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Abstract

Theminimum-cost multicommodity 
ow problem involves simultaneously

shipping multiple commodities through a single network so that the total


ow obeys arc capacity constraints and has minimum cost.

Multicommodity 
ow problems can be expressed as linear programs,

and most theoretical and practical algorithms use linear-programming al-

gorithms specialized for the problems' structures. Combinatorial approxi-

mation algorithms in [GK95, KP95b, PST95] yield 
ows with costs slightly

larger than the minimum cost and use capacities slightly larger than the

given capacities. Theoretically, the running times of these algorithms are

much less than that of linear-programming-based algorithms.

We combine and modify the theoretical ideas in these approximation

algorithms to yield a fast, practical implementation solving the minimum-

cost multicommodity 
ow problem. Experimentally, the algorithm solved

our problem instances (to 1% accuracy) two to three orders of magnitude

faster than the linear-programming package CPLEX [CPL95] and the linear-

programming based multicommodity 
ow program PPRN [CN96].



1 Introduction

The minimum-cost multicommodity 
ow problem involves simultaneously

shipping multiple commodities through a single network so the total 
ow

obeys the arc capacity constraints and has minimum cost. The problem

occurs in many contexts where di�erent items share the same resource, e.g.,

communication networks, transportation, and scheduling problems [AMO93,

HL96, HO96].

Traditional methods for solving minimum-cost and no-cost multicom-

modity 
ow problems are linear-programming based [AMO93, Ass78, CN96,

KH80]. Using the ellipsoid [Kha80] or the interior-point [Kar84] methods,

linear-programming problems can be solved in polynomial time. Theoreti-

cally, the fastest algorithms for solving the minimum-cost multicommodity


ow problem [KP95a, KV86, Vai89] exactly use the problem structure to

speed up the interior-point method.

In practice, solutions to within, say 1%, often su�ce. More precisely, we

say that a 
ow is �-optimal if it over
ows the capacities by at most 1+� factor

and has cost that is within 1+ � of the optimum. Algorithms for computing

approximate solutions to the multicommodity 
ow problem were developed

in [LMP+95] (no-cost case) and [GK95, KP95b, PST95] (minimum-cost

case). Theoretically, these algorithms are much faster than interior-point

method based algorithms for constant �. The algorithm in [LMP+95] was

implemented [LSS93] and was shown that indeed it often outperforms the

more traditional approaches. Prior to our work, it was not known whether

the combinatorial approximation algorithms for the minimum-cost case can

be implemented to run fast.

In this paper we describe MCMCF, our implementation of a combinatorial

approximation algorithm for the minimum-cost multicommodity 
ow prob-

lem. A direct implementation of [KP95b] yielded a correct but practically

slow implementation. Much experimentation helped us select among the

di�erent theoretical insights of [KP95b, LMP+95, LSS93, PST95, Rad95] to

achieve good practical performance.

We compare our implementation with CPLEX [CPL95] and PPRN [CN96].

(Several other e�cient minimum-cost multicommodity 
ow implementa-

tions, e.g., [ARVK89], are proprietary so we were unable to use these pro-

grams in our study.) Both are based on the simplex method [Dan63] and

both �nd exact solutions. CPLEX is a state-of-the-art commercial linear pro-

gramming package, and PPRN uses a primal partitioning technique to take

advantage of the multicommodity 
ow problem structure.

Our results indicate that the theoretical advantages of approximation al-
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gorithms over linear-programming-based algorithms can be translated into

practice. On the examples we studied, MCMCF was several orders of magni-

tude faster than CPLEX and PPRN. For example, for 1% accuracy, it was up

to three orders of magnitude faster. Our implementation's dependence on

the number of commodities and the network size is also smaller, and hence

we are able to solve larger problems.

We would like to compare MCMCF's running times with modi�ed CPLEX

and PPRN programs that yield approximate solutions, but it is not clear how

to make the modi�cations. Even if we could make the modi�cations, we

would probably need to use CPLEX's primal simplex to obtain a feasible 
ow

before an exact solution is found. Since its primal simplex is an order of

magnitude slower than its dual simplex for the problem instances we tested,

the approximate code would probably not be any faster than computing an

exact solution using dual simplex.

To �nd an �-optimal multicommodity 
ow, MCMCF repeatedly chooses a

commodity and then computes a single-commodity minimum-cost 
ow in

an auxiliary graph. The arc costs in this auxiliary graph are exponential

functions of the current 
ow. The base of the exponent depends on a pa-

rameter �, which our implementation chooses. A fraction � of the commod-

ity's 
ow is then rerouted to the corresponding minimum-cost 
ow. Each

rerouting decreases a certain potential function. The algorithm iterates this

process until it �nds an �-optimal 
ow.

As we have mentioned above, a direct implementation of [KP95b], while

theoretically fast, is very slow in practice. Several issues are crucial for

achieving an e�cient implementation:

Exponential Costs: The value of the parameter �, which de�nes the base

of the exponent, must be chosen carefully: Using a value that is too

small will not guarantee any progress, and using a value that is too

large will lead to very slow progress. Our adaptive scheme for choos-

ing � leads to signi�cantly better performance than using the theoreti-

cal value. Importantly, this heuristic does not invalidate the worst-case

performance guarantees proved for algorithms using �xed �.

Stopping Condition: Theoretically, the algorithm yields an �-optimal 
ow

when the potential function becomes su�ciently small [KP95b]. Al-

ternative algorithms, e.g., [PST95], explicitly compute lower bounds.

Although these stopping conditions lead to the same asymptotic run-

ning time, the latter one leads to much better performance in our

experiments.
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Step Size: Theory speci�es the rerouting fraction � as a �xed function

of �. Computing � that maximizes the exponential potential function

reduction decreases the running time. We show that is it possible

to use the Newton-Raphson method [Rap90] to quickly �nd a near-

optimal value of � for every rerouting. Additionally, a commodity's


ow usually di�ers from its minimum-cost 
ow on only a few arcs. We

use this fact to speed up these computations.

Minimum-Cost Flow Subroutine: Minimum-cost 
ow computations

dominate the algorithm's running time both in theory and in practice.

The arc costs and capacities do not change much between consecutive

minimum-cost 
ow computations for a particular commodity. Further-

more, the problem size is moderate by minimum-cost 
ow standards.

This led us to decide to use the primal network simplex method. We

use the current 
ow and a basis from a previous minimum-cost 
ow

to \warm-start" each minimum-cost 
ow computation. Excepting the

warm-start idea, our primal simplex code is similar to that of Grigo-

riadis [Gri86].

In the rest of this paper, we �rst introduce the theoretical ideas behind

the implementation. After introducing the problem instances we used to

test our implementation, we discuss the various choices in translating the

theoretical ideas into practical performance. Then, we present experimental

data showing that MCMCF's running time's dependence on the accuracy � is

smaller than theoretically predicted and its dependence on the number k of

commodities is close to what is predicted. We conclude by showing that the

combinatorial-based implementation solves our instances two to three orders

of magnitude faster than two simplex-based implementations. In the future

work, we will also show that a slightly modi�ed MCMCF solves the concurrent


ow problem, i.e., the optimization version of the no-cost multicommodity


ow problem, two to twenty times faster than Leong et al.'s approximation

implementation [LSS93].

2 Theoretical Background

2.1 De�nitions

The minimum-cost multicommodity 
ow problem consists of a directed net-

work G = (V;A), a positive arc capacity function u, a nonnegative arc

cost function c, and a speci�cation (si; ti; di) for each commodity i, i 2
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f1; 2; : : : ; k0g. Nodes si and ti are the source and the sink of commodity i,

and a positive number di is its demand.

A 
ow is a nonnegative arc function f. A 
ow fi of commodity i is a 
ow

obeying conservation constraints and satisfying its demand di. We de�ne

the total 
ow f(v; w) on arc (v; w) by f(v; w) =
P

k0

i=1
fi(v; w). Depending

on context, the symbol f represents both the (multi)
ow (f1; f2; : : :; fk) and

the total 
ow f1 + f2 + � � � + fk, summed arc-wise. The cost of a 
ow f is

the dot product c � f =
P

a2A
c(a)f(a).

Given a problem, a 
ow f, and a budget B, the congestion of arc a is

�a = f(a)=u(a), and the congestion of the 
ow is �A = maxa �a. The cost

congestion is �c = c � f=B, and the total congestion is � = maxf�A; �cg. A

feasible problem instance has a 
ow f with �A � 1.

Our implementation approximately solves the minimum-cost multicom-

modity 
ow problem. Given an accuracy � > 0 and a feasible multicom-

modity 
ow problem instance, the algorithm �nds an �-optimal 
ow f with

�-optimal congestion, i.e., �A � (1 + �), and �-optimal cost, i.e., if B� is the

minimum cost of any feasible 
ow, f's cost is at most (1 + �)B�. Because

we can choose � arbitrarily small, we can �nd a solution arbitrarily close to

the optimal.

We combine commodities with the same source nodes to form commodi-

ties with one source and (possibly) many sinks (see [LSS93, Sch91]). Thus,

the number k of commodity groups may be smaller than the number k0 of

simple commodities in the input.

2.2 The Algorithmic Framework

Our algorithm is mostly based on [KP95b]. Roughly speaking, the approach

in that paper is as follows. The algorithm �rst �nds an initial 
ow satis-

fying demands but which may violate capacities and may be too expen-

sive. The algorithm repeatedly modi�es the 
ow until it becomes O(�)-

optimal. Each iteration, the algorithm �rst computes the theoretical values

for the constant � and the step size �. It then computes the dual variables

yr = e�(�r�1), where r ranges over the arcs A and the arc cost function c, and

a potential function �(f) =
P

r
yr. The algorithm chooses a commodity i to

reroute in a round robin order, as in Radzik [Rad95]. It computes, for that

commodity, a minimum-cost 
ow f�
i
in a graph with arc costs related the

gradient r�(f) of the potential function and arc capacities �Au. The com-

modity's 
ow fi is changed to the convex combination (1� �)fi + �f�
i
. An

appropriate choice of values for � and � lead to ~O(��3nmk) running time.

Grigoriadis and Khachiyan [GK95] decreased the dependence on � to ��2.
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Since these minimum-cost algorithms compute a multi
ow having arc

cost at most a budget bound B, we use binary search on B to determine

an �-optimal cost. The arc cost of the initial 
ow gives the initial lower

bound because the 
ow is the union of minimum-cost single-commodity 
ows

with respect to the arc cost function c and arc capacities u. Lower bound

computations (see Section 4.1) increase the lower bound and the algorithm

decreases the congestion and cost until an �-optimal 
ow is found.

3 The Problem Instances

To test the MCMCF implementation, we modi�ed single-commodity maximum-


ow and minimum-cost 
ow problem generators to produce minimum-cost

multicommodity 
ow problems. We also wrote a new problem generator.

Di�erent algorithms may �nd solving di�erent problem families' instances

harder or easier. All instances' demands are scaled to have maximum arc

congestions of 0.60.

The problem generator multiRmfgen (abbreviated rmfgen and based

on [Bad91]) produces two-dimensional frames (grids) with arcs connecting a

random permutation of nodes in adjacent frames. The intraframe arcs have

capacities of 6400, while the interframe arcs have uniformly random capacity

from the range [1; 100]. All arc costs are uniformly randomly sampled from

the range [1; 100]. Commodities' sources and sinks are randomly chosen.

The generator multiGridgen (abbreviated multigrid and based on

[LO91]) produces two-dimensional grids with a limited number of additional

arcs connecting randomly chosen nodes. The additional arcs have higher

costs uniformly chosen from the range [200; 2000] and �xed capacities of 2000

units versus the [0; 200] cost range and [20; 200] capacity range for the grid

arcs. Commodities' sources and sinks are randomly chosen.

We wrote tripartite to produce di�cult-to-solve graphs to test MCMCF's

dependence on the network's size. Problem instances have a given number

of layers, each consisting of a tripartite graph (A;B;C). Complete bipar-

tite graphs connect A with B and B with C, while a node permutation

connects adjacent layers. All arcs have random costs in the range [1; 1000].

Commodities' sources and sinks are at opposite ends of the graph.

The real-world GTE problem instance has 49 nodes, 260 arcs, and 585

commodities.

All data obtained using a Sun UltraSparc-2 except where otherwise in-

dicated.
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4 Translating Theory into Practice

The algorithmic framework described in the previous section is theoreti-

cally e�cient, but a direct implementation requires orders of magnitude

larger running time than commercial linear-programming packages [CPL95].

Guided by the theoretical ideas of [KP95b, LMP+95, PST95], we converted

the theoretically correct but practically slow implementation to a theoreti-

cally correct and practically fast implementation. In some cases, we di�er-

entiated between theoretically equivalent implementation choices that di�er

in practicality, e.g, see Section 4.1. In other cases, we used the theory to

create heuristics that, in practice, greatly reduce the running time, but, in

the worst case, do not have an e�ect on the theoretical running time, e.g.,

see Section 4.3.

4.1 The Termination Condition

Theoretically, a small potential function value and a su�ciently large value

of the constant � indicates the 
ow is �-optimal [KP95b], but this pessimistic

indicator leads to poor performance. Instead, we periodically compute the

lower bound on the optimal congestion �� found in [LMP+95, PST95]. Since

the problem instance is assumed to be feasible, the computation indicates

when the current guess for the minimum 
ow cost is too low.

The weak duality inequalities yield a lower bound. Using the notation

from [PST95],

�
X

r

yr �
X

comm. i

Ci(�A) �
X

comm. i

C�

i
(�A): (1)

For commodity i, Ci(�A) represents the cost of the current 
ow fi with

respect to arc capacities �Au and the cost function ytA0, where A0 is a

(m + 1)-by-km matrix. The �rst m rows implement the arc capacity con-

straints while the last row implements the arc cost function c. C�

i
(�A)

is the minimum-cost 
ow. For all choices of dual variables and �A � 1,

�� �
P

i
C�

i
(1)=
P

r
yr �

P
i
C�

i
(�A)=

P
r
yr. Thus, this ratio serves as a

lower bound on the optimal congestion ��.

4.2 Computing the Step Size �

While, as suggested by the theory, using a �xed step size � to form the

convex combination (1 � �)fi + �f�
i
su�ces to reduce the potential func-

tion, our algorithm computes � to maximize the potential function reduc-

tion. Brent's method and similar strategies, e.g., see [LSS93], are natural

7



time (seconds) number of MCFs

problem � Newton �xed ratio Newton �xed ratio

rmfgen1 0.12 0.7 7.9 11.5 238 4789 20.1

rmfgen1 0.06 0.9 45.4 52.2 294 28534 97.1

rmfgen1 0.03 2.5 180.6 70.8 878 114390 130.3

rmfgen1 0.01 11.2 1334.2 119.4 4102 879963 214.5

rmfgen2 0.01 63.9 3842.7 60.1 13261 1361037 102.6

rmfgen3 0.01 257.5 15202.9 59.0 17781 1683061 94.7

multigrid1 0.01 3.0 95.3 31.6 1375 77936 56.7

Table 1: Computing an (almost) optimal step size reduces the running time

and number of minimum-cost 
ow (MCF) computations by two orders of

magnitude. Data obtained on a Sun Enterprise 3000.

strategies to maximize the function's reduction. We implemented Brent's

method [PFTV88], but the special structure of the potential function allows

us to compute the function's �rst and second derivatives. Thus, we can use

the Newton-Raphson method [PFTV88, Rap90], which is faster.

Given the current 
ow f and the minimum-cost 
ow f�
i
for commodity i,

the potential function �(�) is a convex function (with positive second deriva-

tive) of the step size �. Over the range of possible choices of � 2 [�min; 1],

the potential function's minimum occurs either at the endpoints or at one

interior point. Since the function is a sum of exponentials, the �rst and

second derivatives �0(�) and �00(�) are easy to compute.

Using the Newton-Raphson method reduces the running time by two

orders of magnitude compared with using a �xed step size. (See Table 1.)

As the accuracy increases, the reduction in running time for the Newton-

Raphson method increases. As expected, the decrease in the number of

minimum-cost 
ow computations was even greater.

4.3 Choosing �

The algorithm's performance depends on the value of �. The larger its value,

the more running time the algorithm requires. Unfortunately, � must be

large enough to produce an �-optimal 
ow. Thus, we developed heuristics for

slowly increasing its value. There are two di�erent theoretical explanations

for � than can be used to develop two di�erent heuristics.

Karger and Plotkin [KP95b] choose � so that, when the potential func-

tion is less than a constant factor of its minimum, the 
ow is �-optimal.
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number of MCFs time (seconds)

problem � adaptive �xed ratio adaptive �xed ratio

GTE 0.01 2559 15804 6.17 3.63 22.50 6.20

rmfgen3 0.01 3659 9999 2.73 55.71 160.75 2.89

rmfgen4 0.10 7998 4575 1.75 114.05 59.24 1.93

rmfgen4 0.05 6884 25144 3.65 91.94 343.30 3.73

rmfgen4 0.03 18483 56511 3.06 238.04 738.48 3.10

rmfgen5 0.03 17125 65069 3.80 353.75 1341.10 3.79

multigrid2 0.01 1659 1266 0.76 41.61 47.22 1.13

Table 2: Adaptively choosing � requires fewer minimum-cost 
ow (MCF)

computations than using the theoretical, �xed value of �. Data obtained on

a Sun Enterprise 3000.

The heuristic of starting with a small � and increasing it when the potential

function's value is too small experimentally failed to decrease signi�cantly

the running time.

Plotkin, Shmoys, and Tardos [PST95] use the weak duality inequalities

(Eq. 1 of Section 4.1) upon which we base a di�erent heuristic. The product

of the gaps bounds the distance between the potential function and optimal


ows. The algorithm's improvement is proportional to the size of the right

gap, and increasing � decreases the left gap's size. Choosing � too large,

however, can impede progress because progress is proportional to the step

size � which itself depends on how closely the potential function's lineariza-

tion approximates its value. Thus, larger � reduces the step size.

Our heuristic attempts to balance the left and right gaps. More precisely,

it chooses � dynamically to ensure the ratio of inequalities

(�
P

r
yr=
P

comm. i
Ci(�A))� 1

(
P

comm. i
Ci(�A)=

P
comm. i

C�

i
(�A))� 1

remains balanced. We increase � by factor � if the ratio is larger than 0.5

and otherwise decrease it by 
. After limited experimentation, we decided

to use the golden ratio for both � and 
. The � values are frequently much

lower than those from [PST95]. Using this heuristic rather than using the

theoretical value of ln(3m)=� [KP95b] usually decreases the running time by

a factor of between two and six. See Table 2.
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Figure 1: The cumulative number of pivots as a function of the number of

MCF calls for three di�erent commodities in two problem instances.

4.4 \Restarting" The Minimum-Cost Flow Subroutine

Theoretically, MCMCF can use any minimum-cost 
ow subroutine. In practice,

the repeated evaluation of single-commodity problems with similar arc costs

and capacities favor an implementation that can take advantage of restarting

from a previous solution. We show that using a primal network simplex

implementation allows restarting and thereby reduces the running time by

one-third to one-half.

To solve a single-commodity problem, the primal simplex algorithm re-

peatedly pivots arcs into and out of a spanning tree until the tree has min-

imum cost. Each pivot maintains the 
ow's feasibility and can decrease

its cost. The simplex algorithm can start with any feasible 
ow and any

spanning tree. Since the cost and capacity functions do not vary much

between MCF calls for the same commodity, we can speed up the compu-

tation, using the previously-computed spanning tree. Using the previously-

found minimum-cost 
ow requires O(km) additional storage. Moreover, it

is frequently unusable because it is infeasible with respect to the capacity

constraints than using the current 
ow. In contrast, using the current 
ow

requires no additional storage, this 
ow is known to be feasible, and starting

from this 
ow experimentally requires a very small number of pivots.

Fairly quickly, the number of pivots per MCF iteration becomes very

small. See Figure 1. For the 2121-arc rmfgen-d-7-10-040 instance, the av-

erage number of pivots are 27, 13, and 7 for the three commodities shown.

Less than two percent of arcs served as pivots. For the 260-arc gte problem,
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restarting no restarting

problem instance � time (sec) time (sec) ratio

rmfgen-d-7-10-020 0.01 464 744 1.60

rmfgen-d-7-10-240 0.01 2130 3152 1.47

rmfgen-d-7-12-240 0.01 2990 4839 1.61

rmfgen-d-7-14-020 0.01 1060 1564 1.47

rmfgen-d-7-14-040 0.01 1694 2521 1.48

rmfgen-d-7-14-080 0.01 3823 5145 1.34

rmfgen-d-7-14-160 0.01 3958 5319 1.34

rmfgen-d-7-14-240 0.01 4496 6172 1.37

rmfgen-d-7-14-320 0.01 4514 6491 1.43

rmfgen-d-7-16-240 0.01 6779 9821 1.44

multigrid-032-032-128-0080 0.01 89 148 1.67

multigrid-064-064-128-0160 0.01 906 2108 2.32

Table 3: Restarting the minimum-cost 
ow computations from the current


ow and the previous spanning tree reduces the running time by at least

25%. Data obtained on a Pentium Pro.

the average numbers are 8, 3, and 1, i.e., at most three percent of the arcs.

Instead of using a commodity's current 
ow and its previous spanning

tree, a minimum-cost 
ow computation could start from an arbitrary span-

ning tree and 
ow. On the problem instances we tried, warm-starting re-

duces the running time by a factor of about 1.3 to 2. See Table 3. Because

optimal 
ows are not unique, the number of MCF computations di�er, but

the di�erence of usually less than �ve percent.

5 Experimental Results

5.1 Dependence on the Approximation Factor �

The approximation algorithm MCMCF yields an �-optimal 
ow. Plotkin,

Shmoys, and Tardos [PST95] solve the minimum-cost multicommodity 
ow

problem using shortest-paths as a basic subroutine. Karger and Plotkin

[KP95b] decreased the running time by m=n using minimum-cost 
ow sub-

routines and adding a linear-cost term to the gradient to ensure each 
ow's

arc cost is bounded. This change increases the �-dependence of [PST95]

by 1=� to ��3. Grigoriadis and Khachiyan [GK95] improved the [KP95b]

technique, reducing the �-dependence back to ��2. MCMCF implements the
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Figure 2: The number of minimum-cost 
ow computations as a function of

1=� for rmfgen instances is O(��1:5) and for multigrid instances.

linear-cost term, but experimentation showed the minimum-cost 
ows' arc

costs were bounded even without using the linear-cost term. Furthermore,

the running time usually decreases when omitting the term.

The implementation exhibits smaller dependence than the worst-case

no-cost multicommodity 
ow dependence of O(��2). We believe the imple-

mentation's searching for an almost-optimal step size and its regularly com-

puting lower bounds decreases the dependence. Figure 2 shows the number

of minimum-cost 
ow computations as a function of the desired accuracy �.

Each line represents a problem instance solved with various accuracies. On

the log-log scale, a line's slope represents the power of 1=�. For the rmfgen

problem instances, the dependence is about O(��1:5). For most multigrid

instances, we solved to a maximum accuracy of 1% but for �ve instances,

we solved to an accuracy of 0.2%. These instances depend very little on

the accuracy; MCMCF yields the same 
ows for several di�erent accuracies.

Intuitively, the grid networks permit so many di�erent routes to satisfy a

commodity that very few commodities need to share the same arcs. MCMCF is

able to take advantage of these many di�erent routes, while, as we will see

in Section 6, some linear-programming based implementations have more

di�culty.

5.2 Dependence on the Number k of Commodity Groups

The experimental number of minimum-cost 
ow computations and the run-

ning time of the implementation match the theoretical upper bounds. Theo-
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Figure 3: The number of minimum-cost 
ow computations as a function of

the number k of commodity groups for rmfgen and multigrid instances.

retically, the algorithm performs ~O(��3k) minimum-cost 
ow computations,

as described in Section 2.2. These upper bounds (ignoring the � depen-

dence and logarithmic dependences) match the natural lower bound where

the joint capacity constraints are ignored and the problem can be solved

using k single-commodity minimum-cost 
ow problems. In practice, the

implementation requires at most a linear (in k) number of minimum-cost


ows.

Figure 3 shows the number of minimum-cost 
ow computations as a

function of the number k of commodity groups. Each line represents a

�xed network with various numbers of commodity groups. The multigrid

�gure shows a dependence of approximately 25k for two networks. For

the rmfgen instances, the dependence is initially linear but 
attens and

even decreases. As the number of commodity groups increases, the average

demand per commodity decreases because the demands are scaled so the

instances are feasible in a graph with 60% of the arc capacities. Furthermore,

the randomly distributed sources and sinks are more distributed throughout

the graph reducing contention for the most congested arcs. The number of

minimum-cost 
ows depends more on the network's congestion than on the

instance's size so the lines 
atten.
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6 Comparisons with Other Implementations

6.1 The Other Implementations: CPLEX and PPRN

We compared MCMCF (solving to 1% accuracy) with a commercial linear-

programming package CPLEX [CPL95] and the primal partitioning multi-

commodity 
ow implementation PPRN [CN96].

CPLEX (version 4.0.9) yields exact solutions to multicommodity 
ow lin-

ear programs. When forming the linear programs, we group the commodi-

ties since MCMCF computes these groups at run-time. CPLEX's dual simplex

method yields a feasible solution only upon completion, while the primal

method, in principle, could be stopped to yield an approximation. Despite

this fact, we compared MCMCF with CPLEX's dual simplex method because it

is an order of magnitude faster than its primal simplex for the problems we

tested.

PPRN [CN96] specializes the primal partitioning linear programming tech-

nique to solve multicommodity problems. The primal partitioning method

splits the instance's basis into bases for the commodities and another basis

for the joint capacity constraints. Network simplex methods then solve each

commodity's subproblem. More general linear-programming matrix com-

putations applied to the joint capacity basis combine these subproblems'

solutions to solve the problem.

6.2 Dependence on the Number k of Commodity Groups

The combinatorial algorithm MCMCF solves our problem instances two to

three orders of magnitude faster than the linear-programming-based imple-

mentations CPLEX and PPRN. Furthermore, its running time depends mostly

on the network structure and much less on the arc costs' magnitude.

We solved several di�erent rmfgen networks (see Figure 4) with vari-

ous numbers of commodities and two di�erent arc cost schemes. Even for

instances having as few as �fty commodities, MCMCF required less running

time. Furthermore, its dependence on the number k of commodities was

much smaller. For the left half of Figure 4, the arc costs were randomly

chosen from the range [1; 100]. For these problems, CPLEX's running time is

roughly quadratic in k, while MCMCF's is roughly linear. Although for prob-

lems with few commodities, CPLEX is somewhat faster, for larger problems

MCMCF is faster by an order of magnitude. PPRN is about �ve times slower

than CPLEX for these problems. Changing the cost of interframe arcs sig-

ni�cantly changes CPLEX's running time. (See the right half of Figure 4.)
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Figure 4: The running time in minutes as a function of the number k of com-

modity groups for two di�erent rmfgen networks with twelve and fourteen

frames. CPLEX's and PPRN's dependences are larger than MCMCF's.

Both MCMCF's and PPRN's running times decrease slightly. The running times'

dependences on k do not change appreciably.

MCMCF solves multigrid networks two to three orders of magnitude faster

than CPLEX and PPRN. Figure 5 shows MCMCF's running time using a log-log

scale for two di�erent networks: the smaller one having 1025 nodes and

3072 arcs and the larger one having 4097 nodes and 9152 arcs. CPLEX and

PPRN required several days to solve the smaller network instances so we

omitted solving the larger instances. Even for the smallest problem instance,

MCMCF is eighty times faster than CPLEX, and its dependence on the number

of commodities is much smaller. PPRN is two to three times slower than

CPLEX so we solved only very small problem instances using PPRN.

6.3 Dependence on the Network Size

To test the implementations' dependences on the problem size, we used

tripartite problem instances with increasing numbers of frames. Each

frame has �xed size so the number of nodes and arcs is linearly related to the

number of frames. For these instances, MCMCF's almost linear dependence

on problem size is much less than CPLEX's and PPRN's dependences. See

Figure 6. (MCMCF solved the problem instances to two-percent accuracy.) As

described in Section 4.4, the minimum-cost 
ow routine needs only a few

pivots before a solution is found. CPLEX's and PPRN's dependences are much

higher. (For the sixty-four frame problem, PPRN required 2890 minutes so it
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Figure 5. The running time in

minutes as a function of the num-

ber k of commodity groups for

multigrid problem instances.
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Figure 6. The running time in min-

utes as a function of the number of

frames for tripartite problem in-

stances.

was omitted from the �gure.)

7 Concluding Remarks

For the problem classes we studied, MCMCF solved minimum-cost multi-

commodity 
ow problems signi�cantly faster than state-of-the-art linear-

programming-based programs. This is strong evidence that the approximate

problem is simpler, and that combinatorial-based methods, appropriately

implemented, should be considered for this problem. We believe many of

these techniques can be extended to other problems solved using the frac-

tional packing and covering framework of [PST95].

We conclude with two unanswered questions. Since our implementation

never needs to use the linear-cost term [KP95b], it is interesting to prove

whether the term is indeed unnecessary. Also, it is interesting to try to

prove the experimental O(��1:5) dependence of Section 5.1.
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