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Abstract

Methods for the formal veri�cation and speci�cation of systems are a critical tool for the development

of correct systems, and they have been applied to the design of hardware, software and control

systems. While some system properties can be studied in a non-probabilistic setting, others, such

as system performance and reliability, require a probabilistic characterization of the system. The

formal analysis of these properties is especially necessary in the case of safety-critical systems, which

must be designed to meet speci�c reliability and performance guarantees.

This dissertation focuses on methods for the formal modeling and speci�cation of probabilistic

systems, and on algorithms for the automated veri�cation of these systems. Our system models

describe the behavior of a system in terms of probability, nondeterminism, fairness and time.

The formal speci�cation languages we consider are based on extensions of branching-time tem-

poral logics, and enable the expression of single-event and long-run average system properties. This

latter class of properties, not expressible with previous formal languages, includes most of the per-

formance properties studied in the �eld of performance evaluation, such as system throughput and

average response time. We also introduce a classi�cation of probabilistic properties, which explains

the relationship between the di�erent classes of properties expressible in the proposed languages.

Our choice of system models and speci�cation languages has been guided by the goal of providing

e�cient veri�cation algorithms. The algorithms rely on the theory ofMarkov decision processes, and

exploit a connection between the graph-theoretical and probabilistic properties of these processes.

This connection also leads to new results about classical problems, such as an extension to the

solvable cases of the stochastic shortest path problem, an improved algorithm for the computation of

reachability probabilities, and new results on the average reward problem for semi-Markov decision

processes.
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Chapter 1

Introduction

Some systems can be designed in such a way that they are guaranteed to behave correctly under all

circumstances, short of a total breakdown of the system or of its physical environment. For example,

it is possible to design integrated circuits or write some computer programs in such a way that they

will perform exactly as intended, if the power supply is present and the computer is not physically

damaged.

On the other hand, for many types of systems this guarantee of correctness cannot be achieved,

either because it would be impractically expensive, or because the system includes intrinsically

unreliable components. Examples of these systems include telecommunication systems and computer

networks, distributed systems built over these networks, and complex software-controlled physical

systems such as industrial plants, electrical power stations and transportation systems.

When a system cannot be guaranteed to exhibit the desired behavior under all circumstances,

it becomes important to characterize the likelihood of undesirable behaviors. For these systems,

the concept of unconditional correctness is substituted by bounds on the probability that certain

behaviors occur.

Even for systems whose correctness can be unconditionally guaranteed, the study of system

performance relies on a probabilistic model of the system and its load. In fact, the term system

performance commonly refers to the long-run average time required by a system to perform given

tasks, such as message delivery or response to a query. These long-run averages can be computed

on the basis of the probabilistic models.

This dissertation presents languages for the formal speci�cation of performance and reliability

properties of probabilistic systems, and algorithms for the automated veri�cation of these proper-

ties on �nite-state systems. What distinguishes this dissertation from previous work in the area

is the broader range of systems and properties covered. We consider timed systems whose behav-

ior is characterized by probability, nondeterminism, fairness and time; among them are systems

whose execution model extends that of generalized stochastic Petri nets with the introduction of

1



2 CHAPTER 1. INTRODUCTION

nondeterminism and transitions with unspeci�ed delay distributions.

The languages for formal speci�cation that we present extend the expressive capabilities of ex-

isting languages by allowing the expression of long-run average properties of systems. This class of

properties includes many basic performance measures considered in the �eld of performance modeling

and evaluation, such as system throughput and average response time. Along with this extension,

we present a classi�cation of probabilistic properties of systems, which explains the relationship

between the di�erent types of properties discussed in the dissertation.

The algorithms for the automated veri�cation of �nite-state systems rest on the theory of dynamic

programming and optimal control, as well as on results from automata theory. In particular, the the-

ory of Markov decision processes played a central role in the development of the algorithms. Several

algorithms depend on a new approach to the study of Markov decision processes, based on a joint

analysis that combines graph-theoretical and probabilistic methods. Aside from the development of

the algorithms, this approach leads to the solution of problems on Markov decision processes that

had resisted previous analysis, such as the non-negative and the non-positive cases of the stochastic

shortest path problem, and the characterization of the relation between two optimization criteria for

semi-Markov decision processes.

1.1 The Bene�ts of Formal Methods

The study of system performance and reliability has so far been carried out mostly without the use

of formal methods. The motivations for the application of formal methods to these problems can be

summarized as follows.

Precise speci�cation languages. A formal approach o�ers a language in which one can express

with precision complex system speci�cations. Most system properties relating to reliability and

performance have so far been expressed using a mixture of natural language and numbers. While this

is adequate for simple properties, the precise speci�cation of di�erent scenarios of malfunctioning

can become rather complex, and the precision of a formal language is thus bene�cial. Similarly,

while an informal approach is adequate for the speci�cation of simple performance indices, a formal

language makes it possible to de�ne in a precise way complex performance criteria and measures.

Complete coverage. While simulation methods can produce accurate estimates of reliability and

performance indices for many instances of purely probabilistic systems, they fare less well for systems

in which nondeterminism is present. In fact, for purely probabilistic systems it is possible to use

the probabilistic structure of the system to estimate the accuracy of performance indices computed

by repeated simulation. In presence of nondeterminism, however, these accuracy estimates are

substituted by the weaker notion of coverage, similarly to the case of hardware and software testing.

Without using formal methods, complete coverage is hard or impossible to achieve for systems in
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which probability and nondeterminism coexist, and incomplete coverage does not provide a reliable

measure of con�dence towards the satisfaction of design requirements.

Common framework for the study of correctness, reliability and performance proper-

ties. The study of reliability and performance properties often relies on a prior analysis of the cor-

rectness of the system under consideration. The use of formal methods o�ers a common framework

in which one can study system correctness, performance and reliability, facilitating the interchange

of information between the di�erent types of properties.

1.2 System Models

In this dissertation, we model the behavior of systems in terms of probability, nondeterminism,

fairness and time. Probability enables the modeling of system components with unreliable or proba-

bilistic behavior, and it is an essential element in the study of reliability and performance properties.

Nondeterminism enables the modeling of unknown scheduling mechanisms, and it can be used as a

replacement for more accurate probabilistic models in the construction of system approximations.

Fairness, jointly with nondeterminism, enables the modeling of unknown (but non-zero) probabili-

ties, and it is a widely used ingredient in the modeling of reactive systems. Time is used to specify

waiting-time distributions for the system transitions, and it is an essential element for the evaluation

of system performance.

We present two di�erent models for probabilistic systems: a high-level model that enables a con-

cise and readable description of systems, and a low-level model to which the veri�cation algorithms

can be applied.

The high-level model is that of stochastic transition systems (STSs). Stochastic transition sys-

tems are a probabilistic extension of �rst-order transition systems. The transitions can either be

immediate, in which case they are taken as soon as they become possible, or they can have an

associated probability distribution of waiting times. This probability distribution can either be ex-

ponential or unspeci�ed. The choice of transition is also subject to fairness requirements. Once a

transition is taken, its e�ects are described in terms of both probability and nondeterminism. The

execution model of stochastic transition systems thus extends that of generalized stochastic Petri

nets with the introduction of nondeterminism and unspeci�ed delay distributions.

Our low-level computational model is that of timed probabilistic systems (TPSs), and is based

on Markov decision processes. Markov decision processes generalize Markov chains by associating to

each state a set of possible actions. Each state-action pair is associated with a probability distribution

for the successor state. The behavior of a Markov decision process consists in an in�nite alternation

of states and actions: at each state, an action is selected nondeterministically; the corresponding

probability distribution is then used to choose the following state.
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A TPS is a Markov decision process in which to each state-action pair is associated the ex-

pected time elapsed at the state when the action is chosen. Again, it is possible to specify fairness

requirements for the choice of the actions.

The relation between STSs and TPSs is similar to the relation between a �rst-order transition

system and its underlying state-transition graph: the �rst provide a concise and compositional

language for system modeling, while the second provides the structure to which the model-checking

algorithms can be applied. TPSs are a more general computational model than STSs, and in fact

it is possible to automatically translate an STS into its corresponding TPS. This translation is part

of our veri�cation methodology, since the veri�cation algorithms we present can be applied only to

TPSs.

1.3 Speci�cation Languages

The languages for the formal speci�cation of probabilistic systems that we present in this disserta-

tion are extensions of the branching-time temporal logics CTL and CTL*. The languages extend

the expressive power of CTL and CTL* by enabling the expression of two types of probabilistic

properties: single-event properties and long-run average properties.

1.3.1 Single-Event Properties

Single-event properties refer to the probability with which a system behavior satis�es a temporal

logic formula, or to the expected time with which it reaches a speci�ed set of states. These properties

owe their name to the fact that they involve the occurrence of a single event (satisfying a formula,

or reaching a set of states). In a Markov chain, the veri�cation of these properties involves the

computation of the reachability probability or the expected �rst-passage time for particular subsets

of states of the chain.

The speci�cation of single-event properties relies on two logical operators: an operator P that

enables to express bounds on the probability of satisfying temporal formulas, and an operator D

that enables to express bounds on the expected time to reach speci�ed sets of states. The class

of properties expressible with these two operators includes several reliability properties, and some

performance ones.

1.3.2 Long-Run Average Properties

Long-run average properties refer to the long-run average outcome or duration of speci�c patterns

that are repeated in�nitely often along a behavior. In a Markov chain, the veri�cation of these

properties involves the computation of the steady-state distribution of the closed recurrent classes

of the chain.
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The speci�cation of long-run average properties relies on experiments, which are related to the

tests of process algebra. Experiments are small labeled graphs that can be used to specify behavior

patterns of interest, such as the request for a resource followed by either a grant or a refusal. Unlike

tests, experiments are meant to be repeated in�nitely often along a behavior of the system. Two

logical operators, �P and �D, enable the speci�cation of the long-run average outcome and duration

of experiments, respectively.

Long-run average properties include most classical performance measures of a system, such as

its average response time and throughput, as well as several reliability measures. Unlike single-

event properties, these properties could not be speci�ed with previous formal languages, and their

consideration is one of the novelty claims of this dissertation.

1.3.3 Classi�cation of Probabilistic Properties

The study of single-event and long-run average properties leads to a classi�cation of probabilistic

properties of systems. Properties are classi�ed along the two axes of probability vs. expected time,

and single-event vs. long-run average. This classi�cation is shown in Table 1.1, along with the logical

operators used to specify each class of properties, and examples of properties belonging to each class.

The speci�cation style we adopt is based on the speci�cation of bounds for these performance

and reliability measures: for example, we can write a formal speci�cation requiring that the average

system response time is below a speci�ed upper bound.

1.4 Veri�cation

Our choice of system models and speci�cation languages has been guided by the goal of providing

e�cient algorithms for system veri�cation. By e�cient algorithms, we mean algorithms having

polynomial time-complexity in the size of the encoding of the transition graph corresponding to the

system. The algorithms provide either a positive answer to the veri�cation problem, or information

that characterizes the system behaviors that violate the speci�cation. The algorithms can be applied

to �nite-state probabilistic systems: while in�nite-state systems can also be analyzed through the

use of abstractions and approximations, their study is beyond the scope of this dissertation.

The algorithms are based on the theory of Markov decision processes, and on results from the

theory of automata on in�nite words. In particular, the algorithms rest upon a connection, developed

in this dissertation, between the probabilistic analysis of Markov decision processes and their graph-

theoretical structure. This connection is useful not only for the design of the veri�cation algorithms,

but also in providing new results on classical problems in the theory of Markov decision processes.

Among these results are improved algorithms for the computation of reachability probabilities,

as well as extensions to the solvable cases of the stochastic shortest path problem. The extension

consists in algorithms for the solution of non-negative and non-positive instances of the stochastic
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PROBABILITY TIME

Probability Expected
of events reachability time

SINGLE-

EVENT
P D

What is the probability of reach-

ing deadlock from an initial state?

From a \good" state, what is the

expected time to failure?

Long-run average Long-run average
outcome duration

LONG-RUN

AVERAGE

�P �D

How often are messages followed

by acknowledge?

What is the system's average re-

sponse time?

Table 1.1: Classi�cation of probabilistic properties discussed in this dissertation. For each of the
four classes of properties, we list also the logical operator used to specify them, as well as an informal
example of a typical property belonging to the class.
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shortest path problem, and has in turn led to improved algorithms for the non-negative case of the

minimum expected total cost problem. Another result obtained in this dissertation is the proof of

the equivalence of two alternative optimization criteria for semi-Markov decision processes, closing

a problem that was open for more than two decades.

1.5 Outline of the Dissertation

The presentation of our methodology for the study of probabilistic systems begins in Chapter 2

with the introduction of stochastic transition systems (STSs), our high-level model for probabilistic

systems. In the same chapter, we also overview the probabilistic temporal logics introduced later in

the dissertation, and we present some examples of system modeling and speci�cation.

Chapter 3 introduces our low-level system models, timed probabilistic systems (TPSs), closely

related to Markov decision processes. The chapter develops the connection between the graph-

theoretical and probabilistic properties of these models, and it describes two optimization problems:

the stochastic shortest path problem and the maximum reachability probability problem.

Our simplest probabilistic temporal logics are introduced in Chapter 4, along with their model-

checking algorithms. These logics are extensions of the branching-time logics CTL and CTL*, and

can express single-event probabilistic properties. The speci�cation of long-run average properties is

the subject of Chapter 5. The chapter introduces experiments, and it presents probabilistic logics

that can express bounds on the long-run average outcome or duration of experiments. The model-

checking algorithms for these logics are presented in Chapter 6, along with their correctness proof.

Chapter 6 also discusses optimization problems for semi-Markov decision processes.

Chapter 7 presents new results on the stochastic shortest path problem. The results are needed

for subsequent model-checking algorithms, and are also of independent interest.

Chapter 8 extends our speci�cation and veri�cation methods to probabilistic systems with fair-

ness. The chapter introduces our notion of fairness, called probabilistic fairness, and compares it

with previous notions of fairness for probabilistic systems. The chapter then presents probabilistic

logics and model-checking algorithms for systems with fairness.

Chapter 9 completes the presentation of our formal veri�cation methodology by providing a

translation from STSs to TPSs. The translation enables the use of the logics and model-checking

algorithms of Chapters 3{8 for the speci�cation and veri�cation of the system models presented in

Chapter 2.

1.6 How to Read This Dissertation

There are three ways of reading this dissertation, depending on whether the reader is interested pri-

marily in formal veri�cation of probabilistic systems, in dynamic programming and optimal control,
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or in both. Those who are interested in both topics can read this dissertation in linear order.

Those whose main interest is the formal veri�cation of probabilistic systems can start with

Chapters 2, 3, 4 and 5. They can then read the �rst section of Chapter 6, and from there continue

with Chapters 8 and 9.

Those whose main interest is the theory of Markov decision processes can start from Chapter 3.

From there, there are two alternatives. If they are interested in semi-Markov decision processes,

they have no alternative but to proceed through Chapters 5 and 6. Otherwise, they can skip these

two chapters and go directly to Chapter 7, which deals with extensions to the stochastic shortest

path and expected total cost problems.

Throughout the dissertation we have denoted with (z) the sections that contain detailed proofs

and arguments that are only used in few occasions; these sections can be skipped at a �rst reading,

if so desired.

1.7 Chronology

The results of Chapter 4 and, to some extent, Chapter 3, have been presented in Bianco and de Alfaro

[BdA95] and de Alfaro [dA97]. The remainder of this dissertation consists of previously unpublished

results.

1.8 Related Work

In this section we present an overview previous work in formal modeling and veri�cation of prob-

abilistic systems, mentioning also areas of other disciplines whose results have been used in this

dissertation.

1.8.1 Markov Decision Processes and Probabilistic Automata

Our low-level computational model for probabilistic systems is provided by Markov decision pro-

cesses, enriched with additional structure. Markov decision processes were introduced by Bellman

[Bel57] and Howard [How60], and have been the subject of much research in Operations Research

and Economics. Among the many books that have since been written on them, we referred most

often to the ones by Derman [Der70], Puterman [Put94] and Bertsekas [Ber87, Ber95]. Other books

on this topic are by Ross [Ros70a], Howard [How71], Heyman [HS82], Heyman and Sobel [HS84b],

and Tijms [Tij86]. Puterman [Put94] gives an extensive bibliography on Markov decision processes.

Bertsekas and Tsitsiklis [BT91] present several results on the stochastic shortest path problem.

These results were mentioned in Chapter 3, and extended in Chapter 2.

The complexity of solving optimization problems on Markov decision processes has been consid-

ered in Papadimitriou and Tsitsiklis [PT87], which compare the complexities under nondeterminism
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alone and under nondeterminism with probability, and by Littman et al. [LDPK95]. The complexity

of the policy improvement methods under various assumptions are discussed by Melekopoglou and

Condon [MC94].

Markov decision processes are closely related to probabilistic automata, introduced by Rabin

[Rab63]. By identifying the controls of Markov decision processes with the inputs of probabilistic

automata, the two computational models are almost identical. They di�er, however, in the way they

are used: [Rab63] studies which sequences of inputs are accepted by probabilistic automata under

various acceptance conditions; the work on Markov decision processes is aimed instead at identifying

control policies that maximize or minimize given functionals. In this dissertation, the controls (or

inputs) are used to model nondeterminism, and we study the e�ect of nondeterminism on quantities

related to system performance and reliability: our point of view is thus closer to that of Markov

decision processes.

Several related models that include both probability and nondeterminism have been presented

in the computer science literature. Some of these models are the concurrent Markov chains of

Vardi [Var85], the probabilistic �nite-state programs of Pnueli and Zuck [PZ86], the NP systems of

Wang and Larsen [WL92] and the probabilistic automata of Segala and Lynch [SL94] and Segala

[Seg95a, Seg95b].

1.8.2 Logics of Programs and Probabilistic Dynamic Logics

Some of the early work in the study of probabilistic models of computation was done in the framework

of logics of programs and of dynamic logics.

Kozen [Koz79] presents two alternative semantics for probabilistic programs. One of the se-

mantics represents programs as functions on measurable spaces; the other represents programs as

operators on linear Banach spaces of measures. The relationship between these semantics and the

ordered domains of Scott and Strachey [SS71] is also discussed.

Ramshaw [Ram80] proposes Hoare-style rules for probabilistic programs, and applies them to

the study of some algorithms.

The study of probabilistic dynamic logic began with Reif [Rei80], in which the program operators

include probabilistic choice, and the tests can specify lower bounds on the probability of success.

Axiomatizations for the resulting logics are discussed. Later, Feldman and Harel [FH82] present an

extended probabilistic dynamic logic, and improve on the results of [Rei80] by proving decidability

relative to the theory of second-order arithmetic.

Kozen [Koz83] presents a dynamic logic on probabilistic models. The logic is based on an arith-

metic semantics, rather than a truth-functional one: propositions generalize measurable functions,

programs correspond to real-valued functions, and the modal constructors are function transformers;

the satis�ability relation returns a satisfaction probability. [Koz83] presents a small-model property
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theorem and a polynomial-space decision procedure for the logic. Feldman [Fel83] presents a propo-

sitional and decidable version of the logic of [FH82]; the decidability result is proved by reduction

to �rst-order real-number theory.

Huth and Kwiatkowska [HK97] propose a probabilistic mu-calculus. The structure on which the

mu-calculus is evaluated includes nondeterminism, and the logical connectives are given a fuzzy-

logic semantics. For example, denoting with eP (A) the fuzzy \probability" of event A, the rule for

conjunction is eP (A^B) = maxf0; eP (A)+ eP (B)� 1g. As in [Koz83], the truth-functional semantics

of formulas is replaced by an arithmetic semantics in terms of probability intervals; the choice of the

fuzzy semantics leads to a simpli�cation of the computational procedure to evaluate the intervals on

a given structure.

A related line of research consists in considering programs as probabilistic predicate transformers.

Hart, Sharir and Pnueli [HSP84] model programs as Markov chains, and propose a veri�cation style

for the input-output relations of programs based on the use of probabilistic intermediate assertions.

Morgan, McIver and Seidel [CM96] extend the predicate-transformer approach to systems including

nondeterminism, in part based on a relational model of probabilistic computation proposed by He et

al. [HMS96]. The proposed speci�cation languages have a Hoare-like syntax, extended to probability

and nondeterminism.

1.8.3 Temporal Logics: Qualitative Veri�cation

Given a probabilistic system, the term qualitative veri�cation refers to the problem of determining

whether formulas of a given speci�cation language hold with probability 1 over the system. A

considerable amount of work has been done on this subject.

Lehman and Shelah [LS82] present three temporal logics evaluated on Markov chains. The logics

di�er for the class of Markov chains on which they are evaluated: di�erent classes of chains lead

to di�erent axiomatizations. The three classes of chains are �nite chains, bounded chains (in which

all non-zero transition probabilities are bounded from below by a non-zero constant), and in�nite

chains. They discuss linear-time temporal logics whose formulas hold i� they are satis�ed with

probability 1 by a behavior of the chain, and they provide axiomatizations for these logics.

Hart, Sharir and Pnueli [HSP82, HSP83] study systems consisting of a set of Markov chains that

execute concurrently. The scheduling mechanism is assumed to be fair but is otherwise arbitrary.

[HSP82] present a set of conditions that characterize when the system converges with probability 1

to a given set of states. The conditions are independent of the exact values of the transition probabil-

ities. The relation between probabilistic and fair choice in the study of qualitative system properties

is discussed for the �rst time. [HSP82, HSP83] also introduce K-ergodic sets, which are in some way

similar to our end components. The conditions that ensure convergence are also related to some

algorithms discussed in this dissertation.

Pnueli [Pnu83] presents a proof system that enables to verify whether a linear-time temporal
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logic formula holds with probability 1 over a system. Again, the system is modeled as the parallel

composition of Markov chains. The concept of extreme fairness is introduced, as an approximation

of the fairness properties resulting from choices in which each outcome has non-zero probability. A

simpler concept of fairness, state fairness, is also described. This notion is the predecessor of the

notions of fairness described in Vardi [Var85] and later in Kwiatkowska and Baier [KB96].

Hart and Sharir [HS84a] continue the line of research of [LS82] by introducing branching-time

temporal logics to be interpreted on structures that are Markov chains. They distinguish two logics,

depending on whether the chains are �nite or bounded, and they provide decision procedures and

axiom systems for the resulting logics. This work has then been extended by Hart and Sharir [HS86].

Vardi [Var85] considers system modeled as Markov chains and concurrent Markov chains; the

latter are closely related to Markov decision processes, with the addition of state fairness. The

paper presents algorithms for verifying whether these systems satisfy linear-time temporal logic

speci�cations with probability 1. The proposed algorithm relies on automata-theoretic constructions,

and it is perhaps the �rst algorithm in a line of research that led to the algorithm for the model

checking of operator P described in Chapter 4.

Pnueli and Zuck [PZ86], and later [PZ93], consider the problem of verifying whether a probabilis-

tic system satis�es with probability 1 a speci�cation. The speci�cation is written in the temporal

logic RTL, which contains all past temporal operators, and the future temporal operators 2 (al-

ways) and 3 (eventually): the future operators U (until) is not present in RTL. The probabilistic

system is described by a set of states and transitions; each transition can be taken in one of several

modes, to which are associated mode probabilities. The system models are thus related to those

of [Var85]. The algorithms presented by [PZ86, PZ93] are of single exponential time-complexity

in the size of the speci�cation, unlike those of [CY88]: the lower complexity is due to the use of

RTL as speci�cation language, instead of full temporal logic. Pnueli and Zuck [PZ93] also introduce

�-fairness, a notion of fairness that accounts precisely for the properties of a probabilistic �nite-state

system, once the speci�c values of the transition probabilities are abstracted away. Thus, �-fairness

is an improvement on the concept of extreme fairness of [Pnu83]. The system models proposed in

[PZ86, PZ93] were in
uential in the development of our stochastic transition systems.

Courcoubetis and Yannakakis [CY88] consider systems modeled either as Markov chains or as

concurrent Markov chains, and present algorithms to check whether a linear-time temporal formula

holds with probability 1 over such models. The algorithm they propose for Markov chains improves

on previous algorithms, and has time-complexity polynomial in the size of the system and exponential

in the size of the formula. On concurrent Markov chains, the proposed algorithms have time-

complexity polynomial in the size of the description of the system, and doubly exponential in the

size of the temporal formula. They prove that these complexities are lower bounds, thus showing

the optimality of their algorithms. The lower bound results proved in this paper are the source of

all the lower bounds cited in this dissertation. An extended version of this work has been presented
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in [CY95].

Courcoubetis and Yannakakis [CY90] study the problem of maximizing the reward of a Markov

decision process, given a reward structure speci�ed by a set of omega-automata. This problem is

related to the problem of computing the maximum and minimum probabilities with which a linear-

time temporal formula holds over a system behavior. The proposed algorithm, related to those of

[CY88], can therefore be used to solve the model-checking problem for operator P in our logics, in

absence of fairness. In this dissertation we presented an alternative algorithm, based on the complete

rather than partial determinization of an omega-automaton. This complete determinization can be

performed with the algorithm described in Safra [Saf88, Saf92].

Alur, Courcoubetis and Dill [ACD91] introduce real-time probabilistic systems, which consist

of a �nite set of states and a �nite set of transitions. To each transition is associated a delay

distribution, which can either be geometrical, or have �nite-support; the model of time is discrete,

i.e. the domain of time is taken to be the set of non-negative integers. The paper presents algorithms

for verifying that real-time probabilistic systems satisfy with probability 1 speci�cations written in

the real-time temporal logic TCTL [ACD90]. These results have been later extended by [ACD92] to

continuous-time systems and speci�cations encoded by timed automata [AD90]. The system models

of [ACD91, ACD92] have been in
uential in the development of our stochastic transition systems.

1.8.4 Temporal Logics: Quantitative Veri�cation

Given a probabilistic system, the term quantitative veri�cation refers to the problem of determining

the probability with which a system satis�es a speci�cation, or more generally to the problem of

verifying speci�cations that involve the numerical values of probabilities and expectations. Using

temporal logics for the quantitative speci�cation and veri�cation of probabilistic systems is the

approach taken in this dissertation. The previous work in this area has been described in Section 4.1.

1.8.5 Veri�cation of Randomized Systems

Lynch, Saias and Segala [LSS94], as well as Pogosyants and Segala [PS95], propose methods for prov-

ing time-bound properties of randomized distributed algorithms. The veri�cation of these properties

is carried out in a natural proof style, but in fact the methods of [PS95] lend themselves to a certain

degree of automation. The completeness of these methods, which are proposed for in�nite-state

systems, is not discussed.

Segala [Seg95b] presents the computational model of probabilistic automata, which are related

to Markov decision processes, albeit the notation is fairly di�erent. Real-time system are modeled

by probabilistic timed automata, in which an additional set of actions represents the passing of time.

For these systems, [Seg95b] proposes a veri�cation approach that can be used to verify properties

related to the probability of behaviors, the expected time to events, or the probability of meeting

deadlines.



1.8. RELATED WORK 13

In the proposed approach, the proof that a system satis�es a speci�cation is constructed in

a natural proof style, in which lemmas and theorems are proved at will about the system. The

methodology proposed is semi-formal, and it does not rely on a �xed set of inference rules. Facts

about simulation relations, coin lemmas and other constructs are freely used in the course of the

proof. This approach is to be contrasted with others that rely on a �xed set of inference rules and

proof methods, such as the one developed by Manna and Pnueli [MP95] for fair transition systems.

The lack of �xed inference rules makes for a fairly general veri�cation framework in which complex

systems can be studied. On the other hand, this freedom results in a lack of guidance in the process

of proof construction, and no completeness results have been presented for this informal approach.

The proposal of [Seg95b] seems thus to be better suited to the study of randomized algorithms

than to the veri�cation of reliability and performance properties of systems, not least since long-run

average properties are not dealt with.

1.8.6 Process Algebras for Performance Modeling

Process algebras have been proposed as a compositional and high-level modeling language for the

description of Markovian performance models.

G�otz, Herzog and Rettelbach [GHR93] propose the process algebra TIPP, and discuss its use for

performance modeling. Subsets of TIPP can be translated into continuous-time Markov chains, that

can then be studied with the usual methods of performance evaluation.

Gilmore and Hillston [GH94] and Hillston [Hil95, Hil96] introduce the process algebra PEPA,

which provides a concise and compositional modeling language for timed probabilistic systems.

Systems described in PEPA can be automatically translated in continuous-time Markov chains,

to which the usual performance evaluation algorithms can be applied. Donatelli, Ribaudo and

Hillston [DRH95] compare this approach with that based on stochastic Petri nets, and Ribaudo

[Rib95] presents a translation from PEPA into Petri Nets. The proceedings [Pro ] contain further

contributions to the use of process algebras as modeling languages for performance evaluation.

Bernardo, Donatiello and Gorrieri [BDG94a] introduce Markovian Process Algebra (MPA), a

stochastic process algebra in which actions can be either immediate, or have an exponential delay

distribution. The choice between immediate actions is mediated by priorities. Actions are further

divided into active and passive, depending on whether they determine the timing of synchronous

actions when the composition of systems is computed. Two semantics are de�ned for this algebra:

one is an interleaving operational semantics, the other is a Markovian semantics de�ned by transla-

tion into continuous-time Markov chains. A third semantics, de�ned by translation into Generalized

Stochastic Petri Nets, is presented in [BDG94b, BDG95]. Bernardo, Busi and Gorrieri [BBG95]

introduce stochastic contextual nets, which extend GSPN with passive transitions and contextual

arcs, and de�ne a semantics for EMPA based on a translation into stochastic contextual nets. The
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advantage of this semantics, compared to the one de�ned by translation into GSPN, is that the re-

sulting nets can be considerably smaller. Once the MPA description of a system is translated into a

Markov chain, the performance of the system can be studied with the usual methods of performance

analysis. Bernardo and Gorrieri [BG96] propose extended Markovian process algebra EMPA, closely

related to MPA.

1.8.7 Stochastic Petri Nets

Much of the work in the performance evaluation of timed systems relies on the formalism of stochastic

Petri nets, introduced by Natkin [Nat80], Molloy [Mol81, Mol82] and Symons [Sym80]. Balbo [Bal95]

provides an overview of the origins and of the developments of this �eld. The proceedings of [Pet ]

are devoted to the use of Petri nets for the modeling and evaluation of system performance. Our

stochastic transition systems are in part inspired by generalized stochastic Petri nets, introduced

by Ajmone Marsan, Balbo and Conte [ABC84], and widely used in the performance evaluation of

distributed computing systems. The recent book by Ajmone Marsan et al. [ABC+94] is devoted to

this approach to performance modeling.

Ciardo, Muppala and Trivedi [CMT91] introduce GSPN reward models, which are GSPN with

additional labels that specify a reward structure. Speci�cally, a reward is associated to each mark-

ing, and an instantaneous reward is associated to each transition. A GSPN reward model can be

translated into a continuous time Markov chain with an associated reward structure. Performance

parameters such as the long-run average reward can be computed on this structure using the stan-

dard methods of Markov-chain analysis.

The modeling and expressive capabilities of GSPN reward models are similar to the capabilities of

the methods presented in this dissertation, except that the system models we consider also include

nondeterminism, fairness, and transitions with unspeci�ed delays. Due to these extensions, our

systems require radically di�erent analysis methods: our methods trade the simplicity of Markov-

chain analysis with the modeling power of nondeterminism, fairness, and unspeci�ed delays.

1.8.8 Testing, Simulation and Process Algebras

Several notions of testing preorders, simulation and bisimulation have been introduced for proba-

bilistic processes, inspired by the corresponding notions for non-probabilistic processes. Larsen and

Skou [LS89, LS91] propose languages to encode tests for probabilistic processes, and introduce a

notion of bisimulation that respects testing equivalence. They also present a probabilistic modal

logic, showing that two processes are bisimilar exactly when they satisfy the same formulas of the

logic, provided the transition probabilities are bounded away from zero. Van Glabbeek, Smolka,

Ste�en and Tofts [vGSST90, vGSST95] study the semantics of probabilistic processes, distinguish-

ing between reactive, strati�ed and generative models of processes. For each of these, they present

extensions of the process algebra SCCS (Milner [Mil83]) and bisimulation relations.
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Jou and Smolka [JS90] present the probabilistic process algebra PCCS, based on SCCS [Mil83],

and they discuss several notions of equivalence between PCCS processes, including the bisimulation

de�ned in [LS89]. Christo� and Christo� [CC91] present algorithms for checking testing equivalences

of purely probabilistic systems. The algorithms have polynomial time-complexity in the size of the

processes being compared.

Jonsson and Larsen [JL91] present a novel framework, in which speci�cations are represented

by systems whose transitions are labeled by intervals of probability. They de�ne a new type of

simulation relation between systems and speci�cations, which checks that the transition probabilities

of the system belong to the intervals of the speci�cation. They also present methods for checking

the existence of simulation relations between system and speci�cation, and between speci�cations.

The complexity of these methods is not discussed.

Baeten, Bergstra and Smolka [BBS92] present a complete axiomatization for a probabilistic

process algebra based on ACP [BK84]. Larsen and Skou [LS92] present compositional veri�cation

methods for purely probabilistic processes. The methods are based on process algebra for the

modeling of probabilistic systems, and on temporal logic for their speci�cation.

Cleaveland, Smolka and Zwarico [CSZ92] present testing preorders for probabilistic processes

based on the probability with which a process passes a test. The preorders are extended also to

substochastic processes by attributing the \missing probability" to unde�ned behavior (rather than

to termination, as in classical substochastic process theory).

Wang and Larsen [WL92] present an extension of CCS (see De Nicola and Hennessy [DNH84])

which introduces a choice operator parameterized by a probability. The processes thus contain

a combination of probability and nondeterminism. They present testing preorders for processes

described in this calculus. Jonsson, Ho-Stuart and Wang [JHW94] present a denotational charac-

terization of the preorders of [WL92], and introduce the notion of reward testing. This work has

been extended by Jonsson and Yi [JW95], which consider both must- and may-testing, and obtain

compositional preorders. The experiments introduced in this dissertation are somewhat reminiscent

of the tests of [WL92, JHW94], but are meant to be repeated an in�nite number of times, and it is

their long-run average outcome that is evaluated.

Wu, Smolka and Stark [WSS94] introduce probabilistic I/O automata, derived from the I/O

automata of Lynch and Tuttle [LT87]. They presents fully abstract and compositional characteri-

zations of these automata with respect to a simple class of tests, which are encoded as probabilistic

I/O automata with one distinguished output action.

Yuen, Cleaveland, Dayar and Smolka [YCDS94] present alternative characterizations of the test-

ing preorders of [CSZ92], and they show that the characterization is fully abstract with respect

to the testing preorder. Other testing preorders have been studied by Segala [Seg96], which uses

tests that rely on multiple success actions. The testing preorders are characterized in terms of the

probability distribution over failures.
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Segala and Lynch [SL94, SL95] and Segala [Seg95b] discuss simulation and bisimulation relation

for systems that include both probability and nondeterminism; [SL94] studies the preservation of

properties expressed in probabilistic temporal logics under these relations. Segala [Seg95a] discusses

the compositional semantics of probabilistic automata, and introduces preorders based on trace dis-

tribution inclusions. A trace distribution is related to the stochastic processes obtained by �xing a

policy in a Markov decision process.

Algorithms for Simulations and Bisimulations

Even though many notions of probabilistic simulation, bisimulation and testing equivalence have

been proposed, the number of algorithms for the checking of these relations is comparatively lim-

ited; moreover, the known algorithms do not cover the full spectrum of system types and relations.

Algorithms for checking testing equivalences, simulations and bisimulations have been proposed by

various authors. Christo� and Christo� [CC91] present algorithms for checking testing equivalences

between purely probabilistic systems with silent actions. Baier [Bai96] gives algorithms for check-

ing strong bisimulations between probabilistic automata, and Baier and Hermanns [BH97] present

algorithms for checking the weak simulation and bisimulation of purely probabilistic processes.



Chapter 2

Stochastic Transition Systems

Many results presented in this dissertation depend on detailed de�nitions and lengthy arguments:

reading them requires motivation. To provide this motivation, we begin this dissertation from the

end, so to say, and we describe at once the formal veri�cation framework that will be possible once

all the results of the dissertation will be available.

We start this overview with the de�nition of stochastic transition systems, our high-level model

for probabilistic systems, followed by examples of formal speci�cation of probabilistic systems using

extensions of temporal logic. While we are unable at this point to de�ne the precise semantics of

these models and logics, this chapter will provide insight into the types of systems and properties

that we intend to study, and it will o�er a preview of many concepts that will be introduced in the

course of the dissertation. The rest of this dissertation is essentially devoted to building the set of

de�nitions and techniques needed to turn these ideas into practice.

2.1 Stochastic Transition Systems

Stochastic transition systems are our high-level model for probabilistic real-time systems. They

are derived from the fair transition systems of Manna and Pnueli [MP91, MP95], augmented with

information about the probability and expected waiting times of transitions. They are also related

to the probabilistic �nite-state programs of Pnueli and Zuck [PZ86] and to real-time probabilistic

processes of Alur, Courcoubetis and Dill [ACD91, ACD92], with the addition of nondeterminism,

fairness and unspeci�ed delay distributions.

Stochastic transition systems provide a concise and readable way to describe real-time probabilis-

tic systems in terms of probability, waiting-time distributions, nondeterminism and fairness. The

de�nition of stochastic transition systems represents a compromise between expressive power and

complexity of the veri�cation algorithms. While they cannot model all the subtleties of real physical

systems, they can model a large class of systems, which includes (and extends) the class that can be

17



18 CHAPTER 2. STOCHASTIC TRANSITION SYSTEMS

modeled by generalized stochastic Petri nets, and they are well suited for the automated veri�cation

of probabilistic speci�cations.

Stochastic transition systems are not our basic computational model for probabilistic systems.

The basic model, used to develop the speci�cation languages and the veri�cation algorithms, is that

of timed probabilistic systems (TPSs), and it will be introduced in the next chapter. Essentially, there

is the same relation between a stochastic transition system and its corresponding TPS as between a

fair transition system and its representation in terms of a state transition graph. Stochastic transition

systems, like fair transition systems, are �rst-order structures providing a high-level description of a

system; TPSs provide the underlying computational model to which model-checking algorithms can

be applied.

A stochastic transition system is assigned a semantics by translating it into its corresponding

TPS. The translation will be presented in Chapter 9: here, we will rely on intuition, aided by

examples, to understand their semantics.

2.1.1 De�nition of Stochastic Transition Systems

Before we introduce the de�nition of stochastic transition systems, we need some notation regarding

variables and formulas. Throughout the dissertation, we assume that we have an underlying set

of interpreted function and predicate symbols which can be used to form logic formulas. These

functions and predicates might include, for example, those of standard integer arithmetic. Constants

are simply considered as 0-argument functions.

Given a set V of typed variables, we denote by Form(V) the set of well-formed �rst-order logic

formulas built from V using the available function and predicate symbols. Moreover, we let V 0 =

fx0 j x 2 Vg be the set of variables obtained by priming each variable of V .

With this notation, we can de�ne stochastic transition systems as follows.

De�nition 2.1 (stochastic transition system) A stochastic transition system (STS) is a triple

S = (V ;�; T ), where:

� V is a �nite set of typed variables, called the state variables. The state space S consists of

all type-consistent interpretations of the variables in V ; we denote by s[[x]] the value at state

s 2 S of variable x 2 V .

� � 2 Form(V) is the initial condition, which speci�es the set of initial states of the STS.

� T is the set of transitions.

With each transition � 2 T are associated the following quantities:

� An enabling condition E� 2 Form(V), which speci�es the set of states from which the transition

can be taken.
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� A number m� of transition modes. Each 1 � i � m� represents a transition mode, and

corresponds to a di�erent possible outcome of the transition. For each 1 � i � m� is speci�ed:

{ A mode transition formula ��i 2 Form(V ;V 0), which denotes the transition relation

f(s; s0) j (s; s0) j= ��i g corresponding to the mode, where (s; s0) interprets x 2 V as

s[[x]] and x0 2 V 0 as s0[[x]]. Throughout the dissertation, we use the convention of omit-

ting from the transition formula the variables that are not modi�ed by the transition. If

s j= E� , we assume that for all 1 � i � m� it is ft 2 S j (s; t) j= ��i g 6= ;: if the transition

is enabled, every transition mode can lead to at least one successor state.

{ A mode probability p�i 2 [0; 1], indicating the probability with which the mode is chosen.

These probabilities are such that
Pm�
i=1 p

�
i = 1.

The set T of transitions is partitioned in two subsets Ti and Td of immediate and delayed transitions.

Immediate transitions must be taken as soon as they are enabled. A subset Tf � Ti indicates the

set of fair transitions . The set Td of delayed transitions is partitioned in the sets Te and Tu, where:

� Te is the set of exponential-delay transitions . To each � 2 Te is associated a transition

rate 
� > 0, which indicates the instantaneous probability with which � is taken. Pre-

cisely, if F� (t) = Pr(� not taken before delay t) is the cumulative delay distribution of � , it

is dF� (t)=dt = �
�F� (t), or F� (t) = exp(�
� t). Thus, if � is the only enabled transition, 
�1�

is the expected time for which � is enabled before being taken.

� Tu is the set of transitions with unspeci�ed delay distributions. These transitions are taken

with some delay, but the probability distribution of this delay, and the possible dependencies

between this distribution and the past system history or present system state are not known.

Given a state s 2 S, we indicate by T (s) = f� 2 T j s j= E�g the set of enabled transitions at

s. To de�ne the semantics of an STS, it is convenient to assume that T (s) 6= ; for all states s 2 S.

For this reason, we implicitly add to every STS an idle transition �idle de�ned as follows.

De�nition 2.2 (idle transition) The idle transition is a transition �idle 2 Te with the following

parameters:

E�idle = true m�idle = 1 ��idle1 =
^
x2V

x0 = x p�idle1 = 1 
�idle = 1 :

Thus, the idle transition is always enabled, and when taken it does not change the value of the

state variables. The choice of an unitary transition rate is arbitrary: any positive transition rate

would do.
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2.1.2 Informal Semantics of Stochastic Transition Systems

As mentioned earlier, the semantics of an STS is de�ned by translation into timed probabilistic

systems, and it will be presented in Chapter 9. Here, we provide an informal semantics, which will

su�ce to understand the examples that will be presented. This informal semantics will also be used

in Chapter 9 to justify the translation process. In this informal semantics, the temporal evolution

of the system state is represented by a timed trace.

De�nition 2.3 (timed trace) A timed trace is an in�nite sequence (s0; I0); (s1; I1); : : : of pairs,

where Ik � IR+ is a closed interval, and sk is a system state, for k � 0. The intervals must

be contiguous, i.e. max Ik = min Ik+1 for all k � 0, and the �rst interval must begin at 0, i.e.

min I0 = 0.

A pair (sk ; Ik) in a timed trace indicates that during the interval of time Ik the system is in

state sk. The choice of considering only closed intervals is arbitrary: the speci�cation languages

we consider will not be able to distinguish between open and closed intervals. Note, however, that

interval endpoints overlap, so that a timed trace is not equivalent to a function IR+
7! S mapping

each instant of time to a system state. In particular, zero-duration intervals are permitted, and

they represent transitory states in which an immediate transition is taken before time advances. In

this respect, the execution model is very similar to that of generalized stochastic Petri nets (GSPN)

introduced by Ajmone Marsan, Balbo and Conte [ABC84]: the transitory states of a timed trace

correspond to the vanishing markings of a GSPN. The notion of timed trace is also closely related

to the super-dense semantics for hybrid systems described in Maler, Manna and Pnueli [MMP92].

The initial state of a timed trace must satisfy the initial condition: s0 j= �. For k � 0, state sk

determines the expected duration of interval Ik and the next state sk+1 as follows.

Expected Duration of Ik

The set of transitions enabled at sk is given by T (sk) � T . Depending on the type of transitions in

T (sk), there are two cases:

� T (sk) \ Ti 6= ;. If there is an immediate transition enabled at sk, the expected duration of Ik

is 0. Thus, immediate transitions take precedence over delayed ones.

� T (sk) � Td. Let Te(sk) = T (sk)\Te be the enabled transitions with exponential distribution of

waiting times, and Tu(sk) = T (sk)\Tu be the enabled transitions with unspeci�ed distribution

of waiting times. Note that Te(sk) 6= ;, due to the presence of the idling transition. The

expected duration of Ik is given by

� X
�2T (sk)


�

��1
; (2.1)
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where the rates 
� > 0 for � 2 Tu(sk) are selected nondeterministically. This expected dura-

tion is derived from the hypothesis that the waiting times of each � 2 T (sk) are distributed

exponentially, with rate 
� . Note that if Tu(sk) = ; the de�nition is exactly as in a GSPN.

Successor State sk+1

The successor state is chosen in three steps: �rst, an enabled transition is chosen; second, a transition

mode is chosen; and third, the successor state is chosen among the states that satisfy the mode's

transition formula. These three choices are made as follows.

Choice of transition. Similarly to the case of expected duration, there are two cases, depending

on the type of transitions enabled at sk.

� T (sk) \ Ti 6= ;. One of the transitions in T (sk) \ Ti is chosen nondeterministically. This

nondeterministic choice is subject to fairness requirements: if � 2 T (sk) \ Tf , the criterion

that governs the nondeterministic choice must select � with non-zero probability. The subject

of fairness is discussed in Chapter 8.

� T (sk) � Td. Let Te(sk) = T (sk) \ Te and Tu(sk) = T (sk) \ Tu as before. Transition � 2 T (s)

is chosen with probability


�

�� X
� 02T (sk)


� 0

�
; (2.2)

where for � 2 Tu(sk), the rate 
� is the same that was nondeterministically selected for (2.1).

Choice of transition mode. Once transition � has been chosen as described above, transition

mode j is chosen with probability p�j , for all 1 � j � m� .

Choice of successor state. Once both transition � and mode j : 1 � j � m� have been chosen,

the successor state sk+1 of sk is chosen nondeterministically from the set fs0 2 S j (sk; s
0) j= ��j g.

Time Divergence

In our de�nition of timed trace, we have not excluded the traces in which time does not diverge.

These traces can arise, since the time intervals in the trace can be point intervals, or can be arbitrarily

small. In this chapter, we will ignore the issue of time divergence, and we will present systems in

which the probability of non-time-divergent traces is 0. In the following chapters, we provide two

solutions to the problem of time divergence.

In Chapter 3, we call non-Zeno the systems in which time-divergent traces occur always with

probability 1. We provide algorithms to check whether systems are non-Zeno, and we limit ourselves

to the study of non-Zeno systems.
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Figure 2.1: Reactor cooling system. Pipes are marked in boldface.

In Chapter 8, instead of requiring that all nondeterministic behaviors lead with probability 1 to

time-divergent traces, we adopt the approach of Segala [Seg95b], and we consider only nondetermin-

istic behaviors under which time-divergent traces have probability 1.

2.2 Application 1: Cooling a Reactor

To illustrate the use of STS, we apply them to the modeling and veri�cation of the cooling system

for a reactor. Our model will be rather simplistic, with the intent of presenting an introductory

example: the model will certainly not be an accurate representation of a real cooling system.

The system, depicted in Figure 2.1, consists of a reactorR, cooled by a primary coolant circulating

in pipe 1. In turn, the primary coolant is used to heat a water vessel, producing steam. Pumps A1

and A2 are used to circulate the primary coolant, and pumps B1 and B2 are used to replenish the

water vessel. In this example, we will analyze the system reliability as a function of the failures and

repair rates of these pumps.

To keep track of the state of the pumps, we use four variables a1; a2; b1; b2: each variable assumes

value 1 if the pump is working, and 0 if it is broken. One additional variable c keeps track of the

state of the system as a whole: it assumes value 1 normally, and 0 if the reactor has overheated

severely, causing a shutdown. Thus, the set of variables of the STS is V = fa1; a2; b1; b2; cg. Initially,

the system is in operating conditions, so that the initial condition is

� : a1 = 1 ^ a2 = 1 ^ b1 = 1 ^ b2 = 1 ^ c = 1 :

The behavior of pump x, for x 2 fA1; A2; B1; B2g, is described by three transitions. The �rst

one, x-norm-break, corresponds to the pump breaking under normal working conditions, i.e. when
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Name E� Type m� 
� ��1

A1-norm-break a1 = 1 ^ a2 = 1 ^ c = 1 2 Td 1 2 a01 = 0

A1-strain-break a1 = 1 ^ a2 = 0 ^ c = 1 2 Td 1 5 a01 = 0

A1-repaired a1 = 0 ^ c = 1 2 Td 1 20 a01 = 1

� � � � � � � � � � � � � � � � � �

B2-repaired b2 = 0 ^ c = 1 2 Td 1 10 b02 = 1

prim-shut a1 = 0 ^ a2 = 0 ^ c = 1 2 Td 1 7 c0 = 0

water-shut b1 = 0 ^ b2 = 0 ^ c = 1 2 Td 1 3 c0 = 0

restart c = 0 2 Tu 1 | a01 = 1 ^ a02 = 1 ^ b01 = 1

^b02 = 1 ^ c0 = 1

Table 2.1: Transitions for the reactor cooling example. To reduce clutter, we have presented only
some of the pump transitions. Since transitions have only one mode, the mode probabilities have not
been indicated. We recall that unprimed variables refer to the system state before a transition, and
primed variables to the state immediately following the transition. Transition rates are expressed in
arbitrary units.

the other parallel pump is functioning. The second transition, x-strain-break, corresponds to the

pump breaking under the doubled workload that occurs when the parallel pump is broken. These

two transitions occur at a di�erent rate, to model the fact that the mean time before failures (MTBF)

of a pump depends on its workload. The third transition, x-repaired, corresponds to the pump being

repaired.

The shutdown of the system is controlled by three transitions, prim-shut and water-shut. Transi-

tion prim-shut corresponds to the overheating of the reactor occurring when the primary coolant is

not circulating, and transition water-shut corresponds to the overheating of the primary coolant and

reactor when the water vessel is empty. The rate for this second transition is lower, since a larger

part of the system has to overheat for it to occur. Once the system is shut down, the necessary

repairs are performed, and the system is restarted with transition restart. The delay distribution of

this last transition is left unspeci�ed, since it is not of interest in the model, and its rate may not

be known with precision.

The transitions are summarized by Table 2.1. In this table, we use the previously mentioned

convention of omitting from the transition formulas all variables that are not modi�ed by a transition.

Thus, the formula a01 = 0 is an abbreviation for a01 = 0 ^ a02 = a2 ^ b
0
1 = b1 ^ b

0
2 = b2 ^ c

0 = c.



24 CHAPTER 2. STOCHASTIC TRANSITION SYSTEMS

Speci�cation

We consider two properties of this reactor cooling system: a reliability property and a performance

property.

A Reliability Property

The system is considered in its normal operating condition when all four pumps are working correctly;

and we de�ne \failure" as c = 0, i.e. when the system has been shut down. In this system, there

is always a possibility of shutdown: more precisely, the shutdown state is reachable with non-zero

probability from any other state. Thus, the eventual occurrence of shutdowns is inevitable: in fact,

every timed trace will contain with probability 1 in�nitely many alternations c = 0; 1.

For this reason, it is not interesting to specify a property such as \the probability of shutdowns

is less than or equal to q", for some threshold q: the only value of q for which such a property

holds is q = 1. We will instead specify that, when the system is in normal operating conditions,

the expected time to a shutdown should be greater than T0. To this end, de�ne the abbreviation

�norm : c = 1 ^ a1 = 1 ^ a2 = 1 ^ b1 = 1 ^ b2 = 1. The speci�cation is then expressed by the

following formula:

A2
h
�norm ! D>T0(c = 0)

i
: (2.3)

This formula can be read as follows. The pre�x \A2" is a branching-time temporal logic construct

whose meaning is \for any reachable system state". The reachable system states are the states that

can occur along a timed trace: for example, the reader can verify that the state

c = 1; a1 = 1; a2 = 1; b1 = 0; b2 = 1

is reachable in our system, whereas the state

c = 0; a1 = 1; a2 = 1; b1 = 0; b2 = 1

is not. The formula �norm ! D>T0(c = 0) can be read as: \if �norm holds, then the expected

time before c = 0 holds is greater than T0". The operator D is thus used to express bounds on the

expected time to given system states.

A Performance Property

Another property that might be of interest is how much time the system spends overheating, on

average, before a shutdown. The system overheats when c = 1 and either a1 = a2 = 0 or b1 = b2 = 0;

not every instance of overheating leads to a shutdown, since a pump may be repaired on time.

Knowing how long it overheats before a shutdown may be useful for maintenance purposes, since

overheating might cause cumulative part damage.
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c=1 φ c=1 φ

c=0

Figure 2.2: Experiment 	 for the speci�cation of expected overheating time during reactor cycle.
Formula � stands for (a1 = 0 ^ a2 = 0) _ (b1 = 0 ^ b2 = 0).

We call a reactor cycle the period that goes from one shutdown to the next. In words, the

property we specify is as follows:

On the long run, the average time spent by the system in an overheating state during a

reactor cycle is less than T1.

For example, this property can be used to determine that it su�ces to replace certain parts only

during shuto� periods, since the parts spend only a short amount of time overheating during each

cycle.

To express this property, we use a special type of graph, called an experiment. The experiment

	 for this property is depicted in Figure 2.2. An experiment is a graph whose vertices are labeled

by formulas. The experiment is meant to be composed with the system: whenever the STS changes

state, the experiment follows an edge to a vertex labeled by a formula that holds for the new state.

Every experiment vertex has an implicit self-loop. Thus, if the state of the STS does not change,

the experiment remains at the same vertex. The transition rule encoded by the experiment edges and

by the vertex labels must be deterministic, so that to each state transition of the STS corresponds

exactly one vertex transition of the experiment.

The experiment has a distinguished set of initial vertices, drawn as double circles, that are taken

as the starting point of the experiment. The labels of these vertices must be mutually exclusive, and

their disjunction must be equivalent to true.

The experiment has a distinguished set of reset edges, drawn as dashed lines. Each time a reset

edge is traversed, we say that an experiment instance ends. Each time an experiment instance ends,

another one is immediately begun: experiments are meant to be performed an in�nite number of

times. When experiment 	 of Figure 2.2 is composed with our reactor system, an instance of 	 is

ended and another one is begun each time a new reactor cycle begins.

There are two types of experiments: P-experiments and D-experiments. D-experiments are used

to measure long-run average durations: 	 is a D-experiment. The vertices of a D-experiment are
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ServerStation N

Station 1 Station 2
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Figure 2.3: A token ring system, consisting of N stations that can access a shared server.

divided into timed vertices, drawn as �lled circles, and untimed vertices, drawn as empty circles. A

D-experiment measures the long-run average time spent by the system at timed vertices during an

experiment instance.

In our example, experiment 	 measures the long-run average amount of time spent overheating

during a reactor cycle. With the help of experiment 	, our speci�cation can be written simply as

�D<T1(	) ; (2.4)

and states that the long-run average amount of overheating time per reactor cycle should be less

than T1. More precisely, speci�cation (2.4) has the following meaning:

Under any nondeterministic behavior of the system, with probability 1 a timed trace will

exhibit a long-run average overheating time per reactor cycle less than T1.

The precise de�nition and semantics of experiments will be the subject of Chapter 5.

2.3 Application 2: A Token Ring Network

As a second example of probabilistic modeling and speci�cation, we present a more complex ap-

plication: the modeling and speci�cation of a token-ring communication network. The network,

depicted in Figure 2.3, is composed by N > 0 stations that can access a shared server. At most

one station should be able to access to the server at any given time. To enforce mutual exclusion, a

token circulates along the ring: a station can access the server only when in possession of the token.

Additionally, both server and stations can fail. Once they have failed, they stop taking part in

the protocol until they start functioning again. If a station fails, it stops accessing the server; if

a server fails, no station can access it. If a station fails while in possession of the token or while
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accessing the server, the token is lost. When the protocol senses that no token is present, it activates

a leader-election algorithm to create a new token. The algorithm �rst checks that at most one station

is down (so that the ring is not partitioned), and then creates a new token.

We present this system for a generic number N > 0 of stations; however, the veri�cation methods

presented in this dissertation can be applied only to instances of the system corresponding to �xed

values of N .

2.3.1 STS for Token Ring

The status of each station i is described by the following variables, for 1 � i � N :

� Variable li assumes value 0 if the station is idle, value 1 if it is waiting to access the server,

and 2 if it is accessing the server.

� Variable ti assumes value 0 if the station does not have the token, and 1 if it does.

� Variable fi assumes value 0 if the station is functioning, and 1 if it has failed.

The status of the server is described by the following variables:

� Variable a assumes value 0 if the server is idle, and 1 if it is being accessed.

� Variable d assumes value 0 if the server is functioning, and 1 if it has failed.

The set of variables of the STS is thus V = fa; dg [
SN
i=1fli; ti; fig. The initial condition is

� : d = 0 ^ a = 0 ^

� N̂

i=1

li = 0

�
^

� N̂

i=1

fi = 0

�
^

NX
i=1

ti = 1 ;

so that the initial position of the token is not speci�ed.

The transitions of the STS can be divided into three categories: the transitions that describe the

normal operation of the ring, the transitions that describe the failure of the server or stations, and

the transitions that describe the recovery from failure. There are no fair transitions in this STS:

Tf = ;. Moreover, all transitions have a single mode, i.e. m� = 1 for all � . To avoid clutter, when

describing transition � we write E instead of E�1 , and similarly for the other components. Moreover,

we do not specify the rates of transitions with exponential delay distributions, since we are discussing

a generic token-ring example.

Normal ring operation. The transitions that describe the normal ring operation are as follows.

� For 1 � i � N , transition �1i 2 Te is taken when a station goes from idle to requesting access

to the server. The transition has E : fi = 0 ^ li = 0 and � : l0i = 1.
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� For 1 � i � N , transition �2i 2 Te is taken when the token is passed from station i to station

i+ 1. It has

E : ti = 1 ^ fi = 0 ^ f
(imod N)+1

= 0 � : t0i = 0 ^ t0
(imod N)+1

= 1 :

Note that this transition is enabled even when station i is requesting access to the server.

� For 1 � i � N , transition �3i 2 Ti is taken when station i, having received the token, starts

accessing the server. It has

E : ti = 1 ^ li = 1 ^ fi = 0 ^ d = 0 ^ a = 0 � : t0i = 0 ^ l0i = 2 ^ a0 = 1 :

Note that if this transition is enabled, it is taken immediately, preventing the previous transi-

tion from passing the token to the next station.

� For 1 � i � N , transition �4i 2 Te is taken when station i terminates the access to the server.

It has

E : li = 2 ^ fi = 0 ^ d = 0 ^ a = 1 � : l0i = 0 ^ a0 = 0 ^ t0i = 1 :

Server and station failures. The transitions that describe the server and station failures are as

follows.

� For 1 � i � N , transition �5i 2 Te is taken when station i fails. It has E : fi = 0 and � : f 0i = 1.

� Transition �6 2 Te is taken when the server fails. It has E : d = 0 and � : d0 = 1.

� For 1 � i � N , transition �7i 2 Ti is taken when station i detects a server failure while accessing

it. Station i then goes back to the state in which it is requesting access, and lets the token

circulate. It has

E : li = 2 ^ fi = 0 ^ d = 1 � : l0i = 1 ^ t0i = 1 :

� Transition �8 2 Ti is taken when the server detects that the station accessing it has failed. It

has

E : li = 2 ^ fi = 1 ^ a = 1 � : a0 = 0 :

Failure recovery. The transitions that describe recovery from failure are as follows.

� For 1 � i � N , transition �9 2 Tu is taken when station i recovers from failure. It is a transition

with unspeci�ed delay distribution, since we do not wish to make assumptions about a station's
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recovery time. It has

E : fi = 1 � : f 0i = 0 ^ t0i = 0 ^ (li > 0! l0i = 1) ^ (li = 0! l0i = 0) :

� Transition �10 2 Tu is taken when the server recovers from failure. Again, it has unspeci�ed

delay distribution, since we do not wish to make assumptions about a server's recovery time.

It has

E : d = 1 � : d0 = 0 ^ a0 = 0 :

� Transition �11 2 Te is taken when the functioning stations detect that no token is circulating,

and that no more than one station has failed. This last requirement ensures that the ring is

not partitioned. Under these circumstances, the functioning stations execute a leader-election

algorithm that creates a new token. Since we do not wish to make assumptions on which

speci�c leader-election algorithm is used, we write a nondeterministic transition relation �,

so that the station at which the new token is created is selected nondeterministically. This

transition has

E :

N̂

i=1

(fi = 0! ti = 0) ^ 1 �

NX
i=1

fi

� : 1 =

NX
i=1

[t0i(1� f 0i)] ^

N̂

i=1

(f 0i = fi) :

2.3.2 Speci�cation of Token Ring

A Performance Requirement

The �rst property we consider is a performance requirement, which can be informally stated as

follows:

When station 1 requests access to the resource, it is granted access in average time less

than T0, barring system failures.

We construct a formal speci�cation for this requirement by stages. Our �rst attempt is to write the

following formula, in analogy with (2.3):

A2
h
l1 = 1! D<T0 l1 = 2

i
: (2.5)

This formula can be read as follows: \every reachable state in which l1 = 1 is followed by a state

in which l1 = 2 in average time less than T0". The problem with this speci�cation is that there are

many states at which l1 = 1: in some of them, the token is already at 1 and both the server and the

stations are functional; in others, the server or some station might have failed, or the token might be
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1l  =21l  =0 1l  =1

Figure 2.4: Experiment 	0 for the token ring system. In this and in the following experiment, we
omit edges that cannot be followed when the composition between the experiment and the token
ring STS is computed.

very far away from station 1. Formula (2.5) is true if all these states are followed in average time less

than T0 by a state in which l1 = 2: it thus takes a worst-case approach. Our informal speci�cation

refers instead to the expected time required to access the server, averaged on many request-access

cycles.

As we have seen in the previous example, experiments can be used to express speci�cations that

refer to the long-run average behavior of systems. Our second attempt to the speci�cation of this

property uses the experiment 	0 depicted in Figure 2.4. This experiment measures the long-run

average time elapsing between the transition l1 : 0 ! 1 and l1 : 1 ! 2. With the help of this

experiment, the speci�cation can be expressed by

�D<T0(	0) : (2.6)

This speci�cation is almost a faithful encoding of our informal requirement, except that it does

not take into account the \barring system failures" provision: experiment 	0 measures the time

required to access the server even when the server or some station has failed. Since the recovery time

of server and stations is not speci�ed, speci�cation (2.6) is not appropriate. Our �nal speci�cation

uses the experiment 	1 depicted in Figure 2.5. This experiment measures the time from l1 : 0! 1 to

l1 : 1! 2 only when the server and all stations are functioning. The speci�cation is then expressed

by

�D<T0(	1) : (2.7)

For any speci�c value of N > 0, this speci�cation can be checked with the methods developed in

this dissertation.

A Reliability Requirement

Our �rst requirement for the token-ring system regarded the average time to gain access to the

server, without counting the time elapsed during failures. Our second requirement concerns the

failure rate of the system, and can be informally phrased as follows:
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1l  =2

1l  =1

1l  =0

1l  =1 φ

φ

Figure 2.5: Experiment 	1 for token-ring system. Formula � is an abbreviation for d+
PN
i=1 fi = 0,

and indicates that the server and all stations are functioning. Note the use of bi-directional edges,
as a shorthand for two uni-directional ones.

1l  =1

0 1

1l  =0 φφ 1l  =2 φ

Figure 2.6: Experiment 	2 for token-ring system. Formula � is an abbreviation for d+
PN
i=1 fi = 0,

and indicates that the server and all stations are functioning. The reset edges are labeled with their
outcome, which in this case is either 0 or 1.
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If station 1 requests access to the server when the system is fully functioning, on the long

run it will gain access to the server without intervening system failures with probability

at least p0.

We specify this requirement with the help of the experiment 	2 depicted in Figure 2.6. This

experiment, unlike the previous ones, is a P-experiment. In a P-experiment, to each reset edge is

associated an outcome: a real number representing the success or failure of the experiment. A P-

experiment is used to measure the long-run average outcome received during the system's behavior.

As we can see from Figure 2.6, experiment 	2 \starts" when there is a transition l1 : 0! 1 while the

token-ring system is fully functioning. The experiment yields outcome 0 if there is a system failure

while l1 is still equal to 1, and yields outcome 1 if l1 reaches value 2 before a failure. Thus, the long-

run average outcome of the experiment corresponds to the fraction of access requests from station 1

that are followed by a server access without an intervening server or station failure. We can then

specify our requirement with the formula �P�p0(	2). Again, the precise semantics of P-experiments

will be discussed in Chapter 5.

2.4 Concluding Remarks

Through these examples, we have seen that STS can be used to model probabilistic systems for both

reliability and performance analysis, and that the logics presented in this dissertation can encode

several properties of interest. To conclude this chapter, we present some general observations about

probabilistic veri�cation that can be made at this point.

Long-run average properties vs. single event properties. Many interesting properties of

probabilistic systems, including performance and reliability properties that have long been studied

outside of the �eld of formal veri�cation, can be captured by long-run average probabilistic prop-

erties, rather than single-event ones. One of the main points of this dissertation is to make the

speci�cation and veri�cation of these long-run average properties possible.

Use of nondeterminism. Nondeterminism can be used to represent lack of knowledge, or lack

of assumptions, about some system characteristics. However, excessive use of nondeterminism can

prevent desired system properties from holding. When the veri�cation of a probabilistic speci�cation

fails, it is often necessary to analyze the system behaviors that violate the property, to determine

whether excessive use of nondeterminism, incorrect speci�cation or real system malfunction is at the

root of the problem.

Writing meaningful speci�cations. Writing meaningful probabilistic speci�cations is tricky,

more so than writing non-probabilistic speci�cations. The speci�cation languages presented in this

dissertation have been designed to facilitate the writing of meaningful speci�cations.



Chapter 3

Timed Probabilistic Systems

While stochastic transition systems provide the high-level language in which probabilistic systems

are described, the logics and model-checking algorithms are de�ned with respect to the low-level

model of timed probabilistic systems (TPSs). Essentially, the relation between a stochastic transition

system and its corresponding TPS is similar to the relation between a fair transition system and its

representation in terms of state transition graph. Stochastic transition systems, like fair transition

systems, are �rst-order structures providing a high-level, compositional description of a system;

TPSs provide the underlying computational model. TPSs are also in many ways more general than

stochastic transition systems, so that veri�cation techniques that can be applied directly to TPSs

are of independent interest. The translation from stochastic transition systems to TPSs will be

presented later in the dissertation, since it relies on many advanced concepts, such as probabilistic

fairness, that will not be available until then.

The de�nition of TPSs is based on Markov decision processes. These models were introduced by

Bellman [Bel57] and Howard [How60] to represent stochastic processes with control inputs. Tradi-

tionally, the inputs represent controls applied to the stochastic systems, or decisions that in
uence

the system's behavior. In our application, the controls will represent the nondeterminism, which

is superimposed to the underlying probabilistic behavior of the system. Our basic system models,

Timed Probabilistic Systems, consists simply in Markov decision processes with additional informa-

tion to represent the timing behavior.

After introducing Markov decision processes and timed probabilistic systems, we develop a con-

nection between the graph-theoretical properties of Markov decision processes and their stochastic

behavior. This connection, based on the concept of end component, is central to the development

of much of the later material of the dissertation, including the model-checking algorithms for the

logics that will be presented.

We conclude the chapter by describing two optimization problems on Markov decision processes

that will be used as components of the model-checking algorithms throughout the dissertation:

33
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the stochastic shortest path problem and the maximum reachability probability problem. We will

provide a concise summary of results for these two problems, as well as an improved algorithm for

the computation of maximal reachability probabilities.

3.1 Markov Decision Processes and Policies

A Markov decision process (MDP) is a generalization of a Markov chain in which a set of possible

actions is associated to each state. To each state-action pair corresponds a probability distribution

on the states, which is used to select the successor state [Der70, Ber95]. A Markov chain corresponds

thus to a Markov decision process in which there is exactly one action associated with each state.

Throughout the dissertation, we assume the existence of a �xed set Acts of actions, containing all

the actions of interest. The de�nition of Markov decision processes is as follows.

De�nition 3.1 (Markov decision process) A Markov decision process (MDP) (S;A; p) consists

of a �nite state S of states, and two components A, p that specify the transition structure:

� For each s 2 S, A(s) � Acts is the non-empty �nite set of actions available at s.

� For each s; t 2 S and a 2 A(s), pst(a) is the probability of a transition from s to t when action

a is selected. For every s; t 2 S and a 2 A(s), it is 0 � pst(a) � 1 and
P
t2S pst(a) = 1.

Throughout this dissertation, we will consider only the veri�cation of �nite Markov decision pro-

cesses, that is, Markov decision processes having �nite sets of states and actions. All the results

we state, in particular those concerning the model-checking algorithms, are claimed to be valid for

�nite Markov decision processes only, unless otherwise noted.

We will often associate with a Markov decision process additional labelings, to represent various

quantities of interest, such as the time required to complete each state transition. These additional

labelings will be simply added to the list of components of a Markov decision process.

3.1.1 Behaviors

A behavior of a Markov decision process is an in�nite sequence of alternating states and actions,

constructed by iterating a two-phase selection process. First, given the current state s, an action

a 2 A(s) is selected nondeterministically; second, the successor state t of s is chosen according to

the probability distribution Pr(t j s; a) = pst(a). The formal de�nition of behavior is as follows.

De�nition 3.2 (behaviors of MDP) A behavior of an MDP � is an in�nite sequence ! :

s0a0s1a1 � � � such that si 2 S, ai 2 A(si) and psi;si+1(ai) > 0 for all i � 0. Given a state s,

we indicate by 
s the set of behaviors originating from s. We also let Xi, Yi be the random vari-

ables representing the i-th state and the i-th action along a behavior, respectively. Formally, Xi and

Yi are variables that assume the value si, ai on the behavior ! : s0a0s1a1 � � �.
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A state-action pair is a pair composed of a state and of an action associated with the state.

De�nition 3.3 (state-action pairs, Succ) A state-action pair is a pair s; a such that s 2 S,

a 2 A(s). We denote by �� = f(s; a) j s 2 S ^ a 2 A(s)g the set of state-action pairs of an MDP

�. For any state-action pair s; a, we de�ne Succ(s; a) = ft j pst(a) > 0g to be the set of possible

successors of s when a is chosen.

Measurable sets of behaviors. For every state s 2 S, we let Bs � 2
s be the smallest algebra

of subsets of 
s that contains all the basic cylinder sets

f! 2 
s j X0 = s0 ^ Y0 = a0 ^ � � � ^Xn = sn ^ Yn = ang

for all n � 0, s0; : : : ; sn 2 S, a0 2 A(s0); : : : ; an 2 A(sn), and that is closed under complement

and countable unions and intersections. This algebra is called the Borel �-algebra of basic cylinder

sets, and its elements are the measurable sets of behaviors, to which it will be possible to assign a

probability [KSK66, Wil91].

3.1.2 Policies and Probabilities of Behaviors

To be able to talk about the probability of behaviors, we would like to associate to each � 2 Bs

its probability measure Pr(�). However, this measure is not well-de�ned, since the probability

that a behavior ! 2 
s belongs to � depends on how the actions along the behavior have been

nondeterministically chosen.

To represent these choice criteria, we use the concept of policy (see Derman [Der70]). Policies

are closely related to the adversaries of Segala and Lynch [SL94] and Segala [Seg95b], and to the

schedulers of Lehman and Rabin [LR81], Vardi [Var85] and Pnueli and Zuck [PZ86]. A policy � is

a set of conditional probabilities

Q�(a j s0s1 � � � sn) ; (3.1)

for all n � 0, all possible sequences of states s0 � � � sn, and all a 2 A(sn). It must be

0 � Q�(a j s0s1 � � � sn) � 1
X

a2A(sn)

Q�(a j s0s1 � � � sn) = 1

for all n � 0, all sequences s0 � � � sn and all a 2 A(sn). A policy dictates the probabilities with which

the actions are chosen: according to policy �, after the �nite sequence of states s0s1 � � � sn starting

at the root s = s0 of 
s, action a 2 A(sn) is chosen with probability Q�(a j s0s1 � � � sn).

Hence, under policy � the probability of a direct transition to t 2 S after s0 � � � sn, denoted by
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Pr�s0(t j s0 � � � sn), is given by

X
a2A(sn)

psn;t(a)Q�(a j s0s1 � � � sn) :

The probability of following a �nite behavior pre�x s0a0s1a1 : : : sn of states starting at the root

s = s0 of 
s under policy � is therefore equal to

n�1Y
i=0

psi;si+1(ai)Q�(ai j s0 � � � si) :

These probabilities for the �nite sequences give rise to a unique probability measure Pr�s on Bs that

associates with each � 2 Bs its probability Pr�s (�) (see Doob [Doo94], Kemeny, Snell and Knapp

[KSK66], or Williams [Wil91] for more details on the extension of probability measures from cylinder

sets to �-algebras).

Recall that an event A is a measurable set of behaviors A 2 Bs for some s, and a random variable

is a measurable function [Wil91]. Following the usual notation, we denote by Pr�s (A) the probability

of event A under policy � starting from state s, and we denote with E�sfXg the expected value of the

random variable X under policy � starting from state s; conditional probabilities and expectations

are denoted in the usual way.

Markovian and deterministic policies. As usual, we say that a policy isMarkovian if its choice

of actions at a state does not depend on the portion of behavior before the state is reached. These

policies are also called memoryless, to emphasize the lack of dependence from the past portion of

the behavior.

De�nition 3.4 (Markovian and deterministic policies) We say that a policy is Markovian if

Q�(a j s0 : : : sn) = Q�(a j sn)

for all n � 0 and all sequences s0 : : : sn of states of S. We denote by � the set of all policies, and by

�M � � the set of all Markovian ones.

We say that a policy � is deterministic if � is Markovian, and if for each s there is an action

a 2 A(s) such that Q�(a j s) = 1. We denote with �D the set of all deterministic policies. Note that

if the sets of states and actions of the MDP are both �nite, the set �D is also �nite.

3.1.3 On the Notion of Policy (z)

According the de�nition of policy we have adopted, the choice of action at a state can depend on

the past sequence of states, but not on the past sequence of actions, as indicated by (3.1). Instead
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of de�nition (3.1), we could have adopted the more general form

Q�(a j s0a0s1a1 � � � sn) (3.2)

for n � 0, which would enable the choice of action to depend on the past sequence of actions as well.

The motivation for our choice is essentially pragmatic. The form (3.1) for a policy is commonly

used in the literature on Markov decision processes (see, for example, Derman [Der70] and Puterman

[Put94]). By adopting it, we will be able to use results from the classical theory of Markov decision

processes without having to provide new or revised proofs. In any case, most of the results that will

be presented in this dissertation, and in particular all the logics and model-checking algorithms, are

not a�ected by whether form (3.1) or (3.2) is chosen to de�ne the policies. The reader can verify

that all the proofs of the statements presented need only minor syntactic corrections when one form

is replaced by the other.

Policies and decision rules. In the literature on Markov decision processes, another de�nition of

policy is common. This de�nition relies on the concept of decision rule: a decision rule � is a function

that assigns to each state s a probability distribution f�s(a)ga2A(s) on the actions associated with

s, such that
P
a2A(s) �s(a) = 1. A policy � is then de�ned as an in�nite sequence �0; �1; �2; : : : of

decision rules: after following the sequence of states s0; s1; : : : ; sn, decision rule �n is used to select

the next action. This is the approach adopted, for example, in Bertsekas [Ber95].

This notion of policy is more restrictive than the one adopted in this dissertation: the choice of

action cannot depend on the past sequence of states, but only on the length of such a sequence. The

main appeal of the de�nition of policies in terms of decision rules is the notational simplicity, evident

especially in a matrix-theoretic treatment of the theory of Markov decision processes. Unlike (3.2),

the adoption of this de�nition of policy in the dissertation would require changes in the statements

and proofs of several results. Due to the lesser generality of this notion of policy and to these

technical di�culties, we have not followed this approach.

3.1.4 Drawing Markov Decision Processes

To depict an MDP � = (S;A; p), we draw a graph that has the set S of states as vertices. For

every s 2 S and a 2 A(s), we draw a bundle of edges to each t 2 S such that pst(a) > 0. The

edges belonging to the same bundle are grouped together by a small circle sector (similarly to the

notation used to depict and-or graphs), and each bundle is labeled by the corresponding action.

The transition probability pst(a), if indicated, labels the edge from s to t belonging to bundle a.

Additional state or action labels, if present, can be represented next to the components they label.
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Figure 3.1: Graphical representation of Markov decision processes.

t = s1 s2 s3 s4

ps1;t(a) = 0 1/2 1/2 0

ps1;t(b) = 0 0 0 1

ps2;t(b) = 0 1/3 2/3 0

ps3;t(a) = 0 1 0 0

ps3;t(c) = 0 0 0 1

ps4;t(b) = 1 0 0 0

Table 3.1: Transition probabilities of the MDP represented in Figure 3.1.
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Example 3.1 (drawing an MDP) Figure 3.1 depicts an MDP � = (S;A; p) having S =

fs1; s2; s3; s4g, A(s1) = fa; bg, A(s2) = fcg, A(s3) = fa; cg, A(s4) = fbg. The transition prob-

abilities are given in Table 3.1. Note that deterministic probability distributions are usually not

indicated in the diagrams.

3.1.5 Notation: some Events and Random Functions

It is convenient to introduce some abbreviations for events and random functions that will be often

used throughout the dissertation. First, we de�ne reachability.

De�nition 3.5 (reachability in MDP) Given an MDP (S;A; p), we say that a state t is reachable

from a state s if there is a path from s to t in the graph (S; �S). We say that a subset T � S is

reachable from a subset U � S if there are two states t 2 T , u 2 U such that t is reachable from u.

Reachability of a state from a set of states, and of a set of states from a state, are similarly de�ned.

We say that the MDP is strongly connected if every state of S is reachable from every other state

of S. This is equivalent to the fact that the graph (S; �S) is strongly connected.

Next, we introduce a shorthand for the event of reaching a speci�ed subset of states.

De�nition 3.6 (event reach) Given a subset T of states, we de�ne the event reach(T ) to be

equivalent to 9k : Xk 2 T . Thus, reach(T ) is true of a behavior i� the behavior reaches the subset

T of states.

We also introduce a shorthand for the set of state-action pairs that occur in�nitely often along

a behavior.

De�nition 3.7 (the random function inft) Given a behavior ! indicate by

inft(!) = f(s; a) j
1

9 k : Xk = s ^ Yk = ag ;

the state-action pairs that occur in�nitely often along it, where
1

9 is a quanti�er with the meaning

\there are in�nitely many".

Last, we de�ne a shorthand for the event of following a behavior pre�x.

De�nition 3.8 (pre�x following event) Let � = s0a0s1 � � � snan, for n � 0, be a �nite pre�x of

behavior. We use � also to denote the event

n̂

k=0

(Xk = sk ^ Yk = ak)

of following � during the �rst k steps of a behavior, and we write Pr�(�) for the corresponding

probability. Note that it is not necessary to specify the initial state, since it is implicit in �. We

introduce an analogous notation for the case in which � terminates with an action.
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3.2 Timed Probabilistic Systems

A timed probabilistic system (TPS) is a Markov decision process with three additional labelings that

describe the set of initial states, the timing properties of the system, and the values of a set of state

variables at all system states. For simplicity, when discussing TPSs we will assume a �xed set V of

state variables.

De�nition 3.9 (TPS) A TPS � = (S;A; p; Sin; time; I) is an MDP with three additional compo-

nents:

� A subset Sin � S of initial states.

� A labeling time, which associates to each s 2 S and a 2 A(s) the expected amount of time

time(s; a) 2 IR+ spent at s when action a is selected.

� A labeling I, which associates to each state s 2 S and variable x 2 V the value Is[[x]] that x

assumes at s.

TPSs are closely related to the semi-Markov decision processes introduced in Howard [How60,

How63] and De Cani [DC64] and later studied, among others, by Veinott [Vei69] and Ross [Ros70b,

Ros70a]. In a semi-Markov decision process, to each state and action is associated the exact or

expected amount of time spent at the state when the action is chosen.

3.2.1 Time Divergence and Non-Zenoness

Given a behavior pre�x s0; a0; : : : ; sn, the expected time elapsed along the pre�x is given byPn�1
k=0 time(sk; ak). Similarly, we say that the time diverges along a behavior i�

P1
k=0 time(Xk; Yk)

does.

Since our systems are �nite-state, time does not diverge along a behavior i� there is K such that

time(Xk; Yk) = 0 for all k � K. These behaviors do not have a physical meaning: thus, we would

like to ensure that time diverges with probability 1 along the behaviors. We adopt this requirement,

rather than the stricter one of divergence along all behaviors, since this latter requirement can

complicate the construction of system models with its strictness. In a later chapter, we will discuss

an alternative approach to time divergence, due to Segala [Seg95b].

Formally, we say that a TPS � is non-Zeno if the elapsed time along a behavior diverges with

probability 1.

De�nition 3.10 (non-Zeno TPS) A TPS � is non-Zeno if

Pr�s

� 1X
i=0

time(Xi; Yi) =1

�
= 1

for any policy �, and for any initial state s 2 Sin.
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Figure 3.2: Portions of two modules A and B and of their parallel composition, in the interleaving
semantics. In this example, nondeterminism is used to abstract from the scheduling mechanisms of
the two modules.

We will apply our speci�cation languages and model-checking algorithms only to TPSs that

satisfy the following non-Zenoness assumption.

Assumption 3.1 (non-Zenoness) The TPS is non-Zeno.

In the next chapter, we will provide algorithms to check whether this assumption holds.

3.2.2 The Role of Nondeterminism

As stated in the introduction, nondeterminism can be used for several purposes. One of these

purposes is to represent concurrency and unknown scheduling mechanisms, as illustrated by the

following example.

Example 3.2 (nondeterminism and concurrency) Consider a system composed of two mod-

ules A and B. As depicted in Figure 3.2, each of the two modules A and B can execute a transition

from a given state s, each yielding a given probability distribution for the successor state. If we choose

to represent parallel composition by interleaving (the approach taken, for example, in [MP91]), we

can use the nondeterminism to leave the scheduling mechanism between A and B unspeci�ed, in

complete analogy with the approach based on fair transition systems. The transitions out of state

s in the parallel composition of A and B are then as depicted in Figure 3.2.
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Figure 3.3: Set P of possible values for the probability distribution [p�1; p
�
2; p

�
3], and its approximation

by a set of 4 actions a, b, c and d, whose probability distributions are also depicted. The horizontal
axis represents the values of p�1, the vertical axis those of p�2; probability p�3 is given by p�3 =
1� (p�1 + p�2).

Nondeterminism can also be used to represent transitions whose next-state probability distribu-

tion or expected completion time is not known with precision. Since a system is considered correct if

it satis�es the speci�cation under all possible policies, as we will see in the next chapter, the idea is

to ensure the existence of at least one policy which gives rise to the true probability distribution or

expected times. Note that it is not important that this policy be known in advance. The following

examples illustrate this use of nondeterminism and policies.

Example 3.3 (nondeterminism and uncertainty in the probabilities) Consider a transition

that can lead from a state s to one of the destination states t1; t2; t3. For 1 � i � 3, let p�i be the

probability that the transition from s leads to ti. Assume that the precise value of the vector

[p�1; p
�
2; p

�
3] is not known, but it is known to lie inside a region P of possible values, as illustrated

in Figure 3.3. To represent this knowledge about the transition probabilities, and to obtain a

conservative model for the system, we associate with state s four actions a, b, c and d. The probability

distributions associated with these actions are given in Table 3.2

Once at s, a policy is free to choose the probabilities qa, qb, qc, qd with which the actions are

selected, so that the probability of a transition to ti, for 1 � i � 3, is given by the linear combination
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Action ps;t1(�) ps;t2(�) ps;t3(�)

a 0.2 0.6 0.2

b 0.5 0.3 0.2

c 0.4 0.1 0.5

d 0.1 0.2 0.7

Table 3.2: Transition probabilities of actions a, b, c, d.

qapsti(a)+ � � �+ qdpsti(d). By appropriately choosing the probabilities which which actions a, b, c, d

are chosen, a policy can give rise to all the probability distributions for transitions to t1; t2; t3 that

lie inside the polygon delimited by a, b, c, d in Figure 3.3. This polygon includes the region P where

the true distribution is known to lie. Thus, the model represents a conservative approximation of

the system.

Example 3.4 (nondeterminism and uncertainty in the expected times) Assume that the

system, from state s, always takes a transition to state t. The expected time of this transition

is not known with precision, but it is known to lie in the interval [3; 5]. In analogy with the

previous example, this situation can be modeled by associating with s two actions a and b, that lead

deterministically to t and have expected times time(s; a) = 3 and time(s; b) = 5.

The two uses of nondeterminism to represent imprecise knowledge illustrated by the above ex-

amples can be combined.

We note that in the above examples the di�erent actions available at a state do not represent

di�erent system events, but rather represent the same event, occurring with di�erent characteristics

(probability distribution, or expected time). In other words, the di�erent actions are used as an

artifact to represent uncertain knowledge. It is this use of nondeterminism, which is quite common

in the modeling of real systems, which has led us in this dissertation to de-emphasize the role of

actions in the speci�cation languages. In particular, the speci�cation languages we consider cannot

refer to the names of the actions, but only to their expected duration and e�ects.

3.2.3 Expected Time vs. Exact Time

Given a state s of a TPS and an action a 2 A(s), the quantity time(s; a) represents the expected

time for which the system stays at state s under action a, rather than the exact time. This choice

represents a compromise between the expressive power of the model and the complexity of the

veri�cation algorithms.

Since the probability distribution of transition times is not known, we cannot verify probabilistic

deadline properties, i.e. properties stating that the probability of meeting a timing deadline is above
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or below a speci�ed threshold.1

The model-checking algorithms that have been proposed so far for the veri�cation of probabilistic

deadline properties rely on the explicit or implicit introduction of clocks (or counters) to measure

the time to the deadline. Such algorithms have been described, for example, in Hansson and Jonsson

[HJ89, HJ94], Hansson [Han94], Beauquier and Slissenko [BS96] and de Alfaro [dA97]. There are two

drawbacks with this approach. First, these algorithms can be applied only to systems in which time

can assume only integer values, due to their reliance on clocks. Moreover, the introduction of these

clocks causes a large increase in the size of the state-space of the system. This increase is propor-

tional to the speci�ed distance to the deadline (measured in clock-ticks): it is thus computationally

impractical to verify probabilistic deadline properties of non-trivial systems.

The approach adopted in this dissertation enables us to consider system models in which time is

modeled by the set of non-negative real numbers. While we cannot consider probabilistic deadline

properties, the speci�cation languages we introduce can express properties related to the average time

before events, and to the average system performance and reliability. By avoiding the introduction

of clocks, it leads to e�cient model-checking algorithms. Our approach is more closely related to

the point of view of performance evaluation and reliability analysis, rather than to the study of

(non-probabilistic) real-time systems.

3.3 End Components

Many of the results presented in this dissertation rest upon a connection between the stochastic

properties of an MDP and its structure when viewed as a graph-like structure. This connection is

based, to a large extent, on the de�nition of end components. To de�ne end components, we �rst

introduce state-action sets and sub-MDPs.

De�nition 3.11 (state-action sets and sub-MDP) Given an MDP � = (S;A; p), a state-action

set is a subset � � f(s; a) j s 2 S ^ a 2 A(s)g. A sub-MDP of � is a pair (C;D), where C � S

and D is a function that associates to each s 2 C a set D(s) � A(s) of actions. Clearly, there is a

one-to-one relation between sub-MDPs and state-action sets:

� given a state-action set �, we denote by sub(�) = (C;D) the sub-MDP de�ned by

C = fs j 9a : (s; a) 2 �g D(s) = fa j (s; a) 2 �g

� given a sub-MDP (C;D), we denote by sa(C;D) = f(s; a) j s 2 C ^ a 2 D(s)g the state-action

set corresponding to (C;D).

1In fact, using Markov's inequality [Wil91] it is possible in some instances to obtain bounds for the probability of

meeting deadlines. Since the bounds are not always su�ciently strict to be useful for veri�cation, we have not pursued

this approach in this dissertation.
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Each sub-MDP (C;D) induces an edge relation: there is an edge (s; t) from s 2 C to t 2 S i� it

is possible to go from s to t in one step with positive probability. The formal de�nition is as follows.

De�nition 3.12 (edge relation �) For a sub-MDP (C;D), we de�ne the relation �(C;D) by

�(C;D) =
n
(s; t) 2 C � S

��� 9a 2 D(s) : pst(a) > 0
o
:

We also let

�S =
n
(s; t) 2 S � S

��� 9a 2 A(s) : pst(a) > 0
o
:

The di�erence between state-action sets and sub-MDPs is simply one of notation. End compo-

nents are a particular type of sub-MDPs.

De�nition 3.13 (end components) A sub-MDP (C;D) is an end component if:

� Succ(s; a) � C for all s 2 C and a 2 D(s);

� the graph (C; �(C;D)) is strongly connected.

We say that an end component (C;D) is contained in a sub-MDP (C 0; D0) if sa(C;D) � sa(C 0; D0);

we say that an end component (C;D) is maximal in a sub-MDP (C 0; D0) if there is no other end

component (C 00; D00) such that sa(C;D) � sa(C 00; D00) � (C;D). We extend these de�nitions in the

obvious way to containment and maximality in an MDP.

Intuitively, end components represent sets of state-action pairs that, once entered, can be followed

forever if the policy chooses the actions in an appropriate way. This intuition will be made precise

by our basic theorems on end components. From the above de�nition, we see that end components

are a generalization of the stable sets de�ned by Bianco and de Alfaro [BdA95] and the strongly

connected stable sets of de Alfaro [dA97]. These sets, in turn, are related to the ones described in

the proof of Courcoubetis and Yannakakis [CY95, Proposition 4.2.3], as well as to the controllably

recurrent states of Courcoubetis and Yannakakis [CY90]. The K-ergodic sets of Hart, Sharir and

Pnueli [HSP82, HSP83] are also related to end components.

3.3.1 Basic Properties of End Components

The following theorems, derived in part from [dA97], summarize the basic properties of end compo-

nents.

The �rst theorem states that, once an end component is entered, it is possible to stay in it

forever, while taking each state-action pair in the end component in�nitely often with probability 1.

To make this statement precise, we formulate it in terms of policies: the theorem states that it is

possible to modify each policy so that, once an end component is entered, it is never exited, and

each state-action pair of the component is taken in�nitely often with probability 1.
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Theorem 3.1 (stability of end components) Let (C;D) be an end component. Then, for every

policy � there is a policy �0, which di�ers from � only over C, such that

Pr�s(reach(C)) = Pr�
0

s (reach(C)) = Pr�
0

s (inft(!) = sa(C;D)) (3.3)

for all s 2 S.

Proof. Consider the policy �0 de�ned as follows, for every sequence s0 � � � sn with n � 0:

� If sn 2 C, policy �
0 chooses an action from D(sn) with uniform probability, i.e.

Q�0(a j s0 � � � sn) =

(
jD(sn)j

�1 if a 2 D(sn);

0 otherwise.

� If sn 62 C, policy �
0 coincides with �, i.e.

Q�0(a j s0 � � � sn) = Q�(a j s0 � � � sn) :

The �rst equality in (3.3) is a consequence of the fact that � and �0 coincide outside C.

For the second equality, notice that under policy �0 a behavior that enters C never leaves C

afterwards. Moreover, since the graph (C; �(C;D)) is strongly connected, under policy �0 the end

component (C;D) behaves like an ergodic Markov chain: hence, once in C a behavior will visit

all states of C in�nitely often with probability 1. By de�nition of �0, this also implies that once a

behavior enters C, it takes all state-action pairs in sa(C;D) in�nitely often with probability 1. This

completes the argument.

The next result states that, for any initial state and policy, a behavior will end up with proba-

bility 1 in an end component. This fact is at the origin of the name \end component".

Theorem 3.2 (fundamental theorem of end components) For any s 2 S and any policy �,

Pr�s(sub(inft(!)) is an end component) = 1.

Proof. Consider a sub-MDP (C;D) which is not an end component, and let 

(C;D)
s = f! 2 
s j

inft(!) = sa(C;D)g. There are two cases, depending on which condition of De�nition 3.13 does not

hold.

First, assume that there is (t; a) 2 sa(C;D) such that Succ(t; a) 6� C. Let r =
P
u2C ptu(a).

Then, since every behavior in 

(C;D)
s takes the state-action pair t; a in�nitely often, we have that

Pr�s(! 2 

(C;D)
s ) < rk for all k > 0, and from r < 1 we obtain Pr�s (! 2 


(C;D)
s ) = 0.

Otherwise, assume that there are t1; t2 2 C such that there is no path from t1 to t2 in (C; �(C;D)).

Let

q = max

�X
u2C

ptu(a)

���� t 2 C ^ a 2 D(t) ^ Succ(t; a) 6� C

�
:
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Figure 3.4: An MDP � = (S;A; p), with one of its end components depicted by dashed lines.

The lack of path from t1 to t2 in (C; �(C;D)) implies that, for every subsequence smamsm+1 � � � sn of

behavior in 

(C;D)
s going from sm = t1 to sn = t2, there is j 2 [m::n� 1] such that Succ(sj ; aj) 62 C.

Thus, at most a fraction q of behaviors in 

(C;D)
s can go from t1 to t2 without leaving (C;D). Since

every behavior ! 2 

(C;D)
s contains in�nitely many disjoint subsequences from t1 to t2, we have that

Pr�s(! 2 

(C;D)
s ) � qk for all k > 0. As q < 1, this implies again Pr�s (! 2 


(C;D)
s ) = 0.

The result then follows from the fact that there are only �nitely many sub-MDPs (C;D) in the

original MDP.

End components of Markov chains. As mentioned earlier, a Markov chain is an MDP in which

to each state is associated a single action. From an exam of the de�nition of end component, we

have the following characterization of end components of Markov chains.

Corollary 3.1 (end components of Markov chains) Consider an MDP � = (S;A; p) corre-

sponding to a Markov chain. A sub-MDP (C;D) is an end component i�:

� C is a closed recurrent class of the chain;

� D(s) = A(s) for all s 2 C.

The corollary is useful to adapt the model-checking algorithms we give for general MDPs to

Markov chains.
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Example 3.5 (depicting end components) Figure 3.4 depicts an MDP � = (S;A; p) and a end

component (B;C) of the MDP. The states and actions of the MDP are de�ned by S = fs1; : : : ; s8g,

and A(s1) = fag, A(s2) = fa; bg, A(s3) = fa; cg, A(s4) = fcg, A(s5) = fb; cg, A(s6) = fbg,

A(s7) = fbg, A(s8) = fag.

The end component (B;C) of the MDP is given by B = fs2; s4; s5; s6; s7; s8g, and C(s2) = fag,

C(s4) = fcg, C(s5) = fcg, C(s6) = fbg, C(s7) = fbg, C(s8) = fdg.

3.3.2 Maximal End Components

Very often, we will be interested in the maximal end components contained in a given sub-MDP.

We introduce the following abbreviations to denote this set.

De�nition 3.14 (maxEC ) Given a sub-MDP (B;C), we denote by maxEC (B;C) the set of the

maximal end components of (B;C).

Moreover, given a subset of states B, we denote with AnS the restriction to domain B of the

action assignment A, and we abbreviatemaxEC (B;AnB) bymaxEC (B). In other words, maxEC (B)

is the set of maximal end components contained in the sub-MDP induced by the subset B of states.

Given a sub-MDP (C;D), the set of maximal end components of (C;D) can be computed using

the following algorithm, reminiscent of the procedure presented in [CY95, Proposition 4.2.3].

Algorithm 3.1 (computation of maximal end components)

Input: A sub-MDP (C;D).

Output: L = maxEC (C;D).

Initialization: L := f(C;D)g.

Repeat the following steps:

� Select (E;F ) 2 L.

� For all s 2 E, let F 0(s) := fa 2 F (s) j Succ(s; a) � Eg.

� Let E1; : : : ; En be the strongly connected components of the graph (E; �(E;F 0)), and let

Fi(s) = F 0(s) for all i 2 [1::n] and s 2 Ei.

� Replace (E;F ) 2 L with (E1; F1); : : : ; (En; Fn).

Until: L cannot be changed by the above iteration.

Given an MDP (S;A; p), it is easy to see that this algorithm runs in time polynomial inP
s2S jA(s)j.
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3.3.3 State-Action Frequencies and End Components (z)

State-action frequencies represent the frequency with which state-action pairs appear in system

behaviors. They are a classical concept in the study of Markov decision processes, and they will

be used in the proofs of several results in the next chapters. Derman [Der70, Chapter 7] is an

introduction to the topic which also summarizes earlier work, such as Derman [Der63, Der64],

Derman and Strauch [DS66], and Strauch and Veinott [SV66]. Given a state-action pair s; a, let

Nk
sa be the random variable denoting the number of times a behavior has taken state-action pair

s; a before position k: formally,

Nk
sa =

k�1X
i=0

�[Xi = s ^ Yi = a] ; (3.4)

where �[true] = 1 and �[false] = 0. We de�ne the state-action frequency xsa(t; �) by

xsa(t; �) = lim
n!1

E�t fN
n
sag

n
; (3.5)

provided that the limit exists: xsa(t; �) represents the long-run frequency with which the pair s; a

appears in a behavior, with initial state t and under policy �. When the initial state t and the policy

� are clear from the context, we write simply xsa.

Not surprisingly, there is a connection between state-action frequencies and end components, as

both of these are related to the long-run behavior of the system. One aspect of the connection is

described by the following theorem.

Theorem 3.3 (state-action frequencies and end components) Fix any initial state and any

policy �, and let

� = f(s; a) j xsa > 0g

be the set of state-action pairs having positive frequency, assuming that the limit (3.5) exists for all

state-action pairs. Then, � can be written as � =
Sn
i=1 �i, where each sub(�i), for 1 � i � n, is an

end component.

Proof. De�ne the abbreviations

B� = fs 2 S j 9a : (s; a) 2 �g

E� =
n
(s; t) 2 S � S

��� 9a 2 A(s) : h(s; a) 2 � ^ t 2 Succ(s; a)
io

:

The state-action frequencies are related by [Ber95]:

X
s;a2��

pst(a)xsa =
X
a2A(t)

xta ; t 2 S : (3.6)
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To show that � can be written in the form � =
Sn
i=1 �i, with sub(�1); : : : ; sub(�n) end components,

we have to show that the two following statements hold.

� If (s; a) 2 �, then Succ(s; a) � B�. If (s; a) 2 � and t 2 Succ(s; a), then by (3.6) it must be

xtb > 0 for at least one b 2 A(t), which proves the result.

� The graph (B�; E�) is formed by the union of strongly connected subgraphs. By de�ning the

\
ow" fst as fst =
P
a2A(s) xsapst(a), equations (3.6) can be rewritten as

X
s2S

fst =
X
s02S

fts0 ; t 2 S ;

which can be interpreted as the law of 
ow conservation. If the graph (B�; E�) could not be

written as the union of strongly connected subgraphs, there would states s; t 2 B� such that

there is a path from s to t in (B�; E�), but no path from t to s, violating 
ow conservation.

An alternative proof of this result can be obtained by using the results of Derman [Der70,

Chapter 7]. There, Derman states that the limit points of the state-action frequencies are contained

in the convex hull determined by the state-action frequencies of deterministic policies. To obtain our

result, it su�ces to note that the sets of non-zero state-action frequencies of deterministic policies

correspond to the union of end components, as can be easily proved.

3.4 The Stochastic Shortest Path Problem

We now summarize some results about the stochastic shortest path (SSP) problem. This problem

will be a component of several model-checking algorithms for the probabilistic logics discussed in

this dissertation, so that it is convenient to introduce it at this early stage.

Informally, the stochastic shortest path problem consists in computing the minimum expected

cost for reaching a given subset of destination states, from any non-destination state of an MDP.

Bertsekas and Tsitsiklis [BT91] present a detailed account of this problem; this section is based on

[BT91] and [Ber95]. In Chapter 7, we will improve on these results by presenting solution methods

for instances of the SSP problem that cannot be solved with the methods of [BT91, Ber95].

Formally, an instance of the stochastic shortest path (SSP) problem is de�ned as follows.

De�nition 3.15 (instance of stochastic shortest path problem) An instance of the stochastic

shortest path problem consists of an MDP � = (S;A; p; U; c; g), in which the components U , c and

g are de�ned as follows:

� U is the set of destination states.
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� c is the cost function, which associates to each state s 2 S � U and action a 2 A(s) the cost

c(s; a).

� g : U 7! IR is the terminal cost function, which associates to each s 2 U its terminal cost g(s).

De�ne TU = minfk j Xk 2 Ug, so that TU is a random variable indicating the position of �rst

entrance in U . Informally, the SSP problem consists in determining the minimum cost of reaching

U when following a policy that reaches U with probability 1. We call these policies SSP-proper.

De�nition 3.16 (SSP-proper policy) Given an instance (S;A; p; U; c; g) of SSP problem, a

policy � is SSP-proper if Pr�s(TU < 1) = 1 for all s 2 S � U . We denote by �P the class of

SSP-proper policies. A policy that is not SSP-proper is called SSP-improper.

The cost v�s of a policy � at s 2 S � U is de�ned by

v�s = E�s

�
g(XTU ) +

TU�1X
k=0

c(Xk; Yk)

�
: (3.7)

The SSP problem is formally de�ned as follows.

De�nition 3.17 (SSP problem) Given an instance (S;A; p; U; c; g) of SSP problem, determine

v�s = inf
�2�

P

v�s

for all s 2 S � U .

Bertsekas and Tsitsiklis [BT91] provide solution methods for the SSP problem under the following

assumptions:

SSP Assumption 1: There is at least one Markovian SSP-proper policy.

SSP Assumption 2: If � is Markovian and not SSP-proper, then v�s =1 for at least one s 2 S�U .

As mentioned before, in Chapter 7 we will study the solution of SSP problems under di�erent

assumptions. The following theorem is taken from [BT91] (see also [Ber95]).

Theorem 3.4 (Bellman equations and SSP problem) Let (S;A; p; U; c; g) be an instance of

the SSP problem. Denote with v = [vs]s2S�U a vector of real numbers, and de�ne the functional L

on the space of v by

[Lv]s = min
a2A(s)

�
c(s; a) +

X
t2S�U

pst(a) vt +
X
t2U

pst(a) g(t)

�
s 2 S � U : (3.8)

If SSP Assumptions 1 and 2 are satis�ed, the following assertions hold:
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� The functional L admits exactly one �xpoint v� such that v� = Lv�.

� The �xpoint v� of L is the single optimal solution of the following linear programming problem

on the set fvsgs2S�U of variables: Maximize
X

s2S�U

vs subject to

vs � c(s; a) +
X

t2S�U

pst(a) vt +
X
t2U

pst(a) g(t) s 2 S � U : (3.9)

� It is v�s = v�s for all s 2 S � U or, in vector form, v� = v
�.

� Consider any Markovian policy � that selects at every s 2 S � U only actions that realize the

minimum on the right hand side of (3.8): formally,

Q�(a j s) > 0 i� a 2 arg min
a2A(s)

�
c(s; a) +

X
t2S�U

pst(a) vt +
X
t2U

pst(a) g(t)

�
;

for every s 2 S � U . Then, policy � is SSP-proper, and it is v�s = v�s = v�s for all s 2 S � U .

3.5 The Maximal Reachability Probability Problem

Another problem that will often recur in the model checking algorithms for the logics we present

is the maximal reachability probability problem. This problem consists in determining the maximal

probability with which a set of destination states can be reached from a given state. An algorithm

for solving this problem has been provided by Courcoubetis and Yannakakis [CY90]. We return

to the topic for the sake of completeness in our presentation of the veri�cation algorithms, and to

present the correctness proof for the algorithm, which is not included in [CY90]. Moreover, in the

next subsection we will present results that can be used to improve the e�ciency of the algorithms.

An instance of the maximal reachability probability problem is de�ned as follows.

De�nition 3.18 (instance of maximal reachability probability problem) An instance of

the maximal reachability probability problem consists of an MDP � = (S;A; p; U), where U � S is

the set of destination states.

The problem can be de�ned as follows.

De�nition 3.19 (maximal reachability probability problem) Given an instance � =

(S;A; p; U), the maximal reachability probability problem consists in computing the quantity

v�s = sup
�
Pr�s (reach(U))

for all s 2 S � U .
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Figure 3.5: A TPS with sets U , Sr and Se, along with the transition probabilities arising from the
actions. The names of the actions, as well as the transition probabilities of deterministic actions,
have not been indicated. The states of U and Se are labeled with the terminal cost function of the
corresponding SSP problem. The end component with state-action pairs (t1; a) and (t2; b) contained
in Sr is indicated by dashed lines.

3.5.1 The Classical Algorithm

To solve the maximal reachability probability problem, we �rst compute the set of states from which

the maximal reachability probability is non-zero. Let Se � S be the set of states that cannot reach U ,

and let Sr = S� (Se [U). Thus, Sr is the subset of states not in U that can reach U . The following

lemma states that Sr [ U is exactly the set of states where the maximal reachability probability is

non-zero.

Lemma 3.1 The following assertions hold:

� sup� Pr
�
s(reach(U)) > 0 i� s 2 Sr [ U ;

� If s 2 U , then sup� Pr
�
s(reach(U)) = 1.

Proof. Immediate.

Thus, in the computation of the maximal reachability probability we can restrict our attention

to the set Sr. Unfortunately, the problem of computing the maximal reachability probability on all

states of Sr cannot be reduced to an instance of the SSP problem that satis�es SSP Assumptions 1

and 2. This is illustrated by the following example.

Example 3.6 Consider the TPS depicted in Figure 3.5. In the corresponding SSP problem, the

destination set is U [Se, and the terminal cost function is de�ned by g(s) = 1 if s 2 U , and g(s) = 0
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if s 2 Se. The cost function c is always 0. In this way, for all s 2 Sr and all policies � it is

v�s = Pr�s (reach(U)).

Consider a deterministic policy �0 such that chooses action a at t1 and b at t2. Policy �0 is not

SSP-proper, since Pr�0t1 (reach(U [ Se)) = 0. On the other hand, the expected cost under �0 is such

that 0 � v�0s � 1 for all states s, since the cost c is always 0. This indicates that SSP Assumption 2

does not hold. In the next example, we will see that the �xpoint operator corresponding to the SSP

problem has more than one �xpoint, which would not be possible if SSP Assumption 2 held.

Consider a vector v = [vs]s2Sr , and de�ne on the space of v the functional

[Lv]s = max
a2A(s)

�X
t2Sr

pst(a) vt +
X
t2U

pst(a)

�
s 2 Sr : (3.10)

For any policy �, de�ne also v�s = Pr�s (reach(U)), and let v� = [v�s ]s2Sr . Unlike the case for the

instances of the SSP problem considered in the preceding section, the operator L may admit more

than one �xpoint. This is illustrated by the following example.

Example 3.7 Figure 3.6 depicts an MDP �0 together with two �xpoints of L; the lesser of

these two �xpoints is the least �xpoint. Note that the least �xpoint correspond to the reachability

probabilities: in the next theorems we show that this is no coincidence. We can trace the existence

of more than one �xpoint to the presence of end components in Sr.

Even though L admits more that one �xpoint, it can be proved that L admits a unique least

�xpoint, and that this least �xpoint corresponds to the solution to the maximal reachability prob-

ability problem. The proof is given later in the chapter. As a result, we will obtain the following

theorem.

Theorem 3.5 Consider the following linear programming problem, over the set fvsgs2Sr of vari-

ables: Minimize
P
s2Sr

vs subject to

vs �
X
t2Sr

pst(a) vt +
X
t2U

pst(a) s 2 Sr : (3.11)

This problem admits exactly one optimal solution vector v
�. For every s 2 Sr, it is

sup� Pr
�
s (reach(U)) = v�s . Moreover, there is a Markovian (in fact, deterministic) policy �� such

that

Pr�
�

s (reach(U)) = sup
�
Pr�s (reach(U)) = max

�
Pr�s(reach(U)) :

Note that the forms of the linear programming problems (3.9) and (3.11) are very similar, even

though the justi�cations for the reductions are di�erent.
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Figure 3.6: Two �xpoints of operator L on an MDP �0. The values 0 and 1 in U and Se are indicated
in parentheses, since they do not belong to the vector v. The end component in Sr is drawn with
dashed lines. The �xpoint depicted below is the least �xpoint of L.
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3.5.2 Improved Algorithms for Probabilistic Reachability (z)

In the preceding subsection, we have presented an algorithm that computes the maximal probability

of reaching a given subset of destination states U in the MDP. The method we have described is in

fact rather classical (see, for example, [CY90]). While the reduction to linear programming provides

us with the desired complexity bound for the algorithm, other computational approaches are also

possible. As the proof of Theorem 3.10 hints, methods based on value and policy iteration can

also be used. Such methods are described in several books on dynamic programming and optimal

control, among which Derman [Der70], Puterman [Put94], and Bertsekas [Ber95].

Since the computation of maximal reachability probabilities is a common problem in probabilistic

veri�cation, we present an improved algorithm that relies on two preprocessing step to reduce the

size of the linear programming problem to be solved. Since the preprocessing steps use only graph-

theoretical concepts, the reduction in the number of states can lead to overall time savings.

First Preprocessing Step

The �rst preprocessing step consists in adding to the set U all states U1 � Sr that can reach U with

maximal probability 1. This set U1 can be determined with the following algorithm, that will be

useful also in the future.

Algorithm 3.2 (set of states that can reach target with max probability 1)

Input: An MDP (S;A; p), and a subset U � S of states.

Output: The subset U1 � S � U of states that can reach U with maximal probability 1.

Method:

� Let S0 = S, A0 = A.

� Repeat:

{ Let B0 be the set of states that cannot reach S� in the graph (S0; �(S0;A0)).

{ Remove from S0 all states in B0.

{ Repeat:

� Remove from A0 all the actions leading to at least one removed state.

� Remove from S0 all states s 62 S� that have no actions left in A0.

{ Until no more states or actions can be removed from S0, A0.

� Until no more states or actions can be removed from S0, A0.

� Output U1 := S0.

The correctness of the algorithm is stated and proved as follows.
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Theorem 3.6 If (S;A; p) and U are the inputs and U1 the output of the above algorithm, then

max
�

Pr�s(reach(U)) = 1 i� s 2 U [ U1

for all s 2 S.

Proof. In one direction, we can prove by induction on the iteration on which a state s is removed

from U1 that max� Pr
�
s(reach(U)) < 1.

In the other direction, let �A be the value of A0 when the algorithm terminates. Notice that

�A(s) 6= ; for s 2 U1, or else s would have been eliminated during the iteration of the algorithm.

Consider the policy �1 that chooses at each state s 2 U1 an action from �A(s) with uniform probability.

Notice that every state of U1 can reach U in (U1 [U; �(U1[U; �A)): otherwise, the state would have

been removed from U1 by the algorithm. Thus, in the Markov chain arising from �1 there is no

closed recurrent class that is contained in U1. Under �1, a behavior will therefore leave U1 with

probability 1. Note also that the only way a behavior can leave U1 under policy �1 is by passing

through U . Hence, we conclude that under �1 a behavior from any state s 2 U1 will reach U with

probability 1. This yields the result.

Once the correctness of the algorithm has been established, the �rst preprocessing step can be

stated and proved correct as follows.

Theorem 3.7 (�rst preprocessing step) Let (S;A; p; U) be an instance of maximal reachability

probability problem, and let U1 be the set computed by Algorithm 3.2 on input (S;A; p) and U . Then,

for all s 2 S � U it is

max
�

Pr�s(reach(U)) = max
�

Pr�s(reach(U [ U1)) : (3.12)

Thus, we can substitute the instance (S;A; p; U) with an equivalent instance (S;A; p; U[U1) in which

the maximal reachability probability must be computed for a smaller set of states.

Proof. Let B be the set of states that cannot reach U . Notice that these states also cannot reach U1,

so that they trivially satisfy (3.12). Also, by the correctness of Algorithm 3.2 it is Pr�s (reach(U)) = 1

for all s 2 U1, so that the states in U1 also satisfy (3.12).

For a state s 2 S � (U [ U1 [ B), the inequality

max
�

Pr�s (reach(U)) � max
�

Pr�s(reach(U [ U1))

trivially holds. To show that in fact equality holds, let �0 be a Markovian policy that realizes the

maximum for the left hand side of (3.12). From �0, we can de�ne a modi�ed policy �m, which

outside of U1 behaves like �0, and inside of U1 coincides with the policy �1 de�ned in the proof of
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the previous theorem. It is easy to check that under �m it is

max
�

Pr�s(reach(U [ U1)) = Pr�ms (reach(U)) = Pr�0s (reach(U [ U1)) ;

which concludes the proof.

Second Preprocessing Step

The second preprocessing step consists in \short-circuiting" the end components in Sr, replacing

them by single states, while preserving the reachability probabilities. This is done by applying the

following algorithm.

Algorithm 3.3 (end component elimination)

Input: Instance � = (S;A; p; U), together with subsets Sr and Se.

Output: Instance b� = (bS; bA; bp; bU), with the subsets bSe, bSr of states.
Method: Let f(B1; D1); : : : ; (Bn; Dn)g = maxEC (Sr). De�ne bU = U , bSe = Se, and

bS = S [ fbs1; : : : ; bsng � n[
i=1

Bi bSr = Sr [ fbs1; : : : ; bsng � n[
i=1

Bi :

The action sets are de�ned by:

s 2 S �

n[
i=1

Bi : bA(s) = fhs; ai j a 2 A(s)g

1 � i � n : bA(bsi) = nhs; ai ��� s 2 Bi ^ a 2 A(s)�D(s)
o
:

For s 2 bS, t 2 S �Sni=1 Bi and hu; ai 2 bA(s), the transition probabilities are de�ned by

bpst(hu; ai) = put(a) bp
sbsi(hu; ai) = X

t2Bi

put(a) :

The following theorem enables to use b� for the computation of the maximal reachability proba-

bilities in �.

Theorem 3.8 Let b� be the MDP obtained from � as in Algorithm 3.3. Denoting with Pr, cPr the
probabilities computed in �, b�, it is

s 2 Sr �

n[
i=1

Bi : max
�

Pr�s(reach(U)) = max
�

cPr�s (reach(bU)) (3.13)
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s 2 Bi; 1 � i � n : max
�

Pr�s(reach(U)) = max
�

cPr�ŝi(reach(bU)) : (3.14)

The proof of this theorem is presented later in the section. The following example illustrates the

application of Algorithm 3.3.

Example 3.8 Figure 3.7 depicts an MDP �, and the MDP b� obtained by applying Algorithm 3.3

to �. The actions corresponding to the end components of Sr are drawn using dashed lines. These

end components are

subf(s3; d); (s4; i); (s7; j)g subf(s5; f); (s6; g)g

and they are replaced by the new states bs1 and bs2. This example illustrates the potential reduction
of the state-space of the system e�ected by the algorithm.

3.5.3 Proof of the Results (z)

We now prove the results on the maximal reachability probability problem. To simplify the ar-

guments, we assume that once the set U of destination states is entered, it can never be exited.

Formally, this is expressed by the requirement Succ(s; a) � U for all s 2 U and a 2 A(s). It is

immediate to see that this assumption does not a�ect the generality of the arguments.

The Standard Algorithm

First, we present a preparatory lemma.

Lemma 3.2 If v� = Lv�, then v�s � 0 for all s 2 Sr.

Proof. Assume that v� = minfv�t j t 2 Srg < 0, and let S� = fs 2 Sr j v
�
s = v�g be the subset

of Sr consisting of the states at which v
� reaches its minimum value v�. Since each state of Sr can

reach U , there must be s 2 S� and a 2 A(s) such that Succ(s; a) 6� S�. This implies that

v�s <
X
t2Sr

pst(a) v
�
t +

X
t2U

pst(a) ;

contradicting the fact that v� is a �xpoint of L.

Our second result states that the �xpoints of L provide an upper bound for v�.

Theorem 3.9 If v� = Lv�, then v�s � v
�
s for every �.

Proof. From (3.10), it is

v�s �
X
t2Sr

pst(a) v
�
t +

X
t2U

pst(a)
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Figure 3.7: An example of application of Algorithm 3.3. To simplify the diagrams, we have indicated
only the transition probability corresponding to action c. The new states introduced to replace the
zero-cost end components are indicated by �lled circles.
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for all s 2 Sr and a 2 A(s). Iterating, for a general policy � and n � 0 we have

v�s �
X
t2Sr

Pr�s(Xn = t) v�t + Pr�s (Xn 2 U)

for all n � 0. Taking the limit n!1 and using Lemma 3.2, we obtain

Pr�s(reach(U)) = lim
n!1

Pr�s (Xn 2 U) � v�s � lim
n!1

X
t2Sr

Pr�s (Xn = t) v�t � v�s ;

which concludes the proof.

Given a deterministic policy � we indicate by �(s) 2 A(s) the action chosen by � at s 2 S. We

also say that a Markovian policy � is proper if

Pr�s (reach(S � Sr)) = 1

for every s 2 Sr. To prove our main result, we need the following additional lemma.

Lemma 3.3 Given a proper deterministic policy �, there is a function � : Sr 7! Sr [ U with the

following properties:

1. �(s) 2 argmax
n
v
�
t

��� t 2 Succ(s; �(s))
o
, for all s 2 Sr.

2. v�s � v
�
�(s)

, for all s 2 Sr.

3. The graph (Sr [U;E) with edges E = f(s; �(s)) j s 2 Srg is an in-forest (i.e. a forest in which

edges are directed towards the roots) with roots in U .

Proof. Extend v� to U by v�s = 1 for s 2 U . We construct � as follows. Initially, � is unde�ned

on all s 2 Sr; we then iterate the following steps:

� Choose s 2 Sr such that � is not yet de�ned on s, and such that there is

t 2 argmax
n
v
�
t

��� t 2 Succ(s; �(s))
o

such that either t 2 U or �(t) is already de�ned.

� De�ne �(s) = t.

The iteration continues until the domain of � cannot be further extended.

If the iteration de�nes � on all Sr, it is immediate to see that properties 1, 2 and 3 hold. To see

that the iteration de�nes � on all Sr, assume towards the contradiction that after a certain number
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of iterations � has been de�ned on a subset Sd � Sr of states, and no s 2 Sr � Sd can be found for

the next iteration. Let

Sm = arg max
s2Sr�Sd

v�s

be the subset of Sr � Sd where v
� attains maximal value. Since � is proper, there must be s0 2 Sm

such that

Succ(s0; �(s0)) 6� Sm : (3.15)

Since the iteration cannot extend the domain of �, it is also

v
�
t < v�s0 (3.16)

for all t 2 (U[Sd)\Succ(s0; �(s0)). Putting together (3.15) and (3.16), and considering the de�nition

of Sm again, we get

v�s0 =
X

t2Sr[U

pst(�(s0)) v
�
t < v�s0 ;

which is the desired contradiction.

Finally, we show that L has at least one �xpoint, and that the �xpoint corresponds to a reacha-

bility probability attained by a policy.

Theorem 3.10 There is a deterministic policy � such that v� = Lv�.

Proof. Notice that there is at least one proper policy �0, which can in fact be determined when

the set of states Sr that can reach U is computed. Starting from �0, we construct a sequence of

proper deterministic policies �0; �1; : : :. The construction proceeds as follows.

First, given a proper deterministic policy �k, for k � 0, we construct a function �k : Sr 7! S

with the properties mentioned in the previous lemma. Next, we let

Sk =

�
s

���� v�ks < max
a2A(s)

�X
t2Sr

pst(�k(s)) v
�k
t +

X
t2U

pst(�k(s))

��
: (3.17)

If Sk = ;, the sequence of policies terminates with �k. Otherwise, we choose s
k
2 Sk, and we de�ne

policy �k+1 to be the policy that coincides with �k everywhere except at s
k, where

�k+1(s
k) = arg max

a2A(s)

�X
t2Sr

pst(�k(s)) v
�k
t +

X
t2U

pst(�k(s))

�
:

If there is more than one action realizing the maximum, one such action is chosen arbitrarily. To

see that �k+1 is also proper, let �
0
k be the function that coincides with �k on Sr �fs

kg, and de�ned

on sk by

�0k(s
k) = argmax

n
v
�k
t

��� t 2 Succ(sk; �k+1(s
k))
o
:
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If there is more than one state realizing the maximum, one such state is chosen arbitrarily. Like �k,

also �0k induces a in-forest of states with roots in U . In fact, no loops in �0k can be created, due

to Property 2 of �k, to the strict inequality in (3.17), and to the de�nition of �0k in terms of �k.

This indicates that �k+1 is also proper, since every state of Sr can reach U with positive probability

under �k+1.

Since �k+1 is proper, v�k+1 is well-de�ned, and by the monotonicity of L and (3.17) we have

v
�k < v

�k+1 . As there is only a �nite number of deterministic policies, a value of k = K will be

reached for which there is no state s 2 Sr that satis�es (3.17). If �K is the �nal policy, the absence

of s satisfying (3.17) shows that v�K = Lv�K ; the conclusion follows then from the fact that �K is

proper.

Putting together this theorem and the previous one, we have the following corollary, which

connects the �xpoints of L to the desired maximum reachability probability.

Corollary 3.2 For every state s 2 Sr, it is

sup
�
Pr�s (reach(U)) = v�s ;

where v� is the least �xpoint of L. Moreover, there is a deterministic policy � such that v� = v
�, so

that the supremum is attained by at least one policy.

Proof. By Theorem 3.10, L admits a �xpoint v� = v
�� for some deterministic ��. By Theorem 3.9,

v
�� � v

� for all �. This yields the result.

To complete the proof of Theorem 3.5, we need to prove that the linear programming problem

(3.11) admits v� as unique optimal solution, where v� is the least �xpoint of L. The argument is

completely standard (see for example Bertsekas [Ber95]); we sketch it here purely for the sake of

completeness, since we will often use similar arguments in this dissertation.

Proof of Theorem 3.5. Let v� be the least �xpoint of L. Clearly, v� is a feasible solution of the

linear programming problem.

In the other direction, consider a feasible solution v� of the linear programming problem. From

(3.11), reasoning as in the proof of Theorem 3.9 we can show that v� � v
� for all policies �. By

Theorem 3.10, this implies v� � v
�.

These two considerations show that v� is the least feasible solution of the linear programming

problem.

The Improved Algorithm

Before proving Theorem 3.8, we need a preparatory lemma. To state the lemma, we introduce the

following notation. Given a Markovian policy �, we denote by S(�) the following system of equations
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in fvsgs2Sr :

vs =
X

a2A(s)

X
t2Sr

pst(a)Q�(a j s) vt +
X

a2A(s)

X
t2U

pst(a)Q�(a j s) s 2 Sr :

Lemma 3.4 If a Markovian policy � is proper, then the system of equations S(�) has v� as unique

solution.

Proof. Let P = [pst]s;t2Sr be the matrix of the Markov chain associated to � on Sr, and de�ne

q = [qs]s2Sr by

qs =
X

a2A(s)

X
t2U

pst(a)Q�(a j s)

for all s 2 Sr. Then, S(�) can be rewritten as v = Pv + q. Since � is proper, P is the matrix of a

transient Markov chain, and det(I �P ) 6= 0. Thus, S(�) admits a unique solution. The lemma then

follows from the fact that the reachability probabilities v� also satisfy S(�).

Theorem 3.8 can be proved as follows.

Proof of Theorem 3.8. To prove the result, we break up the transformation e�ected by Algo-

rithm 3.3 in two steps. Let f(B1; D1); : : : ; (Bn; Dn)g = maxEC (Sr). First, from � we construct an

MDP e� = (S; eA; ep) de�ned as follows:

eA(s) =
(
fhs; ai j a 2 A(s)g if s 62

Sn
i=1 Bi;

fht; ai j t 2 Bi ^ a 2 A(t)�Di(t)g if s 2 Bi, 1 � i � n.
(3.18)

and epsu(ht; ai) = ptu(a) for all s; u 2 S and ht; ai 2 eA(s). The sets U and Sr, like S, are not changed.

Let eL be the operator de�ned for e� in the same way as L for �. We have the following fact.

Fact 1. If v� = eLv� is a �xpoint of eL, and s; t 2 Bi, for 1 � i � n, then v�s = v�t .

To see this, note that for 1 � i � n all states in Bi have the same set of actions, which lead to the

same sets of destinations: from the de�nition of eL, we see that the value of v at all states of Bi must

be the same. This leads to our next fact.

Fact 2. If v = eLv, then v = Lv.

This can be seen as follows. Assume v = eLv. On S �
Sn
i=1 Bi, L and eL are the same. Consider

thus s 2 Bi, 1 � i � n. If a 2 A(s) then hs; ai 2 eA(s), and from

vs �
X
t2S

epst(hs; ai) vt
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we have

vs �
X
t2S

pst(a) vt : (3.19)

Moreover, for each state s 2 Bi there is at least one action a 2 Di(s). From Succ(s; a) � Bi follows

vs =
X
t2S

pst(a) vt ; (3.20)

showing that the maximum in the de�nition of L is realized at least for one state-action pair. From

(3.19) and (3.20) follows then v = Lv, concluding the proof of Fact 2.

Consider a reduction to the SSP problem in which we take the destination set to be S � Sr, the

cost function c to be 0 for all state-action pairs, and the terminal cost g(s) equal to �1 for s 2 U

and 0 for s 2 S � (Sr [ U). Since there are no end components in Sr, it is fPr�s(reach(S � Sr)) = 1

for all �, so that all policies are SSP-proper. Thus, from Theorem 3.4 we have the following fact.

Fact 3. There is exactly one v� such that v� = eLv�.
From the �xpoint v� we construct a deterministic policy e� as follows. For each s 2 Sr, de�ne

the set Amax(s) by

Amax(s) = argmax
a2eA

�X
t2Sr

epst(a) v�t +X
t2U

epst(a)
�
: (3.21)

At each s 2 Sr, policy e� chooses deterministically an arbitrary action selected from Amax(s). From

Fact 1, for each 1 � i � n it is Amax(s) = Amax(t) for all s; t 2 Bi. Thus, we can force e� to choose
the same action hui; aii at all states of Bi, for 1 � i � n.

Since there are no end components in Sr, policy e� is proper. Since e� chooses only actions that

realize the maximum in (3.21), by Theorem 3.4 we have v� = v
e� .

From e�, we construct a Markovian policy � for � such that v� = v
e� . At s 2 S �Sni=1Bi, policy

� behaves like e�. At s 2 Bi, with 1 � i � n, there are two cases:

� if s = ui, policy � chooses deterministically ai;

� if s 6= ui, policy � chooses with uniform probability an action from the set Di(s).

The idea behind this de�nition of � is as follows. Under �, when a behavior enters Bi it starts a

random walk. If uninterrupted, this random walk would lead the behavior to visit each state of

Bi with probability 1. The random walk terminates when the behavior visits ui, at which point �

chooses ai, imitating the choice of hui; aii e�ected by e�. From this explanation, we see that � is

proper.

Since � is proper, by the previous lemma the system of equations S(�) has v� as unique solution.

To show that v� = v
e� , we show that ve� is also a solution of S(�). The proof is by cases:
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� If s 2 Bi for 1 � i � n, and s 6= ti (where hti; aii is the action chosen by e� ), then policy �

chooses with uniform probability an action from Di(s). These actions lead only to destinations

in Bi. From Fact 1, ve� = v
� is constant on Bi, and the result follows.

� If s 2 Bi and s = ti, for 1 � i � n, or if s 2 Sr �
Sn
i=1 Bi, the systems of equations S(�) and

S(e�) coincide on s, and the result follows.

Since ve� = v
�, it is also v� = v

�, and from Fact 2 it is v� = v
� = Lv�. By Theorem 3.9, policy �

realizes the maximal probability of reaching U , indicating that this maximal probability is equal to

v
�.

To complete the proof, we note that MDP b� is obtained from e� by merging the states belonging

to each Bi, for 1 � i � n. The justi�cation for this merging step is as follows.

By construction, if s; t 2 Bi for some 1 � i � n, then eA(s) = eA(t), and for any other state u 2 S

and a 2 eA(s) we have epsu(a) = eptu(a). This indicates that s; t are in fact identical copies. The

MDP b� is obtained from e� by merging all the identical copies corresponding to Bi into a single

representative state bsi, letting bpu;ŝi(a) = X
s2Bi

epus(a)
for every a 2 bA(s).

From these considerations, we see that the merging step does not in
uence the solution of the

�xpoint equations. Speci�cally, if v� = bLv� is a �xpoint for b�, then we can show that

s 2 Sr �

n[
i=1

Bi : v�s = v�s

s 2 Bi; 1 � i � n : v�ŝi = v�s ;

justifying relations (3.13) and (3.14).



Chapter 4

Basic Probabilistic Logic

Several types of formalisms have been applied to the formal speci�cation of probabilistic properties

of systems, as we discussed in the introduction. In this dissertation, we follow the approach of

extending branching-time temporal logics with probabilistic operators. The reason branching-time

temporal logics are preferred to linear-time ones as the basis of probabilistic extensions is that

probability measures on system behaviors are structurally similar to path quanti�ers, as we will see.

Our probabilistic extensions are based on the branching-time temporal logics CTL and CTL*,

introduced in Emerson and Sistla [CE81], Ben-Ari, Pnueli, and Manna [BAPM83] and Emerson

and Halpern [EH85]. The extensions are obtained by augmenting CTL and CTL* with operators

that enable the expression of probabilistic system properties. As mentioned in the introduction,

we consider four new operators: P, D, �P, and �D, which enable the expression of four types of

probabilistic properties, as summarized in Table 1.1.

In this chapter we consider the operators P and D, postponing to the next chapter the introduc-

tion of �P and �D and a detailed discussion of the classi�cation of probabilistic temporal operators.

The operator P is used to express bounds on the probability of system behaviors. Precisely, if � is

a formula encoding a property of behaviors, the formula P�a� (resp. P�a�) holds at a state if the

probability of satisfying � from s is at least (resp. at most) a, under any policy. The operator D is

used to express bounds on average times. If  is a state property, formula D�a (resp. D�a ) holds

at a state s if a state that satis�es  can be reached from s in average time at least (resp. at most)

a, regardless of the policy.

4.1 A Brief History of Probabilistic Temporal Logics

The practice of extending branching-time logics with additional operators for the expression of

probabilistic properties is not new. The �rst probabilistic extension of branching-time logics for the

expression of probabilistic system properties was proposed by Hansson and Jonsson [HJ89, HJ94].

67
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This proposal considered systems modeled as Markov chains and introduced a temporal logic, PCTL,

to specify the probability of satisfying temporal formulas within a given amount of chain transitions.

The formulas of PCTL are obtained by adding subscripts and superscripts to CTL formulas; as an

example, the formula 3<50�0:8� means that with probability 0:8, formula � will become true after a

sequence of less than 50 state transitions of the Markov chain.

The model-checking algorithms of [HJ89, HJ94] rely on results on Markov chains and dynamic

programming. Their time complexity is polynomial in the size of the system and linear in the

numerical values of the time bounds appearing in the superscripts. This time complexity is typical

of the algorithms that rely on the direct or indirect use of clocks, such as the dynamic programming

recursions used to compute the probability of meeting timing deadlines.

The logic PCTL was later extended by Hansson [Han94] to systems that include nondeterminism,

and which provide a more re�ned model of time. The model-checking algorithms proposed by [Han94]

for this extension are based on the enumeration of all possible deterministic policies, leading to

exponential time-complexity in the size of the system.

Aziz et al. [ASB+95] introduced the logic pCTL*, derived from CTL* by adding the operator P,

which is de�ned as in the logics presented here. Two types of system models are considered: Markov

chains and generalized Markov chains (called Markov processes and generalized Markov processes in

[ASB+95]). The model checking of pCTL* speci�cations on Markov chains is based on the results

of Courcoubetis and Yannakakis [CY88], and is of polynomial complexity in the size of the Markov

chain. Generalized Markov chains are Markov chains in which some transition probabilities are given

as parameters; these parameters must satisfy a speci�ed set of constraints. The model checking of

pCTL* speci�cations on generalized Markov chains is shown to be elementarly decidable using results

from the theory of the real closed �eld, but no practical veri�cation algorithm is provided.

The logic pCTL* was later extended to systems with nondeterminism by Bianco and de Alfaro

[BdA95], who also provided model-checking algorithms for the resulting logics. Later, [dA97] con-

sidered a computational model related to TPSs, and introduced the operator D for the expression

of average times. The model-checking algorithms presented improve on [BdA95], and are essentially

the ones presented for pTL and pTL* in this chapter.

Recent developments include the study of probabilistic model checking in presence of fairness

by Baier and Kwiatkowska [KB96]. This work, which was in
uential in the development of our

approach to fairness, will be discussed in detail in Chapter 8.

An algorithm for the symbolic model-checking of pCTL and pCTL* formulas on Markov chains

was presented by Baier, Kwiatkowska and Ryan [BKR+97]. The algorithm proposed is a symbolic

implementation of the algorithms described in [BdA95, dA97] for the case of Markov chains. The

algorithm usesMulti-Terminal Binary Decision Diagrams [CFZ96] to represent transition probability

matrices and to compute the necessary reachability probabilities; this representation is found to be

more compact and e�cient than one based on traditional sparse matrices. It would be of great
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interest to study how this symbolic approach can be applied to systems with nondeterminism, and

to the model-checking algorithms presented in this dissertation for the various logics presented.

The operators D, �P and �D have been introduced in the work that led to this dissertation, along

with the classi�cation of probabilistic properties given in Table 1.1.

4.2 The Logics pTL and pTL*

The de�nitions of syntax and semantics of the logics pTL and pTL* are taken from [dA97], except

that the use of instrumentation clocks has been replaced by the notion of expected transition times

in TPSs.

4.2.1 Syntax of pTL and pTL*

As in CTL and CTL*, the formulas of pTL and pTL* are divided in two mutually exclusive classes:

the class Stat of state formulas (whose truth value is evaluated on the states), and the class Seq of

sequence formulas (whose truth value is evaluated on in�nite sequences of states). To de�ne these

classes, we assume that we have a �xed set V of typed variables, and �xed sets of interpreted predicate

and function symbols. We let Atomic be the class of atomic formulas containing all �rst-order logic

formulas formed from variables in V using these interpreted predicate and function symbols. The

classes Stat and Seq are then de�ned by the following inductive clauses.

State formulas:

� 2 Atomic =) � 2 Stat (4.1)

� 2 Stat =) :� 2 Stat (4.2)

�;  2 Stat =) � ^  2 Stat (4.3)

� 2 Seq =) A�; E� 2 Stat (4.4)

� 2 Seq =) P./a� 2 Stat (4.5)

� 2 Stat =) D./b� 2 Stat (4.6)

Sequence formulas:

� 2 Stat =) � 2 Seq (4.7)

� 2 Seq =) :� 2 Seq (4.8)

�;  2 Seq =) � ^  2 Seq (4.9)
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� 2 Seq =) 2�; 3� 2 Seq (4.10)

�;  2 Seq =) � U  2 Seq : (4.11)

In the above de�nition, ./ stands for one of f<;�;�; >g, and a and b are real numbers such that

0 � a � 1 and b � 0. The temporal operators 2, 3, U , and the path quanti�ers A, E are taken

from CTL*. As usual, the other propositional connectives are de�ned in terms of :, ^.

Just as CTL is a restricted version of CTL*, the logic pTL is a restricted version of pTL*; its

de�nition is obtained by replacing clauses (4.7){(4.11) with the clauses

� 2 Stat =) 2�; 3� 2 Seq (4.12)

�;  2 Stat =) � U  2 Seq : (4.13)

4.2.2 Semantics

Consider a TPS � = (S;A; p; Sin; time; I). The semantics of pTL and pTL* formulas with respect

to � is de�ned by two satisfaction relations, one for state formulas and one for sequence formulas.

For � 2 Stat, we indicate with s j= � the satisfaction of � at s 2 S. For  2 Seq and k 2 IN we

indicate with ! j=k  the satisfaction of  at position k of behavior ! 2
S
s2S 
s. The base case for

(4.1) and the cases for the logical connectives are immediate.

Temporal Operators

The satisfaction relation ! j=k � for a behavior ! and � 2 Seq is de�ned in the usual way (see for

example [MP93, MP91]):

� 2 Stat ! j=k � i� sk j= �

� 2 Seq ! j=k 2� i� 8i : [i � k ! ! j=i �]

� 2 Seq ! j=k 3� i� 9i : [i � k ^ ! j=i �]

�;  2 Seq ! j=k � U  i� 9i :
h
i � k ^ ! j=i  ^ 8j : (k � j < i! ! j=j �)

i
:

Path Quanti�ers

The semantics of the path quanti�ers is de�ned as in CTL and CTL* [Eme90]. For s 2 S and

� 2 Seq, it is

s j= A� i� 8! 2 
s : ! j=0 �

s j= E� i� 9! 2 
s : ! j=0 � :
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Probabilistic Operator P

The semantics of the probabilistic quanti�ers is de�ned as in [BdA95]: for sequence formula � 2 Seq,

state s 2 S, probability bound 0 � a � 1 and ./2 f<;�;�; >g,

s j= P./a� i� 8� : Pr�s (! j=0 �) ./ a : (4.14)

The intuitive meaning of (4.14) is that P./a� holds at s 2 S if a behavior from s satis�es � with

probability ./ a, regardless of the policy.

Average-Time Operator D

Given a behavior ! and a state formula � 2 Stat, let T� = minfk j ! j=k �g be the �rst position of

! at which � holds, with T� = 1 if 8k : ! 6j=k �. For state s 2 S, formula � 2 Stat, bound b � 0

and ./2 f<;�;�; >g we de�ne

s j= D./b� i� 8� : E�s

�T��1X
k=0

time(Xk; Yk)

�
./ b : (4.15)

The intuitive meaning of (4.15) is that D./d� holds at s 2 S if the TPS reaches a �-state in average

time ./ d, regardless of the policy.

To see that the semantics of pTL and pTL* is well de�ned, it is possible to show by induction

on the structure of formulas that the events and functions mentioned in the above de�nitions are

measurable. In particular, if � 2 Seq and s 2 S, the truth-set f! 2 
s j ! j=0 �g is measurable; if

� 2 Stat, then T� is a random time, and
PT��1
k=0 time(Xk; Yk) is a measurable function.

We say that a TPS satis�es a speci�cation if the speci�cation holds on all initial states of the

TPS.

De�nition 4.1 (validity over TPS) Given a TPS � = (S;A; p; Sin; time; I) and a pTL or pTL*

speci�cation � 2 Stat, we say that � satis�es �, written � j= �, i� s j= � for all s 2 Sin.

4.2.3 Examples of Speci�cation

We present here only two simple examples of speci�cations that can be written in the logics pTL

and pTL*. In spite of their simplicity, these examples illustrate some typical uses of the operators

P and D.

Example 4.1 (expected time to failure) Assume that � is a TPS that models an industrial

plant. Assume that we have the following atomic state formulas:

� a formula good which characterizes system states lying inside a prescribed safe control region;
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� a formula broken which characterizes system states at which some failure has occurred.

The states satisfying :good ^ :broken are states that do not lie in the safe control region, but at

which no failure has yet occurred. The pTL formula

A2
�
good! D�abroken

�

speci�es that, if the system state is in the safe control region, a failure will occur with expected time

no less than a.

Example 4.2 (probability of deadlock) Assume that � is a TPS that models a distributed

system. Assume that we have the following atomic state formulas:

� formulas task-start, task-in-prog, task-complete which characterize the states at which a task

is begun, is in progress, and has been completed, respectively;

� a formula deadlock which characterizes states at which a deadlock has occurred.

We assume that the above four formulas are mutually exclusive. The pTL* formula

A2
h
task-start! P�a

�
(task-start _ task-in-prog) U task-comp

�i

speci�es that, whenever a new task is started, the probability it completes without deadlocks is at

least a.

4.3 Checking Non-Zenoness

The �rst task in the veri�cation of a TPS is to check whether it is non-Zeno. The following theorem

provides a criterion for non-Zenoness that leads to an e�cient checking algorithm.

Theorem 4.1 (criterion for non-Zenoness) Let � = (S;A; p; Sin; time; I) be a TPS. For each

s 2 S, de�ne B(s) = fa 2 A(s) j time(s; a) = 0g to be the set of actions with zero expected time

from s. Then, � is Zeno i� there is an end component (C;D) of (S;B) which is reachable in the

graph (S; �S) from some initial state in Sin.

Proof. In one direction, assume that there is an end component (C;D) of (S;B) reachable from

a state s0 2 Sin in the graph (S; �S). Since C is reachable from s0, there is a policy � such that

Pr�s0(9k : Xk 2 C) > 0. By Theorem 3.1, there is a policy �0 such that Pr�s0(I(!) = (C;D)) > 0.

Since (C;D) is contained in (S;B), this leads to

Pr�
0

s0

� 1X
i=0

time(Xi; Yi) <1

�
> 0 ;
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showing that � is Zeno.

Conversely, assume that (S;B) does not contain any end component. By Theorem 3.2, the set

inft(!) is an end component with probability 1. Since for each end component (C;D) reachable

from an initial state there is at least one state-action pair (s; a) 2 sa(C;D) with time(s; a) > 0, with

probability 1 every behavior takes in�nitely many steps with time > 0. This leads immediately to

Pr�s

� 1X
i=0

time(Xi; Yi) =1

�
= 1

for all � and all s 2 Sin, which is the de�nition of non-Zenoness.

This theorem leads immediately to the following algorithm.

Algorithm 4.1 (checking non-Zenoness)

Input: TPS � = (S;A; p; Sin; time; I).

Output: Yes/no answer, stating whether � is non-Zeno.

Method: For each s 2 S let B(s) = fa 2 A(s) j time(s; a) = 0g, and use Algorithm 3.1 to compute

the set maxEC (S;B) = f(C1; D1); : : : ; (Cn; Dn)g of maximal end components of (S;B). Check

whether
Sn
i=1 Ci is reachable from Sin, and answer \no" if it is, and \yes" if it is not.

4.4 Model Checking for Operator P in pTL*

In this and in the next section we present algorithms to decide whether a TPS � satis�es a speci-

�cation � written in pTL or pTL*. The model checking algorithms share the same basic structure

of those proposed in Emerson and Lei [EL85] for CTL and CTL*. Given a TPS � and a formula

� 2 Stat, the algorithms recursively evaluate the truth values of the state subformulas of � at all

states s 2 S, following the recursive de�nitions (4.1){(4.6), until the truth value of � itself can be

computed at all s 2 S. Since the logics pTL and pTL* are obtained by adding the operators P and

D to CTL and CTL*, we need to examine only the cases corresponding to these operators. In this

section, we present algorithms for the model checking of the P operator; in the next section we will

present the algorithms for D.

The model checking of operator P in the logic pTL* can be done using the results of Courcoubetis

and Yannakakis [CY90]; we will present below an alternative algorithm. The model checking of

operator P in the logic pTL can be done using the algorithms for pTL*, since pTL is a subset of

pTL*. However, for the case of pTL it is also possible to use a simpler algorithm, due to Bianco

and de Alfaro [BdA95]; we will present this algorithm in Section 4.8. The algorithms for the model

checking of operator D are the same in pTL and pTL*.
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From de�nition (4.14), to decide whether s j= P./a� for a state s and a formula � 2 Seq it su�ces

to compute the minimum and maximum probabilities with which a computation from s satis�es �.

These probabilities can be computed using the algorithm presented by Courcoubetis and Yannakakis

[CY90], which realizes the optimal complexity bound given in [CY88, CY95]. We also recall that

if the TPS corresponds to a Markov chain, the model checking can be done with the algorithms of

[CY88], which yield a better complexity bound.

Here we present an alternative algorithm, �rst described in [dA97]. This algorithm relies on the

complete determinization procedure for !-automata presented by Safra [Saf88, Saf92], instead of the

partial determinization used in [CY88, CY90]. The algorithm achieves the optimal complexity of the

one of [CY90]. By relying on a complete determinization, the algorithm has a fairly simple structure,

and it can be easily generalized to handle di�erent types of probabilistic logics. The algorithm has

been recently extended by Baier and Kwiatkowska [KB96] to logics with fairness assumptions on

the policies; we will also extend the algorithm to systems that include fairness in Chapter 8.

The algorithm. Let � 2 Seq be a sequence formula of pTL*. For any state s 2 S and policy �,

it is

Pr�s(�) = 1� Pr�s (:�) : (4.16)

Thus, the problem of minimizing Pr�s(�) can be reduced to the problem of maximizing Pr�s(:�), and

it will su�ce to consider the maximization problem.

Let �1, . . . , �n 2 Stat be the maximal state subformulas of �, i.e. the state subformulas of �

that are not proper subformulas of any other state subformula of �. De�ne �0 = �[r1=�1] : : : [rn=�n]

to be the result of replacing each �i with a new propositional symbol ri in �. The formula �0 is

therefore a linear-time temporal formula constructed from r1, . . . , rn using the temporal operators

2, 3, U . As usual, we assume that truth values of �1, . . . , �n have already been computed at all

states of the TPS, and we de�ne the label l(t) of t 2 S by l(t) = fri j 1 � i � n ^ t j= �ig. We will

refer to the TPS � with the additional label l as the l-labeled TPS .

By the results of Vardi and Wolper [VW86] and Safra [Saf88, Saf92], formula �0 can be translated

into a deterministic Rabin automaton DR�0 = (Q; qin;�; 
; U) with state space Q, initial state

qin 2 Q, alphabet � = 2fr1;:::;rng, transition relation 
 : Q � � 7! Q, and acceptance condition U .

The acceptance condition is a list U = f(P1; R1); : : : ; (Pm; Rm)g of pairs of subsets of Q. An in�nite

sequence � : b0b1b2 � � � of symbols of � is accepted by DR�0 if it induces a sequence !� : q0q1q2 � � �

of states of Q such that:

� q0 = qin;

� 
(qi; bi) = qi+1 for all i � 0;

� for some 1 � j � m, it is inftst(!�) � Pj and inftst(!�) \ Rj 6= ;, where inftst(!) denotes the

set of states occurring in�nitely often along !.
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Given the l-labeled TPS � and DR�0 , we construct the product MDP ��0 = �
DR�0 as follows.

Algorithm 4.2 (product of l-labeled TPS and Rabin automaton)

Input: l-labeled TPS � = (S;A; p; Sin; time; I) and Rabin automaton DR�0 = (Q; qin;�; 
; U).

Output: Product MDP ��0 = �
DR�0 = (S0; A; p0; U 0).

Method: The product MDP �0 = (S0; A0; p0; U 0) is de�ned as follows:

� S0 = S �Q.

� For (t; q) 2 S0, A0(t; q) = A(t).

� For each (t; q) 2 S0 and a 2 A(t), the probability p0(t;q)(t0;q0)(a) of a transition to (t0; q0) 2

S0 is equal to pt;t0(a) if 
(q; l(t
0)) = q0, and is equal to 0 otherwise.

� U 0 = f(P 0
1; R

0
1); : : : ; (P

0
m; R

0
m)g, where P

0
i = S � Pi and R

0
i = S �Ri for 1 � i � m.

Given the product MDP �0 = (S0; A0; p0; U 0), we can compute sup� Pr
�
s(�) = max� Pr

�
s(�) at

every state of the original MDP � by using the following result.

Theorem 4.2 (maximal probability of TL formula) Assume U 0 = f(P 0
1; R

0
1); : : : ; (P

0
m; R

0
m)g.

For each 1 � i � m, let

Li =
n
(C;D)

��� (C;D) 2 maxEC (P 0
i ) ^ C \ R0

i 6= ;

o

be the set of maximal end components of P 0
i that have non-empty intersection with R0

i. Let then

S� =
Sm
i=1

S
(C;D)2Li

C be the union of all the states belonging to these end components. Note that

the set S� can also be de�ned more concisely as

S� =
[n

B
��� 9(P;R) 2 U 0 : 9(C;D) 2 maxEC (P ) :

h
B = C ^ C \ R 6= ;

io
:

Then,

sup� Pr
�
s(�) = max� Pr

�
s(�) = max� Pr

�
(s;qin)

(reach(S�)) ;

where the rightmost reachability probability is computed in ��.

The reachability probability mentioned by the theorem can be computed with the methods of

the previous chapter. The proof of the theorem uses the following lemma, which will be useful also

in Chapter 8.

Lemma 4.1 Given a policy �, we can construct a policy �0 such that

Pr�
(s;qin)

(reach(S�)) = Pr�
(s;qin)

(reach(S�) ^ �
0) :
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Moreover, �0 is Markovian in S�, i.e. the action chosen at a state in S� does not depend on the past

history of the behavior.

Proof. We construct �0 from � as follows. Let

L =
n
(C;D)

��� 9(P;R) 2 U 0 :
h
(C;D) 2 maxEC (P ) ^ C \R 6= ;

io

be the list of end components that contributed to S�. Intuitively, �0 coincides with � outside of

S�, and once in S� it will follow one of the end components of L forever. Note that these end

components need not be mutually disjoint: the end components resulting from a single (P;R) 2 U 0

are mutually disjoint, but those corresponding to di�erent acceptance pairs need not be so. To force

the behavior to eventually follow one of these end components, we number them in some arbitrary

order, so that L can be written as

L =
n
(C1; D1); : : : ; (Ck; Dk)

o
:

For each s 2 S�, de�ne the index �(s) of s by �(s) = minfi j s 2 Cig. Policy �
0 is then de�ned as

follows. At s 62 S�, �
0 coincides with �. At s 2 S�, �

0 chooses uniformly at random one action from

D�(s)(s).

From the de�nition of �(s) and �0, once a behavior ! enters S� at position j0, it is �(Xj) �

�(Xj+1) for all j � j0. Since �(Xj) cannot decrease forever along !, there is 1 � i � k such that

inft(!) = sa(Ci; Di). Thus, if a behavior enters S� under �0, it is ! j= �0, and the lemma is proved.

The proof of the theorem proceeds then as follows.

Proof of Theorem 4.2. By construction of �0, it is Pr+s (�) = sup� Pr
�
(s;qin)

(�0). We can write

Pr�
(s;qin)

(�0) = Pr�
(s;qin)

(reach(S�) ^ �
0) + Pr�

(s;qin)
(:reach(S�) ^ �

0) : (4.17)

A behavior ! 2 
(s;qin) that satis�es �
0 must, for some (P;R) 2 U 0,

(a) be eventually con�ned to P ;

(b) visit in�nitely often some state of R.

From (a), by Theorem 3.2, with probability 1 the behavior is eventually con�ned to the union of the

end components in maxEC (P ). From (b), the behavior can be eventually con�ned only to the end

components that share some state with R. Putting these two requirements together, we see that

the behavior will be con�ned with probability 1 in S�. Thus, the second term on the right side of
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(4.17) is 0, and (4.17) reduces to

Pr�
(s;qin)

(�0) = Pr�
(s;qin)

(reach(S�) ^ �
0) : (4.18)

Taking sup� of both sides and using Lemma 4.1 we have

sup
�
Pr�

(s;qin)
(�0) = sup

�
Pr�

(s;qin)
(reach(S�) ^ �

0)

= sup
�
Pr�

(s;qin)
(reach(S�)) = max

�
Pr�

(s;qin)
(reach(S�)) ;

where the last equality is justi�ed by the results on probabilistic reachability described in the previous

chapter.

This �nal corollary summarizes the procedure for the model-checking of the P operator in pTL*.

Corollary 4.1 Given an MDP � and a sequence formula � 2 Seq of pTL*, the truth value of

P./a(�) can be decided at all states s of � as follows:

� ./2 f�; <g:

s j= Pr./a � i� max� Pr
�
(s;qin)

(reach(S�)) ./ a ;

where the probability on the right-hand side is computed on the MDP �� = �
DR�, and S�

is de�ned as in Theorem 4.2.

� ./2 f�; >g:

s j= Pr./a � i� 1�max� Pr
�
(s;qin)

(reach(S:�)) ./ a ;

where the probability on the right hand side is computed on the MDP �:� = �
DR:�, and

S:� is de�ned on �:� as in Theorem 4.2.

4.5 Model Checking for Operator D in pTL and pTL*

Given a non-Zeno TPS � = (S;A; p; Sin; time; I), a state formula � 2 Stat and a � 0, we now

consider the problem of computing the truth value of D./a� all states s 2 S. The model-checking

algorithm we propose for this problem can be used for both pTL and pTL*. We assume that the

truth value of � has already been computed at all s 2 S, and we de�ne S� = fs 2 S j s j= �g.

By comparing (4.15) with (3.7), we see that the problem of the model-checking of the D operator

is equivalent to an instance of the SSP problem, in which the set of destination states U is S�, the

terminal cost g is always 0, and c(s; a) is equal to either time(s; a) or �time(s; a), depending on

whether we are interested in computing the minimum or maximum expected time to reach S�. To

be able to use the results of Theorem 3.4, we must ensure that SSP Assumptions 1 and 2 hold. We

treat separately the cases for ./2 f�; <g and ./2 f�; >g.
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4.5.1 Model Checking D./a for ./2 f�; <g

The model-checking for this case relies on the computation of the maximum expected time to

S�. Let B =
S
fC j (C;D) 2 maxEC (S � S�)g be the union of the end components not in

S�, and let bB � S � S� be the subset of states of S � S� from which B is reachable in the graph

(S � S�; �S�S�); of course, B � bB. The following lemma, reminiscent of a result by Hart, Sharir

and Pnueli [HSP82, HSP83], enables us to solve the model-checking problem on bB.
Lemma 4.2 For ./2 f�; <g, the following assertions hold:

if s 2 S� then s j= D./a� ; if s 2 bB then s 6j= D./a� :

Proof. The result for S� is immediate.

If s 2 bB, there is � such that Pr�s(reach(B)) > 0. Hence, by Theorem 3.1 there is �0 such that

Pr�
0

s (inft(!) � sa(B;AnB)) > 0. This implies that Pr�
0

s (reach(S�)) < 1, or Pr�
0

s (T� =1) > 0. Since

the MDP is non-Zeno,
P1
k=0 time(Xk; Yk) diverges with probability 1 on a behavior. Thus,

Pr�
0

s

� T��1X
k=0

time(Xk; Yk) =1

�
> 0 ;

yielding

E�
0

s

� T��1X
k=0

time(Xk; Yk)

�
=1

as desired.

We must still compute the truth value of D./a� at the states in C = S� (S� [ bB). Note that the
set C, by construction, does not contain any end component, and that bB is not reachable from C.

Consider an SSP problem with set of states C [ S� and set of destination states S�. The cost of

a state-action pair (s; a) is equal to �time(s; a). Since there are no end components in C, all policies

are SSP-proper, so that SSP Assumptions 1 and 2 both hold. Restating Theorem 3.4 for this case

we obtain the following theorem, which completes the model-checking algorithm.

Theorem 4.3 Consider the following linear programming problem on the set of variables fvsgs2C :

Minimize
P
s2C vs subject to

vs � time(s; a) +
X
t2C

pst(a) vt s 2 C; a 2 A(s) :

The problem admits exactly one optimal solution v�. For all s 2 C and ./2 f�; <g, it is

s j= D./a� i� v�s ./ a :
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4.5.2 Model Checking D./a for ./2 f�; >g

The model-checking for this case relies on the computation of the minimum expected time to S�.

Let B � S be the set of states that cannot reach S�. We have the following immediate result.

Lemma 4.3 The following assertions hold:

� For ./2 f�; >g, a � 0 and s 2 B it is s j= D./a�.

� If s 2 S�, then s j= D./a� i� both a = 0 and ./ is �.

We can improve on the �rst part of this lemma by computing the sub-MDP consisting of the

states that can reach S� with probability 1. This leads to a better conditioned linear programming

problem, as it eliminates the states from which the expected time to S� diverges under any policy.

To this end, let U1 be the set computed by Algorithm 3.2 with input (S;A; p) and S�. De�ne

S0 = S� [ U1, and

A0(s) = fa 2 A(s) j Succ(s; a) � S0g

for all s 2 S0. Note that if s 2 S� it is possible that A0(s) = ;, but no ill consequence will follow

from this. The following lemma can be used to decide the value of D./a� at all states of S � S0.

Lemma 4.4 If s 2 S � S0, it is

E�s

�T��1X
k=0

time(Xk; Yk)

�
=1

for any policy �. Thus, for ./2 f�; >g, a � 0 and s 2 S � S0 it is s j= D./a�.

Proof. If s 2 S � S0, then Pr�s (reach(S�)) < 1 for all policies �, so that Pr�s (T� = 1) > 0 for all

�. Since the TPS is non-Zeno,

Pr�s

� 1X
k=0

time(Xk; Yk) =1

�
= 1 ;

for all �, from which follows

E�s

� 1X
k=0

time(Xk; Yk)

�
=1

for all �. This concludes the argument.

The remaining problem consists in computing the truth value of D./a� on the states in C =

S0 � S�. This problem can be solved directly by a reduction to the SSP problem. The set of

terminal states is U = S�, the terminal cost function g is identically 0 on all states of U , and the

cost function c is de�ned by c(s; a) = time(s; a) for all s 2 C and A 2 A0(s).

To see that SSP Assumptions 1 and 2 hold, we reason as follows.
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SSP Assumption 1. Since all states of C can reach S�, there is at least one Markovian policy

which either reaches S� or leaves C with probability 1. This policy is thus SSP-proper.

SSP Assumption 2. Since the TPS is non-Zeno, the summation
P1
k=0 time(Xk; Yk) diverges

with probability 1 on a behavior. Thus, if � is a policy such that Pr�s(reach(U)) < 1, then

Pr�s(
PTU
k=0 time(Xk; Yk) =1) > 0, yielding E�sf

PTU
k=0 time(Xk; Yk)g =1, as desired.

From Theorem 3.4 we immediately obtain the following result, which concludes our presentation

of model-checking algorithms for the logics pTL and pTL*.

Theorem 4.4 Consider the following linear programming problem on the set of variables fvsgs2C :

Maximize
P
s2C vs subject to

vs � time(s; a) +
X
t2C

pst(a) vt s 2 C; a 2 A0(s) :

This linear programming problem admits exactly one optimal solution v�. Moreover,

s j= D./a� i� v�s ./ a

for all s 2 C and ./2 f�; >g.

4.6 Complexity of pTL and pTL* Model Checking

To measure the complexity of the model-checking algorithms presented, we need �rst to de�ne the

size of an MDP.

De�nition 4.2 (size of MDP) Given an MDP � = (S;A; p;L) with list of additional labels L,

we de�ne the graph size of �, indicated by jj�jj, by jj�jj
def
=
P
s;a2A(s) jSucc(s; a)j.

We de�ne the size of �, indicated by j�j, to be the length of its encoding, where we assume that:

� the transition probabilities p are represented by listing, for all s; t 2 S and a 2 A(s), the value

of pst(a) expressed as ratio between integers (encoded in binary notation);

� the labels in L with type integer or real are represented by listing their values expressed as

ratios between integers (encoded in binary notation);

� the other labels in L, which in this dissertation are always sets of states or actions, are repre-

sented by simply listing their components.

We sometimes refer to j�j as the description size of the MDP, to emphasize the fact that j�j depends

on the precision with which the transition probabilities are speci�ed.
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Since we are interested in measuring the complexity of the temporal and probabilistic portion of

the model-checking algorithms, when discussing their complexity we assume that the truth value of

all formulas belonging to class Atomic has already been evaluated at all states of the system.

In any case we note that, since the state space of the system is �nite, it is possible to assume

without loss of expressive power that all variables in V have �nite domain, all interpreted function

symbols and predicates are speci�ed by giving the relations de�ning them, and all atomic formulas

are quanti�er-free. Under these assumptions, computing the truth value of the atomic state formulas

at all states can be done in polynomial time in the size of the system and domain.

Likewise, in the de�nition of length of a formula we abstract from the form of the atomic state

formulas occurring in it.

De�nition 4.3 (length of formula) We de�ne the length of a pTL or pTL* formula � to be the

number of symbols composing �, counting each occurrence of atomic state formula in � as a single

symbol.

In this dissertation, we will examine only the time complexity of the algorithms (to which we

will sometimes refer simply as the \complexity"), rather than their space complexity. Since the

complexity of linear programming problems depends on the precision with which the coe�cients

of the problems are known [Sch87], the complexity of algorithms relying on linear programming

will generally be polynomial in the description size of the TPS, rather than in its graph size. The

following theorem summarizes the complexity of the model-checking algorithms for pTL and pTL*.

Theorem 4.5 (complexity of pTL, pTL* model checking) Given a TPS �, the following

assertions hold:

1. Checking whether � is non-Zeno can be done in polynomial time in jj�jj.

2. Model checking a pTL formula � has time-complexity linear in j�j and polynomial in j�j.

3. Model checking a pTL* formula � has time-complexity doubly exponential in j�j and polynomial

in j�j.

Proof. The fact that the complexities given above are upper bounds is derived from an examination

of the model-checking algorithms. In fact, the computation of end components and the other related

graph-theoretical operations on MDPs can be done in time polynomial in jj�jj; linear programming

then makes the complexity polynomial in j�j. The fact that the stated complexities are also lower

bounds is a direct consequence of the lower bounds proved by Courcoubetis and Yannakakis [CY88,

CY95].
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4.7 Extending the D Operator to Past Formulas

To conclude, we discuss an extension of the logics pTL and pTL* that increases the expressive power

of the logics by allowing the formula � in D./b� to be a past temporal formula, instead of a state

formula. A past temporal formula is a formula constructed from state formulas in Stat using the

temporal operators 2{ , 3{ and S [MP93].1

The semantics of this extension can be de�ned as follows. Given a behavior ! and a past formula

�, de�ne the random time T� by T� = minfk j ! j=k �g, where ! j=k � indicates that � holds at

position k of !. The truth value of D./b� can be de�ned as in (4.15).

This extended version of the D operator can be model checked by combining the techniques of

[BdA95] with the algorithms presented in this chapter. Speci�cally, given a TPS � and a formula

D./b�, it is possible to construct a TPS �p� in which the states keep track of the truth values

of the past subformulas of � (� itself included). The truth value of D./b� can be computed by

applying the algorithms of Section 4.5 to the TPS �p�. Since the complexity of the model checking is

dominated by the doubly-exponential dependency arising from the operator P, the bounds expressed

by Theorem 4.5 apply also to this extended version of the logic.

4.8 Model Checking of Operator P in pTL (z)

Since the logic pTL is a subset of PTL*, the model checking of operator P in pTL can be done

using the algorithm presented for pTL*. However, in the case of pTL it is also possible to use an

algorithm due to Bianco and de Alfaro [BdA95], which takes advantage of the simpler structure of

pTL. In this section, we present the algorithm of [BdA95] restated in terms of end components.

First, note that for every state s 2 S, formula � 2 Seq and policy �, equation (4.16) holds. Thus,

checking that Pr�s (�) ./ a for all � is equivalent to checking that 1� Pr�s (:�) ./ a for all �, or

Pr�s (:�) b./ (1� a)

for all �, where b./ is the complementary inequality of ./. Using this idea, together with the equiva-

lences

2 $ :3: 3 $ true U  

we see that we need to consider only the case of sequence formulas � of the form � = 
 U  . Let

Sd = fs 2 S j s j=  g be the set of destination states, and let Sp = fs 2 S � Sd j s j= 
g be the set

1The use of past temporal operators in non-probabilistic branching-time logics is discussed in depth by Kupferman

and Pnueli [KP95].
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Sd
C

γ ψ

ψSq ψ

S:

Sp

γ

Se

Figure 4.1: Containment relationships between the set of states Sd, Se, Sp, Sq and C � Sp. In the
sets are also indicated the truth-values of the subformulas 
,  of 
 U  . Formulas 
 and : hold
also in C, since C � Sp.

of intermediate states. Let also

Se = S � (Sd [ Sp) = fs j s j= :
 ^ : g :

Informally, formula 
 U  holds for all behaviors that eventually enter Sd, and enter Sd before

entering Se.

We consider two cases, for ./2 f�; >g and ./2 f�; <g. In the �rst case, we have to determine the

minimal probability Pr�s (�) = min� Pr
�
s(�); in the second case the maximal probability Pr+s (�) =

max� Pr
�
s(�). The arguments will also show the existence of such maxima and minima (and not only

suprema and in�ma).

4.8.1 Computation of Pr�
s
(�).

Let f(C1; D1); : : : ; (Cn; Dn)g = maxEC (Sp), and let C =
Sn
i=1 Ci. We have the following result.

Lemma 4.5 The value of Pr�s (�) on Se, C and Sd is as follows:

s 2 Se : Pr�s (�) = 0

s 2 C : Pr�s (�) = 0

s 2 Sd : Pr�s (�) = 1 :

Proof. The results for Se and Sd are immediate. For s 2 C, notice that there is a policy � such

that Pr�s(8k � 0 : Xk 2 C) = 1. This leads to the result.
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Let Sq = Sp � C be the set of states on which Pr�s (�) must still be determined. The relation

between Sd, Se, Sp, Sq and C is illustrated in Figure 4.1. Note that a behavior will leave Sq with

probability 1, since there are no end components in Sq. We now reduce the problem of computing

Pr�s (�) at all s 2 Sq to the problem of solving an instance of the SSP problem. Let the set of

destination states be U = Sd [ Se [ C, and consider a modi�ed MDP �0 de�ned as follows:

� each state s 2 U has a single action a that leads deterministically to s;

� for s 2 U , let g(s) = 1 if s 2 Sd, and g(s) = 0 for s 2 Se [ C;

� for s 2 Sq , let c(s; a) = 0 for all a 2 A(s).

Denoting by cPr the probability structure corresponding to �0, we have

Pr�s(�) =
cPr�s(reach(Sd)) = v�s

for all s 2 Sq, where the cost v
�
s of � at s is computed in the MDP �0. Since Sq does not contain any

end component, all Markovian policies in �0 are SSP-proper, and SSP Assumptions 1 and 2 hold.

Theorem 3.4 provides then the desired model-checking algorithm.

Theorem 4.6 Consider the following linear programming problem on the set of variables fvsgs2Sq :

Maximize
P
s2Sq

vs subject to

vs �
X
t2Sq

pst(a) vt +
X
t2Sd

pst(a) s 2 Sq :

This linear programming problem admits exactly one optimal solution v�. The truth value of P./a(�)

for ./2 f�; >g can be decided at all s 2 Sq by

s j= P./a� i� v�s ./ a :

4.8.2 Computation of Pr+
s
(�).

Let Sr be the set of the states of Sp from which there is a path to Sd in the graph (Sd[Sp; An(Sd[Sp)).

In other words, Sr consists of the states of Sp that can reach Sd while following a path contained in

Sp [ Sd. Figure 4.2 summarizes the partition of the state space for this case.

The following lemma states that Pr+s (�) > 0 i� s 2 Sr [ Sd.

Lemma 4.6 If s 2 Sd, then Pr+s (�) = 1. Moreover, Pr+s (�) > 0 i� s 2 Sr [ Sd.

Proof. Immediate.
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Sd
ψ

Sr

Sp

γψ

ψ

S:

γ

Se

Figure 4.2: Containment relationships between the set of states Sd, Se, Sp and Sr � Sp. In the sets
are also indicated the truth-values of the subformulas 
,  of 
 U  . Formulas 
 and : hold also
in Sr, since Sr � Sp. The dotted arrows provide a reminder of the de�nition of Sr, which consists
of the states of Sp that can reach Sd without leaving Sp [ Sd. Thus, a behavior from Sp � Sr must
either be con�ned to Sp � Sr, or proceed to Se.

To complete the model-checking algorithm, we must compute Pr+s (�) at all s 2 Sr. To this end,

we let �0 = (S;A0; p0) be the modi�ed MDP obtained by assigning to each state s 2 S � Sr a single

action a that leads deterministically to s; the probability function p0 coincides with p on all other

state-action pairs. It is easy to see that the probability of satisfying � is equal to the probability of

reaching Sd in �0: in formulas,

Pr�s(�) =
cPr�s(reach(Sd)) ;

where the probability cPr is computed on the MDP �0. To compute Pr+s (�) at s 2 Sr is su�ces then

to compute the maximum reachability probability sup�
cPr�s(reach(Sd)), which can be done with the

methods presented in Section 3.5.

The following theorem summarizes the result.

Theorem 4.7 (model checking of operator P in pTL) For every s 2 Sr, operator ./2 f�; <g

and bound 0 � a � 1, it is

s j= P./a� i� Pr+s (�) ./ a :



Chapter 5

Speci�cation of Long-Run Average

Properties

In the discipline of performance modeling and evaluation, the system models are usually translated

into Markov chains with additional labels to represent quantities of interest. The performance

evaluation of a system involves the computation of the steady-state probability distribution of the

chain, which provides information about the long-run average behavior of the system. This approach

is at the basis of the evaluation of performance measures such as the average system throughput

and response time.

By contrast, the model checking of pTL and pTL* speci�cations on Markov chains does not

require an analysis of the steady-state distribution, but the computation of reachability probability

of closed recurrent classes or other sets of states of the chain. This suggests that the class of

properties expressible in pTL and pTL* does not include these traditional performance measures.

In this chapter we will show that this is indeed the case. To remedy to this de�ciency, we

introduce a speci�cation style based on experiments. Experiments are small labeled graphs that

specify behaviors and average times of interest for the performance and reliability analysis of the

system. Experiments are composed synchronously with the system, and they can be used to measure

the long-run average value of the performance or reliability parameters they specify.

After introducing experiments and the logics based on them, we discuss the classi�cation of

probabilistic properties mentioned in the introduction to this dissertation. This classi�cation justi�es

in retrospect the need for the four probabilistic operators used in our logics.

Due to the presence of nondeterminism in the system models, the evaluation of long-run average

properties of systems is based on more involved algorithms than the computation of the steady-state

distribution of Markov chains. The algorithms for the model checking of the new logics will be

presented in the next chapter, along with their correctness proofs.

86



5.1. A MOTIVATIONAL EXAMPLE 87

idle waiting using

1-p 1-q

q

p

Figure 5.1: Behavior of a single user in system shared-res. The probabilities of the two transitions
from state waiting depend on the states of the other users in the system.

5.1 A Motivational Example

To gain a better understanding of the limitations of pTL and pTL* with respect to the speci�cation

of long-run average behavior, we introduce our �rst example: a system consisting of many users

sharing access to a single resource.

5.1.1 Multiple Shared Resource

The system shared-res consists of N users that can access a shared resource. The resource can

be used by at most M � N users at any single time. Each user can be in one of three states:

idle, requesting and using. For the sake of simplicity, we model the behavior of the system as a

discrete-time Markov chain. Initially, all users are in idle. At each time step, if a user is idle it

has probability p of going to requesting and 1 � p of staying in idle. If the user is in using, it has

probability q of going to idle, and 1� q of staying in requesting. If at the beginning of a time step

there are j users in requesting and k � M in using, at the next time step minfj;M � kg users will

go to using, while the remaining j �minfj;M � kg are sent back to idle. The behavior of a single

user is depicted in Figure 5.1.

This system was originally devised as a very simple model for the behavior of people placing

phone calls: N is the number of people, and M is the maximum number of calls that can be active

at the same time. The transition from idle to requesting corresponds to the act of lifting the handset

to place a call; the transition from using to idle corresponds to hanging up at the end of the call. The

transitions out of the requesting state model the acts of either getting the connection or of hanging

up upon hearing the busy signal.

From the above informal description, for given N , M , p and q it is possible to produce a TPS

�(N;M; p; q).
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5.1.2 Specifying Call Throughput of shared-res

To exemplify the limitations of pTL and pTL*, we will take the following property as our intended

speci�cation.

Req1: When a user tries to place a call, the probability of getting the connection is at least b0.

As the situation is symmetrical for all users, let us concentrate on the �rst one. Let I1, R1, U1

be atomic formulas representing the fact that user 1 is at idle, requesting or using, respectively. It

might seem plausible at �rst to encode the requirement Req1 with the following pTL formula:

~�Req1 : A2(R1 ! P�b0(R1 U U1)) : (5.1)

Let us analyze this formula. Call any state that satis�es R1 and that is reachable from the initial

state sin a reachable R1-state. By de�nition, sin j= ~�Req1 i� every reachable R1-state satis�es

P�0:8(R1 U U1). The formula in parentheses speci�es that the U1-state is reached directly from the

R1 state, rather than as a consequence of a later request.

The problem with speci�cation ~�Req1 is that there are many reachable R1-states in the system:

in some of them, few users are accessing the resource; in others, the resource is fully utilized.

Clearly, from these latter R1-states, the probability that the �rst user gets access to the resource is

0. Thus, as long as there is a reachable R1-state in which alreadyM users are using the resource, the

speci�cation ~�Req1 will not be satis�ed, regardless of the long-run average probability with which

the �rst user succeeds in accessing the resource.

Example 5.1 Figure 5.2 depicts the steady-state distribution and the access probability for one

instance of the shared-res system. Note that at states in whichM processes are using the resource

the probability of access is 0. Since these states are reachable, the property ~�Req1 will not hold.

However, calculations done using the steady-state distribution of the chain indicate that a call

attempt is successful with a long-run average probability of approximately 0.88.

More generally, the problem is due to the fact that the logics pTL and pTL*, while suited for the

speci�cation of the probability with which behaviors satisfy temporal formulas from given states, do

not take into account the long-run probability of being in those states.

5.1.3 Possible Pitfalls in Extending the Logics

Let us derive a mathematical expression that encodes speci�cation Req 1. It is easy to see that

shared-res is an ergodic Markov chain, i.e. a Markov chain in which all states belong to a single

closed recurrent class [KSK66]. Thus, there is a steady-state distribution �, that gives for each

state s the long-run probability �s of being at s. For each state s, let rs = Prs(X1 j= U1) be the

probability that user 1 is using the resource in the next time unit. Since a user cannot continuously



5.1. A MOTIVATIONAL EXAMPLE 89

0
2

4
6

0
5

10

0

0.5

1

N. others inside

N = 10, M = 5:  Success probability at R1

N. others wait

0
2

4
6

0
5

10

0

0.05

0.1

0.15

0.2

N. others inside

N = 10, M = 5: Steady−state distribution at R1

N. others wait

Figure 5.2: Probability of successful access and steady-state distribution for system shared-res,
with N = 10, M = 5, p = 0:1, q = 0:2, taken at R1. In the diagrams, one of the horizontal axes
indicates how many users are accessing the resource when user 1 is at requesting; the other horizontal
axis indicates how many users aside from user 1 are in requesting. The top diagram indicates the
success probability Prs(R1 U U1), conditional to the fact that user 1 is at requesting. The diagram
below shows the steady-state distribution of the system, conditional to the fact that user 1 is at
requesting.
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stay in requesting for longer than one time unit, the long-run fraction of successful requests of user 1

is given by: P
sj=R1

�srsP
sj=R1

�s
(5.2)

This equation suggests the following approach to the speci�cation of average-case behavior of

Markov chains. Assume that we are interested in the long-run probability of � starting from a

 -state, and let S 
def
= fs 2 S j s j=  g. Let P be the transition matrix of the chain, and let

P � = lim
n!1

1

n

n�1X
k=0

P k ;

be the limiting matrix of the chain. If the system is ergodic, all rows of the matrix are equal, and

their common value is the steady-state distribution �. For all s 2 S let r(s)
def
= Prs(�) be the

probability of � holding after starting from state s. For all s 2 S such that
P
t2S 

P �
st > 0 (i.e., for

all s that can reach S ),

qs
def
=

P
t2S 

P �
strtP

t2S 
P �
st

:

represents the average probability that � follows a  -state, when starting at s. Finally, we could

de�ne the operator L by

s j= L�b( ; �) i� qs � b _
X
t2S 

P �
st = 0 : (5.3)

Requirement Req1 could then be expressed by the formula

L�b0(R1 ; (R1 U U1)) : (5.4)

Example 5.2 For the instance of shared-res described in Example 5.1, the long-run probability

that a request from user 1 is granted is given by

qSin =

P
sj=R1

�sr(s)P
sj=R1

�s
' 0:88 :

This value can be compared with b0 to decide whether speci�cation (5.4) is satis�ed.

While this approach works well for Markov chains, it does not generalize properly to TPS. To

see this, assume for simplicity that  � true,1 so that S = S, and consider the modi�cations that

1It is possible to present veri�cation methods for the general case using the results presented later in the chapter.

However, we omit the details, since we do not advocate following this approach.
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Figure 5.3: A TPS �, with indicated the extensions of the atomic formulas I1, R1, G1. The
transitions are deterministic. Each state is labeled with its value of r, as de�ned by (5.5).

are necessary to take into account the existence of policies. The de�nition of r becomes

r(s) = min
�

Pr�s (�) ; (5.5)

its value can be computed with the results of the previous chapter. Let

V �s
def
= lim

n!1
E�s

(
1

n

n�1X
k=0

r(Xk)

)

be the average value of r when using policy � starting from s, and let

V
�

s = min
�
V �s (5.6)

be minimum of this average over all policies. The value V
�

s can be computed by using classical

results about the computation of the minimum average reward of MDPs (see, for example, Derman

[Der70] and Bertsekas [Ber95]). Then, the obvious generalization of (5.3) is (remembering that

 � true):

s j= L�b( ; �) i� V
�

s � b : (5.7)

The cases for the other inequalities <, � and > can be de�ned similarly. The problem with this

de�nition is that the policy �1 that realizes the minimum in (5.5) can be di�erent from the policy �2

that realizes the minimum in (5.6). To understand why this is a problem, assume that � expresses

the property of something good happening. Then, �1 will minimize the probability Pr�1s (�) of

something good happening from any given state s. This minimal probability is r(s). Policy �2 will

try to maximize the amount of time the TPS spends in \risky" states, i.e. in states s where r(s) is

small. If �1 6= �2, it might very well be that the policy that maximizes the time spent in risky states

will actually ensure that the \danger" :� will never strike! The following example illustrates this

apparently paradoxical situation.
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Example 5.3 Consider the TPS depicted in Figure 5.3. We would like to write a speci�cation

requiring that the long-run average probability of accessing the resource upon a request is at least 0.9.

Intuitively, this property should hold, since at most one call attempt can fail along a behavior.

However, the speci�cation

L�0:9(R1 ! R1 U G1)

does not hold. In fact, the policy �0 that realizes the minimum of

r(s) = min
�

Pr�s(R1 ! R1 U G1)

always chooses action a, and yields the values for r depicted in the �gure. The policy �1 that

minimizes the long-run average value of r chooses instead always action b, and leads to V �1s = 2=3

for some states s. It can be seen that the speci�cation

L�0:9(R1 ; R1 U G1)

would su�er from an analogous problem. In fact, the policy �01 that minimizes the probability of

R1 U G1 would again choose always action a, yielding the values of r depicted in the �gure. The

policy that minimizes the long-run average value of r from R1-states would instead always choose

action b, yielding a value of 0 for this long-run average from some states.

Fundamentally, the de�nition of L su�ers from the problem of policy multiplicity: the de�nition

depends on the nested use of policies, and the policies that are optimal/pessimal at di�erent levels

may not be the same. This nested use of policies makes the speci�cations di�cult to understand.

This problem is shared by other speci�cation languages based on the nested use of policies, and

it is the reason why we do not advocate the nesting of probabilistic operators in our speci�cation

languages, even though the syntax and semantics of our logics enables such nesting.

5.2 GPTL and GPTL*:

Augmenting the Logics With Experiments

Our choice of a speci�cation language for the long-run behavior or probabilistic systems has been

guided by the following three requirements:

� It should be applicable not only to Markov chains, but also to TPS, which include nondeter-

minism.

� It should enable the speci�cation of long-run properties of systems without leading to pitfalls

such as the one discussed in the previous subsection.
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� The model-checking problem should have polynomial time-complexity in the size of the TPS.

In the remainder of the chapter we present an extension of pTL and pTL* that satis�es all three

of these requirements, and that is based on the concept of experiments.

5.2.1 Experiments

An experiment is simply a �nite deterministic automaton, with a distinguished initial state and some

additional labelings. Experiments describe system behaviors of interest, and are applied to a TPS by

forming the synchronous composition between the experiment and the TPS. Experiments thus are

reminiscent of the tests of Wang and Larsen [WL92] and Jonsson, Ho-Stuart and Wang [JHW94],

except that experiments, unlike tests, are meant to be repeated an in�nite number of times. Each

time an experiment is performed, it yields an outcome, or a duration. Accordingly, we distinguish

two types of experiments: P-experiments, to measure probability, and D-experiments, to measure

durations.

The speci�cation of properties using experiments is mediated by the two logical operators �P

and �D, which enable to specify bounds for the long-run average outcome or duration of experi-

ments. Before detailing how these long-run average outcomes and durations are measured, we de�ne

experiments, which provide the common structure for both P- and D-experiments.

De�nition 5.1 (experiment) An experiment 	 = (V;E;Er; Vin; �) is a labeled directed graph

(V;E), with set of vertices V and set of edges E � V � V . The experiment has a distinguished

set of initial vertices Vin � V , a set of reset edges Er � E � f(v; v) j v 2 V g, and a labeling

� : V 7! Form(V). For all u 2 V , edge (u; u) must belong to E. For u 2 V , we denote by

dst(u) = fv 2 V j (u; v) 2 Eg the set of vertices that can be reached in one step from u (thus,

u 2 dst(u)). The labeling of the vertices must be deterministic and total. Speci�cally, for all

u; v1; v1 2 V it must be

v1 2 dst(u) ^ v2 2 dst(u) ! :[�(v1) ^ �(v2)] (5.8)

v1 2 Vin ^ v2 2 Vin ! :[�(v1) ^ �(v2)] ; (5.9)

moreover, for every v 2 V the formulas

_
v2dst(u)

�(v)
_

v2Vin

�(v) (5.10)

must be valid (i.e. true in any type-consistent variable interpretation).

When an experiment 	 is applied to a PTS � by taking the synchronous composition �
	, the

vertex labels � of 	 are used to synchronize the transitions of 	 and �. The fact that u 2 dst(u)
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for all u 2 V ensures that, if the variable assignment does not change, the experiment remains at

the same vertex.

The reset edges are used to count the number of experiments performed: each time a reset edge

is traversed, we say that the experiment ends, so that the number of reset edges traversed along a

behavior indicates how many experiments have been completed. To keep track of this number, we

de�ne a labeling w as follows.

De�nition 5.2 (w labeling of experiment edges) Given an experiment 	 = (V;E;Er; Vin; �),

for each (u; v) 2 E we de�ne w(u; v) = 1 if (u; v) 2 Er, and w(u; v) = 0 otherwise.

In a P-experiment, to each reset edge is associated an outcome, a real number representing a

reward earned when the experiment is ended. This will make it possible to talk about the long-run

average outcome of P-experiments.

De�nition 5.3 (P-experiment) A P-experiment is an experiment in which each reset edge (u; v) 2

Er is labeled with an outcome 
(u; v) 2 IR, a real number representing the success, or failure, of the

experiment.

In many cases, we will be interested in experiments whose outcome is binary: they can either

succeed or fail. In this case, we will associate outcome 1 to the reset edges that represent a successful

completion of the experiment, and outcome 0 to the reset edges representing failures.

In a D-experiment, we distinguish a set of timed vertices: the duration of a D-experiment will

be de�ned as the total time spent at timed vertices during the experiment.

De�nition 5.4 (D-experiment) A D-experiment is an experiment in which we distinguish a

nonempty subset Vt � V of timed vertices.

Drawing experiments. To draw an experiment, we draw its graph structure, depicting reset

edges with dashed lines. The initial vertices are represented by a double-circle. In D-experiments,

timed vertices are drawn as �lled circles, and untimed ones as empty circles. Since every vertex has a

self-loop to itself, we omit the self-loops, to reduce clutter. Similarly, we often omit from experiments

edges that are never followed by the system in which we are interested: the experiments we depict

can easily be completed with additional edges to comply with (5.8) and (5.10).

Example 5.4 (average success in shared-res) In Figure 5.4 we present a P-experiment that

can be used to express Requirement Req1. If user 1 proceeds from requesting to using, and then from

using to idle, the experiment has outcome 1; if after using user 1 proceeds to idle, the outcome is 0,

indicating an unsuccessful attempt. Requirement Req1 will be encoded by stating that the average

outcome of the experiment should be at least b0.
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0 1

Figure 5.4: P-experiment 	Req1, for the speci�cation of Requirement Req1 of shared-res.

5.2.2 Long-Run Average Outcome of Experiments

To use experiments for the speci�cation of long-run probabilistic properties of systems, we need to

compose them with the system and to de�ne their long-run average outcome. The composition with

a system is de�ned as follows.

De�nition 5.5 (product of TPS and experiment) Given a TPS � = (S;A; p; Sin; time; I)

and an experiment 	 = (V;E;Er; Vin; �), we de�ne their product MDP �	 = �
	 = (bS; bA; bp; r; w)
as follows:

� bS = fhs; ui j s j= �(u)g;

� bA(hs; ui) = A(s);

� For all states hs; ui 2 bS, actions a 2 A(s) and destination states t 2 Succ(s; a), the transition

structure from hs; ui is as follows. Let vtu 2 V be the unique vertex such that

t j= �(vtu) (u; vtu) 2 E :

If � is at s and 	 at u, and � takes a transition to t, 	 will take a transition to vtu. The

transition probabilities bp of �	 and the labeling w are de�ned as follows:

bphs;uiht;vi(a) =
�
pst(a) if v = vtu;

0 otherwise
w(hs; ui; ht; vi) = w(u; v) :

If 	 is a P-experiment, we let r(hs; ui; a; ht; vi) = w(u; v) 
(u; v); if it is a D-experiment, we

let r(hs; ui; a; ht; vi) be time(s; a) if u is a timed vertex, and 0 otherwise.

As a consequence of (5.9), to each s 2 S corresponds a unique vertex u 2 Vin such that hs; ui 2 bS.
We denote this unique vertex by vin(s), for s 2 S.

In the product MDP, the sum
Pn�1
k=0 w(Xk; Xk+1) indicates how many experiments have been

completed in the �rst n steps of a behavior. Similarly, the sum
Pn�1
k=0 r(Xk ; Yk; Xk+1) indicates the

total \outcome" for the �rst n steps, where the outcome of D-experiments is the time spent at timed

vertices.
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5.2.3 The Extended Logics

To enable the speci�cation of long-run average properties of systems, we introduce the logics GPTL

and GPTL*, which extend pTL and pTL* respectively by introducing two new operators �P and �D.

These operators are used to express bounds on the average long-run outcome of experiments from

given starting states. For ./ 2 f<;�;�; >g and a 2 IR, we introduce the following state formulas.

� If 	 is a P-experiment, then �P./a(	) is a state formula.

� If 	 is a D-experiment, then �D./a(	) is a state formula.

Intuitively, �P./a(	) holds at a state s if, under any policy, a behavior that performs in�nitely

many experiments yields a long-run average outcome that is ./ a with probability 1. Similarly,

�D./a(	) holds at a state s if, under any policy, a behavior that performs in�nitely many experiments

yields a long-run average experiment duration that is ./ a with probability 1.

The de�nition of the semantics of operators �P and �D relies on the de�nition of two additional

quantities. First, we de�ne the n-stage average outcome of a behavior.

De�nition 5.6 (n-stage average outcome) Given a behavior ! of a product between a TPS

and an experiment, we de�ne the n-stage average outcome of ! by

Hn(!) =

n�1X
k=0

r(Xk ; Yk; Xk+1)

n�1X
k=0

w(Xk ; Xk+1)

: (5.11)

This outcome represents the average outcome or duration of an experiment in the �rst n positions

of the behavior.

Then, we de�ne predicate I as follows.

De�nition 5.7 (predicate I) Given a behavior ! of a product between a TPS and an experiment,

we de�ne the predicate I by:

	 is a P-experiment: ! j= I i�

1X
k=0

w(Xk; Xk+1) =1 ;

	 is a D-experiment: ! j= I i�

1X
k=0

h
w(Xk ; Xk+1) + r(Xk ; Yk; Xk+1)

i
=1 :

Thus, I holds either if ! spends an in�nite amount of time at timed vertices, or if ! performs

in�nitely many experiments. It is not di�cult to show that the truth-set of I is measurable.
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The semantics of operators �P and �D can then be de�ned in terms of H and I as follows.

De�nition 5.8 (semantics of �P and �D) Given a TPS � = (S;A; p; Sin; time; I) and an experi-

ment 	 = (V;E;Er; Vin; �), let �	 = �
	 be the product MDP.

First, we de�ne the semantics of �P, �D on �	. For a state hs; vi of �	 and for ./ 2 f�; >g,

hs; vi j= �P./a	 (resp. hs; vi j= �D./a	) holds if, for all policies �,

Pr�hs;vi

�
I ! lim inf

n!1
Hn(!) ./ a

�
= 1 : (5.12)

The de�nition of hs; vi j= �P./a	 (resp. hs; vi j= �D./a	) for ./ 2 f�; <g is analogous. The semantics

of �P and �D on � is de�ned by taking, for all states s 2 S of �,

s j= �./a(	) i� hs; vin(s)i j= �./a(	) ;

where � is one of �P, �D and ./2 f<;�;�; >g.

According to the way r and w have been de�ned, Hn(!) represents the average outcome or

duration of an experiment in the �rst n positions of a behavior. The operators �P and �D specify

lower and upper bounds for the limit values of this ratio for behaviors that satisfy I , i.e. for behaviors

that performs in�nitely many experiments or spend an in�nite amount of time at timed vertices.

The reason why the bounds are speci�ed only for behaviors that satisfy I is that, if the behaviors

traverse only a �nite number of reset edges, or spend a �nite amount of time at timed vertices, the

long-run average outcome of experiments along them is not well de�ned. The following example

illustrates this point.

Example 5.5 (gambling in the short and long run) In Figure 5.5 we present a TPS � which

corresponds to a gambling system, and an experiment 	 that measures the average reward of the

gambling. Also depicted is the product MDP �	. We can see that s0 j= �P�0	, since if the gambling

is repeated in�nitely many times, it has long-run average outcome 0.

On the other hand, the short-term average outcome of the gambling might be di�erent from 0.

In particular, let �0 be the policy that prescribes to gamble exactly 4 times, and then be idle forever.

Clearly,

Pr�
0

s0
(lim inf
n!1

Hn(!) � 4) =
1

16
:

Hence, if we dropped the restriction to behaviors satisfying I in (5.12) we would have s0 6j= �P�0	.

Dropping this restriction would thus alter drastically the semantics of operators �P and �D, preventing

their use for the speci�cation of long-run average system behavior.

The following example shows how experiments can be used in conjunction with the operator �P

to specify the call throughput of system shared-res.
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Figure 5.5: A system � representing a gambling activity, together with an experiment 	 that
measures the long-run average outcome of the gambles, and their product MDP �	. System � has
only one variable, x, whose values at the states of � are depicted in the �gure. In the representation
of �	, we have indicated the values of r and w only for the transitions in which they are not 0.
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Example 5.6 (specifying the call throughput of shared-res) Using the experiment 	 of

Figure 5.4, we can specify the call throughput requirement Req1 of system shared-res in the logic

GPTL using the formula �Req1 : �P�b0(	).

Threshold outcomes. To be able to talk about the behavior of the system with respect to an

experiment under the most favorable and unfavorable policies, it is convenient to de�ne threshold

outcomes. Threshold outcomes represent the maximum and minimum values of the long-run average

outcome of an experiment that can be attained with non-zero probability, and they are de�ned as

follows.

De�nition 5.9 (threshold outcomes) Consider a TPS �, an experiment 	 and their product

MDP �	. For each state hs; vi of �	, we de�ne the maximum and minimum threshold outcomes

�T
+
hs;vi and

�T
�
hs;vi by

�T
+
hs;vi = sup

n
a 2 IR

��� 9� : Pr�hs;vi�I ^ lim sup
n!1

Hn(!) � a
�
> 0

o
�T
�
hs;vi = inf

n
a 2 IR

��� 9� : Pr�hs;vi�I ^ lim inf
n!1

Hn(!) � a
�
> 0

o
;

with the convention that, if Pr�
hs;vi(I) = 0 for all �, then �T

+
hs;vi = �1, �T

�
hs;vi = +1. For a state s

of �, we de�ne then

�T
+
s (	) =

�T
+
hs;vin(s)i

�T
�
s (	) =

�T
�
hs;vin(s)i :

5.3 A Classi�cation of Probabilistic Properties

Now that the presentation of the probabilistic operators P, D, �P, �D is concluded, we return to

the topic of the classi�cation of probabilistic properties of systems presented in in Table 1.1. The

intuitive di�erence between single-event and long-run average properties has been mentioned in the

introduction.

Single-event properties refer to the probability of a single event, or to the expected value of a

random time. These probabilities and expected values are measured on the set of all behaviors.

Long-run average properties refer to the long-run average value along a behavior of quantities that

are evaluated in�nitely often along the behavior, such as the duration or outcome of experiments.

Thus, single-event and long-run average properties correspond to the two di�erent type of averages

in stochastic systems: averages over behaviors, and averages over time.

To complete the claim that these classes of properties form indeed a classi�cation, we present

an argument that shows that the properties belonging to the di�erent classes are orthogonal, i.e.

independent one from the other. We present this argument for the classes of properties expressed

by the P and �P operators; a simpler argument can also be made for D and �D.
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The model checking of GPTL* formula P./a� involves the construction of the product between

the TPS and the deterministic Rabin automaton for � or :�. Deterministic Rabin automata are

strictly more expressive than deterministic B�uchi automata (see McNaughton [McN66] and Thomas

[Tho90]). Nonetheless, for the sake of simplicity we consider an algorithm that computes the product

with a deterministic B�uchi automaton instead. Such an algorithm can be used for the subclass of

formulas that can be encoded as deterministic B�uchi automata.

In the resulting product structure, the question s j= P./a� is equivalent to the question:

From s, under any policy, does a behavior visit in�nitely often accepting states with

probability ./ a?

Consider now the speci�cation �P./a(	). In the structure resulting from the product between the

system and the experiment, the question s j= �P./a(	) is equivalent to asking whether the following

is true with probability 1:

If a behavior traverses in�nitely often reset edges, the long-run average outcome is ./ a.

From these considerations, we see that there is a correspondence between deterministic B�uchi

automata and experiments: speci�cally, to the accepting states of B�uchi automata correspond the

reset edges of experiments. The two veri�cation questions asked by operators P and �P, however, are

di�erent. For the operator P, the question is essentially:

What is the probability of visiting the accepting states in�nitely often?

For the operator �P, note that the long-run average outcome depends on the relative frequency with

which we visit the various accepting states. The corresponding question is then:

If we visit the accepting edges in�nitely often, with what relative frequency do we visit

them?

The comparison between the two questions asked by operators P and �P gives an indication of the

independence of the single-event and long-run average classes of properties.

A Comparison with Temporal-Logic Classi�cations

The classi�cation of probabilistic properties described above might recall the classi�cation of tem-

poral properties into the safety and liveness classes proposed by Lamport [Lam77, Lam83], or the

safety-progress classi�cation of Chang, Manna and Pnueli [CMP92]. There are, nonetheless, signi�-

cant di�erences between these classi�cations.

Safety-progress classi�cation. The safety-progress classi�cation is closed under boolean oper-

ators, in the sense that boolean combinations of formulas belonging to the classi�cation still belong
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to the classi�cation. This is not the case for the single-event/long-run average classi�cation. For

example, given a sequence formula � and an experiment 	, the GPTL* formula

P�a� _ �D>b	 (5.13)

does not belong to either of the classes of properties.

Safety-liveness classi�cation. A fundamental result about the safety-liveness classi�cation is

that every temporal property can be written as the intersection between a safety and a liveness

property. This result has also an interpretation in terms of open and closed sets of behaviors.

Temporal formulas can express a thorough \mix" of safety and liveness properties.

While formulas such as (5.13) also realize a mix, the mix is somewhat less thorough. For example,

it is possible that the two policies that minimize, respectively, the probability of � and the long-run

average duration of 	 in (5.13) are di�erent. It would be somehow more satisfactory to have the

means of combining � with 	, and asking a single question about the combined object.

It is an interesting open question whether there are probabilistic speci�cation languages that can

express a fuller spectrum of properties, including these thorough mixes of single-event and long-run

average properties, while retaining model-checking algorithms of polynomial complexity in the size

of the system.

5.4 Expressive Power of Experiments

To be useful for the formal speci�cation of systems, the structure of an experiment must satisfy two

requirements:

� Experiments must be capable to encode interesting portions of system behaviors, and to specify

durations and outcomes of interest.

� The synchronous composition between an experiment and a �nite TPS must be a �nite MDP.

Our De�nition 5.1 proposes one of the simplest structures satisfying these two requirements. Indeed,

many alternative choices are possible, and some of these choices extend the expressive power of

experiments in useful ways. We mention two of these choices here: labeling the experiment edges,

and adding auxiliary variables.

5.4.1 Labeling the Edges

It is possible to de�ne an extended type of experiments in which edges are labeled by formulas

in Form(V ;V 0). The edge can be followed only when the TPS takes a transition that satis�es the
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Figure 5.6: A portion of experiment that uses auxiliary variables.

formula labeling the edge. This edge labeling can be used either as an alternative, or in addition to

the vertex labeling.

Labeling the edges of an experiment increases its expressive power with respect to in�nite-state

TPSs, and can yield more compact experiments (with fewer vertices) when composed with �nite

TPSs. For example, assume the variable edge has domain f1; : : : ; Ng, or f1; 2; : : :g. If we label an

edge with the formula x0 = x+ 1, the edge will be traversed when the value of variable x increases

by 1. An equivalent experiment that used only vertex labels would need to be of size comparable

to the domain of x, and it would have to be an in�nite structure if the domain were in�nite. Thus,

we see that experiments with edge labels are clearly desirable for the speci�cation of in�nite-state

probabilistic systems.

5.4.2 Adding Auxiliary Variables

Another way to extend the expressive power of experiments is augment them with auxiliary variables.

These variables can be assigned a value along system edges, and they can appear in edge or vertex

labels. This use of auxiliary variables is illustrated by the following example.

Example 5.7 (auxiliary variables in experiments) Consider the portion of experiment de-

picted in Figure 5.6. In this example, variables x and y are shared with the TPS to which the

experiment refers, and variable z is an auxiliary variable of the experiment. This portion of experi-

ment can be used to check whether the value of y is the same before and after the interval in which

x = 1.



Chapter 6

Veri�cation of Long-Run Average

Properties

This chapter presents the model-checking algorithms for operators �P and �D in the logics GPTL and

GPTL*, along with the correctness proof for the algorithms. We present two algorithms: one that

can be used on TPSs that correspond to Markov chains, and another that can be used on general

TPSs that include nondeterminism. The model-checking algorithm for TPSs that correspond to

Markov chains is an application of standard results in Markov chain theory.

The model-checking algorithm for general TPSs is based on a four-step reduction to linear pro-

gramming. Given the product of a TPS and an experiment, we �rst decompose the product in

its maximal end components. Second, we apply to each of these end components a transformation

that ensures that the experiment is performed in�nitely often with probability 1; the transformation

does not a�ect the long-run average outcome of the experiment. Third, we reduce the problem of

computing the limit points of Hn(!) to an optimization problem on semi-Markov decision processes.

Finally, we show how the optimization problem can be solved by a reduction to linear programming.

The solution of the optimization problem is related to the computation of the average cost of

a semi-Markov decision process. Even though technical di�culties prevent a direct use of results

for this latter problem in our model-checking algorithm, the reduction provides us with information

on the relation between di�erent optimization problems for semi-Markov decision processes. The

chapter is concluded with the proof of the equivalence of two optimization criteria for semi-Markov

decision processes, and with an algorithm for computing the minimum average cost of semi-Markov

processes under a very natural cost structure. These results close a long-standing open problem

[Ros70b, Ros70a].
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6.1 Model-Checking Algorithms for GPTL and GPTL*

In this section, we present algorithms to decide whether a TPS satis�es a speci�cation written in

GPTL or GPTL*. Since these logics are obtained by extending the logics pTL and pTL* [dA97], we

need to examine only the cases corresponding to the two new operators �P and �D. The justi�cation

for the algorithms is somewhat involved, and will be presented in the remainder of the chapter.

Consider an MDP � = �0
	 = (S;A; p; r; w) resulting from the synchronous product of a TPS

�0 with experiment 	. The model-checking problem consists in determining the truth values of the

formulas �P./a(	) and �D./a(	) at all s 2 S.

We present two model-checking algorithms, depending on whether the TPS �0 (and thus the

product �) is purely probabilistic, or whether it contains nondeterminism. In both cases, the �rst

step of the algorithm consists in computing two new labelings R and W for �	, to be used in place

of r, w. These labelings are de�ned by

W (s; a) =
X
t2S

pst(a)w(s; t) R(s; a) =
X
t2S

pst(a) r(s; a; t) ; (6.1)

and denote by �0 = (S;A; p;W;R) the resulting MDP.

6.1.1 Model Checking Purely Probabilistic Systems

The MDP � = (S;A; p;R;W ) corresponds to a Markov chain if jA(s)j = 1 for all s 2 S. In this case,

we can write pst instead of pst(a), so that the transition matrix is simply P = [pst]s;t2S . Since the

labels R andW do not depend on the action, we can consider them as column vectorsR = [R(s)]s2S

and W = [W (s)]s2S . The limiting matrix P � = [p�st]s;t2S is de�ned by

P � = lim
n!1

1

n

n�1X
k=0

Pn : (6.2)

Element p�st of this matrix indicates the long-run average fraction of time spent in t when starting

at state s. Our �rst result provides a model-checking algorithm for the case in which � is an ergodic

Markov chain (recall that an ergodic Markov chain is a chain in which all states belong to a single

closed recurrent class [KSK66]).

Theorem 6.1 (model checking ergodic Markov chains) Consider an MDP � corresponding

to an ergodic Markov chain. If R(s) = W (s) = 0 for all s 2 S, then �./a(	) holds regardless of

� 2 f�P; �Dg, ./2 f<;�;�; >g and a 2 IR. Otherwise, for any state s it is

lim inf
n!1

Hn(!) = lim sup
n!1

Hn(!) =
�R

�W
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with probability 1, where � = [�s]s2S is the row vector for the steady-state distribution, de�ned by

�s = p�ts, for arbitrary t 2 S. Consequently,

s j= �./a(	) i�
�R

�W
./ a :

Proof. We can write

Hn(!) =

n�1X
k=0

r(Xk ; Yk; Xk+1)

n�1X
k=0

w(Xk ; Xk+1)

=

1

n

n�1X
k=0

r(Xk; Yk; Xk+1)

1

n

n�1X
k=0

w(Xk; Xk+1)

:

Since the chain is ergodic we know that the quantity

1

n

n�1X
k=0

r(Xk ; Yk; Xk+1)

as n !1 converges in distribution to
P
s;t2S �spstr(s; t) =

P
s2S �sR(s) = �R [Wil91, KT75]. A

similar reasoning, applied to the denominator, concludes the proof.

In a general Markov chain, all behaviors eventually enter with probability 1 a closed recurrent

class. Such a closed recurrent class, considered in isolation, is an ergodic chain. Combining this

observation with the previous theorem, we immediately get the following result, which yields a

model-checking algorithm for general Markov chains.

Corollary 6.1 (model-checking general Markov chains) If the product MDP � corresponds

to a Markov chain, let C1; : : : ; Cn be the closed recurrent classes of the chain, and let �1; : : : ;�n be

their steady-state distributions. Let also R1, W 1, . . . , Rn, W n be the restrictions of the vectors R

and W to classes C1, . . . , Cn. De�ne

L =
n
i 2 [1::n]

��� 9s 2 Ci : R(s) > 0 _W (s) > 0
o
;

it is easy to see that L is the subset of the closed recurrent classes in which I holds with probability 1.

It is

s j= �./a(	) i�
^
i2L

�iRi

�iW i

./ a ;

where � stands for either �P or �D.
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6.1.2 Model Checking General Systems

If the TPS �0, and consequently the products � and �0, contain nondeterminism, we propose a

model-checking algorithm consisting of the following steps.

1. Compute the list f(S1; A1); : : : ; (Sn; An)g = maxEC (S) of maximal end components of �0. For

each end component (Si; Ai), 1 � i � n, construct an MDP �i = (Si; Ai; p
i; Ri;Wi), where p

i,

Ri, Wi are the restrictions of p, R, W to (Si; Ai).

2. Compute the list

L =
n
i 2 [1::n]

��� 9s 2 Si : 9a 2 Ai(s) : [Ri(s; a) > 0 _Wi(s; a) > 0]
o

of sub-MDPs containing at least one state-action pair with positive R or W label.

3. Transform each �i = (Si; Ai; p
i; Ri;Wi), i 2 L, into a MDP e�i = (eSi; eAi; epi; eRi;fWi) in which

the predicate I holds with probability 1 over a behavior, for any state and for any policy.

The transformation does not change the state space of �i, and it does not a�ect the long-run

average outcome of experiments.

4. Compute the sets K
�

� L and K
+

� L of end components where the minimum or maximum

long-run average outcomes do not diverge to �1 or +1.

5. For each i 2 K
+

(resp. i 2 K
�

), compute �+i (resp. ��i ).

6. Given a state s of �, let Ms = fi 2 L j Si reachable in �0 from sg be the sub-MDPs reachable

from s in �. Then,

./ 2 f�; >g : s j= �./a(	) i�
^

i2Ms\K
�

��i ./ a

./ 2 f�; <g : s j= �./a(	) i� (Ms � L) ^
^
i2Ms

�+i ./ a ;

where � is one of �P, �D.

We now describe in detail steps 3, 4, and 5.

Step 3: Transforming the MDPs

For each �i = (Si; Ai; p
i;W i; Ri), 1 � i � n, we compute an MDP e�i = (eSi; eAi; epi; eRi;fW i) in which

predicate I holds with probability 1 on all behaviors. For each 1 � i � n, e�i is obtained from �i

using the following algorithm.

Algorithm 6.1 (I-transformation)
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Input: MDP � = (S;A; p;R;W ).

Output: MDP e� = (eS; eA; ep; eR;fW ).

Method: For each s 2 S, let D(s) = fa 2 A(s) j R(s; a) = 0 ^ W (s; a) = 0g, and let

f(B1; D1); : : : ; (Bn; Dn)g = maxEC (S;D). De�ne

eS = S [ fes1; : : : ; esng � n[
i=1

Bi :

The action sets are de�ned by:

s 2 S �

n[
i=1

Bi : eA(s) = fhs; ai j a 2 A(s)g

1 � i � n : eA(esi) = nhs; ai ��� s 2 Bi ^ a 2 A(s)�D(s)
o
:

For s 2 eS, t 2 S �Sni=1 Bi and hu; ai 2 eA(s), the transition probabilities and R, W labelings

are de�ned by

epst(hu; ai) = put(a) ep
s;esi(hu; ai) = X

t2Bi

put(a)

eR(s; hu; ai) = R(u; a) fW (s; hu; ai) =W (u; a) :

Step 4: Convergence of Long-Run Average Outcomes

The sets K
�

and K
+

are computed as follows. If 	 is a P-experiment, then K
�

= K
+

= L. If 	 is

a D-experiment, we use the following algorithm.

Algorithm 6.2 (computation of convergent components, D-experiment)

Input: The list L of MDPs.

Output: Sets K
�

and K
+

.

Method: Initially, set K
�

= K
+

= L. For each i 2 L, do the following steps:

� For s 2 Si, let B(s) = fa 2 bAi(s) j fWi(s; a) = 0g be the set of actions having fWi = 0. Let

(C1; D1); : : : ; (Cm; Dm) be the maximal end components in (eSi; B). If there are j 2 [1::m],

s 2 Cj and a 2 Dj(s) such that eRi(s; a) > 0, then remove i from K
+

.

� Remove i from K
�

i� both of the following conditions hold:

{ for all s 2 eSi and a 2 bAi(s), fWi(s; a) = 0;

{ there are s 2 eSi and a 2 bAi(s) such that eRi(s; a) > 0.
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Step 5: Computation of �+ and �� in each End Component

If i 2 K
�

(resp. i 2 K
+

), the value of �� (resp. �+) can be computed with the following algorithms.

Algorithm 6.3 (computation of ��) If i 2 K
�

, consider the following linear programming

problem, with variables �, fhsgs2eSi :
Maximize � subject to

hs � eRi(s; a)� �fWi(s; a) +
X
t2eSi

epist(a)ht s 2 eSi; a 2 eAi(s) :

Let ��i be the single optimal solution of the problem.

Algorithm 6.4 (computation of ��) If i 2 K
+

, consider the linear programming problem:

Minimize � subject to

hs � eRi(s; a)� �fWi(s; a) +
X
t2eSi

epist(a)ht s 2 eSi; a 2 eAi(s) :

Let �+i be the single optimal solution of the problem.

This concludes the presentation of the algorithm for the model checking of operators �P and �D.

The correctness proof of this algorithm is fairly involved, and will be presented in the following

sections of this chapter.

6.1.3 Complexity of GPTL and GPTL* Model Checking

The complexity of the model-checking algorithms will be measured with respect to the size of the

TPS and the size of the experiment. The size of the TPS is as in De�nition 4.2; the size of an

experiment is de�ned as follows.

De�nition 6.1 (size of experiments) Given an experiment 	 = (V;E;Er; Vin; �), we de�ne the

size j	j of 	 by j	j
def
= jV j.

In our measures of complexity, we do not take into account the cost of checking whether s j= �(v)

for each TPS state s and experiment vertex v. In fact, as previously stated, we are not interested in

the speci�c details of the languages used to write the experiment labels, which in
uence this cost.

Rather, we are interested in the computational complexity of the portion of algorithm that follows

the construction of the product. The size of an experiment in
uences this complexity by giving rise

to larger product MDPs.

The following theorem describes the complexity of the model-checking algorithms for GPTL and

GPTL*.



6.2. TOWARDS THE CORRECTNESS PROOF: RELATION BETWEEN R, W AND R, W 109

Theorem 6.2 (complexity of GPTL, GPTL* model checking) Given a TPS �, the following

assertions hold:

� Checking whether � is non-Zeno has polynomial time-complexity in jj�jj.

� Model checking a GPTL formula � has time-complexity linear in j�j and polynomial in j�j.

� Model checking a GPTL* formula � has time-complexity doubly exponential in j�j and polyno-

mial in j�j.

A more detailed result is as follows.

Theorem 6.3 (complexity of GPTL, GPTL* model checking II) Assume that the truth of

all state subformulas of � has already been evaluated at all states. The following assertions hold:

� The model checking of A�, E� has the following time-complexity:

GPTL: Polynomial in jj�jj and independent of �.

GPTL*: Polynomial in jj�jj and exponential in j�j.

� The model checking of P./a� has the following time-complexity:

GPTL: polynomial in j�j and independent of j�j.

GPTL*: polynomial in j�j and doubly exponential in j�j.

� The model checking of D./a� has time-complexity polynomial in j�j and independent of �.

� The model checking of �P./a� for an experiment 	 has time-complexity polynomial in both j�j

and j�j.

Proof. The lower bounds are a consequence of the results of Courcoubetis and Yannakakis [CY90];

the upper bounds are derived from an analysis of the proposed model-checking algorithms.

6.2 Towards the Correctness Proof:

Relation Between r, w and R, W (z)

The rest of this chapter, except the last section, is devoted to the correctness proof of the model-

checking algorithm for GPTL and GPTL*, and can be skipped if desired. The last section contains

some results on optimization problems for semi-Markov decision processes.

The �rst step in the correctness proof of the model-checking algorithm for GPTL and GPTL*

consists in justifying the use of the labels R and W in place of r and w in the algorithm. To this
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end, let I be the predicate de�ned as in De�nition 5.8, and de�ne the two predicated Irw, IRW as

follows:

! j= Irw i�
1

9 k : [r(Xk ; Yk; Xk+1) > 0 _ w(Xk ; Xk+1) > 0]

! j= IRW i�
1

9 k : [R(Xk; Yk) > 0 _W (Xk; Yk) > 0] :

Moreover, de�ne

H
RW
n (!) =

n�1X
k=0

R(Xk; Yk)

n�1X
k=0

W (Xk; Yk)

:

To justify the use of the new labelings R, W in the model-checking algorithms, we will show that

we can adopt the following alternative de�nition to (5.12) for the semantics of �P, �D.

De�nition 6.2 (de�nition of �P, �D based on W , R) Consider a product MDP �0 =

(S;A; p;R;W ). Then, s j= �P./a	 (resp. s j= �D./a	) holds if, for all policies �,

Pr�
hs;vi

�
IRW ! lim inf

n!1
H
RW
n ./ a

�
= 1 : (6.3)

The de�nition of s j= �P./a	 (resp. s j= �D./a	) for ./ 2 f�; <g is analogous.

We show the equivalence of De�nitions 5.8 and 6.2 through a sequence of two lemmas.

Lemma 6.1 (almost everywhere equivalence of I, Irw, IRW ) The following statements hold.

� ! j= I i� ! j= Irw, i.e. the predicates I and Irw are equivalent.

� For any policy � and any s, Pr�s(Irw � IRW ) = 1.

Proof. Consider the �rst statement. If 	 is a P-experiment, then r(s; a; t) > 0 only when w(s; t) >

0, since the outcomes are associated only to reset edges. Thus,
P1
k=0 w(Xk; Xk+1) diverges exactly

when Irw holds. If 	 is a D-experiment, the result is immediate.

Consider now the second statement. Let (B;C) be any end component of �, �x any s 2 S, and

let 

(B;C)
s = f! 2 
s j inft(!) = sa(B;C)g be the set of behaviors that eventually follow (B;C).

We will prove that Pr�s (Irw � IRW j ! 2 

(B;C)
s ) = 1; the result then follows from Theorem 3.2 and

from the fact that there are �nitely many end components.

Assume �rst that there is a state-action pair (s; a) 2 sa(B;C) such that R(s; a) > 0_W (s; a) > 0.

Clearly, IRW holds for all behaviors in 

(B;C)
s , since ! 2 


(B;C)
s takes in�nitely many times the state-

action pair s; a. Each time the state-action pair s; a occurs, the successor state t is chosen indepen-

dently at random according to the probability pst(a); thus by de�nition of R, W it is immediate to

see that Irw must hold with probability 1 on 

(B;C)
s .
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Conversely, assume that R(s; a) = W (s; a) = 0 for all (s; a) 2 sa(B;C). Then, IRW does not

hold for any behavior in 

(B;C)
s . For Irw, there are two cases.

� 	 is a P-experiment. Since w is non-negative, fromW (s; a) = 0 for all (s; a) 2 sa(B;C) follows

that w(s; t) = 0 for all s 2 B, t 2
S
a2A(s) Succ(s; a). Since r 6= 0 only when w > 0, a similar

result follows for r. This indicates that Irw does not hold on 

(B;C)
s .

� 	 is a D-experiment. Reasoning as before, we obtain w(s; t) = 0 for all s 2 B, t 2S
a2A(s) Succ(s; a). Since r � 0, a similar result follows for r. This indicates that Irw does not

hold on 

(B;C)
s .

Lemma 6.2 Consider a product MDP �00 = (S;A; p; r; w;R;W ) with both the r; w labelings and

the derived R;W ones. For any state s 2 S and for any policy �,

Pr�
hs;vi

�
IRW ! lim inf

n!1
Hn(!) = lim inf

n!1
H
RW
n (!)

�
= 1 :

A similar relation holds for lim sup.

Proof. Once again, we partition the set of behaviors 
s into the sets 

(B;C)
s = f! 2 
s j inft(!) =

sa(B;C)g of behaviors that follow end component (B;C), for every end component (B;C), and we

prove the result separately for every (B;C).

If R(s; a) = W (s; a) = 0 for all state-action pairs (s; a) 2 sa(B;C), then IRW does not hold for

any behavior of 

(B;C)
s . Otherwise, assume that there is at least one (s; a) 2 sa(B;C) such that

R(s; a) > 0 _W (s; a) > 0. In this case, IRW holds for all behaviors in 

(B;C)
s . De�ne the random

variables Nn
sat and M

n
tjs;a by

Nn
sat =

���fi � n j Xi = s ^ Yi = a ^Xi+1 = tg
��� Mn

tjs;a =
Nn
sat

Nn
sa

:

In words, Nn
sat is the number of sequences s; a; t contained in the �rst n positions of a behavior, and

Mn
tjs;a is the relative number of times in which state-action pair s; a leads to t in the �rst n positions

of a behavior. The de�nition of Nn
sa is as in (3.4). For ! 2 


(B;C)
s we can write:

lim inf
n!1

n�1X
k=0

r(Xk ; Yk; Xk+1)

n�1X
k=0

w(Xk ; Xk+1)

= lim inf
n!1

X
s;t2S

X
a2A(s)

Nn
sat r(s; a; t)

X
s;t2S

X
a2A(s)

Nn
sat w(s; t)

(6.4)

= lim inf
n!1

X
s;t2B

X
a2C(s)

Nn
sat r(s; a; t)

X
s;t2B

X
a2C(s)

Nn
sat w(s; t)

(6.5)
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= lim inf
n!1

X
s;t2B

X
a2C(s)

Nn
saM

n
tjs;a r(s; a; t)

X
s;t2B

X
a2C(s)

Nn
saM

n
tjs;aw(s; t)

: (6.6)

The step from (6.4) to (6.5) is justi�ed by the fact that at least one of the numerator or denominator

of (6.4) diverges with probability 1, so that the lim inf of the ratio depends with probability 1 on

the portion of behavior once the end component (B;C) has been entered. Since Nn
sa !1 for every

(s; a) 2 sa(B;C), and since the successor state t of a state-action pair s; a is chosen independently

each time according to the probability pst(a), by the strong law of large numbers we know that as

n!1, Mn
tjs;a ! pst(a) in distribution. Therefore, with probability 1 the limit (6.6) is equal to

lim inf
n!1

X
s;t2B

X
a2C(s)

Nn
sa pst(a) r(s; a; t)

X
s;t2B

X
a2C(s)

Nn
sa pst(a)w(s; t)

= lim inf
n!1

X
s2B

X
a2C(s)

Nn
saR(s; a)

X
s2B

X
a2C(s)

Nn
saW (s; a)

= lim inf
n!1

n�1X
k=0

R(Xk; Yk)

n�1X
k=0

W (Xk; Yk)

;

which concludes the proof.

The following corollary, consequence of the two preceding lemmas, summarizes the equivalence

of the two de�nitions of �P and �D.

Corollary 6.2 (use of R, W instead of r, w) De�nitions 5.8 and 6.2 are equivalent, in the sense

that the sets of formulas that hold at the various states of the product MDP are the same under both

de�nitions.

Using the result of this corollary, from this point on we base the de�nition of the logic on R and

W , using De�nition 6.2. To simplify the notation, we will write I and H in place of IRW and HRW ;

no confusion should arise, since the MDPs considered in the following are labeled only by R and W .

6.3 Decomposition in End Components

The intuitive justi�cation of Step 1, which decomposes �0 in maximal end components, is based

on the observation that De�nition 6.2 for the semantics of the long-run average operators �P and

�D depends entirely on the portion of behaviors towards in�nity. By Theorem 3.2 we know that

behaviors with probability 1 eventually follow end components. Thus, only the portion of behaviors

in their �nal end components matters, and we can study separately the behaviors depending on the

maximal end components in which they are eventually con�ned.

Step 2 is then justi�ed by Lemma 6.1. In fact, if all state-action pairs of an end component have

R =W = 0, then I does not hold for any behavior that follows the component forever, and the end
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component does not need to be further studied to determine the truth-values of �P, �D.

While the above reasoning might be fairly convincing, a rigorous justi�cation of the two steps is

somewhat involved. We chose to present the argument in detail, in order to introduce in a relatively

simple setting some proof techniques that will be used later in the chapter. To state the theorem,

let

L =
n
i 2 L j 8s 2 Si : s j=i �./a(	)

o
(6.7)

be the set of end components all whose states satisfy the formula �./a(	) being model checked. In

(6.7), the subscript i of j=i is a reminder that the truth value of �./a(	) is evaluated on the sub-

MDP (Si; Ai) rather than the complete MDP. Let Ms be de�ned as in Step 6 of the model-checking

algorithm.

Theorem 6.4 (correctness of the Decomposition Step) For every state s 2 S,

s j= �./a(	) i� Ms \ L � L :

Proof. We will assume that ./ is equal to �; the arguments for the other cases are analogous.

In one direction, assume that there is i 2Ms \L and t 2 Si such that t 6j=i ��a(	). This means

that from t there is a policy � for �i such that Pr�t (I ! lim infn!1Hn(!) < a) > 0. Since i 2Ms,

we can construct a policy �0 for s in �0 as follows: �0 tries to reach t, and upon reaching t imitates

�. Formally, for any �nite sequence of states s0; : : : ; sk and a 2 A(sk), the conditional probability

Q�0(a j s0; : : : ; sk) is de�ned as follows:

� if sj 6= t for all 0 � j � k, then Q�0(a j s0; : : : ; sk) = jA(sk)j
�1;

� if there is 1 � j � k such that sj = t, then Q�0(a j s0; : : : ; sk) = Q�(a j sl; : : : ; sk), where

l = minfj j sj = tg.

Under policy �0, a behavior from s reaches t with positive probability. Since �0 simulates � from t

onwards, we conclude Pr�
0

s (I ! lim infn!1Hn(!) < a) > 0, concluding the argument.

In the other direction, assume that for all i 2 Ms \ L and t 2 Si it is t j=i �./a(	). Let

� = s0a0s1 � � � sk be a �nite behavior pre�x such that sk 2
S
i2Ms\L

Si. Let j� be index of the MDP

where � ends, i.e. the unique j 2Ms \ L such that sk 2 Sj . De�ne the event ~� as follows:

Xi = si for 0 � i � k, Yi = ai for 0 � i < k, and (Xi; Yi) 2 sa(Sj� ; Aj�) for i � k.

Intuitively, event ~� states that a behavior �rst follows �, and then stays forever in the maximal end

component in which � ends. It is not di�cult to see that event ~� is measurable.

Since the set of all possible pre�xes � of the above form is enumerable, to show that Pr�s(I ^

lim infn!1Hn(!) < a) = 0 it su�ces to show that, for all �,

Pr�s

�
I ^ lim inf

n!1
Hn(!) < a

��� ~�� = 0 : (6.8)
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The reason why only the end components inMs\L have to be considered is that, by Theorem 3.2, a

behavior is eventually con�ned to an end component with probability 1. If the behavior is con�ned

to an end component (Si; Ai) with i 2 f1; : : : ; ng � L, then I does not hold on the behavior, so the

end components does not need to be considered.

Assume towards the contradiction that

Pr�s

�
I ^ lim inf

n!1
Hn(!) < a

��� ~�� > 0 (6.9)

for a speci�c �, and let j = j� to simplify the notation. De�ne the semi-policy ~� by

Q~�(a j last(�)�) = Q�(a j (\�)�) ;

where � is a �nite sequence of states of Sj , last(�) denotes the last state of �, \� denotes the

sequence of states obtained by removing the actions from �, and a 2 Aj(last(�)). Note that we use

the convention of denoting by �1�2 the concatenation of two sequences �1, �2. We say that this

policy is a semi-policy since it is possible that, for some t 2 Sj and �,

X
a2Aj(last(�))

Q~�(a j last(�)�) < 1 : (6.10)

This is due to the fact that, after following �, some behaviors might leave the end component (Sj ; Aj).

We can interpret this \missing probability" as the probability that a behaviors ends prematurely;

this is a point of view often adopted in the theory of stochastic processes and Markov chains (see,

for example, Kemeny, Snell, and Knapp [KSK66]). With this interpretation, we can associate to ~�

a sub-probability space de�ned on the in�nite behaviors. From the correspondence between � and

~� and from (6.9) we have that

Pr~�
last(�)

�
I ^ lim inf

n!1
Hn(!) < a

�
= Pr�s

�
I ^ lim inf

n!1
Hn(!) < a

��� ~�� > 0 :

We can then re-normalize ~�, yielding a policy �0 de�ned by

Q�0(a j last(�)�) =
Q~�(a j last(�)�)X

a2Aj(last(�))

Q~�(a j last(�)�)
;

for all a 2 Aj(last(�)) and all �nite sequences � of states of Sj . After this re-normalization step, we

have that

Pr�
0

last(�)

�
I ^ lim inf

n!1
Hn(!) < a

�
� Pr~�

last(�)

�
I ^ lim inf

n!1
Hn(!) < a

�
> 0 :
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This �nally yields the desired contradiction, since the existence of such an �0 indicates that last(�) 6j=j

��a(	).

6.4 MDP Transformation

Let � be a strongly connected MDP. In the remainder of this chapter, instead of considering the

MDP e� obtained by applying Algorithm 6.1 to �, we will study the alternative MDP b� obtained

by applying the following algorithm.

Algorithm 6.5 (I-transformation, version II)

Input: MDP � = (S;A; p;R;W ).

Output: MDP e� = (S; eA; ep; eR;fW ).

Method: For each s 2 S, let D(s) = fa 2 A(s) j R(s; a) = 0 ^ W (s; a) = 0g, and let

f(B1; D1); : : : ; (Bn; Dn)g = maxEC (S;D). De�ne

eA(s) =
(
fhs; ai j a 2 A(s)g if s 62

Sn
i=1 Bi;

fht; ai j t 2 Bi ^ a 2 A(t)�Di(t)g if s 2 Bi, 1 � i � n.
(6.11)

and

epsu(ht; ai) = ptu(a) eR(s; ht; ai) = R(t; a) fW (s; ht; ai) =W (t; a) (6.12)

for all s; u 2 S and ht; ai 2 eA(s).
The rationale for this substitution is that it is easier for technical reasons to reason about the

correspondence between � and b� than about the one between � and e�. The following theorem

justi�es the study of the new algorithm.

Theorem 6.5 (alternative algorithm for I-transformation) In Section 6.1.2, the quantities

computed in Steps 4, 5 and 6 do not change, if Algorithm 6.5 is used instead of Algorithm 6.1 in

Step 3.

Proof. Consider two states s; t 2 S of the MDP b�. By construction, if s; t 2 Bi for some 1 � i � n,

then bA(s) = bA(t), and for any other state u 2 S and a 2 bA(s) it is
bpsu(a) = bptu(a) bR(s; a) = bR(t; a) cW (s; a) = cW (t; a) :

This indicates that s; t are in fact identical copies. The MDP e� is obtained from b� by merging all

the identical copies corresponding to Bi into a single representative state esi, letting
ep
u;esi(a) = X

s2Bi

bpus(a)
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for every a 2 eA(s). From these considerations, we see that neither the graph-theoretic conditions

checked in Step 4 nor the solution of the linear programming problem of Step 5 are a�ected by the

substitution of e� with b�.

Showing the correctness of Algorithm 6.5. Let B =
Sn
i=1 Bi, D(s) =

Sn
i=1Di(s). For any

behavior !, we de�ne H�(!) � IR to be the set of accumulation points of the sequence Hn(!) for

n!1. Of course,

lim inf
n!1

Hn(!) = minH�(!) lim sup
n!1

Hn(!) = maxH�(!) :

To show the correctness of the algorithm, we will construct a relationship between the behaviors and

policies of � and the behaviors and policies of b�. The aim, ultimately, is to relate the probability

distribution of H�(!) in � and b�. We begin by relating the behaviors �rst.

6.4.1 Relating the Behaviors of � and b�
First, observe that a behavior of b� satis�es I with probability 1. This is stated in the following

lemma.

Lemma 6.3 For any s 2 S and any policy b� for b�, Prb�s (I) = 1. Thus, for any s 2 S and b� at

least one of the expectations

Eb�snn�1X
k=0

bR(Xk; Yk)
o

Eb�snn�1X
k=0

cW (Xk; Yk)
o

diverges as n!1.

Proof. The �rst statement follows from the fact that b�, by construction, does not contain any

end component consisting entirely of state-action pairs having bR = cW = 0. The result then follows

from the fact that, with probability 1, the set of state-action pairs repeated in�nitely often along a

behavior is an end component (Theorem 3.2). The second statement is an immediate consequence

of the �rst.

On the other hand, the probability that a behavior of � satis�es I is not necessarily 1. The

purpose of the transformation e�ected by Algorithm 6.5 is precisely to ensure that I holds with

probability 1. The MDPs having this property are said to be proper.

De�nition 6.3 (proper MDP) An MDP is proper if Lemma 6.3 holds for it.

We now construct a relation between the behaviors of � and those of b�. The relation is con-

structed in such a way that, if ! of � and b! of b� are related, written ! � b!, then H�(!) = bH�(b!),
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where bH� is computed using the labelings bR, cW . Since I holds on b� with probability 1, but I may

hold on b� with probability smaller than 1 for some initial states and policies, some behaviors of �

that do not satisfy I will not be related to any behavior of b�. On the other hand, all behaviors ofb� will be related to some behavior of �.

The intuition behind the de�nition of the relation is that a behavior ! 2 
s of � is related

to b! 2 b
s of b� if ! and b! coincide outside of B, and if whenever ! enters B at s and leaves it

afterwards by state-action pair t; a, behavior b! at s takes the action ht; ai.

Given two behaviors, ! for � and b! for b�, we say that ! � b! if ! and b! can be written as

in�nite sequences of the form:

b! = �0s0ht0; a0i �1s1ht1; a1i; : : :

! = �0|{z}
62B

s0�0t0a0| {z }
2B

�1|{z}
62B

s1�1t1a1| {z }
2B

: : : (6.13)

where, for all i � 0:

� si 2 B.

� f�igi2IN denotes a possibly empty sequence s0; a0; : : : ; sm; am with m � 0 and sk 62 B for

0 � k � m.1

� f�igi2IN denotes either the empty sequence �, or a sequence a0; s1; a1; : : : ; sm; am with m > 0

and sk 2 B, ak 2 D(sk), 1 � k � m. If � = �, we consider a sequence s�t to be an abbreviation

for the single state s, and we require that s = t holds.

6.4.2 Constructing Corresponding Policies

We now show how to construct a policy b� for b� given a policy � for �. The idea is that b� simulates
� outside of B, and \shortcuts" the portions of behaviors done inside B under �. The de�nition

relies on an in�nite set of clauses fAigi�0: clause Ai gives eQb�(a j �) for the case in which � contains

i sequences in B. We write eQb� instead of Qb� since eQb� is not a proper conditional probability, asP
a
eQb�(a j �) can be smaller than 1 in some cases; we will discuss this point later on.

We �rst list A0 and A1, to give the idea behind the construction of b�. In the following clauses,

u0; u1; u2 62 B.

� A0: eQb�(a j �0u0) = Q�(a j �0u0) (6.14)

1Of course, di�erent �i may refer to di�erent sequences, so that we should de�ne more properly �i :

s
i

0
; a
i

0
; : : : ; s

i

m
; a
i

mi
. We have retained the simpler notation for the sake of readability, hoping that no confusion

will arise.
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� A1:

eQb�(ht; ai j �1s1) =
P
�1
Pr�(�1s1�1t a)

Pr�(�1s1)
(6.15)

eQb�(a j �1s1ht1; a1i�2u2) =
P
�1
Pr�(�1s1 �1t1a1 �2u2a)P

�1
Pr�(�1s1 �1t1a1 �2u2)

(6.16)

To de�ne Ai for i � 0, we introduce the abbreviations

�i :=

iK
k=1

(�ksk�ktkak) b�i := iK
k=1

(�kskhtk ; aki)

for two related behavior segments of �, b�, where � is the sequence concatenation operator. Clause

Ai, for i � 0, is then given by:

eQb�(hti; aii j b�i�1�isi) =
X
�1����i

Pr�(�i�1�isi�itiai)

X
�1����i�1

Pr�(�i�1�isi)
(6.17)

eQb�(a j b�i�i+1ui+1) =
X
�1����i

Pr�(�i�i+1ui+1a)

X
�1����i

Pr�(�i�i+1ui+1)
(6.18)

where ui+1 62 B. We note that the summations in the above equations refer also to the occurrences

of �-sequences within the abbreviations �i, b�i.
Since the sequences appearing in the above clauses consist of both states and actions, they seem

to de�ne, rather than policies, extended policies that choose the next action with a probability that

depends not only on the past sequence of states, but also on the past sequence of actions. To show

that this is not the case, we will prove that the probability with which the next action is chosen

does not depend on the past sequence of actions.

We prove independence for a clause of type (6.17), for i > 0; the reasoning for (6.18) and (6.14)

is similar (in fact, simpler).

There are two cases. First, consider the occurrences of actions contained in �-sequences of

�i�1�isi�itiai or �i�1�isi. Then, since we sum over all �-sequences, the ratio (6.17) does not

depend on these actions.

Second, consider an occurrence of action in �i�1�isi that is not part of an �-sequence. Denote

by (�i�1�isi)[a] the result of replacing that occurrence with action a. For any two actions a, b, it is
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easy to see that

X
�1����i

Pr�
�
(�i�1�isi)[a]�itiai

�
X

�1����i�1

Pr�(�i�1�isi)[a]
=

X
�1����i

Pr�
�
(�i�1�isi)[b]�itiai

�
X

�1����i�1

Pr�(�i�1�isi)[b]
;

showing that de�nition (6.17) does not depend on the sequence of actions in it.

The policy b� de�ned by these clauses is a semi-policy, since for s 2 B and a generic past � it is

possible that X
ht;ai2bA(s)

eQb�(ht; ai j �s) < 1 : (6.19)

In fact, if a behavior in � has a non-zero probability of following forever (B;D) once entered, the

summation on the right hand side of (6.15) will be smaller than 1. We can interpret the \missing

probability" in (6.19) as the probability that the behavior in b� stops once reached s. The MDP b�,
under semi-policy b�, is thus a sub-stochastic process.

6.4.3 Model Checking on � and b�
Using the relationship developed between � and b�, we can �nally relate the model-checking problem
on these two MDPs. First, we show that the counterexamples to the speci�cation are preserved by

the transformation from � to b�.
To prove this result, we formalize our relation between behaviors in the two MDPs. Given a

behavior pre�x

� = b�i�iui (6.20)

of b� for i � 0 and ui 2 S, de�ne the set of related behaviors �(�) of � by

�(�) =
[

�1����i

�i�iui :

The following lemma relates the probability measures of � and �(�).

Lemma 6.4 For every behavior pre�x � of b�, it is
Prb�(�) = Pr�(�(�)) : (6.21)

Proof. The result is proved by induction on i in (6.20). The base case follows immediately from

(6.14). To prove the induction case, we generalize � to encompass behavior pre�xes that end with
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actions:

�(b�i) = [
�1����i

�i (6.22)

�(b�i�ua) = [
�1����i

�i�ua ; (6.23)

where ui 62 B. There are two induction cases, corresponding to (6.22) and (6.23).

The case corresponding to (6.22) is as follows. For i > 0, we would like to prove

Prb�(b�i�1�isihti; aii) = Pr�
� [
�1����i

�i�1�isi�itiai

�
: (6.24)

We have

Prb�(b�i�1�isihti; aii) = eQb�(hti; aii j b�i�1�isi) Prb�(b�i�1�isi) (6.25)

Pr�
� [
�1����i

�i�1�isi�itiai

�
=

X
�1����n

Pr�(�i�1�isi�itiai) : (6.26)

By induction hypothesis,

Prb�(b�i�1�isi) = X
�1����i�1

Pr�(�i�1�isi) ;

and the result (6.24) follows from (6.25), (6.26) and (6.17). From (6.24), since

bpsi;u(hti; aii) = pti;u(a)

we have

Prb�(b�i�1�isihti; aiiu) = Pr�
� [
�1����i

�i�1�isi�itiaiu

�
;

which concludes the �rst induction case. The other case, corresponding to (6.23), can be proved

similarly using (6.18).

Corollary 6.3 Consider a state s 2 S, a policy � for �, and the related semi-policy b� for b�. Let
L � IR be a subset of real numbers. Then,

Pr�s

�
I ^H�(!) \ L 6= ;

�
= Prb�s� bH�(!) \ L 6= ;

�
: (6.27)

Moreover, if b�0 is the policy obtained from the semi-policy b� by re-normalizing to 1 the summation
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of the conditional probabilities in (6.19), then

Pr�s

�
I ^ H�(!) \ L 6= ;

�
� Prb�0s �H�(!) \ L 6= ;

�
: (6.28)

Proof. The relation � on behavior pre�xes induces a relation ~� on behaviors: two behaviors are

related i� all their pre�xes are. Since the end components eliminated by Algorithm 6.5 are composed

of state-action pairs with both R = 0 and W = 0, behaviors related by ~� share the same set of limit

points for the sequence Hn. Precisely, if ! 2 ~�(b!), then H�(!) = bH�(b!). Moreover, I holds for a

behavior ! of � precisely if there is b! of b� such that ! 2 ~�(b!). Equation (6.27) follows from these

observations and from the previous lemma.

Relation (6.28) is a consequence of the fact that, after the re-normalization step, it is

Prb�s(! 2 G) � Prb�0s (! 2 G)
for any measurable set of behaviors G 2 Bs.

With the help of this lemma, we can relate the model-checking problem on � and b� as follows.

Theorem 6.6 (model checking on I-transformed MDPs) For MDPs � and b�, it is:
9� : Pr�s

�
I ! lim inf

n!1
Hn(!) ./ a

�
> 0 i� 9b� : Prb�s�lim inf

n!1

bHn(!) ./ a
�
> 0 (6.29)

for every a 2 IR, ./2 f�; <g and s 2 S. A similar relation holds for lim inf and ./2 f�; >g.

Proof. The left-to-right direction of the equivalence in (6.29) is a consequence of Corollary 6.2,

Lemma 6.3, and Corollary 6.3. We postpone a proof of the other direction, since the result will

follow more easily after an analysis of the model-checking problem on b�.

6.5 Reduction to Semi-Markov Optimization Problems

We now turn our attention to the model checking problem on the proper MDP obtained by using

Algorithm 6.5. We begin by studying the probability distribution of H� on �. Our intent is to show

that H� belongs with probability 1 to a set that can be characterized in terms of the state-action

frequencies arising from deterministic policies. This connection will enable us to reduce the model-

checking problem to maximization and minimization problems that are related to optimization

problems studied in the theory of semi-Markov decision processes.
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6.5.1 The Set �U of State-Action Frequencies

Let �� = f�1; : : : ; �mg be the set of state-action pairs of �, and de�ne for n � 0 the vector

vn =
1

n

h
Nn
�1
; : : : ; Nn

�m

i
;

where Nn
�1
; : : : ; Nn

�m
are the random variables denoting the number of times a behavior has taken

the state-action pairs �1; : : : ; �n before position n. Let v� be the set of accumulation points of the

sequence fvngn�0.

Given a policy � and a state s, de�ne also

u
�
s;n =

1

n

h
E�sfN

n
�1
g; : : : ;E�sfN

n
�m
g

i
: (6.30)

The elements of this vector are the expected state-action frequencies up to position n, measured

from state s under policy �. Let u�s;� be the set of accumulation points of the sequence fu�s;ngn�0.

De�ne U =
S
s2S;�2�

D
u
�
s;� to be the set of accumulation points corresponding to deterministic

policies. Finally, let �U be the convex hull of U . Notice that �U , considered in the extended real space

completed with the in�nity points, is a closed set, since there is only a �nite number of deterministic

policies.

The following theorem, due to Derman [Der64] (see also [Der70, Chapter 7]), relates �U to the

probability distribution of v�.

Theorem 6.7 (accumulation points of state-action frequencies [Derman, 1964]) For any

state s and any policy �,

Pr�s (v� �
�U) = 1 :

To use this result, we have to relate the accumulation points of the sequence fHngn�0 to the

ones of the sequence fvngn�0. First, we need a technical result about the points u 2 �U .

Lemma 6.5 If u 2 �U , then there is 1 � i � m such that ui > 0 and either R(�i) > 0 or W (�i) > 0.

Proof. Consider a deterministic policy � 2 �D. Note that

u
�
s;� =

n
[x�1(s; �); : : : ; x�m(s; �)]

o
; (6.31)

where x�(s; �) is the frequency of state-action pair � starting at state s under policy � (see Sec-

tion 3.3.3). The closed recurrent classes under � correspond to end components of the MDP. By

Algorithm 6.5 (or since the MDP is proper), each end component contains a state-action pair � such

that R(�) > 0 _W (�) > 0. Thus, it is

V (s; �) =

mX
i=1

x�i(s; �)W (�i) +

mX
i=1

x�i(s; �)R(�i) �R(�i)>0 > 0 ;



6.5. REDUCTION TO SEMI-MARKOV OPTIMIZATION PROBLEMS 123

where �R(�)>0 is equal to 1 if R(�) > 0, and is equal to 0 otherwise. De�ne

V � = min
�2�

D
;s2S

V (s; �) ;

since there are only �nitely many s 2 S and � 2 �D , it is V
� > 0. For any u 2 �U de�ne

V (u) =

mX
i=1

ui(s; �)W (�i) +

mX
i=1

ui(s; �)R(�i) �R(�i)>0 :

Since u 2 �U and since �U is the convex hull determined by all initial states and deterministic policies,

it is V (u) > V �, and this leads immediately to the result.

To relate the accumulation points H� and v�, given v de�ne

f(v) =

Pm
i=1 R(�i)viPm
i=1W (�i)vi

:

The following lemma relates H� to v� through the function f .

Lemma 6.6 Consider a behavior ! such that v� � �U . For any h 2 H�, there is v 2 v� such that

h = f(v).

Proof. Let h 2 H� be a limit point of the sequence fHngn�0. Then, there is a subsequence

fHnjgj�0 that has limit h, i.e. such that limj!1Hnj = h. Consider the corresponding subsequence

fvnjgj�0, and let v be a limit point of this sequence. Clearly, v 2 v�; it remains to be shown that

f(v) is well de�ned, and that h = f(v).

To show that f(v) is well de�ned, we must show that the the numerator and the denominator of

the fraction de�ning f(v) cannot be both 0. From Lemma 6.5, there is 1 � l � m such that vl > 0

and R(�l) > 0 _W (�l) > 0. We reason by cases.

� If W (�l) > 0, then the denominator cannot be 0.

� If R(�l) > 0, the numerator could be 0 only if R were negative for other state-action pairs.

This can happen only for P-experiments. By de�nition of r, w for P-experiments, R(�l) > 0

implies W (�l) > 0, indicating that the denominator is di�erent from 0.

In either case, the numerator and denominator cannot be both 0, as desired.

To show that h = f(v), let fvkigi�0 be a subsequence of fvnjgj�0 such that limi!1 vki = v.
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Clearly, it is also limi!1Hki = h. It is

Hn =

n�1X
k=0

R(Xk; Yk)

n�1X
k=0

W (Xk; Yk)

=

1

n

mX
l=1

Nn
�l
R(�l)

1

n

mX
l=1

Nn
�l
W (�l)

= f(vn) ;

so that Hki = f(vki). As f(v) is well de�ned, if jf(v)j < 1 the result follows from the continuity

of f(v) in v; if f(v) = �1, the result h = f(v) follows from the continuity of f when considered as

an extended function IRm 7! IR [ f1g.

Consider the set f( �U)
def
= fh 2 IR[f�1g j 9u 2 �U :h = f(u)g. We have the following corollary.

Corollary 6.4 For every state s and policy �, Pr�s (H� � f( �U)) = 1.

Proof. Immediate consequence of Theorem 6.7 and Lemma 6.6.

Using this corollary, we can �nally relate our model-checking problem to the value of f over the

set �U .

Corollary 6.5 If

min
u2 �U

f(u) ./ a ;

with ./2 f�; >g, then for every state s and policy �, Pr�s (lim infn!1Hn ./ a) = 1. Similarly, if

max
u2 �U

f(u) ./ a ;

with ./2 f�; <g, then for every state s and policy �, Pr�s (lim supn!1Hn ./ a) = 1.

Proof: immediate. Note that the use of max and min in the statement of the corollary is justi�ed,

since �U is a closed set.

6.5.2 Reduction to Optimization Problem

By Corollary 6.5, the model-checking problem of the operators �P and �D is related to the problem of

�nding the minimum and maximum values of f(u) for u 2 �U . These values can be found by solving

an optimization problem on the MDP, as we will now show.

For a deterministic (or in fact, Markovian) policy �, we have already remarked that

u
�
s;� =

n
[x�1(s; �); : : : ; x�m(s; �)]

o
;
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so that the vector u�s;� consists of the state-action frequencies corresponding to policy � from state

s. A vector u 2 �U can thus be written as

u =
X

s2S;�2�
D

cs;� u
�
s;� (6.32)

for some set of coe�cients fcs;�gs2S;�2�
D
, where 0 � cs;� � 1 for all s 2 S; � 2 �D, andP

s2S;�2�
D
cs;� = 1.

We would like to show that the vector u corresponds to the state-action frequencies of some

policy �(u), where we write � as a function of u to emphasize the dependency. To this end, we �rst

show that for each s 2 S we can replace a deterministic policy � 2 �D with a policy �[s] such that

u
�[s]
t;� = u

�
s;� for all t 2 S. In words, policy �[s] starting from any state gives rise to the same u-vector

as policy � from s. The policy �[s] is history-dependent, and for n � 0 and any sequence of states

s0; : : : ; sn, the conditional probability Q�[s](a j s0; : : : ; sn) is de�ned as follows, for all a 2 A(sn):

� if s = si for some 0 � i � n, then Q�[s](a j s0; : : : ; sn) = Q�(a j sn);

� if s 6= si for all 0 � i � n, then Q�[s](a j s0; : : : ; sn) = jA(sn)j
�1.

Since the MDP is strongly connected, state s is reached with probability 1 and within a �nite

expected number of steps from any state. From this, it is easy to see that u
�[s]
t;� = u

�
s;� for all t 2 S,

as desired. We can thus write

u =
X

s2S;�2�
D

cs;� u
�[s]
t;� (6.33)

for any t 2 S. The advantage of this form, compared to (6.32), is that we can assume that the

state-frequencies of the policies on the right-hand side are obtained when starting from a �xed state

t, equal for all the vectors u
�[s]
t;� being combined.

Once the dependency from the initial state is eliminated, to obtain the policy �(u) corresponding

to u we must somehow \mix" the policies according to (6.33). This \mix" can obtained as indicated

by Derman [Der70, Chapter 7, Theorem 1]; see also Derman and Strauch [DS66] and Strauch and

Veinott [SV66].

Theorem 6.8 (state-action frequencies correspond to policies) For every u 2 �U and t 2 S,

there is a policy �(u) such that u
�(u)
t;� = fug.

Proof. The result follows from (6.33) and from [Der70, Chapter 7, Theorem 1].

Consider now an arbitrary vector u = [x�1 ; : : : ; x�m ]. For policy �(u) and any s 2 S we can
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write:

f(u) =

mX
i=1

x�iR(�i)

mX
i=1

x�iW (�i)

= lim
n!1

mX
i=1

1

n
E�(u)s fNn

�i
gR(�i)

mX
i=1

1

n
E�(u)s fNn

�i
gW (�i)

= lim
n!1

E�(u)s

n mX
i=1

Nn
�i
R(�i)

o

E�(u)s

n mX
i=1

Nn
�i
W (�i)

o = lim
n!1

E�(u)s

nn�1X
k=0

R(Xk; Yk)
o

E�(u)s

nn�1X
k=0

W (Xk; Yk)
o :

Thus, if we introduce the quantities

J��s = lim inf
n!1

E�s

nn�1X
k=0

R(Xk; Yk)
o

E�s

nn�1X
k=0

W (Xk; Yk)
o J�+s = lim sup

n!1

E�s

nn�1X
k=0

R(Xk; Yk)
o

E�s

nn�1X
k=0

W (Xk; Yk)
o (6.34)

for every policy � and s 2 S, we have that f(u) = J
�(u)�
s = J

�(u)+
s for every u 2 �U and s 2 S.

De�ne

J
�

s = inf
�2�

J��s J
+

s = sup
�2�

J�+s :

First, we show that the values of J
�

s and J
+

s , do not depend on the state s of a strongly connected,

proper MDP � = (S;A; p;R;W ).

Lemma 6.7 In a strongly connected, proper MDP, the values of J
�

s , J
+

s do not depend on s.

Proof. Consider any policy � and state s. Given another state t, we can construct a history-

dependent policy �s for t as follows. For n � 0, any sequence of states s0 � � � sn, and a 2 A(sn), the

conditional probability Q�s(a j s0 � � � sn) is de�ned as follows:

� if s 6= si for all 0 � i � n, then Q�[s](a j s0 � � � sn) = jA(sn)j
�1;

� if s = si for some 0 � i � n, then Q�s(a j s0 � � � sn) = Q�(a j sk � � � sn), where k = minfi j si =

sg.

Until s is reached, �s chooses at every state u 6= s an action from A(u) uniformly at random. Since

the state space is connected, s will be reached in �nite expected time. After reaching s, �s behaves

exactly like �, \forgetting" the past up to s. Since s is reached in a �nite expected number of steps,

J�s = J
�s
t . Since � is arbitrary, we have J

�

s � J
�

t . From the arbitrariness of s; t we can conclude

J
�

s = J
�

t . An analogous reasoning proves the result for J
+

s .
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As J
�

s does not depend from s, we will denote the common value by J
�

. Putting together the

above arguments, we obtain the following results.

Lemma 6.8 For each u 2 �U and each state s, there is a policy �(s;u) such that f(u) = J
�(s;u)�
s =

J
�(s;u)+
s .

Proof. Consequence of Theorem 6.8 and of the previous considerations on f(u) and J .

Theorem 6.9 (model-checking and optimization of J) In a strongly connected and proper

MDP, for any s and any � it is

Pr�s

�
lim inf
n!1

Hn � J
�

�
= 1 Pr�s

�
lim sup
n!1

Hn � J
+
�
= 1 :

Thus, the following statements hold for all s 2 S:

./ 2 f�; >g : J
�

./ a i� 8� : Pr�s(lim inf
n!1

Hn ./ a) = 1 (6.35)

./ 2 f�; <g : J
+

./ a i� 8� : Pr�s(lim sup
n!1

Hn ./ a) = 1 : (6.36)

Proof. The �rst statement is a consequence of Corollary 6.5 and of the previous analysis. In the

left-to-right directions, the equivalences (6.35) and (6.36) are a consequence of the �rst statement.

The proof of the right-to-left direction is postponed.

This theorem indicates that to solve the model-checking problem for operators �P and �D, it su�ces

to compute the maximum and minimum values of J in the MDP. This is the problem that we solve

in the following section.

We conclude the section with a lemma that is the counterpart for J of Lemma 6.6.

Lemma 6.9 For any s and policy �, de�ne J
�
s;� to be the set of accumulation points of the sequence

E�s

nn�1X
k=0

R(Xk; Yk)
o

E�s

nn�1X
k=0

W (Xk; Yk)
o

for n!1. Then, for every 
 2 J
�
s;� there is u 2 �U such that 
 = f(u).
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Proof. First, note that

E�s

nn�1X
k=0

R(Xk; Yk)
o

E�s

nn�1X
k=0

W (Xk; Yk)
o =

E�s

n mX
i=1

Nn
�i
R(�i)

o

E�s

n mX
i=1

Nn
�i
W (�i)

o :

Since 
 2 J�s;�, there is a subsequence fnkgk�0 of 0; 1; 2; : : : such that


 = lim
k!1

E�s

n mX
i=1

Nnk
�i
R(�i)

o

E�s

n mX
i=1

Nnk
�i
W (�i)

o = lim
k!1

mX
i=1

1

nk
E�sfN

nk
�i
gR(�i)

mX
i=1

1

nk
E�sfN

nk
�i
gW (�i)

:

From the sequence fnkgk�0 we can extract a subsequence fnlgl�0 such that liml!1 u
�
s;nl

= u, for

some u 2 �U . Reasoning as in the proof of Lemma 6.6, using again Lemma 6.5, it can be proved that


 = f(u), concluding the proof.

6.6 Computing the Maximum and Minimum Values of J

6.6.1 Semi-Markov Decision Processes

The problem of computing the maximum and minimum values of J on an MDP is closely related

to the problem of the computation of the maximum and minimum average reward of semi-Markov

decision processes. Semi-Markov decision processes have been described in Jensen [Jen53], Howard

[How60, How63], De Cani [DC64], Veinott [Vei69], Ross [Ros70b, Ros70a]; we will essentially follow

the presentation of Bertsekas [Ber95]. A semi-Markov decision process is an MDP in which to each

state s and action a 2 A(s) are associated two quantities:

� An average permanence time W (s; a), subject to

8s 2 S; 8a 2 A(s) : W (s; a) > 0 (6.37)

which represents the average time for which the process remains at s when action a is chosen.

� A reward R(s; a) received when action a is chosen at state s. The reward R(s; a) is generally

related to W (s; a) by R(s; a) = �R(s; a)W (s; a), where �R(s; a) is the instantaneous reward of

action a at s.

Given a policy �, the average rewards J��s , J�+s from a state s under � are de�ned precisely as in

(6.34). The optimization problem for the average reward of a semi-Markov decision process consists
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in computing J
�

, J
+

, and in computing the policies that lead to this minimum and maximum

average rewards.

The aim of the previous subsections was to reduce the model-checking problem for operators �P

and �D to the problem of the computation of the minimum and maximum average rewards of a semi-

Markov decision problem. While Theorem 6.9 appears to be accomplishing such a reduction, the

reduction is in fact incomplete. In fact, the traditional analysis of semi-Markov decision problems

relies on assumption (6.37), which enables the use of the uniformation technique described by Jensen

[Jen53], Howard [How60], Veinott [Vei69] and [Sch71] (an account of the technique can also be found

in [Ber95]). Most of the known results for semi-Markov problems depend on this technique, and

thus on assumption (6.37); this includes the results presented in Ross [Ros70b, Ros70a], Puterman

[Put94] and Bertsekas [Ber95]. Thus, while we will be able to borrow from the usual development

of the subject many concepts and ideas, we will have to follow a di�erent path to get the desired

results, and we will have to provide independent proofs of our statements.

In passing, we note that the de�nition (6.34) of the average reward of semi-Markov decision

processes does not intuitively correspond to the concept of average reward of a policy �. In a later

section, we will propose an alternative quantity H , de�ned by

H��
s = E�s

n
lim inf
n!1

Hn(!)
o

H�+
s = E�s

n
lim sup
n!1

Hn(!)
o
: (6.38)

We will show that this quantity re
ects better the intuitive notion of long-term average reward of

a semi-Markov process, and we prove that, if the MDP is strongly connected, then H
�

= J
�

and

H
+

= J
+

, settling a long-standing question in the theory of Markov decision processes. We will also

provide an algorithm for the computation of H
�

s on general (not necessarily strongly connected)

semi-Markov decision processes.

6.6.2 Computing J for Markovian and Unichain Policies

Before dealing with the general case of history-dependent policies, we study the properties of J

under Markovian policies. The results will be used in many subsequent proofs, and will also be of

help in understanding the relationship between J and H .

Given a Markovian policy �, de�ne the column vectors R� = [R�s ]s2S and W � = [W �
s ]s2S by

R�s =
X

a2A(s)

R(s; a)Q�(a j s) W �
s =

X
a2A(s)

W (s; a)Q�(a j s) (6.39)

for all s 2 S. Moreover, de�ne the transition matrix P� = [p�st]s;t2S by

p
�
st =

X
a2A(s)

pst(a)Q�(a j s) (6.40)
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for all s; t 2 S. The limiting matrix P �
� = [p�;�st ]s;t2S is de�ned by

P �
� = lim

n!1

1

n

n�1X
k=0

P k� ;

similarly to (6.2): the element p�;�st indicates the long-run average fraction of time spent in t when

starting at state s. The following theorem computes J�+s = J��s for a Markovian policy � as a

function of these vectors and matrices.

Theorem 6.10 (J under Markovian policies) Given a Markovian policy �, it is

J�+s = J��s =
�X
t2S

p
�;�
st R

�
t

� . �X
t2S

p
�;�
st W

�
t

�
(6.41)

for all s 2 S.

Proof. It is

1

n
lim sup
n!1

E�s

nn�1X
k=0

R(Xk; Yk)
o
=

1

n
lim sup
n!1

n�1X
k=0

(P k�R�)s = (P �
�R�)s ;

where (v)s denotes the component s of vector v. An analogous expression holds forW . By comparing

these expressions with (6.34) and using Lemma 6.3, we have J�+s = (P �
�R�)s=(P

�
�W �)s, which is

equivalent to (6.41).

This theorem also indicates that if � is Markovian then J�+s = J��s ; we will denote this common

value simply as J�s .

We now de�ne unichain policies, for which the above relations assume a particularly simple form

(see, for example, Bertsekas [Ber95]).

De�nition 6.4 (unichain policies) A Markovian policy � is unichain if the Markov chain de�ned

by the state space S and the transition matrix P� has a single closed recurrent class.

If � is unichain, then standard results on Markov chains ensure that p�;�ts = p�;�us for all s; t; u 2 S

(see, for example, Kemeny, Kendall, and Snell [KSK66]). This means that the long-run average

fraction of time spent at a state does not depend on the initial state. We can thus de�ne the steady-

state vector �� = [��s ]s2S by ��s = p
�;�
ts for all s 2 S, where t 2 S is arbitrary. If � is unichain, J�s

does not depend from s 2 S, and by Theorem 6.10 it is J�s = (��R�)=(��W �).

6.6.3 Computing J
�

and J
+

To compute the minimum and maximum values for J , it is convenient to introduce the concept of

optimal policies for J .
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De�nition 6.5 (optimal policies) If a policy � is such that J�+s = J
+

for all states s, then we

say that � is optimal for J
+

. A similar de�nitions applies J
�

.

The �rst step in the computation of J
�

and J
+

consists in checking whether these quantities are

�nite. This can be done with the following theorem, which parallels Algorithm 6.2.

Theorem 6.11 (convergence of J
+

and J
�

) Consider a proper MDP (S;A; p;W;R). The fol-

lowing assertions hold:

1. �1 < J
�

and �1 < J
+

.

2. If 	 is a P-experiment, then J
+

<1, J
�

<1.

3. If 	 is a D-experiment, the convergence of J
+

can be determined as follows. For s 2 S,

let B(s) = fa 2 A(s) j W (s; a) = 0g be the set of actions having W = 0. Let

(C1; D1); : : : ; (Cm; Dm) be the maximal end components of (S;B). Then, J
+

=1 i� there are

j 2 [1::m], s 2 Cj and a 2 Dj(s) such that R(s; a) > 0.

4. If 	 is a D-experiment, J
�

=1 i� both of the following conditions hold:

(a) for all s 2 S and a 2 A(s), W (s; a) = 0;

(b) there are s 2 S and a 2 A(s) such that R(s; a) > 0.

Moreover, for the cases in which J
+

(resp. J
�

) diverge, there is an unichain policy � such that

J�s = +1 (resp. J�s = �1) for all s.

Proof.

1. For a state-action pair � 2 ��, it can be R(�) < 0 only if 	 is a P-experiment, in which case

R(�) < 0 implies W (�) > 0. Let �>0 = f� 2 �� j W (�) > 0g; the result follows from the fact

that the ratio jR(�)=W (�)j is bounded on �>0.

2. If 	 is a P-experiment, the result follows as before from the observation that jR(�)=W (�)j is

bounded on �>0.

3. First, assume there are j 2 [1::m], s 2 Cj and a 2 Dj(s) such that R(s; a) > 0. Consider the

Markovian policy � de�ned as follows:

� for s 2 Cj , let Q�(a j s) = jDj(s)j
�1 if a 2 Sj(s) and Q�(a j s) = 0 otherwise;

� for s 62 Cj , let Q�(a j s) = jA(s)j�1.

Again, � is unichain, since the MDP under � has Cj as its single closed recurrent class.

Moreover, while in Cj only actions from Dj are taken, and for all � 2 sa(Cj ; Dj) it isW (�) = 0.
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Since for at least one � 2 sa(Cj ; Dj) it is R(�) > 0, it is J� = (��R�)=(��W �) = 1, which

implies J
+

=1.

Conversely, assume that for every end component (C;D), if there is � 2 sa(C;D) with R(�) > 0,

then there also is � 2 sa(C;D) such thatW (�) > 0. Consider any accumulation point u 2 u�s;�

corresponding to any state s and deterministic policy � 2 �D. Since the closed recurrent

classes of deterministic policies correspond to end components, the assumption insures that

there is M such that f(u) < M . Hence, f(u) < M for all u 2 �U . By Lemma 6.9, J
+

= f(u)

for some u 2 �U , and this implies J
+

< M , concluding the argument.

4. First, suppose that Conditions (4a) and (4b) hold. From Lemma 6.3 we know that along

a behaviors there are with probability 1 in�nitely many position k such that R(Xk; Yk) >

0. Thus, for any state s and any policy �, limn!1 E�sf
Pn�1
k=0 R(Xk; Yk)g = 1 while

limn!1 E�sf
Pn�1
k=0 W (Xk; Yk)g = 0. As J��s =1 for all s, �, we have J

�

=1. The policy �u

that chooses at each state an action with uniform probability is unichain, and is such J�u =1.

Conversely, assume that at least one of Conditions (4a) and (4b) does not hold. Since the

MDP is proper, it cannot be the case that R(�) =W (�) = 0 for all state-action pairs � 2 ��.

Thus, it must be the case that there is at least one state-action pair (t; b) 2 �� with W (t; b) >

0. Let � be the Markovian policy that at every state s chooses an action from A(s) with

uniform probability. Since the MDP is strongly connected and proper, � is unichain, yielding

J� = (��R�)=(��W �). Since �s > 0 for all s 2 S, and since w�t > 0, this ratio cannot be

in�nite. Hence, J�� <1, and thus J
�

<1.

6.6.4 Computation of J
�

, J
+

on PBC MDP

First, observe that by considering an MDP in which the sign of R(�) has been reversed, for all � 2 ��,

the problem of computing J
+

on the original MDP can be reduced to the problem of computing J
�

on the new MDP. This latter is the problem we will study in this subsection.

While the algorithms we present could work also for MDPs on which J
�

is equal to �1, depend-

ing on the implementation details, we will present them only for bounded MDPs, which are de�ned

as follows.

De�nition 6.6 (bounded MDPs) We say that a strongly connected, proper MDP is bounded if

�1 < J
�

< +1.

To check whether an MDP is bounded, we can use Theorem 6.11 to determine whether J
�

or

J
+

are bounded. This is done before the reduction to the computation of J
�

.

For the sake of conciseness, we will call a strongly connected, proper and bounded MDP an

CPB MDP. For a CPB MDP, we will show that the value of J
�

be computed by solving a system
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of equations known as the Bellman equations for semi-Markov processes. This approach has been

described by Howard [How60], De Cani [DC64], Veinott [Vei69] and Ross [Ros70b]; a more recent

account is provided by Bertsekas [Ber95, Volume II]. Precisely, we show that the system of equations

hs = min
a2A(s)

�
R(s; a)� �W (s; a) +

X
t2S

pst(a)ht

�
; s 2 S (BEQ)

known as the Bellman equations for semi-Markov decision processes, always have at least one solution

in a CPB MDP, and that the value of � at the solutions is equal to J
�

. We �rst show existence of

the solutions; then, we show that the value of � at the solution is equal to J
�

. Last, we will see

how the value of J
�

can be computed by solving a linear programming problem derived from these

equations.

Theorem 6.12 (existence of solutions to the Bellman equations) On a CPB MDP, the

equations (BEQ) always have at least one solution.

The standard proof of this result relies either on uniformation techniques (see Jensen [Jen53],

Howard [How60] and Veinott [Vei69]) or on a connection with the stochastic shortest path problem,

if all policies are unichain (see Bertsekas [Ber95, Volume II, x 5.3]). These two techniques cannot be

applied to our case: uniformation requires that W (s; a) > 0 for all s 2 S, a 2 A(s), which does not

necessarily hold for our MDPs due to the de�nition of product of a TPS with an experiment. The

connection with stochastic shortest path problems also does not help, since we have no guarantee

that all Markovian policies are unichain in our MDPs. We base our proof on a connection with the

average reward problem. This connection is in the same spirit of the one with the shortest path

problem presented in [Ber95, Volume II, x 5.3], but it turns out to be of greater generality.

Proof. De�ne a new labeling g on the MDP by g(s; a) = R(s; a)�J
�

W (s; a) for all s 2 S, a 2 A(s).

The average g-reward at s for policy �, denoted by Vs, is de�ned by

V �s = lim inf
n!1

1

n
E�s

nn�1X
k=0

g(Xk; Yk)
o
= lim inf

n!1

1

n
E�s

nn�1X
k=0

[R(Xk; Yk)� J
�

W (Xk; Yk)]
o
: (6.42)

Let V �
s = inf� V

�
s ; since classical results ensure that V �

s does not depend on s (this can also be

proved in a similarly way to Lemma 6.7), we can write simply V �.

First, we show that V � = 0. In fact, by de�nition of J
�

we have

inf
s;�

lim inf
n!1

2
66664
E�s

nn�1X
k=0

R(Xk; Yk)
o

E�s

nn�1X
k=0

W (Xk; Yk)
o � J

�

3
77775 = 0 : (6.43)
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Notice that W (Xk; Yk) � 0 for all k � 0, and

lim
n!1

E�s

nn�1X
k=0

W (Xk; Yk)
o
> 0 (6.44)

for at least some policy �. In fact, if (6.44) did not hold, from (6.43) and Lemma 6.3 it would be

J
�

= 1, contradicting the fact that the MDP is bounded. Thus, from (6.43) upon multiplication

we obtain

0 = inf
s;�

lim inf
n!1

�
1

n
E�s

nn�1X
k=0

R(Xk; Yk)
o
� J

� 1

n
E�s

nn�1X
k=0

W (Xk; Yk)
o�

= inf
s;�

lim inf
n!1

1

n
E�s

�n�1X
k=0

h
R(Xk; Yk)� J

�

W (Xk; Yk)
i�

;

which by comparison with (6.42) yields V � = 0. From classical results about the average cost of an

MDP, we know then that the Bellman equations

hs = min
a2A(s)

�
g(s; a) +

X
t2S

pst(a)ht

�
; s 2 S

have at least one solution [h�s ]s2S [Der70]. Substituting W (s; a)� J
�

R(s; a) for g(s; a), we see that

this equation is the same as (BEQ) with � = J
�

. This indicates that (BEQ) admits at least the

solution J
�

; [h�s ]s2S .

Theorem 6.13 (optimality of solutions) If (BEQ) admits a solution ��; [h�s ]s2S, then �
� = J

�

.

Moreover, consider any policy � that chooses, at each s 2 S, only actions that realize the minimum

of the right hand side of (BEQ). Then, J��s = J
�

, for all s 2 S.

Proof. This proof is modeled after the one of [Ber95, Chapter 5, Proposition 3.1]; the only di�erence

being that since W can be equal to 0, we must pay attention to the convergence (or lack thereof)

of the limits of the expectations. Consider a policy � 2 �D, and let h� = [h�s ]s2S . From (BEQ) we

have

h
�
� R� � ��W � + P �h� (6.45)

� R� � ��W � + P �(R� � ��W � + P �h�)

= R� + P�R� � ��(W � + P�W �) + P 2
�h

�

� � � �

�

�n�1X
k=0

P k�

�
R� � ��

�n�1X
k=0

P k�

�
W � + Pn� h

�
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where the inequalities are interpreted componentwise. Reordering the terms, we have

�n�1X
k=0

P k�

�
R� � ��

�n�1X
k=0

P k�

�
W � � h

�
� Pn� h

�

for n � 0. For a general (not necessarily Markovian) policy �, a similar analysis yields

E�s

�n�1X
k=0

R(Xk; Yk)

�
� ��E�s

�n�1X
k=0

W (Xk; Yk)

�
� h�s � E�sfh

�
Xn
g (6.46)

for all s 2 S. Since all policies (including �) are proper, we know that at least one of the two

expectations on the left hand side of (6.46) diverges as n!1. We consider the two cases separately.

1. If E�s

nPn�1
k=0 W (Xk; Yk)

o
diverges as n!1, we can divide by it, obtaining

E�s

�n�1X
k=0

R(Xk; Yk)

�

E�s

�n�1X
k=0

W (Xk; Yk)

� � �� �
h�s � E�sfh

�
Xn
g

E�s

�n�1X
k=0

W (Xk; Yk)

� :

Since h�s � E�sfh
�
Xn
g is bounded as n ! 1, the right hand side goes to 0 as n ! 1, and we

�nally obtain

J��s = lim inf
n!1

E�s

�n�1X
k=0

R(Xk; Yk)

�

E�s

�n�1X
k=0

W (Xk; Yk)

� � �� : (6.47)

2. If E�s

nPn�1
k=0 W (Xk; Yk)

o
does not diverge as n ! 1, then E�s

nPn�1
k=0 R(Xk; Yk)

o
must di-

verge, by Lemma 6.3. Thus, from

E�s

�n�1X
k=0

R(Xk; Yk)

�
� h�s � E�sfh

�
Xn
g+ ��E�s

�n�1X
k=0

W (Xk; Yk)

�

and from

lim
n!1

E�s

�n�1X
k=0

R(Xk; Yk)

�
=1 lim

n!1
E�s

nn�1X
k=0

W (Xk; Yk)
o
<1

we obtain (6.47) once again.

In both cases, we can conclude J��s � ��.

To show that indeed J
�

= ��, let � be a policy that chooses at each state s 2 S one of the



136 CHAPTER 6. VERIFICATION OF LONG-RUN AVERAGE PROPERTIES

actions that attain the minimum in (BEQ). The above reasoning can be repeated, yielding (6.45),

(6.46) and (6.47) with the inequality replaced by equality. Thus, J�s = ��. Combining this result

with J�s � �� for all �, we obtain J
�

= ��, as desired. This also proves the second assertion of the

theorem.

Given a solution ��; [h�s ]s2S of (BEQ), we say that a policy � corresponds to the solution if, at

each state s, it chooses only actions of A(s) that realize the minimum of the right hand side of

(BEQ). Since this set of eligible actions depends only on the state s, we have the following corollary.

Corollary 6.6 (existence of deterministic optimal policies) The following assertions hold:

1. There is at least one deterministic policy � that corresponds to a solution of (BEQ), and that

satis�es J�s = J
�

, for all s 2 S.

2. Let (B1; D1); : : : ; (Bn; Dn) be the end components considered in Algorithm 6.5. Then, there

is a deterministic optimal policy that corresponds to a solution of (BEQ) and that satis�es

J�s = J
�

for all s 2 S, and additionally that chooses at every s 2 Bi the same state-action

pair hai; tii 2 A(s), for every 1 � i � n.

Proof. The �rst assertion follows from the previous remarks. The second one follows from the

fact that, by construction, all states in Bi share the same actions, cost of the actions, and action

destinations, so that (BEQ) behaves in the same way at all states of Bi, for i � i � n.

The value of J
�

can be determined by solving a linear programming problem derived from

(BEQ), as explained for example in Puterman [Put94] or Bertsekas [Ber95].

Theorem 6.14 (linear programming solution of Bellman equations) Consider the following

linear programming problem, with variables �, fhsgs2S:

Maximize � subject to

hs � R(s; a)� �W (s; a) +
X
t2S

pst(a)ht s 2 S; a 2 A(s) :

The following assertions hold:

1. the problem admits at least one solution;

2. the variable � assumes the same value �� at all solutions;

3. J
�

= ��.

Proof. Clearly, a solution to (BEQ) is a feasible solution of the linear programming problem.

Conversely, if ��; [h�s ]s2S is a feasible solution of the linear programming problem, by reasoning in

an analogous way to the proof of Theorem 6.13 we see that J�s � �� for any s and any proper �,

implying J
�

� ��.
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6.7 The Correctness Proof

In order to complete the correctness proof of the model-checking algorithm for operators �P and �D,

we need to complete the proofs of Theorem 6.6 and 6.9, and to put all the results together. We

begin by completing the proofs of the two theorems.

Proof of Theorem 6.9 (second part). We prove the right-to-left direction of equivalence (6.35)

for the case in which ./ is �; the other cases can be proved similarly. In fact, rather than the

right-to-left implication, we prove the counterpositive:

For all states s, if J
�

< a then there is � such that Pr�s(lim infn!1Hn � a) < 1.

We �rst consider the case in which J
�

> �1. Assume thus �1 < J
�

< a. By Corollary 6.6, there is

a deterministic policy � such that J�s = J
�

. Let C1; : : : Cm � S be the closed recurrent classes of the

Markov chain corresponding to the MDP under �, and let �1 = [�1t ]t2C1 , . . . , �m = [�mt ]t2C1 be the

steady state distributions of classes C1, . . . , Cm when considered in isolation. From Theorem 6.10,

we have

J�s =

X
t2S

p
�;�
st R

�
tX

t2S

p
�;�
st W

�
t

=

Pm
j=1 qsjrjPm
j=1 qsjwj

; (6.48)

where

qsj =
X
t2Cj

p�;�st rj =
X
t2Cj

�jtR
�
t wj =

X
t2Cj

�jtW
�
t

for all 1 � j � m. Since � is optimal for J , it must be

r1

w1
= � � � =

rm

wm
= J : (6.49)

To see this, assume towards the contradiction that there are 1 � i; j � m with ri=wi < rj=wj . Then,

for s 2 Ci, t 2 Cj , it would be J�s = ri=wi < rj=wj = J�s , contradicting the fact that J�s does not

depend on s, since � is optimal.

Consider the behaviors that eventually reach Cj , with 1 � j � m. For these behaviors, with

probability 1 it is

lim
n!1

n�1X
k=0

R(Xk; Yk)

n�1X
k=0

W (Xk; Yk)

=
rj

wj
:

Thus, since all behaviors enter one of C1; : : : ; Cm with probability 1,

Pr�s

�
lim
n!1

Hn = J
�

�
= 1 ; (6.50)
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and the result then follows from the fact that J
�

< a.

If J� = �1, by Theorem 6.11 there is an unichain policy � such that J�s = �1. Reasoning as

above, it is easy to see that (6.50) holds also in this case.

Proof of Theorem 6.6 (second part). We must prove the right-to-left direction of (6.29), i.e.

if 9b� : Prb�s�lim inf
n!1

bHn(!) ./ a
�
> 0 then 9� : Pr�s

�
I ! lim inf

n!1
Hn(!) ./ a

�
> 0

where ./2 f�; <g; the other case is similar. To facilitate the proof of the subsequent Corollary 6.7

we do a bit of extra work in this proof. We show that if the left hand side of the above implication

holds, not only we can �nd a policy � for the right hand side, but we can also choose � from the set

of unichain policies.

Assume that there is a policy b� such that

Prb�s�lim inf
n!1

bHn(!) ./ a
�
> 0 :

From Corollary 6.4, it is lim infn!1
bHn(!) 2 �U with probability 1. Using Lemma 6.8, we have

therefore that J� ./ a.

If J
�

= �1, from the structure of Algorithm 6.5 and from the divergence criteria stated in

Theorem 6.11 we easily see that we can directly construct an unichain policy � for � such that

Pr�s

�
lim
n!1

Hn(!) = �1

�
= 1 :

If J� > �1, let �d be the deterministic policy having the properties stated by Corollary 6.6, Part 2.

Our �rst step in constructing � consists in obtaining an unichain policy �u for b� such that

J�u = J�. If �d is already unichain, we take simply �u = �d. Otherwise, �d will give rise to some

closed recurrent classes; let them be C1; : : : ; Cm. By repeating the analysis of the previous proof,

(6.49) applies also to these classes. We now construct a Markovian policy �u in such a way that C1

is its only recurrent class. Policy �u is de�ned as follows:

� On s 2 C1, policy �u coincides with �d.

� On s 62 C1, policy �u chooses an action from bA(s) uniformly at random.

Since the MDP is strongly connected, �u has C1 as single closed recurrent class, and by comparison

with (6.49) we see that J�us = J� for all s. Proceeding as in the previous proof, we can show that

Pr�us

�
lim
n!1

bHn(!) = J�
�
= 1 : (6.51)
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From �u we can construct a policy � for � as follows. Let (B1; D1); : : : ; (Bn; Dn) be the end

components considered in Algorithm 6.5. Note that for each 1 � i � n, it is either Bi � C1 or

Bi \C1 = ;: this is a consequence of the fact that policy �d chooses the same action at all states of

Bi. If Bi � C1, indicate by hti; aii the action chosen by �u at all states of Bi, for 1 � i � n. The

Markovian policy � for � is de�ned as follows.

� If s 62 C1, policy � chooses an action from A(s) uniformly at random.

� If s 2 C1 �
Sn
i=1 Bi, policy � chooses the same action chosen by �u at s.

� If s 2 C1 \ Bi, for 1 � i � n, there are two cases:

{ if s = ti, then � deterministically chooses action ai;

{ if s 6= ti, then � chooses an action from Di(s) uniformly at random.

From this de�nition, and from the fact that either Bi � C1 or Bi\C1 = ; for all 1 � i � n as earlier

remarked, follows that � is also unichain, with C1 as its only closed recurrent class.

Under policy �, outside C1 a behavior follows a random walk. This random walk leads the

behavior to C1 with probability 1, since the MDP is strongly connected.

Once in C1, policies � and �u coincide in C1 �
Sn
i=1 Bi. When a state s 2 Bi is reached,

1 � i � m, policy �u chooses deterministically action hti; aii 2 bA(s). If s = ti, then � can simulate

�u directly by choosing action ai. If s 6= t, however, this is not possible. In this case, � starts a

random walk in a Markov chain that has (Bi; Di) as closed recurrent class. The random walk will

reach with probability 1 state ti: once at ti, � can choose action ai, and the simulation between �

and �u continues.

Thus, both the behaviors of b� under �u and � under � enter C1 with probability 1. Once in C1,

the behaviors of � simulate those of b� in the manner indicated above. Thus, from (6.51) follows

Pr�s

�
lim
n!1

Hn(!) = J�
�
= 1

which leads to the desired conclusion.

A more formal proof of this statement can be reached by formalizing the simulation relation

between � and b�. This can be done similarly to Section 6.4, constructing a relation � between

behavior pre�xes and proving results similar to Lemma 6.4 and Corollary 6.3 for it.

We can �nally state and prove the correctness theorem for the model-checking algorithm.

Theorem 6.15 (correctness of model-checking algorithm for �P, �D) The algorithm for the

model-checking of operators �P, �D presented in Section 6.1.2 is correct.

Proof. The result is a consequence of Corollary 6.2 and Theorems 6.4, 6.5, 6.6, 6.9, 6.11 and 6.14.
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We conclude this section by stating a corollary that will be needed in Chapter 8 to justify the

model-checking algorithms for fair probabilistic systems.

Corollary 6.7 (existence of unichain optimal policies) Let L, K
�

and K
+

be the lists of

sub-MDPs de�ned in Section 6.1.2, and consider a sub-MDP (Si; Ai; p
i; Ri;Wi). The following

assertions hold.

1. If i 2 K
�

(resp. i 2 K
+

), let ��i (resp. �+i ) be the outcome computed as in Section 6.1.2.

Then, there is an unichain policy � for �i such that (��R�)=(��W �) = ��i (resp. = �+i ), so

that

Pr�s

�
lim
n!1

Hn(!) = ��i

�
= 1

for all s 2 Si (and resp. for �+).

2. If i 2 L �K
�

there is an unichain policy � for �i such that

Pr�s

�
lim
n!1

Hn(!) = �1

�
= 1 (6.52)

for all s 2 Si. If i 2 L �K
+

, a result similar to (6.52) holds, where �1 is replaced by +1.

Proof. This corollary follows immediately from an analysis of the proofs of Theorems 6.9 and 6.6.

6.8 Average Reward of Semi-Markov Decision Processes

As mentioned earlier, a semi-Markov decision process (SMDP) � = (S;A; p;R;W ) consists of a

Markov decision process (S;A; p), together with two additional labelings R and W . For a state-

action pair (s; a) 2 ��, R(s; a) represents the reward received when action a is selected at s, and

W (s; a) > 0 represents the time spent at s when a is selected.

As for ordinary Markov decision processes, several optimization problems can be formulated for

semi-Markov decision processes; among them, the minimization or maximization of total, discounted

or average reward. Ross [Ros70a] and Bertsekas [Ber95] provide an account of the subject; further

references were given in Section 6.6.1. In this section we study the optimization of the average reward

of SMDPs. We consider two optimization criteria: the �rst is the classical one, and corresponds to

the quantity J considered in the previous sections; the second is a new quantity H , whose de�nition

is related to the expected value of the limit points of the sequence fHngn�0.

We will show that the �rst criterion does not have a strong semantical basis: in fact, the value

of J for a �xed policy does not immediately correspond to quantities of interest in the SMDP.

Nonetheless, the literature on semi-Markov decision processes is uniformly based on this criterion,

since it is amenable to a mathematical analysis that is well understood.
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The second criterion, based on the sequence fHngn�0, is semantically sound, but has so far

resisted the attempts to formulate optimization methods for it. The problem stated in Ross [Ros70b,

Ros70a] of proving the equivalence of these two optimization criteria has not been solved so far.

Using the results of the previous sections, we will prove that the two optimization criteria are in-

deed equivalent on strongly connected SMDPs, and we will provide an algorithm for the optimization

of the average reward of general SMDPs using the second criterion. This will close the long-standing

open question of the optimization criteria and methods for the average reward of SMDPs.

6.8.1 The two Criteria: J and H

In the rest of the section, we will consider the problem of the minimization of the average reward of

an SMDP. The dual problem, concerning the maximization of the average reward, can be reduced

to this problem by considering an SMDP in which the sign of the labeling R has been reversed.

Given an SMDP � = (S;A; p;R;W ), there are two quantities that can be claimed to capture

the intuitive idea of \average reward": J and H . The quantity J is de�ned as in (6.34):

J��s = lim inf
n!1

E�s

nn�1X
k=0

R(Xk; Yk)
o

E�s

nn�1X
k=0

W (Xk; Yk)
o :

The quantity H is de�ned by

H��
s = E�s

8>>>><
>>>>:
lim inf
n!1

n�1X
k=0

R(Xk; Yk)

n�1X
k=0

W (Xk; Yk)

9>>>>=
>>>>;

= E�s

n
lim inf
n!1

Hn(!)
o
:

To see that H represents the intuitive concept of average reward, note that lim infn!1Hn(!)

represents the average reward of a single behavior. The expectation of this quantity corresponds

thus to the intuitive concept of average reward of policy �. In Example 6.1 we will further justify

the fact that H , and not J , corresponds to intuitive concept of average reward.

The main results of this section are a proof that

min
�
J��s = min

�
H��
s (6.53)

on strongly connected SMDPs, and a method for the computation of min�H
��
s on general, not

necessarily strongly-connected, SMDPs. To achieve these results, we begin by studying the properties

of H . The aim is to gather more information about H to justify its adoption as the preferred
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optimization criterion. Moreover, we will show that for an arbitrary policy � and state s, the

quantities J��s and H��
s are not equal, showing that (6.53) is not trivial.

6.8.2 Martingale Property of H

A martingale for a stochastic process is a quantity such that its current value is equal to the

expectation of its future value; the precise de�nition can be found, for example, in [Wil91, KSK66].

By showing that H is a martingale, we will obtain a relation between the value of H at a state and

at the successor states.

More precisely, the next theorem states that H�+
s is equal to the expected value of H�0+

X1
, where

�0 is the policy corresponding to � after state s. Due to the strong resemblance between this result

and the de�nition of martingale, this result is called the martingale property of H.

To state the theorem, given a strategy � denote by �[s0; : : : ; sn] the modi�ed strategy de�ned by

Q�[s0;:::;sn](a j t0 � � � tm) = Q�(a j s0 � � � snt0 � � � tm) :

Strategy �[s0; : : : ; sn] behaves thus as � after the behavior pre�x s0 � � � sn has been traversed.

Theorem 6.16 (martingale property of H) For any policy �, it is

E�
n
H
�[X0;:::;Xn]�
Xn+1

��� X0 � � �Xn

o
= H

�[X0���Xn�1]�
Xn

: (6.54)

In particular, if � is a Markovian policy, it is

H
��
Xn

= E�
n
H
��
Xn+1

��� X0 � � �Xn

o
;

and taking n = 0, we can write

H��
s =

X
t2S

p
�
stH

��
t : (6.55)

Proof. To avoid cumbersome notation, we prove only the simpler (6.55). We have

H��
s = E�s

8>>>><
>>>>:
lim inf
n!1

n�1X
k=0

R(Xk; Yk)

n�1X
k=0

W (Xk; Yk)

9>>>>=
>>>>;

=
X
t2S

E�s

8>>>><
>>>>:
lim inf
n!1

n�1X
k=0

R(Xk; Yk)

n�1X
k=0

W (Xk; Yk)

������ X1 = t

9>>>>=
>>>>;

p
�
st
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=
X
t2S

E�s

8>>>><
>>>>:
lim inf
n!1

R(X0; Y0) +

n�1X
k=1

R(Xk; Yk)

W (X0; X1) +

n�1X
k=1

W (Xk; Yk)

������ X1 = t

9>>>>=
>>>>;

p
�
st

=
X
t2S

E�s

8>>>><
>>>>:
lim inf
n!1

n�1X
k=1

R(Xk; Yk)

n�1X
k=1

W (Xk; Yk)

������ X1 = t

9>>>>=
>>>>;

p
�
st (6.56)

=
X
t2S

H�+
t p�st

where (6.56) is justi�ed by the fact that
Pn�1
k=0 W (Xk; Yk) =1, since W (�) > 0 for all � 2 ��.

The interest of the above theorem lies in the fact that it ensures the existence of a policy � that

maximizes simultaneously H��
s at all s 2 S. While the formal proof of this will be given later, the

intuition is as follows. Consider a state s with possible successors t1; : : : ; tn. Since H
��
s is equal to

the expected value of H�0�
X1

, and X1 = ti for some 1 � i � n, maximizing the value of H at t1; : : : ; tn

will help towards the maximization of H��
s as well.

6.8.3 Computing H on Markov Chains

First, we consider the case in which the SMDP corresponds to an ergodic Markov chain, i.e. to a

Markov chain whose states form a single, closed recurrent class.

Theorem 6.17 (H on ergodic Markov chains) If � is an SMDP corresponding to an ergodic

Markov chain, then for any state s it is H
�

s = (�R)=(�W ).

Proof. We have to show that

E�s

8>>>><
>>>>:
lim inf
n!1

n�1X
k=0

R(Xk; Yk)

n�1X
k=0

W (Xk; Yk)

9>>>>=
>>>>;

=
�R

�W

for all s 2 S. Since the chain is ergodic we know that

lim
n!1

1

n

n�1X
k=0

R(Xk; Yk) = �R

with probability 1. A similar reasoning, applied to the denominator, concludes the proof.
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Figure 6.1: A non-ergodic Markov chain. Each state t of the chain is labeled with rt, wt.

Combining this result with the martingale property of H , we get the following theorem, which

enables the computation of H on a generic Markov chain.

Theorem 6.18 (computation of H on general Markov chains) Consider an SMDP � =

(S;A; p;R;W ) corresponding to a Markov chain, and let C1; : : : ; Cn be the closed recurrent classes

of the chain. For each j, with 1 � j � n, let �j be the steady-state distribution of class Cj when

considered in isolation.

� If s 2 Ci, for 1 � i � n, then Hs = (�iR)=(�iW ).

� If s 62
Sn
i=1 Ci, then

Hs =

nX
i=1

X
t2Ci

Htp
�
st : (6.57)

Since p�st = 0 for t 62
Sn
i=1 Ci, the above relations enable the computation of H on all states of

the chain.

Proof. The �rst result is a restatement of the previous theorem; the second result is a consequence

of the �rst and of the martingale property of H .

6.8.4 Relation Between H and J on Connected SMDPs

First, we present an example that demonstrates that H
�

s and J
�

s are not necessarily equal.

Example 6.1 Consider the Markov chain depicted in Figure 6.1. We have Ht = 1=2, Hu = 1,

p�st = p�sv = 1=6, p�su = 1=4, so that

Hs =
1

2
� 1 +

1

2
�
1

2
=

3

4
Js =

1=6 + 1=4

1=6 + 1=6 + 1=4
=

5

7
:

Intuitively, the di�erence between the values of Js and Hs in this example is due to the fact that

time advances at di�erent speeds in the two recurrent classes: in one class, time advances on average
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of 2=3 every transition; in the other, time advances of 1=2 on average every transition. The value of

J is a�ected by this, since the expectations in its de�nition (6.34) are taken over a horizon de�ned

by the number n of steps taken, rather than the amount of time elapsed. The value of H , on the

other hand, is not a�ected, since the expectation is taken after taking the limit over each behavior.

Thus, this example not only demonstrates that H and J can be di�erent, but it also indicates that

H is the preferred quantity to be used in the formulation of optimization problems, as it re
ects

more directly the intuition behind the concept of \long-run average reward".

As remarked in the above example, J��s and H��
s may be di�erent if the SMDP, under �, is not

ergodic. If the SMDP is not strongly connected, also J
�

s and H
�

s can be di�erent, as demonstrated

by the above example. However, the next theorem states that J
�

s and H
�

s coincide on strongly

connected SMDPs, settling a long-lasting open question. Intuitively, this result is due to the fact

that there are optimal policies for J
�

s and H
�

s that are unichain, and the values of J��s and H��
s

coincide on unichain policies, as a comparison between Theorems 6.10 and 6.18 indicates. The proof

of this fact, however, rests on the analysis of Sections 6.5 and 6.6.

Theorem 6.19 (equality of J and H on strongly connected SMDPs) If � is a strongly

connected SMDP, then J
�

s = H
�

s for all states s. Moreover, these quantities do not depend on the

state s, so that we can write simply J
�

and H
�

.

Proof. From Corollary 6.4, Lemma 6.8 and the de�nition of �U , we have easily that H
�

s � J
�

s . To

obtain the reverse inequality, we reason as in the second part of the proof of Theorem 6.9. Precisely,

if J
�

s = a, we can construct a policy � such that H��
s = a, and this implies H

�

s � J
�

s , concluding

the proof.

6.8.5 Computing H
�

on General SMDP

As stated by Theorem 6.19, on a strongly connected SMDP the quantity H
�

s does not depend on the

state s, and it is equal to J
�

. These two results do not hold for general SMDPs, as demonstrated

in Example 6.1. For a general SMDP � = (S;A; p;R;W ), the value of H
�

s at a state s 2 S

can be computed with the following algorithm. The method we use to go from the solution on a

strongly connected SMDP to that on a general SMDP is related to the technique used to solve the

optimization problem for many events in Courcoubetis and Yannakakis [CY90].

Algorithm 6.6 (computation of H
�

s on general SMDP)

Input: An SMDP � = (S;A; p;R;W ) and a state s0 2 S.

Output: H
�

s .

Method: Perform the following steps.
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1. Compute the list f(S1; A1); : : : ; (Sn; An)g = maxEC (S) of maximal end components of �.

For each end component (Si; Ai), 1 � i � n, construct an MDP �i = (Si; Ai; p
i; Ri;Wi),

where pi, Ri, Wi are the restrictions of p, R, W to (Si; Ai).

2. For each �i, compute J
�

i = H
�

i using Theorem 6.14.

3. From �, construct an MDP �0 = (S0; A0; p0) having state space S0 = S [ft1; : : : ; tng. For

every 1 � i � n, state ti has only one action that leads deterministically to ti. The actions

and transition structure for the states in S are unchanged, except that for 1 � i � n, to

each state s 2 Si we add a new action ai that leads deterministically to ti.

4. Solve the SSP problem (S0; A0; p0; U; c; g), where the set of destination states is U =

ft1; : : : ; tng, the cost function c is identically 0, and the terminal cost function is de�ned

by g(ti) = J
�

i , for 1 � i � n. Denote the solution by [v�s ]s2S0 .

Output: v�s0 .

Note that the SSP problem constructed by the algorithm does not necessarily satisfy SSP As-

sumption 2 (see Section 3.4). In the next chapter, we will provide a solution method for non-negative

SSP problems that can also be applied to this instance of SSP problem. The correctness of this al-

gorithm can be stated and proved as follows.

Theorem 6.20 Given an SMDP � = (S;A; p;R;W ) and a state s0 2 S, let v�s0 be as computed

by Algorithm 6.6. Then, H
�

s0
= v�s0 .

Proof. Consider the SSP problem constructed by the algorithm.

In one direction, we reason as follows. For 1 � i � n, the choice of action ai at state s 2 Si

represents the decision of following, from that point on, the optimal policy for the SMDP �i, which

yields H
�

i = J
�

i . Notice that for 1 � i � n and s 2 Si, state-action pairs (s; ai) is not part of any

end component. From the argument in the proof of Theorem 7.1 in the next chapter, we see that

there is a Markovian policy � such that v� = v
�, and such that for each s 2 Si, action ai is chosen

with probability either 0 or 1, for all 1 � i � n. Let Bi � Si be the set of states where ai is chosen

with probability 1 by �, for 1 � i � n.

From the policy � we construct a history-dependent policy �0 that, after the sequence s0 � � � sk

of states, chooses the next action as follows:

� If sj 2 [
n
i=1Bi for some 0 � j � k, let l = minfj j sj 2 [

n
i=1Big be the position of the �rst

entry in [
n
i=1Bi, and let m be de�ned by sl 2 Bm. Then, �0 at sk follows the Markovian

optimal policy for �m.

� If sj 62 [
n
i=1Bi for all 0 � j � k, then �0 coincides with �.
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Since � is SSP-proper, under �0 with probability 1 a behavior eventually follows an optimal policy

for some �1; : : : ;�n. Since the value of H is determined by the portion at in�nity of the behaviors,

from the structure of the SSP problem we see that H�0

s0
= v�s0 = v�s0 . Thus,

H
�

s0
� v�s0 : (6.58)

In the other direction, let � be a policy for �. Since Pr�s0(9i 2 [1::n] : inft(!) 2 sa(Si; Ai)) = 1,

it is

H��
s0

�

nX
i=1

H
�

i Pr
�
s0
(inft(!) 2 sa(Si; Ai)) : (6.59)

From the relation between � and the SSP problem, we also have

nX
i=1

H
�

i Pr
�
s0
(inft(!) 2 sa(Si; Ai)) � v�s0 : (6.60)

Putting together (6.59) with (6.60), from the arbitrariness of � we have H
�

s0
� v�s0 , which together

with (6.58) leads to the result.



Chapter 7

Stochastic Shortest Path and

Related Problems

As we have seen in Chapter 4, the model checking of operator D relies on the solution of stochastic

shortest path (SSP) problems. The solutions to these problems provide upper and lower bounds for

the expected time before a given state formula holds, and these bounds are then used to decide the

truth-value of the speci�cation.

In the next chapter we introduce fairness in our system model, and we present logics and al-

gorithms for the speci�cation and veri�cation of probabilistic systems with fairness. To solve the

model checking problem for the operator D in these logics, it will be necessary to consider instances

of the SSP problem that do not satisfy the assumptions described in Section 3.4, and for which no

solution methods have so far been presented.

In this chapter, we extend the solvable instances of the SSP problem to two new classes of

instances: those in which costs are always non-negative, and those in which costs are always non-

positive. The solutions we propose rely on our results on end components, and are related to our

Algorithm 3.3 for the e�cient computation of reachability probabilities.

These results on the SSP problem will also lead us to new algorithms for the minimum expected

total cost problem. Even though reductions to linear programming for this problem have been

known since Denardo [Den70], by combining the previous analysis with yet another application

of end components, we will obtain a more direct, and possibly more e�cient, reduction to linear

programming for the case of non-negative costs. This result is not used in the veri�cation algorithms

presented in this dissertation, and has been included in the dissertation only due to its potential

interest for dynamic programming and optimal control.

148
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s1 s2 s3

2

b

0

0

a

s4

1

Figure 7.1: An instance of SSP. The set of destination states is U = fs4g, and the terminal cost g
is 0. All actions are deterministic; their names have been indicated only when there is more than
one action available at a state. The actions are labeled with their cost c. The single end component
has been indicated with dashed lines.

7.1 The Non-Negative SSP Problem

Consider an instance (S;A; p; U; c; g) of the stochastic shortest path problem. We replace SSP

Assumptions 1 and 2 with the following assumptions:

SSP Assumption 3: There is at least one SSP-proper policy.

SSP Assumption 4: For all s 2 S and a 2 A(s), it is c(s; a) � 0.

An SSP problem that satis�es SSP Assumptions 3 and 4 is called a non-negative SSP problem.

SSP Assumption 3 is very similar to SSP Assumption 1, and it can be shown in fact that they

are equivalent. SSP Assumption 2, which intuitively stated that all SSP-improper policies must be

\hindered" by v diverging for at least one state, has been replaced by SSP Assumption 4, which

assumes the non-negativity of the costs.

7.1.1 Relation with Previously Known Solvable Cases

Replacing SSP Assumption 1 with SSP Assumption 3 is merely a matter of notation: in the case of

�nite Markov decision processes, which is the one that concerns us here, the two assumptions are

easily shown to be equivalent. What di�erentiates the class of SSP instances considered here from

the classes that have been discussed so far in the literature is the adoption of SSP Assumption 4 as

the only additional assumption.

The class of instances that is most closely related to ours is the one discussed by Bertsekas

[Ber87, x6.2, p. 255] and Bertsekas and Tsitsiklis [BT91], which consider the replacement of SSP

Assumption 2 with both SSP Assumption 4 and the following assumption:

SSP Assumption 5: There is a proper policy �0 2 �P such that v�0 = inf� v
� .

In words, SSP Assumption 5 states the existence of a policy that is at the same time proper and

optimal from the point of view of expected cost. As noted also in [BT91], there are many instances

of SSP in which SSP Assumptions 1 and 4 hold, but 5 does not: one such instance is described in

the following example.
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Example 7.1 Consider the instance of SSP depicted in Figure 7.1. Clearly, the optimal policy in

terms of expected total cost to U is the policy �1 that chooses always action a at s3: for this policy,

it is:

v�1s1 = 1 v�1s2 = 0 v�1s3 = 0 :

On the other hand, for every proper policy � 2 �P it can be easily veri�ed that

v�s1 = 3 v�s2 = 2 v�s3 = 2 :

7.1.2 Solution Methods

Denote with v = [vs]s2S�U a vector of real numbers, and de�ne as in (3.8) the functional L on the

space of v by

[Lv]s = min
a2A(s)

�
c(s; a) +

X
t2S�U

pst(a) vt +
X
t2U

pst(a) g(t)

�
s 2 S � U :

In non-negative SSP problems, the functional L can have more than one �xpoint; we will see that

the solution of a non-negative SSP problem is the greatest �xpoint of L. The following example

illustrates this point.

Example 7.2 Consider again the instance of SSP depicted in Figure 7.1, and write an instance

of the column vector v as [vs1 vs2 vs3 vs4 ]
t. For x � 0, any vector

v(x) = [3 2 2 1]t � x[1 1 1 0]t

is a �xpoint of L.

We present two approaches to the solution of non-negative SSP problems.

The �rst approach relies on an algorithm that eliminates from the SSP instance the end compo-

nents consisting of state-action pairs having cost 0. Once this is done, the problem can be solved

in the standard way. This approach has two advantages. First, the size of the state space of the

problem is reduced before linear programming methods are applied. Second, once the o�ending end

components are removed, other solution methods such as policy iteration and value iteration can be

used (for a description of these methods, see for example [Ber95]).

The second approach consists in reducing the SSP problem directly to linear programming: since

the solution of the linear programming problem corresponds to the greatest �xpoint, it corresponds

to the solution of the SSP problem.

The algorithm for the �rst approach is related to Algorithms 3.3 and Algorithm 6.5, and is

presented below.
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s1

2

b s4

1

s1

Figure 7.2: Result of applying Algorithm 7.1 to the instance of SSP depicted in Figure 7.1. The
new state bs1 introduced by the algorithm is drawn as a �lled circle.

Algorithm 7.1

Input: Instance � = (S;A; p; U; c; g) of SSP.

Output: Instance b� = (bS; bA; bp; bU;bc; bg) of SSP.
Method: For each s 2 S � U , let D(s) = fa 2 A(s) j time(s; a) = 0g, and let f(B1; D1); . . . ,

(Bn; Dn)g = maxEC (S � U;D). De�ne

bS = S [ fbs1; : : : ; bsng � n[
i=1

Bi

and bU = U . The action sets are de�ned by:

s 2 S �

n[
i=1

Bi : bA(s) = fhs; ai j a 2 A(s)g

1 � i � n : bA(bsi) = nhs; ai ��� s 2 Bi ^ a 2 A(s)�D(s)
o
:

For s 2 bS, t 2 S �Sni=1 Bi and hu; ai 2 bA(s), the transition probabilities are de�ned by

bpst(hu; ai) = put(a) bp
s;bsi(hu; ai) = X

t2Bi

put(a) :

For s 2 bS and hu; ai 2 bA(s), the cost bc is de�ned by bc(s; hu; ai) = c(u; a); for s 2 bU it is

bg(s) = g(s).

Example 7.3 The result of applying Algorithm 7.1 to the instance of SSP depicted in Figure 7.1

is illustrated in Figure 7.2. As we see, the (maximal) end component formed by states s2; s3 together

with the 0-cost actions has been replaced by the single state ŝ1.

A more complex example is presented in Figure 7.3. Algorithm 7.1 computes the end components

(B1; D1); (B2; D2) given by

(B1; D1) = subf(s3; d); (s4; k); (s7; i)g (B2; D2) = subf(s5; f); (s6; g)g
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Figure 7.3: An instance of SSP (top), and the result of applying Algorithm 7.1 to it (bottom). The
actions that have cost 0 have been represented by dashed edges; those that have positive cost by
solid edges. State s9 is the single destination state. To simplify the diagrams, we have indicated
only the transition probability corresponding to action c, and we have omitted all costs. The new
states introduced to replace the zero-cost end components are indicated by �lled circles.
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and replaces them with the two new states bs1 and bs2. This example illustrates also the potential

reduction of the state-space of the system.

The following theorem present the �rst approach to the solution of non-negative stochastic short-

est path problem.

Theorem 7.1 (non-negative SSP solution, approach 1) Consider an instance � of SSP sat-

isfying SSP Assumptions 3 and 4, and let b� be the instance obtained from � using Algorithm 7.1.

Then, b� satis�es SSP Assumptions 1 and 2, so that it can be solved using Theorem 3.4. Moreover,

it is

s 2 S

n[
i=1

Bi : v�s = bv�s
s 2 Bi; 1 � i � n : v�s = bv�ŝi ;

where bv� (resp. v�) is the solution of b� (resp. �).

The second approach is given by the following theorem.

Theorem 7.2 (non-negative SSP solution, approach 2) Consider an instance � of SSP satis-

fying SSP Assumptions 3 and 4, and let L be the operator de�ned as in (3.8). Then, the solution v�

of the SSP problem is the largest �xpoint of operator L. Moreover, the linear programming problem

(3.9) has v� as unique solution.

7.2 The Non-Positive SSP Problem

Consider an instance (S;A; p; U; c; g) of the stochastic shortest path problem. We replace SSP

Assumptions 1 and 2 with the following assumptions:

SSP Assumption 3: There is at least one SSP-proper policy.

SSP Assumption 6: For all s 2 S and a 2 A(s), it is c(s; a) � 0. For all s 2 U , it is g(s) � 0.

An SSP problem that satis�es SSP Assumptions 3 and 6 is called a non-positive SSP problem. SSP

Assumption 6 is exactly like SSP Assumption 4, except that we require non-positivity of the costs

instead of non-negativity.

Denote as usual the optimal cost vector by v�. Unlike in the non-negative case, it is possible

that v�s = �1 for some state s 2 S � U . Our �rst step towards the solution of non-positive SSP

problems consists in determining the set of states on which v� diverges to �1.

Lemma 7.1 (divergence of optimal cost of non-positive SSP) Let

C =
[n

B0
��� 9(B;D) 2 maxEC (S � U) : 9(s; a) 2 sa(B;D) :

h
B0 = B ^ c(s; a) < 0

io
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and let bC be the set of states that can reach C. Then, v�s = �1 i� s 2 bC.
Since states in S � bC cannot reach bC , in light of the previous lemma we continue our study of

non-positive SSP by adding one more assumption.

SSP Assumption 7: Every end component (B;D) of S�U is such that c(s; a) = 0 for all (s; a) 2

sa(B;D).

Clearly, if the above assumption does not hold, Lemma 7.1 enables to eliminate the o�ending

end components, along with the states that lead to them.

As in the previous section, the functional L de�ned by (3.8) can have more than one �xpoint,

and the solution of the SSP problem corresponds to the largest �xpoint. This is due to the fact that

there can be end components contained in S�U consisting of state-action pairs that all have cost 0.

Again, there are two approaches to the solution of non-positive SSP problems: one consists in

using Algorithm 7.1 to eliminate the o�ending end components, insuring that the functional on the

resulting instance of SSP problem has only one solution. As before, this opens the way to the use

of linear programming as well as other methods for the solution of the SSP instance. The second

approach consists in reducing the problem to linear programming directly. The two approaches are

summarized by the two following theorems.

Theorem 7.3 (non-positive SSP solution, approach 1) Consider an instance � of SSP sat-

isfying SSP Assumptions 3, 6 and 7, and let b� be the instance obtained from � using Algorithm 7.1.

Then, b� satis�es SSP Assumptions 1 and 2, so that it can be solved using Theorem 3.4. Moreover,

it is

s 2 S

n[
i=1

Bi : v�s = bv�s
s 2 Bi; 1 � i � n : v�s = bv�ŝi ;

where bv� (resp. v�) is the solution of b� (resp. �).

Theorem 7.4 (non-positive SSP solution, approach 2) Consider an instance � of SSP satis-

fying SSP Assumptions 3 and 4, and let L be the operator de�ned as in (3.8). Then, the solution v�

of the SSP problem is the largest �xpoint of operator L. Moreover, the linear programming problem

(3.9) has v� as unique solution.

7.3 Proof of the Results for Non-Negative SSP (z)

Consider an instance � = (S;A; p; U; c; g) of SSP problem that satis�es SSP Assumptions 3 and 4.

To simplify the argument, we assume that once the set U of destination states is entered, it cannot
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be exited. Formally, this is expressed by the requirement Succ(s; a) � U for all s 2 U and a 2 A(s).

It is immediate to see that this assumption does not a�ect the generality of the arguments.

As our �rst step towards the proof of Theorem 7.1, we show that a �xpoint of L provides a lower

bound for the solution v�. The following theorem is the analogous of Theorem 3.9.

Theorem 7.5 (�xpoint is below solution) If v� = Lv�, then v�s � v�s for every � 2 �P and

every s 2 S � U .

Proof. From v
� = Lv�, it is

v�s � c(s; a) +
X

t2S�U

pst(a) vt +
X
t2U

pst(a) g(t)

for all s 2 S � U and all a 2 A(s). Iterating, for a general policy � and n � 0 we obtain

v�s � E�s

�n�1X
k=0

c(Xk; Yk)

�
+

X
t2S�U

Pr�s(Xn = t) v�t +
X
t2U

nX
k=1

Pr�s(Xn = t ^ TU = k) g(t) : (7.1)

If � 2 �P , it is

lim
n!1

X
t2S�U

Pr�s(Xn = t) = 0 :

Taking the limit n!1 in (7.1), we have

v�s � E�s

� TUX
k=0

c(Xk; Yk)

�
+E�s

n
g(XTU )

o
;

which �nally yields v�s � v�s , as desired.

We can now prove our main result.

Proof of Theorem 7.1. The proof of this theorem follows closely that of Theorem 3.8. Again,

we break up the transformation e�ected by Algorithm 7.1 in two steps, and we consider an in-

stance (S; eA; ep; U;ec; eg) of SSP problem obtained as follows. Let (B1; D1); : : : ; (Bn; Dn) be as in

Algorithm 7.1, and de�ne

eA(s) =
(
fhs; ai j a 2 A(s)g if s 62

Sn
i=1 Bi;

fht; ai j t 2 Bi ^ a 2 A(t)�Di(t)g if s 2 Bi, 1 � i � n.
(7.2)

and

epsu(ht; ai) = ptu(a) ec(s; ht; ai) = c(t; a) eg(s) = g(s) (7.3)

for all s; u 2 S and ht; ai 2 eA(s).
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Let eL be the operator de�ned for e� in the same way as L for �, and let v� = eLv� be a �xpoint
of eL.

Note that e� satis�es SSP Assumption 1 and 2. The fact that the �rst one holds is a consequence

of SSP Assumption 3. To see that SSP Assumption 2 holds, note that for every end component

(B;C) in S � U there is (s; a) 2 sa(B;C) such that c(s; a) > 0: in fact, the end components

consisting only of state-action pairs with c = 0 have been eliminated by the transformation that led

to e�. Thus, for a Markovian policy � there are only two cases:

� Under �, a behavior reaches U with probability 1 from all s 2 S � U .

� Under �, there is an end component (B;C) with B � S�U such that Pr�s(inft(!) = sa(B;C)) >

0. Then, for these states it is also v�s =1, from the above considerations.

This shows that SSP Assumption 2 is satis�ed. We can then prove the following facts.

Fact 1. If v� = eLv� is a �xpoint of eL, and s; t 2 Bi, for 1 � i � n, then v�s = v�t .

Proved as in the proof of Theorem 3.8.

Fact 2. If v = eLv, then v = Lv.

This fact is proved as in the proof of Theorem 3.8, noting for (3.20) that c(s; a) = 0, for s 2 Bi,

a 2 Di(s) and 1 � i � n, by construction of the end components.

Our third fact follows from Theorem 3.4, which can be applied since the SSP problem e� satis�es

SSP-assumptions 1 and 2.

Fact 3. There is exactly one v� such that v� = eLv�.
The equation v� = eLv�, written in componentwise notation, is

v�s = min
a2eA

�
c(s; a) +

X
t2S�U

epst(a) v�t +X
t2U

epst(a) g(t)
�

s 2 S � U : (7.4)

From the �xpoint v� of eL we again construct a policy e� for e�. To this end, for each s 2 S � U ,

de�ne the set Amin(s) by

Amin(s) = argmin
a2eA

�
c(s; a) +

X
t2S�U

epst(a) v�t +X
t2U

epst(a)g(t)
�
: (7.5)

At each s 2 S � U , policy e� chooses deterministically an arbitrary action selected from Amin(s).

For each 1 � i � n, from Fact 1 it is Amin(s) = Amin(t) for all s; t 2 Bi. Thus, we can force e� to

choose the same action hui; aii at all states of Bi. By Theorem 3.4, policy e� is SSP-proper, and it

is ve� = v
�.

From e�, we construct a Markovian policy � for � such that v� = v
e� . At s 2 S �

Sn
i=1Bi, �

behaves like e�. At s 2 Bi, with 1 � i � n, there are two cases:
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� if s = ui, then � chooses deterministically ai;

� if s 6= ui, then � chooses with uniform probability an action from the set Di(s).

From the de�nition of �, we see that � is SSP-proper. Proceeding as in the proof of Lemma 3.4, we

have that the system of equations

vs = c(s; �(s)) +
X

t2S�U

epst(�(s)) vt +X
t2U

epst(�(s)) g(t) s 2 S � U (7.6)

has v� as unique solution. To show that ve� = v
�, it su�ces to show that ve� is also a solution of

(7.6). The proof proceeds by cases.

� If s 2 Bi for 1 � i � n, and s 6= ti (where hti; aii is the action chosen by e� ), then policy �

chooses with uniform probability an action from Di(s). For a 2 Di(s), it is c(s; a) = 0 and

Succ(s; a) � Bi. From Fact 1, ve� = v
� is constant on Bi, so v

e�
s = v

e�
t for a 2 Di(s) and

t 2 Succ(s; a), and the result follows.

� If s 2 Bi and s = ti, for 1 � i � n, or if s 2 Sr �
Sn
i=1 Bi, policies � and e� coincide on s. The

fact that ve� satis�es (7.6) for s is then a consequence of ve� = v
� and of (7.4), as well as of the

fact that e� chooses at s an action in Amin(s).

Since ve� = v
�, it is also v� = v

�, and from Fact 2 we have v� = v
� = Lv� . By Theorem 7.5, policy

� realizes the minimum cost, so that v� = v
�.

The proof is then completed in analogy to that of Theorem 3.8, by noting that MDP b� is obtained

from e� by merging the states belonging to each Bi, for 1 � i � n.

Proof of Theorem 7.2. By Theorem 7.5, if v� = Lv�, then v� � v
� for every � 2 �P , where the

inequality is interpreted componentwise.

From the proof of Theorem 7.1, we know that there is a policy � for � such that v� = v
�. From

this follows immediately that v� � v
� for all �xpoints v� of L. We conclude that v� is the maximal

�xpoint of L. The result about the reduction to linear programming is an immediate consequence

of this fact.

7.4 Proof of the Results for Non-Positive SSP (z)

First, we prove the following lemma, which is equivalent to one of the two directions of Lemma 7.1.

Lemma 7.2 Assume that there is an end component (B;D) in S � U such that c(t; a) < 0 for

at least one state-action pair (t; a) 2 sa(B;D). Assume also that B is reachable from s. Then,

v�s = inf�2�
P
v�s = �1.
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Proof. Since (B;D) is an end component reachable from s, there is a policy � such that

Pr�s (inft(!) = sa(B;D)) > 0. Since c(t; a) < 0 for at least one state-action pair (t; a) 2 sa(B;D),

it is v�s = �1. The problem is that policy � is not SSP-proper, since under it a behavior from s is

eventually con�ned to B with positive probability.

To overcome this di�culty, we construct a family of policies �(x), for 0 � x � 1, in such a way

that as x! 0 a behavior from s stays longer and longer in (B;D) before eventually reaching U .

To construct this family of policies, denote by bB � S�U the set of states that can reach B, and

let �m, �c and �p be three Markovian policies de�nes as follows:

� �m is a policy de�ned on bB �B that maximizes the probability of reaching B.

� �p is an SSP-proper Markovian policy. From SSP Assumption 3, we know that there is at least

one such policy, not necessarily Markovian; it can be easily seen, using reachability arguments

for U , that there is also at least one Markovian SSP-proper policy.

� �c is the policy de�ned on B that chooses at each s 2 B an action from D(s) with uniform

probability.

Using these three policies, for each 0 � x < 1 we de�ne the Markovian policy �(x) as follows:

Q�(x)(a j s) =

8>><
>>:
(1� x)Q�c(a j s) + xQ�p(a j s) if s 2 B;

(1� x)Q�m(a j s) + xQ�p(a j s) if s 2 bB �B;

Q�p(a j s) if s 2 S � bB.
For every 0 < x < 1, policy �(x) is SSP-proper: in fact, it has non-zero probability of reaching U

in at most jS �U j steps from each state of S �U . Denote by P (x) the matrix of the Markov chain

corresponding to �(x), for 0 � x < 1, and abbreviate v
�(x)
s by vs(x). By de�nition, it is

vs(x) = E�(x)s

�TU�1X
k=0

c(Xk; Yk)

�
+E�(x)s

n
g(XTU )

o
: (7.7)

De�ne two vectors z(x) = [zs(x)]s2S and u = [us]s2S by

zs(x) =

8><
>:
E�(x)s

�TU�1X
k=0

c(Xk; Yk)

�
if s 2 S � U ;

0 otherwise;

us =

8<
:

1

2jD(s)j

X
a2D(s)

c(s; a) if s 2 B;

0 otherwise.

For all s 2 S, it is us � 0. Since at least one state-action pair of (B;D) has c < 0, we know that

ut < 0 for at least one t 2 B. Since u represents only part of the negative cost incurred by a policy
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that chooses in B with uniform probability the actions in D, for su�ciently small x it is

z(x) �

1X
k=0

P k(x)u : (7.8)

Since B is a closed recurrent class of the Markov chain corresponding to P (0), and since B is

reachable with positive probability from s, we have

� 1X
k=0

P k(0)u

�
s

= �1 ;

where the notation [�]s indicates that we are considering the component of the vector corresponding

to s. From the continuity of P (x) in x = 0 follows limx!0 P
k(x) = P k(0) for all k � 0; thus,

lim
x!0

� 1X
k=0

P k(x)u

�
s

= �1 ;

and hence from (7.8) and (7.7) we have limx!0 vs(x) = �1, which concludes our argument.

With this result, we can prove Theorem 7.3 and conclude the proof of Lemma 7.1.

Proof of Theorem 7.3. Consider an instance � of SSP satisfying SSP Assumptions 3, 6 and 7,

and let b� be the instance obtained from � using Algorithm 7.1. By SSP Assumptions 6 and 7, if

(B;D) is an end component of S � U , it must be c(s; a) = 0 for all (s; a) 2 sa(B;D). Since these

end components are eliminated by Algorithm 7.1, the resulting instance b� will not contain any end

component in S � U . Thus, all policies for b� are proper, and SSP Assumptions 1 and 2 hold. The

fact that the solutions of the SSP problem b� also provide solutions for � can then be proved by

reasoning as in the proof of Theorem 7.1.

Proof of Lemma 7.1. The �rst direction of the lemma was given in Lemma 7.2. In the other

direction, assume that in the instance � of SSP there is no end component (B;D) of S � U having

c(s; a) < 0 for some (s; a) 2 sa(B;D). The fact that vs > �1 at every s 2 S � U follows from

Theorem 7.3, and from the analysis of the SSP problem b� given in Section 3.4.

Theorem 7.4 can then be proved by repeating the argument used for Theorem 7.2.

7.5 The Minimum Expected Total Cost Problem

Even though the operator L can admit more than one �xpoint for non-negative and non-positive

instances of SSP problems, these instances can still be solved by a direct translation into linear
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programming of the equation v = Lv, as indicated by Theorems 7.2 and 7.4 (albeit a more e�cient

solution is provided by Theorems 7.1 and 7.3).

In this section, we will describe instead a problem for which the straightforward reduction to

linear programming does not work: the non-negative minimum expected total cost (non-negative

METC) problem. Strauch [Str66] discusses this problem, and Denardo [Den70] proposed reductions

to linear programming that �nds bias-optimal policies for the METC problem without requiring

the non-negativity assumption. The proposal of [Den70] requires the solution of three nested linear

programming problems.

For the case of the non-negative METC problem we propose an alternative method, which re-

quires the solution of only one linear programming problem. Our method is based on a reduction

from the non-negative METC problem to the SSP problem. Aside from linear programming, the

reduction enables the use of value and policy iteration methods to solve non-negative METC prob-

lems.

The proposed reduction relies once more on the properties of end components. In fact, there

is a correspondence between the method of [Den70] and our proposal: the solution of some linear

programming problems in [Den70] corresponds to the removal of end components in our approach.

A discussion of the relationship between the two methods, however, is beyond the scope of this

dissertation.

The results developed in this subsection will not be used in the remainder of this dissertation,

and have been included due to their general interest only.

An instance of the METC problem is de�ned as follows.

De�nition 7.1 (minimum expected total cost problem) An instance of the minimum ex-

pected total cost problem consists of an MDP � = (S;A; p; c), in which c is a cost function assigning

to each state-action pair (s; a) 2 �� a cost c(s; a) 2 IR.

The METC problem consists in minimizing the total expected cost, over the set of all policies.

For a policy �, we de�ne the cost u�s of � from s 2 S by

u�s =

1X
k=0

c(Xk; Yk) : (7.9)

Note that the cost can be unbounded for some policies and initial states. The METC problem is

formally de�ned as follows.

De�nition 7.2 (minimum expected total cost problem) Given an instance � = (S;A; p; c)

of METC, determine

u�s = inf
�
u�s

for all s 2 S.
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Figure 7.4: An instance of non-negative METC. The actions are all deterministic, and the edges
are labeled with their cost. The end component composed by the states fs3; s4; s5g along with the
zero-cost actions from these states is depicted using dashed lines.

We will provide a solution for the METC problem under the non-negativity assumption:

METC Non-Negativity Assumption: For all (s; a) 2 ��, it is c(s; a) � 0.

There is also a reduction from non-positive METC to SSP, albeit the reduction is more involved.

We will not discuss this reduction here, since the non-positive METC problem can also be solved

e�ciently with the methods discussed, for example, by Puterman [Put94].

Before presenting our reduction, let us gain some intuition into why the standard approach fails.

The Bellman equation for the METC problem can be written as u = Lu, where u = [us]s2S is the

cost vector, and the functional L is de�ned by

[Lu]s = min
a2A(s)

�
c(s; a) +

X
t2S

pst(a)ut

�
: (7.10)

The operator L may have more than one �xpoint. As discussed in [Put94], u� is the least non-

negative �xpoint of L. The following example illustrates the presence of more than one �xpoint.

Example 7.4 Consider the instance of non-negative METC depicted in Figure 7.4. The operator

L de�ned in (7.10) admits in�nitely many �xpoints: two such �xpoints are u(1) and u(2), where

u(1)s1 = 5; u(1)s2 = 7; u(1)s3 = 3; u(1)s4 = 3; u(1)s5 = 3

u(2)s1 = 2; u(2)s2 = 4; u(2)s3 = 0; u(2)s4 = 0; u(2)s5 = 0

For this instance of METC, all �xpoints of L can be written in the form u
(1) + x1, where x 2 IR

and 1 is the vector composed of jSj 1s. Vector u(2) is the least non-negative �xpoint of L, so that

by the arguments discussed in [Put94] it is u(2) = u
�.
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The problem of �nding the least non-negative �xpoint of L cannot be solved directly by linear

programming. In fact, the linear programming problem that arises directly from u = Lu is:

Maximize
P
s2S us subject to:

us � c(s; a) +
X
t2S

pst(a)ut ; s 2 S; a 2 A(s) :

However, instead of �nding the least non-negative �xpoint of L, this linear programming problem

would �nd the largest such �xpoint. As noted in Example 7.4, this largest �xpoint can be unbounded.

From the example, we also see that the presence of multiple �xpoints is connected with the

existence of end components composed of state-action pairs having cost 0. Our analysis of the non-

negative METC problem exploits the existence of such end components. Our �rst result characterizes

the set of states on which u� <1. Given an instance � = (S;A; p; c) of METC, de�ne D(s) = fa 2

A(s) j c(s; a) = 0g, and let

S0 =
[n

B
��� (B;C) 2 maxEC (S;D)

o
:

De�ne also

S<1 =
n
s 2 S

��� max
�

Pr�s (reach(S0)) = 1
o
:

Theorem 7.6 The following assertions hold:

� If s 2 S0, then v
�
s = 0.

� v�s <1 i� s 2 S<1.

Proof. The �rst assertion is an immediate consequence of our results on end components.

For the second assertion, assume �rst that max� Pr
�
s (reach(S0)) < 1, and consider an arbitrary

policy �. Since the behaviors from s with probability 1 eventually follow and end component, there

must be an end component (B;C) such that:

� there is (t; a) 2 sa(B;C) such that c(t; a) > 0;

� Pr�s(inft(!) = sa(B;C)) > 0.

From these two statements, and from the fact that � is arbitrary, it follows immediately that u�s =1.

In the other direction, from our results on the maximum reachability probability problem we

know that there is a Markovian policy �m that maximizes the probability of reaching S0. Thus, if

s 2 S<1 it is max� Pr
�m
s (reach(S0)) = 1. From �m, reasoning as in the proof of Lemma 4.1 we can

obtain another Markovian policy �M , which coincides with �m outside S0, and that once in S0 it
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follows forever one of the end components forming S0. Let P = [pst]s;t2S<1 , u = [u�Ms ]s2S<1 , and

c = [cs]s2S<1 , where

pst =
X

a2A(s)

Q�M (a j s) pst(a) cs =
X

a2A(s)

Q�M (a j s)c(s; a) :

Then, we can write u =
P1
k=0 P

k
c. Noting that cs = 0 for s 2 S0, and that once S0 is entered, a

behavior never exits from S0, we can write bu =
P1
k=0

bP kbc, where bu, bP and bc are the restrictions of
u, P and c to S<1�S0. This is equivalent to bu = (I � bP )�1bc. Since bP is the matrix of a transient

Markov chain, det(I � bP ) 6= 0, and we conclude that bu is �nite. By de�nition of u�s , this implies

that u�s <1 for s 2 S<1.

It remains to compute the value of u�s at the states s 2 S<1 � S0. This can be done using

a straightforward reduction to the stochastic shortest path problem, as stated by the following

theorem.

Theorem 7.7 (reduction from non-negative METC to SSP) Consider the instance b� =

(S<1; bA; bp; S0;bc; g) of SSP problem, where bA and bp are the restrictions of A and p to S<1, bc is the
restriction of c to S<1 � S0, and g is identically 0.

Then, the SSP problem satis�es SSP Assumptions 1 and 2. Moreover, it is u�s = v�s for all

s 2 S<1 � S0, where v
�
s denotes the solution of the SSP problem.

Proof. The fact that SSP Assumption 1 holds is a direct consequence of the de�nition of S<1. To

see that SSP Assumption 2 holds, we can reason as in the proof of Theorem 7.6 to show that if � is

SSP-improper, then v�s =1 for some s 2 S<1.

Denote by u, v the restrictions to S<1�S0 of the vectors corresponding to the cost of the METC

and SSP problems, respectively. As can be seen from the proof of Theorem 7.6, it is u� = inf�2�
P
u
� ,

i.e. the solution of the METC problem corresponds to an SSP-proper policy. For � 2 �P , it is

u
� � v

� , since in the de�nition of METC, also the cost incurred after leaving the end components

in S0 is taken into account. Hence,

u
� = inf

�2�
P

u
�
� inf
�2�

P

v
� = v

� : (7.11)

In the other direction, if � is SSP-proper we can obtain another SSP-proper policy �0 that di�ers

from � only on S0, and such that �0 follows forever one of the end components of S0, once S0 is

entered. For this policy, it is v� = v
�0 = u

�0 . Hence,

u
� = inf

�2�
P

u
�
� inf
�2�

P

v
� = v

� : (7.12)

The result follows by combining (7.11) and (7.12).



Chapter 8

Fairness

Fairness is a concept that has been widely used in the formal modeling and veri�cation of systems;

its traditional uses include the modeling of concurrency and of unbiased arbitration. In the context

of probabilistic systems, fairness serves also the additional purposes of abstracting from the speci�c

values of some transition probabilities, and of modeling transitions with an unspeci�ed distribution

of waiting times. The introduction of fairness in the system model requires the use of updated

speci�cation languages and model-checking algorithms, which will be described in this chapter.

The subject of fairness in probabilistic systems has been already discussed in the literature.

Pnueli [Pnu83] and Pnueli and Zuck [PZ93] introduce the notions of extreme fairness and �-fairness

to abstract from the precise values of probabilities. Hart, Sharir and Pnueli [HSP82] and Vardi

[Var85] consider probabilistic systems in which the choice of actions at the states is subject to

fairness requirements, and present algorithms for checking that temporal logic formulas hold with

probability 1 over these systems. This chapter has been inspired by Baier and Kwiatkowska [KB96],

which consider models very similar to Markov decision processes with fairness requirements, and

present algorithms to compute the probability with which temporal logic formulas hold over these

systems.

We return on the subject of fairness in probabilistic systems for three reasons. The �rst is to

introduce a notion of fairness that is better suited to the study of in�nite-state systems and to the

modeling of transitions with unknown delay distributions. The second is to propose a modi�cation

to the de�nition of the logics GPTL and GPTL* that leads to simpler model-checking algorithms.

The third reason is to provide model-checking algorithms for operators D, �P and �D, which have been

introduced in this dissertation.

We begin our presentation by brie
y recalling a few notions of fairness that have been presented

in the literature, discussing the implications of each de�nition in the context of probabilistic systems.

We then introduce our version of fairness, called probabilistic fairness, and we present the temporal

logics FPTL and FPTL*, derived from GPTL and GPTL*. In these new logics, the semantics of

164
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the path quanti�ers and of the probabilistic operators is modi�ed to take into account the presence

of fairness. Finally, we describe the model-checking algorithm for FPTL and FPTL*, followed by

its correctness proof.

8.1 An Overview of Fairness

The concept of fairness in the context of formal system veri�cation was introduced by Lehmann,

Pnueli and Stavi [LPS81] for shared-variables programs, and by Queille and Sifakis [QS83] for tran-

sition systems. Its traditional uses include the modeling of concurrency and of un-biased arbitration;

among the monographs devoted to the study of fairness, we recall Francez [Fra86] and Apt, Francez

and Katz [AFK88].

Two notions of fairness are commonly considered: justice, also called weak fairness, and compas-

sion, also called strong fairness (see Manna and Pnueli [MP91, MP95]). Informally, the meaning of

justice and compassion can be described as follows. If � is a just or compassionate transition, then

every behavior of the system must obey the following constraints:

� � is just. If � is forever enabled, it must be taken in�nitely often.

� � is compassionate. If � is in�nitely often enabled, it must be taken in�nitely often.

Justice is mainly used to model the progress of individual threads of concurrent computation.

If all the transitions of a thread are just, then the execution of the thread must continue as long

as at least one of its transitions is enabled. Compassion is used to model fair choice, i.e. to model

probabilistic choice abstracting from the numerical values of the probabilities; it can be used in the

modeling of arbiters and message-passing systems.

In this dissertation, we will focus on probabilistic notions of fairness related to compassion, and

we will not propose methods for dealing with justice. In fact, compassion is better suited to model

unspeci�ed transition probabilities and unknown delay distributions, which are our motivations

for introducing fairness. We also remark that justice can be often substituted by the stronger

requirement of compassion, and that it would be possible to extend our de�nitions and algorithms

to encompass also the notion of justice.

8.2 Probabilistic Fairness

In a fair transition system, the fairness requirements are represented by specifying which transitions

are just and compassionate [MP91]. In the system model of timed probabilistic systems, the role

of transitions is played by actions. Di�erently from transition systems, however, we do not specify

fairness by a global set of fair actions: instead, we associate to each system state a set of actions that

are fair at that state. This approach is consistent with our desire to de-emphasize action names: the
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u v
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Figure 8.1: A fair Markov decision process � = (S;A; p;F), with S = fu; vg, A(u) = fa; bg,
A(v) = fbg, F(u) = fa; bg, F(b) = ;. The probability distributions of the state-action pairs are
deterministic.

speci�cation of a global set of fair actions would assume an implicit correspondence between actions

at di�erent states that have the same name. The de�nition of fair Markov decision process is as

follows.

De�nition 8.1 (fair Markov decision process) A fair Markov decision process (FMDP) � =

(S;A; p;F) is a Markov decision process (S;A; p) with an additional labeling F that speci�es for

each s 2 S a subset F(s) � A(s) of fair actions at s.

A fair TPS (FTPS) is obtained from a TPS by adding the fairness labeling F , de�ned as for fair

MDPs.

De�nition 8.2 (fair TPS) A fair TPS � = (S;A; p;F ; Sin; time; I) consists of a TPS

(S;A; p; Sin; time; I) with an additional labeling F that is de�ned as for fair Markov decision pro-

cesses.

The fairness of an FTPS is enforced by de�ning a set of fair policies. Roughly, a policy is fair if

there is a global non-zero lower bound to the probability with which the fair actions are chosen. To

enforce the fairness requirements of a FMDP, we restrict our attention to fair policies in our de�nition

of logic and system semantics. This approach is closely related to that of [KB96], even though our

de�nition of fair policy is di�erent; we will later present a comparison of the two de�nitions.

De�nition 8.3 (fair policy) A policy � for an FMDP � = (S;A; p;F) is fair if there is � > 0

such that, for all n � 0, all sequences of states s0; : : : ; sn and all a 2 F(sn) it is Q�(a j s0 � � � sn) � �.

In the above de�nition, � can depend on the policy �, but cannot depend on the past sequence

s0 � � � sn of states, nor on the action a 2 F(sn). Thus, � represents a lower bound for the probability

with which � chooses any fair action throughout the behavior of the system. The following example

justi�es this de�nition.

Example 8.1 (past independence of �) Consider the FMDP depicted in Figure 8.1, and assume

that we adopt the following alternative de�nition of fair policy:
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A policy � for � = (S;A; p;F) is fair if, for all n � 0, all sequences of states s0; : : : ; sn

and all a 2 F(sn), it is Q�(a j s0 � � � sn) > 0.

Consider then the policy �� that, after the sequence s0; : : : ; sn, chooses the next action as follows:

� if sn = v, then �� chooses deterministically action b;

� if sn = u, then �� chooses a with probability pn = exp(�(2�n�1) log 2), and b with probability

1� pn.

According to the modi�ed de�nition, policy �� is fair, since the probability of choosing a and b at u

are always strictly positive. However, it is easy to check that a behavior that starts from s0 = u will

remain forever at u with probability 1=2. This clearly contradicts our intuitive notion of fair choice

between a and b, since a non-zero fraction of behaviors never chooses b, even though such a choice

is always possible.

To avoid this type of situation, De�nition 8.3 requires that the lower bound to the probability

of choosing a fair action is independent from the sequence of past states.

To gain a better understanding of the properties of our de�nition of fairness, we compare it with

other notions of fairness that have been proposed in the literature. To facilitate the comparison, we

have reformulated all de�nitions in terms of Markov decision processes, instead of introducing fair

transition systems, as in Manna and Pnueli [MP91], or probabilistic automata, as in Kwiatkowska

and Baier [KB96].

8.2.1 Compassion: Fair Transition Systems Approach

Consider an MDP (S;A; p), and let Acts be the underlying set of actions. Adapting the de�nition

of [MP91] to the notation of Markov decision processes, we represent FTS-compassion by a set

C � Acts of actions. Given a behavior ! : s0; a0; s1; a1; s2; : : :, we say that ! is FTS-fair if the

following condition holds for every a 2 C:

if a 2 A(si) for in�nitely many i � 0, then a = ai for in�nitely many i � 0.

Since the de�nition of [MP91] is not aimed at probabilistic systems, it does not specify how the

fairness of behaviors should be re
ected in the set of policies that are considered. Two alternatives

appear to be the most natural, and have been explored by [KB96] in a similar setting:

� Only policies under which all behaviors are fair are considered.

� Only policies under which behaviors are fair with probability 1 are considered.

Clearly, the �rst alternative leads to a stronger de�nition of fairness than the second one. The

following example illustrates why the notion of FTS-compassion is not appropriate for our purpose of

abstracting from the value of transition probabilities, regardless of which one of the above alternatives

is chosen.
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Figure 8.2: A Markov decision process � = (S;A; p) with S = fs; t; u; vg, and action sets as depicted.
The probability distributions associated to all state-action sets are deterministic. To this MDP is
associated a set of compassionate actions C = fa; b; cg.

Example 8.2 Consider the MDP depicted in Figure 8.2, and consider the policy � de�ned by:

Q�(c j s) = 1 Q�(c j �ubs) = 1

Q�(c j �t) = 1 Q�(a j �tcs) = 1

Q�(b j �u) = 1 Q�(b j �v) = 1 ;

where � denotes any (possibly empty) sequence of alternated states and actions, and all other

conditional probabilities are 0. Intuitively, � chooses always b; b; c respectively at u; v; t; at s, it

alternately chooses a or c. Under �, every behavior is compassionate with respect to all actions,

since every action appears in�nitely often along every behavior. Nonetheless, action a is never

chosen at state t, indicating how this de�nition of compassion fails to capture fully the behavior of

probabilistic choice.

Extreme Fairness and �-Fairness

To remedy to the situation illustrated by the previous example, Pnueli [Pnu83] and Pnueli and Zuck

[PZ93] introduce the notions of extreme fairness and �-fairness. Similar concerns also led to the

concept of uniform compassion in Bj�rner, Lerner and Manna [BLM97].

The notion of �-fairness relies on the use of past temporal logic. Given a behavior ! =

s0a0s1a1s2 � � � and a past temporal formula �, we say that i � 0 is a �-position of ! if � holds

at position i of !. We say that an action a is taken at position i � 0 of ! if ai = a.

A behavior ! is �-fair with respect to � if, whenever a fair action a is enabled at in�nitely many

�-positions, a is chosen in�nitely often from �-positions. A behavior is �-fair if it is �-fair with

respect to all past temporal formulas.

This de�nition prevents situations such as the one discussed in Example 8.2 from arising. We
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Figure 8.3: Markov decision process resulting from the \unrolling" of the process of Figure 8.1.

have preferred to base our results on the notion of probabilistic fairness rather than �-fairness

because the de�nition of probabilistic fairness does not require the introduction of past temporal

formulas, and because probabilistic fairness, being already stated in terms of probability, leads to a

simpler analysis of the model-checking algorithms.

8.2.2 State-Based Fairness

Baier and Kwiatkowska [KB96] propose a di�erent solution to the problem illustrated in Example 8.2.

According to [KB96], a behavior ! is fair if, whenever a state s appears in�nitely often along !,

all actions in A(s) also appear in�nitely often along !. This notion of fairness has its roots in the

state-fairness described in Pnueli [Pnu83] and Vardi [Var85]. As mentioned in [KB96], this de�nition

can be easily generalized to the case in which to each state s is associated a set of fair actions F(s).

A policy is strictly fair if under it all the behaviors are fair, and is (almost) fair if under it the

behaviors are fair with probability 1.

The drawback of this de�nition is that it does not directly apply to in�nite-state systems, as the

following example indicates.

Example 8.3 Consider the FMDP depicted in Figure 8.3. This FMDP can be obtained by taking

the product of the FMDP of Example 8.1 with an automaton over the natural numbers whose state

increases by one at each transition. Since no state of this MDP appears more than once in any

behavior, the fairness notion of [KB96] does not impose any constraint on the set of policies for it.

This example indicates that the de�nition of [KB96] is not invariant with respect to the product

with in�nite-state systems.

The notion of probabilistic fairness retains most of the properties of the proposal of [KB96] while

being readily extendible to in�nite-state systems. Moreover, probabilistic fairness is suited to the

representation of transitions with unknown delay distributions, as we will see in the next chapter.
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8.3 Time Divergence and Admissible Policies

In Chapter 3 we introduced the concept of non-Zeno TPSs: informally, a TPS is non-Zeno if time

diverges with probability 1 under any policy. In the previous chapters, we required that the TPSs

under consideration be non-Zeno, thus ensuring time divergence regardless of the policy.

While this approach leads to simpler logics and veri�cation algorithms, is not adequate for the

study of system approximations. A TPS that is constructed as the approximation of a system may

not be non-Zeno, since the substitution of probability with nondeterminism can lead to policies

under which time diverges with probability less than 1.

For these reasons, we adopt in the following a more general approach, due to Segala [Seg95b]. This

approach is based on the notion of time-divergent policies (called admissible in [Seg95b]): a policy

is time divergent if time diverges with probability 1 under it. While the non-Zenoness requirement

asks for all policies to be time divergent, the proposal of [Seg95b] is to consider the behavior of the

system only under time-divergent policies.

The advantage of the approach based on non-Zenoness is its simplicity: since in a non-Zeno TPS

all policies lead to time divergence, it is possible to de�ne the meaning of the probabilistic operators

by quantifying over the set of all policies, without distinguishing among time divergent and non-

divergent ones. However, our approach to fairness has already led us to restrict the set of policies

under consideration, so that adopting the approach of [Seg95b] does not complicate excessively the

semantics of the logic or the presentation of the model-checking algorithms. For this reason, in the

study of fair TPSs we adopt this approach, and we de�ne time divergent policies as follows.

De�nition 8.4 (time-divergent policy) Given an FTPS (S;A; p;F ; Sin; time; I), we say that

a policy � is time divergent for a state s if

Pr�s

� 1X
k=0

time(Xk; Yk) =1

�
= 1 :

For each state s we de�ne the set Adm(s) of admissible policies for s as the set of policies that

are both fair and time divergent. This is the set of policies that will be considered in the logics and

veri�cation algorithms for fair TPSs.

De�nition 8.5 (admissible policy) We say that a policy � is admissible for a state s if � is both

fair and time divergent for s. The set of admissible policies for a state s is denoted by Adm(s). We

say that a policy � is admissible if it is admissible for all states.

Finally, we substitute Assumption 3.1 with the weaker assumption stating that every state has

at least one admissible policy.

Assumption 8.1 (admissibility) Given a fair TPS �, for every state s of � it is Adm(s) 6= ;.
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8.4 Probabilistic Logics for Fairness: FPTL and FPTL*

As a consequence of the introduction of fairness and of the new approach to time divergence, it

is necessary to provide new de�nitions for the semantics of the probabilistic temporal logics. The

new logics, called FPTL and FPTL* (from Fair Probabilistic Temporal Logics) are obtained from

GPTL and GPTL* by modifying the semantics of the path quanti�ers A, E and of the probabilistic

operators P, D, �P, �D. The rationale for the modi�cations is as follows.

8.4.1 Path Quanti�ers A, E

In GPTL or GPTL*, formula A� holds at a state s if all behaviors originating from s satisfy �.

Thus, the path quanti�ers A and E are de�ned as in CTL and CTL*.

This de�nition is not compatible with our approach to fairness. In fact, even if policy � is fair

and time divergent for s, some of the behaviors arising under � may not be fair, in the sense that

they may contain in�nitely many states where a fair action is possible, and contain only �nitely

many occurrences of that action. The behavior of the system under such unfair behaviors is taken

into account by the classical de�nition of the path quanti�ers, preventing the use of these quanti�ers

in speci�cations in which the fairness of the system matters.

The problem can be traced to the fact that, according to our de�nition, fairness is a restriction

on the probability distributions with which policies choose the actions, rather than a restriction on

the sequence of actions along every behavior. Hence, we are not able to guarantee that all behaviors

arising from a fair policy are fair in the classical sense: all we can guarantee is that they are fair

with probability 1. To remedy to this situation, we rede�ne the semantics of the path quanti�ers A

and E in FPTL and FPTL*. According to the our new de�nitions, formula A� holds at a state s if,

under any admissible policy, � holds with probability 1; the path quanti�er E is then de�ned as the

dual of A, as usual.

8.4.2 Operators P, D, �P, �D.

To simplify the model-checking algorithms, we adopt a new semantics for the probabilistic operators

P, D, �P, and �D. We motivate this choice by presenting the argument relative to the operator P;

similar arguments apply to the other operators.

Given a state s and a sequence formula �, denote by

P (s; �) =
n
x 2 [0; 1]

��� 9� 2 Adm(s) : Pr�s (! j= �) = x
o

the set of values that the probability of � can assume under admissible policies. An analysis of

the algorithms presented in Baier and Kwiatkowska [KB96] (which are based on a di�erent notion

of fairness) reveals that determining supP (s; �) and inf P (s; �) can be done in time polynomial in
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the size of the TPS. Determining whether P (s; �) is open or closed at the endpoints, i.e. whether

inf P (s; �) 2 P (s; �) and supP (s; �) 2 P (s; �), requires more involved algorithms.

If supP (s; �) = a, determining whether P (s; �) is open or closed at the endpoints enables to

distinguish between the case in which P<a� holds at s, and the case in which only P�a� holds. We

note that the need to distinguish among these cases does not arise in the analysis of non-fair TPSs,

since the sets under consideration are closed at the endpoints in the absence of fairness. This is a

consequence of the existence of optimal policies that minimize or maximize the quantities measured

by P, D, �P and �D, a result that has been proved in the previous chapters.

Even in the case of fair TPSs, however, the practical usefulness of such a �ne distinction is open

to question, especially in view of fact that the transition probabilities of a system are known in many

cases only in an empirical fashion. In the logics FPTL and FPTL* we do not distinguish between

the cases in which P (s; �) is open or closed at the endpoints, and we base our de�nitions on the

supremum and in�mum of the set P (s; �) instead. This leads to simpler model-checking algorithms.

8.4.3 Semantics of FPTL and FPTL*

To de�ne the semantics of FPTL and FPTL*, we need to provide new de�nitions for the product of

a fair TPS and experiment, and for threshold outcomes. The product is de�ned as follows.

De�nition 8.6 (product of fair TPS and experiments) Given a fair TPS � =

(S;A; p;F ; Sin; time; I) and an experiment 	 = (V;E;Er ; Vin; �), their product FMDP �	 =

�
	 = (bS; bA; bp; bF ; dtime; r; w) is de�ned as in De�nition 5.5, with the addition that

bF(hs; vi) = F(s) dtime(hs; vi; a) = time(s; a)

for all hs; vi 2 bS and a 2 bA(hs; vi).
Admissible threshold outcomes represent the minimum and maximum values for the long-run

average outcome of an experiment that can be attained with positive probability under an admis-

sible policy: they are the corresponding concept to threshold outcomes in presence of fairness (see

De�nition 5.9).

De�nition 8.7 (admissible threshold outcomes) Consider a fair TPS �, an experiment 	

and their product FMDP �	. For each state hs; vi of �	, we de�ne the maximum and minimum

threshold outcomes �FT
+
hs;vi and

�T
�
hs;vi by

�FT
+
hs;vi = sup

n
a 2 IR

��� 9� 2 Adm(hs; vi) : Pr�hs;vi

�
I ^ lim sup

n!1
Hn(!) � a

�
> 0

o
�FT
�
hs;vi = inf

n
a 2 IR

��� 9� 2 Adm(hs; vi) : Pr�hs;vi

�
I ^ lim inf

n!1
Hn(!) � a

�
> 0

o
;
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GPTL, GPTL* FPTL, FPTL*

s j= A� 8! 2 
s : ! j= � 8� 2 Adm(s) : Pr�s (! j= �) = 1

s j= E� 9! 2 
s : ! j= � 9� 2 Adm(s) : Pr�s (! j= �) > 0

s j= P./a� 8� : Pr�s(! j= �) ./ a
h
inf�2Adm(s) Pr

�
s(! j= �)

i
./ a

s j= D./a 8� : E�sftimeto( )g ./ a
h
inf�2Adm(s) E

�
sftimeto( )g

i
./ a

s j= �P./a	 8� : Pr�
hs;Vini

�
I ! (lim supn!1Hn ./ a)

�
�FT
�
s (	) ./ a

s j= �D./a	 8� : Pr�
hs;Vini

�
I ! (lim supn!1Hn ./ a)

�
�FT
�
s (	) ./ a

Table 8.1: Semantics of the path quanti�ers and probabilistic operators in GPTL, GPTL* and
FPTL, FPTL*. The satisfaction relations in the left column holds if and only if the statements in
the two other columns hold. In the table, � denotes a sequence formula,  a state formula, and 	
an experiment. The formulas I and H appearing in the rows for �P and �D refer to the product with
experiment 	, and Vin is the initial vertex of �. The symbol a denotes either a non-negative real
number (operators D, �D) or a real number in the interval [0; 1] (operators P, �P). The symbol ./
denotes one of �; >: the de�nitions for �; < are analogous.

with the convention that, if Pr�
hs;vi(I) = 0 for all � 2 Adm(hs; vi), then �FT

+
hs;vi = �1, �FT

�
hs;vi =

+1. For a state s of � we de�ne then

�FT
+

s (	) =
�FT

+

vin(s)
�FT
�
s (	) =

�FT
�
vin(s)

:

Table 8.1 presents the de�nitions of the path quanti�ers and probabilistic operators in FPTL and

FPTL*. The table also gives the corresponding de�nitions in GPTL and GPTL*, for comparison.

The table uses the abbreviation

timeto( ) =

T �1X
k=0

time(Xk; Yk) : (8.1)

As usual, we say that a fair TPS satis�es a FPTL or FPTL* speci�cation � 2 Stat if all initial

states of the TPS satisfy �. The following de�nition is the exact counterpart of De�nition 4.1

De�nition 8.8 (validity over a fair TPS) Given a fair TPS � = (S;A; p;F ; Sin; time; I) and

an FPTL or FPTL* speci�cation � 2 Stat, we say that � satis�es �, written � j= �, i� s j= � for

all s 2 Sin.
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The following results states that operators A and E are the dual of each other in FPTL and

FPTL*. The result for GPTL and GPTL* was a consequence of the well-known result for CTL and

CTL*.

Theorem 8.1 (duality of path operators in FPTL, FPTL*) Given a state s and a sequence

formula � of FPTL or FPTL*, it is s j= A� i� s 6j= E:�, where the satisfaction relation j= is as

de�ned for FPTL and FPTL*.

8.5 Model-Checking Algorithms for FPTL and FPTL*

As usual, the model-checking problem for FPTL and FPTL* consists in determining the truth-value

of a given state formula � at all states of the system. As described in Chapter 4, this problem can be

solved by recursively evaluating the values of the state subformulas of � at all states of the system.

Since the only di�erence between FPTL, FPTL* and GPTL, GPTL* lies in the de�nition of the

path quanti�ers and the probabilistic operators, we need to provide model-checking algorithms only

for these operators. We present the model-checking algorithms for FPTL* only, since FPTL is a

subset of FPTL*.

We present the model-checking algorithms in this section, and their correctness proof in the next.

Before we proceed to stating the algorithms, we need some preliminary notions.

8.5.1 Admissible End Components

The concept of end components played a major role in the design and analysis of the model-checking

algorithms for GPTL and GPTL*. As explained in Chapter 3, this concept provided a characteri-

zation of the set of state-action pairs that could be repeated forever along a behavior with positive

probability. With the introduction of fairness in the system model and with the adoptions of the

approach of [Seg95b] to time divergence, we must revise this notion, and introduce admissible end

components (AECs). Admissible end components play the same role in the study of fair MDPs as

end components in the study of ordinary MDPs; they are de�ned as follows.

De�nition 8.9 (admissible end components) Given a fair MDP � = (S;A; p;F), an end

component (B;C) of � is admissible end component (AEC) if it satis�es the following two conditions:

� (fairness) for all s 2 B it is F(s) � C(s);

� (time divergence) there is (s; a) 2 sa(B;C) such that time(s; a) > 0.

Maximality and containment for AECs are de�ned as for end components.

Again, we introduce a shorthand to denote the set of AECs contained in a given sub-MDP.
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De�nition 8.10 (maxAEC ) Given a sub-MDP (B;C) of a fair MDP, we denote by

maxAEC (B;C) = f(D1; E1); : : : ; (Dn; en)g the set consisting of the maximal admissible end com-

ponents of (B;C). Moreover, we abbreviate maxAEC (B;AnB) by maxAEC (B).

Given a sub-MDP (C;D), the set of maximal admissible end components of (C;D) can be

computed using the following algorithm.

Algorithm 8.1 (computation of maximal admissible end components)

Input: A sub-MDP (C;D).

Output: The set L = maxAEC (C;D).

Initialization: J := f(C;D)g.

Repeat the following steps:

� Select (B;E) 2 J .

� For all s 2 B, let E0(s) := fa 2 E(s) j Succ(s; a) � Bg, and let

E00(s) :=

(
E0(s) if F(s) � E0(s);

; otherwise.

� Let B1; : : : ; Bn be the strongly connected components of the graph (B; �(B;E00)), and let

Ei(s) = E00(s) for all i 2 [1::n] and s 2 Bi.

� Replace (B;E) 2 J with (B1; E1); : : : ; (Bn; En).

Until: J cannot be changed by the above iteration.

Return: L = f(B;E) 2 J j 9(s; a) 2 sa(B;E) : time(s; a) > 0g.

The following two theorems provide a characterization of admissible end components, and are

the counterparts of Theorems 3.1 and 3.2 of Chapter 3.

Theorem 8.2 (stability of AECs) Let (C;D) be an admissible end component. Then, for every

admissible policy � there is an admissible policy �0 such that:

Pr�s(reach(C)) = Pr�
0

s (reach(C)) = Pr�
0

s (inft(!) = sa(C;D)) (8.2)

for all s 2 S.

Proof. Policy �0 can be constructed from � as follows. After the past s0 � � � sn:

� if sn 62 C, then Q�0(a j s0 � � � sn) = Q�(a j s0 � � � sn) for all a 2 A(s);
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� if sn 2 C, then Q�0(a j s0 � � � sn) is equal to jD(s)j
�1 if a 2 D(s), and is equal to 0 otherwise.

It is easy to verify that �0 is admissible, and that (8.2) holds for � and �0.

The following theorem states that, for any initial state and admissible policy, a behavior will

eventually follow with probability 1 an admissible end component.

Theorem 8.3 (fundamental theorem of admissible end components) For any s 2 S and

any admissible policy �, Pr�s(sub(inft(!)) is an AEC ) = 1.

Proof. The proof of this theorem follows the idea of the proof of Theorem 3.2. First, note that

with probability 1 the sub-MDP sub(inft(!)) is an end component. Since there are only countably

many end components, it remaints to be proved that if Pr�s (sub(inft(!)) = (C;D)) > 0 for an

end component (C;D), then (C;D) is admissible. Assume thus that � is admissible, and that

Pr�s(sub(inft(!)) = (C;D)) > 0.

Since � is admissible, there is a lower bound � to the probability of choosing an action in F(s)

at every state s. Thus, by reasoning in analogy with the proof of Theorem 3.2 it can be proved

that F(s) � D(s) for all s 2 C, which is our �rst requirement for (C;D) to be admissible. It is

then immediate to see that there must be at least one state-action pair (s; a) 2 sa(C;D) such that

time(s; a) > 0, due to the time-divergence requirement. This is the second requirement for (C;D)

to be admissible, and the proof is concluded.

8.5.2 Existence of Admissible Policies

The �rst task of the model-checking algorithms is to verify that Assumption 8.1 holds. We present

two algorithms. The �rst algorithm checks whether there is at least one admissible policy for every

state. The second algorithm enables to obtain, given a TPS �, the maximal sub-TPS �0 of � that

satis�es Assumption 8.1. The second algorithm is not necessary for model checking, but it can be

used in a pre-processing step to obtain a TPS that can be model-checked.

Algorithm 8.2 (checking Assumption 8.1)

Input: A fair TPS � = (S;A; p;F ; Sin; time; I).

Output: Yes/no answer indicating whether Assumption 8.1 holds for �.

Method: Let G = fs 2 S j 9a 2 A(s) : time(s; a) > 0g be the set of states from which time can

advance. Answer \yes" if every state of S can reach some state of G in the graph (S; �S), and

\no" otherwise.
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Algorithm 8.3 (computing the sub-TPS that satisfy Assumption 8.1)

Input: A fair TPS � = (S;A; p;F ; Sin; time; I).

Output: The (possibly empty) maximal sub-TPS �0 of � that satis�es Assumption 8.1.

Method:

� Let S0 = S, A0 = A.

� Repeat:

{ Let G = fs 2 S0 j 9a 2 A0(s) : time(s; a) > 0g.

{ Let B0 be the subset of states of S0 that cannot reach G in (S0; �(S0;A0)).

{ Remove from S0 all states in B0.

{ Repeat:

� Remove from S0 all states s 62 S� that have a fair action leading to at least one

removed state.

� Remove from A0 all the actions leading to at least one removed state.

� Remove from S0 all states s 62 S� that have no actions left in A0.

{ Until no more states or actions can be removed from S0, A0.

� Until no more states or actions can be removed from S0, A0.

� Let F 0, time0, I 0 be the restrictions of F , time, I to S0, A0, and output the fair TPS

�0 = (S0; A0; p0;F 0; S0 \ Sin; time
0; I 0).

Note that the fair TPS �0 needs not be connected, nor it needs to contain any initial state. These

conditions can be tested after the application of Algorithm 8.3.

8.5.3 Path Quanti�ers

Given a fair TPS � = (S;A; p;F ; Sin; time; I) and a sequence formula �, we now present algorithms

to decide whether s j= A� and s j= E�. As in Section 4.4, we assume that the value of the maximal

state subformulas �1; : : : ; �n of � has already been evaluated at all states of the TPS. Again, we let

�0 = [r1=�1] : : : [rn=�n] to be the result of replacing each �i with a new propositional symbol ri, for

every t 2 S we de�ne its label l(t) by l(t) = fri j 1 � i � n ^ t j= �ig.

Let �:�0 = � 
 DR:�0 be the MDP obtained by taking the product between the l-labeled

TPS � and the deterministic Rabin automaton DR:�0 for :�
0. This product is computed as

in Algorithm 4.2. For each state s = ht; vi of �0 corresponding to states t of � and v of

DR:�0 , we let F
0(s) := F(t), and for a 2 A(t) we also let time(s; a) := time(t; a). Let

U 0 = f(P 0
1; R

0
1); : : : ; (P

0
m; R

0
m)g be the acceptance list for �0. The following theorem enables to

decide whether s j= A�.
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Theorem 8.4 (model checking of A in FPTL, FPTL*) s j= A� i� there is no admissible

end component (C;D) reachable from hs; qini in �:�0 such that C � P 0
i and C \ R0

i 6= ; for some

1 � i � m.

This theorem leads immediately to the following model-checking algorithm.

Algorithm 8.4 (model checking of A in FPTL, FPTL*)

Input: TPS � and sequence formula �.

Output: The set SA� = fs 2 S j s j= A�g.

Method: First, compute the MDP ��0 = (S0; A0; p0;F 0; U 0) as described above, and let

S:� =
[n

B
��� 9(P;R) 2 U 0 : 9(C;D) 2 maxAEC (P ) :

h
B = C ^ C \ R 6= ;

io
:

Then,

SA� =
n
s 2 S

��� hs; qini cannot reach S:� in (S0; �S0)
o
:

Since operators A and E are the dual one of the other, as stated by Theorem 8.1, the above

algorithm also provides a solution to the model-checking problem for the path quanti�er E.

8.5.4 Operator P

We provide an algorithm to check whether s j= P./a� holds, for 0 � a � 1 and ./2 f�; <g. The

other cases can be solved by exploiting the relations

s j= P>a� i� s j= P<1�a:�

s j= P�a� i� s j= P�1�a:�

which hold for FPTL and FPTL*, as it can be easily shown. While it is possible to use the algorithms

of this subsection (taking a = 0 or 1) to obtain model-checking algorithms for A and E, the algorithms

presented in the preceding subsection are more e�cient, since they avoid the reduction to linear

programming that is necessary for the case 0 < a < 1.

Given a fair TPS � = (S;A; p;F ; Sin; time; I) and a sequence formula � of FPTL or FPTL*, let

�0 be the result of replacing the maximal state subformulas in � with propositional symbols, as in

the previous subsection, and let

�� = (S0; A0; p0;F ; time; U 0) = �
DR�0

be the MDP obtained by taking the product between the l-labeled TPS � and the deterministic

Rabin automaton DR�0 , and adding the F and time labels as described in the algorithm for path
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quanti�ers. The following theorem is the analogous of Theorem 4.2, and provides an algorithm for

the model checking of operator P in FPTL and FPTL*. This algorithm is very similar to the one

presented in [KB96, Section 10] (which in turn is based in part on [BdA95, dA97]). The similarity

of the algorithms is in spite of the fact that the de�nition of fairness, and other details of the system

models, are di�erent.

Theorem 8.5 (model-checking of P in FPTL and FPTL*) Let

S� =
[n

B
��� 9(P;R) 2 U 0 : 9(C;D) 2 maxAEC (P ) :

h
B = C ^ C \ R 6= ;

io
:

Then,

sup
�2Adm(s)

Pr�s(�) = max
�

Pr�
hs;qini

(reach(S�)) ;

where the rightmost reachability probability is computed in �� over the set of all possible policies.

8.5.5 Model Checking D./a for ./2 f�; <g

The model checking of operator D is based on a reduction to the stochastic shortest path problem,

as was the case for GPTL and GPTL*. The reduction used for FPTL and FPTL* is more complex,

due to the presence of fairness and to the approach adopted to the problem of time divergence. We

present �rst the case in which the inequality operator used as subscript of D is � or <.

Consider a fair TPS � = (S;A; p;F ; Sin; time; I), and let D./a� be the formula to be model

checked, where � is a state formula of FPTL or FPTL*, ./2 f�; <g and a � 0. As usual, we assume

that the truth value of � has already been evaluated at all states, and we let S� = fs 2 S j s j= �g.

The following lemma takes care of the states in S�.

Lemma 8.1 If s 2 S�, then s j= D./a�, for ./2 f�; <g and any a � 0.

Next, we consider the states in S � S�. To determine the subset of S � S� from which the

expected time to S� diverges, we reason as follows. Assume that there is an end component (B;C)

in S � S� containing at least one state-action pair (s; a) 2 sa(B;C) with time(s; a) > 0. Assume

also that (B;C) is reachable from s without leaving S � S�. Then, there is an admissible policy

that reaches (B;C) from s with positive probability. If (B;C) is an admissible end component,

this admissible policy can force any behavior that reaches (B;C) to remain in (B;C) forever, thus

causing the expected time to S� from s to diverge. Even if (B;C) is not admissible, however, we

can construct a sequence �0; �1; : : : of admissible policies that, once in (B;C), leave (B;C) with

probability at most �0; �1; : : :, with limn!1 �n = 0. These policies spend an expected amount of

time in (B;C) that diverges as n ! 1; the expected time from s to S� will also diverge. These

considerations lead to the following result.
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Theorem 8.6 Let

B =
[n

B0
��� 9(C;D) 2 maxEC (S � S�) : 9(s; a) 2 sa(C;D) :

h
B0 = C ^ time(s; a) > 0

io
;

and let bB be the subset of S�S� consisting of the states that can reach B in the graph (S�S�; �S�S�).

For s 2 bB, ./2 f�; <g and any a � 0, it is s 6j= D./a�.

We must still compute the truth value of D./a� at the states in C = S � (S� [ bB). To do

so, we construct an instance of SSP problem (C [ S�; A; p; S�; c; g) where the cost c is de�ned by

c(s; a) = �time(s; a) for all s 2 C and a 2 A(s), and g is identically 0. Note that we have slightly

abused the notation, since in this instance there can be actions leading from S� outside of C [ S�.

However, since the transition structure in S� plays no role in the SSP problem, this abuse of notation

has no ill consequences.

Let v�s = inf�2�
P
v�s , as usual. The following theorem establishes the connection between the

solution of this instance of SSP problem and the model checking of D./a.

Theorem 8.7 For s 2 C, let v�s be the solution of the SSP problem mentioned above. Then,

s j= D./a� i� � v�s ./ a ;

for s 2 C, a � 0 and ./2 f�; <g.

Di�erently from Section 4.5.1, we cannot use the results of Bertsekas and Tsitsiklis [BT91] to

solve this instance of SSP problem, since SSP Assumption 2 does not necessarily hold. In fact, we

cannot rule out the presence of an end component (B;D) in C such that time(s; a) = 0 for all s 2 B,

a 2 D(s). In Section 4.5.2, the existence of such end components was ruled out by the non-Zenoness

requirement. This instance of SSP problem can nonetheless be solved with the results of Section 7.2.

8.5.6 Model Checking D./a for ./2 f�; >g

Similarly to the case of GPTL and GPTL*, the �rst step in the model checking of D./a� consists

in computing the sub-MDP consisting of the states that can reach S� with probability 1 under an

admissible policy. The following algorithm is the analogous of Algorithms 3.2 and 8.3.

Algorithm 8.5

Input: TPS � and set S�.

Output: The sub-MDP (S0; A0), where S0 = fs 2 S j max�2Adm(s) Pr
�
s(reach(S�)) = 1g, and A0 is

the restriction of A to S0.

Method:
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� Let S0 = S, A0 = A.

� Repeat:

{ Let B0 be the subset of states of S0 that cannot reach S� in the graph (S0; �(S0;A0)).

{ Remove from S0 all states in B0.

{ Repeat:

� Remove from S0 all states s 62 S� that have a fair action leading to at least one

removed state.

� Remove from A0 all the actions leading to at least one removed state.

� Remove from S0 all states s 62 S� that have no actions left in A0.

{ Until no more states or actions can be removed from S0, A0.

� Until no more states or actions can be removed from S0, A0.

� Output (S0; A0).

The following lemmas can be used to decide the value of D./a� at all states of (S � S0) [ S�.

Lemma 8.2 Given a state formula �, let S0 be as computed by Algorithm 8.5. If s 2 S � S0, it is

E�s

�T��1X
k=0

time(Xk; Yk)

�
=1

for any policy �. Thus, for ./2 f�; >g, a � 0 and s 2 S � S0 it is s j= D./a�.

Lemma 8.3 If s 2 S�, then s j= D./a� i� both a = 0 and ./ is �.

We must still determine the truth value of D./a� at all states in C = S0 � S�. To do so, we

construct an instance of SSP problem (S0; A0; p; S�; c; g), where the cost c is de�ned by c(s; a) =

time(s; a) for all s 2 S0 � S� and a 2 A
0(s), and g is identically 0. Note that this de�nition involves

again a slight abuse of notation, similarly to the construction of the SSP instance for Theorem 8.7.

Let v�s = inf�2�
P
v�s , as usual. The following theorem establishes the connection between the

solution of this instance of SSP problem and the model checking of D./a.

Theorem 8.8 For s 2 C, let v�s be the solution of the SSP problem mentioned above. Then,

s j= D./a� i� v�s ./ a ;

for s 2 C, a � 0 and ./2 f�; >g.

As in the preceding subsection, we cannot use the results of Bertsekas and Tsitsiklis [BT91] to

solve this instance of SSP problem, since SSP Assumption 2 does not necessarily hold. Again, the
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reason is that we cannot rule out the presence of end components (B;D) in C such that time(s; a) = 0

for all s 2 B, a 2 D(s). This instance of SSP problem can nonetheless be solved with the results of

Section 7.1.

8.5.7 Operators �P and �D

The model checking of operators �P and �D in FPTL and FPTL* relies on an algorithm almost

identical to the one given for GPTL and GPTL* in Section 6.1.2. Let �0 = (S;A; p;F ; time;W;R)

be the result of computing the product between a TPS �0 and an experiment 	, as in De�nition 8.6,

and of substituting the r, w labels with the R, W ones.

The only di�erence between the algorithm for FPTL and FPTL* and the one presented in

Section 6.1.2 is that in the algorithm for FPTL and FPTL*, Step 1 is replaced by the following step:

1'. Compute the list L = f(S1; A1); : : : ; (Sn; An)g of maximal admissible end components of �
0. For

each end component (Si; Ai), 1 � i � n, construct an MDP �i = (Si; Ai; p
i; Ri;Wi), where p

i,

Ri, Wi are the restrictions of p, R, W to (Si; Ai).

The algorithm then proceeds as in Section 6.1.2.

8.6 Complexity of FPTL and FPTL* Model Checking

From an exam of the model-checking algorithms given in the previous sections, we can see that the

model-checking of FPTL and FPTL* speci�cations shares the same global complexity bounds of the

model-checking for GPTL and GPTL*.

Theorem 8.9 (complexity of FPTL, FPTL* model checking) Given a TPS �, the following

assertions hold:

� Checking whether � satis�es Assumption 8.1 has polynomial time-complexity in jj�jj.

� Model checking an FPTL formula � has time-complexity linear in j�j and polynomial in j�j.

� Model checking an FPTL* formula � has time-complexity doubly exponential in j�j and poly-

nomial in j�j.

A more detailed result is as follows.

Theorem 8.10 (complexity of FPTL, FPTL* model checking II) Assume that the truth of

all state subformulas of � has already been evaluated at all states. The following assertions hold:

� The model checking of A�, E� has the following time-complexity:

FPTL: Polynomial in jj�jj and independent of �.
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Logic

Operator GPTL GPTL* FPTL FPTL*

A, E
poly(jj�jj)
indep(�)

poly(jj�jj)
exp(j�j)

poly(jj�jj)
indep(�)

poly(jj�jj)
2-exp(j�j)

P
poly(j�j)
indep(�)

poly(j�j)
2-exp(j�j)

poly(j�j)
indep(�)

poly(j�j)
2-exp(j�j)

D
poly(j�j)
indep(�)

poly(j�j)
indep(�)

poly(j�j)
indep(�)

poly(j�j)
indep(�)

�P, �D
poly(j�j)
poly(j	j)

poly(j�j)
poly(j	j)

poly(j�j)
poly(j	j)

poly(j�j)
poly(j	j)

Table 8.2: Complexity of the model-checking algorithms for the probabilistic logics considered in
this dissertation. In this table, we assume that the truth of all state subformulas of � has already
been evaluated at all states. Symbol 	 indicates an experiment. The symbol indepindicates that the
complexity does not depend on that parameter; the symbols poly, exp and 2-exp indicate polynomial,
exponential and doubly exponential complexities respectively. The case where the logics with and
without fairness di�er has been indicated in boldface.

FPTL*: Polynomial in jj�jj and doubly exponential in j�j.

� The model checking of P./a� has the following time-complexity:

FPTL: polynomial in j�j and independent of j�j.

FPTL*: polynomial in j�j and doubly exponential in j�j.

� The model checking of D./a� has time-complexity polynomial in j�j and independent of �.

� The model checking of �P./a�, �D./a� for an experiment 	 has time-complexity polynomial in

both j�j and j�j.

Proof. The lower bounds are a consequence of the results of Courcoubetis and Yannakakis [CY88];

the upper bounds are derived from an analysis of the proposed model-checking algorithms.

Table 8.2 summarizes the results on the complexity of the model-checking algorithms for the

probabilistic logics presented in this dissertation.
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8.7 Correctness Proof of Model-Checking Algorithms (z)

8.7.1 Policy Approximation

The computational part of the model-checking algorithms for FPTL and FPTL* relies on the solution

of optimization problems on Markov decision processes. These problems are solved in an uncon-

strained fashion, without placing any restriction on the policies, and the optimal policy or policies

may not be admissible. On the other hand, the semantics of the FPTL and FPTL* operators is

de�ned only in terms of admissible policies.

To justify the use of unconstrained solutions in FPTL or FPTL* model checking, we have to

show that the optimal values of the quantities of interest, such as probabilities or expected times,

can be realized or at least approximated by admissible policies. To this end, we use the notion

of approximation of non-admissible policies by admissible ones. This notion has been discussed in

Pnueli [Pnu83] and Kwiatkowska and Baier [KB96].

Informally, the idea is that it is sometimes possible to approximate a non-admissible policy with

a series of admissible ones, such that the quantity of interest (probability, expected time) for the

admissible policies can be made as close as desired to that of the non-admissible policy. We have

already seen this notion at work in the proof of Lemma 7.2. In this subsection, we present results

that will help to construct other approximability proofs.

Recall that a substochastic matrix is a matrix P = [pij ]1�i;j�N such that 0 � pij � 1 for all

1 � i; j � N and
PN
j=1 pij � 1 for all 1 � i � N [KSK66].

Theorem 8.11 (continuity of steady-state distributions) For a �xed N , consider a family

P (x) = [pij(x)]1�i;j�N of substochastic matrices parameterized by a parameter x 2 I, where I � IR

is an interval of real numbers. Assume that the Markov chain having P as transition matrix has the

same set of closed recurrent classes for all x 2 I. Then, if the coe�cients of P (x) depend continuously

on x for x 2 I, also the coe�cients of the steady-state matrix P �(x) depend continuously on x for

x 2 I.

Proof. The proof proceeds in stages, paralleling the classi�cation of states in a �nite Markov chain.

First, we consider each closed recurrent class separately. Assume that the matrix P corresponds

to a chain consisting in a single closed recurrent class. Then, the matrix P �(x) can be written

as P �(x) = 1�(x), where 1 is a column vector consisting of N 1s, and �(x) is the row vector

corresponding to the steady-state distribution of the chain. The row vector �(x) is the solution of

the equation

�(x)[P (x)1] = [�(x) 1] ; (8.3)

where [P (x)1] indicates the N � (N +1) matrix obtained by adjoining the column vector 1 to P (x),

and similarly [�(x) 1] is the row vector with N+1 elements obtained by adjoining a single 1 to �(x).
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Equation (8.3) is over-constrained: since the chain is composed of a single closed recurrent class,

any column of P (x) can be written as the linear combination of the others. Thus, in (8.3) we can

delete the columns corresponding to the �rst element, and determine �(x) by

�(x)[P]1(x)1] = [�]1(x) 1] ; (8.4)

where P]1(x) is the (N � 1) �N matrix obtained from P (x) by deleting the �rst column, and �]1

is the row vector of N � 1 elements obtained by deleting the �rst element of �(x). Equation (8.4)

can in turn be rewritten as

�(x)Q(x) = �(x)R + d ; (8.5)

where

Q(x) = [P]1(x)1] R = [�i�1;j ]1�i;j�N d = [00 � � � 0| {z }
N�1

1]

and where �i;j = 1 if i = j and 0 otherwise. From (8.5), solving for �(x) we obtain

�(x) = d(Q(x) �R)�1 :

Since for x 2 I all states are in the same single closed recurrent class, this equation has a single

solution for all x 2 I , so that det(Q(x) � R) 6= 0 for x 2 I . If det(Q(x) � R) 6= 0, the coe�cients

of (Q(x) � R)�1 are continuous functions (in fact, rational functions) of the coe�cients of P (x).

Hence, the coe�cients of �(x) and those of P �(x) are continuous in x, for x 2 I .

Assume now that the Markov chain corresponding to P (x) has closed recurrent classes

C1; : : : CM � f1; : : : ; Ng for x 2 I . For 1 � i � N , call P �
i (x) the i-th row of matrix P �(x).

Let C =
SM
j=1 Cj be the union of the closed recurrent classes, and T = f1; : : : ; Ng�C be the set of

transient states. For 1 � i � N , row P
�
i (x) can be written as

P
�
i (x) =

MX
j=1

q
j
i (x)�j(x) ; (8.6)

where �j(x) is the row vector corresponding to the steady-state distribution of class Cj , and q
j
i (x)

is the probability of reaching Cj from i. If i 2 Ck, then q
i
i(x) = 1 and qji (x) = 0 for all x 2 I and all

j 6= k.

For i 2 T , these probabilities are related by

q
j
i (x) =

X
k2T

pik(x) q
j
k(x) +

X
k2Cj

pik(x)
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for 1 � j �M . In matrix form, this can be written as

Qj(x) = PT (x)Qj(x) +Rj(x) ;

where Qj = [qji (x)]i2T is a column vector, PT (x) is the restriction of P (x) to the transient states,

and Rj(x) = [rji (x)]i2T is de�ned by

rji =
X
k2Cj

pik(x) :

Solving for Qj(x) we obtain

Qj(x) = (I � PT (x))
�1
Rj(x) : (8.7)

Since PT (x) is the matrix of a transient chain, det(I�PT (x)) 6= 0, and the coe�cients of (I�PT (x))
�1

are continuous functions (in fact, rational functions) of x for x 2 I . From (8.6) and (8.7), and from

the previous part of the proof, we can thus conclude that the coe�cients of P �(x) are continuous in

x, for x 2 I .

A similar result holds for chains in which there is a single closed recurrent class, and there is a

state that is always in that class, for all values of the parameter. To state the result, we say that

a state is surely recurrent if the Markov chain has only one closed recurrent class, and the state

belongs to that class.

Theorem 8.12 For a �xed N , consider a family P (x) = [pij(x)]1�i;j�N of substochastic matrices

parameterized by a parameter x 2 I, where I � IR is an interval of real numbers. Assume that there

is a state 1 � k0 � N that is surely recurrent for all x 2 I. Then, if the coe�cients of P (x) depend

continuously on x for x 2 I, also the coe�cients of the steady-state distribution vector ��(x) depend

continuously on x for x 2 I.

Proof. This theorem can be proved similarly to the �rst part of the previous one. The row vector

�(x) is the solution of the equation

�(x)[P (x)1] = [�(x) 1] ; (8.8)

where [P (x)1] indicates the N � (N +1) matrix obtained by adjoining the column vector 1 to P (x),

and similarly [�(x) 1] is the row vector with N+1 elements obtained by adjoining a single 1 to �(x).

Equation (8.8) is over-constrained: since the chain has a single closed recurrent class, the columns

of P (x) that correspond to states in the class can be written as the linear combination of the other

columns. Thus, in (8.3) we can delete the column corresponding to k0, and determine �(x) by

�(x)[P]k0 (x)1] = [�]k0(x) 1] ; (8.9)
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where P]k0(x) is the (N � 1) � N matrix obtained from P (x) by deleting column k0, and �]k0 is

the row vector of N � 1 elements obtained by deleting the k0-th element of �(x). The proof is then

concluded in the same way as the previous one.

8.7.2 Model Checking of Path Quanti�ers

The proof of Theorem 8.4 is related to the results of Courcoubetis and Yannakakis [CY88, CY95]

relative to the problem of probabilistic emptiness. The di�erences lie in the presence of fairness, in

the concept of admissible policies, and in the use of Rabin automata and end components in the

analysis of the problem.

Proof of Theorem 8.4. Recall that a behavior ! of � satis�es :� i� there is 1 � i � n such that

inftst(!0) � Pi and inftst(!0) \ Ri 6= ;, where !0 is the behavior of �:� corresponding to !, and

inftst(!0) denotes the set of states occurring in�nitely often along !0.

If there is no admissible end component (B;C) reachable from hs; qini such that B � Pi and

B \ Ri 6= ; for some 1 � i � n, then from Theorem 8.3 we can conclude Pr�s(:�) = 0 for every

policy �, as desired.

Conversely, assume that there is an end component (B;C) reachable from hs; qini such that

B � Pi and B\Ri 6= ; for some 1 � i � n. Then, it is not di�cult to see that there is an admissible

policy � such that Pr�
hs;qini

(reach(B)) > 0 (the existence of such a policy will be discussed in more

detail in the next subsection). From Theorem 8.2, we see that there is another admissible policy �0

such that

Pr�
0

hs;qini

�
inftst(!) � Pi ^ inftst(!) \ Ri 6= ;

�
= Pre�s (:�) > 0 ;

where e� is the policy that corresponds to �0 in �.

The correctness of Algorithm 8.4 follows immediately from Theorem 8.4.

8.7.3 Model Checking of Operator P

In this and other proofs, it will be convenient to refer to a �xed Markovian admissible policy. One

such policy can be de�ned as follows.

De�nition 8.11 (�f) Denote by �f be the Markovian policy that chooses at every state s an action

from A(s) with uniform probability.

Lemma 8.4 Policy �f is admissible.

Proof. Policy �f is obviously fair. To see that it is admissible, note that from every state s there

is a reachable state-action pair with time > 0, since Assumption 8.1 holds. Thus, from every state s
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there are q > 0 and k 2 IN such that Pr�fs (9i : i � k ^ time(Xi; Yi) > 0) � q. This yields the result.

The proof of Theorem 8.5 proceeds then as follows.

Proof of Theorem 8.5. Let �� = (S0; A0; p0; U 0) = � 
 DR�0 be the product between the l-

labeled TPS � and the Rabin automaton DR�0 de�ned as in Algorithm 4.2. Add to �� labels F 0,

l0 and time0 de�ned by

F
0(hs; ui) = F(s) l0(hs; ui) = l(s) time0((hs; ui); a) = time(s; a)

for all (s; u) 2 S0 and a 2 A(s). With these additional labelings, we can extend the notion of

admissible policy to ��, and we can de�ne the truth value of �0 over a behavior of ��.

The construction of �� as the product of � with a deterministic automaton creates a one-to-one

correspondence between the policies for � and those for ��. Speci�cally, to the policy � for �

corresponds the policy �(�) for �� de�ned by

Q�(a j s0s1 � � � sn) = Q�(�)

�
a
��� hs0; qini hs1; q1i � � � hsn; qni� ;

where qin; q1; : : : ; qn is the unique sequence of automata states induced by s0; s1; : : : ; sn in DR�.

Note that �(�) can be Markovian even when � is history dependent. However, from the previous

considerations follows that � is admissible i� �(�) is. By abuse of notation, we will denote �(�)

simply as �, relying on the context to distinguish the MDP for which the policy is de�ned.

From the correspondence between � and ��, we have

sup
�2Adm(s)

Pr�s(�) = sup
�2Adm(hs;qini)

Pr�
hs;qini

(�0) :

Thus, it su�ces to prove

sup
�2Adm(s)

Pr�s(�
0) = max

�
Pr�s(reach(S�)) (8.10)

for all states s 2 S0 of ��. First, note that

max
�

Pr�s (reach(S�)) � sup
�2Adm(s)

Pr�s(reach(S�)) � sup
�2Adm(s)

Pr�s (�
0) (8.11)

for all s 2 S0. The �rst inequality is immediate. The second inequality follows from the fact that a

behavior from s follows with probability 1 an admissible end component. Thus, the probability that

a behavior satis�es �0 without entering S� is 0 (see the proof of Theorem 4.2 for a more detailed

argument).
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In the reverse direction, let �m be a deterministic policy for �� such that

Pr�ms (reach(S�)) = max
�

Pr�s (reach(S�)) : (8.12)

The existence of �m is guaranteed by Corollary 3.2. Let B � S0 be the set of states in S0 that cannot

reach S�. By (8.11), for s 2 B it is Pr�s (�
0) = 0 under any policy �. From �m we can construct

a Markovian policy �M that di�ers from �m only on B and on S�. On S�, �M is constructed

as in the proof of Lemma 4.1; on B it coincides with �f . Since �m and �M coincide on the set

C = S0 � (B [ S�), it is

Pr�ms (reach(S�)) = Pr�Ms (�) (8.13)

for all s 2 C. Note also that �M is admissible. Given 0 � x � 1, denote by �(x) the Markovian

policy de�ned by

Q�(x)(a j s) =

(
(1� x)Q�M (a j s) + xQ�f (a j s) for s 2 C;

Q�M (a j s) for s 2 S� [B

for all s 2 S0 and a 2 A0(s), where �f is the admissible policy previously described.

For each 0 < x < 1, policy �(x) is admissible. In fact, outside of S� policy �(x) is fair, being

obtained by linear combination with �f , and time-divergent, for the same reason; inside S�, policy

�(x) coincides with �M .

Denote by P (x) = [pst(x)]s;t2C the transition matrix corresponding to policy �(x) restricted to

the set C of states. For 0 � x < 1, P (x) is a substochastic matrix. Note that P (0) is the transition

matrix for policy �M .

The closed recurrent classes of the Markov chain corresponding to P (x) are constant for 0 � x <

1. In fact, the closed recurrent classes of �M and �(x) are all contained in S� [B, and �M and �(x)

coincide on S� [ B. Denoting by P �(x) = [p�st(x)]s;t2C the steady-state matrix corresponding to

P (x), we can write the reachability probabilities as:

Pr�(x)s (reach(S�)) =
X
t2S�

p�st(x) : (8.14)

From limx!0 P (x) = P�M , by Theorem 8.11 we have limx!0 P
�(x) = P �

�M
, and by (8.14) this yields

lim
x!0

Pr�(x)s (reach(S�)) = Pr�ms (reach(S�)) :

By (8.12) and (8.13), this indicates that

sup
�2Adm(hs;qini)

Pr�hs;qini(�) � max
�

Pr�hs;qini(reach(S�)) ;
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which is the other direction of (8.11). This completes the proof.

8.7.4 Model Checking D./a for ./2 f�; <g

To state the proofs, given a policy � we de�ne the vector w = [w�s ]s2S by

w�s = E�s

nT��1X
k=0

time(Xk; Yk)
o

for all s 2 S. Thus, w�s represents the time needed to reach S� under �(x). For simplicity, we

consider in the following arguments a modi�ed TPS, in which every state s 2 S� has a single action

a, with time(s; a) = 1 and pss(a) = 1. This modi�cation does not change the expected time to S�,

which is the quantity that interests us. This modi�cation changes the set of admissible policies, but

it will not cause problems. In fact, in the original TPS once reached S� it is possible to follow policy

�f , ensuring admissibility. In the modi�ed TPS, once reached S� there is only one admissible policy

possible. The two conditions are equivalent for the purpose of our analysis.

Proof of Theorem 8.6. The proof follows the lines of the informal argument that precedes the

statement of the theorem, and is also related to the proof of Lemma 7.1.

Assume that there is an end component (C;D) 2 maxEC (S � S�) containing at least one state-

action pair (s; a) 2 sa(B;C) with time(s; a) > 0. Assume also that C is reachable from a state

s 2 S � S� without leaving S � S�. Then, the admissible policy �f of De�nition 8.11 will reach C

from s with positive probability. From �f , we de�ne another Markovian policy �m which coincides

with �f outside of C, and that at t 2 C chooses an action from D(s) uniformly at random.

If (C;D) is admissible, then �m is admissible, and from Pr�ms (T� = 1) > 0 we have

E�ms f
PT��1
k=0 time(Xk; Yk)g =1, from which follows the result.

If (C;D) is not admissible, for 0 � x < 1 we de�ne the policy �(x) by

Q�(x)(a j t) = (1� x)Q�m(a j t) + xQ�f (a j t)

for all t 2 S and a 2 A(t). Note that, for all 0 < x < 1, policy �(x) is admissible.

Let Pm be the transition matrix associated with �m, and P (x) be the matrix associated with

�(x), for 0 < x < 1. Note that limx!0 P (x) = Pm; however, for 0 < x < 1 the chain corresponding

to P (x) may have di�erent closed recurrent classes than the chain corresponding to P (0), so that

we cannot use the results about the continuity of the steady-state matrix. Instead, de�ne the vector

u = [us]s2S by

us =

8<
:

1

2jD(s)j

X
a2D(s)

time(s; a) if s 2 C;

0 otherwise
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for all s 2 S. Note that at least one element of u is strictly positive.

Since u represents only part of the time spent along a behavior, for 0 < x < 1=2 we have

w�(x)s �

1X
k=0

P k(x)u :

In fact, when 0 < x < 1=2, at state s 2 C a behavior under �(x) will spend at least an expected

time of us with the next move: the limit 1=2 comes directly from the denominator in the de�nition

of us. For any �xed k it is limx!0 P
k(x) = P km, and since

P1
k=0 P

k
mu =1 it follows that

lim
x!0

1X
k=0

P (x)ku =1

from which we conclude limx!0 w
�(x)
s =1. The result then follows immediately.

Proof of Theorem 8.7. First, consider any admissible policy �; we want to prove that

Pr�s(reach(S�)) = 1 for all s 2 C. To see this, assume towards the contradiction that

Pr�s(reach(S�)) < 1. Then, there is an end component (B;D) with B � C such that Pr�s(inft(!) =

sa(B;D)) > 0. By de�nition of C, it must be time(t; a) = 0 for all (t; a) 2 sa(B;D). However, this

leads to

Pr�s

� 1X
k=0

time(Xk; Yk) <1

�
> 0 ;

contradicting the admissibility of �.

Since Pr�s (reach(S�)) = 1, policy � is SSP-proper, and from the de�nition of the SSP problem

and the optimality of v� follows w� = �v� � �v�. From the arbitrariness of �, we have

sup
�2Adm(s)

w
�
� �v

� (8.15)

for all s 2 C.

In the other direction, let �m be a Markovian SSP-proper policy optimal for the SSP problem,

i.e. such that v�m = v
�. The existence of at least one such policy follows from the construction in

the proof of Theorem 7.1. There are two cases. If �m is admissible, then

w
�m = �v

� : (8.16)

If �m is not admissible, for 0 � x < 1 de�ne the Markovian policy �(x) by

Q�(x)(a j s) = (1� x)Q�(a j s) + xQ�f (a j s)
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for all s 2 S, where �f is the admissible policy mentioned in De�nition 8.11.

Denote by P (x) the transition matrix corresponding to policy �(x) on the set of states C, and by

Pm the transition matrix for �m also on the set C. As usual, P (0) = Pm, and the chain corresponding

to P (x) is transient for 0 � x < 1. For 0 � x < 1, de�ne the vector d(x) = [ds(x)]s2C by

ds(x) =
X

a2A(s)

Q�(x)(a j s) time(s; a) ;

and abbreviate w(x) = w
�(x). With this notation, we can write

w(x) =

1X
k=0

P k(x)d(x) = (I � P (x))�1d(x) (8.17)

�v
� =

1X
k=0

P k(0)d(0) = (I � P (0))�1d(0) : (8.18)

Since matrix P (0) corresponds to a transient Markov chain for 0 � x < 1, it is det(I � P (x)) 6= 0

in this interval. Thus, for 0 � x < 1 the coe�cients of (I � P (x))�1 are rational functions of x that

have no poles in the interval [0; 1). From the continuity of P (x) in [0; 1) we have

lim
x!0

(I � P (x))�1 = (I � P�)
�1 lim

x!0
d(x) = d

� :

Using these relations in (8.17) and (8.18) we obtain limx!0w(x) = �v�, or

sup
0<x<1

w(x) � �v
� : (8.19)

Putting together (8.15) in one direction with (8.16) or (8.19) in the other, we conclude

sup�2Adm(s)w
� = �v�, as was to be proved.

8.7.5 Model Checking D./a for ./2 f�; >g

Proof of Lemma 8.2. By induction on the stage at which a state is removed from S0, we can

prove that under any admissible policy the probability of reaching S� from the state is less than 1.

Under an admissible policy, time diverges with probability 1. Hence, if a state is removed from S0,

the time to S� diverges with positive probability, and this yields the result.

Proof of Theorem 8.8. Let w� = [w�s ]s2C . In one direction, consider any admissible policy �

and any s 2 C; we want to show that w�s � v�s . There are three cases.

� If Pr�t (reach(S�)) = 1 for all t 2 C, then � is SSP-proper, and the result follows from the

optimality of v�.
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� If Pr�s(reach(S�)) < 1, since the time diverges with probability 1 under � we have w�s = 1,

which leads to the result.

� If Pr�s(reach(S�)) = 1 and D = ft 2 C j Pr�t (reach(S�)) < 1g 6= ;, it is easy to see that there

is another policy �0, di�ering from � only at the states in D, such that �0 is SSP proper, and

w
�0

t = w
�
t for all t 2 C �D. From w

�0 � v
� follows w�s � v�s once more.

Since the result holds for any � and s 2 C, we conclude

inf
�2�

A

w
�
� v

� : (8.20)

In the other direction, let �m be a Markovian SSP-proper policy optimal for the SSP problem,

i.e. such that v�m = v
�. If �m is admissible, then w�m = v

�. Otherwise, we construct a family �(x)

of policies, with 0 � x < 1, such that limx!0w(x) = v
�m = v

�. To construct the family, let �a be

a policy that, at s 2 C, chooses an action from A0(s) uniformly at random. From Algorithm 3.2, it

is easy to check that �a is admissible, and that Pr�as (reach(S�)) = 1 for all s 2 C. For 0 � x < 1,

de�ne

Q�(x)(a j s) = (1� x)Q�m(a j s) + xQ�a(a j s) :

Reasoning as in the proof of Theorem 8.7, we conclude

inf
�2�

A

w
�
� v

� ;

which together with (8.20) yields the result.

8.7.6 Model Checking of Operators �P and �D

We state and prove the correctness of the model checking algorithm for �P and �D on fair TPSs with

the following theorem.

Theorem 8.13 (correctness model checking of �P and �D on fair TPSs) The modi�cations

presented in Section 8.5.7 to the algorithm of Section 6.1.2 yield a correct algorithm for the model

checking of the operators �P and �D on fair TPSs.

Proof. The �rst step in proving the result consists in showing the correctness of the decomposition

into maximal admissible end components of Step 1', as opposed to the decomposition in maximal

end components of Step 1. This is justi�ed by Theorem 8.3, which states that under an admissible

policy, behaviors eventually follow an admissible end component with probability 1. A formal proof

can be done by repeating the argument of Theorem 6.4 in the context of fair MDPs.

Next, consider a sub-MDP �i = (Si; Ai; p
i; Ri;Wi) 2 L, and assume that ./2 f�; >g; the case

for ./2 f�; <g is similar. If i 2 K
�

, let J0 = ��i ; otherwise, let J0 = �1. We have to show that, for
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all s 2 Si, it is �FT
�
s = J0. To prove this result, it su�ces to show that the following two assertions

hold:

1. For any admissible policy � for �i, and any s 2 Si, it is

Pr�s

�
lim inf
n!1

Hn(!) < J0

�
= 0 : (8.21)

2. For any s 2 Si, it is

J0 � inf
�2Adm(s)

n
J
��� Pr�s�lim inf

n!1
Hn(!) = J

�
= 1
o
: (8.22)

Assertion 1 follows immediately from the results of Chapter 6, since the set of admissible policies

is a subset of the set of all policies. To prove Assertion 2, we proceed as follows. By Corollary 6.7,

there is an unichain policy �m such that

Pr�ms

�
lim
n!1

Hn(!) = J0

�
= 1 :

If �m is admissible, we are done. Otherwise, denote by C � Si the single closed recurrent class of

�m. Let �f be the admissible Markovian policy which at every state s 2 Si chooses an action from

Ai(s) uniformly at random, and for 0 � x < 1, de�ne the Markovian policy �(x) by

Q�(x)(a j s) = (1� x)Q�m(a j s) + xQ�f (a j s) ;

for all s 2 Si and a 2 Ai(s). From this de�nition, we see that policy �(x) is admissible for all

0 < x < 1. Let P (x) be the matrix of the Markov chain corresponding to �(x), and de�ne the

vectors R(x) = [Rs(x)]s2Si and W (x) = [Ws(x)]s2Si by

Rs(x) =
X

a2Ai(s)

Ri(s; a)Q�(x)(a j s) Ws(x) =
X

a2Ai(s)

Wi(s; a)Q�(x)(a j s) ;

for all s 2 Si.

Note that the policy �(x) is unichain for all 0 � x < 1: its closed recurrent class is equal to C

for x = 0, and to Si for 0 < x < 1. Pick an arbitrary state s0 2 C: state s0 is thus surely recurrent

for all 0 � x < 1. Hence, we can apply Theorem 8.12, obtaining as a result the continuity of �(x)

for all 0 � x < 1. The result (8.22) then follows from

lim
x!0

�(x)R(x)

�(x)W (x)
= J0
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and from

Pr�(x)s

�
lim
n!1

Hn(!) =
�(x)R(x)

�(x)W (x)

�
= 1 :

The proof is completed by combining Assertions 1 and 2.



Chapter 9

Veri�cation of Stochastic

Transition Systems

The previous chapter concluded our presentation of temporal logics and model-checking algorithms

for TPSs. Armed with these results, we return to the speci�cation and veri�cation of stochastic

transition systems (STSs), which has been informally described in Chapter 2.

The �rst step in this direction consists in de�ning a formal semantics for STSs. We de�ne this

semantics by means of a translation from STSs to fair TPSs. This translation is also used for the

veri�cation of STSs, since our model-checking algorithms can be applied to fair TPSs, rather than

STSs. This translation is faithful to the informal semantics presented in Section 2.1.2: this result

is of practical interest, since usually the model of a real system is constructed with that informal

semantics in mind, rather than with the formal semantics de�ned by translation.

An alternative approach, not followed here, consists in formalizing the informal semantics of

Section 2.1.2, taking that de�nition as basic. If we followed this approach, we would have to prove

the correspondence between the formal semantics of STSs and the semantics of their translations into

fair TPSs. Since in this dissertation we place the emphasis on logics and model-checking algorithms,

rather than semantical arguments, we prefer to avoid this additional step. We rely instead on a

precise but informal argument to justify our translation.

The speci�cation of probabilistic properties of STSs relies on the logics SPTL and SPTL*. These

logics di�er from FPTL and FPTL* only for a minor change in the semantics. The change has been

introduced to account for the characteristics of the translation process, which introduces auxiliary

states that have no counterpart in the original STS. The model-checking algorithms described in

the previous chapter can be used with minor adaptations to decide whether an STS satis�es speci-

�cations written in these new logics. We conclude the chapter with some remarks about the role of

nondeterminism in STSs.

196
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9.1 Translation of STSs into TPSs

The translation from STSs to fair TPSs is based on the informal semantics for STSs presented in

Section 2.1.2. Given an STS S = (V ;�; T ), its translation �S = (S [ bS;A; p;F ; bS; Sin; time; I) is
a translation TPS, formed by a fair TPS (S [ bS;A; P;F ; Sin; time; I) together with a distinguished

subset bS of auxiliary states. We de�ne the translation TPS �S by stages.

Principal states. As in De�nition 2.1, the set V of typed variables of the STS gives rise to a

set S of states consisting of all type-consistent interpretations of the variables in V . Since in this

dissertation we are discussing only the veri�cation of �nite-state systems, we assume that all the

variables in V have �nite domain, so that S is a �nite set. We call S the set of principal states of �S .

In addition to S, the translation will introduce also the set bS of auxiliary states. For each s 2 S, we

let Is[[x]] = s[[x]].

The set Sin of initial states is de�ned simply as Sin = fs 2 S j s j= �g, and consists thus of

principal states only.

9.1.1 Transition Structure of Principal States

Let T (s) = f� 2 T j s j= E�g be the set of STS transitions enabled at a principal state s 2 S. In

analogy with the de�nition of informal semantics of STS of Section 2.1.2, the transition structure

associated with s depends on whether T (s) contains immediate transitions or not.

Some Immediate Action Enabled

Let Ti(s) = T (s) \ Ti be the set of immediate transitions enabled at s, and assume that Ti(s) 6= ;.

In this case, we let A(s) = fa� j � 2 Ti(s)g, where action a� represents the choice of transition �

at s. For all � 2 Ti(s), we let time(s; a� ) = 0; moreover, action a� is fair at s i� � is fair: formally,

a� 2 F(s) i� � 2 Tf , for all � 2 Ti(s).

For each � 2 Ti(s), we add to bS the auxiliary states (s; h�; ji), where 1 � j � m� . Each auxiliary

state (s; h�; ji) represents the choice of mode j of transition � from state s. Since auxiliary states

represent choices done while at a principal state, we let I(s;h�;ji)[[x]] = s[[x]], for � 2 Ti(s) and

1 � j � m� .

For � 2 Ti(s) and 1 � j � m� , the transition probability from s to (s; h�; ji) is de�ned by

ps;(s;h�;ji)(a� ) = p�j ;

where p�j is the probability of mode j of transition � . All other transition probabilities are 0.



198 CHAPTER 9. VERIFICATION OF STOCHASTIC TRANSITION SYSTEMS

No Immediate Transitions Enabled

If T (s) � Td, we let

Te(s) = T (s) \ Te Tu(s) = T (s) \ Tu ;

note that Te(s) 6= ;, due to the presence of the idling transition. We let

A(s) = faeg [ fa� j � 2 Tu(s)g ; (9.1)

action ae represents the choice of a transition with exponential distribution, while action a� repre-

sents the choice of the transition � , with unspeci�ed delay distribution.

We let F(s) = A(s), and we de�ne the expected times of the actions by

time(s; ae) =

� X
� 02Te(s)


� 0

��1
time(s; a� ) = 0 (9.2)

for all � 2 Te(s). These decisions will be justi�ed once the presentation of the translation is com-

pleted.

For each � 2 T (s), we add to bS the auxiliary states (s; h�; ji), where 1 � j � m� . Each auxiliary

state (s; h�; ji) represents the choice of mode j of transition � from state s. Since auxiliary states

represent choices done while at a principal state, we let I(s;h�;ji)[[x]] = s[[x]], for � 2 T (s) and

1 � j � m� .

The transition probabilities to these auxiliary states are de�ned as follows. For � 2 T (s) and

1 � j � m� , we let

� 2 Tu(s) : ps;(s;h�;ji)(a� ) = p�j (9.3)

� 2 Te(s) : ps;(s;h�;ji)(ae) = p�j 
�

� � X
� 02Te(s)


� 0

�
; (9.4)

where p�j is the probability of mode j of transition � . All other transition probabilities are 0.

9.1.2 Transition Structure of Auxiliary States

Consider an arbitrary auxiliary state (s; h�; ji) 2 bS. This state represents the choice of mode j of

action � at principal state s. Let T �j (s) = fs0 2 S j (s; s0) j= ��j g be the set of possible successor

states of s according to this transition mode. We let A(s; h�; ji) = T �j (s), and

p(s;h�;ji);t(t) = 1 time(s; t) = 0
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for all t 2 T �j (s), with all other transition probabilities from the auxiliary state being 0. None of the

actions from the auxiliary state is fair: we set F(s; h�; ji) = ;.

The presentation of the translation from STSs to fair TPSs is thus concluded.

9.1.3 Complexity of Translation and Optimizations

The following theorem relates the size of an STS to the size of its translation TPS.

Theorem 9.1 (size of translation TPS) Given an STS S = (V ;�; T ), let �S be the translation

TPS for S. Denote by S the set of states arising from the set of variables V, and letM = max�2T m� .

The size j�S j is then polynomial in M � jSj � jT j.

Proof. The result follows immediately from an exam of the translation process.

To reduce the size of the translation TPS, it is possible to eliminate the idling transition from

the set T (s) of transitions enabled at a state s, provided the set T (s) does not become empty. We

have retained the idling transition in our de�nition of translation purely to simplify the de�nition.

Another optimization consists in avoiding the generation of auxiliary states that have only one

successor state. More precisely, assume that for state s 2 S, transition � 2 T (s) and mode 1 � j �

m� there is only one state t 2 S such that (s; t) j= ��j . In this case, instead of creating the auxiliary

state (s; h�; ji) having t as single successor, we can direct all transitions to this auxiliary state to the

principal state t instead. This optimization succeeds in removing all auxiliary states corresponding

to deterministic transitions.

9.1.4 An Example of Translation

Consider the TPS S = (V ;�; T ) with set of variables V = fxg, initial condition � : x = 0 and set

of transitions T = f�1; �2; �3; �4g. The domain of x is f0; 1; 2; 3g, and the transitions are as follows:

� Transition �1 2 Te has rate 
�1 = 2 and m�1 = 1. Its enabling transition and transition formula

are, respectively, E�1 : x < 3 and ��1 : x
0 = x+ 1.

� Transition �2 2 Te has rate 
�2 = 1 and m�2 = 1. Its enabling transition and transition formula

are, respectively, E�2 : x > 0 and ��2 : x
0 = x� 1.

� Transition �3 2 Ti is immediate, and it is m�3 = 1. Its enabling transition and transition

formula are, respectively, E�3 : x = 0 and ��3 : x
0 = 1 _ x0 = 2.

� Transition �4 2 Tu has unspeci�ed rate, and it ism�4 = 1. Its enabling transition and transition

formula are, respectively, E�4 : x = 3 and ��4 : x
0 = 0.
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0

1/3 2/3

2/31/3

1
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aaτ2 τ4

Figure 9.1: Translation TPS �S . The principal states are depicted as �lled circles, and are labeled
with the corresponding value of x. The names of the auxiliary states have been omitted, and only
the names of some actions have been indicated. The auxiliary states denoted by a dot have only
one successor state, and can be eliminated by a simple optimization.

This STS represents a continuous-time random walk between the integers 0, 1, 2, and 3. If x < 3,

there is an exponential transition with rate 2 that increases x; if x > 0 there is an exponential

transition with rate 1 that decreases x. The random walk has boundaries 0 and 3. When boundary 0

is reached, there is an instantaneous transition that sets x to either 1 or 2. When boundary 3

is reached, alongside the transition with exponential distribution that decreases x is activated a

transition with unspeci�ed rate that sets x to 0.

The translation TPS �	 is depicted in Figure 9.1. To reduce clutter, we have used the optimiza-

tion of omitting the idling transition, since there is at least one transition enabled on every state.

Denote by si the principal state where x = i, for 0 � i � 3. The expected times of the actions from

s3 are given by time(s3; a�2) = 1 and time(s3; a�4) = 0. The only action from state s0 has expected

time 0. The only actions from states s1 and s2 have expected times 1/3. The expected times of

actions from auxiliary states are always 0, by our de�nition of translation. In Figure 9.2 we depict

the translation TPS obtained from the one of Figure 9.1 by applying the optimization of removing

all auxiliary states having only one successor.

9.2 Translation and Informal Semantics

Even though the formal semantics of STSs is de�ned by translation into fair TPSs, there is a corre-

spondence between the proposed translation and the informal semantics presented in Section 2.1.2.
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Figure 9.2: Result of removing all auxiliary states having only one successor from the TPS of
Figure 9.1.

This correspondence is important from a pragmatic point of view, since the models of real probabilis-

tic systems are usually constructed in terms of this intuitive semantics. We justify the translation

in three steps, considering �rst the structure of the translation TPS, then the use of fairness, and

lastly the interaction between translation and speci�cation languages.

9.2.1 Structure of the Translation TPS

To understand the correspondence between the translation and the informal semantics, consider

�rst auxiliary states. As remarked in the de�nition of translation, auxiliary states represent a

choice of transition and transition mode from a principal state. The introduction of these states is

necessary because of the di�erent interaction between probability and nondeterminism in Markov

decision processes and STSs. In a Markov decision process, the successor of a state is chosen

in two steps, a nondeterministic one (the choice of action) and a probabilistic one (the choice of

destination state). In an STS, there are up to three steps: the choice of transition (probabilistic or

nondeterministic), the choice of transition mode (probabilistic), and �nally the choice of destination

state (nondeterministic). The role of auxiliary states is precisely to accommodate the three-step

selection process of STSs into the two-step one of TPSs.

Consider now the system evolution from a principal state s. If there are immediate transitions

enabled at s, the correspondence between the informal semantics of the STS and the translation

TPS is immediate.

If the set T (s) of transitions enabled at s is a subset of the delayed transitions Td, let as before

Te(s) = T (s)\Te and Tu(s) = T (s)\Tu. When a behavior of the TPS reaches s, the set of available

actions is faeg[fa� j � 2 Tu(s)g. Let qe and q� , for � 2 Tu(s), be the probabilities with which these

actions are chosen by a policy. Note that these probabilities can depend on the past history of the

TPS.

There is a relation between the probabilities qe and q� , � 2 Tu, selected by the policy, and the
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rates of the transitions in Tu(s), selected nondeterministically in the informal semantics. To derive

the relation, consider the probability of choosing � 2 T (s) in the TPS and in the informal semantics.

From (9.3) and (9.4), the probability of choosing � 2 T (s) in the TPS is given by

� 2 Te(s) : qe
�

�� X
� 02Te(s)


� 0

�
(9.5)

� 2 Tu(s) : q� : (9.6)

In the informal semantics, the probability is given by


�

� � X
� 02T (s)


� 0

�
(9.7)

for all � 2 T (s), which is just a restatement of (2.2). Equating (9.7) with (9.5) and (9.6), we obtain

qe =

� X
� 02Te(s)


� 0

� � � X
� 02T (s)


� 0

�
q� = 
�

� � X
� 02T (s)


� 0

�
(9.8)

for all � 2 Tu(s).

This relation between qe, fq�g�2Tu(s) and f
�g�2Tu(s) preserves not only the probabilities of

choosing the transitions at s, but also the expected time spent at s. In fact, from (9.2) the expected

time spent by the TPS at s is given by

qe

�� X
� 02Te(s)


� 0

�
: (9.9)

If we substitute into this equation the value of qe given by (9.8), we obtain

X
� 02Te(s)


� 0

� X
� 02T (s)


� 0

�� X
� 02Te(s)


� 0

� =

� X
� 02T (s)


� 0

��1
;

which is exactly the expected time spent at s under the informal STS semantics, as de�ned by (2.1).

Thus, equations (9.8) together with the constraint qe +
P
�2Tu(s)

q� = 1 de�ne a one-to-one

mapping between the unspeci�ed transition rates in the informal STS semantics and the probabilities

of choosing the actions in the translation TPS. The mapping preserves both the expected time spent

at s, and the probabilities of selecting transitions from s. Given a nondeterministic choice for the

transition rates f
�g�2Tu(s), we can determine a policy which simulates this choice; conversely, each

policy can be interpreted as a choice for these rates. This correspondence indicates that the proposed

translation of STS into fair TPS preserves the informal semantics presented in Section 2.1.2.
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Figure 9.3: Portion of translation TPS corresponding to states s; t1; t2 and transitions �1; �2. Each
edge is labeled by the expected time corresponding to the source state and the action.

9.2.2 Translation and Fairness

The above considerations also justify our use of fairness in the translation, and more generally our

de�nition of probabilistic fairness.

In fact, for � 2 Tu(s) the fairness of a� requires that q� > 0, which by (9.8) corresponds to the

requirement 
� > 0. Similarly, the fairness of ae requires that qe > 0, which corresponds to the

requirement 
� < 1 for all � 2 Tu(s). Thus, the fairness requirements associated with principal

states in the translation TPS are the exact counterpart of the requirements 0 < 
� < 1 for the

rates of transitions � 2 Tu.

From this we see that fairness gives us precisely the tool needed to represent transitions with

unspeci�ed delay distributions in our translation TPS. This consideration has been one of the main

motivations for our new de�nition of probabilistic fairness.

9.2.3 Translation and Speci�cation Language

We conclude our justi�cation of the translation with a remark about the relationship between the

translation and the speci�cation languages presented in this dissertation.

In (9.2), we assign an expected time 0 to the actions that correspond to transitions with unspeci-

�ed rates. This assignment is justi�ed by our previous considerations on the equivalence of choosing

the transition rates in the STS, and choosing the policy in the TPS. However, the justi�cation is

incomplete without the observation that the speci�cation languages we presented can only refer to

the expected time spent at a state, not conditional on the successor state.

To clarify this point, consider a state s on which two transitions are enabled: a transition �1,

with rate 
1, and a transition �2, with unspeci�ed rate. The two transitions have only one mode, and

they lead to states t1 and t2, respectively. The portion of translation TPS for s, �1, �2 is depicted

in Figure 9.3. The translation would be inappropriate if our speci�cation languages could express
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properties such as:

the time spent at s when (s; h�2; 1i) is the immediate successor is on average > b.

In fact, for the purposes of this property the choice of assigning time(s; a�2) = 0 would not correspond

to the idea of assigning nondeterministically a transition rate to �2.

However, an exam of the semantical de�nitions of our speci�cation languages reveals that the

languages cannot specify properties in which the expected time is measured conditionally on the

successor state. The key de�nitions are de�nition (4.15) and (8.1) of semantics of D, and De�nitions

5.5 and 8.6 of product between TPS and D-experiment.

� In (4.15) and (8.1), for any k � 0, the fact that the time time(Xk; Yk) belongs to the summation

depends only on the sequence of states X0 � � �Xk, and not on the successor state Xk+1.

� In De�nitions 5.5 and 8.6, consider a state hs; ui of the product MDP. If u is a timed vertex,

all actions from hs; ui contribute to r; if u is untimed, none of the actions does. Hence, the

contribute of the r label does not depend on the successor state of hs; ui.

These observations conclude our justi�cation of the translation process.

9.3 Speci�cation and Veri�cation of Stochastic Transition

Systems

For the speci�cation of probabilistic properties of STSs, we introduce the new logics SPTL and

SPTL*. The di�erence between these logics and the fair probabilistic logics FPTL and FPTL* is

limited to the semantics of state formulas, and is motivated by the presence of auxiliary states in

the translation TPS. The de�nition is as follows.

De�nition 9.1 (semantics of SPTL, SPTL* formulas) Let � = (S [ bS, A, p, F , Sin, time,
I, bS) be a translation TPS, where bS is the set of auxiliary states, and consider a state formula � of

SPTL or SPTL*.

The truth value of � at a principal state s 2 S � bS is de�ned using the same clauses of FPTL

and FPTL*. The truth value of � at an auxiliary state (s; h�; ji) 2 bS is de�ned by

(s; h�; ji) j= � i� s j= � : (9.10)

Thus, the truth value of a state formula at an auxiliary state is equal to the truth value of the same

state formula at the corresponding principal state.

We say that an STS satis�es a speci�cation i� its translation TPS does.
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De�nition 9.2 (satisfaction of speci�cation over STS) Consider an STS S = (V ;�; T ) and

its translation TPS �S = (S [ bS;A; P;F ; Sin; time; I; bS). Given a speci�cation � 2 Stat of SPTL or

SPTL*, we say that �S j= � i� s j= � for every s 2 Sin, and we say that S j= � i� �S j= �.

To understand the rationale for De�nition 9.1, note that under the semantics for FPTL and

FPTL* it is possible for a state formula to assume di�erent truth values on a principal state and on

the related auxiliary states. For example, the expected time to reach a given set of states can be

di�erent when measured from a principal state, or from an auxiliary state where the next transition

has already been selected. If our de�nition of semantics took into account the truth values of

state formulas at auxiliary states, the logic would present often counterintuitive and undesirable

properties. The following example illustrates this situation.

Example 9.1 Consider an STS S = (V ;�; T ), where:

� V = fxg, and the domain of x is f0; 1g;

� � : x = 0;

� T = Te = f�0g, where the exponential-delay transition �0 is de�ned by enabling condition

E�0 : true, transition rate 
�0 = 1, number of modes m�0 = 1, and transition relation 
�0 : x
0 =

1� x.

Informally, the STS S describes a system that oscillates between states 0 and 1, and whose switch-

ing time from one state to the other obeys an exponential distribution with unit rate. Since

the exponential distribution is memoryless, if the system is in state 0, the expected amount

of time needed to reach state 1 is 1. Thus, we expect S to satisfy the FPTL speci�cation

�0 : A2[x = 0! D�0:7(x = 1)].

However, consider the translation TPS �S depicted in Figure 9.4. To understand its structure,

recall that to any STS is implicitly added the idling transition �idle. From state s0, the expected

time to a state where x = 1 is 1, so that D�0:7(x = 1) holds at s0. However, the expected time

to x = 1 from state (s0; h�0; 1i) is 0, since the only action from this auxiliary state leads to s1 and

has expected time 0. This implies that D�0:5(x = 1) does not hold at (s0; h�0; 1i) under the normal

de�nition of semantics, leading to S 6j= �0.

This example demonstrates that the truth value of state formulas at auxiliary states is not

necessarily related to any property of the physical system being modeled. In this very simple

example, the problem is eliminated if we apply the optimization of removing the auxiliary states

having only one successor, but this of course is no solution in general. If our de�nition of semantics

took into account these truth values, our logics would have scarce use as speci�cation languages.

Under the semantics provided by De�nition 9.1, the truth values of state formulas at auxiliary states

are disregarded, and we have S j= �0 as expected.
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Figure 9.4: Translation TPS �S obtained from the STS described in Example 9.1. The principal
states are s0, s1, and are depicted as �lled circles; the other states are auxiliary states. Variable
x assumes value 0 at s0 and at the two auxiliary corresponding to s0, and value 1 at the other
states; the initial state is s0. It is time(s0; ae) = time(s1; ae) = 1=2; the expected times of the other
state-action pairs are 0.

Veri�cation of Stochastic Transition Systems

Due to the similarity between the semantics of SPTL, SPTL* and FPTL, FPTL*, the algorithms that

have been presented in the previous chapter for the model checking of FPTL, FPTL* speci�cations

can be immediately adapted to SPTL and SPTL*.

To decide the truth value of a speci�cation � 2 Stat at all initial states of a translation TPS �S ,

we recursively evaluate the truth values of the state subformulas of � at all states, until the truth

value of � itself can be computed at all initial states. With respect to the algorithms for FPTL and

FPTL*, the only change consists in the fact that the truth value of state formulas at auxiliary states

is de�ned by (9.10), rather than being computed directly. This modi�cation does not change the

complexity of the model-checking algorithms, which share the same complexity bounds of those for

FPTL and FPTL*.

9.4 A Highway Commuter Example

Having concluded the presentation of our methodology for formal speci�cation and veri�cation of

systems, we present a �nal example. Our system, highway-repair, is shown in Figure 9.5, and

models a commuter that travels perennially back and forth between two cities A and B, passing

through an intermediate city C.
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Figure 9.5: System highway-repair. Depicted are also the 4 possible states of the commuter,
represented by the values 1..4 of variable c.

Each of the two highway segment from A to C and from C to B can be in one of three states: good ,

broken and repair , modeling a good stretch of highway, one with pot-holes in it, and one under repair.

For a highway segment, the transition from good to broken has rate 
gb, and the transition from

repair to good has rate 
rg . The transition from state broken to state repair, instead, has unspeci�ed

delay distribution: the criteria with which the organizations in charge of road maintenance decide

to start repair works are not known to the layperson.

As depicted in Figure 9.5, the commuter can be at one of 4 states, depending on which segment

must be traversed next, and in which direction. Depending on the state in which the next link is,

the commuter traverses the link with rate 
g, 
b or 
r.

The STS � = (V ;�; T ) for this example has set of variables V = fl1; l2; cg, where l1 and l2

have domain fgood; broken; repairg and represents the link status, and c has domain f1; 2; 3; 4g and

represents the position of the commuter. The initial condition is � : true. Note that the initial

condition is not important, since we are interested in the steady-state behavior of the system, which

does not depend on the initial condition, as all states are reachable from all other states.

The transitions are divided in two groups: the transitions that describe the status of the highway

links, and the transitions that describe the commuter. All of these transitions have only one mode,

so that for every � 2 T it is m� = 1 and p�1 = 1. To avoid clutter, when describing transition � we

write E instead of E�1 , and similarly for the other components.

Highway link transitions. The transitions for the highway links are as follows, for i = 1; 2.

� Transition � igb 2 Td has rate 
gb, and it has E : li = good and � : l0i = broken.

� Transition � ibr 2 Tu has E : li = broken and � : l0i = repair.

� Transition � irg 2 Td has rate 
rg, and it has E : li = repair and � : l0i = good.



208 CHAPTER 9. VERIFICATION OF STOCHASTIC TRANSITION SYSTEMS

Ψ1/2Ψ1

c=1 c=1 c=1 c=2 c=3 c=4

Figure 9.6: Experiments for the speci�cation of one-way trip and round-trip commuter times in
system highway-repair. Experiment 	1 measures the round-trip time, experiment 	1=2 the one-
way trip time from A to B. All edges of the two experiments are timed, and thus shown in boldface.

Commuter transitions. There are three transitions for the commuter, depending on the condi-

tion of the link to be traversed.

� Transition �cg 2 Td has rate 
g, and it has

E : [(c = 1 _ c = 4) ^ l1 = good ] _ [(c = 2 _ c = 3) ^ l2 = good ] c0 = (c mod 4) + 1 :

� Transition �cr 2 Td has rate 
r, and it has

E : [(c = 1 _ c = 4) ^ l1 = repair ] _ [(c = 2 _ c = 3) ^ l2 = repair ] c0 = (c mod 4) + 1 :

� Transition �cb 2 Td has rate 
b, and it has

E : [(c = 1_ c = 4)^ l1 = broken ]_ [(c = 2_ c = 3)^ l2 = broken ] c0 = (c mod 4)+1 :

The set of transitions of the STS is thus

T =
n
�1gb; �

1
br; �

1
rg; �

2
gb; �

2
br ; �

2
rg; �

c
g ; �

c
b ; �

c
r

o
:

The TPS resulting from this STS, after the simple optimizations, consists of 32 � 4 = 36 states.

The speci�cations we write for this TPS refer to the average time required for the commuter to go

from A to B, and for the commuter to perform a round-trip. These speci�cations are written with

the help of the experiments depicted in Figure 9.6. The two speci�cations we write are:

�D�14(	1) �D�7(	1=2) :

These speci�cations require that the time required for a round-trip (resp. halftrip) is on average less

than 14 (resp. 7).
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Consider the case in which the transition rates are given by:


gb = 0:05 
rg = 0:1 
g = 0:5 
r = 0:3 
b = 0:1 :

Using the model-checking algorithms presented in the dissertation, it can be decided that all states

s of � are such that

s j= �D�14(	1) s 6j= �D�7(	1=2) :

Thus, the long-run average duration of a round-trip is guaranteed to be at most 14 time units, but

the long-run average duration of a one-way trip is not guaranteed to be at most 7 time units! The

model-checking algorithm enables to establish that, approximately, the threshold outcomes are

�FT
�
s (	1) ' 11:7774 �FT

�
s (	1=2) ' 5:5458

�FT
+
s (	1) ' 13:5986 �FT

+
s (	1=2) ' 7:5526

for all states s of �. Intuitively, this can be explained as follows. The policy �1 that maximizes

the round-trip time of the commuter tries to slow down the commuter along the entire round-trip,

without discriminating the �rst from the second part of the round-trip. On the other hand, the

policy �1=2 that maximizes the one-way time concentrates the slowdown on the �rst part, from city

A to B, without making slowdown e�orts during the return part of the trip. Since the slowdown in

this latter case is concentrated on the part of trip that is being monitored by the experiment, the

time required to complete it will be on average more than half of the time required to complete a

round-trip.

9.5 Concluding Remarks

We would like to conclude this presentation with some remarks on the use of nondeterminism in the

modeling and speci�cation of probabilistic systems. We take as starting points the highway-repair

system, and the example of the token ring system presented in Chapter 2.

Nondeterminism can have di�erent functions in a system model. For example, it can be used to

model unknown schedulers, and unspeci�ed \black-box" algorithms that can be implemented. This

was the case in the token-ring example, where we used nondeterminism to model the leader-election

algorithm and the recoveries from failure. Another use of nondeterminism, as we have seen in this

chapter, is to represent transitions having unknown distributions of waiting times.

Regarding this last use of nondeterminism, it is important to realize that nondeterminism not only

implies that the waiting-time distribution of the system is unspeci�ed, but also that the distribution

might in fact depend on the past history of the system, or on the current state of the system |

including portions of the state that might not seem at �rst related to the transition. For example,
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in the last system we modeled the highway-segment transition from broken to repair by a transition

with unspeci�ed distribution. This implies that the organization in charge of highway maintenance

can decide how to schedule the repair works as a function of the system state (our results from

Chapter 6, together with the forms of experiments 	1 and 	1=2, imply that the pessimal strategies

need not depend on the past).

It seems quite reasonable to allow the repair policy to depend on the state of the links: this

makes it possible to model facts such as a preference, on the organization's part, for repairing at

most one segment at a time. On the other hand, it seems at �rst rather unreasonable to enable the

policy to depend on where the commuter is. It is as if the repair organization, to decide whether

to begin repair works, looks at where a speci�c unlucky commuter is! Of course, many people feel

that this is exactly what must be happening to them when they travel. Beyond this pessimistic

explanation, however, there is a more complicated picture.

It might indeed be unreasonable to expect that the repair policy is based on the position of

a single unlucky commuter. However, it is possible that there are external events that in
uence

both the commuter and the repair policy. For example, the commuter might start the journey from

city A to B always in the mornings, and the organization might also prefer to start repair work in

the mornings.

As these considerations demonstrate, the use of nondeterminism in the construction of a system

model is a complex issue. In this dissertation, we have taken the approach of granting the highest

possible degree of freedom to nondeterminism: nondeterministic choices can be randomized, and

can depend on the full history of the system. This approach guarantees that system models are a

conservative approximation of real systems: if a system model can be shown to satisfy a speci�cation,

the real system will also satisfy it. It would be very interesting, nonetheless, to examine intermediate

concepts of nondeterminism, in which the policy is not known in advance, but not completely

unconstrained either.
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