workspace shields

the developer from changes in other workspaces until they are committed. The concur-

rency control scheme brokers the transactions between different workspaces when the

transactions are committed.

Incorporating a concurrency-control scheme into a configuration management environ-

ment has potential advantages and drawbacks. One advantage is that if a strict concur-

rency-control policy is adopted, existing database concurrency-control models can be

applied. Using these models will ensure that properly sequenced transactions can be val-

idly applied to the base configuration, and will also allow developers to utilize traditional

database shells for configuration management applications. An advantage from one per-

spective can, however, be a hindrance from another perspective. As discussed above, tradi-

tional concurrency-control schemes fail to give adequate support to the long-lived

transactions typical of any development process because they either rely on locking mech-

anisms, which may prevent developers from accessing large portions of the database, or on

2.3 Configuration Management 59

optimistic nonlocking mechanisms, which, if a conflict is detected, will accept the changes

of one developer only at the expense of another.

Long-transaction environments could support CMT development. Implementing this con-

currency-control model would allow multiple developers to operate on the same base con-

figuration, make local changes, and later submit these changes for integration into a new

reference version. Using such a concurrency-control scheme would solve some of the

challenges facing CMT development, in particular, those of distributed development.

Long-transaction environments, however, will not provide a solution to local-update pen-

alties (Tuttle et al., 1991).5

The local-update penalty could be eliminated if a set of transactions that can be recom-

bined to create individually-tailored sequences could be developed as a by-product of

merging transactions. These sequences could be sent back to individual developers, pro-

viding a set of transactions that can be applied to the local configuration and thereby syn-

chronize local terminology with the new reference version. The long-transaction model

cannot support creation of these individually tailored sequences, however, because the

transactions exist only within the context of a workspace and have no validity outside it.

They do not exist as named independent entities that can be extracted and applied to other

system configurations.

5. The local-update penalty refers to the extra work required to migrate from one version of a standardized
terminology to another version when developers have made local enhancements to that terminology to
allow it to properly function within their applications.

60 Background: Classification, Concurrency Control and Configuration Management

Change-Set Model.

The change-set model is a natural extension of the long-transaction model that will sup-

port the creation of individually tailored sequences of changes. In the long-transaction

model, a sequence of changes (a series of transactions that applied to one version of a sys-

tem will generate the next version of the system) is captured during the development pro-

cess. The change-set model allows these transactions to be independent, named entities.

As a result, a series of transactions can be combined to create a change set, which contains

the logical changes that have occurred to a component. These change sets can then be

applied to other configurations of the system, allowing for checking for possible conflicts,

whenever the same set of logical changes are desired.

Change sets are created from long transactions that represent a configuration’s preserved

and committed changes. Once the change set has been created, new configurations can be

built by adding change sets to other existing configurations. Not all combinations of exist-

ing configurations and change sets will result in valid configurations. The validity of any

configuration corresponds to the validity of the schedule of transactions applied to the base

configuration. Traditional and semantics-based mechanisms for validating a transaction

schedule can be employed for this purpose.

The change-set model can also support distributed, concurrent change without centralized

coordination. Individual sites can generate change sets independently. These change sets

can then be exchanged, allowing individual sites to combine change sets independently.

Exchanging change sets in this way allows system evolution to take place at both sites,

while also allowing local control over the process. To realize such distributed—and inde-

2.4 Summary 61

pendent—development, however, a mechanism must be provided to prevent significant

conflicts from occurring or to resolve them when they occur.

2.4 Summary

There is significant prior work that can be applied to problems of clinical data representa-

tion. This chapter has presented relevant background material from existing CMTs,

knowledge representation, concurrency control, and configuration management. This

material was presented together to emphasize an important point. Any viable solution

must be a holistic one. A sound knowledge-representation formalism is not adequate to

solve representation problems on a national scale unless there are associated methods for

managing the development and maintenance of the representation.

The following chapters will expand the background material presented here to provide

solutions capable of supporting development and maintenance of a large-scale CMT.

Chapter 3 will describe how the CMT combines with information models to represent

clinical data. Chapter 5 will discuss extensions I have developed to support distributed

CMT development.

62 Background: Classification, Concurrency Control and Configuration Management

63

Chapter3
Representation:
Terminological Definitions,
Information Models, and Patient Data

Clinical data is a complex, intertwined representation of terminological definitions, infor-

mation models, and patient data. Often the distinctions among these components are lost

to casual observers. Even more sophisticated observers and practitioners blur the distin-

guishing features of information models and terminological definitions, often including

terminological definitions in information modeling activity. If the number of terminologi-

cal definitions is small or limited in sophistication, including these definitions directly in

the information model may be expedient and harmless, but as the magnitude and complex-

ity of the definitions increase, their generalizability is compromised and it quickly

becomes impractical to include them in information models.

Rector, however, has described a three tiered model to illustrate distinctions among the

three components found in representations of clinical data (Rector, 1993) that has been

adopted by and expanded for this dissertation. Understanding these fundamental distinc-

tions is essential for distinguishing between CMT development as described in this disser-

tation and development of information models, an activity that lies outside its scope.

64 Representation: Terminological Definitions, Information Models, and Patient Data

That terminological definitions can be successfully standardized using description logics

is a fundamental assertion of the thesis of this dissertation. To test this assertion, Kaiser

Permanente CMT project has formalized an existing terminology system, SNOMED

International (Côté et al., 1993), by recasting existing relationships with a description

logic.

3.1 Terminological Definitions and Information Models

Information models describe the entities and relationships captured within a database.Typ-

ically, they are coarse descriptions of data that incorporate information that is necessary to

store that data in a database. These descriptions also facilitate the work of analysts seeking

to devise ways of retrieving desired data from the database. Depending upon the applica-

tion, such coarse descriptions may be sufficient. Certainly, numerical data in databases

require few or no terminological definitions; the defined rules of algebra and statistics are

sufficient to describe and analyze numerical fields.

During analysis, however, it is common to aggregate data based on its non-numerical fea-

tures. A simple example is linking an average salary computation to the sex or race of

employees. For personnel databases, a simple terminological model consisting of 30-50

terms describing race, sex, and job function may well be sufficient and will not tax infor-

mation modeling tools. A medical database intended to allow description of known dis-

eases and physical findings, however, can easily reach over 100,000 different terms which

will exceed the capacities of most information modeling tools. In such cases, the alterna-

tive is to have the information tools model certain regular features of clinical data, such as

3.1 Terminological Definitions and Information Models 65

relationships among patients, diseases, treatments, and complications. Complex defining

relationships of the terms themselves need to be managed in a system optimized for man-

agement of terminological definitions. Figure 3-1 illustrates such a relationship between a

terminology model and an information model.

Although as this example shows, both the information and the terminology models share

high level concepts such as DISEASE and SURGICAL-PROCEDURE, the more specific con-

cepts such as MELANOMA , INFECTION, and EXCISION are only represented within the termi-

Figure 3-1. Relationships between a terminology model (top) and an information model
(bottom). Grey arrows represent “is-instance-of” relationships. Figure from Rector
(1993).

Melanoma

Disease

Surgical
Procedure

Excision
Infection

Patient Disease Surgical
Procedure

Disease

Has Diagnosis Has Treatment

Has Complication

Terminology
Model

Information
Model

3.2 Terminological Definitions and Patient Data 67

Figure 3-2. Relationships between a terminology model (top) and a patient (data)
model (bottom). Grey arrows represent “is-instance-of” relationships. Notice that
relationships between the patient model and the terminology model are more specific
than those between the information model and the terminology model (compare with
Figure 3-1 on page 65). Figure from Rector (1993).

Melanoma

Disease

Surgical
Procedure

Excision
Infection

Patient Disease Surgical
Procedure

Disease

Has Diagnosis Has Treatment

Has Complication

Terminology
Model

Information
Model

Patient
Model

Has Diagnosis Has Treatment

Has Complication

Mrs. Smith Melanoma Excision

Infection

68 Representation: Terminological Definitions, Information Models, and Patient Data

3.3 Representation of Terminological Definitions

The terminology model presented in Figures 3-1 and 3-2 are very simple, requiring only

hierarchical relationships. The defining relationships of a robust terminological system,

however, are not so simple. Diseases, for example, are often defined with respect to associ-

ated morphologic features, known etiologic mechanisms and agents, and affected ana-

tomic locations. Figure 3-3 presents an illustrative expanded set of terminological

concepts.1

3.3.1 Concept Definitions

In all concept hierarchies, there must be some starting point from which all other concepts

are derived. This is usually called the top concept; in Figure 3-3 it is referred to as the

Figure 3-3. An expanded set of terminological concepts.

1. I make no claims about the completeness, or correctness of these examples. They are intended to be illus-
trative only.

ORGANISM

DISEASE

MELANOMAINFECTION

EXCISION

MORPHOLOGY

MALIGNANT

TISSUE

SKIN

SURGICAL-
PROCEDURE

CLINICAL -CONCEPT

3.3 Representation of Terminological Definitions 69

CLINICAL -CONCEPT. To create an Aristotelian hierarchy, differentia for every term must be

specified. Description logic is used to specify these differentia by defining relations and

selection constraints that are appropriate for each term, but that differentiate these terms

from their immediate parents. These differentia are contained within concept definitions,

statements that incorporate both the genus and differentia of each term. Table 3-1 provides

such concept definitions for the expanded set of concepts presented above in Figure 3-3.

The type definition for the term INFECTION found in Table 3-1 is prototypical. The genus

of INFECTION is DISEASE. The differentia of an INFECTION is that it is always caused by

some type of ORGANISM (bacteria, fungus, or virus). As Table 3-1 shows, the genus and

Table 3-1. Terms with corresponding definitions

Term Definition
SURGICAL-PROCEDURE (define-primitive-concept SURGICAL-PROCEDURE)

EXCISION (define-concept EXCISION
 (and SURGICAL-PROCEDURE
 (some REMOVES TISSUE)))

DISEASE (define-primitive-concept DISEASE)

INFECTION (define-concept INFECTION
 (and DISEASE (some CAUSED-BY ORGANISM)))

ORGANISM (define-primitive-concept ORGANISM)

MORPHOLOGY (define-primitive-concept MORPHOLOGY)

TISSUE (define-primitive-concept TISSUE)

SKIN (define-primitive-concept SKIN TISSUE)

MELANOMA (define-concept MELANOMA
 (and DISEASE (some AFFECTS SKIN)
 (some MORPHOLOGIC-FEATURE MALIGNANT)))

MALIGNANT (define-primitive-concept MALIGNANT MORPHOLOGY)

70 Representation: Terminological Definitions, Information Models, and Patient Data

differentia of INFECTION can be formally defined by specifying the following concept defi-

nition:

(define-concept INFECTION
(and DISEASE (some CAUSED-BY ORGANISM)))

In some cases, however, a term cannot be adequately defined by relating it to other terms

within the terminological system. In these cases, the term is considered primitive.2 Defin-

ing a concept as primitive indicates to the system that the concept is different from its par-

ent term in a way that is not expressible within the system. Defining the term SKIN as a

type of TISSUE is prototypical of a primitive concept definition. Other examples of such

primitive terms include SURGICAL-PROCEDURE and DISEASE, as shown in Table 3-1.

Although medical terminology systems must allow the definition of primitive concepts,

they should be avoided whenever possible. Since at least part of a primitive definition is

not expressed within the system, the term cannot be classified completely, which limits the

extent to which applications can process the terminology.

Often, a particular description logic dialect forces the developer to declare some terms

primitive that could otherwise be fully defined using first-order predicate logic. The prob-

lem typically is that the particular description-logic dialect does not support the operations

necessary to make certain distinctions. Many description logic languages, for instance, do

not allow terms to be defined using the “not” operator, in the interest of making classifica-

tion of the terminology decidable and complete.3

2. These concepts are defined in KRSS by using the define-primitive-concept operator and then indicating
the genus of the concept as with a normal concept definition.

3.4 Derivation of an Information Model 71

3.4 Derivation of an Information Model

A close coupling of information and terminology models often tempts developers to derive

the information model from a terminology. The information model in the lower half of

Figure 3-1, for instance, could be derived from the terminology model in the upper half of

the figure—provided the terminology model formalized the relationship between patients,

diseases, treatments, and complications.

Although tempting, inclusion of such information in the terminology model should be

avoided for several reasons. First, the relationship between a disease and its treatment is

not definitional.4 Certainly, “arthritis” cannot be defined as a “disease treated with aspi-

rin.” By the same token, melanoma should not be defined as having a treatment of “exci-

sion.” Second, trying to define all possible relationships in the terminology model

comprehensively can lead to representational difficulties. If, for example, the relationships

among disease, surgical procedure, and complication found in the information model in

Figure 3-1 were formally defined in the terminology model, the result would be a termino-

logical cycle in which term A was defined by reference to B and term B was defined by

reference to term A.

3. Relatively simple changes in the expressivity of a description-logic dialect can lead to a “computational
cliff” for calculating subsumption between terms (Brachman & Levesque, 1984). Inclusion of the “not”
operator makes calculating subsumption intractable (the time to compute the subsumption grows expo-
nentially with the number of propositions in the terminology), and is therefore commonly omitted from
the supported operations of a particular description-logic dialect.

4. Terminology development focuses exclusively on defining relationships. This focus is in contrast to
knowledge-base development where interesting—but not necessarily definitional—relationships are often
required to provide promised functionality. For a terminology, the functionality is limited to appropriate
classification of the terms with respect to one another. A robust, fully-specified terminology may be an
ideal foundation for knowledge-base extensions, however.

72 Representation: Terminological Definitions, Information Models, and Patient Data

Although developers should be cautious about using a terminology model to derive an

information model, the information model certainly must be consistent with the terminol-

ogy model, and examination of the terminology model is a necessary part of designing an

information model.

3.5 Foundational Models

Deciding which aspects of data modeling should be included in the information model and

which should be in the terminology model is a difficult problem for where there are no

clear guidelines. This section describes the importance of foundational models for resolv-

ing this problem. These foundational models represent complex aspects of data such as

temporal and anatomical relationships. Some will be embodied in the terminology model,

others will be embodied in the information model, and some will be partly embodied in

both information and terminology models.

Description logics provide the constructs needed to represent clinical concepts in a foun-

dational model.The simple model presented in Figure 3-3 depends on a small set of

defined relations. Existing models contained in standard terminology systems—such as

SNOMED—can also be incorporated by using their existing labels and defined relation-

ships to populate a description-logic based terminology system. Although existing systems

are a pragmatic starting point for a description-logic based terminology, the set of con-

cepts and relations in existing coding schemes is limited and represents only the beginning

of the work needed to develop a comprehensive medical terminology.

3.5 Foundational Models 73

Implicit in standard terminologies such as SNOMED are a number of foundational

assumptions that taken together constitute a foundational model. SNOMED, for example,

includes terms for anatomical concepts, such as anterior and adjacent; temporal concepts,

such as subacute and relapsing; and measures of probability, such as possible and cannot

exclude. These terms for representing temporal relationships, anatomical relationships,

and uncertain relationships reflect underlying models of time, anatomy, and probability

that users can apply to almost any concept description created from SNOMED codes.

Nonaxial coding schemes, such as ICD-9-CM, also embody such foundational models, but

they are reflected only in the distinctions made by the surface-level terms in the scheme.

For example, by making a distinction between code 410 (myocardial infarction, acute)

and code 412 (myocardial infarction, old), ICD-9-CM offers a choice of disease codes that

reflects its very simple underlying model of time.

SNOMED offers an advance over terminologies such as ICD-9-CM by separating out and

making explicit sets of modifiers for anatomical, temporal, and probabilistic concepts. It

offers, however, only a list of terms without clarifying the relationships among those

terms. With proper support, developers enhance SNOMED by developing reusable models

created out of these foundational concepts—models that will allow medical descriptions to

be encoded so that the attendant anatomical, temporal, and probabilistic distinctions can

be uniformly represented with precise semantics.

SNOMED has a set of concepts and relations that can provide a basis for representing

such foundational models. My research seeks to support such development, but has not

sought to impose any particular foundational models.

74 Representation: Terminological Definitions, Information Models, and Patient Data

3.6 SNOMED International

SNOMED has a set of concepts and relations that can provide a basis for representing

foundational models. This dissertation describes an evolutionary method to formalize

SNOMED using a description logic.

SNOMED has properties that are desirable for a comprehensive patient-description termi-

nology. The first is relative domain completeness. SNOMED has over 120,000 terms that

represent concepts commonly found in clinical medicine. Because of SNOMED’s size, the

numerous person-years that have already been invested in its development, and the exist-

ing infrastructure and implementations of SNOMED-based systems, enhancing SNOMED

makes more sense than starting to develop a new standard from scratch.

The Board of Directors of the American Medical Informatics Association would seem to

support this approach, as they have published a position paper in which SNOMED is pro-

posed as a standard to represent diagnoses, symptoms and findings, microbes and etiolo-

gies, and anatomic locations (Board of Directors of the American Medical Informatics

Association, 1994). SNOMED has also been evaluated for its ability to represent nursing

concepts in the patient record, and was found more complete than existing nursing-spe-

cific classifications (Henry, Holzemer, Reilly & Campbell, 1994). SNOMED consistently

ranks highly when compared to other clinical terminology systems (Campbell et al., 1997;

Chute, Cohn, Campbell, Oliver & Campbell, 1996).

Another important property of SNOMED is its modular structure. It is divided into a set of

independent taxonomies for representing the conceptual categories within medicine.

3.6 SNOMED International 75

SNOMED provides 11 modules, each with an independent taxonomy, for representing

clinical information:

• Topography: terms to describe anatomy

• Morphology: terms to describe structural changes

• Living organisms: terms to classify the animal kingdom including bacteria and viruses

• Chemical agents: terms to describe drugs

• Function: terms to describe signs and symptoms

• Occupation: terms to describe occupation

• Diagnosis: terms to describe diagnosis

• Procedure: terms to describe administrative, therapeutic, and diagnostic procedures

• General: terms to describe syntactic linkages and qualifiers

• Physical agents, forces, and activities: terms to describe devices and activities com-

monly associated with disease

• Social context: terms to describe social conditions and circumstances important to

medicine

The structure of SNOMED allows development of independent modules for information

that it does not represent directly, allowing for extensions to the SNOMED model without

changing its internal structure. In addition, SNOMED provides reserved codes so that

institutions can add their own codes within a module.

Despite SNOMED’s desirable properties, there are also, as noted in Chapter 2, several

problems that limit its usefulness. These include its strict hierarchical coding scheme that

76 Representation: Terminological Definitions, Information Models, and Patient Data

uses implicit, rather than explicit, links between parent and child terms, the lack of a stan-

dard syntax to specify explicitly the complex relationships among terms, and the ability to

construct redundant statements with no means for determining that they are equivalent.

SNOMED International’s strict hierarchical coding scheme is embedded within the alpha-

numeric code for each term. Trailing zeros are not considered significant. Terms that pre-

cede others in the alphanumeric sequence and that have at least one fewer significant digit

than these others are considered ancestors. The codes for “procedure” (P0-00000) and

“radiologic-procedure” (P5-00000) are two examples. “Procedure” is an ancestor of

“radiologic-procedure” because it shares the first the digit “P” with “radiologic-proce-

dure,” and has one fewer significant digit. There are, however, frequent violations to this

general rule of thumb. One such violation is encountered when the number of children

(immediate descendents) exceeds the 16 allowed by the hexadecimal term codes.

Because of SNOMED’s embedded hierarchy, terms are linked implicitly to one another.

These links may be presumed to be IS-A, IS-PART-OF, IS-MADE-OF, or other relations. The

only consistent relationship between child and ancestor terms is that a child term is always

more specialized than are its ancestors. Moreover, although this coding scheme allows

explicit representation of the hierarchy as part of the term code, it does not allow the hier-

archical representation of terms with multiple parents (immediate ancestors).

This inability to represent multiple parents within the SNOMED term code has been par-

tially addressed by the crossreferencing of terms (over 34,000) that is provided as part of

the SNOMED distribution. Each SNOMED term has an associated crossreference field

where one or more related terms have been linked by including the relevant term code in

3.6 SNOMED International 77

this field. Figure 3-4 illustrates these crossreferences for the terms “Disease of Respiratory

System,” “Disease of Pleura, NOS,” and “Pleural Effusion, NOS.”

Although this scheme provides a mechanism for linking terms, the types of links are not

made explicit. This particular SNOMED shortcoming is not insurmountable, however,

since SNOMED’s hierarchy and crossreference links can be transferred easily to other

representation schemes that can represent explicitly-typed links. The type of link, for

instance, can often be inferred based on the types of terms being crossreferenced. A term

from the diagnosis axis, for example, may be crossreferenced to terms in the morphologic

axis that represent the morphologic changes associated with a particular disease in the

diagnosis axis. In such as case it can be inferred that the linkage between such terms is that

Figure 3-4. SNOMED type hierarchy showing classification of “pleural effusion.” The
dashed lines represent cross-reference links provided by SNOMED.

T
Systemic Regional

 and Cellular Anatomy

T-20000
Respiratory
System, NOS

T-29000
Pleura

T-29050
Pleural Cavity

D2-00000
Disease of

Respiratory System

D2-80000
Disease of

Pleura, NOS

D2-80100
Pleural

Effusion, NOS

D
Disease

M-36700
Effusion

M-36000
Accumulation
of Fluid, NOS

M
Morphology

SNOMED Term

78 Representation: Terminological Definitions, Information Models, and Patient Data

the change represented by the morphology term is CAUSED-BY the disease represented by

the disease term.

3.6.1 Migration Path for SNOMED

The first step in recasting SNOMED to fit within a logical framework is to create an Aris-

totelian type hierarchy from the existing codes, taking advantage of SNOMED’s hierarchy

and crossreference links. Initially, most of the SNOMED codes will have to be declared as

primitive. Once this initial Aristotelian type hierarchy is created, the differentia of each

term can be enhanced in an evolutionary way until only a minimum set of terms remain as

primitives.

SNOMED’s existing crossreference links can be used initially to develop these enhance-

ments, and other links can be inferred as shown above. These crossreference links can be

used as a first approximation to create the differentia for each term. A probable relation-

ship between a morphology term and a disease term can be assumed to be that the disease

is associated with the morphological change, and a probable relationship between a dis-

ease and a location is that the disease is associated with the location. We can use these

probable relations, the existing SNOMED crossreferences for the term PLEURAL-EFFU-

SION, and the hierarchical parent for this term (hierarchical parent and crossreferences are

shown in Figure 3-4) to suggest the following definition for pleural effusion:

(define-concept PLEURAL-EFFUSION
(and PLEURAL-DISEASE
 (some ASSOCIATED-MORPHOLOGY EFFUSION)
 (some ASSOCIATED-TOPOGRAPHY PLEURAL-CAVITY)))

3.7 Prospects 79

3.7 Prospects

The foundational models discussed in this chapter will have to evolve over time along with

the terminology and information models. Because the underlying terminology model is

based in logic, the representation is both general and sufficiently expressive to represent

foundational models as they are developed. Since it remains to be seen if such models can

be practically implemented on the scale necessary for representing clinical data, it is cru-

cial that actual implementations formally evaluate the practicality of this approach.

Ultimately, the success or failure of a terminology for the representation of clinical data

will be based on more than the technical merits of the underlying representation (descrip-

tion logic in this case). Important problems of how to manage the development process,

meet the needs of specific applications, coordinate evolutionary enhancements, and

develop a political consensus will pose ongoing challenges that must be overcome.

In the remainder of this dissertation, I present an approach to supporting the development

process in a distributed fashion, where conflicting changes can be interactively resolved

through a consensus process involving the contributing modelers, and demonstrate this

approach in a prototype effort to perform concurrent CMT development. Hopefully,

through a distributed participatory process, the barriers to political consensus can also be

minimized.

80 Representation: Terminological Definitions, Information Models, and Patient Data

81

Chapter4
Computer Support for
Collaborative Development

CMT development, for the purposes of this dissertation, focuses on a very narrow topic:

logical description of terms. CMT development must be distinguished from knowledge-

base or expert-system development, where additional assertional knowledge about a

domain is encoded to create a complete application. Here the focus is on the collaborative

development of terminological definitions—represented using description logic—that

might be included in such an application. Because the focus is narrow, automated support

of the development process is a realistic goal.

Given the singular focus on development of terminological definitions, how can computers

support this development process? A prerequisite to answering this question is to enumer-

ate the assumptions, actions, and potential conflicts that are part of the process. Section 4.1

describes the assumptions underlying my work. Section 4.2 presents typical enhance-

ments, and conflicts created by those enhancements. Section 4.3 presents a concurrency-

control model that will allow multiple developers to work independently, and later to

merge their work into a new reference version. An integral part of this concurrency-control

82 Computer Support for Collaborative Development

model is a methodology for resolving the inevitable conflicts that are created by indepen-

dent work.

When developers make local enhancements to a CMT, and a new reference version is

released, the developer must expend effort to synchronize the locally enhanced CMT with

the new reference version. Developers who expend the most effort creating local enhance-

ments are penalized by this process because they also expend the most effort synchroniz-

ing their CMT with the new reference version. Section 4.4 describes how configuration

management can minimize this penalty. If local enhancements are used to create new ref-

erence versions, custom change-sets can be algorithmically generated to synchronize

locally enhanced CMTs.

4.1 CMT Development Assumptions

Gruber (1990) articulates a five level model for sharing knowledge-based technology that

may help illustrate what is included in collaborative CMT development, and what is

excluded. The five levels he articulates are: Level 1—sharing syntax, Level 2—sharing

vocabulary, Level 3—sharing ontology, Level 4—sharing inference methods, and Level

5—sharing heuristic knowledge bases. The collaborative CMT development described in

this dissertation includes Levels 1, 2, and, with a caveat, Level 3.

Implications of sharing a syntax (Level 1) are obvious. Sharing a common vocabulary

(Level 2), has implications not immediately obvious. For Gruber, these implications

include a method for managing the namespace. In this dissertation, the method for manag-

4.1 CMT Development Assumptions 83

ing the namespace is based on identifying conflicts in the Aristotelian concept hierarchy

described later in this chapter. For Level 3—sharing ontology, Gruber states that explicit

and computationally-enforced semantics are required. Explicit, computationally-enforced

semantics are consistent with this dissertation. However, “ontology” is not.

Ontology is intentionally avoided in this dissertation, as it is an unfamiliar word to many,

and often is used to imply a more complete accounting of concepts in the world of interest

than is intended here. For example, Gruber (1993) cites Enderton (1972) as stating that

ontologies are not limited to definitions that only introduce terminology; rather, ontologi-

cal definitions can add additional knowledge about the world. This dissertation is limited

exclusively to definitions that introduce terminology; therefore, I do not assert that my

work is aimed at allowing concurrent development of ontologies.

Given this focus on definitions that introduce terminology, I will now summarize the

assumptions made regarding those definitions and the terminology as a whole.

Assumption 1. The CMT consists of terms (T1... Tm) and defining relationships

(R1... Rn).

Assumption 2. Each term Ti in the CMT represents a unique concept.

Assumption 3. Each term Ti in the CMT has a unique, inviolable, identifier.

Assumption 4. Each term Ti in the CMT has one and only one terminological defi-

nition Di expressed as a description-logic statement.

84 Computer Support for Collaborative Development

An example definition for the term CHEST-PAIN can be expressed using the KRSS syntax

as:

(define-concept CHEST-PAIN (and PAIN (some LOCATED-IN CHEST)))

This definition can also be expressed in predicate calculus notation as:

CHEST-PAIN(x) ≡ PAIN(x) ∧ CHEST(y) ∧ LOCATED-IN(x,y)

The methodologies I have developed are all syntax independent.

Assumption 5. Every terminological definition Di is logically unique.

Assumption 6. Terms may not be deleted; only their definitions may be changed.1

Assumption 7. Each relation Ri in the CMT represents a unique binary relationship

that is part of a terminological definition. Relationships cannot exist

independent from terminological definitions.

An Aristotelian hierarchy contains terms defined by genus (the category of classification

for a term) and differentia (element(s), feature(s), or factor(s) that distinguish one term

from another). This dissertation requires classification of terminological definitions into an

Aristotelian concept hierarchy for identification and classification of concurrent develop-

ment conflicts. An Aristotelian hierarchy can be formally defined as follows:

1. Although most terminology systems require periodic addition of new concepts and often contain terms
that may become obsolete, it is important to permanently maintain the representation of all concepts in a
way that remains faithful to the intent of the obsolete terms. Otherwise, evaluation of longitudinal data
will be compromised, since terms within the data will be unavailable within the CMT.

4.1 CMT Development Assumptions 85

Definition 1. A concept hierarchy H is said to be Aristotelian if every term Ti is a

proper subtype of at least one other term.

Classification of a large terminological system to determine if it is Aristotelian is beyond

the cognitive abilities of most individuals. Automated support for classification is

assumed.

Assumption 8. An algorithmic classifier will use terminological definitions to cre-

ate an Aristotelian concept hierarchy, or to determine which defini-

tions violate Aristotelian assumptions.

Given this definition of an Aristotelian concept hierarchy, and assuming a classifier that

can take terminological definitions and classify a terminology system, it can be algorith-

mically determined if every term is classified in one and only one place in the concept

hierarchy, and if every location in the concept hierarchy has one and only one term. Dur-

ing distributed development, modelers may inadvertently violate these properties of an

Aristotelian concept hierarchy.

Definition 2. If, in the process of development, two modelers modify two differ-

ent terms so that the terms would be classified in the same place in

the concept hierarchy, then the assumptions of the Aristotelian con-

cept hierarchy have been violated. I define this violation as a non-

unique definition conflict.

Definition 3. If, in the process of development, two modelers modify the same

term so that the modified versions would be classified in two differ-

86 Computer Support for Collaborative Development

ent places in the concept hierarchy, then the assumptions of the

Aristotelian concept hierarchy have been violated. I call this viola-

tion a multiply-defined term conflict.

I will now show how computational detection of these two conflicts, the non-unique defi-

nition conflict (Section 4.2.1), and the multiply-defined term conflict (Section 4.2.2), can

be used to support a semantics-based concurrency-control scheme.

There are no contemporary CMT systems founded upon these assumptions. First, certain

systems violate Assumption 5, and allow several terms with the same definition. Usually,

such systems consider different terms with equivalent definitions as synonyms. An exam-

ple would be defining both CHEST-PAIN and ANGINA as “pain located in the chest.” For my

work, uniqueness of definition is required to allow detection of conflicts that might be cre-

ated during concurrent development.

Other CMT systems violate Assumption 4, by allowing more than one definition per term.

Typically such additional definitions are used when a term may have several sufficient

defining criteria. An example would be defining a triangle as a “planar geometric figure

with three connected sides” or as a “planar geometric figure with three angles that add up

to 180°.” My work requires a singular defining form to allow detection of conflicts that

might be created during concurrent development.2

4.2 CMT Development Examples 87

4.2 CMT Development Examples

This section describes fictional transactions created by independent CMT modelers. These

examples produce conflicts. Traditional concurrency control schemes (described in detail

within Section 2.2) would force acceptance of either one transaction or the other. These

example transactions assume that the modelers were operating on the same CMT base

configuration, and that neither had knowledge of the changes being made by the other.

Such examples are typical of real-world enhancements to a CMT.

Section 4.3 proposes methods to resolve the conflicts created by examples, such as those

in this section, without forcing one modeler’s version to be accepted at the expense of the

other’s. These methods are later illustrated using the same examples.

4.2.1 Nonunique-definition Conflict

The first example illustrates a conflict in which two non-synonymous terms are given iden-

tical definitions by two different modelers. Modelers A and B begin with the following

primitive definitions of the terms INFECTIOUS-PNEUMONIA and PULMONARY-DISEASE:

(define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

(define-primitive-concept PULMONARY-DISEASE DISEASE)

2. If the classification system can support multiple “sufficient” conditions (the two example “triangle” defi-
nitions could also be viewed as “sufficient” conditions rather than as distinct definitions) as part of a
term’s definition, then this requirement is of no concern (the system has provided a mechanism for sup-
porting multiple sufficient conditions without requiring more than one definition for the term). If the sys-
tem can support only one sufficient condition as part of a term’s definition (as is the case with the
prototype tools presented in Chapter 5), then the importance of this limitation will vary depending upon
the domain. For medical terminology, my experience has shown that there are a few concepts where hav-
ing multiple defining criteria would be convenient, but this limitation is not a serious impediment to
developing a useful CMT.

88 Computer Support for Collaborative Development

The above two starting definitions are primitive definitions for the terms INFECTIOUS-

PNEUMONIA and PULMONARY-DISEASE. The “define-primitive-concept” statement in the

definitions provides a method to define that a term is different from its parent in a way not

described (i.e., that INFECTIOUS-PNEUMONIA is a DISEASE, but that it has unique properties

that are not defined within the system). Starting with these primitive definitions, each

modeler modifies one of the definitions as follows:
3

Modeler A: (define-concept infectious-pneumonia
(and disease (some located-in lungs)))

Modeler B: (define-concept PULMONARY-DISEASE
(and DISEASE (some LOCATED-IN LUNGS)))

Note that the modelers also remove the “primitive” distinction from each of the defini-

tions.

Both changes are correct in principal; it is true that INFECTIOUS-PNEUMONIA is a “disease

located in the lungs.” It is also true that PULMONARY-DISEASE is a “disease located in the

lungs.” However, the definitions of INFECTIOUS-PNEUMONIA and PULMONARY-DISEASE are

in conflict, because they are two different terms with the same definition. Figure 4-1 illus-

trates this conflict. Note that the conflict is general. Such conflicts reflect properties of the

Aristotelian concept hierarchy, and are not specific to any particular description-logic syn-

tax. This conflict can be caused by an error or an omission in one of the definitions, or the

terms may actually be synonyms. In either case, some action needs to be taken to resolve

the conflict, ensuring a consistent CMT. If a CMT is evolutionarily enhanced, there will be

3. The restrictions imposed on the concept definitions are a function of the underlying environment. In this
chapter, only simple examples are used for clarity. For limitations on the concept definitions imposed by
the prototype environment, see Chapter 5.

4.2 CMT Development Examples 89

many ways to create similar conflicts. These conflicts are termed nonunique-definition

conflicts.

If two different terms have the same definition, data retrieval using those definitions is

unreliable. For example, a researcher might query a database wanting to know “how many

patients with INFECTIOUS-PNEUMONIA were treated as outpatients in the last 12 months?”

If the database contained the conflict created by modelers A and B, the query would over-

count the number of cases of INFECTIOUS-PNEUMONIA by including all PULMONARY-DIS-

EASE (ASTHMA, BRONCHITIS, and others). A development model that provides concurrency

control must resolve such nonunique-definition conflicts.

A simple solution is to accept one transaction and reject the other. This solution is not

ideal because it forces the acceptance of one modeler’s action at the expense of the other

Figure 4-1. Graphical illustration of a nonunique-definition conflict.

DISEASE

INFECTIOUS-PNEUMONIA

PULMONARY-DISEASE

INFECTIOUS-PNEUMONIA and
PULMONARY-DISEASE occupy the
same location in the type heirarchy

INFECTIOUS-PNEUMONIA and

Before Conflict After Conflict

PULMONARY-DISEASE occupy
two different locations in the type heirarchy

90 Computer Support for Collaborative Development

modeler. A system that provides concurrency control should have a strategy that will allow

conflict resolution without forcing the acceptance of one modeler’s work at the expense of

another modeler. The concurrency-control model proposed in Section 4.3 provides such a

method.

4.2.2 Multiple-Definition Conflict

The second example occurs when two modelers, C and D, give the same term different

definitions. Both modelers begin with the following primitive definition of INFECTIOUS-

PNEUMONIA:

(define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

Each modeler modifies the definition as follows:

Modeler C: (define-concept INFECTIOUS-PNEUMONIA
(and DISEASE (some LOCATED-IN LUNGS)))

Modeler D: (define-concept INFECTIOUS-PNEUMONIA
(and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)))

Note that the modelers also remove the “primitive” distinction from each of the defini-

tions.

As in the previous example, both changes are correct in principle; it is true that INFEC-

TIOUS-PNEUMONIA is a “disease located in the lungs.” It is also true that INFECTIOUS-PNEU-

MONIA is a “disease caused by an infectious agent.” However, the definitions of

INFECTIOUS-PNEUMONIA are in conflict, because although they refer to the same term, they

do not have the same definition. Figure 4-2 illustrates this conflict. Note that the conflict is

4.2 CMT Development Examples 91

once again general, reflecting properties of the Aristotelian concept hierarchy. Such con-

flicts are termed multiple-definition conflicts.

If one term has two different definitions, data retrieval using those definitions is unreliable.

For example, if a researcher again queried the database wanting to know “how many

patients with INFECTIOUS-PNEUMONIA were treated as outpatients in the last 12 months?”,

the query would undercount the number of cases of INFECTIOUS-PNEUMONIA (because the

query will only use one definition, thus missing the cases of INFECTIOUS-PNEUMONIA

encoded using the other definition). A model that provides concurrency control must

resolve such multiple-definition conflicts. All terms with equivalent meaning must have

identical definitions. If the terms do not have identical definitions, at least one definition is

incomplete or incorrect.

Figure 4-2. Graphical illustration of a multiple-definition conflict.

DISEASE

INFECTIOUS-PNEUMONIA

Before Conflict After Conflict

INFECTIOUS-PNEUMONIA occupies
one location in the type hierarchy

INFECTIOUS-PNEUMONIA occupies
two locations in the type hierarchy

92 Computer Support for Collaborative Development

A model that provides concurrency control should have a strategy that will resolve multi-

ple-definition conflicts without forcing the acceptance of one modeler’s action at the

expense of the other modeler. The concurrency-control model proposed in Section 4.3 pro-

vides such a method.

4.3 CMT Concurrency Control

Efficient CMT development requires many individuals and groups to work in parallel. A

common feature of parallel development schemes is the ability for each site to work con-

currently with other sites, and with no real-time control that prevents the sites from creat-

ing conflicting transactions. In all cases, conflicting transactions collide long after their

creation. Optimally, the overall system can resolve conflicts and salvage the semantics of

conflicting transactions. This section describes such a system of concurrency control.

4.3.1 CMT Transactions

The first step in controlling a set of actions that may occur at the same time is to define the

set of all possible actions. Once these actions are unambiguously defined, they can be

recorded as transactions. A generic database shell would specify these actions using no

application-specific semantics. The generic actions would simply be to read a data value

and to write a data value. Such actions with generic semantics can only be managed with

the traditional concurrency control schemes (described in Section 2.2.2). To create a more

powerful concurrency control scheme, application-specific actions must be used instead.

By using actions that have an understood meaning in the application’s domain, a seman-

4.3 CMT Concurrency Control 93

tics-based concurrency control scheme can be developed specifically for the application

(see Section 2.2.3).

Since a CMT is represented by terms, relationships, and definitions,4 CMT transactions

can be represented by changing the definition of a term (in the case of introducing a new

term, changing the definition from a null definition to an actual definition) and adding new

binary relationships. These two transaction types can represent all the changes that occur

in the CMT. Since terminological definitions and relationships have understood meaning

in the application's domain, a semantics-based concurrency control scheme can be devel-

oped.

4.3.2 CMT Transaction Validity

To ensure that any set of transactions can be validly applied, a method is needed for verify-

ing that the initial conditions required for the desired transactions still exist. One method

for verifying these initial conditions is to group the transactions into sets, and to include a

copy of the initial definition at the beginning of the set. Before executing any set of trans-

actions, the application can verify that valid initial conditions still exist before allowing

the transactions to execute. Figure 4-3 shows a syntax for transaction sets that includes an

initial definition, followed by ending definition.

Using the initial definition contained within each set of transactions, the application can

verify that a term’s initial conditions (a term’s starting definition) is the same as the initial

conditions for which the transactions were created. If the definitions are not the same, the

4. See assumptions in Section 1.4.3

94 Computer Support for Collaborative Development

transactions cannot be directly applied. If the definitions are the same, they have met ini-

tial conditions required to be properly applied; however, this simple test does not guaran-

tee that executing the transactions will result in a semantically consistent CMT. Other

types of conflicts may be created (described in Section 4.2).

This set of transactions is a change set. In this case, a change set represents the changes

made by one modeler, on one definition of the CMT. The transactions of the change set

must be executed together: all transactions or no transactions. Given appropriate semantic

consistency constraints, this change set can be interleaved with other transactions (or

change sets) without requiring a specific serial schedule of transactions for validity.

4.3.3 Terminology Change Sets

Sagas (Garcia-Molina & Salem, 1987) provide an appropriate paradigm for CMT concur-

rency control.5 Garcia-Molina’s work provides the inspiration for the change sets I

INFECTIOUS-PNEUMONIA

Start State: P DISEASE

End State: D (and DISEASE (some LOCATED-IN LUNGS))

Figure 4-3. A transaction set equivalent to the changes made by Modeler A in
Section 4.2.1. The first line contains the identifier of the term being changed. The
second line represents the starting state of for which this transaction is valid. The “P”
immediately before the starting definition indicates that the definition is primitive. The
third line contains the ending definition. The “D” immediately before the ending
definition indicates that the definition is defined. This set of transactions forms an entry
in a change set. A change set consists of one or more entries.

5. See Section 2.2.3 for a more complete presentation of this work

4.3 CMT Concurrency Control 95

describe in this dissertation. Local enhancements to a CMT can be captured as sagas.

These sagas could then be sent to a group responsible for integrating the local enhance-

ments to create a new reference version of the CMT. However, in some circumstances two

sagas may conflict. Such conflicts prevent sagas from being shared. The original proposal

for sagas provided no method to facilitate the sharing of conflicting sagas. The primary

purpose of sagas was to execute long-lived transactions on a central database, without

locking large portions of the database. There are important differences between sagas

described by Garcia-Molina and Salem and the use of change sets for CMT development

described in this dissertation:

• Change sets are not executed only on a central database. They are initially created on an

autonomous local database, and are then secondarily sent to a central database for inte-

gration and execution.

• The execution policies of this central database are significantly different from the poli-

cies of a traditional database application. The central database will strive to execute

change sets, submitted by developers, in a way that optimizes the databases semantic

accuracy and completeness. This policy is very different from traditional database’s in

which execution of transactions is determined strictly by the order in which the transac-

tions are submitted.

• Finally, the database’s semantic accuracy and completeness are determined interac-

tively, with human oversight (as opposed to algorithmically with no human oversight).

The proper sequence for resolving conflicts is determined by the human operators, with

96 Computer Support for Collaborative Development

computer assistance, rather than being automated, as is typical of concurrency control

schemes. Because of these differing policies, new conflict-resolution methods are pos-

sible.

Because of the previously described differences between sagas and change sets, I use the

term “change sets” when referring to sets of transactions (a term consistent with the con-

figuration-management literature).

Change sets, like sagas, can conflict with one another. When a conflict is identified, some

method must be available to resolve the conflict. As discussed previously, a method that

can combine the work of the conflicting transaction is preferable to one that requires

acceptance of one set of transactions at the expense of another. The following sections

describe two conflict resolution methods that can combine the work of the conflicting

transactions: The semantically-equivalent change set (SES) and the semantic-addition

change set (SAS). These methods are both introduced abstractly; immediately following

the abstract introduction, the conflict examples introduced in Section 4.2 are used to illus-

trate these methods (Section 4.3.4).

Semantically-Equivalent Change Set

The SES is a change set that can be substituted for another change set to resolve a conflict.

The SES is equivalent to the original change set, but valid for a different base configura-

tion of the CMT. Consider change set S3 and change set S4, both originating from the

same base configuration, but created by two different developers at two different sites.

4.3 CMT Concurrency Control 97

Optimally these change sets could be merged by executing the following sequence of

change sets:

 S3, S4.

However, execution of S3 alters the base configuration, and this might cause S3 and S4 to

be in conflict (similarly execution of S4 first would also alter the base configuration and

might similarly cause a conflict if S3 were then attempted). An equivalent set of transac-

tions, SES4, could be executed in place of S4, resulting in the sequence:

 S3, SES4.

Such a SES would be created by a developer working with a configuration management

environment. The environment would present any conflicts identified during import of S3

and S4 to the developer. The developer would examine the nature of the conflict and deter-

mine what semantic attributes of the two terms should be retained in the merged configu-

ration. The environment would then create SES4, based on the developer’s input, and

execute that transition in place of S4. This alternative execution sequence allows the

semantics in change set S4 to be utilized, even though it conflicts with S3. SESs can be

used to resolve multiple-definition conflicts. Section 4.3.4 provides examples of SESs.

Semantic-Addition Change Set

The SAS is a set of transactions that can be added to a sequence of change sets that are

found to conflict. Such a change set must be created when the conflict cannot be resolved

by a SES. Addition of the SAS resolves the conflict. Consider change set S1 and change

98 Computer Support for Collaborative Development

set S2, both originating from the same base configuration. Optimally these change sets

could be merged by executing the following sequence of change sets on the base configu-

ration:

 S1, S2.

However, if S1 and S2 are found to be in conflict (again S1 having altered the base config-

uration so that S2 can no longer be applied), a new change set, SAS1, could be executed

after S1, resulting in the sequence

 S1, SAS1, S2.

SAS1 adds new semantic information to resolve the conflict. As with the SES in the previ-

ous section, the SAS is created by the configuration management environment interacting

with the developer.

Sometimes it would be better to add the SAS after S2. If an SAS is added after S2, how-

ever, it will not prevent the semantic conflict, so SAS2 must be executed before S2, and S2

must be replaced with an equivalent change set, SES2, resulting in the following sequence:

 S1, SAS2, SES2.

Section 4.3.4 provides examples of SASs.

4.3.4 Terminology-Specific Conflict Resolution Strategies

The previous section introduced change sets and described how to create change sets to

resolve conflicts (using SESs and SASs). This section demonstrates how the SESs and

100 Computer Support for Collaborative Development

conditions. The basis for creating such change sets is discussed in the remainder of this

section. Table 4-1 illustrates two such SESs: SES3 and SES4.

Table 4-1. Change sets S3 and S4 with compensating change sets. Valid sequences are
Base + S3, Base + S4, Base + S3 + SES4, Base + S4 + SES3.

If an application tries to execute the change sets in the order Base + S3 + S4, a conflict will

be created because S4 can only be validly applied to infectious-pneumonia when the start-

ing definition is (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE). Since

change set S3 has already changed the definition of INFECTIOUS-PNEUMONIA, change set

S4 can not be directly applied. A change set semantically equivalent to S4 can be created

by capturing the semantics of the change set, that INFECTIOUS-PNEUMONIA is “caused by

an infectious agent.” Change set SES4 is an example of such a change set that can be val-

idly applied after execution of change set S3. Using this change set, an application can

Set Term Label State Definition

 S3 INFECTIOUS-
PNEUMONIA

Start (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (SOME LOCATED-IN LUNGS)))

 S4 INFECTIOUS-
PNEUMONIA

Start (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)))

SES4 INFECTIOUS-
PNEUMONIA

Start (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)))

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)
 (some CAUSED-BY INFECTIOUS-AGENT)))

SES3 INFECTIOUS-
PNEUMONIA

Start (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)))

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)
 (some CAUSED-BY INFECTIOUS-AGENT)))

4.3 CMT Concurrency Control 101

execute the sequence Base + S3 + SES4. The result is the creation of a new definition for

INFECTIOUS-PNEUMONIA that merges the changes incorporated in change sets S3 and S4.

A SES can be created in two ways. First, it is always possible for a human modeler to use

personal knowledge and deductive ability to custom craft a SES. Second, it is possible to

derive probable SESs algorithmically. A tool can examine conflicting change sets and use

greatest common subgraph algorithms to determine overlap between the end definitions of

the change sets. Any additional or missing nodes or arcs in one definition that are not in

the other represents changes unique to that change set. Those changes can then be applied

to the ending definition of the other change set. The result is a new change set, SESj that

can be applied after Si to resolve the conflict. The appropriateness of SESj is not guaran-

teed, however. Human oversight, through an on-line editing and review environment, is

required to ensure appropriateness of the conflict resolution strategy.

An application may execute the change sets in many different orders, such as Base + S4 +

S3. A different order of execution may create different conflicts. In this case, a different

conflict will be created because S3 can only be validly applied to INFECTIONS-PNEUMONIA

when the starting definitions is (define-primitive-concept INFECTIOUS-PNEUMONIA DIS-

EASE) (as was the case with change set S4). Another change set, SES3, can be created (sim-

ilarly to how SES4 was created) to execute in place of S3. Using this change set, an

application can execute the sequence Base + S4 + SES3. As before, the result is the cre-

ation of a new definition for INFECTIOUS-PNEUMONIA that merges the changes incorpo-

rated in change sets S3 and S4.

102 Computer Support for Collaborative Development

Nonunique-Definition Conflict Resolution Strategy

Terms in a CMT may have the same definition because either (1) the terms may actually

be synonyms or (2) at least one of the definitions is faulty, either incomplete or incorrect.

If the terms are actually synonyms, their definitions can be unified by adding one term to

the synonym list of the other. The definitions no longer conflict because they will become

a single definition that will refer to a preferred term and a synonym list. The conflict can

be detected algorithmically, but determining that two terms are synonyms will require

human evaluation. Additionally, when two synonyms are found, one should be designated

the “preferred term”; this will also require human judgment.

If a term’s definition is incomplete, resolving the conflict will require modification of the

definition. Turning the definition into a primitive is the simplest solution. Such a change is

captured in a SAS. This modification will ensure that the two definitions do not conflict,

by asserting that a term is different from another term, in a way not described (see

Section 3.3.1). This solution can be applied arbitrarily to one of the conflicting definitions,

or, using human intervention, can be applied selectively to the most appropriate definition.

Another solution for resolving incomplete definitions is to add additional semantic knowl-

edge to one or both definitions until they are unique. This solution may seem more attrac-

tive, since it tries to make the definitions more complete; however, it adds an additional

burden to the initial goal of resolving concurrency conflicts: creating logically complete

and correct term definitions.

4.3 CMT Concurrency Control 103

Formal solutions that arbitrarily make one of the terms primitive can be created without

human intervention. Formal solutions that selectively make one of the terms primitive or

that allow new semantic knowledge to be added to the definition have to be manual. In

either case, the methodology is formal, however some are automatic and some are manual.

The change sets created during such a conflict-resolution process will be SASs

(Section 4.3.3).

The example nonunique definition conflict, described in Section 4.2.1, may be resolved

using a SAS. The reader will recall that two modelers, A and B, created identical defini-

tions for two different terms: INFECTIOUS-PNEUMONIA and PULMONARY-DISEASE. The

transactions responsible for those changes can be captured in two change sets, S1 for mod-

eler A and S2 for modeler B. The starting and ending definitions of these change sets are

presented in Table 4-2. The conflicting definitions can be resolved in two ways. The first

way utilizes a SAS, SAS1. The second way utilizes a SES, SES1. The basis for creating

these change sets is discussed in the remainder of this section. These change sets are also

presented in Table 4-2.

104 Computer Support for Collaborative Development

Table 4-2. Change sets S1 and S2 with compensating Change sets. Allowable sequences
are Base + S1; Base + S2; Base + S1 + SAS1 + S2; and Base + S2 + SES1.

If the application tries to execute the change sets in the following order, Base + S1 + S2, a

conflict will be created because the definition for PULMONARY-DISEASE that results from

the actions of S2 conflicts with the existing definition for INFECTIOUS-PNEUMONIA created

by the actions of S1. One way to resolve this conflict is to create an SAS that will make the

existing definition of INFECTIOUS-PNEUMONIA primitive. Using such a change set, labeled

SAS1 in Table 4-2, the following sequence can be executed: Base + S1 + SAS1 + S2. This

sequence ensures that the definition of INFECTIOUS-PNEUMONIA will be changed before

transaction S2 is executed, thus resolving the conflict with the definition for PULMONARY-

DISEASE.

An application may sometimes execute the change sets in a different order, such as Base +

S2 + S1. A conflict will also be created when trying to apply S1 to the already committed

actions of Base + S2. SAS1 cannot be used to resolve this conflict. SAS1 was created to

Set Term Label State Definition

 S1 INFECTIOUS-
PNEUMONIA

Start (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS))))

 S2 PULMONARY-
DISEASE

Start (define-primitive-concept PULMONARY-DISEASE DISEASE)

End (define-concept PULMONARY-DISEASE
 (and DISEASE (some LOCATED-IN LUNGS)))

SAS1 INFECTIOUS-
PNEUMONIA

Start (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)))

End (define-primitive-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)))

SES1 INFECTIOUS-
PNEUMONIA

Start (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

End (define-primitive-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)))

4.3 CMT Concurrency Control 105

operate after the completion of S1, and cannot be applied in this circumstance. Rather than

creating a change set that adds semantics to already committed transactions, as did SAS1, a

SES can be used in its place. S1 was trying to add information to the existing definition of

INFECTIOUS-PNEUMONIA. This information, that INFECTIOUS-PNEUMONIA is “located in the

lungs,” can be captured in a SES, labeled SES1 in Table 4-2. This change set can be exe-

cuted in place of S1, with equivalent results. Using this change set, the application can

execute the change sets in the order Base + S2 + SES1 without creating a conflict.

 Although this non-determinism may generate different paths to achieve the same result,

the specific path is inconsequential. A configuration management environment will pro-

cess the change sets in the order they arrive, and when exporting custom change sets for

external applications, it will export a set of changes that will be able to update any of the

terminology configurations know to the configuration system to any subsequent configura-

tion of the CMT.

4.3.5 Configuration Management Challenges

Section 4.3.3 and Section 4.3.4 have described how SESs and SASs can resolve conflicts

created when integrating conflicting change sets. These change sets provide a conflict-res-

olution solution; however, their existence also introduces new management problems.

Each change was initially represented by a single change set. After alternative SESs and

SASs are added, each change may be represented by the original change set, the original

transaction in combination with a SAS, or a variety of SESs. The additional change sets

were developed to apply the changes contained within the original change set to a different

106 Computer Support for Collaborative Development

configuration. Keeping track of which change sets can validly be applied to which config-

urations is a complex task. Methods to manage this complexity are presented in

Section 4.4.

4.4 CMT Configuration Management

The development of any complex system requires techniques to coordinate and control its

construction. This coordination and control process is called configuration management.

Many of the principles of configuration management have been developed for hardware

engineering, large building construction, and software systems (Whitgift, 1991). Configu-

ration management is defined as: “the process of identifying and defining the items in the

system, controlling the change of these items throughout their lifecycle, recording and

reporting the status of items and change requests, and verifying the completeness and cor-

rectness of items” (ANSI/IEEE Standard 729, 1983).

Section 4.3 described a concurrency-control method for managing developmental changes

that occur to terms in a controlled medical terminology (CMT). Such concurrency-control

methods are an important part of configuration management, but are not sufficient to man-

age all configuration management problems. In addition to concurrency-control methods,

CMT configuration management will require naming conventions to identify items and

versions of items, methods to verify the completeness and correctness of CMT configura-

tions, and methods to create CMT configurations.

4.4 CMT Configuration Management 107

Simple methods of configuration verification, such as comparing a configuration to a ref-

erence version, are sufficient for CMT management.7 Methods to create custom configura-

tions (including naming conventions and configuration generation methods) are the most

complex, and are the focus of this section.

4.4.1 Custom Configurations

Creation of custom configurations can be very tedious. Automated tools have been created

for generation of custom configurations in other domains, such as Digital’s XCON config-

uration system (Barker & O’Connor, 1989). A formal methodology for creating custom

configurations of CMTs will allow the process of creating custom configurations to be

automated.

Section 4.3 presented a method, using change sets, for integrating concurrent transactions

from multiple sites into a single master configuration. This concurrency-control scheme

allows CMT development to be distributed; however, it also creates an additional burden

for developers who participate in this process. Although the concurrency-control scheme

allows their work to be integrated into the master version, the scheme does not synchro-

nize their local copies with new versions of the master CMT. This failure to automatically

synchronize local copies creates a paradoxical situation in which developers who are the

most productive (create the most changes) are rewarded with the largest penalty when they

7. Here, configuration verification simply refers to a method of determining that the configuration is equiva-
lent to the reference version in the configuration management system. For such a determination, a binary
comparison is sufficient. Configuration verification is distinct from quality-assurance activities where the
terminology within a configuration is subject to semantic verification rather than to simply binary verifi-
cation. Assuring the semantic correctness of a CMT configuration is of course more complex, and not the
subject of this section.

108 Computer Support for Collaborative Development

later manually synchronize their local CMT with the derivative master CMT. This penalty

is the “local-update penalty.”

Tuttle and colleagues (1991) previously described this paradoxical penalty as it relates to

local enhancements of the Unified Medical Language System (Lindberg, Humphreys &

McCray, 1993). They have appealed for development of technological solutions and stan-

dardized update methods to minimize this penalty. The remainder of Section 4.4 presents

such a solution.

4.4.2 Version Naming

To identify each of the revisions, a standard component-naming convention must be used.

Figure 4-4 illustrates the convention for naming CMT versions. Each identifier has up to

three parts. The first part identifies the reference version from which the component was

derived. If a reference version has been altered, creating a branch, it will have a branch

identifier and a local revision number. Each field is separated by a period. Reference ver-

sions and local revisions are identified by sequential integers. Branch identifiers are not

sequential, and are represented alphabetically. This naming convention allows branches to

be identified by institution. Figure 4-4 refers to the third local revision of a CMT created

by site “A” using reference version 1 as its base CMT.

The individual change sets that generate local revisions, and subsequently are incorporated

into new reference version, need a different naming convention. Change sets cannot be

modified once they are created; revision identifiers would therefore be meaningless. A

change set may also be incorporated into several different versions: the local version, the

4.4 CMT Configuration Management 109

new reference version, and then, through subsequent distribution, local versions at differ-

ent sites. Reference version and branch identifiers for change sets are thus meaningless.

The only requirement for change set names is that they be unique. Including additional

information in the change set names, such as its generation time or its author, may be con-

venient, but is not required. In this dissertation I identify change sets by their type (S, SES,

or SAS), and ensure uniqueness with subscripts (Si, SESj, or SASk).

Once all of the components are identified, they can be collected, and the process of merg-

ing the components to create a new reference CMT can begin. After the merge process is

completed, custom configurations can be generated using components that were part of the

merge process. Section 4.4.3 describes the merge process. Section 4.4.5 describe the gen-

eration of custom configurations.

4.4.3 Version Merging

After local changes are submitted to a central source, they must be merged. During the

merge, all local enhancements are combined to create a single configuration. This merge

relies on concurrency-control techniques, described in Section 4.3, to identify and resolve

Figure 4-4. CMT version naming convention. Each version identifier can have three
parts: the reference version (left), the branch identifier (center), and the local revision
number (right).

1.A.3

Reference
Version

Branch Identifier

Local
Revision

110 Computer Support for Collaborative Development

any conflicting transactions created at different sites. After all conflicts have been

resolved, a new version has been created that contains all the enhancements created at the

local sites.

The reader will recall that four modelers, A, B, C, and D, made changes to the same refer-

ence CMT. All modelers began with the following definitions:

(define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

(define-primitive-concept PULMONARY-DISEASE DISEASE)

Each modeler then modified one of the definitions as follows:

Modeler A: (define-concept INFECTIOUS-PNEUMONIA
(and DISEASE (some LOCATED-IN LUNGS)))

Modeler B: (define-concept PULMONARY-DISEASE
(and DISEASE (some LOCATED-IN LUNGS)))

Modeler C: (define-concept INFECTIOUS-PNEUMONIA
(and DISEASE (some LOCATED-IN LUNGS)))

Modeler D: (define-concept INFECTIOUS-PNEUMONIA
(and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)))

These changes are captured in four change sets, S1, S2, S3, and S4, which represent the

changes made by modelers A, B, C, and D. These change sets are presented in Table 4-3.

Section 4.3 described how these change sets might conflict, and how to create alternative

change sets that can be executed instead of the original change set to resolve such con-

flicts. Two such change sets (originally created in Section 4.3.4), SES3 and SES4, are also

presented in Table 4-3.

4.4 CMT Configuration Management 111

Table 4-3. Change sets to be combined to generate a new CMT reference version. These
change sets can be recombined to create custom change sets to synchronize local
versions of the CMT with the new reference version (Section 4.4.4).

The change sets in Table 4-3 can be combined in many different orders, resulting in differ-

ent CMT states. Figure 4-5 illustrates seven possible states, starting with the initial config-

uration at the top, and finishing with the final state at the bottom. The bottom state

represents a complete merge of all local changes, and will become the new reference ver-

sion.

4.4.4 Minimization of Local-Update Penalties

The state diagram in Figure 4-5 provides the basis for minimizing local-update penalties,

as a by-product of integrating locally developed change sets into a new reference version.

Set Term Label State Definition

S1 INFECTIOUS-
PNEUMONIA

Start (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)))

S2 PULMONARY-
DISEASE

Start (define-primitive-concept PULMONARY-DISEASE DISEASE)

End (define-concept PULMONARY-DISEASE
 (and DISEASE (some LOCATED-IN LUNGS)))

S3 INFECTIOUS-
PNEUMONIA

Start (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)))

SES3 INFECTIOUS-
PNEUMONIA

Start (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)))

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)
 (some CAUSED-BY INFECTIOUS-AGENT)))

S4 INFECTIOUS-
PNEUMONIA

Start (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)))

SES4 INFECTIOUS-
PNEUMONIA

Start (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)))

End (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)
 (some CAUSED-BY INFECTIOUS-AGENT)))

112 Computer Support for Collaborative Development

Figure 4-5. Possible CMT states. Each box represents a potential CMT state. The initial
and final states of sites A, B, C, and D are guaranteed to be on the diagram because the
states were created by integrating each of the sites together. Numbers inside each box
represent the state of the terms INFECTIOUS-PNEUMONIA and PULMONARY-DISEASE
(shown at bottom of figure). Each state was created by executing one of the change sets
presented in Section 4.3 (also in Table 4-3). The change set necessary to traverse from
one state to another is identified on each arrow.

S2

S2

S2

S1 or S3S4

S4 SES3
SES4

SES3

IP1
PD1

IP1
PD2

IP3
PD2

IP4
PD2

IP3
PD1

IP2
PD1

IP4
PD1

INFECTIOUS-PNEUMONIA States:

IP1:

IP2:

IP3:

IP4:

PULMONARY-DISEASE States:
PD1:

PD2:

(define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

(define-primitive-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)))

(define-primitive-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)))

(define-primitive-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)
 (some LOCATED-IN LUNGS)))

(define-primitive-concept PULMONARY-DISEASE DISEASE)

(define-primitive-concept PULMONARY-DISEASE
 (and DISEASE (some LOCATED-IN LUNGS)))

4.4 CMT Configuration Management 113

If all locally developed change sets are merged into a new reference version, and a state

diagram is created that represents all the states of the merge process, a node will exist in

the state diagram corresponding to the state of each contributing site. From this node, at

least one path to the new reference state will exist. By traversing any of these paths, and

recording the sequence of change sets along the particular path, a change set sequence is

created. If this sequence is executed at the local site, it will synchronize the local CMT

with the new reference version.

A configuration management environment that supports CMT development will support

this sequence generation process. The change-set configuration management model,

described in Section 2.3, provides the appropriate paradigm. The change sets described

here represent the long transactions of the change-set configuration management model; a

custom sequence of change sets created by traversing the state diagram of the reference

version is equivalent to a change set of the change-set configuration management model.

The primary difference between what is described here, and what is typically viewed as

the change-set configuration management model, is that the CMT is much narrower in

scope than are most software systems to which configuration management has typically

been applied. Because of this narrow focus, more automation is possible. The ability to

resolve conflicts semi-automatically, by algorithmically suggesting alternative change sets

as described in Section 4.3.4, is one example of such automation. To fully support CMT

development, applications that utilize the change-set configuration management model

must incorporate the conflict-resolution strategies developed for integrating change sets.

Chapter 5 describes a prototype change-set configuration-management environment. The

114 Computer Support for Collaborative Development

next section utilizes the examples developed in this chapter to illustrate further the process

of creating change sets capable of synchronizing a locally enhanced CMT with a new ref-

erence version.

4.4.5 Custom Configuration Examples

Section 4.3 presented specific examples to illustrate the types of conflicts that may occur

when multiple modelers work on the same CMT. This section uses those same examples to

demonstrate how these change sets can be recombined into custom change sets. These

change sets will be custom tailored for each site, and will synchronize the local CMT with

the new reference CMT.

The reader will recall from Section 4.4.3 that the terms INFECTIOUS-PNEUMONIA and PUL-

MONARY-DISEASE were modified by four modelers. The locally created change sets were

later merged into a new reference version, version 2. Table 4-4 presents these two terms,

and their respective definitions in versions 1 and 2. The individual change sets that were

used to create version 2 from version 1 were presented previously in Table 4-3.

Table 4-4. Version 1 and version 2 definitions of INFECTIOUS-PNEUMONIA and
PULMONARY-DISEASE.

The change sets in Table 4-3 can be applied to version 1 in several different valid

sequences. These sequences are shown in Figure 4-5, along with each resulting intermedi-

Term Label Version Definition

INFECTIOUS-
PNEUMONIA

1 (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE)

2 (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)
 (some CAUSED-BY INFECTIOUS-AGENT))

PULMONARY-
DISEASE

1 (define-primitive-concept PULMONARY-DISEASE DISEASE)

2 (define-concept PULMONARY-DISEASE
 (and DISEASE (some LOCATED-IN LUNGS)))

4.4 CMT Configuration Management 115

ate state. The result of creating this diagram is that every possible state of intermediate

CMTs is known (since the diagram was created using all of the change sets), and there is a

sequence of change sets that can take the CMT from an intermediate state to the new refer-

ence version. The following sections describe how such a state diagram can be used to cre-

ate custom change sets to synchronize local CMTs with the new reference version.

Sites A and C

Sites A and C coincidentally modified the same term, INFECTIOUS-PNEUMONIA, in the

same way, and therefore can utilize the same change set to synchronize their local versions

with version 2. Table 4-5 shows the local definitions of site A and C (listed as version

1.A.1), and the definitions in version 2. Version 1.A.1 corresponds to the state IP2 PD1 in

Figure 4-6. Examining the figure will show that one path exists to traverse from state IP2

PD1 to state IP4 PD2. This path requires executing two change sets, SES4 and S2. After

executing these two change sets, the local CMT will be synchronized with the new refer-

ence version. As an alternative to looking at the state diagram, change sets can be chosen

by simply examining the version 1.A.1 and version 2 definitions, and then finding a set of

change sets from Table 4-3 able to update each term to the version 2 definition.

Careful inspection of Table 4-3 reveals one sequence of change sets able to synchronize

version 1.A.1 with version 2 that is not listed in Table 4-5: S2 + SES4. The sequence S2 +

SES4 is not on the state diagram because it results in an invalid intermediate state. How-

ever, if all the change sets are applied together, the invalid state is only temporary, result-

ing in a valid final configuration. This additional sequence is of no consequence, since it is

116 Computer Support for Collaborative Development

important to find a synchronization path, not all paths. As a by-product of the merge pro-

cess, the state diagram will always have at least one path for synchronizing a locally-

enhanced CMT, provided the change sets created by the local enhancement were part of

the merge.

Figure 4-6. Update path for sites A and C.

S2

S2

S2

S1 or S3S4

S4 SES3
SES4

SES3

IP1
PD1

IP1
PD2

IP3
PD2

IP4
PD2

IP3
PD1

IP2
PD1

IP4
PD1

Sites
A & C
State

Goal State

4.4 CMT Configuration Management 117

Table 4-5. Version 1.A.1 definitions, version 2 definitions, and the change sets required
to synchronize version 1.A.1 with version 2.

Site B

Site B modified the term, PULMONARY-DISEASE, as shown in Table 4-6. This table shows

site B’s local version (version 1.B.1), and the new reference version (version 2). Version

1.B.1 corresponds to the state IP1 PD2 in Figure 4-7. Examining the Figure will show that

one path exists to traverse from state IP1 PD2 to state IP4 PD2. This path requires execut-

ing two change sets, S4 and SES3. After executing these two change sets, the local CMT

will be synchronized with the new reference version. As an alternative to looking at the

state diagram, change sets can be chosen by simply examining the version 1.B.1 and ver-

sion 2 definitions. Finding a change set or set of change sets able to update each term to

the version 2 definition from the table will have the same result as finding the change sets

on a complete state diagram.

Careful inspection of Table 4-3 will again reveal one sequence of change sets able to syn-

chronize version 1.B.1 with version 2 not listed in Table 4-6: S1 + SES4. The sequence S1

+ SES4 is not on the state diagram because it results in an invalid intermediate state. As

described in the previous section, this additional sequence is of no consequence.

Term Label Version Definition Set

INFECTIOUS-
PNEUMONIA

1.A.1 (define-concept INFECTIOUS-PNEUMONIA
 (AND DISEASE (SOME LOCATED-IN LUNGS)))

SES4

2 (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)
 (some CAUSED-BY INFECTIOUS-AGENT)))

PULMONARY-
DISEASE

1.A.1 (define-primitive-concept PULMONARY-DISEASE DISEASE) S2

2 (define-primitive-concept PULMONARY-DISEASE
 (and DISEASE (some LOCATED-IN LUNGS)))

118 Computer Support for Collaborative Development

Table 4-6. Version 1.B.1 definitions, version 2 definitions, and the change sets required
to synchronize version 1.B.1 with version 2.

Site D

Site D modified the term, INFECTIOUS-PNEUMONIA, as shown in Table 4-7. This table

shows the intermediate stage, listed as version 1.D.1, and the definition for the terms in

Figure 4-7. Update path for site B.

Term Label Version Definition Set

INFECTIOUS-
PNEUMONIA

1.B.1 (define-primitive-concept INFECTIOUS-PNEUMONIA DISEASE) S4 + SES3

2 (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)
 (some CAUSED-BY INFECTIOUS-AGENT)))

PULMONARY-
DISEASE

1.B.1 (define-concept PULMONARY-DISEASE
 (and DISEASE (some LOCATED-IN LUNGS)))

∅

2 (define-concept PULMONARY-DISEASE
 (and DISEASE (some LOCATED-IN LUNGS)))

S2

S2

S2

S1 or S3S4

S4 SES3
SES4

SES3

IP1
PD1

IP1
PD2

IP3
PD2

IP4
PD2

IP3
PD1

IP2
PD1

IP4
PD1

Site B
State

Goal State

4.4 CMT Configuration Management 119

version 2. Version 1.D.1 corresponds to the state IP3 PD1 in Figure 4-8. Examining the

figure will show that two path exists to traverse from state IP3 PD1 to state IP4 PD2.

Either path requires execution of the same two change sets, S2 and SES3. After executing

these two change sets, the local CMT will be synchronized with the new reference version.

As an alternative to looking at the state diagram, change sets can be chosen by simply

examining the version 1.D.1 definitions and the version 2 definitions. Unlike the previous

two examples, there are no sequences other than those on the state diagram in Figure 4-8.

Figure 4-8. Update path for site D.

S2

S2

S2

S1 or S3S4

S4 SES3
SES4

SES3

IP1
PD1

IP1
PD2

IP3
PD2

IP4
PD2

IP3
PD1

IP2
PD1

IP4
PD1

Site D
State

Goal State

120 Computer Support for Collaborative Development

Table 4-7. Version 1.D.1 definitions, version 2 definitions, and the change sets required
to synchronize version 1.D.1 with version 2.

4.5 Limitations of Conflict Detection

This chapter defined two classes of conflicts that a classification engine can detect: the

nonunique-definition conflict, and the multiply-defined term conflict. Conflicts that are

easy to detect are often easy to resolve, but they do not encompass the universe of all

errors that might occur during terminology development.

Contemporary terminology management systems identify conflicting terms lexically. That

is they look for terms that are lexically equivalent to one another. If lexically equivalent

terms represent different concepts, a conflict is created. An example of such a conflict was

identified when processing SNOMED for inclusion in the Unified Medical Language Sys-

tem (Lindberg et al., 1993). SNOMED had two terms described as “Mole, NOS.” One

term was intended to refer to a specific kind of growth commonly found on the skin, the

other term was intended to refer to a living organism that burrows under the ground.

This dissertation expands a terminology management system's ability to identify conflicts

beyond these lexical techniques by adding the notion of conflict in an Aristotelian concept

hierarchy.

Term Label Version Definition Set

INFECTIOUS-
PNEUMONIA

1.D.1 (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)))

SES3

2 (define-concept INFECTIOUS-PNEUMONIA
 (and DISEASE (some LOCATED-IN LUNGS)
 (some CAUSED-BY INFECTIOUS-AGENT)))

PULMONARY-
DISEASE

1.D.1 (define-concept DISEASE (and DISEASE (some LOCATED-IN LUNGS))) S2

2 (define-concept PULMONARY-DISEASE
 (and DISEASE (some LOCATED-IN LUNGS)))

4.5 Limitations of Conflict Detection 121

Although using Aristotelian classification expands the repertoire of conflicts that can be

used in a concurrency-control scheme, there are still conflicts that fall outside the ability of

algorithms to detect. The algorithms described here depend upon the formal properties of

the Aristotelian concept hierarchy. It is possible to construct such a concept hierarchy so

that it is internally consistent, yet it may not reflect the intended coupling with the outside

world.

A classic example of such undetectable conflict would the “morning star” and the

“evening star.” If the “morning star” is defined as the “last star visible in the morning” and

the “evening star” is defined as the “first star visible at night,” the conflict-detection algo-

rithms described here would not be able to determine that both the “morning star” and the

“evening star” are actually the planet Venus if “morning star” and “evening star” are both

given unique identifiers (rather than both being called Venus).

Medical examples of such conflicts can be generated by looking at any complex disease

with multiple names. One example would be non-bacterial verrucous endocarditis also

named Libman-Sacks disease (Robbins, Cotran & Kumar, 1984). Either term could be

defined as “mitral and tricuspid valvulitis due to disseminated lupus erythematous” or

alternatively defined as “mitral and tricuspid valvulitis due to autoantibody immune com-

plex activity on the mitral and tricuspid valves.” Notice that here the primary difference

between the definitions is that one definition defines the disease in terms of another dis-

ease (disseminated lupus erythematous) and another definition defines the disease in terms

of the disease process (autoantibody immune complex activity on the mitral and triscuspid

valves).

122 Computer Support for Collaborative Development

Detection of conflicts with differing definition and differing concept identifiers are outside

the scope of this dissertation. However, I emphasize that human review must be an ongo-

ing part of vocabulary development, thus providing a method by which such terminology

defects may be identified. The reliability of such identifications will rely on the computa-

tional tools and resources allocated for human review and on the training of the individu-

als involved.

Agreements among concurrent modelers regarding guiding principles, such as “descrip-

tion of the disease process is preferred over simply referring to another disease,” may help

minimize differing definitions. Enforcement of such agreements will require manual

review of the terminology, in addition to review of conflicting terminological definitions.

Section 3.5 discussed how implicit as well as explicit foundational models underly any

representation scheme. Any change made to the CMT must be consistent with the underly-

ing foundational models, and errors secondary to inconsistent use of such models may be

much harder to detect.

4.6 Summary and Discussion

This chapter has presented methodological solutions for many problems that may be

encountered during CMT development. The ideas presented here certainly do not solve the

universe of all development problems, however. The development process is a social one,

and the technological issues described here must fit within such social processes. As

noted, the conflicts not resolved by the technological solutions must also be resolved

within those social processes.

124 Computer Support for Collaborative Development

defined, the more easily consistency checks can be developed to see if any changes violate

foundational assumptions.

The foundational model used to define the conflict-resolution strategies in this chapter is

that of the Aristotelian concept hierarchy. The transactions described in Section 4.2 cre-

ated conflicts by violating either term-uniqueness constraints (each term in an Aristotelian

concept hierarchy, and in the CMT, is therefore unique) or term-consistency constraints (a

term only appears once in an Aristotelian concept hierarchy, and therefore must only have

one definition). In one case, two different terms were given the same definition; in the

other, the same term was given two different definitions. Section 4.3.4 presented strategies

for resolving conflicts created by violating the assumptions of the Aristotelian concept

hierarchy. As the CMT evolves, and as other foundational models within the CMT solid-

ify, similar methods for detecting—and resolving—conflicts specific to other foundational

models can be developed.

Evaluation of the approaches described in this chapter requires the combination of proto-

type applications that embody the core functionality, as well as a realistic test environ-

ment. Chapter 5 describes the prototype applications I developed to demonstrate the

feasibility of the concepts presented in this chapter. Chapter 6 presents an evaluation of

these prototype applications within a test environment drawn from a real-world effort to

perform concurrent CMT development.

125

Chapter5
The Galápagos:
Applications to Study Evolutionary
Terminology Development

The focus of this dissertation —a methodology to support distributed development of

logic-based terminologies using semantics-based concurrency control—was realized in a

suite of software applications that I refer to as the Galápagos. This chapter describes the

applications that either served as test vehicles for the evaluation described in Chapter 6, or

that have been enhanced to overcome limitations that were identified during the evaluation

(and thus better to illustrate the underlying methodology).

It would be a massive undertaking to develop a description-logic classification system,

complete with user interface, persistent database and all the features required to support

distributed development. Fortunately, applications were already available that had the core

functionality necessary (a description-logic classifier and a persistent database) to serve as

a foundation for Galápagos; it was unnecessary to develop these applications from scratch.

The prototype applications described herein are based on an existing modeling environ-

ment known as K-Rep (Mays et al., 1991).

126 The Galápagos: Applications to Study Evolutionary Terminology Development

There are four distinct applications discussed here: the K-Rep Developers Environment

(K-Rep DE), Isabella, Cristobal, and Rhabida.1 Each of these applications relies on a com-

mon classification engine and persistent database for processing description-logic state-

ments. The classification engine and database is referred to as the “K-Rep engine.” This

chapter presents this engine first, followed by discussions of the terminology development

cycle and of how the individual application prototypes support this cycle.

5.1 K-Rep: Classification Engine

Chapter 4 presented the methodology for detecting concurrent development conflicts.

These conflicts were detected by requiring the modelers to use description logic to repre-

sent their terminological definitions and then classifying the changes to determine if one

modeler’s work conflicted with another’s. There are many implementations of descrip-

tion-logic classifiers available (Borgida, Brachman, McGuinness & Resnick, 1989; Brach-

man et al., 1991; Brachman & Schmolze, 1985; Brill, 1993; Moser, 1983). K-Rep (Mays

et al., 1991) was chosen because it was already used within Kaiser Permanente’s clinical

information system projects, and its classifier functions were sufficient to demonstrate the

viability of semantics-based concurrency control. It was necessary, however, to ask

K-Rep’s development team to make one enhancement specifically for this dissertation

project: the addition of a journaling capability consistent with the change-set configuration

management model.2

1. Applications I created specifically for this dissertation are named after islands of the Galápagos. K-Rep
DE was developed by IBM’s T.J. Watson Research Center and utilizes the same underlying classifier and
persistent database as the Galápagos applications.

5.1 K-Rep: Classification Engine 127

K-Rep is a knowledge-representation system based on description logic. As such, it has a

well-defined, compositional, set-theoretic semantics, which allows it to generate infer-

ences algorithmically, based on terminological definitions. These inferences are made

available to a variety of applications through a C++ application programming interface

(API) that provide access to K-Rep’s underlying classification engine and persistent object

database.

Figure 5-1 illustrates K-Rep’s components and its functionality. Specifically, C++ API

calls propagate changes through a description-logic classifier into a persistent object data-

base while also appending those changes to a change-set file. The C++ API calls can

import or export a definition file. Any application that modifies a concept’s definition, or

imports or exports a definition file, can only do so through the C++ API, thus ensuring that

all modifications will appropriately be recorded in the change set, and that all imported

definitions will be processed by the classifier.

For interactive development of terminology, the K-Rep engine’s API calls are used by

K-Rep DE to show the relationship of a particular term to other terms within the system.

Applications use the API to determine if a concept is broader than, narrower than, equiva-

lent to, or disjoint from another concept. Alternatively, the API can be used to modify the

definition of a concept and thus cause reclassification of the terminology.

For semantics-based concurrency control, the K-Rep engine’s API calls are used to deter-

mine if any other term within the system has an equivalent definition to another (the

2. Change sets were previously introduced in Section 2.3.1 and terminology-specific change sets were
described in Section 4.3.3.

128 The Galápagos: Applications to Study Evolutionary Terminology Development

non-unique definition conflict—Section 4.2.1), or if a single term within the system was

defined by two different modelers in semantically conflicting ways (the multiply-defined

term conflict—Section 4.2.2). Chapter 4 described a scenario of changes to terminological

definitions, and further described how those conflicts can be identified and resolved.

Figure 5-2 summarizes those changes with a presentation of the KRSS definitions corre-

sponding to each state and represents how a description-logic classifier would classify

those definitions taxonomically. Ideally (although unattainably), a classifier can properly

classify all possible distinctions (a computationally intractable situation), and efficiently

process these distinctions (which is only possible if comprehensiveness of the classifier is

sacrificed).

Figure 5-1. K-Rep Engine components and pictographic representation of selected API
functions.

Description Logic Classifier

∆

C++ API

Persistant Object Database

Change Set

Definition File

Import/Export Definition FileModify Concept Definition

A B≡
R:C∃

5.1 K-Rep: Classification Engine 129

Although K-Rep can appropriately classify the KRSS definitions presented in Figure 5-2,

the K-Rep engine cannot classify all possible KRSS definitions. The K-Rep engine does

not allow definitions that use the complete expressive power of first-order logic. Instead,

its developers maintain it retains a “principled semantics” (Mays et al., 1991), using a

KRSS Concept Definition Taxonomic Classification

Original Classification
(defprimconcept DISEASE)

(defprimconcept PULMONARY-DISEASE DISEASE)

(defprimconcept INFECTIOUS-PNEUMONIA DISEASE)

Non-unique definition conflict
(defprimconcept DISEASE)

(defprimconcept PULMONARY-DISEASE
 (and DISEASE (some AFFECTS LUNGS)))

(defprimconcept INFECTIOUS-PNEUMONIA
 (and DISEASE (some AFFECTS LUNGS)))

Multiply-defined term conflict
(defprimconcept DISEASE)

(defprimconcept INFECTIOUS-PNEUMONIA
 (and DISEASE (some AFFECTS LUNGS)))

(defprimconcept INFECTIOUS-PNEUMONIA
 (and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)))

After conflict resolution
(defprimconcept DISEASE)

(defprimconcept PULMONARY-DISEASE
 (and DISEASE (some AFFECTS LUNGS)))

(defprimconcept INFECTIOUS-PNEUMONIA
 (and DISEASE (some CAUSED-BY INFECTIOUS-AGENT)
 (some AFFECTS LUNGS)))

Figure 5-2. Classification of terminological definitions.

130 The Galápagos: Applications to Study Evolutionary Terminology Development

computationally tractable subset of first-order logic, and most closely compares to CLAS-

SIC (Borgida et al., 1989). Table 5-1 shows the concept forming operators and the termi-

nological axioms that K-Rep supports.3

Although the K-Rep engine performs the necessary algorithms and database management

functions for defining and classifying terminological definitions, it does not directly pro-

vide a suitable interface for dynamic modeling of concepts, nor does it provide support for

Table 5-1. Concept forming operators and the terminological axioms of the K-Rep
language. Compare with the concept forming operators and terminological axioms of
the KRSS standard presented in Appendix B.

Concrete Form Abstract Form Description

Concept Forming Operators

top The “top” of the hierarchy from
which all concepts descend.

bot ⊥ The imaginary concept at the
“bottom” of the hierarchy.

(and C1...Cn) A logical conjunction of con-
cepts C1 through Cn.

(some R C) There exists at least one rela-
tionship R constrained to be of
type C.

(all R C) All relationships R are con-
strained to be of type C.

Terminological Axioms

(define-concept N C) N ≡ C C defines necessary and suffi-
cient conditions for N.

(define-primitive-concept N C) C defines necessary conditions
for N.

(disjointprimitives P1 P2) Primitives P1 and P2 are mutu-
ally exclusive.

3. Readers interested in learning more about the algorithms used by description-logic classifiers and the
trade-offs required to support different logical operators may be interested in the following references:
Boolos, 1993; Boolos & Jeffrey, 1989; Brachman & Levesque, 1984; Fitting, 1990; Garey & Johnson,
1979; Nebel, 1988.

⊥

C1∧...∧Cn

R:C∃

R:C∀

N C

P1 ∧ P2 = ⊥

5.2 Application Support for the Development Cycle 131

a coordinated terminology development cycle. It has been modified, however, to specifica-

tions required by this dissertation in order to generate a journal of all committed changes

made by modelers.4 This functionality provides a suitable foundation for applications

designed specifically to support the development cycle. By placing the journaling func-

tionality directly into the K-Rep engine, any application developed using the K-Rep API

and database is automatically compliant with the requirements necessary to support

semantics-based concurrency control and change-set configuration management.

5.2 Application Support for the Development Cycle

Although there are several development paradigms that differ in organizational perspec-

tive,5 the steps in the CMT development cycle from the perspective of an individual mod-

eler are constant. The cycle, presented in Figure 5-3, has four steps: 1) distribution, in

which the modeler acquires a baseline terminology from a central coordinator, 2) enhance-

ment, in which the modeler works to modify the CMT to correct defects and add new rela-

tionships and terms as necessary to meet local needs, 3) return, in which the modeler sends

the change sets produced as a by-product of local enhancement to the coordinator, and 4)

conflict resolution, in which the coordinator identifies conflicting changes made by indi-

vidual modelers and modelers work together to resolve those conflicts.

4. The necessary modifications to the K-Rep engine were made during a two month period while I was an
Academic Visitor at IBM’s T.J. Watson Research Center.

5. Section 1.4.2 presented a centralized-coordination, local-control development paradigm. Section 7.3.1
will describe alternatives to such centralized-coordination, local-control development.

132 The Galápagos: Applications to Study Evolutionary Terminology Development

To manage these development cycle tasks, four applications are used. Three of them, Isa-

bella, Cristobal, and Rhabida, are used primarily to manage tasks associated with distrib-

uted development. Isabella is used by the coordinator to manage the configuration of

terminological definitions; Cristobal is used by the coordinator to filter out terminological

enhancements that serve only local needs; while Rhabida is used by modelers to resolve

conflicts provided to them by the coordinator in such a way that the evolving baseline ter-

minology reflects a consensus of the modelers. The remaining application, (K-Rep DE) is

used exclusively by the modelers to enhance the terminology. These applications are dis-

cussed in the next four sections in the order encountered within the development cycle.

Coordinator task:
Generate a report that
identifies conflicts
created by the model-
ers (using Isabella).

Modeler task: Work
with the other model-
ers to resolve conflicts
(using Rhabida). Pro-
vide the coordinator
with the changes nec-
essary to resolve the
conflicts (any file
transfer method).

Coordinator task:
Once the conflicts are
resolved, import the
resulting changes into
the configuration
management system
(using Isabella).

Coordinator task: Export current CMT from configura-
tion management system (using Isabella).

Modeler Task: Import the CMT obtained from the coor-
dinator into local development tools (using K-Rep DE).

Modeler task:
Modify the CMT as
needed to meet local
needs (using K-Rep DE).

Coordinator task: No
responsibilities.

Modeler task: Send the change sets generated by local
enhancement to the Coordinator (using any file transfer
method).

Coordinator tasks: If necessary, filter out aspects of the
definition that have only local value (using Cristobal).
Import the change sets into the configuration manage-
ment system (using Isabella).

Figure 5-3. Terminology Development Cycle. Tools used to accomplish each step are in
bold-face.

Step 1:
Acquire CMT

Step 2:
Enhance CMT

Step 3:
Return changes

Step 4:
Identify and
resolve conflicts

5.2 Application Support for the Development Cycle 133

5.2.1 Isabella: Configuration Management and Conflict Identification

Isabella is a terminology configuration-management application. As such, it forms the

foundation for the Galápagos distributed-development support and implements the con-

flict-identification algorithms described in Chapter 4. Isabella can import change sets sub-

mitted by modelers into a configuration-management database, identify changes that

conflict with changes made by other modelers, and produce reports of these conflicts that

can be used by other applications—such as Rhabida—to resolve conflicts. Isabella sup-

ports the first step in the development cycle by allowing export of various configurations

of definition files that can be distributed to modelers for enhancement. Although Isabella

supports the first step in the development cycle, it also supports other steps in the develop-

ment cycle, as this section describes.

Isabella is a UNIX character-based application that provides a rudimentary user interface,

but with the essential functions necessary to support distributed development.When Isa-

bella is run initially on a terminology database, Isabella transforms it into a configura-

tion-management database. It accomplishes this by adding a data structure to represent all

states of a terminological definition as well as to represent when, and by whom, a termino-

logical definition was changed from one state to another. This data structure is a standard

directed-acyclic graph, in which the states of the terminological definitions are represented

by nodes and the transactions between states are represented by arcs. Hereafter, this data

structure is referred to as the definition state graph.

Once Isabella has initialized the configuration database, users can either work interactively

with the database using the character based menu shown in Figure 5-5, or access all func-

134 The Galápagos: Applications to Study Evolutionary Terminology Development

tions using UNIX command line switches, thus allowing functions to be scripted for unat-

tended execution. Isabella’s basic functions include: (1) importing a change set into the

configuration-management database (an initial step before initiating a development cycle),

(2) printing the defining states within the configuration database for a particular concept

(complete with all the information about the transitions between states), (3) exporting a

definition file (supporting step 1 of the development cycle), (4) reporting all the concepts

that are participating in a non-unique definition conflict or a multiply-defined term conflict

Figure 5-4. Isabella Architecture and representation of selected program functions.

∆
Configuration

Change Set

Definition File

Export Definition File

A B≡
R:C∃

?

ASCII Interface

Isabella

Import Change Set

Create Conflict Report

Conflict Report

Management
Database

5.2 Application Support for the Development Cycle 135

(supporting step 4 of the development cycle), and (5) resolving conflicts interactively (also

supporting step 4 of the development cycle).

When a change is imported, the starting and ending states are compared with existing

entries in the definition state graph. If the starting state and ending states already exist in

the definition state graph, the change is ignored (it has already been encountered in the

past). If an ending state is not found, a new node is created to represent the new ending

state, and an arc is added to the graph connecting that node with its starting state (or

against a “null” starting state if a node corresponding to the start state was not found).

If a new entry is created, this entry is classified to determine if it conflicts with another

(either a non-unique definition conflict or a multiply-defined term conflict). If it does not,

the entry is accepted as final, and the classification of the entire terminology is updated. If

the entry does conflict with another, the conflicting definitions are identified and the classi-

fication of the terminology—with respect to that concept—is postponed until the conflict

is resolved.

$ isabella snomed.kp.cms snomed.kp.cms-2.26.db

Opening persistent KB snomed.kp.cms in file snomed.kp.cms-2.26.db

Open...

==

1. import CS, 2. concept states, 3. export definitions,

4. conflict report, 5. resolve conflicts, q. (quit):

Figure 5-5. Isabella’s character-based interface, showing the command options
available to the coordinator who uses this module.

136 The Galápagos: Applications to Study Evolutionary Terminology Development

When a conflict report is generated, Isabella iterates through the terminology one concept

at a time and processes the definition state graph for each concept to see if there are any

unresolved conflicts. If any are encountered, it prints out the state graph for each conflict

and computes the different ways the conflicting concept might be similar (e.g., is one defi-

nition more specific than another? are the defining concepts equivalent? are the defining

relationships equivalent?). Figure 5-6 presents an entry from an actual conflict generated

when comparing Kaiser Permanente’s definition for “congenital syphilitic mucous

patches” with the equivalent representation in SNOMED version 3.3.

This conflict report entry shows the name of the concept in question (Congenital-syphi-

litic-mucous-patches_DE-14514) followed by the three states of the definition for this

term in the configuration database. The first state is a “null” state representing the defini-

tion of this concept before its creation, the second state is the definition created by Kaiser

Permanente, and the third state is derived from SNOMED 3.3.

Below these three states are two arcs. The first arc, from 1 to 2, with the comment “KP

start” below it, represents the initial creation of a definition for this term by a Kaiser Per-

manente modeler. The second arc, from 1 to 3, represents the initial created on a definition

for this term in an official SNOMED release. Notice that since these definitions were inde-

pendently created, they start from a “null” definition, rather than having one definition fol-

low from the other.

Since these two definitions are not equivalent, and since neither derived from the other,

they represent conflicting definition states for the concept “congenital syphilitic mucous

patches.” Isabella determined that these concepts are conflicting by performing a

5.2 Application Support for the Development Cycle 137

depth-first search over the definition state graph and determining that there was more than

one terminal node (both nodes 2 and 3 are terminal). If more than one terminal node is

found, Isabella then compares the definitions corresponding to the terminal nodes to deter-

mine how they are alike and how they are different. The results of this comparison is then

Congenital-syphilitic-mucous-patches_DE-14514

1 N

2 P (and Syphilis-NOS_DE-14300

 (some ASSOC-MORPH Patch-NOS_M-04200)

 (:SNOMED-CODE "DE-14514"))

3 P (and Syphilis-NOS_DE-14300

 Congenital-infectious-disease-NOS_DE-01900

 Sexually-transmitted-disease-NOS_DE-01600

 (some ASSOC-ETIOLOGY Treponema-pallidum_L-25901)

 (some ASSOC-TOPO Mucous-membrane-NOS_T-00400)

 (:SNOMED-CODE "DE-14514"))

Arc 1 2

"KP Start"

Arc 1 3

"SNOMED 3.3"

2 3 Facts

N // --Concepts are NOT equivalent--

AdjB // --Concept 2 is not subset or superset of 3--

DCNE // --Defining concepts are NOT equivalent--

DRNE // --Defining roles are NOT equivalent--

EndFacts

End

Figure 5-6. Example entry from a conflict report.

138 The Galápagos: Applications to Study Evolutionary Terminology Development

recorded in the conflict report as a set of facts. In Figure 5-6, these facts are immediately

below the line “2 3 Facts .”

As the example in Figure 5-6 shows, reviewing these reports can be very tedious, since it

is hard to determine exactly how the conflicting definitions are different—as well as how

they are alike. Although Isabella has a menu option that will allow a modeler to resolve the

conflicts interactively with the character-based interface, this interface was found to be

even more tedious than the paper-based reports. To overcome this problem, a separate tool,

Rhabida, was created to make reviewing and resolving conflicts more intuitive and effi-

cient. Since Rhabida relies upon the conflict reports generated by Isabella to function, Isa-

bella’s conflict resolution function will be more fully illustrated when the Rhabida tool is

discussed in Section 5.2.4.

5.2.2 K-Rep DE: Terminology Enhancement

The second step in the development cycle is enhancement of the CMT. The K-Rep Devel-

opment Environment (K-Rep DE) is the principal tool used by modelers to enhance the

terminology. Modelers can modify the definition of a term with K-Rep DE and interac-

tively review the classification results after committing each change. K-Rep DE is a UNIX

hosted X-Windows application. As such, K-Rep DE links with both the API provided by

K-Rep’s engine as well as X-Window’s API. Figure 5-7 illustrates K-Rep DE’s architec-

ture.

Using X-Windows, K-Rep provides a graphical user interface that allows the concepts in

the knowledge base to be displayed in hierarchical browser and allows modelers to create

5.2 Application Support for the Development Cycle 139

new defining relationships between terms through “add role” and “add parent” functions.

Figure 5-8 shows K-Rep DE’s taxonomic view. This view displays the concepts in a hier-

archical browser in which the location of individual concepts is based upon the classifica-

tion of individual terms, rather than strictly upon the defining relationships of those terms.

There are also other tabs within this window that can be selected to perform other opera-

tions on the terminology as a whole, such as searching for concepts whose names may

match an expression, or viewing all the roles that are defined for this terminology.

In order to view individual concepts in more detail, users can double click on them in the

taxonomy viewer or select concepts retrieved from the search function, and then be pre-

sented with a “concept viewer.” Figure 5-9 shows such a concept viewer for the term

Figure 5-7. K-Rep DE Architecture. K-Rep DE uses the K-Rep engine and provides an
interactive X-Windows interface.

∆
Modeler’s Database

Change Set

Definition File

Import Definition File

Modify Concept

K-Rep Developers EnvironmentX Windows

Display Functions

A B≡
R:C∃

140 The Galápagos: Applications to Study Evolutionary Terminology Development

“infectious pneumonia.” This figure shows a graphical representation of the definition for

infectious pneumonia equivalent to this KRSS definition:

(define-concept INFECTIOUS-PNEUMONIA
(and DISEASE (some AFFECTS LUNGS)

(some CAUSED-BY INFECTIOUS-AGENT)))

Figure 5-8. K-Rep DE’s taxonomy view. This view is used to browse the terminologies
classification hierarchically. Terms with children are indicated by buttons with either a
“-” (in the open state) or a “+” (in the closed state). The user may toggle between the
open and closed state by clicking on the button with the mouse. Terms that have more
than one immediate parent are indicated by the icon with two arrows. Terms that have
only one parent are shown by icons that have only one arrow. In addition, this view
differentiates terms that are fully defined (with a blue box at the bottom of the icon)
from those terms that are primitive (with an orange box at the bottom of the icon).

5.2 Application Support for the Development Cycle 141

Modelers can refine the definition of a term by selecting from among the appropriate func-

tions from pop-up menus which allow them to: (1) add or remove defining relationships

(roles), (2) add or remove value restrictions to a defining role, or (3) add or remove defin-

ing concepts to or from a concept’s definition.6

Although K-Rep DE was developed independent of this dissertation, changes made by

developers within this environment can be imported into the Isabella application because it

Figure 5-9. Concept viewer displaying the definition of “infectious pneumonia”.

6. Representation of these defining terminological relationships was previously presented in Section 3.3.

142 The Galápagos: Applications to Study Evolutionary Terminology Development

relies upon the K-Rep engine (which has been modified for this dissertation) to create

change sets.

When the developer commits the changes made to an individual term, the editing environ-

ment (1) records the changes in a change set that can be sent to the central coordinator, and

(2) verifies the internal consistency of the modeler’s CMT by ensuring that the new type

definition does not conflict with other type definitions within the CMT. The editing envi-

ronment looks only for local conflicts since it has no access to the changes of other devel-

opers.

5.2.3 Cristobal: Filter Changes

The third step in the development cycle is to collect enhancements of the CMT and to filter

out changes that are strictly of isolated (local) interest. There are many circumstances

when such a filter step is necessary, one of which is presented below in a scenario.

Suppose a modeler experiments with a new model for anatomical relationships. She

chooses to represent more detail in her model than is allowed using a simple IS-PART-OF

relationship that the other modelers have agreed to use. She defines two specializations of

these relationships: IS-A-FUNCTIONAL-PART-OF (for defining relationships between a func-

tional component—such as the knee—and the physical parts that together constitute that

functional component—such as the patella) and IS-A-PHYSICAL-PART-OF (for defining

relationships between structural components—such as the femur—and other structural

components that are physically integral parts of the femur—such as the femoral head).

Since these two roles are proper subtypes of the IS-A-PART-OF role, anytime an IS-A-FUNC-

5.2 Application Support for the Development Cycle 143

TIONAL-PART-OF or IS-A-PHYSICAL-PART-OF role is defined, it is appropriate to apply the

IS-A-PART-OF relationship. The modeler also defines one new role that has no equivalent in

the convergent terminology: IS-A-TRIBUTARY-OF (for defining relationships between larger

vessels—such as the aorta—and connected smaller vessels—such as the subclavian

artery).

A simple filtering application can allow modelers to do these kinds of experiments while

providing a transformation function that can convert their change sets into the format

agreed upon by the other modelers. If the relationships that are to be filtered out are always

more detailed than the relationships in the reference model, a simple parsing application is

adequate for this purpose, provided that it can identify all the tokens in a change set, use a

memory-resident mapping table to determine which tokens should be substituted, and

write the filtered change set to disk.

Although this filtering functionality was not anticipated as part of the original proposal,

circumstances within the Kaiser Permanente project made such an application essential to

allow continued collaboration between groups who, while agreeing to certain general prin-

ciples of modeling, wanted to include additional application-specific enhancements they

did not want incorporated into the reference terminology. Cristobal is an example of such

a simple one-way filter. Figure 5-10 is a representation of Cristobal’s filtering functional-

ity.

Cristobal currently does not support situations in which the local model is in some cases

more general and in other cases more specific than the reference version. Such support is

planned, however, for future versions (see Section 7.3.2).

144 The Galápagos: Applications to Study Evolutionary Terminology Development

5.2.4 Rhabida: Conflict Resolution

The final step in the development cycle is to identify and resolve conflicts. Isabella is the

application that identifies the conflicts and generates a report enumerating them. Rhabida

is designed to parse the conflict reports and to present the conflicts to the user in an intui-

tive and efficient manner. Figure 5-11 is a representation of Rhabida’s architecture and

functionality.

Figure 5-10. Representation of Cristobal’s filtering functionality.

Figure 5-11. Rhabida architecture and representation of its functionality. Rhabida
interacts with the user through the Java Abstract Window Toolkit (AWT).

∆
Original Change Set

∆
Filtered Change Set

Cristobal

Mapping File

Α➔B

∆
Change Set

?
Conflict Report

Resolve Conflicts

Java AWT

Rhabida

5.2 Application Support for the Development Cycle 145

Rhabida has no real-time connection with the K-Rep engine. Instead, it relies entirely

upon information contained within the conflict report generated by Isabella. As users

resolve conflicts with Rhabida, their actions are captured in change sets (the same format

as change sets generated by K-Rep DE). These change sets are then imported into the con-

figuration database by Isabella to resolve the conflicts.

Rhabida was designed to present conflicts to users in a visually intuitive and efficient

interface. Figure 5-12 shows the Rhabida conflict resolution interface. The example pre-

sented in this figure is the same example presented in a textual conflict report in

Figure 5-6. There are several features that make the Rhabida interface easier to use than a

strictly character-based interface.

The first of these is the computation of the maximal common definition and the conflicting

parts. The conflicting definitions, presented in the lower panel of Figure 5-12, are pro-

cessed by an efficient maximal common subgraph algorithm to determine what defining

features the definitions share.7 Common features are colored white, and initially presented

in the upper left pane of the Rhabida window. Conflicting defining features (or parts of a

definition) are color coded in sequential colors and presented both within the definitions

from which they are derived as well as collectively in the upper right pane of the Rhabida

7. Computation of the maximal common subgraph is of course intractable (it is NP complete) (Garey &
Johnson, 1979). However a backtrack search algorithm combined with methods for ordering the search
and for limiting the search by refuting intermediate invalid states can provide acceptable performance in
selected domains (McGregor, 1982). Rhabida orders the search using the term labels to limit the domain
values for the backtrack search (nodes are only considered valid candidates if their labels lexically
match), and by using heuristics to test validity of intermediate states (e.g. a node can only be validly
mapped to another if the parents of those nodes are also mapped to each other; and a search should only
be continued if the sum of the nodes currently matching and the nodes unassigned is greater than or equal
to the previous “best” match). Using these three methods for limiting the search space, example graphs
that take 48,000 iterations in the worst case to compare have been reduced to 70 iterations.

146 The Galápagos: Applications to Study Evolutionary Terminology Development

window. The sequential colors allow users to quickly track the conflicting parts between

the part panel and the panel displaying the conflicting definitions.

To resolve conflicts, the users review the conflicting parts, and then determine which—if

any—parts they wish to include in the “resolved” definitions. The parts may be included

simply by double clicking on the desired part in the upper right panel. Those parts are then

added to the maximal common definition in the upper left panel. Since they maintain their

respective colors, they remain easy to track. Once users are satisfied with resolved defini-

tion, they click on the “commit” button. Rhabida will then write the changes to the commit

journal, and then process the next conflicting definition in the conflict report.

Figure 5-12. Rhabida tool demonstrating conflicting definitions of
CONGENITAL-SYPHILITIC-MUCOUS-PATCHES.

Maximal common definition Conflicting parts

Conflicting definitions made by two modelers

5.3 Prototype Application Summary 147

Once the conflicts have been resolved, the change set generated by Rhabida is imported by

Isabella into the configuration database.

5.3 Prototype Application Summary

 Rather than looking at the development process strictly through the eyes of a modeler, the

prototype applications described in this chapter have been designed to support important

steps in this cycle that are ignored by traditional description-logic development applica-

tions such as the conflict identification, conflict resolution, and change-set configuration

management. Figure 5-13 brings these steps into higher relief. It is based on the same

development cycle originally presented in Figure 5-3, but focuses on the flow of informa-

tion among the Galápagos applications. It uses the previously presented representations of

Isabella, Rhabida, Cristobal, and K-Rep DE to clarify the relationships among these appli-

cations, change sets, definition files, and conflict reports, as well as to reinforce the order

in which these applications are encountered within the development cycle.

In step one, Figure 5-13 shows the information flow as a coordinator exports a definition

file from the configuration database using Isabella. A modeler subsequently imports that

definition file into the local database using K-Rep DE. In step 2, the modeler enhances the

CMT using the K-Rep DE application. All changes made using K-Rep DE are captured as

change sets. In step 3, the change set created by terminology enhancement is filtered by

the Cristobal application to remove any relationships that are strictly of local interest.

Once filtered, these changes are then imported into the configuration database by Isabella.

Finally, in step 4, Isabella generates a conflict report identifying any conflicting changes.

5.4 Future Needs for CMT Development Applications 149

5.4 Future Needs for CMT Development Applications

Although the Galápagos applications provide support for each step in the development

cycle, there are certainly ample opportunities for improvement. Examination of Figure 5-3

makes the number of steps readily apparent. The number of file transformations involved

in the development cycle is an obvious area where the process can be improved. Although

it might not reduce the actual number of steps in the process, providing an environment in

which the functions of Isabella, Rhabida, Cristobal, and K-Rep DE are all integrated

would significantly simplify management of the development cycle by eliminating the

need to manage files that are constantly being exported from one application only to be

imported into another.

Finally, although Cristobal filled an important need within the Kaiser Permanente project,

the exchange of information is unidirectional. This kind of exchange is only a temporizing

solution. The group benefits through application of the filtered change sets to the conver-

gent terminology, but individuals are unable to apply the work of others to their locally

enhanced terminology,8 thus limiting their benefit from the collaboration. This filtering

8. Because of the impedance mismatch created by using relationships that are more specific than those in
the convergent terminology model, the filtering of changes is only unidirectional. Consider the example
presented in Section 5.2.3 where a modeler chose to use IS-A-FUNCTIONAL-PART-OF and IS-A-PHYSI-
CAL-PART-OF rather than the agreed upon IS-PART-OF relationship. Although the modeler can work locally
with the IS-A-FUNCTIONAL-PART-OF and IS-A-PHYSICAL-PART-OF relationships, and have those relation-
ships generalized by Cristobal to the IS-PART-OF relationship for the convergent terminology, the reverse
is not true. When modelers at other sites make changes to the IS-PART-OF relationship, Cristobal is unable
to determine which of the more specific relationships (IS-A-FUNCTIONAL-PART-OF or IS-A-PHYSI-
CAL-PART-OF) should be applied when filtering changes destined for the site with the more specific rela-
tionships, therefore, any change made to the IS-PART-OF relationship at other sites cannot be directly
applied, thus limiting that sites benefit from the collaboration. Exchange of relationships other than the
IS-PART-OF, IS-A-FUNCTIONAL-PART-OF or IS-A-PHYSICAL-PART-OF remains unhindered (thus the benefits
of the collaboration are not eliminated).

150 The Galápagos: Applications to Study Evolutionary Terminology Development

functionality must be improved before meaningful bidirectional exchange of work is prac-

tical.

151

Chapter6
Evaluation

To demonstrate the validity of the approach outlined in this dissertation, I have adopted an

evaluation framework outlined in a recent report from the National Research Council

(1994). That framework includes three components: 1) proof-of-existence, 2) proof-of-

concept, and 3) proof-of-performance. The first of these, proof-of-existence for semantics-

based concurrency control, has already been demonstrated by researchers in other fields

(Barghouti & Kaiser, 1991; Garcia-Molina, 1983). My evaluation of Galápagos has thus

been designed first of all to demonstrate as a proof-of-concept that semantics-based con-

currency control methods are transferable to the task of developing logic-based terminol-

ogy, and, second, to demonstrate as a proof-of-performance that semantics-based

concurrency control methods can meet performance expectations for routine use.

My thesis (Section 1.4.5) was evaluated using the applications described in Chapter 5. As I

describe in the remainder of this chapter, I have shown that:

• Distributed development of a logic-based CMT generates conflicts detectable by Aris-

totelian classification.

152 Evaluation

• Once identified, a coordinating modeler can resolve these conflicts by interacting with

the prototype configuration management environment described in Chapter 5. The

results of these resolutions can be stored in a configuration management environment

that is capable of exporting and importing change sets.

• The configuration management environment can utilize the change sets to coordinate

CMT configurations among multiple sites.

6.1 Proof-of-Concept1

For the proof-of-concept of semantics-based concurrency control, existing data were

imported into Galápagos to verify the environment’s ability to identify conflicts. Conflict-

ing definitions were then presented to a group of terminology modelers to introduce them

to Galápagos’ methods and to obtain their initial reactions.

Kaiser Permanente and the Mayo Clinic have been working to enhance SNOMED for use

in their electronic medical record projects. As a pragmatic first step in formalizing

SNOMED, Lexical Technology, Inc. (LTI) generated reports by using lexical inferences

from a term’s names and synonyms to suggest relationships between terms. The term

DIARRHEA-DUE-TO-ESCHERICHIA-COLI, for example, is classified as a diarrheal illness in

SNOMED, but it may not be linked to the living organism ESCHERICHIA-COLI with a for-

mally defined relationship. LTI processed the SNOMED nomenclature to generate reports

with many suggested relationships of this sort (Lipow et al., 1996).

1. This section is adapted from a paper presented at the 1996 Fall Symposium of the American Medical
Informatics Association (Campbell et al., 1996).

6.1 Proof-of-Concept 153

The LTI analysis proposed approximately 250,000 IS-A, DUE-TO, HAS-MORPHOLOGY, HAS-

FUNCTION, and AFFECTS relationships for SNOMED. These relationships were then split

into several hundred smaller files which were an appropriate size to review in about an

hour. These files were distributed to Kaiser Permanente and Mayo Clinic for reviewers to

accept or reject the proposed relationships. In most cases, only one reviewer evaluated

each file. In a small number of cases, however, the files were reviewed by more than one

individual; these multi-reviewer cases formed the basis of the Galápagos proof-of-concept

experiment.

6.1.1 Conflict Detection

The files reviewed by multiple individuals were processed into description-logic concept

definitions, and then imported into the Galápagos environment. Galápagos generated a

conflict report that identified all terms with multiple definitions and it classified each pair

of definitions for a single term as either semantically equivalent or semantically conflict-

ing.

Mayo and Kaiser Permanente each modified the definitions of 1843 SNOMED disease

terms by creating new DUE-TO relationships between the SNOMED disease terms and

other SNOMED terms representing the etiology of the disease. These DUE-TO relation-

ships were created by either accepting or rejecting candidate relationships. Of the 1843

terms modified, just 82 definitions were defined differently by the two sites for an overall

conflict rate of 4.4%. Of the 82 conflicts, 14 were judged to be semantically equivalent

(see Figure 6-1) and 68 were semantically conflicting (see Figure 6-2).

154 Evaluation

6.1.2 Conflict Review

The conflict report generated after Galápagos imported and classified each of the defini-

tions was reviewed by modelers at Mayo Clinic and at Kaiser Permanente. Although there

Original Definitions:
(defprimconcept ZIKA -VIRUS-DISEASE

(and DISEASE-DUE-TO-FLAVIVIRUS))

(defprimconcept ZIKA -VIRUS (and VIRUS))

Mayo Clinic Modification:
(defprimconcept ZIKA -VIRUS-DISEASE

(and DISEASE-DUE-TO-FLAVIVIRUS
(some DUE-TO VIRUS)
(some DUE-TO ZIKA -VIRUS)))

Kaiser Permanente Modification:
(defprimconcept ZIKA -VIRUS-DISEASE

(and DISEASE-DUE-TO-FLAVIVIRUS

(some DUE-TO ZIKA -VIRUS)))

Figure 6-1. Semantically equivalent changes.

Original Definitions:
(defprimconcept RETINOIC-ACID-EMBRYOPATHY

(and MULTIPLE-MALFORMATION-SYNDROME))

Mayo Clinic Modification:
(defprimconcept RETINOIC-ACID-EMBRYOPATHY

(and MULTIPLE-MALFORMATION-SYNDROME)
(some DUE-TO RETINOIC -ACID))

Kaiser Permanente Modification:
(defprimconcept RETINOIC-ACID-EMBRYOPATHY

(and MULTIPLE-MALFORMATION-SYNDROME)
(some DUE-TO RETINOIC -ACID)
(some DUE-TO ACID))

Figure 6-2. Semantically conflicting changes.

6.1 Proof-of-Concept 155

was no formal study of the response to the conflict report, modelers at both sites noted

that:

• The overall low conflict rate was reassuring, although its validity for tasks other than

the review of lexically-generated reports was uncertain. Since the lexically-generated

reports constrained the modeler to answering only yes or no to the proposed relation-

ships, the modelers were not allowed to propose any new relationships. Therefore, the

number of conflicts encountered may not generalize to tasks where the modeler is

allowed to make unconstrained changes to any number of concepts. Fortunately, the

next section will show that even when users are allowed to make unconstrained

changes, the conflict rate has continued to be manageable.

• The concurrent work provided a mechanism for identifying many mistakes and improv-

ing the quality of the work since it was unlikely that two modelers would make identi-

cal errors.

• Some of the conflicts identified different approaches to the modeling task, and discus-

sion of such conflicts at an early stage was helpful for clarifying the design task. For

example, reviewing the conflicts revealed that the DUE-TO relationship was being

applied inconsistently. Figure 6-2 shows one example of such inconsistent use (one

modeler was considering ACID to be any “strong” or “weak” acid, another modeler was

156 Evaluation

only considering ACID to be a “strong” acid2). Identifying such conflicting application

of terms or relationships through semantics-based concurrency control—and resolving

those conflicts—provides a structured framework for ensuring consistent modeling.

• The classification of conflicts into semantically equivalent and semantically conflicting

categories provided a means to review the quality of the hierarchy that was related to,

although not directly defined by, the conflicting definitions. For example, if a concept

was defined in two different—but redundant—ways (as is the case with the definitions

presented in Figure 6-1), and, the classifier failed to recognize that the concepts were

equivalent, (as would be the case for the example in Figure 6-1 if another relationship

had failed to represent that ZIKA -VIRUS is-a VIRUS), then a defect in the hierarchical

classification related to the concept of interest can be identified.

Although this demonstration of the Galápagos semantics-based concurrency control meth-

ods was a major project milestone, and laid the foundation for the subsequent evaluation

work described in the remainder of this chapter, retrospective analysis of this demonstra-

tion—with the clarity provided by subsequent project experience—reveals that a signifi-

cant opportunity was lost. At the time, the project focus was on preparing the tools for

distributed, interactive, terminology development (using the K-Rep DE application

described in Section 5.2.2), and the lexically-generated reports were viewed as an efficient

approach to “bootstrap” the process. Although a few reports were edited redundantly by

more than one modeler, the vast majority of reports had no such redundant review in the

2. A chemical substance that yields hydrogen ions upon ionization is defined as an acid. A strong acid
undergoes complete ionization (hydrochloric acid and sulfuric acid are examples of strong acids). A
weak acid undergoes partial ionization (acetic acid (household vinegar) and amino acids (building
blocks for proteins) are examples of weak acids) (Bohinski, 1973).

6.1 Proof-of-Concept 157

interest of developing a baseline terminology as quickly as possible. The few cases where

there was duplication of effort were seen as an opportunity to validate the behavior of the

conflict-detection and configuration-management software intended to support the interac-

tive tools, not as an opportunity to review the actual conflicts in a group setting and thus

provide an opportunity for group convergence on modeling principles.

This oversight was made apparent during a presentation of the findings of this experiment

to the modeling group. The presentation focused on the assertion that the conflict-identifi-

cation and configuration-management tools had been successfully validated, and pre-

sented five representative examples of the 82 conflicts identified. Although the group

found the examples presented interesting, they were not satisfied with those limited exam-

ples, and as a group, they wanted to go through all the conflicts and converge upon termi-

nology modeling principles. The project’s need to move to the next phase as quickly as

possible prevented further review of the lexically proposed relationships. Had these rela-

tionships been further reviewed, and conflicting design decisions identified at this early

phase of the terminology project, subsequent phases of the project may have been less

problematic.3

3. Section 7.2.2 presents a subsequent problem introduced in part by spending inadequate time reviewing
the lexically generated reports and identifying conflicting relationships accepted by different modelers.
As of this writing, these relationships are being re-reviewed by the modelers. Each relationship is
reviewed by at least two modelers, conflicts are identified using the same methodology described here,
and conflicts are being resolved through a consensus process.

158 Evaluation

6.2 Proof-of-Performance4

Shortly after the Galápagos applications demonstrated correct conflict-identification and

configuration-management capabilities, the Kaiser Permanente CMT project moved into

its next phase: interactive, distributed terminology development using the K-Rep DE

application. Prior to this phase, all terminology work was coordinated by allowing only

one modeler to work on the terminology at a time. The productivity demands of the CMT

project quickly made such coordination untenable. One of the Kaiser Permanente regions

(Colorado) had hired and was in the process of training two additional modelers (for a

total of three), and they wanted these modelers to work concurrently on the terminology.

They were faced with significant pressure to deliver a terminology suitable for use within

their electronic medical record application. Additionally, this region wanted to enhance a

portion of the terminology (the disease axis of SNOMED) that was being concurrently

enhanced by two modelers in another of the Kaiser Permanente regions (Northern Califor-

nia), and also wanted to enhance a third portion of the terminology (the procedure axis of

SNOMED) that was being concurrently enhanced by a modeler in a third Kaiser Perma-

nente region (Southern California).

These three Kaiser Permanente regions provided the setting for evaluating whether the

Galápagos applications would perform up to the standards necessary for routine use. For

this evaluation, data were collected prospectively over a six month period (5/96-11/96). As

this section will show, the typical number of conflicts identified did not impose an undue

4. This section was presented to the IMIA WG6 conference on Natural Language and Medical Concept
Representation. Jacksonville, FL. January, 1997. A revised version of that presentation will appear in a
special issue of Methods of Information in Medicine.

6.2 Proof-of-Performance 159

burden on the development process and discussions of the conflicting definitions actually

helped the modelers to focus productively on modeling tasks. Finally, the evaluation

showed the need to prevent a large number of trivial conflicts.

Five development cycles, beginning with distribution of a baseline terminology and culmi-

nating with the merging of changes from multiple site to generate a new baseline terminol-

ogy, were completed during the data collection period. Each cycle had a merge process in

which individual modelers’ changes were imported into the configuration-management

system, the resulting conflicts were identified and resolved, and a new baseline was gener-

ated. Table 6-1 presents the statistics for the individual merges that took place during the

evaluation period. Merge 1 was particularly critical, and was closely scrutinized by Kaiser

Permanente’s CMT project management.

Although the validation step for the Galápagos applications demonstrated that they could

appropriately identify and allow modelers to resolve conflicts, some of the CMT managers

were uncertain how the applications would perform in a setting where the modelers could

make unconstrained changes (this limitation of the semantics-based concurrency control

Table 6-1. Statistics for the 5 merges included in the 6 month evaluation period.

Modelers Changes MDTa Conflicts

a. MDT is an abbreviation for “multiply defined term.” Multiply-defined-term conflicts are illus-
trated in Figure 4-2 on page 91.

Conflict Rate

Merge 1 3 1,816 39 2.2%

Merge 2 2 1,174 17 1.5%

Merge 3 4 45,079 249 0.55%

Merge 4 4 4,647 895 19%

Merge 5 4 1,610 16 0.99%

Total 54,326 1,216 2.2%

160 Evaluation

proof-of-concept was discussed in the previous section). They required further convincing

before they would allow complete reliance on the Galápagos applications. As an initial

test, three of the Colorado modelers were instructed to work for three weeks on overlap-

ping portions of the terminology.

Once the modelers had submitted their work developed using K-Rep DE, and Isabella5

had imported those changes and identified the conflicts they concurrently created, the

modelers met to discuss ways to resolve their conflicts. This first session was audio-taped.

I moderated this first session, and IBM’s K-Rep development manager also participated in

the session.6 When this conflict-resolution session was completed, and the conflicts were

resolved, the modelers reported their experiences to their management.

The modelers had concurrently worked for three weeks on terminology enhancement, and

during those three weeks created only 39 conflicts (2.2% of all transactions). They com-

pleted their editing on a Friday, and submitted their change-sets for importation into the

configuration management database. The change-sets were imported over the weekend,

and a conflict report was available for them Monday morning. On Monday morning, they

met to discuss proper resolution of the conflicts, and that afternoon, the conflicts were

resolved and a new baseline terminology was generated. Essentially, the modelers

incurred one day of overhead in return for being able to work concurrently for three

weeks. Kaiser Permanente’s CMT Management found that this overhead was acceptable,

5. Isabella was previously described in Section 5.2.1.

6. A transcript from this session is presented in Appendix A, and an analysis of a portion of that session is
also presented in Section 6.2.1.

6.2 Proof-of-Performance 161

and thus provided approval for reliance upon Galápagos for concurrency-control and con-

figuration management.

As Table 6-1 indicates, there were 54,326 observed transactions during the entire 6 month

evaluation. Overall, these transactions resulted in a multiply-defined-term conflict rate of

2.2%, which was again found to be acceptable by the Kaiser Permanente CMT project

managers (coincidentally the same overall rate as the rate for the first merge, upon which

reliance on the Galápagos applications was contingent). Merge 4, however, was an outlier

with a 19% conflict rate. Examination of the transactions involved in this merge revealed

that one of the modelers had imported a set of changes that was larger than is ordinarily

made possible by manual editing of the terminology. Moreover, these changes affected a

portion of the terminology where other modelers at other sites were actively making

changes.

Following this merge, a policy was adopted of doing bulk imports only on baseline termi-

nologies (before distribution), thus assuring that such large scale conflict rates would not

be encountered in the future.7

In the following pages I present representative examples of multiply-defined-term con-

flicts encountered during the six month evaluation. These conflicts illustrate that multiply-

defined-term conflicts can be further classified into semantically-conflicting changes

(Figure 6-3) and semantically equivalent changes (Figure 6-4).

7. Section 6.2.2 discusses alternative methods for resolving such outliers efficiently.

162 Evaluation

Semantically-conflicting changes are the most interesting from the perspective of termi-

nology modeling because such conflicts presage a lively debate surrounding the “true

nature” of the world and the “proper” way it should be modeled. Figure 6-3 presents such

an example. In this case, both modelers felt that the existing definition of FLEXION was

incorrect (they both removed the defining concept MUSCULOSKELETAL-SYMPTOM), but

they disagreed on the proper way to define FLEXION. Their debate concerning the “proper”

way this concept should be modeled is presented in Section 6.2.1. Semantically-conflict-

ing changes, however, may also be reflective of more mundane problems—either a simple

mistake by one of the modelers or an incomplete definition by one or all of the terminol-

ogy modelers involved in the conflict.

The semantically-equivalent conflict (Figure 6-4) illustrates the potential power of the

underlying classifier to resolve some classes of conflicts on its own. When conflicting con-

cepts are semantically equivalent, the underlying environment can either chose the sim-

plest or the most comprehensive definition and thereby resolve the conflict with no human

intervention. For this early work, however, in which the underlying terminology is imma-

Original SNOMED derived Definitions:
(defprimconcept FLEXION

 (and MUSCULOSKELETAL -SYMPTOM))

Modeler 1 Modification:
(defprimconcept FLEXION

 (and MUSCLE-FUNCTION))

Modeler 2 Modification:
(defprimconcept FLEXION

 (and JOINT -FUNCTION))

Figure 6-3. Semantically-conflicting changes from Kaiser Permanente development.

6.2 Proof-of-Performance 163

ture and classification is often unpredictable due to mistakes in distant portions of the hier-

archy, I and my collaborators chose to continue to resolve such conflicts manually.

The final class of conflict, the non-unique definition conflict, is illustrated in Figure 6-5.

These are usually the result of incomplete definition of terms. In the case illustrated, the

body site and root operation were imported from information encoded within the

SNOMED procedure code. During the term of the evaluation, 12,944 such conflicts were

identified. Nearly all of these (12,876) resulted from importing the body site and root

operation from the SNOMED procedure codes, while a small number (68) were created by

the modelers during their iterative refinement of existing definitions.

After Galápagos imported and classified each modelers’ change sets, a conflict report was

generated that listed all of the terms with multiple definitions and classified each pair of

Original SNOMED Definition:
(defprimconcept ABSCESS-OF-THIGH

 (and ABSCESS-OF-SKIN-AND-SUBCUTANEOUS-TISSUE))

Kaiser Permanente Modification:
(defprimconcept ABSCESS-OF-THIGH

 (and ABSCESS-OF-SKIN-AND-SUBCUTANEOUS-TISSUE)
 (some ASSOC-MORPH ABSCESS)
 (some ASSOC-TOPO THIGH-NOS))

SNOMED 3.3 Cross-Reference:
(defprimconcept ABSCESS-OF-THIGH

 (and ABSCESS-OF-SKIN-AND-SUBCUTANEOUS-TISSUE)
 (some ASSOC-MORPH ABSCESS)
 (some ASSOC-TOPO SUBCUTANEOUS-TISSUE-NOS)
 (some ASSOC-TOPO THIGH-NOS))

Figure 6-4. Semantically-equivalent changes. Although the definitions are different, the
K-Rep classifier used inheritance to determine that the concepts are semantically
equivalent. Such conflicts are candidates for automated conflict resolution.

164 Evaluation

definitions as semantically equivalent or as semantically conflicting. This report was then

reviewed at a group meeting involving modelers who participated in the development pro-

cess. Here the conflicts were discussed, and a consensus was sought to guide the resolu-

tion of the conflicts.

Typically, resolution of the conflicts identified after each merge cycle required an after-

noon—a reasonable price to pay for the ability of the modelers to work in parallel. The

conflict resolution process was not limited to the clerical work of identifying obvious solu-

tions to conflicting definitions. In some cases, group discussions of the conflicting defini-

tions led to an improved common understanding of the modeling task which was an

overall benefit to the development process.

6.2.1 Conflict Resolution and Evolutionary Design

As was noted earlier, support for an evolutionary design by periodic reconciliation of the

conflicts created through parallel local enhancement has been a fundamental principle of

Galápagos. Although group discussions of conflicts do not always yield improved under-

(defconcept ARTHROSCOPY-OF-SHOULDER

(and SHOULDER-AND-ARM-ENDOSCOPY)
(some HAS-BODY-SITE UPPER-EXTREMITY)
(some HAS-ROOT-OPERATION ENDOSCOPY))

(defconcept ARTHROSCOPY-OF-ELBOW

(and SHOULDER-AND-ARM-ENDOSCOPY)
(some HAS-BODY-SITE UPPER-EXTREMITY)
(some HAS-ROOT-OPERATION ENDOSCOPY))

Figure 6-5. Non-unique definition conflicts. Two concepts with identical definitions.
The relations for body site and root operation were imported directly from SNOMED.

6.2 Proof-of-Performance 165

standing of the design process, there are frequent cases where meaningful discussion is

prompted by evaluation. Figure 6-3 represents such an example. It was the focus of the

following discussion transcribed from the first conflict-resolution session whose partici-

pants included three of the CMT modelers, K-Rep’s development manager, and myself.

For this session, I acted as a moderator, trying to promote discussion among the modelers,

yet also being careful not to impose my own vision of the modeling activity.

Two of the three CMT modelers had independently reviewed the original definition8 for

flexion, and thought they could improve it with their respective changes. They both agreed

that the existing definition was incorrect as evidenced by their removal of the musculosk-

eletal symptom term. The “correct” solution was not immediately apparent, but through

the process of discussing their modeling of flexion, they developed a new shared under-

standing of their modeling task which they subsequently applied to the similar conflicts

created for extension, abduction, and adduction. A transcript of their discussion follows:9

Modeler 2: I think it is a musculoskeletal function, as I wrote, so really it is both.
Moderator: So you would go back to a more general term [musculoskeletal function
rather than either of the more specific terms joint function or muscle function].
Modeler 2: If joint function is a musculoskeletal function and muscle function is a mus-
culoskeletal function then I would categorize flexion separately under each.
Moderator: Under both [muscle function and joint function]?
Modeler 1: Separately under both?
Modeler 2: Yes.
Modeler 3: That’s fine. Really it has very different meaning. Flexion is a muscle func-
tion.
Modeler 1: Really the joint has the movement.
Moderator: Isometric exercise involves muscle function with no joint movement.

8. The original definition in this case was derived from the hierarchy embedded within the SNOMED ter-
mcode.

9. Notice that the discussion involves the entire group, not just the two modelers involved in creation of the
conflict.

6.2 Proof-of-Performance 167

As the diagram clearly shows, the evidenciary arguments cannot be reconciled with the

existing hypothesis that flexion is either a muscle function, a joint function, or both. As the

discussion continued, the modelers revised their conflicting hypotheses to satisfy all the

evidenciary arguments:

Modeler 2: So you [Modeler 3], would categorize active flexion under muscle function
Modeler 1: And joint function
Modeler 2: And passive flexion under flexion and nothing else.
Modeler 3: I would say that flexion is something done to a joint by an actor. In active
flexion the actor is the muscle that crosses that joint. In passive flexion the actor is
extrinsic. Is environmental.
Modeler 2: OK. So, Flexion is a joint function?
Modeler 3: Flexion and extension and rotation...
Modeler 2: So we take the 3rd option here.We delete the muscle function as a parent.
Modeler 1: But what if we add a concept called active flexion?

10. Some researchers (Cavalli-Sforza, Weiner & Lesgold, 1994; Suthers, Weiner, Connelly & Paolucci,
1995) are exploring how collaborative software can help to develop scientific thinking skills by allowing
students to develop argumentation diagrams collaboratively, similar to the ones presented here, that
illustrate their collective understanding of assigned scientific questions, as well as provide a structured
approach to examining the validity of a hypothesis. Such approaches may be adaptable for collaborative
conflict resolution.

Conflicting Hypotheses Arguments Conflicting Classification

Figure 6-6. Argumentation diagram of arguments and conflicting hypotheses and the
conflicting classifications for flexion. Arrows indicate arguments supporting a
hypothesis. The arrow with an X indicates an argument refuting a hypothesis.

Flexion is a
muscle function

Flexion is a
joint function

MUSCULOSKELETAL -FUNCTION

MUSCLE-FUNCTION JOINT -FUNCTION

FLEXION

? ?

The joint has the movement

Flexion requires a joint

Flexion requires a flexor

A flexor can be a muscle

A flexor can be extrinsic

168 Evaluation

Modeler 3: Yes active flexion has a joint that is flexed but it also has a muscle group
that is the performer of the flexion.
Modeler 1: Well [the muscle group] is used as an effector.
Modeler 2: So it will have two parents. It will have a parent that is a muscle function
and a parent that is a joint function.
Moderator: So for flexion we will preserve it as a joint function but it would be a good
idea to add active flexion... Well maybe this should be Flexion, NOS and we should add
Active Flexion, NOS and Passive Flexion, NOS.
Modeler 2: Right, so we are going to have to add some concepts.
Modeler 1: Well, they may already be there. We just haven’t looked.
Modeler 2: Yes, we need to look.
Modeler 1: But we still have to decide if the relationships should be is-a relationships
vs. a role relationship has-effector flexion.
Modeler 2: I think based on our model it’s an is-a. Flexion is-a joint function.
Modeler 1: Yes. But we are talking about active and passive.
Moderator: Well, you would say active flexion is-a joint function and is-a muscle func-
tion.
Modeler 2: Or active flexion is-a flexion.
Moderator: Yes it is-a flexion.
Modeler 2: And it is-a muscle-function.
Moderator: So then it would inherit the joint function.
Modeler 1: Right.
Modeler 2: Uh, OK.

The modelers finally reached consensus. Figure 6-7 contains an argumentation diagram

that presents the new hypotheses under consideration and the evidenciary arguments sup-

porting them. It also contains the new classifications for flexion as well as the new con-

cepts (active flexion and passive flexion) introduced by the revised hypotheses.

The conflict created by the different modeling of flexion was arguably one of incomplete

understanding on the part of the modelers, and the discussion of the conflict became a

group learning session in which the modelers reached an improved, shared understanding.

In some cases, however, conflicts are created by differing perspectives rather than incom-

plete understanding of the modeling task. Consider the example in Figure 6-8, in which a

conflict was created by differences between the Kaiser Permanente and SNOMED defini-

6.2 Proof-of-Performance 169

tions of the term Cellulitis of skin with lymphangitis, NOS. The Kaiser Permanente mod-

elers were all ambulatory care physicians whereas the SNOMED crossreferences were

created by pathologists.

On initial examination of the conflicts, it seemed that a simple merging of the definitions

would be appropriate. Conversations with a few pathologists, however, indicated that they

focused on the morphologic changes of cellulitis that take place completely below the der-

mis, whereas from an ambulatory care perspective, cellulitis is diagnosable by surface fea-

tures of the skin such as erythema and induration.

When groups with fundamentally different perspectives are involved in the modeling

tasks, there is a risk of an irreconcilable difference of perspectives. Hopefully the perspec-

tives common to health care will be sufficiently congruent so that consensus can be readily

achieved. Within the Kaiser Permanente project, such consensus is not always immediate,

but we have never found an irreconcilable conflict.

Revised Hypotheses Arguments Revised Classification

Figure 6-7. Diagram of arguments and revised hypothesis and newly agreed
classification.

Active flexion is a
joint function and

Flexion is a
joint function

The joint has the movement

Flexion requires a joint

Flexion requires a flexor

A flexor can be a muscle

A flexor can be extrinsic

MUSCULOSKELETAL -FUNCTION

MUSCLE-FUNCTION JOINT -FUNCTION

FLEXION
a muscle function

Passive flexion is a
joint function and not

a muscle function
ACTIVE -FLEXION PASSIVE-FLEXION

170 Evaluation

Allowing all the modelers to participate in some form in the resolution of conflicts proved

to be essential for maintaining group cohesion. There was a short period during the evalu-

ation when one of the regions did not communicate the reasoning behind the conflict-reso-

lution decisions to all of the participating modelers, and one of them noticed that his

changes were not being incorporated into the new baseline terminology.11 This modeler

chose to withhold his work until he could be assured that his changes would not be dis-

carded without involving him in the process.

Original Definition:

(defprimconcept CELLULITIS-OF-SKIN-WITH-LYMPHANGITIS-NOS

(and INFECTION-OF-THE-SKIN-AND-SUBCUTANEOUS-TISSUE-NOS))

Kaiser Permanente Modification:

(defprimconcept CELLULITIS-OF-SKIN-WITH-LYMPHANGITIS

(and INFECTION-OF-THE-SKIN-AND-SUBCUTANEOUS-TISSUE-NOS

LYMPHANGITIS

(some ASSOC-MORPH CELLULITIS-NOS)
(some ASSOC-TOPO SKIN-NOS))

SNOMED 3.3 Cross-Reference:

(defprimconcept CELLULITIS-OF-SKIN-WITH-LYMPHANGITIS

(and INFECTION-OF-THE-SKIN-AND-SUBCUTANEOUS-TISSUE-NOS

(some ASSOC-MORPH CELLULITIS-NOS)
(some ASSOC-TOPO SUBCUTANEOUS-TISSUE-NOS)
(some ASSOC-TOPO LYMPHATIC -VESSEL-NOS))

Figure 6-8. Semantically conflicting changes between Kaiser Permanente and
SNOMED 3.3.

11. Although conflict-resolution sessions were intended to involve all modelers, geographic separation (the
modelers were located in California and Colorado) and local delivery pressures conspired to allow a few
merges where only the modelers at one of the sites determined how the conflicts would be resolved.
Subsequently, improved communication has ensured appropriate input from all modelers during the
merge cycles.

6.2 Proof-of-Performance 171

This reluctance of modelers to participate in a process in which their work could be arbi-

trarily discarded when it conflicted with the work of others has been anticipated (Camp-

bell, 1994), and it was identified as one of the reasons that traditional concurrency-control

methods that used procedural rather than semantic criteria to resolve conflicts would prove

unacceptable for the development of distributed terminology.

6.2.2 Future Research on Conflict-Resolution Methods

As was previously noted, one outlier merge during the evaluation period had a conflict rate

of 19%. Resolving these conflicts created a significant cost, offsetting much of the benefit

of the distributed development for that merge.

 Analysis of actions that led up to this merge revealed that one of the modelers had

imported an ICD-9-CM code into virtually every definition for a SNOMED diagnosis

term. This bulk importation assured that a conflict would be created for any change to a

diagnosis term until the ICD-9-CM changes were incorporated into a new baseline and

disseminated to all modelers. Unfortunately the conflict resolution environment had no

method for distinguishing these kinds of conflicts from potentially more interesting ones

and sorting out the latter for discussion, thereby compounding the costs of resolution.

In order to improve the efficiency of the development process, methods are needed to

allow the conflict resolution environment to distinguish reliably between what might be

called “uninteresting” and “interesting” conflicts, as well as further definition of methods

that can dependably resolve the former while reserving the latter for group discussion.

172 Evaluation

Experience gained from dealing with conflicts created by the bulk importation of ICD-9-

CM codes indicates one promising direction for future research on this problem. The solu-

tion might involve an editing environment in which each editor or process can be declared

“authoritative” with respect to a particular component of a definition or a specific taxon-

omy within the terminology. In cases like the bulk import of the ICD-9-CM codes, the

import process could be declared authoritative with respect to these codes, and unless the

other modelers who participated in the conflict made a change within the authoritative

domain of another, the conflict would be considered “uninteresting” and subject to auto-

matic resolution by merging the definitions with conflicting changes from each of the

modelers.12 If a modeler in this proposed editing environment made a change that over-

lapped with the authoritative domain of another modeler, however, such a conflict would

be classified as “interesting,” and put up for group discussion.

6.3 Conclusion

The Galápagos environment has demonstrated the viability of semantics-based concur-

rency control for terminology development. It continues to provide ongoing support at

Kaiser Permanente for managing the inevitable conflicts created by concurrent develop-

ment of enhancements to its terminology, and it is being utilized in increasing portions of

Kaiser Permanente’s CMT development.13 Evaluation of Gálapagos has also identified

some limitations of the approach, along with potential solutions. Chapter 7 discusses fur-

ther implications, limitations, and generalizability of the Galápagos approach.

12. Had this been done with the ICD-9-CM codes, most of the conflicts would have been automatically
resolved, since none of the changes made by the individual modelers involved a change to a code.

6.3 Conclusion 173

13. The Kaiser Permanente CMT project has evolved from a collaborative project between three regions
(Colorado, Northern California, and Southern California) seeking a common solution to their terminol-
ogy problems, to a enterprise-wide requirement for all clinical information systems. When the CMT
project is fully deployed, all 12 Kaiser Permanente regions (the three regions previously mentioned as
well as Hawaii, Ohio, Oregon/Washington, Texas, Connecticut/New York/Massachusetts, North Caro-
lina, Georgia, Kansas/Missouri and the Washington DC/Virginia/Maryland regions) will participate
either by continuing development of the terminology, or by deployment of the terminology within
regional systems.

174 Evaluation

175

Chapter7
Conclusion

In this dissertation, I have discussed the principal challenges facing the representation of

clinical data, from the formalisms required to define the terminology to the principles of

configuration management needed to support the development process. I have also

described and evaluated potential solutions for many of these challenges. Section 7.1 pre-

sents a review of the components of this dissertation and discusses the generalizability and

limitations of the solutions that have been proposed.

My work has also been situated within an ongoing terminology development project, and

as such, it has afforded me with an opportunity to learn many pragmatic lessons relating to

terminology development. Section 7.2 presents some ancillary lessons that were learned

from this project, but that were not directly related to the thesis of this dissertation.

Although the Galápagos experiment demonstrated the viability of semantics-based con-

currency control for terminology development, it represents only a beginning. There are

many extensions that can make distributed development more productive and reliable.

176 Conclusion

Section 7.3 describes opportunities for future work that can expand upon and strengthen

the underlying framework described here.

Sections 7.4 and 7.5 summarize the contributions of this dissertation and provide some

concluding remarks.

7.1 Generalizability and Limitations

This dissertation has been grounded in a framework for formalizing the representation of

medical concepts using description logic. It has described and evaluated a process to make

evolutionary enhancements of SNOMED International, an existing medical terminology

system, within a description logic model. The combination of SNOMED and description

logic provide a declarative representation for sharing medical knowledge, the need for

which has been discussed by Shwe and colleagues (1992), and by Musen (1992).

This description-logic formalism provided a unifying framework that can be broadly

applied to several different practical applications and research areas. This approach, how-

ever, has important limitations. Costs are associated with the expressive power provided

by complete first-order logic, and the foundational models upon which the logical repre-

sentations are built also have limitations. Moreover, a formal representation for clinical

data is just a first step. Somehow clinical data must be collected from real-world situations

and transformed into the formalisms required by automated processing. This is a challeng-

ing undertaking.

7.1 Generalizability and Limitations 177

Any comprehensive attempt to provide an infrastructure for developing standardized clini-

cal terminologies must also facilitate collaborative activity among terminology modelers

who may be working at a variety of geographically dispersed institutions. This dissertation

has described concurrency-control and configuration management-strategies that can sup-

port distributed development of a CMT. During the development process, individual mod-

elers may make incompatible changes to both the content and the structure of the CMT.

Chapter 4 has presented strategies for managing concurrent development, including mech-

anisms for resolving conflicts that may arise during concurrent development. The limita-

tions and general applicability of these strategies for detection and resolution of conflicts

must be understood, as must be the limitations of the configuration-management strategy.

7.1.1 Logic-Based Approach

Chapter 3 recommended the use of description logic for representation of the logical rela-

tionships among the terms used to represent medical concepts. It also described a particu-

lar syntax for this logic: KRSS (Patel-Schneider et al., 1993). Although use of some form

of logic is essential for representing medical concept descriptions, the KRSS notation is

only one of several equivalent formalisms that are available. Medical concepts can also be

represented using either the common algebraic notation for logical propositions or any of

the popular knowledge-representation languages, although representational diversity is

inherently problematic.

Fortunately, researchers in the computer-science community are working to overcome the

problems of multiple syntaxes competing for knowledge representation. Members of the

Defense Advanced Projects Research Agency (DARPA)-sponsored knowledge-sharing

178 Conclusion

project (Neches et al., 1991) have created the Knowledge Interchange Format (KIF) (Gen-

esereth & Fikes, 1992) for interconverting knowledge bases created in a variety of repre-

sentations. KIF thus promises to allow medical concepts described using a combination of

SNOMED and description logic to be translated directly into a knowledge-representation

system such as KL-ONE, although a proof-of-performance is not yet available.

The flexibility to translate among the members of a family of related syntaxes is critical.

Whereas description logic captures the full semantics of first-order logic—and thus offers

enormous expressive power—proving theorems in first-order logic is, in the worst case,

computationally intractable. Consequently, developers of knowledge-representation sys-

tems must decide which elements of first-order logic they may safely omit to improve run-

time performance (Levesque & Brachman, 1985). Common object-oriented languages, for

example, do not allow the expression of concepts such as negation or disjunction. No prac-

tical knowledge-representation system is perfect; each embodies a particular set of trade-

offs. The approach adopted under this thesis has been to use complete first-order logic (as

reflected in the syntax of description logic) for canonical representation of clinical con-

cepts and to translate those representations into the knowledge-representation systems that

are most suitable for individual applications.

7.1.2 Foundational Models

Because logic is topic neutral, the choice of description logic as a method for medical-con-

cept representation does not imply any particular model of the medical domain. Implicit in

any logic-based representation is a number of foundational assumptions detailing how

logical relationships are to be applied. To use a representation consistently, these assump-

7.1 Generalizability and Limitations 179

tions must be made explicit as foundational models upon which the representation

depends. Medicine provides some useful foundational models (i.e. pharmacology, anat-

omy, and physiology) for capturing the rich semantics of clinical data and formalizing

clinical concepts and their relationships. Although an existing medical nomenclature sys-

tem (such as SNOMED) can provide a set of labels and defined relationships that can

serve as the basis for a comprehensive terminology, the foundational models embodied in

such nomenclatures are limited either in scope or by being implicitly encoded. Developers

of logic-based conceptual models, therefore, face the challenge of formalizing such foun-

dational models.

Determining whether a foundational model is sufficiently expressive for encoding clinical

findings requires empirical evaluation. Some foundational models, such as temporal data

models for clinical databases (Das, Tu, Purcell & Musen, 1992), may already be imple-

mented in data-management systems. In such cases, the limitations of the foundational

models may be well understood. In other cases (such as the model of anatomy in GALEN

(Rector, Nowlan & Glowinski, 1993)), the appropriateness of such models cannot be

empirically evaluated until the models are used for data acquisition or encoding. To estab-

lish the suite of foundational models necessary for a logic-based clinical representation,

modelers will therefore need to (1) incorporate current or developing formal models of

specific topics whenever possible, (2) extend or combine these models as necessary on an

evolutionary basis, and (3) instantiate the concepts and relations in these models with stan-

dardized codes from existing medical nomenclatures.

180 Conclusion

Galápagos has met the proof-of-performance criteria necessary to support such evolution-

ary enhancement of standard reference terminologies on a national scale, and promises to

provide a pragmatic solution to the need to enhance reference terminologies locally while

synchronizing these changes with an evolving standard of reference.

7.1.3 Evolutionary Enhancement

The evolution of a standard representation for clinical data produces a challenging man-

agement task. The work must be guided by empirical studies of real-world applications

that may require local enhancements if they are to function properly. If these enhance-

ments are useful, they should eventually be incorporated into the standard so that other

applications can use them. The technical and managerial aspects of how this process

should be managed are complex.

Tuttle and colleagues (Tuttle et al., 1991) have described how developers incur a penalty

for creating local enhancements. This occurs when developers try to synchronize their

enhancements with similar changes that may be incorporated into the Unified Medical

Language System (Lindberg et al., 1993). If participation by more than one institution in

the development of the standard is desired, a way must be found to incorporate local

enhancements from multiple sites without penalizing institutions for their efforts.

Concurrency-control models of advanced database applications (Barghouti & Kaiser,

1991) can be used to manage local enhancements so that the penalty created by local

enhancements is reduced. The solution proposed in this dissertation is based on change-

sets (see Chapter 4). The dissertation has presented an empirical proof-of-performance

7.1 Generalizability and Limitations 181

that validates the Galápagos methodologies, showing that change-sets are an appropriate

paradigm for managing CMT development.

There is a potentially large benefit for using tools that implement a proper concurrency-

control model. If tools for managing evolutionary enhancement are developed, national

participation in the evolution of a standard for representation of clinical data may become

a reality. In the absence of such a concurrency-control model, however, the problems of

managing local enhancements will discourage participation by all but the most determined

developers.

7.1.4 Domain-Specific Conflict Detection and Resolution

The dissertation has presented methods for detecting and resolving conflicts created dur-

ing CMT development. The proposed methods for conflict resolution are domain-specific,

but detecting conflicts and finding mechanisms to resolve them is a general problem. Any

application that allows distributed development, such as software engineering tools, com-

puter-aided-design (CAD) tools, or distributed-document-creation tools, must have a way

of handling conflict detection and resolution.

Hall (1991) discussed how current CAD environments do not support conflict detection

and resolution. He proposed that next-generation CAD environments have a conflict

record in which developers would manually enter conflicts they discover. This record

would be used to notify the affected parties who would try to resolve the conflict by alter-

ing the affected designs. The resolution process is manual, and Hall did not propose build-

ing an understanding of design semantics into next-generation CAD environments.

182 Conclusion

Other researchers have developed applications to detect conflicts that occur when integrat-

ing several versions of a computer program. Most integration techniques are variants of

text-based differential file comparators such as provided by the UNIX tool “diff.” Horwitz

and colleagues (1989) have discussed the limitations of this approach and have proposed a

semantics-based tool for automatically integrating program versions. The tool they

described integrates noninterference versions of programs using domain-specific knowl-

edge, either to determine a proper merge or to show the existence of a conflict. The tool

would not try to resolve the conflicts it identifies. Horwitz and colleagues did, however,

describe the need for semiautomatic, interactive integration tools to make their work appli-

cable on a practical basis. Reps and Bricker (1989) have proposed methods that an interac-

tive tool could use to illustrate these conflicts for the user. Rhabida (see Section 5.2.4) is

an example of such a tool.

Westfechtel (1991) tried an alternative approach to that of Horwitz and colleagues. He

described a structure-oriented merge tool that can be applied to software documentation

written in arbitrary languages. The language-independence of this approach is an advan-

tage; however, Westfechtel readily admitted that language-specific approaches (such as

(Horwitz et al., 1989)) would allow more intelligent merge decisions. He also correctly

pointed out that practical tools relying on the semantically based approaches (of which the

prototype tools developed for this dissertation are examples) are not yet generally avail-

able.

Galápagos’ tools for conflict identification and resolution are based upon description logic

but are not dependent upon methods specific to any particular dialect or syntax of descrip-

7.1 Generalizability and Limitations 183

tion logic. That is to say, the conflict-identification methodology in Galápagos is syntax

independent and, therefore, general for description-logic applications. Moreover, instead

of taking a language-specific approach to allow more intelligent merge decisions, Galápa-

gos uses a domain-specific strategy for conflict identification and resolution. It focuses on

potential conflicts detected during the classification of terminological definitions.

These kinds of domain-specific strategies for conflict identification and resolution are

being developed for a variety of applications that require distributed development. As

techniques in each domain improve, related domains are bound to benefit. The three fields

discussed here (CAD, software development, and CMT development) are closely related

because of the kinds of problems they encounter and their pursuit of automated tools to

solve them. Configuration management, which will be discussed next, is another problem

common to these three fields.

7.1.5 Configuration Management: No Free Lunch

Chapter 4 described how custom change sets can minimize the local-update penalty. These

change sets can be generated automatically as a by-product of merging the local work of

multiple developers. They are not, however, entirely cost free. A merge process at a central

location, including manual review of any conflicts, is required to make use of the local

enhancements. Only after conflicts have been resolved can the automatically generated

change sets be created.

In addition to the cost of resolving conflicts during the merge process, there are also local

costs. Although the local sites are given a set of changes to update their representation

184 Conclusion

with the new reference terminology, these changes may result in unwanted side effects.

The changes must be reviewed to determine what impact, if any, they will have on local

applications. If the changes do affect local applications, modifying these applications to

perform properly with the updated terminology may result in considerable costs.

Finally, all parties have to agree on a common representation scheme that may not be opti-

mal for their individual applications. The costs associated with trying to use terminology

developed for one purpose in an application with a different purpose may be overwhelm-

ing.

7.1.6 Evaluation

I have consistently sought to provide a better characterization of the development process

of CMTs and to determine if the methodologies embodied within the Galápagos applica-

tions perform reliably in a real world setting. Although the evaluation successfully demon-

strated the viability of semantics-based concurrency control for distributed terminology

development in a real-world setting that provided real stresses to the computer applica-

tions and to the development process and product, it did not take place in a controlled set-

ting where only a single variable could be altered and the results studied as an isolated

issue separate from the total process.

Just as there is a continuum of expressivity−tractability for description-logic implementa-

tions, there is also a real world−controlled environment continuum for evaluations. My

system evaluation clearly lies on the real world side of the continuum. I anticipated that a

controlled, randomized, statistical methodology would not lend itself to a comparison of

7.2 Ancillary Lessons 185

productivity before and after the implementation of distributed development tools, and the

applied project setting further made such an approach unrealistic. Therefore, I adopted a

proof-of-performance methodology (National Research Council, 1994).

Finally, although the proof-of-performance demonstrated that the Galápagos tools could

successfully meet the current needs of Kaiser Permanente’s convergent medical terminol-

ogy project, further information is needed on the limitations of the approach. How will the

system scale from a high volume use of a focused development tool used by a few model-

ers up to a low volume, distributed maintenance tool used by many modelers? What is the

maximum number of configurations that can be practically supported? When does con-

flict-resolution stop being a productive part of model development and turn instead into a

developmental burden? Answers to these and other questions must be sought as part of

future evaluations of extensions to the Galápagos environment.

7.2 Ancillary Lessons

A proof-of-performance test validates the underlying methodology and implementation of

an idea, but often important (but not immediately obvious) lessons are learned in large

projects that are critical to successful implementation of an idea. Here are a few of those

lessons I have drawn from my work.

7.2.1 Clearly Define the Boundaries of Collaboration

The general notion of “collaboration to solve common problems” is an idea that can derive

universal support. However, translating consensus around a common theme to an actual

186 Conclusion

project with real commitment of resources requires more than best wishes. Collaborations

with commercial implications are often difficult to foster. In such collaborations, concerns

regarding giving a competitive advantage to another party, developing a dependency upon

a specific commercial product, or provoking potential competition between the work prod-

ucts of the collaboration and related commercial products of a collaborator, may prove

overwhelming.

Within Kaiser Permanente, “enterprise-wide aggregation of clinical data” has been an

explicit goal for its electronic medical record projects. Thus, almost without exception,

projects readily agreed to the principle of collaboration on a CMT that will be common to

Kaiser Permanente’s electronic medical record projects.

Although projects may agree in principle to collaborate, the same projects are also com-

peting with one another in several settings: the vendors associated with the projects (which

vary among the Kaiser Permanente sites) have a commercial interest in maximizing their

return (and no interest in giving proprietary or competitive advantage to a competing ven-

dor), and the Kaiser Permanente project sponsors have a professional interest in demon-

strating that their recommendation to invest in a particular product is sound. The Kaiser

Permanente CMT project has struggled with these issues, and has fortunately been able to

manage them appropriately so that the collaboration has been able to continue, while com-

mercial implications are being dealt with on an ongoing basis.

This eclectic mix of Kaiser Permanente regional participants and competing electronic

medical record projects has provided a challenging environment for fostering collabora-

tion. Despite the desire for a common CMT standard (the ability to aggregate data was a

7.2 Ancillary Lessons 187

feature claimed by all the medical record projects), there was considerable distress over

the potential flow of confidential and proprietary information from one vendor to another

as an inadvertent byproduct of the collaboration.

To further confound efforts at developing consensus surrounding the CMT project, all the

participants recognized the close intertwining between the functionality of specific appli-

cations (e.g., decision support, quality assurance, medical research, and data acquisition

applications as discussed in Section 1.1), and the functionality of the developing CMT. It

become clear that the collaborative needed to determine where the CMT project should

end and where the proprietary enhancing aspects of application development should begin.

It proved helpful to focus on the original foundation for the Kaiser Permanente CMT

project: enterprise-wide aggregation of clinical data. Project leaders and team members

began to refer to a terminology optimized for data aggregation and retrieval as a reference

terminology, and agreed that this terminology would form the basis of the collaboration.

Terminology features beyond the scope of relationships needed to define and aggregate

terms were described as application-specific enhancements to the reference terminology

and were excluded from the collaboration. Examples of application-specific enhancements

from Kaiser Permanente perspective included: structured-data-entry constraints (CHEST-

PAIN may be described as MILD , MODERATE, or SEVERE), drug-disease interactions (beta-

blockers are contraindicated in patients with asthma), recommended treatment protocols

(asthmatic patients should be treated with an inhaled steroid), and many others.

Although the separation of the reference terminology from the application specific

enhancements is now a foundational principle of the CMT project, such was not always

188 Conclusion

the case. In the beginning, the CMT project was often criticized for not having many of the

features that are now explicitly excluded, the most troublesome feature being the struc-

ture-data-entry constraints. Many project critics could not understand how the CMT

project could be of use if it was not ready for implementation in a medical record system

“right out of the box.” However, some vendors have invested significant resources in

developing their own structured-data-entry constraints which they believe provide them

with competitive advantages, and so they would be reluctant to participate in a collabora-

tive project that they felt would undermine their very livelihood. Eliminating the struc-

tured-data-entry constraints from the CMT project was an essential component to survival

of the collaboration.

This finding contrasts with the experience of the Galen project, in which a primary focus

of the collaboration is allowing the system to generate “sensible combinations” of things

to say; the resulting terminology thus can be directly used as an engine to drive user inter-

faces (Rector et al., 1993).

Discovering the principles on which the boundaries of the collaboration could be

described was difficult, but once found, served as a reorienting principle that was fre-

quently revisited both when trying to ascertain the appropriateness of modeling decisions,

as well as when trying to describe the boundaries of the project to ourselves, to Kaiser Per-

manente’s EMR vendor/partners, and to interested third parties.

7.2 Ancillary Lessons 189

7.2.2 Limit Distribution of Errors of Commission

Any sizeable terminological system will have defects that can be categorized into two gen-

eral classes: errors of commission and errors of omission.

An error of commission is created by making an incorrect statement about a concept. For

example, stating that the NOSE is attached to the FOOT would be an error of commission.

Such errors may be obvious (apparent by examining a concept’s definition), and if found

may become the focus of attention until they are resolved.

An error of omission is created by failing to make a correct statement about a concept that

would have related that concept to another concept within the terminology according to

agreed-upon principles of representation. Failing to state that VASCULITIS-OF-THE-SKIN is

a type of VASCULITIS, for example, is an error of omission. Such errors may be subtle and,

therefore, easily missed. They cannot be found just by examining a concept’s definition.

The definitions of intermediate concepts that may inherit the properties in question need to

be examined before one can definitively conclude that a necessary relationship is missing.

Both errors of omission and errors of commission will prevent the terminology from func-

tioning as intended. A query using a concept that is defined with a definition that includes

an error of commission will retrieve records other than those intended by the user. Alterna-

tively, a query using a concept that is defined with a definition that includes an error of

omission will fail to retrieve all the records of interest. Similar failures will be encountered

by decision-support and user-input systems.

190 Conclusion

Because the SNOMED terminology, which formed the foundation for this project, had

significant errors of omission, Kaiser Permanente chose to use hierarchical relationships

based upon SNOMED’s termcodes combined with lexically-generated relationships as a

pragmatic first step toward improving the terminology (Campbell, Cohn, Chute, Rennels

& Shortliffe, 1996). After they were generated, they were reviewed by the modelers and

then imported into the baseline terminology. Despite the review for the lexically derived

relationships, many errors of commission were introduced. Some were introduced second-

ary to using synonyms that actually had slightly different meanings to derive lexical rela-

tionships. Most were introduced secondary to problems encountered algorithmically in

deciphering the hierarchies built into the SNOMED termcodes.

Although this process eliminated many of the errors of omission, the errors of commission

became the focus of the initial users of the system, and resulted in one group abandoning

the baseline terminology in favor of their own baseline. This new baseline arguably had a

greater number of errors of omission than the original baseline’s errors of commission.

Such a diversion of resources and effort could have been prevented if the additional rela-

tionships were introduced slowly over time with additional quality assurance steps. Such a

process would allow an opportunity for individuals committed to removing the errors of

commission—yet who also understand the importance of preventing errors of omission—

to review the terminology. It would also shield the errors of commission from individuals

who are perhaps less tolerant of these errors and who might not understand the importance

of avoiding errors of omission.

7.2 Ancillary Lessons 191

7.2.3 Independently Edit Top-Level Hierarchy

The number of errors in concepts at the bottom levels of the hierarchy was magnified as an

indirect result of the inheritance of these errors by all of the dependent children and the

increased complexity of the classification algorithms. It was found that committing a sin-

gle change to a top level concept that had perhaps 10,000 dependencies could take up to an

hour to process—hardly what could be called “interactive.”

Many of the early problems of productivity could have been avoided if the Kaiser Perma-

nente project had focused first on editing a smaller hierarchy (containing only the top level

concepts) and had introduced additional dependent children only after the group agreed

upon the base hierarchy’s appropriateness.

Initially, this focused refinement was not a practical option since the K-Rep tool provided

no mechanism to extract a small portion of the hierarchy for focused editing. Kaiser Per-

manente subsequently developed such extraction tools, but developers of similar terminol-

ogy management environments would be well advised that they should provide tools to

extract portions of the terminology together with all of the dependencies of that portion so

that they can be independently loaded into the system and modified. These tools will also

need to provide a mechanism to synchronize changes with the original terminology

source.

7.2.4 Meaningless Identifiers

The use of meaningless identifiers is a foundational principle of well-designed systems

such as the UMLS (Lindberg et al., 1993). Unfortunately, many terminological systems

192 Conclusion

insist on putting meaning in their termcodes (Côté et al., 1993; National Center for Health

Statistics, 1995).1 Although the Kaiser Permanente project sought to represent all mean-

ings through explicit, description logic statements about each term in the terminology, it

was still necessary to place meaning into concept identifiers used by the system due to the

limitations of the K-Rep application (Mays, Dionne & Weida, 1991). K-Rep had no ability

to chose a secondary field as the “display name” that would be presented to the user for

manipulating the concept. To compensate for this limitation, Kaiser Permanente developed

a naming scheme that used the initial preferred name of a concept with dashes replacing

spaces as a mnemonic for the modelers and then appended an underscore followed by the

SNOMED termcode to ensure uniqueness of the concept identifier:

Chest-pain-NOS_F-37000

Such changes were frequent and repeated, despite explicit instructions not to change a

concept identifier after its initial creation because its mnemonic portion had a spelling

error or because a modeler desired a different capitalization. Examples of such changes, if

they had been applied to the “chest pain” term, would typically include:

Chest-Pain-NOS_F-37000

Chest-Pain_F-37000

Chest-pain_F-37000

The inability to force compliance with naming principles was definitely a shortcoming of

the paradigm of central coordination local control. Modelers insisted that they were

1. Hierarchical relationships are examples of common meaning represented in termcodes, however many
systems also represent additional meaning by reserving certain digits to represent anatomic sites affected
by a disease, to represent the instrument used in an operation, and to represent many other facts about a
concept.

7.2 Ancillary Lessons 193

required to make the changes to meet the quality standards of their local EMR projects,

despite the fact that these concept identifiers would never be seen by end users of the

applications.2 These unnecessary changes compounded the difficulty of coordinating work

between the regions because they invalidated mapping tables that were keyed off of what

were supposed to be unchanging concept identifiers.

The need for such unnecessary changes can be eliminated if CMT development applica-

tions would support indirection—in which the system would use an internal symbol for

manipulation (a unchangeable meaningless identifier), while externally displaying an

alternative representation to the user (a display name). The ability to support such indirec-

tion is a requirement of all source-code debuggers (they display the source code of an

application instead of the binary machine code which was derived from the source code).

Such support for indirection should be part of all description-logic development systems

intended to scale beyond a small terminology and a single developer.

7.2.5 Spelling Correction

Although the problems created by changing the names of misspelled mnemonic identifiers

can be eliminated if the CMT system supports indirection, similar spelling problems were

found in the display names and synonyms associated with given terms. Spelling correctors

are found in virtually all word processor systems with good reason: spelling mistakes are

common. Support for spelling correction should be built into CMT development systems,

so that mistakes can be prevented.

2. End users would only see appropriate “display-name” or “synonym” facets associated with the concept
identifier, and no restrictions had ever been placed upon the spelling and capitalizing of these concepts.

194 Conclusion

7.3 Future Work

Development of a sound methodology for distributed terminology development is a first

step toward achievement of a convergent terminology. Assuring that a methodology is

sound and that it can perform as intended in a real-world deployment, however, does not

ensure optimality. The existing Galápagos tools also provide a supportive foundation for

alternative paradigms of development. Additional extensions to these tools can support

bidirectional transfer of change sets between terminology modelers who are working on

overlapping—but non-identical—terminological models. This would be possible while

allowing the modelers to retain the distinctness of their own models in configuration man-

agement databases.

7.3.1 Alternative Development Paradigms

Kaiser Permanente used Galápagos within a developmental paradigm of centralized coor-

dination local control although other paradigms are also possible. Two of the alternatives

are centralized coordination and control and local coordination and control. Each of these

scenarios provides for very different roles for the central coordination body, ranging from

absolute control to just observance, and for the local development sites, ranging from

being completely autonomous to only doing as the central body directs. The same pro-

cesses of managing configuration of change sets and conflict resolution evaluated for the

centralized coordination local control paradigm can be directly applied to these alterna-

tives.

7.3 Future Work 195

Centralized Coordination and Control

As its name implies, this paradigm requires strong central coordination and control. There

are many ways such a central body could be formed. A governmental agency, such as the

National Library of Medicine or the Department of Health and Human Services, might

receive a congressional mandate to develop and maintain a national CMT intended to meet

the needs of anyone requiring encoded clinical data, including hospitals, commercial

information system vendors, and governmental agencies. The funding for this mandate

might consist of intramural funding for coordination and control of the development pro-

cess and extramural funding for subcontractors.

Under this paradigm, the central organization forms a steering committee that includes

representatives from the potential users of the CMT such as physicians, nurses, hospital

administrators, insurance administrators, and health policy analysts. This steering commit-

tee is responsible for defining the objectives of the CMT, and for setting priorities for

developmental tasks. After the committee defines priorities, a dedicated team within the

central organization assumes responsibility for implementing those recommendations.

This team breaks the tasks into logical units and assigns them to subcontractors. Periodi-

cally, the team collects the subcontractors’ work, merges it into a new reference version,

and then starts the cycle over again.

Figure 7-1 illustrates this development process. In this illustration, A, B, C, and D, are

sites managed by subcontractors. Each site starts with the reference version (version 1),

and creates version branches by making local changes. Within each branch, there may be

sequential revisions, reflecting the local changes to the CMT. Finally, all local changes are

196 Conclusion

merged by the central organization to create a new reference version (version 2). Once the

new reference version is created, it becomes the new base set for local work, new tasks are

assigned to the subcontractors, and the cycle is repeated.

Figure 7-1. A development scenario where a central body directs and coordinates all
changes to the CMT. Sites A, B, C, and D each begin working with Version 1 of some
terminology. Boxes below each site indicate serial revisions of the terminology.

Version 1

Version 2

Branches

RevisionsMerge

1.A.2

1.A.1

1.A.0 1.B.0

1.B.1

1.C.0

1.C.1

1.D.0

1.D.1

1.D.2

2.A.2

2.A.1

2.A.0 2.B.0

2.B.1

2.C.0

2.C.1

2.D.0

2.D.1

2.D.2

Version 3

Ti

jT

Site A Site B Site C Site D

198 Conclusion

methodology. A system that supports traditional, lock-based concurrency control for most

tasks but allows a user the option of violating these safeguards for specific tasks might

provide an optimal combination of methodologies, provided there were built in methods

for resolving any potential conflicts.

Local Coordination and Control

The local control and coordination paradigm gives local sites complete autonomy and the

responsibility for coordination. Two commercial companies, one a pharmacy system ven-

dor, the other a laboratory system vendor, might form a strategic alliance. The companies

agree that their systems will use a common CMT so each can develop applications that can

use data stored on the other. When a renal-toxic medication is prescribed, for example, the

pharmacy system may query the laboratory system to access any renal-function tests. Nei-

ther company obtains new funding as part of this alliance but they expect that the alliance

will pay off with future sales.

The companies agree that each will concentrate on its area of expertise, one on pharmacy-

related terminology, the other on laboratory related terminology. The two companies agree

to share their work on a periodic basis. The specific development tasks of each company

are locally controlled, and each company is responsible for incorporating all terminology

changes submitted by the other company.

Although this scenario postulates a harmonious alliance, there might well be differing pri-

orities in each company that could lead to conflict. The pharmacy system company, for

example, might want its partner to focus on laboratory terminology useful for pharmacy-

7.3 Future Work 199

related applications, while the laboratory system vendor might expect its partner to focus

on other areas that similarly benefit laboratory-related applications. There are no media-

tors for this effort. It either succeeds or fails.

Figure 7-2. A development scenario with no central coordination. Companies A and B
each begin working with Version 1 of some terminology. Left-right arrows indicate
sharing changes between the companies. Boxes below each company indicate serial
revisions of the terminology.

Ti

jT

Branch

Revisions

1.A.2

1.A.1

1.A.0 1.B.0

1.B.1

1.B.2

1.B.3

Version 2

Version 1

1.A.4

1.A.3

1.A.7

1.A.6

1.A.5

1.B.4

1.B.5

1.B.6

Company A Company B

200 Conclusion

Figure 7-2 illustrates such a development process. This figure refers to the companies sim-

ply as “A” and “B.” These two companies begin with a common version of the CMT, ver-

sion 1. Both companies periodically share their work with the other, and each company

expends local effort to incorporate the shared work. At the end of the development cycle,

the latest version at one of the two sites will become the new reference version.Although it

is technically possible for more that two companies to collaborate in this way, the coordi-

nation process would be very complex. Nevertheless, the semantics-based concurrency

control, together with the change-set model of configuration management, could provide

an enabling methodology for such a collaboration to occur.

7.3.2 Support for Locally Maintained Enhancements

In Chapter 5 of this dissertation there was a description of a scenario in which a modeler

decides to experimentally represent more detail in her model—by using IS-A-FUNC-

TIONAL-PART-OF or IS-A-PHYSICAL-PART-OF relationships—than is allowed in the conver-

gent model through use of a simple IS-PART-OF relationships. The dissertation also

described a prototype application—Cristobal—that supported a one-way filter of changes

to the terminological definitions. By applying the filter, change sets created using a more

detailed model can be applied directly to the convergent model with the appropriate level

of detail and role names although the exchange of information is unidirectional. A group

benefits through application of the filtered change sets to the convergent terminology, but

an individual modeler is unable to directly apply the work of others to her locally

enhanced terminology (see Section 5.4), thus limiting her benefit from the collaboration.

7.4 Contributions 201

If the reason for the divergent models is strictly experimental (to test a model that is

intended for future integration into the convergent terminology) and short term (validation

and incorporation of the model or invalidation and abandonment), then the existing proto-

type is adequate for the task. If, however, the divergent model is developmental (intended

to meet the needs of a specific application that has terminological requirements excluded

from the convergent model), and ongoing, then a mutually beneficial methodology for

merging overlapping terminology models is desirable.

Cristobal can be extended to support bidirectional coordination by recognizing when

changes to a role in the more general convergent model—such as IS-PART-OF—potentially

affect one or more of the roles in the more detailed local model—such as IS-A-FUNC-

TIONAL-PART-OF or IS-A-PHYSICAL-PART-OF. In such cases, Cristobal can put out conflict-

ing change sets where the value restriction from the IS-PART-OF relationship is applied to

both the IS-A-FUNCTIONAL-PART-OF and IS-A-PHYSICAL-PART-OF relationships. These

change sets can then be loaded into a locally maintained configuration-management data-

base using Isabella, and the resulting conflict can be resolved using Rhabida. Such an

extension is the immediate next step for the Galápagos tools.

7.4 Contributions

This dissertation is an interdisciplinary work. It draws upon techniques of advanced data-

base applications and modern configuration management to make possible the develop-

ment of a large-scale controlled medical terminology. In turn, this terminology can make

possible the informatics applications that are needed to support higher quality and perhaps

202 Conclusion

also less expensive health care. As such, this work has made contributions to the fields of

medical informatics, medicine, and experimental computer science.

7.4.1 Medical Informatics

Sittig cites development of a unified controlled medical terminology as one of the “grand

challenges” for the medical informatics field to solve within the next decade (Sittig, 1994).

My work provides foundational methodologies for meeting the challenge of developing a

unified controlled medical terminology by evaluating scalable methodologies within an

actual distributed-development environment.

Although many researchers have proposed using logic-based formalisms as standards for

representing terminology (Bernauer, 1991; Campbell & Musen, 1992b; Cimino, Hripcsak,

Johnson & Clayton, 1989; Masarie et al., 1991; Rector et al., 1991), skeptics have often

pointed out what they believe to be insurmountable obstacles such as the difficulty of

achieving computational tractability with logic-based approaches and the considerable

amount of work required to generate appropriate definitions for each of the terms within a

unified terminology.

I have demonstrated that computational-tractability difficulties can be managed by relying

on an appropriately designed description-logic classifier (Mays et al., 1996), and that size-

able terminologies can be produced through parallel development by utilizing semantics-

based-concurrency-control and change-set-configuration-management methods.

7.4 Contributions 203

7.4.2 Medicine

Health-care enterprises are seeking to integrate their existing applications and to develop

many new ones that require standardized representations of medical terminology. These

applications include large clinical database applications for retrospective and prospective

research, monitoring of quality and cost of care, and applications that provide decision

support through information management, focusing attention, and patient-specific consul-

tation. Although my work does not directly provide end users with such applications, the

development methodology described here is an enabling technology for the achievement

of terminologies of the requisite size and quality for successful deployment of robust sys-

tems dependent upon standardized representations of medical terminology. Through

deployment of such systems, improvements in the delivery of medical care may be real-

ized.

7.4.3 Experimental Computer Science

Researchers in theoretical computer science have described the notion of semantics-based

concurrency control (Garcia-Molina, 1983; Garcia-Molina & Salem, 1987), although

actual implementations have been lacking. Moreover, strict adherence to the notion of

semantics-based concurrency control prescribed in their work required acceptance of one

modeler’s conflicting changes at the cost of forcing a rollback of the work of another mod-

eler based on essentially arbitrary criteria such as who made the change first. These crite-

ria serve to undermine the goal of supporting cooperative work. Therefore, I have chosen

to extend the notion to allow for interactive conflict resolution in an experimental setting.

The experimental evaluation has provided a proof-of-concept and a proof-of-performance

204 Conclusion

for semantics-based concurrency control techniques to cooperative, distributed develop-

ment of a controlled medical terminology. Prior to this work, it is my belief that no such

proof-of-concept or proof-of-performance existed.

Another established technique, the change-set configuration-management model, was

integrated with the semantics-based concurrency control to provide a comprehensive set of

prototype applications capable of performing in a real-world development environment.

Only through this deployment, in a setting with real world development pressures, is it

possible to evaluate the practicality of the evolutionary design approach made possible by

the combination of the semantics-based concurrency control methods and the change-set

model of configuration management. The evaluation in Chapter 6 also provide insights

into the thought process inherent in development of controlled terminologies, thus provid-

ing important background material for future improvements in both the design process and

design tools.

7.5 Final Remarks

I have described a development methodology that enables distributed development of ter-

minological systems. Significant challenges remain, however, before a robust terminologi-

cal standard suitable for a wide variety of applications can be achieved. These include

development of sound foundational models for reasoning about the notion of uncertainty

and about anatomy, pathology, pharmacology, and other important aspects of medical

care. These models are needed for decision support and for epidemiological tools that are

able to give advice and to draw useful conclusions about complex patient situations.

7.5 Final Remarks 205

These foundational models will have to evolve over time. Because the underlying model

for my work is based on logic, the representation is both general and sufficiently expres-

sive to represent foundational models as they are developed. Because the development

methodology supports evolutionary enhancement and development by consensus, it also

supports diversity of input and a sense of ownership through participation in the process.

Finally, the ultimate success or failure of a standard for representation of clinical data such

as the one proposed here will depend on more than the technical merits of the underlying

representation. Important problems such as (1) how to manage the development process,

(2) how to meet the needs of specific applications, and (3) how to develop a political con-

sensus, have yet to be solved. The methods and experiences described in this dissertation

are steps toward the development of solutions to these problems.

206 Conclusion

207

Appendix A
Transcript of Conflict Resolution Session

This transcript was generated from the first conflict-resolution session that used the

Galápagos applications. To prepare for this session, three developers worked on enhancing

a terminology concurrently using the K-Rep DE application as described in Section 6.2 on

page 158.

These transcripts demonstrate a focused discussion of terminology modeling issues. As

you will see within the transcripts, often an individual would reach a specific recommen-

dation only to agree later that an alternative modeling strategy is preferable. Clearly the

group negotiated resolution of conflicts, and thus truly collaborated.

The participants in this session were myself (Moderator), IBM’s K-Rep development

manager (K-Rep developer), and the three physicians who performed the terminology

modeling (Modeler 1, Modeler 2, Modeler 3). The three modelers are practicing physi-

cians in Internal Medicine and Emergency Medicine, Family Practice, and Nephrology.

208 Appendix A Transcript of Conflict Resolution Session

Moderator: OK. I believe that this tape recorder is on and working. So just to
reiterate, I’m taping this for the purpose of just being able to go back
and verify what happened during the processing of these two conflict
reports and discussing them. And I would just like to have each of you
verbally acknowledge that your willing to have this session recorded.
K-Rep Developer, is that OK with you?

K-Rep
Developer:

Sure.

Moderator: And Modeler 3?

Modeler 3: Fine.

Modeler 1: Fine.

Modeler 2: No problem.

Moderator: And we may generate transcripts from this, but any transcripts that
would identify people by name and would be published would be
verified with you before they would be published for your approval. And
likewise for any video clips that would ever come out of this. OK? And,
that’s all the formalities I have.

So I have two reports here. One was generated on Friday, and the
report that was generated on Friday had brought together all the
change sets that you had been working on, integrated them, and then
identified all the conflicts in them. The other page that you have is part
of a report that has about three more additions. And that was because
one of your commit journals got corrupted and the .krep file was
brought in directly, and if you look at the very first concept on that
page,[see Figure A-1] that’s one of the ones that had a change that was
not reflected in the commit journal but was part of the .krep file, so we
have brought that in as a branch. If you look you will see a line that
says “ARC 1 5,” so that means that concept number 5 came in from the
.krep file. Now prior, the concept had gone from 1 to 2, from 2 to 3, and
from 3 to 4. So concept 4 was the latest one in the commit journal.

I selected to bring them in that way so you at least verify that you
wanted to continue to keep the differences. And we would just bring
them in through the conflict resolution process.

What we need to do is go through each of the conflicts and decide how
we want to resolve them. And eventually some gnome has to make it
over to that other machine to go through what we agreed to and then
dump a new version of pilot so that people can start working on a new

Appendix A Transcript of Conflict Resolution Session 209

baseline.

So do you just want to go through this report one by one?

Modeler 2: Yeah, but I got to the report first this morning and I already
circled what I thought was the correct resolution for the conflict
except for this first one.

Moderator: OK.

Modeler 2: Uh. Flexion. And I wrote the comments there which are
definitions [from the dictionary].

Tremor-NOS_F-A4600 has multiple end states!

1 P (and Nervous-system-function-NOS_F-A0000
 (:Display_Name "Tremor-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-A4600")
 (:Synonym "Tremor-NOS")
 (:Synonym "Involuntary trembling")
 (:Synonym "Involuntary quiver")
 (:Synonym "Quivered")
 (:Synonym "Trembled"))

2 P (and Nervous-system-function-NOS_F-A0000
 Motor-exam_F-3RR44
 (:Display_Name "Tremor-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-A4600")
 (:Synonym "Tremor-NOS")
 (:Synonym "Involuntary trembling")
 (:Synonym "Involuntary quiver")
 (:Synonym "Quivered")
 (:Synonym "Trembled"))

3 P (and Nervous-system-function-NOS_F-A0000
 General-motor-activity_F-3RR47
 (:Display_Name "Tremor-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-A4600")
 (:Synonym "Tremor-NOS")
 (:Synonym "Involuntary trembling")
 (:Synonym "Involuntary quiver")
 (:Synonym "Quivered")
 (:Synonym "Trembled"))

4 P (and Motor-exam_F-3RR44
 (:Display_Name "Tremor-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-A4600")
 (:Synonym "Tremor-NOS")
 (:Synonym "Involuntary trembling")
 (:Synonym "Involuntary quiver")
 (:Synonym "Quivered")
 (:Synonym "Trembled"))

5 P (and Nervous-system-function-NOS_F-A0000
 Neurologic-symptom_F-AR000
 (:Display_Name "Tremor-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-A4600")
 (:Synonym "Tremor-NOS")
 (:Synonym "Involuntary trembling")
 (:Synonym "Involuntary quiver")
 (:Synonym "Quivered")
 (:Synonym "Trembled"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 5
##|From .krep file Apr 22 96 4:3:29 GMT

Arc 2 3
##Modeler 2|From K-Rep DE

Arc 3 4
##Modeler 2|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-1. Conflict report for “tremor.”

210 Appendix A Transcript of Conflict Resolution Session

Moderator: OK. Well lets just go to the first one. Actually “procedure order form.”
[see Figure A-2] Now it really wasn’t a conflict but potentially what

was happening, I think, is you were redefining a concept with the same
name. It did not actually get a journaled history of the concept, it just
got “defprimconcept, defprimconcept, defprimconcept...”

Modeler 3: Yes. Yes, I was in the situation where I wanted to remove a facet and
replace it with a different facet and I knew [the krep DE tool would not
allow me] to remove a facet. I had tried that before. So I tried
overwriting the facet which did not work.

Moderator: So you just overwrite the whole concept? OK. So I assume that the
version you want is the “order-form” should be primitive.

Developer 3: Yes.

Moderator: And there is really no other defining characteristics of it. So this one
was easy.

Now the next one is flexion [see Figure A-3], and Modeler 2 has looked
at this already.

Modeler 2: And it goes along with extension and abduction and several other
conflicts that are going to come up.

Moderator: Yes, actually I noticed these and I thought they were quite interesting.
So what comments do people have about these? I guess the difference
between the two is that one person said flexion was a “muscle
function” and another person said it was a “joint function.” Does
anybody have any comments about what they think is the right thing to
do here?

Modeler 2: I think it is a musculoskeletal function, as I wrote, so really it is both.

Moderator: So you would go back to a more general term [musculoskeletal function

procedure-order-form has multiple end states!

1 N

2 D Order-form

3 P Order-form

Arc 1 2
##Modeler 3|From K-Rep DE

Arc 1 3
##Modeler 3|From K-Rep DE

Concepts are equivalent

Figure A-2. Conflict report for “procedure order form.”

Appendix A Transcript of Conflict Resolution Session 211

rather than either of the more specific terms joint function or
muscle function].

Modeler 2: If joint function is a musculoskeletal function and muscle
function is a musculoskeletal function then I would categorize
flexion separately under each.

Moderator: Under both [muscle function and joint function]?

Modeler 1: Separately under both?

Modeler 2: Yes.

Modeler 3: That’s fine. Really it has very different meaning. Flexion is a
muscle function.

Modeler 1: Really the joint has the movement.

Moderator: Isometric exercise involves muscle function with no joint
movement.

Modeler 2: Flexion requires a joint and activity of a flexor.

Modeler 1: Now wait. It does not require [a flexor]. And remember this is
just general flexion. It does not distinguish between active and
passive. Active flexion requires the flexor.

Modeler 3: That’s what I said. It could be intrinsic or extrinsic.

Flexion-NOS_F-10110 has multiple end states!

1 P (and Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Flexion-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10110")
 (:Synonym "Flexion-NOS")
 (:Synonym "Flexed"))

2 P (and Muscle-function-NOS_F-11000
 (:Display_Name "Flexion-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10110")
 (:Synonym "Flexion-NOS")
 (:Synonym "Flexed"))

3 P (and Joint-function-NOS_F-13000
 (:Display_Name "Flexion-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10110")
 (:Synonym "Flexion-NOS")
 (:Synonym "Flexed"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-3. Conflict report for “flexion.”

Appendix A Transcript of Conflict Resolution Session 213

Modeler 2: So we take the 3rd option here. We delete the muscle function as
a parent.

Modeler 1: But what if we add a concept called active flexion?

Modeler 3: Yes, active flexion has a joint that is flexed by it also has a
muscle group that is the performer of the flexion.

Modeler 1: Well is used as an effector.

Modeler 2: So it will have two parents. It will have a parent that is a muscle
function and a parent that is a joint function.

Moderator: So for flexion we will preserve it as a joint function but that it
would be a good idea to add active flexion... Well maybe this
should be Flexion, NOS and we should add Active Flexion, NOS
and Passive Flexion, NOS.

Modeler 2: Right, so we are going to have to add some concepts.

Modeler 1: Well, they may already be there. We just haven’t looked.

Modeler 2: Yes, we need to look.

Modeler 1: But we still have to decide if the relationships should be is-a
relationships vs. a role relationship has-effector flexion.

Modeler 2: I think based on our model it’s an is-a. Flexion is-a joint
function.

Modeler 1: Yes, but we are talking about active and passive.

Moderator: Well, you would say active flexion is-a joint function and is-a
muscle function.

Modeler 2: Or active flexion is-a flexion.

Moderator: Yes, it is-a flexion.

Modeler 2: And it is-a muscle-function.

Moderator: So then it would inherit the joint function.

Modeler 1: Right.

Modeler 2: Uh, OK.

214 Appendix A Transcript of Conflict Resolution Session

Moderator: OK. The next one is the “prone body position.” [see Figure A-4]

Modeler 2: Which I categorized as a body position using is-a. And Modeler 1 said
this is a posture, and I disagree with that.

Modeler 1: Part of that was probably based upon the [SNOMED termcode].

Modeler 3: What is a posture?

Modeler 2: There are postures, I can’t list them for you.

Moderator: Decorticite posture, decerebrate posture…

Modeler 3: Bad posture, good posture.

Modeler 2: Kyphotic posture, lorodotic posture, hyperlorodotic posture, bent over
hunch back posture.

Moderator: Actually, can’t you have a posture in a position? Like can’t you have
decorticite posture in the prone position?

Modeler 3: We’ve just had a clean run around posture and I’m still not sure what it
is.

Modeler 1: Body position was created by you [Modeler 2], correct?

Modeler 2: Body position is a created term, yes. And it is because of the area of
lexicon that I was modeling...

Prone-body-position_F-10310 has multiple end
states!

1 P (and Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Prone body position")
 (:Displayable "T")
 (:SNOMED_Code "F-10310")
 (:Synonym "Prone body position")
 (:Synonym "Prone position"))

2 P (and Body-position-NOS_F-R3412
 (:Display_Name "Prone body position")
 (:Displayable "T")
 (:SNOMED_Code "F-10310")
 (:Synonym "Prone body position")
 (:Synonym "Prone position"))

3 P (and Posture-NOS_F-10300
 (:Display_Name "Prone body position")
 (:Displayable "T")
 (:SNOMED_Code "F-10310")
 (:Synonym "Prone body position")
 (:Synonym "Prone position"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-4. Conflict report for “prone body position.”

Appendix A Transcript of Conflict Resolution Session 215

Modeler 1: Not only that, the posture itself was overlapping because it did
not trap for body position in different posture.

Modeler 3: Are positions postures?

Modeler 2: No. Body positions are positions like “frog position,” and
“prone position,” and “supine position.”

Modeler 3: Why are they not postures?

Modeler 2: They are usually exclusive of posture. You may have a posture
and a position at the same time.

Modeler 3: Well, I mean, what I would take... I don’t see a clean definition.
You could say that position is a matter of the attitude of the axis
of the body. It’s like this, or it’s like this, or something.

Modeler 2: That’s correct. Attitude and facing.

Modeler 3: That’s all you need. You have a direction it faces and an axis.
Prone, supine, correct?

Modeler 2: All positions.

Modeler 3: What are other positions?

Modeler 2: Frog position.

Modeler 3: What’s that?

Modeler 2: It’s that position for pelvic exam.

Moderator: The lithotomy position?

Modeler 2: The lithotomy position.

Modeler 3: How is lithotomy position not a posture? How is it
fundamentally different from decorticate position?

Modeler 2: Maybe it’s not. But what I would say is that for these particular
concepts, they contain the word position in them or they contain
the word posture in them. So that’s kind of where I came from.

Modeler 3: Will you have synonyms for these positions that are postures?

Modeler 2: Yes.

216 Appendix A Transcript of Conflict Resolution Session

Moderator: You could make the lithotomy position and give it a synonym that is a
posture. And make the posture thing the preferred form.

Modeler 3: Then lithotomy position would be available lexically. Dorsal lithotomy
position [garbled]... But if positions are postures, then how would you
determine the axis? Maybe that is not appropriate.

Moderator: So the position that we are taking for prone-body-position is the
number 2 state

Modeler 2: The Body-position

Moderator: And we don’t want the number 3 [state].

All right. The next one is Flaccidity. [see Figure A-5]

Modeler 2: Modeler 1 categorized this as a musculoskeletal-symptom, and I
categorized this as a type of muscle-tonus. The synonym for muscle
tonus is muscle tone.

Modeler 3: What would the parents of that be?

Modeler 2: Muscle property. Basically what I did was take flaccidity out of muscle
property and moved it down to muscle tonus. So that the reason for that
was when you are describing your neuro exam or your motor exam, you
could say whether the muscle is rigid or flaccid or normal tone. And

Flaccidity-NOS_F-11300 has multiple end states!

1 P (and Muscle-property-NOS_F-11100
 (:Display_Name "Flaccidity-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-11300")
 (:Synonym "Flaccidity-NOS")
 (:Synonym "Muscular flaccidity")
 (:Synonym "Flaccid"))

2 P (and Muscle-tonus_F-11190
 (:Display_Name "Flaccidity-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-11300")
 (:Synonym "Flaccidity-NOS")
 (:Synonym "Muscular flaccidity")
 (:Synonym "Flaccid"))

3 P (and Muscle-property-NOS_F-11100
 Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Flaccidity-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-11300")
 (:Synonym "Flaccidity-NOS")
 (:Synonym "Muscular flaccidity")
 (:Synonym "Flaccid"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

Figure A-5. Conflict report for “flaccidity.”

Appendix A Transcript of Conflict Resolution Session 217

then, Modeler 1 said that flaccidity is a muscular symptom.

Modeler 1: There is a problem with a lot of the symptoms. They can be used
as symptoms and are also often findings as well.

Modeler 2: Well the way that I have been using things like this are with this
associated findings is that the proper place for flacidity is that it
is truly a physical finding, and that it should be available from
the symptoms taxonomy through an associated finding facet.

Modeler 3: Shouldn’t we say that symptoms are purely things that are not
discernible by an outside observer?

Modeler 2: That’s kind of the rules that I’ve been using.

Modeler 3: And most things reported as symptoms actually are findings.

Modeler 2: Things like pain are clearly symptoms.

Modeler 3: Nausea is a symptom, vertigo is a symptom.

Modeler 2: So what do you think about associating [flaccidity] to
musculoskeletal symptom as an associated finding.

Modeler 1: Are you saying that flaccidity has an associated finding that is a
musculoskeletal symptom?

Modeler 2: No I would say that muscle symptom would have an associated
finding of flaccidity.

Modeler 3: Remember that this is not a lexical connection that you are
talking about.

Modeler 2: No, this is not a semantic connection.

Modeler 3: No.

Modeler 2: This is a facet connection.

Modeler 3: Signs are signs. They can be recorded by the party, and they can
show up in the symptoms column, but they still are signs.

Modeler 1: Exactly.

[Garbled]

218 Appendix A Transcript of Conflict Resolution Session

Modeler 1: What, I didn’t hear a lot of that.

Modeler 3: Given that kind of thinking, it’s a sign. It’s a physical sign. And it’s a
muscle... what did you call it? A muscle property?

Modeler 2: A muscle tonus.

Modeler 3: A muscle tonus. [Garbled].

Modeler 2: And if Modeler 1 wants that there in the Kruiser under muscle
symptom, then it would have to be associated under muscle symptom
using the associated finding.

Moderator: And that’s a facet?

Modeler 2: The associated finding is a facet. Like if you wanted to say nausea and
vomiting, they don’t have a semantic relationship.

K-Rep
Developer:

Is there associated findings and associated symptoms?

Modeler 2: No. Symptoms and signs are both findings.

Modeler 1: [garbled]. Both signs and symptoms are considered in the lexicon to by
kinds of clinical findings.

Modeler 2: John’s not thinking in terms of the Kruiser, but the reason this facet was
invented was because of the Kruiser.

Modeler 3: What was invented?

Modeler 2: The associated findings facet.

Modeler 3: It does work for reporting history because you report all kinds of stuff,
but if you go through what are called symptoms, most of them are
available as signs. And really people put... all kinds of stuff in the HPI.
And most of what is up there is really [garbled].

Modeler 2: So we agree that number 2...

Moderator: Number 2 is the way to go.

Who knows what Intermalleolar-straddle is? [see Figure A-6] I have no
clue...

Modeler 3: Well Modeler 1 classified it as a posture, and Modeler 2 classified it as

Appendix A Transcript of Conflict Resolution Session 219

a muscle function.

Modeler 2: Is that where you like straddle a horse?

Modeler 1: Well the horse is between your two malleoli.

Modeler 3: Maybe it’s when you walk with your hips on the inside of your
malleoli.

Modeler 1: Well that would be a gait.

Modeler 3: Well how did that get in there? I’m delighted that it did...

K-Rep Developer: Is this a veterinary term?

Modeler 2: I think its a muscular function and Modeler 1 thinks its a
posture.

Modeler 3: Neither of you know what the hell this thing is.

Modeler 2: And I could not find it in any of my references. Based upon it’s
code, it’s most general parent would be...

Modeler 1: Closest to posture but, I’m not sure what to do with this one.
What do we do with these questions? Do we have to go back
and research them?

Modeler 3: We need some experts here.

Modeler 2: We are content experts.

Intermalleolar-straddle_F-10430 has multiple end
states!

1 P (and Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Intermalleolar straddle")
 (:Displayable "T")
 (:SNOMED_Code "F-10430")
 (:Synonym "Intermalleolar straddle"))

2 P (and Muscle-function-NOS_F-11000
 (:Display_Name "Intermalleolar straddle")
 (:Displayable "T")
 (:SNOMED_Code "F-10430")
 (:Synonym "Intermalleolar straddle"))

3 P (and Posture-NOS_F-10300
 (:Display_Name "Intermalleolar straddle")
 (:Displayable "T")
 (:SNOMED_Code "F-10430")
 (:Synonym "Intermalleolar straddle"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

Figure A-6. Conflict report for “intermalleolar straddle.”

220 Appendix A Transcript of Conflict Resolution Session

Modeler 1: This is an uncertainty because of ignorance on both of our parts.

Moderator: Well, one of the things you can do in the editing environment is to
change the parent to be something more general like “weird findings”
[chuckle].

Modeler 1: Right. Garbage pail.

Moderator: For the purposes here though, the assumption is that one or the other of
these is “right” because somebody did it. So you have to chose the best
from what is here.

Modeler 1: We should go with the most general at this time since we don’t know.

Modeler 2: Which is muscle function.

Moderator: Well musculoskeletal symptom is more general I think.

Modeler 3: Well, if we make it the most general, then we won’t look at it again, and
we won’t know anything until the person who needs it do describe
something can’t find it.

Moderator: Well, if you put it in the most general place, it will be highest and
annoying.

Modeler 3: But your idea of putting it under weird finding category…

Modeler 1: But he’s saying for conflict resolution.

Moderator: For conflict resolution, you have to pick one of these. So if you were to
pick the most general, it would be musculoskeletal symptom.

Modeler 2: Yea, that’s fine. So what we want to do is to stick with the current
version.

Moderator: Really what you want to do is to roll back to a prior version. Hmm.
That’s a little harder to do, because you are creating a cycle in your
path. And computers have a hard time dealing with cycles. So what I
think I’ll do is arbitrarily pick one, and if that’s a problem, you can edit
the concept in the next baseline using K-Rep DE.

Modeler 2: The next one is a little cycle that Developer 1 did. [see Figure A-7] I
don’t know what. Pick the latest?

Moderator: Transient paralysis of the limb is...

Appendix A Transcript of Conflict Resolution Session 221

Modeler 2: He redefined this a couple of times.

Moderator: He went through a cycle actually. The reason this concept was
identified was because he went to 2, and then undid what he did
and went back to 1, and then changed it to be 3.

Modeler 1: Well actually I merged these.

Moderator: But the process by which you did this is you undid it, then made
a commit, which went back to where you were before, and then
you added to it.

Moderator: So how would you... Well for this, it’s OK to go from 2 to 3?

Modeler 1: Right.

Moderator: So for this, we’ll make that the winner.

OK. Chemoreceptor function. [see Figure A-8]

Modeler 2: This one I think our changes should be combined.
chemoreceptor-function is a nervous-system function and is
also an autonomic-cardiovascular function.

Modeler 1: Correct.

Modeler 2: So, it should get those two parents. And sensation should not be
it’s parent.

Transient-paralysis-of-limb_F-11750 has multiple
end states!

1 P (and Muscle-property-NOS_F-11100
 (:Display_Name "Transient paralysis of limb")
 (:Displayable "T")
 (:SNOMED_Code "F-11750")
 (:Synonym "Transient paralysis of limb"))

2 P (and Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Transient paralysis of limb")
 (:Displayable "T")
 (:SNOMED_Code "F-11750")
 (:Synonym "Transient paralysis of limb"))

3 P (and Muscle-property-NOS_F-11100
 Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Transient paralysis of limb")
 (:Displayable "T")
 (:SNOMED_Code "F-11750")
 (:Synonym "Transient paralysis of limb"))

Arc 1 2
##Modeler 1|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-7. Conflict report for “transient paralysis of limb.”

222 Appendix A Transcript of Conflict Resolution Session

Moderator: OK. So we’ll merge them.

Modeler 2: And then we have extension which is the same deal which we already
talked about. [see Figure A-9]

Moderator: So we agreed to make it a joint function?

Modeler 2: Yes.

Chemoreceptor-function_F-A2180 has multiple end
states!

1 P (and Sensation-NOS_F-A2000
 (:Display_Name "Chemoreceptor function")
 (:Displayable "T")
 (:SNOMED_Code "F-A2180")
 (:Synonym "Chemoreceptor function"))

2 P (and Nervous-system-function-NOS_F-A0000
 (:Display_Name "Chemoreceptor function")
 (:Displayable "T")
 (:SNOMED_Code "F-A2180")
 (:Synonym "Chemoreceptor function"))

3 P (and Autonomic-cardiovascular-function_F-A8570
 (:Display_Name "Chemoreceptor function")
 (:Displayable "T")
 (:SNOMED_Code "F-A2180")
 (:Synonym "Chemoreceptor function"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

Figure A-8. Conflict report for “Chemoreceptor function.”

Extension-NOS_F-10100 has multiple end states!

1 P (and Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Extension-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10100")
 (:Synonym "Extension-NOS")
 (:Synonym "Extended"))

2 P (and Muscle-function-NOS_F-11000
 (:Display_Name "Extension-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10100")
 (:Synonym "Extension-NOS")
 (:Synonym "Extended"))

3 P (and Musculoskeletal-mobility-NOS_F-10030
 (:Display_Name "Extension-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10100")
 (:Synonym "Extension-NOS")
 (:Synonym "Extended"))

4 P (and Joint-function-NOS_F-13000
 (:Display_Name "Extension-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10100")
 (:Synonym "Extension-NOS")
 (:Synonym "Extended"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

Arc 3 4
##Modeler 1|From K-Rep DE

Figure A-9. Conflict report for “extension.”

Appendix A Transcript of Conflict Resolution Session 223

Moderator: Cranial Nerve Exam... [see Figure A-10]

Cranial-nerve-XI-exam_F-3RR04 has multiple end
states!

1 N

2 P (and Physical-exam
 (some has_Symmetry Symmetry)
 (some in_System Vagus-nerve-NOS_T-A8640)
 (:Design_Note "")
 (:Display_Name "Cranial nerve X exam")
 (:Displayable "T")
 (:SNOMED_Code "F-3RR03")
 (:Synonym "Cranial nerve X exam"))

3 P (and Physical-exam
 (some has_Symmetry Symmetry)
 (some in_System Accessory-nerve-NOS_T-
A8780)
 (:Design_Note "")
 (:Display_Name "Cranial nerve XI exam")
 (:Displayable "T")
 (:SNOMED_Code "F-3RR04")
 (:Synonym "Cranial nerve XI exam"))

4 P (and Physical-exam
 (some has_Symmetry Symmetry)
 (some in_System Accessory-nerve-NOS_T-
A8780)
 (:Associated_Findings Fasciculation_F-11630)
 (:Design_Note "")
 (:Display_Name "Cranial nerve XI exam")
 (:Displayable "T")
 (:SNOMED_Code "F-3RR04")
 (:Synonym "Cranial nerve XI exam"))

5 P (and Physical-exam
 (some has_Symmetry Symmetry)
 (some in_System Accessory-nerve-NOS_T-
A8780)
 (:Associated_Findings Fasciculation_F-11630)
 (:Associated_Findings Muscle-tonus_F-11190)
 (:Design_Note "")
 (:Display_Name "Cranial nerve XI exam")
 (:Displayable "T")
 (:SNOMED_Code "F-3RR04")
 (:Synonym "Cranial nerve XI exam"))

6 P (and Physical-exam
 (some has_Symmetry Symmetry)
 (some in_System Accessory-nerve-NOS_T-
A8780)
 (:Associated_Findings Fasciculation_F-11630)
 (:Associated_Findings Muscle-tonus_F-11190)
 (:Associated_Findings Atrophy-NOS_M-58000)
 (:Design_Note "")
 (:Display_Name "Cranial nerve XI exam")
 (:Displayable "T")
 (:SNOMED_Code "F-3RR04")
 (:Synonym "Cranial nerve XI exam"))

7 P (and Physical-exam
 (some has_Symmetry Symmetry)
 (some in_System Accessory-nerve-NOS_T-
A8780)
 (:Associated_Findings Fasciculation_F-11630)
 (:Associated_Findings Muscle-tonus_F-11190)
 (:Associated_Findings Muscle-size_F-111R5)
 (:Design_Note "")
 (:Display_Name "Cranial nerve XI exam")
 (:Displayable "T")
 (:SNOMED_Code "F-3RR04")
 (:Synonym "Cranial nerve XI exam"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 2 3
##Modeler 2|From K-Rep DE

Arc 3 4
##Modeler 2|From K-Rep DE

Arc 4 5
##Modeler 2|From K-Rep DE

Arc 5 6
##Modeler 2|From K-Rep DE

Arc 5 7
##Modeler 2|From K-Rep DE

Concepts are equivalent

Figure A-10. Conflict report for “Cranial nerve XI exam.”

224 Appendix A Transcript of Conflict Resolution Session

Modeler 2: Cranial Nerve XI Exam. This is one that I changed like 15 times. I don’t
know why it did this. All I was doing was adding facets, it looks like.

Moderator: Right. Well you know you don’t have to hit the commit button every time
you change a facet.

Modeler 2: I know. It depends upon how recent the last crash was.

Modeler 1: Now wait a minute. Are you talking about commit transaction or
commit concept?

Moderator: Commit concept. You can make multiple commits to a concept before
you have to commit a transaction.

Modeler 1: But this writes every commit to a concept?

Moderator: Every time you hit the commit button, it’s a state.

Modeler 2: And it doesn’t just automatically take the latest state from my CJ file?

Moderator: It takes all the states. For example, one of your states may have been
consistent with something that Developer 1 did, and it forms a path to
merge his work with your work.

Modeler 1: And not only that, you could have been working on this concept, and
within the browser cruised to another concept, making changes that
would have percolated between, and the CJ file wouldn’t know the
difference.

Modeler 2: In any event, 7 is the appropriate choice.

Modeler 1: So the lesson is, If you know all the changes, make them all at once
before you hit the commit button. We’re all guilty of that.

Moderator: Ok. Posture. Well here we go again. You can’t have posture without
muscle function. [see Figure A-11]

Modeler 2: Or without skeletal function. So I think it is a musculoskeletal function.

Moderator: So could we merge those then?

Modeler 2: I think 3... Muscle function is contained within musculoskeletal
function.

Modeler 1: Joint function, muscle function, skeletal function. It’s really a
musculoskeletal function in general.

Appendix A Transcript of Conflict Resolution Session 225

Modeler 2: Right. We could probably change within our KB, we could put
muscle function underneath musculoskeletal function. Correct?

Modeler 1: It should [already] be there.

K-Rep Developer: Is musculoskeletal function here the superconcept of muscle
function?

Modeler 2: It should be.

Modeler 1: In the knowledge base it should be at the bottom.

K-Rep Developer: OK, but there is kind of two distinct concepts here. One of which
is sort of the union of all of the things that are one or the other.
And the other that is something that is the intersection of the
two.

Modeler 2: Musculoskeletal function encompasses all functions of the
musculoskeletal system. Muscles are encompassed within the
musculoskeletal system. Therefore logically I would consider
that muscle function is-a musculoskeletal function.

Moderator: Will I think if you merge the two, it would still classify the same
way.

Modeler 2: It would classify under muscle.

Modeler 3: But it isn’t right.

[Garbled]

Posture-NOS_F-10300 has multiple end states!

1 P (and Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Posture-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10300")
 (:Synonym "Posture-NOS")
 (:Synonym "Body position-NOS"))

2 P (and Muscle-function-NOS_F-11000
 (:Display_Name "Posture-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10300")
 (:Synonym "Posture-NOS")
 (:Synonym "Body position-NOS"))

3 P (and Musculoskeletal-function-NOS_F-10000
 (:Display_Name "Posture-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-10300")
 (:Synonym "Posture-NOS")
 (:Synonym "Body position-NOS"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-11. Conflict report for “posture.”

226 Appendix A Transcript of Conflict Resolution Session

Modeler 2: You know what I just saw? One synonym of posture is body position!
Isn’t that cool?

Modeler 1: That was the problem. That’s what I think I saw. That’s why I put all the
body positions under posture.

Moderator: So like the lithotomy position is a posture.

Modeler 2: Is considered a synonym of posture.

Modeler 3: Prone position is a posture. I just don’t see a real fruitful... I see a lot of
confusion coming from trying to separate the two. I don’t see the
benefit.

Moderator: Well, there are subtle distinctions.

Modeler 2: It’s for an examination position.

Moderator: I guess there are sort of two things I see. One is describing the patients
general state of ability...

Moderator: So you have sort of spontaneous posture. And then you can force them
into a posture to do a procedure. And that’s more you know the
lithotomy position. Sort of the difference is the intent.

Modeler 3: So one is a clinical maneuver, and posture is spontaneous. So if
someone is found on the ground face down. And their nose is necrotic
because they were in prone posture for 2 hours?

Modeler 2: Prone position.

Modeler 3: Ah Ha! but that’s the thing [position] you put them into clinically.

Modeler 2: The position.

Modeler 3: That’s the thing that there is more than one definitional axis between
the two. One is that a general position is of the body axis and that
position is [garbled].

Modeler 1: The problem is that in common sorts of usage they are interchangeable,
and not well delineated.

Modeler 2: Lets keep them under one taxonomy and we will re-evaluate this.

Modeler 1: OK. So we’ll go back a couple of pages.

Appendix A Transcript of Conflict Resolution Session 227

Moderator: So for prone body position, it’s both a posture and a body
position?

Modeler 1: It’s on page one and two.

Modeler 2: OK. The problem is that body position needs to be... Body
position NOS I created. I created a concept that didn’t need to
be created.

Modeler 3: Body position?

Modeler 2: Yes. Oh maybe not. This is why we need the synonym search. If I
had been able to do a synonym search. I would have found that
body position was already defined as a posture.

Modeler 1: See, I found it that way. I looked [garbled]

Moderator: So this would be a good concept to try to expunge somehow.

Modeler 2: Body position?

Modeler 3: Give it the status of synonym to posture.

Modeler 2: See, it already does.

Moderator: But the thing is that we now have this unique concept identifier,
something that is a synonym of something else.

Modeler 1: Right.

Moderator: And that’s not a good thing.

Modeler 1: Right. We need to expunge this somehow.

Moderator: So on one of the versions, we need to dump the data file, strip it
out, and reload.

Modeler 1: Well, we either change SNOMED, get rid of the synonym, or
we...

Modeler 3: It’s OK as a synonym.

Modeler 1: Get rid of the concept that Modeler 2 created.

Moderator: Well I think we have a hard time articulating a repeatable
distinction.

228 Appendix A Transcript of Conflict Resolution Session

Modeler 1: That’s right.

Moderator: And if we can’t do it, then formalizing that distinction is really hard.

Modeler 2: I understand. So I should get rid of the concept...

Modeler 3: We should get rid of the concept.

Modeler 2: And reassign it’s children to a parent called posture.

Moderator: So prone body position doesn’t go under body position, it goes under
posture. And somebody is going to have to go through and remove all
links to body position.

Modeler 2: OK. Because it is used as a role restriction for certain maneuvers I
believe.

Moderator: And krep 2.24 has a special function to do that... [2.24 is not released.
This was a jab at the developer to try to get this feature in 2.24].

Modeler 1: K-Rep Developer, it does?

K-Rep
Developer:

Maybe 2.25.

Moderator: So posture. We would just leave it under 3?

Modeler 2: Yes.

Modeler 2: Morning Stiffness. [see Figure A-12]

Modeler 2: I think Modeler 1 was right on this one. I think it’s a musculoskeletal
symptom.

Moderator: OK. But there is another issue here, that is the rigidity. Would you say
that morning stiffness meets rigidity criteria?

Modeler 2: No. I think that they may be related in an associated fashion.

Modeler 1: I think on the original SNOMED they might have been siblings.

Modeler 2: Rigidity to me is the physical exam finding that can be cogwheel
rigidity or decorticate rigidity.

Moderator: So actually we want to go from state 4 to state 3.

Appendix A Transcript of Conflict Resolution Session 229

Modeler 2: Visual acuity testing... Looks like this is between me and
Modeler 3. [see Figure A-13]

Moderator: That’s right. You two can duke it out.

Modeler 2: What’s the difference between 2 and 3?

Moderator: Well cranial nerve exam. There is visual field testing which
certainly tests cranial nerve II, And you sort of assume that CN
II is working. Your visual acuity is testing your refraction.

Morning-stiffness_F-11330 has multiple end
states!

1 P (and Rigidity-NOS_F-11320
 (:Display_Name "Morning stiffness")
 (:Displayable "T")
 (:SNOMED_Code "F-11330")
 (:Synonym "Morning stiffness"))

2 P (and Muscle-property-NOS_F-11100
 (:Display_Name "Morning stiffness")
 (:Displayable "T")
 (:SNOMED_Code "F-11330")
 (:Synonym "Morning stiffness"))

3 P (and Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Morning stiffness")
 (:Displayable "T")
 (:SNOMED_Code "F-11330")
 (:Synonym "Morning stiffness"))

4 P (and Rigidity-NOS_F-11320
 Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Morning stiffness")
 (:Displayable "T")
 (:SNOMED_Code "F-11330")
 (:Synonym "Morning stiffness"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 4
##Modeler 1|From K-Rep DE

Arc 2 3
##Modeler 2|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-12. Conflict report for “morning stiffness.”

Visual-acuity-testing-NOS_P2-A0012 has multiple end states!

1 P (and Ophthalmic-exam-and-evaluation-NOS_P2-A0010
 (:Display_Name "Visual acuity testing-NOS")
 (:Displayable "T")
 (:SNOMED_Code "P2-A0012")
 (:Synonym "Visual acuity testing-NOS"))

2 P (and Ophthalmic-exam-and-evaluation-NOS_P2-A0010
 (:Display_Name "Visual acuity testing-NOS")
 (:Displayable "T")
 (:Int_Ext "I")
 (:SNOMED_Code "P2-A0012")
 (:Synonym "Visual acuity testing-NOS"))

3 P (and Ophthalmic-exam-and-evaluation-NOS_P2-A0010
 Cranial-nerve-II-exam_F-3R3R4
 (:Display_Name "Visual acuity testing-NOS")
 (:Displayable "T")
 (:SNOMED_Code "P2-A0012")
 (:Synonym "Visual acuity testing-NOS"))

Arc 1 2
##Modeler 3|From K-Rep DE

Arc 1 3
##Modeler 2|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-13. Conflict report for “visual acuity testing.”

230 Appendix A Transcript of Conflict Resolution Session

Modeler 3: Visual acuity is a very high level test in the sense that it tests a lot of
things. Like “Gait”

Modeler 2: I think 2 is the proper...

Modeler 3: And it needs to have the more general parent. Just like gait is a
musculoskeletal function even though it is a “foot function.”

Modeler 2: Oh I see, Modeler 3 added internal/external code. That’s what the
added feature is. The change I made to state 3 should be revised back to
state 2.

Moderator: OK. So we are happy with state 2?

Modeler 2: State 2 is the correct state.

Modeler 2: Myalgia. Pretty straight forward I think. [see Figure A-14]

Moderator: Is it a muscle property or a symptom?

Modeler 2: A symptom. So state 2.

Modeler 2: Eye and eyelid symptom goes under state 4 I believe. These are all my
changes. [see Figure A-15]

Modeler 3: No they are Modeler 1’s actually.

Myalgia_F-11550 has multiple end states!

1 P (and Muscle-property-NOS_F-11100
 (:Display_Name "Myalgia")
 (:Displayable "T")
 (:SNOMED_Code "F-11550")
 (:Synonym "Myalgia")
 (:Synonym "Muscle pain")
 (:Synonym "Myalgic"))

2 P (and Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Myalgia")
 (:Displayable "T")
 (:SNOMED_Code "F-11550")
 (:Synonym "Myalgia")
 (:Synonym "Muscle pain")
 (:Synonym "Myalgic"))

3 P (and Muscle-property-NOS_F-11100
 Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Myalgia")
 (:Displayable "T")
 (:SNOMED_Code "F-11550")
 (:Synonym "Myalgia")
 (:Synonym "Muscle pain")
 (:Synonym "Myalgic"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-14. Conflict report for “myalgia.”

Appendix A Transcript of Conflict Resolution Session 231

Modeler 1: You did from 1 to 2 Modeler 2.

Moderator: So the conflict is between state 2 and state 4.

Modeler 1: Right. It’s not a kind of vision.

Modeler 2: It’s not a kind of vision.

Moderator: Eye and eyelid symptoms, I would just put it under symptoms.

Modeler 2: The problem is that there are some extra facets.

Moderator: Well we’ll be able to merge those to. So the first thing we want is
symptom. And we want to delete vision, and we want do delete
biological function.

Modeler 2: The difference is the some restriction “in region”. We need to
maintain that.

Moderator: OK. So we can keep some in_region... So here we are actually
combining a couple from both people. Were their any other
facets...

Modeler 1: The facets are the same.

Eye-and-eyelid-symptom-NOS_F-F1700 has multiple
end states!

1 P (and Biological-function-NOS_F-00000
 (:Display_Name "Eye and eyelid symptom-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-F1700")
 (:Synonym "Eye and eyelid symptom-NOS"))

2 P (and Biological-function-NOS_F-00000
 Symptom-NOS_F-01250
 (:Display_Name "Eye and eyelid symptom-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-F1700")
 (:Synonym "Eye and eyelid symptom-NOS"))

3 P (and Vision-NOS_F-F0000
 Symptom-NOS_F-01250
 (:Display_Name "Eye and eyelid symptom-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-F1700")
 (:Synonym "Eye and eyelid symptom-NOS"))

4 D (and Vision-NOS_F-F0000
 Symptom-NOS_F-01250
 (some in_Region Eyes-and-eye-appendages_T-AA000)
 (atleast 1 in_Region)
 (:Display_Name "Eye and eyelid symptom-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-F1700")
 (:Synonym "Eye and eyelid symptom-NOS"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

Arc 3 4
##Modeler 1|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-15. Conflict report for “eye and eyelid symptom.”

232 Appendix A Transcript of Conflict Resolution Session

Modeler 2: Peritoneal dialysis is Modeler 3’s debacle. [see Figure A-16]

Moderator: Oh. You did a backtrack. So do you really want to say 4? The choice is
between 2 and 4.

Modeler 3: Yes...

Moderator: Peritoneal dialysis is not a patient education thing.

Modeler 3: No.

Moderator: But there is education associated with it. So I think you want to say 4,
which is what you wanted to say in the first place. This is just kind of a
side effect of the program, in that if you back track, it doesn’t know
what to do with it.

Modeler 3: This was right next to pertional dialysis training which is both a
peritoneal dialysis and training.

Moderator: Alright. Tetany... [see Figure A-17]

Modeler 2: I think its a symptom, but I also think it is a motor exam finding.

Modeler 3: Wait a second. Now we are in the situation where the same finding
seems to be in a very different nature as a symptom. That is that

Peritoneal-dialysis-NOS_P2-77500 has multiple end
states!

1 P (and Dialysis-NOS_P2-77r00
 (:Display_Name "Peritoneal dialysis-NOS")
 (:Displayable "T")
 (:SNOMED_Code "P2-77500")
 (:Synonym "Peritoneal dialysis-NOS"))

2 P (and Dialysis-NOS_P2-77r00
 Patient-education-urological-or-renal_PA-60r06
 (:Display_Name "Peritoneal dialysis-NOS")
 (:Displayable "T")
 (:SNOMED_Code "P2-77500")
 (:Synonym "Peritoneal dialysis-NOS"))

3 P (and Dialysis-NOS_P2-77r00
 (:Display_Name "Peritoneal dialysis-NOS")
 (:Displayable "T")
 (:Int_Ext "E")
 (:SNOMED_Code "P2-77500")
 (:Synonym "Peritoneal dialysis-NOS"))

4 P (and Dialysis-NOS_P2-77r00
 (:Display_Name "Peritoneal dialysis-NOS")
 (:Displayable "T")
 (:Int_Ext "E")
 (:Referral_Department Facility-business-office_5111)
 (:SNOMED_Code "P2-77500")
 (:Synonym "Peritoneal dialysis-NOS"))

Arc 1 2
##Modeler 3|From K-Rep DE

Arc 1 3
##Modeler 3|From K-Rep DE

Arc 3 4
##Modeler 3|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-16. Conflict report for “peritoneal dialysis.”

Appendix A Transcript of Conflict Resolution Session 233

experiencing tetany is so different from finding tetany that we
want to make it both? Are you sure we want to do that?

Modeler 2: That’s my thinking. As opposed to the associated finding
relationship.

Modeler 3: Now for cough you could say, for instance, painful cough is a
symptom, barking cough is a sign.

Modeler 2: The problem is that “cough” has to go somewhere. And it will
have both of it’s children with this.

Modeler 3: The only reason I see to make a clinical finding both a symptom
and a sign is when it has children which are clearly
differentiated. But I would not do it just because it feels different
to have tetany than to observe tetany. I mean... What do you
think? We should have a sense of why we should have
something be both, because many things could be both. Which
is another option. Everything could be both.

Modeler 2: There are, as I go through these physical exam things, a lot of
them are both. I’m leaving them as symptoms, and I’m
associating them or I’m pulling them out of symptoms
completely. It’s a case by case thing.

Modeler 1: Tetany is really a muscle function that is continuous muscle
contraction. Actually continuous muscle stimulation.

Modeler 2: That’s right.

Tetany-NOS_F-11370 has multiple end states!

1 P (and Muscle-property-NOS_F-11100
 (:Display_Name "Tetany-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-11370")
 (:Synonym "Tetany-NOS"))

2 P (and Motor-exam_F-3RR44
 (:Display_Name "Tetany-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-11370")
 (:Synonym "Tetany-NOS"))

3 P (and Muscle-property-NOS_F-11100
 Musculoskeletal-symptom-NOS_F-10050
 (:Display_Name "Tetany-NOS")
 (:Displayable "T")
 (:SNOMED_Code "F-11370")
 (:Synonym "Tetany-NOS"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 3
##Modeler 1|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-17. Conflict report for “tetany.”

234 Appendix A Transcript of Conflict Resolution Session

Modeler 3: So to me it seems like a sign.

Modeler 2: Well, it is a physiologic function.

Modeler 1: In it’s truest definition.

Modeler 3: Well, make it a function if you want.

Modeler 1: Well it was a muscle property.

Modeler 2: Well, it’s a waste though to just leave it as a function. We have to put it
somewhere that is useful. Either a symptom or a sign.

Modeler 3: Well all I’m asking is why is it a symptom. What are the reasons we
make something that is already a sign a symptom.

Modeler 2: Because of what you said. It’s a presenting complaint for a specific set
of diseases.

Modeler 3: Is that a complaint?

Modeler 1: We are not saying that all symptoms are complaints. They are limited to
just lay terminology. Now people present with epistonic posturing.
Which is what you commonly see in advanced tetanus.

Modeler 2: Correct.

Modeler 1: That’s a disease. Or they present with trismus or lock-jaw, which really
is the common terminology symptoms.

Moderator: Well I had a patient that came in to the ER with their jaw in spasm
stating “I have low calcium.” That patient had previously had a
parathyroidectomy, and so they knew what they had.

...... Story......

Modeler 2: Well in this case, I think that probably sign or motor exam finding is the
proper place.

Moderator: OK. So tetany goes under motor exam, not muscle property or
musculoskeletal symptom?

(agreement).

Modeler 2: Now this next one, Skin_Rash has been deleted. The correct one is Skin-
rash. [see Figure A-18]

Appendix A Transcript of Conflict Resolution Session 235

Modeler 1: So you did this yesterday?

Skin_Rash has multiple end states!

1 P (and Skin-exam
 (some has_Color Skin-finding-color_M-04R10)
 (some has_Morphologic_Features Rash,_NOS)
 (:Design_Note "")
 (:Diagnostic_Specificity Eczema-NOS_D0-10100)
 (:Diagnostic_Specificity Psoriasis-NOS_D0-22100)
 (:Diagnostic_Specificity Impetigo-NOS_DE-12200)
 (:Diagnostic_Specificity Varicella-NOS_DE-32300)
 (:Diagnostic_Specificity Measles_DE-33910)
 (:Diagnostic_Specificity Rubeola_scarlatinosa_DE-39100)
 (:Diagnostic_Specificity Wart)
 (:Diagnostic_Specificity Pityriasis-NOS_D0-22160)
 (:Diagnostic_Specificity Seborrheic-keratosis_M-72750)
 (:Diagnostic_Specificity Actinic-keratosis_M-72850)
 (:Diagnostic_Specificity Pityriasis_alba_D0-22163)
 (:Display_Name "Skin Rash/Erruption")
 (:Displayable "T")
 (:SNOMED_Code "")
 (:Synonym "skin rash"))

2 P (and Skin-exam
 (some has_Color Skin-finding-color_M-04R10)
 (some has_Morphologic_Features Rash,_NOS)
 (:Design_Note "")
 (:Diagnostic_Specificity Eczema-NOS_D0-10100)
 (:Diagnostic_Specificity Psoriasis-NOS_D0-22100)
 (:Diagnostic_Specificity Impetigo-NOS_DE-12200)
 (:Diagnostic_Specificity Varicella-NOS_DE-32300)
 (:Diagnostic_Specificity Measles_DE-33910)
 (:Diagnostic_Specificity Rubeola_scarlatinosa_DE-39100)
 (:Diagnostic_Specificity Wart)
 (:Diagnostic_Specificity Pityriasis-NOS_D0-22160)
 (:Diagnostic_Specificity Seborrheic-keratosis_M-72750)
 (:Diagnostic_Specificity Actinic-keratosis_M-72850)
 (:Diagnostic_Specificity Pityriasis_alba_D0-22163)
 (:Display_Name "Skin Rash/Erruption")
 (:Displayable "T")
 (:SNOMED_Code "F-9R765")
 (:Synonym "skin rash"))

3 P (and Skin-exam
 (some has_Color Color_M-04000)
 (some has_Morphologic_Features Rash,_NOS)
 (:Design_Note "")
 (:Diagnostic_Specificity Eczema-NOS_D0-10100)
 (:Diagnostic_Specificity Psoriasis-NOS_D0-22100)
 (:Diagnostic_Specificity Impetigo-NOS_DE-12200)
 (:Diagnostic_Specificity Varicella-NOS_DE-32300)
 (:Diagnostic_Specificity Measles_DE-33910)
 (:Diagnostic_Specificity Rubeola_scarlatinosa_DE-39100)

 (:Diagnostic_Specificity Wart)
 (:Diagnostic_Specificity Pityriasis-NOS_D0-22160)
 (:Diagnostic_Specificity Seborrheic-keratosis_M-72750)
 (:Diagnostic_Specificity Actinic-keratosis_M-72850)
 (:Diagnostic_Specificity Pityriasis_alba_D0-22163)
 (:Display_Name "Skin rash")
 (:Displayable "T")
 (:SNOMED_Code "F-9R765")
 (:Synonym "Skin rash")
 (:Synonym "Skin erruption"))

4 P (and Skin-exam
 (:Design_Note "")
 (:Display_Name "Skin rash")
 (:Displayable "T"))

5 P (and Skin-exam
 Skin-Symptoms_F-42R00
 (some has_Color Skin-finding-color_M-04R10)
 (some has_Morphologic_Features Rash,_NOS)
 (:Design_Note "")
 (:Diagnostic_Specificity Eczema-NOS_D0-10100)
 (:Diagnostic_Specificity Psoriasis-NOS_D0-22100)
 (:Diagnostic_Specificity Impetigo-NOS_DE-12200)
 (:Diagnostic_Specificity Varicella-NOS_DE-32300)
 (:Diagnostic_Specificity Measles_DE-33910)
 (:Diagnostic_Specificity Rubeola_scarlatinosa_DE-39100)
 (:Diagnostic_Specificity Wart)
 (:Diagnostic_Specificity Pityriasis-NOS_D0-22160)
 (:Diagnostic_Specificity Seborrheic-keratosis_M-72750)
 (:Diagnostic_Specificity Actinic-keratosis_M-72850)
 (:Diagnostic_Specificity Pityriasis_alba_D0-22163)
 (:Display_Name "Skin Rash/Erruption")
 (:Displayable "T")
 (:SNOMED_Code "")
 (:Synonym "skin rash"))

Arc 1 2
##Modeler 2|From K-Rep DE

Arc 1 5
##Modeler 1|From K-Rep DE

Arc 2 3
##Modeler 2|From K-Rep DE

Arc 3 4
##Modeler 2|From K-Rep DE

--Concepts are NOT equivalent--

Figure A-18. Conflict report for “skin rash.”

236 Appendix A Transcript of Conflict Resolution Session

Modeler 2: Yes.

Modeler 1: You weren’t supposed to make any changes until these were resolved
you bone-head.

Modeler 2: No, I thought I was supposed to continue working.

Moderator: We can resolve these. We can import his change set and then go through
it. Except, some of his changes. If they overlap with the conflicts here,
you will have to do some redundant work.

Modeler 1: We have to resolve these conflicts

Moderator: And then bring his stuff in, and then resolve them again.

Modeler 1: Sure.

Modeler 2: Yes, because I’m sure I’ve done another thousand at least (joke).

Modeler 1: I’m sure you have.

........

Moderator: How did you delete this concept? Does K-Rep have a delete button?

K-Rep
Developer:

Yes, you can delete a concept as long as there aren’t any other concepts
that are dependent upon it.

Moderator: So what get’s written in the commit journal when that happens?

K-Rep
Developer:

Delete concept

Moderator: So that’s it?

Modeler 2: You’ll also see some activity in the commit journal before. You’ll see the
concept that I modified related to the one I deleted.

Moderator: It’s just that my program will probably break or barf when it finds
delete concept.

(Discussion of how to delete a concept in K-Rep.)

At the interregional meeting, I talked about why delete concept was a
really bad idea. I think we need to work on deleting concepts in a
different way. Because if I’m running a configuration management

Appendix A Transcript of Conflict Resolution Session 237

environment, and I have this history, and then all of a sudden
you delete the concept, then I delete its history. What I would
like to propose is that when you want to delete a concept, you
can write a perl script that can go through and strip the
concepts from the datafile, and so we can tag them for deletion,
i.e. go through this configuration management process, resolve
the conflicts, dump a new version, and then strip the concepts
from there, and then go on.

Modeler 1: That’s fine. If that’s necessary, then we can do that.

Moderator: It still would be a good idea if you did all that dependency
removal prior to stripping it out.

...

238 Appendix A Transcript of Conflict Resolution Session

Appendix A Transcript of Conflict Resolution Session 239

240 Appendix A Transcript of Conflict Resolution Session

241

Appendix B
The Knowledge Representation
System Specification

The Knowledge Representation System Specification (KRSS) defines a standard syntax

for description-logic-based knowledge-representation systems. Interested readers may

download the complete draft of KRSS from the Defense Advanced Projects Research

Agency Knowledge Sharing web page (Patel-Schneider et al., 1993).1 KRSS itself does

not require compliant systems to reason over all the distinctions defined by the KRSS syn-

tax. Rather, compliant implementation are only required to parse the entire language, and

to perform non-trivial inference over a subset of first-order predicate logic with model-sets

(Donini, Lenzerini, Nardi, Schaerf & Nutt, 1992).2 This appendix does not provide a com-

prehensive discussion of all the representational requirements of KRSS, but rather gives

an overview of the KRSS syntax, and simple examples of how terminological definitions

1. http://www-ksl.stanford.edu/knowledge-sharing/papers/index.html#dl-spec

2. The draft specification requires that such inference be logically correct and complete over the subset of
logic supported by any particular implementation. Therefore, if the system determines that “A is a B,”
then “A” must truly be a “B” in all possible interpretations of statements within the knowledge-represen-
tation system (correctness). Further, the system must answer “A is a B” if there are statements within the
system that would allow one to properly conclude that “A is a B” (completeness).

242 Appendix B The Knowledge Representation System Specification

are constructed. Table B-1 presents the principle concept-forming operators and termino-

logical axioms of KRSS.

Table B-1. Concept forming operators and the terminological axioms of the
Knowledge Representation System Specification.

Concrete Form Abstract Form Description

Concept-Forming Operators

top The “top” of the hierarchy from
which all concepts descend.

bot ⊥ The imaginary concept at the
“bottom” of the hierarchy.

(and C1...Cn) A logical conjunction of con-
cepts C1 through Cn.

(or C1...Cn) At least one and possibly more
of concepts C1 through Cn.

(not Cn) ¬C A logical negation of the con-
cept C.

(some R C) There exists at least one rela-
tionship R constrained to be of
type C.

(all R C) All relationships R are con-
strained to be of type C.

Terminological Axioms

(define-concept N C) N ≡ C C defines necessary and suffi-
cient conditions for N.

(define-primitive-concept N C) C defines necessary conditions
for N.

(disjointprimitives P1 P2) Primitives P1 and P2 are mutu-
ally exclusive.

⊥

C1∧...∧Cn

C1∨ .. .∨ Cn

R:C∃

R:C∀

N C

P1 ∧ P2 = ⊥

 243

Each concept in a knowledge base must be identified with a unique name. New primitive3

concepts can be introduced into the terminology with the “define-primitive-concept” oper-

ator. For example, the concept of “sexual genotype” and “human” can be introduced into

the knowledge-representation system with the following statements:4

(define-primitive-concept SEXUAL-GENOTYPE) (Statement 1)

(define-primitive-concept HUMAN) (Statement 2)

Once introduced, the concepts of “male” and “female” sexual genotypes can be introduced

into the knowledge base as subconcepts of sexual genotype with the following statements:

(define-primitive-concept MALE-GENOTYPE SEXUAL-GENOTYPE) (Statement 3)

(define-primitive-concept FEMALE-GENOTYPE SEXUAL-GENOTYPE) (Statement 4)

Now that the knowledge base has the concepts necessary to define a male and female

human, they can be defined using a defining relationship known as a “role.” Roles can be

introduced into a KRSS knowledge base using a “define-primitive-role” operator. A “has

genotype” role would be introduced into the knowledge base with the following statement:

(define-primitive-role HAS-GENOTYPE) (Statement 5)

This role can now be used together with the concepts HUMAN, MALE-GENOTYPE, and

FEMALE-GENOTYPE to define “male human” and “female human:”

3. A concept is considered primitive if it is defined with necessary, but not sufficient conditions. For exam-
ple, it is necessary for a human to be a mammal, but to be a human, there are additional requirements
(such as the number of chromosomes and other features shared by all humans). If a human concept is
defined simply as a mammal, then it should be designated as a primitive concept. A concept may neces-
sarily be primitive if the underlying description-logic dialect lacks the expressive power to completely
represent necessary and sufficient conditions. Alternatively, a concept may be primitive simply because
the modeler chooses not to represent certain necessary conditions.

4. Whenever a concept does not specify a parent concept from which it inherits, it is assumed to descend
from the “top” concept presented in Table B-1.

244 Appendix B The Knowledge Representation System Specification

(define-concept MALE-HUMAN
(and HUMAN

(some HAS-GENOTYPE MALE-GENOTYPE)) (Statement 6)

(define-concept FEMALE-HUMAN
(and HUMAN

(some HAS-GENOTYPE FEMALE-GENOTYPE)) (Statement 7)

There are several things to note about these last two statements. First, they use the define-

concept operator rather than the define-primitive-concept operator. Unlike the previous

primitive concepts (see statements 1-4), these statements have specified necessary and suf-

ficient conditions to be either a male or a female human. Second, previous defining state-

ments only have one or fewer necessary conditions (the statements immediately to the

right of the concept label), these statements have two necessary conditions (the HUMAN

and the HAS-GENOTYPE statements) and are therefore joined with an “and” clause, which is

represented in prefix notation. KRSS represents both “and” and “or” clauses in prefix

notation as specified in Table B-1 and demonstrated in Statements 6 and 7). Third, the

HAS-GENOTYPE role is introduced with a restriction (“some” in this case), that specifies

the scope of the role (the abstract form and description of some and all role restrictions are

presented in Table B-1).

Modelers can continue to introducing concepts and roles until the desired terminology is

completed. A complete terminology system may range from 20 to 200,000 concepts

depending upon the intended domain and purpose of the system.

245

Bibliography

American Medical Association. (1995) Physicians' Current Procedural Terminology: CPT

1996. Chicago: American Medical Association.

American Psychiatric Association Task Force on Nomenclature and Statistics. (1980)

Diagnostic and Statistical Manual of Mental Disorders, Third Edition, (DSM-III). Wash-

ington, D.C.: American Psychiatric Association.

ANSI/IEEE Standard 729. (1983) Glossary of software engineering terminology. New

York: IEEE Press.

Audet A. M. and Scott H. D. (1993) The Uniform Clinical Data Set: An evaluation of the

proposed national database for Medicare's quality review program. Annals of Internal

Medicine, 119(12):1209-13.

Barghouti N. S. and Kaiser G. E. (1991) Concurrency control in advanced database appli-

cations. ACM Computing Surveys, 23(3):269-317.

 247

Blumberg M. S. (1991) Biased Estimates of Expected Acute Myocardial Infarction Mor-

tality using MedisGroups Admission Severity Groups. Journal of the American Medical

Association, 265(22):2965-70.

Board of Directors of the American Medical Informatics Association. (1994) Standards for

Medical Identifiers, Codes, and Messages Needed to Create an Efficient Computer-stored

Medical Record. Journal of the American Medical Informatics Association, 1(1):1-7.

Bohinski R. C. (1973) Modern Concepts in Biochemistry. (3rd ed.) Boston: Allyn and

Bacon, Inc.

Boolos G. (1993) The Logic of Provability. Cambridge: Cambridge University Press.

Boolos G. S. and Jeffrey R. C. (1989) Computability and Logic. (3rd ed.) Cambridge:

Cambridge University Press.

Borgida A. R., Brachman R. J., McGuinness D. L. and Resnick L. A. (1989) CLASSIC: A

Structured Data Model for Objects. ACM SIGMOD International Conference on Manage-

ment of Data. Association for Computing Machinery, 59-67.

Bowen O. R. and Roper W. L. (1987) Medicare Hospital Mortality Information, 1986.

U.S. Dept. of Health and Human Services Publication 00744. Health Care Financing

Administration.

Brachman R. J., Fikes R. E. and Levesque H. J. (1983) Krypton: a functional approach to

knowledge representation. COMPUTER, 16(10):67-73.

248 Bibliography

Brachman R. J. and Levesque H. J. (1984) The Tractability of Subsumption in Frame-

Based Description Languages. Proceedings of AAAI-84, 34-37.

Brachman R. J., McGuinness D. L., Patel-Schneider P. F., Resnick L. A. and Borgida A.

(1991) Living With Classic: When and how to use a KL-One-like language. In: Sowa J. F.,

ed. Principles of Semantic Networks: Explorations in the representation of knowledge.

San Mateo, California: Maurgan Kaufman Publishers, Inc., 401-56.

Brachman R. J. and Schmolze J. G. (1985) An Overview of the KL-One Knowledge Rep-

resentation System. Cognitive Science, 9(2):171-202.

Brill D. (1993) Loom Reference Manual: Version 2.0. University of Southern California.

California Legislature. (1991) Assembly Bill no. 524. State of California.

Campbell J. R., Carpenter P., Sneiderman C., Cohn S., Chute C. G. and Warren J. (1997)

Phase II Evaluation of Clinical Coding Schemes: Completeness, Taxonomy, Mapping,

Definitions, and Clarity. Journal of the American Medical Informatics Association,

4(3):238-51.

Campbell K. E. (1994) Distributed Development of a Logic-Based Controlled Medical

Terminology [Dissertation Proposal (unpublished)]. Stanford University.

Campbell K. E., Cohn S. P., Chute C. G., Rennels G. and Shortliffe E. H. (1996) Gálapa-

gos: Computer-Based Support for Evolution of a Convergent Medical Terminology. In:

Cimino J. J., ed. AMIA Annual Fall Symposium. Washington, D.C.: Hanley & Belfus,

Inc., 269-73.

 249

Campbell K. E., Das A. K. and Musen M. A. (1994) A Logical Foundation for Representa-

tion of Clinical Data. Journal of the American Medical Informatics Association, 1(3):218-

32.

Campbell K. E. and Musen M. A. (1992a) Creation of a Systematic Domain for Medical

Care: The need for a comprehensive patient-description vocabulary. In: Lun K. C., Degou-

let P., Piemme T. E. and Rienhoff O., eds. Proceedings of MEDINFO 92. Geneva, Switzer-

land: North Holland: Elsevier Science Publishers, 1437-42.

Campbell K. E. and Musen M. A. (1992b) Representation of Clinical Data using

SNOMED III and Conceptual Graphs. In: Frisse M. E., ed. Sixteenth Annual Symposium

on Computer Applications in Medical Care. Baltimore, MD: McGraw-Hill, 354-58.

Campbell K. E., Wieckert K., Fagan L. M. and Musen M. A. (1993) A Computer-based

Tool for Generation of Progress Notes. In: Safran C., ed. Seventeenth Annual Symposium

on Computer Applications in Medical Care. Washington, D.C.: McGraw-Hill, 284-88.

Cavalli-Sforza V., Weiner A. W. and Lesgold A. (1994) Software Support for Students

Engaging in Scientific Activity and Scientific Controversy. Science Education, 78:577-99.

Chute C. G., Cohn S., Campbell K. E., Oliver D. and Campbell J. R. (1996) The Content

Coverage of Clinical Classifications. Journal of the American Medical Informatics Associ-

ation, 3(3):224-33.

250 Bibliography

Cimino J. J., Clayton P. D., Hriscsak G. and Johnson S. B. (1994) Knowledge-based

Approaches to the Maintenance of a Large Controlled Medical Terminology. Journal of

the American Medical Informatics Association, 1(1):35-50.

Cimino J. J., Hripcsak G., Johnson S. B. and Clayton P. D. (1989) Designing an Introspec-

tive, Controlled Medical Vocabulary. In: Kingsland L. W., ed. Thirteenth Annual Sympo-

sium on Computer Applications in Medical Care. Washington, D.C.: IEEE Computer

Society Press, 513-18.

Côté R. A., Rothwell D. J., Palotay J. L., Beckett R. S. and Brochu L., eds. (1993) The

Systematized Nomenclature of Medicine: SNOMED International. Northfield, Illinois:

College of American Pathologists.

Dart S. A. (1992) Parallels in Computer-aided Design Framework and Software Develop-

ment Environment Efforts. Technical Report CMU/SEI-92-TR-9, ESC-TR-92-009. Soft-

ware Engineering Institute, Carnegie Mellon University.

Das A. K., Tu S. W., Purcell G. P. and Musen M. A. (1992) An Extended SQL for Tempo-

ral Data Management in Clinical Decision-support Systems. In: Frisse M. E., ed. Sixteenth

Annual Symposium on Computer Applications in Medical Care. Baltimore, MD:

McGraw-Hill, 128-32.

Dennett D. C. (1995) Darwin's Dangerous Idea: Evolution and the Meanings of Life. New

York: Simon & Schuster.

 251

Dick R. S. and Steen E. B., eds. (1991) The Computer-based Patient Record: An essential

technology for health care. Washington, D.C.: National Academy Press.

Donini F. M., Lenzerini M., Nardi D., Schaerf A. and Nutt W. (1992) Adding Epistemic

Operators to Concept Languages. Third International Conference on Principles of Knowl-

edge Representation and Reasoning. Cambridge, MA: Morgan Kaufmann, 342-53.

Enderton H. B. (1972) A Mathematical Introduction to Logic. San Diego, CA: Academic

Press.

Eswaran K., Gray J., Lorie R. and Traiger I. (1976) The Notions of Consistency and Pred-

icate Locks in a Database System. Communications of the ACM, 19(11):624-32.

Evans D. A., Cimino J. J., Hersh W. R., Huff S. M. and Bell D. S. (1994) Toward a Medi-

cal-concept Representation Language. Journal of the American Medical Informatics Asso-

ciation, 1(3):207-17.

Feiler P. H. (1991) Configuration Management Models in Commercial Environments.

Technical Report CMU/SEI-91-TR-7, ESD-91-TR-7. Software Engineering Institute, Car-

negie Mellon University.

Feldman S. I. (1979) Make: A program for maintaining computer programs. Software—

Practice & Experience, 9(4):255-65.

Fischer P. J., Stratmann W. C., Lundsgarrde H. P. and Steele D. J. (1980) User reaction to

PROMIS: Issues related to acceptability of medical innovations. In: Fourth Annual Sym-

252 Bibliography

posium on Computer Applications in Medical Care. Washington, D.C.: IEEE Press, 1722–

30.

Fitting M. (1990) First-Order Logic and Automated Theorem Proving. New York:

Springer-Verlag. (Gries D., ed. Texts and Monographs in Computer Science; vol 242).

Flood A. B. (1990) Peaks and Pits of using Large Databases to Measure Quality of Care.

International Journal of Technology Assessment in Health Care, 6:253-62.

Flores M. M. (1993) Insurers Rating Doctors by What They Charge. The Seattle Times

November 21:A1.

Friedman C., Cimino J. J. and Johnson S. B. (1993) A Conceptual Model for Clinical

Radiology Reports. In: Safran C., ed. Seventeenth Annual Symposium on Computer

Applications in Medical Care. Washington, D.C.: McGraw-Hill, 829-33.

Garcia-Molina H. (1983) Using Semantic Knowledge for Transaction Processing in a Dis-

tributed Database. ACM Transactions on Database Systems, 8(2):186-213.

Garcia-Molina H. and Salem K. (1987) Sagas. ACM SIGMOD 1987 Annual Conference.

ACM Press, 249-59.

Garey M. R. and Johnson D. S. (1979) Computers and Intractability: A guide to the theory

of NP-Completeness. New York: W. H. Freeman and Company.

 253

Genesereth M. R. and Fikes R. E. (1992) Knowledge Interchange Format, version 3.0 ref-

erence manual. Technical Report Logic-92-1. Computer Science Department, Stanford

University.

Gruber T. (1990) The Role of Standard Knowledge Representation for Sharing Knowl-

edge-Based Technology. Technical Report KSL-90-53. Stanford University.

Gruber T. R. (1993) Toward Principles for the Design of Ontologies Used for Knowledge

Sharing. Technical Report KSL 93-04. Stanford University.

Hall K. (1991) A Framework for Change Management in a Design Database [Doctoral

Dissertation]. Stanford University.

Hannan E. L., Kilburn H., Jr., Lindsey M. L. and Lewis R. (1992) Clinical versus Admin-

istrative Databases for CABG Surgery. Does it matter? Medical Care, 30(10):892-907.

Hayes P. J. (1977) In Defense of Logic. In: Reddy R., ed. International Joint Conference

on Artificial Intelligence–1977. Cambridge, Massachusetts: Carnegie-Mellon University,

559-65.

Henry S. B., Holzemer W. L., Reilly C. A. and Campbell K. E. (1994) Terms used by

Nurses to Describe Patient Problems: Can SNOMED III represent nursing concepts in the

patient record? Journal of the American Medical Informatics Association, 1(1):61-74.

Horwitz S., Prins J. and Reps T. (1989) Integrating Noninterfering Versions of Programs.

ACM Transactions on Programming Languages and Systems, 11(3):345-87.

 255

Kent D. L., Shortliffe E. H., Carlson R. W., Bischoff M. B. and Jacobs C. D. (1985)

Improvements in Data Collection through Physician use of a Computer-based Chemother-

apy Treatment Consultant. Journal of Clinical Oncology, 3(10):1409-17.

Kuhn K., Zemmler M. R. and Heinlein D. R. (1993) Structured Data Collection and

Knowledge-based User Guidance for Abdominal Ultrasound Reporting. In: Safran C., ed.

Seventeenth Annual Symposium on Computer Applications in Medical Care. Washington,

D.C.: McGraw-Hill, 311-15.

Kung H. and Robinson J. (1981) On Optimistic Methods for Concurrency Control. ACM

Transactions on Database Systems, 6(2):213-26.

Kuperman G. J., Gardner R. M. and Pryor T. A. (1991) HELP: A dynamic hospital infor-

mation system. New York: Springer Verlag.

Lamiell J. M., Zbigniew M. W. and Isaacks J. (1993) Computer Auditing of Surgical Oper-

ative Reports written in English. In: Safran C., ed. Seventeenth Annual Symposium on

Computer Applications in Medical Care. Washington, D.C.: McGraw-Hill, 269-73.

Lau L. M. and Warner H. R. (1992) Performance of a Diagnostic System (Iliad) as a Tool

for Quality Assurance. Computers and Biomedical Research, 25:314-23.

Lenert L. A. and Tovar M. (1993) Automated Linkage of Free-text Descriptions of Patients

with a Practice Guideline. In: Safran C., ed. Seventeenth Annual Symposium on Computer

Applications in Medical Care. Washington, D.C.: McGraw-Hill, 274-78.

256 Bibliography

Levesque H. J. and Brachman R. J. (1985) A Fundamental Tradeoff in Knowledge Repre-

sentation and Reasoning (revised version). In: Brachman R. J. and Levesque H. J., eds.

Readings in Knowledge Representation. San Francisco: Morgan Kaufman, 42-70.

Lindberg D. A. B., Humphreys B. L. and McCray A. T. (1993) The Unified Medical Lan-

guage System. Methods of Information in Medicine, 32:281-91.

Lipow S. S., Fuller L. F., Keck K. D., et al. (1996) Suggesting Structural Enhancements to

SNOMED International. In: Cimino J. J., ed. AMIA Annual Fall Symposium. Washington,

D.C.: Hanley & Belfus, Inc., 901.

Luft H. S. and Romano P. S. (1993) Chance, Continuity, and Change in Hospital Mortality

Rates: Coronary artery bypass graft patients in California hospitals, 1983 to 1989. Journal

of the American Medical Association, 270(3):331-37.

Lynch N. A. (1983) Multilevel Atomicity: A new correctness criterion for database con-

currency control. ACM Transactions on Database Systems, 8(4):484-502.

Masarie F. E., Miller R. A., Bouhaddou O., Nunzia B. G. and Warner H. R. (1991) An

Interlingua for Electronic Interchange of Medical Information: Using frames to map

between clinical vocabularies. Computers and Biomedical Research, 24(4):379-400.

Mays E., Dionne R. and Weida R. (1991) K-Rep System Overview. SIGART Bulletin,

2(3):93-97.

 257

Mays E., Weida R., Dionne R., et al. (1996) Scalable and Expressive Medical Terminolo-

gies. In: Cimino J. J., ed. AMIA Fall Symposium. Washington, D.C.: Hanley & Belfus,

Inc., 259-63.

McDonald C. J., Blevins L., Tierney W. M. and Martin D. K. (1988) The Regenstrief Med-

ical Records. MD Computing, 5(5):34-47.

McDonald C. J., Hui S. L., Smith D. M., et al. (1984) Reminders to Physicians from an

Introspective Computer Medical Record: A two-year randomized trial. Annals of Internal

Medicine, 100(1):130-38.

McGregor J. J. (1982) Backtrack Search Algorithms and the Maximal Common Subgraph

Problem. Software Practice and Experience, 12:23-34.

Miller R. A. (1994) Medical Diagnostic Decision Support Systems—Past, Present and

Future: A threaded bibliography and brief commentary. Journal of the American Medical

Informatics Association, 1(1):8-27.

Miller R. A., Masarie F. E. and Myers J. D. (1986) “Quick Medical Reference” for Diag-

nostic Assistance. MD Computing, 3:34-38.

Moser M. G. (1983) An Overview of NIKL: The new implementation of KL-ONE. In:

Sidner C., Bates M., Bobrow R., eds. Research in knowledge representation for natural

language understanding, annual report (BBN Report No. 5421). Cambridge, MA: Bolt,

Bernek and Newman,

258 Bibliography

Musen M. A. (1992) Dimensions of Knowledge Sharing and Reuse. Computers and Bio-

medical Research, 25:435-67.

Musen M. A., Carlson R. W., Fagan L. M., Deresinski S. C. and Shortliffe E. H. (1992) T-

Helper: Automated support for community-based clinical research. In: Frisse M. E., ed.

Sixteenth Annual Symposium on Computer Applications in Medical Care. Baltimore,

MD: McGraw-Hill, 719-723.

Musen M. A., Weickert K. E., Miller E. T., Campbell K. E. and Fagan L. M. (1995) Devel-

opment of a Controlled Medical Terminology: Knowledge acquisition and knowledge rep-

resentation. Methods of Information in Medicine, 34(1):85-95.

Naeymi-Rad F., Almeida F. and Trace D. (1992) IMR-Entry (Intelligent medical record-

entry). In: Frisse M. E., ed. Sixteenth Annual Symposium on Computer Applications in

Medical Care. Baltimore, MD: McGraw-Hill, 783-84.

National Center for Health Statistics. (1995) The International Classification of Diseases,

9th revision, Clinical Modification (ICD-9-CM). DHHS Publication No. (PHS) 80-1260.

U.S. Department of Health and Human Services.

National Library of Medicine. (1992) Medical Subject Headings. NTIS NLM-MED-92-

01. NLM.

National Research Council. (1994) Academic Careers for Experimental Computer Scien-

tists and Engineers. Washington, D.C.: National Academy Press.

 259

Nebel B. (1988) Computational Complexity of Terminological Reasoning in BACK. Arti-

ficial Intelligence, 34(3):371-83.

Neches R., Fikes R. E., Finin T., et al. (1991) Enabling Technology for Knowledge Shar-

ing. AI Magazine, 12(3):16-36.

Norman D. A. and Draper S. W. (1986) User Centered System Design: New perspectives

on human-computer interaction. Hillsdale, NJ: Lawrence Erlbaum Associates.

Patel-Schneider P. F., Swartout B. and KRSS working group of the DARPA Knowledge

Sharing Effort. (1993) Working Version (Draft): Description Logic Specification from the

KRSS Effort. http://www-ksl.stanford.edu/knowledge-sharing/papers/index.html#dl-spec.

Perez S. and Sarris A. (1993) Information Resource Dictionary System (IRDS) Concep-

tual Schema (CS). ANSI X3H4/92-003, ISO/IEC JTC1/SC21 N7486. American National

Standards Institute X3H4 IRDS and the International Organization for Standardization.

Poon A., Fagan L. M. and Shortliffe E. H. (1996) The Pen Ivory Project: Exploring User-

interface Design for the Selection of Items from Large Controlled Vocabularies of Medi-

cine. Journal of the American Medical Informatics Association, 3(2):168-83.

Rassinoux A. M., Baud R. H. and Scherrer J. R. (1992) Conceptual Graphs Model Exten-

sion for Knowledge Representation of Medical Texts. In: Lun K. C., Degoulet P., Piemme

T. E. and Rienhoff O., eds. MEDINFO 92. Geneva, Switzerland: North Holland: Elsevier

Science Publishers, 1368-74.

 261

C., ed. Seventeenth Annual Symposium on Computer Applications in Medical Care.

Washington, D.C.: McGraw-Hill, 265-68.

Schröder M. (1992) Knowledge-based Analysis of Radiological Reports using Conceptual

Graphs. In: Pfeiffer H. D., ed. Seventh Annual Workshop on Conceptual Graphs. Las

Cruces, New Mexico, 213-22.

Schubert L. K. (1991) Semantic Nets are in the Eye of the Beholder. In: Sowa J. F., ed.

Principles of Semantic Networks: Explorations in the Representation of Knowledge. San

Mateo: Morgan Kaufmann, 95-107. (Brachman R. J., ed. Morgan Kaufmann Series in

Representaiton and Reasoning)

Shewhart W. (1931) Economic Control of Manufactured Product. New York: D. Van Nos-

trand Company, Inc.

Shoham Y. (1987) Temporal logic in AI: Semantical and ontological considerations. Artifi-

cial Intelligence, 33(1):89-104.

Shortliffe E. H. (1990) Clinical Decision-Support Systems. In: Shortliffe E. H., Perreault

L. E., Wiederhold G. and Fagan L. M., eds. Medical Informatics: Computer applications

in health care. Reading, Massachusetts: Addison-Wesley, 466-502.

Shortliffe E. H. and Hubbard S. M. (1989) Information Systems for Oncology. In: DeVita

V. T., Hellman S. and Roseberg S. A., eds. Cancer: Principles and Practice of Oncology.

Philadelphia: J. B. Lippincott, 2403-12.

262 Bibliography

Shwe M., Sujansky W. and Middleton B. (1992) Reuse of Knowledge Represented in the

Arden Syntax. In: Frisse M., ed. Sixteenth Annual Symposium on Computer Applications

in Medical Care. Washington, D.C.: McGraw-Hill, 47-51.

Siegel E. R., Cummings M. M. and Woodsmall R. M. (1990) Bibliographic-Retrieval Sys-

tems. In: Shortliffe E. H., Perreault L. E., Wiederhold G. and Fagan L. M., eds. Medical

Informatics: Computer applications in health care. Reading, Massachusetts: Addison-

Wesley, 434-65.

Sittig D. F. (1994) Grand Challenges in Medical Informatics? Journal of the American

Medical Informatics Association, 1(5):412-13.

Smith J. W. and Svirbely J. R. (1990) Laboratory Information Systems. In: Shortliffe E.

H., Perreault L. E., Wiederhold G. and Fagan L. M., eds. Medical Informatics: Computer

applications in health care. Reading, Massachusetts: Addison-Wesley, 273-97.

Smith M. W. (1989) Hospital Discharge Diagnoses: How accurate are they and their inter-

national classification of diseases (ICD) codes? New Zealand Medical Journal,

102(876):507-08.

Sowa J. F. (1984) Conceptual Structures. Reading, Massachusetts: Addison-Wesley. (Aron

J. D., Bohl M., Chase R. P., eds. The Systems Programing Series)

Spencer-Smith R. (1991) Logic and Prolog. Hertfordshire, Great Britain: Harvester

Wheatsheaf.

 263

Streitz N. A., Hannemann J. and Thüring M. (1989) From Ideas and Arguments to Hyper-

documents: Travelling through activity spaces. In: Akseyn R., ed. Hypertext '89. Pitts-

burgh: Association for Computing Machinery, 343-64.

Suthers D., Weiner A., Connelly J. and Paolucci M. (1995) Belvedere: Engaging students

in critical discussion of science and public policy issues. AI-Ed 95, the 7th World Confer-

ence on Artificial Intelligence in Education. Washington D.C., 266-73.

Tatro D., Briggs R., Chavez-Pardo R., et al. (1975) Online Drug Interaction Surveillance.

American Journal of Hospital Pharmacy, 32(4):417.

Tichy W. F. (1985) RCS: A system for version control. Software: Practice and Experience,

15(7):637-54.

Tuttle M. S., Sherertz D. D., Erlbaum M. S., et al. (1991) Adding your Terms and Rela-

tionships to the UMLS Metathesaurus. In: Clayton P. D., ed. Fifteenth Annual Symposium

on Computer Applications in Medical Care. Washington, D.C.: McGraw-Hill, 219-23.

Ullman J. D. (1988) Principles of Database and Knowledge-Base Systems. Rockville,

Maryland: Computer Science Press, Inc. (Aho A. V. and Ullman J. D., eds. Principles of

Computer Science Series; vol 1).

United States Congress. (1996) Health Insurance Portability and Accountability Act of

1996. Public Law 104-191.

United States General Accounting Office. (1993) Standards for Automated Medical

Records. Report to Congress GAO/IMTEC-93-17.

264 Bibliography

van Walraven C., Wang B., Ugnat A. M. and Naylor C. D. (1990) False-positive Coding

for Acute Myocardial Infarction on Hospital Discharge Records: Chart audit results from a

tertiary centre. Canadian Journal of Cardiology, 6(9):383-86.

Weed L. (1969) Medical Records, Medical Education and Patient Care: The Problem-Ori-

ented Record as a basic tool. Chicago: Year Book Medical Publishers.

Wells A. (1965) SNOP: The Systematized Nomenclature of Pathology. Chicago, Illinois:

College of American Pathologists.

Westfechtel B. (1991) Structure-oriented Merging of Revisions of Software Documents.

In: Third International Workshop on Software Configuration Management. Trondheim,

Norway: ACM Press, 68-79.

Whitgift D. (1991) Methods and Tools for Software Configuration Management. West

Sussex, England: John Wiley & Sons Ltd.

Wiederhold G. and Perreault L. E. (1990) Hospital Information Systems. In: Shortliffe E.

H., Perreault L. E., Wiederhold G. and Fagan L. M., eds. Medical Informatics: Computer

applications in health care. Reading, Massachusetts: Addison-Wesley, 219-43.

Willems J. L., Abreu-Lima C., Arnaud P., et al. (1991) The Diagnostic Performance of

Computer Programs for the Interpretation of Electrocardiograms. New England Journal of

Medicine, 325(25):1767-73.

Winograd T. and Flores F. (1986) Understanding Computers and Cognition: a new founda-

tion for design. Reading, Massachusetts: Addison-Wesley.

 265

Yeh S., Ellis C., Ege A. and Korth H. (1987) Performance Analysis of Two Concurrency

Control Schemas for Design Environments. Technical Report STP-036-87. MCC, Austin,

Texas.

